
Matthew Robshaw
Jonathan Katz (Eds.)

 123

LN
CS

 9
81

4

36th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 14–18, 2016
Proceedings, Part I

Advances in Cryptology –
CRYPTO 2016

Lecture Notes in Computer Science 9814

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Matthew Robshaw • Jonathan Katz (Eds.)

Advances in Cryptology –

CRYPTO 2016
36th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 14–18, 2016
Proceedings, Part I

123

Editors
Matthew Robshaw
Impinj, Inc.
Seattle, WA
USA

Jonathan Katz
University of Maryland
College Park, MD
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53017-7 ISBN 978-3-662-53018-4 (eBook)
DOI 10.1007/978-3-662-53018-4

Library of Congress Control Number: 2016945783

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The 36th International Cryptology Conference (Crypto 2016) was held at UCSB, Santa
Barbara, CA, USA, during August 14–18, 2016. The workshop was sponsored by the
International Association for Cryptologic Research.

Crypto continues to grow. This year the Program Committee evaluated a record 274
submissions out of which 70 were chosen for inclusion in the program. Each paper was
reviewed by at least three independent reviewers, with papers from Program Com-
mittee members receiving at least five reviews. Reviewers with potential conflicts of
interest for specific papers were excluded from all discussions about those papers, and
this policy was extended to the program chairs as well.

The 44 members of the Program Committee were aided in this complex and
time-consuming task by many external reviewers. We would like to thank them all for
their service, their expert opinions, and their spirited contributions to the review pro-
cess. It was a tremendously difficult task to choose the program for this conference, as
the quality of the submissions was very high. It was even harder to identify a single
best paper, but our congratulations go to Elette Boyle, Niv Gilboa, and Yuval Ishai
from IDC Herzliya, Ben Gurion University, and the Technion, respectively, whose
paper “Breaking the Circuit Size Barrier for Secure Computation Under DDH” was
awarded Best Paper. Our congratulations also go to Mark Zhandry of MIT and
Princeton University who won the award for the Best Student Paper “The Magic of
ELFs.”

The invited speakers at Crypto 2016 were Brian Sniffen, Chief Security Architect at
Akamai Technologies, Inc., and Paul Kocher, founder of Cryptography Research.
Brian’s presentation cast a fascinating light on the issues of real-world cryptographic
deployment while Paul’s presentation, a joint invitation from the program co-chairs of
both Crypto 2016 and CHES 2016, marked 20 years since his publication of the first
paper on side-channel attacks at Crypto 1996.

We are, of course, indebted to Brian LaMacchia, the general chair, as well as the
local Organizing Committee, who together proved ideal liaisons for establishing the
layout of the program and for supporting the speakers. Our job as program co-chairs
was made much easier by the excellent tools developed by Shai Halevi; both Shai and
Brian were always available at short notice to answer our queries. Finally, we would
like to thank all the authors who submitted their work to Crypto 2016. Without you the
conference would not exist.

August 2016 Matthew Robshaw
Jonathan Katz

Crypto 2016

The 36th IACR International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 14–18, 2016

Sponsored by the International Association for Cryptologic Research

General Chair

Brian LaMacchia Microsoft

Program Chairs

Matthew Robshaw Impinj, USA
Jonathan Katz University of Maryland, USA

Program Committee

Alex Biryukov University of Luxembourg, Luxembourg
Anne Canteaut Inria, France
Dario Catalano Università di Catania, Italy
Nishanth Chandran Microsoft Research, India
Melissa Chase Microsoft Research, USA
Joan Daemen STMicroelectronics, Belgium and Radboud University,

The Netherlands
Martin Van Dijk University of Connecticut, USA
Itai Dinur Ben-Gurion University, Israel
Pierre-Alain Fouque Université Rennes 1, France
Steven Galbraith Auckland University, New Zealand
Sanjam Garg University of California, Berkeley, USA
S. Dov Gordon George Mason University, USA
Jens Groth University College London, UK
Sorina Ionica Université de Picardie, France
Tetsu Iwata Nagoya University, Japan
Aggelos Kiayias National and Kapodistrian University of Athens,

Greece
Gregor Leander Ruhr Universität Bochum, Germany
Shengli Liu Shanghai Jiao Tong University, China
Alexander May Ruhr Universität Bochum, Germany
Willi Meier FHNW, Switzerland
Payman Mohassel Visa Research, USA

Elke De Mulder Cryptographic Research, France
Steven Myers Indiana University, USA
Phong Nguyen Inria, France and CNRS/JFLI and University of Tokyo,

Japan
Kaisa Nyberg Aalto University, Finland
Kenny Paterson Royal Holloway University of London, UK
Thomas Peyrin Nanyang Technological University, Singapore
Benny Pinkas Bar-Ilan University, Israel
David Pointcheval École Normale Supérieure, France
Manoj Prabhakaran University of Illinois, USA
Bart Preneel KU Leuven, Belgium
Mariana Raykova Yale University, USA
Christian Rechberger TU-Graz, Austria and DTU, Denmark
Mike Rosulek Oregon State University, USA
Rei Safavi-Naini University of Calgary, Canada
Alessandra Scafuro Boston University and Northeastern University, USA
Patrick Schaumont Virginia Tech, USA
Dominique Schröder Saarland University, Germany
Jae Hong Seo Myongji University, Korea
Yannick Seurin ANSSI, France
Abhi Shelat University of Virginia, USA
Nigel Smart University of Bristol, UK
Ron Steinfeld Monash University, Australia
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan

Additional Reviewers

Michel Abdalla
Masayuki Abe
Arash Afshar
Shashank Agrawal
Shweta Agrawal
Ayo Akinyele
Martin Albrecht
Gergely Alpar
Jacob Alperin-Sheriff
Elena Andreeva
Daniel Apon
Gilad Asharov
Gilles Van Assche
Nuttapong Attrapadung
Saikrishna

Badrinarayanan
Josep Balasch

Foteini Baldimtsi
Paulo Barreto
Gilles Barthe
Lejla Batina
Christof Beierle
Mihir Bellare
Fabrice Benhamouda
Sanjay Bhattacherjee
Jean-Francois Biasse
Begul Bilgin
Gaetan Bisson
Nir Bitansky
Simon Blackburn
Olivier Blazy
Matthieu Bloch
Céline Blondeau
Andrej Bogdanov

Dan Boneh
Jonathan Bootle
Raphael Bost
Christina Boura
Florian Bourse
Cyril Bouvier
Elette Boyle
Zvika Brakerski
Lus Brandão
Anne Broadbent
Christina Brzuska
Christian Cachin
Ran Canetti
Angelo De Caro
Guilhem Castagnos
Andrea Cerulli
Pyrros Chaidos

VIII Crypto 2016

André Chailloux
Jie Chen
Céline Chevalier
Chongwon Cho
Seung Geol Choi
Ashish Choudhury
Sherman Chow
Kai-Min Chung
Michele Ciampi
Michael Clear
Ran Cohen
Geoffroy Couteau
Dana Dachman-Soled
Deepesh Data
Jean Paul Degabriele
David Derler
Daniel Dinu
Christoph Dobraunig
Yevgeniy Dodis
Nico Döttling
Natnatee Dokmai
Leo Ducas
Tuyet Duong
Keita Emura
Frederic Ezerman
Pooya Farshim
Sebastian Faust
Dario Fiore
Marc Fischlin
Joe Fitzsimons
Nils Fleischhacker
Emmanuel Fouotsa
Georg Fuchsbauer
Eiichiro Fujisaki
Martin Gagne
François Le Gall
Chaya Ganesh
Juan Garay
Christina Garman
Romain Gay
Essam Ghadafi
Benedikt Gierlichs
Niv Gilboa
Vipul Goyal
Frédéric Grosshans
Aurore Guillevic

Divya Gupta
Felix Günther
Shai Halevi
Mike Hamburg
Shuai Han
Helena Handschuh
Christian Hanser
Carmit Hazay
Ethan Heilman
Ryan Henry
Gottfried Herold
Felix Heuer
Viet Tung Hoang
Dennis Hofheinz
Ziyuan Hu
Yan Huang
Michael Hutter
Malika Izabachene
Håkon Jacobsen
Mahavir Jhawar
Dingding Jia
Keting Jia
Thomas Johansson
Aaron Johnson
Kimmo Järvinen
Yael Tauman Kalai
Bhavana Kanukurthi
Petteri Kaski
Marcel Keller
Nathan Keller
Carmen Kempka
Iordanis Kerenidis
Dmitry Khovratovich
Dakshita Khurana
Eike Kiltz
Jinsu Kim
Taechan Kim
Paul Kirchner
Elena Kirshanova
Susumu Kiyoshima
Simon Knellwolf
Stefan Koelbl
Vlad Kolesnikov
Takeshi Koshiba
Luke Kowalczyk
Thorsten Kranz

Daniel Kraschewski
Anna Krasnova
Hugo Krawczyk
Fernando Krell
Stephan Krenn
Ranjit Kumaresan
Alptekin Kupcu
Fabien Laguillaumie
Virginie Lallemand
Enrique Larraia
Changmin Lee
Hyung Tae Lee
Kwangsu Lee
Nikos Leonardos
Tancrède Lepoint
Anthony Leverrier
Benoit Libert
Fuchun Lin
Rachel Lin
Yehuda Lindell
Feng-Hao Liu
Yi-Kai Liu
Patrick Longa
Steve Lu
Stefan Lucks
Atul Luykx
Anna Lysyanskaya
Lin Lyu
Vadim Lyubashevsky
Mohammad Mahmoody
Hemanta Maji
Giulio Malavolta
Tal Malkin
Alex Malozemoff
Mark Marson
Daniel Masny
Takahiro Matsuda
Florian Mendel
Bart Mennink
Thyla van der Merwe
Peihan Miao
Christof Michel
Ian Miers
Andrew Miller
Brice Minaud
Kazuhiko Minematsu

Crypto 2016 IX

Ilya Mironov
Ameer Mohammad
Amir Moradi
Tal Moran
Nicky Mouha
Pratyay Mukherjee
Jörn Müller-Quade
Valérie Nachef
Michael Naehrig
Maria Naya-Plasencia
Soheil Nemati
Khoa Nguyen
Ivica Nikolic
Ventzi Nikov
Ryo Nishimaki
Anca Nitulescu
Adam O’Neill
Miyako Ohkubo
Go Ohtake
Tatsuaki Okamoto
Ozgur Oksuz
Cristina Onete
Claudio Orlandi
Elisabeth Oswald
Léo Paul Perrin
Jiaxin Pan
Giorgos Panagiotakos
Omkant Pandey
Kostas

Pappagiannopoulos
Anat Paskin-Cherniavsky
Rafael Pass
Valerio Pastro
Arpita Patra
Souradyuti Paul
Christopher Peikert
Rene Peralta
Trevor Perrin
Giuseppe Persiano
Christophe Petit
Rafael Del Pino
Oxana Poburinnaya
Antigoni Polychroniadou
Orazio Puglisi
Baodong Qin
Max Rabkin

Carla Rafols
Srinivasan Raghuraman
Vanishree Rao
Manuel Reinert
Oscar Reparaz
Silas Richelson
Thomas Ristenpart
Damien Robert
Alon Rosen
Adeline Roux-Langlois
Arnab Roy
Tim Ruffing
Hansol Ryu
Sondre Rønjom
Akshayaram Srinivasan
Amin Sakzad
Katerina Samari
Ruediger Schack
Christian Schaffner
John Schanck
Thomas Schneider
Peter Scholl
Peter Schwabe
Sven Schäge
Adam Sealfon
Setareh Sharifian
Tom Shrimpton
Sandeep Shukla
Siang Meng Sim
Luisa Siniscalchi
Daniel Slamanig
Yongsoo Song
Kannan Srinathan
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé
John Steinberger
Marc Stevens
Valentin Suder
Willy Susilo
Björn Tackmann
Katsuyuki Takashima
Qiang Tang
Stefano Tessaro
Aishwarya

Thiruvengadam

Jean-Pierre Tillich
Yosuke Todo
Yiannis Tselekounis
Michael Tunstall
Himanshu Tyagi
Aleksei Udovenko
Jon Ullman
Dominique Unruh
Prashant Vasudevan
Vesselin Velichkov
Muthu

Venkitasubramaniam
Frederik Vercauteren
Damien Vergnaud
Jorge Villar
Dhinakaran

Vinayagamurthy
Ivan Visconti
Michael Walter
Pengwei Wang
Qingju Wang
Xiao Wang
Hoeteck Wee
Mor Weiss
Yunhua Wen
Carolyn Whitnall
Daniel Wichs
Xiaodi Wu
Keita Xagawa
Sophia Yakoubov
Shota Yamada
Kan Yasuda
Arkady Yerukhimovich
Ouyang Yingkai
Thomas Zacharias
Mark Zhandry
Bingsheng Zhang
Liang Feng Zhang
Xiao Zhang
Yupeng Zhang
Hong-Sheng Zhou
Vassilis Zikas
Dionysis Zindros

X Crypto 2016

Contents – Part I

Provable Security for Symmetric Cryptography

Key-Alternating Ciphers and Key-Length Extension: Exact Bounds
and Multi-user Security . 3

Viet Tung Hoang and Stefano Tessaro

Counter-in-Tweak: Authenticated Encryption Modes for Tweakable
Block Ciphers. 33

Thomas Peyrin and Yannick Seurin

XPX: Generalized Tweakable Even-Mansour with Improved
Security Guarantees. 64

Bart Mennink

Indifferentiability of 8-Round Feistel Networks . 95
Yuanxi Dai and John Steinberger

EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-Misuse
Resistant MAC . 121

Benoît Cogliati and Yannick Seurin

Asymmetric Cryptography and Cryptanalysis I

A Subfield Lattice Attack on Overstretched NTRU Assumptions:
Cryptanalysis of Some FHE and Graded Encoding Schemes. 153

Martin Albrecht, Shi Bai, and Léo Ducas

A Practical Cryptanalysis of the Algebraic Eraser . 179
Adi Ben-Zvi, Simon R. Blackburn, and Boaz Tsaban

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 190
Zvika Brakerski and Renen Perlman

Cryptography with Auxiliary Input and Trapdoor
from Constant-Noise LPN . 214

Yu Yu and Jiang Zhang

Cryptography in Theory and Practice

The Multi-user Security of Authenticated Encryption: AES-GCM
in TLS 1.3 . 247

Mihir Bellare and Björn Tackmann

http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1007/978-3-662-53018-4_3
http://dx.doi.org/10.1007/978-3-662-53018-4_3
http://dx.doi.org/10.1007/978-3-662-53018-4_4
http://dx.doi.org/10.1007/978-3-662-53018-4_5
http://dx.doi.org/10.1007/978-3-662-53018-4_5
http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53018-4_7
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-662-53018-4_9
http://dx.doi.org/10.1007/978-3-662-53018-4_9
http://dx.doi.org/10.1007/978-3-662-53018-4_10
http://dx.doi.org/10.1007/978-3-662-53018-4_10

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 277
Thomas Shrimpton, Martijn Stam, and Bogdan Warinschi

Encryption Switching Protocols . 308
Geoffroy Couteau, Thomas Peters, and David Pointcheval

Compromised Systems

Message Transmission with Reverse Firewalls—Secure Communication
on Corrupted Machines . 341

Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz

Big-Key Symmetric Encryption: Resisting Key Exfiltration 373
Mihir Bellare, Daniel Kane, and Phillip Rogaway

Backdoors in Pseudorandom Number Generators: Possibility
and Impossibility Results . 403

Jean Paul Degabriele, Kenneth G. Paterson, Jacob C.N. Schuldt,
and Joanne Woodage

Symmetric Cryptanalysis

A 270 Attack on the Full MISTY1 . 435
Achiya Bar-On and Nathan Keller

Cryptanalysis of the FLIP Family of Stream Ciphers 457
Sébastien Duval, Virginie Lallemand, and Yann Rotella

Crypto 2016 Award Papers

The Magic of ELFs . 479
Mark Zhandry

Breaking the Circuit Size Barrier for Secure Computation Under DDH 509
Elette Boyle, Niv Gilboa, and Yuval Ishai

Algorithmic Number Theory

Extended Tower Number Field Sieve: A New Complexity
for the Medium Prime Case . 543

Taechan Kim and Razvan Barbulescu

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 572
Craig Costello, Patrick Longa, and Michael Naehrig

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-662-53018-4_11
http://dx.doi.org/10.1007/978-3-662-53018-4_12
http://dx.doi.org/10.1007/978-3-662-53018-4_13
http://dx.doi.org/10.1007/978-3-662-53018-4_13
http://dx.doi.org/10.1007/978-3-662-53018-4_14
http://dx.doi.org/10.1007/978-3-662-53018-4_15
http://dx.doi.org/10.1007/978-3-662-53018-4_15
http://dx.doi.org/10.1007/978-3-662-53018-4_16
http://dx.doi.org/10.1007/978-3-662-53018-4_16
http://dx.doi.org/10.1007/978-3-662-53018-4_17
http://dx.doi.org/10.1007/978-3-662-53018-4_18
http://dx.doi.org/10.1007/978-3-662-53018-4_19
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_20
http://dx.doi.org/10.1007/978-3-662-53018-4_21

Symmetric Primitives

New Insights on AES-Like SPN Ciphers . 605
Bing Sun, Meicheng Liu, Jian Guo, Longjiang Qu, and Vincent Rijmen

Lightweight Multiplication in GFð2nÞ with Applications to MDS Matrices . . . 625
Christof Beierle, Thorsten Kranz, and Gregor Leander

Another View of the Division Property . 654
Christina Boura and Anne Canteaut

Author Index . 683

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-662-53018-4_22
http://dx.doi.org/10.1007/978-3-662-53018-4_23
http://dx.doi.org/10.1007/978-3-662-53018-4_23
http://dx.doi.org/10.1007/978-3-662-53018-4_24

Provable Security for Symmetric
Cryptography

Key-Alternating Ciphers and Key-Length
Extension: Exact Bounds and Multi-user

Security

Viet Tung Hoang(B) and Stefano Tessaro

Department of Computer Science, University of California Santa Barbara,
Santa Barbara, USA

tvhoang@engr.ucsb.edu, tessaro@cs.ucsb.edu

Abstract. The best existing bounds on the concrete security of key-
alternating ciphers (Chen and Steinberger, EUROCRYPT ’14) are only
asymptotically tight, and the quantitative gap with the best existing
attacks remains numerically substantial for concrete parameters. Here,
we prove exact bounds on the security of key-alternating ciphers and
extend them to XOR cascades, the most efficient construction for key-
length extension. Our bounds essentially match, for any possible query
regime, the advantage achieved by the best existing attack.

Our treatment also extends to the multi-user regime. We show that
the multi-user security of key-alternating ciphers and XOR cascades is
very close to the single-user case, i.e., given enough rounds, it does not
substantially decrease as the number of users increases. On the way,
we also provide the first explicit treatment of multi-user security for
key-length extension, which is particularly relevant given the significant
security loss of block ciphers (even if ideal) in the multi-user setting.

The common denominator behind our results are new techniques for
information-theoretic indistinguishability proofs that both extend and
refine existing proof techniques like the H-coefficient method.

Keywords: Symmetric cryptography · Block ciphers · Provable secu-
rity · Tightness · Multi-user security

1 Introduction

Precise bounds on the security of symmetric constructions are essential in estab-
lishing when and whether these constructions are to be deployed. This paper
revisits the question of proving best-possible security bounds for key-alternating
ciphers and key-length extension schemes.

Our contribution is twofold. First, we prove exact bounds on the security of
key-alternating ciphers and related methods for key-length extensions (i.e., XOR
cascades) which essentially match what is achieved by the best-known attack.
This is a substantial improvement over previous bounds, which are only asymp-
totically optimal. Second, we extend our treatment to the multi-user setting,
where no non-trivial bounds are known to date for these constructions.
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 3–32, 2016.
DOI: 10.1007/978-3-662-53018-4 1

4 V.T. Hoang and S. Tessaro

Our results are built on top of new conceptual insights in information-
theoretic indistinguishability proofs, generalizing previous approaches such as
the H-coefficient technique [9,24].

Key-alternating ciphers. Key-alternating ciphers (KACs) generalize the
Even-Mansour construction [13] over multiple rounds. They abstract the struc-
ture of AES, and this fact has made them the object of several recent analyses
[1,7–9,11,25]. Given t permutations π = (π1, . . . , πt) on n-bit strings, as well as
n-bit subkeys L0, L1, . . . , Lt, the t-round KAC construction KAC[π, t] outputs,
on input M , the value

Lt ⊕ πt(Lt−1 ⊕ πt−1(· · · π1(M ⊕ L0) · · ·)) . (1)

Here, we are specifically interested in (strong) prp security of KAC[π, t], i.e., its
indistinguishability from a random permutation (under random secret sub-keys)
for adversaries that can query both the construction and its inverse. Analyses
here are in the random-permutation model: The permutations π1, . . . , πt are
independent and random, and the distinguisher is given a budget of q on-line
construction queries, and p1, . . . , pt queries to each of the permutations. The
currently best bound is by Chen and Steinberger (CS) [9], who prove that the
distinguishing advantage of any such distinguisher A satisfies (using N = 2n and
p1 = · · · = pt = p)

Adv±prp
KAC[π,t](A) ≤ (t + 2)

(
q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

. (2)

Note that the best known distinguishing attack achieves advantage roughly
qpt/N t. The bound from (2) is asymptotically “tight”, i.e., the attacker needs
to spend about Ω

(
N t/(t+1)

)
queries for the bound to become constant, as in

the attack. However, there is a substantial gap between the curve given by the
bound and the advantage achieved by the best attack, and the constant hidden
inside the Ω notation (which depends on t) is fairly significant.

Exact bounds for KACs. Our first contribution is a (near-)exact bound
for KACs which matches the best-known attack (up to a small factor-four loss
in the number of primitive queries necessary to achieve the same advantage).
Concretely, we show that for A as above,

Adv±prp
KAC[π,t](A) ≤ q(4p)t

N t
. (3)

The core of our proof inherits someof the combinatorial tools fromCS’s proof.How-
ever,we use them in a different (and simpler)way to give amuch sharper bound.We
elaborate further at the end of this introduction. Clearly, our new bound substan-
tially improves upon the CS bound from (2). For example, for realistic AES-like
parameters (n = 128 and t = 10), and q = p = 2110, the CS bound is already
vacuous (indeed, the advantage starts becoming substantial at around 2100), and
in contrast, our new bound still gives us 2−50. Another feature is that our bound

Key-Alternating Ciphers and Key-Length Extension 5

does not make any assumptions on q and p — we can for example set q = N and
still infer security as long as p is sufficiently small. In contrast, the CS bound (and
the technique behind it) assumes that p, q ≤ N/3.

We note in passing that Lampe et al. [19] already proved a similar bound for
the (simpler) case of a specific non-adaptive distinguisher. If one wants however
to extend their bound to the adaptive case, a factor-two loss in the number of
rounds becomes necessary.

Multi-user security. Similar to all prior works, the above results only con-
sider a single user. Yet, block ciphers are typically deployed en masse and attack-
ers are often satisfied with compromising some user among many. This can be
substantially easier. For example, given multiple ciphertexts encrypted with a
single k-bit key, a brute-force key-search attack takes effort roughly 2k to suc-
ceed. However, if the ciphertexts are encrypted with u different keys, the effort
is reduced to 2k/u. Overall we effectively lose log(u) bits of security, which can
be substantial. Note that this loss is only inherent if exhaustive key-search is the
best attack — it may be that a given design is subject to better degradation,
and assessing what is true is crucial to fix concrete parameters.

The notion of multi-user (mu) security was introduced and formalized by
Bellare et al. [2] in the context of public-key encryption. Unfortunately, until
recently, research on provable mu security for block-cipher designs has been
somewhat lacking, despite significant evidence of this being the right metric
(cf. e.g. [6] for an overview). Recent notable exceptions are the works of Mouha
and Luykx [22] and Tessaro [26]. The former, in particular, provided a tight
analysis of the Even-Mansour cipher in the mu setting, and is a special case of
our general analysis for t = 1.

Multi-user security for KACs. First recall that in the mu setting, the
adversary makes q queries to multiple instances of KAC[π, t] (and their inverses),
each with an independent key (but all accessing the same π), and needs to dis-
tinguish these from the case where they are replaced by independent random
permutations. The crucial point is that we do not know a per-instance upper
bound on the number of the distinguisher queries, which are distributed adap-
tively across these instances. Thus, in the worst-case, at most q queries are made
on some instance and by a naive hybrid argument,1

Adv±mu-prp
KAC[π,t](A) ≤ u · q(4(p + qt))t

N t
≤ q2(4(p + qt))t

N t
, (4)

where u is an upper bound on the number of different instances (or “users”) for
which A makes a query, which again can be at most q. Note that such additional
multiplicative factor q is significant: e.g., for t = 1, it would enforce q < N1/3.

1 The increase from p to p + qt is due to the fact that in the reduction to su prp
security, the adversary needs to simulate queries to all but one of the instances with
direct permutation queries.

6 V.T. Hoang and S. Tessaro

As our second contribution, we show that this loss is not necessary, and that in
fact essentially the same bound as in the single-user case holds, i.e.,

Adv±mu-prp
KAC[π,t](A) ≤ 2

q(4(p + qt))t

N t
. (5)

To get a sense of why the statement holds true, note that we could prove this
bound easily if we knew that the adversary makes at most qi queries for the i-th
user, and q =

∑
i qi. In this case, the naive hybrid argument would yield the

bound from (5), but we do not have such qi’s. Our proof relies on a “transcript-
centric” hybrid argument, i.e., we use a hybrid argument to relate the real-
world and ideal-world probabilities that the oracles of the security game behave
according to a certain a-priori fixed transcript, for which the quantities qi are
defined. The fact that looking at these probabilities suffice will be at the core of
our approach, discussed below.

Key-length extension and multi-user security. A fundamental prob-
lem in symmetric cryptography, first considered in the design of “Triple-DES”
(3DES), is that of building a cipher with a “long” key from one with a “short”
key to mitigate the effects of exhaustive key search. Analyses of such schemes
(in the ideal-cipher model) have received substantial attention [4,10,14–17,20],
yet the practical relevance of these works is often put in question given exist-
ing designs have already sufficient security margins. However, the question gains
substantial relevance in the multi-user setting – indeed, the mu PRP security of
an ideal cipher with key length k is at most 2k/2, i.e., 64 bits for AES-128.

In this paper, we analyze XOR-cascades [14,20], which have been shown
to give the best possible trade-off between number of rounds and achievable
security. Given a block cipher E with k-bit keys and n-bit blocks, the t-round
XOR cascade XC[E, t] uses sub-keys J1, . . . , Jt, L0, . . . , Lt, and on input M ,
outputs

Lt ⊕ EJt
(Lt−1 ⊕ EJt−1(· · · EJ1(M ⊕ L0) · · ·)) . (6)

A connection between analyzing XC in the ideal-cipher model and KAC in the
random permutation model was already noticed [14,15], but the resulting reduc-
tion is far from tight. Here, we give a tight reduction, and use our result on
KAC[π, t] to show that for every adversary making q construction queries and
at most p queries to an ideal cipher, if the keys J1, . . . , Jt are distinct,

Adv±prp
XC[E,t](A) ≤ q

(4p

2k+n

)t

. (7)

Our bound does not make any assumption on q (which can be as high as 2n)
and p. If the keys are independent (and may collide), an additional term needs
to be added to the bound — a naive analysis gives t2/2k, which is usually
good enough, and this is what done in prior works. This becomes interesting
when moving to the multi-user case. For the distinct-key case, we can apply
our techniques to inherit the bound from (7) (replacing p with p + q · t), noting
that we are allowing keys to collide across multiple users, just same-user keys

Key-Alternating Ciphers and Key-Length Extension 7

need to be distinct. An important feature of this bound (which is only possible
thanks to the fact that we are not imposing any restrictions on query numbers
in our original bound for KAC[π, t]) is that it also gives guarantees when q � 2n

and queries are necessarily spread across multiple users. This is particularly
interesting when n is small (e.g., n = 64 for DES, or even smaller if E is a
format-preserving encryption (FPE) scheme).

However, for the independent-key case, the naive analysis here gives us a
term ut2/2k, where u is the number of users (and u = q may hold). This term is
unacceptably large – in particular, if u = q � 2n. To this end, we significantly
improve (in the single-user case already) the additive term t2/2k. In the multi-
user setting, the resulting bound is going to be extremely close to the one for
distinct keys, if t �= 3.2 We leave the question open of reducing the gap (or
proving its necessity) for t = 3.

Our techniques. A substantial contribution of our work is conceptual.
Section 3.1 below presents our tools in a general fashion, making them amenable
to future re-use. We give an overview here.

All of our results rely on establishing a condition we call point-wise proximity:
That is, we show that there exists an ε = ε(q) such that for all possible tran-
scripts τ describing a possible ideal- or real-world interaction (say with q queries),
the probabilities p0(τ) and p1(τ) that the ideal and real systems, respectively,
answer consistently with τ (when asked the queries in τ) satisfy

p0(τ) − p1(τ) ≤ ε · p0(τ) .

This directly implies that the distinguishing advantage of any q-query distin-
guisher is at most ε. This method was first used by Bernstein [5], and can be seen
as a special case of Patarin’s H-coefficient method [24] (recently revisited and re-
popularized byChen andSteinberger [9]) andNandi’s “interpolationmethod” [23],
where we do not need to consider the possibility of some transcripts “being bad”.
It turns out that when we do not need such bad set, the notion becomes robust
enough to easily allow for a number of arguments.

Transcript-centric reductions. Our first observation is that point-wise
proximity makes a number of classical proof techniques transcript-centric, such
as hybrid arguments and reductions. For example, assume that for a pair of
systems with transcript probabilities p0 and p1, we have already established
that p0(τ)−p1(τ) ≤ ε ·p0(τ). Now, to establish that for some other p′

0 and p′
1 we

also have p′
0(τ)− p′

1(τ) ≤ ε · p′
0(τ), it is enough to exhibit a function ϕ, mapping

transcripts into transcripts, such that

p′
1(τ)

p′
0(τ)

=
p1(ϕ(τ))
p0(ϕ(τ))

2 We note that in practice, it is easy for a user to enforce that her t keys are distinct,
making this part of the key sampling algorithm. Still, our bound shows that this is
not really necessary for t �= 3.

8 V.T. Hoang and S. Tessaro

for every τ such that p′
0(τ) > 0. This is effectively a reduction, but the key point

is that the reduction ϕ maps executions into executions (i.e., transcripts), and
thus can exploit some global after-the-fact properties of this execution, such as
the number of queries of a certain particular type. This technique will be central
e.g. to transition (fairly generically) from single-user to multi-user security in a
tight way. Indeed, while a hybrid argument does not give a tight reduction from
single-user to multi-user security, such a reduction can be given when we have
established the stronger property of single-user point-wise proximity.

The expectation method. Our main quantitative improvement over the CS
bound is due to a generalization of the H-coefficient method that we call the
expectation method.

To better understand what we do, we first note that through a fairly involved
combinatorial analysis, the proof of the CS bound [9] gives (implicitly) an exact
formula for the ratio ε(τ) = 1− p1(τ)

p0(τ)
for every “good transcript” τ . The issue here

is that ε(τ) depends on the transcript τ , in particular, on numbers of paths of dif-
ferent types in a transcript-dependent graph G = G(τ). To obtain a sharp bound,
CS enlarge the set of bad transcripts to include those where these path numbers
excessively deviate from their expectations, and prove a unique bound ε∗ ≥ ε(τ)
for all good transcripts. As these quantities do not admit overly strong concen-
tration bounds, only Markov’s inequality applies, and this results in excessive
slackness. In particular, an additional parameter appears in the bound, allowing
for a trade-off between the probability δ∗ of τ being bad and the quality of the
upper bound ε∗, and this parameter needs to be optimized to give the sharpest
bound, which however still falls short of being exact.

The problem here is that the H-coefficient technique takes a worst-case app-
roach, by unnecessarily requiring one single ε∗ to give us an upper bound for
all (good) transcripts. What we use here is that given a transcript-dependent
ε = ε(τ) for which the above upper bound on the ratio holds, then one can sim-
ply replace ε∗ in the final bound with the expected value of ε(τ) for an ideal-world
transcript τ . This expected value is typically fairly straightforward to compute,
since the ideal-world distribution is very simple.

We in fact do even more than this, noticing that for KACs point-wise proxim-
ity can be established, and this will allow us to obtain many of the applications
of this paper. In fact, once we do not need to enlarge the set of bad transcripts
any more as in CS, we observe that every transcript is potentially good. Only
in combination with the key (which is exposed as part of the transcript in CS)
transcripts can be good or bad. We will actually apply the expectation method
on every fixed transcript τ , the argument now being only over the choice of the
random sub-keys L0, L1, . . . , Lt – this makes it even simpler.

A perspective.The above techniques are all fairly simple in retrospect, but they
all indicate a conceptual departure from the standard “good versus bad” para-
digm employed in information-theoretic indistinguishability proofs. CS already
suggested that one can generalize their methods beyond a two-set partition,

Key-Alternating Ciphers and Key-Length Extension 9

but in a way, what we are doing here is an extreme case of this, where every set
in the partition is a singleton set.

It also seems that the issue of using Markov’s inequality has seriously affected
the issue of proving “exact bounds” (as opposed to asymptotically tight ones).
Another example (which we also revisit) is the reduction of security of XOR
cascades to that of KACs [14,15].

2 Preliminaries

Notation. For a finite set S, we let x ←$ S denote the uniform sampling from S
and assigning the value to x. Let |x| denote the length of the string x, and
for 1 ≤ i < j ≤ |x|, let x[i, j] denote the substring from the ith bit to the
jth bit (inclusive) of x. If A is an algorithm, we let y ← A(x1, . . . ; r) denote
running A with randomness r on inputs x1, . . . and assigning the output to y.
We let y ←$ A(x1, . . .) be the resulting of picking r at random and letting y ←
A(x1, . . . ; r).

Multi-user PRP security of blockciphers. Let Π : K × M → M be
a blockcipher, which is built on a family of independent, random permutations
π : Index×Dom → Dom. (Note that here Index could be a secret key, in this case
π will model an ideal cipher, or just a small set of indices, in which case π models
a (small) family of random permutations.) We associate with Π a key-sampling
algorithm Sample. Let A be an adversary. Define

Adv±mu-prp
Π[π],Sample(A) = Pr[RealAΠ[π],Sample ⇒ 1] − Pr[RandA

Π[π],Sample ⇒ 1]

where games Real and Rand are defined in Fig. 1. In these games, we first use
Sample to sample keys K1,K2, . . . ∈ K for Π, and independent, random per-
mutations f1, f2, . . . on M. The adversary is given four oracles Prim,PrimInv,
Enc, and Dec. In both games, the oracles Prim and PrimInv always give access
to the primitive π and its inverse respectively. The Enc and Dec oracles gives
access to f1(·), f2(·), . . . and their inverses respectively in game Rand, and access
to Π[π](K1, ·),Π[π](K2, ·), . . . and their inverses in game Real. The adversary
finally needs to output a bit to tell which game it’s interacting.

For the special case that and adversary A only queries Prim(·),Enc(1, ·),
and their inverses, we write Adv±prp

Π[π],Sample(A) to denote the advantage of A.

If Sample is the uniform sampling of K then we only write Adv±prp
Π[π] (A) and

Adv±mu-prp
Π[π] (A). If Π doesn’t use π then Adv±prp

Π (A) coincides with the conven-
tional (strong) PRP advantage of A against Π.

3 Indistinguishability Proofs via Point-Wise Proximity

This section discusses techniques for information-theoretic indistinguishability
proofs. A reader merely interested in our theorems can jump ahead to the next
sections — the following tools are not needed to understand the actual state-
ments, only their proofs.

10 V.T. Hoang and S. Tessaro

Fig. 1. Games defining the multi-user security of a blockcipher Π : K ×
M → M. This blockcipher is based on a family of independent, random permutations
π : Index × Dom → Dom. The game is associated with a key-sampling algorithm
Sample. Here Perm(M) denotes the set of all permutations on M.

3.1 The Indistinguishability Framework

Let us consider the setting of a distinguisher A (outputting a decision bit) inter-
acting with one of two “systems” S0 and S1. These systems take inputs and
produce outputs, and are randomized and possibly stateful. We dispense with
a formalization of the concept of a system, as an intuitive understanding will
be sufficient. Still, this can be done via games [4], random systems [21], ITMs,
or whichever other language permits doing so. In this paper, these systems will
provide a construction oracle Enc with a corresponding inversion oracle Dec,
and a primitive oracle Prim with a corresponding inversion oracle PrimInv, but
our treatment here is general, and thus does not assume this form.

The interaction between Sb and A (for b ∈ {0, 1}) defines a transcript
τ = ((u1, v1), . . . , (uq, vq)) containing the ordered sequence of query-answer pairs
describing this interaction. We denote by Xb the random variable representing
this transcript. In the following, we consider the problem of upper bounding the
statistical distance

SD(X0,X1) =
∑

τ

max{0,Pr[X1 = τ] − Pr[X0 = τ]} , (8)

of the transcripts, where the sum is over all possible transcripts. It is well known
that SD(X0,X1) is an upper bound on the distinguishing advantage of A, i.e.,
the difference between the probabilities of A outputting one when interacting
with S1 and S0, respectively.

Describing systems. Following [21], a useful way to formally describe the
behavior of a system S is to associate with it a function pS mapping a possible
transcript τ = ((u1, v1), . . . , (uq, vq)) with a probability pS(τ) ∈ [0, 1]. This is to
be interpreted as the probability that if all queries u1, . . . , uq in τ are asked to
S in this order, the answers are v1, . . . , vq. Note that this is not a probability
distribution (i.e., summing pS(τ) over all possible τ ’s does not give one). More-
over, pS is independent of any possible distinguisher — it is a description of the
system. (And in fact, this is precisely how [21] defines a system.)

Key-Alternating Ciphers and Key-Length Extension 11

Because our distinguishers are computationally unbounded, it is sufficient to
assume them to be deterministic without loss of generality. A simple key obser-
vation is that for deterministic distinguisher A, given the transcript distribution
X of the interaction with S, we always have Pr[X = τ] ∈ {0, pS(τ)}. This is
because, if τ = ((u1, v1), . . . , (uq, vq)), then either A is such that it asks queries
u1, . . . , uq when fed answers v1, . . . , vq (in which case Pr[X = τ] = pS(τ)), or it
is not, in which case clearly Pr[X = τ] = 0.

Let T denote the set of transcripts τ such that Pr[X1 = τ] > 0. We call
such transcripts valid. Also, note that if τ ∈ T , then we also have Pr[X0 = τ] =
pS0(τ). Therefore, we can rewrite (8) as

SD(X0,X1) =
∑
τ∈T

max{0, pS1(τ) − pS0(τ)} . (9)

Note that which transcripts are valid depends on A, as well as on the system S1.

The H-coefficient method. Let us revisit the well-known H-coefficient tech-
nique [9,24] within this notational framework. (This is also very similar to alter-
native equivalent treatments, like the “interpolation method” presented in [5,23].)
The key step is to partition valid transcripts T into two sets, the good transcripts
Γgood and the bad transcripts Γbad. Then, if we can establish the existence of a
value ε such that for all τ ∈ Γgood, we have 1 − pS0 (τ)

pS1 (τ)
≤ ε, then we can conclude

that

SD(X0,X1) =
∑

τ

max{0, pS1(τ) − pS0(τ)}

≤
∑

τ∈Γgood

pS1(τ) · max
{

0, 1 − pS0(τ)
pS1(τ)

}
+

∑
τ∈Γbad

pS1(τ) · 1

≤ ε + Pr[X1 ∈ Γbad] .

We note that in the typical treatment of this method, many authors don’t nota-
tionally differentiate explicitly between e.g. Pr[X0 = τ] and pS0(τ) (and likewise
for X1 and S1), even though this connection is implicitly made. (For example,
for typical cryptographic systems, the order of queries is re-arranged to compute
Pr[X0 = τ] without affecting the probability, which is a property of pS0 , since
queries may not appear in that order for the given A.) Treating these separately
will however be very helpful in the following.

The expectation method. In the H-coefficient method, ε typically depends
on some global properties of the distinguisher (e.g., the number of queries) and
the system (key length, input length, etc.). However, this can be generalized:
Assume that we can give a non-negative function g : T → [0,∞) such that

1 − pS0(τ)
pS1(τ)

≤ g(τ) (10)

12 V.T. Hoang and S. Tessaro

for all τ ∈ Γgood, then we can easily conclude, similar to the above, that

SD(X0,X1) ≤
∑

τ∈Γgood

pS1(τ) · g(τ) + Pr[X1 ∈ Γbad]

≤ E[g(X1)] + Pr[X1 ∈ Γbad] .

Note that we have used the fact that the function g is non-negative for the first
term to be upper bounded by the expectation E[g(X1)]. We refer to this method
as the expectation method, and we will see below that this idea is very useful.

The H-coefficient technique corresponds to the special case where g is “con-
stant”, whereas here the value may depend on further specifics of the transcript
at hand. Obviously, good choices of g, Γgood, and Γbad are specific to the problem
at hand. We also note that one can set g(τ) = 1 for bad transcripts, and then
dispense with the separate calculation of the probability. (The way we present it
above, however, makes it more amenable to the typical application.) Note that
Chen and Steinberger [9] explain that in the H-coefficient method one may go
beyond the simple partitioning in good and bad transcripts. In a sense, what we
are doing here is going to the extreme, partitioning Γgood into singleton sets.

3.2 Point-Wise Proximity

A core observation is that for some pairs of systems S0 and S1 (and this will be
the case for those we consider), we are able to establish a stronger “point-wise”
proximity property.

Definition 1 (Point-wise proximity). We say that two systems S0 and S1

satisfy ε-point-wise proximity if, for every possible transcript τ with q queries,

Δ(τ) = pS1(τ) − pS0(τ) ≤ pS1(τ) · ε(q) . (11)

Note that ε is a function of q, and often we will let it depend on more fine-grained
partitions of the query complexity. (Also in some cases, the query complexity
will be implicit.) In particular, for a certain q-query distinguisher A, by Eq. (9),
it is clear that ε-point-wise proximity implies that SD(X0,X1) ≤ ε, which is also
a bound on A’s advantage. Observe that point-wise proximity is a property of a
pair of systems S0 and S1, independent of the adversaries interacting with them.
Also, it is equivalent to the fact that 1− pS0 (τ)

pS1 (τ)
≤ ε for all τ such that pS1(τ) > 0.

In other words, establishing ε-proximity corresponds to applying the H-
coefficient method without bad transcripts. This is exactly the special case con-
sidered by Bernstein [5]. Of course, this method is not always applicable, but
when it is, it will bring numerous advantages.

The expectation method. We outline a general method to prove ε-point-wise
proximity based on the above general expectation method.

As the starting point, we extend the system S0 to depend on some aux-
iliary random variable S (e.g., a secret key). In particular, we write pS0(τ, s)
to be the probability that S0 answers queries according to τ and that S = s.

Key-Alternating Ciphers and Key-Length Extension 13

Further, we define pS1(τ, s) = pS1(τ) ·Pr[S = s], i.e., we think of S1 as also addi-
tionally sampling an auxiliary variable S with the same marginal distribution as
in S0, except that the behavior of S1 remains independent of S. Then, for every
transcript τ ,

Δ(τ) =
∑

s

pS1(τ, s) −
∑

s

pS0(τ, s) =
∑

s

pS1(τ, s) − pS0(τ, s) .

Now, we establish the following lemma, that is based on the above expectation
method.

Lemma 1 (The expectation method). Fix a transcript τ for which
pS1(τ) > 0. Assume that there exists a partition Γgood and Γbad of the range
U of S, as well as a function g : U → [0,∞) such that Pr[S ∈ Γbad] ≤ δ and for
all s ∈ Γgood,

1 − pS0(τ, s)
pS1(τ, s)

≤ g(s) .

Then,
Δ(τ) ≤ (δ + E(g(S))) · pS1(τ) .

Proof. Note that s ∈ U implies Pr[S = s] > 0, and thus pS1(τ, s) > 0. We can
easily compute

Δ(τ) ≤
∑
s∈U

pS1(τ, s) − pS0(τ, s)

= pS1(τ) ·
∑
s∈U

Pr[S = s] ·
(
1 − pS0(τ, s)

pS1(τ, s)

)

≤ pS1(τ) ·
(∑

s∈Γbad

Pr[S = s] +
∑

s∈Γgood

Pr[S = s] · g(s)
)

≤ (δ + E(g(S))) · pS1(τ) . �

We stress that the partitioning into Γgood and Γbad, as well as the function g and
the random variable S, are all allowed to depend on τ (and in fact will depend
on them in applications).

Transcript reduction. Lemma 1 gives us one possible approach to prove ε-
point-wise proximity. Another technique we will use is to simply reduce this
property to ε-point-wise proximity for another pair of systems.

Typically, we will assume that we are in the above extended setting, where
we have enhanced the systems S0 and S1 with some auxiliary random variable S.
Here, in contrast to the above, we assume that S is not necessarily independent
of the behavior of the system S1. Further, assume that we are given two other
systems S′

0 and S′
1 for which ε-point-wise proximity holds. To this end, we are

simply going to provide an explicit reduction R which is going to map every
(τ, s) for S0 and S1 into a transcript R(τ, s) for S′

0 and S′
1 such that

pS0(τ, s)
pS1(τ, s)

=
pS′

0
(R(τ, s))

pS′
1
(R(τ, s))

.

14 V.T. Hoang and S. Tessaro

whenever pS1(τ, s) > 0. This will be sufficient for our purposes, because (with U
being the set of s such that pS1(τ, s) > 0)

Δ(τ) ≤
∑
s∈U

pS1(τ, s) ·
(
1 − pS0(τ, s)

pS1(τ, s)

)

=
∑
s∈U

pS1(τ, s) ·
(
1 −

pS′
0
(R(τ, s))

pS′
1
(R(τ, s))

)
≤ ε · pS1(τ) .

Note that here ε = ε(q′), where q′ is the number of queries in R(τ, s).

3.3 From Single-User to Multi-user Security

There is no generic way to derive a tight bound on the multi-user security of a
construction given a bound on its single-user security — the naive approach uses
a hybrid argument, but as we have no bounds on the per-user number of queries
of the attacker (which may vary adaptively), this leads to a loss in the reduction.
Here, we show how given point-wise proximity for the single-user case, a bound
for multi-user security can generically be found via a hybrid argument.

We assume now we are in the above multi-user prp security setting presented
in Sect. 2, and we let preal and prand describe the oracles available in the real
and random experiments (which we can see as systems in the framework above).
Assume that we already established ε-point-wise proximity for the single-user
case for transcripts with at most p primitive queries and q function queries (and
we think of ε = ε(p, q) as a function of p and q). That is, we have shown that
for every transcript τ such that all function queries have form Enc(i, x) and
Dec(i, y) for the same i (whereas Prim(J, u)/PrimInv(J, v) are unrestricted),

prand(τ) − preal(τ) ≤ prand(τ) · ε(p, q) . (12)

Let m be the number of calls to π/π−1 that a single call to Π/Π−1 makes.
Also assume now that ε satisfies the following properties: (i) ε(x, y) + ε(x, z) ≤
ε(x, y + z), for every x, y, z ∈ N, and (ii) ε(·, z) is an increasing function on N,
for every z ∈ N. Property (ii) usually holds, because asking more queries should
only increase the adversary’s advantage. Property (i) is also usually satisfied by
typical functions we use to bound distinguishing advantages. Further, we assume
that ε(p + qm, q) ≤ 1/2. Then, we show the following.

Lemma 2. (From su to mu point-wise proximity). Assume all conditions
above are met. Then for all transcripts τ with at most q function queries (for
arbitrary users) and p primitive queries,

prand(τ) − preal(τ) ≤ prand(τ) · 2ε(p + q · m, q) (13)

Proof. Fix some transcript τ , and assume that in τ , function queries are made
for r users u1, . . . , ur ∈ N. For each i ∈ {0, 1, . . . , r}, consider the hybrid system

Key-Alternating Ciphers and Key-Length Extension 15

Si which provides a compatible interface with the real and random games, and
answers primitives queries in the same way, but queries for user uj for j > i
are answered with the actual construction Π and Π−1, whereas queries for uj

with j ≤ i are answered by i independent random permutations. Then clearly
pS0(τ) = preal(τ) and pSr

(τ) = prand(τ). We can thus rewrite

prand(τ) − preal(τ) =
r∑

i=1

pSi
(τ) − pSi−1(τ) .

Suppose that τ contains qi queries to Enc(ui, ·)/Dec(ui, ·). We’ll prove that for
any i ∈ {1, . . . , r},

pSi
(τ) − pSi−1(τ) ≤ pSi

(τ) · ε(p + qm, qi) . (14)

This claim will be justified later. Now Eq. (14) implies that

pSi−1(τ) ≥ (1 − ε(p + qm, qi)) · pSi
(τ)

for every i ∈ {1, . . . , r}. Thus for any i ∈ {1, . . . , r},

pS0(τ) ≥ pSi
(τ)

i∏
j=1

(1 − ε(p + qm, qj)) ≥ pSi
(τ)

(
1 −

i∑
j=1

ε(p + qm, qj)
)

≥ pSi
(τ)

(
1 −

r∑
j=1

ε(p + qm, qj)
)

≥ pSi
(τ)

(
1 − ε(p + qm, q)

)
≥ 1

2
pSi

(τ) .

The first inequality is due to the fact that (1 − x)(1 − y) ≥ 1 − (x + y) for every
0 ≤ x, y ≤ 1; the second last inequality is due to the property (i) of function ε;
and the last one is due to the assumption that ε(p + qm, q) ≤ 1/2. Combining
this with Eq. (14),

r∑
i=1

pSi
(τ) − pSi−1(τ) ≤

r∑
i=1

pSi
(τ) · ε(p + qm, qi)

≤
r∑

i=1

2pS0(τ) · ε(p + qm, qi) ≤ 2pS0(τ) · ε(p + qm, q) .

What’s left is to prove Eq. (14). To this end, fix i ∈ {1, . . . , r}, and we are going
to use the transcript reduction technique presented above. First off, enhance
Si−1 and Si with an auxiliary variable S which contains (i) the transcript
of all internal Prim/PrimInv caused by querying Enc(uj , ·)/Dec(uj , ·), and
(ii) the keys Kj of users uj , for j > i. Now, given (τ, s), note that if we start
by removing all queries from τ for users uj for j < i (which are answered by
random permutations in both Si−1 and Si), obtaining a transcript τ ′, then we
necessarily have

pSi−1(τ, s)
pSi

(τ, s)
=

pSi−1(τ
′, s)

pSi
(τ ′, s)

.

16 V.T. Hoang and S. Tessaro

π π
LL L

π π
L

L L

L

Fig. 2. Left: Illustration of KAC[π, 2]. Right: Illustration of KACX[π, 2].

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 65 70 75 80 85 90 95 100

3 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 85 90 95 100 105 110 115 120

10 rounds

Fig. 3. Su PRP security of KAC on 3 rounds (left) and 10 rounds (right) on
128-bit strings: our bounds versus CS’s. The solid lines depict our bounds, and
the dashed ones depict CS’s bounds. In both pictures, p = q, and the x-axis gives the
log (base 2) of p, and the y-axis gives upper bounds on the PRP security of KAC.

This is because the distribution of these answers is independent of what is in
τ ′, s in both Si−1 and Si, and in both cases the distribution is identical. Then,
given τ ′ and a value s for S (in either of the system), we can easily construct a
transcript R(τ ′, s) where all function queries for users uj for j > i are removed,
all primitive queries in s are made directly to the Prim and PrimInv oracles in
τ ′, and all keys Kj of users uj for j > i are removed. It is easy to verify that

pSi−1(τ, s)
pSi

(τ, s)
=

pSi−1(R(τ ′, s))
pSi

(R(τ ′, s))
,

because (i) the function queries of users uj can be derived from the primitive
queries and Kj , and (ii) the keys Kj for j > i are independent of what’s used
for user i. However, note R(τ ′, s) contains qi Enc/Dec queries, all for users ui,
and at most p + q · m queries to Prim/PrimInv. As for those transcripts we
have already established ε-point-wise proximity, Eq. (14) follows by the transcript
reduction method. �

4 Exact Bounds for Key-Alternating Ciphers

4.1 Results and Discussion

This section provides a comprehensive single- and multi-user security analysis
of key-alternating ciphers. After reviewing the construction, and the concrete
bound proved by Chen and Steinberger [9], we state and discuss our main results,
starting with the single-user security case.

Key-Alternating Ciphers and Key-Length Extension 17

Key-alternating ciphers. Let us review the key-alternating cipher construc-
tion. Let t and n be positive integers, and let π : N × {0, 1}n → {0, 1}n be
a family of permutations on {0, 1}n. We write πi(·) to denote π(i, ·), and N
for 2n. The Key-Alternating Cipher (KAC) construction gives a blockcipher
KAC[π, t] : ({0, 1}n)t+1 × {0, 1}n → {0, 1}n as follows. On input x and keys
K = (L0, . . . , Lt) ∈ ({0, 1}n)t+1, KAC[π, t](K,x) returns yt, where y0 = x ⊕ L0,
and yi = πi(yi−1) ⊕ Li for every i ∈ {1, . . . , t}. It is a direct generalization
of the classic Even-Mansour construction [12]. See Fig. 2 for an illustration of
KAC[π, 2].

The CS bound. Chen and Steinberger (CS) [9] shows that if an adversary makes
at most q queries to Enc/Dec, and at most p ≤ N/3 queries to Prim(i, ·) and
PrimInv(i, ·) for every i ∈ {1, . . . , t}, then

Adv±prp
KAC[π,t](A) ≤ qpt

N t
· Ct2(6C)t +

(t + 1)2

C
(15)

for any C ≥ 1. Since Eq. (15) holds for any C ≥ 1, to determine the best upper
bound for Adv±prp

KAC[π,t](A) according to this inequality, one needs to find the
minimum of the right-hand side of Eq. (15). For each fixed p, q and t, from the
inequality of arithmetic and geometric means:

qpt

N t
· Ct2(6C)t +

(t + 1)2

C
=

qpt

N t
· Ct2(6C)t +

(t + 1)
C

+ · · · +
(t + 1)

C

≥ (t + 2)
(

qptCt2(6C)t

N t
· (t + 1)

C
· · · (t + 1)

C

)1/(t+2)

= (t + 2)
(

q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

The equality happens if C =
(

Nt(t+1)
qt2(6p)t

)(t+2)

. Eq. (15) can be rewritten as

Adv±prp
KAC[π,t](A) ≤ (t + 2)

(
q(6p)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

(This bound is slightly smaller than the claimed result in [9, Corollary 1].) While
this bound is asymptotically optimal, meaning that the adversary needs to spend
about N t/(t+1) queries for the bound to become vacuous, it’s concretely much
weaker than the best possible bound, which is roughly qpt/N t [14].

Single-user security of KACs. We establish the following theorem, which
gives a near-exact bound on the PRP security of the KAC[π, t] construction in
the ideal-permutation model. Following the theorem, we first give some com-
ments. The proof is found in Sect. 4.2, where we also give a high-level overview.

Theorem 1 (Su PRP security of KACs). Let t and n be positive integers,
and let π : N × {0, 1}n → {0, 1}n be a family of ideal permutations on {0, 1}n.

18 V.T. Hoang and S. Tessaro

Let KAC[π, t] be as above. For an adversary A that makes at most q queries
to Enc/Dec, and at most pi queries to Prim(i, ·) and PrimInv(i, ·) for every
i ∈ {1, . . . , t}, it holds that

Adv±prp
KAC[π,t](A) ≤ 4tqp1 · · · pt/N

t . (16)

This bound constitutes a significant improvement over the CS bound. For exam-
ple, consider n = 128 and t = 3. For p = 296 and q = 264, CS’s result yields
Adv±prp

KAC[π,3](A) ≤ 0.71, whereas according to Theorem 1, Adv±prp
KAC[π,3](A) ≤ 2−26.

See Fig. 3 for a graphical comparison of CS’s bound and ours for the case p = q
and both t = 3 and t = 10 rounds. Note that the latter case is the one match-
ing AES-128 the closest. In particular, here, we see that the advantage starts
to become noticeable roughly at q = p = 2100 for the CS bound, whereas this
happens only at 2113 for our new bound. One of the issues in the CS bound is
that the 1/(t + 2) exponent smoothes the actual bound considerably, and thus
gives a much less sharp transition from small advantage to large as t increases.

Query regimes. Let us point out two important remarks on the bound. First
off, it is important that our bound does not require any bound on q and p1, . . . , pt.
Any of these values can equal N , and the construction remains secure as long as
4tqp1 · · · pt/N

t remains small enough. Dealing with such q = N and pi = N case
requires in fact a completely novel approach, which we introduce and explain
below in Sect. 4.2. This will be important when using our bounds in the proof
for the analysis of XOR cascades, which we want to hold true even if N is small
(e.g., in the case of format-preserving encryption (FPE) [3]) and the attacker
distributes q � N queries across multiple users, possibly exhausting all possible
queries for some of these users.

On the other hand, one might worry that an adversary may adaptively dis-
tribute the number of queries among the permutations π1, . . . , πt, and want a
bound in terms of p, the total number of queries to π. Naively, the bound in
Theorem 1 is only q(4p)t/N t. However, we can exploit our point-wise proximity
based approach to get a sharper bound: In each transcript τ , the number of
queries pi[τ] to πi is completely determined, and thus Eq. (17) in the proof of
Theorem 1 can be rewritten as

pS1(τ) − pS0(τ) ≤ pS1(τ) · 4tqp1[τ] · · · pt[τ]
N t

≤ pS1(τ) · 4tq(p1[τ] + · · · + pt[τ])t

N ttt
≤ pS1(τ) · q(4p)t

N ttt
.

Then Adv±prp
KAC[π,t](A) ≤ q(4p)t/(Nt)t.

Variants. Consider the following natural variant KACX[π, t] of KAC[π, t].
It uses only t subkeys (L1, . . . , Lt) ∈ ({0, 1}n)t. On input x, it returns
returns yt, where y0 = x, and yi = πi(yi−1 ⊕ Li) ⊕ Li for every i ∈ {1, . . . , t}.
See Fig. 2 for an illustration of KACX. Note that KACX is KAC with effective

Key-Alternating Ciphers and Key-Length Extension 19

key (L1, L1 ⊕ L2, L2 ⊕ L3, . . . , Lt−1 ⊕ Lt, Lt), or in other words, we have chosen
random keys under the constraint that their checksum equals 0n.

While we do not give the concrete proof, we note that the same security
bound and proof will continue to work: in the proof, whenever we need to use
the independence of the subkeys, we consider only t subkeys at a time. We note
that for t = 1 this is exactly the statement that the security of Even-Mansour
is not affected when one sets both keys to be equal.

4.2 Proof of Theorem1

This section is devoted to the proof of Theorem 1. We begin with a high-level
overview of the proof structure. Following the notational framework of Sect. 3.1,
let S0 and S1 be the systems associated by the real and ideal game in the prp
security definition. In particular, transcripts τ for these systems contain two
different types of entries:

– Enc/Dec queries. Queries to Enc(1, x) returning y and Dec(1, y) returning
x are associated with an entry (enc, x, y).

– Prim/PrimInv queries. Queries to Prim(j, x), returning y, and those to
PrimInv(j, y), returning x, are associated with an entry (prim, j, x, y)

Note that a further distinction between entries corresponding to forward and
backward queries is not necessary, as this will not influence the probabilities
pS0(τ) and pS1(τ) that a certain transcript occurs. Similarly, these probabilities
are invariant under permuting the entries of τ . We also assume without loss of
generality that no repeated entries exist in τ (this corresponds to the fact that
an attacker asks no redundant queries).

Overview. Our goal is to establish the point-wise proximity for S0 and S1, i.e.,
for any transcript τ containing q entries (enc, ·, ·), and at most pi entries of form
(prim, i, ·, ·) for i = 1, . . . , t, we show

pS1(τ) − pS0(τ) ≤ pS1(τ) · 4tqp1 · · · pt

N t
. (17)

In particular, the proof of (17) is made by two parts:

– Case 1. q, p1, . . . , pt ≤ N/4. Then, we give a direct proof of (17) using the
expectation method from Lemma 1, where the auxiliary variable S will consist
of the secret keys L0, L1, . . . , Lt (in S0). Our proof will resemble in some
aspects that of Chen and Steinberger [9], but it will be much simpler due to the
fact that the queries are fixed by τ , and we will only argue over the probability
of S. We will still resort to the involved and elegant “path-counting” lemma
of [9], but it will only be used to define a function g for which computing the
expectation of g(S) will be fairly easy.

– Case 2. At least one of q, p1, . . . , pt is bigger than N/4. We’ll use the transcript
reduction method, where the other two systems S′

0 and S′
1 on which we assume

we have established point-wise proximity provide the real and ideal games for
a (t − 1)-round KAC.

20 V.T. Hoang and S. Tessaro

Therefore, our proof for Eq. (17) uses induction on the number of rounds of
the KAC. If all queries are smaller than N/4 then we can give a direct proof,
otherwise the transcript reduction lands us back to the induction hypothesis. To
this end, note that although KAC is defined for t ≥ 1 rounds, we can also define
KAC[π, 0](K,x) = x⊕K for every x ∈ {0, 1}n, and the bound degenerates to 1.
This is our base case in which Eq. (17) vacuously holds.

Now suppose that Eq. (17) holds for KAC of 0, . . . , t − 1 rounds. We now
prove that it also holds for KAC of t rounds as well. We’ll consider the following
two cases.3

Case 1: q, p1, . . . , pt ≤ N/4. Fix a transcript τ . We use the expectation method.
Let S be the random variable for the key of KAC[π, t] in S0, and let K =
({0, 1}n)t+1) be the key space. Then S is uniformly distributed over K. For each
key s = (L0, . . . , Lt) ∈ K, define the graph G(s) as follows:

– Its set of vertices are partitioned into t+1 sets V0, . . . , Vt, each of 2n elements.
For each j ∈ {0, . . . , t}, use the elements of {j}×{0, 1}n to uniquely label the
elements of Vj .

– For each entry (prim, j, x, y) in τ , connect the vertices (j − 1, x ⊕ Lj−1) and
(j, y).

For a path P in G(s), let |P | denote the number of edges in this path. (A vertex
is a also a path that has no edge.) We define the following notion of good and
bad keys.

Definition 2 (Bad and good keys). We say that a key s = (L0, . . . , Lt)
is bad if τ contains an entry (enc, x, y) such that in the graph G(s), there’s a
path P0 starting from (0, x) and a path P1 starting from (t, y ⊕ Lt) such that
|P0| + |P1| ≥ t. If a key is not bad then we’ll say that it’s good. Let Γbad be the
set of bad keys, and let Γgood = K\Γbad.

Let Zs(i, j) be the number of paths from vertices in Vi to vertices in Vj

of G(s). For 0 ≤ a < b ≤ t, let B(a, b) be the collection of sets σ =
{(i0, i1), (i1, i2), . . . , (i�−1, i�)}, with a = i0 < · · · < i� = b. Let the Enc entries
of τ be (enc, x1, y1), . . . , (enc, xq, yq). For k ∈ {1, . . . , q}, let αk[s] be the length
of the longest path starting from (0, xk), and t − βk[s] be the length of the
longest path ending at (t, yk). For 0 ≤ a < b ≤ t, let Ra,b,k[s] = 1 if αk[s] ≥ a
and βk[s] ≤ b, and let Ra,b,k[s] = 0 otherwise. Note that if s is good then
αk[s] < βk[s] for every k ∈ {1, . . . , q}.

Recall that in the expectation method, one needs to find a non-negative
function g : K → [0,∞) such that g(s) bounds 1 − pS0(τ, s)/pS1(τ, s) for all
s ∈ Γgood. The function g is directly given in the following technical lemma. The
proof, which is based on the main combinatorial lemma of [9], is in Appendix A
of the full version of this paper.

3 Note that here the unusual thing is that Case 1 is handled via a direct proof.

Key-Alternating Ciphers and Key-Length Extension 21

Lemma 3. For any s ∈ Γgood, it holds that

1 − pS0(τ, s)
pS1(τ, s)

≤
q∑

k=1

∑
0≤a<b≤t

Ra,b,k[s] ·
∑

σ∈B(a,b)

∏
(i,j)∈σ

Zs(i, j)
N − pj − q

.

Before we continue the proof, a few remarks are needed. First, note that Lemma3
only needs q+pi < N for every i ∈ {1, . . . , t}. Therefore, one in fact can consider
Case 1 for q, p1, . . . , pt ≤ N/λ, for an arbitrary constant λ > 2, and Case 2 for
max{q, p1, . . . , pt} > N/λ. This will lead to the bound around q(cp/N)t, where
c = max{λ, 2(λ − 1)/(λ − 2)}. To minimize this, the best choice of λ is 2 +

√
2,

but we use λ = 4 for simplicity.
We finally have everything in place to apply the expectation method. Note that

E[g(S)] = E

⎛
⎝ q∑

k=1

∑
0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏
(i,j)∈σ

ZS(i, j)
N − pj − q

⎞
⎠

≤
q∑

k=1

E

⎛
⎝ ∑

0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏
(i,j)∈σ

2ZS(i, j)
N

⎞
⎠ ,

where the last inequality is due to the hypothesis that p1, . . . , pt, q ≤ N/4. We
will need the following technical lemma below; the proof is in Appendix B of the
full version of this paper.

Lemma 4. For k ∈ {1, . . . , q},

E
(∑
0≤a<b≤t

Ra,b,k[S] ·
∑

σ∈B(a,b)

∏
(i,j)∈σ

2ZS(i, j)
N

)
≤ (4t − t − 1)p1 · · · pt

N t
.

Note that expectation in Lemma 4 is over the uniform choices of the key vector
S = (S0, S1, . . . , St), and the proof of Lemma 4 can actually compute the exact
value of this expectation. Hence, from Lemmas 1, 3, and 4, to get our bound for
Case 1, it suffices to prove that

Pr[S ∈ Γbad] ≤ (t + 1)qp1 · · · pt/N
t . (18)

To justify Eq. (18), let S = (S0, . . . , St). If S ∈ Γbad then τ must contain entries
(enc, x, y), (prim, 1, u1, v1), (prim, 2, u2, v2), . . . , (prim, t, ut, vt) such that one of
the following happens:

• u1 = x ⊕ S0, and ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}, or
• vt = y ⊕ St, and ui = vi−1 ⊕ Si for every i ∈ {2, . . . , t}, or
• u1 = x ⊕ S0, vt = y ⊕ St, and there is some � ∈ {2, . . . , t} such that ui =

vi−1 ⊕ Si for every i ∈ {2, . . . , t}\{�}.

22 V.T. Hoang and S. Tessaro

Since S0, . . . , St are uniformly and independently random in {0, 1}n, the chance
that S is bad is at most (t + 1)qp1 . . . pt/N

t.

Case 2: N/4 < max{q, p1, . . . , pt} ≤ N . Fix a transcript τ . We have three sub-
cases below, each needs a different way to define S and uses a different transcript
reduction.

We now give an intuition for the proof. We want to derive from (τ, s) a tran-
script R(τ, s) for a system S′

0 that implement the real game for a (t − 1)-round
KAC. In most cases (Cases 2.1 and 2.2), this KAC construction is KAC[π, t−1],
and S consists of the last subkey Lt and some additional query-answer pairs. In
this case pS1(τ, s) means the probability that S1 behaves according to the entries
in (τ, s), and that Lt ←$ {0, 1}n independent of S1 agrees with the subkey in s.

The target transcript R(τ, s) consists of the Prim entries to π1, . . . , πt−1

in (τ, s), and the query-answer pairs to KAC[π, t − 1] that one can infer from
the entries (enc, ·, ·), the entries (prim, t, ·, ·), and the last subkey as specified in
(τ, s). The random variable S and the system S′

1 that implements the ideal game
for KAC[π, t − 1] will be constructed so that for every b ∈ {0, 1}, the event that
Sb behaves according to (τ, s) consists of two independent events: (i) S′

b behaves
according to R(τ, s), and (ii) πt behaves according to the entries in (τ, s), and
Lt agrees with what’s specified in s. Since (ii) doesn’t use Enc and Dec oracles,
the reduction preserves the ratio pS0(τ, s)/pS1(τ, s).

Case 2.1: p1, . . . , pt ≤ N/4 but N/4 < q ≤ N . We’ll in fact give an even stronger
bound

pS1(τ) − pS0(τ) ≤ pS1(τ) · 4t−1p1 . . . pt

N t−1
.

Let S be the random variable for the last subkey Lt in S0 and the (N − q) Enc
queries/answers that τ lacks. (We stress that here S has only a single subkey,
so a value s for S will have the form 〈Lt, (enc, x1, y1), . . . , (enc, xN−q, yN−q)〉.)
It suffices to show that for any s such that pS1(τ, s) > 0,

pS1(τ, s) − pS0(τ, s) ≤ pS1(τ, s) · 4t−1p1 . . . pt

N t−1
. (19)

Let S′
0 be the system that implements the real game on KAC[π, t − 1]. Let f be

the ideal permutation that S1 uses for answering Enc/Dec queries. Let f ′ be
the permutation such that f ′(x) = π−1

t (f(x)) for every x ∈ {0, 1}n, and thus f ′

is also an ideal permutation. The permutation f can be viewed as the cascade
of f ′ and πt (meaning that f(x) = πt(f ′(x)) for every x ∈ {0, 1}n). Let S′

1 be
a system that provides the ideal game on KAC[π, t − 1] and uses f ′ to answer
Enc/Dec queries.

For any b ∈ {0, 1}, although there are N Enc entries in (τ, s) for Sb, since
there are only pt query-answer pairs to πt, one can only “backtrack” pt Enc

query-answer pairs for S′
b. Let R(τ, s) be the transcript consisting of these pt

backtracked pairs and the query-answer pairs to π1, . . . , πt−1. Formally, for any
entry (prim, i, u, v) in (τ, s), add this to R(τ, s) if i ≤ t − 1. Next, for any
entry (prim, t, u, v) in τ , there is exactly one entry (enc, x, y) in (τ, s) such that

Key-Alternating Ciphers and Key-Length Extension 23

v ⊕Lt = y, so add (enc, x, u) to R(τ, s) as the corresponding backtracked query-
answer pair. Then R(τ, s) has pt Enc entries and pi query-answer pairs for πi,
for every i ≤ t−1. Now, for Sb to behave according to (τ, s), it means that (i) S′

b

must behave according to R(τ, s), (ii) the subkey in S—recall that S contains
only the last subkey Lt—must agree with what is specified in s, and (iii) πt must
be completely determined from S′

b, the last subkey Lt, and the N Enc entries
of (τ, s). Since πt is independent of S′

b and Lt,

pSb
(τ, s) =

1
N · N !

· pS′
b
(R(τ, s)) .

Hence
pS0(τ, s)
pS1(τ, s)

=
pS′

0
(R(τ, s))

pS′
1
(R(τ, s))

.

But from the induction hypothesis,

1 −
pS′

0
(R(τ, s))

pS′
1
(R(τ, s))

≤ 4t−1p1 . . . pt

N t−1
.

Case 2.2: p1, . . . , pt−1 ≤ N/4 but pt > N/4. We’ll in fact give an even stronger
bound

pS1(τ) − pS0(τ) ≤ pS1(τ) · 4t−1qp1 . . . pt−1

N t−1
.

Let S be the random variable for the last subkey Lt in S0 and the (N − pt)
queries/answers to πt that τ lacks. From now on, this case is exactly the same
as Case 2.1, except that since there are now N queries to πt but only q Enc

queries in (τ, s), we can only backtrack q Enc queries in S′
b.

Case 2.3: There is some index i ∈ {1, . . . , t− 1} such that N/4 < pi ≤ N . We’ll
give an even stronger bound

pS1(τ) − pS0(τ) ≤ pS1(τ) · 4t−1q

N t−1

∏
j∈{1,...,t}\{i}

pj .

Let S be the random variable for the subkey Li in S0 and the other (N − pi)
query-answer pairs to πi that τ lacks. Fix s such that pS1(τ, s) > 0. It suffices
to prove that

pS1(τ, s) − pS0(τ, s) ≤ pS1(τ, s) · 4t−1q

N t−1

∏
j∈{1,...,t}\{i}

pj .

In this case, we’ll need to build another (t − 1)-round KAC. Intuitively, we
“collapse” the ith and (i+1)th round of KAC[π, t] into a single round. Formally,
construct π′ : N × {0, 1}n → {0, 1}n from π and the subkey Li in s as follows.
For every j < i, we have π′(j, ·) = π(j, ·). For every j > i, let π′(j, ·) = π(j+1, ·).
Finally, let π′(i, x) = π(i + 1, π(i, x) ⊕ Li) for every x ∈ {0, 1}n. Thus π′ is also

24 V.T. Hoang and S. Tessaro

a family of independent, ideal permutations on {0, 1}n. Let S′
0 be a system that

provides the real game on KAC[π′, t − 1]. Let f be the ideal permutation that
S1 uses for answering Enc/Dec queries and let S′

1 be a system that provides
the ideal game on KAC[π′, t − 1] and uses f to answer Enc/Dec queries.

Now, in (τ, s), we have N query-answer pairs for πi and pi+1 query-answer
pairs for πi+1. One thus can “connect” those pairs to obtain pi+1 query-answer
pairs for π′

i, which is the cascade of πi and πi+1. Formally, for any entry
(prim, j, a, b) in (τ, s), if j < i then add this entry to R(τ, s) as a query for π′

j ,
and if j > i + 1 then add (prim, j − 1, a, b) to R(τ, s) as a query for π′

j−1. Next,
for every entry (prim, i + 1, u, v) in τ , there is exactly one entry (prim, i, x, y) in
(τ, s) such that y ⊕ Li = u, so add (prim, i, x, v) to R(τ, s) as the corresponding
connecting query. Hence R(τ, s) has q Enc queries and pj queries to π′

j if j < i,
and pj+1 queries to π′

j if j ≥ i.
For each b ∈ {0, 1}, for Sb to behave according to (τ, s), it means that (i) S′

b

must behave according to R(τ, s), (ii) the subkey in S must agree with what’s
specified in s, and (iii) πt must behave according to the N entries specified by
(τ, s). Note that π′

i is the cascade of πi and πi+1, and since πi+1 is independent
of πi, so is π′

i. Hence

pSb
(τ, s) =

1
N · N !

· pS′
b
(R(τ, s)) .

Hence
pS0(τ, s)
pS1(τ, s)

=
pS′

0
(R(τ, s))

pS′
1
(R(τ, s))

.

But from the induction hypothesis,

1 −
pS′

0
(R(τ, s))

pS′
1
(R(τ, s))

≤ 4t−1q

N t−1

∏
j∈{1,...,t}\{i}

pj .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fig. 4. Mu PRP security of 10-round KAC on 128-bit strings. From left to
right: the naive bound by using the hybrid argument with CS’s result, the naive bound
by using the hybrid argument with the su PRP result in Theorem 1, and the bound in
Theorem 2. We set p = q = u, where u is the number of users. The x-axis gives the log
(base 2) of p, and the y-axis gives upper bounds on the mu PRP security of KAC.

Key-Alternating Ciphers and Key-Length Extension 25

4.3 Multi-user Security of KAC

In this section, we consider the multi-user security of KAC. The bounds are
immediate, and rely on the fact that the actual proof of Theorem 1 estab-
lished point-wise proximity. Indeed, from Eq. (17) in the proof of Theorem1 and
Lemma 2, we obtain Theorem 2. The analogous claims also hold for the variant
KACX we discussed above.

Theorem 2 (Mu PRP security of KACs). Let t and n be positive integers,
and let π : N × {0, 1}n → {0, 1}n be a family of ideal permutations on {0, 1}n.
Let A be an adversary that makes at most q queries to Enc/Dec, and at most
pi queries to Prim(i, ·)/PrimInv(i, ·) for every i ∈ {1, . . . , t}. Then

Adv±mu-prp
KAC[π,t](A) ≤ 2 · 4tq(p1 + qt) · · · (pt + qt)

N t
.

We note that this bound is essentially the same as the one from Theorem 1,
with an additional factor two and the additive term qt. This additive term plays
a significant role when t is small, but its role decreases as q grows. Concretely,
for t = 1, we recover the Even-Mansour multi-user bound of Mouha and Luykx
[22], i.e., Adv±mu-prp

KAC[π,1](A) ≤ 8(qp+q2)
N . The O(q2/N) term takes into account col-

lisions on the keys across multiple users, which allows to easily distinguish and
is therefore tight. Note that for t = 1, the distinction between single-key or two-
key Even-Mansour is exactly the distinction between KAC and KACX, and our
bounds are identical.

Beating the hybrid argument. We would like to stress once more the impor-
tance of giving direct bounds for mu security, as opposed to using a naive hybrid
argument. Indeed, if we used the hybrid argument on our su PRP result in
Theorem 1 then we would obtain an inferior bound with form

Adv±mu-prp
KAC[π,t](A) ≤ u · 4tq(p1 + qt) · · · (pt + qt)

N t

where u is the number of users. If one used the hybrid argument on CS’s original
bound, then the bound becomes

Adv±mu-prp
KAC[π,t](A) ≤ u(t + 2)

(
q(6p + 6qt)t

N t
· t2(t + 1)t+1

)1/(t+2)

.

This makes one important point apparent: While the exponent 1/(t+2) in CS’s
bound is already undesirable in the su PRP setting, in the mu PRP case, it’s
much worse, as illustrated in Fig. 4. If one models AES as a 10-round KAC on
128-bit strings then our mu PRP result suggests that AES has about 110-bit
security. Using the hybrid argument with our su PRP result decreases it to 100-
bit security, whereas using the hybrid argument on CS’s result plummets to
45-bit security.

26 V.T. Hoang and S. Tessaro

5 XOR Cascades

In this section, we apply the above results to study XOR cascades for blockci-
pher key-length extension. Variants of XOR cascades have been studied in the
literature [14,15,17,18,20] and the connection with KACs was already observed.
However, we improve these results along two different axes: Tightness (we give
a much better reduction to the security of KACs than the one of [15], using
point-wise proximity), and multi-user security. In particular, to the best of our
knowledge, this is the first work studying multi-user key-length extension, a
problem we consider to be extremely important, given the considerable security
loss in the multi-user regime.

The XOR-Cascade construction. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a
blockcipher. Let t ≥ 1 be an integer, and let K = ({0, 1}k)t × ({0, 1}n)t+1. Let
Sample be a sampling algorithm that samples L0, . . . , Lt ←$ {0, 1}n, and samples
without replacement J1, . . . , Jt from {0, 1}k, and outputs (J1, . . . , J1, L0, . . . , Lt).
The XOR-Cascade construction XC[E, t], on a key K = (J1, . . . , Jt, L0, . . . , Lt) ∈
K, describes a permutation on {0, 1}n as follows. On input x, XC[E, t](x) returns
yt, where y0 = x⊕L0, and yi = EJi

(yi−1)⊕Li for every i ∈ {1, . . . , t}. See Fig. 5
for an illustration of XC[E, 2].

We also define – in analogy with KACX above – a version of XC with t sub-
keys L1, . . . , Lt (rather than t + 1), which xor’s Li to the input and the output
of EJi

in the i-th round. We refer to this as XCX[E, t], and note that it is simply
the t-fold sequential composition of DESX [18].

Single-user security of XC[E, t]. The following theorem establishes the
single-user security for XC[E, t] in the ideal-cipher model, and, in contrast to
previous analyses [14,15,20], the resulting bound is essentially exact. We require
the keys J1, . . . , Jt to be sampled by Sample as random yet distinct. This is no
big loss – an additional t2/2k term can added to take this into account, but
this term is going to be large when moving to the multi-user case. Below, we’ll
develop a better bound for the independent-key case, and for now, stick with
distinct keys.

Theorem 3 (Su PRP security of XC, distinct subkeys). Let t be a positive
integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
and Sample be as above. Then in the ideal-cipher model, for any adversary A
that makes at most q Enc/Dec queries, and at most p Prim/PrimInv queries,

Adv±prp
XC[E,t],Sample(A) ≤ 4tqpt

2t(k+n)
. (20)

The proof is in Appendix C of the full version of this paper. Here we point out
a few remarks. First off, we note the bound above (and its proof) can easily
adapted to analyze XCX[E, t]. Moreover, the proof itself is a direct application
of point-wise proximity combined with the transcript reduction technique to

Key-Alternating Ciphers and Key-Length Extension 27

E J EJ

LL L

EJ E J Δ

LL

Fig. 5. Left: The XC[E, 2] construction. Right: The 2XOR[E] construction.

reduce XC case to the KAC case. This will give a tight relationship, substantially
improving on the previous results by Gaži [14] and its generalization by Gaži
et al. [15], which actually used an adversarial reduction, and needed to resort to
Markov-like arguments which, once again, we avoid. Concretely, if we combine
the reduction in [14,15] with our KAC result in Theorem 1, we’ll obtain the
following weak bound

Adv±prp
XC[E,t],Sample(A) ≤ 4t · (2t + 2)

(
qpt

2t(k+n)

)1/(t+1)

.

As illustrated in Fig. 6, the gap between the bound above and ours is substantial.

Multi-user security of XC. We now consider the multi-user security of XC.
Since the proof of Theorem 3 actually establishes pointwise proximity, from
Lemma 2, we obtain Theorem 4 below. If we instead use the hybrid argument
on the su PRP security then we obtain an inferior bound

Adv±mu-prp
XC[E,t],Sample(A) ≤ u · 4tq(p + qt)t/2t(k+n)

where u is the number of users. If we use the hybrid argument on the
bound obtained by combining the reduction in [14,15] with our KAC result in
Theorem 1, we’ll obtain an even weaker bound

Adv±prp
XC[E,t],Sample(A) ≤ u · 4t(2t + 2)

(
q(p + qt)t

2t(k+n)

)1/(t+1)

.

The three bounds are illustrated in Fig. 7.

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

2 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 60 70 80 90 100 110 120

6 rounds

Fig. 6. Su PRP security (distinct subkeys) of XC on 2 iterations (left) and
6 iterations (right) on k = 56 and n = 64: our bound versus the results in
[14,15]. The solid lines depict the bound in Theorem 3, and the dashed ones depict the
bound obtained by combining the reduction in [14,15] and our result in Theorem 1. In
both pictures, q = 2n, and the x-axis gives the log (base 2) of p, and the y-axis gives
upper bounds on the su PRP security of XC.

28 V.T. Hoang and S. Tessaro

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Fig. 7. Mu PRP security (distinct subkeys) of 3-round XC on k = 56 and
n = 64: our bound versus naive ones from the hybrid argument. From left
to right: the naive bound by using the hybrid argument with the bound obtained by
combining the reduction in [14,15] with our KAC result in Theorem 1, the naive bound
by using the hybrid argument with the su PRP result in Theorem 3, and the bound in
Theorem 4. We set p = q = u, where u is the number of users. The x-axis gives the log
(base 2) of p, and the y-axis gives upper bounds on the mu PRP security of XC.

Theorem 4 (Mu PRP security of XC, distinct subkeys). Let t be a
positive integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let
XC[E, t] and Sample be as above. Then in the ideal-cipher model, for any adver-
sary A that makes at most q Enc/Dec queries, and at most p Prim/PrimInv
queries,

Adv±mu-prp
XC[E,t],Sample(A) ≤ 2 · 4tq(p + qt)t/2t(k+n) .

We stress here that q is allowed to be larger than N = 2n — nothing in the
theorem limits this, and security is obtained as long 2 · 4tq(p + qt)t/2t(k+n) is
sufficiently small. This is conceptually very important. Indeed, we may want to
apply our result even to ciphers for which N is very small (these arise in the
setting of FPE [3], where one could have N ≈ 230, or even less), and a multi-user
attacker can exhaust the domain for multiple keys. In passing, we note that the
reason such a strong result is possible is inherited directly from the fact that
Theorem 1 does not make any restrictions on q.

There are some variants of XC in the literature. For example, Gaži and
Tessaro (GT) [17] gave a variant of XC[E, 2] that they call 2XOR. This con-
struction, as illustrated in Fig. 5, uses a shorter key and saves one additional
xor, compared to XC[E, 2]. While its su PRP security appears to be the same
as XC[E, 2], as GT’s result suggests, in Appendix E of the full version, we show
that it has much weaker mu PRP security by giving an attack.

On uniform subkeys. So far we have considered security of the XC construc-
tion when each key K = (J1, . . . , Jt, L0, . . . , Lt) is chosen so that the subkeys
J1, . . . , Jt are distinct. A natural question is to bound the degradation when
J1, . . . , Jt ←$ {0, 1}k. First consider the su setting. A simple solution is to add
a term t2/2k to account for the probability that there are some i �= j such that
Ji = Jj . This is fine for the su setting, but when one moves to the mu setting,
this term blows up to ut2/2k, where u is the number of users. This happens even

Key-Alternating Ciphers and Key-Length Extension 29

in the ideal case where the adversary distributes the queries evenly among users.
To avoid this undesirable term, in Proposition 1 below, we take a different app-
roach. Intuitively, even if there are only � ≤ t distinct subkeys, then at least our
construction should achieve security level ε(�) similar to the bound in Theorem3
for XC[E, �]. Let L be the random variable for the number of distinct subkeys
in XC[E, t], for example, Pr[L = t] ≥ 1 − t2/2k. Then our bound would be the
expectation E(ε(L)). The gap between this bound and the naive one with the
term t2/2k may not be large on practical values of n and k, but it allows us to
use Lemma 2 to obtain a good mu PRP bound.

Proposition 1 (Su PRP security of XC, uniform subkeys). Let t ≥ 2 be
an integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
be as above. Then in the ideal-cipher model, for any adversary A that makes at
most q Enc/Dec queries, and at most p Prim/PrimInv queries,

(a) If t ≥ 3 then Adv±prp
XC[E,t](A) ≤ 4tqpt

2(n+k)t + qt2

2k

(
t
2k

+ 4p
2k+n

)t−2
.

(b) If t = 2 then Adv±prp
XC[E,t](A) ≤ q(4p)2

22(n+k) + 4qp
22k+n + 2q

2k+n/2 .

The proof of Proposition 1 is in Appendix D of the full version, and it also
establishes pointwise proximity. From Lemma 2, we obtain Theorem 5 below. As
illustrated in Fig. 8, this bound is much better than the naive one obtained via
adding a term ut2/2k to the bound in Theorem 4 (to account for the probability
that there is a user whose subkeys are not distinct), where u is the number of
users. When one increases the number of rounds then our bound shows that the
security substantially improves (from 80-bit to 90-bit security), but the naive
bound still stays at 50-bit security, since the bound ut2/2k is the bottleneck,
and it gets worse when t increases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

3 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

4 rounds

Fig. 8. Mu PRP security of XC (uniform subkeys) on 3 iterations (left) and
4 iterations (right) on k = 56 and n = 64: our bound versus naive one. The
dashed lines depict the bound obtained by adding a term ut2/2k to the bound in
Theorem 4, and the solid ones depict the bound in Theorem 5, where u is the number
of users. In both pictures, p = q = u, and the x-axis gives the log (base 2) of p, and
the y-axis gives upper bounds on the mu PRP security of XC.

30 V.T. Hoang and S. Tessaro

Theorem 5 (Mu PRP security of XC, uniform subkeys). Let t ≥ 2 be
an integer. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher and let XC[E, t]
be as above. Then in the ideal-cipher model, for any adversary A that makes at
most q Enc/Dec queries, and at most p Prim/PrimInv queries,

(a) If t ≥ 3 then Adv±mu-prp
XC[E,t] (A) ≤ 2·4tq(p+qt)t

2(n+k)t + 2qt2

2k

(
t
2k

+ 4p+4qt
2k+n

)t−2
.

(b) If t = 2 then Adv±mu-prp
XC[E,t] (A) ≤ 2q(4p+8q)2

22(n+k) + 8q(p+2q)
22k+n + 4q

2k+n/2 .

Interpreting the bounds in Theorem 5. For the case t = 3, there’s a con-
siderable gap compared to the matching attack. See Fig. 9 for an illustration
of the degradation of the bound in Theorem5 compared to that in Theorem 4.
This gap is probably an artifact of the proof technique rather than reflecting a
true security loss when using uniform subkeys: for example, in the su case, if
J1 = · · · = Jt then we give up, but of course even in this extreme case, the con-
struction should still retain some reasonable security. For t ≥ 4 and all practical
choices of n and k, the bounds in Theorems 5 and 4 are close: the former is just
about t2+1 times worse than the latter. To justify this, note that we can assume
that 4(p + qt)/2n > 2k/2, otherwise both bounds are tiny. Then

qt2

2k

(
t

2k
+

4p + 4qt

2k+n

)t−2

≈ qt2

2k

(
4p + 4qt

2k+n

)t−2

< t2 · 4tq(p + qt)t

2(n+k)t
.

Pictorially, as shown in Fig. 9, the two bounds are too close, and we have to
choose very small n and k so that the gap between the two lines is still vis-
ible to the naked eye. Likewise, for t = 2 and and all practical choices of n
and k, the bound in Theorem5 is about twice worse than that of Theorem 4.
(In Proposition 1, for t = 2, if J1 = J2 then we don’t give up, but show that
the construction still retains security bound up to 4qp

2k+n + 2q
2n/2 . However, this

method fails to work for t = 3. It’s why the bound in Theorem5 is still sharp
for t = 2, but deteriorates for t = 3.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 38 39 40 41 42 43 44 45 46

3 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 45 45.5 46 46.5 47 47.5 48

4 rounds

Fig. 9. Mu PRP security of XC on 3 iterations (left) and 4 iterations (right)
on k = n = 32: uniform versus distinct subkeys. The dashed lines depict the bound
in Theorem 4, and the solid ones depict the bound in Theorem 5. In both pictures, p = q,
and the x-axis gives the log (base 2) of p, and the y-axis gives upper bounds on the
mu PRP security of XC. The parameters n and k are chosen to be small so that in the
right picture, the gap between the two lines is visible to the naked eye.

Key-Alternating Ciphers and Key-Length Extension 31

Acknowledgments. We thank Mihir Bellare for insightful feedback, and Daniel
J. Bernstein for providing relevant pointers. We also wish to thank Atul Luykx and
Bart Mennink for pointing out a glitch in a previous version of this write up. Finally,
we thank the CRYPTO 2016 reviewers for many insightful comments.

This research was partially supported by NSF grants CNS-1423566 and CNS-
1553758 (CAREER).

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Bernstein, D.J.: How to stretch random functions: the security of protected counter
sums. J. Cryptol. 12(3), 185–192 (1999)

6. Bernstein, D.J.: Break a dozen secret keys, get a million more for free (2015).
http://blog.cr.yp.to/20151120-batchattacks.html

7. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J., Tis-
chhauser, E.: Key-alternating ciphers in a provable setting: encryption using a
small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

8. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-round
even-mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014)

9. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

10. Dai, Y., Lee, J., Mennink, B., Steinberger, J.: The security of multiple encryption
in the ideal cipher model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 20–38. Springer, Heidelberg (2014)

11. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-
mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

12. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

13. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)

14. Gaži, P.: Plain versus randomized cascading-based key-length extension for block
ciphers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 551–570. Springer, Heidelberg (2013)

http://blog.cr.yp.to/20151120-batchattacks.html

32 V.T. Hoang and S. Tessaro

15. Gaži, P., Lee, J., Seurin, Y., Steinberger, J., Tessaro, S.: Relaxing full-codebook
security: a refined analysis of key-length extension schemes. In: Leander, G. (ed.)
FSE 2015. LNCS, vol. 9054, pp. 319–341. Springer, Heidelberg (2015)

16. Gaži, P., Maurer, U.: Cascade encryption revisited. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 37–51. Springer, Heidelberg (2009)

17. Gaži, P., Tessaro, S.: Efficient and optimally secure key-length extension for block
ciphers via randomized cascading. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 63–80. Springer, Heidelberg (2012)

18. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search. In:
Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer, Heidel-
berg (1996)

19. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of the
iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

20. Lee, J.: Towards Key-length extension with optimal security: cascade encryption
and xor-cascade encryption. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 405–425. Springer, Heidelberg (2013)

21. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

22. Mouha, N., Luykx, A.: Multi-key security: the Even-Mansour construction revis-
ited. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS, vol.
9215, pp. 209–223. Springer, Heidelberg (2015)

23. Nandi, M.: A simple and unified method of proving indistinguishability. In: Barua,
R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 317–334. Springer,
Heidelberg (2006)

24. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

25. Steinberger, J.: Improved security bounds for key-alternating ciphers via
hellingerdistance. Cryptology ePrint Archive, Report 2012/481 (2012). http://
eprint.iacr.org/2012/481

26. Tessaro, S.: Optimally secure block ciphers from ideal primitives. In: Iwata, T.,
et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 437–462. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 18

http://eprint.iacr.org/2012/481
http://eprint.iacr.org/2012/481
http://dx.doi.org/10.1007/978-3-662-48800-3_18

Counter-in-Tweak: Authenticated Encryption
Modes for Tweakable Block Ciphers

Thomas Peyrin1 and Yannick Seurin2(B)

1 SPMS, NTU, Singapore, Singapore
thomas.peyrin@ntu.edu.sg

2 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. We propose the Synthetic Counter-in-Tweak (SCT) mode,
which turns a tweakable block cipher into a nonce-based authenticated
encryption scheme (with associated data). The SCT mode combines in a
SIV-like manner a Wegman-Carter MAC inspired from PMAC for the
authentication part and a new counter-like mode for the encryption
part, with the unusual property that the counter is applied on the tweak
input of the underlying tweakable block cipher rather than on the plain-
text input. Unlike many previous authenticated encryption modes, SCT
enjoys provable security beyond the birthday bound (and even up to
roughly 2n tweakable block cipher calls, where n is the block length,
when the tweak length is sufficiently large) in the nonce-respecting sce-
nario where nonces are never repeated. In addition, SCT ensures secu-
rity up to the birthday bound even when nonces are reused, in the
strong nonce-misuse resistance sense (MRAE) of Rogaway and Shrimp-
ton (EUROCRYPT 2006). To the best of our knowledge, this is the first
authenticated encryption mode that provides at the same time close-to-
optimal security in the nonce-respecting scenario and birthday-bound
security for the nonce-misuse scenario. While two passes are necessary
to achieve MRAE-security, our mode enjoys a number of desirable fea-
tures: it is simple, parallelizable, it requires the encryption direction only,
it is particularly efficient for small messages compared to other nonce-
misuse resistant schemes (no precomputation is required) and it allows
incremental update of associated data.

Keywords: Authenticated encryption · Tweakable block cipher ·
Nonce-misuse resistance · Beyond-birthday-bound security · CAESAR
competition

1 Introduction

Background on Authenticated Encryption. Confidentiality and authen-
ticity of data are the two main security properties that one must ensure when
communicating over an insecure channel. In the symmetric key setting, it has
long been known how to ensure both of them independently, e.g., starting from
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 33–63, 2016.
DOI: 10.1007/978-3-662-53018-4 2

34 T. Peyrin and Y. Seurin

a secure block cipher, by using a suitable encryption mode for confidentiality [7]
and a block cipher-based MAC for authenticity [9]. However, how exactly to com-
bine both tools has long been left to the practitioners, leading to major security
breaches [3,18,37]. Sometimes, protocol designers even overlooked that authentic-
ity was a necessary requirement besides confidentiality, as exemplified by padding
oracle attacks [59]. Even when the combination of the encryption and the MAC
schemes is properly done, it might not be the most efficient solution, especially
when the two parts rely on two different primitives. For these reasons, interest has
shifted towards designing “integrated” Authenticated Encryption (AE) schemes
ensuring jointly authenticity and confidentiality of data, which are more efficient
and less likely to be incorrectly used. Besides, it has become standard for an AE
scheme to have the ability to handle so-called associated data (AD), which are
authenticated but not encrypted [51] (such a scheme was for a time called an
AEAD scheme, but since this feature is so important in practice, virtually all mod-
ern AE schemes provide it; we will only talk of AE in this paper, implicitly mean-
ing AEAD). Even though ad-hoc AE schemes were already used since a long time,
the formal treatment of these constructions only started around 2000 [10,11,36].
At about the same time, provably secure AE designs started to appear, such as
IAPM [34,35], XCBC [22], CCM [61], OCB [52,54], or GCM [43]. The CAESAR
competition [1] for authenticated encryption, started in 2014, recently put this
research topic in the limelight. Various AE schemes were proposed, from purely
ad-hoc designs to (tweakable) block cipher operating modes.

Nonce-Misuse Resistance. Since most symmetric-key primitives (in particu-
lar block ciphers) from which AE schemes are built are deterministic, a random
IV or a nonce (i.e., a value which must never be repeated for the same secret key)
is a necessary ingredient for achieving strong security goals. Failing to ensure the
corresponding requirement (high entropy for an IV, non-repetition for a nonce)
can have dramatic consequences for security. For example, reusing a nonce just
a single time for encrypting two messages in OCB completely breaks confiden-
tiality: an attacker can immediately detect repeated message blocks since the
corresponding ciphertext blocks will be equal. The non-repeating requirement
on the nonce can be challenging to fulfill in some contexts, for example when
encryption is implemented in a stateless device.1 It is likely (and it has happened
before) that some implementations will, e.g., simply generate nonces at random,
“hoping” that no collision will occur. For that reason, a recent trend in AE
has been to design schemes achieving nonce-misuse resistance, which informally
means that the impact on security of a nonce repetition should be as limited as
possible. This goal was first put forward by Rogaway and Shrimpton [55], who
formalized the notion of misuse-resistant AE (MRAE). For a scheme enjoying
this property, authenticity is not harmed by nonce repetitions, while confidential-
ity is only damaged insofar as the adversary can detect whether the same triple
of nonce, AD and message values is repeated. Example of schemes achieving this

1 Similarly, the high-entropy requirement on the IV is hard to meet when no good
randomness source is available.

Counter-in-Tweak: Authenticated Encryption Modes 35

security notion are EAX [12], SIV [55], AEZ [26], or GCM-SIV [25]. Because the
MRAE notion cannot be achieved for an online scheme (since each bit of the
ciphertext must depend on every bit of the plaintext), Fleischmann et al. [21]
proposed a relaxation of the MRAE notion called online AE (OAE), which can
be achieved with a single pass on the input. Examples of schemes ensuring this
security property are McOE [21], COPA [5], or POET [2]. However, the interest
in the OAE notion has been recently reduced by some serious security concerns,
notably the so-called chosen-prefix/secret-suffix (CPSS) generic attack [27], that
shares some similarities with the BEAST attack [18].

Birthday and Beyond-Birthday Security. Another important shortcom-
ing of most AE operating modes is that they provide only birthday-bound secu-
rity with respect to the block length of the underlying primitive. Since virtually
all existing block ciphers have block length at most 128 bits (in particular the
current block cipher standard AES), this means that security is lost at 264 block
cipher calls at best, which is low given modern security requirements (for 64-bit
block ciphers, the situation is even more problematic). Moreover, this is rarely
a problem with the tightness of the security proof: attacks matching the bound
are often known. For example, Ferguson [19] described a simple collision-based
attack on OCB that breaks authenticity with 264 blocks of messages. Recently,
some AE schemes providing security beyond the birthday bound (BBB) were
proposed [28,29], but they usually come at an expensive performance price. One
could argue that using a double-block-length block cipher would provide the
expected security, but this solution comes with an important efficiency penalty
(as can be seen in generic double-block-length block cipher constructions) and
would be highly problematic for hardware implementations where internal state
size is a major contribution to the total area cost.

AE from Tweakable Block Ciphers. Compared with a conventional block
cipher, a tweakable block cipher (TBC) Ẽ takes an additional input called a
tweak bringing inherent variability to the primitive (equivalently, a TBC can be
seen as a family of block ciphers indexed by the tweak). In the same paper that
formalized the corresponding security notion [41], it was pointed out that a TBC
was a very convenient starting point for building various schemes. In particular,
for AE schemes, two prominent examples are the sibling modes TAE [41] and
ΘCB [38] (the TBC-based generalization of OCB). They have “perfect” security
in the sense that, when used with an ideal TBC, the advantage of any adversary
is zero against confidentiality and close to 2−τ against authenticity, where τ is the
tag length. However, as already pointed out, a weakness of both TAE and ΘCB
(even when used with an ideal TBC) is that their security completely collapses as
soon as a nonce is repeated. As a matter of fact, existing AE schemes built from
an ideal TBC either ensure perfect security in the nonce-respecting scenario only
(like TAE or ΘCB), or fulfill the weak OAE notion only (e.g. COPA, once recast
to use an ideal TBC), or ensure MRAE-security but only up to the birthday
bound, even if nonces are not repeated (like AEZ). The PIV construction by
Shrimpton and Terashima [58] allows to construct a variable-input-length TBC

36 T. Peyrin and Y. Seurin

with BBB-security, which in turn allows to construct (via the Encode-then-
Encipher method) an AEAD scheme with BBB-security against nonce-respecting
adversaries and birthday-bound security against nonce-misusing ones. However,
PIV requires as a building block a fixed-input-length TBC with variable tweak
length (comparable to the maximal input length of the PIV construction), which
in turn requires to appeal to universal hash functions with key length comparable
to the maximal tweak length. Hence, the resulting AEAD scheme must use
very large keys to ensure BBB-security for large messages. As of today, there is
no AEAD scheme based on a fixed-tweak-length TBC that ensures both BBB-
security in the nonce-respecting scenario and (at least) birthday-bound security
in the nonce-misuse scenario. Yet this seems a very desirable goal since such a
scheme would at the same time yield very high (BBB) security guarantees in
the nominal, nonce-respecting use case and retain acceptable (birthday-bound)
security when inadvertently misused.

Our Contributions. In this paper, we propose the SCT (Synthetic Counter-
in-Tweak) nonce-based AE mode for tweakable block ciphers and prove that
it ensures BBB-security in the nonce-respecting scenario, and birthday-bound
security in the nonce-misuse scenario (in the strong MRAE sense [55]). More
precisely, for the nonce-respecting case, when using a ideal TBC with block
length n and “effective” tweak length2 w, SCT is secure up to roughly 2n TBC
calls when w ≥ n, and up to roughly 2(n+w)/2 TBC calls when w ≤ n, which
is always larger than 2n/2. The SCT mode requires two passes (as is inevitable
for MRAE-security), but it is simple, parallelizable, it requires the encryption
direction only, it is particularly efficient for small messages compared to other
nonce-misuse resistant schemes (no precomputation is required) and it allows
incremental update of associated data.

With respect to how authentication and encryption are combined, our design
draws inspiration from the SIV generic composition method [55]: the nonce N ,
the associated data A, and the message M are first input to a keyed function FK ,
yielding an pseudorandom initial value IV , which will serve as authentication
tag. The message is then encrypted, using the generated IV and the nonce N
(see Fig. 4). This “recycling” of the nonce in the encryption part of the mode
is what makes our high-level construction (called NSIV) crucially different from
SIV and allows to reach BBB-security in the nonce-respecting case.3

It remains to instantiate the two components of the NSIV construction, the
keyed function FK and the encryption scheme. Since we aim at BBB-security
in the nonce-respecting case, a natural starting point for FK is the Wegman-
Carter paradigm [14,56,60]. Hence, we propose a nonce-based MAC mode called
PWC (Parallel Wegman-Carter) which combines a xor-universal hash function
inspired from PMAC [13,52] applied to the AD and the message, and a simple

2 The SCT mode uses 5 tweak prefixes to separate the different usages of the TBC.
The “effective” tweak length is what remains once 3 bits have been used to encode
the prefix.

3 While SIV corresponds to generic composition method A4 in the nomenclature of
Namprempre et al. [46], NSIV does not fit any of the NRS schemes.

Counter-in-Tweak: Authenticated Encryption Modes 37

pseudorandom function applied to the nonce. In order to achieve nonce-misuse
resistance (which in general Wegman-Carter MACs do not provide), we add an
additional encryption layer, which results in the EPWC (Encrypted PWC) mode.

The real challenge lies in designing an encryption scheme which is BBB-secure
in the nonce-respecting case. Since on one hand it seems hard to leverage on the
non-repeating property of the nonce without actually giving the nonce as input
to the encryption mode, and on the other hand we need to make use in some
way of the pseudorandom IV computed from FK ,4 it appears that what we need
to design is actually a combined nonce- and IV-based encryption scheme (nivE
scheme for short). To the best of our knowledge, this notion has never appeared
before, and we introduce it in this paper. The encryption mode that we propose,
called CTRT (CounTeR in Tweak), is a counter-like mode with the unusual
property that the counter is applied on the tweak input of the underlying TBC
rather than on the plaintext input, where the nonce comes in. The combination
of EPWC and CTRT through the NSIV construction (the IV generated by EPWC
being used as initial counter in CTRT) yields the SCT mode, illustrated in Fig. 1.

For completeness, we also describe in the full version of this paper [50] the
CTPWC (CTRT-then-PWC) mode, an online nonce-based AE scheme which com-
bines in an “encrypt-then-MAC” manner a slight variant of the CTRT encryption
mode and the PWC authentication mode. The security guarantees provided by
CTPWC are similar to those of ΘCB, but it is roughly twice less efficient, so that
we do not claim that it is of particularly high interest. One small advantage that
we see for this mode compared with ΘCB is that the nonce length can be as
large as the block length of the underlying TBC, whereas for ΘCB the sum of
the nonce length and of the maximal length of encrypted messages must be less
than the tweak length of the underlying tweakable block cipher, which might be
restrictive in some settings (e.g., for KIASU-BC [32]). It might also escape the
patent issues which hindered the adoption of OCB.

Instantiating the TBC. As just discussed, our new AE modes offer
BBB-security (in the nonce-respecting case) when used with an ideal TBC. If
one aims at leveraging this security level in the real world, one must instanti-
ate the TBC with care. Most existing TBCs are built from conventional block
ciphers in a generic way, the prominent example being the XE/XEX construc-
tion [52] which only ensures security up to the birthday bound. Hence, using
XE/XEX in our schemes would in a sense waste their nice security promises.5

To remedy this problem, one can use either generic TBC constructions with
BBB-security [39,40,44,45] (but they are often inefficient or provably secure in
the ideal cipher model only), or ad-hoc TBC designs without known weaknesses.
The second option was chosen for a number of CAESAR candidates [24,30–32].
In fact, the SCT mode was explicitly designed as a replacement to the COPA
mode used in versions 1.1 and 1.2 of CAESAR candidates Deoxys [30] (128-bit

4 This excludes for example a simple OCB-like encryption mode since it is only nonce-
based, not IV-based.

5 Similarly, the only reason why OCB is secure up to the birthday bound whereas ΘCB
is “perfectly” secure is because it relies on XE/XEX for instantiating the TBC.

38 T. Peyrin and Y. Seurin

Fig. 1. The SCT mode, using a TBC ˜E with tweak space {1, . . . , 5} × T and domain

X = {0, 1}n. For each call to ˜EK , the tweak enters left while the plaintext enters on

top. We denote ˜Ei
K(T, X) for ˜EK((i, T), X) and ˜E

i/j
K means that prefix i is used when

the input block is complete and unpadded, whereas j is used when the input block
is incomplete and padded. Function Inc is a cyclic permutation of T , and Conv is a
regular function from X to T (e.g., truncation when X = {0, 1}n and T = {0, 1}w,
w ≤ n).

Counter-in-Tweak: Authenticated Encryption Modes 39

blocks, 128-bit tweaks) and Joltik [31] (64-bit blocks, 64-bit tweaks).6 We refer
to the submission documents of these two candidates for a detailed report on
implementation results, which are quite competitive. Other potential candidates
for instantiating the SCT mode are Scream [24] and Threefish, the TBC on which
the hash function Skein [20] is based. There is currently a shift towards designing
dedicated TBCs achieving higher security and efficiency than generic BC-based
constructions, and we hope to see more and more TBC proposals that could be
used with SCT.

Open Problems and Future Work. The CTRT encryption scheme has the
notable feature that its security degrades gracefully with the maximal number
of repetitions of nonces: when the nonce repetitions are limited, security remains
close to the security bound in the nonce-respecting case. In contrast, the secu-
rity of the EPWC authentication mode (and more generally of any encrypted
Wegman-Carter MAC) falls back to birthday bound as soon as the adversary
can repeat one single nonce twice (see Remark 2 in Sect. 5). It remains a pending
question to modify EPWC so that it provides graceful security degradation with
the maximal number of nonce repetitions as well. This would make the result-
ing AE scheme a good candidate for high security in both nonce-respecting
and nonce-misuse models for most practical scenarios. Another challenging open
problem would be to construct an AE scheme which remains BBB-secure even
when nonces are arbitrarily repeated. The main difficulty is to build a determin-
istic, stateless, BBB-secure MAC, which is known to be notably hard [17,62].
Another possible direction for future work would be to design a mode similar
to SCT using only one pass and achieving online nonce-misuse resistance in the
OAE sense [21]. Such a feature would allow users to smoothly choose the best
security achievable, depending on whether two passes can be tolerated or not
by the application. Finally, it would be interesting to analyze how to strengthen
SCT against other misuse scenarios such as release of unverified plaintext [4],
and to study how its security is affected by tag truncation [26].

Organization. In Sect. 2 we provide a high-level description of the various pos-
sibilities that we considered for constructing a BBB-secure nivE scheme. After
introducing the notation and standard security notions in Sect. 3, we describe the
CTRT encryption scheme and prove its security in Sect. 4, while we describe the
PWC and EPWC nonce-based MAC schemes and prove their security in Sect. 5.
Finally, we explain how to combine CTRT and EPWC using the NSIV construc-
tion to build the nonce-based AE mode SCT and prove its security in Sect. 6.

2 Counter-in-Tweak for Beyond-Birthday Security

As motivated in introduction, our goal is to design a simple TBC-based AE
scheme that provides BBB-security in the nonce-respecting setting and (at least)
6 The tweak prefixes used in this paper were chosen for ease of exposition and are

slightly different from the ones used in Deoxys and Joltik v1.3, which were chosen
mainly for efficiency reasons.

40 T. Peyrin and Y. Seurin

birthday-bound MRAE-security. As already mentioned, an encrypted Wegman-
Carter MAC solves the problem for the authentication part, so that we focus here
on encryption. Hence, our problem is as follows: given a nonce and a synthetic
IV generated pseudorandomly from the nonce, the AD and the message, how
do we use them to encrypt the message with BBB-security? We give a quick
overview of the various constructions that we considered and why, except the
CTRT encryption mode we propose, they fail or are unsatisfactory.

A natural direction to explore is to start from a scheme providing
BBB-security for non-repeating nonces, such as TAE [41] or ΘCB [38], which
are similar with regard to encryption: it simply consists in a “tweakable” code-
book mode, the tweak holding the nonce and a message block counter. This is
obviously not nonce-misuse resistant: repeating the nonce a single time will lead
to a complete break of confidentiality since a constant message block leads to
a constant ciphertext block. One could incorporate the IV by simply concate-
nating it to the nonce and the counter to form the tweak. However, this would
require a TBC with larger tweak, which is usually very costly to achieve.7 Rather
than concatenating the nonce and the IV, one could try to combine them into
a single shorter string S, but this would presumably result in birthday security
even in the nonce-respecting scenario (since a collision on S would directly break
confidentiality). Hence, a codebook encryption mode does not seem to be a very
convenient starting point.

For this reason, we preferred to consider a counter mode (note that this was
the encryption mode favored by Rogaway and Shrimpton to instantiate the SIV
composition method [55]). The question now is: how do we feed the nonce, the
IV, and the i-th counter to the TBC in order to create the mask that will be
xored to the i-th message block? We considered several possibilities (we do not
claim this to be exhaustive):

(a) One can put the nonce in the tweak input, and the sum of the IV and
the counter in the plaintext input. The problem is that confidentiality caps
at birthday bound even in the nonce-respecting scenario: the adversary can
query the encryption of a single message with 2n/2 equal blocks, and observe
that no collision occurs in the corresponding ciphertext blocks (since the
nonce is fixed and all TBC calls use the same tweak), which will distin-
guish the ciphertext from a random string (for which a collision would be
expected).

(b) One can concatenate the nonce and the counter in the tweak input, and use
the IV for the plaintext input. Since the tweak is different for each message
block position, this solves the issue of the previous solution. We conjecture
that this mode meets our security objectives, but an important drawback is
that a larger tweak length is required and, as mentioned before, this is very
costly.

7 For example, for TBCs following the TWEAKEY approach [30,31,33], there is a
large gap in the number of rounds needed to make the TBC secure as the tweak
length increases.

Counter-in-Tweak: Authenticated Encryption Modes 41

(c) One can put the sum of the nonce and the counter in the tweak input
(instead of concatenating them) and the IV in the plaintext input. This mode
might meet our security objectives, however the adversary can very easily
provoke collisions on tweak inputs even in the nonce-respecting scenario,
which might complicate the proof of BBB-security. Another drawback is
that in the nonce-misuse scenario, a collision on the IV immediately breaks
confidentiality, which dashes any hope for BBB nonce-misuse resistance.
Note that one could imagine variants where the nonce and the IV are first
encrypted before being used, but it is not clear if this would prevent the
issues just mentioned and this would presumably make the security proof
quite complex.

(d) Finally, one can put the sum of the IV and the counter in the tweak input
and the nonce in the plaintext input, which is exactly the CTRT mode. We
will prove in Sect. 4 that it meets our security goal. The first idea is that
the counter in the tweak input ensures that all the calls to the internal
TBC will use different tweaks for one single message query, so that the
ciphertext looks uniformly random in that case. Thus, the adversary has
to query several messages with different nonce values and hope that many
collisions will occur between tweak inputs in order to observe a divergence
from uniformity in the ciphertexts. However, these collisions are hard to
control since they depend on the pseudorandom IV (in contrast with other
modes discussed above, where the tweak input can be easily controlled by
the adversary). We will show in Sect. 4, using a “balls-into-bins” analysis,
that the number of tweak collisions remains small, so that the distribution
of the ciphertexts remains close to uniform. Moreover, the nonce-misuse
scenario helps the adversary only if it can repeat the same nonce a very
high number of times until a collision happens on the tweaks, so that the
security of the CTRT mode degrades gracefully with the maximal number
of nonce repetitions.

3 Preliminaries

Notation. Given a string X ∈ {0, 1}∗, |X| denotes its length. If X and Y
are respectively n-bit and m-bit strings, n < m, then X ⊕ Y denotes the n-bit
string obtained by xoring X with the n leftmost bits of Y . Given some implicit
length n and a bit-string X of length 1 ≤ |X| < n, we denote X10∗ the string
obtained by appending a single 1 and (n − |X| − 1) 0’s to X. Given two sets X
and Y, the set of all functions from X to Y is denoted Func(X ,Y). A function
F ∈ Func(X ,Y) is said regular if all Y ∈ Y have the same number of preimages
by F (this obviously requires |X | to be a multiple of |Y|).

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
K, tweak space T , and domain X is a mapping Ẽ : K × T × X → X such that
for any key K ∈ K and any tweak T ∈ T , X �→ Ẽ(K,T,X) is a permutation
of X . We often write ẼK(T,X) or ẼT

K(X) in place of Ẽ(K,T,X). We denote
TBC(K, T ,X) the set of all tweakable block ciphers with key space K, tweak

42 T. Peyrin and Y. Seurin

space T , and domain X . A tweakable permutation with tweak space T and
domain X is a mapping P̃ : T × X → X such that for any tweak T ∈ T ,
X �→ P̃ (T,X) is a permutation of X . We often write P̃T (X) in place of P̃ (T,X).
We denote TP(T ,X) the set of all tweakable permutations with tweak space T
and domain X . The security of a TBC is defined as follows.

Definition 1 (TPRP Security). Let Ẽ ∈ TBC(K, T ,X) and A be an adversary
with oracle access to a tweakable permutation with tweak space T and domain X .
The advantage of A in breaking the TPRP-security of Ẽ is defined as

AdvTPRP
˜E

(A) =
∣∣∣Pr

[
K ←$ K : A

˜EK = 1
]

− Pr
[
P̃ ←$ TP(T ,X) : A

˜P = 1
]∣∣∣ .

Note that we do not need the strongest “two-sided” version of TPRP-security
(where the adversary also has access to a decryption oracle) since all construc-
tions considered in this paper only use the forward (encryption) direction of the
underlying TBC.

Tweak Separation. Let Ẽ be a TBC with tweak space of the form T ′ = I ×T
for some subset I ⊂ N and some set T . We call T the effective tweak space of Ẽ.
Then, for i ∈ I, we denote Ẽi the tweakable block cipher with the same key and
message spaces as Ẽ and tweak space T defined by

Ẽi(K,T,X) = Ẽ(K, (i, T),X).

By the same convention as before, we write Ẽi
K(T,X) or Ẽi,T

K (X) for
Ẽi(K,T,X). Clearly, when Ẽ is an ideal TBC drawn uniformly at random from
TBC(K, T ′,M), then each Ẽi is an independent ideal TBC drawn uniformly at
random from TBC(K, T ,M). Given a bit-string X of length 1 ≤ |X| ≤ n, we
compactly write

Ẽi/j(K,T,X(10∗)), Ẽ
i/j
K (T,X(10∗)), or Ẽ

i/j,T
K (X(10∗))

to mean Ẽi(K,T,X) when |X| = n and Ẽj(K,T,X10∗) when |X| < n.

Standard Security Notions. We give the security definitions of a nonce-
based PRF, a nonce-based MAC, and a nonce-based Authenticated Encryption
scheme. All these are standard, except maybe the nonce-based PRF notion which
is a straightforward adaptation of the classical definition of a PRF to the nonce-
based setting. Our definition of the security of a MAC is indistinguishability-
based (which will be more convenient later), but it is easy to see that it is
equivalent to the more conventional unforgeability-based definition. In the fol-
lowing, a nonce-based keyed function is a function F : K × N × D → Y, where
K is the key space, N the nonce space, D the domain and Y the range.

Definition 2 (Nonce-Based PRF). Let F : K×N ×D → Y be a nonce-based
keyed function, and let us write FK(N,D) for F (K,N,D). Let A be an adversary

Counter-in-Tweak: Authenticated Encryption Modes 43

with oracle access to a function from N × D to Y. The advantage of A against
the PRF-security of F is defined as

AdvPRF
F (A) =

∣∣∣ Pr
[
K ←$ K : AFK = 1

]

− Pr
[
R ←$ Func(N × D,Y) : AR = 1

] ∣∣∣.
The adversary is said nonce-respecting if it never repeats a nonce N ∈ N in its
oracle queries. In that case, we denote its advantage AdvnPRF

F (A).

Definition 3 (Nonce-Based MAC). Let F be as in Definition 2. Let B be an
adversary with oracle access to two oracles, the first oracle being a function from
N × D to Y, the second oracle with inputs in N × D × Y and outputs in {1,⊥}.
The advantage of B against the MAC-security of F is defined as

AdvMAC
F (B) =

∣∣Pr
[
K ←$ K : BFK ,VerK = 1

]
− Pr

[
K ←$ K : BFK ,Rej = 1

]∣∣ ,

where VerK is an oracle which takes as input a triple (N,D, tag) ∈ N ×D×Y and
returns 1 if FK(N,D) = tag, and ⊥ otherwise, and Rej is an oracle which always
returns ⊥. The adversary is not allowed to ask a verification query (N,D, tag)
if a previous query (N,D) to FK returned tag. The adversary is said nonce-
respecting if it never repeats a nonce N ∈ N in its queries to the first oracle FK .
In that case, we denote its advantage AdvnMAC

F (B).

Note that in the general case where the adversary is allowed to repeat nonces,
F can be seen as a standard (i.e., not nonce-based) keyed function with domain
N ×D, in which case one recovers the standard definitions of a PRF and a MAC
(hence our notation of the advantage when the adversary is unrestricted w.r.t.
nonces). While it is a well-known fact that if F is a secure PRF, then it is a
secure MAC [9,23], we stress that this is not true for the nonce-based variants
of the two notions, which are in fact incomparable.8

We then give the definition of a nonce-based Authenticated Encryption
(nAE) scheme (with associated data), for which we first recall the syntax.
Let K, N , A, and M be non-empty sets. A nAE scheme is a tuple Π =
(K,N ,A,M,Enc,Dec), where Enc and Dec are deterministic algorithms. The
encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N , associ-
ated data A ∈ A, and a message M ∈ M, and outputs a binary string C ∈ {0, 1}∗

(we assume that Enc returns ⊥ if one of the inputs is not in the intended set). The
decryption algorithm Dec takes as input a key K ∈ K, a nonce N ∈ N , associated
data A ∈ A, and a binary string C ∈ {0, 1}∗, and outputs either a message M ∈
M, or a special symbol ⊥. We require that Dec(K,N,A,Enc(K,N,A,M)) = M
for all tuples (K,N,A,M) ∈ K × N × A × M. We write EncK(N,A,M) for
Enc(K,N,A,M) and DecK(N,A,C) for Dec(K,N,A,C).
8 E.g., an nPRF-secure function F might depend only on the nonce, in which case

it is trivial to forge and break nMAC-security, while an nMAC-secure function F
might have all its outputs starting with a 0 bit, which allows to trivially break
nPRF-security.

44 T. Peyrin and Y. Seurin

Definition 4 (Nonce-Based AE). Let Π = (K,N ,A,M,Enc,Dec) be a nAE
scheme. The advantage of an adversary A in breaking Π is defined as

AdvAE
Π (A) =

∣∣∣ Pr
[
K ←$ K : AΠ.EncK(·,·,·), Π.DecK(·,·,·) = 1

]

− Pr
[
ARand(·,·,·),Rej(·,·,·) = 1

] ∣∣∣,

where Rand is an oracle which on input (N,A,M) ∈ N × A × M outputs a
random9 string of length |Π.EncK(N,A,M)| and Rej is an oracle which always
outputs ⊥. The adversary is not allowed to make a decryption query (N,A,C) if
a previous encryption query (N,A,M) returned C. The adversary is said nonce-
respecting if it never repeats a nonce N ∈ N in its encryption queries, in which
case we denote its advantage AdvnAE

Π (A).

Note that in the general case where the adversary is allowed to repeat nonces,
Π can be seen as a deterministic AE scheme [55] with header space (in the terms
of [55]) N × A, so that one exactly recovers the definition of the MRAE notion
of Rogaway and Shrimpton [55] (which we simply abbreviate to AE here).

Adversary Characteristics. In all the paper, given some implicit parameter
n, a (q,m, �, σ, t)-adversary against a nonce-based scheme is an adversary:

– which makes at most q oracle queries; when the adversary has access to two
oracles (i.e., when attacking the MAC-security of a keyed function or a nAE
scheme), this means q queries in total to both oracles;

– which uses any nonce at most m times throughout its queries (m = 1 for a
nonce-respecting adversary); when the adversary has access to two oracles,
this only applies to queries to its first oracle (MAC or encryption oracle);

– such that the length of any of its queries (nonce excluded) is at most � blocks
of n bits; for a keyed function with domain D = A × M or a nAE scheme,
this means that both the AD length and the message length of any query is at
most � blocks of n bits;

– such that the total length of all its queries (nonce excluded) is at most σ blocks
of n bits; for a keyed function with domain D = A × M or a nAE scheme,
this means the sum of the AD and the message length over all queries;

– which runs in time at most t.

4 The CTRT Encryption Mode

4.1 Syntax and Security of nivE Schemes

Most existing encryption schemes are either nonce-based [53] or IV-based [7],
i.e., they employ an externally provided value which either should not repeat
(nonce), or should be selected uniformly at random (IV). (See also [46]).

9 We assume that Rand returns the same output if a query is repeated.

Counter-in-Tweak: Authenticated Encryption Modes 45

Here, we introduce the notion of combined nonce- and IV-based encryption
scheme (nivE for short).

Syntactically, a nivE scheme is a tuple Π = (K,N , IV ,M,Enc,Dec) where K,
N , IV and M are non-empty sets and Enc and Dec are deterministic algorithms.
The encryption algorithm Enc takes as input a key K ∈ K, a nonce N ∈ N ,
an initial value IV ∈ IV, and a message M ∈ M, and outputs a binary string
C ∈ {0, 1}∗ (we assume that Enc returns ⊥ if one of the inputs is not in the
intended set). The decryption algorithm Dec takes as input a key K ∈ K, a
nonce N ∈ N , an initial value IV ∈ IV, and a binary string C ∈ {0, 1}∗, and
outputs either a message M ∈ M, or a special symbol ⊥. We require that

Dec(K,N, IV,Enc(K,N, IV,M)) = M

for all tuples (K,N, IV,M) ∈ K × N × IV × M.
We denote Enc$ the probabilistic algorithm which takes as input (K,N,M) ∈

K×N ×M, internally generates a uniformly random IV ←$ IV, computes C =
Enc(K,N, IV,M), and outputs (IV,C) ∈ IV×{0, 1}∗. We write EncK(N, IV,M)
for Enc(K,N, IV,M) and Enc$K(N,M) for Enc$(K,N,M). The security of a nivE
scheme is defined as follows.

Definition 5 (Security of a nivE Scheme). Let Π = (K,N , IV ,M,Enc,
Dec) be a nivE scheme. The advantage of an adversary A in breaking Π is defined
as

AdvivE
Π (A) =

∣∣∣Pr
[
K ←$ K : AΠ.Enc$K(·,·) = 1

]
− Pr

[
ARand(·,·) = 1

]∣∣∣ ,

where Rand is an oracle which on input (N,M) ∈ N × M outputs a random
string of length |Π.Enc$K(N,M)|. The adversary is said nonce-respecting if it
never repeats a nonce N ∈ N in its oracle queries, in which case we denote its
advantage AdvnivE

Π (A).

Note that when the adversary is allowed to repeat nonces, Π can be seen as
a family of purely IV-based encryption (ivE) schemes [46] indexed by the nonce
space N , hence our notation of the advantage in that case.

4.2 Definition and Analysis of the CTRT Mode

We now define the CTRT (CounTeR in Tweak) mode, turning a tweakable
block cipher into a nivE scheme. Let K and T be non-empty sets, and let
Ẽ ∈ TBC(K, T ′,X) be a tweakable block cipher with key space K, tweak space10

T ′ = {1} × T , and domain X = {0, 1}n. Let Inc be a cyclic permutation of T .
We construct from Ẽ a nivE scheme CTRT[Ẽ] with key space K, nonce space
N = X = {0, 1}n, IV space IV = T , and message space M = {0, 1}∗ as defined
in Fig. 2 and illustrated on bottom of Fig. 1.
10 The CTRT mode does not need tweak separation per se. We use a single 1 prefix in

order to conveniently combine CTRT with EPWC later.

46 T. Peyrin and Y. Seurin

Fig. 2. Definition of the CTRT mode, using a TBC ˜E ∈ TBC(K, T ′, X) with T ′ =
{1} × T and X = {0, 1}n.

The security of CTRT is captured by Theorem 1 below. Logarithms are in
base 2 and tCTRT(σ) is an upper bound on the time needed for computing
CTRT[Ẽ].EncK on inputs of total message length at most σ blocks of n bits
when calls to ẼK cost unit time.

Theorem 1 (Security of CTRT). Let Ẽ ∈ TBC(K, T ′,X) with X = {0, 1}n,
T ′ = {1} × T , and |T | ≥ 8. Let A be a (q,m, �, σ, t)-adversary against CTRT[Ẽ]
with � ≤ |T |. Then there exists an adversary A′ against the TPRP-security of
Ẽ, making at most σ oracle queries and running in time at most t + tCTRT(σ),
such that

AdvivE
CTRT[˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
2(m − 1)σ + 1

|T | + f(σ),

where

f(σ) =
2σ log2 σ

|X | when 8 ≤ σ ≤ |T |,

=
2σ2 log2 |T |

|X ||T | when σ ≥ |T |.

In particular, if A is nonce-respecting (m = 1), one has

AdvnivE
CTRT[˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
1

|T | + f(σ).

Before proceeding to the proof, we comment the security bound of this
theorem. Consider first the case of a nonce-respecting adversary A. Assuming
|T | ≥ |X |, then A must makes queries of total message length σ blocks of n
bits with σ close to |X | = 2n (neglecting logarithmic factors) before being able
to distinguish the outputs of CTRT[Ẽ] from random.11 On the other hand, if
11 Note that in that case the size of the tweak space T only impacts the maximal

message length �, not the security bound.

Counter-in-Tweak: Authenticated Encryption Modes 47

|T | = 2w < |X |, then CTRT[Ẽ] is secure up to roughly 2(n+w)/2 TBC calls
(again, neglecting logarithmic factors), which is always larger than 2n/2. In par-
ticular, if w = n/2 (as e.g. for KIASU-BC [32]), then security is ensured up to
roughly 23n/4 TBC calls. In the nonce-misuse scenario, note that the additional
term 2(m − 1)σ/|T | remains small as long as nonces are not repeated too many
times (e.g. m ≤ 100) and σ � |T |, and turns into a birthday-like term only in
the extreme case where a few nonces are repeated close to σ times. This means
that a few nonce repetitions will not hurt and that nonces must be “seriously”
mishandled before security goes down to birthday bound.

Proof of Theorem 1. Fix a (q′,m, |T |, σ, t)-adversary A against CTRT[Ẽ] (we
denote q′ the maximal number of adversarial queries and will later use q for
the actual number of queries in a specific attack). The first part of the proof
is standard, and consists in introducing an intermediate game where all calls
to ẼK in the CTRT construction are replaced by calls to a random tweakable
permutation P̃ . Consider the following adversary A′ against the TPRP-security
of Ẽ. Let G ∈ {ẼK , P̃} be the oracle to which A′ has access. Adversary A′ runs
A, answers its encryption queries (N,M) by drawing a random IV and executing
the code in Fig. 2 on input (N, IV,M), replacing calls to ẼK by oracle calls to
G, and finally outputs the same bit as A. Clearly, A′ makes at most σ oracle
queries and runs in time at most t + tCTRT(σ). Moreover, it is easy to see that

AdvivE
CTRT[˜E]

(A) ≤ AdvTPRP
˜E

(A′) + δ, (1)

where

δ =
∣∣∣Pr

[
P̃ ←$ TP(T ,X) : ACTRT[˜P].Enc$ = 1

]
− Pr

[
ARand = 1

]∣∣∣ (2)

and CTRT[P̃] is a slight abuse of notation for the CTRT construction based on
an arbitrary tweakable permutation P̃ .

Upper bounding δ is now a purely information-theoretic problem, so that we
allow A to be computationally unbounded, and hence, wlog, deterministic. The
adversary is now trying to distinguish between CTRT[P̃] for a random P̃ (there-
after called the “real world”) and Rand (thereafter called the “ideal world”).
We assume wlog that A always makes queries of length a multiple of the block
length n, and of total length σ blocks (if not, we pad all queries whose final
block is incomplete with zeros for free, which can only increase the adversary’s
advantage).

Following the H-coefficients method [15,48], we summarize the interaction of
A with its oracle in the so-called transcript of the attack

τ = ((N1,M1, IV1, C1), . . . , (Nq,Mq, IVq, Cq)),

where (Ni,Mi) denotes the i-th query of the attacker and (IVi, Ci) the corre-
sponding answer of the oracle. Furthermore, we denote Mi = Mi,1‖ · · · ‖Mi,�i ,
Ci = Ci,1‖ · · · ‖Ci,�i , where �i is the number of blocks of the i-th message, and

48 T. Peyrin and Y. Seurin

IVi,j = Incj−1(IVi) the j-th counter for the i-th message, j = 1, . . . , �i. Let Θre,
resp. Θid, denote the distribution of the transcript in the real world, resp. ideal
world. We say that a transcript τ is A-attainable (or simply attainable) if the
probability to obtain τ in the ideal world is non-zero. Note that the number of
queries q and the lengths of the queries �1, . . . , �q are themselves random vari-
ables (they can vary for distinct A-attainable transcripts), yet by the assumption
that the attacker always asks the maximal number of allowed blocks throughout
its queries, one always has

∑q
i=1 �i = σ.

From τ we define for each possible tweak T ∈ T the “load” of the tweak as

L(T) = |{(i, j) : IVi,j = T}|.

In words, L(T) is the number of times the tweak T appears as a counter when
encrypting the queries of the adversary. Clearly, one has

∑
T∈T

L(T) = σ. (3)

The proof relies on the fundamental lemma of the H-coefficients technique
(see e.g. [15] for the proof).

Lemma 1. Assume that the set of A-attainable transcripts is partitioned into
two disjoint sets GoodT and BadT, and that there exists ε1 and ε2 such that for
any τ ∈ GoodT, one has

Pr [Θre = τ]
Pr [Θid = τ]

≥ 1 − ε1,

and Pr [Θid ∈ BadT] ≤ ε2. Then δ ≤ ε1 + ε2, with δ as defined by (2).

We say that an attainable transcript τ is bad if one of the two following
conditions are met:

(C-1) there exists (i, j) = (i′, j′) such that IVi,j = IVi′,j′ and Ni = Ni′ ;
(C-2) there exists (i, j) = (i′, j′) such that IVi,j = IVi′,j′ , Ni = Ni′ , and Mi,j ⊕

Ci,j = Mi′,j′ ⊕ Ci′,j′ .

Note that condition (C-1) can only be satisfied for a nonce-misuse adversary,
since (by the assumption that the length of each query is at most |T | blocks of
n bits so that counters do not loop) IVi,j = IVi′,j′ requires i = i′, which implies
that Ni = Ni′ for a nonce-respecting adversary. Note also that the condition (C-
2) can only be satisfied in the ideal world. Indeed, in the real world, Mi,j ⊕Ci,j =
P̃ (IVi,j , Ni) and Mi′,j′ ⊕ Ci′,j′ = P̃ (IVi′,j′ , Ni′), so that if IVi,j = IVi′,j′ and
Ni = Ni′ one necessarily has Mi,j ⊕ Ci,j = Mi′,j′ ⊕ Ci′,j′ .

We let BadT be the set of bad transcripts, and GoodT be the set of attain-
able transcripts which are not bad, henceforth called good transcripts. We first
consider good transcripts.

Counter-in-Tweak: Authenticated Encryption Modes 49

Lemma 2. Let τ ∈ GoodT be a good transcript. Then

Pr[Θre = τ]
Pr[Θid = τ]

≥ 1.

Proof. Note that a good transcript has the property that for each (i, j) = (i′, j′)
such that IVi,j = IVi′,j′ , one has Ni = N ′

i and Mi,j ⊕ Ci,j = Mi′,j′ ⊕ Ci′,j′ . In
other words, the transcript encodes a partial tweakable permutation, where for
each tweak T ∈ T there are exactly L(T) distinct values Ni mapped to some
value Mi,j ⊕ Ci,j . The probability to obtain a good transcript τ in the ideal and
real worlds can now be easily computed. In the ideal world, since the IVi’s and
the Ci’s are uniformly random, one has

Pr[Θid = τ] =
1

|IV|q · |X |σ .

In the real world, the IVi’s are random as well, but now the probability to obtain
the Ci’s can easily be seen to be the probability that the random tweakable
permutation P̃ is compatible with the partial tweakable permutation encoded
by τ [15]. Hence, one has

Pr[Θre = τ] =
1

|IV|q ·
∏

T∈T

1
(|X |)L(T)

,

where (a)b denotes the falling factorial a(a − 1) · · · (a − b + 1), with (a)0 = 1 by
convention. From this, we deduce that

Pr[Θre = τ]
Pr[Θid = τ]

=
|X |σ∏

T∈T (|X |)L(T)

(3)
=

∏
T∈T

|X |L(T)

(|X |)L(T)
≥ 1.

��

It remains to upper bound the probability to obtain a bad transcript in the
ideal world. For i ∈ {1, 2}, let BadTi be the set of attainable transcripts satisfying
condition (C-i). We first consider condition (C-1).

Lemma 3. One has

Pr [Θid ∈ BadT1] ≤ 2(m − 1)σ
|T | .

Proof. Consider two distinct queries (Ni,Mi) and (Ni′ ,Mi′). If the nonces are
the same (Ni = Ni′), then the probability, over the random draw of IVi and IVi′

in T , that there exists j and j′ such that IVi,j = IVi′,j′ , is (�i + �i′ − 1)/|T |.
If the nonces are distinct, then clearly condition (C-1) cannot be satisfied for i
and i′. Hence, summing over all possible nonces, we have

Pr [Θid ∈ BadT1] ≤
∑

N∈N

∑
1≤i<i′≤q

Ni=Ni′=N

�i + �i′ − 1
|T | .

50 T. Peyrin and Y. Seurin

Fix some nonce N , and assume for notational simplicity that the first q′ queries
use nonce N , with q′ ≤ m by assumption. Then the probability that condition
(C-1) is met for nonce N is at most

q′−1∑
i=1

q′∑
i′=i+1

�i + �i′ − 1
|T | ≤

q′−1∑
i=1

(q′ − 1)�i + �(N)
|T |

≤ 2(q′ − 1)�(N)
|T |

≤ 2(m − 1)�(N)
|T | ,

where �(N) is the total length of queries using nonce N . The result follows by
summing over all possible nonces, using

∑
N∈N �(N) = σ. ��

We handle condition (C-2) in the following lemma.

Lemma 4. One has

Pr [Θid ∈ BadT2] ≤ 1
|T | + min{σ, |T |} · (Lmax)2

2|X | ,

where Lmax = 2 log σ when 8 ≤ σ ≤ |T | and Lmax = 2σ log |T |
|T | when σ ≥ |T |.

Proof. Let BadT3 be the set of transcripts satisfying the following condition
(Lmax being defined as in the statement of the lemma):
(C-3) there exists T ∈ T such that L(T) ≥ Lmax.
Then

Pr[Θid ∈ BadT2] ≤ Pr [Θid ∈ BadT2 |Θid /∈ BadT3] + Pr [Θid ∈ BadT3] .

Note that in the ideal world, the values L(T) only depend on the random draw
of the IVi’s, and that once the L(T)’s are fixed, condition (C-2) only depends on
the random draw of the Ci,j ’s. In particular, since in the ideal world the Ci,j ’s
are uniformly random, one has

Pr [Θid ∈ BadT2 |Θid /∈ BadT3]

≤
∑
T∈T

∑
(i,j),(i′,j′)

IVi,j=IVi′,j′=T

Pr [Mi,j ⊕ Ci,j = Mi′,j′ ⊕ Ci′,j′]

≤
∑
T∈T

L(T)(L(T) − 1)
2|X |

≤ min{σ, |T |} · (Lmax)2

2|X | ,

where for the third inequality we used that there are at most min{σ, |T |} tweaks
T such that L(T) ≥ 1.

Counter-in-Tweak: Authenticated Encryption Modes 51

It remains to upper bound the probability that condition (C-3) is satisfied,
which can be recast as a “balls-into-bins” problem. Thinking of each tweak
T as a bin, each random IVi determines a sequence of �i consecutive12 bins
where a ball is thrown. If the attacker only made queries of length one block,
then this would be a standard “balls-into-bins” problem, where each ball is
thrown independently in a bin chosen uniformly at random, and we could use
classical results about the maximal occupancy of any bin directly. However, the
attacker can choose the length of each message at will and we need to take this
into account.13 Intuitively, for some fixed total number σ of balls, using messages
of length �i > 1 should lower the maximal occupancy since balls thrown in
consecutive bins cannot end in the same bin. We formalize this intuition in a
separate Lemma below, which implies that

Pr [Θid ∈ BadT3] ≤ 1
|T | .

The result follows. ��

The lemma below is a simple variant on the standard balls-into-bins problem.
A similar result was proved in [6] (and potentially in many other papers).

Lemma 5. Consider a set of |T | ≥ 8 bins and σ ≥ 8 balls. Fix an integer q ≤
σ and a sequence of integers (�1, . . . , �q) with 1 ≤ �i ≤ |T | and

∑q
i=1 �i = σ.

Consider the following random process: for i = 1, . . . , q, a chain of �i balls is thrown
in consecutive bins, the initial bin being chosen independently and uniformly at
random. Then the probability that, at the end of the process, any bin contains Lmax

balls or more, is less than 1/|T |, where

(a) Lmax = 2 log σ when σ ≤ |T |;
(b) Lmax = 2σ log |T |

|T | when σ ≥ |T |.

Proof. See the full version of the paper [50].

Completing the Proof of Theorem 1. From Lemmas 3 and 4, we obtain by
the union bound that

Pr [Θid ∈ BadT] ≤ 2(m − 1)σ + 1
|T | + f(σ), (4)

with f(σ) as in the statement of Theorem 1. Combining (4) with Lemmas 1 and
2 (taking ε1 = 0), we obtain the same upper bound for δ (defined by (2)) as for
Pr [Θid ∈ BadT]. Finally, Eq. (1) yields the result.

Variants. In the full version of the paper [50], we describe two variants of
CTRT, a purely nonce-based one and a purely IV-based one.
12 The successor of the tweak T is Inc(T).
13 Note that the adversary must commit to the length �i of the chain before knowing

the initial bin IVi since it first makes the query (Ni, Mi) and only then receives the
answer (IVi, Ci).

52 T. Peyrin and Y. Seurin

5 The PWC and EPWC Message Authentication Codes

In this section, we describe two related modes for message authentication, PWC
(Parallel Wegman-Carter) and EPWC (Encrypted PWC). Let K and T be two
sets, and let Ẽ be a tweakable block cipher with key space K, tweak space14 T ′ =
{2, . . . , 5} × T , and domain X = {0, 1}n. Let Inc be a cyclic permutation of T .
From Ẽ, we construct two nonce-based keyed functions, PWC[Ẽ] and EPWC[Ẽ],
both with key space K, nonce-space N = X = {0, 1}n, domain D = A × M,
where A = M = {0, 1}∗,15 and range Y = X = {0, 1}n, as defined in Fig. 3 and
illustrated on top of Fig. 1 (for PWC, just omit the final call to Ẽ4,0

K). We will
prove that both PWC[Ẽ] and EPWC[Ẽ] are 2n-secure as nonce-based MAC and
nonce-based PRF, and that EPWC[Ẽ] is moreover a birthday bound-secure PRF
in the nonce-misuse scenario.

The PWC construction follows the Wegman-Carter paradigm [14,56,60] by
combining a xor-universal hash function H inspired from PMAC [13,52] applied
to (A,M), and a pseudorandom function F applied to the nonce N . This pseudo-
random function is constructed from Ẽ by summing two independent pseudoran-
dom permutations in order to obtain security beyond the birthday bound [42].
The EPWC construction is simply PWC with an additional layer of encryption
to provide nonce-misuse resistance.

Before stating and proving the security results for (E)PWC, we focus on how
to obtain the BBB-secure pseudorandom function F from Ẽ. A straightforward
way would be to “put the nonce in the tweak”, e.g.,

F ′
K(N) = Ẽ6,N

K (0).

This would result in a uniformly random value for each new nonce, but this is
only possible when the intended nonce space is smaller than the effective tweak
space T of Ẽ. In order to allow the nonce length to be as large as the block
length of Ẽ, we use instead the “sum-of-PRPs” construction by defining (the
exact tweak prefixes are unimportant)

FK(N) = Ẽ2,0
K (N) ⊕ Ẽ2,1

K (N). (5)

The pseudorandomness of this construction has been well studied. Assuming that
Ẽ2,0

K and Ẽ2,1
K are perfectly random and independent permutations, Lucks [42,

Theorem 5] showed that an information-theoretic adversary trying to distinguish
FK from a random function ρ : {0, 1}n → {0, 1}n within q queries has an advan-
tage upper bounded by q3/22n−1 (see also [16]). Better bounds were proposed
in three different papers: Bellare and Impagliazzo [8] proved that the advan-
tage is upper bounded by O(n)(q/2n)1.5, while Patarin proved in two different
14 We use a set of prefixes which is disjoint from the set used for the CTRT mode in

order to later combine the two modes smoothly.
15 When constructing an AE scheme, it is more convenient to directly define a vector-

input MAC, rather than a string-input MAC that must later be transformed to
handle vectors of strings, as required for an AE scheme.

Counter-in-Tweak: Authenticated Encryption Modes 53

Fig. 3. Definition of the PWC and EPWC modes, using a TBC ˜E ∈ TBC(K, T ′, X) with
T ′ = {2, . . . , 5}×T and X = {0, 1}n. The boxed statement only applies to EPWC. For
notational simplicity, we identify T with {0, . . . , |T | − 1} and Inci(0) with i.

ways [47,49] an upper bound O(q/2n). However, in all three cases the exact O(·)
function was left unspecified and the upper bound was not explicitly worked out.
For the sake of concreteness, we propose the following optimistic conjecture.

Conjecture 1. There is an absolute constant C such the advantage of any adver-
sary trying to distinguish the sum of two independent random permutations of
X from a random function from X to X within q queries is at most Cq/|X |.

The security of PWC and EPWC is captured by Theorems 2 and 3 below.
We denote by tPWC(σ), resp. tEPWC(σ), an upper bound on the time needed to
compute PWC[Ẽ], resp. EPWC[Ẽ] on inputs of total (AD + message) length at
most σ blocks of n bits when calls to ẼK cost unit time.

Theorem 2 (PRF-Security of PWC and EPWC). Let Ẽ ∈ TBC(K, T ′,X)
with X = {0, 1}n and T ′ = {2, . . . , 5} × T , and assume Conjecture 1. Let A be
a (q,m, �, σ, t)-adversary against the PRF-security of PWC[Ẽ], resp. EPWC[Ẽ],

54 T. Peyrin and Y. Seurin

with � ≤ |T | − 2. Then there exists an absolute constant C and an adversary A′,
resp. A′′, against the TPRP-security of Ẽ, making at most σ + 2q, resp. σ + 3q
oracle queries and running it time at most t + tPWC(σ), resp. t + tEPWC(σ), such
that

(a) if A is nonce-respecting (m = 1), then

AdvnPRF
PWC[˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
Cq

|X | ;

AdvnPRF
EPWC[˜E]

(A) ≤ AdvTPRP
˜E

(A′′) +
Cq

|X | ;

(b) if A is allowed to repeat nonces (m > 1), then

AdvPRF
EPWC[˜E]

(A) ≤ AdvTPRP
˜E

(A′′) +
q2

|X | .

Proof. Fix a (q,m, |T |−2, σ, t)-adversary A against the PRF-security of PWC[Ẽ]
or EPWC[Ẽ], trying to distinguish the construction from a random function
R ←$ Func(N × D,Y), where D = A × M. We start by proving (a), assuming
A is nonce-respecting (m = 1). First, slightly abusing the notation, let us see
(E)PWC as a construction based on an arbitrary tweakable permutation, iden-
tifying (E)PWC[Ẽ]K with (E)PWC[ẼK]. We start by replacing ẼK in the secu-
rity experiment by a uniformly random tweakable permutation P̃ . One can see
APWC[·], resp. AEPWC[·], as an adversary A′, resp. A′′ against the TPRP-security
of Ẽ, making at most σ + 2q, resp. σ + 3q queries to its oracle (since a query of
�i blocks to PWC, resp. EPWC, costs �i + 2, resp. �i + 3 calls to Ẽ) and running
in time at most t′ = t + tPWC(σ), resp. t′ = t + tEPWC(σ), so that

AdvnPRF
PWC[˜E]

(A) ≤ AdvTPRP
˜E

(A′) + δ, (6)

AdvnPRF
EPWC[˜E]

(A) ≤ AdvTPRP
˜E

(A′′) + δ, (7)

where

δ =
∣∣∣Pr

[
P̃ ←$ TP(T ′,X) : A(E)PWC[˜P] = 1

]

−Pr [R ←$ Func(N × D,Y) : AR = 1
] ∣∣∣. (8)

In order to upper bound δ, we abstract the high-level structure of (E)PWC[P̃]
as follows. First, we see how A and M are handled as applying a keyed hash
function (the key being P̃) to the pair (A,M), viz.

H
˜P (A,M)

def=

(
�a−1⊕
i=1

P̃ 2,i+1(Ai)

)
⊕ P̃ 2/3,�a+1(A�a(10∗))

⊕
(

�m−1⊕
i=1

P̃ 4,i(Mi)

)
⊕ P̃ 4/5,�m(M�m(10∗)). (9)

Counter-in-Tweak: Authenticated Encryption Modes 55

We also define a pseudorandom function (again with key P̃) as

F
˜P (N)

def= P̃ 2,0(N) ⊕ P̃ 2,1(N). (10)

Then, (E)PWC[P̃] can be written

PWC[P̃](N,A,M) = F
˜P (N) ⊕ H

˜P (A,M), (11)

EPWC[P̃](N,A,M) = P̃ 4,0
(
F
˜P (N) ⊕ H

˜P (A,M)
)
, (12)

which should make it clear that the PWC construction follows the Wegman-
Carter paradigm [60] with an additional layer of encryption for EPWC (note
that the three sets of tweaks used in F , H, and for the final encryption call are
disjoint, so that these three building blocks are independent).

We start by showing that the hash function family (H
˜P), with P̃ ∈

TP(T ′,X), is xor-universal, i.e., for any two distinct inputs (A,M), (A′,M ′), and
any X ∈ X = {0, 1}n, the probability, over the random draw of P̃ ←$ TP(T ′,X),
that

H
˜P (A,M) ⊕ H

˜P (A′,M ′) = X, (13)

is less than 1/|X |. Assume that A = A′ (the reasoning is similar if A = A′ and
M = M ′), let �a = |A|/n and �′

a = |A′|/n, and assume wlog that �a ≥ �′
a.

Denote A = A1‖ · · · ‖A�a and A′ = A′
1‖ · · · ‖A′

�′
a
. Assume first that �a > �′

a.
Then (13) is equivalent to

P̃ 2/3,�a+1(A�a(10∗)) = Z,

where Z is independent of permutations P̃ 2,�a+1 and P̃ 3,�a+1, hence the proba-
bility is exactly 1/|X |. Assume now that �a = �′

a. There is necessarily an index
i ≤ �a such that Ai = A′

i. If i < �a, then (13) is equivalent to

P̃ 2,i+1(Ai) ⊕ P̃ 2,i+1(A′
i) = Z,

where Z is a value potentially depending on P̃ for tweaks different from (2, i+1).
Since the probability of this equality (over the random draw of P̃ 2,i+1) is either
0 when Z = 0 or exactly 1/|X | when Z = 0, it follows that the condition is met
with probability at most 1/|X | in that case. Similarly, if i = �a, then (13) is
equivalent to

P̃ 2/3,i+1(Ai(10∗)) ⊕ P̃ 2/3,i+1(A′
i(10∗)) = Z,

where Z is a value potentially depending on P̃ for tweaks different from (2, i+1)
and (3, i+1). Again, the condition is met with probability at most 1/|X | in that
case. This concludes the proof that H is xor-universal.

As a second step, we replace F
˜P by a uniformly random function ρ from

N = {0, 1}n to X = {0, 1}n. Let PWC′[ρ, P̃], resp. EPWC′[ρ, P̃] be defined as
in (11), resp. (12), except that F

˜P is replaced by a call to ρ. Since A is nonce-
respecting, then both PWC′[ρ, P̃] and EPWC′[ρ, P̃] are perfectly indistinguishable

56 T. Peyrin and Y. Seurin

from Rand (this is obvious for PWC′, while for EPWC′ this follows from the
fact that applying any fixed permutation to uniformly random values yields
uniformly random values). Hence, it remains to upper bound A’s advantage
in distinguishing (E)PWC[P̃] from (E)PWC′[ρ, P̃]. By a straightforward hybrid
argument, this is exactly the advantage of an adversary A′′′ simulating H (and
P̃ 4,0 for EPWC) in distinguishing F

˜P from ρ within at most q queries (since each
query to the construction translates in exactly one query to the function applied
to the nonce). Using Conjecture 1, this advantage is upper bounded by Cq/|X |.
Combining this with (6), resp. (7), we obtain the result.

We then prove (b), assuming A is allowed to repeat nonces (m > 1). Exactly
as before, one has

AdvPRF
EPWC[˜E]

(A) ≤ AdvTPRP
˜E

(A′′) + δ,

with δ defined as in (8). We now see EPWC[P̃] as a construction based on a
universal hash function applied to (N,A,M) followed by a PRF. More precisely,
let

H ′
˜P
(N,A,M) = F

˜P (N) ⊕ H
˜P (A,M),

with H and F as defined in resp. (9) and (10). Then

EPWC[P̃](N,A,M) = P̃ 4,0(H ′
˜P
(N,A,M)).

It is easy to adapt the proof that H is xor-universal to show that H ′ is also
xor-universal (hence, in particular, universal, which is all we need here). The
remaining of the proof is now standard [57], and we only sketch it. We first
replace P̃ 4,0 in EPWC[P̃] by a uniformly random function ρ : X → X , and denote
EPWC′′[ρ, P̃] the resulting construction. By the PRP-PRF switching lemma, A

can distinguish EPWC[P̃] from EPWC′′[ρ, P̃] with advantage at most q2/(2|X |),
and because H ′ is universal, it can distinguish EPWC′′[ρ, P̃] from Rand with
advantage at most q2/(2|X |). The result follows. ��

Theorem 3 (MAC-Security of PWC and EPWC). Let Ẽ ∈ TBC(K, T ′,X)
with X = {0, 1}n and T ′ = {2, . . . , 5} × T , and assume Conjecture 1. Let B be
a nonce-respecting (q, 1, �, σ, t)-adversary against the MAC-security of PWC[Ẽ],
resp. EPWC[Ẽ], with � ≤ |T | − 2. Then there exists an absolute constant C and
an adversary B′, resp. B′′, against the TPRP-security of Ẽ, making at most
σ +2q, resp. σ +3q oracle queries and running it time at most t+ tPWC(σ), resp.
t + tEPWC(σ), such that

AdvnMAC
PWC[˜E]

(B) ≤ AdvTPRP
˜E

(B′) +
(C + 1)q

|X | ;

AdvnMAC
EPWC[˜E]

(B) ≤ AdvTPRP
˜E

(B′′) +
(C + 1)q

|X | .

Proof. The proof is standard and deferred to the full version of the paper [50].
��

Counter-in-Tweak: Authenticated Encryption Modes 57

Remark 1. While it is in principle possible to save one encryption call in the
EPWC construction by keeping the final AD or message block unencrypted as in
the standard PMAC construction [13,52], we avoid this to ensure that static AD
always gets treated the same, independently of the message. Indeed, applying
this optimization would result in a construction where the final block of AD
should be treated differently depending on whether the message is empty or not.
Handling the AD independently of the message allows to precompute

auth′ =
�a−1⊕
i=1

P̃ 2,i+1(Ai) ⊕ P̃ 2/3,�a+1(A�a(10∗))

and to process the nonce and the message later (in particular, when the AD is
static, auth′ need not be recomputed each time).

Remark 2. In the nonce-misuse scenario, there is a simple birthday attack
against EPWC[Ẽ] as soon as the adversary can repeat a single nonce twice.
The attack proceeds as follows: simply query EPWC[Ẽ]K for roughly 2n/2 pairs
(Ni, A,M) with distinct nonces and the same AD and message until a collision
occurs on the outputs for two nonces N1 and N2. Clearly, a collision on the MACs
implies that FK(N1) = FK(N2) (where FK is given by (5)). Hence, the adversary
can now query Y = EPWC[Ẽ]K(N1, A

′,M ′) for a new pair (A′,M ′) = (A,M).
Then Y is a valid forgery for (N2, A

′,M ′). It remains an open problem to design
a nonce-based MAC scheme ensuring graceful degradation of security with the
maximal number of nonce repetitions.

6 The SCT Mode

6.1 The NSIV Construction

In this section, we present the nAE mode SCT and analyze its security. We first
describe a generic composition method named NSIV, which defines a nAE scheme
from a nonce-based keyed function and an nivE scheme. The NSIV construction
results from a small (but important from a security viewpoint) modification to
the (generic) SIV construction [55]. While in SIV the encryption part is purely
IV-based, NSIV relies on a combined nonce- and IV-based encryption (nivE)
scheme, the nonce being used as input both to the keyed function and the nivE
scheme. This is the only difference with SIV, where the nonce is only given as
input to the keyed function.

More formally, let F be a nonce-based keyed function with key-space K1, nonce
space N , domain D = A × M, and range Y, and Π = (K2,N , IV,M,Enc,Dec)
be a nivE scheme. Fix a regular function Conv : Y → IV. We define the nAE
scheme16 NSIV[F,Π] = (K,N ,A,M,Enc,Dec) with key-space K = K1 × K2 as
specified on Fig. 4.
16 Our formalization of an nAE scheme in Definition 4 assumes that the ciphertext is a

binary string, whereas in our description, NSIV[F, Π].Enc returns a pair (C, tag). We
assume some implicit encoding of this pair into a single binary string.

58 T. Peyrin and Y. Seurin

Fig. 4. The NSIV construction, defining a nAE scheme from a nonce-based keyed
function F : K1 × N × D → Y where D = A × M and a nivE scheme Π =
(K2, N , IV, M, Enc, Dec). Function Conv is a regular function from Y to IV.

The security of NSIV[F,Π] is given by Theorem4 below. We assume that
A = M = {0, 1}∗ for convenience, but this restriction can be lifted easily.
We denote by tΠ(σ) an upper bound on the time needed for computing Π.Enc
or Π.Dec on inputs of total message length at most σ blocks of n bits, and
we assume that computing Conv(tag) or sampling uniformly from Conv−1(IV)
takes negligible time for any tag ∈ Y and IV ∈ IV. The proof of this theorem
is similar to the security proof of SIV, and deferred to the full version of the
paper [50].

Theorem 4 (Security of NSIV). Let F : K1 × N × D → Y, where D = A × M,
be a nonce-based keyed function, Π = (K2,N , IV ,M,Enc,Dec) be a nivE scheme,
and Conv : Y → IV be a regular function. Let A be a (q,m, �, σ, t)-adversary against
NSIV[F,Π]. Then, letting t′ = t + tΠ(σ), the following holds:

(a) if A is allowed to repeat nonces (m > 1), then there exists a (q,m, �, σ, t′)-
adversary A′ against Π and a (q, q, �, σ, t′)-adversary A′′ against the PRF-
security of F such that

AdvAE
NSIV[F,Π](A) ≤ AdvivE

Π (A′) + AdvPRF
F (A′′) +

q

|Y| ;

Counter-in-Tweak: Authenticated Encryption Modes 59

(b) if A is nonce-respecting (m = 1), then there exists a (q, 1, �, σ, t′)-adversary
A′ against Π and (q, 1, �, σ, t′)-adversaries A′′ and A′′′ against respectively the
PRF- and the MAC-security of F , all nonce-respecting, such that

AdvnAE
NSIV[F,Π](A) ≤ AdvnivE

Π (A′) + AdvnPRF
F (A′′) + AdvnMAC

F (A′′′).

6.2 From NSIV to SCT

The SCT[Ẽ] mode is simply NSIV[F,Π] where F is instantiated with EPWC[Ẽ]
and Π is instantiated with CTRT[Ẽ]. Additionally, in order to be able to use
the same key for calls to Ẽ both in EPWC and in CTRT, we use tweak sep-
aration to ensure that all calls to Ẽ in EPWC and in CTRT are independent.
The resulting construction is illustrated in Fig. 1. Combining Theorem 4 with
Theorems 1, 2 and 3, we finally obtain the following result for the security of
SCT.17 We denote by tSCT(σ) an upper bound on the time needed for computing
SCT[Ẽ].EncK or SCT[Ẽ].DecK on inputs of total (AD + message) length at most
σ blocks of n bits when calls to ẼK cost unit time.

Theorem 5 (Security of SCT). Let Ẽ ∈ TBC(K, T ′,X) with X = {0, 1}n,
T = {1, . . . , 5} × T , and |T | ≥ 8. Let Conv be a regular18 function from X
to T . Assume Conjecture 1 and let f(σ) be defined as in Theorem 1. Let A be
a (q,m, �, σ, t)-adversary against SCT[Ẽ] with � ≤ |T | − 2. Then there exists
an absolute constant C and an adversary A′ against the TPRP-security of Ẽ,
making at most σ + 3q oracle queries and running in time at most t + tSCT(σ),
such that

(a) if A is allowed to repeat nonces in encryption queries (m > 1), then

AdvAE
SCT[˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
2(m − 1)σ + 1

|T | + f(σ) +
q2 + q

|X | ;

(b) if A is nonce-respecting (m = 1), then

AdvnAE
SCT[˜E]

(A) ≤ AdvTPRP
˜E

(A′) +
1

|T | + f(σ) +
(2C + 1)q

|X | .

Acknowledgements. The authors would like to thank Jérémy Jean and Ivica Nikolic
for their remarks on early designs. The first author is supported by the Singapore
National Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

17 In more details, it is more convenient to prove Theorem 5 by first replacing ˜EK by
a uniformly random tweakable permutation, and then applying Theorems 1, 2, and 3
for a perfect TBC.

18 Note that this regularity condition imposes |T | ≤ |X |. However, when T | > |X |, the
security bounds of CTRT and EPWC do not depend on the tweak length (only the
maximal message length does). Hence, one can always use a subset of tweaks of size
|X | in case |T | > |X |.

60 T. Peyrin and Y. Seurin

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

2. Abed, F., Fluhrer, S., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel, J.:
Pipelineable on-line encryption. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 205–223. Springer, Heidelberg (2015)

3. AlFardan, N.J., Paterson, K.G., Lucky thirteen: breaking the TLS and DTLS
record protocols. In: Security and Privacy - SP 2013, pp. 526–540 (2013)

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014)

5. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

6. Asharov, G., Naor, M., Segev, G., Shahaf, I., Encryption, S.S.: Optimal locality
in linear space via two-dimensional balanced allocations. IACR Cryptology ePrint
Archive, Report 2016/251 (2016). To appear at STOC 2016

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)

8. Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses of
pseudorandom function based constructions, with applications to PRP to PRF
conversion. IACR Cryptology ePrint Archive, Report 1999/024 (1999)

9. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

11. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

12. Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

13. Black, J.A., Rogaway, P.: A block-cipher mode of operation for parallelizable mes-
sage authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 384–397. Springer, Heidelberg (2002)

14. Brassard, G.: On computationally secure authentication tags requiring short secret
shared keys. In: CRYPTO 1982, pp. 79–86 (1982)

15. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

16. Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR of k
permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
285–302. Springer, Heidelberg (2014)

17. Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birthday bar-
rier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 323–342.
Springer, Heidelberg (2011)

http://competitions.cr.yp.to/caesar.html

Counter-in-Tweak: Authenticated Encryption Modes 61

18. Duong, T., Rizzo, J.: Here come the ⊕ Ninjas. Unpublished manuscript (2011).
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839

19. Ferguson, N.: Collision attacks on OCB. Unpublished manuscript (2002). http://
www.cs.ucdavis.edu/∼rogaway/ocb/fe02.pdf

20. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. SHA3 Submission to NIST (Round
3) (2010)

21. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012)

22. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
p. 92. Springer, Heidelberg (2002)

23. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

24. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Durvaux, F., Gaspar, L.,
Kerckhof, S.: SCREAM and iSCREAM. Submitted to CAESAR (2014)

25. Gueron, S., Lindell, Y.: GCM-SIV: full nonce misuse-resistant authenticated
encryption atunder one cycle per byte. In: ACM CCS 2015, pp. 109–119 (2015)

26. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015)

27. Hoang, V.T., Reyhanitabar, R., Rogaway, P., Vizár, D.: Online authenticated-
encryption and its nonce-reuse misuse-resistance. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 493–517. Springer, Heidelberg (2015)

28. Iwata, T.: New blockcipher modes of operation with beyond the birthday bound
security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 310–327. Springer,
Heidelberg (2006)

29. Iwata, T.: Authenticated encryption mode for beyond the birthday bound secu-
rity. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 125–142.
Springer, Heidelberg (2008)

30. Jean, J., Nikolic, I., Peyrin, T.: Deoxys v1. Submitted to the CAESAR competition
(2014)

31. Jean, J., Nikolic, I., Peyrin, T.: Joltik v1. Submitted to the CAESAR competition
(2014)

32. Jean, J., Nikolic, I., Peyrin, T.: KIASU v1. Submitted to the CAESAR competition
(2014)

33. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for blockciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014)

34. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

35. Jutla, C.S.: Encryption modes with almost free message integrity. J. Cryptol. 21(4),
547–578 (2008). Earlier version at EUROCRYPT 2001

36. Katz, J., Yung, M.: Characterization of security notions for probabilistic private-
key encryption. J. Cryptol. 19(1), 67–95 (2006)

37. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: how secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 310–331. Springer, Heidelberg (2001)

https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
http://www.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf
http://www.cs.ucdavis.edu/~rogaway/ocb/fe02.pdf

62 T. Peyrin and Y. Seurin

38. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

39. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–152. Springer, Hei-
delberg (2014)

40. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012)

41. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

42. Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

43. McGrew, D.A., Viega, J.: The security and performance of the Galois/counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

44. Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg (2015)

45. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer, Hei-
delberg (2009)

46. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014)

47. Patarin, J.: A proof of security in O(2n) for the Xor of two random permutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008)

48. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

49. Patarin, J.: Security in O(2n) for the Xor of two random permutations: proof with
the standard H technique. IACR Cryptology ePrint Archive, Report 2013/368
(2013)

50. Peyrin, T., Seurin, Y.: Counter-in-Tweak: authenticated encryption modes for
tweakable block ciphers. Full version of this paper. http://eprint.iacr.org/2015/
1049

51. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002,
pp. 98–107 (2002)

52. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

53. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

54. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

55. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

56. Shoup, V.: On fast and provably secure message authentication based on univer-
sal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

http://eprint.iacr.org/2015/1049
http://eprint.iacr.org/2015/1049

Counter-in-Tweak: Authenticated Encryption Modes 63

57. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, Report 2004/332 (2004)

58. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part
I. LNCS, vol. 8269, pp. 405–423. Springer, Heidelberg (2013)

59. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS ... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

60. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

61. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). Submis-
sion to NIST (2002). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/ccm/ccm.pdf

62. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer, Heidelberg (2011)

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ccm/ccm.pdf

XPX: Generalized Tweakable Even-Mansour
with Improved Security Guarantees

Bart Mennink(B)

Department of Electrical Engineering, ESAT/COSIC, KU Leuven and iMinds,
Leuven, Belgium

bart.mennink@esat.kuleuven.be

Abstract. We present XPX, a tweakable blockcipher based on a single
permutation P . On input of a tweak (t11, t12, t21, t22) ∈ T and a message
m, it outputs ciphertext c = P (m⊕Δ1)⊕Δ2, where Δ1 = t11k⊕t12P (k)
and Δ2 = t21k ⊕ t22P (k). Here, the tweak space T is required to satisfy
a certain set of trivial conditions (such as (0, 0, 0, 0) �∈ T). We prove that
XPX with any such tweak space is a strong tweakable pseudorandom
permutation. Next, we consider the security of XPX under related-key
attacks, where the adversary can freely select a key-deriving function
upon every evaluation. We prove that XPX achieves various levels of
related-key security, depending on the set of key-deriving functions and
the properties of T . For instance, if t12, t22 �= 0 and (t21, t22) �= (0, 1)
for all tweaks, XPX is XOR-related-key secure. XPX generalizes Even-
Mansour (EM), but also Rogaway’s XEX based on EM, and various other
tweakable blockciphers. As such, XPX finds a wide range of applications.
We show how our results on XPX directly imply related-key security of
the authenticated encryption schemes Prøst-COPA and Minalpher, and
how a straightforward adjustment to the MAC function Chaskey and to
keyed Sponges makes them provably related-key secure.

Keywords: XPX · XEX · Even-Mansour · Tweakable blockcipher ·
Related-key security · Prøst · COPA · Minalpher · Chaskey · Keyed
sponges

1 Introduction

Even-Mansour Blockcipher. A blockcipher E : K × {0, 1}n → {0, 1}n is a
function that is a permutation on {0, 1}n for every key k ∈ K. The simplest way
of designing a blockcipher is the Even-Mansour construction [23,24]: it is built
on top of a single n-bit permutation P :

EMk1,k2(m) = P (m ⊕ k1) ⊕ k2. (1)

See also Fig. 1. In the classical indistinguishability security model, this construc-
tion achieves security up to approximately 2n/2 queries, both for the case where
the keys are independent [23,24] as well as for the case where k1 = k2 [22]. On the
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 64–94, 2016.
DOI: 10.1007/978-3-662-53018-4 3

XPX: Generalized Tweakable EM with Improved Security Guarantees 65

downside, this construction clearly does not achieve security against related-key
distinguishers that may freely choose an offset δ to transform the key. Indeed,
for any δ �= 0, we have EMk1,k2(m) = EMk1⊕δ,k2(m ⊕ δ). Recently, Farshim
and Procter [25] and Cogliati and Seurin [17] reconsidered the security of Even-
Mansour in the related-key security model. The former considered the case of
k1 = k2, and derived minimal conditions on the set of key-deriving functions
such that EM is related-key secure. The latter showed that if k1 = γ1(k) and
k2 = γ2(k) for two almost perfect nonlinear permutations γ1, γ2 [45], the con-
struction is XOR-related-key secure. Karpman showed how to transform related-
key distinguishing attacks on EM to key recovery attacks [28].

Even though our focus is on the single-round Even-Mansour (1), we briefly
elaborate on its generalization, the iterated r ≥ 1 round Even-Mansour con-
struction:

EM[r]k1,...,kr+1(m) = Pr(· · · P1(m ⊕ k1) · · · ⊕ kr) ⊕ kr+1,

where P1, . . . , Pr are n-bit permutations. It has been proved that this construc-
tion tightly achieves O(2rn/(r+1)) security in the single-key indistinguishability
model [9,13,14,30,50]. It has furthermore been analyzed in the chosen-key indif-
ferentiability model [2,31], the known-key indifferentiability model [4,18], and
the related-key indistinguishability model [17,25]. As our work centers around
the 1-round Even-Mansour of (1), we will not discuss these results in detail; we
refer to Cogliati and Seurin [17] for a recent and complete discussion of the state
of the art.

Tweakable Blockciphers. A tweakable blockcipher Ẽ : K × T × {0, 1}n →
{0, 1}n generalizes over E by ways of an additional parameter, the tweak t ∈ T .
The tweak is a public parameter which brings additional flexibility to the cipher.
In more detail, Ẽ is a family of permutations on {0, 1}n, indexed by (k, t) ∈
K × T . Liskov et al. [34] formalized the principle of tweakable blockciphers, and
introduced two modular constructions based on a classical blockcipher. One of
their proposals is the following:

LRWk,h(t,m) = Ek(m ⊕ h(t)) ⊕ h(t),

where h is a universal hash function taken from a family of hash functions H.
This construction is proven to achieve security up to 2n/2 queries. Rogaway [48]
introduced XEX: it generalizes over LRW by eliminating the universal hash
function (and thus by halving the key size) and by replacing it by an efficient
tweaking mechanism based on Ek. In more detail, he suggested the use of mask-
ing Δ = xα1

1 · · · xα�

� Ek(N) for some pre-defined generators x1, . . . , x� ∈ GF(2n)
(Fig. 2):

XEXk((α1, . . . , α�, N),m) = Ek(m ⊕ Δ) ⊕ Δ. (2)

If the generators and the tweak space are defined such that the xα1
1 · · · xα�

� are
unique and unequal to 1 for all tweaks, XEX achieves birthday bound security

66 B. Mennink

[40,48].AlongwithXEX,Rogawayalso consideredXE, its cousinwhich onlymasks
the inputs to E and achieves PRP instead of SPRP security. Here, � is usually a
small number, and the generators and the tweak space are defined in such a way
that adjusting the tweak is very cheap. For instance, practical applications with
n = 128 often take � ≤ 3 and (x1, x2, x3) = (2, 3, 7), and an allowed tweak space
would be [1, 2n/2] × [0, 10] × [0, 10] × {0, 1}n. Chakraborty and Sarkar [11] gen-
eralized XEX to word-based powering-up, and more recently Granger et al. [27]
presented a generalization to constant-time LFSR-based masking.

cm

k1 k2

P

Fig. 1. EM

cm

xα1
1 · · ·xα�

� Ek(N) xα1
1 · · ·xα�

� Ek(N)

Ek

Fig. 2. XEX

Sasaki et al. [49] recently introduced the “Tweakable Even-Mansour” (TEM)
for the purpose of the Minalpher authenticated encryption scheme. TEM is a
variant of XEX with Ek replaced by a public permutation P :

TEMk((α1, . . . , α�, N),m) = P (m ⊕ Δ) ⊕ Δ, (3)

where Δ = xα1
1 · · · xα�

�

(
k‖N ⊕P (k‖N)

)
for some generators x1, . . . , x� ∈ GF(2n).

(The masking is in fact slightly different, but adjusted for the sake of presen-
tation; cf. Sect. 6.3 for the details.) Independently, Cogliati et al. [15] consid-
ered the generalization of LRW to the permutation-based setting. The con-
tribution by Granger et al. [27], Masked EM or MEM, is in fact a general-
ization of TEM to masking Δ = fα1

1 ◦ · · · ◦ fα�

� ◦ P (k‖N) for some LFSRs
f1, . . . , f� : {0, 1}n → {0, 1}n, but their goal is merely to achieve improved effi-
ciency rather than to achieve improved security.

These constructions all achieve approximately birthday bound security, and
extensive research has been performed on achieving beyond birthday bound secu-
rity for tweakable blockciphers [32,33,35,36,41,47]. Because this is out of scope
for this article, we will not go into detail; we refer to Mennink [36] and Cogliati
and Seurin [16] for a recent and complete discussion of the state of the art.

Application of Tweakable Blockciphers. Tweakable blockciphers find a
wide spectrum of applications, most importantly in the area of authenticated
encryption and message authentication. For instance, XEX has been originally
introduced for the authenticated encryption scheme OCB2 and the message
authentication code PMAC [48], and its idea has furthermore been adopted in 18
out of 57 initial submissions to the CAESAR [10] competition for the design of
a new authenticated encryption scheme: Deoxys, Joltik, KIASU, and SCREAM

XPX: Generalized Tweakable EM with Improved Security Guarantees 67

use a dedicated tweakable blockcipher; AEZ, CBA, COBRA, COPA, ELmD,
iFeed, Marble, OCB, OTR, POET, and SHELL are (in-)directly inspired by XE
or XEX; OMD transforms XE to a random function setting; and Minalpher uses
TEM. Finally, the Prøstsubmission is simply a permutation P , which is (among
others) plugged into COPA and OTR in an Even-Mansour mode. We note that
OTR internally uses XE, while COPA uses XEX with N = 0 (see also Sect. 6.2).

Related-Key Security of XEX and TEM. XEX resists related-key attacks
if the underlying blockcipher is sufficiently related-key secure. However, this
premise is not necessarily true if Even-Mansour is plugged into XEX, as is done
in Prøst-COPA and Prøst-OTR. In fact, Dobraunig et al. [21] derived a related-
key attack on Prøst-OTR. This attack uses that the underlying XE-with-EM
construction is not secure under related-key attacks, and it ultimately led to the
withdrawal of Prøst-OTR. The attack exploits the nonce N that is used in the
masking. Karpman [28] generalized the attack to a key recovery attack. Because
COPA uses XEX without nonce (hence with N = 0), the attack of Dobraunig
et al. does not seem to be directly applicable to Prøst-COPA. Nevertheless, it is
unclear whether a variant of it generalizes to Prøst-COPA.

1.1 Our Contribution

We present the tweakable blockcipher XPX. It can be seen as a natural gener-
alization of TEM as well as of XEX with integrated Even-Mansour, and due to
its generality it has direct implications for various schemes in literature. In more
detail, XPX is a tweakable blockcipher based on an n-bit permutation P . It has
a key space {0, 1}n, a tweak space T ⊆ ({0, 1}n)4 (see below), and a message
space {0, 1}n. It is defined as

XPXk((t11, t12, t21, t22),m) = P (m ⊕ Δ1) ⊕ Δ2, (4)

with Δ1 = t11k ⊕ t12P (k) and Δ2 = t21k ⊕ t22P (k). Note that XPX boils down
to the original Even-Mansour blockcipher by taking TEM = {(1, 0, 1, 0)}. It also
generalizes XEX based on Even-Mansour and with N = 0, by defining TXEX to
be a tweak space depending on (α1, . . . , α�), and similarly captures TEM and
MEM to a certain degree (cf. Sect. 3 for the details).

Valid Tweak Sets. Obviously, XPX is not secure for any possible tweak
space T . For instance, if (0, 0, 0, 0) ∈ T , the scheme is trivially insecure.
Also, if (1, 0, 0, 1) ∈ T , an attacker can easily distinguish by observing that
XPXk((1, 0, 0, 1), 0) = 0. Therefore, it makes sense to limit the tweak space
in some way, and we define the notion of valid tweak spaces. This condition
eliminates the trivial cases (such as above two) and allows us to focus on the
“interesting” tweaks. We remark that TEM and TXEX are valid tweak spaces.

68 B. Mennink

Single-Key Security. As a first step, we consider the security of XPX in
the traditional single-key indistinguishability setting, and we prove that if T
is a valid set, then XPX achieves strong PRP (SPRP) security up to about
2n/2 queries. The proof is performed in the ideal permutation model, and uses
Patarin’s H-coefficient technique [46] which has found recent adoption in, among
others, generic blockcipher analysis [13,14,17,19,35,36] and security of message
authentication algorithms [5,20,39,43].

Related-Key Security. Next, we consider the security of XPX in the related-
key setting, where for every query, the adversary can additionally choose a func-
tion to transform the key. We focus on the following two types of key-deriving
function sets:

– Φ⊕: the set of functions that transform k to k ⊕ δ, for any offset δ;
– ΦP⊕: the set of functions that transform k to k ⊕ δ, or that transform P (k)

to P (k) ⊕ δ, for any offset δ.

The first set, Φ⊕, has been formally introduced alongside the formal specifi-
cation of related-key security by Bellare and Kohno [6]. It is the most logical
choice, given that the maskings in XPX itself are XORed into the state. We
remark that Cogliati and Seurin [17] also use Φ⊕ in their related-key analysis of
Even-Mansour. The second set, ΦP⊕, is a natural generalization of Φ⊕, noting
that the masks in XPX are of the form ti1k ⊕ ti2P (k). For the case of ΦP⊕,
we assume that the underlying permutation is available for the key-deriving
functions. Albrecht et al. [1] showed how to generalize the setting of Bellare
and Kohno [6] to primitive-dependent key-deriving functions. In this work, we
consider the related-key security for XPX in a security model that is a straight-
forward generalization of the models of Bellare and Kohno and Albrecht et al. to
tweakable blockciphers.

For the two key-deriving sets Φ⊕ and ΦP⊕, we show that XPX achieves the
following levels of related-key security:

if T is valid, and for all tweaks: security rk

t12 �= 0 PRP Φ⊕
t12, t22 �= 0 and (t21, t22) �= (0, 1) SPRP Φ⊕

t11, t12 �= 0 PRP ΦP⊕
t11, t12, t21, t22 �= 0 SPRP ΦP⊕

In brief, if P (k) does not drop from the masking Δ1 (resp. maskings Δ1,Δ2) the
scheme achieves PRP (resp. SPRP) related-key security under Φ⊕. To achieve
related-key security under ΦP⊕, we require that this condition holds for both k
and P (k). The requirement “(t21, t22) �= (0, 1)” is technically equivalent to the
requirement for XEX that xα1

1 · · · xα�

� �= 1 for all tweaks: if the conditions were
violated, both schemes can be attacked in a similar way.

The proof for related-key security is again performed using the H-coefficient
technique, but various difficulties arise, mostly due to the fact that we pursue

XPX: Generalized Tweakable EM with Improved Security Guarantees 69

stronger security requirements and that we aim to minimize the number of con-
ditions we put on the tweaks.

1.2 Applications

XPX as described in (4) appears in many constructions or modes (either directly
or indirectly), and can be used to argue related-key security for these modes.
We exemplify this for authenticated encryption and for message authentication
codes.

Firstly, Prøst-COPA is related-key secure for both key-deriving function sets
Φ⊕ and ΦP⊕. The crux behind this observation is that the XEX-with-EM eval-
uations in Prøst-COPA are in fact XPX evaluations with t11, t12, t21, t22 �= 0 for
all tweaks. (Recall that EM itself is not related-key secure and this result cannot
be shown by straightforward reduction.) A similar observation can be made for
Minalpher, with an additional technicality that the key k in TEM is not of full
size. Due to the structural differences between the masking approaches of XPX
and MEM [27], multiplication versus influence via function evaluation, the proof
techniques are technically incompatible. Nonetheless, it is of interest to combine
our results with the observations from [27], improving both the security and the
efficiency of existing modes.

Secondly, we consider the Chaskey permutation-based MAC function by
Mouha et al. [42,43]. We first note that the proof of [43] is implicitly using XPX
with a tweak space of size |T | = 3. Next, we introduce Chaskey′, an adjustment
of Chaskey that uses permuted key P (k) instead of k, which achieves XOR-
related-key security. Similar findings can be made for keyed Sponges.

It may be of interest to generalize XPX to the case where the maskings
are performed using universal hash functions, e.g., Δi = h1(ti1) ⊕ h2(ti2). This
generalization may, however, in certain settings be less efficient as one evaluation
of the permutation is traded for two hash function evaluations.

1.3 Outline

Section 2 introduces preliminary notation as well as the security models targeted
in this work. XPX is introduced in Sect. 3. In Sect. 4, the notion of valid tweak
spaces is defined and justified. XPX is analyzed for the various security models
in Sect. 5. We apply the results on XPX to authenticated encryption in Sect. 6
and to MACs in Sect. 7.

2 Preliminaries

By {0, 1}n we denote the set of bit strings of length n. Let GF(2n) be the field
of order 2n. We identify bit strings from {0, 1}n and finite field elements in
GF(2n). This is done by representing a string a = an−1an−2 · · · a1a0 ∈ {0, 1}n

as polynomial a(x) = an−1xn−1 + an−2xn−2 + · · · + a1x + a0 ∈ GF(2n) and
vice versa. There is additionally a one-to-one correspondence between [0, 2n − 1]

70 B. Mennink

and {0, 1}n, by considering a(2) ∈ [0, 2n−1]. For a, b ∈ {0, 1}n, we define addition
a⊕b as addition of the polynomials a(x)+b(x) ∈ GF(2n). Multiplication a⊗b is
defined with respect to the irreducible polynomial f(x) used to represent GF(2n):
a(x) · b(x) mod f(x).

For integers a ≥ b ≥ 1, we denote by (a)b = a(a − 1) · · · (a − b + 1) = a!
(a−b)!

the falling factorial power. If M is some set, m
$←− M denotes the uniformly

random drawing of m from M. The size of M is denoted by |M|. By Perm(M)
we denote the set of all permutations on M.

A blockcipher E : K × M → M is a function such that for every key k ∈ K,
the mapping Ek(·) = E(k, ·) is a permutation on M. For fixed k its inverse is
denoted by E−1

k (·). A tweakable blockcipher Ẽ is a function Ẽ : K×T ×M → M
such that for every k ∈ K and tweak t ∈ T , the mapping Ẽk(t, ·) = Ẽ(k, t, ·)
is a permutation on M. Like before, its inverse is denoted by Ẽ−1

k (·, ·). Denote
by ˜Perm(T ,M) the set of tweakable permutations, i.e., the set of all families of
permutations on M indexed with t ∈ T .

Note that a blockcipher is a special case of a tweakable blockcipher with
|T | = 1, and hence it suffices to restrict our analysis to tweakable blockci-
phers. In this work, we target the design of a tweakable blockcipher Ẽ from
an underlying permutation P , which is modeled as a perfectly random permuta-
tion P

$←− Perm(M). In Sect. 2.1 we describe the single-key security model and
in Sect. 2.2 the related-key security model. We give a description of Patarin’s
technique for bounding distinguishing advantages in Sect. 2.3.

2.1 Single-Key Security Model

Consider a tweakable blockcipher Ẽ : K × T × M → M based on a random
permutation P

$←− Perm(M). Let π̃
$←− ˜Perm(T ,M) be an ideal tweakable per-

mutation. The single-key security of Ẽ is informally captured by a distinguisher
D that has adaptive oracle access to either (Ẽk, P), for some secret key k

$←− K,
or (π̃, P). The distinguisher always has two-directional access to P . It may or
may not have two-directional access to the construction oracle (Ẽk or π̃) depend-
ing on whether we consider PRP or strong PRP security. The distinguisher is
computationally unbounded, deterministic, and it never makes duplicate queries.

Security Definitions. More formally, we define the PRP security of Ẽ based
on P as

Advprp
˜E

(D) =
∣∣∣Pr

[
D ˜Ek,P ±

= 1
]

− Pr
[
Dπ̃,P ±

= 1
]∣∣∣ ,

and the strong PRP (SPRP) security of Ẽ based on P as

Advsprp
˜E

(D) =
∣∣∣Pr

[
D ˜E

±
k ,P ±

= 1
]

− Pr
[
Dπ̃±,P ±

= 1
]∣∣∣ ,

XPX: Generalized Tweakable EM with Improved Security Guarantees 71

where the probabilities are taken over the random selections of k
$←− K, P

$←−
Perm(M), and π̃

$←− ˜Perm(T ,M). For q, r ≥ 0, we define by

Adv(s)prp
˜E

(q, r) = max
D

Adv(s)prp
˜E

(D)

the security of Ẽ against any single-key distinguisher D that makes q queries to
the construction oracle (Ẽk or π̃k) and r queries to the primitive oracle.

2.2 Related-Key Security Model

We generalize the security definitions of Sect. 2.1 to related-key security using
the theoretical framework of Bellare and Kohno [6] and Albrecht et al. [1]. The
generalization is similar to the one of Cogliati and Seurin [17] with the difference
that tweakable blockciphers are considered (and that we consider more general
key-deriving functions).

Related-Key Oracle. In related-key attacks, the distinguisher may query its
construction oracle not just on Ẽk, but on Ẽϕ(k) for some function ϕ chosen by
the distinguisher. This function may vary for the different construction queries,
but should come from a pre-described set. Let Φ be a set of key-deriving functions
(a KDF-set). For a tweakable blockcipher Ẽ : K × T × M → M, we define a
related-key oracle RK[Ẽ] : K × Φ × T × M → M as

RK[Ẽ](k, ϕ, t,m) = RK[Ẽ]k(ϕ, t,m) = Ẽϕ(k)(t,m).

For fixed ϕ its inverse is denoted RK[Ẽ]−1
k (ϕ, t, c) = Ẽ−1

ϕ(k)(t, c). Denote by
˜RK-Perm(Φ, T ,M) the set of tweakable related-key permutations, i.e., the set

of all families of permutations on M indexed with (ϕ, t) ∈ Φ × T .

Security Definitions. For a KDF-set Φ, we define the related-key (strong)
PRP (RK-(S)PRP) security of Ẽ based on P as

Advrk-prp

Φ, ˜E
(D) =

∣∣∣Pr
[
DRK[˜E]k,P ±

= 1
]

− Pr
[
D˜RKπ,P ±

= 1
]∣∣∣ ,

Advrk-sprp

Φ, ˜E
(D) =

∣∣∣Pr
[
DRK[˜E]±k ,P ±

= 1
]

− Pr
[
D˜RKπ

±
,P ±

= 1
]∣∣∣ ,

where the probabilities are taken over the random selections of k
$←− K, P

$←−
Perm(M), and R̃Kπ

$←− ˜RK-Perm(Φ, T ,M). For q, r ≥ 0, we define by

Advrk-(s)prp

Φ, ˜E
(q, r) = max

D
Advrk-(s)prp

Φ, ˜E
(D)

the security of Ẽ against any related-key distinguisher D that makes q queries to
the construction oracle (RK[Ẽ]k or R̃Kπ) and r queries to the primitive oracle.

72 B. Mennink

Note that we have opted to design the ideal world to behave independently for
each ϕ. This only increases the adversarial success probability in comparison
with earlier models: if for some k ∈ K there exist two distinct ϕ,ϕ′ ∈ Φ such
that ϕ(k) = ϕ′(k) with non-negligible probability, R̃Kπk behaves as two inde-
pendent tweakable permutations for these two key-deriving functions but RK[Ẽ]k
does not. In this case, D can easily distinguish (it corresponds to the collision-
resistance property in [6]). We remark that, by using this approach, related-key
security can be seen as a specific case of tweakable blockcipher security.

Key-Deriving Functions. Note that for Φid = {ϕ : k → k}, we simply have
Advrk-(s)prp

Φid, ˜E
(D) = Adv(s)prp

˜E
(D), and we will sometimes view single-key security

as related-key security under KDF-set Φid. Two other KDF-sets we consider in
this work are the following:

Φ⊕ = {ϕδ : k → k ⊕ δ | δ ∈ K},
ΦP⊕ = {ϕδ,ε : k → P−1(P (k) ⊕ ε) ⊕ δ | δ, ε ∈ K, δ = 0 ∨ ε = 0}.

(5)

We regularly simply write δ ∈ Φ⊕ to say that ϕδ ∈ Φ⊕, and similarly write
(δ, ε) ∈ ΦP⊕ to say that ϕδ,ε ∈ ΦP⊕.1

Note that every ϕδ ∈ Φ⊕ satisfies ϕδ = ϕδ,0 ∈ ΦP⊕, and hence Φ⊕ ⊆ ΦP⊕
by construction. The side condition “δ = 0 ∨ ε = 0” for ΦP⊕ deserves an addi-
tional explanation. In our scheme XPX, the in- and outputs will be masked using
the values (k, P (k)). A function ϕδ ∈ Φ⊕ (or, equivalently, ϕδ,0 ∈ ΦP⊕) trans-
forms these values to (k ⊕ δ, P (k ⊕ δ)). The set ΦP⊕ generalizes the strength
of the attacker by also transforming P (k) under XOR. In more detail, for any
ε, ϕ0,ε ∈ ΦP⊕ transforms (k, P (k)) to (P−1(P (k) ⊕ ε), P (k) ⊕ ε). From a theo-
retical point, it may be of interest to drop the side condition from ΦP⊕. This
would, however, make the security analysis of XPX much more complicated and
technically demanding.

2.3 Patarin’s Technique

We use the H-coefficient technique by Patarin [46] and Chen and Steinberger [14],
and we introduce it for our definitions of related-key security. Recall that these
definitions simplify to single-key security by using KDF-set Φid.

Let P
$←− Perm(M), and R̃Kπ

$←− ˜Perm(Φ, T ,M). Let k
$←− K and Ẽ : K×T ×

M → M be a tweakable blockcipher based on P . Consider any fixed determinis-
tic distinguisher D for the RK-(S)PRP security of Ẽ. It has access to either the

real world Ore = (RK[Ẽ](±)
k , P±) or the ideal world Oid = (R̃Kπ

(±)
, P±) and its

goal is to distinguish both. Here, the distinguisher has inverse query access to the
construction oracle if and only if we are considering strong PRP security (hence

1 ΦP⊕ could alternatively be written as the set of functions ϕb,δ : k �→ (

k ⊕
δ (if b = 0) or P −1(P (k) ⊕ δ) (if b = 1)

)

. We have opted for the writeup in (5) to
make the appearance of the key relation (δ or ε) more explicit.

XPX: Generalized Tweakable EM with Improved Security Guarantees 73

the parentheses around ±). The information that D learns from the interaction
with Ore/Oid is collected in a view v. Denote by Xre (resp. Xid) the probability
distribution of views when interacting with Ore (resp. Oid). Let V be the set
of all attainable views, i.e., views that occur in the ideal world with non-zero
probability.

Lemma 1 (Patarin’s Technique). Let D be a deterministic distinguisher.
Consider a partition V = Vgood∪Vbad of the set of attainable views. Let 0 ≤ ε ≤ 1
be such that for all v ∈ Vgood,

Pr [Xre = v] ≥ (1 − ε)Pr [Xid = v] . (6)

Then, the distinguishing advantage satisfies Adv(D) ≤ ε + Pr [Xid ∈ Vbad].

A proof of this lemma is given in [13,14,38]. The idea of the technique is that
only few views are significantly more likely to appear in Oid than in Ore. In
other words, the ratio (6) is close to 1 for all but the “bad” views. Note that
taking a large Vbad implies a higher Pr [Xid ∈ Vbad], while a small Vbad implies
a higher ε. The definition of what views are “bad” is thus a tradeoff between the
two terms.

Let vC = {(ϕ1, t1,m1, c1), . . . , (ϕq, tq,mq, cq)} be a view on a construction
oracle. We say that a tweakable related-key permutation R̃Kπ ∈ ˜Perm(Φ, T ,M)
extends vC , denoted R̃Kπ � vC , if R̃Kπ(ϕ, t,m) = c for each (ϕ, t,m, c) ∈ vC .
Note that if Ẽ : K × T × M → M is a tweakable blockcipher and k ∈ K,
then RK[Ẽ]k ∈ ˜Perm(Φ, T ,M) and the definition reads RK[Ẽ]k � vC . Similarly,
if vP = {(x1, y1), . . . , (xr, yr)} is a primitive view, we say that a permutation
P ∈ Perm(M) extends vP , denoted P � vP , if P (x) = y for each (x, y) ∈ vP .

3 XPX

Let P be any n-bit permutation. We present the tweakable blockcipher XPX
that has a key space {0, 1}n, a tweak space T ⊆ ({0, 1}n)4, and a message and
ciphertext space {0, 1}n. Formally, XPX : {0, 1}n × T × {0, 1}n → {0, 1}n is
defined as

XPXk((t11, t12, t21, t22),m) = P (m ⊕ Δ1) ⊕ Δ2 , where Δ1 = t11k ⊕ t12P (k),
and Δ2 = t21k ⊕ t22P (k).

(7)

XPX is depicted in Fig. 3. The design is general in that T can (still) be any set,
and we highlight two examples.

– Even-Mansour. XPX meets the single-key Even-Mansour construction (1)
by fixing T = {(1, 0, 1, 0)}. More generally, if |T | = 1, we are simply consider-
ing an ordinary (not a tweakable) blockcipher;

74 B. Mennink

cm

t11k ⊕ t12P (k) t21k ⊕ t22P (k)

P

Fig. 3. XPX

– XEX with Even-Mansour. XPX covers XEX based on Even-Mansour with
N = 0 by taking

T =
{

(xα1
1 · · · xα�

� ⊕ 1, xα1
1 · · · xα�

� ,
xα1
1 · · · xα�

� ⊕ 1, xα1
1 · · · xα�

�)

∣∣∣∣ (α1, . . . , α�) ∈ I1 × · · · × I�

}
,

where x1, . . . , x� and tweak space I1 × · · · × I� are as described in Sect. 1. In
this case, (α1, . . . , α�) is in fact the “real” tweak, and (t11, t12, t21, t22) is a
function of (α1, . . . , α�).

Further applications follow in Sects. 6 and 7. Obviously, XPX does not achieve
security for all choices of T ; e.g., if (1, 0, 1, 1) ∈ T , then we have

XPXk((1, 0, 1, 1), 0) = k. (8)

In Sect. 4, we derive a minimal set of conditions on T to make the XPX construc-
tion meaningful. Then, in Sect. 5 we prove that XPX is secure in various settings,
from single-key (S)PRP security to RK-SPRP security for the key-deriving func-
tion sets of Sect. 2.2.

4 Valid Tweak Sets

To eliminate trivial cases such as (8), we define a set of minimal conditions T
needs to satisfy in order for XPX to achieve a reasonable level of security. In
more detail, we define the notion of a valid tweak space T . After the definition
we present its rationale. We give some example of valid tweak spaces in Sect. 4.1,
and show that XPX is insecure if T is invalid in Sect. 4.2.

Definition 1. We say that T is valid if:

(i) For any (t11, t12, t21, t22) ∈ T we have (t11, t12) �= (0, 0) and (t21, t22) �=
(0, 0);

(ii) For any distinct (t11, t12, t21, t22), (t′11, t
′
12, t

′
21, t

′
22) ∈ T we have (t11, t12) �=

(t′11, t
′
12) and (t21, t22) �= (t′21, t

′
22);

(iii) If (1, 0, t21, t22) ∈ T for some t21, t22:
(a) t21 �= 0 and t22 �= 1;

XPX: Generalized Tweakable EM with Improved Security Guarantees 75

(b) For any other (t′11, t
′
12, t

′
21, t

′
22) ∈ T and b ∈ {0, 1} we have

t′11 �= t′12t21(t22 ⊕ 1)−1 ⊕ b and t′22 �= t′21t
−1
21 (t22 ⊕ 1) ⊕ b;

(c) For any distinct (t′11, t
′
12, t

′
21, t

′
22), (t

′′
11, t

′′
12, t

′′
21, t

′′
22) ∈ T we have

t′12 ⊕ t′′12 �= (t′11 ⊕ t′′11)t
−1
21 (t22 ⊕ 1) and t′22 ⊕ t′′22 �= (t′21 ⊕ t′′21)t

−1
21 (t22 ⊕ 1);

(iv) If (t11, t12, 0, 1) ∈ T for some t11, t12:
(a) t12 �= 0 and t11 �= 1;
(b) For any other (t′11, t

′
12, t

′
21, t

′
22) ∈ T and b ∈ {0, 1} we have

t′11 �= t′12t
−1
12 (t11 ⊕ 1) ⊕ b and t′22 �= t′21t12(t11 ⊕ 1)−1 ⊕ b;

(c) For any distinct (t′11, t
′
12, t

′
21, t

′
22), (t

′′
11, t

′′
12, t

′′
21, t

′′
22) ∈ T we have

t′11 ⊕ t′′11 �= (t′12 ⊕ t′′12)t
−1
12 (t11 ⊕ 1) and t′21 ⊕ t′′21 �= (t′22 ⊕ t′′22)t

−1
12 (t11 ⊕ 1).

Conditions (i) and (ii) are basic requirements, in essence guaranteeing that the
input to and output of the underlying permutation P is always masked. Con-
ditions (iii) and (iv) are more obscure but are in fact necessary to prevent the
key from being leaked. The presence of conditions (iii-a) and (iv-a) is justified
by equation (8), but even beyond that, an evaluation XPXk((1, 0, t21, t22), 0) for
some t21 �= 0 and t22 �= 1 leaks the value t21k ⊕ (t22 ⊕ 1)P (k) and additional
conditions are required.

4.1 Examples of Valid Tweak Spaces

Due to our quest for a minimal definition of valid tweak spaces, Definition 1 is
a bit hard to parse. Fortunately, conditions (iii) and (iv) often turn out to be
trivially satisfied, as we will show in the next examples.

Example 1. Consider a tweak space T where all tweaks are of the form
(t11, 0, t21, 0) for t11, t21 �= 0. The tweak space is valid if and only if

– every t11 appears at most once;
– every t21 appears at most once.

Concretely, condition (i) of Definition 1 is satisfied as t11, t21 �= 0; condition
(ii) is enforced by above two simplified conditions; conditions (iii) and (iv) turn
out to hold trivially for the specific type of tweaks. This example corresponds
to XPX with Δ1 = t11k and Δ2 = t21k, and covers, among others, the Even-
Mansour construction. Interestingly, by putting t11 = t21 =: t, XPX corresponds
to Cogliati et al. [15]’s tweakable Even-Mansour construction with universal hash
function hk(t) = k · t.

Example 2. Consider a tweak space T where all tweaks are of the form
(0, t12, 0, t22) for t12, t22 �= 0. The tweak space is valid if and only if

76 B. Mennink

– every t12 appears at most once;
– every t22 appears at most once.

This example corresponds to XPX with Δ1 = t12P (k) and Δ2 = t22P (k), and
it is the symmetrical equivalent of Example 1.

Example 3. Consider a tweak space T where all tweaks (t11, t12, t21, t22) satisfy
t11, t12, t21, t22 �= 0. The tweak space is valid if and only if

– every (t11, t12) appears at most once;
– every (t21, t22) appears at most once.

As in Example 1, condition (i) of Definition 1 is satisfied as t11, t12, t21, t22 �= 0;
condition (ii) is enforced by above two simplified conditions; conditions (iii)
and (iv) turn out to hold trivially for the specific type of tweaks. This example
covers, among others, XEX with Even-Mansour, noticing that XEX requires that
(α1, . . . , α�) �= (0, . . . , 0) [48].

4.2 Minimality of Definition 1

In below proposition, we show that XPX is insecure whenever T is invalid.
We remark that the second part of condition (ii) and the entire condition (iv)
are not strictly needed for PRP security and only apply to SPRP security. We
nevertheless included them for completeness.

Proposition 1. Let n ≥ 1 and let T ⊆ ({0, 1}n)4 an invalid set. We have

Advsprp
XPX(5, 2) ≥ 1 − 1/(2n − 1).

Proof. We consider conditions (i), (ii), and (iii) separately. Condition (iv) is
symmetrically equivalent to (iii), and omitted.

Condition (i). Assume, w.l.o.g., that (0, 0, t21, t22) ∈ T for some t21, t22. For
any m ∈ {0, 1}n we have XPXk((0, 0, t21, t22),m) ⊕ P (m) = t21k ⊕ t22P (k).
Making these two queries for two different messages m �= m′ gives a collision with
probability 1. For a random π̃ this happens with probability at most 1/(2n − 1).
Thus, if condition (i) is violated, Advsprp

XPX(2, 2) ≥ 1 − 1/(2n − 1). The analysis
for (t11, t12, 0, 0) ∈ T is equivalent.

Condition (ii). Assume, w.l.o.g., that (t11, t12, t21, t22), (t11, t12, t′21, t
′
22) ∈ T

for some (t21, t22) �= (t′21, t
′
22). For any m,

XPXk((t11, t12, t21, t22),m) ⊕ XPXk((t11, t12, t′21, t
′
22),m)

= (t21 ⊕ t′21)k ⊕ (t22 ⊕ t′22)P (k).

Making these queries for two different messages m �= m′ gives a collision with
probability 1. For a random π̃ this happens with probability at most 1/(2n − 1).
Thus, if condition (ii) is violated, Advsprp

XPX(4, 0) ≥ 1 − 1/(2n − 1).

XPX: Generalized Tweakable EM with Improved Security Guarantees 77

Condition (iii-a). Suppose (1, 0, t21, t22) ∈ T for some t21, t22. By construc-
tion, XPXk((1, 0, t21, t22), 0) = t21k ⊕ (t22 ⊕ 1)P (k). If t21 = 0 or t22 = 1,
this value leaks k or P (k). By making one additional invocation of P± the
other value is learned as well, giving the distinguisher both (k, P (k)). For arbi-
trary m �= 0, the distinguisher now queries XPXk((1, 0, t21, t22),m) = c and
P (m ⊕ k) = y and verifies whether c = y ⊕ t21k ⊕ t22P (k). For a random π̃ this
happens with probability at most 1/(2n−1). Thus, if condition (iii-a) is violated,
Advsprp

XPX(2, 2) ≥ 1 − 1/(2n − 1).

Condition (iii-b). Suppose (1, 0, t21, t22) ∈ T for some t21, t22, and assume
t21 �= 0 and t22 �= 1 (otherwise, the attack of (iii-a) applies). Suppose there is
a (t′11, t

′
12, t

′
21, t

′
22) ∈ T such that t′22 = t′21t

−1
21 (t22 ⊕ 1) ⊕ b for some b ∈ {0, 1}.

This is without loss of generality, as the other case is symmetric and the attack
applies by reversing all queries for tweak (t′11, t

′
12, t

′
21, t

′
22). We first consider case

b = 0, case b = 1 is treated later.
For b = 0: firstly, the attacker queries XPXk((1, 0, t21, t22), 0) to receive c =

t21k⊕(t22⊕1)P (k). Fix any c′ ∈ {0, 1}n, and query XPX−1
k ((t′11, t

′
12, t

′
21, t

′
22), c

′)
to receive m′ = t′11k ⊕ t′12P (k) ⊕ P−1(inp′) where inp′ = c′ ⊕ t′21k ⊕ t′22P (k).
Eliminating P (k) using c gives

inp′ = c′ ⊕ t′22(t22 ⊕ 1)−1c ⊕
(
t′21 ⊕ t′22(t22 ⊕ 1)−1t21

)
k = c′ ⊕ t′22(t22 ⊕ 1)−1c,

where we use the violation of property (iii-b). Therefore,

m′ ⊕ P−1(c′ ⊕ t′22(t22 ⊕ 1)−1c) = t′11k ⊕ t′12P (k).

This equation is independent of the choice of c′. Making these queries for two
different ciphertexts c′ �= c′′ gives a collision with probability 1. For a random
π̃ this happens with probability at most 1/(2n − 1). Thus, if condition (iii-b) is
violated with b = 0, Advsprp

XPX(3, 2) ≥ 1 − 1/(2n − 1).
For b = 1: in this case we specifically consider c′ = t′21t

−1
21 c, and have

inp′ = t′21t
−1
21 c ⊕ t′21k ⊕ t′22P (k)

=
(
t′21t

−1
21 (t22 ⊕ 1) ⊕ t′22

)
P (k) = P (k),

using that c = t21k⊕(t22⊕1)P (k) and the violation of property (iii-b). Therefore,
(

t21 t22 ⊕ 1
t′11 ⊕ 1 t′12

) (
k

P (k)

)
=

(
c

m′

)
,

If this matrix is singular, it implies that m′ = const·c with const = t−1
21 (t′11⊕1) =

(t22⊕1)−1t′12. For a random tweakable permutation this happens with probability
at most 1/2n. On the other hand, if it is non-singular, this reveals k and P (k).

For arbitrary m �= 0, the distinguisher now queries XPXk((1, 0, t21,
t22),m′′) = c′′ and P (m′′ ⊕ k) = y and verifies whether c′′ = y ⊕ t21k ⊕ t22P (k).
For a random π̃ this happens with probability at most 1/(2n − 1). Thus, if
condition (iii-b) is violated with b = 1, Advsprp

XPX(3, 1) ≥ 1 − 1/(2n − 1).

78 B. Mennink

Condition (iii-c). Suppose (1, 0, t21, t22) ∈ T for some t21, t22, and assume
t21 �= 0 and t22 �= 1 (otherwise, the attack of (iii-a) applies). Suppose there are
(t′11, t

′
12, t

′
21, t

′
22), (t

′′
11, t

′′
12, t

′′
21, t

′′
22) ∈ T such that t′22⊕t′′22 = (t′21⊕t′′21)t

−1
21 (t22⊕1).

This is without loss of generality, as the other case is symmetric and the attack
applies by reversing all queries for tweaks (t′11, t

′
12, t

′
21, t

′
22), (t

′′
11, t

′′
12, t

′′
21, t

′′
22).

Firstly, the attacker makes queries XPXk((1, 0, t21, t22), 0) to receive c = t21k ⊕
(t22 ⊕ 1)P (k). Now, fix any c′ ∈ {0, 1}n, and query

– XPX−1
k ((t′11, t

′
12, t

′
21, t

′
22), c

′) to receive m′ = t′11k ⊕ t′12P (k)⊕P−1(inp′) where
inp′ = c′ ⊕ t′21k ⊕ t′22P (k);

– XPX−1
k ((t′′11, t

′′
12, t

′′
21, t

′′
22), c

′ ⊕ (t′21 ⊕ t′′21)t
−1
21 c) to receive m′′ = t′′11k⊕ t′′12P (k)⊕

P−1(inp′′) where inp′′ = c′ ⊕ (t′21 ⊕ t′′21)t
−1
21 c ⊕ t′′21k ⊕ t′′22P (k).

Plugging c into inp′ and inp′′ gives

inp′′ = c′ ⊕ t′21k ⊕
(
t′′22 ⊕ (t′21 ⊕ t′′21)t

−1
21 (t22 ⊕ 1)

)
P (k)

= c′ ⊕ t′21k ⊕ t′22P (k) = inp′,

where we use the violation of property (iii-c). Therefore,

m′ ⊕ m′′ = (t′11 ⊕ t′′11)k ⊕ (t′12 ⊕ t′′12)P (k).

This equation is independent of the choice of c′. Making these queries for two
different ciphertexts c′ �= c′′ gives a collision with probability 1. For a random
π̃ this happens with probability at most 1/(2n − 1). Thus, if condition (iii-c) is
violated, Advsprp

XPX(5, 0) ≥ 1 − 1/(2n − 1).

Conclusion. In any case, a distinguishing attack with success probability at
least 1 − 1/(2n − 1) can be performed in at most 5 construction queries and 2
primitive queries. ��

5 Security of XPX

In this section, we analyze the security of XPX in various security models. We
will focus on valid T only. Theorem 1 captures all security levels for the three
key-deriving function sets of (5).

Theorem 1. Let n ≥ 1 and let T ⊆ ({0, 1}n)4 be a valid set.

(a) We have

Advprp
XPX(q, r) ≤ Advsprp

XPX(q, r) ≤ (q + 1)2 + 2q(r + 1) + 2r
2n

.

(b) If for all (t11, t12, t21, t22) ∈ T we have t12 �= 0, then

Advrk-prp
Φ⊕,XPX(q, r) ≤

7
2q2 + 4qr

2n − q
.

XPX: Generalized Tweakable EM with Improved Security Guarantees 79

(c) If for all (t11, t12, t21, t22) ∈ T we have t12, t22 �= 0 and (t21, t22) �= (0, 1),
then

Advrk-sprp
Φ⊕,XPX(q, r) ≤

7
2q2 + 4qr

2n
.

(d) If for all (t11, t12, t21, t22) ∈ T we have t11, t12 �= 0, then

Advrk-prp
ΦP ⊕,XPX(q, r) ≤ 4q2 + 4qr

2n − q
.

(e) If for all (t11, t12, t21, t22) ∈ T we have t11, t12, t21, t22 �= 0, then

Advrk-sprp
ΦP ⊕,XPX(q, r) ≤ 4q2 + 4qr

2n
.

In Sect. 5.1, we prove that the conditions T are minimal, meaning that the
security proof cannot go through if the conditions are omitted. The proof of
Theorem 1(a) is given in Sect. 5.2. The proofs of Theorem 1(b-c) and (d-e) are
given in the full version [37].

5.1 Minimality of the Conditions of Theorem 1

We show that the conditions we put on T in Theorem 1 are minimal, in the sense
that XPX can be broken if the conditions are omitted. For the validity condition
on T , this is already justified by Proposition 1. Below proposition considers the
remaining conditions on T put by parts (b)-(e) of Theorem 1.

Proposition 2. Let n ≥ 1 and let T ⊆ ({0, 1}n)4 a valid set.

(a) If (t11, 0, t21, t22) ∈ T for some t11, t21, t22, then

Advrk-prp
Φ⊕,XPX(4, 0) ≥ 1 − 1/(2n − 1).

(b) If (t11, t12, t21, 0) ∈ T or (t11, t12, 0, 1) ∈ T for some t11, t12, t21, then

Advrk-sprp
Φ⊕,XPX(4, 0) ≥ 1 − 1/(2n − 1).

(c) If (0, t12, t21, t22) ∈ T for some t12, t21, t22, then

Advrk-prp
ΦP ⊕,XPX(4, 0) ≥ 1 − 1/(2n − 1).

(d) If (t11, t12, 0, t22) ∈ T for some t11, t12, t22, then

Advrk-sprp
ΦP ⊕,XPX(4, 0) ≥ 1 − 1/(2n − 1).

Proof. We consider the four cases separately.

Case (b). Suppose (t11, 0, t21, t22) ∈ T for some t11, t21, t22. Fix any δ �= δ′ and
any m ∈ {0, 1}n. The attacker makes the following queries:

80 B. Mennink

– XPXk(δ, (t11, 0, t21, t22),m) to receive c = t21(k ⊕ δ) ⊕ t22P (k ⊕ δ) ⊕ P (inp)
where inp = m ⊕ t11(k ⊕ δ);

– XPXk(δ′, (t11, 0, t21, t22),m⊕ t11(δ ⊕ δ′)) to receive c′ = t21(k ⊕ δ′)⊕ t22P (k ⊕
δ′) ⊕ P (inp′) where inp′ = m ⊕ t11(δ ⊕ δ′) ⊕ t11(k ⊕ δ′).

By construction, inp′ = inp, and thus

c ⊕ c′ = t21(δ ⊕ δ′) ⊕ t22
(
P (k ⊕ δ) ⊕ P (k ⊕ δ′)

)
.

This equation is independent of the choice of m. Making these queries for two
different messages m �= m′ gives a collision with probability 1. For a random
R̃Kπ this happens with probability at most 1/(2n−1). Thus, Advrk-prp

Φ⊕,XPX(4, 0) ≥
1 − 1/(2n − 1).

Case (c). If (t11, t12, t21, 0) ∈ T for some t11, t12, t21 the attack is the inverse
of the one for case (b). Now, suppose (t11, t12, 0, 1) ∈ T for some t11, t12. The
attacker makes the following queries:

– XPX−1
k (0, (t11, t12, 0, 1), 0) to receive m = (t11 ⊕ 1)k ⊕ t12P (k);

– XPXk(0, (t11, t12, 0, 1),m ⊕ δ) for δ �= 0 to receive

cδ = P (k) ⊕ P (m ⊕ δ ⊕ t11k ⊕ t12P (k))
= P (k) ⊕ P (k ⊕ δ).

Now, fix any m′ and query

– XPXk(δ, (t11, t12, 0, 1),m′) to receive c′ = P (m′ ⊕ t11(k ⊕ δ) ⊕ t12P (k ⊕ δ)) ⊕
P (k ⊕ δ);

– XPXk(0, (t11, t12, 0, 1),m′ ⊕ t11δ ⊕ t12cδ) to receive c′′ = P (m′ ⊕ t11δ ⊕ t12cδ ⊕
t11k ⊕ t12P (k)) ⊕ P (k).

These queries satisfy c′ ⊕ c′′ = cδ. For a random R̃Kπ this happens with proba-
bility at most 1/(2n − 1). Thus, Advrk-sprp

Φ⊕,XPX(4, 0) ≥ 1 − 1/(2n − 1).

Case (d). Suppose (0, t12, t21, t22) ∈ T for some t12, t21, t22. Fix any δ �= δ′ and
any m ∈ {0, 1}n. The attacker makes the following queries:

– XPXk((0, δ), (0, t12, t21, t22),m) to receive c = t21P
−1(P (k) ⊕ δ) ⊕ t22(P (k) ⊕

δ) ⊕ P (inp) where inp = m ⊕ t12(P (k) ⊕ δ);
– XPXk((0, δ′), (0, t12, t21, t22),m ⊕ t12(δ ⊕ δ′)) to receive c′ = t21P

−1(P (k) ⊕
δ′) ⊕ t22(P (k) ⊕ δ′) ⊕ P (inp′) where inp′ = m ⊕ t12(δ ⊕ δ′) ⊕ t12(P (k) ⊕ δ′).

By construction, inp′ = inp, and thus

c ⊕ c′ = t21
(
P−1(P (k) ⊕ δ) ⊕ P−1(P (k) ⊕ δ′)

)
⊕ t22(δ ⊕ δ′).

This equation is independent of the choice of m. Making these queries for two
different messages m �= m′ gives a collision with probability 1. For a random R̃Kπ
this happens with probability at most 1/(2n − 1). Thus, Advrk-prp

ΦP ⊕,XPX(4, 0) ≥
1 − 1/(2n − 1).

Case (e). The attack is the inverse of the one for case (d). ��

XPX: Generalized Tweakable EM with Improved Security Guarantees 81

5.2 Proof of Theorem 1(a)

Note that Advprp
XPX(q, r) ≤ Advsprp

XPX(q, r) holds by construction, and we will
focus on bounding the latter. The proof is a generalization of the proofs of
Even-Mansour [5,15,22,23,25,43], but difficulties arise due to the tweaks.

Let k
$←− {0, 1}n, P

$←− Perm({0, 1}n), and π̃
$←− ˜Perm(T , {0, 1}n).

Consider any fixed deterministic distinguisher D for the SPRP security of
XPX. In the real world it has access to (XPXk, P), and in the ideal world
to (π̃, P). It makes q construction queries which are summarized in view
v1 = {((t11, t12, t21, t22)1,m1, c1), . . . , ((t11, t12, t21, t22)q,mq, cq)}. It additionally
makes r queries to P , summarized in a view v2 = {(x1, y1), . . . , (xr, yr)}. As D
is deterministic this properly summarizes the conversation.

To suit the analysis, we generalize our oracles by providing D with extra data.
How these extra data look like, depends on whether or not T contains tweak
tuple (1, 0, t̄21, t̄22) or (t̄11, t̄12, 0, 1).2 Because of their dedicated treatment, we
will always refer to these tweak tuples with overlines. As T is valid, and more
specifically by condition (iii-b), at most one of the two tweaks is in T , but it
may as well be that none of these is allowed.

More formally, before D’s interaction with the oracles, we reveal for-
ward construction query ((1, 0, t̄21, t̄22), 0, c̄) or inverse construction query
((t̄11, t̄12, 0, 1), m̄, 0), depending on whether one of the two tweaks is in T , and
store the resulting tuple in view v0. If none of the two tweaks is in T , we simply
have |v0| = 0.

Then, after D’s interaction with its oracles but before D makes its final
decision, we reveal vk = {(k, k)}. In the real world, k is the key used for
encryption and k	 = P (k). In the ideal world, k

$←− {0, 1}n will be a randomly
drawn dummy key and k	 will be defined based on k and v0. If |v0| = 0, then
k	 $←− {0, 1}n. Otherwise, it is the unique3 value that satisfies

t̄21k ⊕ (t̄22 ⊕ 1)k	 = c̄ if v0 = {((1, 0, t̄21, t̄22), 0, c̄)}, or
(t̄11 ⊕ 1)k ⊕ t̄12k

	 = m̄ if v0 = {((t̄11, t̄12, 0, 1), m̄, 0)}.
(9)

Clearly, these disclosures are without loss of generality as they may only help
the distinguisher. The complete view is denoted v = (v0, v1, v2, vk). Recall that
D is assumed not to make any repeat queries, and hence v0 ∪ v1 and v2 do not
contain any duplicate elements. Note that vk may collide with v2, but this will
be captured as a bad event.

Throughout, we consider attainable views only. Recall that a view is attain-
able if it can be obtained in the ideal world. For v0 ∪ v1, this is the case if and
only if for any distinct i, i′ such that (t11, t12, t21, t22)i = (t11, t12, t21, t22)i′ , we
have mi �= mi′ and ci �= ci′ . For v2 the condition is equivalent: there should

2 Indeed, if (for instance) (1, 0, t̄21, t̄22) ∈ T , a construction query ((1, 0, t̄21, t̄22), 0)
will reveal c̄ = t̄21k ⊕ (t̄22 ⊕ 1)P (k) and a special analysis is needed.

3 Because T is valid, t̄21, t̄22 ⊕ 1 �= 0 in the former case and t̄11 ⊕ 1, t̄12 �= 0 in the
latter.

82 B. Mennink

be no two distinct (x, y), (x′, y′) ∈ v2 such that x = x′ or y = y′. Attainability
implies for vk that k	 satisfies (9) if |v0| = 1.

We say that a view v is bad if one of the following conditions holds:

BV1 : for some (x, y) ∈ v2 and (k, k�) ∈ vk:

BV1a : k = x, or

BV1b : k� = y, or

BV2 : for some ((t11, t12, t21, t22), m, c) ∈ v1, (x, y) ∈ v2 ∪ vk, and (k, k�) ∈ vk:

BV2a : m ⊕ t11k ⊕ t12k
� = x, or

BV2b : c ⊕ t21k ⊕ t22k
� = y, or

BV3 : for some distinct ((t11, t12, t21, t22), m, c), ((t′
11, t

′
12, t

′
21, t

′
22), m

′, c′) ∈ v0 ∪ v1

and (k, k�) ∈ vk:

BV3a : m ⊕ t11k ⊕ t12k
� = m′ ⊕ t′

11k ⊕ t′
12k

�, or

BV3b : c ⊕ t21k ⊕ t22k
� = c′ ⊕ t′

21k ⊕ t′
22k

�.

Note that every tuple in v0 ∪ v1 uniquely corresponds to an evaluation of the
underlying P , namely via (7) where vk is used as key material. The above condi-
tions cover all cases where two different tuples in v collide at their P evaluation.
In more detail, BV1 covers the case where vk = {(k, k)} collides with a tuple
in v2, BV2 the case where a tuple in v1 collides with a tuple in v2 ∪ vk, and
BV3 the case where two tuples in v0 ∪ v1 collide with each other. Note that two
different tuples in v2 never collide (by construction), and that the case of a tuple
of v0 colliding with v2 is implicitly covered in BV1. The only remaining case, v0
colliding with vk, is not required to be a bad event, as this is the exact way vk

is defined.
In accordance with Patarin’s technique (Lemma 1), we derive an upper bound

on Pr [Xid ∈ Vbad] in Lemma 2, and in Lemma 3 we will prove that ε = 0 works
for good views.

Lemma 2. For Theorem 1(a), we have Pr [Xid ∈ Vbad] ≤ (q+1)2+2q(r+1)+2r
2n .

Proof. Consider a view v in the ideal world (π̃, P). We will essentially compute

Pr [BV1 ∨ BV2 ∨ BV3] ≤ Pr [BV1] + Pr [BV2 | ¬BV1] + Pr [BV3] . (10)

We have k
$←− {0, 1}n. If |v0| = 0, we would also have k	 $←− {0, 1}n. If |v0| = 1,

the value k	 is defined based on v0. In fact, the probability that a transcript is
bad is largest in case |v0| = 1 and we consider this case only (the derivation for
|v0| = 0 is in fact a simplification of the below one). Without loss of generality,
v0 = {((t̄11, t̄12, 0, 1), m̄, 0)}, where t̄11 �= 1 and t̄12 �= 0 by validity of T . By (9),
we have

k	 = t̄−1
12

(
(t̄11 ⊕ 1)k ⊕ m̄

)
.

At a high level, we will prove that all bad events become a condition on k
once k	 gets replaced using this equation. We will use validity of T (and more

XPX: Generalized Tweakable EM with Improved Security Guarantees 83

specifically point (iv)) to show that these are non-trivial conditions (i.e., k never
cancels out).

ConditionBV1. Condition BV1a is clearly satisfied with probability r/2n.
Regarding BV1b, we have r choices for (x, y) ∈ v2, and k is a bad key if

k = (t̄11 ⊕ 1)−1(t̄12y ⊕ m̄),

where we use that t̄11 �= 1. This happens with probability at most r/2n. There-
fore, Pr [BV1] ≤ 2r/2n.

ConditionBV2. Consider any choice of ((t11, t12, t21, t22),m, c) ∈ v1 and
(x, y) ∈ v2 ∪ vk. Regarding BV2a, it is set if

t11k ⊕ t12t̄
−1
12

(
(t̄11 ⊕ 1)k ⊕ m̄

)
= x ⊕ m.

This translates to
(
t11 ⊕ t12t̄

−1
12 (t̄11 ⊕ 1) ⊕ 1

)
k = m ⊕ t12t̄

−1
12 m̄ if (x, y) = (k, k) ∈ vk,(

t11 ⊕ t12t̄
−1
12 (t̄11 ⊕ 1)

)
k = x ⊕ m ⊕ t12t̄

−1
12 m̄ if (x, y) ∈ v2 .

Here, we use that ¬BV1 holds. Now, if (t11, t12, t21, t22) = (t̄11, t̄12, 0, 1), we
necessarily have m �= m̄ as v does not contain any duplicate elements. Then, the
key is bad with probability 0 if (x, y) = (k, k) ∈ vk and with probability 1/2n

otherwise. If (t11, t12, t21, t22) �= (t̄11, t̄12, 0, 1), the factor in front of k is nonzero
as T is valid (condition (iv-b)), and k satisfies this equation with probability
1/2n. Concluding, BV2a is set with probability at most q(r + 1)/2n. Regarding
BV2b, it is set if

t21k ⊕ t22t̄
−1
12

(
(t̄11 ⊕ 1)k ⊕ m̄

)
= y ⊕ c.

As before, this translates to
(
t21 ⊕ (t22 ⊕ 1)t̄−1

12 (t̄11 ⊕ 1)
)
k = c ⊕ (t22 ⊕ 1)t̄−1

12 m̄ if (x, y) = (k, k) ∈ vk ,(
t21 ⊕ t22t̄

−1
12 (t̄11 ⊕ 1)

)
k = y ⊕ c ⊕ t22t̄

−1
12 m̄ if (x, y) ∈ v2 .

The remainder of the analysis is the same, showing that BV2b is set with prob-
ability at most q(r + 1)/2n. Therefore, Pr [BV2] ≤ 2q(r + 1)/2n.

ConditionBV3. Consider any two distinct ((t11, t12, t21, t22),m, c),
((t′11, t

′
12, t

′
21, t

′
22),m

′, c′) ∈ v0 ∪ v1. If (t11, t12, t21, t22) = (t′11, t
′
12, t

′
21, t

′
22), then

necessarily m �= m′ and c �= c′ and BV3 cannot be satisfied. Otherwise, we have
(t11, t12) �= (t′11, t

′
12) and (t21, t22) �= (t′21, t

′
22) because of valid T . Plugging k	 into

the equation of BV3a gives
(
t11 ⊕ t′11 ⊕ (t12 ⊕ t′12)t̄

−1
12 (t̄11 ⊕ 1)

)
k = m ⊕ m′ ⊕ (t12 ⊕ t′12)t̄

−1
12 m̄.

As before, t11 ⊕ t′11 ⊕ (t12 ⊕ t′12)t̄
−1
12 (t̄11 ⊕ 1) �= 0: if (t11, t12) or (t′11, t

′
12) equals

(t̄11, t̄12) this is due to validity of T point (iv-b), and otherwise due to point (iv-c).

84 B. Mennink

Therefore, k satisfies this equation with probability 1/2n. Thus, BV3a is set with
probability at most

(
q+1
2

)
/2n. Regarding BV3b, we similarly find

(
t21 ⊕ t′21 ⊕ (t22 ⊕ t′22)t̄

−1
12 (t̄11 ⊕ 1)

)
k = c ⊕ c′ ⊕ (t22 ⊕ t′22)t̄

−1
12 m̄,

and BV3b is set with probability at most
(
q+1
2

)
/2n. Therefore, Pr [BV3] ≤

2
(
q+1
2

)
/2n ≤ (q + 1)2/2n.

Conclusion. Using (10), we have Pr [Xid ∈ Vbad] ≤ (q+1)2+2q(r+1)+2r
2n . This

completes the proof. ��

Lemma 3. For Theorem 1(a), we have Pr [Xre = v] ≥ Pr [Xid = v] for any
good transcript v ∈ Vgood.

Proof. For the computation of Pr [Xre = v] and Pr [Xid = v], it suffices to com-
pute the fraction of oracles that could result in view v. Recall that we assume
that D never makes redundant queries, and particularly that v0 ∪ v1 consists of
|v0| + q distinct oracle queries.

In the real world, k will always be a randomly drawn key. The tuples v0 ∪
v1 are construction evaluations and the tuples v1 ∪ vk are direct permutation
evaluations. If |v0| = 0, all of these tuples define a unique P -evaluation, q + r+1
in total. This is because of the fact that we consider good transcripts. If |v0| = 1,
the P -evaluations by v0 and vk are the same, but apart from that all tuples define
unique P -evaluations. So also in this case, we have q + r + 1 P -evaluations.
Therefore,

Pr [Xre = v] = Pr
[
k′ $←− {0, 1}n : k′ = k

]
·

Pr
[
P

$←− Perm(M) : XPXP
k � v0 ∪ v1 ∧ P � v2 ∪ vk

]

=
1
2n

· 1
(2n)q+r+1

.

For the analysis in the ideal world, we group the tuples in v0 ∪ v1 according to
the tweak value. Formally, for t = (t11, t12, t21, t22) ∈ T , we define

#t = |{(t,m, c) ∈ v0 ∪ v1 | m, c ∈ {0, 1}n}|.

The computation of Pr [Xid = v] now differs depending on whether |v0| = 0 or
|v0| = 1. If |v0| = 0:

Pr [Xid = v ∧ |v0| = 0] = Pr
[
k′, k	′ $←− {0, 1}n : k′ = k ∧ k	′ = k	

]
·

Pr
[
π̃

$←− ˜Perm(T ,M) : π̃ � v1

]
·

Pr
[
P

$←− Perm(M) : P � v2

]

=
1

22n
· 1∏

t (2n)#t

· 1
(2n)r

, where
∑

t #t = q .

XPX: Generalized Tweakable EM with Improved Security Guarantees 85

If |v0| = 1:

Pr [Xid = v ∧ |v0| = 1] = Pr
[
k′ $←− {0, 1}n : k′ = k

]
·

Pr
[
π̃

$←− ˜Perm(T ,M) : π̃ � v0 ∪ v1

]
·

Pr
[
P

$←− Perm(M) : P � v2

]

=
1
2n

· 1∏
t (2n)#t

· 1
(2n)r

, where
∑

t #t = q + 1 .

In either case,

Pr [Xid = v] ≤ 1
2n

· 1∏
t (2n)#t

· 1
(2n)r

, where
∑

t #t = q + 1

≤ 1
2n

· 1
(2n)q+r+1

= Pr [Xre = v] ,

where we use that (a)b1
(a)b2

≥ (a)b1+b2
. This completes the proof. ��

6 Application to Authenticated Encryption

We will show how XPX applies to the Prøst-COPA [3,29] and Minalpher [49]
authenticated encryption schemes. Before doing so, we briefly discuss the security
model.

6.1 Security Model

Authenticated encryption covers the case where both privacy and authenticity
of data is required. In more detail, an authenticated encryption scheme consists
of an encryption function Enc and a decryption function Dec. Enc gets as input
a key, nonce, associated data, and message, and outputs a ciphertext and a tag.
Dec gets as input a key, nonce, associated data, ciphertext, and tag, and it either
outputs a message (if the authentication is correct) or a dedicated ⊥ symbol.

Let AE = (Enc,Dec) be an authenticated encryption scheme, and let P be
an idealized primitive upon which AE is based, if any (note that if AE is based
on a blockcipher, P is non-existent). Let k be a randomly drawn key. Let $ be
a function with the same interface as Ek, but that returns fresh and random
answers to every query. Let ⊥ be a function that outputs ⊥ on every query. We
define the privacy of AE based on P as

Advpriv
AE (D) =

∣∣∣Pr
[
DEnck,P±

= 1
]

− Pr
[
D$,P±

= 1
]∣∣∣ ,

and the authenticity of AE based on P as

Advauth
AE (D) =

∣∣∣Pr
[
DEnck,Deck,P±

= 1
]

− Pr
[
DEnck,⊥,P±

= 1
]∣∣∣ .

86 B. Mennink

In both definitions, some conditions on D may apply (such as the nonce-
respecting condition). For q, �, σ, r ≥ 0, we define by

Advpriv/auth
AE (q, �, σ, r) = max

D
Advpriv/auth

AE (D)

the security of AE against any distinguisher D that makes q queries to the con-
struction oracle, each of length at most � and of total size σ, and r queries to
the primitive oracle.

So far, the model is in the single-key setting, But it generalizes to related-key
security straightforwardly (the way Sect. 2.2 generalizes Sect. 2.1). We denote the
corresponding related-key security definitions by

Advrk-priv/auth
Φ,AE (D) and Advrk-priv/auth

Φ,AE (q, �, σ, r),

where Φ is some key-deriving function set.

6.2 Prøst-COPA

COPA is an authenticated encryption scheme by Andreeva et al. [3]. COPA for
integral message is depicted in Fig. 4 (we refer to [3] for the general case). At its
core, it is using a blockcipher E in XEX mode (2) with masks Δ = 2α3β7γEk(0),
where (α, β, γ) is the tweak coming from tweak space {0, . . . , �} × {0, . . . , 5} ×
{0, 1}\{(0, 0, 0)} = TCOPA.4

A1 A2 Aa−1 Aa M1 M2 Md M1⊕···⊕Md

C1 C2 Cd T

33L 2·33L 2a-233L 2a-134L

L

3L 2·3L 2d-13L 2d-132L

2L 22L 2dL 2d-17L

Ek Ek

Ek

Ek

EkEk EkEk

EkEkEkEk

Fig. 4. COPA for integral data. Here, L = Ek(0).

Before discussing the related-key security of COPA, we quickly revisit the
original security proof at a high level. Consider an attacker against COPA
that has resources (q, �, σ, r). As a first step, all XEX evaluations in COPA
are replaced with a random tweakable permutation π̃

$←− ˜Perm(TCOPA, {0, 1}n).

4 The fact that (0, 0, 0) �∈ TCOPA is important, cf. Rogaway [48] and Minematsu [40]
who describe an attack on XEX if (0, 0, 0) were permitted.

XPX: Generalized Tweakable EM with Improved Security Guarantees 87

This step costs us Advsprp
XEX(2(σ+q), r). Next, COPA with ideal tweakable permu-

tation is proven to achieve privacy up to bound Apriv(q, �, σ) = σ2

2n + (�+2)(q−1)2

2n

and authenticity up to bound Aauth(q, �, σ) = (σ+q)2

2n + (�+2)(q−1)2

2n + 2q
2n . Thus:

Advpriv/auth
COPA (q, �, σ, r) ≤ Advsprp

XEX(2(σ + q), r) + Apriv/auth(q, �, σ).

The step towards RK-security of COPA is quite straightforward, noting that
an attacker against COPA with ideal tweakable related-key permutation has no
benefit over an attacker against COPA with ideal tweakable (non-related-key)
permutation.

Theorem 2 (RK-security of COPA). Let Φ be any KDF-set. We have

Advrk-priv/auth
Φ,COPA (q, �, σ, r) ≤ Advrk-sprp

Φ,XEX(2(σ + q), r) + Apriv/auth(q, �, σ).

Proof. Consider an attacker against COPA that has resources (q, �, σ, r). As a
first step, all XEX evaluations in COPA are replaced with a random tweakable
related-key permutation R̃Kπ

$←− ˜RK-Perm(Φ, TCOPA, {0, 1}n). This step costs
Advrk-sprp

Φ,XEX(2(σ + q), r). It remains to consider COPA with R̃Kπ. However, as

R̃Kπ instantiates an ideal permutation for every different related-key function,
every new related-key function instantiates a completely independent instance of
COPA. Formally, assume the adversary queries COPA for s different key-deriving
functions, ϕ1, . . . , ϕs, where ϕi is used with total resources (qi, �, σi). These all
instantiate independent versions of COPA, contributing Apriv/auth(qi, �, σi) to
the bound, totaling to

s∑
i=1

Apriv/auth(qi, �, σi) ≤ Apriv/auth(q, �, σ),

using that qi ≥ 1,
∑s

i=1 qi = q, and
∑s

i=1 σi = σ. The bound then applies to all
adversaries. ��

Prøst-COPA [29], in turn, uses the Prøst permutation in Even-Mansour
mode. In other words, Prøst-COPA does not simply use XEX, but XPX with
tweak space

TPrøst =
{

(2α3β7γ ⊕ 1, 2α3β7γ ,
2α3β7γ ⊕ 1, 2α3β7γ)

∣∣∣∣ (α, β, γ) ∈ TCOPA

}
. (11)

Taking any of the KDF-sets Φ ∈ {Φ⊕, ΦP⊕} of (5), we find:

Corollary 1 (RK-security of Prøst-COPA). For Φ being Φ⊕ or ΦP⊕ of (5),
we have

Advrk-priv/auth
Φ,Prøst-COPA(q, �, σ, r) ≤ 16(σ + q)2 + 8(σ + q)r

2n
+ Apriv/auth(q, �, σ).

88 B. Mennink

Proof. The proof of Theorem 2 generalizes to Prøst-COPA straightforwardly,
where Advrk-sprp

Φ,XEX(2(σ + q), r) gets replaced with Advrk-sprp
Φ,XPX(2(σ + q), r). This

XPX is instantiated using tweak space TPrøst of (11), which is valid and
satisfies t11, t12, t21, t22 �= 0 for any (t11, t12, t21, t22) ∈ TPrøst (note that
(α, β, γ) = (0, 0, 0) is excluded). Therefore, Theorem 1(c) applies for Φ = Φ⊕ and
Theorem 1(e) for Φ = ΦP⊕. In the worst case, we find that

Advrk-sprp
Φ,XPX(2(σ + q), r) ≤ 16(σ + q)2 + 8(σ + q)r

2n
,

completing the proof. ��

Note that if Prøst-COPA were not to use Prøst permutation in Even-Mansour
mode, but if it simply had E = P , then the resulting XPX construction would
have tweak space

TPrøst′ =
{
(0, 2α3β7γ , 0, 2α3β7γ) | (α, β, γ) ∈ TCOPA

}
.

This tweak space does not satisfy the conditions of Theorem 1(e) and we can
only argue the related-key security of Prøst-COPA under Φ⊕.

6.3 Minalpher

Minalpher is an authenticated encryption scheme by Sasaki et al. [49]. Minalpher
for integral message is depicted in Fig. 5 (we refer to [49] for the general case).
At its core, it is using tweakable Even-Mansour TEM of (3): an evaluation of
an n-bit permutation with masks5 Δ = 2α3β

(
k‖flag‖N ⊕ P (k‖flag‖N)

)
, where

(α, β, flag, N) is the tweak coming from tweak space
(
{0, . . . , �}×{0, 1, 2}

)
\{(0, 0)}×{flagm, flagad, flagmac}×{0, 1}n/2−s = TMinalpher.

Here, the key k is of size n/2 bits, the flag of size s bits, and the nonce N of size
n/2 − s bits.

The authors prove, among others, that Advsprp
TEM(q, r) ≤ O((q+r)2/2n +(q+

r)/2n/2). The extra term O((q + r)/2n/2) is new compared to Theorem 1(a),
and is caused by the shorter key size. A bit of thought reveals that, because the
tweaks flag‖N are concatenated to k instead of XORed with k, the results of
Theorem 1(b-e) generalize to TEM. Here, again, the specific key length needs to
be taken into account. In [49], the designers prove that if the underlying TEM is
sufficiently strong, Minalpher is a secure authenticated encryption scheme. In a
similar fashion as Theorem 2 and Corollary 1, a generalization of Theorem 1(b-e)
can be used to argue the related-key security of Minalpher.

5 The original specification uses a generator y instead of 2.

XPX: Generalized Tweakable EM with Improved Security Guarantees 89

A1 A2 Aa−1 Aa M1 M2 Md−1 Md

C1 C2 Cd−1 Cd

T

2L′

2L′

22L′

22L′

2a-1L′

2a-1L′

2a-13L′

2a-13L′

2L

2L

23L

23L

22d-3L

22d-3L

22d-1L

22d-1L

22L

22L

24L

24L

22d-2L

22d-2L

22d-13L

22d-13L

P

P P P

P

P PP

PPPP

Fig. 5. Minalpher for integral data. Here, L′ = k‖flag‖0 ⊕ P (k‖flag‖0) and L =
k‖flag‖N ⊕ P (k‖flag‖N)

7 Application to MAC

Various novel MAC functions, such as the keyed Sponges [5,7,12,26,39,44] and
Chaskey [42,43], consist of a sequential application of a permutation, where the
key is used to mask the state. We discuss an application of the analysis of XPX to
Chaskey in detail, and explain how similar reasoning applies to keyed Sponges.
We first briefly discuss the security model.

7.1 Security Model

A MAC function is expected to guarantee authenticity. However, we consider
a different security model, namely PRF security. More formally, let MAC be a
MAC function that gets as input a key and message, and outputs a tag. Let
P be an idealized primitive upon which MAC is based (optional, for instance a
blockcipher or permutation). Let k be a randomly drawn key. Let $ be a function
with the same interface as MAC, but that returns fresh and random answers to
every query. We define the PRF security of MAC based on P as

Advprf
MAC(D) =

∣∣∣Pr
[
DMACk,P±

= 1
]

− Pr
[
D$,P±

= 1
]∣∣∣ .

For q, �, σ, r ≥ 0, we define by

Advprf
MAC(q, �, σ, r) = max

D
Advprf

MAC(D)

the security of MAC against any distinguisher D that makes q queries to the
construction oracle, each of length at most � and of total size σ, and r queries
to the primitive oracle.

90 B. Mennink

As before, the definition generalizes to related-key security straightforwardly,
and we denote the corresponding related-key security definitions by

Advrk-prf
Φ,MAC(D) and Advrk-prf

Φ,MAC(q, �, σ, r),

where Φ is some key-deriving function set.

7.2 Chaskey

Chaskey is a permutation-based MAC function by Mouha et al. [42,43]. We
consider a small adjustment, called Chaskey′, that processes the initialized state
with an evaluation of the permutation. Chaskey and Chaskey′ without final
truncation are depicted in Fig. 6.

0

k 2k2kM1 M2 Md

TPPP P

0

k M1 M2

TPPP P

Md10∗ 4k4k

Fig. 6. Chaskey′ for integral messages (top) and fractional messages (bottom). The
dashed P ’s are absent in the original Chaskey.

Mouha et al. [43] proved the security of Chaskey (without the first evalu-
ation of P). It consists of the idea that XORing the key k twice in-between
every two consecutive P evaluations gives a blockcipher-based Chaskey using
Even-Mansour constructions m → P (m ⊕ k) ⊕ k, m → P (m ⊕ 3k) ⊕ 2k, and
m → P (m ⊕ 5k) ⊕ 4k. The security of Chaskey boils down to the advantage
of a distinguisher in distinguishing these three constructions from three ideal
permutations, an advantage the authors dub the “3PRP” security. This 3PRP
security is effectively equivalent to the PRP security of XPX with tweak space
{(1, 0, 1, 0), (3, 0, 2, 0), (5, 0, 4, 0)} = TChaskey, and we find:6

Advprf
Chaskey(q, �, σ, r) ≤ Advprp

XPX(σ, r) +
2σ2

2n
.

Now, for Chaskey′, the idea is to XOR P (k) ⊕ P (k) everywhere in-between two
consecutive P evaluations except for the first two. In this case, Chaskey′ would
simply be using XPX with tweak space

{(0, 1, 0, 1), (2, 1, 2, 0), (4, 1, 4, 0)} = TChaskey′ .

Note that TChaskey′ satisfies the conditions of Theorem 1(b). Similarly to
Theorem 2 and Corollary 1, we directly obtain:
6 The authors of [43] effectively consider MAC security instead of PRF security, but

the analysis carries over.

XPX: Generalized Tweakable EM with Improved Security Guarantees 91

Corollary 2 (RK-security of Chaskey′). For Φ⊕ of (5), we have

Advrk-prf
Φ⊕,Chaskey′(q, �, σ, r) ≤

7
2σ2 + 4σr

2n − σ
+

2σ2

2n
.

7.3 Keyed Sponge

Following [7,12], Andreeva et al. [5] formalized two Sponges: the inner-keyed
Sponge and the outer-keyed Sponge. Gaži et al. [26] generalized these results
(among others) to full-state absorption. This construction, to some extent,
resembles the Donkey Sponge construction [8]. Mennink et al. [39] considered
the full-state Sponge and full-state Duplex. In a similar fashion as the analysis
of Sect. 7.2, the inner-keyed Sponge [5], the Donkey Sponge [8], and the full-state
Sponge and Duplex [39] can be adjusted to achieve related-key security.

Acknowledgments. This work was supported in part by the Research Council KU
Leuven: GOA TENSE (GOA/11/007), and in part by COST Action “Cryptography
for Secure Digital Interaction.” Bart Mennink is a Postdoctoral Fellow of the Research
Foundation – Flanders (FWO). The author would like to thank the DTU Compute team
and the anonymous reviewers of CRYPTO 2016 for their comments and suggestions.

References

1. Albrecht, M.R., Farshim, P., Paterson, K.G., Watson, G.J.: On cipher-dependent
related-key attacks in the ideal-cipher model. In: Joux, A. (ed.) FSE 2011. LNCS,
vol. 6733, pp. 128–145. Springer, Heidelberg (2011)

2. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013)

4. Andreeva, E., Bogdanov, A., Mennink, B.: Towards understanding the known-key
security of block ciphers. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
348–366. Springer, Heidelberg (2014)

5. Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge
constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015.
LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015)

6. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–
506. Springer, Heidelberg (2003)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of the
keyed sponge construction. In: Symmetric Key Encryption Workshop (SKEW
2011) (2011)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryp-
tion, authentication and authenticated encryption. In: Directions in Authenticated
Ciphers (DIAC 2012) (2012)

92 B. Mennink

9. Bogdanov, A., Knudsen, L.R., Leander, G., Standaert, F.-X., Steinberger, J.,
Tischhauser, E.: Key-alternating ciphers in a provable setting: encryption using
a small number of public permutations. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 45–62. Springer, Heidelberg (2012)

10. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, May 2015. http://competitions.cr.yp.to/caesar.html

11. Chakraborty, D., Sarkar, P.: A general construction of tweakable block ciphers and
different modes of operations. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt
2006. LNCS, vol. 4318, pp. 88–102. Springer, Heidelberg (2006)

12. Chang, D., Dworkin, M., Hong, S., Kelsey, J., Nandi, M.: A keyed sponge con-
struction with pseudorandomness in the standard model. In: NIST’s 3rd SHA-3
Candidate Conference 2012 (2012)

13. Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing the two-round
Even-Mansour cipher. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg (2014)

14. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

15. Cogliati, B., Lampe, R., Seurin, Y.: Tweaking Even-Mansour ciphers. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 493–517.
Springer, Heidelberg (2015)

16. Cogliati, B., Seurin, Y.: Beyond-birthday-bound security for tweakable Even-
Mansour ciphers with linear tweak and key mixing. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 134–158. Springer, Heidelberg (2015)

17. Cogliati, B., Seurin, Y.: On the provable security of the iterated Even-Mansour
cipher against related-key and chosen-key attacks. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 584–613. Springer, Heidelberg
(2015)

18. Cogliati, B., Seurin, Y.: Strengthening the known-key security notion for block
ciphers. In: FSE 2016. LNCS, Springer, Heidelberg (2016, to appear)

19. Dai, Y., Lee, J., Mennink, B., Steinberger, J.: The security of multiple encryption
in the ideal cipher model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 20–38. Springer, Heidelberg (2014)

20. Datta, N., Nandi, M.: ELmD v1.0, submission to CAESAR competition (2014)
21. Dobraunig, C., Eichlseder, M., Mendel, F.: Related-key forgeries for Prøst-OTR.

In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 282–296. Springer, Heidelberg
(2015)

22. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012)

23. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 201–224. Springer, Heidelberg (1993)

24. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)

25. Farshim, P., Procter, G.: The related-key security of iterated Even-Mansour
ciphers. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342–363. Springer,
Heidelberg (2015)

http://competitions.cr.yp.to/caesar.html

XPX: Generalized Tweakable EM with Improved Security Guarantees 93

26. Gaži, P., Pietrzak, K., Tessaro, S.: The exact PRF security of truncation: tight
bounds for keyed sponges and truncated CBC. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015 Part I. LNCS, vol. 9215, pp. 368–387. Springer, Heidelberg
(2015)

27. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer,
Heidelberg (2016)

28. Karpman, P.: From distinguishers to key recovery: improved related-key attacks
on Even-Mansour. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290,
pp. 177–188. Springer, Heidelberg (2015)

29. Kavun, E., Lauridsen, M., Leander, G., Rechberger, C., Schwabe, P., Yalçın, T.:
Prøst v1, submission to CAESAR competition (2014)

30. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of the
iterated even-mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012)

31. Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of public
permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 444–463. Springer, Heidelberg (2013)

32. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–152. Springer,
Heidelberg (2014)

33. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012)

34. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

35. Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 428–448. Springer, Heidelberg (2015)

36. Mennink, B.: Optimally secure tweakable blockciphers. Cryptology ePrint Archive,
report 2015/363, full version of [35] (2015)

37. Mennink, B.: XPX: Generalized tweakable Even-Mansour with improved security
guarantees. Cryptology ePrint Archive, report 2015/476, full version of this paper
(2015)

38. Mennink, B., Preneel, B.: On the XOR of multiple random permutations. In:
Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015.
LNCS, vol. 9092, pp. 619–634. Springer, Heidelberg (2015)

39. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg (2015)

40. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(2007)

41. Minematsu, K.: Beyond-birthday-bound security based on tweakable block cipher.
In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 308–326. Springer,
Heidelberg (2009)

42. Mouha, N.: Chaskey: a MAC algorithm for microcontrollers - status update and
proposal of Chaskey-12. Cryptology ePrint Archive, report 2015/1182 (2015)

94 B. Mennink

43. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Heidelberg (2014)

44. Naito, Y., Yasuda, K.: New bounds for keyed sponges with extendable output:
Independence between capacity and message length. In: FSE 2016. LNCS, Springer,
Heidelberg (2016, to appear)

45. Nyberg, K., Knudsen, L.R.: Provable security against differential cryptanalysis.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 566–574. Springer,
Heidelberg (1993)

46. Patarin, A.: A proof of security in O(2n) for the Xor of two randompermutations.
In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer,
Heidelberg (2008)

47. Procter, G.: A note on the CLRW2 tweakable block cipher construction. Cryptology
ePrint Archive, report 2014/111 (2014)

48. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

49. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1, submission to CAESAR competition (2014)

50. Steinberger, J.: Improved security bounds for key-alternating ciphers via Hellinger
distance. Cryptology ePrint Archive, report 2012/481 (2012)

Indifferentiability of 8-Round Feistel Networks

Yuanxi Dai and John Steinberger(B)

Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China

dyx13@mails.tsinghua.edu.cn, jpsteinb@gmail.com

Abstract. We prove that a balanced 8-round Feistel network is indif-
ferentiable from a random permutation, improving on previous 10-round
results by Dachman-Soled et al. and Dai et al. Our simulator achieves
security O(q8/2n), similarly to the security of Dai et al. For further com-
parison, Dachman-Soled et al. achieve security O(q12/2n), while the orig-
inal 14-round simulator of Holenstein et al. achieves security O(q10/2n).

Keywords: Feistel network · Block ciphers

1 Introduction

For many cryptographic protocols the only known analyses are in a so-called ideal
primitive model. In such a model, a cryptographic component is replaced by an
idealized information-theoretic counterpart (e.g., a random oracle takes the part
of a hash function, or an ideal cipher substitutes for a concrete blockcipher such
as AES) and security bounds are given as functions of the query complexity of
an information-theoretic adversary with oracle access to the idealized primitive.
Early uses of such ideal models include Winternitz [33], Fiat and Shamir [19]
(see proof in [28]) and Bellare and Rogaway [2], with such analyses rapidly
proliferating after the latter paper.

Given the popularity of such analyses a natural question that arises is to
determine the relative “power” of different classes of primitives and, more pre-
cisely, whether one class of primitives can be used to “implement” another. E.g.,
is a random function always sufficient to implement an ideal cipher, in security
games where oracle access to the ideal cipher/random function is granted to all
parties? The challenge of such a question is partly definitional, since the different
primitives have syntactically distinct interfaces. (Indeed, it seems that it was not
immediately obvious to researchers that such a question made sense at all [7].)

A sensible definitional framework, however, was proposed by Maurer et al.
[23], who introduce a simulation-based notion of indifferentiability. This frame-
work allows to meaningfully discuss the instantiation of one ideal primitive
by a syntactically different primitive, and to compose such results. (Similar
simulation-based definitions appear in [4,5,26,27].) Coron et al. [7] are early
adopters of the framework, and give additional insights.

Informally, given ideal primitives Z and Q, a construction CQ (where C is
some stateless algorithm making queries to Q) is indifferentiable from Z if there
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 95–120, 2016.
DOI: 10.1007/978-3-662-53018-4 4

96 Y. Dai and J. Steinberger

exists a simulator S (a stateful, randomized algorithm) with oracle access to Z
such that the pair (CQ, Q) is statistically indistinguishable from the pair (Z, SZ).
The more efficient the simulator, the lower its query complexity, and the better
the statistical indistinguishability, the more practically meaningful the result.

The present paper focuses on the natural question of implementing a permu-
tation from one or more random functions (a small number of distinct random
functions can be emulated by a single random function with a slightly larger
domain) such that the resulting construction is indifferentiable from a random
permutation. This means building a permutation C : {0, 1}m(n) → {0, 1}m(n)

where
C = C[F1, . . . , Fr]

depends on a small collection of random functions F1, . . . , Fr : {0, 1}n → {0, 1}n
such that the vector of r + 1 oracles

(C[F1, . . . , Fr], F1, . . . , Fr)

is statistically indistinguishable from a pair

(Z, SZ)

where Z : {0, 1}m(n) → {0, 1}m(n) is a random permutation from m(n) bits
to m(n) bits, for some efficient simulator S. Thus, in this case, the simulator
emulates the random functions F1, . . . , Fr, and it must use its oracle access
to Z to invent answers that make the (fake) random functions F1, . . . , Fr look
“compatible” with Z, as if Z where really C[F1, . . . , Fr]. (On the other hand, the
simulator does not know what queries the distinguisher might be making to Z.)
Here m(n) is polynomially related to n: concretely, the current paper discusses
a construction with m = 2n.

The construction C[F1, . . . , Fr] that we consider in this paper, and as consid-
ered in previous papers with the same goal as ours (see discussion below), is an
r-round (balanced, unkeyed) Feistel network. To wit, given arbitrary functions
F1, . . . , Fr : {0, 1}n → {0, 1}n, we define a permutation

C[F1, . . . , Fr] : {0, 1}2n → {0, 1}2n

by the following application: for an input (x0, x1) ∈ {0, 1}2n, values x2, . . . , xr+1

are defined by setting

xi+1 = xi−1 ⊕ Fi(xi) (1)

for i = 1, . . . , r; then (xr, xr+1) ∈ {0, 1}2n is the output of C on input (x0, x1).
One can observe that C is a permutation since xi−1 can be computed from xi

and xi+1, by (1). The value r is the number of rounds of the Feistel network.
(See, e.g., Fig. 1.)

The question of showing that a Feistel network with a sufficient number
of rounds is indifferentiable from a random permutation already has a grow-
ing history. Coron et al. [9] show that an r-round Feistel network cannot be

Indifferentiability of 8-Round Feistel Networks 97

F1

x0

x1

F2

x2

F3

x3

F4

x4

F5

x5

F6

x6

F7

x7

F8

x8

F9

x9

F10

x10

x11

detect adapt

F1

x0

x1

F2

x2

F3

x3

F4

x4

F5

x5

F6

x6

F7

x7

F8

x8

F9

x9

F10

x10

x11

adapt detect

F1

x0

x1

F2

x2

F3

x3

F4

x4

F5

x5

F6

x6

F7

x7

F8

x8

F9

x9

F10

x10

x11

detect adapt

F1

x0

x1

F2

x2

F3

x3

F4

x4

F5

x5

F6

x6

F7

x7

F8

x8

F9

x9

F10

x10

x11

adapt detect

Fig. 1. A sketch of the 10-round simulator from [11] (and also Seurin’s 10-round simu-
lator). Rounds 5 and 6 form one detect zone; rounds 1, 2, 9 and 10 form another detect
zone; rounds 3 and 4 constitute the left adapt zone, 7 and 8 constitute the right adapt
zone; red arrows point from the position where a path is detected (a.k.a., “pending
query”) to the adapt zone for that path. (Color figure online)

indifferentiable from a random permutation for r ≤ 5, due to explicit attacks.
They also give a proof that indifferentiability is achieved at r = 6, but this latter
result was found to have a serious flaw by Holenstein et al. [20], who could only
prove, as a replacement, that indifferentiability is achieved at r = 14 rounds.
At the same time, Holenstein et al. found a flaw in the proof of indifferentia-
bility of a 10-round simulator of Seurin’s [31] (a simplified alternative to the

98 Y. Dai and J. Steinberger

6-round simulator of [9]), after which Seurin himself found an explicit attack
against his own simulator, showing that the proof could not be patched [32].
More recently, Dachman-Soled et al. [10] and the authors of the present paper
[11] have presented independent indifferentiability proofs at 10 rounds.

In [11] we achieve slightly better security than other proofs (O(q8/2n), com-
pared to O(q10/2n) for Holenstein et al. and O(q12/2n) for Dachman-Soled
et al.), and their work also introduces an interesting “last-in-first-out” simulator
paradigm. In fact, the simulator of [11] is essentially Seurin’s (flawed) 10-round
simulator, only with “first-in-first-out” path completion replaced by “last-in-
first-out” path completion. This change, as it turns out, is sufficient to repair
the flaw discovered by Holenstein et al. [20].

In the current work we prove that an 8-round Feistel network is indifferen-
tiable from a random permutation. The security, query complexity and runtime
of our 8-round simulator are O(q8/2n), O(q4) and O(q4) respectively, just like
our previous 10-round simulator [11]. (The query complexity of previous simu-
lators of Dachman-Soled et al. and Holenstein et al. can apparently be reduced
to O(q4) as well with suitable optimizations [11], though higher numbers are
quoted in the original papers.) In fact our work closely follows the ideas [11],
and is obtained by making a number of small optimizations to that simulator
in order to reduce it to 8 rounds. It remains open whether 6 or 7 rounds might
suffice for indifferentiability.

Concerning our optimizations, more specifically, in [11,20,31] the “outer
detect zone” requires four-out-of-four queries in order to trigger a path com-
pletion (the outer detect zone consists of four rounds, these being rounds 1, 2
and r − 1, r). In the current paper, we optimize by always making the outer
detect zone trigger a path completion as soon as possible, i.e., by completing
a path whenever three-out-of-four matching queries occur in the outer detect
zone. (This is similar to an idea of Dachman-Soled et al. [10].) By detecting a
little earlier in this fashion, we can move the “adapt zones” on either side by one
position towards the left and right edges of the network, effectively removing
one round at either end, but this creates a fresh difficulty, as two of the four
different types of paths detected by the outer detect zone cannot make use of
the new translated adapt zones because the translated adapt zones overlap with
the query that triggers the path. For these two types of paths (which are trig-
gered by queries at round 2 or at round r − 1), we use a brand new adapt zone
instead, consisting of the middle two rounds of the network. (Rounds 4 and 5, in
our 8-round design.) This itself creates another complication, since an adapted
query should not trigger a path completion, lest the proof blow up, and since the
“middle detect zone” is traditionally made up of rounds 4 and 5 precisely. We
circumvent this problem with a fresh trick: We split the middle detect zone into
two separate overlapping zones, each of which has three rounds: rounds 3, 4, 5
for one zone, rounds 4, 5, 6 for the other; after this change, adapted queries at
rounds 4, 5 (and as argued within the proof) do not trigger either of the middle
detect zones. The simulator’s “termination argument” is slightly affected by the
presence of two separate middle detect zones, but not much: one can observe

Indifferentiability of 8-Round Feistel Networks 99

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

F
1

x
0

x
1

F
2

x
2

F
3

x
3

F
4

x
4

F
5

x
5

F
6

x
6

F
7

x
7

F
8

x
8

x
9

a
d
a
p
t

d
etect

Fig. 2. A sketch of our 8-round simulator drawn in the same style as Fig. 1. Red
groups of three queries are detect zones; when a query completing a detect zone (a.k.a.,
“pending query”) occurs at one of the endpoints of the zone, a path completion is
triggered; the adapt zone for that path completion is shown in blue; the four quadrants
correspond to the four possible adapt zones. (The adapt zone at positions F1, F2 in
the upper right quadrant could equivalently be moved to F7, F8.) (Color figure online)

100 Y. Dai and J. Steinberger

that neither type of middle path detection adds queries at rounds 4 and 5, even
though paths triggered by one middle detect zone can trigger a path in the other
middle detect zone. Hence, the original termination argument of Coron et al. [9]
(used in [11,14,20] and in many other places since) goes through practically
unchanged.

The resulting 8-round simulator ends up having a highly symmetric structure:
It can be abstracted as having four detect zones of three consecutive rounds each,
with two “inner zones” (rounds 3, 4, 5 and 4, 5, 6) and two “outer zones” (rounds
1, 2, 8 and 1, 7, 8); each detect zone of three consecutive rounds detects “at either
end” (e.g., the detect zone with rounds 3, 4, 5 detects at rounds 3 and 5, etc.);
the upshot is that each of rounds 1, . . . , 8 ends up being a detection point for
exactly one of the four three-round detect zones. We refer to Fig. 2 in Sect. 3. A
much more leisurely description of our simulator can be found in Sect. 3.

Other Related Work. Before [9], Dodis and Puniya [13] investigated the
indifferentiability of Feistel networks in the so-called honest-but-curious model,
which is incomparable to the standard notion of indifferentiability. They found
that in this case, a super-logarithmic number of rounds is sufficient to achieve
indifferentiability. Moreover, [9] later showed that super-logarithmically many
rounds are also necessary.

Besides Feistel networks, the indifferentiability of many other types of con-
structions (and particularly hash functions and compression functions) have been
investigated. More specifically on the blockcipher side, [1] and [21] investigate
the indifferentiability of key-alternating ciphers (with and without an idealized
key scheduler, respectively). In a recent eprint note, Dodis et al. [14] investi-
gate the indifferentiability of substitution-permutation networks, treating the
S-boxes as independent idealized permutations. Moreover, the “LIFO” design
philosophy of [11]—that also carries over to this work—is partly inspired by the
latter simulator, as explained in [11].

It should be recalled that indifferentiability does not apply to a cryptographic
game for which the adversary is stipulated to come from a special class that does
not contain the computational class to which the simulator belongs (the latter
class being typically “probabilistic polynomial-time”). See [29].

Finally, Feistel networks have been the subject of a very large body of work
in the secret-key (or “indistinguishability”) setting, such as in [22,24,25,30] and
the references therein.

2 Definitions and Main Result

Feistel Networks. Let r ≥ 0 and let F1, . . . , Fr : {0, 1}n → {0, 1}n. Given
values x0, x1 ∈ {0, 1}n we define values x2, . . . , xr+1 by

xi+1 = Fi(xi) ⊕ xi−1

for 1 ≤ i ≤ r. As noted in the introduction, the application

(x0, x1) → (xr, xr+1)

Indifferentiability of 8-Round Feistel Networks 101

defines a permutation of {0, 1}2n. We let

Ψ [F1, . . . , Fr]

denote this permutation. We say that Ψ is an r-round Feistel network and that
Fi is the i-th round function of Ψ .

In this paper, whenever a permutation is given as an oracle, our meaning
is that both forward and inverse queries can be made to the permutation. This
applies in particular to Feistel networks.

Indifferentiability. A construction is a stateless deterministic algorithm that
evaluates by making calls to an external set of primitives. The latter are functions
that conform to a syntax that is specified by the construction. Thus Ψ [F1, . . . , Fr]
can be seen as a construction with primitives F1, . . . , Fr. In the general case we
notate a construction C with oracle access to a set of primitives Q as CQ.

A primitive is ideal if it is drawn uniformly at random from the set of all
functions meeting the specified syntax. A random function F : {0, 1}n → {0, 1}n
is a particular case of an ideal primitive. Such a function is drawn uniformly at
random from the set of all functions of domain {0, 1}n and of range {0, 1}n.

A simulator is a stateful randomized algorithm that receives and answer
queries, possibly being given oracles of its own. We assume that a simulator
is initialized to some default state (which constitutes part of the simulator’s
description) at the start of each experiment. A simulator S with oracle access
to an ideal primitive Z is notated as SZ .

A distinguisher is an algorithm that initiates a query-response session with
a set of oracles, that has a limited total number of queries, and that out-
puts 0 or 1 when the query-response session is over. In our case distinguishers
are information-theoretic; this implies, in particular, that the distinguisher can
“know by heart” the (adaptive) sequence of questions that will maximize its dis-
tinguishing advantage. In particular, one may assume without loss of generality
that a distinguisher is deterministic.

Indifferentability seeks to determine when a construction CQ, where Q is a set
of ideal primitives, is “as good as” an ideal primitive Z that has the same syntax
(interface) as CQ. In brief, there must exist a simulator S such that having oracle
access to the pair (CQ, Q) (often referred to as the “realworld”) is indistinguishable
from the pair (Z, SZ) (often referred to as the “simulated world”).

In more detail we refer to the following definition, which is due to Maurer
et al. [23].

Definition 1. A construction C with access to a set of ideal primitives Q is
(tS , qS , ε)-indifferentiable from an ideal primitive Z if there exists a simulator
S = S(q) such that

Pr
[
DCQ,Q = 1

]
− Pr

[
DZ,SZ

= 1
]

≤ ε

for every distinguisher D making at most q queries in total, and such that S
runs in total time tS and makes at most qS queries to Z. Here tS , qS and ε are

102 Y. Dai and J. Steinberger

functions of q, and the probabilities are taken over the randomness in Q, Z, S
and (if any) in D.

As indicated, we allow S to depend on q.1 The notation

DCQ,Q

indicates that D has oracle access to CQ as well as to each of the primitives in
the set Q. We also note that the oracle

SZ

offers one interface for D to query for each of the primitives in Q; however the
simulator S is “monolithic” and treats each of these queries with knowledge of
the others.

Thus, S’s job is to make Z look like CQ by inventing appropriate answers for
D’s queries to the primitives in Q. In order to do this, S requires oracle access
to Z. On the other hand, S doesn’t know which queries D is making to Z.

Informally, CQ is indifferentiable from Z if it is (tS , qS , ε)-indifferentiable for
“reasonable” values of tS , qS and for ε negligibly small in the security parameter
n. The value qS in Definition 1 is called the query complexity of the simulator.

In our setting C will be the 8-round Feistel network Ψ and Q will be the set
{F1, . . . , F8} of round functions, with each round function being an independent
random function. Consequently, Z (matching CQ’s syntax) will be a random
permutation from {0, 1}2n to {0, 1}2n, queriable (like CQ) in both directions;
this random permutation is notated P in the body of the proof.

Main Result. The following theorem is our main result. In this theorem, Ψ
plays the role of the construction C, while {F1, . . . , F8} (where each Fi is an
independent random function) plays the role of Q, the set of ideal primitives
called by C.

Theorem 1. The Feistel network Ψ [F1, . . . , F8] is (tS , qS , ε)-indifferentiable
from a random 2n-bit to 2n-bit permutation with tS = O(q4), qS = 32q4 + 8q3

and ε = 7400448q8/2n. Moreover, these bounds hold even if the distinguisher is
allowed to make q queries to each of its 9 (= 8 + 1) oracles.

The simulator that we use to establish Theorem 1 is described in the next
section. The proof of Theorem 1 can be found in the full version of this paper [12].

Miscellaneous Notations. We write [k] for the set {1, . . . , k}, k ∈ N.

1 This introduces a small amount of non-uniformity into the simulator, but which
seems not to matter in practice. While in our case the dependence of S on q is
made mainly for the sake of simplicity and could as well be avoided (with a more
convoluted proof and a simulator that runs efficiently only with high probability),
we note, interestingly, that there is one indifferentiabiliy result that we are aware
of—namely that of [16]—for which the simulator crucially needs to know the number
of distinguisher queries in advance.

Indifferentiability of 8-Round Feistel Networks 103

The symbol ⊥ denotes an uninitialized or null value and can be taken to be
synonymous with a programming language’s null value, though we reserve the
latter for uninitialized object fields. If T is a table, moreover, we write x ∈ T to
mean that T (x) �= ⊥. Correspondingly, x /∈ T means T (x) = ⊥.

3 High-Level Simulator Overview

In this section we give a somewhat non-technical overview of our 8-round simulator
which, like [20] and [11], is a modification of a 10-round simulator by Seurin [31].

Round Function Tables. We recall that the simulator is responsible for 8
interfaces, i.e., one for each of the rounds functions. These interfaces are available
to the adversary through a single function, named

F

and which takes two inputs: an integer i ∈ [8] and an input x ∈ {0, 1}n.
Correspondingly to these 8 interfaces, the simulator maintains 8 tables,

notated F1, . . . , F8, whose fields are initialized to ⊥: initially, Fi(x) = ⊥ for
all x ∈ {0, 1}n, all i ∈ [8]. (Hence we note that Fi is no longer the name of a
round function, but the name of a table. The i-th round function is now F(i, ·).)
The table Fi encodes “what the simulator has decided so far” about the i-th
round function. For instance, if Fi(x) = y �= ⊥, then any subsequent distin-
guisher query of the form F(i, x) will simply return y = Fi(x). Entries in the
tables F1, . . . , F8 are not overwritten once they have been set to non-⊥ values.

The 2n-bit Random Permutation. Additionally, the distinguisher and the
simulator both have oracle access to a random permutation on 2n bits, notated

P

and which plays the role of the ideal primitive Z in Definition 1. Thus P
accepts an input of the form (x0, x1) ∈ {0, 1}n ×{0, 1}n and produces an output
(x8, x9) ∈ {0, 1}n ×{0, 1}n. P’s inverse P−1 is also available as an oracle to both
the distinguisher and the simulator.

Distinguisher Intuition and Completed Paths. One can think of the dis-
tinguisher as checking the consistency of the oracles F(1, ·), . . ., F(8, ·) with
P/P−1. For instance, the distinguisher could choose random values x0, x1 ∈
{0, 1}n, construct the values x2, . . . , x9 by setting

xi+1 ← F(i, xi) ⊕ xi−1

for i = 2, . . . , 9, and finally check if (x8, x9) = P(x0, x1). (In the real world, this
will always be the case; if the simulator is doing its job, it should also be the
case in the simulated world.) In this case we also say that the values

x1, . . . , x8

104 Y. Dai and J. Steinberger

queried by the distinguisher form a completed path. (The definition of a “com-
pleted path” will be made more precise in the next section.)

It should be observed that the distinguisher has multiple options for complet-
ing paths; e.g., “left-to-right” (as above), “right-to-left” (starting from values x8,
x9 and evaluating the Feistel network backwards), “middle-out” (starting with
some values xi, xi+1 in the middle of the network, and growing a path outwards
to the left and to the right), “outward-in” (starting from the endpoints x0, x1,
x8, x9 and going right from x0, x1 and left from x8, x9), etc. Moreover, the
distinguisher can try to reuse the same query for several different paths, can
interleave the completion of several paths in a complex manner, and so on.

To summarize, and for the purpose of intuition, one can picture the distin-
guisher as trying to complete all sorts of paths in a convoluted fashion in order
to confuse and/or “trap” the simulator in a contradiction.

The Simulator’s Dilemma. Clearly a simulator must to some extent detect
which paths a distinguisher is trying to complete, and “adapt” the values along
these paths such as to make the (simulated) Feistel network compatible with P.
Concerning the latter, one can observe that a pair of missing consecutive queries
is sufficient to adapt the two ends of a path to one another; thus if, say,

x0, x1, x4, x5, x6, x7, x8, x9

are values such that

Fi(xi) �= ⊥
for i ∈ {1, 4, 5, 6, 7, 8}, and such that

xi+1 = xi−1 ⊕ Fi(xi)

for i ∈ {5, 6, 7, 8}, and such that

P(x0, x1) = (x8, x9)

and such that
F2(x2) = F3(x3) = ⊥

where x2 := x0 ⊕ F1(x1), x3 := F4(x4) ⊕ x5, then by making the assignments

F2(x2) ← x1 ⊕ x3 (2)
F3(x3) ← x2 ⊕ x4 (3)

the simulator turns x1, . . . , x8 into a completed path that is compatible with P.
In such a case, we say that the simulator adapts a path. The values F2(x2) and
F3(x3) are also said to be adapted.

In general, however, if the simulator always waits until the last minute
(e.g., until only two adjacent undefined queries are left) before adapting a path,

Indifferentiability of 8-Round Feistel Networks 105

it can become caught in an over-constrained situation whereby several differ-
ent paths request different adapted values for the same table entry. Hence, it is
usual for simulators to give themselves a “safety margin” and to pre-emptively
complete paths some time in advance. When pre-emptively completing a path,
typical simulators sample all but two values along the path randomly, while
“adapting” the last two values as above.

It should be emphasized that our simulator, like previous simulators
[9,20,31], makes no distinction between a non-null value Fi(xi) that is non-null
because the distinguisher has made the query F(i, xi) or that is non-null because
the simulator has set the value Fi(xi) during a pre-emptive path completion.
(Such a distinction seems tricky to leverage, particularly since the distinguisher
can know a value Fi(xi) without making the query F(i, xi), simply by know-
ing adjacent values and by knowing how the simulator operates.) Moreover, the
simulator routinely calls its own interface

F(·, ·)

during the process of path completion, and it should be noted that our simulator,
again like previous simulators, makes no difference between distinguisher calls
to F and its own calls to F.

One of the basic dilemmas, then, is to decide at which point it is worth it
to complete a path; if the simulator waits too long, it is prone to finding itself
in an over-constrained situation; if it is too trigger-happy, on the other hand, it
runs the danger of creating out-of-control chain reactions of path completions,
whereby the process of completing a path sets off another path, and so on. We
refer to the latter problem (that is, avoiding out-of-control chain reactions) as
the problem of simulator termination.

Seurin’s 10-Round Simulator. Our 8-round simulator is based on “tweaking”
a previous 10-round simulator of ours [11] which is itself based on Seurin’s (flawed)
10-round simulator [31]. Unfortunately (and after some failed efforts of ours to find
shortcuts) it seems that the best way to understand our 8-round simulator is to
start back with Seurin’s 10-round simulator, followed by the modifications of [11]
and by the “tweaks” that bring the network down to 8 rounds.

In a nutshell, Seurin’s simulator completes a path for every pair of values
(x5, x6) such that F5(x5) and F6(x6) are defined, as well as for every 4-tuple of
values

x1, x2, x9, x10

such that
F1(x1), F2(x2), F9(x9), F10(x10)

are all defined, and such that

P(x0, x1) = (x10, x11)

where x0 := F1(x1) ⊕ x2, x11 := x9 ⊕ F10(x10). By virtue of this, rounds 5 and
6 are called the middle detect zone of the simulator, while rounds 1, 2, 9, 10

106 Y. Dai and J. Steinberger

are called the outer detect zone. (Thus whenever a detect zone “fills up” with
matching queries, a path is completed.) Paths are adapted either at positions 3,
4 or else at positions 7, 8, as depicted in Fig. 1.

In a little more detail, a function call F(5, x5) for which F5(x5) = ⊥ triggers a
path completion for every value x6 such that F6(x6) �= ⊥; such paths are adapted
at positions 3 and 4. Symmetrically, a function call F(6, x6) for which F6(x6) = ⊥
triggers a path completion for every value x5 such that F5(x5) �= ⊥; such paths
are adapted at positions 7 and 8. For the outer detect zone, a call F(2, x2) such
that F2(x2) = ⊥ triggers a path completion for every tuple of values x1, x9, x10

such that F1(x1), F9(x9) and F10(x10) are defined, and such that the constraints
listed above are satisfied (verifying these constraints thus requires a call to P
or P−1); such paths are adapted at positions 3, 4. Paths that are symmetrically
triggered by a query F(9, x9) are adapted at positions 7, 8. Function calls to
F(2, ·), F(5, ·), F(6, ·) and F(9, ·) are the only ones to trigger path completions.
(Indeed, one can easily convince oneself that sampling a new value F1(x1) or
F10(x10) can only trigger the outer detect zone with negligible probability; hence,
this possibility is entirely ignored by the simulator.) To summarize, in all cases
the completed path is adapted at positions that are immediately next to the
query that triggers the path completion.

To more precisely visualize the process of path completion, imagine that a
query

F(2, x2)

has just triggered the second type of path completion, for some corresponding
values x1, x9 and x10; then Seurin’s simulator (which would immediately lazy
sample the value F2(x2) even before checking if this query triggers any path
completions) would (a) make the queries

F(8, x8), . . . ,F(6, x6),F(5, x5)

to itself in that order, where xi−1 := Fi(xi) ⊕ xi+1 = F(i, xi) ⊕ xi+1 for i =
9, . . . , 6, and (b) adapt the values F3(x3), F4(x4) as in (2), (3) where x3 :=
x1 ⊕ F2(x2), x4 := F5(x5) ⊕ x6. In general, some subset of the table entries

F8(x8), . . . , F5(x5)

(and more exactly, a prefix of this sequence) may be defined even before the
queries F(8, x8), . . . ,F(5, x5) are made. The crucial fact to argue, however, is
that F3(x3) = F4(x4) = ⊥ right before these table entries are adapted.

Extending this example a little, say moreover that F6(x6) = ⊥ at the moment
when the above-mentioned query

F(6, x6)

is made. This will trigger another path completion for every value x∗
5 such that

F5(x∗
5) �= ⊥ at the moment when the query F(6, x6) occurs. Analogously, such a

path completion would proceed by making (possibly redundant) queries

F(4, x∗
4), . . . ,F(1, x∗

1),F(10, x∗
10),F(9, x∗

9)

Indifferentiability of 8-Round Feistel Networks 107

for values x∗
4, . . . , x

∗
1, x

∗
0, x

∗
11, x

∗
10, x

∗
9 that are computed in the obvious way (with

a query to P to go from (x∗
0, x

∗
1) to (x∗

10, x
∗
11), where x∗

0 := F1(x∗
1) ⊕ x∗

2), before
adapting the path at positions 7, 8. The crucial fact to argue would again be
that F7(x∗

7) = F8(x∗
8) = ⊥ when the time comes to adapt these table values,

where x∗
8 := F9(x∗

9) ⊕ x∗
10, x∗

7 := x∗
5 ⊕ F6(x6).

In Seurin’s simulator, moreover, paths are completed on a first-come-first-
serve (or FIFO2) basis: while paths are “detected” immediately when the query
that triggers the path completion is made, this information is shelved for later,
and the actual path completion only occurs after all previously detected paths
have been completed. In our example, for instance, the path triggered by the
query F(2, x2) would be adapted before the path triggered by the query F(6, x6).
The imbroglio of semi-completed paths is rather difficult to keep track of, how-
ever, and indeed Seurin’s simulator was later found to suffer from a real “bug”
related to the simultaneous completion of multiple paths [20,32].

Modifications of[11]. For the following discussion, we will say that x2, x5

constitute the endpoints of a path that is adapted at positions 3, 4; likewise, x6,
x9 constitute the endpoints of a path that is adapted at positions 7, 8. Hence,
the endpoints of a path are the two values that flank the adapt zone. We say that
an endpoint xi is unsampled if Fi(xi) = ⊥ and sampled otherwise. Succinctly,
the philosophy espoused in [11] is to not sample the endpoints of a path until
right before the path is about to be adapted or, even more succinctly, “to sample
randomness at the moment it is needed”. This essentially results in two main
differences with Seurin’s simulator, which are (i) changing the order in which
paths are completed and (ii) doing “batch adaptations” of paths, i.e., adapting
several paths at once, for paths that happen to share endpoints.

To illustrate the first point, return to the above example of a query

F(2, x2)

that triggers a path completion of the second type with respect to some values
x1, x9, x10. Then by definition

F2(x2) = ⊥

at the moment when the call F(2, x2) is made. Instead of immediately sampling
F2(x2), as in the original simulator, this value is kept “pending” (the technical
term is “pending query”) until it comes time to adapt the path. Moreover, and
keeping the notations from the previous example, note that the query

F(6, x6)

will not result in F6(x6) being immediately lazy sampled either (assuming, that
is, F6(x6) = ⊥) as long as there is at least one value x∗

5 such that F5(x∗
5) �= ⊥,

since in such a case x6 is the endpoint of a path-to-be-completed (namely, the
path which we notated as x∗

1, . . . , x
∗
5, x6, x

∗
7, . . . , x

∗
10 above), and, according to the

2 FIFO: First-In-First-Out. LIFO: Last-In-First-Out.

108 Y. Dai and J. Steinberger

new policy, this endpoint must be kept unsampled until that path is adapted.
In particular, the value x5 = F6(x6) ⊕ x7 from the “original” path cannot be
computed until the “secondary” path containing x∗

5 and x6 has been completed
(or even more: until all secondary paths triggered by the query F (6, x6) have
been completed). In other words, the query F(6, x6) “holds up” the completion of
the first path. In practical terms, paths that are detected during the completion
of another path take precedence over the original path, so that path completion
becomes a LIFO process.

Implicitly, the requirement that both endpoints of a path remain unsampled
until further notice means that both endpoints are initially unsampled. For the
“starting” endpoint of the path (i.e., where the path is detected) this is obvious,
since the path cannot be triggered otherwise, while for the “far” endpoint of the
path one can argue that it holds with high probability.

As for “batch adaptations” the intuitive idea is that paths that share unsam-
pled endpoints must be adapted (and in particular have their endpoints lazy
sampled) simultaneously. In this event, the group of paths that are collectively
sampled3 and adapted will be an equivalence class in the transitive closure of
the relation “shares an endpoint with”. Note that paths adapted at 3, 4 can only
share their endpoints4 with other paths adapted at 3, 4, while paths adapted at
7, 8 can only share their endpoints with other paths adapted at 7, 8. Hence the
paths in such an equivalence class will, in particular, all have the same adapt
zone. Moreover, the batch adaptation of such a group of paths cannot happen at
any point in time, but must happen when the group of paths is “stable”: none
of the endpoints of the paths in the group should currently be a trigger for a
path completion that has not yet been detected, or that has started to complete
but that has not yet reached its far endpoint. It so turns out, moreover, that
the topological structure of such an equivalence class (with endpoints as nodes
and paths as edges) will be a tree with all but negligible probability, simplifying
many aspects of the simulator and of the proof.

While this describes the (simple) high-level idea of batch adaptations, the
implementation details are more tedious. In fact, at this point it is useful to
focus on these details.

FurtherDetails: PendingQueries, Trees, Etc.Keeping with the 10-round
simulator of [11], if a query F(i, xi) occurs with Fi(xi) = ⊥ and i ∈ {2, 5, 6, 9} the
simulator creates a so-called pending query at that position, and for that value ofxi.
(Strictly speaking, the pending query is the pair (i, xi).) One can think of a pending
query as a kind of “beacon” that periodically5 checks for new paths to trigger, as
per the rules of Fig. 1. E.g., a pending query

(2, x2)

3 In this context we use the verb “sampled” as a euphemism for “have their endpoints
sampled”.

4 Recall that the endpoints of a path with adapt zone 3, 4 are x2 and x5, and that
the endpoints of a path with adapt zone 7, 8 are x6 and x9.

5 The simulator is not multi-threaded, but this metaphor is still helpful.

Indifferentiability of 8-Round Feistel Networks 109

will trigger a new path to complete for any tuple of values x1, x9, x10 such that
(same old!)

F1(x1) �= ⊥, F9(x9) �= ⊥, F10(x10) �= ⊥
and such that

P(x0, x1) = (x10, x11)

where x0 := F1(x1)⊕x2, x11 := x9⊕F10(x10). The tuple of queries x1, x9, x10 is
also called a trigger for the pending query (2, x2). For a pending query (9, x9), a
trigger is a tuple x1, x2, x10 subject to the symmetric constraints. For a pending
query (5, x5), a trigger is any value x6 such that F6(x6) �= ⊥, and likewise any
value x5 such that F5(x5) �= ⊥ is a trigger for any pending query (6, x6). We
note that a pending query triggers a path when there exists a trigger for the
pending query. Hence there the word “trigger” has two slightly different uses (as
a noun and as a verb).

We differentiate the endpoints of a path according to which one triggered the
path: the pending query that triggered the path is called the origin of the path,
while the other endpoint (if and when present) is the terminal of the path.

While pending queries are automatically created each time a function call
F(i, xi) occurs with Fi(xi) = ⊥ and with i ∈ {2, 5, 6, 9}, the simulator also has a
separate mechanism6 at its disposal for directly creating pending queries without
calling F(·, ·) by this mechanism. In particular, whenever the simulator reaches
the terminal of a path, the simulator turns the terminal into a pending query.

In short: (i) all path endpoints are pending queries, so long as the path has
not been sampled and adapted; (ii) pending queries keep triggering paths as long
as there are paths to trigger.

For the following, we will use the following extra terminology from [11]:

– A path is ready when it has been extended to the terminal, and the terminal
has been made pending.

– A ready path with endpoints 2, 5 is called a “(2, 5)-path”, and a ready path
with endpoints 6, 9 is called a “(6, 9)-path”.

– Two ready paths are neighbors if they share an endpoint; let a neighborhood
be an equivalence class of ready paths under the transitive closure of the
neighbor relation. We note that a neighborhood consists either of all (2, 5)-
paths or consists all of (6, 9)-paths.

– A pending query is stable if it has no “new” triggers (that is, no triggers for
which the simulator hasn’t already started to complete a path), and if paths
already triggered by the pending query are ready.

– A neighborhood is stable if all the endpoints of all the paths that it contains
are stable.

A neighborhood can be visualized as a graph with a node for each endpoint
and an edge for each ready path. As mentioned above, these neighborhoods actu-
ally turn out to be trees with high probability. (The simulator aborts otherwise.)
6 This might sound a bit ad-hoc right now, but it actually corresponds to the most

natural way of programming the simulator, as will become clearer in the technical
simulator overview.

110 Y. Dai and J. Steinberger

We will thus speak of a (2, 5)-tree for a neighborhood consisting of (2, 5)-paths
and of a (6, 9)-tree for a neighborhood consisting of (6, 9)-paths. Moreover, the
simulator uses an actual tree data structure to keep track of each (i, j)-tree under
completion, thus adding further structure to the simulation process.

To summarize, when a query F(i, xi) triggers a path completion, the simulator
starts growing a tree that is “rooted” at the pending query (i, xi); for other
endpoints of paths in this tree (i.e., besides (i, xi)), the simulator “plants” a
pending query at that endpoint without making a call to F(·, ·), which pending
query tests for further paths to complete, and which may thus cause the tree to
grow even larger, etc. If and when the tree becomes stable, the simulator samples
all endpoints of all paths in the tree, and adapts all these paths.7

The growth of a (2, 5)-tree may at any moment be interrupted by the appari-
tion of a new (6, 9)-tree (specifically, when a query to F(6, ·) or F(9, ·) triggers
a new path completion), in which case the (2, 5)-tree is put “on hold” while the
(6, 9)-tree is grown, sampled and adapted; vice-versa, a (6, 9)-tree may be inter-
rupted by the apparition of a new (2, 5)-tree. In this fashion, a “stack of trees”
that alternates between (2, 5)- and (6, 9)-trees is created. Any tree that is not
the last tree on the stack contains a non-ready path (the one, that is, that was
interrupted by the next tree on the stack), and so is not stable. For this reason,
in fact, the only tree that can become stable at a given moment is the last tree
on the stack.

We also note that in certain cases (and more specifically for pending queries
at positions 5 and 6), trees higher up in the stack can affect the stability of
nodes of trees lower down in the stack: a node that used to be stable loses its
stability after a higher-up tree has been created, sampled and adapted. Hence,
the simulator always re-checks all nodes of a tree “one last time” before deeming
a tree stable, after a tree stops growing—and such a check will typically, indeed,

7 In more detail, when a tree becomes stable the simulator lazy samples

Fi(xi)

for every endpoint (a.k.a., pending query) in the tree. Then if the tree is, say, a
(2, 5)-tree, the simulator can compute the values

x3 := x1 ⊕ F2(x2)

x4 := F5(x5) ⊕ x6

and set

F3(x3) := x2 ⊕ x4

F4(x4) := x3 ⊕ x5

for each path in the tree. If two paths “collide” by having the same value of x3

or x4 the simulator aborts. Likewise the simulator aborts if either F3(x3) �= ⊥ or
F4(x4) �= ⊥ for some path, before adapting those values. We call this two-step process
“sampling and adapting” the (2, 5)-tree. The process of sampling and adapting a
(6, 9)-tree is analogous.

Indifferentiability of 8-Round Feistel Networks 111

uncover new paths to complete that weren’t there before. Moreover, because the
factor that determines when these new paths will be adapted is the timestamp
of the pending query to which they are attached, rather than the timestamp
of the actual last query that completed a trigger for this pending query, it is a
matter of semantic debate whether the simulator of [11] is really “LIFO” or not.
(But conceptually at least, it seems safe to think of the simulator as LIFO.)

Structural vs. Conceptual Changes. Of the main changes introduced in
[11] to Seurin’s simulator, one can note that “batch adaptations” are in some
sense a conceptual convenience. Indeed, one way or another every non-null value

Fj(xj)

for j /∈ {3, 4, 7, 8} ends up being randomly and independently sampled in their
simulator, as well as in Seurin’s; so one might as well load a random value into
Fj(xj) as soon as the query F(j, xj) is made, as in Seurin’s original simulator,
as long as we take care to keep on completing paths in the correct order. While
correct, this approach is conceptually less convenient, because the “freshness”
of the random value Fj(xj) is harder to argue when that randomness is needed
(e.g., to argue that adapted queries do not collide, etc.). In fact, our 10-round
simulator is an interesting case where the search for a syntactically convenient
usage of randomness naturally leads to structural changes that turn out to be
critical for correctness.

One should note that the idea of batch adaptations already appears explicitly
in the simulator of [14], which, indeed, formed part of the inspiration for [11]. In
[14], however, batch adaptations are purely made for conceptual convenience.

Readers seeking more concrete insights can also consult Seurin’s attack
against his own 10-round simulator [32] and check this attack fails under the
LIFO path completion just outlined.

The 8-round Simulator. In the 10-round simulator, the outer detect zone
is in some sense unnecessarily large: for any set of four matching queries that
complete the outer detect zone, the simulator can “see” the presence of matching
queries already by the third query.

To wit, say the distinguisher chooses random values x0, x1, makes the query

(x10, x11) ← P(x0, x1)

to P, then queries F(1, x1) and F(10, x10). At this point, even if the simulator
knows that the values x1 and x10 are related by some query to P, the simulator
has no hope of finding which query to P, because there are exponentially many
possibilities to try for x0 and/or x11. However, as soon as the distinguisher makes
either of the queries

F(2, x2) or F(9, x9)

where x2 := x0 ⊕F(1, x1), x9 := F(10, x10)⊕x11, then the simulator has enough
information to draw a connection between the queries being made at the left-
and right-hand sides of the network. (E.g., if the query F(2, x2) is made, the

112 Y. Dai and J. Steinberger

simulator can compute x0 from F1(x1) and x2, can call P(x0, x1), and recognize,
in P’s output, the value x10 for which it has already answered a query.) More
generally, anytime the distinguisher makes three-out-of-four matching queries in
the 10-round outer detect zone, the simulator has enough information to reverse-
engineer the relevant query to P/P−1 and, thus, to see a connection between the
queries being made at either side of the network.

This observation (which is also made by Dachman-Soled et al. [10], though
our work is independent of theirs) motivates the division of the 4-round outer
detect zone into two separate outer detect zones of three (consecutive) rounds
each. In the eight-round simulator, then, these two three-round outer detect
zones are made up of rounds 1, 2, 8 and rounds 1, 7, 8, respectively. Both
of these detect zones detect “at the edges” of the detect zone. I.e., the 1, 7, 8
detect zone might trigger a path completion through queries to F(7, ·) and F(1, ·),
whereas the 1, 2, 8 detect zone might trigger a path completion through queries
to F(2, ·) or to F(8, ·). (Once again the possibility of “completing” a detect zone
by a query at the middle of the detect zone is ignored because this event has
negligible chance of occuring.)

E.g., a query
F(7, x7)

such that F7(x7) = ⊥ and for which there exists values x0, x1, x8 such that
F8(x8) �= ⊥, F1(x1) �= ⊥, and such that P−1(x8, x9) = (x0, x1) where x9 =
x7⊕F8(x8) would trigger the 1, 7, 8 detect zone, and produce a path completion.
Similarly, a query

F(1, x1)

such that F1(x1) = ⊥ and for which there exists values x0, x7, x8 such that
F7(x7) �= ⊥, F8(x8) �= ⊥, and such that P−1(x8, x9) = (x0, x1) where x9 =
x7 ⊕ F8(x8) would trigger the 1, 7, 8 detect zone as well.

When a path is detected at position 1 or at position 8, we can respectively
adapt the path at positions 2, 3 or at positions 6, 7—i.e., we adapt the path in
an adapt zone that is immediately adjacent to the position that triggered the
path completion, as in the8 10-round simulator. However, for paths detected at
positions 2 and 7, the same adapt zones cannot be used, and we find it more
convenient to adapt the path at rounds 4, 5, as depicted in the bottom left
quadrant of Fig. 1.

To keep the proof manageable, however, one of the imperatives is that an
“adapted” query should not trigger a new path completion. If we kept the middle
detect zone as rounds 4, 5 only (by analogy with the 10-round simulator, where
the middle detect zone consists of rounds 5 and 6), then the queries that we
adapt at rounds 4, 5 would trigger new path completions of themselves—a mess!
However, this problem can be avoided by splitting the middle detect zone into
two enlarged middle detect zones of three rounds each: one middle detect zone
consisting of rounds 3, 4, 5 and one consisting of rounds 4, 5, 6. As before,
each of these zones detects “at the edges”. After this change, bad dreams are

8 Henceforth, “the” 10-round simulator refers to the simulator of [11].

Indifferentiability of 8-Round Feistel Networks 113

dissipated, and the 8-round simulator recovers essentially the same functioning
as the 10-round simulator. The sum total of detect and adapt zones, including
which adapt zone is used for paths detected at which point, is shown in Fig. 2.

The 8-round simulator utilizes the same “pending query” mechanism as the
10-round simulator. In particular, now, each query

F(j, xj)

with Fj(xj) = ⊥ creates a new pending query (j, xj), because paths are now
detected at all positions, and each pending query will detect for paths as
depicted9 in Fig. 2, with there being exactly one type of “trigger” for each posi-
tion j. A path triggered by a pending query is first extended to a designated
terminal (the “other” endpoint of the path), the position of which is a function
of the pending query that triggered the path (this position is shortly to be dis-
cussed), which becomes a new pending query of its own, etc. As in the 10-round
simulator, the simulator turns the terminal into a pending query without making
a call to F(·, ·).

For the 10-round simulator, we recall that the possible endpoint positions of a
path are 2, 5 and 6, 9. The 8-round simulator has more variety, as the endpoints
of a path do not always directly flank the adapt zone for that path. Specifically:

– paths detected at positions 1 and 4, as in the top left quadrant of Fig. 2, have
endpoints 1, 4; before such paths are adapted, they include only the values
x1, x4, x5, x6, x7, x8

– paths detected at positions 3 and 6, as in the top right quadrant of Fig. 2, have
endpoints 3, 6; before such paths are adapted, they include only the values
x3, x4, x5, x6

– paths detected at positions 2 and 7, as in the bottom left quadrant of Fig. 2,
have endpoints 2, 7; before such paths are adapted, they include only the
values x1, x2, x7, x8

– paths detected at positions 5 and 8, as in the bottom right quadrant of Fig. 2,
have endpoints 5, 8; before such paths are adapted, they include only the
values x1, x2, x3, x4, x5, x8

Hence, paths with endpoints 1, 4 or 5, 8 are familiar from the 10-round simulator.
(Being the analogues, respectively, of paths with endpoints 2, 5 or 6, 9.) On the
other hand, paths with endpoints 3, 6 or 2, 7 are shorter, containing only four
values before adaptation takes place. As in the 10-round simulator, we speak of
an “(i, j)-path” for paths with endpoints i, j. We also say that a path is ready
once it has reached both its endpoints and these have been turned into pending
queries, and that two ready paths are neighbors if they share an endpoint.
9 To solidify things with some examples, a “trigger” for a pending query (5, x5) is a pair

values of x3, x4 such that F3(x3) �= ⊥, F4(x4) �= ⊥ and such that x3 ⊕ F4(x4) = x5,
corresponding to the rightmost, bottommost diagram of Fig. 2; a “trigger” for a
pending query (1, x1) is pair of values x7, x8 such that F7(x7) �= ⊥, F8(x8) �= ⊥,
and such that P−1(x8, x9) = (∗, x1) where x9 := x7 ⊕ F8(x8), corresponding to the
leftmost, topmost diagram of Fig. 2. Etc.

114 Y. Dai and J. Steinberger

Since, by virtue of the endpoint positions, a (1, 4)-path can only share an end-
point with a (1, 4)-path, a (2, 7)-path can only share an endpoint with a (2, 7)-
path, a (3, 6)-path can only share an endpoint with (3, 6)-path, and a (5, 8)-path
can only share an endpoint with a (5, 8)-path, neighborhoods (which are the tran-
sitive closure of the neighbor relation) are always comprised of the same kind
of (i, j)-path. As in the 10-round simulator, these neighborhoods are actually
topological trees, giving rise, thus, to “(1, 4)-trees”, “(2, 7)-trees”, “(3, 6)-trees”
and “(5, 8)-trees”. Given this, the 8-round simulator functions entirely analo-
gously to the 10-round simulator, only with more different types of paths and of
trees (which does not make an important difference) and with a slightly modified
mechanism for adapting (2, 7)- and (3, 6)-trees, which are the trees for which the
path endpoints are not directly adjacent to the adapt zone (which does not make
an important difference either).

Concerning the latter point, when a (2, 7)- or (3, 6)-tree is adapted, some addi-
tional queries have to be lazy sampled for each path before reaching the adapt zone.
(In the case of a (3, 6)-tree, each path even requires a query to P−1.) But because
the endpoints of each path are lazy sampled as the first step of the batch adapta-
tion process, there is negligible chance that these extra queries will trigger a new
path completion. So for those queries the 8-round simulator directly lazy samples
the tables Fi without even calling its own F(·, ·) interface.

As a small piece of trivia (since it doesn’t really matter to the simulator),
one can check, for instance, that a (1, 4)-tree may be followed either by a (2, 7)-,
(3, 6)-, or a (5, 8)-tree on the stack—i.e., while making a (1, 4)-path ready, we
may trigger any of the other three types of paths—and symmetrically the growth
of a (5, 8)-tree may be interrupted by any of the three other types of trees. On the
other hand, (2, 7)-trees and (3, 6)-trees have shorter paths, and in fact when such
trees are grown no queries to F(·, ·) are made, which means that such trees never
see their growth interrupted by anything. In other words, a (3, 6)- or (2, 7)-tree
will only appear as the last tree in the tree stack, if at all.

Overall, it is imperative that pending queries be kept unsampled until the
relevant tree becomes stable, and is adapted. In particular, the simulator must
not overwrite the pending queries of trees lower down in the tree stack while
working on the current tree.

In fact, and like [11], our simulator cannot overwrite pending queries because
it keeps a list of all pending queries, and aborts rather than overwrite a pending
query. Nonetheless, one must show that the chance of such an event is negligible.
The analysis of this bad event is lengthy but also straightforward. Briefly, this
bad event can only occur if ready and non-ready paths arrange to form a certain
type of cycle, and the occurence of such cycles can be reduced to the occurence
of a few different “local” bad events whose (negligible) probabilities are easily
bounded.

The Termination Argument. The basic idea of Coron et al.’s [9] termination
argument (which only needs to be lightly adapted for our use) is that each path
detected in one of the outer detect zones is associated with high probability to a
P-query previously made by the distinguisher. Since the distinguisher only has q

Indifferentiability of 8-Round Feistel Networks 115

queries total, this already implies that the number of path completions triggered
by the outer detect zones is at most q with high probability.

Secondly, whenever a path is triggered by one of the middle detect zones,
this path completion does not add any new entries to the tables F4, F5. Hence,
only two mechanisms add entries to the tables F4 and F5: queries directly made
by the distinguisher and path completions triggered by the outer detect zones.
Each of these accounts for at most q table entries in each of F4, F5, so that the
tables F4, F5 do not exceed size 2q. But every completed path corresponds to
a unique pair of entries in F4, F5. (I.e., no two completed paths have the same
x4 and the same x5.) So the total number of paths ever completed is at most
(2q)2 = 4q2.

Further Details. A more technical description of the simulator and the
pseudocode are given in the full version of this paper [12].

4 Proof Overview

In this section we give an overview of the proof for Theorem 1, using the simulator
described in Sect. 3 as the indifferentiability simulator. Details of the proof are
given in the full version [12].

In order to prove that our simulator successfully achieves indifferentiability
as defined by Definition 1, we need to upper bound the advantage of any distin-
guisher, as well as the time and query complexity of the simulator; the latter is
related to the termination argument for our simulator, already sketched at the
end of the last section.

Game Sequence. Our proof uses a sequence of five games, G1, . . . , G5, with
G1 being the simulated world and G5 being the real world. Every game offers
the same interface to the distinguisher, consisting of functions F, P and P−1.

In the simulated world G1, P and P−1 are answered by an oracle according
to a random permutation and its inverse; the simulator, as described in Sect. 3,
is in charge of answering distinguisher queries to F.

The randomness used in the experiment is read from explicit random tapes,
similar to [20]. In particular, the random permutation is encoded by a tape p :
{0, 1}2n → {0, 1}2n (whose inverse is accessible via p−1). The simulator has access
to 8 tapes f1, . . . , f8, which are independent uniform random mappings from
{0, 1}n to {0, 1}n; when randomly sampling the value of a query (i, xi), the simula-
tor reads the value of fi(xi) and sets Fi(xi) ← fi(xi). Since each query is sampled
at most once, the tape entry hasn’t been read before and its value is uniformly and
independently distributed in {0, 1}n. Note that each fi encodes a random function,
and fi will be used as the i-th round function in the real world G5.

A brief synopsis of the changes that occur in the games is as follows:
In G2: The simulator triggers a path at the outer detect zones only if the

distinguisher has issued the permutation query in the path.
Recall that the outer detect zones consist of rounds 1, 7, 8 or of rounds 1, 2,

8; to check whether three queries in an outer detect zone are in the same path,

116 Y. Dai and J. Steinberger

the simulator has to call P(x0, x1) or P−1(x8, x9) in G1. In G2, instead of calling
P(−1), the simulator performs a “peek” operation that accesses the query history
of the permutation oracle10; the path is triggered only if the permutation query
is in the history and the three queries are in the same path. Then, the simulator
queries P or P−1 only when completing a triggered path; therefore, if a permuta-
tion query is issued by the simulator, the path containing the permutation query
must have been completed (and cannot be triggered again).

Although the change may result in “false negatives” when detecting triggered
paths, such false negatives remain unlikely as long as the simulator is efficient.

In G3: The simulator adds a number of checks that may cause it to abort in
places where it did not abort in G2. Some of these checks cannot be included
in G1 because they also (like the modifications in G2) involve the simulator
“peeking” at the distinguisher’s queries to the permutation oracle.

The checks in G3 are added to catch “bad events” at the earliest possible
stage, i.e., at the moment after the relevant randomness has been sampled. If
these checks pass, we can show that the simulator will not abort at further
key points down the line, such as by attempting to overwrite an existing entry
Fi(xi) or by attempting to overwrite a pending query. (I.e., the checks in G3 are
sufficient conditions for the execution to maintain a “good” structure.)

In G4: The most important transition occurs in this game, as the oracles P,
P−1 no longer rely on the random permutation tape p : {0, 1}2n → {0, 1}2n, but
instead evaluate an 8-round Feistel network using the random tapes f1, . . . , f8
(i.e., the same ones used by the simulator) as round functions. Apart from this
change to P, P−1, the simulator remains identical.

In G5: This is the real world, meaning that F(i, x) directly returns the value
fi(x). In particular G5 never aborts, unlike the previous four games.

Definition 2. The advantage of a distinguisher D at distinguishing games Gi

and Gj is defined as

ΔD(Gi,Gj) = Pr
Gi

[DF,P,P−1
= 1] − Pr

Gj
[DF,P,P−1

= 1] (4)

where the probabilities are taken over the coins of the relevant game as well as
over D’s coins, if any.

As G5 never aborts, and as the distinguisher’s job is to maximize

ΔD(G1,G5) = Pr
G1

[DF,P,P−1
= 1] − Pr

G5
[DF,P,P−1

= 1],

we can assume without loss of generality that D outputs 1 if the game aborts.
In particular, since G2 is identical to G3 except for the possibility that G3 may
abort when G2 does not, we then have

ΔD(G2,G5) ≤ ΔD(G3,G5)
10 This operation cannot be included in G1 as the original simulator is not allowed to

see the distinguisher’s permutation queries.

Indifferentiability of 8-Round Feistel Networks 117

so we can upper bound ΔD(G1,G5) as

ΔD(G1,G5) ≤ ΔD(G1,G2) + ΔD(G2,G5)
≤ ΔD(G1,G2) + ΔD(G3,G5)
≤ ΔD(G1,G2) + ΔD(G3,G4) + ΔD(G4,G5)

by the triangle inequality. Hence, the proof focuses on the individual transitions
G1 → G2, G3 → G4 and G4 → G5.

G1-G2 Transition. The two games (with the same random tapes) are visibly
different only if a path is triggered in G1 but not in G2, i.e., when a path
triggered by the outer detect zones in G1 contains a permutation query that
hasn’t been issued in G2. In this case (and assuming that G1 and G2 are being
“run” simultaneously on the same distinguisher D, with the same random tapes
f1, . . . , f8 : {0, 1}n → {0, 1}n and p : {0, 1}2n → {0, 1}2n) we say that G1 and
G2 diverge.

More precisely, one can show that divergence occurs if and only if the sim-
ulator makes a certain call of the form11 “CheckP+ (x1, x2, x8)” such that
(i) p(x0, x1) is unread in G2, where12 x0 = F1(x1) ⊕ x2, and (ii) the first n
bits of the unread value p(x0, x1) are equal to x8. In fact, this notion can be
defined with respect to the execution of G2 alone (i.e., without examining the
execution of G1) which then makes it straightforward to examine. In more detail,
the probability of divergence of occuring in G2 is obtained by a simple union
bound over all calls to the CheckP+/CheckP− procedures, where the number of
such calls is upper bounded thanks to the (previously established) simulator effi-
ciency. (Indeed, the proof actually starts off by arguing various efficiency metrics
in G1 and G2.)

G3-G4 Transition. For this transition, a randomness mapping argument is
used, as introduced by [20]. We also take advantage of some refinements intro-
duced by [1,14]. Specifically, following [1], we use “footprints” and eschew the
use of a “two-way random function”; and following [14], we additively cancel the
probabilities of abort in G4 in separate transitions from G3 to G4 and from G4

to G5 in order to avoid double-counting these probabilities.
As usual, the randomness mapping argument consists of two steps: bound-

ing the abort probability in G3, and mapping the randomness of non-aborting
executions of G3 to the randomness of “matching” executions of G4. Bounding
the abort probability in G3 is the more technically involved of the two steps.

A small novelty that we introduce also concerns the randomness mapping
argument. Specifically, a randomness map needs to be defined with respect to a
distinguisher D that “completes” all paths (that contain a permutation query
issued by D). Making the assumption that D completes all paths is without loss
of generality, but costs a multiplicative factor in the number of queries that is
11 Or a call “CheckP− (x1, x7, x8)” subject to symmetric conditions.
12 The fact that CheckP+ (x1, x2, x8) is called in the first place implies that F1(x1) �= ⊥

in either game.

118 Y. Dai and J. Steinberger

equal to the number of rounds—potentially annoying! However, we note that if
D is allowed q queries to each of its r + 1 oracles (the permutation plus the r
rounds functions), then the assumption that D completes all paths can be made
at the cost of only doubling the number of D’s queries. Moreover, there is no
real cost in giving D the power to query each of its oracles q times, since most
proofs effectively allow this anyway.

G4-G5 Transition. A non-aborting execution of G4 is identical to an execution
of G5 with the same random tape, so the advantage in distinguishing between
these two games is upper bounded by the simulator’s abort probability in G4.

Acknowledgments. Yuanxi Dai was supported by the National Basic Research Pro-
gram of China Grant 2011CBA00300, 2011CBA00301, the National Natural Science
Foundation of China Grant 61033001, 61361136003. John Steinberger was funded by
National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the
National Natural Science Foundation of China Grant 61373002, 61361136003, and by
the China Ministry of Education grant number 20121088050.

References

1. Andreeva, E., Bogdanov, A., Dodis, Y., Mennink, B., Steinberger, J.P.: On the
indifferentiability of key-alternating ciphers. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 531–550. Springer, Heidelberg (2013)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73 (1993)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008)

4. Canetti, R.: Security and composition of multi-party cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

5. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 136–145 (2001)

6. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014)

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

8. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010)

9. Coron, J.-S., Patarin, J., Seurin, Y.: The random oracle model and the ideal cipher
model are equivalent. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
1–20. Springer, Heidelberg (2008)

Indifferentiability of 8-Round Feistel Networks 119

10. Dachman-Soled, D., Katz, J., Thiruvengadam, A.: 10-round feistel is indifferen-
tiable from an ideal cipher. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 649–678. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 23

11. Dai, Y., Steinberger, J.: Indifferentiability of 10-round Feistel networks. IACR
ePrint Archive, Technical Report 2015/874 (2015)

12. Dai, Y., Steinberger, J.: Indifferentiability of 8-round Feistel networks. IACR ePrint
Archive, Technical Report 2015/1069 (2015)

13. Dodis, Y., Puniya, P.: On the relation between the ideal cipher and the random
oracle models. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
184–206. Springer, Heidelberg (2006)

14. Dodis, Y., Liu, T., Stam, M., Steinberger, J.: On the indifferentiability of confusion-
diffusion networks. IACR ePrint Archive, Technical Report 2015/680 (2015)

15. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

16. Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again?
(In)Differentiability results for H 2 and HMAC. In: Canetti, R., Safavi-Naini, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 348–366. Springer, Heidelberg (2012)

17. Feistel, H.: Cryptographic coding for data-bank privacy. IBM Technical report
RC-2827, 18 March 1970

18. Feistel, H., Notz, W.A., Lynn Smith, J.: Some cryptographic techniques for
machine-to-machine data communications. IEEE Proc. 63(11), 1545–1554 (1975)

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

20. Holenstein, T., Künzler, R., Tessaro, S.: The equivalence of the random oracle
model and the ideal cipher model, revisited. In: Fortnow, L., Vadhan, S.P. (eds.)
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, pp. 89–98. ACM, 6–8 June 2011

21. Lampe, R., Seurin, Y.: How to construct an ideal cipher from a small set of public
permutations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 444–463. Springer, Heidelberg (2013)

22. Luby, M., Rackoff, C.: How to construct pseudorandom permutations and pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

23. Maurer, U.M., Renner, R.S., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

24. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999). Preliminary Version: STOC
1997

25. Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. IACR ePrint Arxiv, Technical Report 2010/293 (2010)

26. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reac-
tive systems. In: 7th ACM Conference on Computer and Communications Security,
pp. 245–254. ACM Press (2000)

27. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. Technical report 93350, IBM Research
Division, Zürich (2000)

http://dx.doi.org/10.1007/978-3-662-49896-5_23
http://dx.doi.org/10.1007/978-3-662-49896-5_23

120 Y. Dai and J. Steinberger

28. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

29. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011)

30. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

31. Seurin, Y.: Primitives et protocoles cryptographiques à sécurité prouvée. Ph.D.
thesis, Université de Versailles Saint-Quentin-en-Yvelines, France (2009)

32. Seurin, Y.: A note on the indifferentiability of the 10-round Feistel construction.
http://yannickseurin.free.fr/pubs/Seurin note ten rounds.pdf

33. Winternitz, R.: A secure one-way hash function built from DES. In: Proceedings
of the IEEE Symposium on Information Security and Privacy, pp. 88–90. IEEE
Press (1984)

http://yannickseurin.free.fr/pubs/Seurin_note_ten_rounds.pdf

EWCDM: An Efficient, Beyond-Birthday
Secure, Nonce-Misuse Resistant MAC

Benôıt Cogliati1 and Yannick Seurin2(B)

1 University of Versailles, Versailles, France
benoitcogliati@hotmail.fr

2 ANSSI, Paris, France
yannick.seurin@m4x.org

Abstract. We propose a nonce-based MAC construction called EWCDM
(Encrypted Wegman-Carter with Davies-Meyer), based on an almost xor-
universal hash function and a block cipher, with the following properties:
(i) it is simple and efficient, requiring only two calls to the block cipher,
one of which can be carried out in parallel to the hash function compu-
tation; (ii) it is provably secure beyond the birthday bound when nonces
are not reused; (iii) it provably retains security up to the birthday bound
in case of nonce misuse. Our construction is a simple modification of the
Encrypted Wegman-Carter construction, which is known to achieve only
(i) and (iii) when based on a block cipher. Underlying our new construction
is a new PRP-to-PRF conversion method coinedEncrypted Davies-Meyer,
which turns a pair of secret random permutations into a function which is
provably indistinguishable from a perfectly random function up to at least
22n/3 queries, where n is the bit-length of the domain of the permutations.

Keywords: Wegman-Carter MAC · Davies-Meyer construction ·
Nonce-misuse resistance · Beyond-birthday-bound security

1 Introduction

Wegman-Carter MACs. A Message Authentication Code (MAC) is a funda-
mental symmetric-key primitive that allows a sender to authenticate messages
by computing tags that can be verified by the receiver (the sender and the
receiver sharing a common secret key). Many MACs are based on some under-
lying cryptographic primitive such as a block cipher (e.g., CBC-MAC [BKR00])
or a hash function (e.g., HMAC [BCK96]). A different approach, pioneered by
Wegman and Carter [WC81] (building on earlier work by Gilbert et al. [GMS74]),
first treats the message M with an almost xor-universal (AXU) hash function1

H (i.e., a fast, combinatorial primitive rather than a slow, cryptographic one)
and masks the result with a one-time pad, resulting in information-theoretically
1 An AXU hash function is a keyed function with the property that for any two distinct

inputs, the probability over the draw of a random key that the outputs have a specific
difference is small.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 121–149, 2016.
DOI: 10.1007/978-3-662-53018-4 5

122 B. Cogliati and Y. Seurin

secure authentication. Since sharing a one-time pad for each message to authen-
ticate is not very practical, one can instead use a pseudorandom function F , as
first proposed by Brassard [Bra82], allowing the sender and the receiver to share
a short secret K rather than a long list of one-time pads. The mask for each
new message is then generated pseudorandomly by applying FK to a nonce N , a
value used at most once. This reintroduces a cryptographic primitive (and hence
a computational assumption), but only for treating a small nonce rather than a
potentially long message. The resulting nonce-based MAC, that we simply call
the Wegman-Carter (WC) construction, is

WC[F,H]K,Kh
(N,M) = FK(N) ⊕ HKh

(M),

where K is the key for the pseudorandom function F , Kh is the key for the AXU
hash function H, N is the nonce, and M is the message.2

The WC construction enjoys a very strong provable security bound when
nonces are never reused. Assuming that F is perfect (i.e., FK is a uniformly
random function), any adversary seeing at most qm honestly generated tags and
making at most qv verification queries (i.e., forgery attempts) succeeds with
probability at most εqv, where ε is the maximal differential probability of H,
namely

ε = max
X �=X′,Y

Pr [HKh
(X) ⊕ HKh

(X ′) = Y] ,

the probabilities being taken over the random draw of the hashing key Kh. When
F is not perfect, there is an additional term accounting for its insecurity as a PRF
(more precisely, this corresponds to the best advantage an adversary can achieve
in distinguishing FK from a uniformly random function within qm + qv queries).

Many AXU hash functions have been proposed for instantiating this construc-
tion, most of them based on polynomial hashing [Kra94,Rog95,Sho96,HK97,
BHK+99,Ber00,KR00,KVW04,MV04,Ber05c]. See [Ber07] for more references
and a comprehensive survey of polynomial hashing. Universal hash functions
can also be constructed from a block cipher (e.g. by using the CBC mode with
prefix-free encoding [BR05,BPR05]), but in that case the provable maximal dif-
ferential probability depends on the PRP-security of the block cipher (hence,
this yields “computational” rather than “statistical” universal hash functions).

Nonce-Misuse Resistance. Despite the advantages just mentioned (efficiency
and excellent security bound), the WC construction has one major shortcom-
ing: it is very vulnerable to nonce-misuse. If a nonce is repeated even a single
time, consequences can be catastrophic [Jou06,HP08]. For example, in the case
of polynomial universal hashing, this can lead to a complete recovery of the hash-
ing key, which allows universal forgeries. To remedy this nonce-misuse problem,
the simplest option, which has been known for long, is to apply the PRF to
the output of the hash function. For instance, if the PRF takes 2n-bit inputs,

2 Here and in all the following, we assume to fix ideas that the outputs of the PRF
and the hash function are n-bit strings and the group operation is bitwise xor; this
can be easily adapted to any other abelian group.

EWCDM: An Efficient, Beyond-Birthday Secure 123

one can define the tag as FK(N‖HKh
(M)); this construction was analyzed

by Black et al. [BHK+99,BC09]. If F takes only n-bit inputs, one can instead
apply the PRF with an independent key to the output of the WC construction,
thereby defining the tag as

FK′
(
FK(N) ⊕ HKh

(M)
)
. (1)

If one gets rid of the nonce, simply defining the tag as FK(HKh
(M)), one

obtains a stateless MAC but the security bound includes an extra “birthday-
type” term εq2m.

Beyond-Birthday-Bound Security. There is another obstacle which can
prevent concrete implementations from enjoying the strong security bound
promised by the WC construction: pseudorandom functions are not always read-
ily available, and it is common to use a pseudorandom permutation instead, or
in other words to replace F with a block cipher E. However, as first pointed
out by Shoup [Sho96], this causes the proven security bound to drop to the so-
called birthday bound. Indeed, a random permutation can be distinguished from
a random function within q queries with advantage roughly q2/2n. For resource-
constrained environments, where lightweight cryptographic primitives based on
block ciphers with 64-bit blocks are likely to be implemented, this means that
security insurance is lost after 232 queries, which is often unacceptable, especially
when refreshing keys regularly is excluded.

A first solution to overcome the birthday bound while using only a block
cipher is to use a randomized construction. However, existing schemes either
require very strong properties from the block cipher such as the ideal cipher
model [JJV02] or resistance to related-key attacks [JL04], or require a rela-
tively large amount of randomness (at least 3n bits for the MACRX construction
of [BGK99]). The beyond-birthday-bound secure construction named MAC-R2
of Minematsu [Min10] uses a random n-bit IV per message and bears resem-
blance to the construction proposed in this paper, but it requires four calls to
the underlying block cipher. (Jumping ahead, our new construction requires only
two calls.) Moreover, reliable randomness might not always be available in some
environments, and it might sometimes be easier to maintain a state.

Another option is to implement FK in construction (1) from a block cipher
E using a so-called PRP-to-PRF conversion method [BKR98,HWKS98] with
beyond-birthday-bound security. (On the other hand, it is easy to see that the
outer PRF FK′ can be directly implemented by a block cipher without security
loss.) Perhaps the simplest such method is the “xor” construction EK1(N) ⊕
EK2(N), or its close single-key variant EK(N‖0) ⊕ EK(N‖1), which have been
analyzed in a number of papers [BI99,Luc00,Pat08a,Pat13,CLP14]. However,
all known methods require at least two block cipher calls; taking into account
the outer encryption layer, this amounts to three block cipher calls for the whole
construction. Is it possible to do better?

124 B. Cogliati and Y. Seurin

Our Contribution. We propose a new nonce-based MAC based on a AXU
hash function and a block cipher with the following properties:

(i) it is simple and efficient, requiring only two calls to the underlying block
cipher, one of which can be carried out in parallel to the hash function com-
putation;

(ii) it provably provides security beyond the birthday bound when nonces are
never reused;

(iii) it provably retains security up to the birthday bound in case of nonce misuse.

Property (ii) ensures that the scheme is highly secure in the nominal use case
where nonces are never repeated, while property (iii) acts as a “safety net” if
anything goes wrong with nonces.

Our starting point is what we call the Encrypted Wegman-Carter construc-
tion, which is simply construction (1) where the outer PRF layer is replaced by
a block cipher, viz.

EK′
(
FK(N) ⊕ HKh

(M)
)
. (2)

As already briefly explained, this construction enjoys the same security bound
as the (unencrypted) WC construction when nonces are never repeated, and
is moreover nonce-misuse resistant up to the birthday bound. Replacing FK

by a simple block cipher call causes the security bound to drop to the birthday
bound even when nonces are not repeated, while using a PRP-to-PRF conversion
method with security beyond the birthday bound results in at least three block
cipher calls in total for the resulting construction.

Our main observation is that one can overcome the birthday bound in the
nonce-respecting scenario by instantiating FK using “only” the Davies-Meyer
(DM) construction. The DM construction is the easiest way to turn a block
cipher into a keyed function.3 Given a block cipher E : K × {0, 1}n → {0, 1}n,
the DM construction based on E is simply

DM[E]K(N) = EK(N) ⊕ N.

Note that this PRF construction is not secure beyond the birthday bound: given
black-box access to a function f : {0, 1}n → {0, 1}n, a distinguisher can simply
query f(Ni) for roughly 2n/2 distinct values Ni and look for collisions in values
f(Ni) ⊕ Ni. When f is a uniformly random function this will happen with
good probability, whereas when f = DM[E]K this cannot happen. However, this
attack is not possible anymore if one encrypts the output of the DM construction.

Using the DM construction to instantiate FK in construction (2) results
in a MAC construction based only on E and H, which we call Encrypted
Wegman-Carter with Davies-Meyer (EWCDM) construction, depicted on Fig. 1
and defined as

EK′
(
EK(N) ⊕ N ⊕ HKh

(M)
)
. (3)

3 Traditionally, the DM construction is rather seen as a way to turn a block cipher
into an (unkeyed) compression function.

EWCDM: An Efficient, Beyond-Birthday Secure 125

Fig. 1. The “Encrypted Wegman-Carter with Davies-Meyer” construction.

Our main result is that the EWCDM construction is secure up to roughly
22n/3 MACqueries and2n verificationqueries against nonce-respecting adversaries
(while against nonce-misusing adversaries it still enjoys birthday-bound security)
(Table 1). We stress that this does not hold for the (unencrypted) Wegman-Carter
construction with Davies-Meyer: if tags are computed as

T = EK(N) ⊕ N ⊕ HKh
(M),

then the resulting MAC scheme is only provably secure up to the birthday bound
against nonce-respecting adversaries.4 Hence, the outer encryption layer EK′

turns out to be twice useful: for providing nonce-misuse resistance on one hand,
and for cheaply enhancing security against nonce-respecting adversaries beyond
the birthday bound on the other hand.

We believe that our new construction would be an elementary and easy-
to-implement way to enhance the security of widely deployed authentica-
tion or authenticated encryption schemes such as Poly1305-AES [Ber05c] or
GCM [MV04] (in particular, note that this can be done in a black-box way on
top of an existing implementation of those schemes). The main cost would be
some additional latency due to the extra block cipher call, but depending on the
context this might be tolerable.

Proof Technique. At the heart of construction (3) is a novel PRP-to-PRF
conversion method: namely, if we make abstraction for a moment of the hash of
the message M , and if we simply denote P and P ′ in place of EK and EK′ , we
obtain a function of the nonce defined as

F (N) = P ′(P (N) ⊕ N).

4 Indeed, the outputs of this construction can be distinguished from random simply
by querying the MAC oracle for tags Ti with the same message and roughly 2n/2

distinct nonces Ni, and looking for collisions in Ti ⊕ Ni.

126 B. Cogliati and Y. Seurin

For obvious reasons, we call this the Encrypted Davies-Meyer (EDM) construc-
tion. The main part of the proof consists in proving that this is a secure PRF
up to 22n/3 adversarial queries. (We prove this as a standalone result in the full
version of the paper [CS16]; this constitutes a good warm-up for the reader before
the more complicated security proof of the EWCDM construction in Sect. 4.)
However, since the hash of the message is “intermingled” within the EDM con-
struction, it does not seem possible to first prove that the outputs of the MAC
oracle are indistinguishable from random, and then handle verification queries
(as is usually done for proving the security of the standard Wegman-Carter con-
struction; see Theorem 1 in Sect. 3.1). Note that one cannot hope either to prove
security beyond the birthday bound by a sequence of games that would start by
replacing the DM construction EK(N) ⊕ N by a uniformly random function.

Hence, it seems that any proof aiming at security beyond the birthday bound
must handle MAC queries and verification queries both at the same time. For
this, we employ the H-coefficients technique, which has been introduced by
Patarin [Pat90,Pat91,Pat08b] and which recently regained attention since Chen
and Steinberger used it to analyze the iterated Even-Mansour cipher [CS14].
This technique gives a kind of “systematic” way to upper bound the statistical
distance between the answers of two interactive systems and is typically used to
prove (information-theoretic) pseudorandomness of constructions such as Feistel
networks. To the best of our knowledge, this is the first time the H-coefficients
technique is used for proving the security of a MAC (i.e., unpredictability rather
than pseudorandomness).

More Related Work. This paper focuses on nonce-based (hence stateful)
MACs, but there is also an important line of work aiming at constructing state-
less and deterministic MACs secure beyond the birthday bound. However, exist-
ing constructions [Yas10,Yas11,DS11,ZWSW12] are far more complex than the
one presented in this paper. We mainly mentioned works related to provable
security; there is also a large number of papers (motivated by the analysis of the
widely deployed GCM mode [MV04]) investigating attacks against polynomial
hash-based MACs [Fer05,HP08,Saa12,PC15,ABBT15].

Open Problems. We prove the security of the EWCDM construction in the
nonce-respecting scenario up to 22n/3 MAC queries, but we conjecture that secu-
rity actually holds up to close to 2n queries (a similar conjecture holds for the
Encrypted Davies-Meyer construction).

The EWCDM construction uses two distinct keys for the two calls to the
block cipher; a natural question is whether security beyond the birthday bound
also holds when the same key is used. We believe this to be true, but likely cum-
bersome to prove. The corresponding question regarding the Encrypted Davies-
Meyer construction is even more intriguing: How many queries are required to
distinguish P (x⊕P (x)) from a random function? It might well be that this con-
struction is secure up to close to 2n queries, which would yield the first optimally
secure PRP-to-PRF conversion method which uses a single permutation (unlike
P1(x) ⊕ P2(x)) and does not shrink the domain (unlike P (x‖0) ⊕ P (x‖1)).

EWCDM: An Efficient, Beyond-Birthday Secure 127

Table 1. Proven security bounds (omitting constants and the term accounting for
the PRP-security of the underlying block cipher) for the Wegman-Carter construc-
tion WC[E, H], the Encrypted Wegman-Carter construction EWC[E, H], and the new
Encrypted Wegman-Carter with Davies-Meyer construction EWCDM[E, H].

Nonce-respecting Nonce-misusing

WC[E, H] (qm + qv)
2/2n + εqv —

EWC[E, H] (qm + qv)
2/2n + εqv (qm + qv)

2/2n + ε(qm + qv)
2

EWCDM[E, H] q
3/2
m /2n + εqm + qv/2n + εqv (qm + qv)

2/2n + ε(qm + qv)
2

Finally, it would be interesting to investigate how the security of EWCDM
is affected by tag truncation. We believe that the only change to be made to the
bound of Theorem3 is to replace the term 6qv/2n by a term O(qv/2�), where �
is the length of the truncated tag, but this remains to be proven.

Organization. We first establish the notation and recall standard security
definitions in Sect. 2. In Sect. 3, we recall the previous security results on the
Wegman-Carter and the Encrypted Wegman-Carter constructions, and describe
our new EWCDM construction. We then prove the security of EWCDM in the
nonce-respecting scenario in Sect. 4 and in the nonce-misusing scenario in Sect. 5.
We also analyze the Encrypted Davies-Meyer PRP-to-PRF conversion method
in the full version of the paper [CS16].

2 Preliminaries

Basic Notation. Given a non-empty set X , we denote X ←$ X the draw of
an element X from X uniformly at random. The set of all functions from X
to Y is denoted Func(X ,Y), and the set of all permutations of X is denoted
Perm(X). The set of binary strings of length n is denoted {0, 1}n. The set of all
functions from {0, 1}n to {0, 1}n is simply denoted Func(n), and the set of all
permutations of {0, 1}n is simply denoted Perm(n). For integers 1 ≤ b ≤ a, we
will write (a)b = a(a − 1) · · · (a − b + 1) and (a)0 = 1 by convention. Note that
the probability that a random permutation P ←$ Perm(n) satisfies q equations
P (Xi) = Yi for distinct Xi’s and distinct Yi’s is exactly 1/(2n)q.

PRFs and Block Ciphers. A keyed function with key space K, domain X ,
and range Y is a function F : K × X → Y. We denote FK(X) for F (K,X).
A (q, t)-adversary against F is an algorithm A with oracle access to a function
from X to Y, making at most q oracle queries, running in time at most t, and
outputting a single bit. The advantage of A in breaking the PRF-security of F
is defined as

AdvPRF
F (A) =

∣∣Pr
[
K ←$ K : AFK = 1

]
− Pr

[
R ←$ Func(X ,Y) : AR = 1

]∣∣ .
A block cipher with key space K and domain X is a mapping E : K×X → X

such that for any key K ∈ K, X �→ E(K,X) is a permutation of X . We denote

128 B. Cogliati and Y. Seurin

EK(X) for E(K,X). A (q, t)-adversary against E is an algorithm A with oracle
access to a permutation of X , making at most q oracle queries, running in time
at most t, and outputting a single bit. The advantage of A in breaking the
PRP-security of E is defined as

AdvPRP
E (A) =

∣∣Pr
[
K ←$ K : AEK = 1

]
− Pr

[
P ←$ Perm(X) : AP = 1

]∣∣ .
Note that we do not need the strongest “two-sided” version of PRP-security
(where the adversary also has access to a decryption oracle) since all construc-
tions considered in this paper only use the forward (encryption) direction of the
underlying block cipher.

MACs. Given four non-empty sets K, N , M, and T , a nonce-based keyed func-
tion with key space K, nonce space N , message space M and range T is simply
a function F : K × N × M → T . Stated otherwise, it is a keyed function whose
domain is a cartesian product N × M. We denote FK(N,M) for F (K,N,M).

Definition 1 (Nonce-Based MAC). Let K, N , M, and T be non-empty sets.
Let F : K×N ×M → T be a nonce-based keyed function. For K ∈ K, let VerK be
the verification oracle which takes as input a triple (N,M, T) ∈ N ×M×T and
returns 1 (“accept”) if FK(N,M) = T , and 0 (“reject”) otherwise. A (qm, qv, t)-
adversary against the MAC-security of F is an adversary A with oracle access
to the two oracles FK and VerK for K ∈ K, making at most qm “MAC” queries
to its first oracle and at most qv “verification” queries to its second oracle, and
running in time at most t. We say that A forges if any of its queries to VerK
returns 1. The advantage of A against the MAC-security of F is defined as

AdvMAC
F (A) = Pr

[
K ←$ K : AFK ,VerK forges

]
,

where the probability is also taken over the random coins of A, if any. The
adversary is not allowed to ask a verification query (N,M, T) if a previous query
(N,M) to FK returned T . The adversary is said nonce-respecting if it never
repeats a nonce N ∈ N in its queries to the first oracle FK .

We say that an adversary is nonce-misusing if it does not abide to the rule of
non-repeating nonces. The MAC-security of F in face of nonce-misusing adver-
saries is defined exactly as above, and can be rephrased as the standard (i.e.,
not nonce-based) MAC-security of a keyed function with domain N × M.

AXU Hash Functions. We will need the following definition of an almost
xor-universal (AXU) hash function.

Definition 2 (ε-AXU Hash Function). Let Kh, X and Y be three non-empty
sets and ε > 0. A keyed function H : Kh × X → Y is said to be ε-AXU if for
any distinct X,X ′ ∈ X and any Y ∈ Y,

Pr [Kh ←$ Kh : HKh
(X) ⊕ HKh

(X ′) = Y] ≤ ε.

EWCDM: An Efficient, Beyond-Birthday Secure 129

3 Wegman-Carter MAC Constructions

3.1 The Standard Wegman-Carter Construction

We recall the standard Wegman-Carter construction [WC81] of a nonce-based
MAC from an ε-AXU hash function and a PRF. Let K, Kh, and M be
non-empty sets. Let F : K × {0, 1}n → {0, 1}n be a keyed function and
H : Kh × M → {0, 1}n be an ε-AXU hash function. The Wegman-Carter con-
struction based on F and H is the nonce-based keyed function with key space
K × Kh, nonce space {0, 1}n, message space M, and range {0, 1}n defined by

WC[F,H]K,Kh
(N,M) = FK(N) ⊕ HKh

(M).

We recall the classical security result for this construction [WC81] and sketch
the proof for completeness. Here and in all the following, tH is an upper bound
on the time needed to compute HKh

(M) for any key Kh ∈ Kh and any message
M ∈ M.

Theorem 1. Let F and H be as above. Then for any (qm, qv, t)-nonce-respecting
adversary A against the MAC-security of WC[F,H], there exists a (qm + qv, t′)-
adversary A′ against the PRF-security of F , where t′ = O(t+(qm +qv)tH), such
that

AdvMAC
WC[F,H](A) ≤ AdvPRF

F (A′) + εqv.

Proof. Fix a (qm, qv, t)-nonce-respecting adversary A. Consider the WC con-
struction where FK is replaced by a uniformly random function R, and let δ be
the advantage of A against this new construction. By a straightforward hybrid
argument, there is an adversary A′, making at most qm + qv oracle queries, and
running in time O(t + (qm + qv)tH), such that

AdvMAC
WC[F,H](A) ≤ AdvPRF

F (A′) + δ.

The answers R(N)⊕HKh
(M) of the MAC oracle are now uniformly random and

independent from Kh. Consider the i-th verification query (N ′,M ′, T ′) of the
adversary. If N ′ never appeared in the MAC queries of the adversary, then T ′

is valid with probability 2−n. If N ′ = N for some previous MAC query (N,M)
that returned T , then the verification query is valid iff

R(N ′) ⊕ HKh
(M ′) = T ′ ⇔ HKh

(M) ⊕ HKh
(M ′) = T ⊕ T ′,

which happens with probability at most ε by definition of an ε-AXU hash func-
tion. (If M = M ′, then one must have T
= T ′ by definition of the security
experiment, and the forgery cannot be valid.) Since for an ε-AXU hash func-
tion with range {0, 1}n one has ε ≥ 2−n, in all cases the forgery is valid with
probability at most ε. By a union bound over the qv verification queries, one has
δ ≤ εqv, which concludes the proof. �

130 B. Cogliati and Y. Seurin

Assume now that F is a family of permutations of {0, 1}n, or in other words,
a block cipher, that we denote E. Then E can be distinguished from a random
function with q queries and advantage roughly q2/2n by simply looking for colli-
sions in its outputs. In other words, by the PRP-PRF switching Lemma [BR06],
the best upper bound one can hope to prove for the PRF-advantage of adversary
A′ appearing in Theorem 1, assuming that E is a secure PRP, is

AdvPRF
E (A′) ≤ AdvPRP

E (A′) +
(qm + qv)2

2n+1
,

so that the security bound for the resulting construction WC[E,H] now has
a birthday-type term. Bernstein [Ber05a,Ber05b] proved a better (but still of
birthday-type) bound: as long as qm ≤ 2n/2, the adversary can forge with prob-
ability at most Cεqv, for some small constant C (in all practical cases, C ≤ 2).
Note that the distinguishing attack against E does not seem to translate into
a forgery attack against the MAC scheme, and it might be possible to improve
the security bound under additional assumptions on H and E.

3.2 Nonce-Misuse Resistance and the Encrypted Wegman-Carter
Construction

In general, the standard Wegman-Carter construction of the previous section
does not offer any security against nonce-misusing adversaries. Consider for
example the case where H is a polynomial-based hash function. Then any adver-
sary who gets two tags T and T ′ for two different messages M and M ′ generated
with the same nonce knows that HKh

(M) ⊕ HKh
(M ′) ⊕ T ⊕ T ′ = 0. The left

hand side is a polynomial in Kh whose coefficients depend on M , M ′, T and T ′,
and Kh is a root of this polynomial. Even though its degree can be quite high,
this is often enough to mount devastating attacks. This weakness was one of the
main criticism against the GCM authenticated encryption mode [MV04], whose
authentication relies on the standard Wegman-Carter construction [Jou06].

The classical way to remedy this situation and achieve nonce-misuse resis-
tance for Wegman-Carter MACs is to apply an extra PRF layer to the out-
put of the construction. When this additional layer is a block cipher, one
obtains what we call the Encrypted Wegman-Carter (EWC) construction. Let
F : K × {0, 1}n → {0, 1}n be a keyed function, E : K′ × {0, 1}n → {0, 1}n be
a block cipher, and H : Kh × M → {0, 1}n be an ε-AXU hash function. Then
the EWC construction based on F , E, and H has key space K × K′ × Kh, nonce
space {0, 1}n, message space M, and range {0, 1}n, and is defined by

EWC[F,E,H]K,K′,Kh
(N,M) = EK′

(
WC[F,H]K,Kh

(N,M)
)

= EK′
(
FK(N) ⊕ HKh

(M)
)
.

One can straightforwardly verify that the security of this construction against
nonce-respecting adversaries does not depend on E and that the upper bound
of Theorem 1 still holds. For nonce-misusing adversaries, one has the following
(the proof is omitted since it is exactly the same, mutatis mutandis, as the proof
of Theorem 4 of Sect. 5).

EWCDM: An Efficient, Beyond-Birthday Secure 131

Theorem 2. Let F , E and H be as above. Then for any (qm, qv, t)-nonce-
misusing adversary A against the MAC-security of EWC[F,E,H], there exists
a (qm + qv, t′)-adversary A′ against the PRF-security of F and a (qm + qv, t′′)-
adversary A′′ against the PRP-security of E, where t′, t′′ = O(t + (qm + qv)tH),
such that

AdvMAC
EWC[F,E,H](A) ≤ AdvPRF

F (A′)+AdvPRP
E (A′′)+

2(qm + qv)2

2n
+

(qm + qv)2ε
2

.

It is tempting to implement F from E. The simplest way to do so is simply
to let F = E, thereby obtaining the construction (overloading notation EWC[·])

EWC[E,H]K,K′,Kh
(N,M) = EK′

(
EK(N) ⊕ HKh

(M)
)
.

However, the resulting MAC suffers from the same birthday-bound type problem
against nonce-respecting adversaries as the unencrypted Wegman-Carter MAC
WC[E,H] of Sect. 3.1. As already mentioned in introduction, it is possible to use
a PRP-to-PRF conversion method to obtain security beyond the birthday bound,
but using the best known constructions yields a MAC that makes at least three
calls to the underlying block cipher. Our goal is to reduce the number of block
cipher calls to two, which seems to be the minimum to achieve both security
beyond the birthday bound and nonce-misuse resistance.

3.3 The New Construction EWCDM

The main contribution of this paper is to propose a much simpler solution that
allows to get beyond the birthday bound, namely using the Davies-Meyer (DM)
construction which turns a block cipher E : K × {0, 1}n → {0, 1}n into a keyed
function as

DM[E]K(N) = EK(N) ⊕ N.

Using the DM construction based on E to instantiate F in EWC[F,E,H]
results in a MAC construction based only on E and H, which we call
Encrypted Wegman-Carter with Davies-Meyer (EWCDM) construction and
denote EWCDM[E,H], illustrated on Fig. 1 and defined as follows:

EWCDM[E,H]K,K′,Kh
(N,M)

def= EWC[DM[E], E,H]K,K′,Kh
(N,M)

= EK′
(
EK(N) ⊕ N ⊕ HKh

(M)
)
.

As already explained in introduction, the DM construction is not PRF-secure
beyond the birthday bound. Still, our main result, that we state and prove in the
next section, is that the EWCDM construction is secure up to roughly 22n/3 MAC
queries and 2n verification queries against nonce-respecting adversaries (while
against nonce-misusing adversaries it still enjoys birthday-bound security).

The security proof entails an analysis of what we call the Encrypted Davies-
Meyer (EDM) PRP-to-PRF conversion method, which turns two independent
permutations P and P ′ of {0, 1}n into a function of {0, 1}n to {0, 1}n defined as

EDM[P, P ′](N) = P ′(P (N) ⊕ N).

132 B. Cogliati and Y. Seurin

By “stripping off” from the security proof of EWCDM all details related to the
hash function and verification queries, one can extract a proof that the EDM
construction is a secure PRF up to 22n/3 adversarial queries. We do so in the
full version of the paper [CS16], and the reader might want to read this simpler
proof before proceeding to Sect. 4. However, as already explained in introduction,
it does not seem possible to prove the MAC-security of the EWCDM construction
in a modular way from the PRF-security of the EDM construction.

Finally, note that adding the hash of the message to the output of the EDM
construction (rather than “in the middle”) would result in a construction secure
up to 22n/3 queries against nonce-respecting adversaries, but insecure against
nonce-misusing ones since it is just an instantiation of the standard WC con-
struction of Sect. 3.1 (with the EDM construction as PRF).

4 Nonce-Respecting Security of EWCDM

4.1 Statement of the Result and Overview of the Proof

In all the following, we simply denote Π[E,H] the EWCDM construction based
on block cipher E and AXU hash function H. Our main security result is as
follows.

Theorem 3. Let M, K and Kh be non-empty sets. Let E : K×{0, 1}n → {0, 1}n

be a block cipher and H : Kh × M → {0, 1}n be an ε-AXU hash function.
Then for any (qm, qv, t)-nonce-respecting adversary A against the MAC-security
of Π[E,H] with q

3/2
m ≤ 2n/4 and qv ≤ 2n/4, there exists a (qm+qv, t′)-adversary

A′ against the PRP-security of E, where t′ = O(t + (qm + qv)tH), such that

AdvMAC
Π[E,H](A) ≤ 2AdvPRP

E (A′) +
5q

3/2
m

2n
+

εqm

2
+

6qv

2n
+ εqv.

Hence, assuming ε � 2−n, the EWCDM construction is secure up to qm �
22n/3 MAC queries and qv � 2n verification queries.

In the remaining of the section, we prove Theorem3. We fix a (qm, qv, t)-
nonce-respecting adversary A against the MAC-security of Π[E,H] and we let

δ = AdvMAC
Π[E,H](A).

As specified in Definition 1, adversary A has access to a MAC oracle
Π[E,H]K,K′,Kh

and a verification oracle VerK,K′,Kh
for a randomly drawn key

tuple (K,K ′,Kh).
The first step of the proof is standard and consists in replacing EK and EK′

by two random and independent permutations P and P ′, both in the MAC and
in the verification oracle (in other words, we replace the block cipher E by the
perfect cipher E∗ whose key space is the set of all permutations of {0, 1}n). Let
Π[E∗,H] denote the resulting construction. It is easy to show that there exists

EWCDM: An Efficient, Beyond-Birthday Secure 133

an adversary against the PRP-security of E, making at most qm + qv oracle
queries and runnig in time at most O(t + (qm + qv)tH), such that

δ ≤ 2AdvPRP
E (A′) + AdvMAC

Π[E∗,H](A). (4)

(We replace successively EK and EK′ by a random permutation, each time
constructing an hybrid PRP-adversary, and we consider the best of the two
adversaries). Our goal is now to upper bound

δ∗ def= AdvMAC
Π[E∗,H](A)

= Pr
[
(P, P ′) ←$ Perm(n)2,Kh ←$ Kh : AΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] forges

]
,

where, overloading the notation, Π[P, P ′,HKh
] denotes the construction

Π[E∗,H] instantiated with permutations P , P ′, and hashing key Kh and
Ver[P, P ′,HKh

] denotes the corresponding verification oracle.
It will be more convenient to express δ∗ as a distinguishing advantage.

Namely, let Rand denote a perfectly random oracle with domain {0, 1}n × M
and range {0, 1}n, and Rej be an oracle with inputs in {0, 1}n × M × {0, 1}n

which always returns 0 (“reject”). Since the adversary cannot forge (i.e., have
the right oracle return 1) when interacting with (Rand,Rej), we have

δ∗ = Pr
[
AΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] forges

]
− Pr

[
ARand,Rej forges

]
.

Consider now an adversary D which queries a pair of oracles (O1,O2) and outputs
a bit β, which we denote DO1,O2 = β. (We will refer to such an adversary as
a distinguisher.) Say that such an adversary is non-trivial if it never makes a
query (N,M, T) to its right (verification) oracle if a previous query (N,M) to
its left (MAC) oracle returned T . Then

δ∗ ≤ max
D

Pr
[
DΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] = 1

]
− Pr

[
DRand,Rej = 1

]
, (5)

where the maximum is taken over non-trivial adversaries. (This follows easily by
considering the particular D which runs A and outputs 1 iff A successfully forges.)
Hence, we see that δ∗ cannot be larger than the advantage of the best non-trivial
distinguisher between the two pairs of oracles (Π[P, P ′,HKh

],Ver[P, P ′,HKh
])

and (Rand,Rej).5 This formulation of the problem now allows us to use the H-
coefficients technique [Pat08b,CS14], as we explain in more details below.

The H-Coefficients Technique. From now on, we fix a non-trivial distin-
guisher D interacting either with the real world (Π[P, P ′,HKh

],Ver[P, P ′,HKh
])

for uniformly random permutations (P, P ′) and a random hashing key Kh, or
with the ideal world (Rand,Rej), making at most qm queries to its left (MAC)

5 While a verification query answered by 1 constitutes an obvious distinguishing cri-
terion between the two worlds, a more advanced adversary might also use the small
difference between the distributions of the answers of the left (MAC) oracle.

134 B. Cogliati and Y. Seurin

oracle and at most qv queries to its right (verification) oracle, and outputting a
single bit. We let

Adv(D) = Pr
[
DΠ[P,P ′,HKh

],Ver[P,P ′,HKh
] = 1

]
− Pr

[
DRand,Rej = 1

]
.

We assume that D is computationally unbounded (and hence wlog deterministic)
and that it never repeats a query. Let

τm =
(
(N1,M1, T1), . . . , (Nqm ,Mqm , Tqm)

)
be the list of MAC queries of D and corresponding answers. Let also

τv =
(
(N ′

1,M
′
1, T

′
1, b1), . . . , (N

′
qv ,M ′

qv , T ′
qv , bqv)

)
be the list of verification queries of D and corresponding answers (with bi ∈
{0, 1}). The pair (τm, τv) constitutes the queries transcript of the attack. For
convenience, we slightly modify the security experiment by revealing to the dis-
tinguisher (after it made all its queries but before it outputs its decision bit) the
hashing key Kh if we are in the real world, or a uniformly random “dummy” key
Kh if we are in the ideal world (this is obviously wlog since the distinguisher can
ignore this additional piece of information). All in all, the transcript of the attack
is the triplet τ = (τm, τv,Kh). We will often simply name a tuple (N,M, T) ∈ τm

a MAC query, and a tuple (N ′,M ′, T ′, b) ∈ τv a verification query.
A transcript τ is said attainable (with respect to distinguisher D) if the

probability to obtain this transcript in the ideal world is non-zero. In particular,
note that for an attainable transcript τ = (τm, τv,Kh), any verification query
(N ′

i ,M
′
i , T

′
i , bi) ∈ τv is such that bi = 0.6 We denote Θ the set of attainable

transcripts. We also denote Xre, resp. Xid, the probability distribution of the
transcript τ induced by the real world, resp. the ideal world. The main lemma
of the H-coefficients technique is the following one (see e.g. [CS14] or [CLL+14]
for the proof).

Lemma 1. Fix a distinguisher D. Let Θ = ΘgoodΘbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Θgood,
one has7

Pr[Xre = τ]
Pr[Xid = τ]

≥ 1 − ε1,

and that there exists ε2 such that Pr[Xid ∈ Θbad] ≤ ε2. Then Adv(D) ≤ ε1 + ε2.

The remaining of the proof of Theorem3 is structured as follows: in Sect. 4.2,
we define bad transcripts and upper bound their probability in the ideal world;
in Sect. 4.3, we analyze good transcripts and prove that they are almost as likely
in the real and the ideal world. Theorem3 follows easily by combining Eqs. (4)
and (5) above, Lemmas 1, 2 and 3 proven below.
6 Hence, some transcripts are attainable in the real world but not in the ideal world.

While this is unusual (in most H-coefficients-based proofs, the set of transcripts
attainable in the real world is a subset of those attainable in the ideal world), this
is not a problem for Lemma 1 to hold.

7 Recall that for an attainable transcript, one has Pr[Xid = τ] > 0.

EWCDM: An Efficient, Beyond-Birthday Secure 135

4.2 Definition and Probability of Bad Transcripts

We start by defining bad transcripts. We say that a MAC query (Ni,Mi, Ti) ∈ τm

is collisioning if there exists another MAC query (Nj ,Mj , Tj) ∈ τm with j
= i
such Ti = Tj , otherwise we say it is non-collisioning.

Definition 3. We say that an attainable transcript τ = (τm, τv,Kh) is bad if
one of the following conditions is met:

(i) the number of collisioning MAC queries in τm is more than
√

qm;
(ii) there exists two distinct MAC queries (Ni,Mi, Ti) and (Nj ,Mj , Tj) in τm

such that {
Ti = Tj

Ni ⊕ HKh
(Mi) = Nj ⊕ HKh

(Mj);

(iii) there exists a MAC query (Ni,Mi, Ti) ∈ τm and a verification query
(N ′

j ,M
′
j , T

′
j , bj) ∈ τv such that

⎧⎨
⎩

Ni = N ′
j

Ti = T ′
j

HKh
(Mi) = HKh

(M ′
j).

We denote Θbad, resp. Θgood the set of bad, respectively good transcripts.

We quickly comment on these three conditions. Condition (i) captures the
case where there are too many tag collisions and will be needed when lower
bounding the probability of getting a good transcript in the real world. Condition
(ii) can only happen in the ideal world and hence allows to trivially distinguish;
in the real world, if Ni ⊕ HKh

(Mi) = Nj ⊕ HKh
(Mj), then, since Ni
= Nj

because the adversary is assumed nonce-respecting, one necessarily has

P (Ni) ⊕ Ni ⊕ HKh
(Mi)
= P (Nj) ⊕ Nj ⊕ HKh

(Mj)

which implies Ti
= Tj by applying P ′ to both sides of the inequality. Similarly,
condition (iii) can only happen in the ideal world since in the real world, if
Ni = N ′

j , Ti = T ′
j , and HKh

(Mi) = HKh
(M ′

j), one should have bj = 1 (while
bj = 0 in the ideal world).

We now upper bound the probability to get a bad transcript in the ideal
world.

Lemma 2. For any integers qm and qv, one has

Pr [Xid ∈ Θbad] ≤ q
3/2
m

2n
+

εqm

2
+ εqv.

Proof. We upper bound the probabilities of the three conditions in turn. We
denote Θi the set of attainable transcript that satisfy the i-th condition. Recall
that, in the ideal world, Kh is drawn independently from the queries transcript.

136 B. Cogliati and Y. Seurin

Conditions (i) and (ii). We will deal with conditions (i) and (ii) together,
using the fact that

Pr [Xid ∈ Θ1 ∨ Xid ∈ Θ2] ≤ Pr [Xid ∈ Θ1] + Pr [Xid ∈ Θ2 |Xid /∈ Θ1] .

Since the adversary does not make useless queries, its MAC queries are distinct.
In the ideal world, the values Ti for i ∈ {1, . . . , qm} are then simply chosen
uniformly and independently at random from {0, 1}n. We introduce the random
variable

C =
∣∣{(i, j) ∈ {1, . . . , qm}2, i
= j, Ti = Tj

}∣∣ .
The number of collisioning MAC queries is always lower than C. Note that

E[C] =
∑

1≤i≤qm

∑
1≤j≤qm

i�=j

Pr [Ti = Tj] ≤ q2m
2n

.

By Markov’s inequality,

Pr [Xid ∈ Θ1] ≤ Pr [C ≥ √
qm] ≤ q

3/2
m

2n
.

Assume now that Xid /∈ Θ1, i.e., τm is such that the number of collisioning
MAC queries is lower than

√
qm. Recall that Kh is chosen independently from

τm in the ideal world. Fix any (i, j) such that i
= j and Ti = Tj . Since the
number of collisioning MAC queries is lower than

√
qm, there are at most qm/2

such pairs of queries. Then, since H is ε-AXU, one has

Pr [Kh ←$ Kh : Ni ⊕ HKh
(Mi) = Nj ⊕ HKh

(Mj)] ≤ ε

and, by summing over the at most qm/2 such pairs of queries, one has

Pr [Xid ∈ Θ2 |Xid /∈ Θ1] ≤ εqm

2
.

Hence,

Pr [Xid ∈ Θ1 ∪ Θ2] ≤ q
3/2
m

2n
+

εqm

2
.

Condition (iii). We consider any verification query (N ′
j ,M

′
j , T

′
j , bj) ∈ τv and

upper bound the probability that condition (iii) is satisfied for this particular
query. Since the adversary is nonce-respecting, there is at most one MAC query
(Ni,Mi, Ti) such that Ni = N ′

j . We distinguish two cases:

– If the verification query comes after the MAC query, then since the distin-
guisher is non-trivial, either Ti
= T ′

j , or Mi
= M ′
j . In the former case, condi-

tion (iii) cannot be satisfied, while in the latter case, the probability over the
random draw of Kh that HKh

(Mi) ⊕ HKh
(M ′

j) = 0 is at most ε.
– If the MAC query comes after the verification query, then Ti is random and

independent from T ′
j and the probability that Ti = T ′

j is 2−n.

EWCDM: An Efficient, Beyond-Birthday Secure 137

Since for an ε-AXU hash function with range {0, 1}n one has ε ≥ 2−n, we see
that in all cases condition (iii) is met with probability at most ε. Thus, by
summing over every verification query, one has

Pr [Xid ∈ Θ3] ≤ εqv.

The Lemma follows by an union bound over all conditions. �

4.3 Analysis of Good Transcripts

We now analyze good transcripts and prove the following lemma.

Lemma 3. Assume that q
3/2
m ≤ 2n/4 and qv ≤ 2n/4. Then, for any good tran-

script τ , one has
Pr [Xre = τ]
Pr [Xid = τ]

≥ 1 − 4q
3/2
m

2n
− 6qv

2n
.

Let τ = (τm, τv,Kh) be a good transcript. Since in the ideal world the MAC
oracle is perfectly random and the verification always rejects, one simply has

Pr[Xid = τ] =
1

|Kh| · (2n)qm
. (6)

We must now lower bound the probability of getting τ in the real world. We say
that a pair of permutations (P, P ′) is compatible with τm if

∀i ∈ {1, . . . , qm}, Π[P, P ′,HKh
](Ni,Mi) = Ti,

and we say that it is compatible with τv if

∀i ∈ {1, . . . , qv}, Π[P, P ′,HKh
](N ′

i ,M
′
i)
= T ′

i .

We simply say that (P, P ′) is compatible with τ if it is compatible with τm and τv.
We denote Comp(τm), Comp(τv), and Comp(τ) the set of pairs of permutations
that are compatible with respectively τm, τv, and τ . Then one can easily check
(see for example [CS14] for a detailed explanation) that

Pr[Xre = τ] =
1

|Kh| · Pr
[
(P, P ′) ←$ Perm(n)2 : (P, P ′) ∈ Comp(τ)

]
. (7)

MAC Queries Transcript. We will first consider the probability that a ran-
dom pair (P, P ′) is compatible with the MAC queries transcript τm. To ease the
notation, we reorder the transcript as follows. Let r be the number of distinct
tags T appearing in MAC queries. Then we rewrite the transcript so that all
queries with the same tag are consecutive, so that the MAC queries transcript
(that we still denote τm) is now

τm =
(
(N1,1,M1,1, T1), . . . , (N1,q1 ,M1,q1 , T1),
(N2,1,M2,1, T2), . . . , (N2,q2 ,M2,q2 , T2),
. . . ,

(Nr,1,Mr,1, Tr), . . . , (Nr,qr ,Mr,qr , Tr)
)
,

138 B. Cogliati and Y. Seurin

where T1, . . . , Tr are distinct and
∑r

i=1 qi = qm.
Our goal is now to lower bound the probability that a random pair of per-

mutations (P, P ′) satisfies

∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , qi}, P ′(P (Ni,j) ⊕ Ni,j ⊕ HKh
(Mi,j)

)
= Ti.

For this, we will consider the possible “internal” values Zi = (P ′)−1(Ti). We say
that a tuple Z = (Z1, . . . , Zr) of distinct values in {0, 1}n is good if

(a) all qm values Zi ⊕ Ni,j ⊕ HKh
(Mi,j) for i ∈ {1, . . . , r}, j ∈ {1, . . . , qi} are

distinct;
(b) for every verification query (N ′,M ′, T ′, b) ∈ τv such that N ′ = Ni,j and

T ′ = Tk for some i ∈ {1, . . . , r}, j ∈ {1, . . . , qi}, and k ∈ {1, . . . , r} with
k
= i, one has

Zi ⊕ HKh
(Mi,j) ⊕ HKh

(M ′)
= Zk.

Property (a) is needed since the values Zi ⊕ Ni,j ⊕ HKh
(Mi,j) are the images

by P of the (distinct) nonces Ni,j . Property (b) will be needed later when lower
bounding the probability that (P, P ′) is compatible with the verification tran-
script τv.

Given a good tuple Z, the probability, for a randomly drawn pair (P, P ′),
that{

∀i ∈ {1, . . . , r},∀j ∈ {1, . . . , qi}, P (Ni,j) = Zi ⊕ Ni,j ⊕ HKh
(Mi,j),

∀i ∈ {1, . . . , r}, P ′(Zi) = Ti

(8)

is exactly
1

(2n)qm(2n)r
. (9)

(This is simply the probability that P satisfies q1 + . . . + qr = qm equations and
P ′ satisfies r equations.)

It remains to lower bound the number NZ of good tuples Z, which can
be done as follows. First, note that by definition of a good transcript, for any
i ∈ {1, . . . , r}, the values Zi ⊕ Ni,j ⊕ HKh

(Mi,j) for 1 ≤ j ≤ qi are distinct since
otherwise condition (ii) defining a bad transcript would be fulfilled (without
that, good tuples Z would not exist). In the following, for i, k ∈ {1, . . . , r} with
k < i, we denote q′

i,k the number of verification queries (N ′,M ′, T ′, b) ∈ τv such
that either N ′ = Ni,j for some j ∈ {1, . . . , qi} and T ′ = Tk, or N ′ = Nk,j for
some j ∈ {1, . . . , qk} and T ′ = Ti. Note that since a verification query can count
for at most one pair (i, k), one has

r∑
i=2

i−1∑
k=1

q′
i,k ≤ qv. (10)

Then,

– there are at least 2n possibilities for Z1;

EWCDM: An Efficient, Beyond-Birthday Secure 139

– once Z1 is fixed, there are at least 2n −1− q2q1 − q′
2,1 possibilities for Z2 since

Z2 must be different from the following values:
• Z1,
• Z1 ⊕ N1,j ⊕ HKh

(M1,j) ⊕ N2,j′ ⊕ HKh
(M2,j′) for all j ∈ {1, . . . , q1} and

all j′ ∈ {1, . . . , q2} (in order for property (a) to be fulfilled),
• Z1⊕HKh

(M1,j)⊕HKh
(M ′) for every verification query (N ′,M ′, T ′, b) ∈

τv such that N ′ = N1,j for some j ∈ {1, . . . , q1} and T ′ = T2, and Z1 ⊕
HKh

(M2,j) ⊕ HKh
(M ′) for every verification query (N ′,M ′, T ′, b) ∈ τv

such that N ′ = N2,j for some j ∈ {1, . . . , q2} and T ′ = T1, which amounts
to at most q′

2,1 values (in order for property (b) to be fulfilled);
– once Z1, . . . , Zi are fixed, there are at least 2n −i−qi+1

∑i
k=1 qk −

∑i
k=1 q′

i+1,k

possibilities for Zi+1 since Zi+1 must be different from the following values:
• Z1, . . . , Zi,
• Zk ⊕ Nk,j ⊕ HKh

(Mk,j) ⊕ Ni+1,j′ ⊕ HKh
(Mi+1,j′) for all k ∈ {1, . . . , i},

all j ∈ {1, . . . , qk}, and all j′ ∈ {1, . . . , qi+1},
• Zk⊕HKh

(Mk,j)⊕HKh
(M ′) for every verification query (N ′,M ′, T ′, b) ∈

τv such that N ′ = Nk,j for some k ∈ {1, . . . , i}, j ∈ {1, . . . , qk} and
T ′ = Ti+1, and Zk ⊕HKh

(Mi+1,j)⊕HKh
(M ′) for every verification query

(N ′,M ′, T ′, b) ∈ τv such that N ′ = Ni+1,j for some j ∈ {1, . . . , qi+1} and
T ′ = Tk for some k ∈ {1, . . . , i}, which amounts to at most

∑i
k=1 q′

i+1,k

values.

Hence, the number of good tuples Z = (Z1, . . . , Zr) is at least

NZ ≥
r−1∏
i=0

(
2n − i − qi+1

i∑
k=1

qk −
i∑

k=1

q′
i+1,k

)
. (11)

Verification Queries Transcript. From now on, we fix a good tuple Z.
We will now lower bound the probability that a random pair (P, P ′) is compatible
with the verification transcript τv, conditioned on (P, P ′) satisfying the set of
Eq. (8). (Recall that P is then fixed on qm values and P ′ is fixed on r values.)
For this, it will be easier to upper bound the probability that (P, P ′) is not
compatible with τv, i.e., that there exists (N ′,M ′, T ′, b) ∈ τv such that

P ′(P (N ′) ⊕ N ′ ⊕ HKh
(M ′)

)
= T ′. (12)

Fix any verification query (N ′,M ′, T ′, b) ∈ τv. We say that it is nonce-fresh,
resp. tag-fresh, if N ′, resp. T ′ does not appear in the MAC queries transcript
τm.8 We consider four possible cases.

8 We stress that this freshness definition is with respect to the entire MAC queries
transcript τm, independently of when the verification query was actually made by
the distinguisher.

140 B. Cogliati and Y. Seurin

– Case 1: the verification query is both nonce-fresh and tag-fresh. Then P (N ′) is
random and two sub-cases can occur: if P (N ′) ⊕ N ′ ⊕ HKh

(M ′) ∈ Z, Eq. (12)
cannot be satisfied since the query is tag-fresh; on the other hand, if P (N ′) ⊕
N ′ ⊕ HKh

(M ′) /∈ Z, Eq. (12) is satisfied with probability 1/(2n − r) over
the choice of P ′. Hence, over the choice of (P, P ′), Eq. (12) is satisfied with
probability at most

1
2n − r

≤ 1
2n − qm

.

– Case 2: the verification query is nonce-fresh, but not tag-fresh. Then there
exists (N,M, T) ∈ τm such that T = T ′. Let Z = (P ′)−1(T) (this value is well
defined since we assume Eq. (8) are satisfied). Then Eq. (12) is satisfied iff

P (N ′) = Z ⊕ N ′ ⊕ HKh
(M ′),

hence with probability exactly 1/(2n − qm) since the query is nonce-fresh and
N ′ does not appear in Eq. (8).

– Case 3: the verification query is tag-fresh, but not nonce-fresh. Then there
exists a unique (N,M, T) ∈ τm such that N ′ = N , so that P (N ′) is fixed by
Eq. (8). If P (N ′)⊕N ′ ⊕HKh

(M ′) ∈ Z, then Eq. (12) cannot be satisfied since
the query is tag-fresh. If P (N ′)⊕N ′ ⊕HKh

(M ′) /∈ Z, then Eq. (12) is satisfied
with probability

1
2n − r

≤ 1
2n − qm

.

– Case 4: the verification query is neither nonce-fresh nor tag-fresh. Then there
exists a unique (Ni,j ,Mi,j , Ti) ∈ τm such that N ′ = Ni,j and (Nk,Mk, Tk) ∈
τm (with possibly k = i) such that T ′ = Tk. If k = i, then Eq. (12) cannot be
satisfied since otherwise one would have

P (N ′) ⊕ N ′ ⊕ HKh
(M ′) = (P ′)−1(Ti) = P (Ni,j) ⊕ Ni,j ⊕ HKh

(Mi,j),

which implies HKh
(M ′) = HKh

(Mi,j) and condition (iii) defining a bad tran-
script would be fulfilled. On the other hand, if k
= i, then Eq. (12) being
satisfied would imply

P (N ′) ⊕ N ′ ⊕ HKh
(M ′) = (P ′)−1(Tk) = Zk

⇒P (Ni,j) ⊕ Ni,j ⊕ HKh
(M ′) = Zk

⇒Zi ⊕ HKh
(Mi,j) ⊕ HKh

(M ′) = Zk,

and this would contradict property (b) of a good tuple Z. Hence, by definition
of a good transcript and a good tuple Z, we see that Eq. (12) cannot be
satisfied in that case.

Summarizing, we see that for any verification query, Eq. (12) is satisfied with
probability at most 1/(2n − qm). By a union bound over the qv verification
queries, we obtain that

Pr [(P, P ′) ∈ Comp(τv) | (P, P ′) satisfies Eq. (8)] ≥ 1 − qv

2n − qm
. (13)

EWCDM: An Efficient, Beyond-Birthday Secure 141

Summing Up. We can now lower bound the probability that a random pair
(P, P ′) is compatible with τ , that we denote

p(τ)
def= Pr

[
(P, P ′) ←$ Perm(n)2 : (P, P ′) ∈ Comp(τ)

]
.

Namely, summing over all good tuples Z, and using (9), (11), and (13), we have

p(τ) ≥ NZ × Pr [(P, P ′) satisfies Eq. (8)]
× Pr [(P, P ′) ∈ Comp(τv) | (P, P ′) satisfies Eq. (8)]

≥
∏r−1

i=0

(
2n − i − qi+1

∑i
k=1 qk −

∑i
k=1 q′

i+1,k

)
(2n)qm(2n)r

(
1 − qv

2n − qm

)
.

This, in turn, allows us to lower bound the ratio of the probabilities to obtain τ
in the real and the ideal world, namely combining (6) and (7) with the equation
above, we have

Pr [Xre = τ]
Pr [Xid = τ]

≥
(2n)qm

∏r−1
i=0

(
2n − i − qi+1

∑i
k=1 qk −

∑i
k=1 q′

i+1,k

)
(2n)qm(2n)r︸ ︷︷ ︸

A

×
(

1 − qv

2n − qm

)
. (14)

We focus on term A, that we can rewrite

A =
qm−1∏
i=0

(
1 +

i

2n − i

) r−1∏
i=0

⎛
⎜⎜⎝1 − qi+1

∑i
k=1 qk

2n − i︸ ︷︷ ︸
ai

−
∑i

k=1 q′
i+1,k

2n − i︸ ︷︷ ︸
bi

⎞
⎟⎟⎠ . (15)

The following “Bonferroni-type” inequality will be useful to further lower
bound A.

Lemma 4. Let r ≥ 1 be an integer and (ai)0≤i≤r−1 and (bi)0≤i≤r−1 be positive
reals such that ai ≤ 1/2 and bi ≤ 1/2 for all i ∈ {0, . . . , r − 1}. Then

r−1∏
i=0

(1 − ai − bi) ≥
r−1∏
i=0

(1 − ai)
r−1∏
i=0

(1 − 2bi).

Proof. The proof is by induction. We first prove it for r = 1. One has

(1−a0)(1−2b0) = 1−a0 −2b0 +2a0b0 = 1−a0 − b0 − b0(1 − 2a0)︸ ︷︷ ︸
≥0

≤ 1−a0 − b0.

142 B. Cogliati and Y. Seurin

Assume that the result holds for r ≥ 1. Then

r∏
i=0

(1 − ai)
r∏

i=0

(1 − 2bi) =
r−1∏
i=0

(1 − ai)
r−1∏
i=0

(1 − 2bi) × (1 − ar)(1 − 2br)︸ ︷︷ ︸
≥0

≤
r−1∏
i=0

(1 − ai − bi) × (1 − ar − br − br(1 − 2ar))

=
r∏

i=0

(1 − ai − bi) − br(1 − 2ar)
r−1∏
i=0

(1 − ai − bi)

︸ ︷︷ ︸
≥0

≤
r∏

i=0

(1 − ai − bi).

The result holds for r + 1 and the lemma follows. �

We can apply this lemma to the r.h.s. of (15). Indeed, for any i ∈ {0, . . . , r −
1}, one has qi+1 ≤ √

qm (as otherwise condition (i) of a bad transcript would be
met), and q

3/2
m ≤ 2n/4 by assumption, so that

ai
def=

qi+1

∑i
k=1 qk

2n − i
≤ qi+1

∑i
k=1 qk

2n − qm
≤ 2q

3/2
m

2n
≤ 1

2
,

Moreover, by (10) and the assumption that qv ≤ 2n/4, one has

bi
def=
∑i

k=1 q′
i+1,k

2n − i
≤
∑i

k=1 q′
i+1,k

2n − qm
≤ 2qv

2n
≤ 1

2
.

Hence,

A ≥
qm−1∏
i=0

(
1 +

i

2n − i

) r−1∏
i=0

(
1 − qi+1

∑i
k=1 qk

2n − i

)
r−1∏
i=0

(
1 −

2
∑i

k=1 q′
i+1,k

2n − i

)

≥
qm−1∏
i=0

(
1 +

i

2n − i

) r−1∏
i=0

(
1 − qi+1

∑i
k=1 qk

2n − i

)(
1 −

2
∑r−1

i=0

∑i
k=1 q′

i+1,k

2n − qm

)

≥
qm−1∏
i=0

(
1 +

i

2n − i

) r−1∏
i=0

(
1 − qi+1

∑i
k=1 qk

2n − i

)

︸ ︷︷ ︸
A′

(
1 − 2qv

2n − qm

)
, (16)

where for the last inequality we used (10).
In order to further lower bound A′, we need to distinguish collisioning MAC

queries from non-collisioning ones. Up to reordering the MAC queries transcript,
we assume that non-collisioning queries come first, and we let s ∈ {0, . . . , r} be

EWCDM: An Efficient, Beyond-Birthday Secure 143

the integer such that qi = 1 for i ∈ {1, . . . , s}, and qi > 1 for i ∈ {s + 1, . . . , r}.
Note that since the transcript is good, one has

r∑
i=s+1

qi ≤ √
qm (17)

as otherwise condition (i) of a bad transcript would be fulfilled. Then

A′ ≥
qm−1∏
i=0

(
1 +

i

2n − i

) s−1∏
i=0

(
1 − qi+1

∑i
k=1 qk

2n − i

)
r−1∏
i=s

(
1 − qi+1

∑i
k=1 qk

2n − i

)

=
qm−1∏
i=0

(
1 +

i

2n − i

) s−1∏
i=0

(
1 − i

2n − i

) r−1∏
i=s

(
1 − qi+1

∑i
k=1 qk

2n − i

)

≥
qm−1∏
i=0

(
1 − i2

(2n − i)2

) r−1∏
i=s

(
1 − qi+1qm

2n − i

)

≥
qm−1∏
i=0

(
1 − i2

(2n − qm)2

) r−1∏
i=s

(
1 − qi+1qm

2n − qm

)

≥
(

1 − q3m
3(2n − qm)2

)(
1 −

qm

∑r
i=s+1 qi

2n − qm

)

≥
(

1 − 4q3m
3 · 22n

)(
1 − 2q

3/2
m

2n

)
, (18)

where for the last inequality we used (17) and qm ≤ 2n/2.
Combining (14), (16), and (18), we finally obtain (using qm ≤ 2n/2 once

again)
Pr [Xre = τ]
Pr [Xid = τ]

≥ 1 − 4q3m
3 · 22n

− 2q
3/2
m

2n
− 6qv

2n
.

Lemma 3 follows using q3m/22n ≤ q
3/2
m /2n by our assumption that q

3/2
m ≤ 2n/4.

5 Nonce-Misuse Security of EWCDM

In this section, we consider the security of the EWCDM construction when
the adversary is allowed to repeat nonces. In this setting, PRF-security implies
MAC-security, hence we can simply consider the EWCDM construction as a
function with domain N × M and study its pseudorandomness. Our result on
the PRF-security of the EWCDM construction is as follows.

Lemma 5. Let M, K and Kh be non-empty sets. Let E : K ×{0, 1}n → {0, 1}n

be a block cipher and H : Kh × M → {0, 1}n be an ε-AXU hash function.
Then for any (q, t)-(nonce-misusing) adversary A against the PRF-security of

144 B. Cogliati and Y. Seurin

Π[E,H], there exists a (q, t′)-adversary A′ against the PRP-security of E, where
t′ = O(t + qtH), such that

AdvPRF
Π[E,H](A) ≤ 2AdvPRP

E (A′) +
q2

2n
+

q2ε

2
.

The corresponding MAC-security can easily be deduced from Lemma 5 using
the following generic result of Bellare et al. [BGM04, Proposition 7.3].

Lemma 6. Let F be a keyed function with output length n. Then for any
(qm, qv, t)-adversary A against the MAC-security of F , there exists a (qm+qv, t

′)-
adversary A′ against the PRF-security of F , where t′ = O(t), such that

AdvMAC
F (A) ≤ AdvPRF

F (A′) +
qv

2n
.

Combining Lemmas 5 and 6, we obtain the following theorem (absorbing the
qv/2n term into (qm + qv)2/2n).

Theorem 4. Let M, K and Kh be non-empty sets. Let E : K×{0, 1}n → {0, 1}n

be a block cipher and H : Kh × M → {0, 1}n be an ε-AXU hash function.
Then for any (qm, qv, t)-nonce-misusing adversary A against the MAC-security
of Π[E,H], there exists a (qm + qv, t′)-adversary A′ against the PRP-security of
E, where t′ = O(t + (qm + qv)tH), such that

AdvMAC
Π[E,H](A) ≤ 2AdvPRP

E (A′) +
2(qm + qv)2

2n
+

(qm + qv)2ε
2

.

The proof of Lemma 5 is standard (indeed, the construction, seen as a keyed
function with domain N ×M, follows the classical “hash-then-PRF” paradigm).
We include it below for completeness.

Proof of Lemma 5. Fix a (q, t)-adversary A against the PRF-security of
Π[E,H]. The first step of the proof consists in replacing EK and EK′ by two
uniformly random and independent permutations P and P ′. It is easy to show
that there is an adversary A′ making at most q queries and running in time at
most t′ = O(t + qtH) such that

AdvPRF
Π[E,H](A) ≤ 2AdvPRP

E (A′) + AdvPRF
Π[E∗,H](A), (19)

where E∗ denotes the perfect cipher on {0, 1}n. Then, we use the PRP/PRF
switching lemma [BR06] to replace the random permutations P and P ′ by two
independent and uniformly random functions R and R′, obtaining

AdvPRF
Π[E∗,H](A

′) ≤ q2

2n
+ AdvPRF

Π[F ∗,H](A), (20)

where F ∗ denotes the perfect keyed function from {0, 1}n to {0, 1}n (i.e., the
keyed function with key space Func(n)).

EWCDM: An Efficient, Beyond-Birthday Secure 145

It remains to upper bound the PRF-advantage of A against Π[F ∗,H]. For
this, we use the H-coefficients technique. The adversary must distinguish between
two worlds:

– the real world in which it interacts with Π[R,R′,H] where R and R′ are two
uniformly and independently drawn functions from {0, 1}n to {0, 1}n;

– the ideal world in which it receives independent and uniformly random
answers.

Let τm = ((N1,M1, T1), . . . , (Nq,Mq, Tq)) be the list of all queries of A and the
corresponding answers. In order to have a simple description of bad transcripts,
we reveal to the adversary at the end of the experiment the key Kh and the
function R if we are in the real world, while in the ideal world we simply draw a
dummy key Kh ←$ Kh and a function R independently from the answers of the
oracle. All in all, the transcript of the interaction of A with its oracle is a tuple
τ = (τm,Kh, R) and, in this case, a transcript is said attainable (with respect
to an adversary A) if the probability to obtain it in the ideal world is non-zero.
We denote Θ the set of attainable transcripts. We also denote Xre, resp. Xid,
the probability distribution of the transcript τ induced by the real world, resp.
the ideal world.

We start by defining the set of bad transcripts.

Definition 4. We say that an attainable transcript τ = (τm,Kh, R) is bad if
there exists distinct queries (N,M, T), (N ′,M ′, T ′) ∈ τm such that

R(N) ⊕ N ⊕ HKh
(M) = R(N ′) ⊕ N ′ ⊕ HKh

(M ′).

Otherwise we say that τ is good. We denote Θbad, resp. Θgood, the set of bad,
resp. good transcripts.

We first upper bound the probability to get a bad transcript in the ideal
world.

Lemma 7.

Pr [Xid ∈ Θbad] ≤ q2ε

2
.

Proof. Let τm be any attainable query transcript. Recall that, in the ideal
world, the key Kh and the function R are drawn uniformly at random and
independently from the query transcript τm. Fix any pair of distinct queries
(N,M, T), (N ′,M ′, T ′). Two cases can occur:

– M
= M ′: then the probability, over the random draw of Kh and R, that
R(N)⊕N ⊕HKh

(M) = R(N ′)⊕N ′ ⊕HKh
(M ′) is lower than ε by the ε-AXU

property of H;
– M = M ′: then, since we assume that the adversary never makes redundant

queries, N
= N ′ and the probability that R(N)⊕N = R(N ′)⊕N ′ is 1/2n ≤ ε.

By summing over every possible pair of queries, one gets the result. �

146 B. Cogliati and Y. Seurin

We then analyze good transcripts.

Lemma 8. For any good transcript τ , one has

Pr [Xre = τ]
Pr [Xid = τ]

= 1.

Proof. Let τ = (τm,Kh, R) be a good transcript. One has

Pr [Xid = τ] =
1

|Kh| · 1
|Func(n)| · 1

(2n)q

since, in the ideal world, the oracle is perfectly random and the key Kh and the
function R are chosen uniformly at random and independently from the query
transcript.

We say that a function R′ ∈ Func(n) is compatible with the transcript τ if
R′(R(Ni) ⊕ Ni ⊕ HKh

(Mi)) = Ti for all i ∈ {1, . . . , q}. Let Comp(τ) be the set
of all compatible functions R′. Then it is easy to see that

Pr [Xre = τ] =
1

|Kh| · 1
|Func(n)| · Pr [R′ ←$ Func(n) : R′ ∈ Comp(τ)] .

Since τ is a good transcript, the values R(Ni) ⊕ Ni ⊕ HKh
(Mi) are distinct.

Hence
Pr [R′ ←$ Func(n) : R′ ∈ Comp(τ)] =

1
(2n)q

and therefore Pr [Xre = τ] = Pr [Xid = τ]. �

Combining Lemmas 1, 7, and 8, one obtains

AdvPRF
Π[F ∗,H](A) ≤ q2ε

2
. (21)

Lemma 5 finally follows from Eqs. (19), (20), and (21).

Acknowledgments. Many thanks to Thomas Peyrin. This paper stemmed from dis-
cussions with him, and he took part to the early stages of this work.

References

[ABBT15] Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted
polynomials and forgery attacks on GCM. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 762–786. Springer,
Heidelberg (2015)

[BC09] Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009)

[BCK96] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message
authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 1–15. Springer, Heidelberg (1996)

EWCDM: An Efficient, Beyond-Birthday Secure 147

[Ber00] Bernstein, D.J.: Floating-point arithmetic and message authentication.
Unpublished manuscript (2000). http://cr.yp.to/papers.html#hash127

[Ber05a] Bernstein, D.J.: Stronger security bounds for permutations. Unpublished
manuscript (2005). http://cr.yp.to/papers.html#permutations

[Ber05b] Bernstein, D.J.: Stronger security bounds for Wegman-Carter-Shoup
authenticators. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 164–180. Springer, Heidelberg (2005)

[Ber05c] Bernstein, D.J.: The Poly1305-AES message-authentication code. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49.
Springer, Heidelberg (2005)

[Ber07] Bernstein, D.J.: Polynomial evaluation and message authentication.
Unpublished manuscript (2007). http://cr.yp.to/papers.html#pema

[BGK99] Bellare, M., Goldreich, O., Krawczyk, H.: Stateless evaluation of pseudo-
random functions: security beyond the birthday barrier. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, p. 270. Springer, Heidelberg (1999)

[BGM04] Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries
in message authentication and authenticated encryption. IACR Cryptology
ePrint Archive, Report 2004/309 (2004). http://eprint.iacr.org/2004/309

[BHK+99] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast
and secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, p. 216. Springer, Heidelberg (1999)

[BI99] Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analyses
of pseudorandom function based constructions, with applications to PRP
to PRF conversion. IACR Cryptology ePrint Archive, Report 1999/024
(1999). http://eprint.iacr.org/1999/024

[BKR98] Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: increas-
ing security by making block ciphers non-invertible. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg
(1998)

[BKR00] Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chain-
ing message authentication code. J. Comput. Syst. Sci. 61(3), 362–399
(2000)

[BPR05] Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC
MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545.
Springer, Heidelberg (2005)

[BR05] Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: the
three-key constructions. J. Cryptol. 18(2), 111–131 (2005)

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
http://eprint.iacr.org/2004/331

[Bra82] Brassard, G.: On computationally secure authentication tags requiring
short secret shared keys. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.)
CRYPTO 1982, pp. 79–86. Plenum Press, New York (1982)

[CLL+14] Chen, S., Lampe, R., Lee, J., Seurin, Y., Steinberger, J.: Minimizing
the two-round even-mansour cipher. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 39–56. Springer, Heidelberg
(2014). http://eprint.iacr.org/2014/443

[CLP14] Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR
of k permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol.
8540, pp. 285–302. Springer, Heidelberg (2015)

http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#permutations
http://cr.yp.to/papers.html#pema
http://eprint.iacr.org/2004/309
http://eprint.iacr.org/1999/024
http://eprint.iacr.org/2004/331
http://eprint.iacr.org/2014/443

148 B. Cogliati and Y. Seurin

[CS14] Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 327–350. Springer, Heidelberg (2014). http://eprint.iacr.org/2013/222

[CS16] Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure,
nonce-misuse resistant MAC. Full version of this paper. http://eprint.iacr.
org/2016/525

[DS11] Dodis, Y., Steinberger, J.: Domain extension for MACs beyond the birth-
day barrier. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 323–342. Springer, Heidelberg (2011)

[Fer05] Ferguson, N.: Authentication weaknesses in GCM. Comments Submitted
to NIST Modes of Operation Process (2005). http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

[GMS74] Gilbert, E.N., MacWilliams, F.J., Sloane, N.J.A.: Codes which detect
deception. Bell Syst. Tech. J. 53(3), 405–424 (1974)

[HK97] Halevi, S., Krawczyk, H.: MMH: software message authentication in the
Gbit/second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp.
172–189. Springer, Heidelberg (1997)

[HP08] Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash func-
tion based MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 144–161. Springer, Heidelberg (2008)

[HWKS98] Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389.
Springer, Heidelberg (1998)

[JJV02] Jaulmes, É., Joux, A., Valette, F.: On the security of randomized CBC-
MAC beyond the birthday paradox limit: a new construction. In: Daemen,
J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 237–251. Springer,
Heidelberg (2002)

[JL04] Jaulmes, É., Lercier, R.: FRMAC, a fast randomized message authentica-
tion code (2004). http://eprint.iacr.org/2004/166

[Jou06] Joux, A.: Authentication failures in NIST version of GCM. Com-
ments Submitted to NIST Modes of Operation Process (2006). http://
csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38
Series-Drafts/GCM/Joux comments.pdf

[KR00] Krovetz, T., Rogaway, P.: Fast universal hashing with small keys and
no preprocessing: the PolyR construction. In: Won, D. (ed.) ICISC 2000.
LNCS, vol. 2015, pp. 73–89. Springer, Heidelberg (2001)

[Kra94] Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg
(1994)

[KVW04] Kohno, T., Viega, J., Whiting, D.: CWC: a high-performance conventional
authenticated encryption mode. In: Roy, B., Meier, W. (eds.) FSE 2004.
LNCS, vol. 3017, pp. 408–426. Springer, Heidelberg (2004)

[Luc00] Lucks, S.: The sum of PRPs is a secure PRF. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)

[Min10] Minematsu, K.: How to Thwart birthday attacks against MACs via small
randomness. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp.
230–249. Springer, Heidelberg (2010)

[MV04] McGrew, D.A., Viega, J.: The security and performance of the
Galois/counter mode (GCM) of operation. In: Canteaut, A., Viswanathan,
K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer,
Heidelberg (2004)

http://eprint.iacr.org/2013/222
http://eprint.iacr.org/2016/525
http://eprint.iacr.org/2016/525
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
http://eprint.iacr.org/2004/166
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf

EWCDM: An Efficient, Beyond-Birthday Secure 149

[Pat90] Patarin, J.: Pseudorandom permutations based on the DES scheme. In:
Cohen, G.D., Charpin, P. (eds.) EUROCODE 1990. LNCS, vol. 514,
pp. 193–204. Springer, Heidelberg (1991)

[Pat91] Patarin, J.: New results on pseudorandom permutation generators based
on the DES scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 301–312. Springer, Heidelberg (1992)

[Pat08a] Patarin, J.: A proof of security in O(2n) for the XOR of two random
permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155,
pp. 232–248. Springer, Heidelberg (2008). http://eprint.iacr.org/2008/010

[Pat08b] Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M.,
Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345.
Springer, Heidelberg (2009)

[Pat13] Patarin, J.: Security in O(2n) for the XOR of two random permutations:
proof with the standard H technique. IACR Cryptology ePrint Archive,
Report 2013/368 (2013). http://eprint.iacr.org/2013/368

[PC15] Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-
based MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 287–304. Springer, Heidelberg (2014)

[Rog95] Rogaway, P.: Bucket hashing and its application to fast message authen-
tication. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963,
pp. 29–42. Springer, Heidelberg (1995)

[Saa12] Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial
MACs and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549,
pp. 216–225. Springer, Heidelberg (2012)

[Sho96] Shoup, V.: On fast and provably secure message authentication based on
universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 313–328. Springer, Heidelberg (1996)

[WC81] Wegman, M.N., Carter, L.: New hash functions and their use in authenti-
cation and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

[Yas10] Yasuda, K.: The sum of CBC MACs is a secure PRF. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 366–381. Springer, Heidelberg (2010)

[Yas11] Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609. Springer,
Heidelberg (2011)

[ZWSW12] Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: enhancing 3GPP-MAC beyond
the birthday bound. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 296–312. Springer, Heidelberg (2012)

http://eprint.iacr.org/2008/010
http://eprint.iacr.org/2013/368

Asymmetric Cryptography and
Cryptanalysis I

A Subfield Lattice Attack on Overstretched
NTRU Assumptions

Cryptanalysis of Some FHE and Graded
Encoding Schemes

Martin Albrecht1(B), Shi Bai2, and Léo Ducas3

1 Information Security Group, Royal Holloway, University of London, London, UK
martin.albrecht@royalholloway.ac.uk

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

shih.bai@gmail.com
3 Cryptology Group, CWI, Amsterdam, The Netherlands

ducas@cwi.nl

Abstract. The subfield attack exploits the presence of a subfield to
solve overstretched versions of the NTRU assumption: norming the pub-
lic key h down to a subfield may lead to an easier lattice problem and
any sufficiently good solution may be lifted to a short vector in the full
NTRU-lattice. This approach was originally sketched in a paper of Gen-
try and Szydlo at Eurocrypt’02 and there also attributed to Jonsson,
Nguyen and Stern. However, because it does not apply for small moduli
and hence NTRUEncrypt, it seems to have been forgotten. In this work,
we resurrect this approach, fill some gaps, analyze and generalize it to
any subfields and apply it to more recent schemes. We show that for
significantly larger moduli — a case we call overstretched — the sub-
field attack is applicable and asymptotically outperforms other known
attacks.

This directly affects the asymptotic security of the bootstrappable
homomorphic encryption schemes LTV and YASHE which rely on a
mildly overstretched NTRU assumption: the subfield lattice attack runs

in sub-exponential time 2O(λ/ log1/3 λ) invalidating the security claim of
2Θ(λ). The effect is more dramatic on GGH-like Multilinear Maps: this
attack can run in polynomial time without encodings of zero nor the zero-
testing parameter, yet requiring an additional quantum step to recover
the secret parameters exactly.

M. Albrecht—Supported by EPSRC grant EP/L018543/1 “Multilinear Maps in
Cryptography”.
S. Bai—Supported by ERC Starting Grant ERC-2013-StG-335086-LATTAC.
L. Ducas—Supported by a grant from CWI from budget for public-private-
partnerships and by a grant from NXP Semiconductors through the Euro-
pean Union’s H2020 Programme under grant agreement number ICT-645622
(PQCRYPTO) and ICT-644209 (HEAT).
The full version of the paper is available on http://eprint.iacr.org/2016/127.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 153–178, 2016.
DOI: 10.1007/978-3-662-53018-4 6

http://eprint.iacr.org/2016/127

154 M. Albrecht et al.

We also report on practical experiments. Running LLL in dimen-
sion 512 we obtain vectors that would have otherwise required running
BKZ with block-size 130 in dimension 8192. Finally, we discuss concrete
aspects of this attack, the condition on the modulus q to guarantee full
immunity, discuss countermeasures and propose open questions.

Keywords: Subfield lattice attack · Overstretched NTRU · FHE ·
Graded encoding schemes

1 Introduction

Lattice-based cryptography relies on the presumed hardness of lattice problems
such as the shortest vector problem (SVP) and its variants. For efficiency, many
practical lattice-based cryptosystems are based on assumptions on structured
lattices such as the NTRU lattice. Introduced by Hoffstein et al. [HPS96,HPS98],
the NTRU assumption states that it is hard to find a short vector in the
R-module

Λq
h = {(x, y) ∈ R2 s.t. hx − y = 0 mod q}

with the promise that a very short solution — the private key — (f, g) exists.
The ring R = Z[X]/(P (X)) is a polynomial ring of rank n over Z, typically a
circular convolution ring (P (X) = Xn −1) or the ring of integers in a cyclotomic
number field (P (X) = Φm(X) and n = φ(m)).

Following the pioneer scheme NTRUencrypt [HPS98], the NTRU assump-
tion has been re-used in various cryptographic constructions such as signatures
schemes [HHGP+03,DDLL13], fully homomorphic encryption [LTV12,BLLN13]
and a candidate construction for cryptographic multi-linear maps [GGH13a,
LSS14,ACLL15]. After two decades of cryptanalysis, the NTRUencrypt

scheme remains essentially unbroken, and is one of the fastest candidates for
the public-key cryptosystems in the post-quantum era.

Coppersmith and Shamir [CS97] noticed that recovering a short enough vec-
tor, may it be different from the actual secret key (f, g), may be sufficient for an
attack and claimed that the celebrated LLL algorithm of Lenstra et al. [LLL82]
would lead to such an attack. However, it turned out [HPS98] that for suffi-
ciently large dimension n, a much stronger lattice reduction is required and
that the NTRUencrypt is asymptotically secure. Meanwhile, parameters have
been updated to take account for progress in lattice reduction algorithms and
potential quantum speed-ups [HPS+15].

Other types of attacks have been considered, such as Odlyzko’s meet-in-
the-middle attack described in [HSW06]. In practice, the best known algorithm
for attacking NTRU lattices is the combined lattice-reduction and meet-in-
the-middle attack of Howgrave-Graham [HG07]. Asymptotically, a slightly sub-
exponential attack against the ternary-NTRU problem was proposed by Kirchner
and Fouque [KF15], with a heuristic complexity 2Θ(n/ log log q), which is to our
knowledge the only sub-exponential attack when q is polynomial in n.

A Subfield Lattice Attack on Overstretched NTRU Assumptions 155

It is typically assumed that NTRU lattices are essentially as intractable as
unstructured lattices with similar parameters1, but without the structure of
R-module.

In the present work, we consider the application of lattice reduction in a
subfield to attack the NTRU assumption for large moduli q. This subfield lattice
attack is asymptotically faster than the direct lattice attack as soon as q is
super-polynomial, and may also be relevant for polynomially-sized q. We call
the problem2 considered in this work “overstretched NTRU” to distinguish it
from the original NTRU parameter choices, which remain secure.

Asymptotics. The subfield attack leads to solving overstreched NTRU instances
in time complexity poly(n) · 2Θ(β) with β/ log β = Θ

(
n log n/ log2 q

)
when ever

the relative degree parameter r = Θ(log q/ log n) is greater than 1. In compari-
son, the direct lattice attack required setting β/ log β = Θ (n/ log q).

We are mostly concerned with overstretched NTRU assumptions when q is
super-polynomial in n, in which case the best known attacks are already sub-
exponential in n. For cryptographic relevance, we will therefore state all our
asymptotics in terms of what was previously thought as the security parameter
λ: given q = q(λ) we constrain n = n(λ) so that the previously best known attack
requires exponential time 2Θ(λ). In this cryptographic metric, the subfield lattice
attack is sub-exponential as soon as q is super-polynomial, and gets polynomial
for larger parameters q = 2Θ̃(λ) = 2Θ̃(

√
n).

Our Contribution. In this work, we resurrect3 the subfield lattice attack sketched
in [GS02, Sec.6], attributed to Gentry, Szydlo, Jonsson, Nguyen and Stern. It
consists of norming down the secret key to a subfield, running lattice reduction
in the subfield to solve a smaller, potentially easier lattice problem and lifting
the solution back to the full field.

While the original sketch [GS02] only considered the maximal real subfield,
we naturally generalize it to any subfield. We also spell out a different lifting step
from arbitrary subfields and prove it applicable even if only an approximation
of the normed-down key is found.

We then show that this algorithm solves the overstretched NTRU prob-
lem in sub-exponential time when the modulus q is quasi-polynomial in the
security parameter λ and in polynomial time when the modulus q is super-
exponential in λ (equivalently, q = 2Θ̃(

√
n)). Applying this algorithm, we show

that it gives a subexponential attack on parameter choices for NTRU-based
FHE schemes [LTV12,BLLN13] which were believed secure previously. We also
show that this algorithm enables new attacks on GGH-like graded encoding

1 Volume, dimension and length of unusually short vectors.
2 The NTRU problem has also been recently been referred to as DSPR (Decisional

Small Polynomial Ratio), but we prefer its historical name for fair attribution of this
invention.

3 A preliminary version of this work qualified the attack considered in this work as
new. We are grateful to John Schanck for pointing us to this prior art.

156 M. Albrecht et al.

schemes [GGH13a,LSS14,ACLL15]. These attacks lead to subexponential clas-
sical and polynomial-time quantum attacks on GGH-like constructions but do
not require encodings of zero nor do they use the zero-testing parameter in con-
trast to previous work [HJ15].

We also report on experimental results for the subfield lattice attack which
show that the attack is meaningful in practice. Using LLL in dimension 512 we
have obtained vectors that would have required running BKZ with block-size
about 130 in dimension 8192. We refer the reader to the full version of this work
for the experimental results.

Related Work. As mentioned above, a variant of the attack considered in this
work was sketched in [GS02]. Moreover, the Gentry-Szydlo algorithm from the
same work, which allows to reconstruct an element a given the ideal (a) as well as
the Gram element aā, i.e. the norm NK/K+(a) of a relatively to the real subfield,
can be seen as a subfield attack. It lead to an attack of the NSS scheme [HPS01]
in which the Gram element aā was leaked as the covariance of a certain function
of the signatures. The Gentry-Szydlo algorithm was recently revisited [LS14].

This attack is very similar in spirit to an attack of Gentry [Gen01] against the
NTRU-composite assumption which tackles NTRU problems over rings R that
can be written as direct products R � R1×R2. More specifically [Gen01] targets
circulant convolution rings Z[X]/(Xn − 1) � Z[X]/(Xn1 − 1) ×Z[X]/(Xn2 − 1)
where n = n1n2. Under such condition, there exists a projection π : R → R1

that is a ring homomorphism, and he showed that this projection could only
increase the Euclidean length of secret polynomials by a factor

√
n2. This makes

this attack very powerful (even when the modulus q is quite small). Because this
projection is a ring homomorphism, this approach is not limited to NTRU and
would also apply to Ring-SIS or Ring-LWE.

In some sense, the line of work by Lauter et al. [ELOS15,EHL14,CLS15]
against skewed4 variants of Ring-LWE falls in this framework, with a direct
factorization of the rings R modulo q: (R/qR) � (R1/qR1) × (R2/qR2). As
already noted in [Gen01], this requires the — seemingly sporadic — property
that the projection map πq : (R/qR) → (R1/qR1) induces only a manageable
geometric distortion. Similar ideas are being explored to attack schemes based
on certain quasi-cyclic binary codes in work [Loi14,LJ14,HT15].

In comparison, this work tackles NTRU when the ring R equals OK (the ring
of integer of a number field K) and therefore cannot be a direct product; and
when K admits proper subfields. Due to the aforementioned attack of [Gen01],
direct product rings are now avoided for lattice-based cryptography, and the typ-
ical choice is to use the ring of integers of a cyclotomic number field of the form
R = OQ(ωm) = Z[ωm]. This setting allows to argue worst-case hardness of certain
problems (Ring-SIS [Mic02], Ideal-LWE [SSTX09], later improved and renamed
to Ring-LWE [LPR10]). Yet all those number fields admit proper subfields

4 It was recently shown that these attacks were in fact made possible by an improper
choice of a very skewed error distributions leading to several noise-free linear equa-
tions [CIV16,Pei16].

A Subfield Lattice Attack on Overstretched NTRU Assumptions 157

(at least, the maximal real subfield). Instead of using a projection map π, this
attack exploits a relative norm map NK/L : OK → OL, which is only a multiplica-
tive map. This induces a significant yet manageable blow-up on the Euclidean
length of secret polynomials and requires a large modulus q. This seems to also
limit this attack to the NTRU setting.

Our work is also strongly inspired by the the logarithm-subfield strat-
egy of Bernstein [Ber14], which anticipated other works towards a logarithm
attack [CGS14,CDPR16]. While the presence of subfields was in the end not
necessary for the recovery of short generators of principal ideals in cyclotomic
rings, we show in this work that, indeed, the presence of proper subfields can be
exploited in other specific set-ups.

Concurrently and independently to this work, Cheon, Jeong and Lee
also investigated subfield attacks on GGH-like graded encoding schemes in
work [CJL16]. The general approach is very similar to the one adopted in this
work. In [CJL16], however, the trace map is utilised instead of the norm and the
result is only presented for the case of powers-of-two cyclotomic rings. Despite
using the trace map — which is linear — they obtain a growth of the secret that
is similar to ours: multiplicative. For example, when the relative degree of K over
L is r = 2, the trace map TrK/L sends g/f to g/f + ḡ/f̄ = (gf̄ + ḡf)/ff̄ where ·̄
denotes the adequate automorphism. For comparison, the norm NK/L sends g/f
to gḡ/f f̄ . Using the norm map is therefore slightly better when both f, g have
the same size (the numerator is smaller by a factor ≈ √

r); but the trace map
could be very advantageous when g � f . Furthermore, Cheon, Jeong and Lee
achieve better results for GGH-like graded encoding schemes by making use of
the zero-testing parameter which leads to a polynomial-time classical attack for
large levels of multilinearity κ.

Outline. Section 2 gives preliminaries on the geometry of NTRU lattices and a
brief introduction of the lattice reduction algorithms. Section 3 then presents the
subfield lattice attack with its asymptotic performance analyzed in Subsect. 3.4.
In Sect. 4, we apply this attack to the FHE and MLM constructions proposed
in recent literature. In Sect. 5, we report experimental results for the subfield
lattice attack. Finally, Sect. 6 presents the conclusions and suggests directions
for future research.

2 Preliminaries

Vectors are presented in row vectors. The notation [·]q denotes reduction modulo
an integer q.

2.1 Number Fields and Subfields

We assume some familiarity with basic algebraic number theory. The reader may
refer to [Sam70] for an introduction on the topic.

158 M. Albrecht et al.

Let K be a number field of degree n = [K : Q] over Q, and assume K is a
Galois extension of Q with the Galois group G. The fundamental theorem of
Galois Theory states an one-to-one correspondence between the subgroups G′

of G and the subfields L of K with G′ being the subgroup of G fixing L. Let
therefore L be a subfield of K and G′ be the subgroup of G fixing L, and denote
n′ = [L : Q], r = [K : L] (so r = n/n′). The number fields K, L and therefore
the degrees n, n′ and relative degree r are fixed in the rest of this work.

The relative norm NK/L : K → L (resp. relative trace TrK/L : K → L) is a
multiplicative (resp. an additive) map defined by

NK/L : a �→
∏

ψ∈G′
ψ(a), resp. TrK/L : a �→

∑
ψ∈G′

ψ(a). (1)

The canonical inclusion L ⊂ K will be written explicitly as L : L → K. The ring
of integers of K and L are denoted by OK and OL.

A number field of degree n admits n embeddings –i.e. field morphisms– to
the complex numbers. Writing K = Q(X)/(P (X)) for some monic irreducible
polynomial P , and letting α1, . . . , αn ∈ C be the distinct complex roots of P ,
each embedding ei : K → C consists of evaluating a ∈ K at a root αi, formally
ei : a �→ a(αi). The Galois group acts by permutation on the set of embeddings.

Cyclotomic Number Field. We denote by ωm an arbitrary primitive m-th root
of unity. For cryptanalytic purposes, we are mostly interested in the case when
K = Q(ωm) is the m-th cyclotomic number field; But we may also want to
instantiate the attack for subfields L of K that are not necessarily cyclotomic
number fields.

The number field L = Q(ωm) has degree n = φ(m), and has a Galois group
isomorphic to Z

∗
m: explicitly i ∈ Z

∗
m corresponds to the automorphism ψi : ωm �→

ωi
m. Any number field Q(ωm′) for m′|m is a subfield of Q(ωm), but there are

other proper subfields. In particular, the maximal real subfield Q(ωm + ω̄m) is a
proper subfield of degree n/2, and more generally, K = Q(ωm) admits a subfield
of degree n′ for any divisor n′|n.5

We recall (see [Was97], Theorem 2.6) that the ring of integers OK of K =
Q(ωm) is exactly Z[ωm].

2.2 Coprimality in OL

To argue below that we can lift solutions in the subfield to the full field, we rely
on two randomly chosen elements in OL being coprime. We use density results
to estimate such probability. The density of coprime pairs of ideals [Sit10] and
elements [FM14] in OL is 1/ζL(2) where ζL denotes the Dedekind zeta function
over K.

5 For example, 7 is prime, so Q(ω7) admits no cyclotomic number fields as proper
subfields, yet it admits two proper subfields: Q(ω7 + ω̄7) of degree 3 and Q(ω7 +ω2

7 +
ω4
7) of degree 2.

A Subfield Lattice Attack on Overstretched NTRU Assumptions 159

We consider ζL for cyclotomic number fields K = Q(ωm) where m = pk for
some prime p. The next lemma shows that limk→∞ ζL(s) = 1/(1 − p−s) for real
s > 3/2.

Lemma 1. Let L be a cyclotomic number field Q(ωm′) for m′ = pk. Then for
any real s > 3/2 we have

lim
k→∞

ζL(s) = 1/(1 − p−s).

In particular limk→∞ ζL(2) = 4/3 for cyclotomic number fields of conductor
m′ = 2k.

Proof. Please refer to the full version of this work for the proof.
�

Further, we numerically approximated ζ−1
L

(2) for L = Q[x]/(xn + 1) for
n = 128 and n = 256 by computing the first 222 terms of the Dirichlet series of
the Dedekind zeta function for L and then evaluated the truncated series at 2.
In both cases we get a density ≈ 0.75.

We stress that our pairs f ′, g′ are random elements obtained as relative norms
NK/L(f),NK/L(g) of random short f and g, and under the additional condition
that f is invertible modulo q. However, our experiments indicate that 3/4 is
a good approximation of the actual probability of coprimality. Additionally, it
seems that this requirement is an artifact of our proof, as experiments succeeded
even when those elements had a common factor.

2.3 Euclidean Geometry

The number field K (or L) is viewed as a Euclidean Q-vector space by endowing
it with the inner product

〈a, b〉 =
∑

e

e(a)ē(b) (2)

where e ranges over all the n (or n′) embeddings K → C. This defines a Euclidean
norm denoted by ‖ · ‖. In addition to the Euclidean norm, we will make use of
the operator norm | · | defined by:

|a| = sup
x∈K∗

‖ax‖/‖x‖. (3)

It is easy to check that the operator norm |a| of a equals to the maximal absolute
complex embedding of a:

|a| = max
e

|e(a)| (4)

where e ranges over all the embeddings e : K → C. We note that if ω ∈ K is a root
of unity, then |ω| = 1. The operator’s norm is sub-multiplicative: |ab| ≤ |a| |b|,
and we have the inequality |a| ≤ ‖a‖. The Euclidean norm and the operator
norm are invariant under automorphisms ψ : K �→ K,

‖a‖ = ‖ψ(a)‖, |a| = |ψ(a)| (5)

160 M. Albrecht et al.

since the group of automorphisms acts by permutation on the set of embed-
dings. One also verifies that ‖L(a)‖2 = r‖a‖2 and |L(a)| = |a| for all a ∈ L.
Additionally, the algebraic norm can be bounded in term of geometric norms:

NK/Q(a) ≤ |a|n ≤ ‖a‖n. (6)

The inner product (and therefore the Euclidean norm) are extended in a
coefficient-wise manner to vectors of Kd: 〈(a1, . . . , ad), (b1, . . . , bd)〉 =

∑
〈ai, bi〉.

Definition 1. A distribution D over Kd is said to be isotropic of variance σ2 ≥ 0
if, for any y ∈ K

d it hold that

Ex←D
[
〈x, y〉2

]
= σ2‖y‖2

where E[·] denotes the expectation of a random variable.

Remark. In most theoretical work, the distributions of secrets or errors are spher-
ical discrete Gaussian distribution over OK which are isotropic —up to negligi-
ble statistical distance. For simplicity, some practically oriented work instead
chose random ternary coefficients. In the typical power-of-two case cyclotomic
case, such distribution is isotropic of variance 2n/3. Yet, for more general choices
K = Q(ωm), in the worse case (when m is composed of many small distinct prime
factor), this may induce up to quasi-polynomial distortion nlog(n) (see [LPR10]).
Such choice of set-up should only marginally affect our asymptotic results.

2.4 OK Modules and Lattices

To avoid confusion, we shall speak of the rank of OK-modules and of K-vectors-
spaces when K �= Q, and restrict the term of dimension to Z-modules and Q-
vector spaces.

The dimension dim(Λ) of a lattice Λ is the dimension over Q of the Q-vector
space it spans6. We recall that the minimal distance of a lattice Λ is defined
as λ1(Λ) = minv∈Λ\{0} ‖v‖. Also, the volume of a lattice Vol(Λ) is defined as
the square root of the absolute determinant of the Gram matrix of any basis
{b1 . . . bdim(Λ)} of Λ Vol(Λ) =

√
det([〈bi, bj〉]i,j). For any set of Q-linearly inde-

pendent vectors {v1, . . . , vdim(Λ)} ⊂ Λ, we have the inequality:

Vol(Λ) ≤
∏

‖vi‖. (7)

The rank of an OK module M ⊂ K
d can be defined as the rank over K of the

K vector-space it spans, but it does not necessarily equal the size of a minimal
set of OK-generators7. The Euclidean vector space structure of K

d allows to
view any discrete OK-module M ⊂ K

d as a lattice. The discriminant ΔK of a
6 Or equivalently, the size of a minimal sets of Z-generators, since Z is a principal ideal

domain.
7 Non-principal ideals of K being a counter-example.

A Subfield Lattice Attack on Overstretched NTRU Assumptions 161

number field relates to the volume of its ring of integers
√

|ΔK| = Vol(OK). More
generally, we have the identity:

Vol(aOK) = NK/Q(a)
√

|ΔK|. (8)

This gives rise to a lower bound on the volume OK-modules of rank 1 in term of
its minimal distance:

Lemma 2. Let M ⊂ K
d be a discrete OK-module of rank 1. It follows that

Vol(M) ≤ λ1(M)n
√

|ΔK|.

Proof. Without loss of generality, we may assume that d = 1 (by constructing a
K-linear isometry ι : Span

K
(M) → K⊗QR). Let a ∈ K⊗QR be a shortest vector

of M , we have M ⊃ aOK, therefore Vol(M) ≤ Vol(aOK) = NK/Q(a)
√

|ΔK|, and
we conclude noting that NK/Q(a) ≤ ‖a‖n.
�

2.5 NTRU Assumption

Let us first describe the NTRU problem as follows.

Definition 2 (NTRU problem, a.k.a. DSPR). The NTRU problem is defined
by four parameters: a ring R (of rank n and endowed with an inner product), a
modulus q, a distribution D, and a target norm τ . Precisely, NTRU(R, q,D, τ)
is the problem of, given h = [gf−1]q (conditioned on f being invertible mod q)
for f, g ← D, finding a vector (x, y) ∈ R2 such that (x, y) �= (0, 0) mod q and of
Euclidean norm less than τ

√
2n in the lattice

Λq
h = {(x, y) ∈ R2 s.t. hx − y = 0 mod q}. (9)

We may abuse notation and denote NTRU(R, q, σ, τ) for NTRU(R, q,D, τ) where
D is any reasonable isotropic distribution of variance σ2.

Note that NTRU(R, q, σ, σ) is essentially the problem of recovering the secret
key (f, g). Yet, in many cases, solving NTRU(R, q, σ, τ) for some τ > σ is enough
to break NTRU-like cryptosystems.

The NTRU lattice Λq
h. The lattice Λq

h defined by the instance h ←
NTRU(OK, q, σ, τ) has dimension 2n and volume Vol(R)2qn. Consequently, if h
were to be uniformly random, the Gaussian heuristic predicts that the short-
est vectors of Λq

h have norm Vol(R)1/n
√

nq/πe. Therefore, whenever σ <

Vol(R)1/n
√

q/2πe, the lattice Λq
h admits an unusually short vector. This vector

is not formally a unique shortest vector: for example, if K = Q(ωm), R = OK,
all rotations (ωi

mf, ωi
mg) of that vector have the same norm.

Target Parameter τ for Attacks. Because no solution would be expected if
h was uniformly random, note that solving h ← NTRU(R, q, σ, τ) for τ <

Vol(R)1/n
√

q/2πe already constitutes a distinguishing attack on the NTRU prob-
lem. As we discuss in Sect. 4, solving NTRU for such τ would break the FHE
scheme based on NTRU from [LTV12] and typical parameter choices for the
scheme presented in [BLLN13].

162 M. Albrecht et al.

2.6 Lattice Reduction Algorithms

Lattice reduction algorithms have been studied for many years in work such
as [LLL82,Sch87,GN08,HPS11]. From a theoretical perspective, one of the best
lattice reduction algorithm is the slide reduction algorithm from [GN08].

Theorem 1 ([GN08]). There is an algorithm that, given ε > 0, the basis B of
a lattice L of dimension d, and performing at most

poly(d, 1/ε,bitsize(B))

many operations and calls to an SVP oracle in dimension β, outputs a vector
v ∈ L whose length satisfies the following bounds:

– the approximation-factor bound:

‖v‖ ≤ ((1 + ε)γβ)
d−β
β−1 · λ1(L) (10)

where λ1(L) is the length of a shortest vector in L and γβ ≈ β is the β-
dimensional Hermite constant.

– the Hermite-factor bound:

‖v‖ ≤ ((1 + ε)γβ)
d−1
2β−2 · Vol(L)1/d (11)

Alternatively, one may use the BKZ algorithm [Sch87] and its terminated
variant [HPS11]. Similar to slide reduction, the terminated BKZ performs at most
poly(d, 1/ε,bitsize(B)) many operations and calls to an SVP oracle in dimension
β; and outputs a vector v ∈ L whose length has order βΘ(n/β) · Vol(L)1/d.
Using [Lov87, p. 25], the terminated BKZ also provides an algorithm to find an
approximated shortest vector of length βΘ(n/β) · λ1(L) in similar time.

It is well known [CN11] that in practice lattice reduction algorithms achieve
much shorter results and are more efficient, but the approximation and Hermite
factors remain of the order of βΘ(n/β) asymptotically, for a computational cost
in poly(λ) · 2Θ(β). We will use such estimate in the following analysis.

3 The Subfield Lattice Attack

The subfield lattice attack works in three steps. First, we map the NTRU
instance to the chosen subfield, then we apply lattice reduction, and finally
we lift the solution to the full field. We first describe the three steps of the
attacks in Sects. 3.1, 3.2 and 3.3. In Sect. 3.4, we then analyze the asymptotic
performances compared to direct reduction in the full field for cryptographically
relevant asymptotic parameters.

We are given an instance h ← NTRU(OK, q, σ, τ), and (f, g) ∈ OK is the
associated secret. We wish to recover a short vector of Λq

h.

A Subfield Lattice Attack on Overstretched NTRU Assumptions 163

3.1 Norming Down

We define f ′ = NK/L(f), g′ = NK/L(g), and h′ = NK/L(h). The subfield attack
follows from the following observation: (f ′, g′) is a vector of Λq

h′ and depending
on the parameters it may be an unusually short one.

Lemma 3. Let f, g ∈ OK ⊗QR be sampled from continuous spherical Gaussians
of variance σ2. For any constant c > 0, there exists a constant C, such that,

‖g′‖ ≤
(
σnC

)r
, ‖f ′‖ ≤

(
σnC

)r
, |f ′| ≤

(
σnC

)r
, |f ′−1| ≤

(
nC/σ

)r

except with probability O(n−c).

Proof. For all embeddings e : K �→ C, it simultaneously holds that

σ/nC ≤ |e(f)| ≤ σnC (12)

except with polynomially small probability O(n−c). Once this is established, the
conclusion follows using the invariant |ψ(a)| = |a| since f ′ =

∏
ψ(f), where ψ

ranges over r automorphisms of K.
To prove inequality (12), note that for each embedding e, the �(e(f))

and �(e(f)) follow a Gaussian distribution of parameter Θ(n)σ. Classical tails
inequality gives the upper bound |e(f)| ≤ σnC . For the lower bound, we remark
that the probability density function of a Gaussian of parameter Θ(n)σ is
bounded by 1/(Θ(n)σ). This implies that the probability that a sample falls
in the range 1

Θ(n)σ [−ε, ε] is less than 2ε. It remains to choose ε = Θ(n−c−1)
which gives the conclusion by the union-bound.
�

In this work, we assume that Lemma 3 holds also for all reasonable distrib-
utions considered in cryptographic constructions.

Heuristic 1. For any m and any f, g ∈ OK with reasonable isotropic distrib-
ution of variance σ2, and any constant c > 0, there exists a constant C, such
that,

‖g′‖ ≤
(
σnC

)r
, ‖f ′‖ ≤

(
σnC

)r
, |f ′| ≤

(
σnC

)r
, |f ′−1| ≤

(
nC/σ

)r

except with probability O(n−c).

3.2 Lattice Reduction in the Subfield

We now apply a lattice reduction algorithm with block-size β to the lattice
Λq

h′ , and according to the approximation factor bound (10) we obtain a vector
(x′, y′) ∈ Λq

h′ of norm:

‖(x′, y′)‖ ≤ βΘ(2n′/β) · λ1(Λ
q
h′) ≤ βΘ(n/βr) · ‖(f ′, g′)‖ (13)

≤ βΘ(n/βr) · (nσ)Θ(r)
. (14)

Next, we argue that if the vector (x′, y′) is short enough, then it must be an
OK-multiple of (f ′, g′). In turn, this will allow us to lift (x′, y′) to a short vector
in the full lattice Λq

h.

164 M. Albrecht et al.

Theorem 2. Let f ′, g′ ∈ OL be such that 〈f ′〉 and 〈g′〉 are coprime ideals and
that h′f ′ = g′ mod qOL for some h′ ∈ OL. If (x′, y′) ∈ Λq

h′ has length satisfying

‖(x′, y′)‖ <
q

‖(f ′, g′)‖ (15)

then (x′, y′) = v(f ′, g′) for some v ∈ OL.

Proof. We first prove that that B = {(f ′, g′), (F ′, G′)} is a basis of the OL-
module Λq

h′ for some (F ′, G′) ∈ O2
L
. The argument is adapted from [HHGP+03],

Sect. 4.1 By coprimality, there exists (F ′, G′) such that f ′G′ − g′F ′ = q ∈ OL.
We note that:

f ′(F ′, G′) − F ′(f ′, g′) = (0, q);
g′(F ′, G′) − G′(f ′, g′) = (−q, 0);

[f ′−1]q(f
′, g′) = (1, h′) mod q.

That is, the module M generated by B contains qO2
L

and (1, h′): we have proved
that Λq

h′ ⊂ M . Because detL(B) = f ′G′ − g′F ′ = q = detL({(1, h′), (0, q)}) we
have Vol(M) = |ΔL|qn′

= Vol(Λq
h′) and therefore M = Λq

h′ .
We denote Λ = (f ′, g′)OL and Λ∗ the projection of (F ′, G′)OL orthogonally

to Λ. Let s∗ of length λ∗
1 be a shortest vector of Λ∗. We will conclude using the

fact that any vector of Λq
h′ of length less than λ∗

1 must belong to the sublattice
Λ. It remains to give an lower bound for λ∗

1.
We will rely on the identity Vol(Λ) · Vol(Λ∗) = Vol(Λq

h′) = |ΔL|qn′
. By

Lemma 2, we have

Vol(Λ) ≤ |ΔL|1/2‖(f ′, g′)‖n′
and Vol(Λ∗) ≤ |ΔL|1/2‖s∗‖n′

. (16)

We deduce that λ∗
1 = ‖s∗‖ ≥ q/‖(f ′, g′)‖. Therefore, the hypothesis (15) ensures

that ‖(x′, y′)‖ < λ∗
1, and we conclude that (x′, y′) ∈ Λ = (f ′, g′)OL.
�

We note that according to Heuristic 1, the length condition of Theorem 2 are
satisfied asymptotically when

βΘ(n/βr) · (nσ)Θ(r) ≤ q. (17)

The probability of satisfying the coprimality condition for random f ′, g′ is
discussed in Sect. 2.2, where we argue it to be larger than a constant. On the
other hand, experiments (cf. Sect. 5) show that the co-primality condition does
not seems necessary in practice for the subfield lattice attack to succeed.

The partial conclusion is that, one may recover non-trivial information about
f and g — namely, a small multiple of (f ′, g′) — by solving an NTRU instance in
a subfield. Depending on the parameters, this new problem is potentially easier
since the dimension n′ = n/r of OL is significantly smaller than the dimension
2n of the full lattice Λq

h.

A Subfield Lattice Attack on Overstretched NTRU Assumptions 165

3.3 Lifting the Short Vector

It remains to lift the solution from the sub-ring OL to OK. Simply compute the
vector (x, y) where

x = L(x′) and y = L(y′) · h/L(h′) mod q (18)

where L : L → K is the canonical inclusion map of L ⊂ K.
Recall from Theorem 2 that (x′, y′) = v(f ′, g′). We set f̃ = L(f ′)/f , g̃ =

L(g′)/g and h̃ = L(h′)/h. Note that f̃ , g̃ and h̃ are integers of K. We rewrite

x = L(v) · f̃ · f mod q.

y = L(v) · L(g′)/h̃ = L(v) · gg̃/h̃ mod q

= L(v) · f̃ · g mod q.

That is, under condition (17) we have found a short multiple of (f, g):

(x, y) = u · (f, g) ∈ Λq
h with u = L(v) · f̃ ∈ OK

‖(x, y)‖ ≤ |v| · |f |r−1 · ‖(f, g)‖
≤ |x′| · |f ′−1| · |f |r−1 · ‖(f, g)‖
≤ βΘ(n/βr) · (nσ)Θ(r)

.

The first inequality is established by writing f̃ as the product of r − 1 many
ψ(f) where the ψ’s are automorphisms of K. The second inequality decomposes
v = x′/f ′, and the last follows from Lemma 3 or Heuristic 1.

Not only we have found a short vector of Λq
h, but also have the guarantee

that it is an OK-multiple of the secret key (f, g). This second property will prove
useful to mount attacks on the graded encoding schemes [GGH13a].

3.4 Asymptotic Performance

For the subfield attack to be successful, we require

√
q = βΘ(2n/(β r)) · λ1(Λ

q
h′) = βΘ(2n/(β r)) · nΘ(r)

when σ = poly(n). Hence, asymptotically we get

β

log β
= Θ

(
4n

r log q − 2 r2 log n

)
,

where we require r log q−2 r2 log n > 0. Setting r = 1 roughly recovers the lattice
attack in the full field. Setting r = log q/(4 log n) minimizes the expression.

We illustrate the complexity for two extreme cases, where all parameters are
expressed in term of a security parameter λ, and are such that the previously
best known attack required time greater than 2λ. Additionally, it is assumed

166 M. Albrecht et al.

that K contains adequate subfields so that a subfield L of the desired relative
degree r exists. This condition is satisfied asymptotically for the typical choice
K = Q(ω2k).

In the first case, we set q = 2Θ̃(λ), and the subfield attack is polynomial in
the security parameter. For the second case, we show that as soon as q gets
super-polynomial, the subfield attack can be made sub-exponential.

Remark. Our analysis does not rule out that the attack may even be relevant
even for polynomial gaps q/σ: it could be that it remains exponential but with
a better constant than the direct attack.

Exponential and super-exponential q . We set:

n = Θ(λ2 log2 λ), q = exp(Θ(λ log2 λ)), σ = poly(λ) . (19)

Complexity of the Direct Lattice Attack. With such parameters, using 2λ opera-
tions, we argue that one may not find any vector shorter than λ1(qOK) = q

√
n.

Indeed, one may run lattice reduction up to block-size β = Θ(λ). Either from
approximation bound or Hermite bound, the vector found should not be shorter
than:

βΘ(n/β) = exp
(
Θ(λ2 log3(λ)/λ)

)
> λ1(qOK). (20)

We verify that having such choice of super-quadratic n makes the Kirchner-
Fouque [KF15] attack at least exponential in λ : exp(Θ(n/ log log q)) =
exp(Θ(λ2 log2(λ)/ log λ)) > exp(Θ(λ)).

Complexity of the Subfield Attack. In contrast, the same parameters allow the
subfield attack to recover a vector of norm less than

√
q in polynomial time: set

r = Θ(λ) and β = Θ(log λ). Then, the vector found will have norm

βΘ(n/βr) · nΘ(r) = exp
(

Θ

(
λ2 log λ log log λ

λ log λ
+ λ log λ

))
(21)

= exp (Θ(λ log λ log log λ)) <
√

q. (22)

Similarly, setting n = Θ
(
λ2

)
, q = exp(Θ(λ)), β = Θ

(
log1+ε λ

)
, r =

Θ (λ/ (log λ log log λ)) leads to a quasi-polynomial version of the subfield attack
for exponential q.

Quasi-polynomial q . We set

n = Θ (λlogε λ log log (λ)) , q = exp(Θ(log1+ε λ)), σ = poly(λ) .

Complexity of the Direct Lattice Attack. With such parameters, using 2λ opera-
tions, we argue that one may not find any vector shorter than λ1(qOK) = q

√
n.

Indeed, one may run lattice reduction up to block-size β = Θ(λ). Either from
approximation bound or Hermite bound, the vector found should not be shorter
than:

βΘ(n/β) = exp
(
Θ

(
log1+ε λ log log λ

))
> λ1(qOK). (23)

A Subfield Lattice Attack on Overstretched NTRU Assumptions 167

We verify that having such choice of super-linear n makes the Kirshner
and Fouque [KF15] attack at least exponential in λ: exp(Θ(n/ log log q)) =
exp(Θ (λlogε λ log log λ/ log log1+ε λ)) > exp(Θ(λ)).

Complexity of the Subfield Attack. In contrast, the same parameters allow the
subfield attack to recover a vector of norm less than

√
q in sub-exponential time

exp(λ/ logε/3 λ): set r = Θ(log2ε/3 λ) and β = Θ(λ/ logε/3 λ). Then, the vector
found will have norm

βΘ(n/βr) · nΘ(r) = exp

(
Θ

(
log1+

4
3 ε(λ) log log(λ)

log
2
3 ε(λ)

+ log1+2/3 ε(λ)

))

= exp
(
Θ

(
log1+2/3 ε (λ) log log (λ)

))
<

√
q. (24)

4 Applications

We apply this attack to the FHE and MLM constructions from the literature
and show that it necessitates to increase parameters for these schemes to remain
secure at level λ. In the cryptographic context, we typically have K = Q(ωm),
m a power of 2, and speak of the ring R = Zq[X]/(Xn + 1) � OK endowed with
the cannonical inner product of its coefficients vector. The ring isomorphism
μ : R → OK is a scaled isometry: ‖μ(x)‖ =

√
n‖x‖. This normalization is quite

convenient, for example ‖1R‖ = 1.

4.1 Fully Homomorphic Encryption

NTRU-like schemes are used to realise fully homomorphic encryption starting
with the LTV scheme from [LTV12]; the scheme was optimized and implemented
in [DHS15].

LTV is motivated by [SS11] which shows that under certain choices of para-
meters the security of an NTRU-like scheme can be reduced to security of Ring-
LWE. That is, [SS11] shows that if f and g have norms >

√
q · poly(λ), then

h = [g/f]q ∈ Zq[X]/(Xn + 1) — with n a power of two — is statistically indis-
tinguishable from a uniformly sampled element. Note that under this choice of
parameters the subfield lattice attack does not apply.

However, this choice of parameters rules out even performing one polynomial
multiplication and hence the schemes in [LTV12,DHS15] are based on an addi-
tional assumption that [g/f]q is computationally indistinguishable from random
even when f and g are small. This assumption — which essentially states that
Decisional-NTRU is hard — is called the Decisional Small Polynomial Ratio
assumption (DSPR) in [LTV12]. Note that this work shows that DSPR does not
hold in the presence of subfields and an overstretched NTRU assumption.

168 M. Albrecht et al.

LTV can evaluate circuits of depth L = O (nε/ log n) for q = 2nε

with ε ∈
(0, 1) and its decryption circuit can be implemented in depth (Olog log q + log n).
This implies

log(nε+1) < nε/ log n,

log(nε+1) < log q/ log n,

i.e. that q must be super-polynomial in n to realise fully homomorphic encryption
from LTV.

A scale-invariant variant of the scheme in [LTV12] called YASHE was pro-
posed in [BLLN13]. This variant does not require the DSPR assumption by
reducing the noise growth during multiplication. This allows f and g to be
sampled from a sufficiently wide Gaussian, such that the reduction in [SS11]
goes through. Sampling f and g this way allows to evaluate circuits of depth
L = (Olog q/(log log q + log n)) [BLLN13, Theorem 2] for Z2 being the plaintext
space.

On the other hand, setting the bounds on f, g to ‖f‖∞ = ‖g‖∞ = Bkey = 1,
the plaintext space to Z2 via t = 2, the multiplicative expansion factor of the ring
to δ = n by assuming n is a power of two and w = O(1), then the multiplicative
expansion factor of YASHE is (On2). For correctness, it is required that the
noise be less than q/4. Hence, to evaluate a circuit of depth L, YASHE requires
q/4 > (On2L) or L = O(log q/ log n) under this choice of parameters. As a
consequence, YASHE is usually instantiated with f and g very short, cf. [LN14].

Following [BV11, Lemma 4.5], Appendix H of [BLLN13] shows that YASHE
is bootstrapable if it can evaluat depth L = O(log log q + log n) circuits. For
‖f‖∞ = ‖g‖∞ = Bkey = 1 this implies

log log q + log(n) < log q/ log n,

log(n log q) < log q/ log n,

i.e. q must be super-polynomial in n for YASHE to provide fully homomorphic
encryption.

To establish a target size, recall that NTRU-like encryption of a binary mes-
sage μ ∈ Z2 is given by c = h · e1 + e2 + μ�q/2� for random errors of variance
ς2. To decrypt from a solution (F,G) to the instance h ← NTRU(R, q, σ, τ),
simply compute Fc = G · e1 + F · e2 + F · μ�q/2�. The error term G · e1 + F · e2
will have entries of magnitudes ςτ

√
n which we require to be < q/2 to decrypt

correctly. Hence, we require F,G < q/(2 ς
√

n). In [LTV12,BLLN13] like in other
FHE schemes, ς is chosen to be bounded by a very small, constant value.

In [CS15] several Ring-based FHE schemes are compared. For comparabil-
ity amongst the considered schemes and performance, the authors chose the
coefficients of f, g from {−1, 0, 1} with the additional guarantee that only 64
coefficients are non-zero in f or g. Then, to establish hardness they assume that
an adversary who can find an element < q in a q-ary lattice with dimension m
and volume qn wins for all schemes considered. Now, to achieve security against
lattice attacks, the root Hermite factor δ0 in q = δm

0 qn/m should be small enough,

A Subfield Lattice Attack on Overstretched NTRU Assumptions 169

where “small enough” depends on which prediction for lattice reduction is used.
In [DHS15] the same approach is used to pick parameters, but for a slightly
smaller target norm of q/4.

The attack presented in this work results in a subexponential attack in the
security parameter λ for LTV and YASHE, if L is sufficiently large to enable fully
homomorphic encryption and if n is chosen to be minimal such that a lattice
attack on the full field does not succeed. Set

q = exp
(
Θ

(
(ε + 1) log2 n

))

to satisfy correctness. Now, to rule out lattice attacks on the full field set
n = Θ

(
λ log λ log log2 λ

)
. Hence, for β = λ we have

βΘ(n/β) >
√

q,

Θ
(
log2 λ log log2 λ

)
> Θ

(
log2 λ

)
.

For the subfield attack, pick β = Θ
(
λ/log1/3 λ

)
and r = Θ

(
log2/3 λ

)
and

we get

βΘ(n/β r) · nΘ(r) <
√

q,

Θ
(
log

5
3 λ log log2 λ

)
< Θ

(
log2 λ

)
.

4.2 Graded Encoding Schemes

In [GGH13a] a candidate construction for graded encoding schemes approx-
imating multilinear maps was proposed. The GGH construction was improved
in [LSS14] and implemented and improved further in [ACLL15]. In these schemes,
short elements mi ∈ Z[X]/(Xn + 1) are encoded as [(ri · g + mi)/z]q ∈ R/qR
for some ri, g with norms of size poly(λ) and some random z. For correctness,
the latest improvements [ACLL15] require a modulus q = poly(λ)κ, where κ
is the multi-linearity level. The subfield attack is therefore applicable in sub-
exponential time for any κ = logε λ, according to Sect. 3.4, and would become
polynomial for κ > Θ(λ log λ). In practice, the fact that the constants in the
exponent q = λΘ(κ) is quite large could make this attack quite powerful even for
small degrees of multi-linearity.

While initially these constructions permitted the inclusion of encodings of
zero (mi = 0) to achieve multilinear maps, it was shown that these encodings
break security [HJ15]. Without such encodings, the construction still serves as
building-block for realizing Indistinguishability Obfuscation [GGH+13b].

To estimate parameters, [ACLL15] proceeds as follows8. Given encodings
x0 = [(r0 · g + m0)/z]q and x1 = [(r1 · g + m1)/z]q for unknown m0,m1 �= 0 we
may consider the NTRU lattice Λq

h where h = [x0/x1]q. This lattice contains
a short vector (r0 · g + m0, r1 · g + m1). In [ACLL15] all elements of norm

8 The attack is attributed to Steven Galbraith in [ACLL15].

170 M. Albrecht et al.

≈ ‖r0 · g + m0‖ = σ�
1 are considered “interesting” and recovering any such

element is considered an attack. This is motivated by the fact that if an attacker
recovers r0 · g + m0 exactly, then it can recover z. This completely breaks the
scheme.

The subfield lattice attack does not yield the vector (r0 · g + m0, r1 · g + m1)
exactly but only a relatively small multiple of it u(r0 · g + m0, r1 · g + m1). We
provide two approaches to completely break the scheme from this small multiple.
The first approach consists of solving a principal ideal problem and leads to
a quantum polynomial-time and classical subexponential attack. The second
approach relies on a statistical leak using the Gentry-Szydlo algorithm [GS02,
LS14], but is just outside reach with our current tools [GGH13a]. This approach
is arguably worrisome, and the authors of [GGH13a] spent significant efforts to
rule this approach out completely.

We remark that unlike previous cryptanalysis advances of multi-linear
maps [HJ15] this attack does not rely either on the zero testing parameter, nei-
ther on encodings of zero. Our cryptanalytic result therefore impacts all applica-
tions of multilinear maps, from multi-party key exchange to jigsaw puzzles and
Indistinguishability Obfuscation [GGH+13b]. For completeness, we note that
the CLT construction [CLT13] of Graded Encoding Schemes is also subject to a
quantum polynomial-time attack, because it relies on the hardness of factoring
large integers.

The Principal Ideal Problem and Short Generator Recovery. The
problem of recovering a short principal ideal generator from any generator
received a lot of attention recently, and a series of works has lead to subex-
ponential classical and polynomial-time quantum attacks against principal ideal
lattices [EHKS14,CGS14,CDPR16,BS16]. Precisely, given the ideal I = 〈g〉,
Biasse and Song [BS16] showed how to recover an arbitrary generator ug of I
in quantum polynomial time, extending the recent breakthrough of Eisentrager
et al. [EHKS14] on quantum algorithms over large degree number fields. Such
results were conjectured already in a note of Cambell et al. [CGS14], where
a classical polynomial time algorithm is also suggested to recover the original
g from ug (namely, LLL in the log-unit lattice). The correctness of a similar
algorithm was formally established using analytical number theory by Cramer
et al. [CDPR16].

In combination with this subfield lattice attack, this directly implies a poly-
nomial quantum attack. Indeed, the subfield lattice attack allows to recover
u(r0 · g + m0) for some relatively short u. Repeating this attack several time,
and obtaining u(r0 · g + m0) for various u eventually leads to the reconstruction
of the ideal 〈r0 · g + m0〉. Because r0 · g + m0 follows exactly a discrete Gaussian
distribution, the approach sketched above can be applied, and reveals r0 ·g +m0

exactly, and therefore z.
In conclusion, for any degree of multi-linearity κ, the subfield attack can be

complemented with a quantum polynomial step to a complete break. Alterna-
tively, when κ = O(λc) for any c < 1/2, — leading according to the previous best

A Subfield Lattice Attack on Overstretched NTRU Assumptions 171

known attacks to a choice of dimension n = Θ̃(λ1+c) — the 2Õ(n2/3) algorithms of
Biasse and Biasse and Fiecker [Bia14,BF14] combined lead to a classical attack
in time sub-exponential in λ.

The Statistical Attack. This attack consists in recovering uū and 〈u〉 and
using the Gentry-Szydlo algorithm [GS02,LS14] to recover u.

To recover 〈u〉, note that we are given u(a0, a1). We will assume that 〈a0〉, 〈a1〉
are coprime with constant probability, cf. Sect. 2.2. Under this assumption, 〈u〉
can be recovered as 〈u〉 = 〈ua0〉 + 〈ua1〉.9

To recover more information on u, we can compute ua0 · [xi/x0]q = uai for
other i > 1, and the equation hold over R because u and ai are small. For i > 1,
ai is a independent of u and follows a spherical Gaussian of parameter σ. It
follows that the variance of uai leaks uū: E[uai · uai] = σ2uū.

Given polynomially many samples xi one can therefore recover uū up to a
1 + 1/poly(λ) approximation factor. The original attack of Gentry-Szydlo algo-
rithm [GS02,LS14] requires the exact knowledge of uū that could be obtained
by rounding when u has poly-sized coefficient. However, the u provided by the
subfield lattice attack is much larger. In [GGH13a] this algorithm is revisited and
extended to when uū is only known up to a 1 + (log n)−Θ(log n) approximation
factor.

In conclusion, with the current algorithmic tools this approach is asymptot-
ically inapplicable if we assume only a polynomial number of available samples,
but only barely so. This raises the question of how to improve the tolerance of
the Gentry-Szydlo algorithm10. Yet, because (log n)Θ(log n) is arguably not so
large, it is unclear whether this approach is really infeasible in practice.

We concur with the decision made in [GGH13a], to attempt to rule out such
an attack by design even if it is not yet known how to fully exploit it.

5 Experimental Verification

Please refer to the full version of this work for experiments.

6 Conclusions

Practicality of the Attack. The largest instance we broke in practice is for the
set of parameter n = 212 and q ≈ 2190. Choosing a relative degree r = 16, the
attack required to run LLL in dimension 512, which took about 120 hours, single-
threaded, using Sage [Dev15] and Fplll [ABC+]. The direct, full field lattice
reduction attack, according to root-Hermite-factor based predictions [CN11],
9 Note that the subfield lattice attack may be tweaked to obtain a triplet u(a0, a1, a2)

(or more) increasing the probability to recover 〈u〉.
10 Asymptotically, the natural idea of replacing LLL by slightly stronger lattice reduc-

tion does not seems to help, but should help in practice. The quasi-polynomial factor
relates to a number theoretic heuristic. See Sect. 7.6 of [GGH13a].

172 M. Albrecht et al.

would have required running BKZ in block-size ≈ 130, and in dimension 8192,
which is hardly feasible with the current state-of-the art [CN11] (requiring more
than 270 CPU cycles). We conclude that the subfield attack proposed in this
work is not only theoretical but also practical.

Obstructions to Concrete Predictions. We are currently unable to predict pre-
cisely how a given set of parameters would be affected, for example to predict
the power of this attack against concrete parameter choices of NTRU-based
FHE [LTV12,BLLN13] and Multilinear Maps [GGH13a].

There are two issues for those predictions. The first issue is that we make
use of LLL/BKZ in the approximation-factor regime, not in the Hermite-factor
regime. While the behavior of LLL/BKZ is quite well modeled in the latter
regime, we are not aware of precise models for the former for NTRU lattices.
Unlike the Hermite-factor regime, this case could very well be influenced by the
presence of many short vectors rather than just a few.

The second issue is that we do not know the actual size of the shortest
vector of Λq

h′ : all we know is that it is no larger than (f ′, g′). In several cases in
the experiments we found vectors (x′, y′) = v(f ′, g′) that were actually shorter
than (f ′, g′)— the tentative root-approximation factor α is less than 1. One
may expect that (f ′, g′) may still be (or close to) the shortest vector for small
relative degree r as it is the shortest with high probability in the full field (i.e.
when r = 1).

Immunity of NTRU Encryption and BLISS Signature Schemes. If q is small
enough, then the attacks should become inapplicable, even with the smallest
possible relative dimension r = 2. Precisely, if (f ′, g′) is not an unusually short
vector of Λq

h′ , then there is little hope that any lattice reduction strategy would
lead to information on this vector. Quantitatively, this perfect immunity hap-
pens when ‖(f ′, g′)‖ ≈

√
2 · σ2 · n′ >

√
n′q/πe. This was the case of the old

parameter of NTRU as discussed in [Gen01], which lead this attack being dis-
carded. This is not the case of all the parameters of NTRUencrypt [HPS+15]
and Bliss [DDLL13], for which (f ′, g′) is sometime unusually short vector, but
not by a very large factor. Numerical values are given in Table 1.

Table 1. Vulnerability factor for some parameters of NTRUencrypt [HPS+15] and
Bliss [DDLL13].

Scheme n q σ
√

n′q/πe / (
√

2σ2n′) = F

NTRU-743 743 2048 0.82 298.7 / 349.8 = 0.85

NTRU-401 401 2048 0.82 219.6 / 189.5 = 1.16

BLISS-I 512 12289 0.55 607.0 / 108.6 = 5.59

BLISS-IV 512 12289 0.83 607.0 / 249.8 = 2.43

When the vulnerability factor F is less then 1, the parameters achieve perfect
immunity. When F is greater than 1, the subfield attack consist informally of

A Subfield Lattice Attack on Overstretched NTRU Assumptions 173

solving “unusual-SVP” in dimension 2n′ = n, where the unusually short solu-
tions are a factor F shorter than predicted by the Gaussian Heuristic.

According to this table, NTRU-743 should be perfectly immune to the sub-
field lattice attacks. For other parameters, it seems likely, despite imperfect
immunity, that the subfield lattice attack will be more costly than the full attack,
but calls for further study, especially for BLISS-I.

Note that the perfect immunity to this attack is achieved asymptotically
around σ ≈ Θ(q1/4), parameter for which h does not have enough entropy to be
statistically close to random. For comparison, it was shown that for σ = ω(q1/2),
h is statistically close to uniform [SS11]. We note that σ > Θ(q1/4) could provide
enough entropy for the normed-down public key h′ to be almost uniform. It would
be interesting to see if the proof of [SS11] can be adapted to h′.

Recommendations. Even if credible predictions were to be made, we strongly
discourage basing a cryptographic scheme on a set-up to which this attack is
applicable. Indeed, it is quite likely that the performance of the attack may
be improved in several ways. For example, after having found several subfield
solutions (x′, y′) = v(f ′, g′), it is possible to run a lattice reduction algorithm
in the lattice (f ′, g′) · OL of dimension n′ rather than 2n′ to obtain significantly
shorter vectors. Additionally, the lifting step may also be improved in the case
where OL is a real subfield using the Gentry-Syzdlo algorithm [GS02,LS14] to
obtain shorter vector in the full field (i.e. recovering x from NK/L(x)). More
generally, one may recover x from NK/L(x) even when L isn’t the real subfield
of K: assuming (x) is prime, it can be recovered as a factor of NK/L(x), which
then leads to x via a short generator recovery; as mentioned before, both steps
are now known to be classically sub-exponential or even polynomial for quantum
computers [Bia14,EHKS14,CGS14,BS16,CDPR16].

Evaluating concrete security against regular lattice attacks is already a diffi-
cult exercise, and leaving open additional algebraic and statistical attack oppor-
tunities will only make security assessment intractable. We therefore recommend
that this set-up — NTRU assumption, presence of subfields, large modulus —
be considered insecure.

Designing Immune Rings. We believe that our work further motivates the
design and the study of number fields without subfields to fit for the lattice-
based cryptographic purposes, as already recommended in [Ber14]. Even for
assumptions that are not directly affected by this attack (Ring-SIS [Mic02],
Ideal-LWE [SSTX09], Ring-LWE [LPR10]), it could be considered desirable to
have efficient fallback options ready to use, in case subfields induce other unfore-
seen weaknesses. While this work does not suggest an immediate threat to the
Ring-SIS and Ring-LWE, such a precaution is not unreasonable.

An interesting option has been suggested in [Ber14] to use rings of the form
Z[X]/(Xp−X−1). The design rationale seems to be that Q[X]/(Xp−X−1) has
a reasonable expansion factor11 which is often needed for the correctness in cryp-
tographic schemes, but is a non Galois extension with a very large Galois group
11 Multiplication of two small elements remains reasonably small.

174 M. Albrecht et al.

for its splitting field, which is intended to hinder algebraic handles. In particu-
lar it contains no proper subfields. This leads to the design of the NTRUPrime
encryption scheme [BCLvV16]. We note that the security of this scheme is not
supported by a worst-case hardness argument. If such an argument is desired
then we note that the search version of Ideal/Ring-LWE is supported by worst-
case hardness for any choices of number field, and this is actually sufficient
to achieve provable CPA-secure encryption, as already proved by Stehlé et al.
[SSTX09].

Open Problems. Another natural option would be to choose p as a safe prime12

and to work with the ring of integer of the totally real number field K =
Q(ζp + ζ̄p). The field remains Galois, and its automorphism group may still
allow a quantum worst-case (Ideal-SVP) to average-case (Ring-LWE) reduction
a-la [LPR10] thanks to a generalization of the search to decision step presented
in [CLS15]. Nevertheless the Galois group has prime order (p − 1)/2, it has no
proper subgroups, and K has no proper subfields.

But working with K = Q(ζp + ζ̄p) has a drawback: the class number
h(K) = h+

p seems quite small (see [Was97, Table 4 pp. 421]), and this makes
the worst-case ISVP problem solvable in quantum polynomial time for approx-
imation factors 2Õ(

√
n) as proved in [CDPR16,BS16]: the reduction of [LPR10]

is vacuous for such parameters.
This raises the question of whether NTRU and Ring-LWE are actually strictly

harder than ISVP in the underlying number field, whether algorithms for ISVP
in K can be lifted to modules over K as used in NTRU, Ideal-LWE or Ring-LWE.
In this regard, overstretched NTRU, and Ideal/Ring-LWE with large approxi-
mation factors over the ring Z(ζp + ζ̄p) are very interesting cryptanalytic target:
despite those rings not being used in any proposed schemes so far, such an
attack will teach us a great deal on the asymptotic security of ideal-lattice based
cryptography.

Acknowledgments. We are grateful to Alice Silverberg, and to the partici-
pant of the Conference on Mathematics of Cryptography for enlightening talks
and discussions. We thank Dan J. Bernstein, Ronald Cramer, Jeffrey Hoffstein,
Hendrik W. Lenstra, John Schanck and Damien Stehlé for helpful discussions and
comments.

We thank the PSMN (Pôle Scientifique de Modélisation Numérique, Lyon, France)
for providing computing facilities.

References

[ABC+] Albrecht, M., Bai, S., Cadé, D., Pujol, X., Stehlé, D.: fpLLL-4.0, a
floating-point LLL implementation. https://github.com/dstehle/fplll

12 A safe prime p is an odd prime such that (p − 1)/2 is also a prime. The terminology
relates to weaknesses in RSA and Discrete Logarithm Problem introduced by the
smoothness of p − 1 [Pol74].

https://github.com/dstehle/fplll

A Subfield Lattice Attack on Overstretched NTRU Assumptions 175

[ACLL15] Albrecht, M.R., Cocis, C., Laguillaumie, F., Langlois, A.: Implementing
candidate graded encoding schemes from ideal lattices. In: Iwata, T.,
et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 752–775. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 31

[BCLvV16] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.:
NTRU prime. Cryptology ePrint Archive, Report 2016/461 (2016).
http://eprint.iacr.org/

[Ber14] Bernstein, D.: A subfield-logarithm attack against ideal lattices, Febuary
2014. http://blog.cr.yp.to/20140213-ideal.html

[BF14] Biasse, J.-F., Fieker, C.: Subexponential class group, unit group compu-
tation in large degree number fields. LMS J. Comput. Math. 17(Suppl.
A), 385–403 (2014)

[Bia14] Biasse, J.-F.: Subexponential time relations in the class group of large
degree number fields. Adv. Math. Commun. 8(4), 407–425 (2014)

[BLLN13] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for
a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.)
IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013)

[BS16] Biasse, J.-F., Song, F.: Efficient quantum algorithms for computing
class groups and solving the principal ideal problem in arbitrary degree
number fields. In: 27th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2016) (2016)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp.
97–106. IEEE Computer Society Press, October 2011

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short gen-
erators of principal ideals in cyclotomic rings. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 20

[CG13] Canetti, R., Garay, J.A. (eds.): CRYPTO 2013. LNCS, vol. 8042.
Springer, Heidelberg (2013)

[CGS14] Campbell, P., Groves, M., Shepherd, D.: Soliloquy: a cau-
tionary tale. In: ETSI 2nd Quantum-Safe Crypto Workshop
(2014). http://docbox.etsi.org/Workshop/2014/201410 CRYPTO/S07
Systems and Attacks/S07 Groves Annex.pdf

[CIV16] Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of
ring-LWE revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 147–167. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 6

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without an encoding of zero.
Cryptology ePrint Archive, Report 2016/139 (2016). http://eprint.iacr.
org/

[CLS15] Chen, H., Lauter, K., Stange, K.E.: Attacks on search RLWE. Cryp-
tology ePrint Archive, Report 2015/971 (2015). http://eprint.iacr.org/
2015/971

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) [CG13], pp. 476–493

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
1–20. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-662-48800-3_31
http://eprint.iacr.org/
http://blog.cr.yp.to/20140213-ideal.html
http://dx.doi.org/10.1007/978-3-662-49896-5_20
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://dx.doi.org/10.1007/978-3-662-49890-3_6
http://dx.doi.org/10.1007/978-3-662-49890-3_6
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2015/971
http://eprint.iacr.org/2015/971

176 M. Albrecht et al.

[CS97] Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Hei-
delberg (1997)

[CS15] Costache, A., Smart, N.P.: Which ring based somewhat homomorphic
encryption scheme is best? Cryptology ePrint Archive, Report 2015/889
(2015). http://eprint.iacr.org/2015/889

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signa-
tures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) [CG13],
pp. 40–56

[Dev15] The Sage Developers: Sage Mathematics Software (2015). http://www.
sagemath.org

[DHS15] Doröz, Y., Yin, H., Sunar, B.: Homomorphic AES evaluation using
the modified LTV scheme. Des. Codes Crypt. 80(2), 333–358 (2016).
http://dx.doi.org/10.1007/s10623-015-0095-1

[EHKS14] Eisenträger, K., Hallgren, S., Kitaev, A., Song, F.: A quantum algorithm
for computing the unit group of an arbitrary degree number field. In:
Proceedings of the 46th Annual ACM Symposium on Theory of Com-
puting, pp. 293–302. ACM (2014)

[EHL14] Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194.
Springer, Heidelberg (2014)

[ELOS15] Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak
instances of ring-LWE. In: Gennaro, R., Robshaw, M. (eds.) [GR15],
pp. 63–92

[FM14] Ferraguti, A., Micheli, G.: On the Mertens-Cesàro
theorem for number fields. Bull. Aust. Math. Soc.
93(2), 199–210 (2016). doi:10.1017/S0004972715001288.
http://journals.cambridge.org/article S0004972715001288

[Gen01] Gentry, C.: Key recovery and message attacks on NTRU-composite. In:
Pfitzmann, B. (ed.) [Pfi01], pp. 182–194

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press,
October 2013

[GN08] Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s
inequality. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp.
207–216. ACM Press, May 2008

[GR15] Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9215.
Springer, Heidelberg (2015)

[GS02] Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature
scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 299–320. Springer, Heidelberg (2002)

[HG07] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-
middle attack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)

[HHGP+03] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte,
W.: NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M.

http://eprint.iacr.org/2015/889
http://www.sagemath.org
http://www.sagemath.org
http://dx.doi.org/10.1007/s10623-015-0095-1
http://dx.doi.org/10.1017/S0004972715001288
http://journals.cambridge.org/article_S0004972715001288

A Subfield Lattice Attack on Overstretched NTRU Assumptions 177

(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg
(2003)

[HJ15] Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive,
Report 2015/301 (2015). http://eprint.iacr.org/2015/301

[HPS96] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public
key cryptosystem. In: Draft Distributed at Crypto 1996 (1996). http://
web.securityinnovation.com/hubfs/files/ntru-orig.pdf

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public
key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 267–288. Springer, Heidelberg (1998)

[HPS01] Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based
signature scheme. In: Pfitzmann, B. (ed.) [Pfi01], pp. 211–228

[HPS11] Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms
using dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 447–464. Springer, Heidelberg (2011)

[HPS+15] Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.,
Zhang, Z.: Choosing parameters for NTRUEncrypt. Cryptology ePrint
Archive, Report 2015/708 (2015). http://eprint.iacr.org/2015/708

[HSW06] Hoffstein, J., Silverman, J.H., Whyte, W.: Meet-in-the-middle attack
on an ntru private key, 2006. Technical report, NTRU Cryptosystems,
Report #04, July 2006. http://www.ntru.com

[HT15] Hauteville, A., Tillich, J.-P.: New algorithms for decoding in the rank
metric and an attack on the LRPC cryptosystem. In: IEEE International
Symposium on Information Theory, ISIT 2015, pp. 2747–2751 (2015)

[KF15] Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with
applications to cryptography and lattices. In: Gennaro, R., Robshaw, M.
(eds.) [GR15], pp. 43–62

[LJ14] Löndahl, C., Johansson, T.: Improved algorithms for finding low-weight
polynomial multiples in f2[x] and some cryptographic applications. Des.
Codes Crypt. 73(2), 625–640 (2014)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(4), 515–534 (1982)

[LN14] Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryp-
tion schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 318–335. Springer, Heidelberg
(2014)

[Loi14] Loidreau, P.: On cellular codes and their cryptographic applications. In:
ACCT, Fourteenth International Workshop on Algebraic and Combina-
torial Coding Theory, pp. 234–239 (2014)

[Lov87] Lovasz, L.: An Algorithmic Theory of Numbers, Graphs and Convex-
ity. CBMS-NSF Regional Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathematics, Philadelphia (1987)

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[LS14] Lenstra, H.W., Silverberg, A.: Revisiting the Gentry-Szydlo algorithm.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 280–296. Springer, Heidelberg (2014)

[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient mul-
tilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.)

http://eprint.iacr.org/2015/301
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://eprint.iacr.org/2015/708
http://www.ntru.com

178 M. Albrecht et al.

EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidel-
berg (2014)

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption.
In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 1219–1234.
ACM Press, May 2012

[Mic02] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and effi-
cient one-way functions from worst-case complexity assumptions. In:
43rd FOCS, pp. 356–365. IEEE Computer Society Press, November 2002

[Pei16] Peikert, C.: How (not) to instantiate ring-LWE. Cryptology ePrint
Archive, Report 2016/351 (2016). http://eprint.iacr.org/

[Pfi01] Pfitzmann, B. (ed.): EUROCRYPT 2001. LNCS, vol. 2045. Springer,
Heidelberg (2001)

[Pol74] Pollard, J.M.: Theorems on factorization and primality testing. In:
Math-ematical Proceedings of the Cambridge Philosophical Society, vol.
76, no. 03, pp. 521–528 (1974)

[Sam70] Samuel, P.: Algebraic Theory of Numbers. Hermann, Paris (1970)
[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction

algorithms. Theor. Comput. Sci. 53, 201–224 (1987)
[Sit10] Sittinger, B.D.: The probability that random algebraic integers are rel-

atively r-prime. J. Number Theory 130(1), 164–171 (2010)
[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems

over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

[Was97] Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts
in Mathematics. Springer, New York (1997)

http://eprint.iacr.org/

A Practical Cryptanalysis
of the Algebraic Eraser

Adi Ben-Zvi1, Simon R. Blackburn2(B), and Boaz Tsaban1

1 Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
2 Department of Mathematics, Royal Holloway University of London,

Egham TW20 0EX, Surrey, UK
s.blackburn@rhul.ac.uk

Abstract. We present a novel cryptanalysis of the Algebraic Eraser prim-
itive. This key agreement scheme, based on techniques from permutation
groups, matrix groups and braid groups, is proposed as an underlying
technology for ISO/IEC 29167-20, which is intended for authentication
of RFID tags. SecureRF, the company owning the trademark Algebraic
Eraser, markets it as suitable in general for lightweight environments such
as RFID tags and other IoT applications. Our attack is practical on stan-
dard hardware: for parameter sizes corresponding to claimed 128-bit secu-
rity, our implementation recovers the shared key using less than 8 CPU
hours, and less than 64 MB of memory.

1 Introduction

The Algebraic EraserTM is a key agreement scheme using techniques from non-
commutative group theory. It was announced by Anshel, Anshel, Goldfeld and
Lemieaux in 2004; the corresponding paper [1] appeared in 2006. The Algebraic
Eraser is defined in a very general fashion: various algebraic structures (monoids,
groups and actions) need to be specified in order to be suitable for implementation.
Anshel et al. provide most of this extra information, and name this concrete realisa-
tion of the Algebraic Eraser theColored BurauKeyAgreement Protocol (CBKAP).
This concrete representation involves a novel blend of finite matrix groups and per-
mutation groups with infinite braid groups. A company, SecureRF, owns the trade-
mark to the Algebraic Eraser, and is marketing this primitive as suitable for low
resource environments such as RFID tags and Internet of Things (IoT) applica-
tions. The primitive is proposed as an underlying technology for ISO/IEC 29167-
20, and work on this standard is taking place in ISO/IEC JTC 1/SC 31/WG 7. The
company has also presented the primitive to the Internet Research Task Force’s
Crypto Forum Research Group (IRTF CFRG), with a view towards standardis-
ation. IoT is a growth area, where current widely-accepted public key techniques
struggle to operate due to tight efficiency constraints. It is likely that solutions
which are efficient enough for these applications will become widely deployed, and
the nature of these applications make system changes after deployment difficult.
Thus, it is vital to scrutinise the security of primitives such as the Algebraic Eraser

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 179–189, 2016.
DOI: 10.1007/978-3-662-53018-4 7

180 A. Ben-Zvi et al.

early in the standardisation process, to ensure only secure primitives underpin
standardised protocols.

In a presentation to the NIST Workshop in Lightweight Cryptography in
2015, SecureRF claims a security level of 2128 for their preferred parameter
sizes, and compares the speed of their system favourably with an implementa-
tion of a key agreement protocol based on the NIST recommended [14] elliptic
curve K-283. The company reports [3] a speed-up by a factor of 45–150, com-
pared to elliptic curve key agreement at 128-bit security levels. It claims that
the computational requirements of the Algebraic Eraser scales linearly with the
security parameter, in contrast to the quadratic scaling of elliptic-curve-based
key agreement.

Related Work. The criteria for choosing some global parameters of the scheme
(namely certain subgroups C and D of matrices over a finite field, and certain
subgroups A and B of a certain infinite semidirect product of groups) are not
given in [1], and have not been made available by SecureRF. In the absence of
this information, it is reasonable to proceed initially with a cryptanalysis on
the basis that these parameters are chosen in a generic fashion. All previous
cryptanalyses have taken this approach.

Myasnikov and Ushakov [13] provide a heuristic length-based attack on the
CBKAP that works for the parameter sizes originally suggested [1]. However,
Gunnells [10] reports that this attack quickly becomes unsuccessful as para-
meter sizes grow; the parameter sizes proposed by SecureRF make this attack
impractical1. Kalka et al. [11] provide an efficient cryptanalysis of the CBKAP
for arbitrary parameter sizes. The attack uses the public key material of Alice
and the messages exchanged between Alice and Bob to derive an equivalent to
the secret random information generated by Bob, which then compromises the
shared key, and so renders the scheme insecure. In particular, the techniques
of [11] will succeed when the global parameters are chosen generically.

SecureRF uses proprietary distributions for global parameters, so the crypt-
analysis of [11] attack does not imply that the CBKAP as implemented is inse-
cure2. Indeed, Goldfeld and Gunnells [9] show that by choosing the subgroup C
carefully one step of the attack of [11] does not recover the information required
to proceed, and so this attack does not succeed when parameters are generated
in this manner.

Our Contribution. There are no previously known attacks on the CBKAP for
the proposed parameter sizes, provided the parameters are chosen to resist the
attack of [11]. The present paper describes a new attack on the CBKAP that
1 There is an analogy with the development of RSA here: the size of primes (200 digits)

proposed in the original article [15] was made obsolete by improvements in integer
factorisation algorithms [4].

2 The analogy with RSA continues: factorisation of a randomly chosen integer n is
much easier than when n is a product of two primes of equal size, which is why the
latter is used in RSA.

A Practical Cryptanalysis of the Algebraic Eraser 181

does not assume any structure on the subgroup C. Thus, a careful choice of the
subgroup C will have no effect on the applicability of our attack, and so the
proposed security measure offered by Goldfeld and Gunnells [9] to the attack
of [11] is bypassed.

The earlier cryptanalyses of CBKAP ([11,13]) attempt to recover parts of
Alice’s or Bob’s secret information. The attack presented here recovers the shared
key directly from Alice’s public key and the messages exchanged between Alice
and Bob.

SecureRF have kindly provided us with sets of challenge parameters of the full
recommended size, and our implementation is successful in recovering the shared
key in all cases. Our (non-optimised) implementation recovers the common key
in under 8 h of computation, and thus the security of the system is much less
than the 2128 level claimed for these parameter sizes. The attack scales well with
size, so increasing parameter sizes will not provide a solution to the security
problem for the CBKAP.

Conclusion and Recommendation. Because our attack efficiently recovers
the shared key of the CBKAP for recommended parameter sizes, using para-
meters provided by SecureRF, we believe the results presented here cast serious
doubt on the suitability of the Algebraic Eraser for the applications proposed.
We recommend that the primitive in its current form should not be used in prac-
tice, and that full details of any revised version of the primitive should be made
available for public scrutiny in order to ensure a rigorous security analysis.

Recent Developments. Since the first version of this paper was posted, there
have been two recent developments. Firstly, authors from SecureRF have pos-
ted [2] a response to our attack, concentrating in the main on the implications
for the related ISO standard and providing some preliminary thoughts on how
they might redesign the primitive. Until the details are finalised, it is too soon
to draw any conclusions on the security of any redesigned scheme, though there
have already been some discussions on Cryptography Stack Exchange [8]. Sec-
ondly, Blackburn and Robshaw [6] have posted a paper that cryptanalyses the
ISO standard itself, rather then the more general underlying Algebraic Eraser
primitive.

Structure of the Paper. The remainder of the paper is organised as follows.
Sections 2 and 3 establish notation, and describe the CBKAP. We describe a
slightly more general protocol than the CBKAP, as our attack naturally gener-
alises to a larger setting. We describe our attack in Sect. 4. In Sect. 5 we describe
the results of our implementations and provide a short conclusion.

182 A. Ben-Zvi et al.

2 Notation

This section establishes notation for the remainder of the paper. We closely
follow the notation from [11], which is in turn mainly derived from the notation
in [1], though we do introduce some new terms.

Let F be a finite field of small order (e.g., |F| = 256) and let n be a positive
integer (e.g., n = 16). Let Sn be the symmetric group on the set {1, 2, . . . , n},
and let GLn(F) be the group of invertible n × n matrices with entries in F.

Let M be a subgroup of GLn(F(t1, . . . , tn)), where the elements ti are alge-
braically independent commuting indeterminates. Indeed, we assume that the
group M is contained in the subgroup of GLn(F(t1, . . . , tn)) of matrices whose
determinant can be written as at for some non-zero element a ∈ F and some, pos-
sibly empty, word t in the elements ti and their inverses. Let M be the subgroup
of GLn(F(t1, . . . , tn)) generated by permuting the indeterminates of elements of
M in all possible ways.

Fix non-zero elements τ1, . . . , τn ∈ F. Define the homomorphism ϕ : M →
GLn(F) to be the evaluation map, computed by replacing each indeterminate ti
by the corresponding element τi. Our assumption on the group M means that
ϕ is well defined.

The group Sn acts on M by permuting the indeterminates ti. Let M � Sn

be the semidirect product of M and Sn induced by this action. More concretely,
if we write ga for the action of an element g ∈ Sn on an element a ∈ M , then
the elements of M � Sn are pairs (a, g) with a ∈ M and g ∈ Sn, and group
multiplication is given by

(a, g)(b, h) = (a gb, gh)

for all (a, g), (b, h) ∈ M � Sn.
Let C and D be subgroups of GLn(F) that commute elementwise: cd = dc

for all c ∈ C and d ∈ D. The CBKAP specifies that C is a subgroup consisting of
all invertible matrices of the form �0 + �1κ+ · · ·+ �rκ

r where κ is a fixed matrix,
�i ∈ F and r ≥ 0. So C is the group of units in the F-algebra generated by κ.
Moreover, the CBKAP specifies that D = C. But we do not assume anything
about the forms of C and D in this paper, other than the fact that they commute.

Let Ω = GLn(F) × Sn and let Ŝn = M � Sn. We have two actions on Ω.
Firstly, there is the right action of the group Ŝn on Ω via a map

∗ : Ω × Ŝn → Ω,

as defined in [1,11]. So

(s, g) ∗ (b, h) = (sϕ(gb), gh)

for all (s, g) ∈ Ω and all (b, h) ∈ Ŝn. Secondly, there is a left action of the group
GLn(F) on Ω via the map

• : GLn(F) × Ω → Ω

A Practical Cryptanalysis of the Algebraic Eraser 183

given by matrix multiplication:

x • (s, g) = (xs, g)

for all x ∈ GLn(F) and all (s, g) ∈ Ω. Note that for all x ∈ GLn(F), all ω ∈ Ω

and all ĝ ∈ Ŝn we have that

(x • ω) ∗ ĝ = x • (ω ∗ ĝ).

Also note that the left action is F-linear, in the sense that if x ∈ GLn(F) can be
written in the form

x =
r∑

i=1

�ici

for some ci ∈ GLn(F) and �i ∈ F, then for all (s, g) ∈ Ω we have

x • (s, g) =
r∑

i=1

�i(ci • (s, g)).

To interpret the right hand side of the equality above: the subset of Ω whose
second component is a fixed element of Sn is naturally an F-vector space, where
addition and scalar multiplication takes place in the first component only.

Finally, let A and B be subgroups of Ŝn that ∗-commute: for all (a, g) ∈ A,
(b, h) ∈ B and ω ∈ Ω,

(ω ∗ (a, g)) ∗ (b, h) = (ω ∗ (b, h)) ∗ (a, g).

3 The CBKAP Protocol

3.1 Overview

The CBKAP is unusual in that the parties executing it, Alice and Bob, use dif-
ferent parts of the public key in their computations: neither party needs to know
all of the public key. The security model assumes that one party’s public key
material is known to the adversary: say Alice’s public key material is known, but
Bob’s ‘public’ key (which is better thought of as part of his private key material)
is not revealed. The adversary, Eve, receives just Alice’s public information, and
the messages sent over the insecure channel. Security means that Eve cannot
feasibly compute any significant information about K. The attack in [11] works
in this model. The same is true for the attack we describe below.

In a typical proposed application, the protocol might be used to enable a
low-power device, such as an RFID tag, to communicate with a central server.
Data on an RFID tag is inherently insecure, as is system-wide data. So the above
security model is realistic (and conservative) for these application settings.

184 A. Ben-Zvi et al.

3.2 The Protocol

Public parameters (for Alice) include the parameters n, F, M , τ1, . . . , τn, C and
A. The groups M , C and A are specified by their generating sets. For efficiency
reasons, the generators of the group A are written as words in a certain standard
generating set for the group Ŝn. We discuss this further in Sect. 5, but see the
TTP algorithm in [1] for full information. It is assumed that Eve knows the
parameters n, F, M , τ1, . . . , τn, C and A. Bob needs to know the groups B and
D, rather than the groups A and C. Eve does not need to know the subgroups
B and D for our attack to work.

We write e for the identity element of Sn. We write In for the identity matrix
in GLn(F), and write 1 = (In, e) ∈ Ω.

Alice chooses elements c ∈ C and ĝ = (a, g) ∈ A. She computes the product

c • 1 ∗ ĝ = (cϕ(a), g) ∈ Ω

and sends it to Bob over an insecure channel.
Bob, who knows the groups B and D, chooses elements d ∈ D and ĥ =

(b, h) ∈ B. He computes the product

d • 1 ∗ ĥ = (dϕ(b), h) ∈ Ω

and sends it to Alice over the insecure channel.
Note that cd = dc because c ∈ C and d ∈ D, and the groups C and D

commute elementwise. Thus,

d • (c • 1 ∗ ĝ) ∗ ĥ = (dc) • (1 ∗ ĝ) ∗ ĥ

= (cd) • (1 ∗ ĝ) ∗ ĥ

= (cd) • (1 ∗ ĥ) ∗ ĝ

(as ĝ ∈ A, ĥ ∈ B, and A and B ∗ -commute)

= c • (d • 1 ∗ ĥ) ∗ ĝ.

The common key K is defined by

K = d • (c • 1 ∗ ĝ) ∗ ĥ = c • (d • 1 ∗ ĥ) ∗ ĝ.

Alice can compute the key K using the right hand expression in the equation
above; Bob can compute K by computing the middle expression.

4 The Proposed Attack

Eve, the adversary, sees all public information, and also sees the elements
(p, g) := c • 1 ∗ ĝ ∈ Ω and (q, h) := d • 1 ∗ ĥ ∈ Ω that are transmitted between
Alice and Bob. Eve’s goal is to compute the shared key. Rather than attempting
to compute Alice’s private key material c and ĝ, or Bob’s private key material d
and ĝ, our attack will recover the shared key directly.

A Practical Cryptanalysis of the Algebraic Eraser 185

An overview of our attack is as follows. We first argue that the group C can
be replaced by a ‘linearised’ version of C: this makes it easier to test membership
in C. We then show that Eve does not need to compute Alice’s or Bob’s secret
information in order to derive the shared key: more limited information suffices.
(This information is specified in Eqs. (1) and (2) below.) Finally, we show how
Eve can compute this information.

For a group H of n × n matrices over a field F, we write Alg(H) for the
F-algebra generated by H [5]. So Alg(H) is the set of all F-linear combinations
of matrices in H. We write Alg∗(H) for the set of all invertible matrices in
Alg(H).

The groups C proposed in the CBKAP satisfy C = Alg∗(C). More generally,
we may assume that this is always the case. To see this, first note Alg∗(C) and
D commute elementwise since every element of Alg∗(C) is a linear combination
of elements in C. Thus, C may be replaced by Alg∗(C) to obtain a valid new
instance of the protocol. Moreover, since C ⊆ Alg∗(C) the new instance of the
protocol is more general than the original protocol: Alice can choose her matrix
c from the larger group Alg∗(C). So if we successfully recover the common key
in every new instance of the protocol, we can successfully recover the common
key in the original instance.

Thus, from now on, we assume that C = Alg∗(C). Let κ1, κ2, . . . , κr ∈ C
be a basis for Alg(C). Such a basis is not difficult to compute, using standard
techniques. Our assumption means that any invertible linear combination of the
matrices κi lies in C.

Let P � A be the pure subgroup of A, defined by

P = { (α, g) ∈ A : g = e }.

Then ϕ(P) is a subgroup of GLn(F). Consider the subgroup Alg∗(ϕ(P)) of
GLn(F). Concretely, an element α′ ∈ Alg∗(ϕ(P)) is an invertible matrix of the
form

α′ =
k∑

i=1

�iϕ(αi)

where k ≥ 0, �i ∈ F and (αi, e) ∈ P .
Suppose that Eve finds elements c̃ ∈ C, α′ ∈ Alg∗(ϕ(P)) and (ã, g) ∈ Ŝn

such that
(p, g) = c̃ • (α′, e) ∗ (ã, g). (1)

Moreover, suppose that Eve can find an element (αi, e) ∈ P and �i ∈ F such
that

k∑
i=1

�iϕ(αi) = α′. (2)

Then Eve can compute the common key, as follows. Firstly, she computes the
matrix

β′ =
k∑

i=1

�iϕ(hαi).

186 A. Ben-Zvi et al.

This computation is possible for Eve, since h is part of the message (q, h) =
(dϕ(b), h) ∈ Ω transmitted from Bob to Alice. Now, (αi, e) ∈ P ≤ A, and so
(αi, e) ∗-commutes with all elements in B. Thus,

(qϕ(hαi), h) = d • 1 ∗ (b, h) ∗ (αi, e) = d • 1 ∗ (αi, e) ∗ (b, h).

Eve then computes c̃•(qβ′, h)∗(ã, g). We claim that this is equal to the common
key K. To see this, first note that

(qβ′, h) =
k∑

i=1

�i(qϕ(hαi), h)

=
k∑

i=1

�i(d • 1 ∗ (αi, e) ∗ (b, h))

=
k∑

i=1

�i(dϕ(αi)ϕ(b), h)

= (d
k∑

i=1

�iϕ(αi)ϕ(b), h)

= (dα′ϕ(b), h)
= d • (α′, e) ∗ (b, h).

Hence

c̃ • (qβ′, h) ∗ (ã, g) = c̃ • d • (α′, e) ∗ (b, h) ∗ (ã, g)
= d • c̃ • (α′, e) ∗ (b, h) ∗ (ã, g)

(since c̃ ∈ C and d centralises C)
= d • c̃ • (α′, e) ∗ (ã, g) ∗ (b, h)

(as (ã, g) ∈ A and (b, h) ∈ B ∗ -commute)

= d • (p, g) ∗ ĥ

= d • (c • 1 ∗ ĝ) ∗ ĥ

= K.

So it suffices to show that Eve can find elements αi, �i, ã, c̃ and α′ so that
Eqs. (1) and (2) are satisfied.

Precomputation stage: Find the αi. Eve computes a collection of elements (αi, e)
such that the matrices ϕ(αi) form a basis of Alg(ϕ(P)). Once this is done, any
α ∈ Alg∗(ϕ(P)) can easily be written in the form (2). Eve does not need to know
the messages (p, g) and (q, h) in this stage, so this stage can be carried out as a
precomputation. Eve proceeds as follows.

Eve generates, as in [11], short products (a′, g′) of generators of A such
that the order r of the permutation g′ is small (n or less), and computes

A Practical Cryptanalysis of the Algebraic Eraser 187

α1 = (a′, g′)r = (a′′, e). She repeats this procedure to generate α2, α3 (Eve
may also take products of some of the previously generated elements (α1, e),
(α2, e), . . . , (αi−1, e) to define (αi, e).) Eve stops when the dimension of the F-
linear span of the matrices ϕ(αi) stops growing, and fixes a linearly independent
subset of these matrices.

At the end of this process (relabelling after throwing linearly dependent ele-
ments ϕ(αi) away), Eve has α1, α2, . . . αr such that ϕ(α1), ϕ(α2), . . . , ϕ(αr) are
a basis for a subspace V of Alg(ϕ(P)). Indeed, we expect (with high probability)
that V = Alg(ϕ(P)). We assume that this is true from now on.

Stage 1: Find ã. Find a product of generators in A whose second component is
equal to g, using the method in [11]. Let (ã, g) be this product. Define γ ∈ GLn(F)
by

(γ, e) = (p, g) ∗ (ã, g)−1.

Stage 2: Find c̃. Recall that Eve knows κ1, κ2, κ3, . . . , κr ∈ C that form a basis
of Alg(C). She finds (see below) field elements x1, x2, . . . , xr ∈ F such that

γ−1(x1κ1 + x2κ2 + · · · + xrκr) ∈ V, and (3)
x1κ1 + x2κ2 + · · · + xrκr is invertible. (4)

Set c̃ = x1κ1 + x2κ2 + · · · + xrκr. Since c̃ is an invertible element of Alg(C), we
see that c̃ ∈ C.

To find a solution to Eqs. (3) and (4), Eve randomly generates solutions xi

that satisfy (3), which is easy, as the conditions are linear. She stops when (4) is
also satisfied. We claim that the proportion of solutions to (3) that satisfy (4) is
bounded below by 1−n/|F|, which is a non-trivial proportion for the parameters
that are proposed. The claim follows by applying the Invertibility Lemma [16,
Lemma 9], which states that the proportion of invertible matrices in any F-
subspace of matrices over F is at least 1 − (n/|F|), provided that the subspace
contains at least one invertible matrix. We note that the elements of the form
x1κ1+x2κ2+· · ·+xrκr that satisfy (3) are a subspace of matrices. So it remains to
show that there exists an invertible element of this form. But let x1, x2, . . . , xr ∈
F be such that x1κ1 +x2κ2 + · · ·+xrκr = c. The elements xi exist since c ∈ C ⊆
Alg(C). Clearly c̃ = c is invertible. Moreover (3) holds, because we may show
that γ−1c ∈ ϕ(P) ⊆ V as follows. Firstly,

(γ, e) = (p, g) ∗ (ã, g)−1 = (cϕ(a), g) ∗ (g−1
(ã−1), g−1) = (cϕ(a)ϕ(ã−1), e),

so γ = cϕ(a)ϕ(ã−1) and therefore γ−1c = ϕ(ã)ϕ(a)−1. And secondly, we see
that ϕ(ã)ϕ(a)−1 = ϕ(ãa−1) ∈ ϕ(P), since

(ã, g)(a, g)−1 = (ã, g)(g−1
a−1, g−1) = (ãa−1, e)

and (ã, g), (a, g) ∈ A.

188 A. Ben-Zvi et al.

Stage 3: The remaining parameters. Eve sets α′ = c̃−1γ. Since (α′)−1 ∈ V , we
see that α′ (being a power of (α′)−1) also lies in V . So Eve can easily calculate
coefficients �i such that

k∑
i=1

�iϕ(αi) = α′.

Hence, Eq. (2) holds. We may also verify that Eq. (1) holds:

c̃ • (α′, e) ∗ (ã, g) = c̃ • (c̃−1γ, e) ∗ (ã, g) = (γ, e) ∗ (ã, g)

= ((p, g) ∗ (ã, g)−1) ∗ (ã, g) = (p, g).

5 Experiments and Conclusion

We have implemented our attack in Magma [7], running on one 2 GHz core of a
multi-core server. We used 5 sets of actual challenge parameters kindly provided
by SecureRF. These parameters all used the values |F| = 256 and n = 16. The
subgroup A is specified by a generating set; each generator for A is given as a
word of length approximately 650 (notice the large parameter setting!) in the
generating set X = { (xi(t), si) : 1 ≤ i ≤ n − 1 } for M � Sn defined in [1]. In
all 5 cases, our attack terminated successfully, producing the exact shared key.
Our attack used less than 64 MB of memory, and terminated in less than 8 h. We
would like to emphasise that our code is far from being optimised; we estimate
an improvement in CPU time by a significant factor in an optimised version of
the attack.

Let Bn be a braid group on n strands, and let σ1, σ2, . . . , σn−1 be the Artin
generators for Bn. (See, for example, [12] for an introduction to braid groups.)
There is a homomorphism ψ : Bn → M � Sn such that ψ(σi) = (xi, si) for
1 ≤ i ≤ n − 1, which gives rise to the coloured Burau representation. Thus we
could (and did) use standard routines for computing with braids in Bn, rather
than dealing with words in X directly.

The most computationally intensive part of the attack is the computing of ϕ(a)
where (a, g) ∈ M �Sn is given as a word in the generators of A. The long length of
the generators in A as words in X is the cause of difficulty here; we were computing
with words of length approximately 20,000 in Stage 1 of our attack.

To decide when the precomputation stage should terminate, we use the crite-
rion that the F-dimension of the algebra generated by the matrices ϕ(αi) should
not grow when 4 generators (αi, e) in a row are considered.

Not surprisingly, this attack is highly parallelisable. We did not exploit this
fact since for the actual parameters a single CPU core sufficed.

It remains open how to immunise the Algebraic Eraser against the presented
cryptanalysis. The only hope seems to be to make the problem of expressing
a permutation as a short product of given permutations difficult, by working
with very carefully chosen distributions. However, for the intended applications,
the computational constraints necessitate small values of n. In this case,
Schreier–Sims methods solve this problem efficiently, no matter how the per-
mutations are used. See the discussion around [11, Table 4].

A Practical Cryptanalysis of the Algebraic Eraser 189

Acknowledgement. The authors would like to thank Arkadius Kalka for providing
code from the earlier attack [11] on the Algebraic Eraser, and for explaining how to use
this code. The authors would also like to thank Martin Albrecht for various excellent
editorial suggestions.

References

1. Anshel, I., Anshel, M., Goldfeld, D., Lemieux, S.: Key agreement, the algebraic
eraserTM and lightweight cryptography. Contemp. Math. 418, 1–34 (2006)

2. Anshel, I., Atkins, D., Goldfeld, D., Gunnells, P.: Defeating the Ben-Zvi, Black-
burn, and Tsaban attack on the algebraic eraser. IACR ePrint 2016/044

3. Atkins, D., Gunnells, P.: Algebraic EraserTM: a lightweight, efficient asymmetric
key agreement protocol for use in no-power, low-power, and IoT devices. In: NIST
Lightweight Cryptography Workshop, 20 July 2015. http://www.nist.gov/itl/csd/
ct/lwc workshop2015.cfm

4. Bahr, F., Boehm, M., Franke, J., Kleinjung, T.: RSA200. http://www.
crypto-world.com/announcements/rsa200.txt

5. Ben-Zvi, A., Kalka, A., Tsaban, B.: Cryptanalysis via algebraic spans. IACR ePrint
2014/041

6. Blackburn, S.R., Robshaw, M.J.B.: On the security of the algebraic eraser tag
authentication protocol. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.)
ACNS 2016. LNCS, vol. 9696, pp. 3–17. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-39555-5 1

7. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb.Comput. 24, 235–265 (1997)

8. Cryptography Stack Exchange: Status of Algebraic Eraser Key Exchange?
http://crypto.stackexchange.com/questions/30644/status-of-algebraic-eraser-key-
exchange. Accessed 5 Feb 2016

9. Goldfeld, D., Gunnells, P.: Defeating the Kalka-Teicher-Tsaban linear algebra
attack on the algebraic eraser. arXiv:1202.0598, February 2012

10. Gunnells, P.: On the cryptanalysis of the generalized simultaneous conjugacy search
problem and the security of the algebraic eraser. arXiv:1105.1141, May 2011

11. Kalka, A., Teicher, M., Tsaban, B.: Short expressions of permutations as products
and cryptanalysis of the algebraic eraser. Adv. Appl. Math. 49, 57–76 (2012)

12. Kassel, C., Turaev, V.: Braid Groups. Graduate Texts in Mathematics, vol. 247.
Springer, New York (2008)

13. Myasnikov, A., Ushakov, A.: Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux
key agreement protocol. Groups Complex. Cryptol. 1, 63–75 (2009)

14. National Institute of Stadards and Technology: Digital Signature Standard (DSS).
Federal Information Processing Standards Publication FIPS PUB 186–4, July
2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

15. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

16. Tsaban, B.: Polynomial-time solutions of computational problems in noncommu-
tative algebraic cryptography. J. Cryptol. 28, 601–622 (2015)

http://www.nist.gov/itl/csd/ct/lwc_workshop2015.cfm
http://www.nist.gov/itl/csd/ct/lwc_workshop2015.cfm
http://www.crypto-world.com/announcements/rsa200.txt
http://www.crypto-world.com/announcements/rsa200.txt
http://dx.doi.org/10.1007/978-3-319-39555-5_1
http://dx.doi.org/10.1007/978-3-319-39555-5_1
http://crypto.stackexchange.com/questions/30644/status-of-algebraic-eraser-key-exchange
http://crypto.stackexchange.com/questions/30644/status-of-algebraic-eraser-key-exchange
http://arxiv.org/abs/1202.0598
http://arxiv.org/abs/1105.1141
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

Lattice-Based Fully Dynamic Multi-key FHE
with Short Ciphertexts

Zvika Brakerski1(B) and Renen Perlman2

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 Tel-Aviv University, Tel Aviv, Israel
renenperlman@mail.tau.ac.il

Abstract. We present a multi-key fully homomorphic encryption
scheme that supports an unbounded number of homomorphic operations
for an unbounded number of parties. Namely, it allows to perform arbi-
trarily many computational steps on inputs encrypted by an a-priori
unbounded (polynomial) number of parties. Inputs from new parties can
be introduced into the computation dynamically, so the final set of par-
ties needs not be known ahead of time. Furthermore, the length of the
ciphertexts, as well as the space complexity of an atomic homomorphic
operation, grow only linearly with the current number of parties.

Prior works either supported only an a-priori bounded number of par-
ties (López-Alt, Tromer and Vaikuntanthan, STOC ’12), or only sup-
ported single-hop evaluation where all inputs need to be known before
the computation starts (Clear and McGoldrick, Crypto ’15, Mukherjee
and Wichs, Eurocrypt ’16). In all aforementioned works, the ciphertext
length grew at least quadratically with the number of parties.

Technically, our starting point is the LWE-based approach of previous
works. Our result is achieved via a careful use of Gentry’s bootstrapping
technique, tailored to the specific scheme. Our hardness assumption is
that the scheme of Mukherjee and Wichs is circular secure (and thus
bootstrappable). A leveled scheme can be achieved under standard LWE.

1 Introduction

In 1978, Rivest et al. [RAD78] envisioned an encryption scheme where it is pos-
sible to publicly convert an encryption of a message x into an encryption of
f(x) for any f , thus enabling private outsourcing of computation. It took over
30 years for the first realization of this so called fully homomorphic encryption
(FHE) to materialize in Gentry’s breakthrough work [Gen09b,Gen09a], but since
then progress has been consistent and rapid. López-Alt et al. [LTV12] consid-
ered an extension of this vision into the multi-key setting, where it is possible to

Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14), the
Alon Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307)
and Google Faculty Research Award.
R. Perlman—This work took place at the Weizmann Institute of Science as a part
of the Young Weizmann Scholars program for outstanding undergraduate students.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 190–213, 2016.
DOI: 10.1007/978-3-662-53018-4 8

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 191

compute on encrypted messages even if they were not encrypted using the same
key. In multi-key FHE, a public evaluator takes ciphertexts encrypted under dif-
ferent keys, and evaluates arbitrary functions on them. The resulting ciphertext
can then be decrypted using the collection of keys of all parties involved in the
computation. Note that the security of the encryption scheme compels that all
keys need to be used for decryption.

In the dream version of multi-key FHE, each user generates keys for itself
and encrypts messages at will. Any third party can then perform an arbitrary
computation on any set of encryptions by any set of users. The resulting cipher-
text is attributed to the set of users whose ciphertexts were used to create it, and
the collection of all of their secret keys is required in order to decrypt it. Most
desirable is a fully dynamic setting where nothing at all about the parties needs
to be known ahead of time: not their identities, not their number and not the
order in which they will join the computation. In particular, outputs of previous
evaluations can be used as inputs to new evaluations regardless of whether they
correspond to the same set of users, intersecting sets or disjoint sets. In short,
any operation can be performed on any ciphertext at any point in time, and of
course while maintaining ciphertext compactness. However, as we explain below,
existing solutions fall short of achieving this functionality.

Multi-key FHE can be useful in various situations involving multiple par-
ties that do not coordinate ahead of time, but only after the fact. In [LTV12],
the main motivation is performing on-the-fly multiparty computation (MPC)
where various parties wish to use a cloud server (or some other untrusted third
party) to perform some computation without revealing their private inputs and
while having minimal interaction with the server. In this setting, the parties
first send their encrypted input to the cloud, which performs the homomorphic
operation and sends the output to the parties. The parties then execute a mul-
tiparty computation protocol for joint decryption. A similar approach was used
by Mukherjee and Wichs [MW16] to construct a 2-round MPC protocol in the
common random string setting. We note that one could also consider using this
primitive in simpler situations, such as ones where the respective secret keys are
being sold after the fact, and the owner of subset of keys can decrypt the output
of the respective computation by himself.

As we mentioned, multi-key FHE was introduced by [LTV12] who also intro-
duced the first candidate scheme, building upon the NTRU encryption scheme.
Their candidate was almost fully dynamic, except an upper bound on the max-
imal number of participants in a computation had to be known at the time a
key is generated. In particular, to support computation amongst N parties, the
bit-length of a ciphertext in their scheme grew with N1+1/ε, where ε < 1 is a
parameter related to the security of the scheme. They were able to support arbi-
trarily complex computation through use of bootstrapping, but this required a
circular security assumption.

The next step forward was by Clear and McGoldrick [CM15] who were moti-
vated by the question of constructing identity based FHE. As a stepping stone,
they were able to construct a multi-key FHE scheme based on the hardness of

192 Z. Brakerski and R. Perlman

the learning with errors (LWE) problem, which is related to the hardness of cer-
tain short vector problems (such as GapSVP, SIVP) in worst case lattices. Their
scheme was simplified by Mukherjee and Wichs [MW16] who used it to introduce
low-round MPC protocols. In their schemes, they focused on the single-hop set-
ting, where the collection of input ciphertexts and the function to be computed
are known ahead of time. The dynamic setting where users can join the computa-
tion and the function is determined on the fly was not considered. Furthermore,
their solution produced ciphertexts whose bit-length grew with N2, where N is
the number of users in the computation. Lastly, their construction requires that
all users share common public parameters (a common random string).

1.1 Our Results

As described above, great progress had been made in the study of multi-key FHE,
but still much was left to be desired. In particular, coping with the fully dynamic
setting where no information about the participating parties needs to be known
at key generation. This will allow maximum versatility in use of the scheme. The
second issue is the ciphertext length and more broadly the space complexity of
homomorphic evaluation. Previous works all hit the same barrier of N2 growth in
the ciphertext. Implementations of (single key) FHE already mention the space
complexity as a major bottleneck in the usability of the scheme [HS14,HS15], and
therefore reducing the overhead in this context is important for making multi-
key FHE applicable in the future. Another interesting open problem is removing
the requirement for common parameters from the [CM15,MW16] solution.

We address two of the three aforementioned problems by presenting a fully
dynamic multi-key FHE scheme, with O(N) ciphertext expansion, and O(N)
space complexity for an atomic homomorphic operation (e.g. evaluating a single
gate), where N is the number of parties whose ciphertexts have been introduced
into the computation so far (since we are fully dynamic, we allow inputs from
more parties to join later). This, in turn, can be used to improve the space com-
plexity of the parties in the MPC protocols of [LTV12,MW16]. Our construction
still requires common public parameters as in [CM15,MW16].

In terms of hardness assumption, we are comparable with previous works.
We can rely on the hardness of the learning with errors (LWE) problem with
a slightly super-polynomial modulus to achieve a leveled solution, where only
a-priori depth bounded circuits can be evaluated. This restriction can be lifted
towards achieving a fully dynamic scheme by making an additional circular secu-
rity assumption.

We stress that our scheme is not by itself practical. We use the bootstrapping
machinery in a way that introduces fair amounts of overhead into the evaluation
process. The goal of this work, rather, is to indicate that the theoretical bound-
aries of multi-key FHE, and open the door for further optimizations bringing
solutions closer to the implementable world.

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 193

1.2 Our Techniques

Gentry, Sahai and Waters [GSW13] proposed an FHE scheme (“the GSW
scheme”) with the following properties (we use notation due to Alperin-Sheriff
and Peikert [AP14]). A ciphertext is represented as a matrix C over Zq, and the
secret key is a (row) vector t such that tC = e + μtG, where μ ∈ {0, 1} is the
encrypted message, e is a low-norm noise vector and G is a special gadget matrix.
So long as the norm of e is small enough, μ can be retrieved from the cipher-
text matrix using the secret key t. In order to homomorphically multiply two
ciphertexts C1,C2, compute C1 · G−1(C2), where G−1(·) is an efficiently com-
putable function that operates column-by-column, and whose output is always
low-norm. It had been shown by [CM15,MW16] that GSW can be augmented
with multi-key features if all parties use common public parameters (which are
just a random string) and if the encryption procedure changes as follows. In
[CM15,MW16], after encrypting the message with GSW, the randomness that
had been used for the encryption is itself encrypted using fresh randomness. The
new ciphertext thus contains the matrix C along with its encrypted randomness−→R. They show that given a set of N public keys, and a ciphertext of this form
under one of these keys, it is possible to obtain a new ciphertext Ĉ, which is
essentially an N ×N block matrix, with each block having the size of a single-key
ciphertext. This new Ĉ encrypts the same message μ as the original C, but under
the secret key t̂ which is the concatenation of all N secret keys. In other words,
t̂Ĉ = ê+μt̂Ĝ, where Ĝ is an expanded gadget matrix (a block matrix with the
old G on its diagonal). This means that given a collection of N ciphertexts, one
can expand all of them to correspond to the same t̂ and perform homomorphic
operations.

It is clear from the above description that there is an inherent obstacle in
adapting this approach to the fully dynamic setting. Indeed, when the expand
operation creates the new Ĉ, it does not create the respective encrypted random-
ness

−→R, and therefore one cannot continue to perform homomorphic operations
with newly introduced parties. Our first contribution is noticing that this can be
resolved by using Gentry’s bootstrapping technique [Gen09b]. Indeed, previous
works [LTV12,MW16] used bootstrapping in order to go from limited amount
of homomorphism to full homomorphism. The bootstrapping principle is that
so long as a scheme can homomorphically evaluate (a little more than) its own
decryption circuit, it can be made to evaluate any circuit. To get the strongest
version of the theorem, one needs to further assume that the scheme is circular
secure (can securely encrypt its own secret key). The idea is to use the encrypted
secret key as an input to the function that decrypts a ciphertext and performs an
atomic operation on it. Let c1, c2 be some ciphertexts and consider the function
hc1,c2(x) = (Decx(c1) NAND Decx(c2)). This function takes an input, interprets
this input as a secret key, uses it to decrypt c1, c2 and performs the NAND
operation on the messages. Computing this function on a non-encrypted secret
key would output h(sk) = (μ1 NAND μ2). Therefore, performing it homomorphi-
cally on the encrypted secret key will result in an encryption of (μ1 NAND μ2).
This allows to continue to evaluate the circuit gate by gate. In the context of

194 Z. Brakerski and R. Perlman

multi-key FHE, each party only needs to encrypt its own secret key. Then, the
multi-key functionality will allow to compute the joint key out of the individual
keys and proceed as above.

We therefore consider a new scheme by modifying the MW scheme [MW16]
as follows. We append to the public key an encryption of the secret key (using
MW encryption which consists of a GSW encryption of the secret key, and an
encryption of the respective randomness). Our encryption algorithm is plain
GSW encryption - no need to encrypt the randomness. We show that cipher-
text expansion can still be achieved here. This is because in bootstrapping, the
ciphertexts storing the messages are not the ones upon which homomorphic eval-
uation is performed. Rather, the input to the homomorphic evaluation is always
the encryption of the secret key. We take this approach another step forward
and consider ciphertexts c1, c2 s.t. c1 is encrypted under some set of public keys
T1 corresponding to concatenated secret key t̂1, and c2 is encrypted under a
set T2 corresponding to t̂2. The public keys in T1, T2 contain an encryption of
the individual secret keys, which in turn can be expanded to an encryption of
t̂1, t̂2 under a key t̂ which corresponds to the union of the sets T1 ∪ T2. This
will allow us to perform homomorphic evaluation of the bootstrapping func-
tion h(x1, x2) = (Decx1(c1) NAND Decx2(c2)) and obtain an encrypted output
respective to T1 ∪ T2. This process can be repeated as many times as we want
(we make sure that we have sufficient homomorphic capacity to evaluate the
function h(·) for any polynomial number of parties N). We note that in order
for this solution to be secure, encrypting the secret key under the public key
in MW needs to be secure (which translates to a circular security assumption
on MW). We need to make this hardness assumption explicitly, in addition to
the hardness of LWE. However, as in the single-key setting, one can generate
a chain of secret keys encrypting one another and obtain a leveled scheme that
only supports evaluation of circuits up to a predefined depth bound. This can
be done while relying on the hardness of LWE alone, which translates to the
hardness of approximation of GapSVP,SIVP in worst-case lattices.

We thus explained how to achieve a fully dynamic multi-key FHE scheme, but
so far the length of the ciphertexts was inherited from the MW scheme, and grew
quadratically with N . Examining the bootstrapping solution carefully, it seems
that the ciphertext length problem might have a simple solution. We notice that
the decryption procedure of the GSW scheme (and thus also of the MW scheme),
only computes the inner product of the secret key with a single column derived
from the ciphertext matrix. In fact, the rightmost column of the ciphertext
matrix will do. In a way, the rest of the ciphertext matrix is only there to allow for
the homomorphic evaluation. Therefore, we can amend the previous approach,
and after performing each atomic operation, we can just toss out the resulting
matrix, except the last column. The length of this last column only grows with N
and not N2, and it is sufficient for the subsequent bootstrapping steps. However,
we view this as a very minor victory, since in order to perform homomorphic
operations via bootstrapping, we will actually need to expand the encryptions
of the secret key to size N × N and evaluate the bootstrapping procedure with

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 195

these mammoth matrices. Our goal is to save not only on the communication
complexity but also on the memory requirement of the homomorphic evaluation
process. As we mentioned above, memory requirement is the main bottleneck in
current implementations of FHE.

To reduce the space complexity, we first observe that in some cases, the
N × N block matrices are actually quite sparse. In fact, the expand operation
from [CM15,MW16] generates very sparse matrices, where only (2N − 1) of
the N2 blocks are non-zero. Thus the output of expand can be represented
using only O(N) space. However, this neat property disappears very quickly as
homomorphic operations are performed and ciphertexts are multiplied by one
another. It seems hard to shrink a matrix in mid-computation back into O(N)
size. The next idea is to incorporate into the scheme the sequentialization method
of Brakerski and Vaikuntanathan [BV14]. Their motivation was to reduce the
noise accumulation in the (single-key) bootstrapping procedure, and they did
this by converting the decryption circuit into a branching program. A branching
program contains a sequence of steps (polynomially many, in our case), where in
each step a local state is being updated through interaction with one of the input
bits. We recall that in our case, the input bits are the (expanded) encryptions of
the bits of the secret keys. The newly expanded ciphertexts have length O(N),
so we only need to worry about the encryption of the running state. However,
since homomorphic evaluation is of the form C1 · G−1(C2), it is sufficient to
hold the last column of C2 (and thus of G−1(C2)) in order to obtain the last
column of the product. Therefore, so long as we make sure that the encrypted
state of the computation is always the right-hand operand in the multiplication
(which can be done in branching program evaluation), we can perform the entire
computation with O(N) space in total. A subtle point in this use of branching
programs is that the representation of the program itself could have size poly(N),
so just writing it would require more space than we could save anyway. To
address this issue, we notice that the construction of the branching program in
Barrington’s theorem can be performed “on the fly”. We can hold a state of
size proportional to the depth of the circuit we wish to evaluate and produce
the layers of the branching program one by one. Thus we can produce a layer,
evaluate it, proceed to the next one etc., all without exceeding our space limit.

1.3 Other Related Work

In an independent and concurrent work, Peikert and Shiehian [PS16] also
addressed the problem of constructing multi-hop multi-key FHE. They show that
multi-hop homomorphism can be achieved “natively” without using bootstrap-
ping. This is done by utilizing new properties of the [CM15,MW16] multi-key
scheme and incorporating them with those of GSW-style encryption. Without
bootstrapping, they are unable to achieve a fully dynamic scheme, and require
the total number of users and the maximal computation depth to be known
ahead of time. Their techniques are very different from ours and we believe that
it is a significant contribution to the study of multi-key FHE.

196 Z. Brakerski and R. Perlman

2 Preliminaries

Matrices are denoted by bold-face capital letters, and vectors are denoted by
bold-face small letters. For vectors v = (vi)i∈[n], we let v[i] be the i’th element
of the vector, for every i ∈ [n]. Similarly, for a matrix M = (mi,j)i∈[n],j∈[m], we
let M[i, j] be the i’th element of the j’th column, for every i ∈ [n] and j ∈ [m].
Sequences of matrices M1, . . . ,M� are denoted by

−→M. We let
−→M[k] be the k’th

matrix, for every k ∈ [�]. To avoid cluttering of notation, we regard to vectors
in the same way as we do to matrices and do not denote row vectors with the
transposed symbol. The standard rules of matrix arithmetics should be applied
to vectors the same as they do for matrices. The vectors of the standard basis
are denoted by {ui}i, the dimension will be clear from the context.

All logarithms are taken to base 2, unless otherwise specified. We let Zq be
the ring of integers modulo q. Normally we associate x ∈ Zq with the value
y ∈ (−q/2, q/2] ∩ Z s.t. y = x (mod q). We denote �q = �log q� and recall that
an element in Zq can be represented by a string in {0, 1}�q , by default x will
be represented using two’s complement representation of the aforementioned
representative y. For a distribution ensemble χ = χ(λ) over Z, and integer
bounds Bχ = Bχ(λ) we say that χ is B-bounded if Prx←χ [|x| > B] = 0.

For x ∈ Zq we define |x| = arg miny=x (mod q) |y| (this function does not have
all properties of standard absolute value, but the triangle inequality still holds).
Further, we will denote ‖v‖∞ = maxi |v[i]|.

We let λ denote a security parameter. When we speak of a negligible function
negl(λ), we mean a function that decays faster than 1/λc for any constant c > 0
and sufficiently large values of λ. When we say that an event happens with
overwhelming probability, we mean that it happens with probability at least
1 − negl(λ) for some negligible function negl(λ).

2.1 Homomorphic Encryption and Bootstrapping

We now define fully homomorphic encryption and introduce Gentry’s boot-
strapping theorem. Our definitions are mostly taken from [BV11,BGV12], and
adapted to the setting where multiple users can share the same public parame-
ters.

A homomorphic (public-key) encryption scheme HE = (HE.Setup,HE.Keygen,
HE.Enc,HE.Dec,HE.Eval) is a 5-tuple of ppt algorithms as follows (λ is the
security parameter):

– Setup params←HE.Setup(1λ): Outputs the public parametrization params of
the system.

– Key generation (pk, sk)←HE.Keygen(params): Outputs a public encryption
key pk and a secret decryption key sk.

– Encryption c←HE.Enc(pk, μ): Using the public key pk, encrypts a single bit
message μ ∈ {0, 1} into a ciphertext c.

– Decryption μ←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext
c to recover the message μ ∈ {0, 1}.

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 197

– Homomorphic evaluation ĉ←HE.Eval(C, (c1, . . . , c�), pk): Using the public
key pk, applies a circuit C : {0, 1}� → {0, 1} to c1, . . . , c�, and outputs a
ciphertext ĉ.

A homomorphic encryption scheme is said to be secure if it is semantically secure.
Full homomorphism is defined next. We distinguish between single-hop and

multi-hop homomorphism as per [GHV10]. Loosely speaking, single-hop homo-
morphism supports only a single evaluation of a circuit on ciphertexts. Con-
versely, in the multi-hop case, one can continue evaluating circuits (on not nec-
essarily fresh) ciphertexts, as long as they decrypt correctly.

Definition 1 (Compactness and Full Homomorphism). A scheme HE
is single-hop fully homomorphic, if for any efficiently computable cir-
cuit C and any set of inputs μ1, . . . , μ�, letting params←HE.Setup(1λ),
(pk, sk)←HE.Keygen(params) and ci←HE.Enc(pk, μi), it holds that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c�), pk))
= C(μ1, . . . , μ�)] = negl(λ),

The scheme is multi-hop fully homomorphic if for any circuit C and
any set of ciphertexts c1, . . . , c�, letting params←HE.Setup(1λ), (pk, sk)←
HE.Keygen(params) and μi←HE.Dec(sk, ci), it holds that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c�), pk))
= C(μ1, . . . , μ�)] = negl(λ).

A fully homomorphic encryption scheme is compact if its decryption circuit is
independent of the evaluated function. The scheme is leveled fully homomorphic
if it takes 1L as additional input in key generation, and can only evaluate depth
L Boolean circuits (this notion usually only refers to single-hop schemes).

Gentry’s bootstrapping theorem shows how to go from limited amount of
homomorphism to full homomorphism. This method has to do with the aug-
mented decryption circuit and, in the case of pure fully homomorphism, relies
on the weak circular security property of the scheme.

Definition 2. Consider a homomorphic encryption scheme HE. Let (sk, pk) be
properly generated keys and let C be the set of properly decryptable ciphertexts.
Then the set of augmented decryption functions, {fc1,c2}c1,c2∈C is defined by
fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2). Namely, the function that uses its input
as secret key, decrypts c1, c2 and returns the NAND of the results.

Definition 3. A public key encryption scheme PKE is said to be weakly circular
secure if it is secure even against an adversary who gets encryptions of the bits
of the secret key.

The bootstrapping theorem is thus as follows.

Theorem 1 (Bootstrapping [Gen09b,Gen09a]). A scheme that can homo-
morphically evaluate its family of augmented decryption circuits can be trans-
formed into a leveled fully homomorphic encryption scheme with the same
decryption circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weak circular secure, then
it can be made into a pure fully homomorphic encryption scheme.

198 Z. Brakerski and R. Perlman

2.2 Multi-key Homomorphic Encryption

A homomorphic encryption scheme is multi-key if it can evaluate circuits on
ciphertexts encrypted under different public keys. To decrypt an evaluated
ciphertext, the algorithm uses the secret keys of all parties whose ciphertexts
took part in the computation.

A multi-key homomorphic encryption scheme MKHE = (.Setup,
MKHE.Keygen, MKHE.Enc,MKHE.Dec,MKHE.Eval) is a 5-tuple of ppt algo-
rithms as follows:

– Setup params←.Setup(1λ): Outputs the public parametrization params of the
system.

– Key generation (pk, sk)←MKHE.Keygen(params): Outputs a public encryp-
tion key pk and a secret decryption key sk.

– Encryption c←MKHE.Enc(pk, μ): Using the public key pk, encrypts a single
bit message μ ∈ {0, 1} into a ciphertext c.

– Decryption μ←MKHE.Dec((sk1, . . . , skN), c): Using the sequence of secret
keys (sk1, . . . , skN), decrypts a ciphertext c to recover the message μ ∈ {0, 1}.

– Homomorphic evaluation ĉ←MKHE.Eval(C, (c1, . . . , c�), (pk1, . . . , pkN)):
Using the sequence of public keys (pk1, . . . , pkN), applies a circuit
C : {0, 1}� → {0, 1} to c1, . . . , c�, where each ciphertext cj is evaluated under
a sequence of public keys Tj ⊂ {pk1, . . . , pkN} (we assume that Tj is implicit
in ci). Upon termination, outputs a ciphertext ĉ.

In the multi-key setting we define the notion of fully dynamic scheme as a
generalization of multi-hop homomorphism in the single-key setting. A formal
definition follows.

Definition 4 (Fully Dynamic Multi-Key FHE). A scheme MKHE is fully
dynamic multi-key FHE, if the following holds. Let N = Nλ be any poly-
nomial in the security parameter, let C = Cλ be a sequence of circuits, set
params←.Setup(1λ) and (pki, ski)←MKHE.Keygen(params) for every i ∈ [N],
and let ĉj be such that MKHE.Dec((skj,1, . . . , skj,s), ĉj) = μj, where {skj,i}j,i ⊆
{sk1, . . . , skN}. Then

Pr
[
MKHE.Dec((sk1, . . . , skN),MKHE.Eval(C, (ĉ1, . . . , ĉ�), (pk1, . . . , pkN)))

= C(μ1, . . . , μ�)
]

= negl(λ)

The scheme is compact if its decryption circuit is independent of the evaluated
function and its size is poly(λ,N) for some fixed polynomial.

2.3 Barrington’s Theorem and an On-the-Fly Variant

We define the computational model of permutation branching programs, and
cite the fundamental theorem of Barrington connecting them to depth bounded
computation. Finally, we note a corollary from Barrington’s construction, which
allows to compute the branching program “on-the-fly”, layer by layer, keeping
only small state.

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 199

Definition 5. A permutation branching program Π with � variables, width k
and length L is a collection of L tuples (p0,t, p1,t)t∈[L] called the instructions
and a function var : [L] → [�]. Each tuple is composed of a pair of per-
mutations p0,t, p1,t : [k] → [k]. The program takes as input a binary vector
x = (x1, . . . , x�) ∈ {0, 1}�, and outputs a bit b ∈ {0, 1}. The execution of the Π
is as follows: the program keeps a state integer s ∈ {1, . . . , k}, initially s0 = 1.
On every step t = 1, . . . , L, the next state is determent recursively using the t’th
instruction:

st := pxvar(t),t(st−1)

In other words, st := p0,t(st−1) if xvar(t) = 0, and otherwise st := p1,t(st−1).
Finally, after the L’th iteration, the branching programs outputs 1 if and only if
sL = 1.

Theorem 2 (Barrington’s Theorem [Bar89]). Every Boolean NAND circuit
Ψ that acts on � inputs and has depth d can be computed by a width-5 permutation
branching program Π of length 4d. Given the description of the circuit Ψ , the
description of the branching program Π can be computed in poly(�, 4d) time.

In order to state our corollary for on-the-fly branching programs, we will
require the following definition.

Definition 6 (Predecessor Function for Circuit). Let Ψ be a circuit as
in Theorem 2. The predecessor function of Ψ , denoted PredΨ (i), is defined with
respect to some arbitrary labeling of the gates of Ψ , where the label of the output
gate is always 0, and input gates are labeled by the index of the variable. Given
a label i for a gate, PredΨ (i) returns (j1, j2) which are the labels of the wires
feeding this gate.

We can now define the on-the-fly variant of Barrington’s Theorem.

Corollary 1 (Barrington On-The-Fly). There exists a uniform machine
BPOTF that, given access to a predecessor function PredΨ of a depth d circuit,
outputs the layers (p0,t, p1,t) of the branching program from Theorem 2 in order
for t = 1, . . . , L. Each layer takes time O(d) to produce, and the total space used
by BPOTF is O(d).

Proof. This corollary is implicit in the proof of Barrington’s Theorem. It will be
convenient to refer to the proof as it appears in [Vio09]. Essentially, the branching
program in Barrington’s theorem is produced recursively, where every node in the
circuit, starting with the output gate, applies the branching program generation
procedure recursively on its left hand predecessor, right hand, left hand again,
right hand again. Each recursive call is parameterized by an element in the group
S5 which is passed on as a recursive parameter. Once an input node is reached,
the respective layer in the branching program can be produced based on the S5

element and the identity of the variable.
We conclude that the computation of the branching program is a traversal of

the DAG representing the circuit, and at each point in time there is one path in

200 Z. Brakerski and R. Perlman

the graph that is active, and each nodes on that path need to maintain a state
of size O(1). Thus the total space required is O(d) and the time to produce the
next layer is at most O(d).

2.4 Learning with Errors and the Gadget Matrix

The Learning with Errors (LWE) problem was introduced by Regev [Reg05] as
a generalization of “learning parity with noise” [BFKL93,Ale03]. We now define
the decisional version of LWE.

Definition 7 (Decisional LWE (DLWE) [Reg05]). Let λ be the security para-
meter, n = n(λ), m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a prob-
ability distribution over Z bounded by Bχ = Bχ(λ). The DLWEn,q,χ problem
states that for all m = poly(n), letting A ← Z

n×m
q , s ← Z

n
q , e ← χm, and

u ← Z
m
q , the following distributions are computationally indistinguishable:

(
A, sA + e

) c≈
(
A,u

)

There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09])
reductions between DLWEn,q,χ and approximating short vector problems in lat-
tices. Specifically, these reductions take χ to be a discrete Gaussian distribution
DZ,αq for some α < 1. We write DLWEn,q,α to indicate this instantiation. We
now state a corollary of the results of [Reg05,Pei09,MM11,MP12]. These results
also extend to additional forms of q (see [MM11,MP12]).

Corollary 2 ([Reg05,Pei09,MM11,MP12]). Let q = q(n) ∈ N be either a prime
power q = pr, or a product of co-prime numbers q =

∏
qi such that for all i,

qi = poly(n), and let α ≥ √
n/q. If there is an efficient algorithm that solves the

(average-case) DLWEn,q,α problem, then:

– There is an efficient quantum algorithm that solves GapSVP
˜O(n/α) (and

SIVP
˜O(n/α)) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis
for a lattice and a parameter d, between the case where the lattice has a vector
shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ · d. SIVP is the search problem of finding a set of “short” vectors. The
best known algorithms for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ) time.
We refer the reader to [Reg05,Pei09] for more information.

Lastly, we derive the following corollary which will allow us to choose the
LWE parameters for our scheme. It follows immediately by taking χ to be a
discrete Gaussian with parameter B/ω(

√
log n) with rejection sampling rejecting

all samples bigger than B (which only happens with negligible probability).

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 201

Corollary 3. For any function B = B(n) there exists a B-bounded distribution
χ = χ(n) such that for all q it holds that DLWEn,q,χ is at least as hard as the
quantum hardness of GapSVPγ , SIVPγ for γ = Õ(nq/B), and also the classical
hardness of GapSVPγ if q ≥ Õ(2n/2).

We now define the gadget matrix [MP12,AP14] that plays an important role
in our construction. Our definition is a slight variant on definitions from previous
works.

Definition 8. Let m = n · (�q + c) for some c ∈ N, and define the “gadget
matrix”

Gn,m = (0c | g) ⊗ In ∈ Z
n×m
q ,

where g = (1, 2, 4, . . . , 2�q−1) ∈ Z
�q
q . We will also refer to this gadget matrix as

the “powers-of-two” matrix. We define the inverse function G−1
n,m : Zn×m′

q →
{0, 1}m×m′

which expands each entry a ∈ Zq of the input matrix into a column
of size c + �q consisting of the bits of the binary representation of a with leading
zeros. We have the property that for any matrix A ∈ Z

n×m′
q , it holds that Gn,m ·

G−1
n,m(A) = A. We note that we sometimes omit the subscripts when they are

clear from the context.

3 Building Blocks from Previous Works

3.1 Noise Level of Matrices and Vectors

Let n, q be natural numbers and let m ≥ n · �q be s.t. G = Gn,m ∈ Z
n×m
q

(where G is the gadget matrix from Definition 8). Throughout this section we
consider matrices C ∈ Z

n×m
q (to be interpreted as ciphertexts), vectors t ∈ Z

n
q

(secret keys), and bits μ ∈ {0, 1} (plaintexts). Starting with [GSW13], a number
of recent homomorphic encryption schemes, and in particular the ones we will
consider as a basis for our construction, have the property that C encrypts μ if
and only if

tC = μtG + e , (1)

for a sufficiently low-norm noise vector e. We would like to keep track of the
noise level in the ciphertext throughout homomorphic evaluation. We therefore
define the noise level as follows. (Recall that we defined absolute value and norm
of elements in Zq in the beginning of Sect. 2.)

Definition 9. The noise level of C with respect to (t, μ) is the infinity norm of
the noise vector:

noise(t,μ)(C) = ‖tC − μtG‖∞ .

For a vector c ∈ Z
n
q , we define:

noise(t,μ)(c) =
∣∣〈t, c〉 − 2�q−1μ

∣∣ .

One or both subscripts are sometimes omitted when they are clear from the
context.

202 Z. Brakerski and R. Perlman

We note that since G−1(2�q−1un) = um (where ui is the ith unit vector), then
c = C ·G−1(2�q−1un) is simply the last (mth) column of C and furthermore for
such c it holds that

noise(t,μ)(c) = noise(t,μ)(C · G−1(2�q−1un)) ≤ noise(t,μ)(C) .

The following are basic properties of the noise vector that had been estab-
lished in previous works. These are used to establish the homomorphic properties
of the respective encryption scheme.

Lemma 1 ([GSW13,AP14]). The noise in negation, addition and multiplica-
tion is bounded as follows. Negation: For all μ ∈ {0, 1} it holds that

noise(t,1−μ)(G − C) = noise(t,μ)(C) .

Addition: If μ1, μ2 ∈ {0, 1} are such that μ1 · μ2 = 0 (i.e. not both are 1) then

noise(t,μ1+μ2)(C1 + C2) ≤ noise(t,μ1)(C1) + noise(t,μ2)(C2) .

Multiplication: For all μ1, μ2 ∈ {0, 1} it holds that

noise(t,μ1μ2)(C1G−1(C2)) ≤ m · noise(t,μ1)(C1) + μ1 · noise(t,μ2)(C2) .

We will also require an almost identical variant about the noise content in
vectors. We add a proof for the sake of completeness.

Lemma 2. Let n, q be integers, let t ∈ Z
n
q be such that t[n] = 1 and c1, c2 ∈ Z

n
q ,

further let C1 ∈ Z
n×m. Recall the definition of noise content (Definition 9).

Then:
Negation: For all μ ∈ {0, 1} it holds that

noise(t,1−μ)(2�q−1un − c) = noise(t,μ)(c) .

Addition: If μ1, μ2 ∈ {0, 1} are such that μ1 · μ2 = 0 (i.e. not both are 1) then

noise(t,μ1+μ2)(c1 + c2) ≤ noise(t,μ1)(c1) + noise(t,μ2)(c2) .

Multiplication: For all μ1, μ2 ∈ {0, 1} it holds that

noise(t,μ1μ2)(C1G−1
n,m(c2)) ≤ m · noise(t,μ1)(C1) + μ1 · noise(t,μ2)(c2) .

Proof. We simply compute:
Negation:

noise(t,1−μ)(2�q−1un − c)

=
∣∣〈t, 2�q−1un − c〉 − 2�q−1(1 − μ)

∣∣
=

∣∣2�q−1 − 〈t, c〉 − 2�q−1(1 − μ)
∣∣

=
∣∣〈t, c〉 − 2�q−1μ

∣∣
= noise(t,μ)(c)

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 203

Addition:
noise(t,μ1+μ2)(c1 + c2)

=
∣∣〈t, c1 + c2〉 − 2�q−1(μ1 + μ2)

∣∣
≤

∣∣〈t, c1〉 − 2�q−1μ1

∣∣ +
∣∣〈t, c2〉 − 2�q−1μ2

∣∣
= noise(t,μ1)(c1) + noise(t,μ2)(c2)

Multiplication: Define e1 = tC1 − μ1tG.

noise(t,μ1μ2)(C1G−1
n,m(c2))

=
∣∣〈t,C1G−1

n,m(c2)〉 − 2�q−1(μ1μ2)
∣∣

=
∣∣〈μ1tGn,m + e1,G−1

n,m(c2)〉 − 2�q−1(μ1μ2)
∣∣

=
∣∣μ1〈t, c2〉 + 〈e1,G−1

n,m(c2)〉 − 2�q−1(μ1μ2)
∣∣

≤ μ1

∣∣〈t, c2〉 − 2�q−1μ2

∣∣ + m ‖e1‖∞
= m · noise(t,μ1)(C1) + μ1 · noise(t,μ2)(c2)

The following corollary, which follows from an analysis performed in [BV11],
states that if a vector has sufficiently small noise, then μ can be recovered using
a shallow boolean circuit. We also observe that the predecessor function of this
circuit (Definition 6) is succinctly computable.

Corollary 4 ([BV11]). Define Threshold(t, c) = arg minμ∈{0,1} noiset,μ(c).
Then if noise(t,μ)(c) < q/8 for some μ, then Threshold(t, c) = μ. Furthermore,
there exists a depth O(log(n log(q))) boolean circuit that computes Threshold, and
there exists a size polylog(n log q) circuit that computes the predecessor function
PredThreshold as per Definition 6.

Proof. Since 2�q−1 > q/4, it follows that if noise(t,μ)(c) < q/8 then it must me
that noise(t,1−μ)(c) > q/8 and the first part follows.

The boolean circuit that computes Threshold is essentially the same as the
decryption circuit described in [BV11, Lemma 4.5]. This is a circuit that first
performs an addition, then computes modulo q and finally a threshold function.
Specifically we do the following. For an integer a ∈ Zq we let Biti(a) denote the
ith bit of a. Note that:

〈t, c〉 − 2�q−1μ =
n∑

i=1

�q∑
j=1

(t[i] · 2j) · Bitj(c[i]) − 2�q−1μ .

Therefore, 〈t, c〉 − 2�q−1μ is a summation of n�q + 1 integers. This can be done
in depth O(log(n�q)) = O(log(n log(q))), using a 3-to-2 addition tree. In order
to take modulo q, we subtract, in parallel, all possible multiples of q and check if
the result is in Zq. Since there are at most O(n�q) possible multiplies, this can be
done, using a selection tree, in depth O(log(n log(q))) again. Finally, to compute
the threshold function, we compare the values of noise(t,0)(c) and noise(t,1)(c).
This can be done in depth O(log(n log(q))) as well, leading to a total depth of
O(log(n log(q))), as desired.

204 Z. Brakerski and R. Perlman

Note that the circuit of addition of two �q-bits integers can be computed
using a uniform machine with logarithmic space, taking �q as input. Therefore,
the circuit of summation of n�q + 1 integers can also be computed by such a
machine, taking �q, n as input. Similarly, each of the components of the circuit
of Threshold can be computed in such manner. Since there is a constant num-
ber of components, wired sequentially, we can compute each component using
logarithmic space, and reuse that space to compute the following component.
Therefore, we can compute the circuit of Threshold using a uniform machine
with logarithmic space, taking n, �q as input. In particular, such a machine can
also compute the PredThreshold function.

3.2 A Single-Hop Multi-key Homomorphic Encryption Scheme

The scheme below is essentially a restatement of the scheme of [MW16], which
in turns relies on [GSW13,CM15].

– SHMK.Setup(1λ): Generate the parameters (n, q, χ,Bχ) such that
DLWEn−1,q,χ holds (note that there is freedom in the choice of parameters
here, so the scheme can be instantiated in various parameter ranges), recall
that we denote �q = �log q�, and choose m s.t. n|m and m ≥ n�q + ω(log λ).

Finally, choose a matrix uniformly at random B $← Z
(n−1)×m
q and output:

params := (q, n,m, χ,Bχ,B)

– SHMK.Keygen(params): Sample uniformly at random s $← Z
n−1
q , set the secret

key as follows:
sk := t = (−s, 1) ∈ Z

n
q

Sample a noise vector e $← χm and compute:

b := sB + e ∈ Z
m
q A :=

(
B
b

)
∈ Z

n×m
q

Finally, set and output:
pk := A

– SHMK.PreEnc(pk, μ): This is a “pre-encryption” algorithm that will be used as
an auxiliary procedure in the actual encryption algorithm. Sample uniformly
at random R $← {0, 1}m×m. Set and output the encryption:

C := AR + μGn,m ∈ Z
n×m
q

– SHMK.Enc(pk, μ): Sample uniformly at random R $← {0, 1}m×m. Compute:

C := AR + μG ∈ Z
n×m
q

−→R[j, k] ← SHMK.PreEnc(pk,R[j, k]) ∈ Z
n×m
q

Set the ciphertext to be the encrypted massage along with the vector of
encryptions and output it (C,

−→R) ∈ Z
n×m
q ×

(
Z

n×m
q

)m×m. We note that for

the most part, the internal structure of
−→R will not be too important for our

purposes.

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 205

– SHMK.Dec((sk1, . . . , skN), Ĉ): Let ĉ = Ĉ · G−1
nN,mN (2�q−1unN) be the last

column of Ĉ. Denote ti = ski for every i ∈ [N] and t̂ = (t1, . . . , tN). Compute
and output:

μ′ := Threshold(t̂, ĉ) ,

where Threshold(·, ·) is as defined in Corollary 4.
– SHMK.Extend(c, (pk1, . . . , pkN)): Takes as input a ciphertext c = (C,

−→R) and
a tuple of public keys pk1, . . . , pkN . It outputs a new ciphertext Ĉ ∈ Z

nN×mN
q ,

however Ĉ is represented as an N × N block matrix containing blocks of size
Z

n×m
q , and only 2N − 1 of these blocks are non-zero. See Lemma 3 below for

the properties of the extension procedure.

Lemma 3 ([MW16]). Let N ∈ N, μ ∈ {0, 1}, (skj , pkj) = SHMK.Keygen(1λ)
for all j ∈ [N]. Let c = SHMK.Enc(pki, μ) for some i ∈ [N] (we assume that i is
given implicitly).
Then SHMK.Extend(c, (pk1, . . . , pkN)) runs in N · poly(λ) time and outputs a
succinct description of the block matrix Ĉ containing all but (2N − 1) nonzero
blocks. Furthermore, denoting tj = skj and t̂ = (t1, . . . , tN), it holds that
noiset̂,μ(Ĉ) ≤ (m4 + m)Bχ, with probability 1.

Since the extended ciphertexts satisfy Eq. (1) with respect to the concate-
nated secret keys, and since the noise of a fresh extended ciphertext is small, we
can preform homomorphic operations, as described in Sect. 3.1.

The following lemma asserts the security of the scheme (we note that security-
wise, this scheme is an immediate extension of Regev’s encryption scheme
[Reg05]).

Lemma 4 ([MW16]). The scheme SHMK is semantically secure under the
DLWEn−1,q,χ assumption.

4 Our Fully Dynamic Multi-key FHE Scheme

We now describe our fully dynamic multi-key FHE scheme FDMK. We start by
presenting the setup, key generation, encryption and decryption (without eval-
uation), which will be a slight variation on the bootstrappable version of the
single-hop scheme SHMK from Sect. 3.2. The only difference is that a ciphertext
here is only a small fragment of a ciphertext in SHMK, and the public keys
are augmented with encryptions of the secret key as required for bootstrap-
ping. Then, in Sect. 4.1 we describe our evaluation procedure using branching
programs.

We note that the security of our scheme requires making a circular security
assumption on SHMK. We describe a leveled version of our scheme that only
requires the hardness of learning with errors in AppendixA.

206 Z. Brakerski and R. Perlman

– FDMK.Setup(1λ): Generate the parameters such that DLWEn−1,q,χ holds,
where n := n(λ) is the lattice dimension parameter; χ := χ(λ) is a Bχ :=
Bχ(λ) bounded error distribution; and a modulus q := Bχ2ω(log λ). Denote
�q = �log q�, set m := n�q + ω(log λ) such that n|m, and sample uniformly at

random B $← Z
(n−1)×m
q . Set and output:

params := (q, n,m, χ,Bχ,B)

– FDMK.Keygen(params): Generate a secret key as in the scheme SHMK - sam-

ple uniformly at random s $← Z
n−1
q , set and output:

sk := t = (−s, 1) ∈ Z
n
q

Then, to generate the public key - sample a noise vector e $← χm and
compute:

b := sB + e ∈ Z
m
q A :=

(
B
b

)
∈ Z

n×m
q

Next, encrypt the secret key bit-by-bit according to the SHMK scheme. Let
Biti(sk) denote the ith bit of sk. For every i ∈ [n · �q] compute:

−→S [i] ← SHMK.Enc(A,Biti(sk))

Set the public key to:
pk:=(A,

−→S) .

We note that the
−→S part is only used for homomorphic evaluation and not

for encryption.
– FDMK.Enc(pk, μ): Sample uniformly at random r $← {0, 1}m. Set and output

the encryption:
c := Ar + μ2�q−1un ∈ Z

n
q

where ui is the ith standard basis vector.
– FDMK.Dec((sk1, . . . , skN), c) : Parse each secret key as ti := ski for every i ∈

[N]. Concatenate the secret keys and set t̂ := (t1, . . . , tN) ∈ Z
nN
q . Compute

and output
μ′ := Threshold(t̂, c) ,

where Threshold(·, ·) is as defined in Corollary 4.

The following lemma states the security of our scheme, which follows imme-
diately from that of SHMK.

Lemma 5. The scheme FDMK is semantically secure if SHMK with the same
DLWE parameters is weakly circular secure.

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 207

Proof. Note that the ciphertexts in the FDMK scheme are the last column of the
ciphertexts in the SHMK scheme. In particular it could be computed determin-
istically out of the ciphertexts in the SHMK scheme. Since the public key in the
FDMK is generated as in the SHMK scheme, along with encryption of the secret
keys, the semantic security follows from the weak circular security of the SHMK
scheme.

The choice of DLWE parameters and the lattice approximation factors they
induce is discussed when we present our leveled scheme that does not require
circular security. See AppendixA and in particular Lemma9 and the discussion
thereafter.

4.1 Homomorphic Evaluation

Following [BV14], we evaluate the augmented NAND circuits needed for boot-
strapping by converting them into branching programs. We recall the definition
of a branching program, Barrington’s Theorem and our on-the-fly variant of the
theorem from Sect. 2.3.

We would like to evaluate a branching program homomorphically. Since the
message space of our scheme is binary, it would be more convenient to keep a
binary state vector v ∈ {0, 1}5, rather than an integer state s ∈ {1, . . . , 5}. We
keep the following invariant: vt[i] = 1 ⇔ st = i. To do so we initialize v0[1] = 1
and v0[i] = 0 for i ∈ {2, . . . , 5}. In the iterative stage we evaluate using the
recursive formula:

vt[i] = 1 ⇔ pt,xvar(t)(st−1) = i

We can rewrite it to get an iterative formula: for every 1 ≤ i ≤ 5, vt[i] = 1 if
and only if

vt−1

[
p−1

t,0 (i)
]

= 1 and xvar(t) = 0 or vt−1

[
p−1

t,1 (i)
]

= 1 and xvar(t) = 1

Equivalently:

vt[i] :=vt−1

[
p−1

t,0 (i)
]
·
(
1 − xvar(t)

)
+ vt−1

[
p−1

t,1 (i)
]
· xvar(t)

=vt−1 [αt,i] ·
(
1 − xvar(t)

)
+ vt−1 [βt,i] · xvar(t)

(2)

where αt,i = p−1
t,0 (i), βt,i = p−1

t,1 (i) are constant parameters derived from the
description of the circuit. After the L’th iteration, we accept if and only if sL = 1,
that is we output vL[1], following from the kept invariant.

The main idea of [BV14] is to convert the circuit into a branching program,
and compute it homomorphically by evaluating the above formula (Eq. (2)).
We adapt the use of branching programs to reduce the space complexity of
evaluation. Specifically, we show that our scheme is bootstrapable using space
linear in the number of the participating parties as follows.

– FDMK.NAND((c1, c2), (pk1, . . . , pkN)): Let T1, T2 ⊂ {pk1, . . . , pkN} be the
sequences of public keys under which c1 and c2 are encrypted, respec-
tively. Let S1, S2 ⊂ {sk1, . . . , skN} be the respective secret keys, and let

208 Z. Brakerski and R. Perlman

μj = FDMK.Dec(Sj , cj) for j = 1, 2. Set C to be the description of the circuit

C(x, y) = NAND(FDMK.Decx(c1),FDMK.Decy(c2)) .

We would like to construct an on-the-fly branching program for C using the
algorithm BPOTF from Corollary 1. To this end we observe that due to the
properties of Threshold (see Corollary 4), the predecessor function PredC can
be computed by a circuit of size polylog(nN log q). Given access to PredC , we
have that BPOTFPredC uses space O(log(nN log q)) and generates the branch-
ing program Π = (var, (pt,0, pt,1)i∈[L]) that corresponds to C, layer by layer.
We will execute BPOTFPredC lazily, every time we will produce a layer of the
branching program and evaluate it homomorphically, so that BPOTFPredC

should not require more than O(log(Nn log q)) space at any point in time.
We execute Π on (

−→S i,
−→S j)i∈S1,j∈S2 as follows:

• Initialization:
∗ Set the state vector:

−→w0 := (2�q−1unN ,0,0,0,0)

∗ Initialize BPOTFPredC .
• Iterative Step: For every step t = 1, . . . , L do:

∗ Compute the constants αt,i,βt,i by running BPOTFPredC to obtain the
next layer of the branching program

((αt,1, . . . , αt,5), (βt,1, . . . , βt,5), var(t))

∗ For every i = 1, . . . , 5 homomorphically compute the encryption of
the next state:

wt,i := Xc
var(t) · G−1

nN,mN

(
wt−1,αt,i

)
+ Xvar(t) · G−1

nN,mN

(
wt−1,βt,i

)

where Xvar(t):=SHMK.Extend(
−→S var(t), (pk1, . . . , pkN)) is the extended

encryption of the secret key
−→S var(t) and Xc

var(t) := GnN,mN −Xvar(t)

is its complement.
• Finally output the ciphertext wL,1.

Lemma 6. For every N ∈ poly(λ), and every messages μ1, μ2 ∈ {0, 1},
let params←FDMK.Setup(1λ) and (pki, ski)←FDMK.Keygen(params) for every
i ∈ [N]. Let c1, c2 be ciphertexts such that for some sequence of secret keys
S1, S2 ⊂ {sk1, . . . , skN} it holds that FDMK.Dec(cj , Sj) = μj for j = 1, 2. Then
the following holds:

FDMK.Dec(FDMK.NAND((c1, c2), (pk1, . . . , pkN)), (sk1, . . . , skN))=NAND(μ1, μ2)

for every large enough value of λ.

To prove the correctness we first prove the following lemma:

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 209

Lemma 7. For every t = 0, . . . , L and every i = 1, . . . , 5 the following holds:

noise
̂sk,vt[i]

(wt,i) ≤ 2t(m5 + m2)NBχ

where ŝk := (sk1, . . . , skN) is the concatenation of the secret keys.

Proof. Denote x = (S1, S2), recall that the input for the branching program Π

is the encryption of the secret keys (
−→S i,

−→S j)i∈S1,j∈S2 .
We proof by induction on t:
The claim clearly holds for the case t = 0, by the way we defined w0. Assume
that the hypothesis holds for t′ < t. Note that by definition of wt it follows that

noise
̂sk,vt[i]

(wt,i) =

noise
̂sk,vt[i]

(
Xc

var(t) · G−1
nN,mN

(
wt−1,αt,i

)
+ Xvar(t) · G−1

nN,mN

(
wt−1,βt,i

))

Following from Lemma 2, and the definition of vt[i] in Eq. (2) we get:

noise
̂sk,vt[i]

(wt,i) =

(1 − xvar(t)) · noise
̂sk,vt−1[αi,t]

(
wt−1,αt,i

)
+ mN · noise

̂sk,̂skvar(t)
(Xvar(t))

+ xvar(t) · noise
̂sk,vt−1[βi,t]

(
wt−1,βt,i

)
+ mN · noise

̂sk,̂skvar(t)
(Xvar(t))

Note that either xvar(t) = 0 or 1−xvar(t) = 0, thus, using the induction’s hypoth-
esis:

(1 − xvar(t)) · noise
̂sk,vt−1[αi,t]

(
wt−1,αt,i

)
+ xvar(t) · noise

̂sk,vt−1[βi,t]

(
wt−1,βt,i

)
≤ max

(
noise

̂sk,vt−1[αi,t]

(
wt−1,αt,i

)
, noise

̂sk,vt−1[βi,t]

(
wt−1,βt,i

))

≤ 2(t − 1)(m5 + m2)NBχ

Following Lemma 3, noise
̂sk,̂skvar(t)

(Xvar(t)) = (m4 + m). Putting it all together:

noise
̂sk,vt[i]

(wt,i) ≤ 2(t − 1)(m5 + m2)NBχ + 2(m4 + m)mN

= 2t(m5 + m2)NBχ

Proof. (Proof of Lemma 6). Using the correctness of Barrington’s Theo-
rem (Theorem 2), we only need to prove that noise

̂sk,NAND(μ1,μ2)
(wL,1) =

noise
̂sk,vL[1](wL,1) < q/8. Indeed, using the previous lemma, noise

̂sk,vL[1](wL,1) ≤
2L(m5 + m2)NBχ. Using Lemma 4, bounding the depth of decryption d =
dThreshold = O(log(nN log(q))) = O(log λ + log N) = O(log λ), since n,N, log q =
poly(λ). Therefore, L = 4d+1 = poly(λ). And so, noise

̂sk,vL[1](wL,1) = poly(λ) ·
Bχ which is less than q/8 by our choice of parameters.

We note that if a bound on N was known a priori, then we could choose a
polynomial modulus q = poly(N,λ) = poly(λ).

210 Z. Brakerski and R. Perlman

Lemma 8. The algorithm FDMK.NAND can be computed using Npoly(n log q)
space, where N is the number of parties involved in the computation.

Proof. As we saw above, the computation of PredC takes space polylog(Nn log q)
and BPOTF requires space log(Nn log q). At every point in the evaluation of the
branching program we only hold 5 ciphertexts, each of which is a vector of
dimension nN over Zq. At each step in the computation we apply SHMK.Extend
to blow up an encryption of a secret-key bit into a sparse N × N block matrix
that can be represented by (2N−1) matrices in Z

n×m
q . We perform matrix-vector

multiplication and vector-vector addition between this matrix and vectors, which
can all be performed in N · poly(n log q) space. The lemma follows.

A Leveled Multi-key Fully Homomorphic Encryption

In this section we give a leveled multi-key homomorphic scheme LMK. The
scheme is leveled with respect to the total depth of computation. Namely, the
summation over all hops of the depth of the evaluated circuit. The scheme is
a modified version of the FDMK construction described in Sect. 4. Moreover, it
relies only on the hardness of LWE and not on any circular security assumption.
We achieve this, as in [Gen09b] and followup works, by generating a sequence of
secret keys and encrypting each of them under the next. To evaluate each gate,
we bootstrap using the next secret key.

– LMK.Setup(1λ, 1D): Generate the parameters such that DLWEn−1,q,χ holds,
where n := n(λ) is the lattice dimension parameter; χ := χ(λ) is a Bχ :=
Bχ(λ) bounded error distribution; and a modulus q := Bχ2ω(log λ). Denote
�q = �log q�, set m := n�q + ω(log λ) such that n|m and sample uniformly at

random B $← Z
(n−1)×m
q . Set and output:

params := (D, q, n,m, χ,Bχ,B)

– LMK.Keygen(params): Generate a sequence of (D + 1) pairs of keys as in the

SHMK scheme: for every d ∈ [D+1] sample uniformly at random s(d) $← Z
n−1
q

and set:
sk(d):=t(d) = (−s(d), 1)

Also sample a noise vector e(d) $← χm and compute:

pk(d):=A(d) =
(

B
s(d)B + e(d)

)
∈ Z

n×m
q

Next, encrypt bit-by-bit each secret key sk(d) using the sequentially following
public key pk(d+1). Let Bitj(sk(d)) denote the jth bit of sk(d). For every for
every d ∈ [D] and j ∈ [n · �q] compute:

−→S (d)[j] ← SHMK.Enc(pk(d+1),Bitj(sk(d)))

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 211

Finally, let the secret key be the last secret key of the sequence:

sk := sk(D+1)

And let the public key be the first public key of the sequence, along with the
encryptions:

pk :=
(
pk(1),

−→S (1), . . . ,
−→S (D)

)

– LMK.Enc(pk, μ): Sample uniformly at random r $← {0, 1}m. Set and output
the encryption:

c := Ar + μ2�−1un ∈ Z
n
q

– LMK.Dec((sk1, . . . , skN), c): Assume w.l.o.g that c is the product of evaluating
a depth D circuit on newly encrypted ciphertexts (otherwise apply additional
“dummy” homomorphic operations). Parse each secret key as ti = t(D+1)

i :=
ski for every i ∈ [N]. Concatenate the secret keys and set t̂ := (t1, . . . , tN) ∈
Z

nN
q . Compute and output

μ′ := Threshold(t̂, c)

Evaluation is done similar to as described in Sect. 4.1. Consider evaluating a
depth D circuit, and assume that the circuit is leveled, i.e. the gates of the circuit
can be divided into D sets (levels) such that the first set is only fed by input
gates, and set d + 1 is only fed by the outputs of gates in level d. Clearly every
circuit can be made leveled by adding dummy gates. Homomorphic evaluation
maintains the invariant that an encryption w.r.t some set of users T at the input
of level d is encrypted under their set of sk(d) keys. The computation of the gate
is therefore performed w.r.t the set of sk(d)i keys. Then for bootstrapping, we use
the S(d)

i key switching parameters, which allow us to produce an encryption of
the bits of the sk(d) keys under the sk(d+1) keys, so the invariant is preserved.
The noise growth is the same as analyzed in Lemma 7.

Security follows from LWE by a standard hybrid argument.

Lemma 9. The scheme described above is secure under the DLWEn−1,q,χ

assumption.

Following Corollary 3, we can assume DLWEn−1,q,χ by assuming the quantum
hardness of either GapSVPγ or SIVPγ for γ = Õ(nq/Bχ). For bootstrapping to
go through, we require that q/Bχ = 2ω(log n) (in fact, it is sufficient to have
q/Bχ = poly(n,N), but we do not want to assume an upper bound on N ,
except that it’s some polynomial). As usual, we can scale q,Bχ so long as their
ratio remains large enough. This allows us to achieve better efficiency by scaling
Bχ, q to be smallest possible, or achieving classical security by scaling q to be
exponential in n, and Bχ appropriately.

212 Z. Brakerski and R. Perlman

References

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
Proceedings of 44th Symposium on Foundations of Computer Science
(FOCS 2003), Cambridge, MA, USA, pp. 298–307. IEEE Computer Society,
11–14 October 2003

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: Garay and Gennaro [GG14], pp. 297–314

[Bar89] Mix Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. J. Comput. Syst. Sci. 38(1), 150–
164 (1989)

[BFKL93] Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–
325. ACM (2012). Invited to ACM Transactions onComputation Theory

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106. IEEE
(2011). https://eprint.iacr.org/2011/344.pdf

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: Naor, M. (ed.) Innovations in Theoretical Computer Science, ITCS 2014,
Princeton, NJ, USA, pp. 1–12. ACM, 12–14 January 2014

[CM15] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015)

[Gen09a] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009)

[Gen09b] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GG14] Garay, J.A., Gennaro, R. (eds.): CRYPTO 2014, Part I. LNCS, vol. 8616.
Springer, Heidelberg (2014)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption
and Rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 155–172. Springer, Heidelberg (2010)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 75–92. Springer, Heidelberg (2013)

[HS14] Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay and Gennaro [GG14],
pp. 554–571

[HS15] Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer,
Heidelberg (2015)

[LTV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In:
Karloff, H.J., Pitassi, T. (eds.) Proceedings of 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, pp. 1219–1234.
ACM, 19–22 May 2012

https://eprint.iacr.org/2011/344.pdf

Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts 213

[MM11] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 26

[Pei09] Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: Proceedings of 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, Bethesda, MD, USA, pp.
333–342, 31 May - 2 June 2009

[PS16] Peikert, C., Shiehian, S.: Multi-key FHE from LWE (revisited). IACR Cryp-
tology ePrint Archive 2016:196 (2016)

[RAD78] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homo-
morphisms. In: Foundations of Secure Computation, pp. 169–177. Academic
Press, Cambridge (1978)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, pp. 84–93, 22–24 May 2005

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algo-
rithms. Theor. Comput. Sci. 53, 201–224 (1987)

[Vio09] Viola, E.: Barrington’s Theorem - Lecture Notes (2009). Scribe by Zhou, F.
http://www.ccs.neu.edu/home/viola/classes/gems-08/lectures/le11.pdf

http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://www.ccs.neu.edu/home/viola/classes/gems-08/lectures/le11.pdf

Cryptography with Auxiliary Input
and Trapdoor from Constant-Noise LPN

Yu Yu1,2,3,4(B) and Jiang Zhang2

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China

yuyuathk@gmail.com
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

jiangzhang09@gmail.com
3 State Key Laboratory of Information Security,

Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

4 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. Dodis, Kalai and Lovett (STOC 2009) initiated the study
of the Learning Parity with Noise (LPN) problem with (static) expo-
nentially hard-to-invert auxiliary input. In particular, they showed that
under a new assumption (called Learning Subspace with Noise) the above
is quasi-polynomially hard in the high (polynomially close to uniform)
noise regime.

Inspired by the “sampling from subspace” technique by Yu (eprint
2009/467) and Goldwasser et al. (ITCS 2010), we show that standard
LPN can work in a mode (reducible to itself) where the constant-
noise LPN (by sampling its matrix from a random subspace) is robust
against sub-exponentially hard-to-invert auxiliary input with compara-
ble security to the underlying LPN. Plugging this into the framework of
[DKL09], we obtain the same applications as considered in [DKL09] (i.e.,
CPA/CCA secure symmetric encryption schemes, average-case obfusca-
tors, reusable and robust extractors) with resilience to a more general
class of leakages, improved efficiency and better security under standard
assumptions.

As a main contribution, under constant-noise LPN with certain sub-

exponential hardness (i.e., 2ω(n1/2) for secret size n) we obtain a variant
of the LPN with security on poly-logarithmic entropy sources, which
in turn implies CPA/CCA secure public-key encryption (PKE) schemes
and oblivious transfer (OT) protocols. Prior to this, basing PKE and OT
on constant-noise LPN had been an open problem since Alekhnovich’s
work (FOCS 2003).

1 Introduction

Learning Parity with Noise. The computational version of learning par-
ity with noise (LPN) assumption with parameters n ∈ N (length of secret) and

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 214–243, 2016.
DOI: 10.1007/978-3-662-53018-4 9

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 215

0 < μ < 1/2 (noise rate) postulates that for any q = poly(n) (number of queries)
it is computationally infeasible for any probabilistic polynomial-time (PPT) algo-

rithm to recover the random secret x $←− {0, 1}n given (A, A ·x+ e), where a is
a random q×n Boolean matrix, e follows Bq

μ = (Bμ)q, Bμ denotes the Bernoulli
distribution with parameter μ (i.e., Pr[Bμ = 1] = μ and Pr[Bμ = 0] = 1 − μ), ‘·’
denotes matrix vector multiplication over GF(2) and ‘+’ denotes bitwise addition
over GF(2). The decisional version of LPN simply assumes that (A, A · x + e)
is pseudorandom. The two versions are polynomially equivalent [4,8,34].

Hardness of LPN. The computational LPN problem represents a well-known
NP-complete problem “decoding random linear codes” [6] whose worst-case
hardness is well-investigated. LPN was also extensively studied in learning the-
ory, and it was shown in [21] that an efficient algorithm for LPN would allow to
learn several important function classes such as 2-DNF formulas, juntas, and any
function with a sparse Fourier spectrum. Under a constant noise rate, the best
known LPN solvers [9,39] require time and query complexity both 2O(n/ log n).
The time complexity goes up to 2O(n/ log log n) when restricted to q = poly(n)
queries [40], or even 2O(n) given only q = O(n) queries [42]. Under low noise
rate μ = n−c (for constant 0 < c < 1), the best attacks [5,7,12,38,48] solve
LPN with time complexity 2O(n1−c) and query complexity q = O(n) or more1.
The low-noise LPN is mostly believed a stronger assumption than constant-
noise LPN. In noise regime μ = O(1/

√
n), LPN can be used to build public-key

encryption (PKE) schemes and oblivious transfer (OT) protocols (more discus-
sions below). Quantum algorithms are not known to have any advantages over
classic ones in solving LPN, which makes LPN a promising candidate for “post-
quantum cryptography”. Furthermore, LPN enjoys simplicity and is more suited
for weak-power devices (e.g., RFID tags) than other quantum-secure candidates
such as LWE [46].

Cryptography in minicrypt. LPN was used as a basis for building light-
weight authentication schemes against passive [29] and even active adversaries
(e.g. [32,34], see [1] for a more complete literature). Kiltz et al. [37] and Dodis
et al. [18] constructed randomized MACs from LPN, which implies a two-
round authentication scheme with man-in-the-middle security. Lyubashevsky
and Masny [41] gave an more efficient three-round authentication scheme from
LPN (without going through the MAC transformation) and recently Cash, Kiltz,
and Tessaro [13] reduced the round complexity to 2 rounds. Applebaum et al.
[3] used LPN to construct efficient symmetric encryption schemes with certain
key-dependent message (KDM) security. Jain et al. [30] constructed an efficient
perfectly binding string commitment scheme from LPN. We refer to a recent
survey [45] on the current state-of-the-art about LPN.

1 We are not aware of any non-trivial time-query tradeoff results to break low-noise

LPN in time 2o(n1−c) even with super-polynomial number of queries.

216 Y. Yu and J. Zhang

Alice Bob: m ∈ {0, 1}

A ← Un×n

s ← Bn
µ

e ← Bn
µ

pk
def
= A,b

def
= As+e

)

s1 ← Bn
µ

e1 ← Bn
µ

c1 := ATs1+e1

c2 := sT1 ·b+m
C

def
= (c1, c2)

m′ := cT1 ·s⊕c2

Fig. 1. A two-pass protocol by which Bob transmits a message bit m to Alice with
passive security and noticeable correctness (for proper choice of μ), where Bob receives
m′ = m+(sT1 ·e)+(eT

1 ·s).

Cryptography beyond minicrypt. Alekhnovich [2] constructed the first (CPA
secure) public-key encryption scheme from LPN with noise rate2 μ = 1/

√
n. By

plugging the correlated products approach of [47] into Alekhnovich’s CPA secure
PKE scheme, Döttling et al. [20] constructed the first CCA secure PKE scheme
from low-noise LPN. After observing that the complexity of the scheme in [20]
was hundreds of times worse than Alekhnovich’s original scheme, Kiltz et al.
[36] proposed a neat and more efficient CCA secure construction by adapting
the techniques from LWE-based encryption in [44] to the case of LPN. More
recently, Döttling [19] constructed a PKE with KDM security. All the above
schemes are based on LPN of noise rate O(1/

√
n). To see that noise rate 1/

√
n

is inherently essential for PKE, we illustrate the (weakly correct) single-bit PKE
protocol by Döttling et al. [20] in Figure 1, which is inspired by the counterparts
based on LWE [23,46]. First, the decisional LPNμ,n assumption implies that
(A,Ax + e) is pseudorandom even when x is drawn from X∼Bn

μ (instead of
X∼Un), which can be shown by a simple reduction [20]. Second, the passive
security of the protocol is straightforward as (pk, c1) is pseudorandom even when
concatenated with the Goldreich-Levin3 hardcore bit sT1 ·b (replacing b with
Un by a hybrid argument). The final and most challenging part is correctness,
i.e., m′ needs to correlate with m at least noticeably. It is not hard to see for
nμ2 = O(1) and e, s ← Bn

μ we have Pr[〈e, s〉 = 0] ≥ 1/2 + Ω(1), and thus
noise rate μ = O(1/

√
n) seems an inherent barrier4 for the PKE to be correct.

2 More precisely, Alekhnovich’s PKE is based on a variant called the Exact LPN whose
noise vector is sampled from χq

μq for μ = 1√
n

(i.e., uniform random distribution over

q-bit strings of Hamming weight μq), which is implied by LPN with noise rate μ.
3 Typically (in the context of one-way functions), the Goldreich-Levin Theorem [25]

assumes a uniformly random secret s, which is however not necessary. A Markov
argument suggests that s can follow any polynomial-time sampleable distribution,
as long as f on s is hard to invert.

4 In fact, μ = O(
√

log n/n) is sufficient to have a noticeable correctness, i.e.,
1/2+1/poly(n), but known PKE constructions avoid the strong noise by assuming
noise rate n−1/2 [36] or even lower rate n−1/2−ε [2,20].

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 217

The scheme is “weak” in the sense that correctness is only 1/2+Ω(1) and it can
be transformed into a standard CPA scheme (that encrypts multiple-bit messages
with overwhelming correctness) using standard techniques (e.g., [15,20]). Notice
a correct PKE scheme (with certain properties) yields also a (weak form of)
2-round oblivious transfer protocol against honest-but-curious receiver. Suppose
that Alice has a choice i ∈ {0, 1}, and she samples pki with trapdoor s (as
described in the protocol) and a uniformly random pk1−i without trapdoor.
Upon receiving pk0 and pk1, Bob uses the scheme to encrypt two bits σ0 and σ1

under pk0 and pk1 respectively, and sends them to Alice. Alice can then recover
σi and but knows nothing about σ1−i. David et al. [16] constructed a universally
composable OT under LPN with noise rate 1/

√
n. Therefore, basing PKE (and

OT) on LPN with noise rate μ = n−1/2+ε (and ideally a constant 0 < μ < 1/2)
remains an open problem for the past decade.

LPN with auxiliary input. Despite being only sub-exponentially secure,
LPN is known to be robust against any constant-fraction of static linear leakages,
i.e., for any constant 0 < α < 1 and any f(x;Z) = (Z,Zx) it holds that

(
f(x),A,Ax + e

) c∼
(
f(x),A, Uq

)
, (1)

where Z is any (1 − α)n × n matrix (that can be sampled in polynomial time
and independent of A). The above can be seen by a change of basis so that the
security is reducible from the LPN assumption with the same noise rate on a
uniform secret of size αn. Motivated by this, Dodis, Kalai and Lovett [17] further
conjectured that LPN is secure against any polynomial-time computable f such
that 1) x given f(x) has average min-entropy αn; or even 2) any f that is 2−αn-
hard-to-invert for PPT algorithms (see Definition 2 for a formal definition). Note
the distinction between the two types of leakages: the former f is a lossy function
and the latter can be even injective (the leakage f(x) may already determine
x in an information theoretical sense). However, they didn’t manage to prove
the above claim (i.e., LPN with auxiliary input) under standard LPN. Instead,
they introduced a new assumption called Learning Subspace with Noise (LSN)
as below, where the secret to be learned is the random subspace V.

Assumption 1 (The LSN Assumption [17]). For any constant β > 0, there
exists a polynomial p = pβ(n) such that for any polynomial q = poly(n) the
following two distributions are computationally indistinguishable:

(
(a1,Va1 +U (1)

n E1), · · · , (aq,Vaq +U (q)
n Eq)

) c∼
(

(a1, U
(1)
n), · · · , (aq, U

(q)
n)

)
,

where V ∼ Un×βn is a random n × βn matrix, a1, · · · , aq are vectors i.i.d. to
Uβn, and E1, · · · , Eq are Boolean variables (determining whether the respective
noise is uniform randomness or nothing) i.i.d. to B1− 1

p
.

Then, the authors of [17] showed that LSN with parameters β and pβ = pβ(n)
implies the decisional LPN (as in (1)) under noise rate μ = (12 − 1

4pβ
) holds with

218 Y. Yu and J. Zhang

2−αn-hard-to-invert auxiliary input (for any constant α > β). Further, this yields
many interesting applications such as CPA/CCA secure symmetric encryption
schemes, average-case obfuscators for the class of point functions, reusable and
robust extractors, all remain secure with exponentially hard-to-invert auxiliary
input (see [17] for more details). We note that [17] mainly established the fea-
sibility about cryptography with auxiliary input, and there remain issues to be
addressed or improved. First, to counteract 2−αn-hard-to-invert auxiliary input
one needs to decide in advance the noise rate noise rate 1/2 − 1/4pβ (recall the
constraint β < α). Second, Raz showed that for any constant β, pβ = nΩ(1)

is necessary (otherwise LSN can be broken in polynomial-time) and even with
pβ = nΘ(1) there exist quasi-polynomial attacks (see the full version of [17] for
more discussions about Raz’s attacks). Therefore, the security reduction in [17]
is quite loose. As the main end result of [17], one needs a high-noise LPN for
μ = 1/2 − 1/poly(n) (and thus low efficiency due to the redundancy needed to
make a correct scheme) only to achieve quasi-polynomial security (due to Raz’s
attacks) against 2−αn-hard-to-invert leakage for some constant α (i.e., not any
exponentially hard-to-invert leakage). Third, LSN is a new (and less well-studied)
assumption and it was left as an open problem in [17] whether the aforemen-
tioned cryptographic applications can be based on the hardness of standard
LPN, ideally admitting more general class of leakages, such as sub-exponentially
or even quasi-polynomially hard-to-invert auxiliary input.

The main observation. Yu [49] introduced the “sampling from subspace”
technique to prove the above “LPN with auxiliary input” conjecture under stan-
dard LPN but the end result of [49] was invalid due to a flawed intermediate
step. A similar idea was also used by Goldwasser et al. [26] in the setting of LWE,
where the public matrix was drawn from a (noisy) random subspace. Informally,
the observation (in our setting) is that, the decisional LPN with constant noise
rate 0 < μ < 1/2 implies that for any constant 0 < α < 1, any 2−2nα

-hard-to-
invert f and any q′ = poly(n) it holds that

(f(x),A′,A′·x + e)
c∼ (f(x),A′, Uq′), (2)

where x ∼ Un
5, e ∼ Bq′

μ , and A′ is a q′ × n matrix with rows sampled from
a random subspace of dimension λ = nα. Further, if the underlying LPN is

2ω(n
1

1+β)-hard6 for any constant β > 0, then by setting λ = log1+β n, (2) holds
for any q′ = poly(n) and any 2−2 log1+β n-hard-to-invert f . The rationale is that
distribution A′ can be considered as the multiplication of two random matrices
A $←− {0, 1}q′×λ and V $←− {0, 1}λ×n, i.e., A′ ∼ (A·V), where V constitutes the
basis of the λ-dimensional random subspace and A is the random coin for sam-
pling from V. Unlike the LSN assumption whose subspace V is secret, the V and
5 We assume x ∼ Un to be in line with [17], but actually our results hold for any

efficiently sampleable x as long as x given f(x) is 2−2λ-hard-to-invert.
6 Informally, we say that a cryptographic scheme/problem Π is T -secure/hard if every

probabilistic adversary of time (and query, if applicable) complexity T achieve advan-
tage no more than 1/T in breaking/solving Π.

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 219

A in (2) are public coins (implied by A′, see Remark 1). We have by the associa-
tive law A′·x = A(V ·x) and by the Goldreich-Levin theorem V ·x is a pseudo-
random secret (even conditioned on V and f(x)), and thus (2) is reducible from
the standard decisional LPN on noise rate μ, secret size λ and query complexity
q′. Concretely, assume that the LPN problem is 2ω(n3/4)-hard then by setting
λ = n2/3 (resp., λ = log4/3 n) we have that (2) is 2Ω(n1/2)-secure (resp., nω(1)-
secure) with any auxiliary input that is 2−2n2/3

-hard (resp., 2−2 log4/3 n-hard) to
invert. Plugging (2) into the framework of [17] we obtain the same applications
(CPA/CCA secure symmetric encryption schemes, average-case obfuscators for
point functions, reusable and robust extractors) under standard (constant-noise)
LPN with improved efficiency (as the noise is constant rather than polynomi-
ally close to uniform) and tighter security against sub-exponentially (or even
quasi-polynomially) hard-to-invert auxiliary input.

PKE from Constant-Noise LPN. More surprisingly, we show a connection
from “LPN with auxiliary input” to “basing PKE on (constant-noise) LPN”.
The feasibility can be understood by the single-bit weak PKE in Fig. 1 with
some modifications: assume that LPN is 2ω(n

1
2)-hard (i.e., β = 1), then for

λ = log2 n/4 we have that (2) holds on any x ∼ X with min-entropy H∞(X) ≥
log2 n/2. Therefore, by replacing the uniform matrix A with A′ ∼ (Un×λ·Uλ×n),
and sampling s,s1 ← X and e,e1 ← Bn

μ for constant μ and X ∼ χn
log n

7, we get
that sT1 e and eT1 s are both (1/2 + 1/poly(n))-biased to 0 independently, and
thus the PKE scheme has noticeable correctness. We then transform the weak
PKE into a full-fledged CPA secure scheme, where the extension is not trivial
(more than a straightforward parallel repetition plus error-correction codes).
In particular, neither X ∼ χn

log n or X ∼ Bn
log n/n can guarantee security and

correctness simultaneously and thus additional ideas are needed (more details
deferred to Sect. 4.3).

PKE with CCA Security. Once we have a CPA scheme based on constant-
noise LPN, we can easily extend it to a CCA one by using the techniques in [20],
and thus suffer from the same performance slowdown as that in [20]. A natural
question is whether we can construct a simpler and more efficient CCA scheme
as that in [36]. Unfortunately, the techniques in [36] do not immediately apply
to the case of constant-noise LPN. The reason is that in order to employ the
ideas from the LWE-based encryption scheme [44], the scheme in [36] has to
use a variant of LPN (called knapsack LPN), and the corresponding description
key is exactly the secret of some knapsack LPN instances. Even though there is
a polynomial time reduction [43] from the LPN problem to the knapsack LPN
problem, such a reduction will map the noise distribution of the LPN problem
into the secret distribution of the knapsack LPN problem. If we directly apply the
techniques in [36], the resulting scheme will not have any guarantee of correctness

7 Recall that for m�n we have by Stirling’s approximation that
(

n
m

) ≈ nm/m! and
thus χn

log n (uniform distribution over n-bit strings of Hamming weight log n) is of
min-entropy roughly log2 n − log n log log n ≥ log2 n/2.

220 Y. Yu and J. Zhang

because the corresponding decryption key follows the Bernoulli distribution with
constant parameter μ. Recall that for the correctness of our CPA secure PKE
scheme, the decryption key cannot simply be chosen from either χn

log n or Bn
log n/n.

Fortunately, based on several new observations and some new technical lemmas,
we mange to adapt the idea of [36,44] to construct a simpler and efficient CCA
secure PKE scheme from constant-noise LPN.

OT from constant-noise LPN. PKE and OT are incomparable in gen-
eral [24]. But if the considered PKE scheme has some additional properties, then
we can build OT protocol from it in a black-box way [24]. Gertner et al. [24]
showed that if the public key of some CPA secure PKE scheme can be indis-
tinguishably sampled (without knowing the corresponding secret key) from the
public key distribution produced by honestly running the key generation algo-
rithm, then we can use it to construct an OT protocol with honest parties (and
thus can be transformed into a standard OT protocol by using zero-knowledge
proof). It is easy to check that our CPA secure PKE scheme satisfies this property
under the LPN assumption. Besides, none of the techniques used in transforming
Alekhnovich’s CPA secure PKE scheme into a universally composable OT pro-
tocol [16] prevent us from obtaining a universally composable OT protocol from
our CPA secure PKE scheme. In summary, our results imply that there exists
(universally composable) OT protocol under constant-noise LPN assumption.
We omit the details, and refer to [16,24] for more information.

2 Preliminaries

Notations and definitions. We use capital letters (e.g., X, Y) for random
variables and distributions, standard letters (e.g., x, y) for values, and calli-
graphic letters (e.g. X , E) for sets and events. Vectors are used in the column
form and denoted by bold lower-case letters (e.g., a). We treat matrices as the
sets of its column vectors and denoted by bold capital letters (e.g., A). The
support of a random variable X, denoted by Supp(X), refers to the set of val-
ues on which X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}.
For set § and binary string s, |§| denotes the cardinality of § and |s| refers to
the Hamming weight of s. We use Bμ to denote the Bernoulli distribution with
parameter μ, i.e., Pr[Bμ = 1] = μ, Pr[Bμ = 0] = 1 − μ, while Bq

μ denotes the
concatenation of q independent copies of Bμ. We use χn

i to denote a uniform
distribution over {e ∈ {0, 1}n : |e| = i}. We denote by Dn1×n

λ
def= (Un1×λ·Uλ×n)

to be a matrix distribution induced by multiplying two random matrices. For
n, q ∈ N, Un (resp., Uq×n) denotes the uniform distribution over {0, 1}n (resp.,
{0, 1}q×n) and independent of any other random variables in consideration, and
f(Un) (resp., f(Uq×n)) denotes the distribution induced by applying function f
to Un (resp., Uq×n). X∼D denotes that random variable X follows distribution
D. We use s ← S to denote sampling an element s according to distribution S,
and let s

$←− § denote sampling s uniformly from set §.

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 221

Entropy notions. For 0 < μ < 1/2, the binary entropy function is defined as
H(μ) def= μ log(1/μ) + (1 − μ) log(1/(1 − μ)). We define the Shannon entropy and
min-entropy of a random variable X respectively, i.e.,

H1(X) def=
∑

x∈Supp(X)

Pr[X = x] log
1

Pr[X = x]
, H∞(X) def= min

x∈Supp(X)
log(1/Pr[X = x]).

Note that H1(Bμ) = H(μ). The average min-entropy of a random variable X
conditioned on another random variable Z is defined as

H∞(X|Z) def= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

Indistinguishability and statistical distance. We define the (t,ε)- com-
putational distance between random variables X and Y , denoted by X ∼

(t,ε)
Y ,

if for every probabilistic distinguisher D of running time t it holds that

| Pr[D(X) = 1] − Pr[D(Y) = 1] | ≤ ε.

The statistical distance between X and Y , denoted by SD(X,Y), is defined by

SD(X,Y) def=
1
2

∑
x

|Pr[X = x] − Pr[Y = x]| .

Computational/statistical indistinguishability is defined with respect to distrib-
ution ensembles (indexed by a security parameter). For example, X

def= {Xn}n∈N

and Y
def= {Yn}n∈N are computationally indistinguishable, denoted by X

c∼ Y , if
for every t = poly(n) there exists ε = negl(n) such that X ∼

(t,ε)
Y . X and Y are

statistically indistinguishable, denoted by X
s∼ Y , if SD(X,Y) = negl(n).

Simplifying Notations. To simplify the presentation, we use the following
simplified notations. Throughout, n is the security parameter and most other
parameters are functions of n, and we often omit n when clear from the context.
For example, q = q(n) ∈ N, t = t(n) > 0, ε = ε(n) ∈ (0, 1), and m = m(n) =
poly(n), where poly refers to some polynomial.

Definition 1 (Learning Parity with Noise). The decisional LPNμ,n prob-
lem (with secret length n and noise rate 0 < μ < 1/2) is hard if for every
q = poly(n) we have

(A, A·x+e)
c∼ (A, Uq), (3)

where q×n matrix A ∼ Uq×n, x ∼ Un and e ∼ Bq
μ. The computational LPNμ,n

problem is hard if for every q = poly(n) and every PPT algorithm D we have

Pr[D(A, A·x+e) = x] = negl(n), (4)

222 Y. Yu and J. Zhang

where A ∼ Uq×n, x ∼ Un and e ∼ Bq
μ.

LPN with specific hardness. We say that the decisional (resp., computa-
tional) LPNμ,n is T -hard if for every q≤T and every probabilistic adversary of
running time T the distinguishing (resp., inverting) advantage in (3) (resp., (4))
is upper bounded by 1/T .

Definition 2 (Hard-to-Invert Function). Let n be the security parameter
and let κ = ω(log n). A polynomial-time computable function f : {0, 1}n →
{0, 1}l is 2−κ-hard-to-invert if for every PPT adversary A

Pr
x∼Un

[A(f(x)) = x] ≤ 2−κ.

Lemma 1 (Union Bound). Let E1, · · · , El be any (not necessarily indepen-
dent) events such that Pr[Ei] ≥ (1 − εi) for every 1≤i≤l, then we have

Pr[E1 ∧ · · · ∧ El] ≥ 1 − (ε1 + · · · + εl).

We will use the following (essentially the Hoeffding’s) bound on the Hamming
weight of a high-noise Bernoulli vector.

Lemma 2. For any 0 < p < 1/2 and δ ≤ (12 − p), we have

Pr[|Bq
δ | > (

1
2

− p

2
)q] < exp− p2q

8 .

3 Learning Parity with Noise with Auxiliary Input

3.1 Leaky Sources and (Pseudo)randomness Extraction

We define below two types of leaky sources and recall two technical lemmas for
(pseudo)randomness extraction from the respective sources, where x for TYPE-
II source is assumed to be uniform only for alignment with [17] (see Footnote 3).

Definition 3 (Leaky Sources). Let x be any random variable over {0, 1}n and
let f : {0, 1}n → {0, 1}l be any polynomial-time computable function. (x, f(x))
is called an (n,κ) TYPE-I (resp., TYPE-II) leaky source if it satisfies condition
1 (resp., condition 2) below:

1. Min-entropy leaky sources. H∞(x|f(x)) ≥ κ and f(x) is polynomial-time
sampleable.

2. Hard-to-invert leaky sources. x ∼ Un and f is 2−κ-hard-to-invert.

Lemma 3 (Goldreich-Levin Theorem [25]). Let n be a security parameter,
let κ = ω(log n) be polynomial-time computable from n, and let f : {0, 1}n →
{0, 1}l be any polynomial-time computable function that is 2−κ-hard-to-invert.
Then, for any constant 0 < β < 1 and λ = �βκ, it holds that

(f(x),V,V·x)
c∼ (f(x),V, Uλ) ,

where x ∼ Un and V ∼ Uλ×n is a random λ × n Boolean matrix.

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 223

Lemma 4 (Leftover Hash Lemma [28]). Let (X,Z) ∈ X × Z be any joint
random variable with H∞(X|Z) ≥ k, and let H = {hV : X → {0, 1}l,V ∈
{0, 1}s} be a family of universal hash functions, i.e., for any x1 �= x2 ∈ X ,
Pr

V
$←−{0,1}s

[hV(x1) = hV(x2)] ≤ 2−l. Then, it holds that

SD

(
(Z,V, hV(X)) , (Z,V, Ul)

)
≤ 2l−k ,

where V ∼ Us.

3.2 The Main Technical Lemma and Immediate Applications

Inspired by [26,49], we state a technical lemma below where the main difference
is that we sample from a random subspace of sublinear-sized dimension (rather
than linear-sized one [49] or from a noisy subspace in the LWE setting [26]).

Theorem 1 (LPN with Hard-to-Invert Auxiliary Input). Let n be a secu-
rity parameter and let 0 < μ < 1/2 be any constant. Assume that the decisional
LPNμ,n problem is hard, then for every constant 0 < α < 1, λ = nα, q′ = poly(n),
and every (n, 2λ) TYPE-I or TYPE-II leaky source (x, f(x)), we have

(f(x),A′,A′·x + e)
c∼ (f(x),A′, Uq′), (5)

where e ∼ Bq′
μ , and A′ ∼ Dq′×n

λ is a q′ ×n matrix, i.e., A′ ∼ (A·V) for random

matrices A $←− {0, 1}q′×λ and V $←− {0, 1}λ×n.

Furthermore, if the LPNμ,n problem is 2ω(n
1

1+β)-hard for any constant β > 0 and
any superconstant hidden by ω(·) then the above holds for any λ = Θ(log1+β n),
any q′ = poly(n) and any (n, 2λ) TYPE-I/TYPE-II leaky source.

Remark 1 (Closure Under Composition). The random subspace V and the ran-
dom coin A can be public as well, which is seen from the proof below but omitted
from (5) to avoid redundancy (since they are implied by A′). That is, there exists
a PPT Simu such that (A′, Simu(A′)) is 2−Ω(n)-close to (A′, (A,V)). Therefore,
(5) can be written in an equivalent form that is closed under composition, i.e.,
for any q′ = poly(n) and l = poly(n)

(
f(x),V,

(
Ai, (Ai·V)·x + ei

)l

i=1

)
c∼

(
f(x),V,

(
Ai, U

(i)
q′

)l

i=1

)
,

where A1, · · · ,Al
$←− {0, 1}q′×λ, e1, · · · , el ∼ Bq′

μ and V $←− {0, 1}λ×n. This
will be a useful property for constructing symmetric encryption schemes w.r.t.
hard-to-invert auxiliary input (see more details in [17]).

224 Y. Yu and J. Zhang

Proof of Theorem 1. We have by the assumption of (x, f(x)) and Lemma 3 or
Lemma 4 that

(f(x),V,V·x)
c∼ (f(x),V,y)

⇒ (f(x), (A,V), (A·V)·x+e)
c∼ (f(x), (A,V),A·y + e).

where y∼Uλ. Next, consider T -hard decisional LPNμ,λ problem on uniform secret
y of length λ (instead of n), which postulates that for any q′≤T

(A,A·y+e) ∼
T,1/T

(A, Uq′)

⇒ (f(x), (A,V),A·y+e) ∼
T−poly(n), 1/T

(f(x), (A,V), Uq′).

Under the LPN assumption with standard asymptotic hardness (i.e., T = λω(1))
and by setting parameter λ = nα we have T = nω(1), which suffices for our
purpose since for any q′ = poly(n), any PPT adversary wins the above distin-
guishing game with advantage no greater than n−ω(1). In case that LPNμ,λ is

2ω(n
1

1+β)-hard, substitution of λ = Θ(log1+β n) into T = 2ω(λ
1

1+β) also yields
T = nω(1). Therefore, in both cases the above two ensembles are computation-
ally indistinguishable in security parameter n. The conclusion then follows by a
triangle inequality. ��

A comparison with [17]. The work of [17] proved results similar to Theorem 1.
In particular, [17] showed that the LSN assumption with parameters β and
p = polyβ(n) implies LPN with 2−αn-hard auxiliary input (for constant α > β),
noise rate μ = 1/2−1/4p and quasi-polynomial security (in essentially the same
form as (5) except for a uniform matrix A′). In comparison, by sampling A′ from
a random subspace of sublinear dimension λ = nα (for 0 < α < 1), constant-noise
LPN implies that (5) holds with 2−Ω(nα)-hard auxiliary input, constant noise
and comparable security to the underlying LPN. Furthermore, assume constant-

noise LPN with 2ω(n
1

1+β)-hardness (for constant β > 0), then (2) holds for
2−Ω(log1+β)-hard auxiliary input, constant noise and quasi-polynomial security.

Immediate applications. This yields the same applications as considered
in [17], such as CPA/CCA secure symmetric encryption schemes, average-case
obfuscators for point functions, reusable and robust extractors, all under stan-
dard (constant-noise) LPN with improved efficiency (by bringing down the noise
rate) and tighter security against sub-exponentially (or even quasi-polynomially)
hard-to-invert auxiliary input. The proofs simply follow the route of [17] and can
be informally explained as: the technique (by sampling from random subspace)
implicitly applies pseudorandomness extraction (i.e., y = V · x) so that the rest
of the scheme is built upon the security of (A,Ay + e) on secret y (which is
pseudorandom even conditioned on the leakage), and thus the task is essentially
to obtain the aforementioned applications from standard LPN (without auxil-
iary input). In other words, our technique allows to transform any applications

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 225

based on constant-noise LPN into the counterparts with auxiliary input under
the same assumption. Therefore, we only sketch some applications in the full
version of this work and refer to [17] for the redundancy.

4 CPA Secure PKE from Constant-Noise LPN

We show a more interesting application, namely, to build public-key encryption
schemes from constant-noise LPN, which has been an open problem since the
work of [2]. We refer to Appendix A.2 for standard definitions of public-key
encryption schemes, correctness and CPA/CCA security.

4.1 Technical Lemmas

We use the following technical tool to build PKE scheme from constant-
noise LPN. It would have been an immediate corollary of Theorem 1 for sub-
exponential hard LPN on squared-logarithmic min-entropy sources (i.e., β = 1),
except for the fact that the leakage is also correlated with noise. Notice that we
lose the “closure under composition” property by allowing leakage to be corre-
lated with noise, and thus our PKE scheme will avoid this property.

Theorem 2 (LPN on Squared-Log Entropy). Let n be a security parameter
and let 0 < μ < 1/2 be any constant. Assume that the computational LPNμ,n

problem is 2ω(n
1
2)-hard (for any superconstant hidden by ω(·)), then for every

λ = Θ(log2 n), q′ = poly(n), and every polynomial-time sampleable x ∈ {0, 1}n

with H∞(x) ≥ 2λ and every probabilistic polynomial-time computable function
f : {0, 1}n+q′ × Z → {0, 1}O(log n) with public coin Z, we have

(
f(x, e;Z), Z,A′,A′·x + e

) c∼
(
f(x, e;Z), Z,A′, Uq′

)
,

where noise vector e ∼ Bq′
μ and q′ × n matrix A′ ∼ Dq′×n

λ .

Proof sketch. It suffices to adapt the proof of Theorem 1 as follows. First, observe
that (by the chain rule of min-entropy)

H∞(x|f(x, e; Z), Z, e) ≥ H∞(x|Z, e) − O(log n) = H∞(x) − O(log n)≥2λ − O(log n).

For our convenience, write A′ ∼ (A · V) for A∼Uq′×λ, V ∼ Uλ×n, and let
y, r ∼ Uλ. Then, we have by Lemma 4

(f(x, e;Z), Z, e,V,V·x)
s∼ (f(x, e;Z), Z, e,V,y)

⇒ (f(x, e;Z), Z, (A·V), (A·V)·x+e)
s∼ (f(x, e;Z), Z, (A·V),A·y + e).

226 Y. Yu and J. Zhang

Next, 2ω(λ
1
2)-hard computational LPNμ,λ problem with secret size λ postulates

that for any q′≤2ω(λ
1
2) = nω(1) (recall λ = Θ(log2 n)) and any probabilistic D,

D′ of running time nω(1)

Pr[D′(A, A·y+e) = y] = n−ω(1)

⇒ Pr[D′(f(x, e;Z), Z,A,A·y+e) = y] = n−ω(1)

⇒ (f(x, e;Z), Z,A,A·y+e, r, rT · y)
c∼ (f(x, e;Z), Z,A,A·y+e, r, U1)

⇒ (f(x, e;Z), Z,A,A·y+e)
c∼ (f(x, e;Z), Z,A, Uq′)

⇒ (f(x, e;Z), Z, (A·V),A·y+e)
c∼ (f(x, e;Z), Z, (A · V), Uq′),

where the first implication is trivial since Z is independent of (A,y,e) and any
O(log n) bits of leakage affects unpredictability by a fact of poly(n), the second
step is the Goldreich-Levin theorem [25] with r ∼ Uλ, and the third implication
uses the sample-preserving reduction from [4] and is reproduced as Lemma 18.
The conclusion follows by a triangle inequality.

We will use Lemma 5 to estimate the noise rate of an inner product between
Bernoulli-like vectors .

Lemma 5. For any 0 < μ≤1/8 and � ∈ N, let E1, · · · , E� be Boolean random
variables i.i.d. to Bμ, then Pr[

⊕�
i=1 Ei = 0] > 1

2 + 2−(4μ�+1).

Proof. We complete the proof by Fact 1 and Fact 2

Pr[
�⊕

i=1

Ei = 1] =
1
2
(1 − (1 − 2μ)�) <

1
2
(1 − 2−4μ�) =

1
2

− 2−(4μ�+1).

Fact 1 (Piling-Up Lemma). For 0 < μ < 1/2 and random variables E1, E2,
· · · , E� that are i.i.d. to Bμ we have

⊕�
i=1 Ei ∼ Bσ with σ = 1

2 (1 − (1 − 2μ)�).

Fact 2 (Mean Value Theorem).For any 0 < x≤1/4 we have 1 − x > 2−2x.

We recall the following facts about the entropy of Bernoulli-like distributions.
In general, there’s no closed formula for binomial coefficient, but an asymptotic
estimation like Fact 3 already suffices for our purpose, where the binary entropy
function can be further bounded by Fact 4 (see also Footnote 11).

Fact 3 (Asymptotics for Binomial Coefficients (e.g.[27], p.492). For any
0 < μ < 1/2, and any n ∈ N we have

(
n

μn

)
= 2nH(μ)− log n

2 +O(1).

Fact 4. For any 0 < μ < 1/2, we have μ log(1/μ) < H(μ) < μ(log(1/μ) + 3
2).

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 227

4.2 Weakly Correct 1-bit PKE from Constant-Noise LPN

As stated in Theorem 2, for any constant 0 < μ < 1/2, 2ω(n
1
2)-hard LPNμ,n

implies that (A′·x + e) is pseudorandom conditioned on A′ for x∼X with
squared-log entropy, where the leakage due to f can be omitted for now as
it is only needed for CCA security. If there exists X satisfying the following
three conditions at the same time then the 1-bit PKE as in Fig. 1 instantiated
with the square matrix A′ ← Dn×n

λ , s,s1 ← X and e,e1 ← Bn
μ will be secure

and noticeably correct (since sT1 e and eT1 s are both (1/2 + 1/poly(n))-biased to
0 independently).

1. (Efficiency) X ∈ {0, 1}n can be sampled in polynomial time.
2. (Security) H∞(X) = Ω(log2 n) as required by Theorem 2.
3. (Correctness) |X| = O(log n) such that Pr[〈X,Bn

μ〉 = 0]≥1/2 + 1/poly(n).

Note that any distribution X ∈ {0, 1}n satisfying |X| = O(log n) implies
that H∞(X) = O(log2 n) (as the set {x ∈ {0, 1}n : |x| = O(log n)} is of
size 2O(log2 n)), so the job is to maximize the entropy of X under constraint
|X| = O(log n). The first candidate seems X ∼ Bn

μ′ for μ′ = Θ(log n
n), but it

does not meet the security condition because the noise rate μ′ is so small that a
Chernoff bound only ensures (see Lemma 19) that Bn

μ′ is (2−O(μ′n) = 1/poly(n))-
close to having min-entropy Θ(nH(μ′)) = Θ(log2 n). In fact, we can avoid the
lower-tail issue by letting X ∼ χn

log n, namely, a uniform distribution of Hamming
weight exact log n, which is of min-entropy Θ(log2 n) by Fact 3. Thus, X ∼ χn

log n

is a valid option to obtain a single-bit PKE with noticeable correctness.

4.3 CPA Secure PKE from Constant-Noise LPN

Unlike [20] where the extension from the weak single-bit PKE to a fully correct
scheme is almost immediate (by a parallel repetition and using error correcting
codes), it is not trivial to amplify the noticeable correctness of the single-bit
scheme to an overwhelming probability, in particular, the scheme instantiated
with distribution X ∼ χn

log n would no longer work. To see the difficulty, we
define below our CPA secure scheme ΠX = (KeyGen,Enc,Dec) that resembles
the counterpart for low-noise LPN (e.g., [15,20]), where distribution X is left
undefined (apart from the entropy constraint).

Distribution X: X is a polynomial-time sampleable distribution satisfying
H∞(X) = Ω(log2 n) and we set λ = Θ(log2 n) such that 2λ ≤ H∞(X).

KeyGen(1n): Given a security parameter 1n, it samples matrix A ∼ Dn×n
λ , col-

umn vectors s ∼ X, e ∼ Bn
μ , computes b = As + e and sets (pk, sk) :=

((A,b), s).
Encpk(m): Given the public key pk = (A,b) and a plaintext m ∈ {0, 1}n, Encpk

chooses
S1 ∼ (X(1), · · · ,X(q)) ∈ {0, 1}n×q,E1 ∼ Bn×q

μ

228 Y. Yu and J. Zhang

where X(1), · · · ,X(q) are i.i.d. to X. Then, it outputs C = (C1, c2) as cipher-
text, where

C1 := ATS1 + E1 ∈ {0, 1}n×q,
c2 := ST

1b + G·m ∈ {0, 1}q,

and G ∈ {0, 1}q×n is a generator matrix for an efficiently decodable code
(with error correction capacity to be defined and analyzed in Sect. 4.4).

Decsk(C1, c2): On secret key sk = s, ciphertext (C1, c2), it computes

c̃0 := c2 − CT
1 s = G·m + ST

1 e − ET
1 s

and reconstructs m from the error ST
1 e − ET

1 s using the error correction
property of G.

We can see that the CPA security of ΠX , for any X with H∞(X) = Ω(log2 n),
follows from applying Theorem 2 twice (once for replacing the pubic key b with
uniform randomness, and again together with the Goldreich Levin Theorem for
encrypting a single bit) and a hybrid argument (to encrypt many bits).

Theorem 3 (CPA Security). Assume that the decisional LPNμ,n problem is

2ω(n
1
2)-hard for any constant 0 < μ < 1/2, then ΠX is IND-CPA secure.

4.4 Which X Makes a Correct Scheme?

X ∼ χn
log n may not work. To make a correct scheme, we need to upper

bound |ST
1 e − ET

1 s| by q(1/2 − 1/poly(n)), but in fact we do not have any
useful bound even for |ST

1 e|. Recall that ST
1 is now a q×n matrix and parse

ST
1 e as Boolean random variables W1, · · · ,Wq. First, although every Wi satisfies

Pr[Wi = 0]≥1/2 + 1/poly(n), they are not independent (correlated through e).
Second, if we fix any |e| = Θ(n), all W1, · · · , Wq are now independent conditioned
on e, but then we could no longer guarantee that Pr[Wi = 0|e] ≥ 1/2+poly(n) as
S1 follows (χn

log n)q rather than (Bn
log n/n)q. Otherwise said, condition #3 (as in

Sect. 4.2) is not sufficient for overwhelming correctness. We introduced a tailored
version of Bernoulli distribution (with upper/lower tails chopped off).

Definition 4 (Distribution B̃n
μ1

). Define B̃n
μ1

to be distributed to Bn
μ1

con-

ditioned on (1 −
√
6
3)μ1n ≤ |Bn

μ1
| ≤ 2μ1n. Further, we define an n×q matrix

distribution, denoted by (B̃n
μ1

)q, where every column is i.i.d. to B̃n
μ1
.

B̃n
μ1

is efficiently sampleable. B̃n
μ1

can be sampled in polynomial-time
with exponentially small error, e.g., simply sample e ← Bn

μ1
and outputs e if

(1 −
√
6
3)μ1n≤|e|≤2μ1n. Otherwise, repeat the above until such e within the

Hamming weight range is obtained or the experiment failed (then output ⊥ in
this case) for a predefined number of times (e.g., n).

B̃n
μ1

is of min-entropy Ω(log2 n). For μ1 = Ω(log n/n), it is not hard to see
that B̃n

μ1
is a convex combination of χn

(1−
√

6
3)μ1n

, · · · , χn
2μ1n, and thus of min-

entropy Ω(log2 n) by Fact 3.

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 229

Therefore, ΠX when instantiated with X ∼ B̃n
μ1

is CPA secure by Theorem 4,
and we proceed to the correctness of the scheme.

Lemma 6. For constants α > 0, 0 < μ≤1/10 and μ1 = α log n/n , let S1 ∼
(B̃n

μ1
)q, e ∼ Bn

μ, E1 ∼ Bn×q
μ and s ∼ B̃n

μ1
, we have

Pr
[∣∣ST

1 e − ET
1 s

∣∣ ≤
(1
2

− 1
2n3α/2

)
q

]
≥ 1 − 2−Ω(n−3αq).

Proof. It is more convenient to consider
∣∣ST

1 e−ET
1 s

∣∣ conditioned on |e| ≤ 1.01μn

(except for a 2−Ω(n)-fraction) and |s| ≤ 2μn. We have by Lemmas 7 and 8
that ST

1 e and ET
1 s are identical distributed to Bq

δ1
and Bq

δ2
respectively, where

δ1≤1/2−n−α/2 and δ2≤1/2−n−α/2. Thus, (ST
1 e−ET

1 s) follows Bq
δ for δ≤1/2−

n−3α/2 by the Piling-up lemma, and then we complete the proof with Lemma 2.

Concrete parameters. Encpk simply uses a generator matrix G : {0, 1}q×n

that efficiently corrects up to a (1/2 − n−3α/2/2)-fraction of bit flipping errors,
which exists for q = O(n3α+1) (e.g., [22]). We can now conclude the correctness of
the scheme since every encryption will be correctly decrypted with overwhelming
probability and thus so is the event that polynomially many of them occur
simultaneously (even when they are not independent, see Lemma 1).

Theorem 4 (Correctness). Let 0 < μ ≤ 1/10 and α > 0 be any constants, let
q = Θ(n3α+1) and μ1 = α log n/n, and let X ∼ B̃n

μ1
. Assume that the decisional

LPNμ,n problem is 2ω(n
1
2)-hard, then ΠX is a correct scheme.

Lemma 7. For any 0 < μ≤1/10, μ1 = O(log n/n)≤1/8 and any e ∈ {0, 1}n

with |e| ≤ 1.01μn,
Pr[〈B̃n

μ1
, e〉 = 0] ≥ 1/2 + 2− μ1n

2 .

Proof. Denote by E the event (1 −
√
6
3)μ1n≤|Bn

μ1
|≤2μ1n and thus Pr[E] ≥ (1 −

2 exp−μ1n/3) by the Chernoff bound. We have by Lemma 5

1
2

+ 2−(4.04μμ1n+1) ≤ Pr[〈Bn
μ1

, e〉 = 0]

≤ Pr[E] · Pr[〈B̃n
μ1

, e〉 = 0] + Pr[¬E] · Pr[〈Bn
μ1

, e〉 = 0|¬E]

≤ Pr[〈B̃n
μ1

, e〉 = 0] + Pr[¬E].

For 0 < μ ≤ 1/10, Pr[〈B̃n
μ1

, e〉 = 0] ≥ 1/2 + 2−(4.04μμ1n+1) − 2 exp−μ1n/3 >

1/2 + 2−μ1n/2.

Lemma 8. For any 0 < μ≤1/8, μ1 = O(log n/n), and any s ∈ {0, 1}n with
|s| ≤ 2μ1n, we have by Lemma 5

Pr[〈Bn
μ , s〉 = 0] ≥ 1/2 + 2−(8μμ1n+1) ≥ 1/2 + 2−(μ1n+1).

230 Y. Yu and J. Zhang

5 CCA-Secure PKE from Constant-Noise LPN

In this section, we show how to construct CCA-secure PKE from constant-noise
LPN. Our starting point is the construction of a tag-based PKE against selective
tag and chosen ciphertext attacks from LPN, which can be transformed into a
standard CCA-secure PKE by using known techniques [11,35]. We begin by first
recalling the definitions of tag-based PKE.

5.1 Tag-Based Encryption

A tag-based encryption (TBE) scheme with tag-space T and message-space M
consists of three PPT algorithms T BE = (KeyGen,Enc, Dec). The randomized
key generation algorithm KeyGen takes the security parameter n as input, out-
puts a public key pk and a secret key sk, denoted as (pk, sk) ← KeyGen(1n).
The randomized encryption algorithm Enc takes pk, a tag t ∈ T , and a plaintext
m ∈ M as inputs, outputs a ciphertext C, denoted as C ← Enc(pk, t,m). The
deterministic algorithm Dec takes sk and C as inputs, outputs a plaintext m, or
a special symbol ⊥, which is denoted as m ← Dec(sk, t, C). For correctness, we
require that for all (pk, sk) ← KeyGen(1n), any tag t, any plaintext m and any
C ← Enc(pk, t,m), the equation Dec(sk, t, C) = m holds with overwhelming
probability.

We consider the following game between a challenger C and an adversary A
given in [35].

Init. The adversary A takes the security parameter n as inputs, and outputs a
target tag t∗ to the challenger C.

KeyGen. The challenger C computes (pk, sk) ← KeyGen(1n), gives the public
key pk to the adversary A, and keeps the secret key sk to itself.

Phase 1. The adversary A can make decryption queries for any pair (t, C) for
any polynomial time, with a restriction that t �= t∗, and the challenger C
returns m ← Dec(sk, t, C) to A accordingly.

Challenge. The adversary A outputs two equal length plaintexts m0,m1 ∈
M. The challenger C randomly chooses a bit b∗ $←− {0, 1}, and returns the
challenge ciphertext C∗ ← Enc(pk, t∗,mb∗) to the adversary A.

Phase 2. The adversary can make more decryption queries as in Phase 1.
Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs

1, else outputs 0.
Advantage. A’s advantage is defined as Advind-stag-cca

T BE,A (1n) def= |Pr[b = b∗] − 1
2 |.

Definition 5 (IND-sTag-CCA). We say that a TBE scheme T BE is IND-
sTag-CCA secure if for any PPT adversary A, its advantage Advind-stag-cca

T BE,A (1n)
is negligible in n.

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 231

For our convenience, we will use the following corollary, which is essentially
a q-fold8 (transposed) version of Theorem 2 with q′ = n and 2 bits of linear
leakage (rather than O(log n) bits of arbitrary leakage) per copy. Following [36],
the leakage is crucial for the CCA security proof.

Corollary 1. Let n be a security parameter and let 0 < μ < 1/2 be any constant.

Assume that the computational LPNμ,n problem is 2ω(n
1
2)-hard (for any super-

constant hidden by ω(·)). Then, for every μ1 = Ω(logn/n) and λ = Θ(log2 n)
such that 2λ ≤ H∞(B̃n

μ1
), and every q = poly(n), we have

(
(ST

0 e,ET
0 s), e, s,A,ST

0A + ET
0

) c∼
(

(ST
0 e,ET

0 s), e, s,A, Uq×n

)
,

where the probability is taken over S0 ∼ (B̃n
μ1

)q, E0 ∼ Bn×q
μ , A ∼ Dn×n

λ , Uq×n,
s ← B̃n

μ1
, e ← Bn

μ and internal random coins of the distinguisher.

5.2 Our Construction

Our construction is built upon previous works in [36,44]. A couple of modifica-
tions are made to adapt the ideas of [36,44], which seems necessary due to the
absence of a meaningful knapsack version for our LPN (with poly-log entropy and
non-uniform matrix). Let n be the security parameter, let α > 0, 0 < μ≤1/10
be any constants, let μ1 = α log n/n, β = (12 − 1

n3α), γ = (12 − 1
2n3α/2) and choose

λ = Θ(log2 n) such that 2λ ≤ H∞(B̃n
μ1

). Let the plaintext-space M = {0, 1}n,
and let G ∈ {0, 1}q×n and G2 ∈ {0, 1}�×n be the generator matrices that can
correct at least βq and 2μ� bit flipping errors in the codeword respectively, where
q = O(n6α+1), � = O(n) and we refer to [22] and [33] for explicit constructions
of the two codes respectively. Let the tag-space T = F2n . We use a matrix rep-
resentation Ht ∈ {0, 1}n×n for finite field elements t ∈ F2n [10,14,36] such that
H0 = 0, Ht is invertible for any t �= 0, and Ht1 + Ht2 = Ht1+t2 . Our TBE
scheme T BE is defined as follows:

KeyGen(1n): Given a security parameter n, first uniformly choose matrices A $←−
Dn×n

λ ,C $←− D�×n
λ , S0,S1

$←− (B̃n
μ1

)q and E0,E1
$←− Bn×q

μ . Then, compute
B0 = ST

0A + ET
0 ,B1 = ST

1A + ET
1 ∈ {0, 1}q×n, and set (pk, sk) = ((A, B0,

B1, C), (S0,S1)).
Enc(pk, t,m): Given the public key pk = (A,B0,B1,C), a tag t ∈ F2n , and a

plaintext m ∈ {0, 1}n, randomly choose

s $←− B̃n
μ1

, e1
$←− Bn

μ , e2
$←− B�

μ,S′
0,S

′
1

$←− (B̃n
μ1

)q,E′
0,E

′
1

$←− Bn×q
μ

8 Please do not confuse q′ with q, where q′ is the number of samples in LPN (see
Theorem 2) and is set to n (for a square matrix), and q is the number of parallel
repetitions of LPN on independent secrets and noise vectors.

232 Y. Yu and J. Zhang

and define

c := As + e1 ∈ {0, 1}n

c0 := (GHt + B0)s + (S′
0)

Te1 − (E′
0)

Ts ∈ {0, 1}q

c1 := (GHt + B1)s + (S′
1)

Te1 − (E′
1)

Ts ∈ {0, 1}q

c2 := Cs + e2 + G2m ∈ {0, 1}�.

Finally, return the ciphertext C = (c, c0, c1, c2).
Dec(sk, t, C): Given the secret key sk = (S0,S1), tag t ∈ F2n and ciphertext

C = (c, c0, c1, c2), first compute

c̃0 := c0 − ST
0 c = GHts + (S′

0 − S0)Te1 + (E0 − E′
0)

Ts.

Then, reconstruct b = Hts from the error (S′
0 − S0)Te1 + (E0 − E′

0)
Ts by

using the error correction property of G, and compute s = H−1
t b. If it holds

that

| c − As︸ ︷︷ ︸
=e1

| ≤ 2μn ∧ | c0 − (GHt + B0)s︸ ︷︷ ︸
=(S′

0)
Te1−(E′

0)
Ts

| ≤ γq ∧ | c1 − (GHt + B1)s︸ ︷︷ ︸
=(S′

1)
Te1−(E′

1)
Ts

| ≤ γq

then reconstruct m from c2 − Cs = G2m + e2 by using the error correction
property of G2, else let m = ⊥. Finally, return the decrypted result m.

Remark 2. As one can see, the matrix S1 in the secret key sk = (S0,S1) can
also be used to decrypt the ciphertext, i.e., compute c̃1 := c1 − ST

1 c = GHts +
(S′

1 − S1)Te1 + (E1 − E′
1)

Ts and recover s from c̃1 by using the error correction
property of G. Moreover, the check condition

|c − As| ≤ 2μn ∧ |c0 − (GHt + B0)s| ≤ γq ∧ |c1 − (GHt + B1)s| ≤ γq

guarantees that the decryption results are the same when we use either S0 or
S1 in the decryption. This fact seems not necessary for the correctness, but it is
very important for the security proof. Looking ahead, it allows us to switch the
“exact decryption key” between S0 and S1.

Correctness and Equivalence of the Secret Keys S0,S1. In the following,
we show that for appropriate choice of parameters, the above scheme T BE is
correct, and has the property that both S0 and S1 are equivalent in terms of
decryption.

– The correctness of the scheme requires the following:
1. |(S′

0 − S0)Te1 + (E0 − E′
0)

Ts| ≤ βq (to let G reconstruct s from c̃0).
2. |c − As| ≤ 2μn ∧ |c0 − (GHt + B0)s| ≤ γq ∧ |c1 − (GHt + B1)s| ≤ γq.
3. |e2| ≤ 2μ� (such that G2 can reconstruct m from c2 − Cs = G2m + e2).

– For obtaining CCA security, we also need to show that S0 and S1 have the
same decryption ability except with negligible probability, namely,
1. If |c − As| ≤ 2μn ∧ |c0 − (GHt + B0)s| ≤ γq, then G can reconstruct s

from a code within bounded error |(S′
0 − S0)e1 + (E0 − E′

0)s| ≤ βq.

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 233

2. If |c − As| ≤ 2μn ∧ |c1 − (GHt + B1)s| ≤ γq, then G can reconstruct s
from a code within bounded error |(S′

1 − S1)e1 + (E1 − E′
1)s| ≤ βq.

It suffices to show that each Hamming weight constraint above holds (with
overwhelming probability) individually and thus polynomially many of them
hold simultaneously (with overwhelming probability as well) by Lemma 1. First,
Chernoff bound guarantees that Pr[|e1| ≤ 2μn] = 1 − 2−Ω(n) and Pr[|e2| ≤
2μ�] = 1 − 2−Ω(�). Second, for i ∈ {0, 1} the bound |(S′

i)
Te1 − (E′

i)
Ts| ≤ γq is

ensured by Lemma 6 and we further bound |(S′
i −Si)e1 +(Ei −E′

i)s| ≤ βq with
Lemma 9 below (proof similar to Lemma 6 and thus deferred to Appendix B).

Lemma 9. For constants α > 0, 0 < μ≤1/10 and μ1 = α log n/n, let S and S′

be i.i.d. to (B̃n
μ1

)q, E and E′ be i.i.d. to Bn×q
μ , s ∼ B̃n

μ1
and e ∼ Bn

μ. Then,

Pr
[∣∣(S′ − S)Te + (E − E′)Ts

∣∣ ≤ (
1
2

− 1
n3α

)q
]

≥ 1 − 2−Ω(n−6αq).

Security of the TBE Scheme. We now show that under the LPN assumption,
the above scheme T BE is IND-sTag-CCA secure in the standard model.

Theorem 5. Assume that the decisional LPNμ,n problem is 2ω(n
1
2)-hard for any

constant 0 < μ≤1/10, then our TBE scheme T BE is IND-sTag-CCA secure.

Proof. Let A be any PPT adversary that can attack our TBE scheme T BE
with advantage ε. We show that ε must be negligible in n. We continue the
proof by using a sequence of games, where the first game is the real IND-sTag-
CCA security game, while the last is a random game in which the challenge
ciphertext is independent from the choices of the challenge plaintexts. Since any
PPT adversary A’s advantage in a random game is exactly 0, the security of
T BE can be established by showing that A’s advantage in any two consecutive
games are negligibly close.

Game 0. The challenger C honestly runs the adversary A with the security
parameter n, and obtains a target tag t∗ from A. Then, it simulates the IND-
sTag-CCA security game for A as follows:

KeyGen. First uniformly choose matrices A $←− Dn×n
λ ,C $←− D�×n

λ , S0,S1
$←−

(B̃n
μ1

)q and E0,E1
$←− Bn×q

μ . Then, compute B0 = ST
0A + ET

0 ,B1 = ST
1A +

ET
1 ∈ {0, 1}q×n. Finally, C sends pk = (A,B0,B1,C) to the adversary A,

and keeps sk = (S0,S1) to itself.
Phase 1. After receiving a decryption query (t, (c, c0, c1, c2)) from the adver-

sary A, the challenger C directly returns ⊥ to A if t = t∗. Otherwise, it first
computes

c̃0 := c0 − ST
0 c = GHts + (S′

0 − S0)Te1 + (E0 − E′
0)

Ts.

234 Y. Yu and J. Zhang

Then, it reconstruct b = Hts from the error (S′
0 − S0)Te1 + (E0 − E′

0)
Ts by

using the error correction property of G, and compute s = H−1
t b. If

|c − As| ≤ 2μn ∧ |c0 − (GHt + B0)s| ≤ γq ∧ |c1 − (GHt + B1)s| ≤ γq

is true, reconstruct M from c2−Cs = G2m+e2 by using the error correction
property of G2, else let m = ⊥. Finally, return the decrypted result m to
the adversary A.

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the
adversary A, the challenger C first randomly chooses a bit b∗ $←− {0, 1}, and

s $←− B̃n
μ1

, e1
$←− Bn

μ , e2
$←− B�

μ,S′
0,S

′
1

$←− (B̃n
μ1

)q,E′
0,E

′
1

$←− Bn×q
μ

Then, it defines

c∗ := As + e1 ∈ {0, 1}n

c∗
0 := (GHt∗ + B0)s + (S′

0)
Te1 − (E′

0)
Ts ∈ {0, 1}q

c∗
1 := (GHt∗ + B1)s + (S′

1)
Te1 − (E′

1)
Ts ∈ {0, 1}q

c∗
2 := Cs + e2 + G2mb∗ ∈ {0, 1}�,

and returns the challenge ciphertext (c∗, c∗
0, c

∗
1, c

∗
2) to the adversary A.

Phase 2. The adversary can adaptively make more decryption queries, and the
challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

Event. Let Fi be the event that C outputs 1 in Game i for i ∈ {0, 1, . . . , 6}.

Lemma 10. |Pr[F0] − 1
2 | = ε.

Proof. This lemma immediately follows the fact that C honestly simulates the
attack environment for A, and only outputs 1 if and only if b = b∗.

Game 1. This game is identical to Game 0 except that the challenger C changes
the key generation phase as follows:

KeyGen. First uniformly choose matrices A $←− Dn×n
λ ,C $←− D�×n

λ , S0,S1
$←−

(B̃n
μ1

)q, E0,E1
$←− Bn×q

μ , and B′
1

$←− {0, 1}q×n. Then, compute B0 = ST
0A +

ET
0 ,B1 = ST

1A + ET
1 ∈ {0, 1}q×n. Finally, C sends pk = (A,B0,B′

1,C) to
the adversary A, and keeps sk = (S0,S1) to itself.

Lemma 11. If the decisional LPNμ,n problem is 2ω(n
1
2)-hard, then we have

|Pr[F1] − Pr[F0]| ≤ negl(n).

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 235

Proof. Since the only difference between Game 0 and Game 1 is that C replaces
B1 = ST

1A+ET
1 ∈ {0, 1}q×n in Game 0 with a randomly chosen B′

1
$←− {0, 1}q×n

in Game 1. we have that Game 0 and Game 1 are computationally indistinguish-
able for any PPT adversary A by our assumption and Corollary 1. This means
that |Pr[F1] − Pr[F0]| ≤ negl(n) holds.

Game 2. This game is identical to Game 1 except that the challenger C changes
the key generation phase as follows:

KeyGen. First uniformly choose matrices A $←− Dn×n
λ ,C $←− D�×n

λ , S0,S1
$←−

(B̃n
μ1

)q, E0,E1
$←− Bn×q

μ , and B′′
1

$←− {0, 1}q×n. Then, compute B0 = ST
0A +

ET
0 ,B1 = ST

1A + ET
1 ∈ {0, 1}q×n and B′

1 = B′′
1 − GHt∗ . Finally, C sends

pk = (A,B0,B′
1,C) to the adversary A, and keeps sk = (S0,S1) to itself.

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the
adversary A, the challenger C first randomly chooses a bit b∗ $←− {0, 1}, and

s $←− B̃n
μ1

, e1
$←− Bn

μ , e2
$←− B�

μ,S′
0,S

′
1

$←− (B̃n
μ1

)q,E′
0,E

′
1

$←− Bn×q
μ

Then, it defines

c∗ := As + e1 ∈ {0, 1}n

c∗
0 := (GHt∗ + B0)s + (S′

0)
Te1 − (E′

0)
Ts ∈ {0, 1}q

c∗
1 := (GHt∗ + B1)s + (S1)Te1 − (E1)Ts ∈ {0, 1}q

c∗
2 := Cs + e2 + G2mb∗ ∈ {0, 1}�,

and returns the challenge ciphertext (c∗, c∗
0, c

∗
1, c

∗
2) to the adversary A.

Lemma 12. Pr[F2] = Pr[F1].

Proof. Because of B′′
1

$←− {0, 1}q×n, we have that B′
1 = B′′

1 − GHt∗ is also
uniformly distributed over {0, 1}q×n. This means that the public key in Game 2

has the same distribution as that in Game 1. In addition, since S1
$←− (B̃n

μ1
)q and

E1
$←− Bn×q

μ are chosen from the same distribution as S′
1 and E′

1 respectively.
By the fact that B1 = ST

1A + ET
1 ∈ {0, 1}q×n is not included in the public key

pk = (A,B0,B′
1,C) (and thus A has no information about S1 and E1 before

the challenge phase), we have that the challenge ciphertext in Game 2 also has
the same distribution as that in Game 1. In all, Game 2 is identical to Game 1
in the adversary’s view. Thus, we have Pr[F2] = Pr[F1].

Game 3. This game is identical to Game 2 except that the challenger C changes
the key generation phase as follows:

KeyGen. First uniformly choose matrices A $←− Dn×n
λ ,C $←− D�×n

λ , S0,S1
$←−

(B̃n
μ1

)q, and E0,E1
$←− Bn×q

μ . Then, compute B0 = ST
0A + ET

0 ,B1 = ST
1A +

ET
1 ∈ {0, 1}q×n and B′

1 = B1 − GHt∗ . Finally, C sends pk = (A,B0,B′
1,C)

to the adversary A, and keeps sk = (S0,S1) to itself.

236 Y. Yu and J. Zhang

Lemma 13. If the decisional LPNμ,n problem is 2ω(n
1
2)-hard, then |Pr[F3] −

Pr[F2]| ≤ negl(n).

Proof. Since the only difference between Game 2 and Game 3 is that C replaces
the randomly chosen B′′

1
$←− {0, 1}q×n in Game 2 with B1 = ST

1A + ET
1 ∈

{0, 1}q×n in Game 3, by our assumption and Corollary 1 we have that Game
2 and Game 3 are computationally indistinguishable for any PPT adversary
A seeing (ST

1 e1,E
T
1 s) in the challenge ciphertext. This means that |Pr[F3] −

Pr[F2]| ≤ negl(n) holds.

Remark 3. Note that for the challenge ciphertext (c, c∗
0, c

∗
1, c

∗
2) in Game 3, we

have that c∗
1 := (GHt∗

1
+ B′

1)s + ST
1 e1 − ET

1 s = ST
1 c.

Game 4. This game is identical to Game 3 except that the challenger C answers
the decryption queries by using S1 instead of S0.

Lemma 14. |Pr[F4] − Pr[F3]| ≤ negl(n).

Proof. This lemma directly follows from the fact that both S0 and S1 have
equivalent decryption ability except with negligible probability.

Game 5. This game is identical to Game 4 except that the challenger C changes
the key generation phase and the challenge phase as follows:

KeyGen. First uniformly choose matrices A $←− Dn×n
λ ,C $←− D�×n

λ , S0,S1
$←−

(B̃n
μ1

)q, and E0,E1
$←− Bn×q

μ . Then, compute B0 = ST
0A + ET

0 ,B1 = ST
1A +

ET
1 ∈ {0, 1}q×n, B′

0 = B0 − GHt∗ and B′
1 = B1 − GHt∗ . Finally, C sends

pk = (A,B′
0,B

′
1,C) to the adversary A, and keeps sk = (S0,S1) to itself.

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from the
adversary A, the challenger C first randomly chooses a bit b∗ $←− {0, 1}, and

s $←− B̃n
μ1

, e1
$←− Bn

μ and e2
$←− B�

μ. Then, it defines

c∗ := As + e1 ∈ {0, 1}n

c∗
0 := (GHt∗ + B′

0)s + ST
0 e1 − ET

0 s = ST
0 c

∗ ∈ {0, 1}q

c∗
1 := (GHt∗ + B′

1)s + ST
1 e1 − ET

1 s = ST
1 c

∗ ∈ {0, 1}q

c∗
2 := Cs + e2 + G2mb∗ ∈ {0, 1}�,

and returns the challenge ciphertext (c, c∗
0, c

∗
1, c

∗
2) to the adversary A.

Lemma 15. If the decisional LPNμ,n problem is 2ω(n
1
2)-hard, then we have that

|Pr[F5] − Pr[F4]| ≤ negl(n).

Proof. One can easily show this lemma holds by using similar proofs
from Lemma 10 to Lemma 14. We omit the details.

Game 6. This game is identical to Game 5 except that the challenger C changes
the challenge phase as follows:

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 237

Challenge. After receiving two equal length plaintexts m0,m1 ∈ M from
the adversary A, the challenger C first randomly chooses b∗ $←− {0, 1},u $←−
{0, 1}n and v $←− {0, 1}�. Then, it defines

c∗ := u ∈ {0, 1}n

c∗
0 := S0c∗ ∈ {0, 1}q

c∗
1 := S1c∗ ∈ {0, 1}q

c∗
2 := v + G2mb∗ ∈ {0, 1}�,

and returns the challenge ciphertext (c, c∗
0, c

∗
1, c

∗
2) to the adversary A.

Lemma 16. If the decisional LPNμ,n problem is 2ω(n
1
2)-hard, then we have that

|Pr[F6] − Pr[F5]| ≤ negl(n).

Proof. Since the only difference between Game 5 and Game 6 is that C replaces
c∗ = As + e1 and c∗

2 = Cs + e2 + G2mb∗ in Game 5 with c∗ := u and

c∗
2 := v + G2mb∗ in Game 6, where u $←− {0, 1}n and v $←− {0, 1}�, by our

assumption and Corollary 1 we have that Game 5 and Game 6 are computa-
tionally indistinguishable for any PPT adversary A. Obviously, we have that
|Pr[F6] − Pr[F5]| ≤ negl(n) holds.

Lemma 17. Pr[F6] = 1
2 .

Proof. This claim follows from the fact that the challenge ciphertext
(c, c∗

0, c
∗
1, c

∗
2) in Game 6 perfectly hides the information of mb∗ .

In all, by Lemma10 ∼ Lemma 17, we have that ε = |Pr[F0] = 1
2 | ≤ negl(n).

This completes the proof of Theorem 5.

Acknowledgments. Yu Yu was supported by the National Basic Research Pro-
gram of China Grant No. 2013CB338004, the National Natural Science Foundation
of China Grant (Nos. 61472249, 61572192, 61572149 and U1536103), Shanghai excel-
lent academic leader funds (No. 16XD1400200) and International Science & Tech-
nology Cooperation & Exchange Projects of Shaanxi Province (2016KW-038). Jiang
Zhang is supported by the National Basic Research Program of China under Grant No.
2013CB338003 and the National Natural Science Foundation of China under Grant
Nos. U1536205, 61472250 and 61402286.

A Definitions and Security Notions

A.1 Symmetric-Key Encryption Schemes with Auxiliary Input

Definition 6 (Symmetric-Key Encryption Schemes). A symmetric-key
encryption scheme Π is a tuple (KeyGen,Enc,Dec) with message space M, such
that

– KeyGen(1n) is a PPT algorithm that takes a security-parameter 1n and out-
puts a symmetric key k.

238 Y. Yu and J. Zhang

– Enck(m) is a PPT algorithm that encrypts a message m ∈ M under key k
and outputs a ciphertext c.

– Deck(c) is a deterministic polynomial-time algorithm that decrypts a cipher-
text c using key k and outputs a plaintext m.

Definition 7 (Correctness). We say that a symmetric-key encryption scheme
Π = (KeyGen, Enc, Dec) is correct, if it holds for every plaintext m ∈ M that

Pr
k←KeyGen(1n)

[Deck(Enck(m)) �= m] = negl(n).

Definition 8 (IND-CPA/IND-CCA SKE w.r.t. Auxiliary Input). For
X ∈{CPA,CCA}, a symmetric-key encryption scheme Π = (KeyGen,Enc,Dec)
is IND-X secure w.r.t. sub-exponentially hard-to-invert auxiliary input if there
exists a constant 0 < α < 1 such that for any PPT adversary A, any 2−Ω(nα)-
hard-to-invert function f

Pr[SKEX
Π,f,A(1n, α) = 1] ≤ 1

2
+ negl(n),

where SKEcpa
Π,f,A(1n,α) is the IND-CPA indistinguishability experiment defined

as below:

1. On k ← KeyGen(1n), the adversary takes as input 1n, f(k), and is given
oracle access to Enck. Then, he outputs a pair of messages m0 and m1 of the
same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Enck(mb) is computed and given to A.
3. A continues to have oracle access to Enck and finally outputs b′ ∈ {0, 1}.
4. The experiment outputs 1 if b′ = b, and 0 otherwise.

and SKEcca
Π,f,A(1n,α) is the IND-CCA indistinguishability experiment defined as

below:

1. On k ← KeyGen(1n), the adversary takes as input 1n, f(k), and is given
oracle access to Enck and Deck. Then, he outputs a pair of messages m0 and
m1 of the same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Enck(mb) is computed and given to A.
3. A continues to have oracle access to Enck and Deck (with the exception that

decryption for challenge ciphertext is not allowed) and finally outputs b′ ∈
{0, 1}.

4. The experiment outputs 1 if b′ = b, and 0 otherwise.

A.2 Public-Key Encryption Schemes

Definition 9 (Public-key Encryption Schemes). A public key encryption
scheme Π is a tuple (KeyGen,Enc,Dec) with message space M, such that

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 239

– KeyGen(1n) is a PPT algorithm that takes a security-parameter 1n and out-
puts a pair of public and private keys (pk,sk).

– Encpk(m) is a PPT algorithm that encrypts message m ∈ M under public
key pk and outputs a ciphertext c.

– Decsk(c) is a deterministic polynomial-time algorithm that decrypts a cipher-
text c using secret key sk and outputs a plaintext m (or ⊥).

Definition 10 (Correctness). We say that a public-key encryption scheme
Π = (KeyGen,Enc,Dec) is correct, if it holds for every plaintext m ∈ M that

Pr
(pk,sk)←KeyGen(1n)

[Decsk(Encpk(m)) �= m] = negl(n).

Definition 11 (IND-CPA/IND-CCA PKE). For X ∈{CPA,CCA}, a
public-key encryption scheme Π = (KeyGen,Enc,Dec) is IND-X secure if for
any PPT adversary A

Pr[PKEX
Π,A(1n) = 1] ≤ 1

2
+ negl(n),

where PKEcpa
Π,A(1n) is the IND-CPA indistinguishability experiment defined as

below:

1. On (pk, sk) ← KeyGen(1n), the adversary takes as input 1n and pk. Then, he
outputs a pair of messages m0 and m1 of the same length.

2. A random bit b
$←− {0, 1} is sampled, and then a challenge ciphertext c ←

Encpk(mb) is computed and given to A.
3. A continues his computation and finally outputs b′ ∈ {0, 1}.
4. The experiment outputs 1 if b′ = b, and 0 otherwise.

and PKEcca
ΠA(1n) is the IND-CCA indistinguishability experiment defined as

below:

1. On (pk, sk) ← KeyGen(1n), the adversary takes as input 1n and pk, and is
given oracle access to Decsk. Then, he outputs a pair of messages m0 and m1

of the same length.
2. A random bit b

$←− {0, 1} is sampled, and then a challenge ciphertext c ←
Encpk(mb) is computed and given to A.

3. A continues to have oracle access to Decsk (with the exception that decryption
for challenge ciphertext is not allowed) and finally outputs b′ ∈ {0, 1}.

4. The experiment outputs 1 if b′ = b, and 0 otherwise.

B Facts, Lemmas, Inequalities and Proofs Omitted

Lemma 18 (Sample-Preserving Reduction). For the same assumptions
and notations as in the proof of Theorem2, we have

(f(x, e;Z), Z,A, A·y+e, rT, rT · y)
c∼ (f(x, e;Z), Z,A, A·y+e, rT, U1)

⇒ (f(x, e;Z), Z,A, A·y+e)
c∼ (f(x, e;Z), Z,A, Uq′).

240 Y. Yu and J. Zhang

Proof. Assume for contradiction that there exists a polynomial p(·) and a PPT
distinguisher D such that

Pr[D(f(x, e;Z), Z,A, A·y+e) = 0] − Pr[D(f(x, e;Z), Z,A, Uq′) = 0] ≥ 1/p(n)

for infinitely many n’s and we recall that y, r ∼ Uλ. Given input (z1,z,A,A·y +
e,rT), we use an efficient D′ (which invokes D) to predict the Goldreich-Levin
hardcore bit rT·y with non-negligible probability (and thus a contradiction to the

assumption). D′ chooses a random u $←− {0, 1}q′
,computes a new q′×n Boolean

matrix Ã = A − u · rT, applies D on (z1, z, Ã,Ay + e) and outputs his answer.
Note that Ã ∼ Uq′×n and Ay + e = Ãy + e + u · rTy. Therefore, when rTy = 0
we have (z1, z, Ã,Ay + e) follows (f(x, e;Z), Z, Ã, Ã·y+e) and for rTy = 1 it
is distributed according to (f(x, e;Z), Z, Ã, Uq′).

Pr[D′(f(x, e;Z), Z, Ã, Ãy + e, rT) = rT·y]
= Pr[rT·y = 0] · Pr[D′(f(x, e;Z), Z, Ã, Ãy + e, rT) = 0 | rT·y = 0]

+ Pr[rT·y = 1] · Pr[D′(f(x, e;Z), Z, Ã, Ãy + e, rT) = 1 | rT·y = 1]

=
1
2
(
Pr[D(f(x, e;Z), Z,A, A·y+e) = 0]

+ 1 − Pr[D(f(x, e;Z), Z,A, Uq′) = 0]
)

≥ 1
2

+
1

2p(n)
,

which completes the proof.

Proof of Lemma 9 Consider |(S′
0 − S0)Te + (E0 − E′

0)
Ts

∣∣ conditioned on any
|e| ≤ 1.01μn (except for a 2−Ω(n)-fraction) and |s| ≤ 2μn. We have by Lemma 7
and Lemma 8 that ST

0 e, S′
0
Te are i.i.d. to Bq

δ1
, and E0

Ts, E′
0
Ts are i.i.d. to Bq

δ2
,

where δ1≤1/2−n−α/2 and δ2≤1/2−n−α/2. Thus,
(
(S′

0 −S0)Te+(E0 −E′
0)

Ts
)

follows Bq
δ for δ≤1/2 − 2n−3α by the Piling-up lemma, and then we complete

the proof with Lemma 2.

Lemma 19 (Flattening Shannon Entropy). For any n ∈ N, 0 < μ < 1/2
and any constant 0 < Δ < 1, there exists some random variable W ∈ {0, 1}n

such that H∞(W) ≥ (1 − Δ)nH(μ) and SD(Bn
μ ,W)≤2−Ω(μn).

References

1. Related work on LPN-based authentication schemes. http://www.ecrypt.eu.org/
lightweight/index.php/HB

2. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th
Annual Symposium on Foundations of Computer Science, pp. 298–307. IEEE,
Cambridge, Massachusetts, October 2003

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

http://www.ecrypt.eu.org/lightweight/index.php/HB
http://www.ecrypt.eu.org/lightweight/index.php/HB

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 241

4. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 92–110. Springer,
Heidelberg (2007)

5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

6. Berlekamp, E., McEliece, R.J., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theor. 24(3), 384–386 (1978)

7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011)

8. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

10. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security
from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2006).
http://dx.doi.org/10.1137/S009753970544713X

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

12. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to mceliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theor. 44(1), 367–378 (1998)

13. Cash, D., Kiltz, E., Tessaro, S.: Two-round man-in-the-middle security from LPN.
In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 225–248.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 10

14. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

15. Damg̊ard, I., Park, S.: How practical is public-key encryption based on lpn and ring-
lpn? Cryptology ePrint Archive, Report 2012/699. http://eprint.iacr.org/2012/699
(2012)

16. David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable oblivious
transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A., Askoxylakis,
I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer, Heidelberg (2014)

17. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) STOC. pp. 621–630. ACM (2009)

18. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

19. Döttling, N.: Low noise lpn: Kdm secure public key encryption and sample ampli-
fication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer,
Heidelberg (2015)

20. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptogra-
phy based on a variant of the lpn problem. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012)

http://dx.doi.org/10.1137/S009753970544713X
http://dx.doi.org/10.1007/978-3-662-49096-9_10
http://eprint.iacr.org/2012/699

242 Y. Yu and J. Zhang

21. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning
noisy parities and halfspaces. In: 47th Symposium on Foundations of Computer
Science, pp. 563–574. IEEE, Berkeley, CA, USA, 21–24 October 2006

22. Forney, D.: Concatenated Codes. MIT Press, Cambridge (1966)
23. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new

cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, pp. 197–206. ACM,
Victoria, BC, Canada, 17–20 May 2008

24. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: Proceedings of
41st Annual Symposium on Foundations of Computer Science, 2000, pp. 325–335
(2000)

25. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
Johnson[31] , pp. 25–32

26. Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learn-
ing with errors assumption. In: Innovations in Theoretical Computer Science, ITCS
2010, pp. 230–240. Tsinghua University Press (2010)

27. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science, 2nd edn. Addison-Wesley Longman Publishing Co., Inc,
Boston (1994)

28. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of pseudorandom
generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

29. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

30. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012)

31. Johnson, D.S. (ed.): Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing. Seattle, Washington, 15–17 May 1989

32. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

33. Justesen, J.: A class of constructive asymptotically good algebraic codes. IEEE
Trans. Info. Theor. 18(5), 652–656 (1972)

34. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

35. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

36. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014)

37. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient authentication
from hard learning problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

38. Kirchner, P.: Improved generalized birthday attack. Cryptology ePrint Archive,
Report 2011/377 (2011). http://eprint.iacr.org/2011/377

39. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

http://eprint.iacr.org/2011/377

Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN 243

40. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

41. Lyubashevsky, V., Masny, D.: Man-in-the-Middle secure authentication schemes
from LPN and weak PRFs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 308–325. Springer, Heidelberg (2013)

42. May, A., Meurer, A., Thomae, E.: Decoding Random Linear Codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011)

43. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

44. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

45. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M.,
Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012.
LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012)

46. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)

47. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

48. Stern, J.: A method for finding codewords of small weight. In: 3rd International
Colloquium on Coding Theory and Applications, pp. 106–113 (1988)

49. Yu, Y.: The LPN problem with auxiliary input. (withdrawn) see historical versions
at. http://eprint.iacr.org/2009/467

http://eprint.iacr.org/2009/467

Cryptography in Theory and Practice

The Multi-user Security of Authenticated
Encryption: AES-GCM in TLS 1.3

Mihir Bellare(B) and Björn Tackmann

Department of Computer Science and Engineering,
University of California San Diego, La Jolla, USA

{mihir,btackmann}@eng.ucsd.edu

Abstract. We initiate the study of multi-user (mu) security of authen-
ticated encryption (AE) schemes as a way to rigorously formulate, and
answer, questions about the “randomized nonce” mechanism proposed
for the use of the AE scheme GCM in TLS 1.3. We (1) Give definitions of
mu ind (indistinguishability) and mu kr (key recovery) security for AE
(2) Characterize the intent of nonce randomization as being improved
mu security as a defense against mass surveillance (3) Cast the method
as a (new) AE scheme RGCM (4) Analyze and compare the mu secu-
rity of both GCM and RGCM in the model where the underlying block
cipher is ideal, showing that the mu security of the latter is indeed supe-
rior in many practical contexts to that of the former, and (5) Propose
an alternative AE scheme XGCM having the same efficiency as RGCM
but better mu security and a more simple and modular design.

1 Introduction

Traditionally, security definitions were single-user, meaning there was a single
target key. Consideration of the multi-user setting began with public-key encryp-
tion [3]. In this setting, there are many users, each with their own key, and the
target is to violate security under some key. This is, first, simply more realistic,
reflecting real usage, but is now even more relevant from the mass-surveillance
perspective. This paper initiates a study of the multi-user security of authenti-
cated encryption. Our motivation comes from TLS 1.3.

AE. The form of authenticated encryption (AE) we consider is nonce-based [28].
The encryption algorithm AE.Enc takes key K , nonce N , message M and
header H to deterministically return a ciphertext C ← AE.Enc(K , N,M,H).
The requirement formalized in [28] is to provide privacy of M , and authenticity
of both M and H, as long as a nonce is not re-used. The formalization refers to
only one target key, meaning is in the single user (su) setting.

There are many AE schemes (provably) meeting this security requirement.
One simple way to obtain them is via generic composition of privacy-only encryp-
tion schemes with MACs [5,26]. There are also dedicated schemes such as
OCB [22,29,31], CCM [11] and GCM [12,24]. The last, with AES, is used in
TLS 1.3.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 247–276, 2016.
DOI: 10.1007/978-3-662-53018-4 10

248 M. Bellare and B. Tackmann

Multi-user Security of AE. We formalize multi-user (mu) security of an
authenticated-encryption scheme AE. The game picks an adversary-determined
number u of independent target keys K1, . . . ,Ku. The adversary gets an encryp-
tion oracle that takes an index i ∈ [1..u], a message, nonce and header, and
returns either an encryption of these under Ki or a random string of the same
length. It also gets a verification oracle that takes i, a ciphertext, nonce and
header, and indicates whether or not decryption is valid. Security is required as
long as the adversary does not re-use a nonce for a particular user. That is, it is
fine to obtain encryptions under the same nonce for different keys, just not under
the same key. When u = 1, we get a definition equivalent to (but formulated
slightly differently from) the (single-user) definition of [28].

Besides this usual goal (which we call indistinguishability), we also formalize
a mu key-recovery goal. Again the game picks target keys K1, . . . ,Ku and gives
the adversary an encryption oracle. This time time the latter is always true,
meaning it takes an index i ∈ [1..u], a message, nonce and header, and returns
an encryption of these under Ki. The adversary also gets a verification oracle,
and, to win, must find one of the target keys. A key-recovery attack is much more
damaging than a distinguishing attack, and is the threat of greatest concern to
practioners. Key recovery security is usually dismissed by theoreticians as being
implied by indistinguishability, but this view misses the fact that the quantitative
security of a scheme, in terms of bounds on adversary advantage, can be very
different for the two metrics, making it worthwhile to consider key recovery
security separately and additionally.

We give our definitions in the ideal-cipher model. (Standard-model defini-
tions follow because this is just the special case where scheme algorithms and
adversaries make no queries to the ideal cipher.) For all the schemes we consider,
the assumption that the underlying blockcipher is a PRP suffices to prove secu-
rity. The reason we use the ideal-cipher model is that adversary queries to the
ideal cipher give a clear and rigorous way to measure the offline computation
being performed in an attack. Also in some cases we get better bounds.

Multi-user security is not qualitatively different from single-user security.
A hybrid argument shows that the latter implies the former. But the two could
be quantitatively quite different, and this has important practical implications.
In the hybrid reduction, there is a loss of a factor u in adversary advantage.
Thus, the mu advantage of an adversary could be as much as u times its su
advantage. This is the worst case. But it could be a lot less, degrading much
more slowly with u. This would be better.

AE in TLS 1.3. As the protocol underlying https, TLS is the basis for secure
communication on the Internet, used millions of times a day. The existing ver-
sions up to TLS 1.2 have however been subject to many attacks. The effort
to create a new and (hopefully) better version, TLS 1.3, is currently under-
way. TLS (of whatever version) begins with a handshake. This is an authenti-
cated key exchange that establishes a shared session key, called the traffic secret,
between client and server. This step will not be our concern. After the handshake,
data is authenticated and encrypted within the so-called record layer, using an

The Multi-user Security of Authenticated Encryption 249

authenticated encryption scheme AE that is keyed by a key K derived from the
traffic secret. The currently proposed choice of AE is AES-GCM.

The most natural way to use AE in the record layer is directly, meaning the
data message M is simply encrypted via C ← AE.Enc(K , N,M,H), where N is
a nonce (in TLS 1.3 this is a sequence number that is known to the receiver) and
H is the header. This is not what TLS 1.3 proposes. Instead, they randomize
the nonce, computing C ← AE.Enc(K , N⊕L,M,H), where the randomizer L is
also derived from the traffic secret. (It is thus known to the receiver, enabling
decryption.) Why do this? Brian Smith gave the following motivation on the
TLS 1.3 mailing list [33]:

... massively parallel attacks on many keys at once seem like the most promis-

ing way to break AES-128. It seems bad to have popular endpoints encrypting

the same plaintext block with the same nonce with different keys. That seems

like exactly the recipe for making such attacks succeed. It seems like it would

be better, instead, to require that the initial nonces to be calculated from the

key block established during key agreement ... This ... should prevent any such

massively-parallel attack from working.

In this paper, we aim to understand and formalize the threat alluded to here, and
then assess to what extent one can prove that nonce-randomization guarantees
security. In particular, we suggest that the formal cryptographic goal underlying
nonce randomization and Smith’s comment is improved multi-user security. In
our model, the “massively parallel attack” is a key-search attack that finds the
GCM key of some user out of u target users —here we are referring to the basic
GCM scheme, in the absence of nonce randomization— in time 2κ/u where κ
is the key length of the underlying block cipher, κ = 128 for AES. The attack
picks some N,M,H and for each i ∈ [1..u] obtains from its encryption oracle
the encryption Ci of these quantities under Ki. Now, it goes through all possible
κ-bit keys L, for each computing CL ← AE.Enc(L,N,M,H), and returning L if
CL = Ci for some i. Note that the attack needs a single computation of AE.Enc
for each L, not one per user, which is why the running time is 2κ/u. Given
NSA computing capabilities, the fear of the TLS 1.3 designers is that this attack
may be feasible for them for large u, and thus a mass-surveillance threat. Nonce
randomization is a candidate way to circumvent the attack. The question this
raises is whether nonce randomization works. To answer this in a rigorous way,
we abstract out a (new) AE scheme and then use our definitions of mu security.

RGCM. In TLS 1.3, nonce randomization is viewed as a way to use GCM in the
record layer. We take a different perspective. We view the method as defining a
new AE scheme that we call RGCM. In this scheme, the randomizer is part of
the key. This view is appropriate because the randomizer was derived from the
traffic secret just like the base key, and has the security necessary to be used
as a key, and the randomizer is also static across the session, just like the base
key. While GCM has a key whose length is the key length κ of the underlying
block cipher (κ = 128 for AES), RGCM has a key of length κ+ν, where ν is the
length of the randomizer (ν = 96 for GCM in TLS 1.3). Nonces are assumed to
also have length ν so that xoring the nonce with the randomizer makes sense.

250 M. Bellare and B. Tackmann

Results. With this perspective, we are looking at two AE schemes, GCM and
RGCM. We can now divorce ourselves of TLS details and analyze them as AE
schemes to determine the quantitative mu security of both. The number p of
adversary queries to the ideal cipher is the central parameter, capturing the
offline computational effort of the adversary. As before u is the number of users,
and we let m denote the total number of bits encrypted, meaning the sum of the
lengths of all messages in queries.

Let us first discuss mu security under key recovery, where the picture is
clearer. Roughly, we show that key recovery for GCM needs p = 2κ/u while for
RGCM it needs p = 2κ+ν/um. We expect m to be quite a bit less than 2ν —in
the current schemes, ν = 96— so the effort to recover a key is significantly higher
for RGCM than for GCM. This says that nonce randomization works, meaning
it does increase mu security as targeted by the TLS 1.3 designers, at least for
key recovery.

For mu-ind security, the picture is more complex. We distinguish the case
of passive attacks, where the adversary does not query its verification oracle,
and active attacks, where it does. In the passive case, RGCM still emerges as
superior, but in the active case, the two schemes become comparable. Also,
our bounds in the ind case are complex, and interesting terms get swamped by
collision terms. We stress that the bounds here may not be tight, so the picture
we are seeing could reflect limitations of our analysis techniques rather than the
inherent security of the schemes. Obtaining better (and ideally tight) bounds is
an interesting open question.

XGCM. Even if under some metrics superior to GCM, RGCM performs con-
siderably worse than expected from an AE with key length κ + ν, and the
natural question is, why not use some standard scheme or construction par-
adigm rather than “roll your own” with RGCM? The most obvious choice
is AES256-GCM. Our analysis of GCM shows that AES256-GCM has good
enough mu security, simply due to the larger key size. However, AES256-GCM
is slower than AES-RGCM, and a scheme using AES itself would be preferable.
We suggest and analyze XGCM, derived simply as GCM with the blockcipher
E: {0, 1}κ × {0, 1}λ → {0, 1}λ replaced by EX: {0, 1}κ+λ × {0, 1}λ → {0, 1}λ,
defined by EX(K‖L,X) = L⊕E(K,L⊕X). This transform of a blockcipher uses
the Even-Mansour technique [13]. It was suggested by Rivest as a key-extension
method for DES and first analyzed by Kilian and Rogaway [19]. Our analysis
implies that, with AES parameters, the mu security of XGCM is better than that
of RGCM. Its performance is however essentially the same as that of GCM or
RGCM. While it would be a viable alternative for AES-RGCM in TLS 1.3, it does
require non-black-box changes to the implementation of AES-GCM, whereas for
AES-RGCM the change is only the randomization of the nonce input.

Related Work. GCM was proposed by McGrew and Viega (MV) [24] and
standardized by NIST as [12]. MV [24] prove single-user security assuming
PRP-security of the underlying blockcipher. While the original scheme allows
variable-length nonces [24], IOM [18] showed that the security proof of MV was
flawed in this case and the claimed security bounds did not hold. They provide a

The Multi-user Security of Authenticated Encryption 251

corrected proof, which was later improved by NOMI [27]. In this paper we only
consider fixed-length nonces. We prove security in the mu setting in the ideal
cipher model.

Key-recovery security of symmetric encryption schemes was defined in [30]
for the single-user, privacy-only setting. We extend their definition to the mu,
authenticated encryption setting.

BMMRT [1] and FGMP [14] analyze the record layer of TLS 1.3 relative to
the goal of providing a secure channel, under an appropriate formalization of the
latter. These works assume that AES-GCM is a secure AE scheme. Our work is
not attempting to analyze the record layer. It is analyzing the security of GCM
and RGCM as stand-alone AE schemes, with emphasis on their mu security.

We are seeing increased interest in multi-user security, further reflected in
this paper. BCK [4] considered mu security for PRFs as an intermediate step in
the analysis of the cascade construction. Multi-user security of PRFs and PRPs
(blockciphers) has been further considered in [2,25,34]. The first work that high-
lighted mu security as a goal and targeted quantitative security improvements
seems to have been BBM [3], the primitive here being public-key encryption.
Multi-user security for signatures was considered by GMS [16] and has been the
subject of renewed interest in [8,20]. Further works involving multi-user security
include [9,10,17], and, in the cryptanalytic context, [15].

2 Preliminaries

We let ε denote the empty string. If Z is a string then |Z| denotes its length and
Z[1..i] denotes bits 1 through i of Z. If X is a finite set, we let x ←$ X denote
picking an element of X uniformly at random and assigning it to x. Algorithms
may be randomized unless otherwise indicated. Running time is worst case. If A
is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins
r on inputs x1, . . . and assigning the output to y. We let y ←$ A(x1, . . .) be the
result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1,

We use the code-based game-playing framework of BR [6]. (See Fig. 1 for
an example.) By Pr[G] we denote the probability that the execution of game G
results in the game returning true. In games, integer variables, set variables and
boolean variables are assumed initialized, respectively, to 0, the empty set, and
false.

A family of functions F: F.Keys×F.Dom → F.Rng is a two-argument function
that takes a key K in the key space F.Keys, an input x in the domain F.Dom and
returns an output F(K,x) in the range F.Rng. In the ROM, F takes an oracle
RO. We say F has key length F.kl if F.Keys = {0, 1}F.kl; output length F.ol if
F.Rng = {0, 1}F.ol; and input length F.il if F.Dom = {0, 1}F.il.

We say that F: {0, 1}F.kl × {0, 1}F.il → {0, 1}F.ol is a block cipher if F.il = F.ol
and F(K, ·): {0, 1}F.il → {0, 1}F.ol is a permutation for each K in {0, 1}F.kl. We
denote by F−1(K, ·) the inverse of F(K, ·).

252 M. Bellare and B. Tackmann

Let H: H.Keys× ({0, 1}∗ × {0, 1}∗) → {0, 1}H.ol be a family of functions with
domain H.Dom = {0, 1}∗ × {0, 1}∗. Let ε: N × N → [0, 1] be a function. Some-
what extending [21], we say that H is ε-almost XOR-universal if for all distinct
(M1,H1), (M2,H2) ∈ H.Dom and all s ∈ {0, 1}H.ol, we have

Pr[H(hk, (M1,H1)) ⊕ H(hk, (M2,H2)) = s : hk ←$ H.Keys]
≤ ε(max(|M1|, |M2|),max(|H1|, |H2|)) .

3 Multi-user Security of Symmetric Encryption

We consider symmetric encryption in a multi-user setting. We give two def-
initions of security. The first, an indistinguishability-style definition, extends
Rogaway’s single-user definition [28] to the multi-user setting, and represents
a very strong requirement. We also define security against key recovery, repre-
senting the goal the attacker would most like to achieve and the most common
target of cryptanalysis. We will see that the security bounds for these notions
can differ. Since our analyses will be in the ideal-cipher model, the definitions
are given directly in that model.

Syntax. A symmetric encryption scheme AE specifies a deterministic encryp-
tion algorithm AE.Enc: {0, 1}AE.kl × AE.NS × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that
takes a key K ∈ {0, 1}AE.kl, a nonce N ∈ AE.NS, a message M ∈ {0, 1}∗ and
a header H ∈ {0, 1}∗ to return a ciphertext C ← AE.EncE,E−1

(K , N,M,H)
∈ {0, 1}AE.cl(|M |). Here AE.kl ∈ N is the key length of the scheme, AE.NS is
the nonce space and AE.cl: N → N is the ciphertext length function. The ora-
cles represent a cipher E: {0, 1}AE.ckl × {0, 1}AE.bl → {0, 1}AE.bl and its inverse
E

−1. In the security games this cipher will be chosen at random, meaning
be ideal. We view the key length AE.ckl and block length AE.bl of the cipher
as further parameters of AE itself. Also specified is a deterministic decryption
algorithm AE.Dec: {0, 1}AE.kl × AE.NS × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} that
takes K , N,C,H and returns M ← AE.DecE,E−1

(K , N,C,H) ∈ {0, 1}∗ ∪ {⊥}.
Correctness requires that AE.Dec(K , N,AE.Enc(K , N,M,H),H) = M for all
M,H ∈ {0, 1}∗, all N ∈ AE.NS and all K ∈ {0, 1}AE.kl.

Indistinguishability Security. We extend Rogaway’s definition of indistin-
guishability security for authenticated encryption [28], which is in the single-user
setting, to the multi-user setting. The formalization is based on game Gmu-ind

AE (A)
of Fig. 1, associated to encryption scheme AE and adversary A. The game ini-
tially samples a random bit challenge b, with b = 1 indicating it is in “real”
mode and b = 0 that it is in “ideal” mode. As per our conventions noted in
Sect. 2, the sets U, V are assumed initialized to the empty set, and the integer v
is assumed initialized to 0. Now the adversary A has access to an oracle New

that creates new user instances. A also has access to an encryption oracle Enc

that takes a user instance identifier i, a nonce N ∈ AE.NS, a message M , and
a header H. The oracle either returns a uniformly random bit string of length
AE.cl that depends only on the length of M (for b = 0), or an encryption under

The Multi-user Security of Authenticated Encryption 253

Fig. 1. Game defining multi-user indistinguishability security of symmetric encryption
scheme AE in the ideal-cipher model.

AE.Enc using the key of user i (for b = 1). The oracle checks that A does not
re-use nonces for a user instance, and that it is invoked only for user instances
that exist. Analogously, there is a verification oracle Vf that takes user instance
i, nonce N ∈ AE.NS, ciphertext C, and header H. Oracle Vf always accepts
ciphertexts generated by Enc for the same i, N , and H, rejects all other cipher-
texts for b = 0, and uses the decryption algorithm AE.Dec to check the validity
of the ciphertext for b = 1. As a last step, the adversary outputs a bit b′ that
can be viewed as a guess for b. The advantage of adversary A in breaking the
mu-ind security of AE is defined as Advmu-ind

AE (A) = 2Pr[Gmu-ind
AE (A)] − 1.

The ideal-cipher oracles E and E
−1 are given to the adversary, the encryption

algorithm and the decryption algorithm, where the inputs are L ∈ {0, 1}AE.ckl and
x, y ∈ {0, 1}AE.bl. The oracles are defined using lazy sampling. The description of
game Gmu-ind

AE in Fig. 1 uses some notation that we introduce here and use also
elsewhere. First of all, T [·, ·] describes a map {0, 1}∗ × {0, 1}∗ → {0, 1}∗ that is
initially ⊥ everywhere, with new values defined during the game. By imT [·, ·] we
denote the set {z ∈ {0, 1}∗ : ∃x, y ∈ {0, 1}∗ with T [x, y] = z} and by suppT [·, ·]
the set {(x, y) ∈ {0, 1}∗ × {0, 1}∗ : T [x, y] �= ⊥}. Both terms are also used in the
obvious sense in settings where one of the inputs is fixed. (In Fig. 1, this input is
L.) Finally, for a subset A ⊂ B, the notation A refers to the complement B\A in
B. We use this notation in places when the superset B is clear from the context.
(In Fig. 1, the set B is {0, 1}AE.bl.)

254 M. Bellare and B. Tackmann

Fig. 2. Game defining multi-user key-recovery security of symmetric encryption scheme
AE in the ideal-cipher model.

Definitions of mu security for authenticated encryption in the standard model
are obtained as a special case, namely by restricting attention to schemes and
adversaries that do not make use of the E and E

−1 oracles.
One can further strengthen the security of the above ind definition by consid-

ering nonce-misuse resistance as defined by Rogaway and Shrimpton [32]. This
requires changing the condition (i,N) ∈ U in oracle Enc to only prevent queries
where nonce and message (or even nonce, message, and header) are repeated.
We do not use such a stronger definition in this work because GCM does not
achieve it.

We say that an adversary is passive if it makes no queries to its Vf oracle.
In some cases we will get better bounds for passive adversaries.

Rogaway’s definition of indistinguishability security for authenticated encryp-
tion (in the su setting) [28] gives the adversary a decryption oracle, while we give
it a verification oracle. The latter is simpler and our definition can be shown
equivalent to one with a decryption oracle by the technique of BN [5].

Key-Recovery Security. The qualitatively weaker requirement of key-
recovery security can sometimes be established with better bounds than ind,
which is of practical importance since violating key recovery is much more dam-
aging that violating ind. The formalization is based on game Gmu-kr

AE (A) of Fig. 2,
associated to encryption scheme AE and adversary A. The goal of the adversary
A is simply to output the key of any honest user. It again has access to oracles
New, Enc, Vf, E, and E

−1. Oracles Enc and Vf are defined to always return
the values as determined by the scheme AE. Adversary A wins if it outputs any

The Multi-user Security of Authenticated Encryption 255

Fig. 3. Encryption scheme CAU = CAU[H, κ, λ, ν]. Left: Encryption algorithm
CAU.Enc. Right: Decryption algorithm CAU.Dec.

one of the keys that was generated using the New oracle. The advantage of A in
breaking the mu-kr security of AE is defined as Advmu-kr

AE (A) = Pr[Gmu-kr
AE (A)].

4 The Schemes

We present a symmetric encryption scheme we call CAU, for Counter-Mode with
a AXU hash function. GCM is a special case. This allows us to divorce our results
and analyses from some details of GCM (namely, the particular, polynomial-
evaluation based hash function) making them both simpler and more general.

The TLS Working Group introduced a specific usage mode of GCM in recent
draft versions of TLS 1.3 in which material, obtained in the handshake key
derivation phase, is used to mask the nonce. We take a different perspective and
view this as a new symmetric encryption scheme whose generalized version we
specify here as RCAU. Finally we specify XCAU, our own variant that better
achieves the same goals.

CAU. Let κ, λ, ν ≥ 1 be integers such that ν ≤ λ−2, where κ is referred to as the
cipher key length, λ as the block length and ν as the nonce length. Let H: {0, 1}λ×
({0, 1}∗ ×{0, 1}∗) → {0, 1}λ be an ε-XOR universal hash function. We associate
to these the symmetric encryption scheme CAU = CAU[H, κ, λ, ν] —here CAU
is a transform taking H, κ, λ, ν and returning a symmetric encryption scheme that
we are denoting CAU— whose encryption and decryption algorithms are specified
in Fig. 3. The scheme has key length CAU.kl = κ, cipher key length CAU.ckl =
κ and block length CAU.bl = λ. It has nonce space CAU.NS = {0, 1}ν and
ciphertext length function CAU.cl(·) defined by CAU.cl(m) = m+λ. Explanations
follow.

The algorithms CAU.Enc and CAU.Dec are given access to oracles that repre-
sent a cipher E: {0, 1}κ × {0, 1}λ → {0, 1}λ and its inverse E

−1. In the security

256 M. Bellare and B. Tackmann

games the cipher will be chosen at random, meaning be ideal. In practice, it will
be instantiated by a block cipher, usually AES.

CAU is an encrypt-then-mac scheme [5]. Encryption is counter-mode of the
block cipher. The MAC is a Carter-Wegman MAC based on the AXU function
family H. Some optimizations are performed over and above generic encrypt-
then-mac to use the same key for both parts. The name stands for “Counter
Almost Universal.”

In the description of Fig. 3, the plaintext M is first partitioned into � =
�|M |/λ� plaintext blocks M1, . . . ,M�. The first � − 1 blocks have length λ. The
final block M� has length 1 ≤ r ≤ λ. The value G defined as E(K , 0λ) is later
used as a key for the hash function H. The loop then computes the counter mode
encryption. Here and in the rest of the paper we use the following notation. If
Z is a λ bit string and j ≥ 0 is an integer then we let

Z + j = Z[1..ν]‖〈1 + j〉 (1)

where 〈1 + j〉 is the representation of the integer (1 + j) mod 2λ−ν as a (λ − ν)-
bit string. Thus, in the scheme, Y + i = N‖〈1 + i〉. Function msbn, which is
needed to compute the final and possibly incomplete ciphertext block C�, maps
a string of length ≥ n to its n-bit prefix. The final step in the scheme is then to
compute the function H on H and C = C1‖ . . . ‖C� and xor it to the output of
the block cipher on input Y . To simplify the technical descriptions in our proofs,
we define the ciphertext as consisting of the tag prepended to the output of the
counter-mode encryption.

GCM, as proposed by McGrew and Viega [24] and standardized by NIST [12],
is obtained by instantiating the block cipher with AES, so that λ = κ = 128.
The nonce length (in the standardized version) is ν = 96. The hash function
H is based on polynomial evaluation. The specifics do not matter for us. For
our security analysis, all we need is that H is an ε-almost XOR-universal hash
function (according to our definition of Sect. 2) for some ε: N × N → [0, 1].
McGrew and Viega [24, Lemma 2] show that H has this property for ε(m,n) =
(�m/λ� + �n/λ� + 1)/2λ.

CAU has fixed-length nonces, reflecting the standardized version of GCM
in which ν = 96. While the original scheme allows variable-length nonces [24],
IOM [18] showed that the original security proof was flawed for variable-length
nonces and the claimed security bounds did not hold.

RCAU. The TLS Working Group introduced a specific usage mode of GCM in
recent draft versions of TLS 1.3 to prevent the scheme from evaluating the block
cipher on the same inputs in each session. This countermeasure is described as
computing an additional ν bits of key material in the key derivation phase, and
using these to mask the ν-bit nonce given to GCM.

In order to analyze the effectiveness of this countermeasure, we take a dif-
ferent perspective, casting the method as specifying a new symmetric encryp-
tion scheme in which the mask becomes part of the key. Formally, as before,
let κ, λ, ν ≥ 1 be integers representing the cipher key length, block length and

The Multi-user Security of Authenticated Encryption 257

Fig. 4. Encryption scheme RCAU = RCAU[H, κ, λ, ν]. Left: Encryption algorithm
RCAU.Enc. Right: Decryption algorithm RCAU.Dec.

Fig. 5. Encryption scheme XCAU = XCAU[H, κ, λ, ν]. Left: Encryption algorithm
XCAU.Enc. Right: Decryption algorithm XCAU.Dec.

nonce length, where ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ × {0, 1}∗) → {0, 1}λ be
an ε-XOR universal hash function. We associate to these the symmetric encryp-
tion scheme RCAU = RCAU[H, κ, λ, ν] whose encryption and decryption algo-
rithms are specified in Fig. 4. The scheme has key length RCAU.kl = κ + ν,
cipher key length RCAU.ckl = κ and block length RCAU.bl = λ. It has nonce
space RCAU.NS = {0, 1}ν and ciphertext length function RCAU.cl(·) defined by
RCAU.cl(m) = m+λ. Note that the key length is κ+ν, while that of CAU was κ.
The definition of Y + i is as per (1), so Y + i = (N ⊕ L)‖〈1 + i〉.

XCAU. We suggest a different scheme to achieve the multi-user security goal
targeted by RCAU. Recall that if E: {0, 1}κ × {0, 1}λ → {0, 1}λ is a block
cipher than EX: {0, 1}κ+λ × {0, 1}λ → {0, 1}λ is the block cipher defined
by EX(K‖L,X) = L⊕E(K,L⊕X). This can be viewed as strengthening E

using an Even-Mansour technique [13]. This was suggested by Rivest as a

258 M. Bellare and B. Tackmann

key-extension method for DES and first analyzed by Kilian and Rogaway [19].
We then simply use EX in place of E in the basic CAU. Formally, as before,
let κ, λ, ν ≥ 1 be integers representing the cipher key length, block length and
nonce length, where ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ × {0, 1}∗) → {0, 1}λ be
an ε-XOR universal hash function. We associate to these the symmetric encryp-
tion scheme XCAU = XCAU[H, κ, λ, ν] whose encryption and decryption algo-
rithms are specified in Fig. 5. The scheme has key length XCAU.kl = κ + λ,
cipher key length XCAU.ckl = κ and block length XCAU.bl = λ. It has nonce
space XCAU.NS = {0, 1}ν and ciphertext length function XCAU.cl(·) defined by
XCAU.cl(m) = m+λ. Note that the key length is κ+λ, while that of RCAU was
κ + ν. The definition of Y + i is as per (1), so Y + i = N‖〈1 + i〉.

Our analysis of this scheme builds on the work of Kilian and Rogaway, but
analyzes the construction directly in the multi-user setting. We believe that the
bounds can be further improved along the lines of Mouha and Luykx’s work [25],
but this does not affect the terms we are most interested in.

5 Key-Recovery Security

The multi-user security differences between the schemes are most easily seen in
the case of security against key recovery, so we start there.

5.1 Security of CAU

We show that the multi-user kr advantage scales linearly in the number of adver-
sarial evaluations of the ideal cipher (corresponding to offline evaluations of the
blockcipher in practice) and the number of user instances. We give both an upper
bound (security proof) and lower bound (attack) on the kr-advantage to show
this, beginning with the former.

Theorem 1. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be a family of functions. Let CAU = CAU[H, κ, λ, ν]. Let A
be an adversary that makes at most u queries to its New oracle and p queries
to its E and E

−1 oracles. Then

Advmu-kr
CAU (A) ≤ u(p + 1)

2κ
.

Proof. We use the code-based game-playing technique of BR [6]. Without loss of
generality, we assume that the adversary A does not input invalid user identifiers
i /∈ {1, . . . , v} to Enc or Vf, and does not re-use nonces in encryption queries.
We also assume that A does not verify correct ciphertexts they obtained from
Enc at its Vf oracle. These restrictions allow us to simplify the descriptions of
the games, and any arbitrary adversary A can be translated into an adversary
A′ that adheres to these restrictions and makes at most the same number of
queries as A. Our proof proceeds in a sequence of games.

The Multi-user Security of Authenticated Encryption 259

Fig. 6. Intermediate games for decoupling the oracles E/E−1 and RF in the proof of
Theorem 1.

The first step in the proof is to rewrite game Gmu-kr
CAU (A) syntactically by

introducing an additional oracle RF that implements the forward evaluation of
the ideal cipher for the algorithms CAU.Enc and CAU.Dec. This is sufficient as
encryption and decryption in CAU never query E

−1. We call this game G0, but
do not explicitly describe as it is obtained easily from Gmu-kr

CAU (A).
We then rewrite the game in the form of G1, which is described in Fig. 6

and basically obtained by a syntactic modification of the oracles E, E−1, and
RF. In more detail, oracle RF samples the ideal cipher for the keys used in the
encryption using the map U [·, ·]. The oracles E and E

−1 are adapted such that,
for keys used in the game, they sample the map T [·, ·] consistently with U [·, ·].
We introduce a flag bad that is set when the adversary A queries one of the
oracles E or E

−1 with a key that is also used in the oracle RF.
The next game G2 modifies the way in which the responses for the E, E−1,

and RF oracles are determined. In particular, we break the consistency between
E and E

−1 on the one hand, and RF on the other hand, by sampling the ora-
cle responses independently. Since all changes appear only after bad has been
set, we can relate the games using the Fundamental Lemma from Bellare and
Rogaway [6] and proceed by bounding the probability of setting bad. This prob-
ability is in fact bounded by up/2κ. As all computations while bad is not set are

260 M. Bellare and B. Tackmann

Fig. 7. Adversary Au,pe used in Theorem 2.

independent of the values K1, . . . ,Ku, the maximal probability of the adversary
to guess one of these uniformly random values is u/2κ in each of its p queries
to E and E

−1.
The keys in G2 only serve as labels, the game is independent of their actual

values. The only remaining step is to compute the probability of guessing any
one of the u keys that are chosen at random without collision, which is also
incorporated into the advantage. In more detail:

Advmu-kr
CAU (A)= Pr

[
Gmu-kr

CAU (A)
]

= Pr [G0] = Pr [G1]

≤Pr [G2] +
up

2κ
≤ u

2κ
+

up

2κ
=

u(p + 1)
2κ

,

which concludes the proof. ��
Next we show that the security bound proven in Theorem1 is (almost) tight.
We describe an attack (adversary) that achieves the described bound up to a
(for realistic parameters small) factor. The adversary is shown in Fig. 7. It is
parameterized by a number u of users and an (even) number pe of queries to
E. It first encrypts a short message 02λ for each of the u users. Next, it queries
the E oracle on the value 0λ−210, the first block that is used for masking actual
plaintext, for up to pe different keys. As soon as it finds a matching key L for the
first block, it simply evaluates E(L, 0λ−211) and checks for consistency with the
second block. If the check succeeds, the adversary outputs the key L, otherwise
it tries further keys.

The described attack strategy extends to any application of CAU in which
the nonces used in the scheme are the same in each session. As TLS 1.3 uses the
sequence number to compute the nonces, a version without the nonce random-
ization technique would be susceptible to this attack.

Theorem 2. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be a family of functions. Let CAU = CAU[H, κ, λ, ν]. Let
u ≥ 1 be an integer and pe ≥ 2 an even integer. Associate to them the adversary
Au,pe

described in Fig. 7, which makes u queries to New, qe = u queries to Enc

of length 2λ bits, no queries to Vf, pe queries to E, and no queries to E
−1. Then

Advmu-kr
CAU (Au,pe

) ≥ μ ·
(
1 − e− peu

2κ+1

)

The Multi-user Security of Authenticated Encryption 261

where

μ =
(

1 − u(u − 1)
2κ+1

)
·
(

1 − u(2κ − u)
2λ(2λ − 1)

)
.

This means that the advantage of Au,pe
scales (almost) linearly with the number

of users, and in fact, for values u, pe such that upe/2κ+1 ≤ 1, the advantage is
lower bounded by μ · (1 − 1/e) · peu

2κ+1 . The proof we give can be improved in
terms of tightness, for instance, we allow the attack to completely fail if only
a single collision occurs between honest users’ keys. In particular the factor
(1 − u(u − 1)/2κ+1) could be improved especially for large u.

Proof (Theorem 2). The probability for any of the u = qe keys to collide is at
most u(u−1)/2κ+1. In the subsequent steps we compute the probabilities based
on the assumption that no user keys generated within New collide, which is
correct with probability at least 1 − u(u − 1)/2κ+1. In more detail, given that
we have no collisions of user keys, the adversary uses at least pe/2 attempts to
guess any one of u = qe (uniformly random, without collision) keys from a set of
size 2κ. The probability for each honest user’s key to be among the adversary’s
guesses is pe/2κ+1, and so the overall probability for any one of the adversary’s
attempts to succeed is

1 −
(
1 − pe

2κ+1

)u

≥ 1 − e− peu

2κ+1 .

We still need to bound the probability of false positives, that is, keys that were
not sampled in a New oracle but coincide with the block cipher outputs, and
therefore lead to a wrong guess: The probability that the ideal cipher for a specific
“wrong” key (out of 2κ − u) coincides with the ideal cipher for each of the u
“correct” keys on both inputs 0ν‖0λ−ν−2‖10 and 0ν‖0λ−ν−2‖11 is 2−λ(2λ−1)−1.
The existence of such a colliding key can be bounded using the Union Bound to
be at most u(2κ −u)/(2λ(2λ −1)), so the probability that no such collision exists
is at least 1 − u(2κ − u)/(2λ(2λ − 1)). Overall, we obtain the stated bound. ��
Evaluating the formula for realistic values for GCM in TLS 1.3, we set κ = 128.
We allow the adversary to make pe = 264 evaluations of the block cipher. We
estimate the number of TLS sessions per day as 240, which leaves us a security
margin of roughly 224. While this means that on expectation the attack still
needs 224 days to recover a single key, it is important to recall that this estimate
is obtained under the strong assumption that AES behaves like an ideal cipher.

5.2 Security of RCAU

RCAU aims to avoid the attack strategy described in Sect. 5.1 by randomizing
the nonce before it is used in the block cipher. Here we assess whether the
measure succeeds, again first upper bounding adversary advantage via a proof,
then lower bounding it via an attack.

In contrast to the bound for CAU, the bound for RCAU depends on more
parameters. This is caused by the more intricate “decoupling” of the E/E−1

and RF oracles.

262 M. Bellare and B. Tackmann

Theorem 3. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be a family of functions. Let RCAU = RCAU[H, κ, λ, ν]. Let
A be an adversary that makes at most u queries to its New oracle, qe queries
to its Enc oracle with messages of length at most �bit bits, qv queries to its Vf

oracle of length at most �bit + λ bits, pe queries to its E oracle, and pi queries
to its E

−1 oracle. Then

Advmu-kr
RCAU (A) ≤ 2up(�blk(qe + qv) + 1)

2κ+ν
+

up(�blk(qe + qv) + 1)
2κ(2λ − p)

+
up(�blk(qe + qv) + 1)

2κ(2λ − qe − qv)
+

pi + u

2κ
, (2)

where �blk = ��bit/λ� + 1.

Proof. As in Theorem 1, we restrict our attention to adversaries A that do not
use invalid user identifiers, that do not re-use nonces, and that do not verify
ciphertexts obtained from the Enc oracle. As in the proof of Theorem1, we now
aim at “decoupling” the oracles E/E−1 and RF, but this time we have to be
cautious: we cannot just “give up” when the adversary “guesses” one of the users
keys in calls to E/E−1; this would ruin our bound. The first step is as above
to introduce an auxiliary map U [·, ·] in addition to T [·, ·], but keep the maps
synchronized. The change from Gmu-kr

RCAU (A) to G0 is therefore only syntactic.
Intuitively, the lazy sampling of the block cipher is now performed using both
maps, where T [·, ·] is filled in calls to E and E

−1, and U [·, ·] is filled in RF. The
oracles make sure that the maps stay consistent.

In game G1, described in detail in Fig. 8, we first change the way in which the
responses are sampled, but still in an equivalent way, namely we first attempt
to sample consistently only for T [·, ·] and then check for consistency with U [·, ·].
If this fails, we set bad ← true and re-sample with the correct distribution.
Additionally, we set bad ← true whenever we need to answer for either T [·, ·]
or U [·, ·] and the answer is already defined by the respective other map. Game
G1 is equivalent to G0. The proof is further complicated by the fact that RCAU
derives the key for H as E(K , 0λ) and this query is therefore not randomized.
As a consequence, we have to treat the queries with value 0λ independently of
the other queries, and keep the maps T [·, 0λ] and U [·, 0λ] consistent for the next
proof steps.

In game G2 we modify the behavior of the oracles E, E−1, and RF to not re-
sample to avoid inconsistencies with the other oracles. Also, we do not enforce
consistency between T [K , ·] and U [K , ·] for values that are defined already in
one of the maps; we sample a fresh value in a map independently of whether
the point is already defined in the other map. As both modifications occur only
after the flag bad has been set, we can use the Fundamental Lemma to relate
the advantages of an adversary in games G1 and G2.

To bound the probability for the flag bad to be set in games G1 or G2, respec-
tively, we begin with the following observation: As long as bad is not set, each
row T [K , ·] or U [K , ·] for a specific key K is sampled without collisions within
this row, but independently of any other row, and also mutually independent

The Multi-user Security of Authenticated Encryption 263

Fig. 8. Intermediate games for decoupling the oracles E/E−1 and RF in the proof of
Theorem 3.

between T [K , ·] and U [K , ·]. This is the case because the only other way of defin-
ing a value for those maps is either re-sampling or copying from the other map;
in both cases we set the flag bad. Furthermore, we observe that all operations
that occur before the flag bad is set are independent of the actual values of
the keys K1, . . . ,Ku. Given these insights, we now analyze the probabilities for
setting the bad flag at the different code points, first for E and E

−1:

– The probability of enforcing re-sampling in E or E
−1 is analyzed as follows:

For a particular key K̄ ∈ {K1, . . . ,Ku} for which m blocks have been defined
through queries to RF, the probability of sampling a value that collides is at
most m/(2λ − p), as we choose uniformly from 2λ − p values. The expected
number of blocks for the key L in the query is u(�blk(qe + qv) + 1)/2κ, which
leads to an overall probability of u(�blk(qe + qv) + 1)/(2κ(2λ − p)) for each
query.

264 M. Bellare and B. Tackmann

– The probability of enforcing that a value be copied (that is, the final “Else”
statement becomes active) in E is bounded by u(�blk(qe + qv) + 1)/2κ+ν for
each of the p queries. This is computed analogously to above: executing the
“Else” statement means that the adversary guessed a combination of a κ-bit
key and a ν-bit mask value.

– Finally, the probability for copying a value in E
−1 is bounded by the term

1/2−κ. The reason is that it corresponds to guessing a the key for a specific
user.

We obtain the bounds up(�blk(qe + qv) + 1)/(2κ(2λ − p)), upe(�blk(qe + qv) +
1)/2κ+ν , and pi/2−κ as the adversary makes at most pe queries to E, pi queries
to E

−1, and p = pe + pi queries accumulated.
We proceed by analyzing the probabilities for RF analogously:

– With respect to enforcing re-sampling in RF, for a key L for which m blocks
have been defined, the probability of sampling a colliding value is m/(2λ −
qe − qv). This leads to an overall probability of at most p/(2κ(2λ − qe − qv)).

– The probability of enforcing that a value be copied (that is, the final “Else”
statement becomes active) in RF is bounded by u(�blk(qe + qv) + 1)p/2κ+ν .
The reason is that for a particular key L for which m blocks have been defined
through queries to E and E

−1, the probability that an query to RF as done
by CAU.EncRF uses the same input is bounded by m/2ν . This leads to a
probability of p/2κ+ν .

Since the encryption and decryption algorithms overall make u(�blk(qe + qv)+1)
queries to RF, we obtain the bounds up(�blk(qe + qv)+1)/(2κ(2λ − qe − qv)) and
up(�blk(qe + qv) + 1)/2κ+ν .

Finally, as in G2 the oracles E and E
−1 are independent of the oracle RF

that is used in RCAU, the probability of guessing a key is u/2κ. All these terms
together comprise the bound in the theorem statement. ��

For realistic parameters, the bound in Theorem3 means that the “best” attack
for passive adversaries is now the inversion of a block observed while eavesdrop-
ping. In contrast to the attack analyzed in Sect. 5.1, this attack does not scale in
the mass surveillance scenario, because the adversary has to target one specific
ciphertext block.

In more detail, the adversary strategy A analyzed in the below lemma and
specified in detail in Fig. 9 proceeds as follows. First obtain an encryption of
02λ from an honest user. Then brute-force the key by decrypting the first
ciphertext block using E

−1, checking whether the output satisfies the struc-
ture N‖0λ−ν−210. In case this structure is observed, verify the key by checking
if the next block is consistent with an evaluation of E with the same key and
plaintext N‖0λ−ν−211.

Since the described attack strategy applies independently of how the nonces
are chosen (prior to the randomization) as long as the value is predictable, the
lower bound also applies to the scheme as used in the latest draft of TLS 1.3.

The Multi-user Security of Authenticated Encryption 265

Fig. 9. Adversary Api used in Theorem 4.

Theorem 4. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be a family of functions. Let RCAU = RCAU[H, κ, λ, ν]. Let
pi ≥ 2 an even integer and the adversary Api

as described in Fig. 9, which makes
1 query to each New and Enc (the latter of length 2λ bits), no queries to Vf,
pi queries to E

−1, and no queries to E. Then

Advmu-kr
RCAU (Api

) ≥ μ · pi · 2−κ−1,

with

μ = 1 − (2κ − 1)2ν

2λ(2λ − 1)
.

Proof. Let K1 be the key sampled during the invocation of New in the game.
The probability for the block cipher on a key K �= K1 to satisfy the first condition
is 2ν−λ, since in the first invocation of E−1 the value is sampled uniformly at
random and λ−ν bits have to match. The second invocation of E−1 has to lead to
the correct outcome N‖0λ−ν−211, the value is drawn uniformly at random from
the remaining 2λ−1 values not equal to the outcome of the first query. There are
2κ keys, so by the Union Bound the probability of any key K �= K1 to lead to an
admissible pattern on the first two blocks is bounded by (2κ −1)2ν/(2λ(2λ −1)).

In the event that no key K �= K1 satisfies the above condition, this advantage
of adversary Api

is simply the probability of guessing a uniformly random key
of κ bits in pi/2 attempts, as for each key Api

spends at most 2 queries. This
completes the proof. ��
The attack analyzed in Theorem 4 is considerably harder to mount than the
one analyzed in Theorem 2, because the queries in the Theorem 2 attack can be
preprocessed and apply to all observed communication sessions equally, whereas
in the Theorem 4 attack the queries have to be made for a particular session
under attack. Still, in the following Sect. 5.3, we show that at low computational
cost for the honest parties, the Theorem4 attack can be made considerably
harder.

5.3 Security of XCAU

The term pi/2κ in the bound for RCAU originates in the fact that only the
input of the block cipher is masked, and inversion queries by the adversaries are

266 M. Bellare and B. Tackmann

Fig. 10. Multi-user security for block-cipher key extension. Left: Game giving the
adversary access to the actual construction. Right: Game giving the adversary access
to an independent ideal cipher.

not hindered. In the scheme XCAU, an advantage beyond the randomization of
the input to derive the hash function key is that the output of the block cipher
is masked, which restricts the power of inversion queries to the block cipher
considerably.

Our analysis of XCAU is based on combining the analysis of DESX-like
input and output whitening in a multi-user setting, and then prove the security
of XCAU along the lines of Theorem 8. We first prove a multi-user bound for the
DESX-like construction. The security goal is described by the games in Fig. 10.

Theorem 5. Let A be an adversary that makes at most u queries to its New,
q2 queries to its RF oracle per user, p queries to its E oracle and E

−1 oracles.
Then

|Pr[R(A)] − Pr[S(A)]| ≤ u · q2 · p

2λ+κ+1
.

Proof. We introduce two intermediate games G0 and G1 in Fig. 11. Game G0 is
equivalent to game R(A); the introduction of the additional map U [·, ·] is only
syntactic as we make sure that it stays consistent with T [·, ·] throughout. We
also modify the procedures for sampling new values for the maps U [·, ·] and T [·, ·]

The Multi-user Security of Authenticated Encryption 267

such that first we sample a new value such that it is consistent only with the
respective map, then check whether it is consistent with the other map, and
re-sample consistently if we determine that it is not. In G1, the map U [·, ·] is
completely independent of the map T [·, ·]. Both G0 and G1 set the flag bad on
occasions where the sampling creates inconsistencies between U [·, ·] and T [·, ·].

The probability of setting the bad flag in G2 and G3 can be bounded as
follows. We first observe that besides the bad flag, G3 is equivalent to S. For
both G2 and G3, as long as bad is not set, all outputs are uniformly distributed
among the values that are valid for the respective oracle and key. Moreover,
xoring K ′

i to all inputs or outputs modifies each concrete permutation; however,
the distribution of a uniformly random permutation remains unchanged by this
operation. Following the definition of Maurer [23], this means that both games
G2 and G3 with the respective flags bad are conditionally equivalent to the
game S. (In other words, conditioned on bad = false, the outputs of the games
are distributed exactly as in S.)

Subsequently, we can employ Maurer’s result [23, Theorem 1] to bound the
distinguishing advantage between G2 and G3 by the advantage of the best non-
adaptive distinguisher. As the adversary makes at most p queries to its E and E

−1

oracles, and uq2 queries to its RF oracle, there are u ·q2 ·p possible combinations
of queries that may provoke the flag bad to be set, and each case appears with
probability 2−λ−κ−1. We conclude the proof via the Union Bound. ��
Analogously to the previous results on CAU and RCAU, we now analyze the
key-recovery security of XCAU.

Theorem 6. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be a family of functions. Let XCAU = XCAU[H, κ, λ, ν]. Let
A be an adversary that makes at most u queries to its New oracle, qe queries
to its Enc oracle with messages of length at most �bit bits, qv queries to its Vf

oracle with messages of length at most �bit + λ bits, and p queries to its E and
E

−1 oracles. Assume furthermore that qe ≤ 2ν , and �bit ≤ λ(2λ−ν − 2). Then,
with �blk = ��bit/λ� + 1,

Advmu-kr
XCAU (A) ≤ up(�blk(qe + qv) + 1)

2λ+κ+1
+

u

2κ
.

Proof. As in Theorems 1 and 3, we restrict our attention to adversaries A that
do not use invalid user identifiers, that do not re-use nonces, and that do not
verify ciphertexts obtained from the Enc oracle. The first step in this proof is to
rewrite the game as G0 in the same way as in the previous proofs; the scheme is
changed to use the oracle RF that is, however, kept consistent with E and E

−1.
The game is described in Fig. 12.

The next game G1 is again a syntactic modification from G0. The change
is that we replace XCAU, which uses the original block cipher and applies the
input and output whitening for the block cipher as a part of the encryption and
decryption procedures, by CAU instantiated with a block cipher with key length
λ + κ. Consequently, we rewrite the oracle RF to perform the input and output
whitening.

268 M. Bellare and B. Tackmann

Fig. 11. Modification of the sampling algorithm. In G0, the values are sampled to
keep consistency between U [·, ·] and T [·, ·], with the flag bad set if attempted indepen-
dent sampling leads to inconsistencies. In G1, the maps U [·, ·] and T [·, ·] are sampled
independently, making RF an independent ideal cipher.

The Multi-user Security of Authenticated Encryption 269

Fig. 12. Games that intuitively correspond to the security of AES-XCAU (G0) as well
as AESX-CAU (G1).

In the next game G2, the oracles E and E
−1, and the oracle RF are based

on different maps T [·, ·] (for E and E
−1) and U [·, ·] (for RF), but the oracles

are defined to keep them consistent. This is achieved by first sampling them
independently, but then re-sampling in case an inconsistency occurs. Should
that be the case, the flag bad is set. Apart from this flag, games G1 and G2

are equivalent. We do not describe the game G2 explicitly, but remark that it
is obtained by verbatim replacement of the oracles E, E−1, and RF in game
G1 by the ones described in game G0 in Fig. 11. In the next game G3, the re-
sampling procedure keeping the oracles consistent is abandoned, which means
that the oracles RF and E together with E

−1 are independent. Like G2, game
G3 is obtained by replacing the oracles E, E−1, and RF by the ones in game G1

in Fig. 11.
The probability of setting the bad flag in G2 and G3 can be bounded using

Theorem 5. More technically, we describe an adversary B = B(A) that emulates
oracles to A as follows: Queries New, E, and E

−1 by B are responded by B

270 M. Bellare and B. Tackmann

performing the same query in its game. Queries Enc and Dec are responded by
B emulating the respective oracles using the oracle RF in its game to evaluate
CAU.Enc and CAU.Dec. The view of A is the same in G2 and in the game
R(B(A)), and in G3 and the game S(B(A)), respectively. The numbers of queries
u to the New oracle and p to the E and E

−1 oracles are preserved by B. At
most qe queries of length at most �bit to Enc and at most qv queries of length at
most �bit + λ to Vf translate into at most �blk(qe + qv) + 1 queries to RF in the
game played by B. Using Theorem 5, this means that the probability of setting
bad can be bounded by up(�blk(qe + qv) + 1)/2λ+κ+1.

All that remains to be done is bounding the probability of A guessing any
key in G3. As in this game, similarly to the previous proofs, the keys used to
reference values in U [·, ·] is only used as an index to the table and is unrelated
to all values that A observes in the game, the guessing probability is at most
u/2κ. This concludes the proof. ��

6 Indistinguishability Security

In this section we prove the multi-user indistinguishability security bounds for
CAU, RCAU, and XCAU, all in the ideal cipher model. All proofs in this section
are deferred to the full version of this paper [7].

6.1 Preparation: A Lemma on CAU

We begin with a multi-user analysis of CAU which models the block cipher
as a uniform random permutation and is useful in the subsequent proofs. The
analysis is related to the ones of MV [24], IOM [18], and NOMI [27], with the
main difference that they proved single-user security, while we directly prove
multi-user security. We formalize the random-permutation model using our game
Gmu-ind

CAU while considering only adversaries that do not make use of the oracles
E and E

−1.

Lemma 7. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be an ε-almost XOR-universal hash function, for some ε: N×
N → [0, 1]. Let CAU = CAU[H, κ, λ, ν]. Let A be an adversary that makes at
most u queries to its New oracle, qe queries to its Enc oracle with messages of
length at most �bit bits, and qv queries to its Vf oracle with messages of length
at most �bit + λ bits,1. In particular, A does not use the E and E

−1 oracles.
Assume furthermore that qe ≤ 2ν and �bit ≤ λ(2λ−ν − 2). Then

Advmu-ind
CAU (A) ≤ u(u − 1)

2κ+1
+

u(�blk(qe + qv) + 1)2·
2λ+1

+ uqv · ε(�bit, �head),

for �blk = ��bit/λ� + 1 and where the AEAD headers are restricted to �head bits.

1 The ciphertext contains an λ-bit MAC tag, so the length of the contained plaintext
is �bit bits.

The Multi-user Security of Authenticated Encryption 271

6.2 Security of CAU

We now prove the multi-user indistinguishability security of plain CAU in the
ideal-cipher model.

Theorem 8. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be an ε-almost XOR-universal hash function, for some ε: N×
N → [0, 1]. Let CAU = CAU[H, κ, λ, ν]. Let A be an adversary that makes at
most u queries to its New oracle, qe queries to its Enc oracle with messages of
length at most �bit bits, qv queries to its Vf oracle with messages of length at
most �bit + λ bits, and p queries to its E and E

−1 oracles. Assume furthermore
that qe ≤ 2ν and �bit ≤ λ(2λ−ν − 2). Then

Advmu-ind
CAU (A) ≤ up

2κ
+

u(�blk(qe + qv) + 1)2·
2λ+1

+
u(u − 1)

2κ+1
+ uqv · ε(�bit, �head),

for �blk = ��bit/λ� + 1 and where the AEAD headers are restricted to �head bits.

The first term originates from the advantage of the adversary in guessing a
user’s key in a query to the ideal cipher. This term grows linearly in the number of
honest sessions, and it also grows linearly in the number of adversary calls to the
ideal cipher. We show below in Theorem2 that a term of this size is inevitable by
proving the effectiveness of an attack. The second term stems from a PRF/PRP-
switching in the proof of counter mode. The third term stems from a potential
collision of honest-user keys, and the final term from the authentication using
the AUH-based MAC.

6.3 Security of RCAU

In terms of bounds for RCAU, we first show a simple corollary proving that the
same bounds as for CAU also apply for RCAU. This follows immediately by a
reduction that randomizes the nonces.

Corollary 9. Let κ, λ, ν ≥ 1 be such that ν ≤ λ − 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be an ε-almost XOR-universal hash function, for some ε: N×
N → [0, 1]. Let RCAU = RCAU[H, κ, λ, ν]. Let A be an adversary that makes at
most u queries to its New oracle, qe queries to its Enc oracle with messages of
length at most �bit bits, qv queries to its Vf oracle with messages of length �bit+λ
bits, pe queries to its E oracle, pi queries to its E

−1 oracle, and p = pe + pi.
Assume furthermore that qe ≤ 2ν , and �bit ≤ λ(2λ−ν − 2). (For brevity we write
q = qe + qv.) Then

Advmu-ind
RCAU (A) ≤ up

2κ
+

u(�blk(qe + qv) + 1)2·
2λ+1

+
u(u − 1)

2κ+1
+uqv · ε(�bit, �head), (3)

for �blk = ��bit/λ� + 1 and where the AEAD headers are restricted to �head bits.

272 M. Bellare and B. Tackmann

We prove a stronger bound for the advantage of a passive adversary that does
not use its Vf oracle in a non-trivial way. The bound differs from the one proven
above significantly: we show that for passive adversaries we can replace the term
up/2κ in the bound for CAU by terms that are smaller for realistic parameters.
The proof does, however, not extend to active adversaries that make use of the
Vf oracle: In fact, RCAU evaluates the block cipher, in each session, on the
fixed value 0λ to obtain the key for H, and our analysis of the authenticity
guarantee requires that this key be uniformly random. This requirement is of
course not fulfilled if the adversary evaluated the block cipher on the value 0λ

for the respective key.
In the result for RCAU, we explicitly distinguish between the numbers for

evaluation pe and inversion pi queries for the block cipher, with p = pe + pi.

Theorem 10. Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be a family of functions. Let RCAU = RCAU[H, κ, λ, ν]. Let
A be an adversary that makes at most u queries to its New oracle, qe queries
to its Enc oracle with messages of length at most �bit bits, qv queries to its
Vf oracle with messages of length �bit + λ bits, pe queries to its E oracle, pi

queries to its E
−1 oracle, and p = pe + pi. Assume furthermore that qe ≤ 2ν ,

and �bit ≤ λ(2λ−ν − 2). (For brevity we write q = qe + qv.) Then

Advmu-ind
RCAU (A)≤u(�blkqe + 1)2

2λ+1
+

up(�blkqe + 1)
2κ+ν−1

+
up(�blkqe + 1)

2κ(2λ − p)
+

up(�blkqe + 1)
2κ(2λ − qe)

+
2pi + u(u − 1)

2κ+1
, (4)

for �blk = ��bit/λ� + 1, and for an adversary A making qv = 0 verification
queries.

In comparison with the bound proven in Theorem8, the major difference in
Eq. (4) is that the term up/2κ is replaced by the four terms up(�blk(qe + qv) +
1)/2κ+ν , up(�blk(qe + qv) + 1)/2κ(2λ − u), up(�blk(qe + qv) + 1)/2κ(2λ − qe − qv)
and pi/2κ. This is an improvement because for the values used in TLS 1.3 it is
reasonable to assume �blk(qe + qv) + 1 � 296 as well as qe + qv, p � 296, and the
term pi/2κ does not scale with u. Unfortunately, our proof does not support a
similar statement for active attacks.

We stress that the term up/2κ in Eq. (3) does, unlike the one in Theorem8,
not immediately corresponds to a matching attack on the use of the scheme
within the TLS protocol. The reason is that such an attack would require send-
ing a great amount of crafted ciphertexts within the TLS session, but TLS tears
down a session and discards the keys after the first failure in MAC verification.
Therefore, it is conceivable that the scheme as used within TLS achieves con-
siderably better security against active attacks than our above bound suggests.
Moreover, such an attack would be inherently active and not suitable for mass
surveillance.

The Multi-user Security of Authenticated Encryption 273

6.4 Security of XCAU

To analyze the indistinguishability security of XCAU, we combine the results of
Theorem 5 and Lemma 7. The proof is almost the same as the one for Theorem 8,
but the step of “decoupling” the E/E−1 and RF oracles makes use of the results
in Theorem 5. Most notably and in contrast to RCAU, the bound does not
contain a term of the type pi/2κ, and applies to active adversaries as well.

Theorem 11. Let κ, λ, ν ≥ 1 be such that ν ≤ λ− 2. Let H: {0, 1}λ × ({0, 1}∗ ×
{0, 1}∗) → {0, 1}λ be an ε-almost XOR-universal hash function, for some ε: N×
N → [0, 1]. Let XCAU = XCAU[H, κ, λ, ν]. Let A be an adversary that makes at
most u queries to its New oracle, qe queries to its Enc oracle with messages of
length at most �bit bits, qv queries to its Vf oracle with messages of length at
most �bit + λ bits, and p queries to its E and E

−1 oracles. Assume furthermore
that qe ≤ 2ν and �bit ≤ λ(2λ−ν − 2). Then

Advmu-ind
XCAU (A) ≤ up(�blk(qe + qv) + 1)

2λ+κ+1
+

up(�blk(qe + qv) + 1)2

2λ+1

+ uqv · ε(�bit, �head) +
u(u − 1)

2κ+1
,

for �blk = ��bit/λ� + 1, and with headers of length at most λ�head bits.

7 Conclusion

TLS 1.2 is the most widely used cryptographic protocol in the Internet, but
due to issues with both performance and security, it will soon be replaced by
its successor, TLS 1.3. Given that the bulk of Internet traffic will likely be
protected by TLS 1.3 in the next years, it is extremely important that the
security of the protocol is well-understood. Facing the threat of mass surveillance
and the expected great number of TLS 1.3 sessions, the TLS Working Group has
introduced a nonce-randomization technique to improve the resilience of TLS 1.3
against such attacks.

We show that the proposed technique can be understood as a key-length
extension for AE; it essentially extends the 128-bit key of AES-GCM to a 224-
bit key. We first describe the authenticated encryption CAU (Counter mode
Almost Universal) as an abstraction of GCM. We then describe the scheme with
randomized nonces as its variant RCAU and analyze it in the multi-user setting,
where we show that it improves the resilience against (passive) mass surveillance
as intended by the designers. We also show, however, that the AE does not
perform as well as one might expect from an AE with a 224-bit key, especially in
presence of active attacks. One alternative would be to simply increase the key
size by, e.g., switching to an AES-256-based mode; this achieves better security
but also impacts performance.

We suggest a new encryption mode that we call XCAU. The mode uses an
additional 128-bit key (256 bits in total) to randomize the inputs and outputs

274 M. Bellare and B. Tackmann

of the block cipher (here AES) as in DESX. The mode is almost as efficient as
the mode RCAU used in TLS 1.3, only adding two 128-bit xor operations for
each call to the block cipher over plain CAU, our abstraction for GCM. We show
that, still, its security is improved over RCAU in two ways. The security bounds
we prove for security of XCAU against active attacks scale significantly better in
the number u of users than those for RCAU, this stems mostly from the fact that
all inputs to the block cipher are randomized. Furthermore, the whitening of the
block-cipher output allows to remove the (for realistic parameters largest) term
pi/2κ from the security bound. (It should be noted, however, that this term
is not worrisome for realistic parameters.) The fact that the implementation
of XCAU, in contrast to that of RCAU, requires non-black-box changes to the
libraries implementing CAU, however, makes adoption in the currently developed
standard TLS 1.3 difficult.

Acknowledgments. Bellare was supported in part by NSF grants CNS-1526801 and
CNS-1228890, ERC Project ERCC FP7/615074 and a gift from Microsoft. Tackmann
was supported in part by the Swiss National Science Foundation (SNF) via Fellowship
No. P2EZP2 155566 and by NSF grant CNS-1228890.

References

1. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented
secure channels and the goal of the TLS 1.3 record layer. In: AU, M.-H., et al.
(eds.) ProvSec 2015. LNCS, vol. 9451, pp. 85–104. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26059-4 5

2. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC
and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 22

3. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

4. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. In: 37th FOCS, pp. 514–523. IEEE
Computer Society Press, October 1996

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

7. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryp-
tion: AES-GCM in TLS 1.3. Cryptology ePrint Archive, Report 2016/564 (2016).
http://eprint.iacr.org/

8. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive,
Report 2015/996 (2015). http://eprint.iacr.org/2015/996

9. Boyarsky, M.K.: Public-key cryptography and password protocols: the multi-user
case. In: ACM CCS 1999, pp. 63–72. ACM Press, November 1999

http://dx.doi.org/10.1007/978-3-319-26059-4_5
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://dx.doi.org/10.1007/978-3-662-49890-3_22
http://eprint.iacr.org/
http://eprint.iacr.org/2015/996

The Multi-user Security of Authenticated Encryption 275

10. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007)

11. Dworkin, M.: Recommendation for block cipher modes of operation: the CCM
mode for authentication and confidentiality. NIST Special, Publication 800-38C,
May 2004

12. Dworkin, M.: Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. NIST Special, Publication 800-
38D, November 2007

13. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)

14. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: security
of stream-based channels. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 545–564. Springer, Heidelberg (2015)

15. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014)

16. Galbraith, S., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-user
setting. Inf. Process. Lett. 83(5), 263–266 (2002)

17. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Efficient optimistic fair exchange
secure in the multi-user setting and chosen-key model without random oracles. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 106–120. Springer, Heidelberg
(2008)

18. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012)

19. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search (an
analysis of DESX). J. Cryptol. 14(1), 17–35 (2001)

20. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from iden-
tification schemes. Cryptology ePrint Archive, Report 2016/191 (2016). http://
eprint.iacr.org/

21. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

22. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

23. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

24. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

25. Mouha, N., Luykx, A.: Multi-key security: the even-mansour construction revisited.
In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
209–223. Springer, Heidelberg (2015)

26. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014)

27. Niwa, Y., Ohashi, K., Minematsu, K., Iwata, T.: GCM security bounds reconsid-
ered. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 385–407. Springer,
Heidelberg (2015)

http://eprint.iacr.org/
http://eprint.iacr.org/

276 M. Bellare and B. Tackmann

28. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002

29. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

30. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified
account of classical secret-sharing goals. In: Ning, P., di Vimercati, S.D.C., Syver-
son, P.F. (eds.) ACM CCS 2007, pp. 172–184. ACM Press, October 2007

31. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press, November 2001

32. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

33. Smith, B.: Pull request: removing the AEAD explicit IV. Mail to IETF TLS Work-
ing Group, March 2015

34. Tessaro, S.: Optimally secure block ciphers from ideal primitives. In: Iwata, T.,
et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 437–462. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 18

http://dx.doi.org/10.1007/978-3-662-48800-3_18

A Modular Treatment of Cryptographic APIs:
The Symmetric-Key Case

Thomas Shrimpton1(B), Martijn Stam2, and Bogdan Warinschi2

1 University of Florida, Gainesville, USA
teshrim@ufl.edu

2 University of Bristol, Bristol, UK
{csxms,csxbw}@bris.ac.uk

Abstract. Application Programming Interfaces (APIs) to crypto-
graphic tokens like smartcards and Hardware Security Modules (HSMs)
provide users with commands to manage and use cryptographic keys
stored on trusted hardware. Their design is mainly guided by industrial
standards with only informal security promises.

In this paper we propose cryptographic models for the security of
such APIs. The key feature of our approach is that it enables modular
analysis. Specifically, we show that a secure cryptographic API can be
obtained by combining a secure API for key-management together with
secure implementations of, for instance, encryption or message authenti-
cation. Our models are the first to provide such compositional guarantees
while considering realistic adversaries that can adaptively corrupt keys
stored on tokens. We also provide a proof of concept instantiation (from a
deterministic authenticated-encryption scheme) of the key-management
portion of cryptographic API.

1 Introduction

Key management, i.e. the secure creation, storage, backup, and destruction of
keys, has long been identified as a major challenge in all practical uses of cryp-
tography. To achieve high levels of security, in practice one commonly relies on
physical protection: store cryptographic keys inside a tamper-resistant device,
called a cryptographic token, and only allow access to the keys (e.g. for perform-
ing cryptographic operations) indirectly through an Application Programming
Interface (API). Tokens are widely deployed in practice and range from smart
cards and USB sticks to powerful Hardware Security Modules (HSMs). They
are used to generate and store keys for certification authorities, to accelerate
SSL/TLS connections and they form the backbone of interbank communication
networks.

A user with access to the token may use the API to perform—securely on the
token—cryptographic operations, such as encryption or authentication of user-
provided data, using the stored keys. A key feature of such APIs is their support
for key management across tokens. We focus on wrapping, the mechanism to
transport keys between devices by encrypting them under an already shared key.
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 277–307, 2016.
DOI: 10.1007/978-3-662-53018-4 11

278 T. Shrimpton et al.

Finally, the API prevents insecure or unauthorized use of keys, typically based on
attributes and policies. Through their APIs, the overall distributed architecture
provides an increased level of security for keys, simplifies access control through
flexible key-management, and enables modular application development.

The design and analysis of key-management APIs mainly follows industrial
standards, notably PCKS#11 [23], that are geared towards specifying function-
ality and interoperability. The standards typically lack a clearly defined security
goal, let alone a rigorous analysis that any security claim is reasonably met. As a
result, proper deployment relies strongly on best practices (undocumented in the
public domain); moreover, tokens are subject to regular successful attacks [2–
4,7]. This raises the question whether the security of cryptographic APIs can be
captured and compartmentalized, taking into account the reality that some keys
will leak.

The main symmetric operation employed in key-management, namely the
key-wrapping primitive, is fairly well understood through appropriate models
and efficient implementations [15,21,22]. However, the security of the overall
design of cryptographic APIs is a far more complicated problem, that only
recently received attention [5,17,18]. None of the existing models is entirely
satisfactory: they are either too specific [5,17]; underspecified while imposing
unnecessary restrictions on how PKCS#11 can be used [18]; or avoid the highly
relevant issue of adaptive key corruption [5,17]. We provide a more in-depth
comparison later in the paper (Sect. 6). Our model naturally and unsurprisingly
shares various modelling choices with past work: We keep track of the infor-
mation concerning which key encrypts which key using a graph; we maintain
information about keys, handles and attributes in a similar way. Our focus is
on the modular analysis where the key-management component can be analyzed
separately from the cryptographic schemes that use the keys, and all of this in
a reasonable corruption model.

Our Contributions. We give a formal syntax and security model for cryp-
tographic APIs, reflecting concepts distilled from PKCS#11. We have aimed
for a level of abstraction that allows for common deployment “best practices”
(e.g. hierachical layering of managed keys based upon their intended use), with-
out being overly tied to any particular implementation. Our formalism captures
the core symmetric functionalities exposed by cryptographic APIs. Specifically,
management and exporting/importing of cryptographic keys via the API; and
cryptographic operations (e.g. encryption) performed under the managed keys,
on behalf of applications requesting these operations via the API.

To foster modular analysis, we establish security goals for the key-management
system (the abstract “back end” whose state is affected by key-management API
calls). These goals are agnostic toward the particular cryptographic operations
the keys will support. The primitives underlying the cryptographic operations
exposed by the API are also are treated abstractly, as are their corresponding secu-
rity notions.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 279

Our key technical result shows that—as one would hope and expect—
composing a secure key-management system with a secure primitive yields a
secure overall system, provided certain conditions are met. Remarkably, our
composition result holds while allowing adaptive corruptions of managed keys;
we discuss later how we overcome the well-documented difficulties associated to
merging composition and adaptive security in a single framework.

We also show how to instantiate a secure key-management system based
upon deterministic authenticated-encryption (DAE). The DAE primitive was
previously proposed as a method for secure “key-wrapping”, loosely the sym-
metric encryption of key K1 (and its associated data) under another key K2,
ostensibly for the purpose of transporting K1 between devices that share K2.
We build upon this functionality to deliver a (minimal) secure key-management
component of a cryptographic API, specifically one with hierarchical layering of
keys. Below, we discuss these contributions in greater detail.

Our Syntax and Security Model. Our syntax for a cryptographic API abstractly
captures the following abilities: (1) to create keys with specified attributes on a
named token; (2) to wrap, and subsequently unwrap, a managed key for exter-
nal transport between tokens; (3) to transport keys directly from one token to
another (without (un)wrapping); and (4) to run (non-key-management) cryp-
tographic primitives on user-provided inputs, under user-indicated keys. These
operations are all subject to the policy enforced by the token. We include this
dependency on the policy in our model, but leave it unspecified.

The security model exposes these capabilities to adversaries who, speaking
informally, attempt to “break” the token by sequences of API calls. In particu-
lar, an adversary can create, wrap, and unwrap keys as it wishes, and use these
keys in the supported cryptographic primitives. The realistic multi-token setting
is captured by allowing the adversary to cause direct transfers of keys between
tokens (modeling secure injection of a single key into several tokens, say during
the manufacturing process, or by security officers), and by allowing it to cor-
rupt individual keys adaptively. The latter capability models the real possibility
that some keys leak, due to for instance partial security breaches or successful
cryptanalysis.

Security with respect to our model will demand that all managed keys that
are not compromised (directly, or indirectly by clever API calls) can be used
securely by the cryptographic primitives. Our focus on the exported primitives,
instead of individual keys, highlights the raison d’être of cryptographic tokens:
they should guarantee the security of the operations performed with the keys
that they store.

One salient feature of our model is its generality. Instead of providing a
model only for say an encryption API, we work with an abstract (symmetric)
cryptographic primitive. In brief, we start with an abstract security definition for
arbitrary (symmetric) primitives and lift it to the setting of APIs. Our general
treatment has the benefit that the resulting security definition can be instanti-
ated for APIs that export a large class of symmetric primitives (including all of
the usual ones).

280 T. Shrimpton et al.

Composition Theorem. The main technical contribution of this paper is a modu-
lar treatment for cryptographic APIs. As a first step, we isolate the core common
component shared by cryptographic tokens, namely key-management, and pro-
vide a separate security model for it. Essentially, we define a key-management
API (or KM-API, in short) to be a cryptographic API that allows only key-
management operations. We define security of a KM-API to mean that any key
that is not trivially compromised (directly or indirectly) is indistinguishable from
random.

Next, we show how to compose a KM-API and an arbitrary (abstract) prim-
itive. We require common sense syntactic restrictions to ensure the composition
is meaningful (e.g. that the space of keys managed by the KM-API fits the
one of the symmetric primitives). More importantly, the design that we propose
requires that each key is used for either key-management or for keying the prim-
itive, but not for both. Many of the existent attacks on APIs are the result of
careless enforcement of this separation of key roles. Technically, we enforce this
requirement via a mechanism from the PKCS#11 standard—the security of our
construction essentially confirms the validity of this mechanism.

In a nutshell, to each key an attribute is associated making the key either
external or not.

We ensure the attribute has the desired effect by requiring that it is sticky.
This notion formalizes an integrity property for attributes informally defined
by PKCS#11. It guarantees that once set, the value of an attribute cannot be
changed. The following theorem establishes the security of our design, allowing
for the two components to be designed and analyzed separately.

Theorem 1 (Informal). If CA is a secure KM-API and P is a secure primitive
then the composition of CA and P (as above) is a secure cryptographic API that
exports P.

Importantly, the composition theorem is for a setting where adversaries can
adaptively corrupt keys. Our models rely on game-based definitions, which is
the main tool that we use to reconcile composition and adaptive corruption, two
features that raise well-known problems in settings based on simulation [6,20].

Construction Based on Deterministic Authenticated Encryption. We show that
a secure KM-API can be built upon DAE schemes. In particular, we show
that when the wrapping and unwrapping functionalities are implemented by
a secure DAE scheme, one can securely instantiate a KM-API for an abstract
“back end” that enforces hierachical layering of keys. Keys at the lowest layer
of the hierarchy are used only to key the cryptographic primitives (we call these
external keys), and keys above this are used only to wrap keys at lower layers
(we call these internal keys). Whether a key is external or internal is specified
in that key’s attributes. To wrap external key K1 under internal key K2, the
encryption algorithm of a DAE scheme is used, and the attributes of key K2

serve as the associated data. (Of course, the KM-API only allows calling appli-
cations to indicate which keys are to be involved, not the actual key values.) The
design of our proposed API ensures that the API policy will enforce layering.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 281

Extensions. Our ultimate goal is to provide usable security models that should
facilitate the analysis of security tokens in realistic scenarios. In this paper, for
simplicity we restricted attention to the symmetric aspect of APIs only; more-
over our security definition for cryptographic APIs only concerns the primitives
they export. We do not address other properties that can be enforced by token
policies, e.g. that internal policies may restrict operations to authenticated users
that log-in to the token. Such policies play important roles in the logic of applica-
tions that rely on tokens. Nonetheless, we believe our model provides a suitable
starting point for further extension. Indeed, we already incorporate attributes
and use a very simple policy to enforce the security of our composition. We
leave identifying and formalizing the intended semantics for other PKCS#11
attributes and extending to public-key functionality as an open problem.

2 Cryptographic Primitives

In this section we provide an abstract framework for cryptographic primitives
that captures common goals such as encryption and message authentication. Our
abstraction is tailored specifically for its subsequent use in defining (Sect. 3) and
constructing (Sect. 4) cryptographic APIs. Thus, while our abstraction is rather
general the choices regarding to what to abstract and what to make explicit in
our framework are strongly motivated by the later context.

Standard notions of encryption and authentication (e.g., IND-CPA and EUF-
CMA) are usually defined based on a single key and corruption of this single key
is seldom considered: it typically renders the game trivial (either the adver-
sary wins easily, or winning is information theoretically impossible). Adding
explicit corruption to the single-key security model facilitates moving to the
multi-key scenario (that is needed in the more general API setting). There are
also true multi-key definitions in the literature (e.g. for key-dependent message
security), but for technical reasons we require a modular multi-key definition
that is induced by a single-key one.

Syntax. A primitive P is defined by a pair of stateless, randomized algorithms
(KgP,AlgP). Algorithm KgP takes as input some parameter pm and generates a
key from some set Keyspm; here the distribution may depend on the parameter
(e.g. which key length to use). Algorithm AlgP implements the functionality of
the primitive, taking as input both a key and a primary input in, and producing
an output out. Without loss of generality, the definition of the primitive requires
only a single formal algorithm. If some functionality is naturally implemented
using several algorithms (e.g. one for encryption and decryption each) these
can all be “packed” inside AlgP by tagging the input to AlgP with a label that
indicates which of the natural algorithms is to be executed. This means that
our framework also captures a situation where multiple “types” of primitives
(e.g. both encryption and a MAC) need to be supported, as all relevant algo-
rithms can be neatly packed in the single AlgP (for which several distinct security
notions can be defined, e.g. one for confidentiality and one for authenticity).

282 T. Shrimpton et al.

Correctness. Correctness is usually defined as a requirement on a sequence of
calls that involve the algorithms that define a primitive. For instance encrypting
an arbitrary message and subsequently decrypting the ciphertext (under the
same key) should return the original message. Definition 1 captures this idea in
the context of arbitrary primitives. For generality, the definition is formulated
in a setting with multiple keys.

We consider an adversary that can create keys of its choice for the primitive
(using oracle new), and can invoke the algorithms of the primitive, via oracle
alg using the index i of a key Ki. The experiment maintains a list tr that records
the execution trace: the occurrence of triple (i, x, y) in the trace indicates that
AlgP was invoked on key Ki, with input x and returning y. The correctness of
P is captured by a predicate corrP applied to the execution trace. Usually corrP
will be monotone: initially, for the empty trace, it will be true and, once set to
false, it will remain false.

Fig. 1. The experiment ExpcorrP
P (A) (with oracles) to define correctness for primitive

P = (KgP,AlgP).

Definition 1. Let (KgP,AlgP) implement a primitive P with Keys ⊇⋃
pm[Keyspm]. Let corrP be a correctness predicate and A an adversary, then the

incorrectness advantage of A against (KgP,AlgP) with respect to corrP is defined
as

AdvcorrP
P (A) = Pr [ExpcorrP

P (A) = false]

for the experiment ExpcorrP
P (A) as given in Fig. 1.

We call P correct with respect to corrP iff for all (terminating) adversaries
the advantage is 0.

Security. Next, we introduce a formalism for specifying security notions for
symmetric primitives. We first consider the case of a single key (which we asso-
ciate with index 1) and then extend the formalism to the case of multiple keys.

Single-Key Scenario. A security notion for primitive P is given by four algorithms
sec = (setup, chal0, chal1, chalaux). Informally, these algorithms define two exper-
iments Exp1sec(pm)-0

P and Exp1sec(pm)-1
P which characterize security in terms of an

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 283

adversary that tries to distinguish between the two. Both experiments maintain
a state st initialized via the algorithm setup.

In experiment Exp1sec(pm)-b
P (A) (b is either 0 or 1), the adversary has access

to the algorithm AlgP only indirectly through its challenge oracle chalb and the
auxiliary oracle chalaux. The behavior of these oracles is defined by the algo-
rithm chalx (for the relevant x ∈ {0, 1, aux}) which has both access to the game’s
state and oracle access to the actual primitive algorithm AlgP. Our formalization
generalizes many of the standard definitions for security of cryptographic prim-
itives, where an adversary needs to distinguish between two “worlds” (modeled
here by oracles chalb with b = 0, 1). For example, to define indistinguishability
under chosen-plaintext attack for probabilistic symmetric encryption schemes,
we would instantiate oracle chalb with a left-right oracle that receives a pair
of messages m0,m1, checks that they have the same length, and returns an
encryption of mb. Oracle chalaux would allow the adversary to see encryptions
of whatever messages it wants. Security under chosen-ciphertext attacks can be
captured by letting oracle chalaux also answer decryption queries.

Without loss of generality we assume chalx makes at most one call to AlgP.
The state of the game allows the algorithm chalx to suppress or modify the output
of AlgP, for instance to avoid the decryption of a challenge ciphertext being made
available directly to the adversary. Of course, how a sequence of calls to a chalb
and chalaux interact with each other is specific to the security game.

Our model allows the adversary to corrupt the secret key. The distinction
between the algorithm chalb and the oracle chalb as an interface to chalb allows
us to deal with corruptions explicitly: if the key is corrupted, the interface chalb

will suppress the output of the algorithm chalb. We record if the key is used in
some challenge oracle chalb in set H and record its corruption using set C and
then prevent trivial wins by appropriate checks.

Multi-Key Scenario. When utilized within tokens, primitives are effectively in a
multi-key setting. Looking ahead, our definition for cryptographic API security
essentially bootstraps from the security of primitives in a standalone scenario as
described above to when used in this more complex scenarios.

3 Cryptographic APIs

A cryptographic API is an interface between an untrusted usage environment,
and a trusted environment that stores cryptographic objects (e.g. keys) and
carries out cryptographic operations (e.g. encryption). In practice, the trusted
environment is instantiated as a hardware token, or a hardware security module;
we will simply refer to the trusted environment as the token. A user may request,
via the cryptographic API, that the token carry out cryptographic operations
on the user’s behalf. In typical scenarios, the user will also control which key or
keys are to be used, by specifying one or more handles to these keys. However,
the cryptographic value of the key (as stored on the token) should remain hidden
from the user and the outside world in general.

284 T. Shrimpton et al.

Fig. 2. The experiments Exp
1sec(pm)-b
P (A) for the single key security notion 1sec defined

by the tuple (setup, chal0, chal1, chalaux) for primitive P = (KgP,AlgP). The single key
in the system has implicit index 1 and is generated using parameter pm selected by the
adversary from a set of possible parameters.

To protect the confidentiality and proper usage of exported and imported
keys, tokens employ key wrapping and unwrapping mechanisms. Oftentimes
there are multiple tokens in the same cryptologic ecosystem. In this case, keys
may be exported from one trusted token to another (via the API). Thus our
abstraction includes (a minimal set of) explicit key management functions, and
an interface to use some specific cryptographic primitive.

The ultimate goal of a cryptographic API is the correct and secure implemen-
tation of some cryptographic primitive and our main target in this section are
appropriate definitions of correctness (Definition 3) and security (Definition 5).
These definitions build on the abstract notion of a cryptographic primitive from
Sect. 2.

As explained in the introduction, the focal point of this paper is on those
aspects associated to key-management, shared by cryptographic APIs. For
instance, when wrapping a key, the expectation is that after unwrapping the
original, wrapped key emerges (correctness) and that this key has not leaked
(security), e.g. as a result of the wrapping. We provide a separate set of notions
relevant for the key management part of a cryptographic API (Definitions 4, 6,
and 7).

3.1 Modeling and Syntax

Tokens, Handles, Keys, and Attributes. Formally, we model a token t as
having some abstract state s ∈ States plus a number of associated handles. For
simplicity, we assume the token identity t is a (unique) natural number and let

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 285

the token’s initial state consist of this identity only. When API calls to the token
are being made, its state might evolve arbitrarily.

Handles are part of some set Handles (that itself can be thought of as some
fixed, finite subset of {0, 1}∗). Each handle belongs to a unique token, identified
by tkn(h), and points to an actual cryptographic key value, denoted h.key. Since
the key will be stored on the token tkn(h), the value represented by h.key depends
on the token’s state. Since this state is not static, h.key could change over time.
The different notation, tkn(h) versus h.key, captures the distinction between
immutable properties associated to a handle (possibly for bookkeeping within a
cryptographic game) and changeable quantities that are associated to it directly
by the API.

The association between a handle and a cryptographic key is annotated by
an attribute, denoted h.attr. For instance, an attribute could indicate that the
handle points to a 128-bit AES key to be used in some specific mode of operation
only, say CBC-MAC.

Like the key, the attribute will be stored on the cryptographic token (and
could change over time). We will assume that h.attr ∈ Attributes, where Attributes
is some fixed set of possible attributes. Note that the abstraction to a single
attribute only is without loss of generality, as one can capture say the more
traditional setting of many Boolean attributes by a single attribute (in this case
a true/false vector).

Our model is purposefully abstract, but it is worth bearing in mind typi-
cal implementations as used in practice. For instance, PKCS #11 reliance on
‘objects’ implies that a token’s state will contain a mapping between handles
and key–attribute pairs, plus additional information that helps the token to
maintain the security policy. Thus, for most APIs it will be possible to write
the state explicitly in the form s = (s̃, (h �→ (key, a))h), where for each handle
h, the mapping h �→ (key, a) indicates the associated key and attribute pair (so
h.key = key and h.attr = a), and the state s̃ contains a snapshot of the token’s
past I/O only (which in principle could be made public without compromising
core cryptographic security).

The Application Programming Interface (API). Each token runs an API
that allows the outside world to interface with the keys present on the token.
Definition 2 lists the procedures supported by our abstract API. Intuitively, each
of the API procedures has a clearly specified objective. For instance, there is
an API call CA.new(t, a) that is supposed to create a new key on the token t
and returns a fresh handle h such that h.key is this newly generated key and
h.attr = a. Here freshness is global and means that the handle does not yet occur
elsewhere, so that a handle can uniquely be associated to a token (explicitly
embedding the token identity in the handle could facilitate global freshness).
While the syntax thus guarantees uniqueness of the handles returned by the
API calls, there is no guarantee that API calls behave as intended (other than
possibly implied by the correctness properties introduced later).

Definition 2. A cryptographic API CA exporting a primitive P (cf. Sect. 2) is
defined by the following tuple of algorithms.

286 T. Shrimpton et al.

– h ←$ CA.new(t, a) creates and returns a fresh handle on token t, so tkn(h) = t;
the intention is that h.attr = a and h.key is a newly generated key, drawn from
some set Keys according to a distribution that could for instance depend on a.

– h ←$ CA.create(t, key, a) creates and returns a fresh handle on token t, so
tkn(h) = t; the intention is that h.attr = a and h.key = key.

– w ←$ CA.wrap(h1, h2) takes as input two handles and runs on the first handle’s
token tkn(h1). It returns some w ∈ CWraps, where CWraps is the space of all
wraps. Supposedly w is a wrap of h2.key tied to h2.attr under key h1.key.

– h̄ ←$ CA.unwrap(h,w, a) takes as input a handle to use for unwrapping, a wrap
and an attribute string. If unwrapping succeeds, a fresh handle h̄ is created on
tkn(h) and returned. The intention is that h̄.attr = a and h̄.key equals the key
that was wrapped under h.key.

– out ←$ CA.alg(h, in) intends to evaluate the primitive AlgP on key h.key and
input in, returning out.

Any call may result in an API error ⊥api. An API for key-management only
may omit the procedure CA.alg.

All of the above commands, but the CA.create, reflect the typical interface
available to the user of a token. We use CA.create as an abstraction of (often non-
cryptographic) mechanisms for transferring keys from one token to another. For
example, in the production phase the same cryptographic key may be injected
in several devices (which are to be used by the same company).

The procedures of the API directly manipulate the state of one token only,
where the relevant token is either made explicit by the API call (CA.new and
CA.create), or it follows from the handles involved (e.g. CA.wrap(h1, h2) can affect
the state of tkn(h1)). We could make this manipulation explicit by keeping track
of the token’s state as input and output of each of the API’s procedures etc.
For readability, we keep the state of the token implicit and only stress that the
commands may not depend on, or modify, the state of another token.

Policies and Attributes. To protect the security of the keys the API will
enforce a policy. For instance, an API may forbid usage of a key intended for
authentication to be used for encryption. To indicate that an operation is not
allowed, an API call can return a policy error message (distinct from possible
error messages resulting for instance from decrypting an invalid ciphertext). For
simplicity, we will model all possible policy errors with a single1 symbol ⊥api.

We will not give a formal definition of what constitutes a policy. Actually, the
level of abstraction of our model makes it somewhat cumbersome to pin down
an exact, yet general concept of a policy. In a practical, multi-token setting, the
use of attributes is useful to enforce consistent yet efficient implementation of
a policy across tokens. We will see a concrete example of this in Sect. 4 (see
Definition 8).

1 An extension of our model could consider a more fine-grained level of errors, identi-
fying why an operation results in an error.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 287

An API can also use the token’s state for this decision (e.g. to prevent wrap-
ping a sensitive key under a key that is somehow deemed insecure or to avoid cir-
cularity). For instance, a token could keep track of all the calls (with responses)
ever made to it (note that, with the exception of the key value of CA.create
queries, this information can all be made public). If only a single token exists,
this leads to a complete history of the API’s use, which suffices to implement
(albeit inefficiently) a meaningful security policy (cf. [5]).

Enforcing Meaning. So far our syntax does not formally give any guarantees
that h.key and h.attr are used by the API in an explicit, meaningful way. The
generality of our notion of state would allow an API to for instance declare
some key as h.key but in fact use a completely different cryptographic value
throughout. The KSW definitions, which use a similar abstract state as our
work, share this problem, but leave it unaddressed.

Since working completely abstractly (e.g. making no assumptions on states)
seems to easily lead to difficulties without obvious gains we make explicit assump-
tions regarding the implementations. Our upcoming correctness notion deals
with the wrapping mechanism as a means to transfer keys from token to token.
Notice that wrapping involves h.key where h is the ‘source’ handle, and only
implicitly involves the associated key. Since, we would like to reflect that the
actual key is transferred we need to make explicit the assumption that wraps
are linked to actual cryptographic keys. Along similar lines, we make explicit
the assumption that the cryptographic operations exported by the API make
use of actual keys. The assumption is useful to define and analyze the composi-
tion between an API for key-management with actual primitives. Moreover, we
will use the attributes to create a policy separating keys that can be used by the
primitive and those that cannot. This slight loss of generality enables simpler
definitions and analysis and still reflects virtually all designs commonly used in
practice.

3.2 Correctness of a Cryptographic API

In this section we present a definition of correctness for a cryptographic API.
Much of the discussion and formalization is relevant to the latter sections where
we define security since both for correctness and security we explain how to lift
the definitions of Sect. 2 from primitives to primitives exported by the APIs.

The main difficulty is an important difference between the interfaces that
an adversary has against a primitive and against a primitive exported by an
API. In Sect. 2, primitive correctness is modeled as a predicate on the execution
trace of an adversary, where the trace keeps track of both the keys that are
generated and of the cryptographic operations that the adversary executes with
these keys. Crucially, the trace only included the indexes of the keys and not
their cryptographic values. In contrast, an adversary against the API refers to the
underlying keys using the handles provided by the API. Notice that the difference
goes further, in that several handles may point to the same cryptographic key.

288 T. Shrimpton et al.

To bridge this gap we introduce a mapping that associates to each handle
some index. The map idx that we introduce reflects the idea that handles with
same index have associated the same cryptographic key.2 Formally, when defin-
ing the oracles used by an adversary to interact with a cryptographic API, we
explicitly keep track of the indexes associated to handles—we explain below our
modeling. We then lift the definitions from primitives to primitives exported by
APIs by (essentially) replacing the handles with their associated index in the
execution trace. We detail below our approach.

Indexing Handles by Equivalence Classes. To each handle h we will assign an
index idx(h) ∈ N as soon as the handle is created following some key-management
operation. This indexing induces an equivalence relation: two handles h1 and h2

are equivalent iff idx(h1) = idx(h2). We aim to ensure that if two handles are
expected to have the same associated cryptographic key then they should belong
to the same class. Notice that we aim to maintain this property globally, i.e.
the mapping handles to indexes is “system wide” and is not restricted to one
particular token.

Fig. 3. Oracles used in experiments Exp
corrP
CA[P](A) and Exp

corrkm
CA (A) that define the

correctness of a crypto API CA. The boxed line is only relevant for the experiment
involving corrkm.

Formal Definitions. Our formal definitions of correctness for key-management
(Fig. 5) and primitive-exporting APIs (Fig. 4) use the oracles in Fig. 3 to model
the interaction of an adversary with the API via key-management commands.
Each oracle reflects the behavior of the API and contains the bookkeeping that

2 Notice that the converse implication is not necessarily true.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 289

we do to maintain and assign equivalence classes to handles. The games where
these oracles are used maintain a global variable i (initially 0) that counts the
number of equivalence classes.

The only way to create a new equivalence class is through the new oracle:
whenever oracle new is called successfully (i.e. does not return ⊥api) we incre-
ment i and assign it as the index of the handle that is returned. Handles can
be added to the equivalence classes through calling either the transfer or the
unwrap oracle.

The transfer oracle is used, as explained earlier, for bootstrapping pur-
poses: to create a wrap on one token and then unwrap it on another one, the
two tokens already need to contain the same key. Oracle transfer models this
ability: handle h̄ pointing to the transferred key has the same index as h which
points to the original key.

Dealing with handles created via unwrapping requires some more bookkeep-
ing. We use set W (initially empty) to maintain all wraps created by the wrap

oracle, together with the handles involved: we add (h1, h2, w) to W if w was
the result of wrapping (the key associated to) h2 under (the key associated to)
h1. When calling unwrap(h,w, a) we use W to test whether w was created by
wrapping some h2 under a handle h1 equivalent to h (the set S contains all
such h2). If this is the case (S is not empty), then the newly returned handle
is equivalent to h2 and is therefore assigned the same index. In case a wrap
w was created multiple times, the lowest applicable index is used (if the key-
management component is secure, it should not be possible to create identical
wraps under non-equivalent handles). If S is empty, the wrap w is adversari-
ally generated and, since we do not wish to consider dishonest adversaries for
defining the correctness of a cryptographic API, we set the flag bad to force an
adversarial loss.

Valid Traces. The calls that the adversary makes to the algorithm CA.alg
(through its oracle alg) are recorded in a similar way as done in the experi-
ment for primitive correctness (Fig. 1). To account for the possibility that the
same key is used via equivalent handles, we identify the key used in the cryp-
tographic operation by the index of the handle. For an alg call, this derived
index neatly matches the index of the algorithm used in our multi-key primitive
definition.

Definition 3. Let API CA[P] implement a primitive P and let corrP be a cor-
rectness predicate. Then the incorrectness advantage of A against CA[P] with
respect to corrP is defined as

AdvcorrP
CA[P](A) = Pr

[
ExpcorrP

CA[P](A) = false
]

for the experiment ExpcorrP
CA[P](A) as given in Fig. 4. We call CA[P] correct with

respect to corrP iff for all (terminating) adversaries the advantage is 0.

Note that correctness only really implies consistency, it does not incorporate
robustness. There is no guarantee that a successfully wrapped key can in fact be

290 T. Shrimpton et al.

Fig. 4. The experiment Exp
corrP
CA[P](A) for defining the correctness of a crypto API CA

that exports primitive P based on correctness predicate corrP. An adversary additionally
has access to the oracles O given in Fig. 3.

unwrapped at all, or that a primitive API call will result in an evaluation of the
primitive. In both cases, the policy might well result in ⊥api, in which case the
correctness game effectively ignores the output of the corresponding call. As an
extreme example, the cryptographic API that always returns ⊥api is considered
correct.

3.3 Correctness of an API’s Key Management

For the correctness definition above, we only looked directly at the final primitive
calls, ignoring the cryptographic key values. However, intuitively if two handles
are equivalent, one might expect that the associated cryptographic keys are
identical. This intuition is captured by the experiment described in Fig. 5, where
an adversary tries to find a handle pointing to a key distinct from the key
associated to the handle’s index.

Fig. 5. The experiment Exp
corrkm
CA (A) for defining the correctness of the key manage-

ment component of a cryptographic API CA. An adversary has access to the oracles O
given in Fig. 3.

Definition 4 (Correctness of the Key Management). Let CA be a key
management API and A an adversary. Then the advantage of A against CA’s
key correctness is defined as

Advcorrkm
CA (A) = Pr [Expcorrkm

CA (A) = false]

for the experiment Expcorrkm
CA (A) as given in Fig. 5. We call CA key-correct iff for

all (terminating) adversaries the advantage is 0.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 291

Note that correctness of the key management component of a cryptographic
API does not relate to the attribute. For deployed systems, it is common that
equivalent handles are associated using different attributes; moreover, these
attributes might change over time. Nonetheless, some attributes should not eas-
ily be changed by an adversary. For example, it should not be possible to change
an attribute that declares a key as “sensitive” (a PKCS#11 term).

This relates to the well-known notion of stickyness, for which we provide a
formal definition later on (Definition 7).

Cryptographic Key Wrap Assumption. Definition 2 mentions that CA.wrap
is supposed to wrap h2.key tied to h2.attr under key h1.key. Implicitly, this
assumes that knowledge of both w and h1.key suffices to determine h2.key as
well. For most schemes used in practice this is indeed the case, however it does
not follow logically from our abstract syntax (even when taking into account
correctness of the key management component).3 Assumption 2 formalizes the
idea that an honestly, successfully generated wrap w ← CA.wrap(h1, h2) contains
sufficient information to recover the wrapped key h2.key, provided one knows the
actual key h1.key used for wrapping, and the attributes h1.attr, h2.attr associated
to the handles in the wrapping command.

Henceforth, we will restrict our attention to schemes satisfying the key wrap
assumption (which has direct consequences for the security notion we consider
in the upcoming sections).

Assumption 2 (Key Wrap Assumption). A cryptographic API CA satisfies
the key wrap assumption iff there exists an extractor U that extracts keys from
wraps. Specifically, for all w ← CA.wrap(h1, h2), w �=⊥api with, at the time of
calling, key1 = h1.key and key2 = h2.key it holds that U(w, key1, h1.attr, h2.attr)
outputs key2 with probability 1.

3.4 Security of a Cryptographic API

We will consider three types of security. Our primary concern is the security of
the exported primitive (Definition 5), of secondary concern are security of keys
managed internally by the API (Definition 6) and the integrity of the attributes
(Definition 7). The various security experiments to define these notions rely on
a set of common oracles, given in Fig. 6. With the exception of corrupt and
attrib, the oracles match those for the correctness game (as given in Fig. 3), but
with more elaborate internal bookkeeping, whose reasoning is explained below.
The oracles new and unwrap contain a macro initclass that will be defined
depending on the game.

3 As an example, a scheme could effectively share the key over multiple wraps, where
unwrapping fails (outputs ⊥api) unless sufficient shares (wraps) have been received:
no single wrap will allow extraction of the key.

292 T. Shrimpton et al.

Fig. 6. Oracles common to the security experiments Expsec-b
CA[P](A), Expkm-b

CA (A), and

Expsticky
CA (A), for a crypto API CA that exports P = (KgP,AlgP). The macro initclass is

defined separately for each of the experiments.

Corrupt and Compromised Handles. We have explained earlier in the con-
text of the correctness game for APIs that “honest” wrap/unwrap queries induce
an equivalence relation on handles, and how the equivalence class of a handle can
be represented (and maintained) by an index. For defining the security of APIs
we also have to take into account adversaries that may be actively trying to sub-
vert the system. In addition to dishonest API calls (e.g. asking for unwrappings
of adversarially created wraps), we will also model corruptions of handles. When
an adversary corrupts a handle, the associated cryptographic key is returned to
the adversary. Note that the API itself is not aware of corruptions. Moreover,
corruptions and (dishonest API) calls tend to reinforce each other, which we
model by compromised handles, namely those handles for which an adversary
can reasonably be assumed to know the corresponding key. The notion of corrupt
and compromised handles is based on ideas similar to those used by Cachin and
Chandran [5], and Kremer et al. [18].

Corruptions. The premise of cryptographic APIs is that keys should be kept
secret and are stored securely—an adversary does not have access to crypto-
graphic keys. Yet, in practice keys that are initially stored securely on HSMs

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 293

might be exported to weaker tokens that can be breached physically (e.g. by
means of side-channel analysis or fault injection). As a result, the adversary can
learn these keys. Such leakage of keys is modeled by corruptions: an adversary
can issue a corruption request of a handle to learn the associated key. In general,
one cannot guarantee security for handles that have been corrupted (cf. the prim-
itive’s security game). Moreover, corruption of a handle automatically leads to
corruption of the equivalence class of that handle (as equivalent handles are pre-
sumed to point to identical cryptographic keys). We let C be the set of indices
corresponding to handles that have been corrupted directly by the adversary
through making a corruption query.

Compromised Handles. An adversary could issue a query wrap(h1, h2), receiv-
ing a wrap w �=⊥api as a result. Subsequent corruption of h1 might then also
compromise h2. Indeed, Assumption 2 states that knowledge of a wrapping key
suffices to unwrap (and learn) a wrapped key, making the compromise of h2

inevitable. Thus, the corruption of a small set of keys could lead to the compro-
mise of a much larger set.

We let L(C) be the set of indices corresponding to compromised handles
(where C ⊆ L(C)). To identify precisely the set L(C) of compromised equiva-
lence classes, we keep track of which key (handle) wraps which key by means of
a directed graph (V,E). The vertices of the graph are defined by the equivalence
classes associated to the handles (so a subset of the natural numbers). There is
an edge from i to j iff for some handles h1, h2 with idx(h1) = i and idx(h2) = j
the adversary has issued a query wrap(h1, h2), receiving w �=⊥api as a result.
For a given graph (V,E) and corrupted set C ⊆ V , we define L(C) as the set of
all vertices that can be reached from C (including C itself).

Dishonest Wraps. Since a wrap is just a bitstring, an adversary can try to
unwrap some w that has not been produced by the API itself (i.e., S = ∅
in unwrap(h,w, a)). If unwrapping succeeds and returns a fresh handle, the
security game needs to associate this handle to some equivalence class. We will
consider two options.

Firstly, the unwrapping could have been performed under a handle that has
not been compromised (intuitively, this corresponds to a wrapping forgery). In
that case, the handle returned by the unwrapping will be assumed to create a
new equivalence class. Technically, w is now a wrap of a handle in this new class
i under idx(h), yet we do not add a corresponding edge (idx(h), i) to E. Adding
this edge would have resulted in the new class being compromised as a result of
the corruption of idx(h), so that an adversary could no longer win the primitive
game based on the newly introduced equivalence class. Since the new class is
effectively the result of a successfully forged wrap (as S = ∅), we prefer the
stronger definition (i.e. without adding an edge to E) where an adversary might
benefit from a forged wrap.

Secondly, the unwrapping could have been called using a compromised han-
dle. Since the adversary knows the key corresponding to the compromised handle,
creation of such wraps is likely feasible; moreover, the adversary can be assumed

294 T. Shrimpton et al.

to know the key corresponding to the handle being returned. To simplify matters,
we will use the equivalence class 0 for all handles that result from unwrapping
under compromised handles. The set C of corrupt handles initially contains the
class 0. The index class 0 is special as there are no correctness guarantees for it:
if idx(h1) = idx(h2) = 0, it is quite possible that h1.key �= h2.key.

Incorporating the Primitive’s Security Game. Intuitively, an adversary
breaks a cryptographic API, exporting a primitive P, if and only if he manages
to win the primitive’s security game. Formally, in order to express an adver-
sary’s advantage against the cryptographic API in terms of the abstract security
game for the primitive itself, we would need to interpret an adversary’s actions
against a cryptographic API as that of an adversary directly playing the abstract
primitive game.

As in the correctness game, we use the equivalence to associate handles in
the API game with keys in the primitive game. Whenever a new equivalence
class is created, the API game creates a new instance of the primitive game by
calling st[i] ←$ setup() (the macro initclass takes care of this).

For the API’s challenge oracle we want to draw on the challenge algorithms
from the primitive game. These algorithms themselves expect an oracle that
implements the primitive. In the API’s game the challenge oracle can use the
API primitive interface. If the API outputs ⊥api we suppress the output of the
challenge oracle and regard the challenge call as not having taken place in the
primitive’s game (note that the call might still have had an effect on the API’s
state).

As in the multi-key primitive game, at the end of the game we check whether
the adversary caused a breach by challenging on corrupt (or in this case com-
promised) key or not. As mentioned before, an alternative (and stronger) for-
mulation would maintain L(C) ∩ H = ∅ as invariant by suppressing any query
that would cause a breach of the invariant (possibly allowing for those queries
that the API already caught). However, our formalism is easier to specify and
simplifies an already complex model without materially changing its meaning.

Note that if a cryptographic API exports several different primitives, each
with their own security notion, one can consider several security notions for
the cryptographic API. One could modify the chalaux algorithm to model joint
security.

Definition 5. Let API CA[P] export primitive P and let sec = (setup, chal0,
chal1, chalaux) be a security notion for P. Then the advantage of an adversary A
against CA[P] is defined by

Advsec
CA[P](A) =

∣∣∣Pr
[
Expsec-0

CA[P](A) = 1
]

− Pr
[
Expsec-1

CA[P](A) = 1
]∣∣∣ ,

for the experiments Expsec-b
CA[P](A) as given in Fig. 7.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 295

Fig. 7. The security experiment Expsec-b
CA[P](A) for a crypto API CA that exports

P = (KgP,AlgP) with security notion sec = (setup, chal0, chal1, chalaux). The adver-
sary additionally has access to the oracles defined in Fig. 6 (which is where the macro
initclass is used).

3.5 Security of an API’s Key Management

When concentrating on the security of the exported primitive, we ignored confi-
dentiality of cryptographic keys and authenticity of associated attributes. How-
ever, for the key-management component of a cryptographic API these are
important properties and we capture these with Definitions 6 and 7, respec-
tively.

We define the security of a key-management API via the experiment
Expkm-b

CA (A) as given in Fig. 8. Here, the goal of an adversary is to distinguish
real keys managed by the API from fake ones generated at random. As usual,
we capture this idea via a challenge oracle parametrized by a bit b which the
adversary needs to determine. When called with handle h as input, the oracle
returns the real key associated with h or a fake key (depending on b). In the
process the adversary controls the key-management API which we model via the
oracles in Fig. 6. We impose only minimal restrictions to prevent trivial wins. As
before, we assume that for all compromised handles, the adversary knows the
corresponding (real) key, making a win trivial (we can exclude these wins at the
end by imposing that H ∩ L(C) = ∅ as before).

Moreover, notice that under the key wrap assumption (Assumption 2), if a
handle has been used to wrap another key, an adverary may easily distinguish
between the key and a random one by unwrapping: the operation would always
succeed with the real key and would fail with the fake one. We call an index
tainted if one of the keys with that index is compromised, or has been used in a
wrapping operation.

We write T (C) for the class of tainted indexes: the adversary loses (the
experiment returns 0) if it challenges a key that belongs to a tainted class.

296 T. Shrimpton et al.

Definition 6. Let API CA be a key management API. Then the advantage of
an adversary A against CA is defined by

Advkm
CA(A) =

∣∣∣Pr
[
Expkm-0

CA (A) = 1
]

− Pr
[
Expkm-1

CA (A) = 1
]∣∣∣ ,

for the experiments Expkm-b
CA (A) as given in Fig. 8.

Fig. 8. The security experiment Expkm-b
CA (A) for a key-management API CA, relative

to generator Kg. The adversary additionally has access to the oracles defined in Fig. 6.

Our notion of secure key management differs from existing ones, e.g. KSW
describe a fake game where the challenge key is not directly revealed, but instead
wraps based on fake keys are given to an adversary. We believe that our notion is
the natural one: in the key agreement literature (including KEMs) distinguishing
between real and random keys is standard. Our notion of secure key management
has some beneficial implications: indistinguishability of keys (privacy) implies
correctness, to some extent.4 See the full version of this paper.

Remark 1. A useful observation is that key-management security with respect to
adversaries that make polynomially many challenge queries can be reduced via a
hybrid argument to security against an adversary that makes a single challenge
query. Specifically, for any adversary A that makes qc challenge queries, there
is an adversary B that makes a single challenge query so that Advkm

CA(A) ≤
qc · Advkm

CA(B).

3.6 Stickyness: Attribute Security

In general, attributes associated to a handle may evolve over time. For instance,
an attribute might indicate whether its handle has been used to perform a wrap
operation or not. Initially this will not be true, but once it has occurred, it will
be and should remain true. Existing API attacks show the importance of the
4 For information theoretic adversaries the lemma is worthless.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 297

integrity of critical parts of the attribute (e.g. to prevent a handle from being
used for two conflicting purposes). In PKCS# 11 parlance, a binary attribute is
sticky iff it cannot be unset. We model this by a stickyness game defined for an
arbitrary predicate over the attribute space. Our notion of stickyness allows no
change whatsoever (i.e. a predicate that is initially not set will have to remain
unset). Note that, as expected, there are no guarantees for index 0.

Fig. 9. Oracles for defining experiment Expπ-sticky
CA (A) for the partial authenticity of

attributes in a cryptographic API. The adversary additionally has access to the oracles
defined in Fig. 6.

Definition 7. Let CA be a cryptographic API with attribute space Attributes. Let
π : Attributes → {0, 1} be a predicate on the attribute space. Then the advantage
of an adversary A against the stickyness of π equals Pr

[
Expπ-sticky

CA (A) = true
]

with the experiment as given in Fig. 9.

In the next section we exhibit one particular predicate which specifies whether
the key is intended for key management or for other cryptographic operations.
These two possibilities are modelled through a predicate external applied to
attributes: the predicate is set if the key is intended for cryptographic operations
other than key management.

Remark 2. In this section we have defined secrecy of keys via indistinguisha-
bility from random ones. This may seem like a questionable choice, since API
keys are usually used to accomplish some cryptographic task, and any such use
immediately gives rise to a distinguishing attack. This result can be understood
by drawing a useful analogy with the area of key-exchange protocols. There,
security is also defined via indistinguishability, even though keys are used later
to achieve some other task (i.e. implement a secure channel). The composition
of a good key exchange with a secure implementation of secure channels should
yield a secure channel establishment protocol.

Similarly, one should understand the model of this section as a steppingstone
towards the modular analysis of cryptographic APIs of the next section. There,
we show how to combine a key-management API secure in the sense defined in

298 T. Shrimpton et al.

this section with arbitrary (symmetric) primitives to yield a secure cryptographic
API. The security of the latter is defined by asking that all of the cryptographic
tasks implemented by the cryptographic API meet their (standard) game-based
security notion.

4 The Power of Key Management

In this section we show how to compose, generically, a key-management API
with an arbitrary primitive. First we identify some compatibility conditions that
permit the composition of the two components. Informally, these require that the
keys of the API are of one of two types. Internal keys are used exclusively for key
management (i.e. wrapping other keys). External keys are used exclusively for
keying the primitives exported by the API. Whether a key is internal or external
follows from the attribute associated to the handle through a predicate external.
Below, we write h.external for the value of the external predicate associated to
handle h.

Definition 8. Let CA = (CA.init,CA.new,CA.create,CA.key,CA.wrap,
CA.unwrap) be a key-management API and let P = (KgP,AlgP) be the implemen-
tation of an arbitrary primitive with key space Keys. We say that CA and P are
compatible if:

1. there exists an easy to compute predicate external on the attribute space
Attributes, denoted h.external for a particular handle h;

2. if h1.external = true (at call time) then both CA.wrap(h1, h2) and
CA.unwrap(h1, w) return ⊥api;

3. if h.external = true then h.key ∈ Keys.

An abstract primitive P and a compatible key-management API CA can be
composed in a generic fashion by exploiting the predicate external, leading to a
cryptographic API [CA;P] as formalized in Definition 9 below. Correctness of
[CA;P] follows from correctness of its two constituent components (Theorem 3).
Our main composition result (Theorem 4) states that if both components are
secure and, additionally, the external predicate is sticky, then the composition
yields a secure cryptographic API exporting P. We formalize our construction
in the following definition.

Definition 9 (Construction of [CA;P]). Let CA be a key management API
defined by algorithms (CA.init,CA.new,CA.create,CA.key,CA.wrap,CA.unwrap),
and let P = (KgP,AlgP) be a compatible primitive. We define the composition of
key management API CA and the primitive P as

[CA;P] = (CA.init,CA.new,CA.create,CA.key,CA.wrap,CA.unwrap,CA.alg)

where CA.alg(h, x) simply returns AlgP(h.key, x) if h.external = true and returns
⊥api otherwise (note that a call CA.alg(h, x) does not change the API’s state).

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 299

The following theorem states that if the components are correct, the result
of the composition is also correct.

Theorem 3 (Correctness of [CA;P]). Let CA be a key-management API and
let P = (KgP,AlgP) be a compatible primitive with correctness notion defined by
the predicate corrP. Then

AdvcorrP
[CA;P] ≤ AdvcorrP

CA + AdvcorrP
P

Then correctness of both CA and P implies correctness of [CA;P].

Proof. Consider the game ExpcorrP
[CA;P] with CA.alg specified for the construction at

hand. The resulting oracle alg is specified in Fig. 10 (without the boxed state-
ment). Adding the boxed statement provides an identical game, unless at some
point h.key �= key(idx(h)). This event is exactly the event that triggers a win
in the key-management’s correctness game (the bad flags in the cryptographic
API game and the key management game coincide). Furthermore, when consid-
ering the overall correctness game using alg with boxed statement included, a
win can be syntactically mapped to a win in the primitive’s correctness game,
concluding the proof. �

Fig. 10. Crucial oracle hop for the [CA;P] correctness proof.

Compatibility of a key-management API CA and a primitive (KgP,AlgP) only
involved the set from which the primitive’s keys are drawn. While for correctness
this suffices, for security the way keys are distributed matters as well. Recall that
KgP takes as input a parameter pm, whereas a new call to the key-management
API takes as input an attribute a. Let a2pm be a function that maps attributes
to parameters (or �). Let Kg take in an attribute such that for all attributes
a for which the predicate external is set, it holds that Kg(a) = KgP(a2pm(a))
(i.e. the output distributions of the two algorithms match).

The following theorem establishes that composing a secure key management
API with a compatible secure primitive yields a secure cryptograhpic API. The
proof of the theorem is in the full version of the paper.

300 T. Shrimpton et al.

Theorem 4 (Security of [CA;P]). Let CA be a key-management API and
let P = (KgP,AlgP) be a compatible primitive with security notion defined by
the tuple of algorithms (setup, chal0, chal1, chalaux). Then for any adversary A
against the security of the cryptographic API [CA;P], there exist efficient reduc-
tions B1, B2, and B3 such that

Advsec
[CA;P](A) ≤ 2Advsticky

CA (B1) + qe

(

4Advsticky
CA (B1) + 2Advkm

CA(B2) + Advsec
P (B3)

)

where Advsticky
CA refers to external, Advkm

CA is relative to Kg defined above, and
qe is an upper bound on the number of non-zero index classes that ever contain
a handle with attribute external set (in the game played by A).

Remark 3. To avoid being tied down to a particular cryptographic interface, we
have developed an abstract framework for arbitrary security games. One nice
side-effect of our choice is that we can treat (modularly) settings where APIs
leak “fingerprints” of their external keys via their attributes. Specifically, we can
treat these fingerprints as an additional functionality of the abstract primitive
(instead of an attribute). Obviously the actual primitive needs to be proven
secure in the presence of fingerprints.

5 Instantiating a KM-API

We now show how to instantiate a KM-API from a DAE scheme. This KM-API
enforces a “leveled” key hierarchy. The bottom level will contain keys for one
or more (unspecified) cryptographic primitives. The top level will contain keys
for a DAE scheme. Our KM-API will enforce the following policy: top-level keys
may only be used to (un)wrap keys at the bottom level, and bottom-level keys
may not (un)wrap any key. Intuitively, keys on the bottom should only be used
with their associated cryptographic primitive.

DAE Schemes. A deterministic authenticated encryption scheme (DAE) is a
tuple Π = (K, E ,D). The first component K ⊆ {0, 1}∗ is the set of encryption
keys. The encryption algorithm E and decryption algorithm D both take an input
in K×{0, 1}∗ ×{0, 1}∗ and return either a string or a distinguished value ⊥. We
write EV

K(X) for E(K,V,X) and DV
K(Y) for D(K,V, Y). We assume there are an

associated data space V ⊆ {0, 1}∗ and a message space X ⊆ {0, 1}∗, such that
X ∈ X ⇒ {0, 1}|X| ⊂ X and EV

K(X) ∈ {0, 1}∗ iff V ∈ V and X ∈ X .
Our convention is that EV

K(⊥) = DV
K(⊥) = ⊥ for all K ∈ K, V ∈ V. We

require that D and E are each others inverses on their range excluding ⊥: for all
K ∈ K, V ∈ V, Y ∈ {0, 1}∗, if there is an X such EV

K(X) = Y then we require
that DV

K(Y) = X (correctness), moreover if no such X exists, then we require
that DV

K(Y) = ⊥ (tidyness).
We require E to be length-regular with stretch τ : N × N → N, meaning

that for all K ∈ K, V ∈ V,X ∈ X it holds that |EV
K(X)| = |X| + τ(|V |, |X|).

Consequently, ciphertext lengths can only on the lengths of V and X.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 301

Fig. 11. The experiments Exp�-dae-crpt-b
Π (A) for defining left-or-right DAE security with

adaptive key-corruption. To prevent trivial wins, we make the following assumptions
on the adversary: (1) it does not ask (i, V, Y) to its Dec-oracle if some previous Enc-
oracle query (i, V,X) returned Y , or if some previous LR-oracle query (i, V,X0, X1)
returned Y ; (2) it does not ask (i, V,X) to its Enc-oracle if some previous Dec-oracle
query (i, V, Y) returned X; (3) if (i, V,X) is ever asked to the Enc-oracle, then no query
of the form (i, V,X, ·) or (i, V, ·, X) is ever made to the LR-oracle, and vice versa.

DAE Scheme Security. For integer � ≥ 1 we define the advantage of adversary A
in the �-key left-or-right DAE with corruptions experiment as

Adv�-dae-crpt
Π (A) =

∣∣∣Pr
[
Exp�-dae-crpt-0

Π (A) = 1
]

− Pr
[
Exp�-dae-crpt-1

Π (A) = 1
]∣∣∣ ,

where the probability is over the experiment in Fig. 11 and the coins of A.
Without loss of generality, we assume that the adversary does not repeat any
query, and that it does not ask queries that are outside of the implied domains
of its oracles.

As a special case of this, we also define the advantage of adverary A in the
�-key left-or-right DAE experiment as

Adv�-dae
Π (A) =

∣∣∣Pr
[
Exp�-dae-0

Π (A) = 1
]

− Pr
[
Exp�-dae-1

Π (A) = 1
]∣∣∣ ,

where Exp�-dae-b
Π is defined by modifying Fig. 11 to no longer include the Enc

or Reveal oracles, the sets I, C, and any references to these. The applicable
restrictions on adversarial behavior carry over.

We note that this notion differs from the DAE security notion first given by
Rogaway and Shrimpton [22]. We use a left-or-right version, more along the lines
of Gennaro and Halevi [15] because it suits our needs better.

A standard “hybrid argument” provides a proof of the following theorem,
along with the description of the claimed adversary B. We omit this proof.

302 T. Shrimpton et al.

Theorem 5. [1-key left-or-right DAE implies �-key left-or-right DAE with cor-
ruptions.] Fix an integer � ≥ 1. Let Π = (K, E ,D) be a DAE scheme with
associated-data space V, message space X , and ciphertext-expansion function e.
Let A be an adversary compatible with the �-key DAE advantage notion. Let A
ask qi LR-queries of the form (i, ·, ·, ·) and pi Dec-queries of the form (i, ·, ·),
and have time-complexity t. Then there is an adversary B that makes black-box
use of A such that

Adv�-dae-crpt
Π (A) ≤ �Adv1-dae

Π (B)

where B asks at most maxi{qi} LR-queries and maxi{pi} Dec-queries.

Building a KM-API from a DAE Scheme. Assume that there exists an easy
to compute predicate external on the attribute space Attributes ⊆ {0, 1}∗, and
assume that sampling attributes for which the predicate holds, respectively does
not hold, both are easy. Recall that, as before, for a particular handle h, we use
the shorthand h.external for the predicate evaluated on h.attr.

Let KgP be the key generation for some primitive with key space Keys and let
pm be a function that maps attributes to parameters (or �). Let Π = (K, E ,D)
be a DAE-scheme with associated-data space V = Attributes and message-space
X that contains Keys. Define Kg : Attributes → Keys ∪ K to be the algorithm
that, on input an attribute a that satisfies external, samples from Keys according
to KgP(pm(a)) and otherwise samples uniformly from K.

Before specifying the algorithms that comprise our KM-API, let us detail our
assumptions on the state of tokens with its scope. We assume that all tokens have
state of the form s = (s̃, (h �→ (key, a))h), where for each handle h, the mapping
h �→ (key, a) indicates the associated key and attribute pair (so h.key = key and
h.attr = a), and the state s̃ contains a snapshot of the token’s past I/O only. Let
fresh be a mechanism that creates fresh (unique) handles on a per token basis.

With all of this established, the algorithms of our KM-API are defined as
follows:

– CA.new(t, a): Create a fresh handle h on token t by calling fresh(t). Sam-
ple K ←$ Kg(a) and update the state of token t to reflect the new mapping
h �→ (K, a). Return h.

– CA.create(t,K, a): Create a fresh handle h on token t by calling fresh(t) and
update the state on token t to reflect the new mapping h �→ (K, a). Return h.

– CA.wrap(h1, h2): If h1.external∨¬h2.external then return ⊥api. Otherwise, w ←
Eh2.attr

h1.key (h2.key). Return w.
– CA.unwrap(h,w, a): If h.external return ⊥api. Compute K ← Da

h.key(w). If
K = ⊥ then return ⊥api. Otherwise, create a fresh handle h̄ and update
the state on token tkn(h) to reflect the new mapping h̄ �→ (K, a). Return h̄.

Theorem 6. Fix a nonempty set Keys. Let Π = (K, E ,D) be a DAE-scheme
with associated-data space V = Attributes and message-space X that contains
Keys. Let CA be the KM-API just described, and let A be an efficient KM-API
adversary asking a single challenge query. Let qn be the number of new-oracle

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 303

queries made by A in its execution, and let � ≤ qn be the number of these that
produce an internal key. Then there exist efficient adversaries B,F for the �-key
DAE with corruptions experiment such that

Advkm
CA(A) ≤ 2Adv�-dae-crpt

Π (F) + (qn − �)Adv�-dae-crptΠ(B)

6 Related Work

Symbolic Models for API Security. Given that many attacks against APIs rely
on logical flaws rather than weak cryptography a large body of work addresses
their security using symbolic models. The first set of attacks were discovered
by Longley and Rigby [19], Bond [3], and Clulow [7]. More recently, Cortier
et al. [8], Delaune et al. [13], and Bortolozzo et al. [4] uncovered further vul-
nerabilities by using automated tools. Security models and proofs of security
include the work of Courant and Monin who use Coq to analyze a variant of
IBM CCA API [11] and Cortier et al. [8]. Fröschle and Steel [14] and Cortier
and Steel [9] analyze a fragment of the of PKCS#11 standard. Newer mod-
els consider key-management that employs asymmetric cryptographic [12] and
revocation of keys [10]. While symbolic models are suitable for finding attacks,
security proofs are less meaningful—in particular they do not a priori imply
security with respect to the types of stronger computational models that we
develop in this paper.

The Cachin–Chandran Model [5]. This is the first computational security model
for a cryptographic API. The model is based on a particular design that relies on
a centrally located server which keeps track of all key-management operations
(how realistic the presence of such a server is in the distributed environment in
which tokens typically operate is unclear).

The security model is intrinsically stated in terms of this suggested implemen-
tation of an API by hardwiring into the syntax of what constitutes an API their
specific implementation choices (e.g. how and when certain attributes change,
how and what information the overall internal state of the token should main-
tain). Clearly this severely restricts the model’s applicability. For example, the
security of the wrap scheme is hardwired into the model and essentially demands
that the wrap operation be implemented with a probabilistic scheme—schemes
employing a deterministic wrapping mechanism would be ruled insecure under
the model (in particular our key-management scheme is not captured as our
tokens need not keep track, internally, of the attributes associated to keys).

From a security perspective, just like in our model, the adversary has access to
the full interface of the token and aims to break the cryptographic functionality
that the token provides. Yet, there are three aspects—we believe shortcomings—
of the Cachin–Chandran model on which our model significantly improves.
Firstly, as stated already, the Cachin–Chandran model rules out (either explic-
itly or by implication) some very reasonable and secure implementations of a
cryptographic API. Secondly, aliasing issues caused by the possibility that a

304 T. Shrimpton et al.

key can have multiple distinct handles pointing to it are sidestepped in the
Cachin–Chandran model (essentially, unwrapping of wraps that were not previ-
ously created is not permitted). Finally, the corruption model considered in the
Cachin–Chandran model is restricted to users, which implies that an adversary
can then act on that user’s behalf. However, there are no further implications
to the experiment, as acting on behalf of a user does not give access to any
keys. Consequently, the notion of corrupted or compromised keys is absent in
the Cachin–Chandran model.

Our model makes only minimal assumptions about the inner-workings of a
cryptographic API (it allows but certainly does not impose a central server for
the implementation). Our security model carefully keeps track of the equivalence
classes on handles that the wrap/unwrap operations give rise to. More impor-
tantly, we explicitly allow for adaptive corruption of API keys and demand that
any other key that is not directly or indirectly affected by corruptions stays
secure.

The Kremer–Steel–Warinschi Model [18]. The KSW computational model5

fixes some of the shortcomings of the Cachin–Chandran model. In particular,
it presents definitions for the syntax and security of an encryption-exporting
API not driven by any particular implementation and allowing adaptive corrup-
tion of keys. The syntax is single token and the security requirements imposed
are incompatible with PKCS#11 implementations: all attributes need to be
sticky, whereas PKCS#11 mandates that some attributes change during oper-
ations. Interestingly, while the Cachin-Chandran model imposes that wrapping
be implemented with a probabilistic encryption scheme, the modelling choice
adopted by the KSW model enforces wrapping to be deterministic. Perhaps
worse, the high level of abstraction led to underspecified, malformed definitions.6

In contrast, we consider a multi-token environment and only surface minimal
assumptions that avoid the underspecification in the KSW model. Our security
notion is more relaxed. For example, for key-management APIs we only demand
that the application keys are secret, which allows for both probabilistic and
deterministic solutions to the key-wrap problem. Crucially, we show that our
notion of security for key-management APIs is composable, whereas no such
result is known to hold for the KSW model.

Universally Composable Key-Management [17]. This paper is, in spirit, closest
to ours. It aims to provide a compositional framework where key-management
can be analyzed separately from the other cryptographic operations that tokens

5 The paper also introduces two other related models: an idealized and a symbolic
one.

6 For example, the formalization crucially relies on the notation s[key(h)
$�→ k0] which

indicates some state s in which key(h) has been replaced with the randomly chosen
k0. However, given the abstract notion of state, it is unclear what this state change
even means. For instance, if another handle points to the same key, does that handle’s
key also get affected? Is the state change persistent? Is k0 drawn anew each time?.

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 305

may export. The formalization relies on the universal composability framework
(as refined by Hofheinz and Shoup [16]) and consists of an ideal key-management
functionality which, as usual, should be emulated by a secure implementation.
The framework naturally encompasses multi-token scenarios which are sim-
ply distributed implementations of the functionality and should guarantee the
desired guarantee: the implementation can replace the functionality in any other
scenario.

Since the underlying definitional framework relies on simulation, the model
does not tolerate well adversaries that adaptively corrupt keys (we discuss this
issue below), so the adversary is only allowed static corruptions. An addi-
tional issue is that in simulation based settings keys cannot be freely passed
around between functionalities. The solution adopted here employs a cum-
bersome capability-based mechanism to model the interaction between key-
management and other cryptographic operations. The key-management func-
tionality is not fully agnostic of the primitive in which the managed keys are
to be used. Furthermore, the key-management functionality has hardwired a
wrapping algorithm (which needs to be deterministic, authenticated and secure
against related-key attacks).

We avoid all of these shortcomings. Our construction is mostly oblivious to
the primitive in which keys are used and allows various instantiations where
wrapping can be either probabilistic or deterministic. Our use of game-based
definitions enables the proof of the composition theorem even with adaptive
corruptions.

Computationally Sound API Analysis. Recently, Scerri and Stanley-Oakes have
proposed an approach for the analysis of key-management APIs [24] using the
framework of Bana and Comon-Lundh [1]. This framework allows to model and
reason about cryptographic systems using a high-level of abstraction and then
use a general theorem that links the results with security in a standard com-
putational model. The approach used by Scerri and Stanley-Oakes is similar
to ours in that they treat the key-management component of APIs separately
and retrieve the security of the overall API through a composition theorem that
considers the use of API keys in symmetric encryption. That work provides a
more detailed treatment of API policies and benefits from the simple, axiomatic
way of reasoning about security of protocols. The main drawback is that the
adversary is only allowed a constant number of queries to the API.

7 Conclusion

We propose models that capture the core security guarantees that cryptographic
and key-management APIs should provide. Our treatment is general, in that we
do not consider a particular primitive (or primitives) but rely on an abstraction
that allows multiple instantiations. Our work opens several interesting research
avenues. We currently treat policies abstractly, and only indicate their influence
on tokens as part of our execution model. It would be interesting to investigate

306 T. Shrimpton et al.

further additional guarantees for tokens that relate to secure policy enforcement.
For example, useful policies may attempt to ensure that certain keys are used
only by certain users and only for a restricted set of operations. Such guarantees
can be defined and analyzed in an extension of our model that incorporates the
notion of token users and formalizes the type of restrictions envisioned by the
policy. In this paper we consider only the management of symmetric keys. It
would be useful to extend our treatment to include private keys for the asym-
metric cryptographic primitives that are part of a standard PKCS#11 interface.

Acknowledgements. This work was supported in part by European Union Sev-
enth Framework Programme (FP7/2007-2013) grant agreement 609611 (PRACTICE),
and ERC Advanced Grant ERC-2010AdG-267188-CRIPTO. It was also supported by
National Science Foundation grant CNS-1319061.

References

1. Bana, G., Comon-Lundh, H.: Towards unconditional soundness: computationally
complete symbolic attacker. In: Degano, P., Guttman, J.D. (eds.) POST 2012
(ETAPS 2012). LNCS, vol. 7215, pp. 189–208. Springer, Heidelberg (2012)

2. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer,
Heidelberg (2012)

3. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.)
ACM CCS 2010, pp. 260–269. ACM Press, October 2010

5. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceed-
ings of 22th IEEE Computer Security Foundations Symposium (CSF 2009),
pp. 141–153. IEEE Computer Society Press (2009)

6. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press, May 1996

7. Clulow, J.: On the security of PKCS#11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

8. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the security of XOR-
based key management schemes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 538–552. Springer, Heidelberg (2007)

9. Cortier, V., Steel, G.: A generic security API for symmetric key management
on cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS,
vol. 5789, pp. 605–620. Springer, Heidelberg (2009)

10. Cortier, V., Steel, G., Wiedling, C.: Revoke and let live: a secure key revocation
api for cryptographic devices. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM
CCS 2012, pp. 918–928. ACM Press, October 2012

11. Courant, J., Monin, J.F.: Defending a bank with a proof assistant. In: WITS,
pp. 87–98 (2006)

A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case 307

12. Daubignard, M., Lubicz, D., Steel, G.: A secure key management interface with
asymmetric cryptography. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS
2014). LNCS, vol. 8414, pp. 63–82. Springer, Heidelberg (2014)

13. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proceedings of
21th IEEE Computer Security Foundations Symposium (CSF 2008), pp. 331–344.
IEEE Computer Society Press (2008)

14. Fröschle, S., Steel, G.: Analysing PKCS#11 key management APIs with
unbounded fresh data. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009.
LNCS, vol. 5511, pp. 92–106. Springer, Heidelberg (2009)

15. Gennaro, R., Halevi, S.: More on key wrapping. In: Jacobson Jr., M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 53–70. Springer, Heidelberg
(2009)

16. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

17. Kremer, S., Künnemann, R., Steel, G.: Universally composable key-management.
In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 327–344. Springer, Heidelberg (2013)

18. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces.
In: Proceedings of 24th IEEE Computer Security Foundations Symposium (CSF
2011), pp. 266–280. IEEE Computer Society Press (2011)

19. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Comput. Secur. 11(1), 75–89 (1992)

20. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

21. Osaki, Y., Iwata, T.: Further more on key wrapping. IEICE Trans. 95–A(1), 8–20
(2012)

22. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006)

23. RSA Security Inc: PKCS#11: cryptographic token interface standard, June 2004
24. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping APIs: generic policies, com-

putational security. In: Proceedings of 29th IEEE Computer Security Foundations
Symposium (CSF 2016). IEEE Computer Society Press (2016)

Encryption Switching Protocols

Geoffroy Couteau1(B), Thomas Peters2, and David Pointcheval1

1 ENS, CNRS, INRIA, PSL Research University, Paris, France
geoffroy.couteau@ens.fr

2 UCLouvain, ICTEAM, Louvain-la-Neuve, Belgium
thomas.peters@uclouvain.be

Abstract. We formally define the primitive of encryption switching pro-
tocol (ESP), allowing to switch between two encryption schemes. Intu-
itively, this two-party protocol converts given ciphertexts from one scheme
into ciphertexts of the same messages under the other scheme, for any
polynomial number of switches, in any direction. Although ESP is a spe-
cial kind of two-party computation protocol, it turns out that ESP implies
general two-party computation (2-PC) under natural conditions. In par-
ticular, our new paradigm is tailored to the evaluation of functions over
rings. Indeed, assuming the compatibility of two additively and multiplica-
tively homomorphic encryption schemes, switching ciphertexts makes it
possible to efficiently reconcile the two internal laws. Since no such pair of
public-key encryption schemes appeared in the literature, except for the
non-interactive case of fully homomorphic encryption which still remains
prohibitive in practice, we build the first multiplicatively homomorphic
ElGamal-like encryption scheme over (Zn,×) as a complement to the Pail-
lier encryption scheme over (Zn,+), where n is a strong RSA modulus.
Eventually, we also instantiate secure ESPs between the two schemes, in
front of malicious adversaries. This enhancement relies on a new technique
called refreshable twin ciphertext pool, which we show being of independent
interest. We additionally prove this is enough to argue the security of our
general 2-PC protocol against malicious adversaries.

1 Introduction

The development of the Internet witnessed the explosive growth of the amount
of available data. We now live in an era of big data in which there is an always
increasing need for efficient tools to store and manipulate huge quantities of
information. While most companies now outsource their data to get an arbitrar-
ily large storage capacity with efficient access, manipulating data in the Cloud
raises many security issues. Secure multi-party computation (MPC) has thus
gained tremendous importance by providing privacy-preserving tools allowing
manipulations of sensitive inputs.

T. Peters—Work done while being at ENS under the ERC CryptoCloud Project.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 308–338, 2016.
DOI: 10.1007/978-3-662-53018-4 12

Encryption Switching Protocols 309

Secure Two-Party and Multiparty Computation. Secure two-party com-
putation (2-PC) targets the following problem: Alice and Bob, modeled as prob-
abilistic polynomial-time algorithms, wish to jointly compute a public function
f of their respective inputs x and y, while keeping them private. We will focus
on the case where Alice only gets the final result f(x, y), while Bob should learn
nothing, but this is not really a loss of generality. To this end, they perform an
interactive protocol, that is expected to be correct (i.e., the final output of the
protocol is indeed f(x, y)) and private (i.e., no one can learn from his own view
any information that he could not have deduced from his input, and the outcome
f(x, y) for Alice). Secure multiparty computation is the natural extension of this
problem to more than two players. Two kinds of adversarial behaviors are usually
considered: semi-honest adversaries (a.k.a. honest-but-curious) follow the speci-
fications of the protocol and try to get as much information as possible from the
transcript, while malicious adversaries might deviate from these specifications
in any way to gain more information.

Starting with the seminal work of Yao [41], there have been a vast amount
of publications targeting secure two-party and multiparty computation. Today’s
most efficient schemes are based on various paradigms, such as secret sharing
with preprocessing (e.g. TinyOT [32], SPDZ [11], MiniMac [12]), oblivious trans-
fers [1], garbled circuits [28], or homomorphic encryption [10]. In addition, there
are several hybrid constructions which combine various approaches (e.g. gar-
bled circuit and homomorphic encryption in [21], secret sharing and garbled
circuits in [13]). Most of those schemes are very efficient when the circuit to
be computed is of low depth. However, when high-depth circuits are involved,
the efficiency drops down: protocols based on secret sharing, oblivious transfers,
partially homomorphic encryption, or garbled circuits have a communication
proportional to the depth of the circuit. At the exception of the latter one, they
also have a round complexity proportional to the depth of the circuit. This can
be avoided with somewhat homomorphic encryption, but as soon as the circuit
has a high depth, the players will have to rely on prohibitively expensive boot-
strapping procedures. In the honest-but-curious setting, hybrid protocols might
provide efficient solutions in some particular cases (although they will still suf-
fer from comparable downsides in general, as they combine approaches which
do all have such downsides). However, enhancing hybrid protocols efficiently to
security against malicious adversaries is highly non-trivial, due to the lack of a
common structure between the various elements manipulated in those protocols;
in fact, [13,21] do only consider the honest-but curious setting.

Switching Between Homomorphic Schemes. The existence of very efficient
MPC protocols for circuits containing a large number of additions, and few multi-
plications, suggests that multiplications might be way more expensive than addi-
tions. However, there exist encryption schemes which are multiplicatively homo-
morphic, the most famous one being the ElGamal encryption scheme [14]. In such
cryptosystems, multiplications come essentially for free, but additions cannot be
performed (unless a fully homomorphic scheme is used). Therefore, a natural way
to design a MPC protocol in which multiplications would not incur a significant

310 G. Couteau et al.

overhead compared to additions would be to combine a multiplicative cryptosys-
tem with an additive cryptosystem: multiplications would be performed homo-
morphically on multiplicative ciphertexts, and additions on additive ciphertexts.
The missing ingredient in such a protocol is a procedure to convert a multiplica-
tive (resp. additive) ciphertext into an additive (resp. multiplicative) ciphertext
encrypting the same plaintext: an encryption switching protocol.

To our knowledge, three papers have considered switching between cipher-
texts under different homomorphic schemes in the past. The concept was initially
introduced in [17], where the authors propose a variant of the ElGamal encryp-
tion scheme to work over Z

∗
n, together with a protocol to switch between this

scheme and the Paillier scheme. In [40], a trusted software is used to switch
between various homomorphic schemes. In a recent unpublished paper [27], the
authors propose methods to switch from the ElGamal scheme to the Paillier
scheme, to evaluate DNF formulae.

As [40] relies on a trusted software, it cannot be compared to our work, which
does not make this assumption. Moreover, we found both [17,27] to be flawed:
in [17], a variant of the ElGamal encryption scheme is proposed; however, the
public key of the scheme contains a square root β of unity with Jacobi symbol −1.
But then, computing gcd(β − 1, n) gives a non-trivial factor of n. Hence, the
scheme leaks the factorization of the modulus. In [27], the following variant of
the ElGamal scheme is proposed: to encrypt m ∈ Z

∗
n, pick a random scalar r

in Z
∗
n and output (gr mod n,mhr mod n), where g is a square (g = 16 in the

article) and h is gx for some secret key x. Given a ciphertext (c0, c1), any player
can compute the Jacobi symbol of c0 and c1, and check whether they are equal or
different. The former case corresponds to the Jacobi symbol of m being 1, while
the latter case corresponds to the Jacobi symbol of m being −1: the scheme leaks
the Jacobi symbol of the plaintext, which contradicts the semantic security, at
least in Z

∗
n.

Indeed, constructing a multiplicatively homomorphic variant of the ElGamal
encryption scheme that is still semantically secure over Z

∗
n (and a fortiori over

Zn) turns out to be a non-trivial task.

Our Contribution. In this work, we formally define encryption switching pro-
tocol (ESP), which allows two players to interactively and obliviously convert an
encryption of a message m with a cryptosystem Π1 to an encryption of the same
message with a cryptosystem Π2, provided that m lies in the intersection of the
plaintext spaces of the cryptosystems. To instantiate this primitive, we introduce
(and formally prove the security of) a new multiplicatively homomorphic variant
of the ElGamal encryption scheme whose plaintext space is Z

∗
n. To our knowl-

edge, our scheme is the first secure construction of a multiplicatively homomor-
phic IND-CPA encryption scheme over Z∗

n and might be of independent interest.
We extend our variant of the ElGamal cryptosystem to a space which is “nearly”
equal to Zn, in a sense that we formally define. We then construct encryption
switching protocols between our new scheme and the Paillier encryption scheme.
Our ESPs (between the two encryption schemes, in both directions) have a

Encryption Switching Protocols 311

constant communication (counted as a number of group elements), and their secu-
rity relies on standard assumptions (the decisional composite residuosity, the deci-
sional Diffie-Hellman, and the quadratic residuosity assumptions). In addition to
its application to two-party computation, which will be outlined afterward, we
believe that the primitive of ESP is of theoretical interest on its own.

To demonstrate the generality of our approach, we construct a generic two-
party computation protocol over a ring (R,⊕,⊗) assuming the existence of
homomorphic cryptosystems for each law, ⊕ and ⊗, and encryption switching
protocols. We formally prove that our generic protocol achieves the standard
security notions for two-party computation. Our new paradigm is particularly
suited for high depth circuits.

We then turn our attention to the malicious setting. The natural way to
provide security against malicious adversaries is to ask each player to prove, using
a zero-knowledge proof, that he behaved honestly. However, ESPs can be seen as
hybrid protocols, as they combine primitives with very different structures (in
our case, the ElGamal scheme and the Paillier scheme). As is often the case in
hybrid schemes, the lack of a common algebraic structure between the schemes
prevents us from using standard zero-knowledge proofs. We tackle this issue by
introducing a new technique for zero-knowledge, which we call a refreshable twin-
ciphertext pool. In addition to providing an efficient way to enhance the security
of ESPs to the malicious setting, we show that our new technique allows us to
improve over several classical zero-knowledge proofs, such as proofs of knowledge
of a double logarithm, or proof of primality of a committed value, which is of
independent interest.

A nice feature of our two-party computation paradigm is that it is in fact
sufficient to instantiate it with an ESP secure against malicious adversaries for
the full generic two-party computation protocol to be secure against malicious
adversaries.

Related Work. We already mentioned (and argued the insecurity of) [17,27]
which design methods for switching between homomorphic schemes, and [40],
which relies on a trusted software to achieve a comparable goal. Fully homomor-
phic encryption (FHE), gathering both additive and multiplicative homomorphic
properties in a single encryption scheme, has been a long standing open problem
until the seminal work of Gentry [18]. It relies on a somewhat homomorphic
encryption scheme, that allows to perform a bounded number of operations, and
a technique called bootstrapping to remove this bound. Our work can be seen as
a similar line of work, using homomorphic encryption schemes (HEs) to perform
an unlimited number of specific operations, and then relying on a switching tech-
nique to replace one HE by another one to get access to other specific operations.
However, a fundamental difference is that the bootstrapping is a non-interactive
technique, while our encryption switching protocols are interactive.

We stress that our ESP primitive makes use of shared decryption keys to
obliviously decrypt and re-encrypt under the other encryption scheme, with a
similar public key. This is totally different from proxy re-encryption, where the

312 G. Couteau et al.

proxy knows a key to convert a ciphertext under one key into a ciphertext under
another independent key. For instance, disclosure of secret key of one encryption
scheme in our realization breaks the semantic security of the other one too.

Preliminaries. Because of lack of space, basics on classical tools are postponed
to the full version [6] (as well as the optimizations and detailed proofs), and the
reader is recommended to refer to it for more details. But in short, a public-key
encryption scheme Π is defined by the four algorithms (Setup,KeyGen,Enc,Dec),
where the two first generate the global parameters and the keys, and the two
others encrypt and decrypt. If nothing else is specified we assume that a correctly
encrypted message is always returned back by the decryption algorithm. We
denote M the message space.

Throughout this paper, κ denotes the security parameter. The notation x
$←

S indicates that x is sampled uniformly at random from the finite set S. We
write a = b mod n to specify that a = b in Zn and we write a ← [b mod n] to
affect the smallest non-negative integer to a so that a = b mod n.

2 Two-Party Computation from ESPs

We introduce a theoretical framework for alternating between different encryp-
tion schemes: the new primitive of encryption switching protocol (ESP) allows
to switch a ciphertext under an encryption scheme into a ciphertext of the same
message under the other encryption scheme without damaging their semantic
security. We define this primitive as a 2-party protocol and we show that secure
ESP implies secure general 2-party computation under natural conditions. This
is the first main contribution of the paper.

2.1 Definitions

Definition 1 (Twin-Ciphertext Pair). For i = 1, 2, let Πi be an encryption
scheme (Setupi,KeyGeni,Enci,Deci) with plaintext space Mi. A twin-ciphertext
pair (c1, c2) is a pair of ciphertexts so that:

1. c1 is an encryption of m1 ∈ M1 under Π1;
2. c2 is an encryption of m2 ∈ M2 under Π2;
3. m1 = m2 (which in turn belongs to M1 ∩ M2).

Given an encryption c of a message m ∈ M1 ∩ M2, under one of the two above
encryption schemes, we will say that any ciphertext c′ which does encrypt m
under the other encryption scheme is a twin ciphertext of c.

On the other hand, if c and c′ encrypt the same m under the same encryption
scheme, they are said equivalent. Informally, given a ciphertext c of a plaintext m
under one of the two above encryption schemes, an encryption switching protocol
(ESP) describes how users A and B, sharing the decryption key, can interact to

Encryption Switching Protocols 313

construct a twin ciphertext of c. This is of course under the restriction that
the plaintext m lies in the intersection of the two message spaces. We focus
on two encryption schemes that use common Setup and KeyGen algorithms for
generating the global parameters and the keys1.

Definition 2 (Encryption Switching Protocol). For i = 1, 2, let Πi be an
encryption scheme (Setup,KeyGen,Enci,Deci). An encryption switching proto-
col (ESP) between Π1 and Π2, noted Π1 � Π2, is a tuple (Share,Switch):

Share(pk, sk) given the common keys sk and pk of both schemes, it outputs a
secret sharing (skA, skB) of sk and updates pk if necessary. The party A
(resp. B) is intended to be given skA (resp. skB);

Switchpar((pk, skA, c), (pk, skB , c)) is an interactive protocol in the direction par ∈
{1→2, 2→1} which, from a ciphertext c under the source encryption scheme,
jointly computes a twin ciphertext c′ of c under the target encryption scheme
or outputs ⊥ (in case of problems during the protocol execution).

Correctness. An ESP Π1 � Π2 = (Share,Switch) is correct if both Π1 and Π2 are
correct encryption schemes, and for any pp ← Setup(1κ), any keys (pk, sk) ←
KeyGen(pp), any key shares (pk, skA, skB) ← Share(pk, sk), any message m ∈
M1 ∩ M2, and any ci ← Enci(pki,m) for i = 1, 2,

Dec2(sk,Switch1→2 ((pk, skA, c1), (pk, skB, c1))) = m,

Dec1(sk,Switch2→1 ((pk, skA, c2), (pk, skB, c2))) = m,

always hold. Ciphertexts on messages in the intersection of the two plaintext
spaces are called switchable.

2.2 Security Notions

We expect ESP not to break the IND-CPA security of the encryption schemes,
even in front of malicious adversaries: the adversary A is given pk, but since it
plays against Alice or Bob it can choose either skB or skA, respectively. Then,
even interacting with an oracle that emulates the other party as an honest player,
A should not be able to break IND-CPA security of neither Π1 nor Π2. Let us
more formally define this security notion.

Definition 3 (OA and OB Oracles). For appropriate keys (pk, skA, skB), we
denote the stateful oracle OA(i→j, c,Flow) that emulates the honest player A:
it provides the answers A would send back upon receiving the flow Flow when
running the protocol Switchi→j((pk, skA, c), (pk, skB , c)). We similarly define the
oracle OB that emulates the honest player B. A special flow ‘Start’ is used to
initialize the protocol.

1 In any case, we could just take the concatenation of the outputs of the algorithms
of the two schemes.

314 G. Couteau et al.

In our target application of 2-PC, these oracles will not be available on any
input, but on controlled ciphertexts only. Hence our following security notion.

Definition 4 (ESP Security). An encryption switching protocol Π1 � Π2 is
secure if it is strongly sound and zero-knowledge (see below).

The soundness property guarantees that no malicious player can successfully
force the outcome of Switch not to be a twin ciphertext of the input, when the
input is indeed a switchable ciphertext. The strong requirement means that the
soundness holds even if the adversary is also given the whole secret key sk (or
both skA and skB), instead of just one of the two shares.

Definition 5 (Strong Soundness). An encryption switching protocol Π1 �
Π2 is strongly sound, if it is strongly sound for A and strongly sound for
B. The scheme is strongly sound for B, if for any pp ← Setup(1κ), any keys
(pk, sk) ← KeyGen(pp), any secret key shares (pk, skA, skB) ← Share(pk, sk), for
all PPT adversary A playing the role of A, the success

Succesp-soundB (A) = Pr[BadSwitch|A OB(·,·,·)(pk, skA, sk)]

is negligible, where the event BadSwitch is raised when a full protocol execution of
Switch with OB on a switchable input ciphertext c successfully outputs c� which is
not a twin ciphertext of c. (In a non-strong version of soundness the adversary
is only given (pk, skA).) We denote Succesp-sound(κ, t) the maximal success an
adversary can get against A or B within time t.

The zero-knowledge property guarantees that no information leaks about the
secret key shares to a malicious player when switches are performed on switchable
ciphertexts: its view can be simulated without any additional information than
its own secret share.

Definition 6 (Zero-Knowledge). An encryption switching protocol Π1 �
Π2 is zero-knowledge, if it is zero-knowledge for A and zero-knowledge for
B. The scheme is zero-knowledge for B if there exist two efficient simulators,
Simshare

B and SimESP
B of Share and the oracle OB respectively, with the follow-

ing property: for any pp ← Setup(1κ), any keys (pk, sk) ← KeyGen(pp), any
secret key shares (pk, skA, skB) ← Share(pk, sk) or simulated shares (pk′, sk′

A) ←
Simshare

B (pk), and for any PPT adversary A playing the role of A, the advantage

Advesp-zkB (A) =
∣∣ Pr[1 ← A O′

B(·,·,·,·)(pk, skA)] − Pr[1 ← A SimB(·,·,·,·)(pk′, sk′
A)]

∣∣
is negligible, where the adversary A is given unbounded access to either the
simulator SimB or the stateful oracle O ′

B described below, with the restriction
that input ciphertexts (c, c̄) to SimB or O ′

B are twin ciphertexts:

Oracle O ′
B(i→j, c, c̄,Flow): on input a direction i→j, a ciphertext c under the

encryption scheme Πi, a ciphertext c̄ under the encryption scheme Πj, and
a message flow Flow, ignores c̄ and runs OB(i→j, c,Flow);

Encryption Switching Protocols 315

Simulator SimB(i→j, c, c̄,Flow): on the same inputs as above, emulates the
output an honest player B would answer upon receiving the flow Flow when
running the protocol Switchi→j((pk, skA, c), (pk, skB , c)), without skB but pos-
sibly with skA, and forcing the output to be a ciphertext c̄′ equivalent to c̄ (i.e.,
a ciphertext c̄′ such that Dec(sk, c̄) = Dec(sk, c̄′)).

If the adversary A can be unbounded, Π1 � Π2 is statistically zero-knowledge.
We denote Advesp-zk(κ, t) the maximal advantage an adversary can get against
A or B within time t.

At a high level, Definition 4 says that (misbehaving) players A and B sepa-
rately gain no information on the plaintexts even if they can switch the cipher-
texts between Π1 and Π2. In that sense, switching ciphertexts is a special kind
of two-party computation. It is pretty clear that a secure ESP on appropriate
encryption schemes allows to build two-party protocols in M1 ∩ M2.

2.3 Computational Equality

Let us consider an adversary A which can efficiently sample messages in both
the intersection of the message spaces M1 ∩ M2 and their symmetric difference
M1 ⊕ M2 = (M1 ∪ M2)\(M1 ∩ M2). A simple observation shows that a secure
ESP could not be safe to use inside a larger protocol, even in front of a passive
adversary, since the switching protocol does not provide any guarantee on non-
switchable ciphertexts, that encrypt messages outside M1 ∩ M2. They could
help to distinguish ciphertexts. More generally, we would like Switch not to help
for distinguishing switchable ciphertexts from non-switchable ciphertexts, which
would break the IND-CPA security with the Switch oracle.

A solution could be a restriction on the choice of the ciphertexts asked to
the Switch oracles, so that the plaintexts lie in M1 ∩ M2. But this would not
be strong enough for practical purpose, since there is no reason that it cannot
happen during a complex evaluation. We thus define the following additional
property, to be satisfied by the message spaces, with the common public key pk
as auxiliary input:

Definition 7 (Computational Equality). Let (M1,M2, aux) be two sets and
some additional information. M1 and M2 are computationally equal given aux-
iliary input aux if, for any adversary A , its success probability for outputting
a message in the symmetric difference M1 ⊕ M2, denoted Succcomp-eq(A) =
Pr[m ← A (M1,M2, aux) : m ∈ M1 ⊕ M2], is negligible.

We have defined the security of ESP for switchable inputs and, informally,
the computational equality will guarantee that non-switchable inputs are quite
unlikely during the execution of a protocol involving ESPs.

2.4 Ring-Homomorphic Encryption Schemes

Toward our aim of getting two-party computation protocols from ESP, our goal
is to design two encryption schemes on a ring structure (R,⊕,⊗), where the

316 G. Couteau et al.

encryption algorithms are homomorphic on the plaintexts (under either ⊕ or ⊗)
and on the random coins (with an appropriate group law 	 over the randomness
space R which may differ in every case), using the combinations � and � of the
ciphertexts:

E⊕(m1; r1) � E⊕(m2; r2) = E⊕(m1 ⊕ m2; r1 	 r2)
E⊗(m1; r1) � E⊗(m2; r2) = E⊗(m1 ⊗ m2; r1 	 r2)

(1)

In particular, this implies that we can maul any ciphertext of m into a ciphertext
of R ⊗ m, for a known R, with an appropriate operation • in each case (and the
appropriate operation · on the random coins) on the ciphertexts:

R • E⊕(m; r) = E⊕(R ⊗ m;R · r) R • E⊗(m; r) = E⊗(R ⊗ m;R · r). (2)

Note that we explicitly choose �, � and • to be deterministic functions, so that
any local homomorphic evaluation on ciphertexts leads to the same ciphertext
result. Note also that the existence of � and � implies the stability of the
plaintexts spaces of E⊕() and E⊗(), under ⊕ and ⊗ respectively.

2.5 General Secure Two-Party Computation

The reason of designing ESP is to take advantage of the nice (homomorphic)
properties of the two schemes which may not be available in a single efficient
encryption scheme. When additions ⊕ are required, we use ciphertexts under the
additively homomorphic encryption scheme w.r.t. �, and when multiplications
⊗ and exponentiations are needed, we convert the operands into the other mul-
tiplicatively homomorphic encryption scheme w.r.t. �. In other words, ESP aims
at reconciling additively and multiplicatively homomorphic schemes, to jointly
compute the encryption of f(x, y), for any public function f over (R,⊕,⊗), on
encryptions of x and y. Below, we consider two-party computation which reveals
the result to a single party only (Alice).

Secure 2-PC. More formally, assuming only Alice gets the outcome, the security
game of such a privacy-preserving evaluation is the following one: The adversary
against Bob chooses its input x and the possible inputs y0, y1 for Bob, with
the additional restriction that f(x, y0) = f(x, y1) (otherwise the outcome would
reveal Bob’s actual input value); It gets the encryption of x and the encryption
of yb for a random bit b

$← {0, 1}; At the end of the joint evaluation with Bob, it
should try to guess b, and thus Bob’s actual input value. If the adversary plays the
role of Bob against Alice, then it chooses its input y and the possible inputs x0, x1

for Alice but without any additional restriction. When no adversary can guess b
in any of the two games (against Alice or Bob), with non-negligible advantage,
we say that the 2-PC protocol is input-indistinguishable. This is formally defined
in the full version [6].

Since we assume that Alice receives the outcome of the 2-PC in our design we
also assume that Alice and Bob are able to decrypt ciphertexts from their shares.
Without loss of generality, we assume that Π2 admits a 2-party decryption (as

Encryption Switching Protocols 317

detailed in the full version [6]) so that only Alice gets the plaintexts. A rigorous
construction Π2PC is proposed in the full version [6], using a secure ESP between
homomorphic encryption schemes over computationally-equal message spaces,
following the above intuition, leads to the next result.

Theorem 8. Let Π1 and Π2 be IND-CPA (complementary) homomorphic
encryption schemes over a ring (R,⊕,⊗), whose message spaces are compu-
tationally equal, equipped with a secure ESP, Π1 � Π2 = (Share,Switch), so
that Π2 admits a 2-party decryption for A from the same key shares output by
Share and which is statistically sound and zero-knowledge, then the Π2PC protocol
is an input-indistinguishable 2-PC for any function f over (R,⊕,⊗).

We stress that this theorem is for the malicious setting: if the ESP protocols
(and the 2-party decryption) are secure against malicious adversaries, the Π2PC

protocol is secure against malicious adversaries, without any additional zero-
knowledge proofs.

Intuition. Our approach for Π2PC consists in starting from ciphertexts of x and
y, and to switch to the appropriate encryption scheme in order to be able to
make operations through the homomorphic property, until the encryption of the
result is reached. The rationale of the computational-equality property for the
message spaces, with the public key as auxiliary input, is the following one: on
encryptions of valid inputs x and yb, the evaluation of the encryption of f(x, yb)
follows a deterministic path of switches and public homomorphic operations
on the ciphertexts. In the honest-but-curious setting, the sequences of involved
plaintexts is indeed determined by x and yb, and in the malicious setting, the
soundness property ensures that the same happens. Then, if all the ciphertexts
are switchable, using the simulators from the zero-knowledge property of the
ESP leads to the privacy of the computation: no information leaks on b. If a
ciphertext happens to be non-switchable with non-negligible probability during
the computation, simply generating the sequences of plaintexts from (x, y0) and
from (x, y1) would efficiently generate an element in the symmetric difference: we
need this to be intractable. Eventually, the outcome of the protocol is recovered
by performing 2-party decryption.

Sketch of the Proof. The structure of the proof follows a sequence of indistin-
guishable games from the real game with (x, y0), between the adversary and a
simulator emulating the challenger using b = 0 with all the secret information
to the real game with (x, y1), and so using b = 1. We consider the output guess
b′, which should remain the same. The first games consist of a preparation for
replacing y0 by y1. We indeed cannot apply the semantic security of the encryp-
tion schemes yet since the decryption keys are known to the simulator. But first,
with the computational-equality property, we can guarantee that all the input
ciphertexts of the ESPs are switchable. Then, with the soundness of the ESPs, we
know that the outputs of the ESPs are twin ciphertexts. Actually, we need here
the strong flavor of soundness since the secret key is still known. Again we apply

318 G. Couteau et al.

the soundness of the final 2-party decryption to guarantee the correct decryption
(since the decryption key is still known, we require the statistical soundness, but
a strong flavor would be enough too). Now that we know all the input-output
pairs of the internal primitives (ESPs and decryption) are correct, we can safely
replace the honest emulation using the secret key by the simulators without
the secret key, thanks to the zero-knowledge property. So, the secret key is not
required anymore, and we can replace y0 by y1, applying the IND-CPA security
game to the first encryption scheme. We also have to propagate to the outputs
of the ESPs, using again the IND-CPA security game of the other encryption
scheme. This is done sequentially, with hybrid games, to end with a game where
the input is (x, y1) and all the intermediate ciphertexts are consistent. We can
then move back to the honest emulation (and not the simulators for the ESPs
and the decryption) using the secret key. The full construction is described and
formally proven secure in the full version [6].

Our Next Goal. Three properties must be satisfied to securely evaluate func-
tions over a ring: the homomorphism of the encryption schemes, the security of
the ESPs and the computational equality of the messages spaces. Instantiating
these building blocks would allow us to achieve our second objective: building an
efficient two-party computation over a ring as a realistic alternative to standard
methods, particularly for arithmetic functions with a high multiplicative depth.
After discussing some applications of ESPs, we provide a first step toward our
goal by designing a secure ESP to switch between two homomorphic encryption
schemes over Z

∗
n.

3 Applications

In this section, we motivate our paradigm for two-party computation with some
concrete examples involving high-depth circuits.

Private Disjointness Testing (PDT). Two players, Alice and Bob, holding
respective databases A = (ai)i≤a and B = (bi)i≤b, wish to know whether their
databases have at least one common element or not, and nothing more. The
state-of-the-art solution to PDT is [42], which solves the problem with complexity
O

(
(a + b)2

)
(counting group elements).

A natural way to solve the PDT is to view the items of A as the roots of
a polynomial P (X) =

∑a
i=0 αiX

i. Alice and Bob perform an interactive pro-
tocol which outputs u = r

∏b
i=1 P (bi) to Alice, where r is a uniformly random

value picked by Bob. If this value is 0, then one of the P (bi)’s is zero, which
means that one of the bi’s is in A. However, the circuit computing u is of depth
O(log b), hence most 2-PC protocols computing this circuit are not constant
round. Using carefully constructed circuits such as the sort-compare-shuffle cir-
cuit of [22] (adapted to the case of PDT), the (constant-round) garbled circuit
approach transmits O(κ�(a + b) log(a + b) + κbM(κ)) bits, where � is the size of

Encryption Switching Protocols 319

the items in A and B and M(κ) the circuit size of modular multiplication (mul-
tiplications are performed modulo a κ-bit value to avoid integer multiplication
while maintaining statistical correctness).

Our framework allows us to design a linear-communication constant-round
protocol for the private disjointness test:

1. Alice builds the polynomial P =
∑

αiX
i so that P (ai) = 0 for i ≤ a, and

sends (Ci = E⊕(αi))i;
2. Bob computes and sends Di ← �jb

j
i • Ci = E⊕(P (bi)) for i ≤ b;

3. They perform b ESPs in parallel to get (D′
i = E⊗(P (bi)))i≤b;

4. Bob picks r
$← Zn and computes E ← r • �iD

′
i = E⊗(r ×

∏
P (bi)).

5. Alice and Bob jointly decrypt the ciphertext, Bob gets the result and checks
whether the plaintext is zero or not.

The total communication complexity of this protocol is a+b+2 ciphertexts and b
parallel ESPs. With constant size ESPs (as we will construct in the following), this
gives a total communication of O(a+b) in constant round. We want to stress that
this does not mean that, for concrete parameters, this approach will necessarily
beat the best super-linear garbled circuits for PDT; however, garbled circuits
have enjoyed decades of optimizations, and given its asymptomatic complexity,
our new approach seems worth considering for further investigations and could
benefit from numerous optimizations. Note also that hybrid frameworks (such
as [21]) can also provide linear-communication constant-round solutions, but
unlike these protocols, our approach is easily enhanced to the malicious setting:
in a high level, items 1 and 2 are secure from [7] and the next items are secure
against malicious adversaries if so are the ESPs performing the switches (and
Sect. 6 provides an efficient technique to achieve this security).

Oblivious Multivariate Polynomial Evaluation (OMPE). This is the nat-
ural extension of oblivious polynomial evaluation [31] over multivariate polyno-
mials [39]. Once an ESP is available, constructing an OMPE protocol is straight-
forward (we use the notations of [39]). Unlike previous solutions, it keeps the
degree d of P hidden.

– Alice holds an N -variate polynomial P of degree d with M monomials;
– Bob holds (x1, · · · , xN) and sends (E⊗(xi))i≤N ;
– Alice computes all the M monomials of P (x1, · · · , xN) encrypted under
Z

∗
n-EG, due to the multiplicativity;

– Alice and Bob perform M parallel ESPs on the encrypted monomials to get
the M additively encrypted monomials, and then get E⊕(P (x1, · · · , xN));

– Alice and Bob jointly decrypt it, so that Bob (or both) gets P (x1, · · · , xN).

Our OMPE protocol transmits O((N + M) log n) bits, to be compared with
O(Ndκ2) for [39]. In addition, our protocol can be adapted to the case of mul-
tivariate polynomials whose most compact representation is not their canonical
form; for example, if the polynomial is of the form

∏
i

∑
j X

δij
j , extending it to

its canonical form would result in an expression with exponentially many terms.

320 G. Couteau et al.

Instead, the polynomial can be directly evaluated from this compact form: first
using the multiplicative homomorphism to evaluate the X

δij
i ’s, they switch to

perform the sums, and then switch again to perform the final product. Several
applications of OMPE are discussed in [39], such as testing whether the union of
two sets of vectors are of full rank which has applications in linear secret shar-
ing schemes, where the secret can be recovered when a full rank set of vectors is
known; the players can determine whether they could recover the secret together
without revealing their set. We get a more efficient Full-Rank Test protocol.

4 An Encryption Switching Protocol over Z
∗
n

For the internal laws on the plaintexts in Zn we keep the usual notations + and ×
(or · and even nothing), but we still use the notations of the Sect. 2.4 for the exter-
nal operations on the ciphertexts and the relations on the random coins.

In order to complete the Paillier encryption scheme, that is additively homo-
morphic in Zn, we build an ElGamal variant that is multiplicatively homomor-
phic in Z

∗
n, both for the same RSA modulus n. The security of our new variant

relies on the DDH assumption in Jn, the (maximal) cyclic subgroup of Z∗
n whose

elements have a Jacobi symbol equal to +1, and the QR assumption in Z
∗
n (see

the full version [6] for more details about the structure of the ring Zn). In order
to build a secure encryption switching protocol, we need an additional prop-
erty from the two encryption schemes: they can be randomized. An encryption
scheme E is randomizable if there exists an efficient algorithm Rand such that
for every message m and every random coins r ∈ R:

{E (m; r′) | r′ $← R} ≡ {Rand(E (m; r), r′) | r′ $← R} (3)

where ≡ denotes the computational/statistical/perfect indistinguishability of the
two distributions. For the sake of simplicity, we will denote Rand(C) the proba-
bilistic algorithm which picks r uniformly at random and returns Rand(C; r).

We now recall basic computational assumptions and an implication to Jn,
then we review the Paillier encryption which also admits a verifiable 2-party
decryption algorithm (where either the two players, or one player only, get the
result) and we introduce our new ElGamal encryption schemes. Finally, we show
how to switch between these schemes from encryptions over Z

∗
n.

4.1 Computational Assumptions

The security of our protocols will rely on the following standard assumptions:

– The DDH (Decisional Diffie-Hellman) assumption in a cyclic group G = 〈g〉
of order q states that, given (ga, gb) for a, b

$← Zq, gab is indistinguishable
from a random element in G.

– The QR (Quadratic Residuosity) assumption in Z
∗
n, for an RSA modulus n,

states that a random element in QRn (square in Z
∗
n) is indistinguishable from

a random element in Jn (element of Z∗
n with Jacobi symbol +1).

Encryption Switching Protocols 321

– The DCR (Decisional Composite Residuosity) assumption in Z
∗
n2 , for an RSA

modulus n, states that a random n-th power in Z
∗
n2 is indistinguishable from

a random element in Z
∗
n2 .

The DDH assumption is usually assumed to hold in large prime-order subgroups
of Z∗

p. In the following, n = pq is a strong RSA modulus if p = 2p′ + 1 and
q = 2q′+1 are safe primes (with both p′ and q′ also prime). With such a modulus
n, DDH is also a reasonable assumption in QRn, since the order is p′q′ (see the
full version [6] for more details). Adding the QR assumption in Z

∗
n, this makes

the DDH assumption in Jn (of order 2p′q′) reasonable too:

Theorem 9. When n = pq is a strong RSA modulus, the DDH assumption in
Jn is implied by the DDH assumption in both the large prime-order subgroups of
Z

∗
p and Z

∗
q and the QR assumption in Z

∗
n. (The proof is in the full version [6].)

However, given m ∈ Z
∗
n, computing Jacobi symbol Jn(m) is easy and then the

DDH assumption does not hold in Z
∗
n which, in addition, is non cyclic.

4.2 Zn-P: The Paillier Encryption Scheme on Zn

For the Paillier encryption scheme (denoted Zn-P), we will use the notation E⊕(·)
since this will be our additively homomorphic encryption scheme. It implicitly
uses the strong RSA modulus n = pq, and we denote λ = λ(n) = (p−1)(q−1)/2,
the maximal order of an element of Z∗

n. One can note that λ = (n − 1)/2 + (2 −
(p + q))/2 is statistically close to (n − 1)/2 or n/2 if we consider the Euclidean
division (we will abuse this notation n/2 in the following).

The Paillier Cryptosystem. In [33], Paillier proposed an encryption scheme
Zn-P for a modulus pk = n as public key, and sk = d ← [λ−1 mod n]×λ mod nλ
as secret key: Zn-P.Enc(pk,m; r), for a message m ∈ Zn and random coins r in Z

∗
n,

outputs c = (1 + n)m · rn mod n2; Zn-P.Dec(sk, c) returns m = ([cd mod n2] −
1)/n. (See details in the full version [6]). This scheme is IND-CPA under the DCR
assumption overZ∗

n2 , and it is additively homomorphic inZn. It satisfies Eq. (1), �
being the multiplication in Z

∗
n2 . The randomization algorithm Rand is given by

Zn-P.Rand(c; r) = c · rn mod n2, for any random coins r in Z
∗
n.

2-Party Paillier Decryption. In this section, we briefly recall the semi-honest
case where players are honest-but-curious. The reader can refer to the full ver-
sion [6] for more details and a description in the malicious case which makes use
of classical zero-knowledge proofs.

We assume that a trusted dealer generates the key shares for the two parties,
Alice and Bob (distributed key generation can be found in [20]). The dealer
generates random dA, dB ∈ Znλ subject to dA + dB = d mod nλ defined above.
Then, Alice gets dA and Bob gets dB .

In order to allow Bob to decrypt the ciphertext C, Alice computes and sends
CA ← CdA mod n2, which allows Bob to get the plaintext m ← ([CA ×CdB mod

322 G. Couteau et al.

n2] − 1)/n. Note that we do intentionally not disclose m to Alice in general.
But this is perfectly symmetric if one wants Alice to get the result instead of
Bob.

The correctness of this protocol is straightforward. Let us show that it
is statistically zero-knowledge: To emulate Alice in front of a curious Bob,
we first pick dB in Zn2/2 instead of Znλ (since n/2 is statistically close to λ)
and we give it to Bob. The simulator with input (m, dB) sends CA ← (1 +
n · m) × C−dB , which enforces the decryption to m for Bob. This simulation is
statistically indistinguishable from a real execution when C does indeed encrypt
m. No emulation of Bob is needed as he does not send any message.

4.3 Z
∗
n-EG: An ElGamal Variant in Z

∗
n

The ElGamal Cryptosystem. In [14], ElGamal proposed the famous encryp-
tion scheme that applies in any cyclic group G = 〈g〉 of order q, in which the
DDH assumption holds: for a secret scalar sk = x

$← Zq, the public key is
pk = h ← gx: Enc(pk,m; r), for a message m ∈ G and random coins r in Zq,
outputs c = (c0 = gr, c1 = hr · m); Dec(sk, c) returns m = c1/cx

0 .
This scheme is IND-CPA under the DDH assumption over G, and it is mul-

tiplicatively homomorphic in G. ElGamal encryption scheme satisfies Eq. (1), �
being the component-wise multiplication in G

2. The randomization algorithm
Rand is given by Rand(c; r) = (c0 · gr, c1 · hr), for any random coins r in Zq. The
2-party decryption protocol is quite similar to the above Paillier one.

In the following, we will essentially use QRn-EG and Jn-EG, the ElGamal
encryption schemes in QRn and Jn respectively.

Extension to Z
∗
n. However, our main goal is to extend the ElGamal encryption

scheme to Z
∗
n. The global parameters contain the strong RSA modulus n, with

a generator g of Jn. The global setup and the algorithms are described on Fig. 1.

Description. Since the larger space that ElGamal can securely encrypt is Jn, in
order to encrypt a message m ∈ Z

∗
n, we have to split m into two parts, m1,m2 ∈

Jn: given χ ∈ Z
∗
n\Jn, a natural encoding is m1 = Jn(m) = (−1)a and m2 = χam,

with an appropriate integer a. But, even if {±1} could be seen as a subgroup of
Jn, ψ : Z2×Jn �→ Z

∗
n, ψ(a,m) = χ−am is not an homomorphism when the order

of χ is not 2. But we cannot leave in the clear2 a square root of 1 lying in Z
∗
n \Jn

(as done in [17]). However, for a generator g of Jn, we can instead encode m
with m1 = ga and m2 = χ−am for any integer a such that Jn(m) = (−1)a, and
encrypt m2 into (C0, C1) using Jn-EG, and appending m1 in clear. The intricate
point in the decryption phase will be to reconstruct χa from m1 = ga: if one
defines v = [p−1 mod q] ·p mod n and χ ← (1−v) ·gtp +v ·gtq mod n, for even tp
and odd tq randomly drawn in Zλ, then χ ∈ Z

∗
n \ Jn. In addition, from m1 = ga,

one gets χa as (1−v)mtp
1 +vm

tq
1 mod n. The complete description of the scheme

is described on Fig. 1.
2 Given two square roots of the same element with distinct Jacobi symbols allows

efficiently factoring n.

Encryption Switching Protocols 323

Fig. 1. Setup and encryption schemes in Z
∗
n

Properties. The correctness follows from the Chinese Remainder Theorem:
by construction, χ ← (1 − v) · gtp + v · gtq mod n, with v such that v = 0 mod p
and v = 1 mod q, then, χ = gtp mod p (so that χ ∈ QRp) and χ = gtq mod q

(so that χ �∈ QRq). Then, from m0 ← (1 − v)mtp
1 + vm

tq
1 mod n, we also have

m0 = gatp = χa mod p and m0 = gatq = χa mod q, and so m0 = χa mod n.
Hence, m0 · m2 mod n is indeed the plaintext m in Z

∗
n.

The multiplicative homomorphism comes from the fact that a does not
need to be in Z2, but just has to satisfy (−1)a = Jn(m) to make both m1 and
m2 in Jn. If one multiplies two ciphertexts c and c′, of m and m′ respectively,
one gets (gr+r′

, χ−a−a′
mm′ · gr+r′

1 , ga+a′
) = (gr′′

, χ−a′′
mm′ · gr′′

1 , ga′′
), which

is statistically indistinguishable from a direct encryption of mm′ since Zn/2 is
statistically close to Zλ.

324 G. Couteau et al.

As usual, the randomization just consists in multiplying by a ciphertext
of m = 1, and so with any random encoding of 1: (m1 = g2a,m2 = χ−2a).
Hence, on input a ciphertext C = (C0, C1, α) and two random integers (r1, r2),
Rand(C; r1, r2) outputs C ′ ← (gr1 · C0, χ

−2r2 · gr1
1 · C1, g

2r2 · α). Note that this
algorithm returns a ciphertext in which both the random coins and the encoding
of the plaintext are uniform, hence this is a perfect randomization algorithm.

Security. A ciphertext c = (C = (c0, c1),m1) contains m1 in clear but m2 is
encrypted using Jn-EG. While m1 encodes the Jacobi symbol of the plaintext m
(if m1 is a square, m ∈ Jn and if m1 is not a square, m ∈ Z

∗
n \ Jn), under the QR

assumption in Z
∗
n, it is infeasible to distinguish squares from non-squares in Jn:

m1 does not leak anything. The choice of χ is completely independent from the
Jn-EG decryption key. This means that the IND-CPA security of the scheme just
relies on the DDH assumption in Jn (Theorem 9) and the QR assumption in Z

∗
n.

4.4 Z
∗
n-ESP: Encryption Switching Protocols on Z

∗
n

For an ESP, the general approach consists of four steps: Alice first randomizes
the ciphertext, Bob gets the decryption and then re-encrypts it under the second
encryption scheme, and Alice eventually de-randomizes it. Figure 2 contains the
full description of the two protocols, from Zn-P to Z

∗
n-EG and from Z

∗
n-EG to

Zn-P. The former is easy because of the simple 2-party Zn-P decryption. The
latter requires a more intricate 2-party Z

∗
n-EG decryption, that needs to inter-

actively compute χa from ga. It requires a second Paillier encryption scheme in
Z

∗
N2 for a larger modulus N > (2 + 2κ+1)n2 to make the computations in Z but

masking the number of loops in the reduction modulo n.

Proof of Security of Z
∗
n -ESP. About the correctness, C encrypts m, C ′

A

encrypts R−1
A , and CA encrypts x = RA · m, in both directions. Then x • C ′

A is
a ciphertext of m under the second encryption scheme. In the multiplicative to
additive direction, this is a bit more intricate, but A3 = −BtpAB1+BtqAB2 = −
Btp + Btq and A4 = A1B1 + A2B2 = (1 − vA)Btp + vABtq , hence E5 and E6

contain encryption of B′ × (vB(Btq −Btp)+((1−vA)Btp +vABtq +kn)) = B′ ×
((1−v)Btp +vBtp). But as already remarked, (1−v)Btp +vBtp = χa+r1 mod n
if α = ga. Hence, the plaintext m6 = χa, and x is the expected value. (The
blinding factor kn added in E6, which masks the number of reductions modulo
n, disappears in the end.)

About the zero-knowledge, the full and detailed proof in the honest-but-
curious setting of Theorem 10 can be found in the full version [6]. But in short,
the proof is done in two steps, for Alice and for Bob. For each player, we exhibit
a simulator which, essentially, generates the key share of its opponent from the
public key without having any information on the key of the player it emulates,
and is given for each switch a target output of the protocol. The simulator forces
the output of the switch to be a re-randomization of its target output. He does so
by sending random ciphertexts instead of correct ciphertexts and computing some

Encryption Switching Protocols 325

Fig. 2. Interactive protocols for encryption switching in Z
∗
n

intermediate values using either its input or its target output (both being a twin-
ciphertext pair). The Paillier scheme with a second larger modulus N is necessary
to hide some redundancy in the flows sent by the player that a simulator could
not have sampled without the knowledge of the keys. The full proof involves sev-
eral subtleties (typically, ensuring that indistinguishability between two situations
involving values over Jn is implied by the DDH assumption over QRn).

Theorem 10. When instantiated with the Paillier encryption scheme and the
Z

∗
n-EG encryption scheme, both over Z

∗
n, the Z

∗
n −ESP are zero-knowledge under

the DDH assumption in QRn, the QR assumption in Z
∗
n, the DCR assumption

over Z
∗
n, and the DCR assumption over Z

∗
N .

Using our two complementary homomorphic schemes and Z
∗
n − ESP allows

to evaluate functions over Z
∗
n, but no information leaks only if no intermediate

computation will evaluate to 0 during the protocol. This is the goal of the next
section to extend the message space of our ElGamal variant to Z

∗
n ∪ {0}, which

can be shown to be computationally equal to Zn.

326 G. Couteau et al.

5 An Encryption Switching Protocol over the Ring Zn

In order to allow computations over encrypted data in the full ring (Zn,+,×),
we need to extend Z

∗
n-EG to a message space that is computationally equal to

Zn. To this aim, we just have to handle zero. This will indeed make the two sets
M1 = Zn and M2 = Z

∗
n ∪ {0} computationally equal: finding an element in the

symmetric difference provides a non-trivial non-invertible element, which breaks
the factorization of n.

In the following, we use the notation E⊗(·) for our above Z
∗
n-EG, and still

E⊕(·) for the Paillier encryption scheme Zn-P, both homomorphic on (Z∗
n,×)

and (Zn,+) respectively, with the same strong RSA modulus n. We will also
denote QRn-EG and QRn-EG′, two ElGamal encryption schemes over QRn, and
so with additional secret keys s2, s3, and g2 = g2s2 , g3 = g2s3 . QRn-EG and
QRn-EG′ are clearly homomorphic in (QRn,×), and the IND-CPA security just
relies on the DDH assumption in QRn, which is independent of the factorization
of n. Note however that QRn-EG′ will be used as an extractable commitment and
not an encryption scheme: the secret key s3 is not kept by anybody (excepted
the simulator in the security proof).

5.1 Zn-EG: Zero-Handling ElGamal Encryption Scheme in Zn

The global setup and the algorithms are represented in Fig. 3, but our Zn-EG
encryption scheme essentially uses Z∗

n-EG to encrypt m+b, where b = 0 if m �= 0
and b = 1 otherwise, in C1 ← E⊗(m + b), and is completed with two ciphertexts
of b: C2 ← QRn-EG.Enc(T b) and C3 ← QRn-EG′.Enc(T ′b), with two random
squares T and T ′.

The decryption algorithm is in two steps: one first decrypts C2 to check
whether the plaintext is 1, in which case b = 0 and so C1 can be decrypted to
get m, otherwise b = 1 and so one does not need to decrypt C1 since m = 0. The
purpose of C3 will be for the simulation of the ESP (and namely of the encrypted
zero-test, see below, in which the simulator is given a twin-ciphertext pair). This
is reason why the decryption key s3 will just be known to the simulator.

Properties. This scheme is correct, although the decryption is only statistically
correct since the random square T can be equal to 1 with negligible probability.
Since this is a combination of ElGamal encryption schemes, the resulting scheme
is also IND-CPA. The 2-party decryption algorithms of Z∗

n-EG and QRn-EG imme-
diately give rise to a 2-party decryption algorithm for Zn-EG: this is in two steps,
as above, since the decryption of C2 leads to either 1 or a random value.

Homomorphism. The multiplicativity of Z∗
n-EG makes this scheme homomorphic

until a zero is involved. And thanks to the absorbing property of random values
T , it also captures the absorbing property of the zero value in the ring Zn: the
multiplication is thus performed component-wise. In Fig. 3, we propose a ran-
domization algorithm. One could note that C1 will keep track of the operations
performed on the ciphertexts when the global ciphertext encrypts zero, even

Encryption Switching Protocols 327

Fig. 3. Setup and encryption schemes in Zn

after randomization. We will limit the decryption of C1 only if C2 contains 1,
and then C1 contains the plaintext, independent of the previous steps.

Computational Equality of Message Spaces. The message space of Zn-EG is now
Z

∗
n ∪{0}, which is computationally equal to Zn, the message space of the Paillier

encryption scheme: elements in the symmetric difference are non-trivial multiples
of p or q, which lead to the factorization of the modulus n.

328 G. Couteau et al.

5.2 Encrypted Zero Test

To switch between encryption schemes over Zn, we have to obliviously detect the
zeroes during the switch; this will be done by a sub-protocol, the encrypted zero-
test (EZT). An EZT is a protocol in which two players share a decryption key,
with an encryption C of a message m as input, and wish to get an encryption
C ′ of a bit b as output, where b = 1 if m = 0, and b = 0 otherwise. An
EZT is zero-knowledge if there is an efficient simulator for each player which is
indistinguishable from an honest player, and runs on input (C,C ′), where C ′ is
a twin ciphertext of C, without the knowledge of the share of the secret key of
the player it emulates, but just the share of the other player.

We stress that the EZT takes as input a Paillier ciphertext C of a message m
and outputs a Paillier ciphertext of b, that is 1 if m = 0 and 0 otherwise. However,
for our ESP protocols, the simulators of the ESP are given twin-ciphertext pairs
(the input C of the ESP and an expected output C ′), the simulator of the EZT
can also take advantage of such a pair: thanks to C3 in C ′ and the trapdoor s3,
the simulator can learn the value of b.

Various protocols have been proposed for this functionality (or closely related
functionalities), such as [19,30,43]. Garbled circuits for testing the equality of
strings, as proposed in [25], can also be used to construct an EZT with a better
communication: given a ciphertext C encrypting a plaintext m,

– Alice picks x
$← Zn and sends CA

$← Rand(C � x) = Enc(mx) to Bob. Both
players jointly decrypt CA; Bob gets the result y. Let x′ ← x mod 2κ (that
Alice computes) and y′ ← y mod 2κ (that Bob computes).

– Let f(u, v) be the function which returns 1 if u = v, and 0 else. Alice picks
bA

$← {0, 1} and builds a garbled circuit computing bA xor f(x′, y′). Using [25],
the resulting circuit has 2κ gates.

– Bob gets a bit bB from evaluating the garbled circuit with Yao’s protocol. He
sends an encryption CB of bB to Alice.

– Alice outputs C ′ ← Rand(bA � CB � (2bA) • CB) = Enc(bA + bB − 2bAbB) =
Enc(bA ⊕ bB) = Enc(f(x′, y′)).

The correctness follows from the fact that x′ = y′ implies, with overwhelming
probability, that x − y = m = 0, which is the plaintext of C.

Figure 4 sums up the efficiency the protocol of [25], and of the protocol of [30],
which is the most efficient solution based on homomorphic encryption. Both
protocols involve three rounds of on-line communication.

Fig. 4. Comparison of two EZT protocols

Encryption Switching Protocols 329

5.3 Encryption Switching Protocols on Zn

Our ESP on Zn is described on Fig. 5, where the double arrows indicate an
execution of an interactive sub-protocol, either a Z

∗
n-ESP or an EZT, and com

is any extractable commitment (for the simulation). In the full version [6], we
prove:

Theorem 11. When instantiated with the Zn-P and Zn-EG encryption schemes,
both over Zn, if both Z

∗
n −ESP and EZT are zero-knowledge and if com is hiding,

then the Zn − ESP given in Fig. 5 is zero-knowledge under the DDH assumption
in QRn, the QR assumption in Z

∗
n and the DCR assumption over Z

∗
n.

Instantiating the Z
∗
n − ESP with our construction of Sect. 4, we additionally

require the DCR assumption over Z
∗
N .

6 Security Against Malicious Adversaries

In the previous sections, we built two homomorphic encryption schemes with
zero-knowledge ESPs that achieve our goal of secure two-party computation from
ESP: namely, at the end of the ESP executions, the semi-honest users do not
know more than before about the input plaintexts. To prevent malicious behav-
iors, and move from the semi-honest setting to the malicious setting, additional
validity checks are required. They are performed with zero-knowledge proofs.

Indeed, the last step toward secure ESPs is to ensure its soundness, so that
malicious adversaries will not gain more information than an honest adversary
would do. Moreover, the use of the simulators of the additional proofs will pre-
serve the zero-knowledge of our ESPs. In this section, we provide this final build-
ing block.

Unfortunately, ESPs are essentially non-arithmetic protocols, and namely the
internal decryptions and re-encryptions. Hence, ensuring honest behavior might
require garbled circuits-based zero-knowledge proofs such as [15,23,35], or cut-
and-choose techniques, both at a very high computational cost, but also from
the communication point of view, which we cannot afford.

In this section, we present a more efficient technique for such zero-knowledge
proofs, based on a particular pre-processing phase. We first explain how a pool
of random twin-ciphertext pairs allows designing efficient (amortized) proofs of
honest behavior in our ESPs.

6.1 Refreshable Twin-Ciphertext Pool

First, we set up a perfectly hiding commitment scheme com⊕ over a group of
order n: let k be a small integer such that t ← 2kn + 1 is prime. Let (gt, ht)
be two generators of the subgroup of Z

∗
t of order n. On input m ∈ Zn and a

randomness r ∈ Zn, the scheme outputs com⊕(m; r) = gm
t hr

t .

330 G. Couteau et al.

Fig. 5. Interactive Encryption Switching in Zn

Encryption Switching Protocols 331

Pre-processing Random Twin-Ciphertext Pairs. Our starting point is a
protocol that allows a prover to convince a verifier that two ciphertexts, from two
different cryptosystems, do indeed encrypt the same value. This means they form
a twin-ciphertext pair. Such a proof will be denoted TCP, for Twin-Ciphertext
Proof. It comes at a cost of the cut-and-choose technique and thus requires O(κ)
communication. However, we show in the full version [6] how to amortize � TCPs
using only a single cut-and-choose protocol, for any arbitrarily large �. It relies
on the techniques developed by Groth and Bayer on generalized Pedersen com-
mitments [3,34]. But we use a new zero-knowledge proof on multi-exponentiation
with committed base, of independent interest: we can create a pool of � proven
twin-ciphertext pairs in O(�+κ). We then show several applications to speed-up
various zero-knowledge arguments.

In order to generate an arbitrary number of twin-ciphertext pairs (Ci, C
′
i)i =

(E⊕(mi),E⊗(mi))i of random plaintexts mi, under two homomorphic encryption
schemes, we first show how to generate a first pair: Alice has a pair of ciphertexts
(C,C ′) = (E⊕(m, r),E⊗(m′, s)) for which she knows both the plaintexts and the
random coins. She wants to prove that m = m′ to Bob:

– Alice generates κ twin-ciphertext pairs (Ci, C
′
i)i = (E⊕(μi; ri),E⊗(μi; si))i,

for values μi picked at random over Zn, and commits to those pairs (using
any commitment scheme);

– Bob sends a challenge c = c1 · · · cκ
$← {0, 1}κ;

– Alice opens the κ commitments on the twin-ciphertext pairs, and for each
i ≤ κ, she sends

• the plaintext μi and the random coins (ri, si), if ci = 0;
• the ratio Ri = m/μi and the random coins ρi ← (Ri · ri) 	 ((−1) · r)

according to the additive case, and σi ← (Ri · si) 	 ((−1) · s) according
to the multiplicative case — using the notations from Sect. 2.4;

– Bob checks the openings of commitments and
• either checks the validity of (Ci, C

′
i) with μi and the random coins;

• or computes Di = Ri•Ci�(−1)•C and D′
i = Ri•C ′

i�(−1)•C ′, according
to the relations (1) and (2). Bod then checks whether both Di = E⊕(0; ρi)
and D′

i = E⊗(1;σi) hold.

We prove the security of TCP in the full version [6].

Using com⊕ Instead of Paillier. The Paillier encryption scheme E⊕() in the twin-
ciphertext proof can be replaced by the above perfectly hiding commitment
scheme com⊕ : (m; r) �→ gm

t hr
t , that is also additively homomorphic. But then

the proofs become arguments. Alice generates κ pairs, each pair consisting of
an additive commitment and a Z

∗
n-EG ciphertext, and the rest of the proof is

exactly the same. We keep using the notation E⊕() below.

Efficient Online TCP. Let us assume that we have already proven that a
random twin-ciphertext pair Pi = (E⊕(mi; ri),E⊗(mi; si)) is correct. When one
wants to perform a TCP during a protocol on a new twin-ciphertext pair P =
(E⊕(m; r),E⊗(m; s)), it is enough to reveal some relations between the random

332 G. Couteau et al.

coins of the pairs P and Pi, in order to show that the plaintexts are co-linear: if
one of them is correct, so is the other. And this can be done without disclosing m
(as mi is random, disclosing m/mi will not reveal m). Thereby, all our protocols
are described in the following model: first, in a pre-processing phase, a large
pool of random twin-ciphertext pairs are generated and proven correct with a
batch argument. Then, in the on-line phase, each time a TCP is required, a twin-
ciphertext pair from the pool is used and the player performs a cheap co-linearity
proof. This proof consumes Pi and ensures the correctness of the switch.

Refreshing the Twin-Ciphertext Pool. The expected number of TCPs
might not be known to the players; however, once a pool of twin-ciphertext
pairs has been set up, the same batch technique that we describe in the full
version [6] can be used to generate � new random twin-ciphertext pairs, while
consuming a single pair of the pool. The batch argument transmits O(� + κ)
group elements but does not rely on cut-and-choose, hence cut-and-choose in
only needed once, when generating the very first element of the pool.

6.2 Zero-Knowledge Proofs

The pool of twin-ciphertext pairs allows the players to perform TCPs efficiently.
Apart from TCPs, the zero-knowledge proofs needed to enhance ESPs to the
malicious setting are classical protocols. For zero-knowledge proofs involving
the decryption keys, we have to add the corresponding verification keys in the
public key: first, we pick h0, r0

$← Z
∗
n, R0

$← Z
∗
N and set h ← −h2

0, then we add
(hp, hq) = (htp , htq) and (u,U) ← ((1+n) ·r2n

0 mod n2, (1+N) ·R2N
0 mod N2) ∈

QRn2 × QRN2 to the public key. The latter pair satisfies ud = 1 + n mod n2

and UD = 1 + N mod N2. Second, we set up the commitment scheme com⊕
previously described. Each time a player performs computations, he commits to
the operands if they are not already encrypted, and proves his honest behavior,
with a zero-knowledge proof, using the above elements in the public key. Note
that in our generic 2-PC from ESP, the switches run either sequentially or in
parallel, but they are never intertwined; hence, we do not need to use zero-
knowledge proofs secure in the concurrent setting (which would be less efficient).

Range Proofs. In the multiplicative to additive direction, a second Paillier
encryption scheme is used, with a different modulus N . The plaintext space of
this scheme is large enough to ensure that no modular reduction occurs dur-
ing computations over input ciphertexts encrypting values in {0, · · · , n − 1}.
Thereby, it is necessary to prove that these values are indeed in that range, which
is handled by range proofs. The method of [4] provides an efficient (constant-
communication) proof. Hence, we first have to commit to the encrypted value,
using a generator of a space with a different modulus n′ > n whose factorization
is unknown as in [8,16]: the plaintext is thus committed over Zλ(n′), a space of
unknown order. Then, equality between the encrypted value (over ZN) and the
committed value (over Zλ(n′), whose order is unknown) can be proven using [9],

Encryption Switching Protocols 333

and the range proof is performed on the committed value. The soundness of this
proof relies on the strong RSA assumption [2,16] modulo n′ > n. We stress that
it is necessary that the factorization of n′ is not known by anyone nor shared
between the parties, as the strong soundness requirement of our proof of 2-PC
states that the adversary is given the full secret key; hence, unlike [9], we cannot
use n′ = N . Note also that n′ can be taken way smaller than N (which has to
be large enough to allow for some multiplications without overflow).

We stress that the need of the strong RSA assumption in the security of our
constant-size on-line ESP comes from the range proof, only. To date, there is
no constant-size range proof over Zn in the literature whose soundness does not
rely on this assumption.

Classical Zero-Knowledge Proofs. Appart from TCP and range proofs, all
the proofs are classical zero-knowledge proofs á la Schnorr [36]: Proof of re-
randomization of ciphertexts and proof of correct computation of R • C given
com⊕(R) are just proofs of exponentiations to the same power either in the
same groups or in two groups which one order (Jn) is unknown. It is also easy
to generate E⊗(m−1) from E⊗(m), just inverting all the components in Jn.

6.3 Ensuring Honest Behavior in ESP Protocols

Let us illustrate how TCP are used on the Z
∗
n-ESP from Paillier to Z

∗
n-EG (see

Fig. 2): Alice sends (CA, C ′
A) and commits to RA: c ← com⊕(RA). She makes

a TCP on the pair (c, C ′
A

−1), and a classical proof of product to show that CA

encrypts the product of the value committed in c and the value encrypted in C;
combined together, those proofs are enough to ensure Alice’s honest behavior.
Additional proofs (including range proofs) are needed in the other direction as
it is a more complex case.

Sketch of the Proof of Security. In our full proof of security of the semi-
honest protocols, we have already included the generation of the verification keys
by the simulator. Hence, the enhanced protocol only adds zero-knowledge proofs
and perfectly hiding commitments to the semi-honest proof. The zero-knowledge
property of these proofs states that a simulator can fake them, i.e. convince a
verifier of the truth of the associated statement, even if the statement is not true.
Thereby, we add the two following games to our game-based proof of security in
the semi-honest model, right after the very first game (in which the simulator
plays honestly, using the secret keys):

1. from this game, each time the simulator is asked to perform a zero-knowledge
proof, it fakes it instead. This game is indistinguishable from the honest game
due to the zero-knowledge property of the proofs;

2. from this game, each time the simulator has to commit, the simulator sends
a uniformly random commitment. As com⊕ is perfectly hiding, this game is
perfectly indistinguishable from the previous one.

The rest of the game-based proof is exactly the same as the semi-honest proof.

334 G. Couteau et al.

6.4 From Secure ESP to Secure 2-PC

We stress that our 2-PC protocol is made fully secure as soon as ESPs is secure
against malicious adversaries (as well as the 2-party decryption procedure at the
end of the protocol). This comes from the fact, that apart from ESPs and the
final decryption, all the operations are local homomorphic evaluations of public
functions on ciphertexts known by both players. The homomorphic operations
themselves are deterministic and performed by both players.

A sequence of public operations is followed by either an ESP or, at the very
end of the protocol, a 2-party decryption. From the strong soundness of the
ESP, any honest player is guaranteed that his output of the ESP is necessarily
a twin ciphertext of his input, or an abort is triggered. Similarly, in the 2-
party decryption protocol, an honest player is guaranteed that the output is the
plaintext of his input ciphertext, unless an error is raised.

Therefore, an honest player that correctly performs his (local) homomorphic
evaluations is also guaranteed of the correct evaluation of the switches and of
the decryption: the final answer is necessarily correct, or an error is raised in
case of a misbehaving partner.

6.5 Exponential Relations Among Committed Values

We describe several applications of our preprocessing technique. In the follow-
ing applications, we use a commitment scheme com(·) we assume to be addi-
tively homomorphic. This can either be E⊕(·) (perfectly binding) or the previous
com⊕(·) (perfectly hiding).

Proof of Knowledge of an Exponential Relation over Committed Val-
ues. A prover has sent a tuple (Ca = com(a), Cb = com(b), d) and wishes to
prove that b = ad. Let C ′

a and C ′
b be twin ciphertexts under E⊗() of Ca and

Cb; the prover sends them and proves them with two TCPs. Both players can
compute D ← �dC ′

a = E⊗(ad). She then proves that D encrypts the same value
as C ′

b, which can be done since she knows all the random coins.

Extension to the Case of a Committed Exponent. Let us now suppose d
has also been committed in Cd = com(d). The prover sends C ′

a = (C ′
a0, C

′
a1, α),

C ′
b, and C ′

d, twin ciphertexts of Ca and Cd respectively, and proves them with two
TCPs. The prover computes D = (D0,D1,D2) ← �dC ′

a = E⊗(ad), and proves
its knowledge of (b, r) such that Cb = com(b; r), D0 = (C ′

a0)
d, D1 = (C ′

a1)
d, and

D2 = αd. She then proves that C ′
b and D encrypt the same plaintext.

Proof of Knowledge of a Double Logarithm (or Double Decker Expo-
nentiation). In this case, the prover wants to prove her knowledge of x that
satisfies X = g(h

x), for public values (g, h,X). Such proofs are required for exam-
ple in some publicly verifiable secret sharing schemes [38], in group signature or
group encryption [24]. Let n = pq be an RSA modulus such that π = 2n + 1

Encryption Switching Protocols 335

is a prime. Let g be a generator of a subgroup of Z
∗
π of order n. Let h be a

generator of Jn and x be an element of Zλ. The prover computes H ← hx,
C ← Zn-P.Enc(H), and C ′ ← Jn-EG.Enc(H). She sends (C,C ′), proves that
she knows the discrete log of this encrypted value in C ′ (a classical Schnorr-like
proof), and makes a TCP on (C,C ′). She then proves her knowledge of H and r
such that X = gH mod π and C = Zn-P.Enc(H; r) (again a Schnorr-like proof).

Proof that a Committed Value Is Prime. In [5], the authors design a zero-
knowledge proof that a committed value is a product of two safe primes, which
has applications in numerous RSA-based protocols. The idea is the following:
to prove that a committed number π is a prime, one proves that it passed each
step of the Lehmann’s primality test [26,37], i.e. commit to κ random numbers
(in an interactive way to ensure they are random) and for each of the κ random
committed a, prove that a(π−1)/2 = ±1 mod π by committing to each bit of
(π − 1)/2, and by using a zero-knowledge proof for each step of the square-and-
multiply algorithm. This can be done way more efficiently with our above proof
of knowledge of an exponential relation over a committed exponent, enhanced
using the technique from [29] to work modulo a committed value. Overall, we
improve [5] by a factor of O(log(π)). In typical applications, π will be 1024 to
2048 bit-long.

Acknowledgments. We thank Fabrice Ben Hamouda for the fruitful discussions on
the ElGamal variant. This work was supported in part by the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement no. 339563 – CryptoCloud). The second author is supported
by the F.R.S-FNRS as a postdoctoral researcher.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg
(2015)

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

3. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

4. Boudot, F.: Efficient proofs that a committed number lies in an interval. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer,
Heidelberg (2000)

5. Camenisch, J.L., Michels, M.: Proving in zero-knowledge that a number is the
product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol.
1592, pp. 107–122. Springer, Heidelberg (1999)

6. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. Cryptol-
ogy ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org/2015/990

http://eprint.iacr.org/2015/990

336 G. Couteau et al.

7. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private
set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

8. Damg̊ard, I.B., Fujisaki, E.: A statistically-hiding integer commitment scheme
based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

9. Damg̊ard, I.B., Jurik, M.: Client/server tradeoffs for online elections. In: Naccache,
D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg
(2002)

10. Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

11. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

12. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013)

13. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-
protocol secure two-party computation. In: Network and Distributed System Secu-
rity, NDSS (2015)

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Tran. Inf. Theory 31, 469–472 (1985)

15. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. Cryptology ePrint Archive, Report
2014/598 (2014). http://eprint.iacr.org/2014/598

16. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

17. Gavin, G., Minier, M.: Oblivious multi-variate polynomial evaluation. In: Roy, B.,
Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 430–442. Springer,
Heidelberg (2009)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009

19. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. Cryptology ePrint Archive, Report 2014/345 (2014).
http://eprint.iacr.org/2014/345

20. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and
threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012)

21. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Al-Shaer, E., Keromytis, A.D.,
Shmatikov, V. (eds.) ACM CCS 2010, pp. 451–462. ACM Press, October 2010

22. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012. The Internet Society, February 2012

23. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. Cryptology ePrint Archive,
Report 2013/073 (2013). http://eprint.iacr.org/2013/073

http://eprint.iacr.org/2014/598
http://eprint.iacr.org/2014/345
http://eprint.iacr.org/2013/073

Encryption Switching Protocols 337

24. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. Cryptology ePrint Archive,
Report 2007/015 (2007). http://eprint.iacr.org/2007/015

25. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

26. Kranakis, E.: Primality and Cryptography. Wiley, Hoboken (1986)
27. Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure arithmetic computa-

tion using switchable homomorphic encryption. Cryptology ePrint Archive, Report
2014/539 (2014). http://eprint.iacr.org/2014/539

28. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

29. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
Cryptology ePrint Archive, Report 2003/105 (2003). http://eprint.iacr.org/2003/
105

30. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013)

31. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35, 1254–
1281 (2006)

32. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

34. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

35. Ranellucci, S., Tapp, A., Zakarias, R.W.: Efficient generic zero-knowledge proofs
from commitments. Cryptology ePrint Archive, Report 2014/934 (2014). http://
eprint.iacr.org/2014/934

36. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990)

37. Solovay, R., Strassen, V.: A fast monte-carlo test for primality. SIAM J. Comput.
6(1), 84–85 (1977)

38. Stadler, M.A.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)

39. Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate poly-
nomials. J. Math. Cryptol. 7, 1–29 (2013)

40. Tople, S., Shinde, S., Chen, Z., Saxena, P.: AUTOCRYPT: enabling homomorphic
computation on servers to protect sensitive web content. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1297–1310. ACM Press, November 2013

41. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

http://eprint.iacr.org/2007/015
http://eprint.iacr.org/2014/539
http://eprint.iacr.org/2003/105
http://eprint.iacr.org/2003/105
http://eprint.iacr.org/2014/934
http://eprint.iacr.org/2014/934

338 G. Couteau et al.

42. Ye, Q., Wang, H., Pieprzyk, J., Zhang, X.-M.: Efficient disjointness tests for private
datasets. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107,
pp. 155–169. Springer, Heidelberg (2008)

43. Yu, C.-H., Yang, B.-Y.: Probabilistically correct secure arithmetic computation
for modular conversion, zero test, comparison, MOD and exponentiation. In:
Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 426–444. Springer,
Heidelberg (2012)

Compromised Systems

Message Transmission with Reverse
Firewalls—Secure Communication on Corrupted

Machines

Yevgeniy Dodis1, Ilya Mironov2, and Noah Stephens-Davidowitz1(B)

1 Department of Computer Science, New York University, New York, USA
noahsd@gmail.com

2 Google, Menlo Park, USA

Abstract. Suppose Alice wishes to send a message to Bob privately over
an untrusted channel. Cryptographers have developed a whole suite of
tools to accomplish this task, with a wide variety of notions of security,
setup assumptions, and running times. However, almost all prior work on
this topic made a seemingly innocent assumption: that Alice has access
to a trusted computer with a proper implementation of the protocol. The
Snowden revelations show us that, in fact, powerful adversaries can and
will corrupt users’ machines in order to compromise their security. And,
(presumably) accidental vulnerabilities are regularly found in popular
cryptographic software, showing that users cannot even trust implemen-
tations that were created honestly. This leads to the following (seemingly
absurd) question: “Can Alice securely send a message to Bob even if she
cannot trust her own computer?!”

Bellare, Paterson, and Rogaway recently studied this question. They
show a strong impossibility result that in particular rules out even seman-
tically secure public-key encryption in their model. However, Mironov
and Stephens-Davidowitz recently introduced a new framework for solv-
ing such problems: reverse firewalls. A secure reverse firewall is a third
party that “sits between Alice and the outside world” and modifies her
sent and received messages so that even if the her machine has been cor-
rupted, Alice’s security is still guaranteed. We show how to use reverse
firewalls to sidestep the impossibility result of Bellare et al., and we
achieve strong security guarantees in this extreme setting.

Indeed, we find a rich structure of solutions that vary in efficiency,
security, and setup assumptions, in close analogy with message trans-
mission in the classical setting. Our strongest and most important
result shows a protocol that achieves interactive, concurrent CCA-secure
message transmission with a reverse firewall—i.e., CCA-secure message
transmission on a possibly compromised machine! Surprisingly, this pro-
tocol is quite efficient and simple, requiring only four rounds and a small

Y. Dodis—Partially supported by gifts from VMware Labs and Google, and NSF
grants 1319051, 1314568, 1065288, 1017471.
N. Stephens-Davidowitz—Partially supported by National Science Foundation under
Grant No. CCF-1320188. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 341–372, 2016.
DOI: 10.1007/978-3-662-53018-4 13

342 Y. Dodis et al.

constant number of public-key operations for each party. It could easily
be used in practice. Behind this result is a technical composition theorem
that shows how key agreement with a sufficiently secure reverse firewall
can be used to construct a message-transmission protocol with its own
secure reverse firewall.

1 Introduction

We consider perhaps the simplest, most fundamental problem in cryptography:
secure message transmission, in which Alice wishes to send a plaintext mes-
sage to Bob without leaking the plaintext to an eavesdropper. Of course, this
problem has a rich history, and it is extremely well-studied with a variety of
different setup assumptions and notions of security (e.g., [4]). There are many
beautiful solutions, based on symmetric-key encryption, public-key encryption,
key agreement, etc.

However, in the past few years, it has become increasingly clear that the
real world presents many vulnerabilities that are not captured by the secu-
rity models of classical cryptography. The revelations of Edward Snowden show
that the United States National Security Agency successfully gained access to
secret information by extraordinary means, including subverting cryptographic
standards [3,34] and intercepting and tampering with hardware on its way to
users [23]. Meanwhile, many (apparently accidental) security flaws have been
found in widely deployed pieces of cryptographic software, leaving users com-
pletely exposed [12–14,25,28]. Due to the complexity of modern cryptographic
software, such vulnerabilities are extremely hard to detect in practice, and, ironi-
cally, cryptographic modules are often the easiest to attack, as attackers can often
use cryptographic mechanisms to mask their activities or opportunistically hide
their communications within encrypted traffic. This has led to a new direction
for cryptographers (sometimes called “post-Snowden cryptography”), which in
our context is summarized by the following (seemingly absurd) question: “How
can Alice and Bob possibly communicate securely when an eavesdropper might
have corrupted their computers?!”

Motivated by such concerns, Bellare, Paterson, and Rogaway consider the
problem of securely encrypting a message when the encrypting party might be
compromised [7]. They consider the case in which the corrupted party’s behavior
is indistinguishable from that of an honest implementation. Even in this setting,
their main result shows that even a relatively weak adversary can break any
scheme that “non-trivially uses randomness.” (They also provide a nice deter-
ministic symmetric-key solution, which we use as a subprotocol in the sequel.)
In particular, it is easy to see that a semantically secure public-key message
transmission is impossible in their framework. (See [5] for an analysis of weaker
notions of security for public-key encryption in this setting.)

Message Transmission with Reverse Firewalls—Secure Communication 343

1.1 Reverse Firewalls

Due to the strong restriction proved in [7], we consider a relaxation of their model
in which we allow for an additional party, a (cryptographic) reverse firewall (RF)
as recently introduced by Mironov and Stephens-Davidowitz [31]. We provide
formal definitions in Sect. 2.1, but since RFs are quite a new concept (and they
can be rather confusing at first), we now provide a high-level discussion of some
of the salient aspects of the reverse-firewall framework.

A reverse firewall for Alice is an autonomous intermediary that modifies the
messages that Alice’s machine sends and receives. The hope is that the protocol
equipped with a reverse firewall can provide meaningful security guarantees for
Alice even if her own machine is compromised. As we explain in detail below,
the firewall is untrusted in the sense that it shares no secrets with Alice, and in
general we expect Alice to place no more trust in the firewall than she does in
the communication channel itself.

More concretely, Mironov and Stephens-Davidowitz start by considering an
arbitrary cryptographic protocol that satisfies some notions of functionality (i.e.,
correctness) and security.1 For example, perhaps the simplest non-trivial case is
semantically secure message transmission from Alice to Bob, which has the func-
tionality requirement that Bob should receive the correct plaintext message from
Alice and the security requirement that a computationally bounded adversary
“should not learn anything about Alice’s plaintext message” from the transcript
of a run of the protocol. Formally, we can model this functionality by providing
Alice with an input plaintext and requiring Bob’s output to match this, and we
can model semantic security by a standard indistinguishability security game.

A reverse firewall for Alice in some protocol maintains functionality if the
protocol “with the firewall in the middle” achieves the same functionality as
the original protocol. E.g., in the case of message transmission, Bob should still
receive Alice’s message—his output should still match Alice’s input. More inter-
estingly, the firewall preserves security if the protocol with the firewall is secure
even when we replace Alice’s computer with some arbitrarily corrupted party. For
example, a reverse firewall for Alice preserves semantic security of message trans-
mission if a computationally bounded adversary “learns nothing about Alice’s
plaintext message” from the transcript of messages sent between the firewall
and Bob, regardless of how Alice behaves. E.g., the firewall may rerandomize
the messages that Alice sends in a way that makes them indistinguishable from
random from the adversary’s perspective, regardless of Alice’s original message.
(We analyze such protocols in a stronger setting in Sect. 3, and in a different
setting in Appendix B.)

Note that it also makes sense to consider reverse firewalls for the receiver,
Bob. For example, consider a protocol in which Bob first sends his public key

1 The notion of functionality in [31] is quite simple, and it should not be confused with
the much more complicated concept of functionality used in the universal compos-
ability framework. Formally, Mironov and Stephens-Davidowitz define a functional-
ity requirement as any condition on the output of the parties that may depend on
the input, and in practice, these requirements are straightforward.

344 Y. Dodis et al.

to Alice, and Alice responds with an encryption of her message under this key.
Clearly, if Bob’s computer is corrupted in such a protocol, this can compromise
security, even if Alice behaves properly. In such a protocol, a firewall for Bob
might rerandomize his public key. Of course, to maintain correctness, this firewall
must also intercept Bob’s incoming messages and convert ciphertexts under this
rerandomized key to encryptions under Bob’s original key. (Again, see Sect. 3 for
a formal treatment of such protocols.)

A key feature of protocols with reverse firewalls, as defined in [31], is that
they should be functional and secure both with the reverse firewall and without
it. I.e., there should be a well-defined underlying protocol between Alice and
Bob that satisfies classical functionality and security requirements. This is one
important difference between reverse firewalls and some similar models, such as
the mediated model [1] and divertible protocols [9,10,32], and it comes with
a number of benefits. ([31] contains a thorough comparison of many different
related models.) First, it means that these protocols can be implemented and
used without worrying about whether reverse firewalls are present—one protocol
works regardless; we simply obtain additional security guarantees with an RF.

Second, and more importantly, this definitional choice provides an elegant
solution to a natural concern about reverse firewalls: What happens when the
firewall itself is corrupted? Of course, if both Alice’s own machine and her firewall
are compromised, then we cannot possibly hope for security. But, if Alice’s own
implementation is correct and the firewall has been corrupted, then we can view
the firewall as “part of” the adversary in the firewall-free protocol between Alice
and Bob. Since this underlying protocol must itself be secure, it trivially remains
secure in the presence of a corrupted firewall.2 This is why we can say that the
firewall is trusted no more than the communication channel.

Of course, the advantage of using a firewall comes when Alice’s machine is
corrupted but the firewall is implemented correctly, in which case the firewall
provides Alice with a security guarantee that she could not have had otherwise. In
short, the firewall can only help. (See Table 1.) In fact, we even require firewalls to
be “stackable,” so that arbitrarily many firewalls may be deployed, and security
is guaranteed as long as either (1) Alice’s own machine is uncorrupted; or (2) at
least one of these firewalls is implemented correctly and honestly.

Finally, it is convenient to identify a class of functionality-maintaining cor-
ruptions: compromised implementations that are “technically legal” in the sense
that they may deviate arbitrarily from the protocol, as long as they do not
break its functionality. Some of our reverse firewalls are only secure against
this type of corruption. (This model is introduced by [31], and the authors
call security against unrestricted compromise strong security.) We emphasize
that, while this restricted class of compromised implementations is not ideal, it
is still quite large. In particular, all of the real-world compromises mentioned
above fall into this category [3,12–14,23,25,28,34,40], as do essentially all other
forms of compromise considered in prior work, such as backdoored PRNGs [21],

2 Technically, this statement only holds if the underlying protocol is secure against
active adversaries.

Message Transmission with Reverse Firewalls—Secure Communication 345

Table 1. Security of a protocol with a secure reverse firewall for Alice in various
different scenarios.

Alice Alice’s RF Secure?

Honest Honest ✔ Trivial

Honest Compromised ✔ Underlying protocol’s security

Compromised Honest ✔ RF’s security

Compromised Compromised ✗ Everyone is compromised!

Algorithm Substitution Attacks [7], subliminal channels [39], etc. (We discuss
functionality-maintaining corruption in our setting in more detail in the full
version [22]. See [31] for a detailed discussion of the general reverse framework.)

1.2 Our Results

In this section, we walk through the results that we obtain in different settings,
starting with simpler cases and working our way up to our stronger results.
In what follows, Alice is always the sender and Bob is always the receiver of
the message. All of our security notions apply to the concurrent setting, in
which the adversary may instantiate many runs of the protocol simultaneously.
(The proofs are in the full version [22].)

The Symmetric-Key Setting. In the first and simplest scenario, Alice and
Bob have a shared secret key. (See Appendix A.) Quite naturally, Alice might
want to use a symmetric-key encryption scheme to communicate with Bob. Using
a standard scheme (e.g., AES-CBC) would, however, expose her to a number
of “algorithm-substitution attacks” (what we call corruption or compromise)
described by Bellare, Paterson, and Rogaway [7], such as IV-replacement or a
biased-ciphertext attack. To defend against such attacks, Bellare et al. propose
using a clever solution: a deterministic encryption scheme based on either a
counter or a nonce. We briefly consider this case, observing that their solution
corresponds to a one-round protocol in our model (in which the firewall simply
lets messages pass unaltered).

Unfortunately, we show that strong security (i.e., security against corrupted
implementations of Alice that are not necessarily functionality-maintaining) is
not achievable without using (less efficient) public-key primitives, even in the
reverse-firewalls framework. This provides further motivation to study reverse
firewalls in the public-key setting.

Rerandomizable Encryption. As we mentioned earlier, the simplest non-
trivial reverse firewall in the public-key setting uses CPA-secure rerandomiz-
able public-key encryption. In particular, Alice can send her plaintext encrypted
under Bob’s public key, and Alice’s reverse firewall can simply rerandomize

346 Y. Dodis et al.

this ciphertext. We observe that this folklore technique works in our setting.
In Sect. 3, we present a generalization of this idea that does not require any
public-key infrastructure, by having Bob send his public key as a first mes-
sage. Following [31], we observe that Bob can have a reverse firewall for such
a protocol that rerandomizes his key (and converts Alice’s ciphertext from an
encryption under the rerandomized key to an encryption under Bob’s original
key). We therefore show a simple two-round protocol with a reverse firewall for
each party.

While such protocols are simple and elegant, they have two major draw-
backs. First, they are only secure against passive adversaries (we will return to
this issue soon). Second, and arguably more importantly, such protocols require
the computation of public-key operations on the entire plaintext. Since plain-
texts are often quite long and public-key operations tend to be much slower than
symmetric-key operations, it is much faster in practice to use public-key opera-
tions to transmit a (relatively short) key for a symmetric-key encryption scheme
and then to send the plaintext encrypted under this symmetric key. There are
two general methods for transmitting this key in the classical setting: hybrid
encryption and key agreement.

Failure of Hybrid Encryption. Unfortunately, hybrid encryption does not
buy us anything in the reverse-firewalls framework. Recall that in a hybrid
encryption scheme, Alice selects a uniformly random key rk for a symmetric-
key scheme and sends rk encrypted under Bob’s public key together with the
encryption of her message under the symmetric-key scheme with key rk. We
might naively hope that we can build a reverse firewall for such a scheme by
simply applying the “rerandomizing firewall” to the “public-key part” of Alice’s
ciphertext. But, this does not work because of the attack in which a corrupted
implementation of Alice chooses a “bad key” rk∗ with which to encrypt the mes-
sage. The “bad key” rk∗ might be known to an adversary; might be chosen so
that the ciphertext takes a specific form that leaks some information; or might
otherwise compromise Alice’s security. So, intuitively, a reverse firewall in such a
scheme must be able to rerandomize the key rk, and it therefore must be able to
convert an encryption under some key rk into an encryption of the same plaintext
under some new key rk′. Unfortunately, we show that any such “key-malleable”
symmetric-key encryption scheme implies public-key encryption. Therefore, it
cannot be faster than public-key encryption and is useless for our purposes.

Key Agreement. Recall that a key-agreement protocol allows Alice and Bob
to jointly select a secret key over an insecure channel. Security requires that
the resulting key is indistinguishable from random to an eavesdropper. Such a
protocol is often used in conjunction with symmetric-key encryption in the clas-
sical setting, where it is justified by composition theorems relating the security
of the message-transmission protocol to the underlying key-agreement proto-
col. Indeed, we give an analogous result (Theorem 2) that works in our setting,
showing that a carefully designed key-agreement protocol with sufficiently secure

Message Transmission with Reverse Firewalls—Secure Communication 347

reverse firewalls can be combined with symmetric-key encryption to produce an
efficient CPA-secure message-transmission protocol with secure reverse firewalls.

This motivates the study of key-agreement protocols with secure reverse fire-
walls. As a first attempt at constructing such an object, we might try to somehow
rerandomize the messages in the celebrated Diffie-Hellman key-agreement pro-
tocol, in which Alice first sends the message ga, Bob then sends gb, and the
shared key is gab. (See Fig. 8.) Here, we run into an immediate problem. Since
the firewall must maintain correctness, no matter what message A∗ the firewall
sends to Bob, it must be the case that the final key is A∗b, where b is chosen
by Bob. But, this allows a corrupt implementation of Bob to influence the key.
For example, Bob can repeatedly resample b until, say, the first bit of the key
A∗b is zero, thus compromising the security. It is easy to see that this problem
is not unique to Diffie-Hellman and in fact applies to any protocol in which “a
party can learn what the key will be before sending a message that influences
the key.”

So, to truly prevent any party from having any control over the final key,
we use a three-round protocol in which Bob sends a commitment of gb as his
first message. Alice then sends ga, and Bob then opens his commitment.3 Of
course, the commitment scheme that Bob uses must itself be rerandomizable
and malleable, so that the firewall can both rerandomize the commitment itself
and the committed group element. Fortunately, we show that a very simple
scheme, a natural variant of the Pedersen commitment, actually suffices.

Since this simple protocol is unauthenticated, it cannot be secure against
active adversaries. While passive security might be sufficient in some settings
(powerful adversaries are known to passively gather large amounts of web traf-
fic [23]), it would be much better to achieve security against active adversaries.
We address this next.

CCA-Security From Key Agreement. We attempt to construct a reverse
firewall that preserves CCA-security (i.e., security against active adversaries that
may “feed” Alice and Bob arbitrary adversarial messages and read Bob’s output).
In this setting, we again prove a generic composition theorem, which shows that
it suffices to find a key-agreement protocol with a reverse firewall that satisfies
certain security properties. In analogy with the passive setting, after agreeing
to a key with Bob, Alice can use symmetric-key encryption to send the actual
plaintext message. The resulting protocol is CCA-secure, and Alice’s reverse
firewall preserves this security. (See Theorem 4.)

To instantiate this scheme, we must construct a key-agreement protocol that
is secure against active adversaries and has a reverse firewall that preserves this
security. Unfortunately, many of the common techniques used in classical key-
agreement protocols (or even protocols that are secure against key control) are
useless here. In particular, most key-agreement protocols that achieve security

3 We note that the problem that we face here is very similar to the problem of key
control, and our solution is similar to solutions used in the key-control literature.
See, e.g., [18].

348 Y. Dodis et al.

against active adversaries do so by essentially having both parties sign the tran-
script at the end of the protocol. Intuitively, this allows the parties to know if
the adversary has tampered with any messages, so that they will never agree to
a key if a man in the middle has modified their messages. But in our setting, we
actually want the firewall to be able to modify the parties’ messages. We there-
fore need to somehow find some unique information that the parties can use to
confirm that they have agreed to the same key without preventing the firewall
from modifying the key. Furthermore, we need the firewall to be able to check
these signatures, so that it can block invalid messages. Therefore, our primary
technical challenge in this context is to find a protocol with some string that
(1) uniquely identifies the key; (2) does not leak the key; (3) respects the fire-
wall’s changes to the parties’ messages; and (4) is efficiently computable from the
transcript. And, of course, the protocol must be secure against active adversaries,
even though it is in some sense “designed to help a man in the middle.”

In spite of these challenges, we construct a protocol with a reverse firewall for
each party that preserves security against active adversaries. Remarkably, our
protocol achieves this extremely strong notion of security with only four rounds
and relatively short messages, and the parties themselves (including the firewall)
only need to perform a small constant number of operations. This compares quite
favorably with protocols that are currently implemented in practice (which of
course are completely insecure in our setting), and we therefore believe that this
protocol can and should be implemented and used in the real world.

This surprising solution, which we describe in detail in Sect. 5.1, uses hashed
Diffie-Hellman (similar in spirit to [27]) and bilinear maps. We also use unique
signatures to prevent the signatures from becoming a channel themselves.

Rerandomizable Encryption and Active Adversaries. Finally, we return
to the question of (necessarily less efficient) protocols based on rerandomizable
encryption, but now in the setting of active adversaries. We show how to achieve
CCA-security in a single round using rerandomizable RCCA-secure encryption [4].
(See Appendix B.) Indeed, we show that such a primitive is actually equivalent to
a one-round protocol with a firewall that preserves CCA-security. Such schemes
are fairly well-studied, and solutions exist [24,36]. But, our work leads to an inter-
esting open question. Currently known schemes are rerandomizable in the sense
that the rerandomization of any valid ciphertext is indistinguishable from a fresh
ciphertext, even with access to a decryption oracle. We ask whether these schemes
can be made “strongly rerandomizable,” in the sense that the same is true even
for invalid ciphertexts. (See Appendix B for the formal definition.) We show the
weaker notion of rerandomizability is equivalent to protocols with firewalls that
are secure against functionality-maintaining corruption, while strong rerandomiz-
ability is equivalent to security against arbitrary corruption.

1.3 Related Work

Message transmission in the classical setting (i.e., without reverse firewalls) is
of course extremely well-studied, and a summary of such work is beyond the

Message Transmission with Reverse Firewalls—Secure Communication 349

scope of this paper. We note, however, that our security definitions for message
transmission protocols follow closely Dodis and Fiore [20].

There have been many different approaches to cryptography in the presence
of compromise. [31] contains a thorough discussion of many of these (though they
naturally do not mention the many relevant papers that appeared simultaneously
with or after their publication, such as [2,5,6,15,21,37,38]). In particular, [31]
contains a detailed comparison of the reverse-firewall framework with many prior
models, showing that RFs generalize much of the prior work on insider attacks
and various related notions. Here, we focus on works whose setting or techniques
are most similar to our own.

Our work can be viewed as a generalization of that of Bellare, Paterson,
and Rogaway [7] in a number of directions. We consider multi-round protocols
in which the parties might not share secret keys, and we consider arbitrarily
compromised adversaries. In order to get around the very strong restrictions
proved in [7], we use the RF framework of [31]. Our techniques are therefore quite
different. However, we do use the deterministic encryption scheme of Bellare et al.
as part of two of our protocols. (See Appendix A.)

Our work is closely related to Mironov and Stephens-Davidowitz [31], which
introduces the reverse-firewalls framework. [31] demonstrate feasibility of this
framework by constructing reverse firewalls for parties participating in Oblivious
Transfer and Secure Function Evaluation protocols—very strong cryptographic
primitives. The fact that such strong primitives can be made secure in this model
is quite surprising and bodes well for the reverse-firewalls framework. However,
these protocols are very inefficient and therefore mostly of theoretical interest.
And, while the primitives considered in [31] have very strong functionality, the
security notions that they achieve are rather weak (e.g., security in the semi-
honest model). To fulfill the promise of reverse firewalls, we need to consider
protocols of more practical importance. We construct much more efficient proto-
cols for widely used primitives with very strong security guarantees. Naturally,
we inherit some of the techniques of [31], but we also develop many new ideas.

Bellare and Hoang [5] build on [7] in a different direction, showing how to
build deterministic and hedged public-key encryption schemes that are secure
against randomness subversion and Algorithm Substitution Attacks. Essentially,
they show public-key encryption schemes that are secure even when the sender is
compromised, provided that (1) the type of compromise is restricted; and (2) the
plaintext itself comes from a high-entropy distribution. These notions of security
are much weaker than ours, but they achieve them without the use of an RF.
(Recall that [7] implies that semantically secure public-key encryption secure
against Algorithm Substitution Attacks is not possible in the classical model.)

Recently, Ateniese, Magri, and Venturi studied reverse firewalls for signature
schemes and showed a number of clever solutions [2]. Their work can be con-
sidered as complementary to ours, as we are concerned with privacy, while they
consider authentication. We also note that our more advanced key-agreement
scheme uses unique signatures, and we implicitly rely on the fact that unique
signatures have a (trivial) reverse firewall. Indeed, the more general primitive of

350 Y. Dodis et al.

rerandomizable signatures that Ateniese et al. consider would also suffice for our
purposes and might be more efficient in practice.

Our frequent use of rerandomization to “sanitize” messages is very similar
to much of the prior work on subliminal channels [9,10,16,17,39], divertible
protocols [9,10,32], collusion-free protocols [1,29], etc—particularly the elegant
work of Blaze, Bleumer, and Strauss [9] and Alwen, shelat, and Visconti [1].
Again, we refer the reader to [31] for a thorough discussion of these models and
their relationship to the reverse-firewall framework.

Finally, we note that some of our study of key agreement is similar to work
on key-agreement protocols secure against active insiders, and the study of key
control (e.g., [18,26,35]). These works consider key-agreement protocols involv-
ing at least three parties, in which one or more of the participants wishes to
maliciously fix the key or otherwise subvert the security of the protocol. Some
of the technical challenges that we encounter are similar to those encountered
in the key control literature, and indeed, the simple commitment-based proto-
col that we present in Sect. 4.1 can be viewed as a simple instantiation of some
of the known (more sophisticated) solutions to the key-control problem (see,
e.g., [18]). However, since prior work approached this problem from a differ-
ent perspective—with three or more parties and without reverse firewalls—our
more technical solutions presented in Sect. 5.1 are quite different. In particular,
almost all prior work on key agreement focuses on creating protocols that pro-
duce a “non-malleable” key, whereas our protocols need some type of malleability
specifically to allow the firewall to rerandomize the key. Perhaps surprisingly, we
accomplish this without sacrificing security, and our techniques might therefore
be of independent interest.

2 Definitions

2.1 Reverse Firewalls

We use the definition of reverse firewalls from [31] (and we refer the reader to [31]
for further discussion of the reverse-firewall framework). A reverse firewall W is
a stateful algorithm that maps messages to messages. For a party A and reverse
firewall W, we define W ◦ A as the “composed” party in which W is applied to
the messages that A receives before A “sees them” and the messages that A sends
before they “leave the local network of A.” W has access to all public parameters,
but not to the private input of A or the output of A. (We can think of W as an
“active router” that sits at the boundary between Alice’s private network and
the outside world and modifies Alice’s incoming and outgoing messages.) We
repeat all relevant definitions from [31] below, and we add two new ones.

As in [31], we assume that a cryptographic protocol comes with some func-
tionality or correctness requirements F and security requirements S. (For exam-
ple, a functionality requirement F might require that Alice and Bob output the
same thing at the end of the protocol. A security requirement S might ask that
no efficient adversary can distinguish between the transcript of the protocol and

Message Transmission with Reverse Firewalls—Secure Communication 351

a uniformly random string.) Throughout, we use Ā to represent arbitrary adver-
sarial implementations of party A and Ã to represent functionality-maintaining
implementations of A (i.e., implementations of A that still satisfy the functional-
ity requirements of the protocol). For a protocol P with party A, we write PA→˜A
to represent the protocol in which the role of party A is replaced by party Ã.

We are only interested in firewalls that themselves maintain functionality.
In other words, the composed party W ◦ A should not break the correctness
of the protocol. (Equivalently, PA→W◦A should satisfy the same functionality
requirements as the underlying protocol P.) We follow [31] in requiring some-
thing slightly stronger—reverse firewalls should be “stackable”, so that many
reverse firewalls composed in series W ◦· · · ◦W ◦A still do not break correctness.

Definition 1 (Reverse firewall). A reverse firewall W maintains functional-
ity F for party A in protocol P if protocol P satisfies F , the protocol PA→W◦A
satisfies F , and the protocol PA→W◦···◦W◦A also satisfies F . (I.e., we can compose
arbitrarily many reverse firewalls without breaking functionality.)

Of course, a firewall is not interesting unless it provides some benefit. The
most natural reason to deploy a reverse firewall is to preserve the security of
a protocol, even in the presence of compromise. The below definition (which
again follows [31]) captures this notion by asking that the protocol obtained by
replacing party A with W ◦ Ã for an arbitrary corrupted party Ã still achieves
some notion of security. For example, when we consider message transmission,
we will want the firewall to guarantee Alice’s privacy against some adversary,
even when Alice’s own computer has been corrupted.

Definition 2 (Security preservation). A reverse firewall strongly preserves
security S for party A in protocol P if protocol P satisfies S, and for any
polynomial-time algorithm Ā, the protocol PA→W◦Ā satisfies S. (I.e., the fire-
wall can guarantee security even when an adversary has tampered with A.)

A reverse firewall preserves security S for party A in protocol P satisfying
functionality requirements F if protocol P satisfies S, and for any polynomial-
time algorithm Ã such that PA→˜A satisfies F , the protocol PA→W◦˜A satisfies S.
(I.e., the firewall can guarantee security even when an adversary has tampered
with A, provided that the tampered implementation does not break the function-
ality of the protocol.)

For technical reasons, we will also need a new definition not present in [31].
Wewish to showgeneric composition theorems, allowing us to construct amessage-
transmission protocol with secure reverse firewall from any key-agreement pro-
tocol with its own firewalls. In order to accomplish this, we will need the notion
of detectable failure. Essentially, a protocol fails detectably if we can distinguish
between transcripts of valid runs of the protocol and invalid transcripts. For sim-
plicity, we assume that honest parties always output ⊥ when they receive a mal-
formed message (e.g., when a message that should be a pair of group elements is
not a pair of group elements). While the general notion of validity is a bit technical,

352 Y. Dodis et al.

we will use it in very straightforward ways. (E.g., transcripts will be valid if and
only if a commitment is properly opened and a certain signature is valid.)

Definition 3 (Valid transcripts). A sequence of bits r and private input I
generate transcript T in protocol P if a run of the protocol P with input I
in which the parties’ coin flips are taken from r results in the transcript T . A
transcript T is a valid transcript for protocol P if there is a sequence r and
private input I generating T such that no party outputs ⊥ at the end of the run.
(Here, we assume that the public input is part of the transcript.) A protocol has
unambiguous transcripts if for any valid transcript T , there is no possible input
I and coins r generating T that results in a party outputting ⊥. (In other words,
a valid transcript never results from a failed run of the protocol.)

Definition 4 (Detectable failure). A reverse firewall W detects failure for
party A in protocol P if

– PA→W◦A has unambiguous transcripts;
– the firewall W outputs the special symbol ⊥ when run on any transcript that

is not valid for PA→W◦A; and
– there is a polynomial-time deterministic algorithm that decides whether a tran-

script T is valid for PA→W◦A.

We will also need the notion of exfiltration resistance, introduced in [31]. Intu-
itively, a reverse firewall is exfiltration resistant if “no corrupt implementation
of Alice can leak information through the firewall.” We say that it is exfiltration
resistant for Alice against Bob if Alice cannot leak information to Bob through
the firewall, and we say that it is exfiltration resistant against eavesdroppers (or
just exfiltration resistant) if Alice cannot leak information through the firewall
to an adversary that is only given access to the protocol transcript.

The second definition below (which uses the notion of valid transcripts) is
new to this paper and is necessary for our composition theorems.

Fig. 1. LEAK(P,A,B,W, λ), the exfiltration resistance security game for a reverse fire-
wall W for party A in protocol P against party B with input I. E is the adversary, λ
the security parameter, SB̄ the state of B̄ after the run of the protocol, I valid input
for P, and T ∗ is the transcript resulting from a run of the protocol mathcalPA→A∗,B→B̄

with input I.

Message Transmission with Reverse Firewalls—Secure Communication 353

Definition 5 (Exfiltration resistance). A reverse firewall is exfiltration
resistant for party A against party B in protocol P satisfying functionality F if
no PPT algorithm E with output circuits Ã and B̃ such that PA→˜A and PB→˜B
satisfy F has non-negligible advantage in LEAK(P,A,B,W, λ). If B is empty,
then we simply say that the firewall is exfiltration resistant.

A reverse firewall is exfiltration resistant for party A against party B in
protocol P with valid transcripts if no PPT algorithm E with output circuits
Ã and B̃ such that PA→˜A and PB→˜B produce valid transcripts for P has non-
negligible advantage in LEAK(P,A,B,W, λ). If B is empty, then we simply say
that the firewall is exfiltration resistant with valid transcripts.

A reverse firewall is strongly exfiltration resistant for party A against
party B in protocol P if no PPT adversary E has non-negligible advantage in
LEAK(P,A,B,W, λ). If B is empty, then we say that the firewall is strongly
exfiltration resistant.

2.2 Message-Transmission Protocols

A message-transmission protocol is a two-party protocol in which one party,
Alice, is able to communicate a plaintext message to the other party, Bob. (For
simplicity, we only formally model the case in which Alice wishes to send a
single plaintext to Bob per run of the protocol, but this of course naturally
extends to a more general case in which Alice and Bob wish to exchange many
plaintext messages.) We consider two notions of security for such messages. First,
we consider CPA security, in which the adversary must distinguish between the
transcript of a run of the protocol in which Alice communicates the plaintext
m0 to Bob and the transcript with which Alice communicates m1 to Bob, where
m0 and m1 are adversarially chosen plaintexts. (Even in this setting, we allow
the adversary to start many concurrent runs of the protocol with adaptively
chosen plaintexts.) Our strongest notion of security is CCA security in which
the adversary may “feed” the parties any messages and has access to a decryption
oracle. Our security definitions are similar in spirit to [20], but adapted for our
setting.

Session Ids. Throughout this paper, we consider protocols that may be run
concurrently many times between the same two parties. In order to distinguish
one run of a protocol from another, we therefore “label” each run with a unique
session id, denoted sid. We view sid as an implicit part of every message, and we
often ignore sid when it is not important. Our parties and firewalls are stateful,
and we assume that the parties and the firewall maintain a list of the relevant
session ids, together with any information that is relevant to continue the run of
the protocol corresponding to sid (such as the number of messages sent so far,
any values that need to be used later in the protocol, etc.). We typically suppress
explicit reference to these states. In our security games, the adversary may choose
the value sid for each run of the protocol, provided that each party has a unique
run for each session sid. (In fact, it does not even make sense for the adversary

354 Y. Dodis et al.

to use the same sid for two different runs of the protocol with the same party,
as this party will necessarily view any calls with the same sid as corresponding
to a single run of the protocol. However, as is clear from our security games,
an active adversary may maintain two separate runs of a protocol with two
different parties but the same sid.) In practice, sid can be a simple counter or
any other nonce (perhaps together with any practical information necessary for
communication, such as IP addresses). We note in passing that, in the setting
of reverse firewalls, a counter is preferable to, e.g., a random nonce to avoid
providing a channel through sid, but such concerns are outside of our model and
the scope of this paper.

The definition below makes the above formal and provides us with some
useful terminology.

Definition 6 (Message-transmission protocol). A message-transmission
protocol is a two-party protocol in which one party, Alice, receives as input a
plaintext m from some plaintext space M. The protocol is correct if for any
input m ∈ M, Bob’s output is always m.

We represent the protocol by four algorithms P = (setup, nextA,
nextB, returnB). setup takes as input 1λ, where λ is the security parameter, and
returns the starting states for each party, SA, SB, which consist of both private
input, σA and σB respectively, and public input π. Each party’s next procedure
is a stateful algorithm that takes as input sid and an incoming message, updates
the party’s state, and returns an outgoing message. The returnB procedure takes
as input Bob’s state SB and sid and returns Bob’s final output.

We say that a message-transmission protocol is

– unkeyed if setup does not return any private input σA or σB;
– singly keyed if setup returns private input σB for Bob but none for Alice;
– publicly keyed if setup returns private input for both parties σA and σB, but

these private inputs are independently distributed; and
– privately keyed if setup returns private input for both parties whose distribu-

tions are dependent.

When we present protocols, we will drop the formality of defining explicit
functions P = (setup, nextA, nextB, returnB) and states for the parties, preferring
instead to use diagrams as in Fig. 4. But, this formulation is convenient for our
security definitions. In particular, we present the relevant subprocedures for our
security games in Fig. 2. An adversary plays the game depicted in Fig. 2 by first
calling initialize (receiving as output π) and then making various calls to the
other subprocedures. Each time it calls a subprocedure, it receives any output
from the procedure. The game ends when the adversary calls finalize, and the
adversary wins if and only if the output of finalize is one.

The below definitions capture formally the intuitive notions of security that
we presented above. In particular, the CPA security definition allows the adver-
sary to start arbitrarily many concurrent runs of the protocol with adversarial
input, but it does not allow the adversary to change the messages sent by the

Message Transmission with Reverse Firewalls—Secure Communication 355

Fig. 2. Procedures used to define security for message-transmission protocol P =
(setup, nextA, nextB). An adversary plays this game by first calling initialize and then
making various oracle calls. The game ends when the adversary calls finalize, and the
output of finalize is one if the adversary wins and zero otherwise.

two parties or to send its own messages. We also define forward secrecy, which
requires that security hold even if the parties’ secret keys may be leaked to the
adversary.

Definition 7 (Message-transmission security). A message-transmission
protocol is called

– chosen-plaintext secure (CPA-secure) if no PPT adversary has non-negligible
advantage in the game presented in Fig. 2 when get-nextA(sid,M) and
get-nextB(sid,M) output ⊥ unless this is the first get-next call with this sid
or M is the output from the previous get-nextA call with the same sid or the
previous get-nextB with the same sid respectively (i.e., the adversary is pas-
sive); and

– chosen-ciphertext secure (CCA-secure) if no PPT adversary has non-negligible
advantage in the game presented in Fig. 2 with access to all oracles.

We say that the protocol is chosen-plaintext (resp. chosen-ciphertext) secure
without forward secrecy if the above holds without access to the get-secrets oracle.

We note that it does not make sense to consider chosen-ciphertext security
when Bob may be corrupted. In this case, the output of get-outputB could be

356 Y. Dodis et al.

arbitrary. (Note that the firewall can potentially “sanitize” Bob’s messages, but
it of course does not have access to his output.) We therefore only consider
firewalls that preserve CPA security for Bob.

2.3 Key Agreement

Key-agreement protocols will play a central role in our constructions, so we now
provide a definition of key agreement that suffices for our purposes. Our notion
of key agreement closely mirrors the definitions from the previous section.

Definition 8 (Key agreement). A key-agreement protocol is represented by
five algorithms, P = (setup, nextA, nextB, returnA, returnB). setup takes as input
1λ, where λ is the security parameter and returns the starting states for each
party, SA, SB, which consists of public input π and the private input for each
party σA and σB. Each party’s next procedure is a stateful algorithm that takes
as input sid and an incoming message, updates the party’s state, and returns
an outgoing message. Each party’s return procedure takes as input the relevant
party’s state and sid and returns the party’s final output from some key space K
or ⊥. We also allow auxiliary input aux to be added to Alice’s state before the
first message of a protocol is sent.

The protocol is correct if Alice and Bob always output the same thing at the
end of the run of a protocol for any random coins and auxiliary input aux.

We say that a key-agreement protocol is

– unkeyed if setup does not return any private input σA or σB;
– singly keyed if setup returns private input σB for Bob but no private input σA

for Alice; and
– publicly keyed if setup returns private input for both parties σA and σB.

Definition 9 (Key-agreement security). A key-agreement protocol is

– secure against passive adversaries if no probabilistic polynomial-time adver-
sary has non-negligible advantage in the game presented in Fig. 3 when
get-nextA(sid,M) and get-nextB(sid,M) output ⊥ unless this is the first
get-next call with this sid or M is the output from the previous get-nextB call
with the same sid or the previous get-nextA call with the same sid respectively
(i.e., the adversary is passive);

– secure against active adversaries for Alice if no probabilistic polynomial-time
algorithm has non-negligible advantage in the game presented in Fig. 3 without
access to the get-outputA oracle;

– secure against active adversaries for Bob if no probabilistic polynomial-time
algorithm has non-negligible advantage in the game presented in Fig. 3 without
access to the get-outputB oracle; and

– secure against active adversaries if it is secure against active adversaries for
both Bob and Alice; and

Message Transmission with Reverse Firewalls—Secure Communication 357

Fig. 3. Procedures used to define security for key-agreement protocol P =
(setup, nextA, nextB, returnA, returnB). An adversary plays this game by first calling
initialize and then making various oracle calls. The game ends when the adversary
calls finalize, and the output of finalize is one if the adversary wins and zero otherwise.
We suppress the auxiliary input aux when it is irrelevant.

– authenticated for Bob if no probabilistic polynomial-time algorithm playing
the game presented in Fig. 3 can output a valid transcript with corresponding
session id sid unless returnB(SB, sid) �= ⊥ or compromised = true. (I.e., it
is hard to find a valid transcript unless Bob returns a key.) Furthermore,
if the transcript is valid and get-outputA(sid) �= ⊥ then get-outputA(sid) =
returnB(sid). (I.e., if the transcript is valid and Alice outputs a key, then Bob
outputs the same key.)

Note that these definitions are far from standard. In particular, in the case
of active adversaries, we define security for Alice in terms of the keys that Bob
outputs and security for Bob in terms of the keys that Alice outputs. This may
seem quite counterintuitive. But, in our setting, we are worried that Alice may
be corrupted. In this case, we cannot hope to restrict Alice’s output after she
receives invalid messages. (The firewall can modify Alice’s messages, but not her
output.) So, the best we can hope for is that the firewall prevents a tampered

358 Y. Dodis et al.

implementation of Alice (together with an active adversary) from “tricking” Bob
into returning an insecure key.

3 A Two-Round Protocol from Rerandomizable
Encryption

We first consider the simple case of CPA-secure two-round schemes in which the
first message is a public key chosen randomly by Bob and the second message
is an encryption of Alice’s plaintext under this public key. Figure 4 shows the
protocol.

In order to provide a reverse firewall for Alice in this protocol, the encryption
scheme must be rerandomizable. In order to provide a reverse firewall for Bob,
the scheme must be key malleable. Intuitively, a scheme is key malleable if a third
party can “rerandomize” a public key and map ciphertexts under the “rerandom-
ized” public key to ciphertexts under the original public key. We include formal
definitions in the full version, and we observe there that ElGamal encryption
suffices [22].

Fig. 4. Two round message-transmission protocol using the public-key encryption
scheme (KeyGen,Enc,Dec).

Fig. 5. Reverse firewall for Alice for the protocol shown in Fig. 5 that works if the
encryption scheme is rerandomizable.

Message Transmission with Reverse Firewalls—Secure Communication 359

Fig. 6. Reverse firewall for Bob for the protocol shown in Fig. 4 that works if the
encryption scheme is key malleable. We suppress the randomness r used as input to
KeyMaul and CKeyMaul.

If the underlying encryption scheme in Fig. 4 is rerandomizable, then we can
build a reverse firewall for Alice as in Fig. 5. If it is key malleable, then we can
build a reverse firewall for Bob as in Fig. 6. The following theorem shows that
this protocol and its reverse firewalls are secure. The simple proof is included in
the full version [22].

Theorem 1. The unkeyed message-transmission protocol shown in Fig. 4 is
CPA-secure if the underlying encryption scheme is semantically secure. If the
scheme is also (strongly) rerandomizable, then the reverse firewall shown in Fig. 5
(strongly) preserves security for Alice and (strongly) resists exfiltration for Alice.
If the scheme is key malleable, then the reverse firewall shown in Fig. 6 main-
tains functionality for Bob, strongly preserves Bob’s security, and strongly resists
exfiltration for Bob against Alice.

3.1 Hybrid encryption fails.

A major drawback of the above scheme is that it requires public-key operations
of potentially very long plaintexts, which can be very inefficient in practice.
A common solution in the classical setting is to use hybrid encryption, in which
Encpk(m) is replaced by (Encpk(rk),SEncrk(m)), where SEnc is some suitable
symmetric-key encryption scheme and rk is a freshly chosen uniformly random
key for SEnc. However, if we simply replace the public-key encryption in Fig. 4
with the corresponding hybrid-key encryption scheme, then this fails spectacu-
larly. For example, a tampered version of Alice Ã can choose some fixed secret
key rk∗ and send the message (Encpk(rk∗),SEncrk∗(m)). If rk∗ is a valid key,
then Ã maintains functionality, but an adversary that knows rk∗ can of course
read any messages that Alice sends.

So, in order for such a protocol to have a secure reverse firewall, the RF
must be able to maul the encrypted key Encpk(rk) into Encpk(rk′) for some

360 Y. Dodis et al.

rk′ and then convert the encrypted plaintext SEncrk(m)) into an encryption
under this new key SEncrk′(m)). In particular, the symmetric-key scheme must
be “key malleable.” Unfortunately, such a scheme implies public-key encryption.
Therefore, our supposed “symmetric-key” scheme actually must use public-key
primitives. So, hybrid encryption buys us nothing. (In the full version [22], we
give a proof sketch.)

Remark (Informal). Any key-malleable symmetric-key encryption scheme
implies public-key encryption.

4 A Solution Using Key Agreement

In this section, we remain in the setting in which neither Alice nor Bob has a
public key, so we are still interested in CPA security. (We address CCA security
in the next section.) The protocol from Sect. 3 works, but it requires a public-
key operation on the plaintext, which may be very long. In practice, this can be
very inefficient. And, we showed in Sect. 3.1 that one common solution to this
problem in the classical setting, hybrid encryption, seems hopeless with reverse
firewalls because it allows Alice to choose a key rk that will be used to encrypt
the plaintext—thus allowing a tampered version of Alice to “choose a bad key.”

Fig. 7. The message-transfer protocol obtained by combining a key-agreement scheme
(setup, nextA, nextB, returnA, returnB) and a nonce-based encryption scheme, (Enc,Dec).

Message Transmission with Reverse Firewalls—Secure Communication 361

So, we instead consider an alternative common solution to this efficiency
problem: key agreement followed by symmetric-key encryption. (See Fig. 7.) As
in Appendix A, we use a nonce-based encryption scheme with unique ciphertexts.
We can view this as a modification of hybrid encryption in which “Alice and Bob
together choose the key rk” that will be used to encrypt the plaintext. More
importantly from our perspective, the messages that determine the key will go
through the firewall. As an added benefit, once a key is established, Alice can
use it to efficiently send multiple messages, not just one, without any additional
public-key operations (though we do not model this here).

The composition theorem below shows that this protocol can in fact have a
reverse firewall for both parties, provided that the key-agreement protocol itself
has a reverse firewall that satisfies some suitable security requirements. See the
full version for the proof. In the next section, we construct such a protocol.

Theorem 2 (Composition theorem for CPA security). Let WA and WB

be reverse firewalls in the underlying key-agreement protocol in Fig. 7 for Alice
and Bob respectively. Let W∗

A be the firewall for Alice in the full protocol in Fig. 7
obtained by applying WA to the key-agreement messages and then letting the last
message through if WA does not output ⊥ and replacing the last message by ⊥
otherwise. Let W∗

B be the firewall for Bob in the full protocol in Fig. 7 obtained by
applying WB to the key-agreement messages and simply letting the last message
through. Then,

1. the protocol in Fig. 7 is CPA-secure if the underlying key-agreement protocol is
secure against passive adversaries and the underlying nonce-based encryption
scheme is CPA-secure;

2. W∗
B preserves CPA security if WB preserves security of the key-agreement

protocol; and
3. W∗

A preserves CPA security if the encryption scheme has unique ciphertexts
and WA preserves semantic security and is exfiltration resistant against Bob.

Finally, we note that strong security preservation is not possible for this
protocol (at least for Alice). (We include a proof sketch in the full version [22].)

Remark 1 (Informal). There is no reverse firewall for Alice in the protocol
illustrated in Fig. 7 that maintains functionality and strongly preserves Alice’s
security.

4.1 Key Agreement Secure Against Passive Adversaries

Theorem 2 motivates the study of unkeyed key-agreement protocols with reverse
firewalls that preserve security against passive adversaries. In the classical setting
(i.e., without reverse firewalls), the canonical example is the celebrated key-
agreement protocol of Diffie and Hellman [19], shown in Fig. 8, whose security
follows immediately from the hardness of DDH over the base group G. We use
this as an example to illustrate the basic idea of a reverse firewall in the key-
agreement setting.

362 Y. Dodis et al.

Fig. 8. Diffie-Hellman key agreement over a group G of prime order p with generator g.

Diffie-Hellman key agreement has a simple reverse firewall for Alice, which
raises both messages to a single random power, α ∈ Z

∗
p. We present this reverse

firewall in Fig. 9. Note that this firewall effectively replaces Alice’s message with
a uniformly random message. Security then follows from the security of the
underlying protocol, since the transcript and resulting key in the two cases are
distributed identically.

But, this protocol cannot have a reverse firewall that maintains correctness
and preserves security for Bob, as we described in the introduction. In particular,
we run the risk that one party has the ability to selectively reject keys.

To solve this problem, we add an additional message to the beginning of the
protocol in which Bob commits to the message that he will send later. Of course,
in order to permit a secure firewall, the commitment scheme itself must be both
malleable (so that the firewall can rerandomize the underlying message that Bob
has committed to, mapping a commitment of B to a commitment of Bα) and reran-
domizable (so that the randomness used by Bob to commit and open will not leak
any information about his message). To achieve our strongest level of security,

Fig. 9. Reverse firewall for Alice in the protocol from Fig. 8.

Message Transmission with Reverse Firewalls—Secure Communication 363

Fig. 10. A variant of Diffie-Hellman key agreement over a group G of prime order p
with public generator g. (Com,Open) is a commitment scheme.

Fig. 11. Reverse firewall for either Alice or Bob in the protocol from Fig. 8. Maul(C, α)
takes a commitment C = Com(B) and converts it into a commitment of Bα. Rerand(C)
takes a commitment C = Com(B) and converts it into a uniformly random commitment
of B. We assume that a rerandomized and mauled commitment can be opened with
access to an opening of the original commitment (and the randomness used in the
rerandomization and mauling).

364 Y. Dodis et al.

we also need the scheme to be statistically hiding and for each commitment to
have a unique opening for a given message. (These requirements are easily met in
practice. For example, a simple variant of the Pedersen commitment suffices [33].
For completeness, we present such a scheme in the full version [22].) The protocol
is shown in Fig. 10. In Fig. 11, we present a single reverse firewall for this proto-
col that happens to work for either party. (Each party would need to deploy its
own version of this firewall to guarantee its own security. It just happens that each
party’s firewall would have the same “code.”)

In the full version, we prove the following theorem [22].

Theorem 3. The protocol in Fig. 10 is secure against passive adversaries if
DDH is hard in G. The reverse firewall W in Fig. 11 is functionality maintaining.
If the commitment scheme is statistically hiding, then W preserves security for
Alice and is strongly exfiltration resistant against Bob. If the commitment scheme
is computationally binding, then W is exfiltration resistant for Bob against Alice
and preserves security for Bob. W also detects failure for both parties.

5 CCA-security Using Key Agreement

In the setting of the previous section, with no public-key infrastructure, it is
trivially impossible to achieve CCA-security. (An adversary can simply “pretend
to be Bob” and read Alice’s plaintext.) In this section, we show that a CCA-
secure message-transmission protocol with reverse firewalls does in fact exist
in the publicly keyed setting. In particular, below, we give the CCA analogue
of Theorem 2, showing that a key-agreement protocol that is secure against
active adversaries and has sufficiently secure reverse firewalls together with a
symmetric-key encryption scheme suffices. As in the previous section, this key-
agreement-based protocol has the additional benefit that it is efficient, in the
sense that it does not apply public-key operations to the plaintext. In Sect. 5.1,
we construct a key-agreement protocol that suffices.

We now present our stronger composition theorem. (Recall that Bob’s reverse
firewall can only preserve CPA security. Such a firewall is already given by
Theorem 2, so we do not repeat this here.) See the full version for the proof [22].

Theorem 4 (Composition theorem for CCA security). Define WA and
W∗

A as in Theorem 2. Then,

1. the protocol in Fig. 7 is CCA-secure if the underlying key-agreement protocol
is secure against active adversaries for Alice and the underlying nonce-based
encryption scheme is CCA-secure; and

2. W∗
A preserves CCA-security if the encryption scheme has unique ciphertexts,

the key-agreement protocol is authenticated for Bob, and WA preserves secu-
rity for Alice, is exfiltration resistant against Bob with valid transcripts, and
detects failure.

Message Transmission with Reverse Firewalls—Secure Communication 365

5.1 Key Agreement Secure Against Active Adversaries

Theorem 4 motivates the study of key-agreement protocols with reverse firewalls
that preserve security against active adversaries. In the classical setting, the
common solution is essentially for each of the parties to sign the transcript of
this run of the protocol. However, this solution does not work in our setting
because it is important for us that messages can be altered without breaking
functionality, so that the firewall can rerandomize messages when necessary.

Of course, while we want to allow for the possibility that Alice and Bob see
a different transcript but still output a key, we still want them to agree on the
key itself. This leads to the idea of signing some deterministic function of the
key, so that the signatures can be used to verify that the parties share the same
key without necessarily requiring them to share the same transcript. This is the
heart of our solution.

We also have to worry that the signatures themselves can provide channels,
allowing tampered versions of the parties to leak some information. We solve this
by using a unique signature scheme, as defined by [30]. (See [2] for a thorough
analysis of signatures in the context of reverse firewalls and corrupted implemen-
tations, including alternative ways to implement signatures that would suffice
for our purposes.)

Furthermore, in order for our firewall to fail detectably, it has to be able
to check the signature itself—so that it can distinguish a valid transcript from
an invalid one. So, we would like the parties to sign a deterministic function
of gab that is efficiently computable given only access to ga and gb. This leads
naturally to the use of a symmetric bilinear map e : G × G → GT . The parties
then sign e(ga, gb). Of course, gab is no longer indistinguishable from random in
the presence of a bilinear map. But, it can be hard to compute. So, we apply a
cryptographic hash function H to gab in order to extract the final key H(gab).

We now provide two definitions to make this precise.

Definition 10 (Unique Signatures). A unique signature scheme is a triple of
algorithms (KeyGen,USig,Ver). KeyGen takes as input 1λ where λ is the security
parameter and outputs a public key pk and a private key sk. Sig takes as input
the secret key sk and a plaintext m and outputs a signature τ . Ver takes as input
the public key pk, a signature τ and a message m and outputs either true or
false. A signature scheme is correct if Verpk(USigsk(m),m) = true. It is unique
if for each plaintext m and public key pk, there is a unique signature τ such that
Verpk(τ,m) = true.

A signature scheme is secure against adaptive chosen-message existential-
forgery attacks if no adversary with access to the public key and a signature
oracle can produce a valid signature not returned by the oracle.

We will need to use a group with a symmetric bilinear map in which the
following variant of the computational Diffie-Hellman assumption holds.

Definition 11 (Any-base CDH). For a group G of order p, we say that any-
base CDH is hard in G if no probabilistic polynomial-time adversary taking input

366 Y. Dodis et al.

Fig. 12. Authenticated key agreement with a firewall for both parties. USig is a unique
signature.

(g, ga, gb) where g
$← G and (a, b) $← Z

2
p has non-negligible probability of return-

ing (ha, hb, hab) for some element h ∈ G \ {1G}.

We now present our protocol in Fig. 12 with a reverse firewall for both parties
in Fig. 13. It requires a unique signature scheme (USig,Ver) with public keys pkA
for Alice and pkB for Bob and corresponding secret keys skA and skB respectively,
a base group G with generator g in which any-base CDH is hard, a target group
GT , and a non-trivial bilinear map between the two groups e : G×G → GT . We
also need a function H : G → {0, 1}� for some polynomially large � that extracts
hardcore bits from CDH. Presumably a standard cryptographic hash function
will work. For simplicity, we model H as a random oracle, but we note that the
proof can be modified to apply to any function H such that (ga, gb,H(gab)) is
indistinguishable from random. (See [27] for a discussion of such functions.) We
stress again that this protocol is remarkably efficient, and we think that it can

Message Transmission with Reverse Firewalls—Secure Communication 367

Fig. 13. Reverse firewall for either Alice or Bob in the protocol from Fig. 12. C is a
commitment of the group element A. Maul(C, α) takes a commitment C = Com(A) and
converts it into a commitment of Aα. Rerand(C) takes a commitment C = Com(A) and
converts it into a uniformly random commitment of A. We assume that a rerandomized
and mauled commitment can be opened with access to an opening of the original
commitment.

and should be used in practice. The proof of the following theorem is in the full
version [22].

Theorem 5. The protocol shown in Fig. 12 is authenticated for Bob and secure
against active adversaries if the signature scheme is secure and any-base CDH
is hard in G. The reverse firewall W shown in Fig. 13 preserves security against
active adversaries for Alice, preserves authenticity, is exfiltration resistant for
Alice against Bob with valid transcripts, and detects failure for Alice. W also
preserves security against active adversaries for Bob, is exfiltration resistant for
Bob against Alice with valid transcripts, and detects failure for Bob.

368 Y. Dodis et al.

References

1. Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer,
Heidelberg (2008)

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
CCS (2015)

3. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. Guardian Weekly, September 2013

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)

5. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015)

6. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: CCS (2015)

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). Full version: [8]

8. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. Cryptology ePrint Archive, report 2014/438 (2014). http://
eprint.iacr.org/

9. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

10. Burmester, M., Desmedt, Y.G.: All Languages in NP have divertible zero-
knowledge proofs and arguments under cryptographic assumptions. In: Damg̊ard,
I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 1–10. Springer, Heidelberg
(1991)

11. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003)

12. Vulnerability summary for CVE-2014-1260 (‘Heartbleed’), April 2014. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1260

13. Vulnerability summary for CVE-2014-1266 (‘goto fail’), February 2014. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266

14. Vulnerability summary for CVE-2014-6271 (‘Shellshock’), September 2014. http://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

15. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015)

16. Desmedt, Y.G.: Abuses in cryptography and how to fight them. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 375–389. Springer, Heidelberg (1990)

17. Desmedt, Y.: Subliminal-free sharing schemes. In: Information Theory (1994)
18. Desmedt, Y.G., Pieprzyk, J., Steinfeld, R., Wang, H.: A non-malleable group key

exchange protocol robust against active insiders. In: Katsikas, S.K., López, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–
475. Springer, Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1260
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1260
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

Message Transmission with Reverse Firewalls—Secure Communication 369

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

20. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513.
Springer, Heidelberg (2014)

21. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015)

22. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls–secure communication on corrupted machines. Cryptology ePrint Archive,
report 2015/548 (2015). http://eprint.iacr.org/2015/548

23. Greenwald, G.: No Place to Hide: Edward Snowden the N.S.A. and the U.S. Sur-
veillance State. Metropolitan Books, New York (2014)

24. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004)

25. Juniper vulnerability (2015). https://kb.juniper.net/InfoCenter/index?
page=content&id=JSA10713

26. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
CCS (2005)

27. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on Gap Hashed Diffie-
Hellman. In: PKC (2007)

28. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

29. Lepinksi, M., Micali, S., Shelat, A.: Collusion-free protocols. In: STOC (2005)
30. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: FOCS (1999)
31. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,

E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015)

32. Okamoto, T., Ohta, K.: Divertible zero knowledge interactive proofs and commu-
tative random self-reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990)

33. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

34. Perlroth, N., Larson, J., Shane, S.: National Security Agency able to foil basic
safeguards of privacy on Web. The New York Times, September 2013

35. Pieprzyk, J., Wang, H.: Key control in multi-party key agreement protocols. In:
Workshop on Coding, Cryptography and Combinatorics (2003)

36. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007)

37. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. Cryptology ePrint Archive, report 2015/695 (2015). https://
eprint.iacr.org/2015/695

38. Schneier, B., Fredrikson, M., Kohno, T., Ristenpart, T.: Surreptitiously weakening
cryptographic systems. Technical report, IACR Cryptology ePrint Archive, 2015:
97 (2015). http://eprint.iacr.org/2015/97

39. Simmons, G.: The prisoners’ problem and the subliminal channel. In: Chaum, D.
(ed.) CRYPTO 1983, pp. 51–67. Springer, New York (1984)

40. https://www.us-cert.gov/ncas/alerts/TA15-051A. February 2015

http://eprint.iacr.org/2015/548
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713
https://kb.juniper.net/InfoCenter/index?page=content&id=JSA10713
https://eprint.iacr.org/2015/695
https://eprint.iacr.org/2015/695
http://eprint.iacr.org/2015/97
https://www.us-cert.gov/ncas/alerts/TA15-051A

370 Y. Dodis et al.

A The symmetric-key setting

Here, we consider the setting in which Alice and Bob share a private key. We
observe that a one-round protocol due to Bellare, Paterson, and Rogaway pro-
vides a solution that does not even need a reverse firewall [7]. We also use this
scheme elsewhere to build protocols that do not rely on shared private keys. We
first define nonce-based encryption.

Definition 12. (Nonce-based encryption). A nonce-based symmetric-key
encryption scheme is a pair of deterministic algorithms (Enc,Dec). Enc takes as
input a key from a key space K, a nonce from a nonce space N , and a plaintext
from a plaintext space M and outputs a ciphertext from a ciphertext space C.
Dec takes as input a key, a nonce, and a ciphertext and returns a plaintext or the
special symbol ⊥. The scheme is correct if for any key sk, nonce r, and plaintext
m, Dec(r,Encsk(r,m)) = m.

Such a scheme is CPA secure if no probabilistic polynomial-time adver-
sary can distinguish between Encsk(r∗,m0) and Encsk(r∗,m1) with non-negligible
advantage where r∗, m0, and m1 are adversarially chosen when given access to
an encryption oracle that outputs ⊥ unless given a unique nonce r. It is CCA-
secure if no probabilistic polynomial-time has non-negligible advantage when also
given access to a decryption oracle that outputs ⊥ if r = r∗.

Such a scheme (Enc,Dec) has unique ciphertexts if for any key sk, message
m, and nonce r, there is exactly one ciphertext c such that Dec(r, c) = m.

Theorem 6. Let (Enc,Dec) be a nonce-based symmetric-key encryption scheme.
Then, if the encryption scheme is CPA-secure (resp. CCA-secure) the one-round
protocol in which Alice sends Encsk(sid,m) and Bob returns Decsk(sid,m) is a
CPA-secure (resp. CCA-secure) one-round privately keyed message-transmission
protocol without forward secrecy. If the encryption scheme has unique ciphertexts,
then the “trivial” reverse firewall that simply passes Alice’s messages to Bob
unchanged preserves security and is exfiltration resistant against Bob.

See, e.g., [7] for formal analysis and the construction of such a scheme. The
key thing to note from our perspective is that, as Bellare et al. observe, the fact
that the encryption scheme has unique ciphertexts implies that any tampered
version of Alice that maintains functionality necessarily behaves identically to
honest Alice. The next theorem shows that we essentially cannot do any better
for a one-round protocol without using public-key primitives. The proof is in the
full version.

Theorem 7. There is a black-box reduction from semantically secure public-key
encryption to CPA-secure symmetric-key encryption with at least four possible
plaintexts and a reverse firewall that strongly preserves CPA security.

Of course, the primary drawbacks of this approach are that it requires Alice
and Bob to share a secret key and that it does not offer forward secrecy.

Message Transmission with Reverse Firewalls—Secure Communication 371

B Less efficient one-round protocols

Finally, we show one-round protocols in the singly keyed setting, in which Bob
has a public-key/private-key pair, but Alice does not. These are essentially the
single-round analogue of the two-round protocol presented in Fig. 4 in Sect. 3.
They can also be thought of as the natural extension of public-key encryption
schemes to the reverse firewall setting. (In particular, these protocols are not
efficient, in the sense that they use public-key operations on the plaintext, which
may be very long.) Indeed, we show that the existence of such a protocol is
equivalent to the existence of rerandomizable encryption, and we show how to
achieve CCA-security (though not forward secrecy).

B.1 One-round CPA-secure protocols

The next theorem shows that one-round CPA-secure protocols with reverse fire-
walls are equivalent to rerandomizable public-key encryption. The proof is in the
full version [22].

Theorem 8. Any (strongly) rerandomizable semantically secure public-key
encryption scheme implies a one-round CPA-secure singly keyed message-
transmission protocol without forward security with a reverse firewall that
(strongly) preserves security and (strongly) resists exfiltration. Conversely, any
one-round CPA-secure message-transmission protocol with a reverse firewall that
(strongly) preserves security implies a (strongly) rerandomizable semantically
secure public-key encryption scheme.

B.2 A one-round CCA-secure protocol

To extend this idea to stronger notions of security, we need the underlying
encryption scheme to satisfy stronger notions of security. A natural candidate is
CCA security. However, CCA-secure encryption schemes cannot be rerandom-
izable, so we need a slightly weaker notion. RCCA security, as defined by [11],
suffices, and rerandomizable RCCA-secure schemes do exist (see, e.g., [24,36]),
though they are relatively inefficient. (They are not strongly rerandomizable;
their rerandomization procedures do not work on invalid ciphertexts.) We present
the RCCA security game in Fig. 14. In addition, we need a rerandomized cipher-
text to be indistinguishable from a valid encryption even with access to a decryp-
tion oracle. Figure 15 and the definition below makes this precise.

Definition 13. An encryption scheme is RCCA secure if no probabilistic
polynomial-time adversary E has non-negligible advantage in the game presented
in Fig. 14. It is RCCA rerandomizable if there exists an algorithm Rerand
with access to the public key such that for any ciphertext c with Dec(c) �= ⊥,
Dec(Rerand(c)) = Dec(c) and no probabilistic polynomial-time adversary E has
non-negligible advantage in the game presented in Fig. 15 when we require that
Dec(ci) �= ⊥. It is strongly RCCA-rerandomizable if the previous statement
holds even if Dec(ci) = ⊥.

372 Y. Dodis et al.

Fig. 14. The RCCA security game.

Fig. 15. The RCCA rerandomization game.

The below theorem is the CCA analogue of Theorem 8. The proof is in the
full version [22].

Theorem 9. Any (strongly) RCCA-rerandomizable, RCCA-secure encryption
scheme implies a one-round CCA-secure singly keyed message-transmission pro-
tocol without forward security with a reverse firewall that (strongly) preserves
security and (strongly) resists exfiltration.

Big-Key Symmetric Encryption: Resisting Key
Exfiltration

Mihir Bellare1(B), Daniel Kane1, and Phillip Rogaway2

1 Department of Computer Science and Engineering,
University of California, San Diego, USA

mihir@eng.ucsd.edu
2 Department of Computer Science, University of California, Davis, USA

http://cseweb.ucsd.edu/~mihir/

http://cseweb.ucsd.edu/~dakane/

http://web.cs.ucdavis.edu/~rogaway/

Abstract. This paper aims to move research in the bounded retrieval
model (BRM) from theory to practice by considering symmetric (rather
than public-key) encryption, giving efficient schemes, and providing secu-
rity analyses with sharp, concrete bounds. The threat addressed is mal-
ware that aims to exfiltrate a user’s key. Our schemes aim to thwart
this by using an enormously long key, yet paying for this almost exclu-
sively in storage cost, not speed. Our main result is a general-purpose
lemma, the subkey prediction lemma, that gives a very good bound on an
adversary’s ability to guess a (modest length) subkey of a big-key, the
subkey consisting of the bits of the big-key found at random, specified
locations, after the adversary has exfiltrated partial information about
the big-key (e.g., half as many bits as the big-key is long). We then use
this to design a new kind of key encapsulation mechanism, and, finally, a
symmetric encryption scheme. Both are in the random-oracle model. We
also give a less efficient standard-model scheme that is based on universal
computational extractors (UCE). Finally, we define and achieve hedged
BRM symmetric encryption, which provides authenticity in the absence
of leakage.

1 Introduction

This paper is concerned with the possibility of mass surveillance by APTs. An
APT (Advanced Persistent Threat) is malware that resides on your system and
attempts to exfiltrate your key. (This means that it aims to communicate your
key to its home base, probably using your system’s network connection.) How
might one protect against this? One answer is: by strengthening system security
to the point that we eliminate APTs. Unfortunately, this approach seems out
of reach. Indeed, the Snowden revelations show that the NSA (through TAO,
their Tailored Access Operations unit) and others have sophisticated system
penetration capabilities that they use to plant APTs. Another answer is provided
by the bounded retrieval model (BRM) [2,3,17,20,23], namely to make secret
keys so big that their undetected exfiltration is difficult.
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 373–402, 2016.
DOI: 10.1007/978-3-662-53018-4 14

374 M. Bellare et al.

So far, BRM research has been largely theoretical and foundational. Our
intent is to move it towards being a plausible countermeasure to mass surveil-
lance. This involves the following. First, we treat symmetric rather than asym-
metric encryption. Second, we focus on simple, efficient schemes. Third, we pro-
vide security analyses that are strong and fully concrete (no hidden constants),
giving good numerical bounds on security.

Our main technical contribution is a very good upper bound on the proba-
bility of predicting a subset of random positions in a large key in the presence of
leakage. We then give a big-key encapsulation mechanism, and thence a big-key
symmetric encryption scheme, both efficient and in the random-oracle model
(ROM) [12]. Let us now look at all this in more detail.

The BRM. The BRM evolved through a series of works [2,3,17,20,23]. It is
part of the broader area of Leakage-Resilient Cryptography [1,25,34] and is also
related to the Bounded Storage Model [16,29]. A survey by Alwen et al. [4]
explains that

If an attacker hacks into a remote system (or infects it with some malware) it
may ... be infeasible/impractical for the attacker to download “too much”data
(say, more than 10 GBytes).

In such a setting, making the key very big, say 1 TByte, ensures that the adver-
sary obtains limited information about it. The idea was echoed by Adi Shamir
at the RSA 2013 conference in a somewhat broader context of secrets that are
not necessarily keys, and with specific reference to APTs. He said:

We have to think in a totally different way about how we are going to protect
computer systems assuming there are APTs inside already which cannot be
detected. Is everything lost? I claim that not: there are many things that you
can do, because the APT is basically going to have a very, very narrow pipeline
to the outside world. . . . I would like, for example, all the small data to become
big data, just in terms of size. I want that the secret of the Coco-Cola company
to be kept not in a tiny file of one kilobyte, which can be exfiltrated easily by an
APT · · · . I want that file to be a terabyte, which cannot be [easily] exfiltrated.

The problem we aim to solve is how to effectively utilize a key K whose length k
is big in the presence of an adversary that has some information about K . In
the BRM, the APT is modeled as a function that takes K as input and returns
a string L of � < k bits, the leakage, where � is some parameter; for example,
� = k/10 corresponding to the assumption that the adversary can’t exfiltrate
more than 100 GBytes of information about a 1 TByte key. In the BRM, effective
utilization imposes two requirements, one on security and the other on efficiency.
The former is that security must be maintained in the presence of the leakage.
The latter, called locality, is that the scheme’s algorithms may access only a
very small part of the key. Without this, working with a big-key would be too
inefficient.

ADW [3] give BRM schemes for authenticated key-exchange and public-
key identification. ADNSWW [2] give BRM schemes for public-key encryp-
tion. (Here K is the secret decryption key.) The latter construction is based

Big-Key Symmetric Encryption 375

on identity-based hash proof systems, which are instantiated via bilinear maps,
lattices and quadratic residuosity.

Overview. We treat symmetric encryption in the BRM. We refer to it, synony-
mously, as big-key symmetric encryption, to emphasize the use of a large key.
The k-bit key K of a big-key symmetric encryption scheme SE is shared between
sender and receiver. Algorithm SE.Enc maps K and a plaintext to a ciphertext,
while SE.Dec maps K and a ciphertext to a plaintext, both making few accesses
to K .

Our scheme is simple, efficient, and easily described. It is parameterized by
the number of probes p into the k-bit key K , for example, p = 500. To encrypt
message M , pick a random R, apply the random oracle RO to it to get a sequence
of probes p[1], . . . ,p[p] ∈ [1..k] into K , and let J = K [p[1]] . . .K [p[p]] be the
corresponding bits of K . Next, obtain a short, conventional key K by applying
RO to J . Finally, encrypt M under K with a conventional symmetric encryption
scheme to get a ciphertext C. Return (R,C) as the ciphertext of the big-key
scheme.

This scheme is derived via a modular framework with three steps, each involv-
ing its own definition, problem and analysis, namely subkey prediction, encap-
sulation and encryption. We will discuss them in turn below. Then we describe
two extensions of the basic scheme sketched above, namely, a standard-model
variant based on UCE, and the idea of hedged big-key encryption.

Subkey prediction. Our core technical contribution concerns the subkey-
prediction problem. We consider a game parameterized by the length k of the
big-key, a number p of random probes into it, and a bound � on the leakage.
The game selects a k-bit big-key K at random, and the adversary is given the
result L ∈ {0, 1}� of applying an arbitrary leakage function to K . This L rep-
resents the exfiltrated information, and, as a special case, could consist of �
bits of K . Now the game picks random indices p[1], . . . ,p[p] ∈ [1..k], called
probes. These probes are also given to the adversary. We ask the adversary,
given the leakage and probes, to predict, in its entirety, the induced p-bit sub-
key J = K [p[1]]K [p[2]] · · ·K [p[p]] found at those spots. We ask: how well can
the adversary do at this? That is, we want to know the adversary’s maximum
probability, denoted Advskpk,p,1(�) in our formalization of Sect. 3, of guessing J as
a function of k, �, and p.

The analysis turns out to be surprisingly technical. One might think that
there is no better strategy than to leak some � bits of K , for example the first �,
and then predict J in the obvious way. (If p[i] ∈ [1..�] then K [p[i]] is known
from the leakage, else guess it.) We give a counter-example showing that this
is not the best strategy, and one can do better using an error-correcting code.
We then show that, roughly, the best strategy for the adversary is to select the
leakage function so that the pre-images of any point under this function are
sandwiched between adjacent Hamming balls. In Sect. 3 we formalize and prove
this and then use it to show that

Advskpk,p,1(�) ≈ 2−p·w(�/k) for w(λ) = − lg(1 − H−1
2 (1 − λ)) ,

376 M. Bellare et al.

0.303
0.228

0.168
0.119

0.402

0.548

0.079 0.046 0.019

Fig. 1. Subkey predictability. The x-axis indicates the fraction λ = �/k of the bits
adversarially exfiltrated from the big-key. The corresponding point w(λ) on the y-axis
then indicates how many bits of unpredictability are achieved from each random probe
(e.g., w(0.5) ≈ 0.168). In particular, the adversary’s ability to guess the contents of a
p-bit probe are about 2−p·w(λ). Results apply to large k and modest p.

where H2(x) = −x lg(x) − (1 − x) lg(1 − x) is the binary entropy function and
H−1

2 (1 − λ) is the smaller of the two possible inverses of 1 − λ under H2. The
salient point is that the probability decreases exponentially in the number of
probes p, with the factor in the exponent depending on the fraction λ = �/k of
the bits of the big-key that are leaked. See Fig. 1 for a plot of w(λ) as a function
of λ.

Related settings are analyzed by several lemmas in the literature, notably
NZ [30, Lemma 11], Vadhan [35, Lemma 9] and ADW [3, Lemma A.3]. We
are not aware of any direct way of applying the first two to get bounds on
subkey prediction probability. (They do give bounds on what in Sect. 3 we call
the restricted subkey prediction probability.) They also involve hidden constants
that make it hard to obtain the concrete bounds needed to estimate security in
usage. In contrast, the elegant lemma of ADW [3, Lemma A.3] can be directly
applied to bound Advskpk,p,1(�), and it gives a concrete bound with no hidden
constants. However, the bound obtained in this way is much inferior to ours, as
we now illustrate.

In Sect. 3 we show that [3, Lemma A.3] implies Advskpk,p,1(�) ≤ 2−c for c given
by Eq. (8), namely c = p(k−�−5)/(2k lg(2k)+3p). Figure 2 compares the bounds
obtained by our result (column “New”) with the ones obtained via [3, Lemma
A.3] (column “Old”). We see for example that for k being 1 TB and �/k = 0.1,
for 500 probes, we show that Advskpk,p,1(�) ≈ 2−274 while the prior bound would be
only 2−5.1. Other entries show similarly large gaps for other parameter values.
Another way to compare is, for a certain fixed k, �, to ask how many probes are
needed to get 256 bits of security, meaning have Advskpk,p,1(�) ≤ 2−256. According
to Fig. 2, for k being 1 TB and �/k = 0.1, our result says that 468 probes suffice,
while the prior result would require us to use 24954 probes. The difference in

Big-Key Symmetric Encryption 377

p New Old

250 137 3.3

500 274 6.6

1000 548 13

234 128 3.1

468 256 6.2

9642 5284 128

19284 10567 256

1 GB, 10% leak
(k=8 · 109, �=0.1k)

p New Old

250 42 1.8

500 84 3.7

1000 168 7.4

762 128 5.6

1523 256 11

17536 2919 128

34711 5837 256

1 GB, 50% leak
(k=8 · 109, �=0.5k)

p New Old

250 137 2.6

500 274 5.1

1000 548 10

234 128 2.4

468 256 4.8

12477 6837 128

24954 13674 256

1 TB, 10% leak
(k=8 · 1012, �=0.5k)

p New Old

250 42 1.4

500 84 2.8

1000 168 5.7

762 128 4.3

1523 256 8.7

22458 3777 128

44916 7553 256

1 TB, 50% leak
(k=8 · 1012, �=0.5k)

Fig. 2. Numerical examples, comparisons with ADW [3, Lemma A.3]. The
“New” and “Old” columns show approximate values of x for which Advskpk,p,1(�) ≤ 2−x

using our results and those of ADW [3, Lemma A.3], respectively. The first two tables
use a key size k of 1 GB; the rest, 1 TB. In each case, we consider leakage restricted to
10% or 50 % of the key length. The first column gives the number of probes p. In each
table, the first three rows represent natural probe counts p ∈ {250, 500, 1000} while
the remaining four rows are determined by asking how many probes would be needed
to get either 128-bit or 256-bit security according to each of the bounds.

efficiency is dramatic, meaning that reliance on the prior bounds would translate
to a significant loss of practical efficiency for big-key symmetric encryption.

Encapsulation. Building on the above, we provide a general tool, XKEY, for
using big-keys in symmetric settings. XKEY takes in a key K and a random
selector R, which is a short string (like 128–256 bits). It returns a derived key
K = XKEY(K , R), which has conventional length (like 128 bits) and can be
used in a conventional scheme. We formalize the goal of XKEY, which we call
big-key encapsulation. It asks that the derived key is indistinguishable from a
random string of the same length, even given the selector and leakage on the
big-key. This is reminiscent of a classical key-encapsulation mechanism (KEM)
as defined by CS [18], yet it is also very different, since we are in the presence
of leakage and in the symmetric (rather than asymmetric) setting. Additionally,
in the ROM, not only does the adversary have access to the random oracle RO,
but, also, the leakage function can also itself invoke the random oracle. This is
crucial, as otherwise it is easy to give an example of a scheme that is secure
in the ROM yet insecure when the random oracle is instantiated. This element
increases the technical difficulty of our security proof.

Given K and R, our XKEY algorithm applies the random oracle RO to R
to specify probes p[1], . . . ,p[p] ∈ [1..k] into the big-key K . It lets J = K [p[1]]
K [p[2]] · · ·K [p[p]] be the corresponding subkey. By subkey unpredictability, J
is unpredictable, but it is not guaranteed to be indistinguishable from random.
XKEY further applies RO to R‖J to obtain the derived key K. Theorem 12
says that this derived key is indistinguishable from random even to an adversary
that sees multiple encapsulations and gets leakage about K . The theorem gives

378 M. Bellare et al.

a concrete bound on the adversary advantage. The proof has two steps, first
addressing the ability of the leakage function to use the random oracle by a coin-
fixing argument, and then reducing to subkey prediction via a game sequence.

Big-key encryption. In Sect. 5, we define and achieve big-key symmetric
encryption. Our definition ensures indistinguishability in the presence of leak-
age on the big-key, the leakage again allowed to depend on the random oracle.
To encrypt a message M under K , we pick R at random, obtain a session key
K = XKEY(K , R), and output as ciphertext a pair (R,C) where C is an encryp-
tion of M under K with a base, conventional symmetric encryption scheme, for
example an AES mode of operation. Theorem 13 shows that this achieves our
definition of big-key encryption privacy assuming that XKEY achieves our defi-
nition of encapsulation security and the base scheme meets a standard privacy
definition for symmetric encryption. The scheme is very efficient. Relative to the
base scheme, the added communications cost is small (transmission of R) and
the added computation cost is also small (one XKEY operation).

Standard-model scheme. A variant of our scheme, still quite efficient, can
be proven secure in the standard model. We can focus on encapsulation, since
our reduction of encryption to the latter does not use a random oracle. We
consider a variant XKEY2 of XKEY where the selector R = (I,p) is a key I
for a UCE (Universal Computation Extractor) H [8] together with a sequence
of probes p[1], . . . ,p[p] ∈ [1..k] into K . Given K and this selector, XKEY2 lets
J = K [p[1]] . . .K [p[p]] be the corresponding bits of K and obtains subkey K
by applying H(I, ·) to J . Efficiency is the same as for our ROM scheme, but
the ciphertext of the encryption scheme is longer because the selector, which is
included in the ciphertext, is longer. Theorem 14 proves security assuming H
is UCE[Ssup]-secure, namely UCE-secure for statistically unpredictable sources.
This version of UCE, from [8,15], has been viable and has been used in many
applications. We use our subkey unpredictability bound in a crucial way, to prove
statistical unpredictability of the source constructed in the reduction.

Authenticity and hedged big-key encryption. Our big-key encryption
schemes provide privacy. What about authenticity—meaning big-key authenti-
cated encryption (AE)? ADW [3] remark that secure signatures are not possible
in the BRM. The same attack applies to rule out big-key AE. Namely, the leakage
function can simply compute and leak a valid ciphertext. We take the view that
authenticity is important in normal usage but the target of mass surveillance
is violating privacy, not authenticity. Accordingly, we suggest hedged big-key
encryption. Encryption would continue to provide, in the presence of leakage,
the guarantees of our above-discussed schemes. Additionally, in the absence of
leakage, the same scheme should provide AE, meeting a standard and strong
formalizations of the latter [10]. Throughout all this, the scheme must remain
true to the local efficiency requirement of the BRM. In Sect. 7 we give a simple
way to turn a privacy-only big-key scheme into a hedged one while preserving
locality.

Big-Key Symmetric Encryption 379

Discussion. We clarify some assumptions and limitations of the BRM and our
work. In the BRM, leakage (exfiltration) on the big-key is assumed to occur once,
at the beginning. The leakage function cannot depend on ciphertexts. This is true
in most models of leakage-resilient cryptography, but leakage after encryption
has been considered [26] and it would be interesting to extend this to big-key
symmetric encryption. We assume encryption code is trusted. Algorithm substi-
tution attacks [11] consider the case of untrusted encryption code. Whether any
defense against ASAs is possible in the big-key setting remains open. Finally we
assume the availability of trusted randomness in the encryption process.

Our schemes view the big-key as a string over {0, 1}, so each probe draws
one bit of the big-key. More generally, we could view the big-key as a vector
over {0, 1}b where b is some block or word length, for example b = 8 or b = 32.
Each probe would then result in a b-bit string. This could increase efficiency and
ease of implementation of the scheme. Our current subkey prediction lemma
addresses only the b = 1 case. One can apply [3, Lemma A.3] to get a bound for
larger b, but we would expect that an extension of our subkey prediction Lemma
would yield better bounds. Obtaining such an extension is an interesting open
question.

Related work. In Maurer’s bounded storage model [29], parties have access
to a public source of randomness that transmits a sequence X1,X2, . . . of high
min-entropy strings. Parties are limited in storage and the goal is information
theoretic security. Symmetric encryption in this setting is studied in [5,6,24,28,
29,35]. However, in this information-theoretic setting one can derive only one
session key from each output of the source and the ability to encrypt multiple
messages relies on the expectation of receiving a continuous stream of strings
from the source. In contrast, in the BRM setting, the big-key is static, and, in the
presence of leakage on it, we want to encrypt an arbitrary number of messages
without changing the key.

Di Crescenzo et al. [20] and Dziembowski [23] independently introduced the
bounded retrieval model (BRM), where the adversary has a bounded amount
of information on the data stored by the users. See the excellent survey of
Alwen et al. [4] for history and results in this setting. Here we touch on only
a few examples. DLW [20] design password protocols for the setting where the
“password file” stored by the server is huge but the amount of information the
adversary can get about it is limited, yet the server is efficient. Dziembowski [23]
considers malicious code that can exfiltrate only a limited portion of a long key
before it is sanitized. Dziembowski’s aim is to achieve entity authentication and
session-key distribution. Like us, the author works in the ROM. His symmetric
key-derivation scheme, and its analysis, are similar to ours. Following up on this
work, CDDLLW [17] provide a general paradigm for achieving intrusion-resilient
authenticated key exchange (AKE), as well as a solution in the standard (as
opposed to RO) model. Alwen et al. [3] design authenticated key agreement pro-
tocols in the public-key setting where the secret key is huge but the public key
is small and security must be maintained in the presence of bounded leakage on

380 M. Bellare et al.

the secret key. ADNSWW [2] construct public-key encryption schemes in this
model.

Predating the BRM, Kelsey and Schneier consider an authentication scheme
in which a user with a large-memory token authenticates itself by providing
XORs of randomly specified subsets of its bits [27]. An adversary who manages
to exfiltrate only some of the bits of the device will be unable to subsequently
impersonate the token. Dagon, Lee, and Lipton consider the problem of securely
storing a ciphertext encrypted in a weak password on a device that’s subject to
adversarial attack [19]. They create a long ciphertext for a short plaintext where
partial knowledge of the ciphertext will frustrate dictionary attacks.

Lu [28] and Vadhan [35] construct locally computable extractors. These yield
big-key encapsulation schemes, but with the limitation that one can only obtain
a small, bounded number of encapsulated keys from one big-key. (Encapsulated
keys are statistically close to random, so after a few derivations, the entropy of
the big-key is exhausted.) This is not sufficient for big-key symmetric encryp-
tion, where, with the big-key in place, we want to encrypt an arbitrary number of
messages. XKEY in this light yields a locally computable computational extrac-
tor in the ROM. (The computational element is that the number of queries to
the random oracle is limited. In asymptotic terms, it is a polynomial.) It uses
the random oracle as a hardcore function following [12] to be able to encapsulate
an unbounded number of keys under a single big-key. Our UCE-based encap-
sulation scheme XKEY2 similarly yields a standard-model locally-computable
computational extractor. One might also view XKEY and XKEY2 as reusable
locally-computable extractors following [2,17,23]. Reusability of extractors also
aims to address deriving multiple subkeys and arose in [14,21,31].

A condenser [22,32,33] is a min-entropy extractor. Our subkey prediction
Lemma can be viewed as building a BRM (or locally computable) condenser
for a random source. The algorithm is to simply return the subkey J given by
random probes into the big-key.

One could obtain a big-key symmetric encryption scheme by adapting the
asymmetric BRM scheme of ADNSWW [2]. Our schemes are much more efficient.

2 Notation

Notation. For integers a ≤ b we let [a..b] = {a, . . . , b}. If x is a vector then
|x| denotes its length and x[i] denotes its i-th coordinate. (For example if x =
(10, 00, 1) then |x| = 3 and x[2] = 00.) We let ε denote the empty vector, which
has length 0. If 0 ≤ i ≤ |x| then we let x[1..i] = (x[1], . . . ,x[i]), this being ε
when i = 0. We let Sn denote the set of all length n vectors over the set S and
we let S∗ denote the set of all finite-length vectors over the set S. Strings are
treated as the special case of vectors over {0, 1}. Thus, if x is a string then |x| is
its length, x[i] is its i-th bit, x[1..i] = x[1]...x[i], ε is the empty string, {0, 1}n is
the set of n-bit strings and {0, 1}∗ the set of all strings. If K is a k-bit string and
p is a p-vector over [1..k] then we let K [p] = K [p[1]]K [p[2]] · · ·K [p[p]] denote
the length-p string consisting of the bits of K in the positions indicated by p.
For example, if K = 01010101 and p = (1, 8, 2, 2) then K [p] = 0111.

Big-Key Symmetric Encryption 381

If X is a finite set, we let x ←← X denote picking an element of X uni-
formly at random and assigning it to x. Algorithms may be randomized unless
otherwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, · · · ; r) denote running A with random coins r on inputs x1, · · · and
assigning the output to y. We let y ←← A(x1, · · ·) be the result of picking r at
random and letting y ← A(x1, · · · ; r). We let [A(x1, · · ·)] denote the set of all
possible outputs of A when invoked with inputs x1, · · · . We denote by Func[a, b]
the set of all functions f from {0, 1}a to {0, 1}b.

We use the code-based game-playing framework [13] (see Fig. 3 for an exam-
ple). By Pr[G] we denote the probability that game G returns true. Uninitialized
boolean variables, sets and integers are assume initialized to false, the empty set
and 0, respectively.

3 The Subkey Prediction Lemma

Suppose an adversary computes 1 TByte of information L about a random
2 TByte key K . Afterward, we challenge the adversary to identify the 128-bit
substring K whose bits are those found at some 128 random locations of K . We
tell the adversary those locations. How well can the adversary do at this game?
This section introduces what we call the subkey prediction game to formalize
this question and answer it.

The subkey-prediction game. Let k, �, p, q ≥ 1 be integers with k ≥ �. We
call these values the key length, the leakage length, the probe length, and the
iteration count. Let Lk: {0, 1}k → {0, 1}� be a function, the leakage function.
We associate to these values and an adversary A the subkey prediction game
Gskp

k,p,q(A, Lk) depicted in the left panel of Fig. 3. (Ignore the other game for
now). The game picks a random key K (the big-key) of length k and computes
leakage L ← Lk(K). It then picks q random probes p1, . . . ,pq, each consisting
of p random indexes into the key K . The adversary A must guess one of the
strings K [pi] given leakage L and probe locations p1, . . . ,pq. Any one will do.
It outputs a guess J and the game returns true if and only if J is one of the
values K [pi]. The adversary needn’t identify which subkey it has guessed. Now
define

Advskpk,p,q(A, Lk) = Pr[Gskp
k,p,q(A, Lk)]

Advskpk,p,q(Lk) = max
A

Advskpk,p,q(A, Lk)

Advskpk,p,q(�) = max
Lk∈Func[k,�]

Advskpk,p,q(Lk)

The first is the probability that the game returns true, that is, the probabil-
ity that A wins the game. For the second definition the maximum is over all
adversaries A, regardless of running time. For the third definition the maximum
is over all leakage functions Lk: {0, 1}k → {0, 1}� that return � bits. This last
advantage function measures the best possible prediction probability when the

382 M. Bellare et al.

Fig. 3. Subkey-prediction game (left) and restricted subkey-prediction game (right).

leakage is restricted to � bits and the adversary is arbitrary. We are interested
in upper bounding this last advantage as a function of k, �, p, q.

The idea here is that an adversary has some information about K , but it is
limited to Lk(K), which is � bits. This leaves k − � bits of average min-entropy
in K . We are trying to extract it in a particular and efficient way, by taking a
random subset of positions of K . We are asking “only” for unpredictability, and
will then apply a random oracle to get random-looking bits.

From many queries to one. One simple observation is that we can reduce
the case of q probes to the case of a single probe via the union bound:

Lemma 1. Let k, �, p, q be integers with k ≥ �. Then

Advskpk,p,q(�) ≤ q · Advskpk,p,1(�)

Proof (Lemma 1). Given adversary A we let A1 be the adversary defined as
follows. On input L,p it picks g ←← [1..q] and pj ←← [1..k]p for j ∈ [1..q] \ {g}.
It lets pg ← p and returns J ←← A(L,p1, . . .pq). By a union bound we have
Advskpk,p,q(A, Lk) ≤ q · Advskpk,p,1(A1, Lk) and the lemma follows.

We retain the q-probe definition because this is what we will use in applications,
but Lemma 1 allows us to focus on the q = 1 case for the remainder of this
section.

Connection to Hamming balls. Given k, �, let us ask which leakage function
Lk: {0, 1}k → {0, 1}� maximizes the advantage. At first glance it’s hard to imag-
ine there’s a strategy better than the greedy one of leaking the first � bits of K .
Specifically let Lk�: {0, 1}k → {0, 1}� be defined by Lk�(K) = K [1] · · ·K [�], the
function that returns the first � bits of its input. Then a natural conjecture is
that Advskpk,p,1(�) = Advskpk,p,1(Lk�), meaning that the subkey prediction advantage
is maximized by Lk�. Indeed this was our first guess.

This conjecture, however, is false. We now give a counter-example that shows
this. Besides indicating the subtleties in the problem, it makes a connection with
error-correcting codes and Hamming balls that will underly our eventual results
and bound. Here is the counter-example. Let k = 7 and � = 4. Let p = 1. Then

Advskpk,1,1(Lk�) = (4/7)(1) + (3/7)(1/2) = 11/14 .

Big-Key Symmetric Encryption 383

Now consider the following alternative Lk: {0, 1}7 → {0, 1}4 for which we will
show that Advskpk,1,1(Lk) = 7/8 > 11/14. Let W1, . . . ,W16 ∈ {0, 1}7 be the
codewords of the Hamming (7,4) code. (See Wikipedia article “Hamming(7,4)”
for the definition.) This code has message length � = 4 and codeword length
k = 7, so that it describes an (injective) encoding function E: {0, 1}4 →
{W1, . . . ,W16} ⊆ {0, 1}7. It has minimum distance 3 and corrects one error.
Let Bi be the set of all 7-bit strings whose Hamming distance from Wi is ≤ 1.
Then |Bi| = 8 and the sets B1, . . . , B16 are a partition of {0, 1}7. The decoding
function D: {0, 1}7 → {0, 1}4, given K , finds the unique i such that K ∈ Bi.
It then returns message L = E−1(Wi). The leakage function Lk is simply D;
namely, given the big-key K , it returns its decoding D(K). Now the adversary
A receives (L, p1) where p1 ∈ [1..7] is the random probe into K chosen by the
game and L = Lk(K) = D(K), and it wants to predict K [p1]. Adversary A lets
W = E(L) and returns W [p1] as its guess. Then Advskpk,1,1(A, Lk) = 7/8 because
if W = Wi then 7 of the 8 strings in Bi have Wi[p1] as their p1-th bit. So

Advskpk,1,1(Lk) ≥ 7/8 > 11/14 = Advskpk,1,1(Lk�) .

Subkey-prediction bound. We now give our upper bound on Advskpk,p,1(�) as
a function of k, �, p. Let wH(x) denote the Hamming weight of string x. Let
Bk(r) = {x ∈ {0, 1}k : wH(x) ≤ r } be the Hamming ball of radius r with center
0k and let Bk(r) = |Bk(r)| be its size. Then

Bk(r) =
r∑

i=0

(
k

i

)
. (1)

Now define the radius rdk(N) as the largest integer r such that Bk(r) ≤ N , and
let

Gk,p(N)

=
1
N

rdk(N)∑
i=0

(
k

i

)(
1 − i

k

)p

+
N − Bk(rdk(N))

N

(
1 − 1 + rdk(N)

k

)p

(2)

≤ 1
N

min(1+rdk(N),k)∑
i=0

(
k

i

) (
1 − i

k

)p

. (3)

The following says this function provides an upper bound on the subkey predic-
tion probability:

Theorem 2 (Subkey-prediction bound). Let k, �, p be integers, k ≥ �. Then

Advskpk,p,1(�) ≤ Gk,p(2k−�) (4)

Before we prove Theorem 2, let’s try to understand the growth rate of the bound
for parameters of interest.

384 M. Bellare et al.

Estimates. The Gk,p(N) formula itself is somewhat intractable. To use
Theorem 2 it is easier to work with the following approximation that we used in
Sect. 1. The approximation is very good. For λ ∈ [0, 1] we let

w(λ) = − lg(1 − H−1
2 (1 − λ))

where lg is the logarithm to base two, H2 is the binary entropy function defined
for x ∈ [0, 1] by H2(x) = −x ln(x)− (1−x) ln(1−x) and H−1

2 (1−λ) returns the
smaller of the two values x satisfying H2(x) = 1 − λ. Then for � ≤ k we have

Gk,p(2k−�) ≈ 2−p·w(�/k) . (5)

We now justify this. Let us define

G∗
k,p,r(N) =

1
N

r∑
i=0

(
k

i

) (
1 − i

k

)p

. (6)

The following lemma gives both a lower bound and an upper bound on G∗
k,p,r(N)

that are within a factor two of each other, showing that the estimate of the lemma
is tight to within a small constant. The proof is in [9].

Lemma 3. Let N, k, r, p ≥ 1 be integers with r ≤ k. Let θ = r/k and γ =
2
(
k
r

)
/N . Suppose: (1) p ≤ 0.27 · k and (2) θ ≤ 0.22. Let α = − lg(1 − θ) > 0.

Then
γ

2
· 2−α·p ≤ G∗

k,p,r(N) ≤ γ · 2−α·p

Letting r∗ = rdk(2k−�), from Eq. (3) we have Gk,p(2k−�) ≈ G∗
k,p,r∗(2k−�), which

by Lemma 3 is ≈ 2−α·p where α = − lg(1 − r∗/k). So to justify Eq. (5) we
need to show that α ≈ w(�/k). For this we use the well-known estimate 2k−� ≈
Bk(r∗) ≈ 2k·H2(r

∗/k) to get 1 − �/k ≈ H2(r∗/k) or r∗/k ≈ H−1
2 (1 − �/k).

Thus − lg(1 − r∗/k) ≈ − lg(1 − H−1
2 (1 − �/k)) = w(�/k) as desired.

Restricted subkey-prediction. Our proof of Theorem 2 will rely on an
analysis of the restricted subkey-prediction game Gskp1

k,p (A,K) shown in the right
panel of Fig. 3. The game is associated to integers k, p, adversary A and a set
K ⊆ {0, 1}k. Our results concerning this game are also of independent interest
because we obtain bounds that are tight. In this game, the big-key K is drawn
from K rather than from {0, 1}k, and there is no leakage. Also, there is only one
probe. The rest is the same as in the subkey prediction game. Intuitively, one can
think of K as being Lk−1(L) for some particular L received by A in game Gskp,
so that the new game, Gskp1, effectively represents the view of A in the prior
game at the point it receives leakage L. Now define

Advskp1k,p (A,K) = Pr[Gskp1
k,p (A,K)]

Advskp1k,p (K) = max
A

Advskp1k,p (A,K)

Advskp1k,p (N) = max
K⊆{0,1}k, |K|=N

Advskp1k,p (K)

Big-Key Symmetric Encryption 385

The first advantage is the probability that A wins the game. In the second, the
maximum is over all adversaries A, regardless of running time. In the third, the
maximum is over all sets K ⊆ {0, 1}k that have size |K| = N .

Main lemmas and proof of theorem. Theorem 2 is obtained via two main
lemmas. Here we state them and show how they yield the theorem. We will then
prove the lemmas. The first main lemma reduces the task of upper bounding
the subkey prediction probability Advskpk,p,1(�) to the task of bounding the special
subkey prediction probability Advskp1k,p (N) for N = 2k−�:

Lemma 4. Let k, �, p ≥ 1 be integers with k ≥ �. Then

Advskpk,p,1(�) ≤ Advskp1k,p (2k−�) (7)

The proof of this lemma, given below, involves a definition of concavity for dis-
crete functions and a lemma saying where such functions attain their maximum.
Then a particular function Fk,p we define is shown to meet this definition of con-
cavity, and Lemma 4 results. The second main lemma characterizes the special
subkey prediction probability:

Lemma 5. Suppose 1 ≤ N ≤ 2k and p ≥ 1. Then

Advskp1k,p (N) = Gk,p(N)

We note that Lemma 5 is an equality, not a bound. We are able to say exactly
what is the special subkey prediction probability for a given value of N . Lemma 5
is obtained by showing that for a given N , the maximum of Advskp1k,p (K) over sets
K of size N , occurs for a set that is monotone and sandwiched in between two
adjacent Hamming balls. Monotone means that if a string is in the set, so is
any string obtained by flipping one bits to zero bits on the original string. For
monotone sets, it is quite easy to estimate the optimal advantage. All this put
together will lead to Lemma 5.

The proof of Theorem 2 is immediate from these two lemmas, which we still
need to prove. But first, with the above, we are in a position to compare with
prior work.

Comparison with prior work. Lemmas related to subkey and restricted
subkey prediction have been given by NZ [30, Lemma 11], Vadhan [35, Lemma
9] and ADW [3, Lemma A.3]. Briefly, the first two don’t give bounds on subkey
prediction. They do give bounds on restricted subkey prediction but they are
hard to use due to hidden constants, and these bound are inferior to Lemma 4
since the latter is tight. The elegant lemma of ADW [3, Lemma A.3], however,
not only applies directly to subkey prediction but also gives a concrete bound
with no hidden constants. The difference here, as quantified in Sect. 1, is that
the bound is much inferior to that of Theorem 2, translating to a significant loss
of practical efficiency for big-key symmetric encryption.

386 M. Bellare et al.

NZ [30, Lemma 11] considers drawing a string K from {0, 1}k according to a
distribution D with min-entropy δ. Like us, for a random probe p ∈ [1..k]p, they
then consider K [p]. The lemma specifies ε, δ′ such that for all but an ε fraction of
the p’s, the distribution K [p] is within statistical distance ε of a δ′ source. Unlike
our work there is no leakage. Their setting does not capture subkey prediction
but it does capture restricted subkey prediction game, which corresponds to the
distribution D that puts a uniform probability on K and 0 probability on points
outside it. However, the formulas in [30, Lemma 11] make ε very large for the
parameters of interest to us, and also have un-specified constants. In contrast
Lemma 5 gives a tight bound with no unspecified constants. The same remains
true with Vadhan [35, Lemma 9]. (Here the hidden constant is an exponent in the
statistical distance.) The values of the constants can in principle, of course, be
obtained from the proofs, but since our bound of Lemma 4 for restricted subkey
prediction is tight, we would not see an improvement. (And the indication from
what follows, where concrete bounds are given, is that the bounds would be
substantially worse than ours anyway.)

ADW [3, Lemma A.3] can, however, be directly applied to get a bound on
Advskpk,p,1(�). Referring to their lemma, let random variable X represent the big-
key K , and let experiment E1 represent the leakage. Their t corresponds to our p.
(We think the N in their lemma is a typo. It should be t.) Then H̃∞(X) = k− �.
The lemma then implies that Advskpk,p,1(�) ≤ 2−c as long as k− � ≥ 2ck lg(2k)/p+
3c + 5. This translates to

c ≤ p(k − � − 5)
2k lg(2k) + 3p

. (8)

This is the formula used for Fig. 2.
We note that ADW [3, Lemma A.3] considers a more general setting than

subkey prediction. We are saying that in this special setting, we can get much
better bounds. In the big-key context, an important case where their bound
applies but ours does not is when we work over blocks rather than bits. Here K
is a k-vector over {0, 1}b for some block length parameter b, so that each probe
draws a b-bit block. This setting is more convenient for implementations of big-
key symmetric encryption. Giving better bounds for this setting is an interesting
open question.

Proof of Lemma 5. Recall that wH(x) denotes the Hamming weight of string
x. For equal-length strings x, y ∈ {0, 1}∗, write x
 y if x[i] ≤ y[i] —that is,
if x[i] = 1 then y[i] = 1— for every i ∈ [1..|x|]. Write x ≺ y if x
 y and
x �= y. Then
 is a partial order on {0, 1}k, satisfying the required conditions,
namely it is reflexive, anti-symmetric and transitive. If U ⊆ {0, 1}∗ is a finite set
then we let wH(U) =

∑
u∈U wH(u) be the Hamming weight of U . Call a subset

K ⊆ {0, 1}k monotone if for all x, y ∈ {0, 1}k we have that if x ≺ y and y ∈ K
then x ∈ K. The following lemma says that the maximum restricted subkey
prediction advantage occurs for a set K that is monotone. The proof is in [9].

Big-Key Symmetric Encryption 387

Lemma 6. Suppose 1 ≤ N ≤ 2k and p ≥ 1. Then there is a monotone K ⊆
{0, 1}k such that |K| = N and

Advskp1k,p (N) = Advskp1k,p (K)

Now define the function gk,p, taking input a set K ⊆ {0, 1}k, via

gk,p(K) =
1

|K|
∑
x∈K

(
1 − wH(x)

k

)p

. (9)

A nice property of monotone sets is that we can easily compute the maximal
advantage on them, via the function just defined:

Lemma 7. Suppose 1 ≤ N ≤ 2k and p ≥ 1. Suppose K ⊆ {0, 1}k is a monotone
set of size N . Then

Advskp1k,p (K) = gk,p(K)

Proof (Lemma 7). Since K is monotone, the best strategy for the adversary given
p is to simply return K = 0k as the guess. Letting A denote the adversary that
does this, we now want to evaluate Advskp1k,p (A,K). This is just the probability
that if x is chosen at random from K and p[1], . . . ,p[p] are chosen at random
from [1..k] then x[p[j]] = 0 for all j ∈ [1..p]. This probability is gk,p(K).

We will now further characterize the sets which attain the maximum. We say
that K ⊆ {0, 1}k is sandwiched between Hamming balls if there is an r such that
Bk(r) ⊆ K ⊂ Bk(r + 1). Note in this case it must be that r = rdk(N) where N
is the size of K. The proof of the following, which exploits Lemma 6, is in [9].

Lemma 8. Suppose 1 ≤ N ≤ 2k and p ≥ 1. Let r = rdk(N). Then there is a
monotone, size N set K such that Bk(r) ⊆ K ⊂ Bk(r + 1) and

Advskp1k,p (N) = Advskp1k,p (K)

We are now in a position to prove our second main lemma.

Proof (Lemma 5). Let r = rdk(N). By Lemma 8 there is a monotone, size N set
K such that Bk(r) ⊆ K ⊂ Bk(r + 1) and Advskp1k,p (N) = Advskp1k,p (K). But

Advskp1k,p (K) = gk,p(K) = Gk,p(N)

where the first equality is by Lemma 7 and the second is because Bk(r) ⊆ K ⊂
Bk(r + 1).

388 M. Bellare et al.

Proof of Lemma 4. We now prove the first main lemma. We begin with a
general result about the maximization of discrete concave functions.

The standard definition of concavity of functions applies to continuous func-
tions. Here we provide a definition for functions defined on a discrete domain that
allows us to prove a lemma we will use later. Proceeding, suppose F : ZM → R.
We say that F is concave if F (a+1)−F (a) ≤ F (b+1)−F (b) for all a, b ∈ ZM−1

satisfying a ≥ b. Now suppose t,m ≥ 1 are integers with 1 ≤ m ≤ t. Then we let

S(M,m, t) = { (x1, . . . , xm) ∈ Z
m
M : x1 + · · · + xm = t } .

Define Fm: Z
m
M → R by Fm(x1, . . . , xm) = F (x1) + · · · + F (xm). The proof of

the following is in [9].

Lemma 9. Suppose F : ZM → R is concave. Suppose 1 ≤ m ≤ t are integers
such that m divides t and t/m ∈ ZM . Then

max
(x1,...,xm)∈S(M,m,t)

Fm(x1, . . . , xm) = m · F (t/m)

That is, the maximum of Fm over S(M,m, t) is attained when all inputs have
the same value t/m ∈ ZM , and is thus equal to m ·F (t/m). To apply this in our
setting, we introduce the function Fk,p: Z2k+1 → R defined by

Fk,p(N) =
N

2k
· Advskp1k,p (N) . (10)

Rewriting the claim of Lemma 4 in terms of the function Fk,p, our aim is to
show that Advskpk,p,1(�) ≤ 2� · Fk,p(2k−�). The following says that the function
Fk,p meets our definition of concavity. The proof is in [9].

Lemma 10. Let k, p ≥ 1 be integers. Then the function Fk,p is concave.

We now show how to obtain our first main lemma.

Proof (Lemma 4). Let M = 2k + 1, m = 2� and t = 2k. Now we have

Advskpk,p,1(�) = max
Lk

(∑
L

|Lk−1(L)|
2k

· max
A

Pr[Gskp
k,p,1(A, Lk) | Lk(K) = L]

)

= max
Lk

(∑
L

|Lk−1(L)|
2k

· Advskp1k,p (Lk−1(L))

)

≤ max
(N1,...,Nm)∈S(M,m,t)

m∑
i=1

Fk,p(Ni)

= max
(N1,...,Nm)∈S(M,m,t)

Fm
k,p(N1, . . . , Nm)

= m · Fk,p(2k−�) (11)

= m · 2k−�

2k
· Advskp1k,p (2k−�) = Advskp1k,p (2k−�) . (12)

Big-Key Symmetric Encryption 389

Equation (11) is justified as follows. Lemma 10 says that Fk,p is concave. So we
can apply Lemma 9, and here t/m = 2k−�. Equation (12) is by Eq. (10) and
because m = 2�.

4 Encapsulating a Key

In this section we introduce big-key encapsulation. A scheme for this aim lets a
user encapsulate a random, conventional-length key K using a big-key K . We
speak of “encapsulation” instead of “encryption” because the user never selects
a value K to encrypt: rather, a random R is chosen and this value, together
with the big-key K , determines a derived key K = KEY(K , R). A user can
transmit R to a party that knows K and in this way name an induced key K.
While the aim is similar to a KEM (key encapsulation mechanism) [18], there
are also many differences, which we will later discuss.

Definitions. A big-key encapsulation algorithm is a deterministic algorithm
KEY that, given strings K ∈ {0, 1}k and R ∈ {0, 1}r, returns a string
K = KEY(K , R) ∈ {0, 1}κ. We call K , R, and K the big-key , selector, and
derived key, respectively. Their lengths, being part of the signature of KEY, are
numbers associated to it. Since we will be working in the RO model, we allow the
encapsulation algorithm to depend on an oracle RO. We write such a function
as a superscript, K = KEYRO(K , R), if we want to emphasize its presence.

The security requirement for an encapsulation algorithm captures the idea
that a derived key K should be indistinguishable from a uniform random string
even when accompanied by R and some bounded amount of leakage from the
big-key K . This is formalized via the game Gkey

KEY(A) on the left of Fig. 4. The
game is associated to encapsulation algorithm KEY and adversary A. The game
is in the ROM, oracle RO taking (x, l) and returning a random l-bit string. Not
only do algorithms and the adversary have access to RO, but, importantly, so
does the leakage function LKRO: {0, 1}k → {0, 1}κ, now called an oracle leakage
function to emphasize this.

In its first stage, the adversary specifies the leakage function it wants. It then
makes a sequence of Derive calls, each providing an (R,K) pair that is either
real—the derived key was determined by running KEY with a random selector—
or random—the derived key is uniformly random. Which of these possibilities
occurs depends on a bit b chosen at the beginning of the game. The adversary
must guess that bit. We let AdvkeyKEY(A) = 2Pr[Gkey

KEY(A)] − 1 be its advantage in
doing so.

Discussion. A big-key encapsulation algorithm is in some ways similar to a
conventional key encapsulation mechanism [18]. But there are many differences.
First, we are in the symmetric setting instead of the asymmetric setting. Second,
we are considering security under leakage, so the leakage function, chosen by the
adversary, comes into the picture. Finally, we have chosen a syntax under which
we do not have a separate decapsulation algorithm, preferring to surface the
coins R across the encapsulation algorithm’s interface.

390 M. Bellare et al.

Game Gkey
KEY(A)

b ←← {0, 1}
KK ←← {0, 1}k

(LK, σ) ←← ARO()

L ← LKRO(KK)

b′ ←← ADerive, RO(L, σ)

return (b′ = b)

Derive()

R ←← {0, 1}r

if (b = 0) then K ←← {0, 1}κ

else K ← KEYRO(KK, R)

return (R, K)

RO(x, l)

if not T [x, l] then

T [x, l] ←← {0, 1}l

return T [x, l]

Fig. 4. Game for defining the security of a big-key key encapsulation algorithm
KEY: {0, 1}k × {0, 1}r → {0, 1}κ

One may ask why we let the adversary encapsulate an arbitrary number of
conventional keys, using its Derive oracle q times; wouldn’t a hybrid argument
show that providing a single derived key is equivalent, up to a factor of q? In fact,
such a hybrid argument fails because the single-query adversary has no means
to simulate the real derived keys. For this reason, it is important to consider
multiple keys.

We explain the importance of giving the leakage function access to RO.
Otherwise, the scheme KEYRO(K , R) = RO(K , κ) is secure. Yet, in practice,
when RO is instantiated with a concrete hash function H: {0, 1}∗ → {0, 1}κ,
this scheme is certainly not secure because the leakage function can return H(K).
(We note that in this example the scheme does not make efficient use of K as
we want, but this is an orthogonal issue to security.) Once the leakage function
has access to RO, it too can return RO(K , κ), preventing this and other similar
schemes from being deemed secure.

Encapsulation scheme XKEY. Let k, κ, r ≥ 1 be integers, and, for con-
venience, assume k is a power of two. Given the results of Sect. 3, a natural
big-key encapsulation algorithm is as follows. On input the big-key K ∈ {0, 1}k,
algorithm KEY picks random probes p ∈ [1..k]p and computes the induced sub-
key J = K [p]. While this subkey is unpredictable, up to the bounds we have
seen, it is not indistinguishable from random bits, so cannot, by itself, function
as the derived key K. So, instead, the algorithm would let the derived key be
K ← RO(J, κ) where κ is the desired length for the derived key.

While the above might sound reasonable, there are two problems with the
scheme—one with regard to security and the other with regard to efficiency. We
explain these and then present a scheme that resolves them.

The security problem is that, we can only show security for the scheme just
described if the leakage function does not have access to the oracle RO. But we
have argued that it must have such access, and in that case the proof breaks
down and it is not clear if the scheme is secure. A simple remedy is to have
the scheme pick a random string and include it in the scope of the RO used to
determine the subkey. The proof can then exploit the fact that leakage function
can’t depend on this (not yet chosen) value.

Big-Key Symmetric Encryption 391

This still leaves the efficiency issue, which is that the probe p is quite long, a
total of p lg(k) bits. The number of components p of p is fairly large and grows
with the fraction of bits potentially leaked; it will typically be 100–1000. If K
is 1 TByte then k ≈ 243 and we’re using up a few kilobytes to communicate the
selector p, which is unpleasant.

Since we’re working in the ROM, an easy solution is to obtain p by apply-
ing RO to a short seed. Conveniently, the same random choices needed for this
remedy can be used for the security problem as well. The resulting encapsula-
tion algorithm XKEYk,κ,p,r: {0, 1}k × {0, 1}r → {0, 1}κ is shown in Fig. 5 and
described below.

Algorithm XKEYRO

k,κ,p,r(KK, R)

for i ← 1, . . . , p do p[i] ← RO(〈R, i, 0〉, lg(k))

J ← KK[p] ; K ← RO(〈R, J, 1〉, κ) ; Return K

Fig. 5. Encapsulation algorithm XKEY. Given a length-k big-key K and a length-r
selector R, the algorithm returns a length-κ subkey K. The value p, a security para-
meter, specifies the number of probes into the big-key.

The XKEY encapsulation algorithm picks or is provided a random selector R
of length r. It picks the ith probe into K not directly at random, but by apply-
ing the random oracle RO to a string encoding R, i, and 0. In defining p[i]
we interpret a lg(k)-bit string as an integer in [1..k] in the natural way. The
encapsulation algorithm then lets the subkey J be the positions of K indicated
by the probes. The derived key K is obtained by applying the RO to a string
encoding J , R, and 0. The third component in each encoding 〈·, ·, ·〉 is for domain
separation.

Theorem 12 will establish security of XKEY, providing concrete bounds.
Those bounds indicate that r = |R| can be chosen to be quite small, like 128–256.
Since only this value is transmitted when XKEY is used, bandwidth overhead
in small and independent of p.

Enhanced subkey-prediction game. Towards the proof of Theorem 12 it is
convenient to consider an enhanced version of the subkey-prediction problem.
The security goal reflects two changes over our earlier subkey-prediction game
Gskp. First, the leakage function is not fixed but dynamically chosen by an
adversary. Second, that choice may depend on the RO, which the leakage function
itself may depend on. These issues, particularly the second, lead to design choices
embedded in XKEY and make proofs more challenging. We must now revisit
sample predictability, formulate it in the extended setting just discussed, and
then show that security in this new setting is implied by security in the basic
one. Afterwards, we will be in a position to prove security for XKEY.

392 M. Bellare et al.

As in the basic sample predictability problem, let k, �, p, q ≥ 1 be integers
with � ≤ k. Consider game Gskp2

k,p,q(B) defined in Fig. 6. In its first stage, the adver-
sary returns an oracle leakage function Lk. We say that B leaks (or exfiltrates) �
bits if LK: {0, 1}k → {0, 1}�. Adversary B also returns state σ representing infor-
mation that could be known to LK and will be passed to the adversary’s second
stage. The game picks the big-key K , computes the leakage as LKRO(K) and
picks probe vectors p1, . . . ,pq. These implicitly determine subkeys K1, . . . ,Kq

where Ki = K [pi]. In its second stage, the adversary B gets the leakage L
and probe vectors as before, but now additionally gets σ. Its task is to guess
one of the subkeys, and the game returns true if it does this correctly. We let
Advskp2k,p,q(B) = Pr[Gskp2

k,p,q(B)] be its advantage.

Fig. 6. Game defining the “enhanced” subkey-prediction game, Gskp2. The game differs
from Gskp by allowing the adversary to select LK, both the latter and the adversary
having access to a random oracle.

Lemma 11. Let �, k, p, q ≥ 1 be integers with � ≤ k. Let B be an adversary
leaking � bits. Then

Advskp2k,p,q(B) ≤ Advskpk,p,q(�) (13)

The proof uses a fairly standard “coin-fixing” argument in which a predictor
adversary uses the “best” choice of random oracle and coins for B. The details
follow.

Proof (Lemma 11). Let H denote the set of all functions H such that H(·, l):
{0, 1}∗ → {0, 1}l for all l ∈ N. A random oracle is a function drawn at random
from H. Regard B, �, k, p, q as fixed and define the function g: H × {0, 1}∗ →
[0, 1] as g(H,ω) = Pr[G(H,ω)] where game G(H,ω) is on the left below:

Game G(H,ω)
(LK, σ) ← BH(ω) ; KK ←← {0, 1}k

L ← LKH(KK)
for j ← 1, . . . , q do
pj [1], . . . ,pj [p] ←← [1..k]
Jj ← KK[pj]

J ′ ← BH(L,p1, . . . ,pq, σ; ω)
return (J ′ ∈ {J1, . . . , Jq})

Adversary P(L,p1, . . . ,pq)

J ′ ← BH∗
(L,p1, . . . ,pq, σ

∗; ω∗)
return J ′

Big-Key Symmetric Encryption 393

In this game, the coins of B are fixed to ω and its random oracle is fixed to
H. The probability is only over the choices made in the game. Let (H∗, ω∗) ∈
H × {0, 1}∗ be such that g(H∗, ω∗) ≥ g(H,ω) for all (H,ω) ∈ H × {0, 1}∗, and
let (LK, σ∗) ← BH∗

(ω∗). Let Lk = LKH∗
. This is a basic (not oracle) leakage

function, Lk: {0, 1}k → {0, 1}�. Define predictor adversary P as on the right
above. Then

Advskp2k,p,q(B) = E(H,ω)←←H×{0,1}∗ [g(H,ω)]

≤ g(H∗, ω∗)

= Advskpk,p,q(P, Lk) ≤ Advskpk,p,q(�)

which yields Eq. (13).

Theorem 12. Let k, κ, p, r ≥ 1 be integers with k a power of two. Let KEY =
XKEYk,κ,p,r be the big-key encapsulation scheme associated to them as per Fig. 5.
Let A be an adversary making at most q queries to itsDerive oracle and leaking �
bits. Assume the number ofRO queries made byA in its first stage, plus the number
made by the oracle leakage function LK that it outputs in this stage, is at most q1,
and the number ofRO queries made by A in its second stage is at most q2. Then

AdvkeyKEY(A) ≤ q2 · Advskpk,p,q(�) +
q · (2q1 + q − 1)

2r+1
(14)

Game G0 , G1

KK ←← {0, 1}k

for j ← 1, . . . , q do

R[j] ←← {0, 1}r; pj [1], . . . ,pj [p] ←← [1..k]; KK[j] ←← {0, 1}κ ; Jj ← KK[pj]

For i = 1, . . . , j − 1 do

If (R[j] = R[i]) then (pj , Jj) ← (pi, Ji) ; bad ← true ; KK[j] ← KK[i]

(LK, σ) ←← ARO; L ← LKRO(KK) ; c′ ←← ADerive,RO(L, σ) ; Return (c′ = 1)

Game G2 , G3 , G4 , G5

KK ←← {0, 1}k

for j ← 1, . . . , q do

R[j] ←← {0, 1}r; pj [1], . . . ,pj [p] ←← [1..k]; KK[j] ←← {0, 1}κ ; Jj ← KK[pj]

For i = 1, . . . , j − 1 do

If (R[j] = R[i]) then (pj , Jj) ← (pi, Ji)

stage ← 1; (LK, σ) ←← ARO; L ← LKRO(KK)

stage ← 2 ; j ← 0; c′ ←← ADerive,RO(L, σ) ; Return (c′ = 1)

Derive()

j ← j + 1; return (R[j],KK[j])

Fig. 7. Games for proof of Theorem 12. See Fig. 8 for the RO procedures.

394 M. Bellare et al.

RO(x, l) // Games G0 , G1

if not T [x, l] then

T [x, l] ←← {0, 1}l

for j ← 1, . . . , q do

for i ← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k)) then T [x, l] ← pj [i]

if (x = (R[j], Jj , 1) and l = r) then T [x, l] ← KK[j]

return T [x, l]

RO(x, l) // Games G2 , G3

if not T [x, l] then

T [x, l] ←← {0, 1}l

if (stage = 1) then

for j ← 1, . . . , q do

for i ← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k)) then bad ← true ; T [x, l] ← pj [i]

if (x = (R[j], Jj , 1) and l = r) then bad ← true ; T [x, l] ← KK[j]

if (stage = 2) then

for j ← 1, . . . , q do

for i ← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k))) then T [x, l] ← pj [i]

if (x = (R[j], Jj , 1) and l = r) then T [x, l] ← KK[j]

return T [x, l]

RO(x, l) // Games G4 , G5

if not T [x, l] then

T [x, l] ←← {0, 1}l

if (stage = 2) then

for j ← 1, . . . , q do

for i ← 1, . . . , p do

if (x = (R[j], i, 0) and l = lg(k)) then T [x, l] ← pj [i]

if (x = (R[j], Jj , 1) and l = r) then bad ← true ; T [x, l] ← KK[j]

return T [x, l]

Fig. 8. RO procedures for games for proof of Theorem 12.

We note that the bound of Eq. (14) does not depend on the length κ of the output
keys.

Proof (Theorem 12). Consider the games of Fig. 7. Their RO procedures are
in Fig. 8. Game G0 includes the boxed code and is equivalent to case of game
Gkey

KEY(A) in which b = 1. Game G5 excludes the boxed code and mimics the
b = 0 case of game Gkey

KEY(A), except that the probability the former returns true

Big-Key Symmetric Encryption 395

is the probability the latter returns false. Let pi = Pr[Gi] for 0 ≤ i ≤ 5. Then

AdvkeyKEY(A)

= Pr[Gkey
KEY(A) | b = 1] −

(
1 − Pr[Gkey

KEY(A) | b = 0]
)

= Pr[G0] − Pr[G5]
= (p0 − p1) + (p1 − p2) + (p2 − p3) + (p3 − p4) + (p4 − p5)
= (p0 − p1) + (p2 − p3) + (p4 − p5) (15)
≤ Pr[G1 sets bad] + Pr[G3 sets bad] + Pr[G5 sets bad] . (16)

Equation (15) used the fact that p1 = p2 and p3 = p4. Equation (16) used the
Fundamental Lemma of Game Playing [13]. Now

Pr[G1 sets bad] ≤ q(q − 1)
2r+1

. (17)

Also

Pr[G3 sets bad] ≤ q · q1
2r

. (18)

The first estimate of the above bound may be that each RO query can set the
first instance of bad with probability pq/2r and the second with probability q/2r

Adversary BRO

(LK, σ) ←← ARO

return (LK, (σ, T))

ROSIM(x, l)
If not T[x,l] then

T [x, l] ← RO(x, l)
Return T [x, l]

Adversary BRO(L,p1, . . . ,pq, (σ, T))

for j ← 1, . . . , q do
R[j] ←← {0, 1}r ; KK[j] ←← {0, 1}κ

for i = 1, . . . , j − 1 do
If (R[j] = R[i]) then pj ← pi

S ← ∅ ; j ← 0 ; c′ ←← ADerive,ROSIM(L, σ)
J ′ ←← S ; return J ′

Derive()
j ← j + 1 ; return (R[j],KK[j])

ROSIM(x, l)
If not T [x, l] then

T [x, l] ← RO(x, l)
for j ← 1, . . . , q do

for i ← 1, . . . , p do
if (x = (R[j], i, 0) and l = lg(k)) then

T [x, l] ← pj [i]
(R, J, b) ← x
If b = 1 then S ← S ∪ {J}
return T [x, l]

Fig. 9. Adversary B for proof of Theorem 12.

396 M. Bellare et al.

for a bound of q1(p + 1)q/2r. But these different events are mutually exclusive
due to the queries including the index i and the domain separation bit, whence
Eq. (18). Now we will present an adversary A such that

Pr[G5 sets bad] ≤ q2 · Advskp2k,p,q(B) . (19)

The theorem follows from Lemma 11. Adversary B is shown in Fig. 9. In the
first stage, B simulates A’s RO directly via its own RO, keeping track of values
in table T , which is passed to the next stage. In the second it does the same,
makes sure to map selectors to probes as per game G5, and also it saves subkey
guesses in the set S. Equation (19) follows because |S| ≤ q2.

5 Big-Key Symmetric Encryption

Here we define and achieve big-key symmetric encryption.

Definitions. A symmetric encryption scheme SE specifies a key length SE.kl ∈
N, an encryption algorithm SE.Enc that given a key K and message M returns
a ciphertext, and a deterministic decryption algorithm SE.Dec such that for all
K,M we have SE.Dec(K,SE.Enc(K,M)) = M with probability one, where the
probability is over the coins of SE.Enc. Privacy is formalized by left or right
indistinguishability [7] via game INDSE(A) on the right of Fig. 10 associated to
SE and adversary A. We let AdvindSE (A) = 2Pr[INDSE(A)] − 1 be the advantage
of A in violating privacy of SE.

Syntactically, a big-key symmetric encryption scheme SE continues to be a
symmetric encryption scheme as above, specifying SE.kl,SE.Enc and SE.Dec. Two
things make it special. First, privacy is measured under leakage on the key. Second,
the encryption and decryption algorithms have the “locality” efficiency attribute,
which means that in any one execution they access only a small part of the key. Pri-
vacy is formalized via gameLINDSE(A) on the left of Fig. 10 associated to SE and
adversaryA. In its first stage, the adversary, given access toRO, specifies an oracle
leakage function LK: {0, 1}SE.kl → {0, 1}� together with state information σ. We
refer to � as the number of bits leaked by A. In its second stage, A gets the leak-
age L ← LKRO(K), the state σ, and access to the challenge encryption oracleEnc,
while continuing to have access toRO. To win it must guess the challenge bit b. We
let AdvlindSE (A) = 2Pr[LINDSE(A)] − 1 be the advantage of A in violating privacy
of SE under leakage. Locality will not be formalized but rather visible in specific
constructs. Giving the leakage function access to RO is important for same reason
as we discussed in Sect. 4 for key encapsulation, namely that, otherwise, there are
trivial ROM schemes that are secure but when the RO is instantiated the resulting
scheme is clearly not secure.

Big-key encryption scheme. Let SE be a symmetric encryption scheme. Let
KEY be a key-encapsulation algorithm with big-key length k, randomness length
r and derived key length κ = SE.kl (keys output by KEY are suitable for use
with SE). We associate to SE,KEY the big-key symmetric encryption scheme

Big-Key Symmetric Encryption 397

Game LINDSE(A)

(LK, σ) ←← ARO; KK ←← {0, 1}SE.kl

L ← LkRO(KK); b ←← {0, 1}
c′ ← AEnc,RO(L, σ)

Return (c′ = b)

Enc(M0, M1)

C ←← SE.EncRO(KK, Mb)

Return C

RO(x, l)

If not T [x, l] then T [x, l] ←← {0, 1}l

Return T [x, l]

Game INDSE(A)

S ←← {0, 1}SE.kl

b ←← {0, 1}
c′ ← AEnc

Return (c′ = b)

Enc(M0, M1)

C ←← SE.Enc(S, Mb)

Return C

Fig. 10. Game defining privacy of symmetric encryption scheme SE under leakage, and
game defining standard privacy of symmetric encryption scheme SE.

SE = BKSE[SE,KEY] defined as follows. The key length is SE.kl = k (the key for
SE is the same as that for KEY) and the encryption and decryption algorithms
are as follows:

Algorithm SE.EncRO(KK, M)

R ←← {0, 1}r; K ←← KEYRO(KK, R)
C ←← SE.Enc(K, M) ; C ← (R, C)
Return C

Algorithm SE.DecRO(KK, C)

(R,C) ← C

K ← KEYRO(KK,R)
M ← SE.Dec(K, C)
Return M

Encryption applies the key encapsulation algorithm to the big-key to get a
derived key K. The message is encrypted under SE using key K. The locality
of this scheme is exactly that of KEY since accesses to the key are done only
by KEY. The big-key aspect is similarly inherited from KEY. The following says
that our big-key scheme achieves privacy under leakage on the key assuming
standard privacy of the base scheme SE and the lror-security of KEY. The proof
is in [9].

Theorem 13. Let SE be a symmetric encryption scheme. Let KEY be a key
encapsulation algorithm with big-key length k, randomness length r and derived
key length κ = SE.kl. Let SE = BKSE[SE,KEY] be the big-key symmetric encryp-
tion scheme associated to them as above. Let A be an adversary making at most
q queries to its Enc oracle and leaking � bits. Then the proof below specifies an
adversary A1 and an adversary A2 such that

AdvlindSE (A) ≤ AdvkeyKEY(A2) + q · AdvindSE (A1) . (20)

Adversary A1 makes only one query to its Enc oracle and its running time is
about that of A. Adversary A2 makes q queries to its Derive oracle and has

398 M. Bellare et al.

running time about that of A. Its first stage is the same as that of A, so it also
leaks � bits. In its second stage it makes the same number of RO queries as A

does in its second stage.

Since A1 makes only one query to its Enc oracle, a one-time encryption scheme
suffices to instantiate SE.

6 Standard-Model Big-Key Encryption

In this section we give a standard-model variant of our scheme whose security relies
on UCE. The scheme is as efficient as our ROM one, but ciphertexts are longer.

Definitions. We recall the UCE framework following [8]. Let H: {0, 1}H.kl ×
{0, 1}H.il → {0, 1}H.ol be a family of functions taking an H.kl-bit key I and H.il-
bit input x to a H.ol-bit output H(I, x). Game Guce of Fig. 11 is associated to
H, an adversary S called the source, an adversary D called the distinguisher,
and a number q of keys. (We are using the multi-key version of UCE from [8].)
Here S does not get the keys. It produces leakage M that is passed to D, who
does get the keys. We let AdvuceH,q(S,D) = 2Pr[Guce

H,q(S,D)] − 1. We can only
expect this to be small for sources restricted in some way. We require statistical
unpredictability [8,15] of the source’s oracle queries. If P is an adversary called
the predictor, let AdvpredS (P) = Pr[Gsp

S (P)] where the game is again in Fig. 11,
and let AdvpredS = maxP AdvpredS (P). The predictor here is unbounded (corre-
sponding to statistical unpredictability) so the maximum is over all predictors.
The assumption, informally, is that if AdvpredS is small then so is AdvuceH,q(S,D)
for all efficient S,D. An important element of results is thus to be able to bound
AdvpredS for the S constructed by the reduction.

XKEY2. The encapsulation algorithm is specified in Fig. 12. If κ is the desired
length of the derived key, k the length of the big-key K (assumed a power of
two for simplicity) and p the number of probes then it uses a family of functions

Game Guce
H,q(S, D)

b ←← {0, 1}
For i = 1, . . . , q do Ii ←← {0, 1}H.kl

M ←← SHASH ; b′ ←← D(I1, . . . , Iq, M)

Return (b′ = b)

HASH(x, j)

If not T [x, j] then

If b = 0 then T [x, j] ←← {0, 1}H.ol

Else T [x, j] ← H(Ij , x)

Return T [x, j]

Game Gsp
S (P)

Q ← ∅ ; M ←← SHASH ; x ←← P(M)

Return (x ∈ Q)

HASH(x, j)

If not T [x, j] then T [x, j] ←← {0, 1}H.ol

Q ← Q ∪ {x} ; Return T [x, j]

Fig. 11. Games Guce and Gsp to define UCE security.

Big-Key Symmetric Encryption 399

H with H.ol = κ and H.il = p. The selector is of length r = H.kl + p · lg(k) and
specifies a key I for H as well as the probe sequence p. The derived key K is then
computed as shown. The following theorem says that the scheme works, meaning
achieves our notion of encapsulation security. This involves two claims. First is
that the key encapsulation advantage can be bounded by the uce advantage of
a source-distinguisher pair. But this by itself is not enough. To ensure this uce
advantage is small, we also show that the predictability of the source can be
bounded. Here we appeal to our bound on sub-key predictability, so that once
again the latter emerges as crucial.

Algorithm XKEY2k,κ,p,r(KK, R)

(I,p) ← R ; J ← KK[p] ; K ← H(I, J) ; Return K

Fig. 12. Encapsulation algorithm XKEY2. Given a length-k big-key K and a length-r
selector R = (I,p), the algorithm returns a length-κ subkey K.

Theorem 14. Let k, κ, p ≥ 1 be integers and H a family of functions with H.ol =
κ and H.il = p. Let r = H.kl + p · lg(k). Let KEY = XKEY2k,κ,p,r be the big-key
key-derivation scheme associated to them as per Fig. 12. Let A be an adversary
making at most q queries to its Derive oracle and leaking � bits. The proof
specifies a source adversary S and a distinguisher adversary D such that

AdvkeyKEY(A) ≤ AdvuceH,q(S,D) and AdvpredS ≤ Advskpk,p,q(�) . (21)

Adversary S makes q queries to its HASH oracle (one per key) and the running
times of S and D add up to essentially that of A.

Proof (Theorem 14). Adversaries S,D are as follows:
Adversary SHASH

KK ←← {0, 1}k ; (LK, σ) ←← A()
L ←← LK(KK)
For i = 1, . . . , q do

pi ←← [1..k]p ; Ji ← KK[pi]
Ki ← HASH(Ji, i)

M ← (L, σ,p1, . . . ,pq, K1, . . . , Kq)
Return M

Adversary D(I1, . . . , Iq, M)

(L, σ,p1, . . . ,pq, K1, . . . , Kq) ← M
i ← 0 ; c′ ←← ADerive(L, σ)
Return c′

Derive()
i ← i + 1 ; return ((Ii,pi), Ki)

Adversary S itself picks the big-key K and runs A to get the leakage function,
producing its own leakage M as shown. Adversary D continues the execution of
A, being in a position to answer Derive queries because it has I1, . . . , Iq. If P is
any predictor adversary, the leakage M it gets in its game specifies the output L
of the leakage function on the big-key, the probe sequences, and independent
random strings K1, . . . ,Kq, and an oracle query of the source is a subkey, so
guessing it is exactly guessing a subkey. It follows that AdvpredS (P) ≤ Advskpk,p,q(�).
We omit the details.

400 M. Bellare et al.

Big-key encryption. We can turn XKEY2 into a big-key encryption scheme via
the general transform of Sect. 5. This transform does not introduce a random
oracle. (If the big-key key encapsulation mechanism used one, it will inherit
it, but will not introduce an additional use.) Thus the result of applying the
transform to XKEY2 is a standard-model big-key encryption scheme. It satisfies
locality because XKEY2 does. Theorem 13 reduces its security to that of XKEY2,
and thus we can conclude by applying Theorem 14. We omit the details.

7 Authenticity and Hedged Big-Key Encryption

In real-world settings we are likely to want authenticated encryption (AE) rather
than privacy-only encryption. We should thus ask whether, we can have big-
key AE rather than the privacy-only formulation we have now. As discussed in
Sect. 1, this is not possible due to the following attack: the adversary simply leaks
a valid ciphertext. This is a small amount of leakage, yet violates authenticity.

To overcome this difficulty we suggest to use what we call hedged big-key
encryption. This provides privacy in the big-key setting we have already defined
and achieved; additionally, in the absence of leakage, it provides authenticity. We
suggest that this is a good goal because, in the mass-surveillance /APT context,
it is privacy that is the main concern, not authenticity; but in the absence of an
APT, our concerns would be the usual ones, which include authenticity. Hedged
big-key encryption provides both, so that security does not degrade by moving
to big keys.

There is a simple and generic way to turn a privacy-only big-key encryption
scheme into a hedged big-key encryption scheme. Reserve a small (128-bit, say)
portion K of the big-key K as a key for a conventional PRF or MAC. Then use
encrypt-then-mac [10]. Namely, big-key encrypt the message under the remaining
(big) portion of K to get a ciphertext C, and return (C, T) as the ciphertext for
the hedged big-key scheme, where T is the result of applying a PRF, keyed by K,
to C. In the absence of leakage, we have authenticated encryption by applying
results of [10]. In the presence of leakage, we must assume the small key K is
leaked in its entirety, but the big-key privacy-only component will still provide
the same privacy as before. Here we use the fact that in the privacy proof of [10],
the adversary can be given the PRF (MAC) key.

Acknowledgments. Bellare was supported in part by NSF grants CNS-1526801
and CNS-1228890, a gift from Microsoft corporation and ERC Project ERCC
(FP7/615074). Rogaway was supported in part by NSF grants CNS-1228828 and
CNS-1314885. We thank Joseph Jaeger for comments and corrections, Wei Dai for
helpful discussions, and the CRYPTO 2016 reviewers for their knowledgeable reviews,
corrections and pointers to the literature.

Big-Key Symmetric Encryption 401

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channels. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

4. Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and the bounded
retrieval model. In: Kurosawa, K. (ed.) Information Theoretic Security. LNCS,
vol. 5973, pp. 1–18. Springer, Heidelberg (2010)

5. Aumann, Y., Ding, Y.Z., Rabin, M.O.: Everlasting security in the bounded storage
model. IEEE Trans. Inf. Theory 48(6), 1668–1680 (2002)

6. Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the
limited storage space model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 65–79. Springer, Heidelberg (1999)

7. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th FOCS, pp. 394–403. IEEE Computer Society Press,
October 1997

8. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

9. Bellare, M., Kane, D., Rogaway, P.: Big-key symmetric encryption: resisting key
exfiltration. Cryptology ePrint Archive, report 2016/541 (2016)

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

11. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass Surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014)

12. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

13. Bellare, M., Rogaway, P.: The Security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

14. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B.,
McDaniel, P. (eds.) ACM CCS 2004, pp. 82–91. ACM Press, October 2004

15. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gen-
naro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014)

16. Cachin, C., Maurer, U.M.: Unconditional security against memory-bounded adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306.
Springer, Heidelberg (1997)

17. Cash, D.M., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-
resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

402 M. Bellare et al.

18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

19. Dagon, D., Lee, W., Lipton, R.J.: Protecting secret data from insider attacks. In:
Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 16–30. Springer,
Heidelberg (2005)

20. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

21. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press, May/June
2009

22. Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for efficiently sam-
plable, seed-dependent sources. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 618–635. Springer, Heidelberg (2012)

23. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg
(2006)

24. Dziembowski, S., Maurer, U.M.: Optimal randomizer efficiency in the bounded-
storage model. J. Cryptol. 17(1), 5–26 (2004)

25. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp.
293–302. IEEE Computer Society Press, October 2008

26. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011)

27. Kelsey, J., Schneier, B.: Authenticating secure tokens using slow memory access.
In: Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard
1999), 10–11 May 1999, Chicago, Illinois, USA, p. 101. USENIX Association (1999)

28. Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong
extractors. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 257–271.
Springer, Heidelberg (2002)

29. Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized
cipher. J. Cryptol. 5(1), 53–66 (1992)

30. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996)

31. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

32. Raz, R., Reingold, O.: On recycling the randomness of states in space bounded
computation. In: 31st ACM STOC, pp. 159–168. ACM Press, May 1999

33. Reingold, O., Shaltiel, R., Wigderson, A.: Extracting randomness via repeated
condensing. SIAM J. Comput. 35(5), 1185–1209 (2006)

34. Shin, S.H., Kobara, K., Imai, H.: Leakage-resilient authenticated key establishment
protocols. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 155–172.
Springer, Heidelberg (2003)

35. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in
the bounded-storage model. J. Cryptol. 17(1), 43–77 (2004)

Backdoors in Pseudorandom Number
Generators: Possibility and Impossibility Results

Jean Paul Degabriele1(B), Kenneth G. Paterson1, Jacob C.N. Schuldt2,
and Joanne Woodage1

1 Royal Holloway, University of London, London, UK
{jean.degabriele,kenny.paterson}@rhul.ac.uk

joanne.woodage.2014@live.rhul.ac.uk
2 AIST, Tokyo, Japan

jacob.schuldt@aist.go.jp

Abstract. Inspired by the Dual EC DBRG incident, Dodis et al.
(Eurocrypt 2015) initiated the formal study of backdoored PRGs, show-
ing that backdoored PRGs are equivalent to public key encryption
schemes, giving constructions for backdoored PRGs (BPRGs), and show-
ing how BPRGs can be “immunised” by careful post-processing of their
outputs. In this paper, we continue the foundational line of work initi-
ated by Dodis et al., providing both positive and negative results.

We first revisit the backdoored PRG setting of Dodis et al., showing
that PRGs can be more strongly backdoored than was previously envis-
aged. Specifically, we give efficient constructions of BPRGs for which,
given a single generator output, Big Brother can recover the initial state
and, therefore, all outputs of the BPRG. Moreover, our constructions
are forward-secure in the traditional sense for a PRG, resolving an open
question of Dodis et al. in the negative.

We then turn to the question of the effectiveness of backdoors in
robust PRNGs with input (c.f. Dodis et al., ACM-CCS 2013): genera-
tors in which the state can be regularly refreshed using an entropy source,
and in which, provided sufficient entropy has been made available since
the last refresh, the outputs will appear pseudorandom. The presence of
a refresh procedure might suggest that Big Brother could be defeated,
since he would not be able to predict the values of the PRNG state back-
wards or forwards through the high-entropy refreshes. Unfortunately, we
show that this intuition is not correct: we are also able to construct
robust PRNGs with input that are backdoored in a backwards sense.
Namely, given a single output, Big Brother is able to rewind through
a number of refresh operations to earlier “phases”, and recover all the
generator’s outputs in those earlier phases.

Finally, and ending on a positive note, we give an impossibility result:
we provide a bound on the number of previous phases that Big Brother
can compromise as a function of the state-size of the generator: smaller
states provide more limited backdooring opportunities for Big Brother.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 403–432, 2016.
DOI: 10.1007/978-3-662-53018-4 15

404 J.P. Degabriele et al.

1 Introduction

Background: In the wake of the Snowden revelations, the cryptographic research
community has begun to realise that it faces a more powerful and insidious
adversary than it had previously envisaged: Big Brother, an adversary willing to
subvert cryptographic standards and implementations in order to gain an advan-
tage against users of cryptography. The Dual EC DRBG debacle, and subsequent
research showing the widespread use of this NIST-standardised pseudorandom
generator (PRG) and its security consequences [11], has highlighted that insert-
ing backdoors into randomness-generating components of systems is a profitable,
if high-risk, strategy for Big Brother.

The threat posed by the Big Brother adversary brings new research chal-
lenges, both foundational and applied. The study of subversion of cryptographic
systems — how to undetectably and securely subvert them, and how to defend
against subversion — is a central one. Current research efforts to understand
various forms of subversion include the study of Algorithm Substitution Attacks
(ASAs) [2,6,13,23,28] and that of backdooring of cryptosystems [3,8,11,15].
These lines of research have a long and rich history through topics such as klep-
tography [34] and subliminal channels [31]. In an ASA, the subversion is specific
to a specific implementation of a particular algorithm or scheme, whereas in
backdooring, the backdoor resides in the specification of the scheme or primitive
itself and any implementation faithful to the specification will be equally vulner-
able. There is a balancing act at play with these two types of attack: while ASAs
are arguably easier to carry out, their impact is limited to a specific implemen-
tation, whereas the successful introduction of a backdoor into a cryptographic
scheme, albeit ostensibly harder to mount and subsequently conceal, can have
much wider impact.

The Importance of Randomness: Many cryptographic processes rely heavily on
good sources of randomness, for example, key generation, selection of IVs for
encryption schemes and random challenges in authentication protocols, and the
selection of Diffie-Hellman exponents. Indeed randomness failures of various kinds
have led to serious vulnerabilities in widely deployed cryptographic systems, with
a growing literature on such failures [1,7,10,19,21,22,25,27,33]. Furthermore it is
well established in the theory of cryptography that the security of most crypto-
graphic tasks relies crucially on the quality of that randomness [16].

Since true random bits are hard to generate without specialised hardware, and
such hardware has only recently started to become available on commodity com-
puting platforms,1 Pseudorandom Generators (PRGs) and Pseudorandom Num-
ber Generators with input (“PRNGs with input” for short) are almost universally
used in implementations. These generate pseudorandom bits instead of truly ran-
dombits; PRNGs with input can also have their state regularly refreshed with fresh
entropy, though from a possibly biased source of randomness. Typically, a host

1 See for example https://en.wikipedia.org/wiki/RdRand for a description of Intel’s
“Bull Mountain” random number generator.

https://en.wikipedia.org/wiki/RdRand

Backdoors in Pseudorandom Number Generators 405

operating system will make PRNGs with input available to applications, with the
entropy being gathered from a variety of events, e.g. keyboard or disk timings, or
timing of interrupts and other system events; programming libraries typically also
provide access to PRG functionality, though of widely varying quality.

Backdooring Randomness: Given the ubiquity of PRGs and PRNGs with input
in cryptographic implementations, they constitute the ideal target for maximis-
ing the spread and impact of backdoors. This was probably the rationale behind
the Dual EC DRBG [11] which is widely believed to have been backdoored by
the NSA. Despite this generator’s low-speed, known output biases, and known
capability to be backdoored (which was pointed out as early as 2007 by Shumow
and Ferguson [30]), it managed to be covertly deployed in a range of widely used
systems. Such systems continue to be discovered today, more than three years
after the original Snowden revelations relating to Dual EC DRBG and project
Bullrun.2 The Dual EC DRBG provides a particularly useful backdoor to Big
Brother: given a single output from the generator, its state can be recovered, and
all future outputs can be recovered (with moderate computational effort). Pro-
tocols like SSL/TLS directly expose PRG outputs in protocol messages, making
the Dual EC DRBG exploitable in practice [11].

Formal Analysis of Backdoored PRGs: The formal study of backdoored PRGs
(BPRGs) was initiated by Dodis et. al. [15], building on earlier work of Vazirani
and Vazirani [32]. Dodis et al. showed that BPRGs are equivalent to public-key
encryption (PKE) with pseudorandom ciphertexts (IND$-CPA-security), pro-
vided constructions using PKE schemes and KEMs, and analysed folklore immu-
nisation techniques. Understanding the nature of backdoored primitives together
with their capabilities and limitations is an important first step towards find-
ing solutions that will safeguard against backdooring attacks. For instance the
equivalence of BPRGs with public key encryption shown in [15] suggests that a
PRG based on purely symmetric techniques is less likely to contain a backdoor,
since we currently do not know how to build public key encryption from one-way
functions.

A basic question that was posed – and partly answered – in [15] is: to what extent
can a PRG be backdoored while at the same time being provably secure? This ques-
tion makes perfect sense in the context of subversion via backdooring, where the
backdoor resides in the specification of the PRG itself, and where the PRG can
be publicly assessed and its security evaluated. The Dual EC DRBG has notable
biases which directly rule out any possibility of it being provably secure as a PRG.
Nevertheless, in [15] it is noted that by using special encodings of curve points as
in [9,24,35], these biases can be eliminated and the Dual EC DRBG can be turned
into a provably forward-secure PRG under the DDH assumption.
2 See for example http://www.realworldcrypto.com/rwc2016/program/rwc16-

shacham.pdf?attredirects=0\&d=1 for the Dual EC DRBG being used as a
backdoor in Juniper networking equipment; see also http://www.theguardian.com/
world/2013/sep/05/nsa-gchq-encryption-codes-security for the original reporting
on project Bullrun.

http://www.realworldcrypto.com/rwc2016/program/rwc16-shacham.pdf?attredirects=0&d=1
http://www.realworldcrypto.com/rwc2016/program/rwc16-shacham.pdf?attredirects=0&d=1
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

406 J.P. Degabriele et al.

Yet the backdoor in the Dual EC DRBG, while relatively powerful and cer-
tainly completely undermining security in certain applications like SSL/TLS, has
its limitations. In particular, it does not allow Big Brother (who holds the back-
door key) to predict previous outputs from a given output but only future ones.
The random-seek BPRG construction of [15] provides a stronger type of backdoor:
given any single output, it allows Big Brother to recover any past or future out-
put with probability roughly 1

4 . But the random-seek BPRG construction of [15]
attains this stronger backdooring at the expense of no longer being a forward-secure
PRG (in the usual sense). Indeed, forward-security and the random-seek backdoor
property would intuitively seem to be opposing goals, and it is then natural to
ask whether this tradeoff is inherent, or whether strong forms of backdooring of
forward-secure PRGs are possible. If the limitation was inherent, then a proof of
forward-security for a PRG would serve to preclude backdoors with the backward-
seek feature, so a forward-secure PRG would be automatically immunised, to some
extent, against backdoors.

1.1 Our Contributions

In this work we advance understanding of backdoored generators in two distinct
directions.

Stronger Backdooring of PRGs: We settle the above open question from [15]
in the negative by providing two different constructions of random-seek BPRGs
that are provably forward-secure. In fact we demonstrate something substantially
stronger:

– Firstly, both of our constructions allow Big Brother to succeed with probabil-
ity 1 (rather than the 1/4 attained for the random-seek BPRG construction
of [15]).

– Secondly, the backdooring is much stronger, in that for both of our BPRG
constructions, Big Brother is able to recover the initial state of the BPRG,
given only a single output value. This then enables all states and output values
to be reconstructed.

Our constructions require a number of cryptographic tools. Unsurprisingly,
given the connection between BPRGs and PKE with pseudorandom ciphertexts
that was shown in [15], they both make use of the latter primitive. To give a
flavour of what lies ahead, we remark that our simplest construction, shown
in Fig. 7, uses such a PKE scheme to encrypt its state s, with the resulting
ciphertext C forming the generator’s output; s is also evolved using a one-way
function, to provide forward security. Clearly, Big Brother, with access to a
single output and the decryption key, can recover the state s. But we use a
trapdoor one-way function so that Big Brother can then “unwind” s back to its
starting value. For the security proof, we need to use a random oracle applied to
s to generate the encryption randomness, making our construction reminiscent
of the “Encrypt-with-hash” construction of [5], while for technical reasons, we

Backdoors in Pseudorandom Number Generators 407

require the trapdoor one-way function to be lossy [26]. Our second construction
is in the standard model and combines, in novel ways, other primitives such as
re-randomizable PKE schemes.

Backdooring PRNGs with Input: We then turn our attention to the study of
backdoored PRNGs with input (BPRNGs). This is a very natural extension to
the study of BPRGs conducted in [15] and continued here, particularly in view
of the widespread deployment of PRNGs with input in real systems.

The formal study of PRNGs with input (but without backdooring) com-
menced with Barak and Halevi’s work in [4], later extended in [17,18]. Various
security notions have been proposed in the literature for PRNGs with input,
namely resilience, forward security, backward security and robustness. Of these,
robustness is the strongest notion. It captures the ability of a generator to both
preserve security when its entropy inputs are influenced by an attacker and
to recover security after its state is compromised, via refreshing (provided suffi-
cient entropy becomes available to it). Robustness is generally accepted as the de
facto security target for any new PRNG design, though several widely-deployed
PRNGs fail to meet it (see, for example, [12,17]).

Given that we are in the backdooring setting for subversion, in which the full
specification of the cryptographic primitive targeted for backdooring is public,
any construction can be vetted for security. It is therefore logical to require any
BPRNG to be robust. (This is analogous to requiring a BPRG to be forward-
secure, or at least, a PRG in the traditional sense.) As such, a BPRNG cannot
just ignore its entropy inputs and revert to being a PRG. One might then hope
that, with additional high entropy inputs being used to refresh the generator
state, and with this entropy not being under the direct control of Big Brother
(since, otherwise, no security at all is possible), backdooring a PRNG with input
might be impossible. This would be a positive result in the quest to defeat
backdooring. Unfortunately, we show that this is not the case.

As a warm-up, we show how to adapt the robust PRNG of [17] to make
it backdoored. This requires only a simple trick (and some minor changes to
the processing of entropy): replace the PRG component of the generator with a
BPRG. Given a single output from the generator, this then allows Big Brother to
compute all outputs from the last refresh operation to the next refresh operation.
Yet the generator is still robust.

Much more challenging is to develop a robust PRNG with input in which
Big Brother can use his backdoor to “pass through” refresh operations when
computing generator outputs. We provide a construction which does just that,
see Fig. 11. Our construction is based on the idea of interleaving outputs of a
(non-backdoored) PRNG with encryptions of snapshots of that PRNG’s state,
using an IND$-CPA secure encryption scheme to ensure pseudorandomness of the
outputs. By taking a snapshot of the state whenever it is refreshed and storing a
list of the previous k snapshots in the state (for a parameter k), the construction
enables Big Brother to recover, with some probability, old output values that
were computed as many as k refreshes previously. The actual construction is
considerably more complex than this sketch hints, since achieving robustness,

408 J.P. Degabriele et al.

in the sense of [17], is challenging when the state has this additional structure.
We also sketch variants of this construction that trade state and output size for
strength of backdooring.

An Impossibility Result for BPRNGs: We close the paper on a more positive
note, providing an impossibility result showing that backdooring in a strong sense
cannot be achieved (whilst preserving robustness) without significantly enlarging
the state of the generator. More precisely, we show that it is not possible for Big
Brother to perform a state recovery attack in which he recovers more than some
number k of properly refreshed previous states from an output of the generator,
when k is large relative to the state-size of the BPRNG. A precise formalisation
of our result is contained in Theorem 5.

Note that the backdooring attack here requires more of Big Brother than
might be needed in practice, since he may be considered successful if he can
recover just one previous state, or a fraction of the previous BPRNG outputs.
Our construction shows that backdooring of this kind is certainly possible. Nor
does our result say anything about Big Brother’s capabilities (or lack thereof)
when it comes to recovering future states/outputs (after a generator has under-
gone further high-entropy refresh operations). It is an important open problem
to strengthen our impossibility results – and to improve our constructions – to
explore the limits of backdooring for PRNGs with input.

2 Preliminaries

2.1 Notation

The set of binary strings of length n is denoted {0, 1}n and ε denotes the empty
string. For any two binary strings x and y we write |x| to denote the size of x
and x‖y to denote their concatenation. For any set U we denote by u � U the
process of sampling an element uniformly at random from U and assigning it to
u. All logs are to base 2.

2.2 Entropy

We recall a number of standard definitions on entropy, statistical distance, and
(k, ε)-extractors in the full version [14].

Definition 1. An (k, ε)-extractor Ext : {0, 1}∗ × {0, 1}v → {0, 1}w is said
to be online-computable on inputs of length p if there exists a pair of effi-
cient algorithms iterate : {0, 1}p × {0, 1}p × {0, 1}v → {0, 1}p, and finalize :
{0, 1}p × {0, 1}v → {0, 1}w such that for all inputs Ī = (I1, . . . , Id) where each
Ij ∈ {0, 1}p, and d ≥ 2, then after setting y1 = I1, and yj = iterate(yj−1, Ij ;A)
j = 2, . . . , d, it holds that

Ext(Ī;A) = finalize(yd;A).

Backdoors in Pseudorandom Number Generators 409

2.3 Cryptographic Primitives

In the full version [14], we recall a number of standard definitions for PKE
schemes. Throughout this work we require that PKE schemes be length-regular.
For the constructions that follow, we shall require an IND$-CPA-secure PKE
scheme; that is to say a PKE scheme having pseudorandom ciphertexts. We
define such schemes formally below. Concrete and efficient examples of such
schemes can be obtained by applying carefully constructed encoding schemes to
the group elements of ciphertexts in the ElGamal encryption scheme (in which
ciphertexts are of the form (gR,M · gRx) where g generates a group of prime
order p in which DDH is hard; (gx, x) ← KGen with x � Zp; R � Zp; and M is
a message, encoded here as a group element); see for example [9,24,35].

Definition 2. A PKE scheme E = (KGen,Enc,Dec) is said to be (t, q, δ)-
IND$-CPA-secure if for all adversaries A running in time t and making at
most q oracle queries, it holds that Advind$-cpaE (A) ≤ δ, where:

Advind$-cpaE (A) =
∣∣∣ Pr

[
(pk, sk) ← KGen : A Enc(pk,·)(pk) ⇒ 1

]

− Pr
[
(pk, sk) ← KGen : A $(·)(pk) ⇒ 1

] ∣∣∣
and $(·) is such that on input a message M it returns a random string of size

|Enc(pk,M)|.

It is straightforward to show that if E is (t, q, δ)-IND$-CPA-secure, then it is also
(t, q, 2δ)-IND-CPA-secure in the usual sense.

We shall also utilise PKEs which are statistically re-randomizable; again the
ElGamal scheme and its group-element-encoded variants have the required prop-
erty.

Definition 3. [20] A (t, q, δ, ν)-statistically re-randomizable encryption scheme
is a tuple of algorithms E = (KGen,Enc,Rand,Dec) where (KGen,Enc,Dec) is a
standard PKE scheme and Rand is an efficient randomised algorithm such that
for all (pk, sk) ← KGen and for all M,R′

0,

Δ({Enc(pk,M ;R0) : R0 � Coins(Enc)},

{Rand(Enc(pk,M ;R′
0);R1) : R1 � Coins(Rand) :}) ≤ ν.

That is, the distributions of an honestly generated ciphertext and a ciphertext
obtained by applying Rand to one generated with arbitrary randomness are sta-
tistically close. We write Rand(C0;R1, . . . , Rq) to denote the value of Cq where
Cj = Rand(Cj−1;Rj) for j = 1, . . . , q.

We now define encryption schemes which have the additional property of
being reverse re-randomizable. It is easy to see that ElGamal encryption and its
encoded variants has the required property.

410 J.P. Degabriele et al.

Definition 4. A (t, q, δ, ν)-statistically reverse re-randomizable encryption
scheme E is a tuple of algorithms E = (KGen,Enc,Rand,Rand−1,Dec) such that:

– (KGen,Enc,Rand,Dec) is a (t, q, δ, ν) statistically re-randomizable encryption
scheme.

– Rand−1 is an efficient algorithm such that for all (pk, sk) ← KGen and for all
M ,R0,R1, it holds that, if C = Enc(pk,M ;R0), then:

Pr
[
Rand−1(Rand(C;R1);R1) = C

]
= 1.

Suppose Cq = Rand(C0;R1, . . . , Rq), so that Cj = Rand(Cj−1;Rj) for j =
1, . . . , q. Then, from the above, we know that Cj−1 = Rand−1(Cj ;Rj) for
1 ≤ j ≤ q; to denote C0, we write Rand−1(Cq;R1, . . . , Rq).

We recall the definitions of trapdoor one-way permutations, and lossy trap-
door permutations, in the full version [14].

2.4 Pseudorandom Generators

A pseudorandom generator (PRG) takes a small amount of true statistical ran-
domness as an input seed, and outputs arbitrary (polynomial) length bit-strings
which are pseudorandom. Following [15], we will equip PRGs with a parameter
generation algorithm, setup. This allows backdooring to be introduced into the
formalism.

Definition 5. A PRG is a triple of algorithms PRG = (setup, init, next), with
associated parameters (n, l) ∈ N

2, defined as follows:

– setup : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ takes random coins as input and outputs
a pair of parameters (pp, bk), where pp denotes the public parameter for the
generator, and bk is the secret backdoor parameter. In a non-backdoored PRG,
we set bk =⊥.

– init : {0, 1}∗ × {0, 1}∗ → {0, 1}n takes pp and random coins as input, and
returns an initial state for the PRG, s0 ∈ {0, 1}n.

– next : {0, 1}∗ × {0, 1}n → {0, 1}l × {0, 1}n takes pp and a state s ∈ {0, 1}n as
input, and outputs an output/state pair (r, s′) ← next(pp, s) where r ∈ {0, 1}l

is the PRG’s output, and s′ ∈ {0, 1}n is the updated state.

Definition 6. Let PRG = (setup, init, next) be a PRG. Given an initial state
s0, we set (ri, si) ← next(pp, si−1) for i = 1, . . . , q. We write outq(next(pp, s0))
for the sequence of outputs r1, . . . , rq and stateq(next(pp, s0)) for the sequence of
states s1, . . . , sq produced by this process.

Definition 7 (PRGSecurity). Let PRG = (setup, init, next) be a PRG. Con-
sider the game PRG-DISTA ,q

PRG of Fig. 1 in which the adversary receives either q
outputs from the PRG or q random strings of the appropriate size. We define the
PRG distinguishing advantage of A against PRG to be

AdvdistPRG(A , q) = 2|Pr
[
PRG-DISTA ,q

PRG ⇒ true
]

− 1
2
|.

Backdoors in Pseudorandom Number Generators 411

Fig. 1. The games for PRG-DISTA ,q
PRG and PRG-FWDA ,q

PRG .

Definition 8. A PRGPRG = (setup, init, next) is said to be (t, q, δ)-secure if for
all adversaries A running in time at most t it holds that AdvdistPRG(A , q) ≤ δ.

Definition 9 (PRGForward Security). Let PRG = (setup, init, next) be a
PRG. Consider the game PRG-FWDA ,q

PRG of Fig. 1 in which the adversary receives
either q outputs from the PRG and the final state, or q random strings of the
appropriate size and the final state. We define the PRG forward-security advan-
tage of A against PRG to be

Advfwd
PRG(A , q) := 2|Pr

[
PRG-FWDA ,q

PRG ⇒ true
]

− 1
2
|.

Definition 10. A PRGPRG is said to be (t, q, δ)-FWD-secure if for all adver-
saries A running in time at most t it holds that Advfwd

PRG(A , q) ≤ δ.

2.5 Backdoored Pseudorandom Generators

The first formal treatment of backdoored PRGs was that of Dodis et al. [15].
Intuitively, a backdoored cryptosystem is a scheme coupled with some secret
backdoor information. In the view of an adversary who does not know the back-
door information, the scheme fulfils its usual security definition. However an
adversary in possession of the backdoor information will gain some advantage
in breaking the security of the cryptosystem. The backdoor attacker is mod-
elled as an algorithm which we call B (for ‘Big Brother’), to distinguish it from
an attacker A whose goal is to break the usual security of the scheme without
access to the backdoor. Whilst the backdoor attacker B will be external in the
sense that it will only be able to observe public outputs and parameters, the
attack is also internalised as the backdoor algorithm is designed alongside, and
incorporated into, the scheme.

We define backdoored PRGs (BPRGs) in conjunction with different games
BPRNG-TYPEB,q

PRG
which capture specific backdooring goals, each game having

412 J.P. Degabriele et al.

a corresponding advantage term. The three games considered in [15] are defined
in Fig. 2.

Definition 11. A tuple of algorithms PRG = (setup, init, next,B) is defined to
be a (t, q, δ, (type, ε))-secure BPRG if:

– PRG = (setup, init, next) is a (t, q, δ)-secure PRG;
– Advtype

PRG
(B, q) ≥ ε.

Definition 12. Let PRG = (setup, init, next,B) be a BPRG. We define

– Advdist
PRG

(B, q) := 2|Pr
[
BPRG-DISTB,q

PRG
⇒ true

]
− 1

2 |,

– Advnext
PRG

(B, q) := Pr
[
BPRG-NEXTB,q

PRG
⇒ true

]
,

– Advrseek
PRG

(B, q) := min1≤i,j,≤q Pr
[
BPRG-RSEEKB,q

PRG
(i, j)⇒ true

]
.

Fig. 2. Security games for backdooring of PRGs.

In Fig. 2, game BPRG-DISTB,q

PRG
challenges Big Brother to use the backdoor

to break the security of the PRG in the most basic sense of distinguishing real

Backdoors in Pseudorandom Number Generators 413

from random outputs. In game BPRG-NEXTB,q

PRG
, B aims to recover the current

state of the PRG given q consecutive outputs from the generator. This is a far
more powerful compromise since it then allows B to predict all of the generator’s
future outputs. In the third game, BPRG-RSEEKB,q

PRG
(i, j), B is given only the

ith output (rather than q outputs) and index j, and tries to recover the jth

output (but not any state).
It is noted in [15] that an adversary B winning in game BPRG-NEXTB,q

PRG
represents a stronger form of backdooring than an adversary B winning in
game BPRG-DISTB,q

PRG
for the same parameters, whilst an adversary B win-

ning in game BPRG-RSEEKB,q

PRG
(i, j) may be more or less powerful than one

for game BPRG-NEXTB,q

PRG
depending on the circumstances. The paper [15]

presents constructions of BPRGs that are backdoored in the BPRG-NEXTB,q

PRG

and BPRG-RSEEKB,q

PRG
(i, j) senses, but does also note that their construction

for a scheme of the latter type is not forward-secure.
Both for their intrinsic interest, and because they will be needed in our later

constructions of backdoored PRNGs with input, we are interested in BPRGs
that are forward secure against normal adversaries. For a generic type of game
BPRNG-TYPEB,q

PRG
, these are formally defined as follows.

Definition 13. A tuple of algorithms PRG = (setup, init, next,B) is said to be
a (t, q, δ, (type, ε))-FWD-secure BPRG if:

– PRG = (setup, init, next) is a (t, q, δ)-FWD-secure PRG;
– Advtype

PRG
(B, q) ≥ ε.

2.6 Pseudorandom Number Generators with Input

Definition 14 (PRNGwith Input). A PRNGwith input is a tuple of algo-
rithms PRNG = (setup, init, refresh, next) with associated parameters (n, l, p) ∈
N

3, where:

– setup : {0, 1}∗ → {0, 1}∗ takes as input some random coins and returns a
public parameter pp.

– init : {0, 1}∗ × {0, 1}∗ → {0, 1}n takes the public parameter pp and some
random coins to return an initial state s0.

– refresh : {0, 1}∗×{0, 1}n×{0, 1}p → {0, 1}n takes as input the public parameter
pp, the current state S, and a sample I from the entropy source, and returns
a new state s′.

– next : {0, 1}∗ × {0, 1}n → {0, 1}n × {0, 1}l takes as input the public parameter
pp and the current state s, and returns a new state s′ together with an output
string r.

Definition 15 (Distribution Sampler). A distribution sampler D :
{0, 1}∗ → {0, 1}∗ × {0, 1}p ×R

≥0 × {0, 1}∗ is a probabilistic and possibly stateful
algorithm which takes its current state σ as input and returns an updated state

414 J.P. Degabriele et al.

σ′, a sample I, an entropy estimate γ, and some leakage information z about I.
The state σ is initialised to the empty string.

A distribution sampler D is said to be valid up to qr samples, if for all
j ∈ {1, . . . , qr} it holds (with probability 1) that:

H∞ (Ij | I1, . . . , Ij−1, Ij+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γj

where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qr} and σ0 = ε.

2.7 Security for Pseudorandom Number Generators with Input

We now turn to discussing security definitions for PRNGs with input. We fol-
low [17], with some minor differences noted below.

Definition 16 (Security of PRNGwith Input). With references to the secu-
rity game shown in Fig. 3, a PRNGwith input PRNG = (setup, init, refresh, next)
is said to be (t, qr, qn, qc, γ

∗, ε)-ROB-secure, for any distribution sampler D valid
up to qr samples, and any adversary A running in time at most t, making at
most qr queries to Ref, qn queries to Ror and a total of qc queries to Get and
Set, the corresponding advantage in game ROBD,A

PRNG,γ∗ is bounded by ε, where

AdvrobPRNG(A ,D) := 2|Pr
[
ROBD,A

PRNG,γ∗ ⇒ true
]

− 1
2
|.

Fig. 3. PRNG with input security game ROBD,A
PRNG,γ∗ .

Our definition here deviates from that in [17] in the following ways.

– We generalise the syntax so as to allow the state to be initialised according to
some arbitrary distribution rather than requiring it to be uniformly random.
In particular we allow this distribution to depend on pp. This facilitates our
backdooring definitions to follow.

– We have removed the Next oracle from the model, without any loss of gen-
erality (as was shown in [12]).

Backdoors in Pseudorandom Number Generators 415

One of the key insights of [17] is to decompose the somewhat complex notion
of robustness into the two simpler notions of PREand REC security. We recall
these definitions below, generalised here to include the init algorithm.

Definition 17 (Preserving and Recovering Security). Consider the secu-
rity games described in Fig. 4. The PREsecurity advantage of an adversary A
against a PRNGwith input PRNG is defined to be

Advpre
PRNG(A) := 2|Pr

[
PREA

PRNG ⇒ true
]

− 1
2
|.

The REC security advantage with respect to parameters qr, γ∗ of an adver-
sary/sampler pair (A , D) against a PRNGwith input PRNG is defined to be

Advrec
PRNG(A ,D) := 2|Pr

[
RECD,A ,qr

PRNG,γ∗ ⇒ true
]

− 1
2
|.

In the REC security game, it is required that
∑k+d

j=k+1 γ[j] ≥ γ∗ for the value d
output by A .

Fig. 4. PRNG with input security games PREA
PRNG and REC D,A ,qr

PRNG,γ∗ .

Definition 18 (Preserving Security). A PRNGwith input PRNG is said to
have (t, εpre)-PREsecurity if for all attackers A running in time t, it holds that
AdvprePRNG(A) ≤ εpre.

416 J.P. Degabriele et al.

Definition 19 (Recovering Security). A PRNGwith input PRNG is said to
have (t, qr, γ

∗, εrec)-REC security if for any attacker A and sampler D valid
up to qr samples and running in time t, it holds that AdvrecPRNG(A ,D) ≤ εrec.

Informally, preserving security concerns a generator’s ability to maintain
security (in the sense of having pseudorandom state and output) when the adver-
sary completely controls the entropy source used to refresh the generator but
does not compromise its state. Meanwhile, recovering security captures the idea
that a generator whose state is set by the adversary should eventually get to a
secure state, and start producing pseudorandom outputs, once sufficient entropy
has been made available to it. The proof of Theorem 1 can be found in the full
version [14].

Theorem 1. Let PRNG be a PRNGwith input. If PRNG has both (t, εpre)-PRE
security, and (t, qr, γ

∗, εrec)-REC security, then PRNG is ((t′, qr, qn, qc), γ∗, ε)-
ROB secure where t ≈ t′ and ε = qn(εpre + εrec).

To simplify notation, we will make use of an algorithm, evolve, to generate
output values and update the internal state of a PRNG. It takes as input a PRNG
with input PRNG = (setup, init, next, refresh), public parameter pp, an initial state
s, a refresh pattern rp = (a1, b1, . . . , aρ, bρ), and a distribution sampler D . The
refresh pattern rp denotes a sequence of calls to next and refresh; for each i, ai

denotes the number of consecutive calls to next and bi denotes the subsequent
number of consecutive calls to refresh. More specifically, evolve proceeds as shown
in Fig. 5.

Fig. 5. The evolve algorithm.

The output of evolve is a sequence, (r1, s1, . . . , rqn , sqn), of PRNG output
and state pairs, where qn =

∑ρ
i=1 ai. Based on evolve, we define an additional

algorithm, out, which takes the same input, runs evolve, and returns only the
output values (r1, . . . , rqn).

Backdoors in Pseudorandom Number Generators 417

3 Stronger Models and New Constructions
for Backdoored Pseudorandom Generators

In this section, we first present two new, strong backdooring security models for
PRGs. The stronger of the two implies all the backdooring notions in [15]. We
then give two new constructions of BPRGs which achieve our two backdooring
notions. In contrast to the strongest constructions in [15], all of our constructions
are forward-secure.

3.1 Backdoored PRGSecurity Models

In the first of our two new models, the BPRG is run with initial state s0 to
produce q outputs r1, . . . , rq. The Big Brother adversary B is then given a
particular output ri, and challenged to recover the initial state s0 of the BPRG.
In the second model, the BPRG is again run with initial state s0 to produce q
outputs, one of which is given to B. However B is now asked to reproduce the
remaining q − 1 unseen output values. We formalise these two models as games
BPRG-FIRST and BPRG-OUT in Fig. 6.

Definition 20. Let PRG = (setup, init, next,B) be a BPRG. We define

– Advfirst
PRG

(B, q, i) := Pr
[
BPRG-FIRSTB,q

PRG
(i)⇒ true

]
, and

– Advout
PRG

(B, q, i) := Pr
[
BPRG-OUTB,q

PRG
(i)⇒ true

]

Fig. 6. Backdoored PRGsecurity games BPRG-FIRST and BPRG-OUT.

Discussion. We observe that our first backdooring notion, as formalised in
BPRG-FIRSTB,q

PRG
and Advfirst

PRG
(B, q, i), is strictly stronger than the three notions

for BPRGs defined in [15] and discussed in Sect. 2.5: it is straightforward to see
that any (t, q, δ, (first, ε))-secure BPRG is also a (t, q, δ, (type, ε))-secure BPRG for
type ∈ {dist, state, rseek}.

Moreover, simple comparison of definitions shows that any (t, q, δ, (out, ε))-
secure BPRG is also a (t, q, δ, (type, ε))-secure BPRG for type ∈ {dist, rseek}.

418 J.P. Degabriele et al.

However, a BPRG backdoored in the out sense need not be backdoored in the
state sense, since the latter concerns state prediction rather than output predic-
tion. (And indeed it is easy to construct separating examples for the out and
state backdooring notions.)

Since the initial state of a PRG determines all of its output, it is also clear
that any (t, q, δ, (first, ε))-secure BRPG is also a (t, q, δ, (out, ε))-secure BPRG.
However, the converse need not hold, and first backdooring is strictly stronger
than out backdooring. To see this, consider PRG, a (t, q, δ, (out, ε))-secure BPRG,
and define a modified BRPG PRG

′
in which the initial state s0 is augmented

to s0||d for d � {0, 1}n, but where d is not used in any computations and all
other algorithms of PRG are left unchanged. In particular, the output produced
by PRG

′
is identical to that of PRG. Then it is easy to see that PRG

′
is a

(t, q, δ, (out, ε))-secure BPRG, but that Advfirst
PRG

(B, q, i) ≤ 2−n, since B can do
no better than guessing the n extra bits of state d.

In most attack scenarios, and taking Big Brother’s perspective, the ability
of B to compute all unseen output (as in out) is as useful in practice as being
able to compute the initial state (as in first), since it is the output values of
the BPRG that will be consumed in applications. This makes the out notion a
natural and powerful target for constructions of BPRGs. That said, in the sequel
we will obtain constructions for the even stronger first setting.

A (t, q, δ, (rseek, ε))-secure BPRG is also a (t, q, δ, (out, εq−1))-secure BPRG,
implying an exponential loss in going from rseek backdooring to out backdooring.
This means that achieving either first or out backdooring with a high value of ε
is significantly more powerful than achieving rseek backdooring with the same ε.

3.2 Forward-Secure BPRGs in the Random Oracle Model

We present our first construction for a forward-secure BPRG that is backdoored
in the first sense in Fig. 7. This construction uses as ingredients an LTDP family
and an IND$-CPA-secure PKE scheme. Its security analysis is in the Random
Oracle Model (ROM). It achieves our strongest first notion with ε = 1.

The scheme is reminiscent of the “Encrypt-with-Hash” paradigm for con-
structing deterministic encryption schemes from [5]. At each stage, the generator
encrypts its own state s, with randomness derived from hashing s, to produce the
next output. The IND$-CPA-security of the PKE scheme ensures these outputs
are pseudorandom. The state s is also transformed by applying a one-way function
F at each stage. This is necessary to provide forward security against non-B adver-
saries. The function is trapdoored, enabling B to decrypt an output to recover a
state, then reverse the state update repeatedly to recover the initial state, thereby
realising first backdooring. For technical reasons that will become apparent in the
proof, we require the one-way function F to be a lossy permutation. The proof of
the following theorem can be found in the full version [14].

Theorem 2. Let E = (KGen,Enc,Dec) be a (t, q, δ)-IND$-CPA secure PKE
scheme. Let LTDP = (G0,G1,S,F,F−1) be a family of (n, k, t, ε)-lossy trapdoor
permutations. Then PRG = (setup, init, next,B) with algorithms as shown in

Backdoors in Pseudorandom Number Generators 419

Fig. 7. Construction of a forward-secure BPRG (setup, init, next,B) from an LTDP
family LTDP = (G0,G1, S,F,F−1) and an IND$-CPA-secure PKE scheme E =
(KGen,Enc,Dec).

Fig. 7 is a (t′, q, (2δ + 3ε + (q + 1)2−(k−1)), (first, 1))-FWDsecure BPRG in the
ROM, where t′ ≈ t.

3.3 Standard Model, Forward-Secure BPRGs from Reverse
Re-randomizable Encryption

Our second construction dispenses with the ROM and the use of lossy trapdoor
permutations, at the expense of requiring as a component an IND$-CPA-secure
reverse re-randomizable PKE scheme (see Definition 4). It is instantiable in the
standard model using a variant of the ElGamal encryption scheme. The scheme
is again backdoored in the first sense with ε = 1.

The scheme, shown in Fig. 8, uses algorithm next′ from a normal (forward-
secure) PRG PRG′ to generate the next state s′ and a pseudorandom value >
using the current state s as a seed. The value > is then used to re-randomise a
ciphertext C that encrypts an initial state value s0, and the ‘old’ value C is used
as the generator’s output r. The re-randomisation at each step ensures that the
outputs collectively appear pseudorandom to a regular PRG adversary; the fact
that PRG′ is forward-secure ensures that the constructed BPRG is too.

Meanwhile, the use of PKE allows B (who knows the decryption key) to
recover s0 from any of the generator’s outputs, run the component genera-
tor PRG′ from its starting state s0, and recover all the values > used for re-
randomisation at each step; finally B can run the re-randomisation process
backwards to recover the initial state. The proof of the following theorem can
be found in the full version [14].

Theorem 3. Let E = (Key,Enc,Rand,Rand−1,Dec) be a (t, q, δ, ν)-IND$-CPA
secure reverse re-randomizable encryption scheme, and suppose that PRG′ =
(setup′, init′, next′) is a (t, q, εfwd)-secure PRG. Then PRG = (setup, init, next,B)
as defined in Fig. 8 is a (t′, q, 6δ + 2εfwd + q(q + 3)ν/2, (first, 1))-FWDsecure
BPRG, where t′ ≈ t.

420 J.P. Degabriele et al.

Fig. 8. Construction of a forward-secure BPRG(setup, init, next,B) from a (t, q, δ, ν)-
reverse-re-randomizable IND$-CPA-secure PKE scheme E = (KGen,Enc,Dec) and a
forward-secure PRGPRG′ = (setup′, init′, next′).

4 Backdooring PRNGs with Input

In this section, we address the second main theme in our paper: backdooring of
PRNGs with input. To begin with, we show a simple construction for a PRNG
with input that is both robust and subject to a limited form of backdooring: given
a single output, B can recover the state and all outputs back to the previous
refresh and up to the next refresh operations (see Sect. 4.1). We then move on
to provide our formal definition for backdoored PRNGs with input (BPRNGs)
in Sect. 4.2; this definition demands much more of B, asking him to compute
outputs beyond refresh operations, at the same time as asking that the BPRNG
remain robust. Finally, in Sect. 4.3, we give a construction for a BPRNG meeting
our backdooring notion for PRNGs with input, with various extensions to this
construction being described in Sect. 4.4.

4.1 A Simple Backdoored PRNG

Let PRNG = (setup, init, refresh, next) be a ROB-secure PRNG with input. By
considering the special case of Game ROBD,A

PRNG,γ∗ in which the adversary A
makes no Set or Ref calls, and one Get call at the conclusion of the game, it is
straightforward to see that PRG = (setup, init, next) must be a FWD-secure PRG.
This suggests that in order to backdoor PRNG, we might try to replace PRG with
a BPRG. As long as this implicit BPRG is running without any refreshes, this
should enable B to carry out backdooring.

Backdoors in Pseudorandom Number Generators 421

To make this idea concrete, we present in Fig. 9 a construction of a ROB-
secure PRNG with input from a PRG PRG. This scheme is closely based on the
PRNG with input from [17]. It utilises an online-computable extractor and a
FWD-secure PRG; our main modification is to ensure that repeated next calls are
processed via a repeated iteration of a FWD-secure PRG. A proof of robustness
for this PRNG with input is easily derived from that of the original construction:

Lemma 1. Let Ext : {0, 1}∗ × {0, 1}v → {0, 1}n be an online-computable
(γ∗, εext)-extractor. Let PRG = (setup, init, next) be a (t, q, εprg)-PRG such
that s0 � init(pp) is equivalent to s0 � {0, 1}n. Then PRNG =
(setup, init, refresh, next) as shown in Fig. 9 is a ((t′, qr, qn, qc), γ∗, qn(2εprg +
q2rεext + 2−n+1))-robust PRNG with input, where t′ ≈ t.

We now simply substitute a FWD-secure BPRG (such as that presented in
Theorem 2) for PRG in this construction. Now, during the period between any
pair of refresh calls in which the PRNG is producing output, we inherit the back-
dooring advantage of the BPRG in the new construction. However, the effective-
ness of this backdoor is highly limited: as soon as refresh is called, the state of
the PRNG is refreshed with inputs, which, if of sufficiently high entropy, will
make the state information-theoretically unpredictable. Then B would need to
compromise more output in order to regain his backdooring advantage.

One implication of this construction is that it makes it clear that, when con-
sidering stronger forms of backdooring, we must turn our attention to subverting
refresh calls in some way.

Fig. 9. Construction of a robust PRNGPRNG from a FWD-secure PRGPRG, based
on [17].

422 J.P. Degabriele et al.

4.2 Formal Definition for Backdoored PRNGs with Input

To make our backdooring models for PRNGs with input as strong as possible, we
wish to make minimal assumptions about Big Brother’s influence, whilst allowing
the non-backdoored adversary A , to whom the backdoored schemes must still
appear secure, maximum power to compromise the scheme. To this end, we will
model B as a passive observer who is able to capture just one PRNG output,
which he is then challenged to exploit. Simultaneously, we demand that the
scheme is still secure in the face of a ROB-adversary A , with all the capabilities
this allows. Notably, the latter condition also offers the benefit of allowing us to
explore the extent to which a guarantee of robustness may act as an immuniser
against backdooring.

In our models to follow, we do not allow B any degree of compromise over
the distribution sampler D . This is again to fit with our ethos of making mini-
mal assumptions on B’s capabilities. It strengthens the backdooring model by
demanding that the backdoor be effective against all samplers D valid up to qr

samples, including in particular those not under the control of B. We also note
that, in the extreme case where B has complete knowledge of all the inputs used
in refresh calls, then B’s view of the evolution of the state is deterministic and
the PRNG is reduced to a FWD-secure PRG which is periodically reseeded with
correlated values. Thus this restriction on Big Brother’s power ensures a clear
separation between the results of Sect. 3 and those which follow.

Next consider a PRNG with input which produces its output via a sequence
of refresh and next calls. The evolution of the state, and subsequent production
of output, is determined not only by the number of such calls, but also by their
position in the sequence. To reflect this, each backdooring game below will take
as input the specific refresh pattern rp which was used to produce the challenge.
In line with this, and to reflect the fact that the refresh pattern may impact B’s
ability to subvert the scheme, the advantage of B in our formal definition will
be allowed to depend on the refresh pattern rp.

We present two new backdooring models for PRNGs with input in Fig. 10. In
the first game, the PRNG is evolved according to the specified refresh pattern.
Big Brother is given an output ri, and challenged to recover state sj . In the
second game, Big Brother is again given output ri, but now we ask him to
recover a different output value rj . In both games, Big Brother is additionally
given the refresh pattern. Stronger notions can be achieved by considering games
in which Big Brother is not given the refresh pattern, but for simplicity, we will
consider the games shown in Fig. 10. In Sect. 4.4 we will discuss how our concrete
construction of a BPRNG presented in Sect. 4.3 can be extended to the stronger
setting in which Big Brother is not given the used refresh pattern. As with the
corresponding PRG definitions in Sect. 3.1, a BPRNG backdoored in the state
sense is strictly stronger than one backdoored in the out sense.

Definition 21. A tuple of algorithms PRNG = (setup, init, next, refresh,
B) is said to be a (t, qr, qn, qc, γ

∗, ε, (type, δ))-robust BPRNG, where type ∈
{state, out}, if

Backdoors in Pseudorandom Number Generators 423

Fig. 10. Backdooring security games BPRNG-STATEB
PRNG,D

and BPRNG-OUTB
PRNG,D

for BPRNGs.

– PRNG = (setup, init, refresh, next) is a (t, qr, qn, qc, γ
∗, ε)-robust PRNGwith

input;
– For all refresh patterns rp = (a1, b1, . . . , aρ, bρ), where ai, bi, n are polynomial

in the security parameter, for all distribution samplers D , for all 1 ≤ i, j ≤∑ρ
ν=1 aν , where i �= j, it holds that Advtype

PRNG,D
(rp, i, j) ≥ δ(rp, i, j) where

Advtype
PRNG,D

(rp, i, j) := Pr
[
BPRNG-TYPEB

PRNG,D
(rp, i, j)⇒ true

]
.

We note that by replacing the index j with a vector of indices (j1, . . . , jk),
we can immediately extend both of the above games to challenge Big Brother
to recover multiple outputs and states.

4.3 Backdoored PRNG Construction

In Fig. 11, we present our construction of a BPRNG. The construction makes
use of an ordinary non-backdoored PRNG with input, PRNG, and is based on
the simple idea of interleaving outputs of PRNG with encryptions of snapshots of
the state of PRNG, using an IND$-CPA secure encryption scheme. By taking a
snapshot of the state whenever this is refreshed and storing a list of the previous k
snapshots, the construction will enable B to recover, with reasonable probability,
the previous output values that were computed up to k refreshes ago. Of course,
this means that the state of the final construction is large compared to that of
the PRNG with input used as a component in its construction.

More specifically, the construction maintains a list of ciphertexts,
(C1, . . . , Ck), encrypting k snapshots of the state of PRNG. A snapshot of the
state is taken in the next algorithm of our construction, whenever the previous
operation was a refresh. This ensures that if the state is successively refreshed
multiple times, only a single snapshot will be stored. To produce an output
value, the construction will use the next function of PRNG to compute a seed
r which will either be used to directly compute an output value r via a pair
of PRGs, or used to re-randomize (C1, . . . , Ck), which will then be used as r.
The combination of the IND$-CPA-security of the encryption scheme and the

424 J.P. Degabriele et al.

re-randomization will ensure that the output value in the latter case will remain
pseudorandom to a regular PRNG adversary. Which of the two different output
values the construction will produce is decided based on the seed r.

We prove robustness of the generator by going via preserving and recovering
security. To be able to achieve these notions, the ciphertexts (C1, . . . , Ck) are
re-randomized a second time in next to ensure that the overall state returned by
next appears independent of the output value r. Furthermore, to ensure recov-
ering security, in which the adversary is allowed to maliciously set the state,
the construction requires that the validity of ciphertexts can be verified. In par-
ticular, we assume the used encryption scheme is equipped with an additional
algorithm, invalid, which given a public key pk and a ciphertext C , returns 1 if
C is invalid for pk, and 0 if it is valid. This is used to ensure that the state of
the construction always contains valid ciphertexts. Additionally, we require the
used encryption scheme to satisfy a stronger re-randomization property than was
introduced in Sect. 2: the re-randomisation of an adversarially chosen ciphertext
should be indistinguishable from the encryption of any message. We will formal-
ize this property below.

For the Big Brother algorithm B in the construction to be successful, it is
required that the output value ri given to B corresponds to (C1, . . . , Ck), and
that the output value rj that B is required to recover corresponds to a value
computed directly from the then current state of PRNG. Since the type of the
produced output is decided from the output of PRNG and a PRG which are both
assumed to be good generators, this will happen with probability close to 1/4.
Furthermore, it is required that the number of refresh periods between rj and ri

is less than k. More precisely, for a refresh pattern rp = (a1, b1, . . . , aρ, bρ), the
number of refresh periods PRNG has undergone when ri and rj are produced,
are iref = maxσ[

∑σ
ν=1 aν < i] and jref = maxσ[

∑σ
ν=1 aν < j], respectively. If

iref − jref < k, the initial refreshed state used to compute rj will be encrypted
in Ciref−jref+1. Hence, all B has to do is to decrypt and iterate this state
jit = j −

∑jref
ν=1 aν times to obtain the seed used to compute rj .

The full construction, shown in Fig. 11, is based on a (non-backdoored)
(n, l, p)-PRNG with input, PRNG = (setup, init, refresh, next), a pair of PRGs
PRG : {0, 1}l → {0, 1}2ku+1 and PRG′ : {0, 1}u → {0, 1}k×m, and a re-
randomizable encryption scheme E = (KGen,Enc,Rand,Dec, invalid) with mes-
sage space {0, 1}n, randomness space {0, 1}u, and ciphertext space {0, 1}m, and
produces a (k × m + n + 1, k × m, p)-PRNG with input.

Before proving the construction to be robust and backdoored, we formal-
ize the stronger re-randomization property mentioned above. Note that this
property is not comparable to the re-randomization definition for PKE given in
Sect. 2: that was a statistical notion concerning encryptions of the same message,
while, in contrast, the following is a computational notion regarding possibly dif-
ferent messages.

Definition 22. An encryption scheme E = (KGen,Enc,Dec) with message space
{0, 1}n is said to be (t, δ)-strongly re-randomizable, if there exists a polynomial
time algorithm Rand such that

Backdoors in Pseudorandom Number Generators 425

– For all (pk, sk) ← KGen, M ∈ {0, 1}n, and c ← Enc(pk,M), it holds that

Pr[Decsk(Rand(C)) = M] = 1.

– For all adversaries A with running time t and for all messages M ∈ {0, 1}n,
it holds that AdvrandE [(A)] < δ, where

AdvrandE (A) =
∣∣∣ Pr

[
(pk, sk) ← KGen; b ← {0, 1};C∗ ← A (pk);

C0 ← Rand(pk,C∗);C1 ← Enc(pk,M); b′ ← A (Cb) : b = b′] − 1/2
∣∣∣.

In the above, it is required that the output C∗ of A is a valid ciphertext under
pk.

It is relatively straightforward to see that ElGamal encryption satisfies the
above re-randomization property. Specifically, for a public key y = gx and a
ciphertext C = (C1, C2) = (gr,M · yr), a re-randomization C0 of C is obtained
by picking random r′ and computing C0 = (C1 ·gr′

, C2 ·yr′
). However, under the

DDH assumption, the tuples (g, gr′
, y, yr′

) and (g, gr′
, y, z) are indistinguishable,

where z is a random group element. Hence, re-randomization of C is indistin-
guishable from multiplying the components of C with random group elements,
which again makes C0 indistinguishable from two random group elements. Like-
wise, the encryption of any message M , C1 = (gr,M · yr), is indistinguishable
from two random group elements under the DDH assumption, which makes C0

and C1 indistinguishable.
The proof of the following theorem appears in the full version [14].

Theorem 4. Let PRG and PRG′ be εprg-secure and ε′
prg-secure PRGs respec-

tively, and let PRNG be a (t, εpre)-PREand (t, qr, γ
∗, εrec)-RECsecure PRNG with

input. Suppose further that E is a (t, qind, εind)-IND$-CPA secure and (t, εrand)-
strongly re-randomizable encryption scheme. Then PRNG shown in Fig. 11 is a
(t′, qr, qn, qc, γ

∗, ε, (out, δ))-robust BPRNG, where t′ ≈ t,

ε = 2qn(8εind + 2εprg + 2ε′
prg + 4kεrand + 3εpre + εrec)

and

δ(rp, i, j) =

{
(1/4 − 2εprg − a(εpre + εrec)) if j ≤ i ∧ iref − jref + 1 ≤ k

0 otherwise

where rp = (a1, b1, . . . , aρ, bρ), a =
∑ρ

ν=1 aν , iref ← maxσ [
∑σ

ν=1 aν < i], and
jref ← maxσ [

∑σ
ν=1 aν < j].

426 J.P. Degabriele et al.

Fig. 11. Construction of a robust BPRNG using as components a re-randomisable
PKE scheme E = (KGen, Enc, Dec, Rand, invalid), a PRNG with input PRNG =
(setup, init, refresh, next), and PRGs PRG and PRG′.

4.4 Extensions and Modifications of Our Main Construction

The above construction can be modified and extended to provide slightly differ-
ent properties. For example, an alternative to storing a snapshot of a refreshed
state by rotating the ciphertexts (C1, . . . , Ck) as done in line 9 of next, would be
to choose a random ciphertext to replace. More specifically, the output value r of
PRNG computed in line 7 could be stretched to produce a log k bit value t, and
ciphertext Ct would then be replaced with C0. Note, however, that B would no
longer be able to tell which ciphertext corresponds to which snapshot of the state.
This can be addressed if the used encryption scheme is additionally assumed to
be additively homomorphic, e.g. like ElGamal encryption, which, using an appro-
priate group, also satisfies all of the other requirements of the construction. In
this case, the construction would be able to maintain an encrypted counter of

Backdoors in Pseudorandom Number Generators 427

the number of refresh periods, and, for each snapshot, store an encrypted value
corresponding to the number of refresh periods PRNG has undergone before the
snapshot was taken. If the ciphertexts containing these values are concatenated
with (C1, . . . , Ck) to produce the output value r, then B obtains sufficient infor-
mation to derive what state to use to recover a given output value. This yields
a construction with slightly different advantage function δ(rp, i, j) compared to
the above construction; instead of a sharp drop to 0 when i and j are separated
by k refresh periods, the advantage gradually declines as the distance (in terms
of the number of refresh periods) between i and j increases.

The above construction can furthermore be modified to produce shorter out-
put values. Specifically, instead of setting r ← (C1, . . . , Ck) in line 16 of next, a
random ciphertext Ct could be chosen as r, by stretching the output of PRG in
line 11 with an additional log k bits to produce t. This will reduce the output
length from km bits to m bits. However, a similar problem to the above occurs:
B will not be able to tell which snapshot Ct represents. Using a similar solution
to the above will increase the output length to 2m bits. This modification will
essentially reduce the backdooring advantage by a factor of 1/k compared to the
above construction.

Lastly, we note that the above construction assumes B receives as input
the refresh pattern rp. Again, by maintaining encrypted counters for both the
number of refresh periods and the number of produced output values for each
snapshot, we can obtain an algorithm B which does not require rp as input,
but at the cost of increasing the output size.

All of the above modifications can be shown to be secure using almost iden-
tical arguments to the existing security analysis for the above construction.

5 On the Inherent Resistance of PRNGs with Input to
Backdoors

In the previous section we have shown a construction, and variations thereof, for
a PRNG with input that is backdoored in a powerful sense: from a given output
Big Brother can recover prior state and output values past an arbitrary number of
refreshes. One can see however that in our constructions, Big Brother’s ability to
go past refreshes is limited by the size of the state and output of the constructed
generator. We now show that this limitation is inherent in any PRNG with input
that is robust.

In particular consider the sequence representing the evolution of a PRNG’s
state, and select a subsequence of states where any two states are separated
by consecutive refreshes that in combination have high entropy. Then we will
show that the number of such states that Big Brother can predict simultaneously
with non-negligible probability is limited by the size of the state. Thus if we limit
the state size of a robust PRNG, then Big Brother’s ability in exploiting any
potential backdoors that it may contain must decrease as more entropy becomes
available to the PRNG.

428 J.P. Degabriele et al.

5.1 An Impossibility Result

We now turn to formalising the preceding claim. In order to simplify the analysis
to follow, we focus on a restricted class of distribution samplers. We say that a
distribution sampler is well-behaved if it satisfies the following properties:

– It is efficiently sampleable.
– For any i the entropy estimate γi of the random variable Ii is fixed, but may

vary across different values of i.
– For all i > 0 such that Pr(σi−1) > 0 it holds that:

H∞ (Ii | I1, . . . , Ii−1, Ii+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γi

where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qr} and σ0 = ε.

For any well-behaved distribution sampler D and any PRNG with input
PRNG, let us now consider the experiment of running setup and init to obtain
a public paramer pp and an initial state S0, and then applying a sequence of
queries q1, . . . , qi, . . . where each qi represents a query to refresh or next. To any
query qi we associate a tuple (Ri, Si, σi, Ii, γi) that represents the outcome of
that query. If qi is a refresh query these variables are set by the outputs of D
and refresh, while Ri is set to ε. If qi is a next query these variables are set to
the outputs of next while γi is set to zero, Ii is set to the empty string, and
σi ← σi−1. (Note that we deviate slightly here in the notation we use for the
output and state of a PRNG with input: we use Ri and Si to denote random
variables and we use ri and si respectively to denote values assumed by these
random variables.)

Now let the function f : N → N where f(0) = 0 identify a subsequence
(Rf(j), Sf(j), σf(j), If(j), γf(j)). We say that a subsequence is legitimate if for all
Sf(j) there exists f(j − 1) ≤ c ≤ d ≤ f(j) such that

∑d
c γi ≥ γ∗, and all queries

between c and d are refresh queries. For ease of notation we let ε denote an upper
bound on AdvrobPRNG(A ,D ′)+ 1

2r over all D ′ and all A in some class of adversaries
with restricted sources.

With this notation established, we can state the main theorem of this section
as follows:

Theorem 5. For any PRNG with input PRNG having associated parameters
(n, l, p), any well-behaved distribution sampler D , any sequence of queries, any
legitimate subsequence identified by the function f , any index j, and any k ∈ N,
it holds that:

H̃∞
(
S̄′

f(j)|Rf(j)+k, pp
)

≥ j + 1
2

log
(

1
ε

)
− min(n, l).

The proof of the theorem can be found in the full version [14].
This theorem deserves some interpretation. On the left-hand-side, Rf(j)+k

refers to a particular output received by B and pp to the public parameters.
The theorem says that, conditioned on these, the vector of states S̄′

f(j) still has

Backdoors in Pseudorandom Number Generators 429

large average min-entropy, provided j is sufficiently large. This is because, on
the right-hand-side, min(n, l) is fixed for a given generator, ε is small (so log

(
1
ε

)
is large), and the first term scales linearly with j, thus attaining arbitrarily large
values as j increases. This means that it is impossible for B to compute or
guess the state vector with a good success probability. In short, no adversary,
irrespective of its computational resources or backdoor information, can recover
all the state information represented by the vector S̄′

f(j). In addition the result
extends easily to the stronger setting where the adversary is given any sequence of
outputs following Rf(j), since these will depend only on Sf(j) and independently
sampled future I values. In that case, we simply replace the Rf(j)+k term by
any sequence of ouputs following Rf(j) and min(n, l) by n.

5.2 Discussion and Open Problems

Theorem 5 concerns state recovery attacks against robust PRNGs with input.
It seems plausible to us that the result can be strengthened to say something
about the impossibility of recovering old outputs, instead of old states. Likewise,
the theorem only concerns the impossibility of recovering old states from current
outputs, but nothing about the hardness of recovering future states or outputs
(after refreshing) from current outputs. Informally, the strength of the robust-
ness security notion seems to make such a result plausible, since it essentially
requires that a PRNG with input cannot ignore its entropy inputs when refresh-
ing. However, we have not yet proved a formal result in this direction. These
are problems that we intend to study in our immediate future work. They relate
closely to the kind of impossibility result that would be useful in demonstrating
the absence of the kind of effective backdooring that B might prefer to perform.

This result can also be seen as saying that a PRNG with input is, to some
extent, intrinsically immunised against backdooring attacks, since B cannot
recover all old states once sufficient entropy has been accumulated in the gener-
ator. Here the immunisation is a direct consequence of the nature of the primi-
tive. By contrast, for PRGs, the results of [15] concerning immunisation of PRGs
require intrusive changes to the PRG, essentially post-processing the generator’s
output with either a keyed primitive (a PRF) or a hash with relatively strong
security (a random oracle or a Universal Computational Extractor). Moreover,
our strengthening of the result of [15], via constructions of forward-secure PRGs
that are backdoored in the strong first sense, shows that PRGs cannot resist
backdooring in general. So some form of external immunisation is inevitable if
PRGs are to resist backdooring.

On the other hand, exploring immunisation for PRNGs with input would
still be useful, since, as our constructions in Sect. 4 show, it is possible to achieve
meaningful levels of backdooring for PRNGs with input. Naively, the immunisa-
tion techniques of [15] should work equally well for PRNGs with input as they
do for PRGs, since a PRNG with input certainly contains within it an implicit
PRG, and if that simpler component is immunised, then so should be the more
complex PRNG primitive. Furthermore, it may be that PRNGs with input, being

430 J.P. Degabriele et al.

informally harder to backdoor, could be immunised by applying less intrusive or
less idealised cryptographic techniques.

Acknowledgments. Degabriele and Paterson were supported by EPSRC grant
EP/M013472/1 (UK Quantum Technology Hub for Quantum Communications Tech-
nologies). Schuldt was supported by JSPS KAKENHI Grant Number 15K16006.
Woodage was supported by the EPSRC and the UK government as part of the Cen-
tre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/K035584/1)

References

1. Abeni, P., Bello, L., Bertacchini, M.: Exploiting DSA-1571: How to break PFS in
SSL with EDH, July 2008

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. Cryp-
tology ePrint Archive, Report 2015/517 (2015). http://eprint.iacr.org/2015/517

3. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.: Trap
me if you can - million dollar curve. IACR Cryptology ePrint Archive 2015:1249
(2015)

4. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to/dev/random. In: Atluri, V., Meadows, C., Juels, A. (eds.)
ACM CCS 05, Alexandria, Virginia, USA, 7–11 November 2005, pp. 203–212. ACM
Press (2005)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014)

7. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341–360. Springer, Heidelberg (2013)

8. Bernstein, D.J., Chou, T., Chuengsatiansup, C., Hülsing, A., Lange, T., Niederha-
gen, R., van Vredendaal, C.: How to manipulate curve standards: a white paper for
the black hat. Cryptology ePrint Archive, Report 2014/571 (2014). http://eprint.
iacr.org/2014/571

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniformrandom strings. In: Sadeghi, A.-R. et al. [29],
pp. 967–980

10. Brown, D.R.L.: A weak-randomizer attack on RSA-OAEP with e = 3. Cryptology
ePrint Archive, Report 2005/189 (2005). http://eprint.iacr.org/2005/189

11. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of dual EC in TLS implementations. In: Fu, K., Jung, J. (eds.) Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22
August 2014, pp. 319–335. USENIX Association (2014)

http://eprint.iacr.org/2015/517
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2005/189

Backdoors in Pseudorandom Number Generators 431

12. Cornejo, M., Ruhault, S.: Characterization of real-life PRNGs under partial state
corruption. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 14, Scottsdale, AZ,
USA, 3–7 November 2014, pp. 1004–1015. ACM Press (2014)

13. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015)

14. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in
pseudorandom number generators: possibility andimpossibility results. Cryptology
ePrint Archive, Report 2016/577 (2016). http://eprint.iacr.org/2016/577

15. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015)

16. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: 45th FOCS, Rome, Italy, 17–19 October
2004, pp. 196–205. IEEE Computer Society Press (2004)

17. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Sadeghi, A.-R., et al. [29], pp. 647–658

18. Dodis, Y., Shamir, A., Stephens-Davidowitz, N., Wichs, D.: How to eat your
entropy and have it too – optimal recovery strategies for compromised RNGs.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
37–54. Springer, Heidelberg (2014)

19. Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dr Dobb’s J.-
Softw. Tools Prof. Programmer 21(1), 66–71 (1996)

20. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

21. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps, Qs:
detection of widespread weak keys in network devices. In: Kohno, T. (ed.) Proceed-
ings of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August
2012, pp. 205–220. USENIX Association (2012)

22. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

23. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015)

24. Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 335–351. Springer, Heidelberg (2004)

25. Mueller, M.: Debian OpenSSL predictable PRNG bruteforce SSH exploit, May
2008

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, Victoria, British Columbia, Canada, 17–
20 May 2008, pp. 187–196. ACM Press (2008)

27. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS 2010, San Diego, California,
USA, 28 February–3 March 2010. The Internet Society (2010)

http://eprint.iacr.org/2016/577

432 J.P. Degabriele et al.

28. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. Cryptology ePrint Archive, Report 2015/695 (2015). http://
eprint.iacr.org/2015/695

29. Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13, Berlin, Germany, 4–8
November 2013. ACM Press (2013)

30. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90
Dual EC PRNG. Presentation at rump session of CRYPTO 2007 (2007)

31. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum,
D. (ed.) CRYPTO 1983, Santa Barbara, CA, USA, pp. 51–67. Plenum Press, New
York (1983)

32. Vazirani, U.V., Vazirani, V.V.: Trapdoor pseudo-random number generators, with
applications to protocol design. In: 24th Annual Symposium on Foundations of
Computer Science, Tucson, Arizona, USA, 7–9 November 1983, pp. 23–30. IEEE
Computer Society (1983)

33. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S., When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Feldmann, A.,
Mathy, L. (eds.) Proceedings of the 9th ACM SIGCOMM Internet Measurement
Conference, IMC 2009, Chicago, Illinois, USA, 4–6 November 2009, pp. 15–27.
ACM (2009)

34. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997)

35. Young, A., Yung, M.: Relationships between Diffie-Hellman and “index oracles”.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 16–32. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2015/695
http://eprint.iacr.org/2015/695

Symmetric Cryptanalysis

A 270 Attack on the Full MISTY1

Achiya Bar-On(B) and Nathan Keller

Department of Mathematics, Bar Ilan University, 52900 Ramat Gan, Israel
abo1000@gmail.com

Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It is
widely deployed in Japan, and is recognized internationally as a Euro-
pean NESSIE-recommended cipher and an ISO standard. After almost
20 years of unsuccessful cryptanalytic attempts, a first attack on the full
MISTY1 was presented at CRYPTO 2015 by Yosuke Todo. The attack,
using a new technique called division property, requires almost the full
codebook and has time complexity of 2107.3 encryptions.

In this paper we present a new attack on the full MISTY1. It is based
on Todo’s division property, along with a variety of refined key-recovery
techniques. Our attack requires almost the full codebook (like Todo’s
attack), but allows to retrieve 49 bits of the secret key in time complex-
ity of only 264 encryptions, and the full key in time complexity of 269.5

encryptions.
While our attack is clearly impractical due to its large data complex-

ity, it shows that MISTY1 provides security of only 270 — significantly
less than what was considered before.

1 Introduction

MISTY1 [10] is a 64-bit block cipher with 128-bit keys designed in 1997 by
Matsui. In 2002, MISTY1 was selected by the Japanese government to be one
of the e-government candidate recommended cipher, and since then, it became
widely deployed in Japan. MISTY1 also gained recognition outside Japan, when
it was selected to the portfolio of European NESSIE-recommended ciphers, and
approved as an ISO standard in 2005. Furthermore, the block cipher KASUMI [1]
designed as a slight modification of MISTY1 is used in the 3G cellular networks,
which makes it one of the most widely used block ciphers today.

MISTY1 has an 8-round recursive Feistel structure, where the round function
FO is in itself a 3-round Feistel construction, whose F-function FI is in turn a
3-round Feistel construction using 7-bit and 9-bit invertible S-boxes. The specific
choice of S-boxes and the recursive structure ensure provable security against
differential and linear cryptanalysis. In order to thwart other types of attacks,
after every two rounds an FL function is applied to each of the two halves
independently. The FL functions are key-dependent linear functions which play
the role of whitening layers.

A. Bar-On – This research was partially supported by the Israeli Ministry of Science,
Technology and Space, and by the Check Point Institute for Information Security.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 435–456, 2016.
DOI: 10.1007/978-3-662-53018-4 16

436 A. Bar-On and N. Keller

In the 18 years since its design, MISTY1 withstood numerous cryptanalytic
attempts. More than a dozen of papers analyzed its reduced-round variants
(see, e.g., [2,7,13,14]), yet the full 8-round variant seemed completely out of
reach. The situation changed when Yosuke Todo presented at CRYPTO’2015 [11]
the first attack on the full MISTY1. The attack is based on a new variant of
integral cryptanalysis, called division property, presented by Todo at EURO-
CRYPT’2015. Using the new technique, Todo showed that there exist seven
independent integral structures of 263 plaintexts, whose propagation can be
traced through 6 rounds of MISTY1. (This should be compared with 4 rounds
achieved by the best previously known integral characteristics.) These charac-
teristics allow to break the full MISTY1 with data complexity of 263.994 chosen
plaintexts and time complexity of 2107.3 encryptions.

In this paper, we present an improved attack on the full MISTY1, which
allows to significantly reduce the time complexity. Our attack uses Todo’s
division property both in the encryption direction (like Todo used it) and in
the decryption direction (which turns out to be more useful than the encryp-
tion direction due to key schedule considerations). In addition, we use refined
key recovery techniques, including the partial sums technique [6], and a two-
dimensional meet-in-the-middle attack (like the one is used in [4]). Our attack
has two phases. The first phase requires 264 − 250 chosen ciphertexts and allows
to recover the equivalent of 49 key bits in time of 264 encryptions (i.e., dom-
inated by the time required for encrypting the plaintexts!). The second phase
requires almost all the rest of the codebook and allows to recover all remaining
key bits in time of 269.5 encryptions. Alternatively, the rest of the key can be
found in time of 279 encryptions without additional data. A comparison of our
attack with the best previously known attacks on full-round and reduced-round
MISTY1 is presented in Table 1.

The paper is organized as follows. In Sect. 2 we describe the structure of
MISTY1 and introduce some notations that will be used throughout the paper.
The division property is described in Sect. 3, as well as the 6-round integral
characteristic based on its propagation. Our improved attack on full MISTY1 is
presented in Sect. 4. Finally, in Sect. 5 we summarize the paper.

2 Brief Description of MISTY1

MISTY1 is an 8-round Feistel construction, where the round function, FO, is in
itself a variant of a 3-round Feistel construction, defined as follows. The input
to FO is divided into two halves. The left one is XORed with a subkey, enters a
keyed permutation FI, and the output is XORed with the right half. After the
XOR, the two halves are swapped, and the same process (including the swap)
is repeated two more times. After that, an additional swap and an XOR of the
left half with a subkey is performed (see Fig. 1).

The FI function in itself also has a Feistel-like structure. Its 16-bit input is
divided into two unequal parts – one of 9 bits, and the second of 7 bits. The
left part (which contains 9 bits) enters an S-box, S9, and the output is XORed

A 270 Attack on the Full MISTY1 437

Table 1. Summary of the best known single-key attacks on MISTY1

FO rounds FL layers Data complexity Time complexity Type

7 3 258 KP 2124.4 ID attack [7]

7 4 262.9 KP 2118 MZC attack [14]

7 4 249.7 CP 2116.4 HOD attack [13]

7 4 250.1 CP 2100.4 HOD attack [2]

7 5 251.45 CP 2121 HOD attack [2]

8 5 263.58 CP 2121 IDP attack [11]

8 5 263.994 CP 2107.3 IDP attack [11]

8 5 263.9999 CC 264 IDP attack† (Sect. 4)

8 5 263.9999 CC 279 IDP attack (Sect. 4)

8 5 264 − 236 CPC 269.5 IDP attack (Sect. 4)

ID attack: Impossible Differential attack
HOD attack: Higher Order Differential attack
MZC attack: Multi-Dimensional Zero Correlation attack
IDP attack: Integral attack using division property
† Attack recovers 49 key bits
KP: Known Plaintexts; CP: Chosen Plaintexts; CC: Chosen Ciphertexts; CPC: Cho-
sen Plaintexts and Ciphertexts

with the right 7-bit part (after padding the 7-bit value with two zeroes as the
most significant bits). The two parts are swapped, the 7-bit part enters a different
S-box, S7, and the output is XORed with 7 bits out of the 9 of the right part. The
two parts are then XORed with a subkey, and swapped again. The 9-bit value
again enters S9, and the output is XORed with the 7-bit part (after padding).
The two parts are then swapped for the last time.

Every two rounds, starting before the first one, each of the two 32-bit halves
enters an FL layer. The FL layer is a simple linear transformation. Its input is
divided into two halves of 16 bits each, the AND of the left half with a subkey
is XORed to the right half, and the OR of the updated right half with another
subkey is XORed to the left half. We outline the structure of MISTY1 and its
parts in Fig. 1.

The key schedule of MISTY1 takes the 128-bit key, and treats it as eight
16-bit words K1,K2, . . . ,K8. From this sequence of words, another sequence of
eight 16-bit words is generated, according to the rule K ′

i = FIKi+1(Ki).
In each round, seven words are used as the round subkey, and each of the FL

functions accepts two subkey words. We give the exact key schedule of MISTY1
in Table 2.

2.1 Notations Used in the Paper

Throughout the paper, we use the following notations for intermediate values
during the MISTY1 encryption process.

438 A. Bar-On and N. Keller

64

FL1

KL1

FL2

KL2

⊕FO1

KO1,KI1

⊕FO2

KO2,KI2

FL3

KL3

FL4

KL4

⊕FO3

KO3,KI3

⊕FO4

KO4,KI4

FL5

KL5

FL6

KL6

⊕FO5

KO5,KI5

⊕FO6

KO6,KI6

FL7

KL7

FL8

KL8

⊕FO7

KO7,KI7

⊕FO8

KO8,KI8

FL9

KL9

FL10

KL10

MISTY function

32

⊕ KOi,1

FIi,1 KIi,1

⊕

⊕ KOi,2

FIi,2 KIi,2

⊕

⊕ KOi,3

FIi,3 KIi,3

⊕

⊕ KOi,4

FO function

16

S9

⊕

S7

⊕

⊕KIi,j,2

⊕ KIi,j,1

S9

⊕

zero-extend

truncate

zero-extend

FI function

32

⊕

⊕

∩
KLi,1

∪
KLi,2

FL function

∩
bitwise AND

∪
bitwise OR

Fig. 1. Outline of MISTY1

A 270 Attack on the Full MISTY1 439

Table 2. The Key Schedule of MISTY1

KOi,1 KOi,2 KOi,3 KOi,4 KIi,1 KIi,2 KIi,3 KLi,1 KLi,2

Ki Ki+2 Ki+7 Ki+4 K′
i+5 K′

i+1 K′
i+3

K i+1
2

(odd i)

K′
i
2+2

(even i)

K′
i+1
2 +6

(odd i)

K i
2+4 (even i)

– The plaintext and the ciphertext are denoted, as usual, by P and C = E(P).
– The input of the i’th round (1 ≤ i ≤ 8) is denoted by Xi. If we want to

emphasize that the intermediate value corresponds to the plaintext P , we
denote it by Xi(P).

– For odd rounds, we denote by X ′
i the intermediate value after application of

the FL functions.
– The output of the FO function of round i is denoted Outi.
– For any intermediate value Z, Z[k−l] denotes bits from k to l (inclusive) of

Z. The special case Z[i] denotes the i’th bit of Z.
– For any intermediate value Z, the right and left halves of Z are denoted by

ZR and ZL, respectively.
– For any 16-bit key K, the 9 rightmost bits and 7 left most bits of K are

denoted by KR and KL, respectively.
– The first S9 function of FIi,j is denoted by S9i,j,1 and its input is denoted by

ES9i,j,1. Similarly, S7i,j , ES7i,j and S9i,j,2, ES9i,j,2 denote the other S-boxes,
S7 and the second S9, and their inputs in FIi,j .

3 Integral Cryptanalysis Using Division Property and Its
Application to MISTY1

3.1 Integral Cryptanalysis

Integral cryptanalysis is a powerful cryptanalytic technique presented in [3,8].
The basic idea behind integral cryptanalysis is to trace the encryption process of
a structured set of plaintexts, called integral structure, during part of the cipher’s
rounds. Usually, the information on the intermediate values gradually reduces
as the encryption proceeds, so that eventually, one can predict only the sum of
the set of intermediate values in part of the state.

Definition 1. A set of values V is called balanced if
⊕

x∈V x = 0.

An integral characteristic predicts that for a structured set V of plaintexts (usu-
ally, an affine subspace of the plaintext space), the set of corresponding inter-
mediate values after i rounds is balanced in some bit j. That is,⊕

x∈V

Xi+1[j](x) = 0. (1)

Note that unlike differential and linear cryptanalysis, an integral characteristic is
combinatorial and not statistical, meaning that (1) holds with probability 1. A
characteristic that satisfies (1) is called an i-round characteristic of order log2 |V |.

440 A. Bar-On and N. Keller

An example of an integral characteristic is an 8-order 3-round characteristic
of AES presented in [3], which predicts that if V consists of 256 plaintexts that
are constant in all bytes but one, and assume all possible values in the remaining
byte, then the corresponding set of intermediate values after 3 rounds is balanced
in each of the 16 bytes. This property is used in [3] to attack up to 6 rounds of
AES with a practical complexity.

Once an integral characteristic is found, it can be used to mount a key-
recovery attack. Suppose that for some block cipher E : {0, 1}n → {0, 1}n, there
exists an i-round integral characteristic that satisfies (1). Denote by E−1

1 the
Boolean function that represents the mapping from the ciphertext of E to the
intermediate state bit Xi[j] (see Fig. 2). Then Eq. (1) can be rewritten as

⊕
x∈V

E−1
1 (E(x)) = 0. (2)

(Eq. (2) is called the attack equation). The adversary asks for the encryption
of several structured sets of plaintexts of the form V , partially decrypts the
corresponding ciphertexts (by guessing the key material used in E−1

1), and checks
whether Eq. (2) holds.

V

⊕
x∈V Xi+1[j](x)

{E(x)|x ∈ V }

i rounds

E−1
1

E

Fig. 2. Outline of the integral attack

3.2 Division Property

The idea behind the division property is to increase the precision of the informa-
tion on intermediate values traced by the integral attack. As the idea is rather
complex in its general form, we present in this section all definitions and nota-
tions required for it (mostly taken from [11]), and in the next section its applica-
tion to MISTY1. For the general division property technique, we refer the reader
to [12].

A 270 Attack on the Full MISTY1 441

For a linear subspace U ⊂ F
n
2 and a vector v ∈ F

n
2 , we call V = {u+v|u ∈ U}

an affine subspace of Fn
2 . The dimension of V is, as usual, log2 |V |.

For u ∈ F
n
2 we denote by wu the Hamming weight of u (i.e., wu =

∑n
i=1 u[i])

and by S
n
k = {u ∈ F

n
2 : wu ≥ k} the set of all values with Hamming weight larger

than (or equal to) k. For x, u ∈ F
n
2 we define xu =

∏n
i=1 x[i]u[i]. In general, for

x = (x1, x2, . . . , xm), u = (u1, u2, . . . , um) ∈ F
n1
2 ×F

n2
2 ×· · ·×F

nm
2 , we write xu for∏m

i=1 xui
i and S

n1,n2,...,nm

[k1,k2,...,km] for the set {u ∈ F
n1
2 × · · · × F

nm
2 : wui

≥ ki for all i}.
Let X ⊂ F

n1
2 × · · · × F

nm
2 be a multiset. We say that X has the division

property Dn1,n2,...,nm

[k1,k2...,km] if

⊕
x∈X

xu = 0, for all u ∈ (Fn1
2 × · · · × F

nm
2 \ S

n1,...,nm

[k1,...,km])

(with no restriction on
⊕

x∈X
xu for u ∈ S

n1,...,nm

[k1,...,km]). We also define

S
n1,n2,...,nm

k1,...,kt
=

t⋃
i=1

S
n1,n2,...,nm

ki

(ki ∈ F
n1
2 × · · · ×F

nm
2) and define the division property Dn1,n2,...,nm

k1,...,kt
similarly to

the above definition of Dn1,n2,...,nm

[k1,k2...,km].

Example 2. Any 4-dimensional affine subspace V ⊂ F
7
2 has the property

⊕
x∈V

xi1xi2xi3 = 0

for all 1 ≤ i1 < i2 < i3 ≤ 7 (where xj = x[j] denote the jth bit of x). Hence, V
has the division property D7

4.

Example 3. For 1 ≤ i ≤ m, let Vi ⊂ F
ni
2 be an affine subspace of dimension ki.

Then X = {(x1, . . . , xm) ∈ F
n1
2 × · · · × F

nm
2 : xi ∈ Vi} has the division property

Dn1,n2,...,nm

[k1,k2...,km].

Notation 4. Let ki,kj ∈ Z
m. We write ki ≤ kj if ki[�] ≤ kj [�] for all 1 ≤ � ≤ m.

Example 5. Let X ⊆ F
7
2 × F

7
2 be a multiset that has the division property

D7,7
[5,0],[1,4],[2,3]. Then ⊕

(x,y)∈X

xi1 · · · xityj1 · · · yjs

is unknown if (5, 0) ≤ (t, s) or (1, 4) ≤ (t, s) or (2, 3) ≤ (t, s) and equals 0
otherwise.

Observation 6. If ki ≤ kj (⇐⇒ Ski
⊆ Skj

) then we omit kj from S
n1,n2,...,nm

k1,...,kt

because S
n1,n2,...,nm

k1,...,kt
= S

n1,n2,...,nm

k1,...,kj−1,kj+1,...,kt
in this case. For example, we replace

D7,7
[5,0],[1,4],[2,4],[2,3] with D7,7

[5,0],[1,4],[2,3].

442 A. Bar-On and N. Keller

Remark 7. Let X be a multiset that has the division property Dn1,n2,...,nm

k1,...,kt
. If

(2, 0, 0, . . . , 0) ≤ kj for some j then
⊕
x∈X

xi = 0

for 1 ≤ i ≤ n1. In other words, X is balanced in the n1 first bits.

For the full details of the propagation of the division property, we refer the
interested reader to the original paper in [12].

3.3 An Integral Characteristic of 6-round MISTY1

In [11], Yosuke Todo presented a new integral characteristic for 6-round MISTY1,
constructed by tracing the propagation of a division property. Todo showed that
if a set V of values after the first FL layer (i.e., a set of X ′

1 values) has the divi-
sion property D7,2,7,7,2,7,7,2,7,7,2,7

[6,2,7,7,2,7,7,2,7,7,2,7] then the corresponding set of X7 values has

the division property D7,2,7,7,2,7,7,2,7,7,2,7
k1,...,k132

, where k1, . . . ,k132 is a list of vectors
presented in [11]. For our purposes, it is sufficient to know that one of the ki’s is
[2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. In particular, if we take V63 to be a 63-dimensional
affine subspace of the values X ′

1 of a specific form, then the following equation
holds: ⊕

x∈V63

X7[57 − 63](x) = 0. (3)

The “specific form” of V63 is defined as follows: For every 6-dimensional affine
subspace V6 ⊂ F

7
2, the set V63 = {(x6, x57) : x6 ∈ V6, x57 ∈ F

57
2 } has the “correct”

form. Note that while there are many options for “correct” V63 (since there are
many options for V6), we can construct only 7 independent Eq. 3 equations. For
example, define 7 particular V63’s by fixing one of the 7 bits X ′

1[57 − 63] and
take all the values in the other bits. Knowing that Eq. 3 holds for these seven
V63’s implies that Eq. 3 for all possible V63’s. Therefore, attacks using Eq. 3
exploit up to 7 V63’s simultaneously. Figure 3 illustrates the 6-round integral
characteristic.

3.4 Todo’s Integral Attack on Full MISTY1

Todo’s integral attack on full MISTY1 [11] uses the 6-round integral character-
istic described above and has the following steps.

1. Choose V to be one of the “possible” V63’s and ask for the encryption of
263.58 chosen plaintexts such that V is included in the set of intermediate X ′

1

values.
2. As the values of plaintexts that correspond to the values in V depend on the

value of 2 key bits used in FL1, guess those key bits, and for each guess,
perform the following steps assuming that Eq. (3) holds.

A 270 Attack on the Full MISTY1 443

64

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

⊕FO4

FL5 FL6

⊕FO5

⊕FO6

FL7 FL8

⊕FO7

⊕FO8

FL9 FL10

V63

X7[57 − 63] = 0

V63 is a 63-dimensional affine subspace of the form
V63 = {(x6, x57) : x6 ∈ V6, x57 ∈ F

57
2 }.

Fig. 3. A 6-round integral characteristic

444 A. Bar-On and N. Keller

(a) Guess the key bits needed to partially decrypt the ciphertexts of V and get
the corresponding values X7[57 − 63]. (This step is performed efficiently
using the partial sums technique.)

(b) Check whether Eq. (3) holds. A wrong key-guess will pass this seven-bit
condition with probability 2−7, and thus, 2128−7 = 2121 wrong keys are
expected to remain.

3. Check the 2121 remaining options by exhaustive search.

The time complexity of the attack is dominated by the last step. Hence,
the attack requires 263.58 chosen plaintexts and has time complexity of 2121

encryptions.
To reduce the time complexity, more V63’s can be used. As we can use only

independent subspaces, we can use up to 7 of them. Increasing the number of
the V63’s has two effects. On the one hand, there is an increase in the time
complexity of the filtering step and in the data complexity. On the other hand,
as the filtering of wrong key-guesses is stronger, the time complexity of the
exhaustive search step is reduced. The tradeoff between those two effects was
considered in [11]. The optimal time complexity is 2107.3, achieved by using 4
subspaces of the form V63 that require 264 − 256 = 263.994 chosen plaintexts.

4 Improved Attack on Full MISTY1

In this section we present our improved attack on the full MISTY1. Our attack is
based on using Todo’s characteristic both in the encryption and the decryption
directions and on a mixture of improved key-recovery techniques. First, we dis-
cuss application of Todo’s characteristic in the decryption direction and present
several observations used in the attack. Then we present the first phase of the
attack that requires 264−250 chosen ciphertexts and recovers 49 key bits in time
complexity of 264 encryptions. Finally, we present the second phase of the attack
that recovers the rest of the key in 269.5 time, given almost the entire codebook.

4.1 Using Todo’s Characteristic in the Decryption Direction

We observe that while Todo’s characteristic (described in Sect. 3.3 and illustrated
in Fig. 3) holds in the encryption direction of MISTY1, it can be used in the
decryption direction as well. Indeed, since the characteristic exploits only the
general structure of MISTY1 and not the exact subkeys used in the encryption
process, and as MISTY1 is a Feistel construction, the characteristic holds also
for the inverse cipher MISTY1−1, which possesses the same general structure.
(It should be noted that MISTY1−1 is not exactly equivalent to MISTY1, since
the FL functions are not involutions. However, as we verified experimentally,
this difference does not affect the applicability of Todo’s characteristic.)

Hence, we have the following “dual” claim:

A 270 Attack on the Full MISTY1 445

Claim 8. The equation: ⊕
x∈V63

X ′
3[25 − 31](x) = 0 (4)

holds for every 63-dimensional affine subspace V63 of the values X9 of the form
V63 = {(x57, x6) : x6 ∈ V6, x57 ∈ F

57
2 } (where V6 ⊂ F

7
2 is a 6-dimensional affine

subspace).

Our attack (see Sects. 4.3 and 4.4) takes advantage of Todo’s characteristic in
both the encryption and the decryption directions, and by that increases the
filtering of wrong key-guesses. The reverse 6-round integral characteristic is illus-
trated in Fig. 4.

4.2 Preliminaries

In this section we give several useful observations exploited in our attack.

Computing the Attack Equation by Independent Calculations. Con-
sider the attack equation

⊕
x∈V63

X ′
3[25 − 31](x) = 0 (see also Fig. 5a). The

last functions applied during the evaluation of the attack equation are the
bit-wise AND and OR of FL4. Since both functions are linear/affine func-
tions, an equivalent function EFL4 can be used. In EFL4 the OR opera-
tion is replaced by AND operation and those for every value x it holds that
FL4(x,K ′

4,K6) = EFL4(x,K ′
4,K6⊕116)⊕(K6, 016). The constant (K6, 016) can

be omitted because we sum over even number of values1. So, it is sufficient to
compute the contributions of Out1 and FL2(PR) independently and then XOR
them together. Moreover, the bits X ′

3[25 − 31] depend only on bits 9–15,25–
31 of the input of FL4. Thus, it is sufficient to compute the contributions of
Out1[9 − 15, 25 − 31] and FL2(PR)[9 − 15, 25 − 31] = FL2(PR[9 − 15, 25 − 31])
independently.

Another independence appears in computing Out1 given the inputs to FI1,2

and to FI1,3. (As the computation is up to XORs with key bits, we assume
that these bits have already been guessed.) Denoting the inputs to FI1,2 and
to FI1,3 by I2 and I3, respectively, the explicit formula for Out1 is Out1 =
(FI1,2(I2)⊕I3, F I1,2(I2)⊕I3 ⊕FI1,3(I3)). Furthermore, we need only the values
in Out1[9 − 15, 25 − 31] and these values can be found by independent compu-
tations of the four S-boxes S91,2,1, S71,2, S91,3,1, S71,3.

As a result, we get the following Observation:

Observation 9. Suppose we want to compute
⊕

x∈S X ′
3[25 − 31](x) for some

set S of plaintexts and we already partially encrypted S using known
KL1,KO1,1,KI1,1. The rest of the computation can be done as follows. For
every x ∈ S and for every guess of the 14 bits of K ′L

4 ,KL
6 :

1. Guess the 14 relevant bits of KL2 (the bits K ′L
3 ,KL

5). For each guess, calculate
the contribution of FL2(PR[9 − 15, 25 − 31]) to

⊕
x∈S X ′

3[25 − 31](x).

1 We will write FL even when the meaning is of the equivalent function EFL.

446 A. Bar-On and N. Keller

2. Guess the 9 leftmost bits of KO1,2. For each guess, calculate the value
ES91,2,1 (the bits that enter S91,2,1), encrypt it through S91,2,1, and store in
a table its contribution to

⊕
x∈S X ′

3[25 − 31](x).

P

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

⊕FO4

FL5 FL6

⊕FO5

⊕FO6

FL7 FL8

⊕FO7

⊕FO8

FL9 FL10

C

V63

X′
3[25 − 31] = 0

C

FL10−1 FL9−1

⊕FO8

⊕FO7

FL8−1 FL7−1

⊕FO6

⊕FO5

FL6−1 FL5−1

⊕FO4

⊕FO3

FL4−1 FL3−1

⊕FO2

⊕FO1

FL2−1 FL1−1

P

V63

Bits[57 − 63] = 0

V63 is a 63-dimensional affine subspace of the form
V63 = {(x6, x57) : x6 ∈ V6, x57 ∈ F

57
2 }.

Fig. 4. A 6-round integral characteristic of MISTY1 in the decryption direction

A 270 Attack on the Full MISTY1 447

3. Guess the 7 rightmost bits of KO1,2. For each guess, calculate the value
ES71,2, encrypt it through S71,2, and store in a table its contribution to⊕

x∈S X ′
3[25 − 31](x).

4. Guess the 9 leftmost bits of KO1,3. For each guess, calculate the value
ES91,3,1, encrypt it through S91,3,1, and store in a table its contribution
to

⊕
x∈S X ′

3[25 − 31](x).
5. Guess the 7 rightmost bits of KO1,3. For each guess, calculate the value

ES71,3, encrypt it through S71,3, and store in a table its contribution to⊕
x∈S X ′

3[25 − 31](x).
6. Finally,

⊕
x∈S X ′

3[25 − 31](x) is equal to the XOR of the five contributions
listed above.

The addition of KI1,2 and KI1,3 was omitted from the calculation in Obser-
vation 9. We give the explanation for this in the next section.

Removing Unnecessary Key-Bits and Equivalent Keys. As observed by
Kühn ([9], see also [5]), the structure of FO and FI allows to use equivalent keys.
In MISTY1, each FIi,j computation involves 32 key bits – 16 bits of KOi,j and
16 bits of KIi,j . These 32 bits can be replaced by an equivalent 25-bit subkey,
by “pushing” all key additions forward until they meet a non-linear operation,
using the fact that linear operations can be interchanged easily. (The 7 leftmost
bits of KIi,j do not meet any S-box of FIi,j and therefore are “pushed” outside
FIi,j and added at a later place where they are merged into another subkey.)

Another way to decrease the key material involved in the computations is
removing unnecessary key bits. When we compute

⊕
x∈S X ′

3[25 − 31](x) for a
set S of even size, there is no effect of the key bits KI1,2,KI1,3 and KO1,4 since
they all affect X ′

3[25 − 31] in the same (constant) way for every plaintext and
their contributions cancel each other. In our attack we consider equivalent keys
and remove unnecessary key bits, as described in Fig. 5a.

Partial Sums and Piles Construction. Key guessing becomes more efficient if
we combine it with the partial sums technique, presented by Ferguson et al. [6].
Here is an example that illustrates the technique.

Suppose there are 2n values {Di} after the partial encryption of one FI
function in FO1 (the first round) and we want to calculate the XOR of the
outputs from S91,2,1. If two values are equal in the 9 input bits of S91,2,1, then
their contributions to the XOR of the output from S91,2,1 cancel each other.
Hence, we sort the 2n values according to those 9 bits, check which of the 29

values appears an odd number of times and encrypt through S91,2,1 only them
(and each of them only once). Hence, it is sufficient to encrypt 29 values instead
of 2n values. We use the term pile for a set of the values that appears an odd
number of times in the 9 examined bits (so that there are at most 29 values in
a pile in total), and constructing pile for the process of reducing the 2n inputs
to 29 values. In general, we define:

448 A. Bar-On and N. Keller

Definition 10. Let S = {Di} be a set of n-bit values that are required for some
calculation. Assume that the calculation can be done only with the knowledge of
{Di ∩Ω}, where Ω is a mask with Hamming weight d and ∩ means bitwise AND
(i.e., knowing only d of the n bits is sufficient for the calculation). Denote by B
the position of those d bits. Constructing pile of size 2d in B means reducing the
number of values from |S| to at most 2d by considering only the values {Di ∩Ω}
that appear an odd number of times.

4.3 A New Integral Attack on Full MISTY1 – The First Phase

In this section we present the first phase of our attack on the full MISTY1. This
phase uses only the “reverse” 6-round characteristic presented in Sect. 4.1. It
requires 264 − 250 chosen ciphertexts and recovers the equivalent of 49 key bits
in time complexity dominated by the decryption of the ciphertexts.

Remark 11. We chose to begin with the “reverse” characteristic due to key
scheduling arguments (namely, this allows to exploit the fact that the subkeys
KL1 and KO1 share 16 key bits).

First, we choose seven independent structures V63 of X9 states, to be
used in the integral characteristics exploited by the attack. Then, we choose
264 − 250 ciphertexts, structured such that for any value of the subkey KL10,
the corresponding intermediate X9 values contain all seven V63 structures. (The
way to choose ciphertexts such that this property holds is presented in [11].)

After choosing the ciphertexts, we guess the subkeys K1 and K ′
7. This allows

us to identify the right 263 ciphertexts that yield each of the seven chosen V63

structures. An efficient procedure for this identification is presented below.
The goal of this phase is to discard wrong key guesses using the attack

equation
⊕

x∈V63
X ′

3[25 − 31](x) = 0 (derived from the “reverse” 6-round char-
acteristic). We use a meet-in-the-middle (MITM) approach: We split the 7-bit
attack equation into two equations, a 4-bit equation and a 3-bit equation. We
treat each equation separately and then combine the results, getting an extra
filtering by comparing the key bits involved in both equations.

To check whether the attack equation holds, we construct the following piles
(see Definition 10 and Fig. 5):

(i) The pile αR =
⊕

x∈V63
PR (which is of size 1).

(ii) A pile of size 29 in the 9 leftmost bits of B.
(iii) A pile of size 27 in the 7 rightmost bits of B.
(iv) A pile of size 29 in the 9 leftmost bits of D.
(v) A pile of size 27 in the 7 rightmost bits of D.

The total sum
⊕

x∈V63
X ′

3[25 − 31](x) is the sum of the contributions of the five
piles. We use the MITM approach once again (thus, getting a two-dimensional
MITM attack) by dividing the piles into two sets – piles (i), (ii), and (iii) on
the one hand and piles (iv), (v) on the other hand. We then compute the con-
tributions of each set of piles separately and check whether they are equal.

A 270 Attack on the Full MISTY1 449

FL1
∩K1

∪K′
7

⊕ FI ⊕ ⊕ FI ⊕ ⊕ FI ⊕

FL2
∩K′L

3
∪KL

5

⊕

FL4

X′
3[25 − 31] = 0

∩K′L
4

∪KL
6

K1 K3 EK1,3 = K8 ⊕ K′L
6 ||00||K′L

6

S9 ⊕ S7 ⊕ ⊕ S9 ⊕

K′R
6

A

C

B D

E

F=X3[9 − 15, 25 − 31]

(a) Phase 1

FL10
∩K′

7
∪K1

⊕ FI ⊕ ⊕ FI ⊕ ⊕ FI ⊕

FL9
∩KL

5
∪K′L

3

⊕

FL7

X7[57 − 63] = 0

∪K′L
2

K8 K2 EK8,3 = K7 ⊕ K′L
5 ||00||K′L

5

S9 ⊕ S7 ⊕ ⊕ S9 ⊕

K′R
5

A

B DG

C

F=X′
7[41 − 47, 57 − 63]

E

(b) Phase 2

Fig. 5. Reference figures for the attack

450 A. Bar-On and N. Keller

For the right key, the contributions must be equal (since the contributions of the
five piles sum to zero), while for a wrong key the contributions are equal with
probability 2−7 (per V63 structure). Since we use seven V63 structures, we obtain
7 · 7 = 49 bits of filtering overall.

As mentioned above, the sets of ciphertexts that correspond to the seven
V63’s can be computed once K1 and K ′

7 are guessed. Those key bits are indeed
guessed at the beginning of this phase but if we identify the V63’s after guessing
K1,K

′
7 then the time complexity of this identification would be at least 232 ·263 ·7.

We can reduce this time complexity by a precomputation, as follows.
Recall that for each structure V63, the exact 263 ciphertexts that are

decrypted to V63 are determined by the value of only two key bits (one bit of K1

and another of K ′
7). For each of the 4 options, we identify the 263 ciphertexts

{Ci}, get the corresponding plaintexts {P i} and save αR =
⊕

i P i
R. Additionally,

construct a pile of size 232 in PL and save it. All information we need for the
attack is now contained in the computed piles (so that once K1,K

′
7 are guessed,

we can continue the attack with the right piles). In this way, the time complexity
of the identification step becomes 7 · 4 · 263 = 267.8 operations.

The procedure of Phase 1 consists of several steps for each one of the seven
V63’s. First, guess K1 and K ′

7, get αR and the pile of size 232. Partially encrypt
the 232 values through FL1 to the point A (the time complexity of this step is
232 · 232 = 264) and continue as follows:

1. Construct piles of size 29 and 27 in B (piles (ii), (iii)).
1.1. Guess the 9 leftmost bits of K3 and partially encrypt the 29 values of pile

number (ii) to the point F.
1.2. Guess the 7 rightmost bits of K3, encrypt the 27 values of pile number (iii)

to the point F and calculate their XOR. Note that the XOR of the val-
ues is sufficient (instead of the values themselves) because FL4 is linear.
Explicitly, for a set of values S, the equation

⊕
x∈S

FL4(x) = EFL4(
⊕
x∈S

x) ⊕
⊕
x∈S

const

holds for the right key (where const = (K6, 016)).
1.3. Guess K ′

3[12 − 15],K5[12 − 15] (8 bits of KL2) and encrypt
αR[12 − 15, 28 − 31] to the point F.

1.4. XOR the results from the previous steps in F and call the joint XOR J1.
1.5. Guess K ′

4[12 − 15],K6[12 − 15] (8 bits of KL4), encrypt J1 and save in a
table T1 the contribution to X ′

3[28 − 31] (4 bits of the attack equation)
with the relevant key (a table of size 29+7+8+8 = 232).

2. Partially encrypt the 232 values through S91,1,1 and S71,1 (note that we
already know K1), get partial outputs from FI1 and add them to the values
in C. To construct pile number (iv), we first construct a pile of size 218

corresponding to the 9 leftmost bits in C and the 9 bits in E. Similarly, to
construct pile number (v), we first construct a pile of size 216 corresponding
to the 7 rightmost bits in C and the 9 bits in E.

A 270 Attack on the Full MISTY1 451

2.1. Guess the 9 bits K ′R
6 , encrypt the 218 and 216 values through FI1 to

construct piles of size 29 and 27 in D (piles number (iv) and (v)).
2.2. Guess the 9 leftmost bits of EK1,3, encrypt the 29 values of pile number

(iv) to the point F and calculate their XOR.
2.3. Guess the 7 rightmost bits of EK1,3, encrypt the 27 values of pile number

(v) to the point F and calculate their XOR.
2.4. XOR the results from the previous steps in the point F and call the joint

XOR J2.
2.5. Guess K ′

4[12 − 15],K6[12 − 15] (8 bits of KL4), encrypt J2, calculate the
contribution to X ′

3[28 − 31] (4 bits of the attack equation) and search
for a collision in T1 (i.e., a collision both in the contributions and in the
common key bits). Save the collision in a table T2.

2.6. The size of T2 is 29+7+8+8 ·29+9+7+8 ·2−8 ·2−4·7 = 229, since a match must
occur in K ′

4[12 − 15],K6[12 − 15] (8 bits of KL4) and in the contribution
to X ′

3[28 − 31] (a 4-bit attack equation, for the seven V63’s).
3. Produce T ′

2 using the 3-bit attack equation
⊕

x∈V63
X ′

3[25 − 27] = 0 by
a similar process. The difference is that we guess K ′

4[9 − 11],K6[9 − 11]
instead of K ′

4[12 − 15],K6[12 − 15] and K ′
3[9 − 11],K5[9 − 11] instead of

K ′
3[12 − 15],K5[12 − 15]. The size of T ′

2 is 29+7+6+6 · 29+9+7+6 · 2−6 · 2−3·7 =
232.

4. There are 9 + 16 + 16 = 41 shared bit-guesses in T2 and T ′
2 (the bits

K ′L
6 ,K3, EK1,3). Search for a collision in those bits and store them in a table

T3. The size of T3 is 229 · 232 · 2−41 = 220.

We save in T3 the corresponding guess of K1 and K ′
7, and thus, the size of T3 is

220 · 232 = 252. For each suggestion in T3, we guess the subkey K ′L
6 (seven bits),

retrieve the entire subkey K ′
6, and then:

– Retrieve K8 from K8 ⊕ K ′L
6 ||00||K ′L

6 and K ′
6,

– Retrieve K7 from K ′
7 and K8,

– Retrieve K6 from K ′
6 and K7.

– Compare with the known KL
6 and discard wrong guesses (we guess seven bits

of K ′L
6 and have a 7-bit condition, so we remain with a table of the same size).

– Retrieve KL
4 from K ′L

3 and K3.

The output of Phase 1 is two tables. The first is the table Tphase1, that con-
tains 252 suggestions for five full subkeys K1,K3,K6,K

′
7,K8 and four 7-bit sub-

keys K ′L
3 ,KL

5 ,K ′L
4 ,KL

4 , sorted according to K1,K
′
7,K8. The second is the table

T ′
phase1 with the same 252 suggestions, but sorted according to K1,K

′
7,K

′L
3 ,KL

5 .
The time complexity of Phase 1 for a single V63 and a fixed guess of K1,K

′
7

is less than 233.7 operations. The calculation is given in Table 3 and composed
of the sum of time complexities of the steps involving key guessing and (partial)
encryption. Since we use seven V63’s, the total time complexity of Phase 1 (with
the precomputation) is bounded by

T1 = 267.8 + 7 · 232 · 233.7 = 269.2

operations, which is less than 264 encryptions.

452 A. Bar-On and N. Keller

Table 3. Time complexity of Phase 1 for single V63 and K1,K
′
7 guess

Step Time complexity Description

1.1 218 = 29 · 29 Guess 9 bits of K3 and partially encrypt 29 values

1.2 214 = 27 · 27 Guess 7 bits of K3 and partially encrypt 27 values

1.3 28 = 28 · 1 Guess 8 bits of KL2 and partially encrypt αR[12 − 15, 28 − 31]

1.4 224 = 29 · 27 · 28 Calculate J1

1.5 232 = 224 · 28 Guess 8 bits of KL4 and partially encrypt J1

2.1 227.3 = 29 · (218 + 216) Guess 9 bits of K′R
6 and partially encrypt 218 and 216 values

2.2 227 = 29+9 · 29 Guess 9 bits of EK1,3 and partially encrypt 29 values

2.3 223 = 29+7 · 27 Guess 7 bits of EK1,3 and partially encrypt 27 values

2.4 225 = 29 · 29 · 27 Calculate J2

2.5 233 = 225 · 28 Guess 8 bits of KL4 and partially encrypt J2.

3 < step 1+ step 2 Similar to 1 and 2, using ⊕X′
3[25 − 27] = 0

4 232.2 = 229 + 232 Compare two tables of sizes 229 and 232

Total < 233.7

After the first phase is completed, the rest of the key can be found imme-
diately in time complexity of 279 encryptions, by guessing the rest of the key
(for each of 252 entries of Tstage1, guess 227 key bits KR

4 ,KR
5 ,K ′R

3 and derive
a master-key candidate) and checking it by a trial encryption. Of course, this
approach does not require additional data. In the following section we show that
if more data is available, the time complexity of the second phase can be reduced
to 269.5 encryptions.

4.4 A New Integral Attack on Full MISTY1 – The Second Phase

The second phase of our attack uses the 6-round characteristic presented in
Sect. 3.3 to apply a second filtering to the key suggestions remaining from
Phase 1.

The goal of this phase is to discard wrong key guesses that pass Phase 1,
using the attack equation

⊕
x∈V63

X7[57 − 63](x) = 0 (derived from the 6-round
characteristic).

To check whether the attack equations holds, we construct the following piles
(see Fig. 5b):

(i) The pile βR =
⊕

x∈V63
CR (which is of size 1).

(ii) A pile of size 29 in the 9 leftmost bits of B.
(iii) A pile of size 27 in the 7 rightmost bits of B.
(iv) A pile of size 216+9 in the 9 leftmost bits of C + 16 bits of D.
(v) A pile of size 27 in the 7 rightmost bits of C + 16 bits of D.

The sum
⊕

x∈V63
X7[57 − 63](x) is the sum of the contributions of each pile

separately. As in Phase 1 above, we calculate the contribution of piles number
(i), (ii), (iii) and of piles number (iv), (v) separately and check whether the two
contributions are equal. For the right key they must be equal, and for a wrong

A 270 Attack on the Full MISTY1 453

key guess they are equal with probability 2−7 (per V63 structure). There are 7
optional V63’s and we use only two of them to get 2 · 7 = 14 bits filtering.

The procedure of Phase 2 consists of several steps (similarly to Phase 1) for
each one of the seven V63’s.

First, we ask for the encryption of 264 −250 chosen plaintexts, such that each
of the seven chosen V63 structures (of X ′

1 values) is covered by the texts. (This
data requirement, combined with the requirement of Phase 1, makes the data
complexity equal to 264 − 236 chosen plaintexts and ciphertexts, which is rather
close to the entire codebook). Second, we construct pile number (i) and a pile of
size 232 in CL for constructing the other piles.

Then, we guess K1 and K ′
7 and partially decrypt the 232 values through FL10

to the point A (the time complexity of this step is negligible compared to the
total time complexity). The procedure continues as follows:

1. Construct piles of size 29 and 27 in B (piles (ii), (iii)).
1.1. Guess the 9 leftmost bits of K2 and decrypt the 29 values of pile number

(ii) to the point F.
1.2. Guess the 7 rightmost bits of K2, decrypt the 27 values of pile number

(iii) to the point F and calculate their XOR.
1.3. Guess K ′L

3 ,KL
5 (14 bits of KL9 and decrypt the βR[9 − 15, 25 − 31] to

the point F.
1.4. XOR the results from the previous steps in the point F and call the joint

XOR J1.
1.5. Get the K1,K

′
7,K

′L
3 ,KL

5 entry of T ′
stage1. The entry consists of 252−46 =

26 values for K3,K6,K8,K
′L
4 ,KL

4 . Compute K ′
2 from K2,K3, decrypt J1

and save in a table T1 the contribution to X ′
7[57 − 63], along with the

relevant key (a table of size 29+7+14+6 = 236).
2 To construct pile number (iv), we first construct a pile of size 216+9 that

corresponds to the 9 leftmost bits of C + 16 bits of G. Similarly, to construct
pile number (v), we first construct a pile of size 216+7 that corresponds to the
7 rightmost bits in C + 16 bits of G.

2.1. Guess K8 and construct a pile of size 29+9 that corresponds to the 9 left-
most bits of C + 9 bits of E. Construct a pile of size 29+7 that corresponds
to the 7 rightmost bits of C + 9 bits of E.

2.2. Guess the 9 bits K ′R
5 , decrypt the 218 and 216 values of the piles from the

previous step through FI1 to construct piles of size 29 and 27 in D (piles
number (iv) and (v)). For the piles of size 29, this step can be performed
more efficiently by guessing key bits one by one, as described in [2].

2.3. Get the K1,K
′
7,K8 entry of Tstage1. The entry consists of 252−48 = 24

values for K3,K6,K
′L
3 ,KL

5 ,K ′L
4 ,KL

4 . For each value, guess KR
5 , derive

K5, compute K ′
5 (from K5,K6) and compare with K ′R

5 that was guessed.
We remain with 24 values for K ′

5 and hence 24 values for EK8,3.
2.4. With the known EK8,3, decrypt the 29 values of pile number (iv) to the

point F and calculate their XOR. In addition, decrypt the 27 values of
pile number (v) to the point F and calculate their XOR.

2.5. XOR the results from the previous steps at the point F and call the joint
XOR J2.

454 A. Bar-On and N. Keller

2.6. Guess K ′
2[9 − 15], decrypt J2, calculate the contribution to X7[57 − 63]

and search for a collision in the table T1 (i.e., collision in the contributions
+ in the common key bits).

2.7. The expected number of collisions is 29+7+14+6 · 216+9+4+7 · 2−7 · 2−2·7 ·
2−20 = 231, since a match must occur in K ′

2[9 − 15], in the contributions
in X7[57 − 63] (for two V63’s) and in the entry of Tstage1.

3. For each of the 231 suggestions, guess KR
4 , and use the knowledge of

K4,K5,K
′L
4 to get a 7-bit filtering. This yields 265 suggestions for the entire

key. Test them with a single plaintext/ciphertext pair. Only 265 ·2−64 = 2 sug-
gestions are expected to remain. Test them with another plaintext/ciphertext
pair and find the key.

The time complexity of stage 2 for each structure V63 and each guess of K1,K
′
7

is less than 242.5. The calculation is given in Table 4 and is composed of the
sum of the time complexities of the steps involving key guessing and (partial)
decryption. Since we use two V63’s, the total time complexity of Phase 2 is
bounded by

T2 = 2 · 232 · 242.5 = 275.5

operations.
All the operations of Phase 2 are simple operations besides Step 3 that con-

sists of 233 full MISTY1 encryptions (for each K1,K
′
7 guess). Thus, the time

complexity T2 is 275.5 simple operations + 265 full MISTY1 encryptions. Assum-
ing that each simple operation is comparable to an S-box evaluation, the time
complexity of stage 2 (in terms of full encryptions) is 275.5

8·9 + 265 = 269.5, since
MISTY1 has 9 S-boxes in each of its 8 rounds.

Table 4. Time complexity of Phase 2 for single V63 and K1,K
′
7 guess

Step Time complexity Description

1.1. 218 = 29 · 29 Guess 9 bits of K2 and partially decrypt 29 values

1.2. 214 = 27 · 27 Guess 7 bits of K2 and partially decrypt 27 values

1.3. 214 = 214 · 1 Guess 14 bits of KL9 and partially decrypt

βR[9 − 15, 25 − 31]

1.4. 230 = 29 · 27 · 214 Calculate J1

1.5. 236 = 230+6 · 1 Partially decrypt J1

2.1. 241.3 = 216 · (225 + 223) Guess K8 and partially decrypt 225 and 223 values

2.2. 241.3 = 216+9 · (214 + 216) Guess 9 bits of K′R
5 and partially encrypt 218 and

216 values.

2.3. 238 = 216+9+4+9 Get 24 values from Tstage2 and for each value guess

9 bits of KR
5

2.4.+2.5. 238.3 = 216+9+4 · (29 + 27) Partially decrypt 29 and 27 values. Calculate J2

2.6. 236 = 216+9+4+7 · 1 Partially decrypt J2

3 233 = 231 · 22 Obtain another 7-bit filtering (upon the attack

equation filtering of the two V63’s), and then

test remaining key suggestions by trial

encryptions

Total < 242.5 simple operations + 233

full MISTY1 encryptions

A 270 Attack on the Full MISTY1 455

The output of Phase 1 required tables of size 252. In a naive approach, this
is the memory complexity of the attack but maybe it can be reduced.

5 Summary and Conclusions

In this paper we presented a new attack on the full MISTY1. The attack uses
Todo’s 6-round integral characteristic [11] both in the encryption direction (as it
was used by Todo) and in the decryption direction. The attack equations derived
from the characteristics provide a filtering for wrong key guesses. Exploiting the
filtering efficiently by using partial sums, two-dimensional meet-in-the-middle
and other techniques, our attack has time complexity of 269.5 encryptions. This
is a reduction by a factor of 238 over Todo’s attack that has time complexity of
2107.3 encryptions.

While our attack is clearly impractical due to its high data complexity, it
shows that MISTY1 has a rather low security margin, providing only 70 bits of
security.

As a problem for further research, it will be interesting to find out whether
the data complexity can be reduced. A possible direction for achieving this is
finding additional 6-round integral characteristics of a lower order.

References

1. 3rd Generation Partnership Project: Specification of the 3GPP. Confidentiality,
Integrity Algorithms - Document 2: KASUMI Specification (Release 6). Technical
report 3GPP. TS 35.202 V6.1.0 (2005–2009), September 2005

2. Bar-On, A.: Improved higher-order differential attacks on MISTY1. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 28–47. Springer, Heidelberg (2015)

3. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In:
Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg
(1997)

4. Dinur, I., Dunkelman, O., Shamir, A.: Improved attacks on full GOST. In:
Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 9–28. Springer, Heidelberg
(2012)

5. Dunkelman, O., Keller, N.: Practical-time attacks against reduced variants of
MISTY1. Des. Codes Crypt. 76, 601–627 (2013)

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.L.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

7. Jia, K., Li, L.: Improved impossible differential attacks on reduced-round MISTY1.
In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 15–27. Springer,
Heidelberg (2012)

8. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

9. Kühn, U.: Improved cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 61–75. Springer, Heidelberg (2002)

10. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

456 A. Bar-On and N. Keller

11. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015)

12. Todo, Yosuke: Structural Evaluation by Generalized Integral Property. In: Oswald,
Elisabeth, Fischlin, Marc (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–
314. Springer, Heidelberg (2015)

13. Tsunoo, Y., Saito, T., Kawabata, T., Nakagawa, H.: Differentials, finding higher
order of MISTY1. IEICE Trans. 95(A(6)), 1049–1055 (2012)

14. Yi, W., Chen, S.: Multidimensional zero-correlation linear attacks on reduced-
round MISTY1. In: CoRR (2014). arXiv:1410.4312

http://arxiv.org/abs/1410.4312

Cryptanalysis of the FLIP Family
of Stream Ciphers

Sébastien Duval(B), Virginie Lallemand, and Yann Rotella

Inria, Project-team SECRET, Paris, France
{Sebastien.Duval,Virginie.Lallemand,Yann.Rotella}@inria.fr

Abstract. At Eurocrypt 2016, Méaux et al. proposed FLIP, a new family
of stream ciphers intended for use in Fully Homomorphic Encryption
systems. Unlike its competitors which either have a low initial noise
that grows at each successive encryption, or a high constant noise, the
FLIP family of ciphers achieves a low constant noise thanks to a new
construction called filter permutator.

In this paper, we present an attack on the early version of FLIP that
exploits the structure of the filter function and the constant internal state
of the cipher. Applying this attack to the two instantiations proposed by
Méaux et al. allows for a key recovery in 254 basic operations (resp. 268),
compared to the claimed security of 280 (resp. 2128).

Keywords: Stream cipher · Guess-and-determine attack · FLIP · FHE

1 Introduction

One of the challenges of recent years is to create an acceptable system of Fully
Homomorphic Encryption (FHE) that would allow users to delegate compu-
tations to so-called Cloud Services. While Gentry showed in [6] the theoretic
feasibility of such a framework, two main difficulties remain: first, the impor-
tant computational and memory costs, and second the limited homomorphic
capacities.

In order to overcome these limitations, one of the important aspects that have
to be lessened is the cost of the evaluation of the symmetric encryption algo-
rithm used in the framework, which mainly depends on the multiplicative depth
of the circuit implementing the primitive. Since adapting the AES seems hard
[3,4,7], several new symmetric schemes purposed for FHE have been proposed,
among which the block cipher LowMC [1] and the stream ciphers Trivium and
Kreyvium [2].

At Eurocrypt 2016, Méaux et al. [12] proposed the new stream cipher con-
struction FLIP which aims at overcoming some of the drawbacks of previous

Partially supported by the French Agence Nationale de la Recherche through the
BRUTUS project under Contract ANR-14-CE28-0015 and by the Commission of the
European Communities through the Horizon 2020 program under project number
645622 PQCRYPTO.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 457–475, 2016.
DOI: 10.1007/978-3-662-53018-4 17

458 S. Duval et al.

schemes by, among other things, allowing for constant and smaller noise. This
achievement was made possible by the use of a new construction that resembles
a filter generator but with a constant register that is permuted before entering
the filtering function in order to limit the multiplicative depth of the circuit.

This design has been presented in October 2015 by the authors of FLIP at a
national workshop [11], and then submitted to Eurocrypt 2016. Our study shows
that the concrete instantiations proposed by the designers suffer from several
flaws that can be extended to a cryptanalysis. We reported our findings to the
authors which led them to change their design after their paper was accepted, in
order to resist our attack. A fixed version of the construction is then described
in the final version of the Eurocrypt 2016 article entitled Toward Stream Ciphers
for Efficient FHE with Low-Noise Ciphertexts [12].

In the following, we only deal with the preliminary version of the FLIP family
of stream ciphers: so everytime that we mention “FLIP” we mean the version
presented in [11] and submitted to Eurocrypt 2016 (which differs from the final
version of [12]).

This paper is organised as follows. We start by giving a description of the
submitted version of the FLIP family of stream ciphers in Sect. 2. Then, we dis-
cuss its vulnerabilities against guess-and-determine attacks in Sect. 3 and show
how to break the cipher by exploiting these vulnerabilities through an algebraic
attack (Sect. 4). The pseudocode of the attack is given in Sect. 5. Our analyses
are supported by experiments reported in Sect. 6. The last section concludes this
paper.

2 Description of the FLIP Family of Stream Ciphers

2.1 General Idea: The Filter Permutator Structure

When it comes to designing a symmetric construction tailored for FHE applica-
tions, both block and stream ciphers can be considered, each with advantages
and disadvantages, as discussed in [2].

Since the targeted applications use noise-based cryptography (such as lattice-
based cryptography), one of the pursued goals is to limit the growth of noise as
much as possible, which is equivalent to considering circuits with a limited mul-
tiplicative depth. This desirable property, also refered to as a high homomorphic
capacity, is hard to obtain with block ciphers since the round iterations lead to
an output with a large algebraic degree. However, the good point is that the
noise is constant per block, which implies that noise does not add any limitation
on the number of generated ciphertext blocks. On the other hand, the homomor-
phic capacity of stream ciphers is usually very high for the first ciphertext bits,
but decreases as more bits are generated, imposing to re-initialise the cipher or
to use techniques like bootstrapping.

The innovative design of Méaux et al. [12] succeeds in taking the best from
both sides and enjoys a very good homomorphic capacity that remains constant
with time. Their proposal is a family of stream ciphers named FLIP that is
based on the filter generator construction, but drops the register update part

Cryptanalysis of the FLIP Family of Stream Ciphers 459

Fig. 1. General structure of the filter permutator construction used for the FLIP family
of stream ciphers.

to avoid the algebraic degree increase. Instead, the register bits are permuted
before entering the filter function, thus the name filter permutator.

Its operational principle is represented in Fig. 1.
It is made up of three main components:

– a register storing the N -bit key K,
– a bit permutation generator, parametrised by a public PseudoRandom Num-

ber Generator (PRNG), producing at each clock i an N -bit permutation Pi,
– a filtering (Boolean) function F , generating the keystream bit zi.

Once the PRNG is initialised using an IV, the master key K is loaded into
the register and encryption starts: at each step i, the permutation generator
produces a permutation Pi that shuffles the key bits right before they enter the
filtering function F . F produces the keystream bit zi which is XORed to the
corresponding plaintext bit pi and gives the ciphertext ci.

To recover the plaintext, the same process is used to generate the bits zi of
the keystream that are simply XORed back with the ci.

Every part of the scheme is public except the key.

2.2 The FLIP Family of Stream Ciphers

After an extensive analysis of the filter permutator construction with respect
both to FHE constraints and resistance against most common stream ciphers
attacks, the authors chose the concrete instantiation we now describe.

The PRNG used for the permutation generator is defined as a forward secure
PRNG based on AES-128, and the permutation generator itself is a Knuth shuf-
fle [9], which ensures that all the N -bit permutations have the same probability
to be generated (provided that it is used with a random generator).

F is an N -variable Boolean function defined by the direct sum of three specific
Boolean functions f1, f2 and f3 that are defined in [13] and that we now recall.

In the following, n and k are positive integers and operations are considered
over F2.

460 S. Duval et al.

Definition 1 (L-type Function). The n-th L-type function Ln is the n-
variable linear function defined by:

Ln(x0, · · · , xn−1) =
n−1∑
i=0

xi.

Definition 2 (Q-type Function). The n-th Q-type function Qn is defined by
the 2n-variable quadratic function:

Qn(x0, · · · , x2n−1) =
n−1∑
i=0

x2ix2i+1

Definition 3 (T-type Function). The k-th T-type function is the k(k+1)
2 -

variable Boolean function defined by:

Tk(x0, · · · , x k(k+1)
2 −1

) =
k∑

i=1

i−1∏
j=0

xj+
∑i−1

�=0 �.

For instance the 3rd T-type function is equal to:

T3 = x0 + x1x2 + x3x4x5

Each of these types of functions has nice properties according to one or several
security criteria (non-linearity, resiliency, algebraic immunity, . . .).

The filtering function used in the FLIP family of stream ciphers uses a com-
bination of 3 Boolean functions parameterised by the integers n1, n2 and n3,
chosen so that the resulting properties of F are good:

– f1(x0, · · · , xn1−1) = Ln1 ,
– f2(xn1 , · · · , xn1+n2−1) = Qn2/2,
– f3(xn1+n2 , · · · , xn1+n2+n3−1) = Tk where k is such that n3 = k(k+1)

2 .

F is defined as the direct sum of f1, f2 and f3:

F (x0, · · · , xn1+n2+n3−1) = Ln1 + Qn2/2 + Tk where n1 + n2 + n3 = N

and thus inherits in some measure the good properties of f1, f2 and f3 (see [13]).
The initial analysis performed by Méaux et al. and presented in the submitted

version of the construction [13] takes into account the most common attacks on
filter generators (which are very similar to filter permutators) and resulted in
the selection of the parameters reported in Table 1.

The security analysis detailed in [13] and more precisely the study of weak
keys results in an additional limitation on the design which is that the key must
be balanced (in the submitted version of the Eurocrypt paper [13] it is stated
that: “Since our N parameter will typically be significantly larger than the bit-
security of our filter permutator instances, we suggest to restrict the key space
to keys of Hamming weight N/2”).

Finally, note that the specification document does not give any limit on the
number of keystream bits that can be generated under the same key.

Cryptanalysis of the FLIP Family of Stream Ciphers 461

Table 1. Parameters of the two concrete instantiations of FLIP with the corresponding
complexities of Algebraic Attacks (AA), Fast Algebraic Attacks (FAA) Higher-Order
Correlation attacks (HC).

FLIP (n1, n2, n3) Key size (N) Security AI (F) FAI (F) res (F) AA FAA HC

FLIP (47,40,105) 192 80 14 15 47 194 88 119

FLIP (87,82,231) 400 128 21 22 87 323 136 180

3 Preliminary Remarks on the Vulnerabilities of the FLIP
Family of Stream Ciphers

3.1 Attack Scenario and Computation Model

In the following we examine one of the most common attack scenarios considered
for stream cipher analysis, which is the known-plaintext scenario: we suppose
that we know a part of the plaintext together with the corresponding ciphertext,
which implies that we know the value of some bits of the keystream z. Needless
to say, our goal is to recover the secret key, which in the case of the FLIP family
of stream ciphers is equivalent to recovering the internal state.

To express the performance of our attack, we use the three usual metrics
which are time, data and memory complexities. Time complexity (hereafter
denoted by CT) expresses the quantity of operations that the attacker has to
perform to execute the attack. In our case, we compute it in the same way
as in the specification paper [13] so we count the number of basic operations.
Data complexity (CD) corresponds to the required number of keystream bits and
finally memory complexity (CM) measures the memory (in bits) needed during
the attack.

3.2 The FLIP Family of Stream Ciphers and Guess-and-Determine
Attacks

The attack we propose uses a variant of the guess-and-determine technique. This
approach, which seems to have been named first in [5,8], has been extensively
used to analyse stream ciphers, starting with the ones submitted to the NESSIE
project. The idea is to start by making a hypothesis on the value of some bits of
the internal state or of the key (the ‘Guess’) and to use the information coming
from keystream bits to deduce the unknown ones (to ‘Determine’ them). Most
of the time the attack is completed thanks to algebraic techniques.

Two features of the FLIP family of stream ciphers seem to indicate that an
attack using guess-and-determine techniques would be efficient: first its fixed
internal state and second the definition of its filtering function. More precisely,
the fact that the register is not updated implies that a guess of one key/internal
state bit at any time would give an information of one bit at any other time. This
is different from common stream ciphers for which the update function mixes the

462 S. Duval et al.

internal state bits together, implying that a one-bit information quickly vanishes
after some (forward or backward) rounds.

The second feature that seems exploitable for a guess-and-determine attack
is the definition of the filtering function F which contains very few monomials
of high-degree. This is what we detail now.

3.3 Observations on the Boolean Function F

As reported before, the Boolean function F is made of the direct sum of 3
Boolean functions f1, f2 and f3 which are respectively of L-, Q- and T-type.
This definition implies that all the monomials of degree greater than or equal to
3 are present in f3, which is given by the following formula:

f3(xn1+n2 , · · · , xn1+n2+n3−1) = Tk(xn1+n2 , · · · , xn1+n2+n3−1)

=
k∑

i=1

n1+n2+i−1∏
j=n1+n2

xj+
∑i−1

�=0 �

where k is the algebraic degree of f3 and is such that n3 = k(k+1)
2 .

From this expression, we see that there are k−2 monomials of degree greater
than or equal to 3 in F , in a total of n3 − 3 variables. Given the multiplicative
depth constraint, k has to be low1, which implies that the T-type function has
few monomials and therefore easy to cancel, as we show in the next section.

The core idea of our attack is to notice that since there are few high-degree
monomials but a lot of null key bits, there is a high probability that the high-
degree monomials of F are cancelled. In these cases, it also means that the
keystream bits can be seen as expressions of degree less than or equal to 2 in the
non-null key bits.

The attack we perform uses this specificity by doing a slight variant of the
guess-and-determine technique: instead of making a hypothesis on the value of
key/internal state bits, we guess the indices of some null key bits2. We deduce
from that the clocks when the keystream bits are an expression of low-degree
in the other key bits and build a system from it. Finally we solve the system
with linearisation techniques, which in the case of low-degree equations is of
reasonable cost.

3.4 Probability of Cancelling all the High-Degree Monomials of F
Given that � Input Variables are Null

To figure out the feasibility of such a procedure, we have to evaluate the prob-
ability that, given exactly � positions of null bits in K, the expression of the
keystream bit zi is of degree less than or equal to 2 in the remaining key bits3.

1 To give the order of magnitude, we recall here that the 2 concrete instantiations
described in [13] use k = 14 and k = 21 for respective security of 80 and 128 bits.

2 As we saw in Sect. 2, we are sure that there are N
2

null key bits.
3 This is what we denote by an exploitable equation or exploitable clock.

Cryptanalysis of the FLIP Family of Stream Ciphers 463

This probability is directly linked to the amount of data that is required
to lead to the attack since it determines the amount of keystream bits that an
attacker needs such that enough of them are exploitable to construct the system.

From the previous discussion, we know that there are exactly k − 2 dis-
joint monomials of degree greater than or equal to 3 in the expression of
zi = F (Pi(k0, k1, · · · kN−1)). Then, if the attacker is only aware of � < k − 2
zero positions, she won’t be able to determine exploitable clocks, which forces
� ≥ k − 2, i.e. at minimum one zero bit that could be positioned in each of the
high-degree monomials.
First case: if � = k − 2� = k − 2� = k − 2. The first possibility is to choose the number of null
positions equal to the number of high-degree monomials that we want to cancel,
i.e. � = k − 2. In this case, exactly one null bit has to go into each monomial: for
instance, if we are looking at a specific monomial of degree d: x0x1 · · · xd−1, it is
equivalent to choosing which of the variables is null, so there are d possibilities.
From that, we can enumerate the set of valid configurations, which corresponds
to choosing one index in each monomial, so since there are 3 possible choices
for the monomial of degree 3, 4 possibilities for the one of degree 4 and so on
up to the monomial of degree k, there is a total of 3 × 4 × 5 · · · × k = k!/2 valid
configurations. To obtain the probability, this amount has to be compared with
the total number of possibilities for choosing the null positions, which is

(
N
�

)
so

we have:

P�=k−2 =
k!/2(

N
�

) .

General case: if � ≥ k − 2� ≥ k − 2� ≥ k − 2. To increase the probability that a clock is
exploitable, the attacker can guess more null key bit positions and choose
� ≥ k − 2. A first way of computing this probability is:

P� =

∑
i1+i2+···+ik−2≤�

(
3
i1

)(
4
i2

)
· · ·

(
k

ik−2

)(
N−m
�−I

)
(
N
�

)
where m is the number of variables that occur in the monomials of degree greater
than or equal to 3 and I = i1 + i2 + · · · + ik−2.

Proof. Suppose that we are given � null bit positions in K. We are interested
in the probability that a random permutation Pi shuffles the key bits in a way
that the evaluation of F does not contain any monomial of degree greater than
or equal to 3. As previously, we count the number of valid configurations among
the total number of permutations.

The idea is to list all the possible ways of positioning at least one null bit
in each monomial: we set i1 null bits in the monomial of degree 3, i2 null bits
in the monomial of degree 4, and so on up to ik−2 null bits in the monomial of
highest degree (k). If we denote by I = i1+i2+ · · ·+ik−2 the number of null bits
positioned in such a way, we are left with � − I null bits to position in the other
N −m monomials. To obtain the probability, we have to divide this quantity by
the number of ways to position � guesses among N bits. ��

464 S. Duval et al.

Another way of obtaining the probability is to compute the number of con-
figurations that do not cancel the monomials of degree greater than or equal to
3, which is the complementary probability of the one we are looking for. The
advantage is that this complementary can be easily expressed with the inclusion-
exclusion principle. Let us denote AJ the event that our guess doesn’t cancel
the monomials of degrees included in the set J , i.e.

AJ is the event: {∀j ∈ J, Mj �= 0}

where Mj is the unique monomial of degree j in Tk.
P(AJ) is the probability of setting the � bits among the monomials whose

degrees are not in J so is equal to:

P(AJ) =

(N−
∑

j �∈J

j

�

)
(
N
�

)
Then we can express the probability that our guess yields a polynomial of

degree higher than or equal to 3 by:

P(
⋃

d∈{3,··· ,k}
A{d}) =

k−2∑
s=1

(
(−1)s

∑
J⊆{3,··· ,k}

|J|=s

P(AJ)
)

which can be expressed as

P(
⋃

d∈{3,··· ,k}
A{d}) =

k−2∑
s=1

(
(−1)s

∑
J⊆{3,··· ,k}

|J|=s

(N−
∑

j �∈J

j

�

))

(
N
�

)

From which we get the expression of the probability that we are looking for:

P� = P(
⋂

d∈{3,··· ,k}
A{d}) = 1 − P(

⋃
d∈{3,··· ,k}

A{d})

The evaluation of these formulas gives the results reported in Tables 3, 4 and 5
in Appendix, and we will see in the next section that they are good enough to
mount an attack. For instance, if we attack the small version4 of FLIP and do the
minimal number of guesses (i.e. � = 12) we will have a probability of having an
exploitable equation of P�=12 = 2−26.335. For the other version5 and a minimal
number of guesses we have P�=19 = 2−42.382.

4 FLIP (47,40,105).
5 FLIP (87,82,231).

Cryptanalysis of the FLIP Family of Stream Ciphers 465

4 Our Attack

4.1 Description

Setting. Since we consider a known-plaintext scenario, we suppose that we are
given CD keystream bits that we denote by zi, i = 0, · · · , CD − 1. Addition-
ally, the associated permutations Pi are public so we have expressions of the
keystream bits as function of the unknown key bits k0, · · · , kN−1:

zi = F (Pi(k0, k1, · · · , kN−1)) ∀i ≥ 0

Our attack takes advantage of the two vulnerabilities detailed in the previous
section to boil down the key recovery problem to the solving of a linearised
system.

First step: initial guess. The first step consists in making a hypothesis on the
positions of � null key bits, where � ≥ k − 2. Assuming that these bits are null
gives us a simplified expression of zi in only N − � unknowns. Since the key K
is balanced, the probability of our guess being right is6:

Prg =

(N
2
�

)
(
N
�

)
Second step: extraction of low-degree equations. The objective of step 2
is to collect equations of low-degree in the unknown key bits. To do so, we look
at the expressions of the available zi and pick up all the equations for which the
null key bits cancel the monomials of degree greater than or equal to 3. As seen
in previous section, this event is of probability P�.
Third step: solving the system. One of the easiest ways of solving the
quadratic system is to use linearisation techniques, which consist in converting
the system into a linear one by introducing a new variable for each non-linear
monomial that appears. In our specific case, the only non-linear expressions we
have to deal with are the monomials of degree 2. Since F takes as input N vari-
ables but we guessed � of them, we are left with N − � unknown variables, which
in the worst case scenario form

(
N−�
2

)
monomials of degree two. This implies

that once linearised, our converted system will contain

v� = N − � +
(

N − �

2

)

variables.
Assuming that the equations are random, the number of equations that are

necessary to give a unique solution (or show a contradiction) is roughly equal to
the number of unknowns7. This implies that the necessary amount of keystream
6 This probability is slightly smaller than in the case of a random key (2−�), but the

advantage is that as long as we guess � ≤ N
2

we are sure that at least one guess will
be correct while it could fail for a random key that does not have enough null bits.

7 This will be confirmed by our experiments detailed in Sect. 6.

466 S. Duval et al.

bits that the attacker needs is the product of the number of variables and the
inverse of the probability that a zi is exploitable:

CD = v� × 1
P�

The time complexity is determined by the time to solve the system8 multi-
plied by the number of times we have to repeat the guess of � null bit positions
before finding a correct one:

CT = v3
� × 1

Prg

The final memory complexity is dominated by the memory necessary to store
the system, so is roughly equal to:

CM = v2
�

Tables 3, 4 and 5 in Appendix give the possible trade-offs between time and
data complexity for the two versions of FLIP. As we can see, increasing the
number of initial guesses � allows to reduce the amount of data necessary to
conduct the attack at the cost of an increased time complexity.

4.2 Discussion and Possible Improvements

Data Complexity Reduction. The data complexity can be further improved
if, rather than choosing the guesses at random, the attacker chooses them accord-
ing to the observed permutations. With the PRNG seed being public, at any
point in time, she knows all the upcoming permutations so she can deduce a
guess that cancels the triangular part for many of the upcoming permutations.

Possibility of Precomputations. Most of the computational cost of the attack
lies in the linear system solving. Notice that this linear system depends only on
the permutation and the guess, which are all known to the attacker, who can
therefore compute the system inversion for several guesses without any knowl-
edge of the keystream. Once she receives the keystream bits, she plugs them into
her precomputations to obtain the results. The drawback of this technique is its
increase in memory complexity.

Seed Independence. Our attack has the property of being unaffected by a re-
initialisation of the system. What we mean here is that a change of the PRNG
seed in the middle of the attack will not force the attacker to restart her attack:
she can combine the previously obtained equations with the one obtained under
the new seed.

Security. The security level of the FLIP family of stream ciphers is at most
proportional to

√
N bits, where N is the key size.

8 Which is v3
� for a basic Gaussian elimination or v2.8

� with Strassen’s algorithm. We
will use the first one for simplicity.

Cryptanalysis of the FLIP Family of Stream Ciphers 467

Proof. The time complexity of our attack is

CT = v3
� × 1

Prg

As � 	 N , one can say that Prg is roughly equivalent to 2−�. Also, as v� =
N − � +

(
N−�
2

)
, we can give an approximation of CT which is

CT ∼ N6 × 2�

Additionally, the number of guesses we need to perform our attack is the number
of monomials of degree greater than or equal to 3 in Tn3 . Thus n3 = (� + 2)(� +
3)/2, so � ∼ √

n3, from which we get:

log CT ∼ α
√

N ��

Figure 2 represents the evolution of the time complexity of our attack as
function of the key size when we consider instances of FLIP of the form
FLIP (n1, n2, n3) where N = n1 + n2 + n3 = 2n3 (which is consistent with
the parameters proposed in [13]). � is chosen as the minimal number of guesses
needed to perform the attack, i.e. � = k − 2.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 200 300 400 500 600 700 800 900 1000

Lo
g

of
 th

e
T

im
e

C
om

pl
ex

ity

N

Fig. 2. Evolution of the time complexity as function of the key size N .

Attempt to Cancel the Quadratic Part. Our attack consists in guessing
key bits to cancel the triangular part of the filtering function: another possibility
would be to cancel the monomials of degree 2 in order to reduce the resistance
of the scheme against correlation attacks. We considered this option but our
studies showed that the complexity of such an attack would be too high. We
also thought of cancelling both quadratic and triangular parts, thus leaving only
linear relations, but the data complexity of such an attack makes it less practical.

468 S. Duval et al.

5 Description of the Algorithm

The main computation part of our attack is a linear system solving over F2.
If the solving detects a contradiction, we deduce that our guess is wrong and we
start again with another guess. Otherwise, the guess was right and the solving
yields the key. The intuition is that we don’t always need a full-rank system to
detect a contradiction. We can therefore improve the attack by treating every
equation as they come, rather than waiting for a full-rank system.

A pseudocode description of the attack using this improvement is given in
Algorithm 1. In this algorithm, an equation will be represented as a (v� + 1)-bit
word containing 1 where a variable is present in the equation and 0 otherwise.
The least significant bit of this representation contains the value of the keystream
bit of the equation. We also memorise if equation i is present in the system
through the vector Exists. If Exists[i] = 1, then equation i is in the system.

6 Verification of the Attack on a Toy Version

To support our findings, we implemented our attack on a toy version of the
cipher. We reduced the key size to N = 64 bits and adapted accordingly the val-
ues of the parameters to n1 = 14, n2 = 14 and n3 = 36 (the proportions between
the size of the parameters are kept). The filtering function F has algebraic degree
8 and is defined as follows:

F (x0, · · · x63) = f1(x0, · · · x13) + f2(x14, · · · x27) + f3(x28 · · · x63)

where:

f1(x0, · · · , x13) = L14(x0, · · · , x13) = x0 + x1 + · · · + x13

f2(x14, · · · , x27) = Q7(x14, · · · , x27) = x14x15 + x16x17 + · · · + x26x27

f3(x28, · · · , x63) = T8(x28, · · · , x63) = x28 + x29x30 + x31x32x33 + · · · + x56x57 · · · x63

According to our analysis, the parameters of the attacks are the ones
described in Table 6: for instance if we decide to make a hypothesis on � = 8 null
indices, the probability that our guess is correct is

Prg = 2−8.717.

The probability that a permutation is exploitable is equal to:

P� = 2−7.814

and the linearised system depends on v� = 1596 variables. We expect that CD =
218.454 bits are necessary to conduct the analysis and that the attack requires
CT = 240.638 basic operations.

We implemented our own version of this toy instance of FLIP on which we
performed our attack with � = 8 guesses. The statistics we obtain are given in
Table 2.

Cryptanalysis of the FLIP Family of Stream Ciphers 469

Algorithm 1. FLIP Key recovery
Input: Keystream, PRNG seed
Output: Key
1: SYSTEM ← Vector of v� null words
2: Exists ← Vector of v� null bits
3: KeyNotFoundY et ← true
4: while KeyNotFoundY et do
5: G ← NewRandomGuess
6: NoContradiction ← true
7: Neq ← 0
8: while NoContradiction and Neq ≤ v� do
9: E ← NewEquation

10: NewIndex ← −1
11: i ← MSB(E)
12: while i ≤ v� do
13: if Exists[i] then
14: E ← E ⊕ SYSTEM[i]
15: i ← MSB(E)
16: else
17: if NewIndex = −1 then
18: NewIndex ← i
19: end if
20: i ← Index of the next bit with value 1 starting from index i + 1

and going towards the LSB
21: end if
22: end while
23: for j = 1 to NewIndex do
24: if Exists[i] and SYSTEM[i][NewIndex] = 1 then
25: SYSTEM[i] ← SYSTEM[i] ⊕ E
26: end if
27: end for
28: if E = 1 then
29: NoContradiction ← false
30: else
31: if E �= 0 then
32: SYSTEM[NewIndex] ← E
33: Neq ← Neq + 1 {If E = 0, the equation is linearly dependent

from the first ones but brings no contradiction, we then don’t
increment Neq}

34: end if
35: end if
36: end while
37: if NoContradiction then
38: Get xi and xixj and Test if there is a contradiction
39: if There is no contradiction then
40: KeyNotFoundY et ← false
41: Key = (xi)1≤i≤n

42: end if
43: end if
44: end while
45: return Key

470 S. Duval et al.

Table 2. Comparison of the experimental results with theory: attack on the toy version
FLIP (14,14,36) with a hypothesis on � = 8 null bit positions (average on 1000 tests,
launched on an Intel(R) Xeon(R) CPU W3670 at 3.20 GHz (12 MB cache), and with
8 GB of RAM)

Guesses Data generated Ratio exploited Elementary Op Time (sec)

Practice 437.1 218.455 2−7.813 238.588 280.93

Theory P
−1
rg = 420.8 CD = 218.454

P� = 2−7.814 CT = 240.638
∅

Although the equations have a very specific structure, we noticed that they
behave like random equations in the following sense: the first linearly dependent
equation is only found after generating 1590 equations, which fits with the theory
in the case of random equations [10]. However, treating the equations as they
come allows us to discard right away any equation that is linearly dependent
from the others. This way, we can stop collecting equations as soon as we have
as many equations in our system as are variables9.

As we can see in Table 2, experimental results fit pretty well with the theory.

7 Conclusion

In this paper we presented a cryptanalysis of the FLIP family of stream ciphers.
Our attack makes use of the weaknesses of the FLIP structure against guess-and-
determine attacks to reduce the degree of the filtering function, after what an
algebraic attack suffices to recover the key. We obtained theoretical estimations of
the complexity of the attack and an implementation of the attack on a toy version
shows that this complexity holds in practice. This attack can be performed in 254

basic operations (resp. 268), compared to the claimed security of 280 (resp. 2128),
and we discussed trade-offs and improvements that can lower this complexity
even more. We also underlined that a simple increase of the key size is not an
efficient countermeasure as the complexity of the attack doesn’t increase much
with the key size.

Finally, in view of fixing this attack, one should keep in mind the inher-
ent weakness of the filter permutator construction against guess-and-determine
attacks due to its constant register. The biggest issue of the FLIP family of
stream ciphers is that its filtering function increases the fragility against guess-
and-determine attacks. To strengthen the security of the filter permutator, a
possible direction would be to refine its filtering function, for instance by using
more high-degree monomials.

9 The experiments show that we discard about 500 equations before we get 1596
independent equations.

Cryptanalysis of the FLIP Family of Stream Ciphers 471

References

1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015)

2. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: How to compress homomorphic ciphertexts. In: FastSoftware
Encryption FSE 2016 (to appear). http://eprint.iacr.org/2015/113

3. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014)

4. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using NTRU. IACR
Cryptology ePrint Archive 2014, 39 (2014). http://eprint.iacr.org/2014/039

5. Ekdahl, P., Johansson, T.: SNOW - a new stream cipher. In: Proceedings of First
Open NESSIE Workshop, KU-Leuven, pp. 167–168 (2000)

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, pp. 169–178. ACM (2009)

7. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

8. Hawkes, P., Rose, G.G.: Exploiting multiples of the connection polynomial in word-
oriented stream ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol.
1976, pp. 303–316. Springer, Heidelberg (2000)

9. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms. Addison-Wesley, Reading (1969)

10. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1983)

11. Méaux, P.: Symmetric Encryption Scheme adapted to FullyHomomorphic Encryp-
tion Scheme. In: Journées Codage etCryptographie - JC2 2015 -12ème édition des
Journées Codage et Cryptographie du GT C2, 5 au 9octobre 2015, La Londe-les-
Maures, France (2015). http://imath.univ-tln.fr/C2/

12. Méaux, P., Journault, A., Standaert, F., Carlet, C.: Towards stream ciphers
for efficient fhe with low-noise ciphertexts. In: Fischlin, M., Coron, J. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016).
http://eprint.iacr.org/2016/254

13. Méaux, P., Journault, A., Standaert, F.X., Carlet, C.: Towards stream ciphers for
efficient FHE with low-noise ciphertexts. Personal communication, October 2015

http://eprint.iacr.org/2015/113
http://eprint.iacr.org/2014/039
http://imath.univ-tln.fr/C2/
http://eprint.iacr.org/2016/254

472 S. Duval et al.

A Possible Trade-Offs
A.1 FLIP (47,40,105)
See Table 3.

Table 3. Log of the complexities of the attacks as function of the number of initial
guesses (�) for the instantiation FLIP (47,40,105)

� P� v� Prg CD CT CM

12 −26.335 13.992 −12.528 40.326 54.503 27.983

13 −23.049 13.976 −13.627 37.025 55.554 27.951

14 −20.653 13.960 −14.736 34.613 56.615 27.919

15 −18.738 13.943 −15.854 32.682 57.684 27.887

16 −17.141 13.927 −16.982 31.069 58.763 27.854

17 −15.775 13.911 −18.120 29.686 59.852 27.821

18 −14.585 13.894 −19.267 28.480 60.950 27.788

19 −13.536 13.878 −20.425 27.414 62.057 27.755

20 −12.601 13.861 −21.592 26.462 63.175 27.722

21 −11.762 13.844 −22.771 25.606 64.303 27.688

22 −11.004 13.827 −23.960 24.831 65.442 27.654

23 −10.315 13.810 −25.160 24.125 66.591 27.621

24 −9.686 13.793 −26.371 23.479 67.750 27.586

25 −9.110 13.776 −27.593 22.886 68.921 27.552

26 −8.580 13.759 −28.827 22.339 70.103 27.517

27 −8.092 13.741 −30.073 21.833 71.297 27.483

28 −7.640 13.724 −31.331 21.364 72.502 27.448

29 −7.221 13.706 −32.601 20.927 73.720 27.413

30 −6.832 13.689 −33.883 20.520 74.949 27.377

31 −6.469 13.671 −35.179 20.140 76.191 27.342

32 −6.131 13.653 −36.487 19.784 77.446 27.306

33 −5.816 13.635 −37.809 19.450 78.714 27.270

34 −5.520 13.617 −39.145 19.137 79.995 27.233

>34 >80 ...

35 −5.243 13.598 −40.495 18.842 81.290 27.197

Cryptanalysis of the FLIP Family of Stream Ciphers 473

A.2 FLIP (87,82,231)
See Tables 4 and 5.

Table 4. Log of the complexities of the attacks as function of the number of initial
guesses (�) for the instantiation FLIP (87,82,231)

� P� v� Prg CD CT CM

19 −42.382 16.151 −19.647 58.533 68.100 32.302

20 −38.522 16.144 −20.721 54.666 69.151 32.287

21 −35.589 16.136 −21.799 51.725 70.206 32.272

22 −33.169 16.128 −22.881 49.298 71.266 32.257

23 −31.097 16.121 −23.967 47.218 72.329 32.241

24 −29.282 16.113 −25.058 45.395 73.397 32.226

25 −27.667 16.105 −26.153 43.772 74.469 32.211

26 −26.214 16.098 −27.253 42.311 75.546 32.195

27 −24.895 16.090 −28.357 40.985 76.627 32.180

28 −23.691 16.082 −29.465 39.773 77.712 32.164

29 −22.584 16.074 −30.578 38.658 78.802 32.149

30 −21.562 16.067 −31.696 37.629 79.896 32.133

31 −20.615 16.059 −32.818 36.674 80.994 32.118

32 −19.734 16.051 −33.944 35.785 82.097 32.102

33 −18.912 16.043 −35.075 34.955 83.205 32.086

34 −18.142 16.035 −36.211 34.178 84.317 32.071

35 −17.421 16.027 −37.352 33.448 85.434 32.055

36 −16.743 16.020 −38.497 32.762 86.556 32.039

37 −16.104 16.012 −39.648 32.116 87.683 32.023

38 −15.502 16.004 −40.803 31.505 88.814 32.007

39 −14.932 15.996 −41.963 30.928 89.950 31.991

40 −14.393 15.988 −43.128 30.381 91.091 31.975

41 −13.883 15.980 −44.298 29.862 92.237 31.959

42 −13.398 15.972 −45.473 29.370 93.388 31.943

43 −12.937 15.964 −46.653 28.901 94.543 31.927

44 −12.499 15.956 −47.838 28.455 95.704 31.911

45 −12.082 15.947 −49.028 28.029 96.870 31.895

46 −11.684 15.939 −50.224 27.624 98.042 31.879

47 −11.305 15.931 −51.425 27.236 99.218 31.862

48 −10.942 15.923 −52.631 26.865 100.400 31.846

49 −10.596 15.915 −53.842 26.511 101.586 31.830

474 S. Duval et al.

Table 5. Log of the complexities of the attacks as function of the number of initial
guesses (�) for the instantiation FLIP (87,82,231)

� P� v� Prg CD CT CM

50 −10.265 15.907 −55.059 26.171 102.779 31.813

51 −9.948 15.898 −56.282 25.846 103.976 31.797

52 −9.644 15.890 −57.509 25.534 105.180 31.780

53 −9.353 15.882 −58.743 25.235 106.388 31.763

54 −9.074 15.873 −59.982 24.947 107.602 31.747

55 −8.806 15.865 −61.227 24.671 108.822 31.730

56 −8.548 15.857 −62.477 24.405 110.048 31.713

57 −8.301 15.848 −63.734 24.149 111.279 31.697

58 −8.063 15.840 −64.996 23.903 112.516 31.680

59 −7.835 15.831 −66.264 23.666 113.758 31.663

60 −7.614 15.823 −67.538 23.437 115.007 31.646

61 −7.402 15.815 −68.818 23.217 116.262 31.629

62 −7.198 15.806 −70.104 23.004 117.522 31.612

63 −7.001 15.797 −71.397 22.799 118.789 31.595

64 −6.812 15.789 −72.695 22.601 120.062 31.578

65 −6.629 15.780 −74.000 22.409 121.341 31.561

66 −6.452 15.772 −75.311 22.224 122.627 31.543

67 −6.281 15.763 −76.629 22.044 123.918 31.526

68 −6.116 15.754 −77.953 21.871 125.216 31.509

69 −5.957 15.746 −79.284 21.703 126.521 31.491

70 −5.803 15.737 −80.621 21.540 127.832 31.474

>70 >128 ...

71 −5.655 15.728 −81.965 21.383 129.150 31.457

Cryptanalysis of the FLIP Family of Stream Ciphers 475

B Complexities of the Attack on the Toy Version of FLIP
See Table 6.

Table 6. Log of the complexities of the attacks as function of the number of initial
guesses (�) for the toy version FLIP (14,14,36)

� P� v� Prg CD CT CM

6 −11.861 10.741 −6.370 22.601 38.592 21.481

7 −9.436 10.691 −7.528 20.126 39.601 21.382

8 −7.814 10.640 −8.717 18.454 40.638 21.280

9 −6.602 10.589 −9.939 17.191 41.706 21.177

10 −5.649 10.536 −11.197 16.185 42.806 21.072

11 −4.876 10.483 −12.493 15.359 43.941 20.966

12 −4.235 10.428 −13.828 14.663 45.113 20.857

13 −3.696 10.373 −15.207 14.069 46.325 20.746

14 −3.237 10.316 −16.631 13.553 47.580 20.633

15 −2.843 10.259 −18.105 13.102 48.881 20.517

16 −2.503 10.200 −19.632 12.703 50.231 20.399

17 −2.208 10.140 −21.217 12.347 51.636 20.279

18 −1.950 10.078 −22.865 12.028 53.100 20.156

19 −1.723 10.015 −24.581 11.739 54.628 20.031

20 −1.524 9.951 −26.373 11.476 56.227 19.903

21 −1.349 9.886 −28.247 11.235 57.904 19.771

22 −1.194 9.819 −30.214 11.013 59.670 19.637

23 −1.057 9.750 −32.284 10.807 61.534 19.500

24 −0.935 9.679 −34.472 10.615 63.510 19.359

>24 >64 ...

25 −0.827 9.607 −36.794 10.435 65.616 19.215

Crypto 2016 Award Papers

The Magic of ELFs

Mark Zhandry1,2(B)

1 MIT, Cambridge, USA
2 Princeton University, Princeton, USA

mzhandry@princeton.edu

Abstract. We introduce the notion of an Extremely Lossy Function
(ELF). An ELF is a family of functions with an image size that is tunable
anywhere from injective to having a polynomial-sized image. Moreover,
for any efficient adversary, for a sufficiently large polynomial r (neces-
sarily chosen to be larger than the running time of the adversary), the
adversary cannot distinguish the injective case from the case of image
size r.

We develop a handful of techniques for using ELFs, and show that
such extreme lossiness is useful for instantiating random oracles in sev-
eral settings. In particular, we show how to use ELFs to build secure
point function obfuscation with auxiliary input, as well as polynomially-
many hardcore bits for any one-way function. Such applications were
previously known from strong knowledge assumptions — for example
polynomially-many hardcore bits were only know from differing inputs
obfuscation, a notion whose plausibility has been seriously challenged.
We also use ELFs to build a simple hash function with output intractabil-
ity, a new notion we define that may be useful for generating common
reference strings.

Next, we give a construction of ELFs relying on the exponential
hardness of the decisional Diffie-Hellman problem, which is plausible in
pairing-based groups. Combining with the applications above, our work
gives several practical constructions relying on qualitatively different —
and arguably better — assumptions than prior works.

1 Introduction

Hash functions are a ubiquitous tool in cryptography: they are used for pass-
word verification, proofs of work, and are central to a variety of cryptographic
algorithms including efficient digital signatures and encryption schemes.

Unfortunately, formal justifications of many of the uses of hash functions have
been elusive. The trouble stems from the difficulty of even defining what security
properties a hash function should satisfy. On one extreme, a hash function can
be assumed to have standard security properties such as one-wayness or collision
resistance, which are useless for most of the applications above. On the other

M. Zhandry—This work was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under contract number
W911NF-15-C-0226.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 479–508, 2016.
DOI: 10.1007/978-3-662-53018-4 18

480 M. Zhandry

extreme, a hash function can be modeled as a truly random function, where it
is assumed that an adversary only has black-box access. In the so-called random
oracle model (ROM) [5], all of the above applications are secure. However, ran-
dom oracles clearly do not exist and moreover provably cannot be replaced by
any concrete hash function [16]. In this light, it is natural to ask:

What are useful properties of random oracles that can be realized by real-
world hash functions.

Some attempts have been made to answer this question; however, many such
attempts have serious limitations. For example Canetti et al. [16] propose the
notion of correlation intractability as a specific feature of random oracles that
could potentially have a standard model instantiation. However, they show that
for some parameter settings such standard model hash functions cannot exist.
The only known positive example [15] relies on extremely strong cryptographic
assumptions such as general-purpose program obfuscation. For another example,
Bellare et al. [4] define a security property for hash functions called Universal
Computational Extractors (UCE), and show that hash functions with UCE secu-
rity suffice for several uses of the random oracle model. While UCE’s present an
important step toward understanding which hash function properties might be
achievable and which are not, UCE’s have several limitations. For example, the
formal definition of a UCE is somewhat complicated to even define. Moreover,
UCE is not a single property, but a family or “framework” of assumptions. The
most general form of UCE is trivially unattainable, and some of the natural
restricted classes of UCE have been challenged [7,13]. Therefore, it is unclear
which versions of UCE should be trusted and which untrusted.

Similar weaknesses have been shown for other strong assumptions that can
be cast as families of assumptions or as knowledge/extracting assumptions, such
as extractable one-way functions (eOWFs) [8] and differing inputs obfuscation
(diO) [2,12,21]. These weakness are part of a general pattern for strong assump-
tions such as UCE, eOWFs, and diO that are not specified by a cryptographic
game. In particular, these assumptions do not meet standard notions of falsifia-
bility ([22,28]), and are not complexity assumptions in the sense of Goldwasser
and Kalai [24]. We stress that such knowledge/extracting/framework assump-
tions are desirable as security properties. However, in order to trust that the
property actually holds, it should be derived from a “nice” and trusted assump-
tion. Therefore, an important question in this space is the following:

Are there primitives with “nice” (e.g. simple, well-established, game-based,
falsifiable, complexity assumption, etc.) security properties that can be used
to build hash functions suitable for instantiating random oracles for many
protocols.

1.1 Our Work

Our Random Oracle Targets. We aim to base several applications of random
oracles on concrete, “nice” assumptions with relatively simple instantiations.

The Magic of ELFs 481

– Boosting selective to adaptive security. A trivial application of random
oracles is to boost selective to adaptive security in the case of signatures and
identity-based encryption. This is done by first hashing the message/identity
with the random oracle before signing/generating secret keys. There has been
no standard-model security notion for hash functions that allows for this con-
version to be secure, though in the case of signatures, chameleon hash func-
tions [27] achieve this conversion with a small tweak.

– Password hashing. Another common use of hash functions is to securely
store a password in “encrypted” form, allowing for the password to be ver-
ified, but hiding the actual password in case the password database is com-
promised. This use case is a special instance of point obfuscation (PO). In
the case that there may be side information about the password, we have
the notion of auxiliary input point obfuscation (AIPO). The only prior con-
structions of AIPO [9,14] rely on very strong knowledge assumptions. The
first is Canetti’s [14] strong knowledge variant of the decisional Diffie Hell-
man (DDH) assumption, whose plausibility has been called into question by
a recent work showing it is incompatible with the existence of certain strong
forms of obfuscation [7]. The second is a strong knowledge assumption about
one-way permutations due to Bitansky and Paneth [9], which is a strengthen-
ing of Wee’s strong one-way permutation assumption [37]. To the best of our
knowledge, the only currently known ways to instantiate the [9] assumption is
to make the tautological assumption that a particular one-way permutation is
secure. For reasons mentioned above, such tautological knowledge assumptions
are generally considered undesirable in cryptography.

– Generating system parameters. A natural use case of hash functions is
for generating common random strings (crs) in a trusted manner. More specif-
ically, suppose a (potentially untrusted) authority is generating a crs for some
protocol. Unfortunately, such a crs may admit a “trapdoor” that allows for
breaking whatever protocol is using it (Dual EC DRBG is a prominent exam-
ple of this). In order to ensure to untrusting parties that no trapdoor is known,
the authority will generate the crs as an output of the hash function on some
input. The authority may have some flexibility in choosing the input; we wish
to guarantee that it cannot find an input such that it also knows a trapdoor
for the corresponding output. In the random oracle model, this methodology
is sound: the authority cannot choose an input so that it knows the trap-
door for the output. However, standard notions of security for hash functions
give no guarantees for this setting. We propose (Sect. 5) the notion of output
intractability as a standard-model security notion that captures this use case.
Output intractability is related to, but incomparable with, the notion of corre-
lation intractability mentioned above. As an assumption, our notion of output
intractability takes the form of a knowledge assumption on hash functions; no
construction based on “nice” assumptions is currently known.

– Hardcore bits for any one-way function. A random oracle serves as a
good way to extract many hardcore bits for any one-way function. This fact
gives rise to a simple public-key encryption scheme from trapdoor permu-
tations. While it is known how to extract many hardcore bits for specific

482 M. Zhandry

functions [1,29,34], extracting many bits for general one-way functions may
be useful in settings where we cannot freely choose the function, such as if the
function is required to be a trapdoor permutation. Unfortunately, for general
one-way functions, the only known way to extract more than a logarithmic
number of hardcore bits is to use very strong (and questionable [21]) knowl-
edge assumptions: differing inputs obfuscation [6] (plus one-way functions)
or extractable witness PRFs [39]. In the case of injective one-way functions,
Bellare et al. [6] show that the weaker assumption of indistiguishability obfus-
cation (iO) (plus one-way functions) suffices. While weaker than diO, iO is
still one of the strongest assumptions made in cryptography. Either way, the
forms of obfuscation required are also completely impractical [3]. Another lim-
itation of prior constructions is that randomness used to sample the hardcore
function needs to be kept secret.

– Instantiating Full Domain Hash (FDH) signatures. Finally, we consider
using random oracles to instantiate the Full Domain Hash (FDH) protocol
transforming trapdoor permutations into signatures. Hohenberger et al. [26]
show that (indistinguishability) obfuscating a (puncturable) pseudorandom
function composed with the permutation is sufficient for FDH signatures. How-
ever, their proof has two important limitations. First, the resulting signature
scheme is only selectively secure. Second, the instantiation depends on the
particular trapdoor permutation used, as well as the public key of the signer.
Thus, each signer needs a separate hash function, which needs to be appended
to the signer’s public keys. To use their protocol, everyone will therefore need
to publish new keys, even if they already have published keys for the trapdoor
permutation.

Our approach. We take a novel approach to addressing the questions above.
We isolate a (generally ignored) property of random oracles, namely that ran-
dom oracles are indistinguishable from functions that are extremely lossy. More
precisely, the following is possible in the random oracle model. Given any poly-
nomial time oracle adversary A and an inverse polynomial δ, we can choose the
oracle such that (1) the image size of the oracle is a polynomial r (even for
domain/range sizes where a truly random oracle will have exponential image
size w.h.p.), and (2) A cannot tell the difference between such a lossy oracle
and a truly random oracle, except with advantage smaller than δ. Note that the
tuning of the image size must be done with knowledge of the adversary’s running
time — an adversary running in time O(

√
r) can with high probability find a

collision, thereby distinguishing the lossy function from a truly random oracle.
However, by setting

√
r to be much larger than the adversary’s running time,

the probability of finding a collision diminishes. We stress that any protocol
would still use a truly random oracle and hence not depend on the adversary;
the image size tuning would only appear in the security proof. Our observation
of this property is inspired by prior works of Boneh and Zhandry [11,38], who
use it for the entirely different goal of giving security proofs in the so-called
quantum random oracle model (random oracle instantiation was not a goal nor
accomplishment of these prior works).

The Magic of ELFs 483

We next propose the notion of an Extremely Lossy Function (ELF) as a
standard-model primitive that captures this tunable image size property. The
definition is related to the notion of a lossy trapdoor function due to Peikert
and Waters [30], with two important differences: we do not need any trapdoor,
giving hope that ELFs could be constructed from symmetric primitives. On the
other hand, we need the functions to be much, much more lossy, as standard
lossy functions still have exponential image size.

On the surface, extreme lossiness without a trapdoor does not appear incred-
ibly useful, since many interesting applications of standard lossy functions (e.g.
CCA-secure public key encryption) require a trapdoor. Perhaps surprisingly, we
show that this extremely lossy property, in conjunction with other tools — usu-
ally pairwise independence — can in fact quite powerful, and we use this power
to give new solutions to each of the tasks above. Our results are as follows:

– (Section 3) We give a practical construction of ELFs assuming the exponential
hardness of the decisional Diffie-Hellman (DDH) problem: roughly, that the
best attack on DDH for groups of order p takes time O(pc) for some constant c.
More generally, our construction can be based on the exponential hardness of
the k-Lin problem. Our construction is based on the lossy trapdoor functions
due to Peikert and Waters [30] and Freeman et al. [20], though we do not need
the trapdoor from those works. Our construction starts from a trapdoor-less
version of the DDH-based construction of [20], and iterates it many times at
different security levels, together with pairwise independent hashing to keep
the output length from growing too large. Having many different security lev-
els allows us to do the following: when switching the function to be lossy, we
can do so at a security level that is just high enough to prevent the particular
adversary from detecting the switch. Using the exponential DDH assump-
tion, we show that the security level can be set low enough so that (1) the
adversary cannot detect the switch, and (2) so that the resulting function has
polynomial image size. We note that a couple prior works [10,18] have used
a similar technique of combining several “bounded adversary” instances at
multiple security levels, and invoking the security of the instance with “just
high enough” security. The main difference is that in prior works, “bounded
adversary” refers to bounded queries, and the security parameter itself is kept
constant across instances; in our work, “bounded adversary” refers to bound-
ing the running time of the adversary, and the security parameter is what is
varied across instances.

Our iteration at multiple security levels is somewhat generic and would
potentially apply to other constructions of lossy functions, such as those based
on LWE. However, LWE-based constructions of lossy functions are not quite
lossy enough for our needs since even “exponentially secure” LWE can be
solved in time sub-exponential in the length of the secret.

The exponential hardness of DDH is plausible on elliptic curve groups —
despite over a decade of wide-spread use and cryptanalysis attempts, there are
virtually no non-trivial attacks on most elliptic curve groups and the current
best attacks on DDH take time Ω(p1/2). In fact, the parameter settings for

484 M. Zhandry

most real-world uses of the Diffie-Hellman problem are set assuming the Diffie-
Hellman problem takes exponential time to solve. If our assumption turns out
to be false, it would have significant ramifications as it would suggest that
parameters for many cryptosystems in practice are set too aggressively. It
would therefore be quite surprising if DDH turned out to not be exponen-
tially hard on elliptic curves. While not a true falsifiable assumption in the
sense of Naor [28] or Gentry and Wichs [22] due to the adversary being allowed
to run in exponential time, the exponential DDH assumption is falsifiable in
spirit and naturally fits within the complexity assumption framework of Gold-
wasser and Kalai [24].

While our ELFs are built from public key tools, we believe such tools are
unnecessary and we leave as an interesting open question the problem of con-
structing ELFs from symmetric or generic tools.

We observe that our construction achieves a public coin notion, which is
useful for obtaining public coin hash functions in applications1.

– We give several different hash function instantiations based on ELFs ranging
in complexity and the additional tools used. In doing so, we give new solutions
to each of the problems above. Each construction uses the ELFs in different
ways, and we develop new techniques for the analysis of these constructions.
Thus we give an initial set of tools for using ELFs that we hope to be useful
outside the immediate scope of this work.

• The simplest instantiation is just to use an ELF itself as a hash function.
Such a function can be used to generically boost selective security to adap-
tive security in signatures and identity-based encryption by first hashing
the message/user identity (more details below).

• (Section 4) The next simplest instantiation is to pre-compose the ELF with
a pairwise independent hash function. This function gives rise to a simple
(public coin) point function obfuscation (PO). Proving this uses a slight
generalization of the “crooked leftover hash lemma” [17].

• (Section 5) A slightly more complicated instantiation is given by post-
composing and ELF with a k-wise independent function. We show that
this construction satisfies our notion of output intractability. It is moreover
public coin. This construction and analysis can be seen as a generalization
of the result of [30] that post-composing a standard lossy function with
a pairwise independent hash function gives a collision resistant function,
though the details of the analysis are very different.

• (Section 6) We then give an even more complicated construction, though
still using ELF’s as the only underlying source of cryptographic hardness.
The construction roughly follows a common paradigm used in leakage
resilience [19]: apply a computational step (in our case, involving ELFs),
compress with pairwise independence, and repeat. We note however that
the details of the construction and analysis are new to this work.

1 The construction of [20] can also be made public coin by tweaking the generation
procedure. However, this necessarily loses the trapdoor, as having a trapdoor and
being public coin are incompatible. To the best of our knowledge, however, we are
the first to observe this public coin feature.

The Magic of ELFs 485

We demonstrate that our construction is a pseudorandom generator
attaining a very strong notion of leakage resilience for the seed. This
property strengthens the one-way notion of Bitansky and Paneth [9]. Our
construction therefore shows how to instantiate the knowledge properties
conjectured in their work using a more traditional-style assumption.

An immediate consequences of our generator requirement is a (public
coin) point function obfuscation that is secure even in the presence of aux-
iliary information (AIPO), which was previously known from either per-
mutations satisfying [9]’s one-wayness requirement (our function is not a
permutation), or from Canetti’s strong knowledge variant of DDH [9,14]2.
Our AIPO construction is qualitatively very different from these existing
constructions, and when plugging in our ELF construction, again relies on
just exponential DDH.

Our generator also immediately gives a family of (public coin) hardcore
functions of arbitrary stretch for any one-way function. Unlike the pre-
vious obfuscation-based solutions, our is practical, and public coin, and
ultimately based on a well-studied game-based assumption.
Our analysis also demonstrates that our ELF-based function can be used
in a standard random oracle public key encryption protocol [5].

• In the full version [40], we give an instantiation useful for Full Domain
Hash (FDH) signatures which involves obfuscating the composition of an
ELF and a (puncturable) pseudorandom function using an indistinguisha-
bility obfuscator. Since we use obfuscation as in Hohenberger et al. [26]
scheme, this construction is still completely impractical and therefore cur-
rently only of theoretical interest. We show that our construction can
be used in the FDH protocol, solving some of the limitations in [26]. In
particular, by composing with an ELF, we immediately get adaptive secu-
rity as observed above. Our construction is moreover independent of the
permutation (except for the size of the circuit computing it), and is also
independent of the signer’s public key. Thus, our instantiation is universal
and one instantiation can be used by any signer, even using existing keys.
Similar to [26], this construction is still required to be secret coin, even if
the underlying ELF is public coin.

Warm up: generically boosting selective to adaptive security. To give a sense for
our techniques, we show how ELFs can be used to generically boost selective to
adaptive security in signatures and identity-based encryption. We demonstrate
the case for signatures; the case for identity based encryption is almost identical.

Recall that in selective security for signatures, the adversary commits to a
message m∗ at the beginning of the experiment before seeing the public key.
Then the adversary makes a polynomial q adaptive signing queries on messages
m1, . . . ,mq �= m∗, receiving signatures σ1, . . . , σq. Then, the adversary produces

2 One drawback — which is shared with some of the prior constructions — is that we
achieve a relaxed notion of correctness where for some sparse “bad” choices of the
obfuscation randomness, the outputted program may compute the wrong function.

486 M. Zhandry

a forged signature σ∗ on m∗, and security states that σ∗ is with overwhelming
probability invalid for any efficient adversary. Adaptive security, in contrast,
allows the adversary to choose m∗ potentially after the q adaptive queries.

We now convert selective to adaptive security using ELFs: first hash the
message using the ELF, and then sign. Adaptive security is proved through a
sequence of hybrids. The first is the standard adaptive security game above.
Toward contradiction, suppose that the adversary runs in polynomial time t and
succeeds in forging a signature on m∗ with non-negligible probability ε. Let δ be
an inverse polynomial that lower bounds ε infinitely often. In the second hybrid,
the ELF is selected to have polynomial image size r, where r ≥ 2q is chosen, say,
so that no t-time adversary can distinguish between this ELF and an injective
ELF, except with probability at most δ/2. Thus, in this hybrid, the adversary
still successfully forges with probability ε − δ/2. This is lower bounded by δ/2
infinitely often, and is therefore non-negligible.

In the next hybrid, at the beginning of the experiment, one of the r image
points of the ELF, y∗, is chosen at random3. Then we abort the experiment if
the adversary’s chosen m∗ does not hash to y∗; with probability 1/r, we do not
abort4. This abort condition is independent of the adversary’s view, meaning
that we do not abort, and the adversary successfully forges, with probability at
least (ε−δ/2)/r, which again is non-negligible. Notice now that y∗ can be chosen
at the beginning of the experiment. This is sufficient for obtaining an adversary
for the selective security of the original signature scheme.

1.2 Complexity Absorption

It may be more reasonable to assume the (sub-)exponential hardness of an exist-
ing well-studied problem than to assume such hardness for new and untested
problems. Moreover, there might be implementation issues (such as having to
re-publish longer keys, see the full version [40] for a setting where this could hap-
pen) that make the sub-exponential hardness of certain primitives undesirable.

The application of ELFs to signatures and identity-based encryption above
can be seen as an instance of a more general task of complexity absorption,
where an extra complexity-absorbing primitive (in our case, and ELF) is intro-
duced into the protocol. The original building blocks of the protocol (the under-
lying signature/identity-based encryption in this case) can be reduced from
(sub)exponential security to polynomial security. Meanwhile, the complexity-
absorbing primitive may still require exponential hardness as in our case, but
hopefully such hardness is a reasonable assumption. Our hardcore function with
arbitrary span can also be seen in this light: it is straightforward to extend
Goldreich-Levin [23] to a hardcore function of polynomial span for exponentially-
secure one-way functions. By introducing an ELF into the hardcore function,

3 The ability to sample a random image point does not follow immediately from our
basic ELF definition, though this can be done in our construction.

4 We also need to abort if any of the mi do hash to yi. It is straightforward to show
that we still do not abort with probability at least 1

2r
.

The Magic of ELFs 487

the ELF can absorb the complexity required of the one-way function, yielding a
hardcore function for any one-way function, even one-way functions that are only
polynomially secure. Similarly, our random oracle instantiation for Full Domain
Hash can also be seen as an instance of complexity absorption.

Thus, our work can be seen as providing an initial set of tools and tech-
niques for the task of complexity absorption that may be useful in other settings
where some form of sub-exponential hardness is difficult or impossible to avoid.
For example, Rao [32] argues that any proof of adaptive security for multiparty
non-interactive key exchange (NIKE) will likely incur an exponential loss. As all
current multiparty NIKE protocols are built from multilinear maps or obfusca-
tion, which in turn rely on new, untested (and in many cases broken) hardness
assumptions, assuming the sub-exponential security of the underlying primitives
to attain adaptive security is undesirable. Hofheinz et al. [25] give a construction
in the random oracle model that only has a polynomial loss; our work gives hope
that a standard model construction based on ELFs may be possible where the
ELF is the only primitive that needs stronger than polynomial hardness.

1.3 Non-black Box Simulation

Our proofs require knowledge of the adversary’s running time (and success prob-
ability). Thus, they do not make black box use of the adversary. Yet, this is the
only non-black box part of our proofs — the reduction does not need to know the
description or internal workings of the adversary. This is similar to Goldreich-
Levin [23], where only the adversary’s success probability is needed. Thus our
reductions are nearly black box, while potentially giving means to circumvent
black-box impossibilities. For example, proving the security of AIPO is known
to require non-black box access to the adversary [9,37], and yet our reduction
proves the security of AIPO knowing only the adversary’s running time and
success probability. We leave it as an interesting open question to see if your
techniques can be used to similarly circumvent other black box impossibilities.

1.4 On the Minimal Assumptions Needed to Build ELFs

We show how to construct extremely lossy functions from a specific assumption
on elliptic curve groups. One could also hope for generic constructions of ELFs
based on existing well-studied primitives. Unfortunately, this appears to be a
difficult task, and there are several barriers to constructing ELFs. For example,
lossy functions (even standard ones) readily imply collision resistance [30], which
cannot be built from one-way functions in a black-box fashion [35]. Rosen and
Segev [33] show a similar separation from functions that are secure under corre-
lated products. Pietrzak et al. [31] show that efficiently amplifying lossiness in a
black box way is impossible — this suggests that building ELFs from standard
lossy functions will be difficult, if not impossible.

Perhaps an even stronger barrier to realizing ELFs from standard assump-
tions is the following. Our assumption, unfortunately, is about exponential -time

488 M. Zhandry

adversaries, as opposed to typical assumptions about polynomial-time adver-
saries. One could hope for basing ELFs on standard polynomial assumptions,
such as polynomial DDH. However, this would require major breakthroughs in
complexity theory. Indeed, lossy and injective modes of an ELF can be distin-
guished very efficiently using a super-logarithmic amount of non-determinism as
follows. Let D = [2ω(log m)] where m is the number of input bits to the ELF. In
the injective mode, there will be no collisions when the domain is restricted to
D. However, in the lossy mode for any polynomial image size r = r(m), there is
guaranteed to be a collision in D. Points in D can be specified by ω(log m) bits.
Therefore, we can distinguish the two modes by non-deterministically guessing
two inputs in D (using ω(log m) bits of non-determinism) and checking that they
form a collision. Therefore, if NP restricted to some super-logarithmic amount
of non-determinism was solvable in polynomial time, then this algorithm could
be made efficient while removing all non-determinism. Such an algorithm would
violate ELF security.

Theorem 1. If ELFs exist, then for any super-logarithmic function t, NP with
t bits of non-determinism is not solvable in polynomial time.

Therefore, it seems implausible to base ELFs on any polynomially-secure
primitive, since it is consistent with our current knowledge that NP with, say,
log2 bits of non-determinism is solvable in polynomial time, but polynomially-
secure cryptographic primitives exist. This may seem to suggest that ELFs are
too strong of a starting point for our applications; to the contrary, we argue that
for most of our applications — point functions5 (Sect. 4), output intractability
(Sect. 5), and polynomially-many hardcore bits for any one-way function (Sect. 6)
— similar barriers are inherent to the applications. Therefore, this limitation of
ELFs is shared with any primitive strong enough to realize the applications.

Therefore, instead of starting from standard polynomially-secure primitives,
we may hope to build ELFs generically from, say, an exponentially secure primi-
tive which has a similar limitation. Can we build ELFs from exponentially secure
(injective) one-way functions? Exponentially-secure collision resistant hash func-
tions? To what extent do the black-box barriers above extend into the regime of
exponential hardness? We leave these as interesting open questions.

2 Preliminaries

Given a distribution D over a set X , define the support of D, Supp(D), to be
the set of points in X that occur with non-zero probability. For any x ∈ X , let
Pr[D = x] be the probability that D selects x. For any set X , define UX to be the
uniform distribution on X . Define the collision probability of D to be CP (D) =
Pr[x1 = x2 : x1, x2 ← D] =

∑
x∈X Pr[D = x]2. Given two distributions

D1,D2, define the statistical distance between D1 and D2 to be Δ(D1,D2) =
1
2

∑
x∈X

∣∣ Pr[D1 = x] − Pr[D2 = x]
∣∣. Suppose Supp(D1) ⊆ Supp(D2). Define the

5 The case of point functions is more or less equivalent to a similar result of Wee [37].

The Magic of ELFs 489

Rényi Divergence between D1 and D2 to be RD(D1,D2) =
∑

x∈sup(D1)
Pr[D1=x]2

Pr[D2=x]
6. The Rényi divergence is related to the statistical distance via the following
lemma:

Lemma 1. For any distributions D1,D2 over a set Z such that Supp(D1) ⊆
Supp(D2), Δ(D1,D2) ≤ 1

2

√
RD(D1,D2) − 1.

Consider a distribution H over the set of functions h : X → Y. We say that
H is pairwise independent if, for any x1 �= x2 ∈ X , the random variables H(x1)
and H(x2) are independent and identically distributed, though not necessarily
uniform. Similarly define k-wise independence. We say that H has output distri-
bution D if for all x, the random variable H(x) is identical to D. Finally, we say
that H is uniform if it has output distribution UY

7. We will sometimes abuse
notation and say that a function h is a pairwise independent function (resp.
uniform) if h is drawn from a pairwise independent (resp. uniform) distribution
of functions.

We will say that a (potentially probabilistic) algorithm A outputting a bit
b distinguishes two distributions D0,D1 with advantage ε if Pr[A(Db) : b ←
{0, 1}] ∈

[
1
2 − ε, 1

2 + ε
]
. This is equivalent to the random variables A(D0) and

A(D1) have 2ε statistical distance.
Unless otherwise stated, all cryptographic protocols will implicitly take a

security parameter λ as input. Moreover, any sets (such as message spaces,
ciphertext spaces, etc.) will be implicitly indexed by λ, unless otherwise stated.
In this context, when we say that an adversary is efficient, we mean its running
time is polynomial in λ. A non-negative function ε = ε(n) is negligible if, for
any polynomial p = p(λ), ε < 1/p for all sufficiently large λ. When discussing
cryptographic protocols, we say that a probability of an event or advantage of an
adversary is negligible if it is negligible in λ. Two distributions D0,D1 (implicitly
parameterized by λ) are computationally indistinguishable if any efficient algo-
rithm has only negligible distinguishing advantage, and are statistically indistin-
guishable if the distributions have negligible statistical distance. In the statistical
setting, we also sometimes say that D0,D1 are statistically close.

The Crooked Leftover Hash Lemma. Here we state a slight generalization of the
“crooked Leftover Hash Lemma” of Dodis and Smith [17]; the proof is in the full
version [40] and follows [17].

Lemma 2. Let H be a distribution on functions h : X → Y that is pairwise
independent with output distribution E, for some distribution E that is possibly
non-uniform. Let D be an arbitrary distribution over X . Then we have that

Δ
(
(H,H(D)) , (H, E)

)
≤ 1

2

√
CP (D)

(
|Supp(E)| − 1

)
.

6 Often, the Rényi Divergence is defined to be proportional to the logarithm of this
quantity. The definition here will be more convenient for our purposes.

7 Note that the typical use of pairwise independence is equivalent to our notion of
pairwise independence plus uniformity. For our purposes, it will be convenient to
separate out the two properties.

490 M. Zhandry

3 Extremely Lossy Functions

Here, we define our notion of extremely lossy functions, or ELFs. A standard
lossy function [30] is intuitively a function family with two modes: an injective
mode where the function is injective, and a lossy mode where the image size of
the function is much smaller than the domain. The standard security requirement
is that no polynomial-time adversary can distinguish the two modes8.

An ELF is a lossy function with a much stronger security requirement. In
the lossy mode, the image size can be taken to be a polynomial r. Clearly,
such a lossy mode can be distinguished from injective by an adversary running
in time O(

√
r) that simply evaluates the function on

√
r inputs, looking for

a collision. Therefore, we cannot have security against arbitrary polynomial-
time attackers. Instead, we require security against rc-time attackers, for some
c ≤ 1/2. Moreover, we require that r is actually tunable, and can be chosen
based on the adversary in question. This means that for any polynomial time
attacker, we can set the lossy function to have domain r for some polynomial r,
and the lossy function will be indistinguishable from injective to that particular
attacker (note that the honest protocol will always use the injective mode, and
therefore will not depend on the adversary in any way).

Definition 1. An extremely lossy function (ELF) consists of an algorithm
ELF.Gen, which takes as input integers M and r ∈ [M]. There is no security
parameter here; instead, log M acts as the security parameter. ELF.Gen outputs
the description of a function f : [M] → [N] such that:

– f is computable in time polynomial in the bit-length of its input, namely log M .
The running time is independent of r.

– If r = M , then f is injective with overwhelming probability (in log M).
– For all r ∈ [M], |f([M])| ≤ r with overwhelming probability. That is, the

function f has image size at most r.
– For any polynomial p and inverse polynomial function δ (in log M), there

is a polynomial q such that: for any adversary A running in time at most
p, and any r ∈ [q(log M),M], we have that A distinguishes ELF.Gen(M,M)
from ELF.Gen(M, r) with advantage less than δ. Intuitively, no polynomial-time
adversary A can distinguish an injective from polynomial image size (where
the polynomial size depends on the adversary’s running time.).

For some applications, we will need an additional requirement for ELFs:

Definition 2. An ELF has an efficiently enumerable image space if there is a
(potentially randomized) procedure running in time polynomial in r and log M
that, given f ← ELF.Gen(M, r) and r, outputs a polynomial-sized set S of points
in [N] such that, with overwhelming probability over the choice of f and the
randomness of the procedure, f([M]) ⊆ S.

8 [30] additionally require that, in the injective mode, there is a trapdoor that allows
inverting the function. We will not need any such trapdoor.

The Magic of ELFs 491

Definition 3. An ELF has a efficiently sampleable image space if there is
a polynomial s and a randomized polynomial time procedure (where “polyno-
mial” means polynomial in r and log M) such that the following holds. Given
f ← ELF.Gen(M, r) and r, the procedure outputs a point y ∈ [N] such that with
overwhelming probability over the choice of f , the point y has a distribution that
places weight at least 1/s on each image point in f([M]).

Lemma 3. An ELF is efficiently sampleable iff it is efficiently enumerable.

Proof. In one direction, we just sample a random element from the polynomial-
sized list S, obtaining each image point with probability 1/|S|. In the other
direction, by sampling λs points independently at random, except with negligible
probability in λ, the set of sampled points will contain each of the r images.
�

The following property will be useful for attaining ELFs with efficiently enumer-
able/sampleable image spaces:

Definition 4. An ELF is regular if, for all polynomial r, with overwhelming
probability over the choice of f ← ELF.Gen(M, r), the distribution f(x) for a
uniform x ← [M] is statistically close to uniform over f([M]).

Lemma 4. If an ELF is regular, then it is efficiently sampleable/enumerable.

Proof. To sample, just apply the ELF to a random point. Notice that the
sampled point is guaranteed to be an image point. Thus regularity actually
implies a strong notion of enumerability where S = f([M]) with overwhelming
probability.
�

The final ELF property we define is public coin.

Definition 5. An ELF is public coin if the description of an injective mode f
outputted by ELF.Gen(M,M) is simply the random coins used by ELF.Gen(M,M).
The descriptions of lossy mode f ’s outputted by ELF.Gen(M, r), r < M may (and
in fact, must) be a more complicated function of the random coins.

3.1 Constructing ELFs

We now show how to construct ELFs. Our construction will have two steps:
first, we will show that ELFs can be constructed from a weaker primitive called a
bounded adversary ELF, which is basically and ELF that is only secure against a
priori bounded adversaries. Then we show essentially that the DDH-based lossy
function of [20], when the group size is taken to be polynomial, satisfies our
notion of a bounded-adversary ELF.

492 M. Zhandry

Fig. 1. An example instantiation for k = 3.

Bounded Adversary ELFs

Definition 6. An bounded adversary extremely lossy function (bounded ELF)
consists of an algorithm ELF.Gen′, which takes as input integers M , r ∈ [M], and
b ∈ {0, 1}. Here, b will indicate whether the function should be lossy, and r will
specify the lossiness. Similar to regular ELFs, there is no security parameter here;
instead, log M acts as the security parameter. ELF.Gen′ outputs the description
of a function f : [M] → [N] such that:

– f is computable in time polynomial in the bit-length of its input, namely log M .
The running time is independent of r.

– If b = 0, then f is injective with overwhelming probability (in log M).
– For all r ∈ [M], if b = 1, then |f([M])| ≤ r with overwhelming probability.

That is, the function f has image size at most r.
– For any polynomial p and inverse polynomial function δ (in log M), there is

a polynomial q such that: for any adversary A running in time at most p, and
any r ∈ [q(log M),M], we have that A distinguishes ELF.Gen′(M, r, 0) from
ELF.Gen′(M, r, 1) with advantage less than δ.

Intuitively, the difference between a regular ELF and a bounded adversary ELF
is that in a regular ELF, r can be chosen dynamically based on the adversary,
whereas in a bounded adversary ELF, r must be chosen first, and then security
only applies to adversaries whose running time is sufficiently small. In a bounded
adversary ELF, the adversary may be able to learn r. We now show that bounded
ELFs are sufficient for constructing full ELFs.

Construction 1. On input M, r, ELF.Gen does:

– For simplicity, assume M is a power of 2: M = 2k. Let M ′ = M3 = 22k, and
[N] be the co-domain of ELF.Gen′ on domain [M ′].

– Let i∗ be the integer such that 2i∗ ∈ (r/2, r]. Set bi∗ = 1 and bi = 0 for i �= i∗

– For i = 1, . . . , k − 1, let fi ← ELF.Gen′(M ′, 2i, bi).
– For i = 2, . . . , k, choose a pairwise independent random hi : [N ′] → [M ′].
– Choose a pairwise independent random h1 : [M] → [M ′].
– Output the function f = hk ◦ fk−1 ◦ hk−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ h1.

Theorem 2. If ELF.Gen′ is a bounded-adversary ELF, then ELF.Gen is a (stan-
dard) ELF. If ELF.Gen′ is public coin, then so is ELF.Gen. If ELF.Gen′ is enumer-
able, then so is ELF.Gen. If ELF.Gen′ is regular, then so is ELF.Gen.

The Magic of ELFs 493

Proof. First, if r = M , then i∗ = k, and so each of the bi will be 0. Thus each of
the fi will be injective with overwhelming probability. Fix h1, fi, . . . , hi−1, fi−1,
and let Si be the image of fi−1 ◦ hi−1 ◦ fk−2 ◦ · · · ◦ f1 ◦ h1. Since each of the
functions hi have co-domain of size M ′ = M3, by pairwise independence, hi

will be injective on Si with overwhelming probability. Thus, with overwhelming
probability, the entire evaluation of f will be injective.

Second, if r < M , the function fi∗ is set to be lossy with image size 2i∗ ≤ r.
Thus, f will have image size at most r. Third, we need to argue security. Let p be
a polynomial and σ be an inverse polynomial (in log M). Let p′ = p+ c for some
c to be determined later. We can think of p′, σ as being functions of log M ′ =
3 log M . Let q be the polynomial guaranteed by ELF.Gen′ for p′ and σ. Then
we can consider q to be a polynomial in log M . Consider any adversary A for
ELF.Gen running in time at most p. Let r ∈ (q(log M),M], and let i∗ be such that
2i∗ ∈ (r/2, r]. We construct an adversary A′ for ELF.Gen′: let fi∗ be the f that A′

receives, where fi∗ is either ELF.Gen(M, 2i∗
, 0) or ELF.Gen(M, 2i∗

, 1). A′ simulates
the rest of f for itself, setting bi = 0, fi ← ELF.Gen′(M, 2i, bi) for i �= i∗ as well
as generating the hi. A′ then runs A on the simulated f . Let c be the overhead
of this reduction, so that A′ runs in time p + c = p′. Thus by the bounded-
adversary security of ELF.Gen′, A′ cannot distinguish injective or lossy mode,
except with advantage σ. Moreover, if fi∗ is generated as ELF.Gen(M, 2i∗

, 0),
then this corresponds to the injective mode of ELF.Gen, and if fi∗ is generated
as ELF.Gen(M, 2i∗

, 1), then this corresponds to ELF.Gen(M, r). Thus, A′ and A
have the same distinguishing advantage, and therefore A cannot distinguish the
two cases except with probability less than σ.

It remains to show that ELF.Gen inherits some of the properties of ELF.Gen′.
Being public coin is trivially inherited. To get a sampler for ELF.Gen, apply the
sampler for ELF.Gen′ to the instance fi∗ that is lossy, obtaining point y(i∗). Then
compute y = hk ◦fk−1 ◦hk−1 ◦fk−2 ◦ · · · ◦fi∗+1 ◦hi∗+1(y(i∗)). Since any image of
f is necessarily computed as hk ◦ fk−1 ◦hk−1 ◦ fk−2 ◦ · · · ◦ fi∗+1 ◦hi∗+1(y(i∗)) for
some yi∗ in the image of fi∗ , and all other steps are injective with overwhelming
probability, the result x(k+1) will hit each image point of f frequently as well.
In the full version [40], we also show that regularity is inherited.
�

Instantiation for Bounded Adversary ELFs. Our construction of bounded
adversary ELFs is based on the DDH-based lossy trapdoor functions of Peikert
and Waters [30] and Freeman et al. [20]. We stress that we do not need the
trapdoor property of their construction, only the lossy property. Security will be
based on the exponential hardness of the decisional Diffie-Hellman problem, or
its k-linear generalizations.

Definition 7. A cryptographic group consists of an algorithm GroupGen that
takes as input a security parameter λ, and outputs the description of a cyclic
group G of prime order p ∈ [2λ, 2 × 2λ), and a generator g for G such that:

– The group operation × : G2 → G can be computed in time polynomial in λ.

494 M. Zhandry

– Exponentiation by elements in Zp can be carried out in time polynomial in λ.
This follows from the efficient group operation procedure by repeated doubling
and the fact that log p ≤ λ + 1.

– The representation of a group element h has size polynomial in λ. This also
follows implicitly from the assumption that the group operation is efficient.

We now introduce some notation. For vectors v,w ∈ Z
n
p , let v ∗ w denote

the point-wise product of the two vectors. For a matrix A ∈ Z
m×n
p , we write

gA ∈ G
m×n to be the m × n matrix of group elements gAi,j . Similarly define gw

for a vector w ∈ Z
n
p . Given a matrix Â ∈ G

m×n of group elements and a vector
v ∈ Z

n
p , define Â · v to be ŵ ∈ G

m where ŵi =
∏n

j=1 Â
vj

i,j . Using this notation,
(gA) · v = gA·v. Therefore, the map gA,v �→ gA·v is efficiently computable.

Definition 8. The exponential decisional k-linear assumption (k-eLin) on a
cryptographic group specified by GroupGen holds if there is a polynomial q(·, ·)
such that the following is true. For any time bound t and probability ε, let λ =
log q(t, 1/ε). Then for any adversary A running in time at most t, the following
two distributions are indistinguishable, except with advantage at most ε:

(G, g, gv, gv∗w, gc) : (G, g, p) ← GroupGen(λ),v,w ← Z
k
p, c ← Zp and

(G, g, gv, gv∗w, g
∑k

i=1 wi : (G, g, p) ← GroupGen(λ),v,w ← Z
k
p

Definition 9. A cryptographic group is public coin if the following holds:

– The “description” of G, g, p is just the random coins sampled by GroupGen.
– There is a (potentially redundant) efficiently computable representation of

group elements in G as strings in {0, 1}n such that (1) a random string in
{0, 1}n corresponds to a random element in G, and (2) a random representa-
tion of a random element in G is a random string in {0, 1}n.

A plausible candidate for a cryptographic group supporting the k-eLin
assumption are groups based on elliptic curves. Despite over a decade or research,
essentially no non-trivial attack is known on general elliptic curve groups. There-
fore, the k-eLin assumption on these groups appears to be a reasonable assump-
tion. We note that groups based on elliptic curves can be made public coin.

Construction 2. Our construction is as follows, and will be parameterized by
k. ELF.Gen′

k(M, r, b) does the following.

– Let λ be the largest integer such that (2 × 2λ)k < r. Run (G, g, p) ←
GroupGen(λ).

– Assume for simplicity that M = pm for some integer m. Then associate the
domain [M] with Z

m
p . The more general case can be handled by hashing [M]

into Z
m
p for some m using a pairwise independent hash function which is injec-

tive with overwhelming probability; we defer the analysis to the full version [40]
and here focus on the simple case.

– Let n ≥ m be such that a random matrix sampled from Z
n×m
p has rank m with

overwhelming probability. For this, it suffices to set n = 2m.

The Magic of ELFs 495

– If b = 0, choose a random matrix of group elements gA. If b = 1, choose a
random rank-k matrix A ∈ Z

n×m
p and compute gA.

– Output the function f(x) = A · x. The description of f will consist of
(G, p,A,m, n).

Theorem 3. If GroupGen is a group where the k-eLin assumption holds for
some constant k, then ELF.Gen′

k is a regular bounded adversary ELF. If GroupGen
is public coin, then so is ELF.Gen′.

Proof. If A is full rank, then the map y �→ gA·y is injective. If A has rank k,
then the map has image size pk < r. For security, we just need to show that the
two distributions on gA are indistinguishable. Note that it is well known that
the k-linear assumption implies that it is hard to distinguish gB for a random
B ∈ Z

k+1,k+1
p from gB for a random rank k matrix B with no loss in the

security of the reduction. From here, it is straightforward to show that it is hard
to distinguish the full rank and rank k cases of gA, with a loss of a factor of
m − k. In fact, using the ideas of [36], the loss can even be made logarithmic
in m, but we will use m as an upper bound on the loss for simplicity. Let q be
the polynomial guaranteed by the k-eLin assumption. Let t be a polynomial and
δ an inverse polynomial. Let q′ = 4q(t + u,m/δ)k, where u is the overhead in
the reduction from k-eLin to the problem of distinguishing ranks of matrices.
Suppose an adversary runs in time t and distinguishes the two distributions on
gA with advantage δ. For any r ≥ q′, we have that λ ≥ r1/k/4 ≥ q(t + u,m/δ).
This means no (t + u)-time adversary can break the k-eLin assumption with
advantage greater than δ/m. By our reduction from distinguishing ranks, this
means no t-time adversary can distinguish the two cases of gA, except with
advantage at most δ, as desired.

Notice that if GroupGen is public coin, we can sample gA directly in the
injective mode since it is just a matrix of random group elements. Finally, note
that the function y �→ gA·y is perfectly regular due to its linear structure.
�

Corollary 1. If there exists a constant k and a cryptographic group where
the k-eLin assumption holds, then there exists an ELF with efficiently sam-
pleable/enumerable image. If the group is public coin, then so is the ELF.

4 Point Function Obfuscation

A (expanding) random oracle H serves as a good point function obfuscator: to

obfuscate the point function Ix(x′) =

{
1 if x′ = x

0 if x′ �= x
, simply output y = H(x).

Then to run the “program” on input x′, simply check that H(x′) = y. For any x
that is drawn from an source with super-logarithmic min-entropy, an adversary
making a polynomial number of queries to H will not be able to determine x
from y. Thus, x is hidden to all efficient adversaries.

In this section, we show how to use ELFs to implement a concrete function
H for which the strategy above still yields a secure point obfuscation (PO).

496 M. Zhandry

Definition 10. A point obfuscator (PO) is an efficient probabilistic algorithm
O with the following properties:

– (Almost Perfect Correctness) On input a point function Ix, with overwhelming
probability over the random coins of O, O outputs the description of a program
P that is functionally equivalent to Ix. P must run in time polynomial in the
length of x and the security parameter.

– (Secrecy) For any distribution D over a set X with super-logarithmic min-
entropy, the distribution O(Ix) for x ← D is computationally indistinguishable
from O(Ix′) where x′ ← UX .

Before giving our construction, we point out that a point obfuscator implies
a separation from NP with super-logarithmic non-determinism and P. Thus, any
primitive used to build point obfuscation, such as ELFs, must necessarily imply
such a separation. This is essentially the same statement as a theorem of Wee [37],
and is proved in the full version [40].

Theorem 4. If Point Obfuscators exist, then for any super-logarithmic function
t, NP with t bits of non-determinism is not solvable in polynomial time.

4.1 The Construction

Construction 3. Let X be the desired domain of H. To generate H,

– Let Z be some set such that |X |2/|Z| is negligible, and sample a hash function
h from a uniform and pairwise independent function distribution from X to
Z. h will thus be injective with overwhelming probability.

– Let f ← ELF.Gen(|Z|, |Z|) to get an injective-mode f .
– Output H = f ◦ h.

Fig. 2. The function H = f ◦ h.

Theorem 5. Assuming ELF is a secure ELF, H in Construction 3 gives a secure
point obfuscator. If ELF is public coin, then so is H.

Proof. We will actually show something stronger: that the point function obfus-
cation of x is indistinguishable from an obfuscation of the all-zeros function. In
particular, we will show that no efficient adversary can distinguish y = f(h(x))

The Magic of ELFs 497

from y = f(z) for a uniformly random z. Notice that by injectivity of f , y has
a pre-image under H = f ◦ h if and only if z = f−1(y) has a pre-image under h.
Since we chose h to be expanding, when we sample z uniformly random, z will
have no pre-image with overwhelming probability. Therefore, y = f(z) has no
pre-image with overwhelming probability.

The proof involves a sequence of hybrids. Suppose the adversary runs in time
t and distinguishes y = f(h(x)) from y = f(z) with non-negligible advantage ε.
This means there is an inverse polynomial δ such that ε ≥ δ infinitely often.

Hybrid 0. This is the honestly generated y = f(h(x)) for f drawn in injective
mode and x drawn from D.

Hybrid 1. Now, we change f to be lossy. That is, we generate f ←
ELF.Gen(|Z|, r) where r is chosen so that no adversary running in time t
can distinguish this lossy f from an injective f , except with advantage at
most δ/3. Thus by ELF security, the adversary cannot distinguish Hybrid
0 from Hybrid 1, except with probability δ/3.

Hybrid 2. Now we change y to be y = f(z) for a random uniform z ∈ Z.
Fix f , and let E be the distribution of y. Then notice that by the pairwise
independence and uniformity of h, the composition H = f ◦ h is pairwise
independent and has output distribution E. Moreover, Supp(E) ≤ r is a
polynomial. Therefore, by Lemma 2, we see that Hybrid 1 and Hybrid 2

are indistinguishable, except with probability 1
2

√
CP (D)

(
|Supp(E)| − 1

)
. As

long as the collision probability of X is negligible (which in particular happens
when X has super-logarithmic min-entropy), this quantity will be negligible.
In particular, the distinguishing advantage will be less than δ/3.

Hybrid 3. Now we change f to be injective again. The distinguishing advantage
between Hybrid 2 and Hybrid 3 will be at most δ/3. Notice that Hybrid 3
is exactly our all-zeros obfuscation. Therefore, Hybrid 0 and Hybrid 3 are
indistinguishable, except with probability less than δ, meaning ε < δ. This
contradicts our assumption about the adversary.
�

In Sect. 6, we will show how to strengthen our construction to get a point obfus-
cator that is secure even against auxiliary information about the point.

5 Output Intractability

Consider any k+1-ary relation R over Yk×W that is computationally intractable:
on a random input y ∈ Yk, it is computationally infeasible to find a w ∈ W such
that R(y, w) outputs 1. If H is a random oracle, assuming k is a constant, it
is computationally infeasible for find a set of distinct inputs x, xi �= xj∀i �= j,
and a w ∈ W, such that R(H(x), w) = 1. We will now show how to build
standard-model hash functions H that achieve the same property.

Definition 11. A family of hash functions H : [M] → Y is k-ary out-
put intractable if, for any computationally intractable k + 1-ary relation R :
Yk × W → {0, 1}, no efficient adversary, given H, can find a set of distinct
inputs x ∈ [M]k and an element w ∈ W, such that R(H(x), w) = 1.

498 M. Zhandry

Note that binary output intractability implies as a special case collision resis-
tance. In the unary case, and if W is just a singleton set, then output intractabil-
ity is a special case of correlation intractability, which allows the relation to
additionally depend on the input.

The unary case captures the following use case of hash functions: a given
protocol may require a common reference string (crs), but some or all instances
of the crs may admit a trapdoor that allows breaking the protocol. Of course,
such a trapdoor should be difficult to find for a random crs. To “prove” that
the crs is generated so that the generator of the crs does not know a trapdoor,
the generator sets the crs to be the output of a public hash function on an
arbitrary point. Since the potentially malicious generator does not control the
hash function, he should be unable to find an output along with a corresponding
trapdoor. Modeling the hash function as a random oracle, this methodology is
sound. However, standard notions of security do not prevent the crs generator
from choosing the input in such a way so that it knows a trapdoor. Unary
output intractability precludes this case. Of course, the hash function itself needs
to be set up in a trusted manner; however, once the hash function is set up
and trusted, it can be used to generate arbitrarily many different crs by even
untrusted authorities.

We note, however, that the unary case on its own is not very interesting: the
family of hash functions H parameterized by a string y ∈ Y where H(x) = y for
all x is clearly unary intractable. Depending on the application, one may want
additional features such as collision resistance, which as noted above is implied
by binary output intractability (k = 2). Therefore, k = 2 and above are likely
to be the most interesting settings. In the full version [40], we argue that k ≥ 2
inherently requires some sort of super-polynomial hardness:

Theorem 6. If binary output intractable hash functions exist, then for any
super-logarithmic function t, NP with t bits of non-determinism is not solvable
in polynomial time.

Trivial impossibility for arbitrary k. We note that no one family of hash functions
H can satisfy k-ary output intractability for all k. That is, for different k, a
different family will be required. Suppose to the contrary that a family H satisfied
k-output intractability for all k. Let t be the size of the circuit computing H.
Choose k so that k log |Y| ≥ t. Then with overwhelming probability over the
choice of random y ∈ Yk, there is no circuit of size at most t that outputs
yi on input i ∈ [k]. Therefore, let W be the set of circuits of size at most t,
and let R(y, C) output 1 if and only if C(i) = yi for each i ∈ [k]. Then R is
computationally (in fact statistically) intractable. However, it is trivial to find
an x, w that satisfy R(H(x), w) = 1: set x = [k] and w = H. Therefore, output
intractability is violated. We obtain the following:

Theorem 7. For any family H : [M] → Y of hash functions, let t be the descrip-
tion size of H. Then H cannot be output intractable for any k ≥ t/ log |Y|.

In the following, we show that it is nonetheless possible to obtain output
intractability for any given constant k. Our functions will be described by strings

The Magic of ELFs 499

of length k(log |Y| + poly(log M)), which in the case |Y| � M gives a near-
optimal relationship between k and t.

5.1 The Construction

Construction 4. Let [M] be the desired domain of H, and Y the desired range.
To generate H, to the following:

– Let f ← ELF.Gen(M,M) to get an injective-mode f , with codomain Z.
– Let g be a k-wise independent and uniform function from Z to Y.
– Output H = g ◦ f .

Fig. 3. The function H = g ◦ f .

Theorem 8. If ELF is a secure ELF with an efficiently enumerable image,
then for any constant k the hash function H in Construction 4 is k-ary out-
put intractable. If ELF is public coin, then so is H.

Proof. Suppose toward contradiction that there is an intractable k + 1-ary rela-
tion R and an adversary A that on input H finds a set of distinct inputs x and
a value w ∈ W such that R(H(x), w) = 1 with non-negligible probability ε. Let
δ be an inverse polynomial such that ε ≥ δ infinitely often. We will switch to a
lossy mode for f so that (1) f has polynomial image size, and (2) no adversary
running in time t (for a t to be chosen later) can distinguish the lossy mode
from injective, except with probability δ/3. By choosing t to be larger than the
running time of A, we have that A still outputs x of distinct elements, and a
string w, such that R(H(x), w) = 1 with probability ε − δ/3.

We first argue that each of the elements of f(x) are distinct except with
probability δ/3. Since this was true in the injective case (since x is distinct), if
this is not true in the lossy case, then the injective and lossy modes could be
easily distinguished by an adversary taking slightly more time than A. Let t be
this time, so that this distinguisher is impossible. Thus, the adversary succeeds
and the elements of f(x) are distinct with probability at least ε − 2δ/3. This
probability is larger than δ/3 infinitely often, and is therefore non-negligible. Let
S be the polynomial-sized set of image points of f . Then in other words, the
adversary comes up with an ordered set z of distinct elements in S, and a string
w, such that R(g(z), w) = 1.

500 M. Zhandry

Now, note that, for any ordered set z of k distinct inputs, g(z) is distributed
uniformly at random, by the k-wise independence of g. Moreover, it is straight-
forward, given z and a vector y ∈ Yk, to sample a random g conditioned on
g(z) = y. Sampling random y, and then g in this way, gives a correctly distrib-
uted g.

We now describe an algorithm B that breaks the intractability of R. B, on
input y ∈ Yk, chooses lossy f as above, and then selects k distinct (potential)
image points from the image sampling procedure. Let z be the ordered list of
points. Next, it chooses a random g such that g(z) = y. Finally, it runs A on
the hash function H = g ◦ f . When A outputs x, w, if f(x) = z (equivalently,
H(x) = y), B outputs w; otherwise it aborts.

Since y is hidden from A’s view, g is distributed randomly according to
the k-wise independent distribution. Therefore, A will output a valid w with
probability at least ε−2δ/3. If B’s guess for z was correct, then w will break the
intractability of R on y. Since z is independent of A’s view, the probability of a
good guess is at least 1/sk, where 1/s is the inverse polynomial lower bound on
the probability any image point is selected. Therefore, B breaks the intractability
of R with probability (ε − 2δ/3)/sk, which is larger than δ/3sk infinitely often,
and is therefore non-negligible.
�

6 Leakage-Resilient PRGs, AIPO and Poly-Many
Hardcore Bits

In this section, we use ELFs to give arbitrarily-many hardcore bits for any one-
way function, and for constructing point function obfuscation secure in the pres-
ence of auxiliary information. Both of these can be seen as special cases of a very
strong security requirement for pseudorandom generators.

Definition 12. A distribution D on pairs (x, z) ∈ X × Z is computationally
unpredictable if no efficient adversary can guess x given z.

Definition 13. A family of pseudorandom generators H : X → Y secure for
computationally unpredictable seeds if, for any computationally unpredictable
distribution on (X ,Z), no efficient adversary can distinguish (H, z,H(x)) from
(H, z, S) where (x, z) ← D and S ← UY .

Basically, this requirement states that H is a secure pseudorandom generator
for arbitrary distributions on the seed, and even remains secure in the presence
of arbitrary leakage about the seed, so long as the seed remains computationally
unpredictable. The only restriction is that the distribution on the seed and the
leakage must be chosen independently of H. However, in the absence of other
restrictions, this independence between the source D and function H can easily
be seen to be necessary: if z contained a few bits of H(x), then it is trivial to
distinguish H(x) from random.

The Magic of ELFs 501

6.1 The Construction

The intuition behind our construction is the following. The usual way of extract-
ing pseudorandomness from computationally unpredictable source is to output
a hardcore bit of the source, say using Goldreich-Levin [23]. While this can be
used to generate a logarithmic number of pseudorandom bits, security is lost
once a super-logarithmic number of hardcore bits have been generated in this
way.

In order to get around this logarithmic barrier, we actually compute a poly-
nomial number of Goldreich-Levin bits. Of course, we cannot output these in
the clear or else the seed can be easily computed by linear algebra. Instead, we
scramble the hardcore bits using a sequence of ELFs. We can argue that each
of the (scrambled) hardcore bits really is “as good as” random, in the sense
that we can replace each bit with a truly random bit before scrambling without
detection. To do so, we use the lossiness of the ELFs to argue that, when the ith
hardcore bit is incorporated into the scramble, enough information is lost about
the previous bits that the ith bit actually still is hardcore. By iterating this for
each bit, we replace each one with random. We now give the details.

Construction 5. Let q be the input length and m be the output length. Let λ be
a security parameter. We will consider inputs x as q-dimensional vectors x ∈ F

q
2.

Let ELF be an ELF. Let M = 2m+λ+1, and let n be the bit-length of the ELF on
input m + 1. Set N = 2n. Let 	 be some polynomial in m,λ to be determined
later. First, we will construct a function H ′ as follows.

Choose random f1, . . . , f� ← ELF.Gen(M,M) where fi : [M] → [N], and let
h1, . . . , h�−1 : [N] → [M/2] = [2m+λ] and h� : [N] → [2m] be pairwise inde-
pendent and uniform functions. Define f = {f1, . . . , f�} and h = {h1, . . . , h�}.
Define H ′

i : {0, 1}i → [M/2] (and H ′
� : {0, 1}� → [2m]) as follows:

– H ′
0() = y1 = 1 ∈ [2m+λ]

– H ′
i(b[1,i−1], bi) = yi+1 = hi(zi) where yi ← H ′

i−1(b[1,i−1]), zi ← fi(yi||bi).

Then we set H ′ = H ′
�. Then to define H, choose a random matrix R ∈ F

�×q
2 .

The description of H consists of f ,h,R. Then set H(x) = H ′(R ·x). A diagram
of H is given in Fig. 4.

We now prove several important facts about H and H ′:

Claim. If 	 ≥ m + λ, and if b is drawn uniformly at random, then (H ′,H ′(b))
is statistically close to (H ′, R) where R is uniformly random in [2m].

Proof. We will prove the case 	 = m + λ, the case of larger 	 being similar.
We will consider f1, . . . , f� as being fixed injective functions; since the fi are
injective with overwhelming probability, the claim follows from this case. This
means that the composition hi ◦ fi is pairwise independent, for all i.

Let di(h1, . . . , hi) be the collision probability of yi+1 when bi . . . , bi are ran-
dom bits, for fixed h1, . . . , hi. Let di be the expectation (over h1, . . . , hi) of this
value. There are two possibilities for a collision at yi+1:

502 M. Zhandry

Fig. 4. An example instantiation for � = 3. Notice that each iteration is identical,
except for the final iteration, where h� has a smaller output.

– There is a collision at yi and bi. This happens with half the probability that
there is a collision at yi.

– There is not a collision at yi and bi, but hi ◦ fi maps the two points to the
same yi+1. Conditioned on there being no collision at (yi, bi), this occurs with
probability 1

2m+λ for i < 	, and 1
2m for i = 	.

Then we have that d0 = 1 and it is straightforward to show the following
recurrence for i < 	: di = di−1

(
1
2 − 1

2×2m+λ

)
+ 1

2m+λ . This recurrence has the

form di = a + bdi−1, which is solved by di = bi + a bi−1
b−1 . Therefore, with some

manipulation we have that di = 2
2m+λ+1

+ (2m+λ−1)i+1

2(m+λ)i(2m+λ+1)
. Now, for i = m+λ−1,

this becomes dm+λ−1 =
2
(

1+(1−2−m−λ)m+λ
)

2m+λ+1
≤ 4

2m+λ . Next, it is straightforward

to adapt the above argument to show that dm+λ = dm+λ−1

(
1
2 − 1

2×2m

)
+ 1

2m ≤
1
2m + 2

2m+λ . Now, the Rényi entropy of ym+λ+1 is exactly the collision probability,
scaled up by a factor of the 2m. Therefore, the expected Rényi entropy of ym+λ+1

is at most 1+ 2
2λ . Finally, we relate the Rényi entropy to the statistical distance

from uniform using Lemma1:

E
h1,...,h�

Δ(y�+1, R) ≤ E
1
2

√
RE(y�+1) − 1 ≤ 1

2

√
E[RE(y�+1)] − 1 ≤ 2−(λ+1)/2

The statistical distance between (H ′,H ′(b)) and (H ′, R) is exactly this quantity,
which is negligible in λ.
�

We will thus set 	 = m+λ in our construction of H ′. Claim 6.1 will be crucial
for our security proof for H. We also show our H is injective (with overwhelming
probability) exactly when a truly random function with the same domain and
co-domain is injective (with overwhelming probability).

Claim. If 2−(m−2q) is negligible (in q), and 	 ≥ m, then with overwhelming
probability H is injective.

The Magic of ELFs 503

Proof. First, note that with overwhelming probability by our choice of 	 ≥ m ≥
2q, R is full rank. Next, let Yi be the set of possible yi values as we vary x, and
Zi be the set of possible zi values. By the injectivity of fi, we have that |Zi| ≥
|Yi|. Moreover, since hi is pairwise independent and uniform, with overwhelming
probability hi is injective on Zi since |Zi| ≤ 2q but the co-domain of hi has size
at least 2m � (2q)2. Therefore |Yi+1| = |Zi| ≥ |Yi|. This means that as we
increase i, the image size never decreases (with overwhelming probability).

Now pick q linearly independent rows of R. We will assume that the q rows
constitute the first q rows of R; the more general case is handled analogously.
By performing an appropriate invertible transformation on the domain, we can
assume that these q rows form the identity matrix. Therefore, we can take bi = xi

for i ∈ [q]. Next, observe that yi for i ∈ [q] only depends on the first i − 1 bits of
x. Thus the set of possible pairs (yi, bi) = (yi, xi) is exactly Yi × {0, 1}, which
has size 2|Yi|. By the injectivity of fi, |Zi| = 2|Yi|. Since |Yi+1| = |Zi| = 2|Yi|,
we have that the image size exactly doubles in each iteration for i ∈ [q]. Once we
get to i = q, the image size is 2q, and the remaining iterations do not introduce
any collisions. Thus the image size of H is 2q, meaning H is injective.
�

Theorem 9. If ELF is a secure ELF, then H in Construction 5 is a pseudoran-
dom generator secure for computationally unpredictable seeds. If ELF is public
coin, then so is H.

Proof. Recall that H(x) = H ′(R·x), and that H ′(b) is (with overwhelming prob-
ability over the choice of H ′) statistically close to random when b is random.
Therefore, it suffices to show that the following distributions are indistinguish-
able: (f ,h,R, z,H ′(R · x)) and (f ,h,R, z,H ′(b)) for a uniformly random b.

Suppose an adversary A has non-negligible advantage ε in distinguishing
the two distributions. Define b(i) so that the first i bits of b(i) are equal to
the first i bits of R · x, and the remaining 	 − i bits are chosen uniformly at
random independently of x. Define Hybrid i to be the case where A is given
the distribution (f ,h,R, z,H ′(b(i))).

Then A distinguishes Hybrid 0 from Hybrid 	 with probability ε. Thus
there is an index i ∈ [] such that the adversary distinguishes Hybrid i−1 from
Hybird i with probability at least ε/	. Next, observe that since bits i+1 through
t are random in either case, they can be simulated independently of the challenge.
Moreover, H ′(b) can be computed given H ′

i−1(b[i−1]), bi (be it random or equal
to Ri,x), and the random bi+1, . . . , b�. Thus, we can construct an adversary A′

that distinguishes Ri · x from a random bi — given (f ,h,R[i−1], z,H ′
i−1(R[i−1] ·

x),Ri) — with advantage ε/	, where R[i−1] consists of the first i − 1 rows of R,
Ri is the ith row of R, and bi is a random bit.

Next, since ε/3	 is non-negligible, there is an inverse polynomial δ such
that ε/3	 ≥ δ infinitely often. Then, there is a polynomial r such A′ cannot
distinguish fi generated as ELF.Gen(M, r) from the honest fi generated from
ELF.Gen(M,M), except with probability at most δ. This means, if we generate
fi ← ELF.Gen(M, r), we have that A′ still distinguishes Ri · x from a random
bi — given (f ,h,R[i−1], z,H ′

i−1(R[i−1] · x),Ri) — with advantage ε′ = ε/	 − 2δ.

504 M. Zhandry

Put another way, given (f ,h,R[i−1], z,H ′
i−1(R[i−1] · x),Ri), A′ is able to com-

pute Ri · x with probability 1
2 + ε′. Note that ε′ ≥ δ infinitely often, and is

therefore non-negligible.
Now fix f ,h,R[i−1], which fixes H ′

i−1. Let yi = H ′
i−1(R[i−1] · x). Notice that

since f ,h are fixed, there are at most r possible values for yi, and recall that r
is a polynomial. We now make the following claim:

Claim. Let D be a computationally unpredictable distribution on X × Z. Sup-
pose T : X → R is drawn from a family T of efficient functions where the
size of the image of T is polynomial. Then the following distribution is also
computationally unpredictable: (x, (T, z, T (x))) where T ← T , (x, z) ← D.

Proof. Suppose we have an efficient adversary B that predicts x with non-
negligible probability γ given T, z, T (x), and suppose T has polynomial image
size r. We then construct a new adversary C that, given x, samples a random
T , samples (x′, z′) ← D, and sets a = T (x′). It then runs B(T, z, a) to get
a string x′′, which it outputs. Notice that a is sampled from the same dis-
tribution as T (x), so with probability at least 1/r, a = T (x). In this case,
x′′ = x with probability γ. Therefore, C outputs x with probability γ/r, which is
non-negligible.
�

Using Claim 6.1 with T = H ′
i−1(R[i−1] · x), we see that (x, (f ,h,R[i−1], z,

H ′
i−1(R[i−1] · x))) is computationally unpredictable. Moreover, Ri · x is

a Goldriech and Levin [23] hardcore bit for any computationally unpre-
dictable source. Hence, no efficient adversary can predict Rx · x given
(f ,h,R[i−1], z,H ′

i−1(R[i−1] ·x),Ri). This contradicts the existence of A′, proving
the theorem.
�

6.2 Applications

Polynomially-many hardcore bits for any one-way function. We see that H
immediately gives us a hardcore function of arbitrary stretch for any compu-
tationally unpredictable distribution. This includes any one-way function. To
the best of our knowledge, this is the first hardcore function of arbitrary stretch
based on simple assumptions that applies to general computationally unpre-
dictable sources. In the special case of one-way functions, the only prior con-
structions are due to Bellare et al. [6] using differing inputs obfuscation (diO),
and of Zhandry [39] using extractable witness PRFs. Our construction offers
an entirely different approach to constructing hardcore functions with arbitrary
stretch, and is based on a very simple primitive.

Strong injective one-way functions. Bitansky and Paneth [9] conjecture the exis-
tence of a very strong one-way permutation family. We demonstrate that our
function H meets this notion of security. Unfortunately, however, it is only injec-
tive, not a permutation.

The Magic of ELFs 505

Definition 14. A [9] permutation is a family of functions H such that for any
computationally unpredictable distribution D, the following two distributions are
also unpredictable: (x, (z,H,H(x))) and (H(x), (z,H)) where (x, z) ← D.

The first property is a generalization of a strong uninvertability assumption
of Wee [37]. The second guarantees that if x is unpredictable, then so is H(x).
In the full version [40], we show that H satisfies this definition:

Theorem 10. H constructed above using a secure ELF, when set to be injective
as in Claim 6.1, is a [9]-injective one-way function.

The main application of Bitansky and Paneths [9] assumption is to build
auxiliary input point function obfuscation (AIPO). Since H is not a permutation,
it cannot be immediately plugged into their construction. Yet, next, we show that
going through their construction is unnecessary in our case: we show that our
function H gives an AIPO “out of the box” with no additional overhead.

Point function obfuscation with auxiliary input (AIPO). We now show how to
achieve full AIPO using just the assumption of ELFs.

Definition 15. A auxiliary input point obfuscator (AIPO) is an efficient prob-
abilistic algorithm O that saitsfies the almost perfect correctness requirement of
Definition 10, as well as the following secrecy requirement: for any unpredictable
distribution D over pairs (x, z) ∈ X × Z, (O(Ix), z) and (O(Ix′), z) are compu-
tationally indistinguishable, where (x, z) ← D and x′ ← X .

As in Sect. 4, an expanding ideal hash function (random oracle) H gives a
very natural AIPO: the obfuscation of a point function Ix is simply S = H(x).
Injectivity of H gives (almost perfect) correctness. Moreover, security is easily
proved in the random oracle model.

We now show that by choosing H to be as in the construction above, the
same is true. In particular, by Claim 6.1, H is injective in the same regime of
input/output sizes as a random oracle. For security, we have the following:

Theorem 11. The obfuscation construction described above is a secure AIPO
assuming H is constructed as in Construction 5 using a secure ELF.

Proof. Note that since H is expanding, if we choose S at random from [2m], then
with overwhelming probability there are no inputs x that map to S. Therefore,
the obfuscated program corresponding to S is just the all-zeros function.

Let D be any computationally unpredictable source. We thus need to show
that the following two distributions are indistinguishable: (H, z,H(x)) and
(H, z, S) (where (x, z) ← D). This follows immediately from Theorem 9.
�

Public key encryption from trapdoor permutations. In the full version [40], we
show that our hardcore function can be used in a simple hybrid encryption
scheme of Bellare and Rogaway [5].

506 M. Zhandry

6.3 Difficulty of Realizing Applications

Since AIPO implies PO, AIPO implies that NP with a super-logarithmic amount
of non-determinism cannot be solved in polynomial time. Hence, this separa-
tion is inherent to the AIPO application. As an immediately corollary, we also
have that our pseudorandom generator definition also implies such a separation.
Since our pseudorandom generator definition is essentially equivalent to obtain-
ing hardcore functions of arbitrary span for any unpredictable source, we also
see that such a separation is inherent to such hardcore functions. In contrast,
this separation does not extend to the special case of hardcore functions for any
one-way function. It is consistent with our current knowledge that NP with, say,
log2 bits of non-determinism is solvable in polynomial time, and yet there are
still hardcore functions of arbitrary stretch for any one-way function. However,
in the full version [40], we still demonstrate some barriers to realizing this special
case from polynomially-hard primitives.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://
eprint.iacr.org/2013/689

3. Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryptographic
program obfuscation. Cryptology ePrint Archive, Report 2014/779 (2014). http://
eprint.iacr.org/2014/779

4. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

6. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 102–121. Springer,
Heidelberg (2014)

7. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp.
542–564. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 20

8. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 505–514. ACM
Press, May/June 2014

9. Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg
(2012)

10. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2014/779
http://eprint.iacr.org/2014/779
http://dx.doi.org/10.1007/978-3-662-49099-0_20

The Magic of ELFs 507

11. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013)

12. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

13. Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and
UCEs: the case of computationally unpredictable sources. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer,
Heidelberg (2014)

14. Canetti, R.: Towards realizing random oracles: hash functions that hide all par-
tial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

15. Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfuscated
pseudorandom functions. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 389–415. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 17

16. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

17. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 654–663. ACM Press, May
2005

18. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 329–350. Springer, Heidelberg (2015)

19. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS,
pp. 293–302. IEEE Computer Society Press, October 2008

20. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

21. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

22. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all
falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC,
pp. 99–108. ACM Press, June 2011

23. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, May 1989

24. Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a position paper.
In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 505–522.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 21

25. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. Cryptology ePrint Archive, Report 2014/507
(2014). http://eprint.iacr.org/2014/507

26. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)

27. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet
Society, February 2000

28. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

http://dx.doi.org/10.1007/978-3-662-49096-9_17
http://dx.doi.org/10.1007/978-3-662-49096-9_21
http://eprint.iacr.org/2014/507

508 M. Zhandry

29. Patel, S., Sundaram, G.S.: An efficient discrete log pseudo random generator. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 304. Springer, Heidelberg
(1998)

30. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press, May 2008

31. Pietrzak, K., Rosen, A., Segev, G.: Lossy functions do not amplify well. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 458–475. Springer, Heidelberg (2012)

32. Rao, V.: Adaptive multiparty non-interactive key exchange without setup in the
standard model. Cryptology ePrint Archive, Report 2014/910 (2014). http://
eprint.iacr.org/2014/910

33. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009)

34. Schrift, A.W., Shamir, A.: The discrete log is very discreet. In: 22nd ACM STOC,
pp. 405–415. ACM Press, May 1990

35. Simon, D.R.: Findings collisions on a one-way street: can secure hash functions be
based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

36. Villar, J.L.: Optimal reductions of some decisional problems to the rank problem.
In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 80–97.
Springer, Heidelberg (2012)

37. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th
ACM STOC, pp. 523–532. ACM Press, May 2005

38. Zhandry, M.: How to construct quantum random functions. In: 53rd FOCS, pp.
679–687. IEEE Computer Society Press, October 2012

39. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
et al. (eds.) TCC 2016-A. LNCS, vol. 9563, pp. 421–448. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49099-0 16

40. Zhandry, M.: The magic of ELFs. In: Proceedings of CRYPTO (2016). Full version
available at the Cryptology ePrint Archives http://eprint.iacr.org/2016/114

http://eprint.iacr.org/2014/910
http://eprint.iacr.org/2014/910
http://dx.doi.org/10.1007/978-3-662-49099-0_16
http://eprint.iacr.org/2016/114

Breaking the Circuit Size Barrier for Secure
Computation Under DDH

Elette Boyle1, Niv Gilboa2, and Yuval Ishai3(B)

1 IDC Herzliya, Herzliya, Israel
elette.boyle@idc.ac.il

2 Ben Gurion University, Beersheba, Israel
gilboan@bgu.ac.il

3 Technion and UCLA, Haifa, Israel
yuvali@cs.technion.ac.il

Abstract. Under the Decisional Diffie-Hellman (DDH) assumption, we
present a 2-out-of-2 secret sharing scheme that supports a compact eval-
uation of branching programs on the shares. More concretely, there is an
evaluation algorithm Eval with a single bit of output, such that if an input
w ∈ {0, 1}n is shared into (w0, w1), then for any deterministic branch-
ing program P of size S we have that Eval(P, w0) ⊕ Eval(P, w1) = P (w)
except with at most δ failure probability. The running time of the shar-
ing algorithm is polynomial in n and the security parameter λ, and that
of Eval is polynomial in S, λ, and 1/δ. This applies as a special case to
boolean formulas of size S or boolean circuits of depth log S. We also
present a public-key variant that enables homomorphic computation on
inputs contributed by multiple clients.
The above result implies the following DDH-based applications:

– A secure 2-party computation protocol for evaluating any branching
program or formula of size S, where the communication complexity
is linear in the input size and only the running time grows with S.

– A secure 2-party computation protocol for evaluating lay-
ered boolean circuits of size S with communication complexity
O(S/ log S).

– A 2-party function secret sharing scheme, as defined by Boyle et al.
(Eurocrypt 2015), for general branching programs (with inverse poly-
nomial error probability).

– A 1-round 2-server private information retrieval scheme supporting
general searches expressed by branching programs.

Prior to our work, similar results could only be achieved using fully homo-
morphic encryption. We hope that our approach will lead to more prac-
tical alternatives to known fully homomorphic encryption schemes in the
context of low-communication secure computation.

1 Introduction

In this paper we introduce a simple new technique for low-communication secure
computation that can be based on the Decisional Diffie-Hellman (DDH) assump-
tion and avoids the use of fully homomorphic encryption. We start with some
relevant background.
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 509–539, 2016.
DOI: 10.1007/978-3-662-53018-4 19

510 E. Boyle et al.

Since the seminal feasibility results of the 1980s [3,8,23,38], a major challenge
in the area of secure computation has been to break the “circuit size barrier.”
This barrier refers to the fact that all classical techniques for secure computation
required a larger amount of communication than the size of a boolean circuit rep-
resenting the function to be computed, even when the circuit is much bigger than
the inputs. The circuit size barrier applied not only to general circuits, but also
to useful restricted classes of circuits such as boolean formulas (namely, circuits
with fan-out 1) or branching programs (a stronger computational model captur-
ing non-uniform logarithmic-space computations). Moreover, the same barrier
applied also to secure computation protocols that can rely on a trusted source
of correlated randomness, provided that this correlated randomness needs to be
reusable.

The first significant progress has been made in the context of private infor-
mation retrieval (PIR), where it was shown that for the bit-selection function
f(x, i) = xi it is possible to break the circuit size barrier either in the multi-
server model [9,11], where a client holds i and two or more servers hold x, or in
the two-party model [27] under standard cryptographic assumptions. However,
progress on extending this to other useful computations has been slow, with
several partial results [4,10,17,25,30] that do not even cover very simple types
of circuits such as general DNF or CNF formulas, let alone more expressive ones
such as general formulas or branching programs.1

All this has changed with Gentry’s breakthrough on fully homomorphic
encryption (FHE) [19,33]. FHE enables local computations on encrypted inputs,
thus providing a general-purpose solution to the problem of low-communication
secure computation. On the down side, even the best known implementations
of FHE [24] are still quite slow. Moreover, while there has been significant
progress on basing the feasibility of FHE on more standard or different assump-
tions [7,21,36], the set of cryptographic assumptions on which FHE can be based
is still very narrow, and in particular it does not include any of the “traditional”
assumptions that were known in the 20th century.

1.1 Our Contribution

Our new approach was inspired by the recent work on function secret sharing
(FSS) [6]. A (2-party) FSS scheme for a function class F allows a client to split
(a representation of) f ∈ F into succinctly described functions f0 and f1 such
that for any input x we have that f(x) = f0(x) + f1(x) (over some Abelian
group), but each fb hides f .

The notion of FSS was originally motivated by applications to m-server PIR
and related problems. FSS schemes for simple classes of functions such as point
functions were constructed from one-way functions in [6,22]. However, a result

1 In the homomorphic encryption for branching programs from [25] (see also [26]), the
size of the encrypted output must grow with the length of the branching program.
When simulating a boolean formula by a branching program, the length of the
branching program is typically comparable to the formula size.

Breaking the Circuit Size Barrier for Secure Computation Under DDH 511

from [6] shows that 2-party FSS for richer circuit classes, from AC0 and beyond,
would imply (together with a mild additional assumption) breaking the circuit
size barrier for similar classes.

The idea is that by encrypting the inputs and applying FSS to the function
f ′ that first decrypts the inputs and then computes f , the parties can shift the
bulk of the work required for securely evaluating f to local evaluations of f ′

0 and
f ′
1. Thus, breaking the circuit size barrier reduces to securely distributing the

generation of f ′
0 and f ′

1 from f and the secret decryption keys, which can be done
using standard secure computation protocols and reused for an arbitrary number
of future computations. This was viewed in [6] as a negative result, providing
evidence against the likelihood of basing powerful forms of FSS on assumptions
that are not known to imply FHE.

We turn the tables by constructing FSS schemes for branching programs
under DDH, which implies low-communication secure 2-party computation pro-
tocols under DDH.

Homomorphic secret sharing. For the purpose of presenting our results, it
is more convenient to consider a dual version of FSS that can also be viewed as
a form of “homomorphic secret sharing,” or alternatively a variant of threshold
FHE [1,19]. Concretely, a client wants to split a secret input w ∈ {0, 1}n into a
pair of shares (w0, w1), each of which is sent to a different server. Each individual
share should computationally hide w. Each server, holding (a representation of) a
function f ∈ F , can apply an evaluation algorithm to compute yb = Eval(f, wb),
so that y0 + y1 = f(w). Note that this is precisely the original notion of FSS
with the roles of the function and input reversed.2

Cast in the this language, our main technical contribution is such a homo-
morphic secret sharing scheme, based on DDH, with output group Z2 (or any
other Zp), and the class F of functions represented by deterministic3 branch-
ing programs. The scheme only satisfies a relaxed form of the above correctness
requirement: for every input w and branching program P , the probability of
producing local outputs that do not add up to the correct output P (w) is upper
bounded by an error parameter δ > 0 which affects the running time of Eval.
This probability is over the randomness of the sharing. The running time of the
sharing algorithm is n · poly(λ), where λ is a security parameter. The running
time of Eval is polynomial in S, λ, and 1/δ.

We would like to stress that branching programs are quite powerful and capture
many useful real-life computations. In particular, a branching program of size S
can simulate any boolean formula of size S or boolean circuit of depth log2 S, and

2 While one can always switch between the notions by changing the definition of F ,
for classes F that contain universal functions [13,35] the switch can be done with
polynomial overhead without changing F . This will be the case for all function classes
considered in this work.

3 In fact, our construction can handle a larger class of arithmetic branching programs
over the integers, but correctness only holds as long as all integers involved in inter-
mediate computations are bounded by some fixed polynomial.

512 E. Boyle et al.

polynomial-size branching programs can simulate any computation in the com-
plexity classes NC1 or (non-uniform) deterministic log-space.

We also present a public-key variant of the homomorphic secret sharing
scheme. This variant can be viewed as a threshold homomorphic encryption
scheme with secret evaluation keys and additive reconstruction. That is, there is
a key generation algorithm that outputs a single public key and a pair of secret
evaluation keys. Given the public key, an arbitrary number of clients can encrypt
their inputs. Each server, given the public ciphertexts and its secret evaluation
key, can locally compute an additive share of the output.

The above results imply the following applications, all based on the DDH
assumption alone.

Succinct secure computation of branching programs. The general
transformation from FSS to secure two-party computation described above can
be used to obtain succinct two-party protocols for securely evaluating branching
programs with reusable preprocessing. However, the public-key variant of our
construction implies simpler and more efficient protocols. The high level app-
roach is similar to that of other low-communication secure protocols from differ-
ent flavors of FHE [1,19,29], except for requiring secret homomorphic evaluation
keys and an additional error-correction sub-protocol. For a two-party functional-
ity with a total of n input bits and m = m(n) output bits, where each output can
be computed by a polynomial-size branching program (alternatively, logarithmic
space Turing Machine or NC1 circuit), the protocol can be implemented with a
constant number of rounds and n + m · poly(λ) bits of communication, where λ
is a security parameter. To reduce the n · poly(λ) cost of a bit-by-bit encryption
of the inputs, the protocol employs a hybrid homomorphic encryption technique
from [20].

Breaking the circuit size barrier for “well structured” circuits.

In the case of evaluating general boolean circuits, we can make the total com-
munication slightly sublinear in the circuit size by breaking the computation
into segments of logarithmic depth and homomorphically computing additive
shares of the outputs of each segment given additive shares of the inputs. For
instance, we can evaluate a layered circuit of size S using O(S/ log S) bits of
communication (ignoring lower order additive terms; see Sect. 4 for a more pre-
cise statement). We employ error-correcting codes with encoding and decoding
in NC1 to ensure that errors introduced by the computation of a segment are
corrected before propagating to the next segment.

Function secret sharing. Using a universal branching program we can
reverse the roles of P and w in the above homomorphic secret sharing scheme,
obtaining a polynomial-time 2-party FSS scheme for branching programs. Unlike
the main definition of FSS from [6] here we can only satisfy a relaxed notion that
allows an inverse polynomial error probability. However, the error probability
can be made negligible in the context of natural applications. An m-party FSS
scheme for circuits was recently obtained by Dodis et al. [15] under the Learning
with Errors (LWE) assumption, by making use of multi-key FHE [12,28,29].

Breaking the Circuit Size Barrier for Secure Computation Under DDH 513

Our construction gives the first FSS scheme that applies to a rich class of func-
tions and does not rely on FHE.

Private information retrieval. Following the application of FSS to PIR
from [6] with a simple repetition-based error-correction procedure, a consequence
of the above result is a 1-round 2-server (computational) PIR scheme in which a
client can privately search a database consisting of N documents for existence of
a document satisfying a predicate P , where P is expressed as a branching pro-
gram applied to the document. For instance, any deterministic finite automaton
can be succinctly expressed by such a branching program. The length of the
query sent to each server is polynomial in the size of the branching program
and a computational security parameter, whereas the length of the answer is a
statistical security parameter times log N .

1.2 Overview of Techniques

We now describe the main ideas behind our construction. It will be convenient to
use the homomorphic secret sharing view: a client would like to share an input w
between 2 servers so that the servers, on input P , can locally compute additive
shares of P (w).

Let G be a DDH group of prime order q with generator g. Our construction
employs three simple ideas.

The first is that a combination of a threshold version of ElGamal and linear
secret sharing allows the servers to locally multiply an encrypted input x with a
linearly secret-shared value y, such that the result z = xy is shared multiplica-
tively between the servers; namely the servers end up with elements zi ∈ G such
that the product of the zi is gz. This idea alone is already useful, as it gives
an (m − 1)-private m-server protocol for computing any degree-2 polynomial P
with small integer coefficients held by the servers on a vector w of small inte-
gers held by the client, where the communication complexity in each direction
is essentially optimal.

To see how this step is possible, consider a simplified version of the world,
where (instead of requiring ElGamal) it held that gw is a secure encryption of
w. In this world, we can secret share input w by giving both servers a copy of
the encryption gw. Then, given an additive secret sharing x0, x1 of another value
x, the servers can generate a multiplicative sharing of wx, by each computing
(gw)xb . Indeed, (gwx0) · (gwx1) = gwx. Extending this idea to ElGamal (as, alas,
gw is not a secure encryption) can be done via comparable “linear algebra in the
exponent” given additive shares of x as well as for xc, where c is the ElGamal
secret key.

What seems to stop us at degree-2 polynomials is the fact that z is now
shared multiplicatively rather than linearly, so the servers cannot multiply z
by a new input encrypted by the client. Moreover, converting multiplicative
shares to additive shares seems impossible without the help of the client, due
to the intractability of computing discrete logarithms in G. The second, and
perhaps most surprising, idea is that if we allow for an inverse polynomial error

514 E. Boyle et al.

probability, and assuming there are only m = 2 servers, the servers can convert
multiplicative shares of gz into linear shares of z without any interaction. For
simplicity, suppose z ∈ {0, 1}. Taking the inverse of the second server’s share,
the servers now hold group elements g0, g1 such that g0 = g1 if z = 0 and
g1 = g · g0 if z = 1. Viewing the action of multiplication by g as a cycle over
Zq, the elements g0, g1 are either in identical positions, or g1 is one step ahead.
Conversion is done by picking a pseudo-random δ-sparse4 subset G

′ ⊂ G and
having each server b ∈ {0, 1} locally find the minimal integer zb ≥ 0 such that
gb · gzb ∈ G

′. The first such zb is expected to be found in roughly 1/δ steps and
if it is not found in (1/δ) log(1/δ) steps, we set zb = 0. The key observation is
that except with O(δ) probability, both searches will find the same point in G

′

and the servers end up with integers z1, z2 such that z1 − z2 = z, yielding the
desired linear sharing of z.

Once we have a linear sharing of z, we can freely add it with other values that
have a similar linear representation. We cannot hope to multiply two linearly
shared values, but only to multiply them with another encrypted input. However,
in order to perform another such a multiplication, we need additive shares not
only of z, but also of zc for the ElGamal key c.

The third idea is that the client can assist the conversion by also providing
an encryption of each input w multiplied by the secret key. This introduces two
problems: the first is that semantic security may break down given a circular
encryption of the secret key, which we handle either by assuming circular security
of ElGamal or (with some loss of efficiency) by using the circular-secure variant
of Boneh et al. [5] instead of standard ElGamal. A more basic problem is that
for the conversion to produce correct results with high probability, the secrets
must be small integers, whereas c (and so zc) is a large number. This is handled
by providing an encryption of each input x multiplied by each bit of the secret
key, and applying a linear combination whose coefficients are powers of 2 to the
linear shares of the products of x and the bits of the key.

These ideas allow the servers to compute a restricted type of “straight-line
programs” on the client’s input, consisting of a sequence of instructions that
either: load an input into memory, add the values of two memory locations,
or multiply a memory location by an input. (Note that we cannot multiply
two memory locations, which would allow evaluation of arbitrary circuits.) Such
programs can emulate any branching program of size S by a sequence of O(S)
instructions.

It is instructive to note that the only limit on the number of instructions
performed by the servers is the accumulation of error probabilities. This is anal-
ogous to the accumulation of noise in FHE schemes. However, the mechanisms
for coping with errors are very different: in the context of known FHE schemes
the simplest way of coping with noise is by using larger ciphertexts, whereas here
we can reduce the error probability by simply increasing the running time of the

4 Ideally, such a sparse subset would include each g ∈ G independently with probability
δ. To emulate this efficiently we include each g ∈ G in G

′ if φ(g) = 0�log 1/δ�, where
φ is a pseudorandom function.

Breaking the Circuit Size Barrier for Secure Computation Under DDH 515

servers, without affecting the ciphertext size or the complexity of encryption
and decryption at all. We can also further trade running time for succinctness:
the share size in our basic construction can be reduced by replacing the binary
representation of the secret key with a representation over a larger basis, which
leads to a higher homomorphic evaluation time.

The surprising power of local share conversions, initially studied in [14],
has already been observed in the related contexts of information-theoretic PIR
and locally decodable codes [2,16,39]. However, the type of share conversion
employed here is very different in nature, as it is inherently tied to efficient
computation rather than information.

Interestingly, our share conversion technique has resemblance to a crypt-
analytic technique introduced by van Oorschot and Weiner for the purpose of
parallel collision finding [37], where a set of “distinguished points” is used to
synchronize two different processors.

1.3 Future Directions

This work gives rise to many natural open questions and future research direc-
tions. Can one bootstrap from branching programs to general circuits without
relying on FHE? Can similar results be obtained for more than 2 parties? Can
similar results be based on other assumptions that are not known to imply FHE?
Can the dependence on the error parameter δ be eliminated or improved? To
what extent can our protocols be optimized for practical use?

We hope that our approach will lead to faster solutions for some practical
use-cases of FHE.

2 Preliminaries

We describe the necessary primitives and assumptions we rely on.

Function representations. We capture a function representation (such as a
circuit, formula, or branching program) by an infinite collection P of bit strings
P (called “programs”), each specifying an input length n and an output length
m, together with an efficient algorithm Evaluate, such that y ← Evaluate(P,w)
(denoted by shorthand notation “P (w)”), for any input w ∈ {0, 1}n, defines the
output of P on w.

Homomorphic secret sharing. A (2-party) Homomorphic Secret Sharing
(HSS) for a class of programs P consists of algorithms (Share,Eval), where
Share(1λ, (w1, . . . , wn)) splits the input w into a pair of shares (share0, share1),
and Eval(b, share, P, δ, β) homomorphically evaluates P on share, where the cor-
rect output is additively shared over Zβ except with error probability δ. When β
is omitted it is understood to be β = 2. We allow Eval to run in time polynomial
in its input length and in 1/δ and require that each shareb output by Share keeps
w semantically secure.

516 E. Boyle et al.

Public-Key Variant. We further consider a stronger variant of the homo-
morphic secret sharing primitive that supports homomorphic computations on
inputs contributed by different clients. In fact, what we achieve is stronger: there
is a single public key that can be used to encrypt inputs as in a standard public-
key encryption scheme. However, similar to the original notion of homomorphic
secret sharing (and in contrast to standard homomorphic encryption schemes),
homomorphic computations on encrypted inputs are done in a distributed way
and require two separate (secret) evaluation keys. As before, we require the
reconstruction of the output to be additive.

The corresponding security notion guarantees “semantic”-style secrecy of an
encrypted value, given only the evaluation key of a single server. In a setting
consisting of two servers and an arbitrary number of clients, the above security
notion implies that inputs contributed by a set of uncorrupted clients remain
secure even if one of the two servers colludes with all the remaining clients.

Definition 1 (Distributed-Evaluation Homomorphic Encryption).
A (2-party) Distributed-Evaluation Homomorphic Encryption (DEHE) for a
class of programs P consists of algorithms (Gen,Enc,Eval) with the following
syntax:

– Gen(1λ): On input a security parameter 1λ, the key generation algorithm out-
puts a public key pk and a pair of evaluation keys (ek0, ek1).

– Enc(pk, w): On a public key pk and a secret input value w ∈ {0, 1}, the encryp-
tion algorithm outputs a ciphertext ct.

– Eval(b, ek, (ct1, . . . , ctn), P, δ, β): On input party index b ∈ {0, 1}, an evaluation
key ek, vector of n ciphertexts, a program P ∈ P with n input bits and m output
bits, error bound δ > 0, and an integer β ≥ 2, the homomorphic evaluation
algorithm outputs yb ∈ Z

m
β , constituting party b’s share of an output y ∈

{0, 1}m. When β is omitted it is understood to be β = 2.

The algorithms Gen and Enc are PPT algorithms, whereas Eval can run in time
polynomial in its input length and in 1/δ.
The algorithms (Gen,Enc,Eval) should satisfy the following correctness and secu-
rity requirements:

– Correctness: There exists a negligible function ν such that for every positive
integer λ, input (w1, . . . , wn) ∈ {0, 1}n, program P ∈ P with input length n,
error bound δ > 0, and integer β ≥ 2,

Pr[(pk, (ek0, ek1)) ← Gen(1λ);
(ct1, . . . , ctn) ← (Enc(pk, w1), . . . ,Enc(pk, wn));
yb ← Eval(b, pk(ct1, . . . , ctn), P, δ, β) ∀b ∈ {0, 1} :

y0 + y1 = P (w1, . . . , wn)] ≥ 1 − δ − ν(λ),

where addition of y0 and y1 is carried out modulo β.
– Security: The two distribution ensembles C0(λ) and C1(λ) are computation-

ally indistinguishable, where Cw(λ) is obtained by letting (pk, (ek0, ek1)) ←
Gen(1λ) and outputting (pk, ekb,Enc(pk, w)).

Breaking the Circuit Size Barrier for Secure Computation Under DDH 517

2.1 DDH and Circular Security

Definition 2 (DDH). Let G = {Gρ} be a set of finite cyclic groups, where
|Gρ| = q and ρ ranges over an infinite index set. We use multiplicative notation
for the group operation and use g ∈ Gρ to denote a generator of Gρ. Assume that
there exists an algorithm running in polynomial time in log q that computes the
group operation of Gρ. Assume further that there exists a PPT instance generator
algorithm IG that on input 1λ outputs an index ρ which determines the group Gρ

and a generator g ∈ Gρ. We say that the Decisional Diffie-Hellman assumption
(DDH) is satisfied on G if IG(1λ) = (ρ, g) and for every non-uniform PPT
algorithm A and every three random a, b, c ∈ {0, . . . , q − 1} we have

|Pr[A(ρ, ga, gb, gab) = 1] − Pr[A(ρ, ga, gb, gc) = 1]| < ε(λ),

for a negligible function ε. We will sometimes write (G, g, q) ← IG(1λ).

A more efficient variant of our construction requires a circular security
assumption on the underlying bit encryption scheme, in which an efficient adver-
sary cannot distinguish encryptions of the bits of the secret key from encryptions
of 0.

Definition 3 (Circular Security). We say that a public-key encryption
scheme (Gen,Enc,Dec) with key length �(λ) and message space containing {0, 1}
is circular secure if there exists a negligible function ν(λ) for which the following
holds for every non-uniform PPT A:

Pr[(pk, sk) ← Gen(1λ), b ← {0, 1}, b′ ← AOb(pk) : b′ = b] ≤ 1
2

+ ν(λ),

where the oracle Ob takes no input and outputs the following (where sk(i) denotes
the ith bit of sk):

(C1, . . . , C�), where

{
∀i ∈ [�], Ci ← Enc(pk, 0) if b = 0
∀i ∈ [�], Ci ← Enc(pk, sk(i)) if b = 1

.

3 Homomorphic Secret Sharing for Branching Programs

In this section, we present constructions of homomorphic secret sharing schemes
that enable non-interactive evaluation of a certain class of programs, known
as restricted-multiplication straight-line programs. In particular, this class will
include deterministic branching programs.

Definition 4 (RMS programs). The class of Restricted Multiplication
Straight-line (RMS) programs consists of an arbitrary sequence of the four fol-
lowing instructions, each with a unique identifier id:

– Load an input into memory: (id, ŷj ← ŵi).
– Add values in memory: (id, ŷk ← ŷi + ŷj).

518 E. Boyle et al.

– Multiply value in memory by an input value: (id, ŷk ← ŵi · ŷj).
– Output value from memory, as element of Zβ: (id, β, Ôj ← ŷi).

Our construction will support homomorphic evaluation of straight-line pro-
grams of this form over inputs wi ∈ Z, provided that all intermediate com-
putation values in Z remain “small” (where the required runtime grows with
this size bound). Our final result is a public-key variant—i.e., a homomorphic
encryption scheme with distributed evaluation (as per Definition 1)—based on
DDH, with ciphertext size O(�) group elements per input (for � the logarithm
of the DDH group size), and where runtime for homomorphic evaluation of an
RMS program of size S with intermediate computation values bounded by M is
poly(λ, S,M, 1/δ).

An important sub-procedure of our homomorphic share evaluation algorithms
is a local share conversion algorithm DistributedDLog, which intuitively converts
a multiplicative secret sharing of gx to an additive secret sharing of the value x,
with inverse polynomial probability of error.

In the following subsections, we present: (1) The share conversion proce-
dure DistributedDLog, (2) a simplified version of the homomorphic secret shar-
ing scheme (in the secret-key setting), assuming circular security of ElGamal
encryption, (3) the analogous public-key construction, and (4) the final public-
key construction based on standard DDH.

3.1 Share Conversion Procedure

We now describe the local share conversion algorithm DistributedDLog, which
receives as input a group element h ∈ G and outputs an integer w. Loosely
speaking, DistributedDLog outputs the distance on the cycle generated by g ∈ G

between h and the first z ∈ G such that a pseudo-random function outputs 0 on z.
DistributedDLog is a deterministic algorithm and consequently two invocations
of the algorithm with the same element h result in the same output w. Two
invocations of the algorithm on inputs h and h ·gμ for a small μ result, with good
probability, in outputs w and w − μ. Therefore, the DistributedDLog algorithm
converts a difference of small μ in the cycle generated by g in G to the same
difference over Z.

The detailed description of DistributedDLog
G,g follows. The algorithm is hard-

wired with ρ defining a group G = Gρ and a generator g ∈ G. DistributedDLog
G,g

receives as input h ∈ G, an allowable error probability δ, maximum difference
μ ∈ N, and a pseudo-random function φ : G → {0, 1}log(4μ/δ). The difference μ
specifies the maximum distance from h, along the cycle that g generates, of an
element that is the input to a parallel invocation of DistributedDLog

G,g within a
given application.

Proposition 1. Let λ be a security parameter, let G = {Gρ} be a set of finite
cyclic groups and let the instance generator algorithm of the set running on input
1λ return a group G = Gρ with generator g. Let δ > 0, let μ ∈ N, let Fr be a
family of PRF defined over G and let φ : G → {0, 1}log(4/δ) be randomly chosen

Breaking the Circuit Size Barrier for Secure Computation Under DDH 519

Algorithm 1. DistributedDLog
G,g(h, δ, μ, φ)

1: Set z ← h, w ← 0.
2: while (φ(z) �= 0log(4μ/δ) and w < 4μ ln(4/δ)

δ
) do

3: z ← z · g, w ← w + 1.
4: end while
5: Output w.

from all the members of Fr with domain G. Then, for any h ∈ G and μ′ ≤ μ we
have that

DistributedDLog
G,g(h, δ, μ, φ) − DistributedDLog

G,g(h · gμ′
, δ, μ, φ) = μ′

with probability greater than 1 − δ.

Proof. The values of φ on the sequence of elements traversed by the variable z
in an execution of DistributedDLog

G,g(h, δ, μ, φ) can be divided into three cases.
The first case is that φ(h · gc) = 0log(4μ/δ) for some c in the range 0 ≤ c ≤
μ − 1, the second case is that φ(h · gc) 	= 0log(4μ/δ) for c = 0, . . . , μ − 1, but
φ(h · gc) = 0log(4μ/δ) for some c in the range μ ≤ c ≤ 4μ ln(4/δ)

δ and the last
case is that neither of the former occurs, i.e. φ(h · gc) 	= 0log(4μ/δ) for every
c = 0, 1, . . . , 4μ ln(4/δ)

δ .
In the second case, since φ(h · gc) 	= 0log(4μ/δ) for any c = 0, . . . , μ − 1,

the execution of DistributedDLog
G,g(h, δ, μ, φ) returns the smallest c, μ ≤ c ≤

4μ ln(4/δ)
δ such that φ(h) = 0log(4μ/δ). In DistributedDLog

G,g(h · gμ, δ, μ, φ) the
variable z ranges over the elements h·gμ, . . . , h·gc+μ and the return value is c−μ.
Therefore, DistributedDLog

G,g(h, δ, μ, φ)−DistributedDLog
G,g(h · gμ, δ, μ, φ) = μ.

By showing that the second case occurs with probability at least 1−δ we complete
the proof.

If R is a random function then the probability that R(h · gc) = 0log(4μ/δ) for
some c, 0 ≤ c ≤ μ − 1 is exactly 1 − (1 − δ/4μ)μ, which by induction is at most
1 − (1 − μδ/4μ) = δ/4. In addition,

Pr[∀c ∈ {0, . . . ,
4μ ln 4

δ

δ
} R(hgc) 	= 0log(4μ/δ)] ≤ (1 − δ

4μ
)

4μ ln(4/δ)
δ

< e− ln 4/δ =
δ

4

Since φ is selected randomly from an appropriate family of pseudo-random func-
tions any non-uniform PPT algorithm can distinguish between R and φ with
negligible probability. Specifically, the probability of the first case is bound by
|Pr[∃c, 0 ≤ c ≤ μ − 1 φ(h · gc) = 0log(4/δ)] − δ/4| < ε(δ) (for a negligible function
ε(δ)), since otherwise an efficient non-uniform algorithm can distinguish between
R and φ by testing their value on hard-coded element (h, δ, μ, φ) and returning

520 E. Boyle et al.

1 if the result is 0log(4μ/δ). Similarly, the probability of the third case is bound
by |Pr[∀c ∈ {0, . . . , 4 ln(4/δ)

δ } φ(hgc) 	= 0log(4/δ)] − δ/4| < ε(δ).
The probability of the second case is therefore at least 1 − δ

2 − 2ε(δ). ��

3.2 Homomorphic Secret Sharing

We now construct a simple version of the homomorphic secret sharing scheme,
using the procedure DistributedDLog as a sub-routine. The resulting scheme will
be a “secret-key” version. Further, the security of the scheme will rely on the
assumption that ElGamal encryption is circular secure. These restrictions will
be removed in the following subsections.

Consider a DDH group G of prime order q (with λ bits of security) with
generator g, and � = log2 q�. We will use c = c(1), . . . , c(�) to denote bits of an
element c ∈ Zq (i.e., c =

∑�−1
i=0 2ic(i+1)).

Overview of construction. All values generated within the secret sharing
and homomorphic evaluation sit within three “levels.” We will maintain notation
as in the top portion of Fig. 1. Namely,

Level 1: ElGamal Ciphertexts [[w]]c.
Initial input values w will be “uploaded” into the homomorphic evaluation
system by generating an ElGamal encryption [[w]]c of the value w with respect
to a common secret key c, as well as encryptions [[c(i)w]]c of each of the
products c(i)w for the bits c(i) of the corresponding key c.

Level 2: Additive secret shares 〈y〉.
Each value y in memory of the RMS program will be maintained via two
sets of additive secret shares: 〈y〉 itself, and 〈cy〉 secret sharing the product
of y with the ElGamal secret key c of the system. We start with secret shares
of this form for each input value (e.g., in the secret-key setting, these will
be generated as part of the Share procedure). Then, after each emulated
RMS instruction, we will maintain the invariant that each newly computed
memory value is stored as secret shares in this fashion.

Level 3: Multiplicative secret shares 〈〈xy〉〉.
Multiplicative secret shares appear only as intermediate values during the
execution of homomorphic evaluation (of multiplication), and are then con-
verted back to additive shares via DistributedDLog.

Remark 1 (Valid vs Random). We emphasize that a “valid” encoding (e.g.,
[[x]]c, 〈x〉, or 〈〈x〉〉) speaks only to the correctness of decoding, and does not imply
that the encoding is a random such encoding (e.g., a randomly sampled cipher-
text, or fresh secret shares).

The bottom portion of Fig. 1 describes two pairing operations that constitute
cross-level computations. The first, MultShares, “multiplies” a level-1 encoding
by a level-2 encoding. Namely, it takes as input a level-1 (ElGamal ciphertext)
encoding of x under key c, and level-2 (additive secret sharing) encodings of

Breaking the Circuit Size Barrier for Secure Computation Under DDH 521

Fig. 1. Notation for components of the homomorphic secret sharing scheme, and pair-
ing operations for transforming between different components.

y, and of cy (the product of y with the ElGamal secret key), and outputs a
level-3 (multiplicative secret sharing) encoding of the product xy. The second,
ConvertShares, converts from a level-3 (multiplicative) encoding back down to a
level-2 (additive) encoding, with some probability of error, as dictated by given
parameters.

Roughly, the intermediate values of homomorphic evaluation will be main-
tained in level-2 (additive) secret shared form. Any linear combination of such
shares can be performed directly. Multiplication between a value in memory and
an input value will be performed by performing the MultShares between the input
value (encoded in level 1) and the relevant memory value (encoded in level 2).
This will yield an encoding of the product, but in level 3 (i.e., as multiplicative
shares). To return the computed product back to level 2, the parties will execute
the pairing procedure ConvertShares, which essentially runs the DistributedDLog
procedure from the previous subsection.

Remark 2 (Variable Types). Note that the relevant values are nearly all elements
of G (e.g., elements of ElGamal ciphertexts) or of Zq (e.g., the values cyi, as well
as shares of SubtShare). An important exception to this are the values wi, yi,
which are interpreted as (small) integers. When necessary for computation, we
will sometimes perform a type cast back and forth between Z and Zq, using the
notation (int)(x) ∈ Z for x ∈ Zq, and (x mod q) ∈ Zq for x ∈ Z.

522 E. Boyle et al.

A few calculations provides us with the following two claims on these pairing
procedures (see full version of this work for details). A slight subtlety arises
in the case of ConvertShares, regarding the PRF. Namely, the share values on
which we run ConvertShares are the results of partial computations and previous
ConvertShares executions, meaning in particular that they depend on the choice
of the sampled PRF φ. However, this is not an issue due to two reasons: (1) this
dependence is efficiently computable given oracle access to the PRF outputs, as
specified in the algorithm DistributedDLog, and (2) we will explicitly ensure the
PRF is never used on the same input twice, by use of nonces id. In such case,
the PRF will still act as a random function in each ConvertShares invocation,
and yield the required share conversion correctness guarantee.

Claim (Pairing Operations).

1. MultShares: For all values x, y ∈ Zq and any key c ∈ Zq, then on input a
valid level-1 encoding [[x]]c with respect to key c, and valid level-2 encodings
〈y〉, 〈cy〉, the output of MultShares([[x]]c, 〈y〉, 〈cy〉) is a valid level-3 encoding
〈〈xy〉〉 of the product xy ∈ Zq.

2. ConvertShares: For every id ∈ {0, 1}λ, δ > 0,M ∈ N, PPT A, Pr[φ ←
PRFGen(1λ); (h, μ) ← Aφ(id′,·)(1λ) : μ < M ∧ ConvertShares(0, h, id, δ,M) +
ConvertShares(1, h−1gμ, id, δ,M) 	= μ] ≤ Mδ, where φ(id′, ·) is an oracle to
the PRF φ on any input with prefix id′ 	= id.

Fig. 2. Share generation procedure ShareG,g for secret sharing an input w via the
homomorphic secret sharing scheme.

We present our secret sharing scheme Share in Fig. 2, and the corresponding
homomorphic operations on shares Eval in Fig. 3.

We remark that our combined construction obtains a generalization of the
notion of HSS from Sect. 2 both extending beyond the Boolean setting to support
arithmetic computations over small integers, and allowing multiple outputs of the

Breaking the Circuit Size Barrier for Secure Computation Under DDH 523

Fig. 3. Procedures for performing homomorphic operations on secret shares. Note that
we distinguish variables of the straight-line program from the actual values by using ŷi

as opposed to yi, etc. Here, notation 〈y〉 is used to represent this party’s share of the
corresponding subtractive secret shared pair. Evaluation maintains the invariant that
each of the additive secret shares 〈yi〉 encode the correct current computation value
of ŷi.

program from possibly different groups Zβ (as specified by the program descrip-
tion P). The restricted case of the definition coincides with our construction with
size bound M set to 1 and all program outputs in a fixed group Zβ .

Theorem 1 (Homomorphic Secret Sharing). Assume that ElGamal is cir-
cular secure (as per Definition 3). Then the scheme (Share,Eval) as specified in
Figs. 2, 3 is a secure homomorphic secret sharing scheme for the class of deter-
ministic branching programs.

524 E. Boyle et al.

The theorem follows from the next two correctness and security lemmas.
In particular, correctness is proved for the broader class of RMS programs
with bounded-size intermediate computation values, which captures determinis-
tic branching programs. We provide proof sketches and refer the reader to the
full version for a complete analysis.

Lemma 1 (Correctness of Eval). For every input w1, . . . , wn ∈ Zq and every
RMS program P (as in Definition 4) of size S for which all intermediate values
yi ∈ Z in the execution of P are bounded by |yi| ≤ M ,

Pr[(share0, share1) ← ShareG,g(1λ, w1, . . . , wn) :
EvalG,g(share0, P,M, δ) + EvalG,g(share1, P,M, δ)

= P (w1, . . . , wn)] ≥ 1 − δ.

Proof Sketch. We first address the probability of error due to execution of the
Share Conversion Procedure ConvertShares. Observe that the homomorphic eval-
uation of program P performs at most S(�+1) executions of the Share Conversion
Procedure (with error parameter δ′ = δ/(�+1)MS). By Claim 3.2, together with
a union bound, this implies that no conversion errors will occur with probability
δ′(� + 1)MS = δ.

Assume, then, that every ConvertShares execution returns without error. We
prove that following invariant is maintained at each step of homomorphic eval-
uation:

For every memory item ŷi, let yi ∈ Z denote the correct value that should be
presently stored in memory. Then the shares 〈yi〉 = (yA

i , yB
i) ∈ Z

2
q and 〈cyi〉 =

(vA, vB) ∈ Z
2
q held by the parties satisfy:

(a) (int)(yA
i + yB

i) = yi ∈ Z (where addition is in Zq).
(b) vA + vB = cyi ∈ Zq.

Note that this invariant holds vacuously at the start of Eval, as all memory
locations are empty, and is preserved directly by our actions in each Load Input
Into Memory and Add Values In Memory instructions, due to the structure of the
additive secret sharing and since all intermediate values yi ∈ Z in the execution
are bounded by M < q (so that relations over Z align with relations over the
shares Zq).

For each instruction Multiply Input By Memory Value, consider the resulting
shares 〈yk〉 and 〈cyk〉. By Claim 3.2, the shares 〈〈wiyj〉〉 computed via MultShares
constitute a valid level-3 sharing of the product wiyj (as per Fig. 1). Since we
are in the case where ConvertShares does not err, the resulting converted shares
〈wiyj〉 encode exactly the value wiyj ∈ Zq. Since wiyj is an intermediate com-
putation value yk in the evaluation of P , we have 0 ≤ wiyj ≤ M < q. Thus,
invariant (a) holds. Consider now 〈cyk〉. From precisely the same argument (since
we are in the case where ConvertShares does not err), we have for each t ∈ [�]
that the computed intermediate value 〈c(t)yk〉 is a level-2 encoding of the corre-
sponding value vt := c(t)yk ∈ Zq (where yk = wiyj). Since yk is an intermediate
computation value in P we have 0 ≤ yk ≤ M < q, and so for c(t) ∈ {0, 1},

Breaking the Circuit Size Barrier for Secure Computation Under DDH 525

then 0 ≤ c(t)yk ≤ M < q. Thus, it holds (int)(vA
t −vB

t) = c(t)wiyj ∈ Z. Combin-
ing the respective values over t ∈ [�], it holds

(∑
t∈[�] 2

tvA
t

)
+

(∑
t∈[�] 2

tvB
t

)
=∑

t∈[�] 2
t(vA

t + vB
t) =

∑
t∈[�] 2

tc(t)wiyj = cwiyj ∈ Zq. Therefore, invariant (b)
holds.

Finally, for each Output Memory Value instruction, the shares of both parties
are deliberately shifted by a (pseudo-)random value to avoid the bad “edge
case” in which the shares yA, yB of the desired output value y satisfy (int)yB ≥
q − M and (int)(yA) − (int)(yB) = y − q (where locally modding each share
by β may disrupt correctness), as opposed to the almost-everywhere case that
(int)(yA) − (int)(yB) = y. The error probability is bounded by M/q + negl(λ),
which is negligible.

Lemma 2 (Security of Share). Based on the assumption that ElGamal is a
weakly circular secure encryption scheme (as per Definition 3), then Share is a
computationally secure secret sharing scheme.

Proof Sketch. We prove that the distribution of a single party’s share result-
ing from Share is computationally indistinguishable from a distribution that is
independent of the shared values w1, . . . , wn, via three hybrids. In Hybrid 1, we
replace all additive secret shares by random values. This yields an identical dis-
tribution, by the perfect security of the 2-out-of-2 additive secret sharing scheme.
In Hybrid 2, we replace all ciphertexts of the form {[[c(t)wi]]c} with encryptions
of 0, which we address below. In Hybrid 3, we rely on standard semantic security
to further replace all ciphertexts of the form [[wi]]c with encryptions of 0.

We now demonstrate that an efficient adversary A who distinguishes between
Hybrids 2 and 3 for some choice of inputs w1, . . . , wn can be used to break the
circular security of ElGamal. In the circular security challenge, the adversary B
receives an ElGamal public key pk and access to an oracle which provides either
vectors of encryptions of the bits of the secret key, or vectors of encryptions of
0. To simulate the ciphertext vectors for A as either {[[c(t)wi]]c} (Hybrid 2) or
{[[0]]c} (Hybrid 3), B (with w1, . . . , wn hardcoded) considers two cases. If wi = 0
then anyway c(t)wi = 0, so he simply generates a vector of 0 ciphertexts. For each
wi 	= 0, he: queries his circular security oracle, receives a vector of ciphertexts
[[xi,1]]c, . . . , [[xi,�]]c, and then exponentiates each ciphertext (that is, each of the 2
group elements) by the corresponding input wi. This operation maps ciphertexts
of 0 to ciphertexts of 0, and ciphertexts of 1 to ciphertexts of wi; further, since
wi 	= 0 and Zq is a field, the resulting distribution of encryption randomness is
also equally distributed (i.e., uniform). Therefore, either Hybrid 2 or 3 is exactly
simulated, and so the adversary A enables B to distinguish, breaking circular
security.

3.3 Public-Key HSS for Branching Programs

In the construction of the previous section, secret shares of an input w consisted
of ElGamal encryptions [[w]]c, {[[c(t)w]]c}t∈[�] and additive secret shares 〈w〉, 〈cw〉,
where c was a (freshly sampled) key for ElGamal. At face value, it would seem

526 E. Boyle et al.

that one must know the value of the key c in order to generate these values—
meaning, in turn, that homomorphic computation can only be performed on the
data of a single user who generates the key c. In this section, we demonstrate
that by leveraging the homomorphic properties of ElGamal encryption, we can
in fact generate all required values for a secret sharing of w while maintaining
security, given only “public key” information independent of the input w. That
is, we obtain homomorphic encryption with distributed evaluation, as discussed
in Sect. 2.

More formally, we now consider a separate procedure Gen for generating
common setup information pk and secret evaluation keys ek0, ek1 (which we
consider to be given to two servers). Given access to pk, a user can “upload”
his input w to the system via Enc. Then, given their respective evaluation keys,
two servers can perform non-interactive homomorphic computations on all users’
inputs via Eval.

In our construction, the algorithm Gen samples an ElGamal key pair, and
outputs pk consisting of encryptions [[1]]c, {[[c(t)]]c}t∈[�] and evaluation keys ekb

corresponding to additive secret shares of 〈c〉. In Enc, a user computes the nec-
essary ciphertexts [[w]]c and {[[c(t)w]]c}t∈[�] for his input w by exponentiating the
ciphertexts in pk component-wise by w, (i.e., using multiplicative homomorphism
of ElGamal). The final required values 〈w〉, 〈cw〉 can be obtained directly by the
servers within Eval by performing the procedure for a homomorphic multiplica-
tion between the “input value” w (i.e., given [[w]]c, {[[c(t)]]c}t∈[�]) together with
“memory value” 1 (i.e., given a trivial sharing 〈1〉 together with 〈c〉 from ek).

A formal description of the algorithms Gen,Enc,Eval is given in Fig. 4.

Theorem 2 (DEHE). Assume that ElGamal is circular secure (as per Def-
inition 3). Then the scheme (Gen,Enc,Eval) as given in Fig. 4 is a secure
Distributed-Evaluation Homomorphic Encryption scheme for the class of deter-
ministic branching programs.

Proof. Correctness. To reduce to Theorem 1, it suffices to demonstrate: (1) the
values [[w]]c, {[[c(t)w]]c}t∈[�] as generated in Enc are valid level-1 encodings of w

and {c(t)w}t∈[�]; and (2) the values 〈w〉, 〈cw〉 as generated in Eval are valid level-
2 encodings of w and cw. Property (1): Recall [[w]]c was obtained as (hw

1 , hw
2)

for (h1, h2) a valid level-1 encoding of 1. This means h2h
−c
1 = g1, which implies

(hw
2)(hw

2)−c = gw, as desired. Same for each [[c(t)w]]c. Property (2): Holds by
the correctness of homomorphic RMS multiplication evaluation of Eval as per
Theorem 1.

Security. Semantic security of the scheme follows as in Theorem 1, assum-
ing circular security of ElGamal. Namely, the view of a server holding ekb

consists of information theoretically hiding secret shares, ciphertexts of values
independent of the secret key, and vectors of ciphertexts encrypting the vector
(c(1)w, . . . , c(�)w) for various inputs w. An adversary distinguishing between this
view and one consisting of random share elements and ciphertexts of 0 can be
used to break the circular security of ElGamal, precisely as in Theorem 1.

Breaking the Circuit Size Barrier for Secure Computation Under DDH 527

Fig. 4. Construction of “public-key” variant of homomorphic secret sharing: i.e., homo-
morphic encryption with distributed evaluation.

Comparing the complexity of the public-key scheme (Gen,Enc,Eval) to that
of the secret-key scheme (Share,Eval) from the previous section, we see that the
computation cost to the user for uploading inputs w1, . . . , wn via Enc is essen-
tially equivalent to the cost of sharing the inputs via Share (exponentiating given
ciphertexts by the respective inputs in one case, versus encrypting the values
directly in the other), but the cost of each “load input” instruction (id, ŷj ← ŵi)
within the homomorphic evaluation now incurs the cost of a multiplication step
to generate additive secret shares 〈wi〉, 〈cwi〉 given only 〈c〉 and the uploaded
ElGamal ciphertexts associated with wi, as opposed to being essentially for free
for the client to generate 〈wi〉, 〈cwi〉 when he knew the values of wi, cwi.

528 E. Boyle et al.

3.4 Removing the Circular Security Assumption

We now show how to remove the ElGamal circular security assumption in the
construction in the previous section, yielding a scheme that relies solely on DDH.
As in the setting of FHE, this can be achieved directly in exchange for a mul-
tiplicative blowup of the computation depth in the share size, by considering a
leveled version of the scheme (i.e., replacing the circular encryptions of bits of c
under key c by bits of ci under key ci+1 for a depth-length sequence of keys).
However, we now demonstrate an alternative approach, which does not require
increasing the share size with respect to the size of computation.

Our new construction replaces ElGamal encryption with the ElGamal-like
cryptosystem of Boneh, Halevi, Hamburg, and Ostrovsky (BHHO) [5], which
is provably circular secure based on DDH. At a high level, BHHO ciphertexts
possess an analogous structure of “linear algebra in the exponent,” which allows
us to mirror the procedure we used with ElGamal for multiplicatively pairing a
ciphertext with an additively shared value.

It will be convenient to consider a slightly modified version of the BHHO
scheme, given below, in which the message space is a subset of the exponent
space Zq instead of the group G itself (i.e., the multiplication by message m in
standard encryption is replaced by gm). Since decryption of such scheme requires
taking discrete log, efficient decryption will hold for a polynomial-size message
space.

Definition 5 (BHHO Encryption [5]). Let G be a group of prime order q and
g a fixed generator of G. The size of G is determined by a security parameter
λ, in particular, 1/q is negligible in λ. The BHHO public-key encryption scheme
for polynomial-size message space Msg ⊂ Zq is as follows:

– Key Generation. Let � := 3 log2 q�. Choose random g1, . . . , g� ← G and a
random secret key vector s = (s1, . . . , s�) ← {0, 1}�. Let h = (gs1 · · · gs�

�)−1

and define the public and secret keys to be

pkBHHO := (g1, . . . , g�, h), skBHHO = (gs1 , . . . , gs�).

– Encryption. To encrypt m ∈ Msg, choose a random r ← Zq and output the
ciphertext (gr

1, . . . , g
r
� , hr · gm).

– Decryption. Let (c1, . . . , c�, d) be a ciphertext and skBHHO = (v1, . . . , v�) a
secret key. Do:

• Decode the secret key: For i = 1, . . . , �, set si ← 0 if vi = 1 and si ← 1
otherwise.

• Output m ∈ Msg for which gm = d · (cs1
1 · · · cs�

�).

Theorem 3 (Circular Security of BHHO [5]). Assuming DDH, the BBHO
encryption scheme satisfies circular security, as per Definition 3.

In order to emulate the homomorphic evaluation procedure of the previous
sections, there are two steps we must modify:

Breaking the Circuit Size Barrier for Secure Computation Under DDH 529

First, we must provide a means for pairing a BHHO ciphertext of an input
w with additive secret sharings of a value x to obtain a multiplicative secret
sharing of gwx. For ElGamal this was done given 〈x〉 and 〈cx〉, and computing
h

〈x〉
2 h

−〈cx〉
1 . Now, for BHHO, we can perform an analogous “partial decryption”

procedure given shares 〈x〉 and {〈six〉}i∈[�], for the bits si of the BHHO secret
key. The corresponding pairing computation is given as MultShares in Fig. 5.

Once we obtain a multiplicative secret sharing of gwx, we can perform the
same share-conversion procedure DistributedDLog from the previous sections to

Fig. 5. Modified DDH-based notation and pairing operations, making use of BHHO
encryption [5].

Fig. 6. DDH-based homomorphic encryption with distributed evaluation, making use
of the BHHO cryptosystem.

530 E. Boyle et al.

return to an additive secret sharing of wx (with some error probability δ). But,
to be able to perform a future pairing as above, we additionally must generate
additive secret sharings 〈wxsi〉 for each of the bits si of the secret key (analogous
to generating 〈cwx〉 in the ElGamal case). Conveniently, this BHHO task is
actually slightly simpler than that for ElGamal: whereas before we had to deal
with the large size of the secret key c ∈ Zq by operating on a bit decomposition of
c and then reconstructing, here the secret key (s1, . . . , s�) is already interpreted
as a binary vector. This means we can perform the multiplication steps directly
without requiring the decomposition/reconstruction steps.

We remark that BHHO ciphertexts are multiplicatively homomorphic in the
same fashion as ElGamal, which allows us to obtain a public-key variant of
the secret sharing scheme precisely as in the previous section. The required
procedure of modifying a ciphertext of some message x to one encrypting xy
given y is explicitly described as ([[x]]s)y in Fig. 5.

In Fig. 5, we provide the modified notation and pairing procedures for this
setting. The remaining notations 〈x〉, 〈〈x〉〉 and pairing operation ConvertShares
will remain as in the previous sections (Fig. 1). Given these sub-procedures,
we present in Figs. 6 and 7 the corresponding algorithms Gen,Enc,Eval. The
resulting share size is roughly λ times larger than in the previous section, as
BHHO ciphertexts are λ + 1 group elements in comparison to ElGamal which is
2. We refer the reader to the full version for a full proof of the following theorem.

Theorem 4 (DEHE from DDH). Assuming DDH, then the scheme
(Gen,Enc,Eval) as given in Figs. 6, 7 is a secure Distributed-Evaluation Homo-
morphic Encryption scheme for the class of deterministic branching programs.

4 Applications

In this section we describe applications of our homomorphic secret sharing
scheme and its public-key variant in the context of secure computation. We
restrict attention to security against semi-honest parties; to obtain similar
asymptotic efficiency in the presence of malicious parties, one can apply general-
purpose compilation techniques [23,30]. For lack of space, formal protocol
descriptions and security proofs are postponed to the full version.

4.1 Succinct Protocols for Branching Programs

Our protocols for branching programs can be based either on the weaker HSS
primitive via the transformation from [6], or can be built more directly from the
public-key variant. We present here the latter approach, which is more direct.
For simplicity, we restrict attention to the case of evaluating a single branching
program P on inputs x0, x1 held by Party 0 and Party 1 respectively. This can
be extended in a straightforward way to functions with m bits of output that
are computed either by m separate branching programs or by a single RMS
program.

Breaking the Circuit Size Barrier for Secure Computation Under DDH 531

Fig. 7. Procedures for performing homomorphic operations on secret shares. Here,
notation 〈y〉 is used to represent this party’s share of the corresponding subtractive
secret shared pair. Evaluation maintains the invariant that each of the additive secret
shares 〈yi〉 encode the correct current computation value of ŷi.

The simplest protocol proceeds as follows. The two parties run a general-
purpose protocol (such as Yao’s protocol) to jointly evaluate the key generation
Gen. In the end of this sub-protocol, both parties hold a public key pk and each
holds a secret evaluation key ekb. While this step may be expensive, its com-
plexity depends (polynomially) only on the security parameter λ, and moreover
the same key setup can be used for evaluating an arbitrary number of branching
programs on an arbitrary number of inputs. In this basic version of the protocol,
the key generation protocol is the only step that does not make a black-box use
of the underlying DDH group.

532 E. Boyle et al.

Next, each party uses Enc(pk, ·) to encrypt every bit of its input, and sends
the encryptions to the other party. Finally, the two parties locally run Eval to
generate additive (mod-2) shares of the output P (x0, x1). If Eval had negligible
error, the parties could simply exchange their shares of the output, since the
share sent to Party b is determined by the output and the share computed by
Party b.

The fact that Eval has a non-negligible error δ is problematic for two rea-
sons. First, it poses a correctness problem. This can be fixed by setting δ to
be a constant (say, δ = 1/4), running σ independent instances of Eval, for a
statistical security parameter σ,5 and outputting the majority value. However,
this modification alone will not suffice, because the existence of errors within the
homomorphic evaluation is dependent on the computation values, and as such
the σ output bits may leak information about the inputs. Instead, the parties
apply the σ instances of Eval locally (as before), and distribute the reconstruc-
tion function (computing majority of XORs) using general-purpose secure com-
putation. This ensures that only the correct output is revealed (and no further
information) with negligible correctness and secrecy error.

The communication complexity of the above protocol is n · poly(λ), where
n = |x0| + |x1| is the combined length of the two parties’ inputs. This can be
improved to n+poly(λ) by using the following hybrid encryption techniques [20].
Let Fr be a pseudorandom function computable in NC1, which can be based on
DDH [31]. Following the key generation phase, each party encrypts a random
key rb for F . Then, instead of separately encrypting each bit of xb using Enc,
Party b simply masks each bit i of its input using Frb

(i) and sends to the other
party the encryption of rb and all of the masked bits. The value of program P on
the inputs can now be expressed as the value of a (polynomially larger) publicly
known branching program P ′ on the inputs r0, r1, where P ′ is determined by P
and the masked inputs. The evaluation of P ′ is repeated σ times as before. This
yields the following:

Theorem 5. Under the DDH assumption, there exists a constant-round secure
2-party protocol for evaluating branching programs of size S on inputs (x0, x1)
of total length n, using n + poly(λ) bits of communication.

4.2 Breaking the Circuit Size Barrier for “Well Structured”
Circuits

We turn to the question of reducing the communication complexity of evaluating
a deep boolean circuit C of size S and depth D. We assume for simplicity that
the circuit is layered in the sense that its S gates can be partitioned into D + 1
layers such that the gates from layer i (except input gates) receive their inputs
from gates of layer i − 1. This can be generalized to a broader class of “well-
structured” circuits that captures most instances of circuits that arise naturally.
5 Here we assume that the events of error in different instances of Eval are independent.

This can be enforced by using a fresh set of pseudorandom values for each share
conversion.

Breaking the Circuit Size Barrier for Secure Computation Under DDH 533

Given a layered circuit as above, we divide the layers into intervals of log S�
consecutive layers, and pick for every interval the layer that has the smallest
number of gates (except for the input layer). Overall, we have at most D/ log S
“special” layers, whose total size is at most S/ log S. In addition, the output
layer is considered the last special layer.

The crucial observation is that each output of a new special layer can be
expressed as a circuit of depth O(log S) applied to values of the previous special
layer. The protocol will compute the values of the special layers one at a time, by
using the previous protocol for branching programs, except that the reconstruc-
tion protocol is only applied in the end. That is, given additive shares of special
layer i, each party encrypts his shares and the parties apply Eval on a function
(computable by polynomial-size branching programs) that first reconstructs the
value and then computes the outputs of special layer i + 1.

To avoid a multiplicative factor of σ in communication, we need to apply a
more efficient error correction procedure for intermediate layers. To this end, we
apply an asymptotically good error-correcting code, with encoding and decod-
ing in NC1, for encoding the values of each special layer. (Many such codes are
known to exist; see, e.g., [34]; moreover, by using a Las-Vegas type algorithm for
the share conversion it suffices to correct erasures.) The computation performed
by Eval will start by reconstructing the noisy encoding of layer i (using XOR),
then apply a decoder to recover the actual values of layer i, then compute the
outputs of layer i + 1, and then encode these outputs. If the error probability δ
of Eval is smaller than the relative error correction radius of the code, the error
rate in the encoded output will be within the error-correction radius with over-
whelming probability. Thus, we can use a general-purpose protocol for decoding
the correct outputs from the shared noisy encoding. This approach yields the
following theorem.

Theorem 6. Under the DDH assumption, there exists a secure 2-party protocol
for evaluating any layered boolean circuit of size S, depth D, input length n,
and output length m using O(S/logS) + O(Dσ/ log D) + n + m · poly(λ) bits of
communication (for σ, λ statistical and computational security parameters).

4.3 Function Secret Sharing and Generalized PIR

Function Secret Sharing. As discussed in the Introduction, homomorphic
secret sharing can be viewed as a “dual” notion of function secret sharing, as
defined in [6]. In a homomorphic secret sharing scheme for a class of programs
P, given a share of a secret input w and a public program P ∈ P, one can locally
compute a share of Π(w). In a function secret sharing (FSS) scheme for function
class F , given a share of a secret function (represented by a “program”’) and a
public input x, one can locally compute a share of f(x). In particular, given a
homomorphic secret sharing scheme supporting a class of programs P containing
a universal program U , one can directly obtain a FSS scheme for P, by secret
sharing a description of the secret program P ∈ P, and then shares of the

534 E. Boyle et al.

evaluation of P on an input x can be obtained by homomorphically evaluating
the universal program Ux(·) on the given shares. If for each program P ∈ P the
homomorphic secret sharing scheme produces output error on the evaluation of
P with probability δ (over the randomness of the secret sharing), then for each
input x in the domain of f , the resulting FSS scheme will also yield an output
error with probability δ.

Thus, as a corollary of our homomorphic secret sharing scheme, we obtain a
DDH-based FSS scheme for branching program with an arbitrary inverse polyno-
mial error. The resulting FSS key size corresponds to the size of a homomorphic
secret share of a description of the secret function: namely, a fixed polynomial
in the size of the branching program S and security parameter λ.

Private Information Retrieval. A motivating application regime of func-
tion secret sharing (and thus our homomorphic secret sharing scheme) is that of
2-server private information retrieval (PIR) for expressive query classes [6]. As we
demonstrate, such applications can be achieved with negligible error even when
starting with FSS with inverse-polynomial error δ. Together with our construc-
tion of such δ-FSS, this gives us DDH-based 2-server PIR for queries expressed
by branching programs. Useful examples include counting or retrieving matches
that are specified by conjunction queries or fuzzy match predicates (e.g., requir-
ing that a document contains at least a given threshold of keywords from a given
list).

A (standard) FSS scheme for a program class P can be used to obtain secure
2-server PIR schemes for classes of queries related to P, via three basic steps.
For simplicity, we focus our treatment to querying the count of database entries
satisfying a (secret) predicate f ∈ F .6 (1) The client generates FSS shares P0, P1

of the desired query P and sends one share to each server. (2) The servers locally
compute, and reply with, the linear combination

∑
x∈DB Pb(x) for database DB

(where the output group of P, P0, P1 is ZN for N = |DB|). (3) Then, leveraging
the linearity of FSS reconstruction, the client can recover the desired output∑

x∈DB P (x) =
∑

x∈DB P0(x) +
∑

x∈DB P1(x). To extend this approach to δ-
FSS, we execute several independent parallel instances of the δ-FSS scheme,
and compute the majority of the resulting execution outputs. Note that here,
unlike the secure computation application, there is no danger of releasing the
(potentially noisy) outcomes of the parallel executions directly, as no hiding
guarantees are required against the PIR client.

5 Examples and Optimizations

We now introduce several optimizations and trade-offs between computation
and communication within our HSS construction, and describe their applications
within two examples of using homomorphic secret sharing. We first consider a toy
example of a client who computes the AND of n bits x1, . . . , xn by homomorphic

6 Using sketching or coding techniques (e.g., [18,32]), this approach can be extended
to recovery of data entries satisfying a hidden predicate.

Breaking the Circuit Size Barrier for Secure Computation Under DDH 535

secret sharing. We then describe a partial match search in a PIR setting. All the
examples and optimizations within this section assume the circular security of
ElGamal.

The communication of our homomorphic secret sharing scheme is dominated
by the �+1 ElGamal ciphertexts, or 2(�+1) group elements encoding each input
bit (where � = log2 |G| for DDH group G). The computation is dominated by
running MultShares and ConvertShares �+1 times for each product of a memory
variable and input variable.

MultShares consists of raising a group element to the power of a secret share,
which given a sliding window implementation requires less than 3�/2 group oper-
ations. The computation time of ConvertShares with target error δ′ and maximum
difference between two shares M is dominated by 4M ln(4/δ′)

δ′ group operations.
Consider the following optimizations and trade-offs.

1. Ciphertext description reduction. The first optimization is heuristically secure
(or alternatively, secure in the random oracle model) and uses a PRG
G : {0, 1}� → G

�+1 to reduce the communication by almost half. Let
G(σ) = (gr, gr1 , . . . , gr�) for a seed σ ∈ {0, 1}�. To encode an input bit,
instead of sending �+1 complete ElGamal ciphertexts, a party will now send
(a random) σ and the � + 1 group elements (grc+wi , gr1c+wic1 , . . . , gr�c+wic�),
corresponding to the second terms of the prescribed ciphertexts, using the
outputs of G(σ) implicitly as the first terms. Given this information, each
party can locally generate the full � + 1 ciphertexts, and compute as before.

2. Modified key representation. A trade-off reducing communication and increas-
ing computation is possible by changing the representation of the key c from∑�−1

j=0 cj2j in base 2 to
∑�′−1

j=0 c′
jB

j in base B = 2b for some b > 1. Com-
munication complexity and the number of MultShares and ConvertShares are
reduced by a factor of b, as the � encryptions of {cjwi}j∈[�] encoding input wi

can be replaced by �′ encryptions of {cj′wi}j′∈[�′]. However, in ConvertShares
the possible difference M between the shares held by the two parties (equiv-
alently, the size of encoded values) increases from 1 to B − 1, increasing the
computation time by a factor of B − 1.

3. Las-Vegas algorithm. A Las-Vegas type algorithm for share conversion can be
used to relax the target error probability and reduce the computation time.
ConvertShares potentially induces an error in one of two situations (these are
the two error cases in the proof of Proposition 1) which can both be identified
by the second party. In the proposed optimization, the second party outputs a
flag indicating failure in each of these cases. The client is sure that the result
is correct if the second player does not return a failure. Given target error
probabilities δ for the whole protocol and, e.g., 1/4 for a single execution,
we require that the number of independent executions of the algorithm γ

satisfies (1/4)γ < δ, or γ > ln 1/δ
ln 4 . Note that this optimization may reveal to

the client information on intermediate computation values, since errors are
input dependent. However, this type of leakage is harmless for applications
like PIR.

536 E. Boyle et al.

4. Breaking computation into chunks. The final trade-off increases communica-
tion and decreases computation by breaking the computation into “chunks”
and encrypting (and communicating) the input to each chunk separately.
Loosely speaking, if the computation is split into ζ chunks, then the required
communication increases by a factor of ζ, and computation is reduced by a
factor of ζ because the quadratic overhead in computing n gates is reduced to
ζ times computing a quadratic overhead in n/ζ gates. In general this method
requires up to ζ communication rounds, but in certain applications (like PIR)
it does not require additional interaction.

Homomorphic n-bit AND. In the first (toy) example application, the com-
munication complexity is dominated by 2(� + 1)n group elements, to encode n
bits. The operations are n − 1 homomorphic evaluations of AND of bits, which
amount to less than n� applications of MultShares and ConvertShares or a total
of less than 3n�2

2 + 4n2� ln 4n/δ
δ group operations. In this example, communication

is minimized by using the ciphertext reduction optimization and by representing
c in base B = 2b. Communication complexity is about (�+1)n

b group elements

and computation is dominated by 3n�2

2b2 + 4Bn2� ln 4n/δ
bδ group operations. Com-

putation is minimized using ciphertext reduction, the Las-Vegas algorithm, and
breaking into chunks. The communication complexity is increased by a factor of
ζ for each of the ln 1/δ

ln 4 � invocations of the Las Vegas algorithm or ln 1/δ
ln 4 �ζn�

group elements altogether. The computation requires at most⌈
ln 1/δ

ln 4

⌉(
3n�2

2
+

16n2� ln(16n/ζ)
ζ2

)

group operations altogether.

2PC formula evaluation. The second example is a two-party computation
of a formula ψ. This application requires the public-key variant of our protocol.
The unoptimized version of this protocol is roughly similar in performance to
the unoptimized version of homomorphic secret sharing. However, two of the
optimizations, ciphertext reduction and the Las-Vegas algorithm do not apply
in this case. Communication can be minimized by representing c in base B,
reducing communication by log B and increasing computation by B compared
to the unoptimized version. Computation can be minimized by breaking ψ into ζ
chunks increasing communication by ζ and reducing computation by ζ compared
to the unoptimized version.

Acknowledgements. We thank an anonymous reviewer for pointing out the relevance
of [37].

Research done in part while visiting the Simons Institute for the Theory of Comput-
ing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration
in Cryptography through NSF grant #CNS-1523467. Supported by ERC starting grant
259426.

First author was additionally supported by ISF grant 1709/14 and ERC start-
ing grant 307952. Second author was additionally supported by ISF grant 1638/15,

Breaking the Circuit Size Barrier for Secure Computation Under DDH 537

a grant by the BGU Cyber Center, the Israeli Ministry Of Science and Technology
Cyber Program and by the European Union’s Horizon 2020 ICT program (Mikelan-
gelo project). Third author was additionally supported by ISF grant 1709/14, BSF
grant 2012378, a DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955,
NSF grants 1228984, 1136174, 1118096, and 1065276. This material is based upon
work supported by the Defense Advanced Research Projects Agency through the ARL
under Contract W911NF-15-C-0205. The views expressed are those of the author and
do not reflect the official policy or position of the Department of Defense, the National
Science Foundation, or the U.S. Government.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

2. Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private infor-
mation retrieval. In: Proceedings of CCC, pp. 258–268 (2012)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of STOC, pp. 1–10 (1988)

4. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

5. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedigs of STOC, pp. 11–19 (1988)

9. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: Proceedings of 29th Annual ACM Symposium on the Theory of
Computing, pp. 304–313 (1997)

10. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. IACR
Cryptology ePrint Archive 1998:3 (1998)

11. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

12. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015)

13. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–
839 (1985)

14. Cramer, R., Damg̊ard, I.B., Ishai, Y.: Share conversion, pseudorandom secret-
sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

538 E. Boyle et al.

15. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. IACR Cryptology ePrint Archive, 2016:272 (2016). To appear in Crypto
2016

16. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: Pro-
ceedings of STOC, pp. 39–44 (2009)

17. Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M.J., Wright, R.N.:
Secure multiparty computation of approximations. In: Orejas, F., Spirakis, P.G.,
van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 927–938. Springer,
Heidelberg (2001)

18. Finiasz, M., Ramchandran, K.: Private stream search at the same communication
cost as a regularsearch: role of LDPC codes. In: Proceedings of ISIT, pp. 2556–2560
(2012)

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC, pp. 169–178 (2009)

20. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
J. Cryptol. 28(4), 820–843 (2015)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

22. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of STOC,
pp. 218–229 (1987)

24. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015)

25. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

26. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate private
information retrieval from homomorphic encryption. PoPETs 2015(2), 222–243
(2015)

27. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: Proceedings of FOCS 1997, pp.
364–373 (1997)

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of STOC
2012, pp. 1219–1234 (2012)

29. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26

30. Naor, M., Nissim, K.: Communication preserving protocols for secure function
evaluation. In: Proceedings of STOC, pp. 590–599 (2001)

31. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: Proceedings of FOCS, pp. 458–467 (997)

32. Ostrovsky, R., Skeith III, W.E.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

http://dx.doi.org/10.1007/978-3-662-49896-5_26

Breaking the Circuit Size Barrier for Secure Computation Under DDH 539

33. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homo-
morphisms. In: Foundations of Secure Computation, pp. 169–179. Academic,
New York (1978)

34. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory 42(6), 1723–1731 (1996)

35. Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of STOC
1976, pp. 196–203 (1976)

36. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

37. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

38. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: Pro-
ceedings of FOCS, pp. 162–167 (1986)

39. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
In: Proceedings of STOC, pp. 266–274 (2007)

Algorithmic Number Theory

Extended Tower Number Field Sieve: A New
Complexity for the Medium Prime Case

Taechan Kim1(B) and Razvan Barbulescu2

1 NTT Secure Platform Laboratories, Tokyo, Japan
taechan.kim@lab.ntt.co.jp

2 CNRS, Univ Paris 6, Univ Paris 7, Paris, France
razvan.barbulescu@imj-prg.fr

Abstract. We introduce a new variant of the number field sieve
algorithm for discrete logarithms in Fpn called exTNFS. The most
important modification is done in the polynomial selection step, which
determines the cost of the whole algorithm: if one knows how to
select good polynomials to tackle discrete logarithms in Fpκ , exTNFS
allows to use this method when tackling Fpηκ whenever gcd(η, κ) =
1. This simple fact has consequences on the asymptotic complexity
of NFS in the medium prime case, where the complexity is reduced
from LQ(1/3, 3

√

96/9) to LQ(1/3, 3
√

48/9), Q = pn, respectively from
LQ(1/3, 2.15) to LQ(1/3, 1.71) if multiple number fields are used. On
the practical side, exTNFS can be used when n = 6 and n = 12 and this
requires to updating the keysizes used for the associated pairing-based
cryptosystems.

Keywords: Discrete logarithm problem · Number field sieve · Finite
fields · Cryptanalysis

1 Introduction

The discrete logarithm problem (DLP) is at the foundation of a series of public
key cryptosystems. Over a generic group of cardinality N , the best known algo-
rithm to solve the DLP has an exponential running time of O(

√
N). However,

if the group has a special structure one can design better algorithms, as is the
case for the multiplicative group of finite fields FQ = Fpn where the DLP can be
solved much more efficiently than in the exponential time. For example, when
the characteristic p is small compared to the extension degree n, the best known
algorithms have quasi-polynomial time complexity [6,21].

DLP Over Fields of Medium and Large Characteristic. Recall the usual
LQ-notation,

LQ(�, c) = exp
(
(c + o(1))(log Q)�(log log Q)1−�

)
,

This work is a merged version of two consecutive works [4,24].

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 543–571, 2016.
DOI: 10.1007/978-3-662-53018-4 20

544 T. Kim and R. Barbulescu

for some constants 0 ≤ � ≤ 1 and c > 0. We call the characteristic p = LQ(�p, cp)
medium when 1/3 < �p < 2/3 and large when 2/3 < �p ≤ 1. We say that a field
Fpn is in the boundary case if �p = 2/3.

For medium and large characteristic, in particular when Q is prime, all
the state-of-the-art attacks are variants of the number field sieve (NFS) algo-
rithm. Initially used for factoring, NFS was rapidly introduced in the context of
DLP [20,32] to target prime fields. One had to wait almost one decade before the
first constructions for Fpn with n > 1 were proposed [33], known today [7] as the
tower number field sieve (TNFS). This case is important because it is used to
choose the key sizes for pairing based cryptosystems. Since 2006 one can cover
the complete range of large and medium characteristic finite fields [22]. This
latter approach that we denote by JLSV has the advantage to be very similar to
the variant used to target prime fields, except for the first step called polynomial
selection where two new methods were proposed: JLSV1 and JLSV2.

In the recent years NFS in fields Fpn with n > 1 has become a laboratory
where one can push NFS to its limits and test new ideas which are ineffec-
tive or impossible in the factorization variant of NFS. Firstly, the polynomial
selection methods were supplemented with the generalized Joux-Lercier (GJL)
method [5,27], with the Conjugation (Conj) method [5] and the Sarkar-Singh
(SS) method [31]. One can see Table 1 for a summary of the consequences of
these methods on the asymptotic complexity. In particular, in all these algo-
rithms the complexity for the medium prime case is slightly larger than that of
the large prime case.

Table 1. The complexity of each algorithms in the medium and large prime cases.

Each cell indicates c if the complexity is LQ(1/3, (c/9)
1
3).

p = LQ(�p) 1/3 < �p < 2/3 best �p = 2/3 2/3 < �p < 1

TNFS [7,33] none none 64

NFS-JLSV [22] 128 64 64

NFS-(Conj and GJL) [5] 96 48 64

NFS-SS [31] 96 48 64

exTNFS (this article) 48a 48a 64
aThe best complexity is obtained when n has a factor of the appropriate
size as specified in Theorem 1.

Secondly, a classical idea which was introduced in the context of factorization
is to replace the two polynomials f and g used in NFS by a polynomial f and sev-
eral polynomials gi, i = 1, 2, . . . which play the role of g. All the currently known
variants of NFS admit such variants with multiple number fields (MNFS) which
have a slightly better asymptotic complexity, as shown in Table 2. The discrete
logarithm problem allows to have a case with no equivalent in the factorization
context: instead of having a distinguished polynomial f and many sides gi all
the polynomials are interchangeable [8].

Extended Tower Number Field Sieve: A New Complexity 545

Table 2. The complexity of each algorithms using multiple number fields. Each cell

indicates an approximation of c if the complexity is LQ(1/3, (c/9)
1
3)

p = LQ(�p) 1/3 < �p < 2/3 best �p = 2/3 2/3 < �p < 1

MTNFS [7] none none 61.93

MNFS-JLSV [8] 122.87 61.93 61.93

MNFS-(Conj and GJL) [30] 89.45 45.00 61.93

MNFS-SS [31] 89.45 45.00 61.93

MexTNFS (this article) 45.00a 45.00a 61.93
aThe best complexity is obtained under the assumption that n has a factor
of the appropriate size. See Theorem 1.

Thirdly, when the characteristic p has a special form, as it is the case for
fields in several pairing-based cryptosystems, one might speed-up the computa-
tions by variants called special number field sieve (SNFS). In Table 3 we list the
asymptotic complexity of each algorithm. Once again, the medium characteristic
case has been harder than the large characteristic one.

Table 3. The complexity of each algorithms used when the characteristic has a
special form (SNFS) Each cell indicates an approximation of c if the complexity is

LQ(1/3, (c/9)
1
3)

p = LQ(�p) 1/3 < �p < 2/3 2/3 < �p < 1

SNFS-JP [23] 64 32

STNFS [7] none 32

SexTNFS (this article) 32a 32
aThe best complexity is obtained under the assumption
that n has a factor of the appropriate size. See Theorem 1.

Our Contributions. Let us place ourselves in the case when the extension
degree is composite with relatively prime factors, n = ηκ with gcd(η, κ) = 1. If
the particular cases η = 1 and κ = 1 we obtain known algorithms but we don’t
exclude thses cases from our presentation. The basic idea is to use the trivial
equality

Fpn = F(pη)κ .

In the JLSV algorithm, Fpn is constructed as Fp[x]/k(x) for an irreducible poly-
nomial k(x) of degree n. In the TNFS algorithm Fpn is obtained as R/pR where
R is a ring of integers of a number field where p is inert. In our construction
Fpη = R/pR as in TNFS and Fpn = (R/pR)[x]/(k(x)) where k is a degree κ
irreducible polynomial over Fpη .

Interestingly, this construction can be integrated in an algorithm, that we
call the extended number field sieve (exTNFS), in which we can target Fpηκ

546 T. Kim and R. Barbulescu

with the same complexity as FP κ for a prime P of the same bitsize as pη. Hence
we obtain complexities for composite extension degrees which are similar in the
medium characteristic case to the large characteristic case. This is because our
construction lets us to consider the norm of an element from a number field Kf

that is ‘doubly’ extended by h(t) and f(x), i.e. Kf := Q(ι, αf), where ι and
αf denote roots of h and f , respectively. It provides a smaller norm size, which
plays an important role during the complexity analysis than when we work with
an absolute extension of the same degree.

Since the previous algorithms have an “anomaly” in the case �p = 2/3, where
the complexity is better than in the large prime case, when n is composite we
obtain a better complexity for the medium prime case than in the large prime
case.

Overview. We introduce the new algorithm in Sect. 2 and analyse its com-
plexity in Sect. 3. The multiple number field variant and the one dedicated to
fields of SNFS characteristic are discussed in Sect. 4. In Sect. 5 we make a pre-
cise comparison to the state-of-the-art algorithms at cryptographic sizes before
deriving new key sizes for pairings in Sect. 6. We conclude with cryptographic
implications of our result in Sect. 7.

2 Extended TNFS

2.1 Setting

Throughout this paper, we target fields FQ with Q = pn where n = ηκ such that
η, κ �= 1, gcd(η, κ) = 1 and the characteristic p is medium or large, i.e. �p > 1/3.

First we select a polynomial h(t) ∈ Z[t] of degree η which is irreducible
modulo p. We put R := Z[t]/h(t) and note that R/pR � Fpη . Then we select
two polynomials f and g with integer coefficients whose reductions modulo p have
a common factor k(x) of degree κ which is irreducible over Fpη . Our algorithm
is unchanged if f and g have coefficients in R because in all the cases we use the
number fields Kf (resp. Kg) defined by f (resp. g) above the fraction field of R
but this generalization is not needed for the purpose of this paper, except in a
MNFS variant.

The conditions on f , g and h yield two ring homomorphisms from R[x]/f(x)
(resp. R[x]/g(x)) to (R/pR)/k(x) = Fpηκ : in order to compute the reduction of a
polynomial in R[x] modulo p then modulo k(x) one can start by reducing modulo
f (resp. g) and continue by reducing modulo p and then modulo k(x). The result
is the same if we use f as when we use g. Thus one has the commutative diagram
in Fig. 1 which is a generalization of the classical diagram of NFS.

After the polynomial selection, the exTNFS algorithm proceeds as all the
variants of NFS, following the same steps: relations collection, linear algebra
and individual logarithm. Most of these steps are very similar to the TNFS
algorithms as we shall explain below.

Extended Tower Number Field Sieve: A New Complexity 547

R[x]

Kf ⊃ R[x]/〈f(x)〉 R[x]/〈g(x)〉 ⊂ Kg

(R/pR)[x]/〈k(x)〉
mod p

mod k(x)

mod p

mod k(x)

Fig. 1. Commutative diagram of exTNFS. When R = Z this is the diagram of NFS for
non-prime fields. When k(x) = x − m for some m ∈ R this is the diagram of TNFS.
When both R = Z and k(x) = x − m this is the diagram of NFS.

2.2 Detailed Descriptions

Polynomial Selection.

Choice of h. We have to select a polynomial h(t) ∈ Z[t] of degree η which is
irreducible modulo p and whose coefficients are as small as possible. As in TNFS
we try random polynomials h with small coefficients and factor them in Fp[t] to
test irreducibility. Heuristically, one succeeds after η trials and since η ≤ 3η we
expect to find h such that ‖h‖∞ = 1. For a more rigorous description on the
existence of such polynomials one can refer to [7].

Next we select f and g in Z[x] which have a common factor k(x) modulo
p of degree κ which remains irreducible over Fpη . It is here that we use the
condition gcd(η, κ) = 1 because an irreducible polynomial k(x) ∈ Fp[x] remains
irreducible over Fpη if and only if gcd(η, κ) = 1. If one has an algorithm to select
f and g in R[x] one might drop this condition, but in this paper f and g have
integer coefficients. Thus it is enough to test the irreducibility of k(x) over Fp

and we have the same situation as in the classical variant of NFS for non-prime
fields (JLSV): JLSV1, JLSV2, Conjugation method, GJL and Sarkar-Singh. Let
us present two of these methods which are important for results of asymptotic
complexity.

JLSV2 Method. We briefly describe the polynomial selection introduced in
Sect. 3.2 of [22]. One first chooses a monic polynomial f0(x) of degree κ with small
coefficients, which is irreducible over Fp (and automatically over Fpη because
gcd(η, κ) = 1). Set an integer W ≈ p1/(D+1), where D is a parameter deter-
mined later subject to the condition D ≥ κ. Then we define f(x) := f0(x + W).
Take the coefficients of g(x) as the shortest vector of an LLL-reduced basis of
the lattice L defined by the columns:

L := (p · x0, . . . , p · xκ, f(x),xf(x), . . . ,xD+1−κf(x)).

Here, f(x) denotes the vector formed by the coefficients of a polynomial f .
Finally, we set k = f then we have

548 T. Kim and R. Barbulescu

– deg(f) = κ and ‖f‖∞ = O(p
κ

D+1);
– deg(g) = D ≥ κ and ‖g‖∞ = O(p

κ
D+1).

Conjugation Method. We recall the polynomial selection method in Algorithm 4
of [5]. First, one chooses two polynomials g1(x) and g0(x) with small coefficients
such that deg g1 < deg g0 = κ. Next one chooses a quadratic, monic, irreducible
polynomial μ(x) ∈ Z[x] with small coefficients. If μ(x) has a root δ in Fp and
g0+δg1 is irreducible over Fp (and automatically over Fpη because gcd(η, κ) = 1),
then set k = g0 + δg1. Otherwise, one repeats the above steps until such g1,
g0, and δ are found. Once it has been done, find u and v such that δ ≡ u/v
(mod p) and u, v ≤ O(

√
p) using rational reconstruction. Finally, we set f =

ResY (μ(Y), g0(x) + Y g1(x)) and g = vg0 + ug1. By construction we have

– deg(f) = 2κ and ‖f‖∞ = O(1);
– deg(g) = κ and ‖g‖∞ = O(

√
p) = O(Q

1
2ηκ).

The bound on ‖f‖∞ depends on the number of polynomials g0 + δg1 tested
before we find one which is irreducible over Fp. Heuristically this happens on
average after 2κ trials. Since there are 32κ > 2κ choices of g0 and g1 of norm 1
we have ‖f‖∞ = O(1).

Relation Collection. The elements of R = Z[t]/h(t) can be represented
uniquely as polynomials of Z[t] of degree less than deg h.

We proceed as in TNFS and enumerate all the pairs (a, b) ∈ Z[t]2 of degree ≤
η − 1 such that ‖a‖∞, ‖b‖∞ ≤ A for a parameter A to be determined. We say
that we obtain a relation for the pair (a, b) if

Nf (a, b) := Rest(Resx(a(t) − b(t)x, f(x)), h(t)) and
Ng(a, b) := Rest(Resx(a(t) − b(t)x, g(x)), h(t))

are B-smooth for a parameter B to be determined (an integer is B-smooth if all
its prime factors are less than B). If ι denotes a root of h in R our enumeration
is equivalent to putting linear polynomials a(ι)− b(ι)x in the top of the diagram
of Fig. 1.

One can put non-linear polynomials r(x) ∈ R[x] of degree τ−1 in the diagram
for any τ ≥ 2 but this is not necessary in this paper. Indeed, in this paper we
enumerate polynomials r to attack Fpκη of the same degree as those that one
would use to attack FP κ for a prime P ≈ pη. It happens that in the large prime
case and for the best parameters of the boundary case the optimal value of τ
is 2. This determines us to state Lemma 1 only in the case τ = 2 and to write
everywhere r = a(ι) − b(ι)x, but we bear in mind that r could have a larger
degree, prove Lemma 2 in AppendixA, use it in the last paragraph of Sect. 4 and
write Table 5 for arbitrary values of τ before observing that the optimal value is
again τ = 2.

Remark 1. The choice of the polynomials r in the top of the diagram is such
that the norm sizes are as small as posible. If one had an algorithm to pinpoint

Extended Tower Number Field Sieve: A New Complexity 549

the principal ideals of a number field which have small norms then one would
use this algorithm to generate the polynomials r.

As one of the referees notices, the advantage of exTNFS when compared
to the classical version of NFS is that our enumeration is less naive. Indeed,
since the norms are computed as an iteration of resultants, i.e. Nf (r(t, x)) =
Rest(Resx(r(t, x), f(x)), h(t)), we can enumerate polynomials r which make the
relative norm Resx(r(t, x), f(x)) small in some sense, for example we restrict to
linear polynomials r.

For each pair (a, b), i.e. r = a − bx, one obtains a linear equation where the
unknowns are logarithms of elements of the factor base as in the classical variant
of NFS for discrete logarithms. But let us define the factor base in our particular
case.

Factor Base. Let αf (resp. αg) be a root of f in Kf (resp. of g in Kg), the
number field it defines over the fraction field of R. Then the norm of a(ι) −
b(ι)αf (resp. a(ι) − b(ι)αg) over Q is Rest(Resx(a(t) − b(t)x, f(x)), h(t)) (resp.
Rest(Resx(a(t)−b(t)x, g(x)), h(t))) up to a power of l(f) (resp. l(g)), the leading
coefficient of f (resp. g). We call factor base the set of prime ideals of Kf and Kg

which can occur in the factorization of a(ι)−b(ι)αf and a(ι)−b(ι)αg when both
norms are B-smooth. By Proposition 1 in [7] we can give an explicit description
of the factor base as F(B) := Ff (B)

⋃
Fg(B) where

Ff (B) =
{

〈q, α − γ〉 :
q is a prime in Q(ι) lying over a prime
p ≤ B and f(γ) ≡ 0 (mod q)

}
⋃

{prime ideals of Kf dividing l(f)Disc(f)} .

and similarly for Fg(B).

Schirokauer Maps. If 〈a(ι) − b(ι)αf 〉 =
∏

q∈Ff (B) q
valq(a(ι)−b(ι)αf) and 〈a(ι) −

b(ι)αg〉 =
∏

q∈Fg(B) q
valq(a(ι)−b(ι)αg) we write

∑

q∈Ff (B)

valq(a(ι) − b(ι)αf) log q + εf (a, b) =
∑

q∈Fg(B)

valq(a(ι) − b(ι)αg) log q + εg(a, b)

where the log sign denotes virtual logarithms in the sense of [22,32] and εf

and εg are correction terms called Schirokauer maps which were first introduced
in [32].

The novelty for TNFS and exTNFS with respect to JLSV is that Kf and Kg

are constructed as tower extensions instead of absolute extensions. On the other
hand, it is more convenient to work on absolute extensions when we compute
Schirokauer maps. We solve this problem by computing primitive elements θf

(resp. θg) of Kf/Q (resp. Kg/Q). For a proof we refer to Sect. 4.3 in [22].

Linear Algebra and Individual Logarithm. These two steps are unchanged
with respect to the classical variant of NFS. The linear algebra step, comes after

550 T. Kim and R. Barbulescu

relation collection and consists in solving the linear system over Fl for some
prime factor l of the order of F

∗
Q. Using Wiedemann’s algorithm this has a

quasi-quadratic complexity in the size of the linear system, which is equal to
the cardinality of the factor base. In [7] it is shown that the factor base has
(2 + o(1))B/ log B elements, so the cost of the linear algebra is B2+o(1).

In the individual logarithm step one writes any desired discrete logarithm
as a sum of virtual logarithms of elements in the factor base. Since the step is
very similar to the corresponding step in NFS we keep the description for the
Appendix.

3 Complexity

The complexity analysis of exTNFS follows the steps of the analysis of NFS in
the case of prime fields. It is expected that the stages of the algorithm other
than the relation collection and the linear algebra are negligible, hence we select
parameters to minimize their cost and afterwards we check that the other stages
are indeed negligible.

Let us call T the time spent in average for each polynomial r ∈ R[x] enumer-
ated in the relation collection stage (in this paper r = a(ι) − b(ι)x), and let Pf

(resp. Pg) be the probability that the norm Nf (resp. Ng) of r with respect to
f (resp. g) is B-smooth. The number of polynomials that we test before finding
each new relation is on average 1/(PfPg), so the cost of the relations collection
is #F(B)T/(PfPg).

We make the usual heuristic that the proportion of smooth norms is the
same as the proportion of arbitrary positive integers of the same size which are
also smooth, so Pf = Prob(Nf , B) (resp Pg = Prob(Ng, B)) where Prob(x, y)
is the probability that an arbitrary integer less than x is y-smooth. The value
of T depends on whether we use a sieving technique or we consider each value
and test smoothness with ECM [26]; if we use the latter variant we obtain T =
LB(1/2,

√
2)(log Q)O(1), so T = Bo(1). Using the algorithm of Wiedemann [34]

the cost of the linear algebra is (#F(B))2+o(1) = B2+o(1). Hence, up to an
exponent 1 + o(1), we have

complexity(exTNFS) =
B

Prob(Nf , B)Prob(Ng, B)
+ B2. (1)

This equation is the same for NFS, TNFS, exTNFS and the corresponding
SNFS variants. The differences begin when we look at the size of Nf and Ng

which depend on the polynomial selection method. In what follows we instan-
tiate Eq. (1) with various cases and obtain equations which have already been
analyzed in the literature.

Lemma 1. Let h and f be irreducible polynomials over Z and call η := deg h
and κ := deg(f). Let a(t), b(t) ∈ Z[t] be polynomials of degree at most η − 1 with
‖a‖∞, ‖b‖∞ ≤ A. We put Nf (a, b) := Rest(Resx(a(t) − b(t)x, f(x)), h(t)). Then
we have

Extended Tower Number Field Sieve: A New Complexity 551

1.
|Nf (a, b)| < Aη·κ‖f‖η

∞‖h‖κ·(η−1)
∞ C(η, κ), (2)

where C(η, κ) = (η + 1)(3κ+1)η/2(κ + 1)3η/2.
2. Assume in addition that ‖h‖∞ is bounded by an absolute constant H and that

p = LQ(�p, c) for some �p > 1/3 and c > 0. Then

Nf (a, b) ≤ Eκ‖f‖η
∞LQ(2/3, o(1)), (3)

where E = Aη

Proof. 1. This is proven in Theorem 3 in [7].
2. The overhead is bounded as follows

log(‖h‖κ(η−1)
∞ C(η, κ)) ≤ κη log H + 3κη log η + 3η log κ

= O(log(Q)1−�p(log log Q)�p)
= o(1) log(Q)2/3(log log Q)1/3.

�

If Nf = LQ(2/3) then we can forget the overhead LQ(2/3, o(1)) as the
Canfield-Erdös-Pomerance theorem states that the smoothness probability sat-
isfies, uniformly on x and y in the validity domain,

Prob(x1+o(1), y) = Prob(x, y)1+o(1).

The next statement summarizes our results.

Theorem 1. (under the classical NFS heuristics) If Q = pn is a prime power
such that

– p = LQ(�p, cp) with 1/3 < �p;
– n = ηκ such that η, κ �= 1 and gcd(η, κ) = 1

then the discrete logarithm over FQ can be solved in LQ(1/3, C) where C and
the additional conditions are listed in Table 4.

In the rest of this section we prove this statement. In any case in the table, one
shares the conditions κ = o

(
(log Q
log log Q)

1
3

)
or κ ≤ c(log Q

log log Q)
1
3 for some constant

c > 0. These are equivalent to say that P = pη = LQ(�P) for some �P ≥ 2/3.

3.1 exTNFS-JLSV2

In this section we assume that n has a factor κ such that

κ = o

((
log(Q)

log log(Q)

)1/3
)

.

552 T. Kim and R. Barbulescu

Table 4. Complexity of exTNFS variants.

Algorithm C Conditions

exTNFS-JLSV2 (64/9)
1
3 κ = o

(

(log Q
log log Q

)
1
3

)

exTNFS-GJL (64/9)
1
3 κ ≤ (8

3
)− 1

3 (log Q
log log Q

)
1
3

exTNFS-Conj (48/9)
1
3 �p < 2/3 or �p = 2/3 and cp < 12

1
3

κ = 12− 1
3 (log Q

log log Q
)
1
3

SexTNFS (32/9)
1
3 κ = o

(

(log Q
log log Q

)
1
3

)

p is d-SNFS with d = (2/3)
1
3 +o(1)
κ

(log Q
log log Q

)
1
3

MexTNFS-JLSV2 (92+26
√
13

27
)
1
3 κ = o

(

(log Q
log log Q

)
1
3

)

MexTNFS-GJL (92+26
√
13

27
)
1
3 κ ≤ (7+2

√
13

6
)−1/3(log Q

log log Q
)
1
3

MexTNFS-Conj
3+

√
3(11+4

√
6)

(

18(7+3
√
6)
)1/3 �p < 2/3 or �p = 2/3 and cp < (56+24

√
6

12
)1/3

κ = ((56+24
√
6

12
)−1/3 + o(1))(log Q

log log Q
)
1
3

Table 5. Comparison of norm sizes. τ = deg r(x) while D and K are integer parameters
subject to the conditions in the last column.

Method Norms product Conditions and parameters

NFS-JLSV1 E
4n
τ Q

τ−1
n

NFS-JLSV2 E
2(n+D)

τ Q
τ−1
D+1 D = deg(g) ≥ n

NFS-GJL E
2(2D+1)

τ Q
τ−1
D+1 D ≥ n

NFS-Conj E
6n
τ Q

τ−1
2n

NFS-SS E
2η(2K+1)

τ Q
τ−1

η(K+1) n = ηκ, K ≥ κ, deg(g) = ηK

TNFS E
2(d+1)

τ Q
2(τ−1)

d+1 n small, d = deg(f)

exTNFS-JLSV1 E
4κ
τ Q

τ−1
κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-JLSV2 E
2(κ+D)

τ Q
τ−1
D+1 n = ηκ, gcd(η, κ) = 1, η small, D ≥ κ

exTNFS-GJL E
2(2D+1)

τ Q
τ−1
D+1 n = ηκ, gcd(η, κ) = 1, η small, D ≥ κ

exTNFS-Conj E
6κ
τ Q

(τ−1)
2κ n = ηκ, gcd(η, κ) = 1, η small

exTNFS-SS E
2κ0(2K+1)

τ Q
τ−1

κ0(K+1) n = ηκ0κ1, gcd(η, κ1) = 1,

η small, K ≥ κ1, deg(g) = κ0K

Let us introduce ‖h‖∞ = O(1) and the values of ‖f‖∞, ‖g‖∞ ≈ pκ/(D+1) coming
from the JLSV2 method (Sect. 2.2) in Eq. (2). Then we get

|Nf (a, b)| <
(
Aηκ(p

κ
D+1)η

)1+o(1)
=

(
EκP

κ
D+1

)1+o(1)
, (4)

|Ng(a, b)| <
(
AηD(p

κ
D+1)η

)1+o(1)
=

(
EDP

κ
D+1

)1+o(1)
, (5)

where we set E := Aη and P := |R/pR| = pη.

Extended Tower Number Field Sieve: A New Complexity 553

One recognizes the expressions for the norms in the large prime case [22,
Appendix A.3.], where P = p and κ = n. We conclude that we have the same
complexity:

complexity(exTNFS with JLSV2) = LQ(1/3, 3
√

64/9).

3.2 exTNFS-GJL

We relax a bit the condition from the previous section: we assume that n has a
factor κ such that

κ ≤ (8/3)− 1
3

(
log(Q)

log log(Q)

)1/3

.

Recall the characteristics of our polynomials: ‖h‖∞ = O(1) and deg h = η;
‖f‖∞ = O(1) and deg f = D + 1 for a parameter D ≥ κ; ‖g‖∞ ≈ pκ/(D+1) and
deg g = D. We inject these values in Eq. (2) and we get

|Nf (a, b)| < ED+1LQ(2/3, o(1)), (6)

|Ng(a, b)| < EDQ1/(D+1)LQ(2/3, o(1)), (7)

where we set E := Aη and P := |R/pR| = pη. We recognize the expression in
the first equation of Sect. 4.2 in [5], so

complexity(exTNFS with GJL) = LQ(1/3, 3
√

64/9).

3.3 exTNFS-Conj

We propose here a variant of NFS which combines exTNFS with the Conjugation
method of polynomial selection.

Let us consider the case when n = ηκ with

κ =
(

1
121/3

+ o(1)
) (

log(Q)
log log(Q)

)1/3

.

Note that this implies �p ≤ 2/3 so that we are in the medium characteristic or
boundary case.

As before, evaluat-
ing the values coming from the Conjugation method (Sect. 2.2) in Eq. (2), we
have

|Nf (a, b)| < E2κLQ(2/3, o(1)), (8)

|Ng(a, b)| < Eκ(pκη)1/(2κ)LQ(2/3, o(1)). (9)

When we combine Eqs. (8) and (9) we obtain

|Nf (a, b)| · |Ng(a, b)| < E3κQ(1+o(1))/(2κ).

But this is Eq. (5) in [5] when τ = 2 (the parameter τ is written as t in [5], the
number of coefficients of the sieving polynomial r). The rest of the computations
are identical as in point 3. of Theorem 1 in [5], so

complexity(exTNFS-Conj) = LQ(1/3, (48/9)1/3).

554 T. Kim and R. Barbulescu

4 Variants

4.1 The Case When p has a Special Form (SexTNFS)

In some pairing-based constructions p has a special form, e.g. in the Barreto-
Naehrig curves [9] p = 36u4+36u3+24u2+6u+1 of embedding degree 12 and in
the Freeman pairing-friendly constructions of embedding degree 10 [18, Sect. 5.3]
p = 25u4 + 25u3 + 25u2 + 10u + 3. For a given integer d, an integer p is d-SNFS
if there exists an integer u and a polynomial Π(x) with integer coefficients so
that

p = Π(u),

deg Π = d and ‖Π‖∞ is bounded by an absolute constant.

We consider the case when n = ηκ, gcd(η, κ) = 1 with κ = o

((
log Q

log log Q

)1/3
)

and p is d-SNFS. In this case exTNFS is unchanged: we select h, f and g three
polynomials with integer coefficients so that

– h is irreducible modulo p, deg h = η and ‖h‖∞ = O(1);
– f and g have a common factor k(x) modulo p which is irreducible of degree κ.

Choice of f and g Using the Method of Joux and Pierrot (as in SNFS-JP). Find
a polynomial S of degree κ−1 with coefficients in {−1, 0, 1} so that k(x) = xκ +
S(x)−u is irreducible modulo p. Since the proportion of irreducible polynomials
in Fp of degree κ is 1/κ and there are 3κ choices we expect this step to succeed.
Then we set {

g = xκ + S(x) − u
f = Π(xκ + S(x)).

If f is not irreducible over Z[x], which happens with small probability, start
over. Note that g is irreducible modulo p and that f is a multiple of g modulo
p. Precisely, as in [23], we choose S(x) so that it is of degree O(log κ/ log 3).
Since 3O(log κ/ log 3) > κ, we still have enough chance to have irreducible g. By
construction we have:

– deg(g) = κ and ‖g‖∞ = u = p1/d;
– deg(f) = κd and ‖f‖∞ = O

(
(log κ)d

)
.

Let us compute the analysis of this particular case of exTNFS. We inject
these values in Eq. (2) and obtain

|Nf (a, b)| ≤ EκdLQ(2/3, o(1))

|Ng(a, b)| ≤ EκP 1/dLQ(2/3, o(1)),

where E := Aη and P := |R/pR| = pη. We recognize the size of the norms in the
analysis by Joux and Pierrot [23, Sect. 6.3], so we obtain the same complexity
as in their paper:

complexity(SexTNFS) = LQ(1/3, (32/9)1/3).

Extended Tower Number Field Sieve: A New Complexity 555

4.2 The Multiple Polynomial Variants (MexTNFS)

Virtually every variant of NFS can be accelerated using multiple polynomials
and exTNFS makes no exception. The multiple variant of exTNFS is as follows:
choose f and g which have a common factor k(x) modulo p which is irreducible
of degree κ using any of the methods given in Sect. 2.2. Next we set f1 = f and
f2 = g and select other V − 2 irreducible polynomials fi := μif1 + νif2 where
μi =

∑η−1
j=0 μi,jι

j and νi =
∑η−1

j=0 νi,jι
j are elements of R = Z[t]/hZ[t] such

that ‖μi‖∞, ‖νi‖∞ ≤ V
1
2η where V = LQ(1/3, cv) is a parameter which will be

selected later. Denote αi a root of fi for i = 1, 2, . . . , V .
Once again the complexity depends on the manner in which the polynomials

f and g are selected.

MexTNFS-JLSV2. Barbulescu and Pierrot [8, Sect. 5.3] analysed the complex-
ity of MNFS with JLSV2, so we only need to check that the size of the norm
is the same for NFS and exTNFS for each polynomial fi with 1 ≤ i ≤ V . By
construction we have:

– deg(f1) = κ and ‖f1‖∞ = p
κ

D+1 ;
– deg(fi) = D ≥ κ and ‖fi‖∞ = V

1
2η p

κ
D+1 for 2 ≤ i ≤ V .

As before, we inject these values in Eq. (2) and obtain

|Nf1(a, b)| < Eκ(pκη)
1

D+1 LQ(2/3, o(1))

|Nfi
(a, b)| < ED(pκη)

1
D+1 LQ(2/3, o(1)) for 2 ≤ i ≤ V.

We emphasize that (V
1
2η)η = V

1
2 = LQ(1/3, cv/2) = LQ(2/3, o(1)) which is true

without any condition on η. Hence we obtain

complexity(MexTNFS-JLSV2) = LQ

(
1/3,

(92 + 26
√

13
27

)1/3
)

.

MexTNFS-Conj and GJL. Pierrot [30] studied the multiple polynomial vari-
ant of NFS when the Conjugation method or GJL are used. To show that we
obtain the same complexities we need to show that the norm with respect to each
polynomial is the same as in the classical NFS, except for a factor LQ(2/3, o(1)),
which boils down to testing again that (V

1
2η)η = LQ(2/3, o(1)) which is always

true. When P = pη = LQ(2/3, cP) such that cP > (7+2
√
13

6)1/3 and τ is the
number of coefficients of the enumerated polynomials r, then the complexity
obtained is LQ(1/3, C(τ, cP)) where

C(τ, cP) =
2

cP τ
+

√
20

9(cP τ)2
+

2
3
cP (τ − 1).

556 T. Kim and R. Barbulescu

The best case is when cP = (56+24
√
6

12)1/3 and τ = 2 (linear polynomials):

complexity(best case of MexTNFS-Conj) = LQ

⎛
⎝1/3,

3 +
√

3(11 + 4
√

6)(
18(7 + 3

√
6)

)1/3

⎞
⎠ ,

where the second constant being approximated by 1.71.

5 Comparison and Examples

NFS, TNFS and exTNFS have the same main lines:

– we compute a large number of integer numbers;
– we factor these numbers to test if they are B-smooth for some parameter B;
– we solve a linear system depending on the previous steps.

If we reduce the size of the integers computed in the algorithm we reduce the
work needed to find a subset of integers which are B-smooth, which further
allows us to adapt the other parameters so that the linear algebra is also cheap.
A precise analysis is complex because in some variants one tests smoothness
using ECM while in others one can sieve (which is faster). Nevertheless, as a
first comparison we use the criterion in which one must minimize the bitsize of
the product of the norms.

5.1 Precise Comparison When p is Arbitrary

Each method of polynomial selection has a different expression of the norm
bitsize, which depends on the number τ of coefficients of the polynomials r(x)
that are enumerated during the relation collection. Let us reproduce Table 2
in [31], which we extend with TNFS and exTNFS:

Note that the method of Sarkar and Singh requires that n is composite. The
settings based on TNFS (TNFS, exTNFS-GJL etc.) have an overhead due to the
combinatorial factor which is not written in this table, so we add the condition
that the degree of the intermediate number field must be small. Finally, exTNFS
requires the additional condition that κ and η are relatively prime.

Extrapolation of E. The parameter E depends on the implementation of NFS
and might be different for one variant to another. Let us take for example three
computations with NFS which tackle various problems of the same bitsize:

– Danilov and Popovyan [16] factored a 180-digit RSA modulus using log2 E ≈
30 (although the size of the pairs (a, b) in theirs computations is not written
explicitly, one can compute E using the range of special-q’s and the default
cardinality of the sieving space per special-q, which is 230);

– Bouvier et al. [12] computed discrete logarithms in a 180-digit field Fp using
log2 E ≈ 30 (computed from other parameters).

Extended Tower Number Field Sieve: A New Complexity 557

– Barbulescu et al. [5] computed discrete logarithms in a 180-digit field Fp2 using
log2 E ≈ 29.

We see that in the first approximation E depends only on the bitsize of the field
that we target and has the same value as in the factoring variant of NFS. Let
us extrapolate E from the pair (log2 Q = 600, log2 E = 30) using the formula

E = cLQ(1/3, (8/9)1/3).

Since exTNFS requires that gcd(η, κ) = 1, the first case to study is n = 6.
The case of fields. Fp6 When n = 6 we can use the general methods

– NFS-JLSV1 (bitsize E
24
τ Q

τ−1
6 , best values of τ are 3 and 2)

– NFS-GJL with D equal to its optimal value, 6 (bitsize E
26
τ Q

τ−1
7 , best values

of τ are 3 and 2)
– TNFS with deg f = 5, its optimal value for this range of fields (bitsize

E
12
τ Q

τ−1
3 , best value of τ is 2)

as well as the methods which exploit the fact that n is composite

– Sarkar-Singh (NFS-SS) with η = 2 and K = 3, best value so that K ≥ n/η

for this range of fields, (E
28
τ Q

τ−1
8) respectively η = 3 and K = 2, best value

so that K ≥ n/η for this range of fields, (bitsize E
30
τ Q

τ−1
9 , best τ are 4 and 3)

– exTNFS with η = 2 or η = 3 and one of two methods for selecting f and g
• exTNFS-GJL with η = 3, D = 2 its best value so that D ≥ n/η, (bitsize

E
10
τ Q

τ−1
3 , best value of τ is 2)

• exTNFS-GJL with η = 2, D = 3 its best value so that D ≥ n/η,
(E

14
τ Q

τ−1
4 , best values of τ are 3 and 2)

• exTNFS-Conj with η = 2 (bitsize E
18
τ Q

τ−1
6 , best values of τ is 2).

• exTNFS-Conj with η = 3 (bitsize E
12
τ Q

τ−1
4 , best values of τ are 3 and 2).

We plot the values of the norms product in Fig. 2. Note that exTNFS with
the Conjugation method seems to be the best choice for fields between 300 and
1000 bits.

For even more insight we enter into details on a specific field.

Example 1: Let us consider the field Fp6 when

p = 3141592653589793238462643383589.

The bitsize of Q = p6 is 608 and its number of decimal digits is 182. Since the
parameter E can only be chosen after an effective computation we are bound
to make the hypothesis that it will have a similar value as in a series of record
computations with NFS having the same input size:

In the following log2 E = 30. Let us make a list with the norm sizes obtained
with each version of NFS:

558 T. Kim and R. Barbulescu

300 400 500 600 700 800 900 1,000
200

300

400

500

600

log2 Q

lo
g
2
(n

o
rm

s)
NFS-JLSV1

NFS-SS

TNFS

exTNFS-Conj(κ = 2)

exTNFS-Conj(κ = 3)

Fig. 2. Plot of the norms bitsize for several variants of NFS. Horizontal axis indicates
the bitsize of pn while the vertical axis the bitsize of the norms product. (Color figure
online)

1. NFS-JLSV1. We take for example f = x6 − 1772453850905518 and g =
1772453850905514x6 + 96769484157337. The sieving space contains polyno-
mials of degree two r(x) = a + xb + cx2 ∈ Z[x], i.e. τ = 3, and the absolute
value of the coefficients is bounded by E2/3. The upper bound on the norms’
product is

norms bitsize(NFS-JLSV1) = 8 log2 E +
1
3

log2 Q ≈ 440.

2. NFS-Conj. We take f = x12 + 3 and g = 1016344366092854x6 −
206700367981621. We sieve polynomials r ∈ Z[x] of degree 4, i.e. τ = 5,
and the absolute value of the coefficients is bounded by E2/5. Then we obtain

norms bitsize(NFS-Conj) =
36
5

log2 E +
1
3

log2 Q ≈ 418.

3. TNFS. We take f = x5 + 727139x3 + 538962x2 + 513716x + 691133,
g = x − 1257274 and h = t6 + t4 + t + 1. Here, h is chosen so that
Fp6 = (Z[t]/h(t))/p(Z[t]/h(t)). The sieving polynomials are of the form
r(x) = a(ι) − b(ι)x, i.e. τ = 2. Here, a =

∑5
i=0 aiι

i and b =
∑5

i=0 aiι
i

are elements in Z(ι) = Z[t]/h(t) with the coefficients whose absolute values

Extended Tower Number Field Sieve: A New Complexity 559

bounded by A = E1/ deg(h) = E1/6. Note that the parameter d = deg f is
equal to 5, so that we have

norms bitsize(TNFS) = 6 log2 E +
1
3

log2 Q ≈ 380.

4. exTNFS-Conj with η = 2 and κ = 3. We take f = x6 − 3, g =
309331385734750x3 − 1851661516636217 and h = t2 + 2. We sieve polyno-
mials of the form a(ι) − b(ι)x, i.e. τ = 2, where a and b are linear in ι with
their coefficients bounded by A = E1/2. Hence we obtain

norms bitsize(exTNFSη = 2) = 9 log2 E +
1
6

log2 Q ≈ 370.

5. exTNFS-Conj with η = 3 and κ = 2. We take f = x4 − 2x3 + x2 − 3,
g = 1542330130901467x2 − 1542330130901467x − 923667359431967 and h =
t3 + t + 1. Again we sieve polynomials of the form a(ι) − b(ι)x, i.e. τ = 2,
where a and b are quadratic in ι with coefficients bounded by A = E1/3. This
leads to

norms bitsize(exTNFS κ = 2) = 6 log2 E +
1
4

log2 Q ≈ 330.

We conclude that in this example the best choice is exTNFS with κ = 2.
The condition gcd(η, κ) = 1 is also satisfied by n = 10, 12, 14, 18, 20, 24 etc.,

but we do not discuss these cases in detail.

5.2 Precise Comparison When p is SNFS

To compare precise norm sizes when p is a d-SNFS prime, let us consider Table 6.
Note that SexTNFS encompass SNFS-JP when η = 1, and STNFS when

η = n, so we only call it SexTNFS when 2 ≤ η < n.
As in the case when p is arbitrary, we do not have precise estimations of

E, especially in the large range of fields log2 Q ∈ [1000, 10000]. We are going
to extrapolate from the pair (log2 Q = 1039, log2 E = 30.38), due to the record
of [1], using the formula

E = cLQ(1/3, (4/9)
1
3).

Table 6. Comparison of norm sizes when p is d-SNFS prime.

Method Norms product Conditions

STNFS E
2(d+1)

τ Q
τ−1

d

SNFS-JP E
2n(d+1)

τ Q
τ−1
nd

SexTNFS E
2κ(d+1)

τ Q
τ−1
κd n = ηκ

gcd(κ, η) = 1

2 ≤ η < n

560 T. Kim and R. Barbulescu

Let us introduce a notation for the bitsize of SexTNFS, for any integers κ ≥ 1
and τ ≥ 2:

Cnorm(τ, κ) =
2κ(d + 1)

τ
log E +

τ − 1
κd

log Q.

For each κ, Cnorm(τ, κ) has a minimum at the integer τ ≥ 2 which best approx-

imates
(

2κ2d(d+1) log E
log Q

)1/2

.
The Case of 4-SNFS Primes. To fix ideas, we restrict at the case d = 4.
When κ = 1, i.e. STNFS, the norm size has its minimum at τ = 2 as soon
as log Q

log E ≥ 40/22 = 10. In our range of interest (300 ≤ log2 Q ≤ 10000), the
ratio log Q/ log E is always larger than 19. So, we only take care of sieving linear
polynomials in the case of STNFS with d = 4. Similarly, it suffices to consider
sieving linear polynomials in the case of SexTNFS with κ = 2 (resp. κ = 3)
whenever log Q/ log E ≥ 40 (resp. log Q/ log E ≥ 90). It is satisfied when Q is of
at least 1450 bits (resp. 6300 bits).

Let us compare the norm sizes of STNFS and SexTNFS when we sieve only
linear polynomials (τ = 2) in both cases. The value Cnorm(2, κ) has a minimum

at κ =
(

log Q
d(d+1) log E

)1/2

. In the case of d = 4, this value has minimum at κ = 2

or κ = 3 whenever 20 ≤ log Q/ log E ≤ 180 = 20 · 32. Thus, in fields with large
size, SexTNFS with κ = 2 or κ = 3 is better than STNFS.

In Fig. 3 we plot the norm sizes of SNFS-JP, STNFS, and SexTNFS for
n = 12 and d = 4 for Q is of from 300 bits to 5000 bits. We also compare these
values with the best choice for general prime cases (exTNFS with Conjugation
when κ = 3). From the plots we remark that STNFS could be a best choice
for small Q otherwise SexTNFS with small κ becomes an important challenger
against any other methods as the size of Q grows.

To get a better intuition, let us see in detail a specific field.

Example 2: We consider the prime p = P4(u4) where

P4(x) = 36x4 + 36x3 + 24x2 + 6x + 1 and u4 = 2158 − 2128 − 268 + 1

(Sect. 6 in [2]), and note that p is 4-SNFS. The bitsize of p12 is 7647 for which
we predict by extrapolation that log2 E = 76.15.

Let us make a list with the norm sizes obtained with each version of NFS:

1. STNFS. The size of the norms is E2(d+1)/τQ(τ−1)/d and has its minimum for
τ = 2. Take for example h = x12 + x10 + x9 − x6 − 1, f = P4 and g = x − u4.

norms bitsize(STNFS) = 5 log2 E +
1
4

log2 Q ≈ 2292.

2. SNFS-JP. The size of the norms is E2n(d+1)/τQ(τ−1)/(nd) and has its minimum
when τ = 8. Take for example f = P4(x12 + x6 + x3 + 1) and g = (x12 + x6 +
x3 + 1) − u4.

norms bitsize(SNFS-JP) =
120
7

log2 E +
1
8

log2 Q ≈ 2257.

Extended Tower Number Field Sieve: A New Complexity 561

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
200

400

600

800

1,000

1,200

1,400

1,600

log2 Q

lo
g
2
(n

o
rm

s)
STNFS

SexTNFS(κ = 3)

SNFS-JP

exTNFS Conj(κ = 3)

Fig. 3. Comparison when n = 12 and d = 4 for 300 ≤ log2 Q ≤ 5000. Horizontal axis
indicates the bitsize of pn while the vertical axis the bitsize of the norms product.
(Color figure online)

3. SexTNFS-JP η = 4. In this case the norm size is E2κ(d+1)/τQ
(τ−1)

κd and has
its minimum when τ = 2. Take for example h = x4 − x − 1, f = P4(x3 − x2)
and g = x3 − x2 − u4.

norms bitsize(SexTNFS) = 15 log2 E +
1
12

log2 Q ≈ 1779.

One can do a similar analysis in the cases d = 5, d = 6 etc., but we do not
present the details here.

6 On the Necessity to Update Key Sizes

Pairings are not included in the 2012 report of NIST [28] but they are included
in the 2013 report of ENISA [17, Table 3.6] where pairings and RSA have the
same recommended key sizes. This is in accordance with a general belief stated
for example by Lenstra [25, Sect. 5.1]:

‘An RSA modulus n and a finite field Fpk therefore offer about the
same level of security if n and pk are of the same order of
magnitude.’

562 T. Kim and R. Barbulescu

Freeman et al. [19] compiled key size recommendations from different sources in
Table 1.1, all of which make or are coherent with the above supposition.

The currently recommended key sizes are derived from the complexity L[c] :=
Lpn(1/3, (c/9)1/3) with c = 64, which corresponds to NFS over fields whose
characteristic is large and doesn’t have a special form. This complexity has been
a safe choice until recently because the constant c = 64 has been the smallest
among the variants of NFS over fields of non-small characteristic.

The Case of Primes of General Form. However, exTNFS has a constant c =
48 for a vast range of fields, so the safe choice becomes to derive key sizes using
L[48]. A more precise evaluation would require to determine what embedding
degree is large enough to be in the medium prime case, i.e. c = 48, and what
degree is smaller so that we use c = 64. This seems to be hard to tell, especially
after the record computation presented in [5, Sect. 7] showed that the attack in
Fp2 was 260 times faster than the attack in Fp′ where p and p′ are primes so
that 2 log2(p) ≈ log2(p′).

A crude and naive estimation, when a constant cold is replaced by cnew, is to
write

LQnew(1/3, cnew) = LQold(1/3, cold)

which is equivalent to
log Qnew

log Qold
=

cold
cnew

+ o(1). (10)

Overall, we might say that the key size should be increased by 64/48 ≈
1.33 in an asymptotic sense (simply ignoring the factor o(1)), which allows to
comprehend what means a change in the second constant of NFS. We avoid to
derive a table of key sizes using the methods in [29, Appendix H] and [25] not
because the formulae are difficult but because we lack the experience with record
computations needed to validate the formulae.

The Special Prime Case. When the characteristic has a special form the
constant c changed twice in three years and there are some subtle points to
understand about how the key sizes were computed. Before the algorithm of Joux
and Pierrot there was no variant of NFS for Fpn with n > 1 and p of special form.
Hence, the recommended values correspond to c = 64. Their SNFS algorithm
updated the constants to 32 in large characteristic and 64 in the middle prime
case. A pessimistic choice would have been to update the key sizes using c = 32.
Nevertheless, the very important example of Barreto-Naehrig pairings has an
embedding degree n = 12 which seems to be considered as medium sized (the
difference between large and medium characteristic is asymptotic and is hard to
translate in practice). Due to SexTNFS the constant is now c = 32 for all fields
of non-small characteristic, so we don’t need a precise examination anymore, as
long as n has a factor ≥ 2. We conclude that the key sizes of pairings where p
has a special form, in a polynomial of degree ≥ 3, should increase roughly by a
factor cold/cnew = 2.

Extended Tower Number Field Sieve: A New Complexity 563

7 Cryptologic Consequences

Our work comes in a context of recent progress on the DLP in finite fields pn

of degree n ≥ 2. The case n = 2 has been the object of precise estimations and
real-life computations and is now known to be weaker than the case of prime
fields. On the contrary, the cases n = 6 and n = 12 remained difficult according
to precise practical estimations.

In this paper we proposed the exTNFS which allowed us to apply the poly-
nomials constructed in the case n = 2, which have good properties, to the highly
important case n = 6, where the polynomials had less good properties. A precise
estimation showed that this invalidates the key sizes currently used and we rec-
ommend that they should be updated (see Sect. 6). When p is of special form, as
in the Barreto-Naehrig construction, one needs to update the key sizes for large
characteristic because of the algorithm proposed by Joux and Pierrot in 2013
but it is not clear if the keys of the Barreto-Naehrig keys had to be updated.
Due to exTNFS the key sizes of all pairings of SNFS characteristic need to be
updated.

It is interesting to remark that the new variants of NFS exploit those prop-
erties of some pairings which made them fast:

– Special form characteristic. The advantage of using special form character-
istic is that it eliminates the cost of modular reductions (see for example [10,
Algorithm 4]). It is the same special form of p which allows to use the fastest
variant of exTNFS, i.e. SexTNFS, rather than the general case algorithm.

– Composite embedding degree. In this case the pairings computations are
done using tower extension field arithmetic, as explained for example in [10,
Sect. 3.1]. The same structure of tower extension field is a main ingredient of
exTNFS, as explained in Remark 1.

A large number of pairings have either special form characteristic or an
embedding degree divisible by 2 or 3, for example the Barreto-Naehrig curves
have both properties. In a recent preprint Chatterjee et al. [13] discussed the
pairing constructions which are not affected by our algorithms, in particular the
pairings of embedding degree one which are as secure as DSA and RSA. This
shows that, regardless on the progress on DLP in Fpn with n > 1, pairings are a
secure tool for cryptography. Nevertheless, safe pairings might be very slow and
determine cryptographers to use alternatives, as Chillotti et al. did in [14] for an
e-voting protocol. We conclude with the question asked by our referee: “Is this
the beginning of the end for pairing-based based cryptography?”

A Non-linear Polynomials

In all the variants of exTNFS that we have discussed, one puts linear polynomials
r(x) ∈ R[x] in the diagram of Fig. 1. This is justified by the fact that exTNFS is
a way of copying the setting from large characteristic to the medium prime case.
Since in the large characteristic, the best choice is to take linear polynomials in

564 T. Kim and R. Barbulescu

all the variants, NFS, MNFS, SNFS, we have done the same thing in exTNFS,
MexTNFS and SexTNFS.

The estimation of the norms sizes given in Lemma 1 is central in the analysis
of exTNFS. For completion reasons we generalize this result to arbitrary degrees.

Lemma 2. Let h be an irreducible polynomial over Z of degree η and f be an
irreducible polynomial over Z[ι] of degree κ. Let ι (resp. α) be a root of h (resp.
f) in its number field and set Kf := Q(ι, α). Let A > 0 be a real number and
τ an integer such that 2 ≤ τ ≤ κ. For each i = 0, . . . , κ − 1, let ai(t) ∈ Z[t] be
polynomials of degree ≤ η−1 with ‖ai‖∞ ≤ A. Put r(t, x) =

∑τ−1
i=0 ai(t)xi. Then

we have
∣∣NKf /Q

(
r(ι, α)

)∣∣ < Aηκ‖f‖(τ−1)η
∞ ‖h‖(τ+κ−1)(η−1)

∞ D(η, κ),

where D(η, κ) =
(
(2κ − 1)(η − 1) + 1

)η/2(η + 1)(2κ−1)(η−1)/2
(
(2κ − 1)!η2κ

)η.
The above formula remains the same when we restrict the coefficients of f to be
integers.

Proof. By abusing the notation, we write f(t, x) :=
∑

i fi(t)xi with degt(fi) ≤
κ − 1 for f(x) =

∑
i fi(ι)xi ∈ Z[ι][x]. We write R(t) := Resx

(
A(t, x), f(t, x)

)
and have

NKf /Q(ι)(r(ι, α)) = R(ι).

By Theorems 8 and 10 in [11], the degree of R(t) is given by (κ + τ − 1)(η − 1)
and

‖R(t)‖∞ ≤ (τ + κ − 1)!ητ+κ−2Aκ‖f‖τ−1
∞ .

Then by Theorem 7 in the same article, we have

|NQ(ι)/Q(R(ι))| ≤ (deg R + 1)deg h/2(deg h + 1)deg R/2‖R‖deg h
∞ ‖h‖deg R

∞ .

Combining all together, we obtain the desired result. �

This result allows to analyze MexTNFS-SS when κ = 1
cp

(log Q
log log Q)3 and cp <

(
√

78/9 + 29/36)
1
3 ≈ 1.21. Indeed, in this case one puts non-linear polynomials

in the diagram, as indicated in Table 4 of [31].
Once again we check when D(η, κ) = LQ(2/3, o(1)) and obtain the condition

ηκ = o((log Q
log log Q)

2
3). The factor ‖h‖(T+κ−1)(η−1)

∞ is also negligible under the same
condition. Hence the overhead is negligible for all range �p > 1/3.

B Individual Logarithm

Let s ∈ F
∗
pn = F

∗
pηκ be an element for which we want to compute the discrete

logarithm. In general, the discrete logarithm of s can be found by following two
steps: smoothing step and special-q descent.

In the smoothing step, the value s is randomized by z := se for random
value e and B1-smoothness of z (for pre-determined value B1 > B) is tested.

Extended Tower Number Field Sieve: A New Complexity 565

Then, for each prime ideal D which is not in the factor base, one finds a linear
relation involving D and other smaller ideals. This step is called special-q descent.
We recursively produce the special-q descent tree, and finally deduce the desired
discrete logarithm.

The complexity of the individual logarithm step differs by polynomial selec-
tion methods. In the following, to fix ideas, we consider only the JLSV2 and
Conjugation methods (exTNFS-JLSV2 and exTNFS-Conj), but similar argu-
ment directly applies to any other polynomial selection method.

Smoothing. For each z ∈ Fpn we compute an element z̄ ∈ Kf = Q(ι, αf) which
is sent to z when ι is mapped to a root of h in Fpη and αf in a root of f in Fpηκ .
Then we test if NKf /Q(z̄) is B1-smooth and squarefree. Let us discuss how to
compute and what is the size of its norm.

JLSV2 As before, we consider the target field Fpn as an extension field Fpηκ =
Fpη (m) = Fpη [x]/k(x) over Fpη = Fp(ι) = Fp[t]/h(t). For a given z in F

∗
pn ,

we write z =
∑

i zi(ι)mi, where the coefficients of zi are non-negative integers
bounded by p. We set

z̄ =
κ−1∑
i=0

zi(ι)αi
f

and, by Lemma 2 for T = κ, we obtain

|NKf /Q(z̄)| ≤
(
pn(pκ/(D+1))n−η

)1+o(1)

≤ Q2−2/(κ+1)+o(1),

where, in the last inequality, we used the condition that D ≥ κ.

Conjugation. In this case, a direct lift would make that z̄ has degree κ instead
of 2κ = deg Kf , and the coefficients zi(t) have norm bounded by p. In order to
“spread” the coefficients, i.e. compute another polynomial with the same image
in Fpn of degree 2κ and coefficients of norm p1/2, we need to use the LLL algo-
rithm. With no extra cost we can obtain a further improvement: use the Waterloo
improvement which consists in replacing the smoothness condition of integers of a
given size X by the smoothness condition of two integers of size X1/2.

The Waterloo improvement for exTNFS-Conj is as follows: we find two bivari-
ate polynomials u(t, x) =

∑2κ−1
i=0 ui(t)xi and v(t, x) =

∑2κ−1
i=0 vi(t)xi ∈ Z[t, x]

such that z is the image in Fpn of

z̄ :=
u(ι, αf)
v(ι, αf)

where ‖ui‖∞,‖vj‖∞ ≤ 2np1/4. For this we LLL-reduce the lattice of dimension
4n defined by the lines of the matrix

566 T. Kim and R. Barbulescu

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
. . .

p
vec(k)

. . .
vec(k)

vec(z mod (h, f)) 1
...

. . .

vec(tixjz mod (h, f))
. . .

...
. . .

vec(tη−1x2κ−1z mod (h, f)) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

the first n rows contain only the diagonal coefficient equal to p and where, for
all bivariate polynomial w(t, x) =

∑2κ−1
i=0 wi(t)xi with wi(t) =

∑η−1
j=0 wi,jt

η−1−j ,
vec(w) = (w0,0, . . . , w0,η−1, . . . , w2κ−1,0, . . . , w2κ−1,η−1) of dimension 2n. In par-
ticular, k ∈ Fpη [x] has been seen as a two-variate polynomial.

By dividing if necessary by the leading coefficient, we can assume that k(x)
is monic, hence the right-most coordinate of vec(k) is 1. Then detL = pn and we
have u, v with ‖ui‖∞, ‖vj‖∞ ≤ 2(4n−1)/4Q

1
4n ≤ 2nQ

1
4n . By Lemma 2 we obtain

that

|NKf /Q(u(ι, αf))NKf /Q(v(ι, αf))| ≤ 2n2
Q
(

‖f‖(2κ−1)η
∞ ‖h‖(3κ−1)

∞ (η − 1)D(η, 2κ)
)2

.

The term in the later bracket is LQ(2/3, o(1)) and 2n2
is negligible compared

to Q if and only if �p > 1/2. We conclude that when �p > 1/2

|NKf /Q(u(ι, αf))NKf /Q(v(ι, αf))| = Q1+o(1).

Once the lift z̄ has been computed, the smoothing step is carried out as
usual: one tests that the norm of z̄ (or u and v) is squarefree and B1-smooth
where B1 = LQ(2/3, β1) for some constant β1 > 0. We recognize the complexity
analysis done in [15] in the case of prime fields: the complexity of the smoothing
step is LQ(1/3, csmooth) with

– csmooth = 6
1
3 for exTNFS-JLSV2;

– csmooth = 3
1
3 for exTNFS-Conj.

Descent by Special-q . Recall how the special-q descent is done in the large
characteristic case of NFS (for example NFS-JLSV2). Due to the condition that
NKf /Q(z̄) is squarefree the ideal generated by z̄ factors only into prime ideals of
degree 1. For a prime ideal q of degree 1 in Kf that appears in the factorization
of the principal ideal (z̄), we write the logarithm of q as a formal sum of virtual
logarithms of ideals in Kf and Kg of norm less than N(q)c for a constant c < 1.
For this, we enumerate pairs (a, b) ∈ Z×Z such that q divides (a − bαf) to find
one pair such that

Extended Tower Number Field Sieve: A New Complexity 567

– (a − bαf)/q factors into prime ideals of norm less than N(q)c, and
– the ideal (a − bαg) factors into prime ideals of norm less than N(q)c.

To do this we find two pairs (a(1), b(1)) and (a(2), b(2)) of euclidean norm less
than a constant times N(q)

1
2 , using LLL. Then we enumerate the pairs i1 + i2

for all rational integers with |i1|, |i2| ≤ E′. The complexity of the descent is
mainly determined by the size of the norms:

|NKf /Q(a − bαf)| ≤
(
(E′)κN(D)κ/2Q1/(D+1)

)1+o(1)
,

|NKg/Q(a − bαg)| ≤
(
(E′)DN(D)D/2Q1/(D+1)

)1+o(1)
.

In our two cases, exTNFS-JLSV2 and exTNFS-Conj, we enumerate
a(ι), b(ι) ∈ R ⊂ Q(ι) where a(t), b(t) ∈ Z[x] of degree ≤ η −1 and ‖a‖∞, ‖b‖∞ ≤
(E′)

1
η so that a(ι)−b(ι)αf ≡ 0 mod q. This can be done in the following manner

(cf Appendix 7.1 in [7]). First, we construct the lattice

L(q) := {(a, b) = (a0, . . . , aη−1, b0, . . . , bη−1) ∈ Z
2η : a(ι) − b(ι)αf ≡ 0 mod q},

which has determinant N(q). Let (a(k), b(k)), k = 1, 2, . . . , 2η, be the LLL-
reduced basis of this lattice. Then we test the above smoothness conditions
for pairs (a, b) =

∑2η
k=1 ik(a(k), b(k)), where ik are rational integers with absolute

value less than I := (E′)
1
η . By Lemma 1, in the case of exTNFS-JLSV2 the size

of the norms is

|NKf /Q(a − bαf)| ≤
(
(E′)κN(q)κ/2Q1/(D+1)

)1+o(1)
,

|NKg/Q(a − bαg)| ≤
(
(E′)DN(q)D/2Q1/(D+1)

)1+o(1)
.

Then, the rest of the analysis is similar to that of Chap. 7.3 in [3] and we
conclude that in exTNFS-JLSV2 the special-q descent is negligible compared to
the smoothing step.

In the case of exTNFS-Conj, we use again Lemma 1 and obtain:

|NKf /Q(a − bαf)| ≤
(
(E′)2κN(q)κ

)1+o(1)
,

|NKg/Q(a − bαg)| ≤
(
(E′)κN(q)κ/2Q1/(2κ)

)1+o(1)
.

We make an usual heuristic argument that a number x is y-smooth with the
probability of ρ(log x/ log y) for Dickman function ρ. So, the probability of the
pair (a, b) to be descended is given by

Prob[(a, b) descends] ≥ ρ

(
3κ log E′ + (3κ/2) log ν + (1/(2κ)) log Q

c log ν

)1+o(1)

,

(11)
where ν := N(q).

568 T. Kim and R. Barbulescu

In the case when ν is large, i.e. ν = LQ(2/3, β1), where β1 is imposed by the
smoothing step described above, the inverse of the probability can be approxi-
mated by

ρ
(3κ

2c

)−1+o(1) = LQ

(
1
3
,
cκ

2c

)1+o(1)

,

where cκ = κ/(log Q
log log Q)

1
3 = 12− 1

3 . Multiplying this by the time for νc-
smoothness test the total cost becomes

LQ

(
1/3,

cκ

2c
+ 2

√
cβ1

3

)1+o(1)

.

This value is minimized by LQ(1/3, (9β1cκ/2)1/3) when c =
(

3c2κ
4β1

)1/3

. When we

use that β1 = (1/3)1/3 and cκ = 12− 1
3 , we deduce the complexity

LQ

(
1/3, (81/32)

1
9
)

that is less than the complexity of the smoothing step.
In the case of small ν, i.e. ν = LQ(1/3), the hardest descent step corresponds

to the case when νc = B (the smoothness bound for the factor base). In this
case, again by Eq. (11), we have the probability of the descent,

LQ

(
1/3,

cκ

2c
+

cκε

β
+

1
6cκβ

)−1+o(1)

.

The complexity is minimized when the size of sieving space equals to the inverse
of the above probability. This translates to

2ε =
cκ

2c
+

cκε

β
+

1
6cκβ

.

This shows that the optimal value for c can be any value close but not equal
to 1, e.g. c = 0.999, and the optimal complexity of descent step for small ν is
LQ(1/3, 2ε) where

ε =
(

cκ

2
+

1
6βcκ

)/(
2 − cκ

β

)
= 12−1/3 ≈ 0.44,

where we used β = (2/3)1/3 and cκ = 12−1/3. This complexity is negligible to
the smoothing step.

For medium ν, i.e. ν = LQ(�) with 1/3 < � < 2/3, it is obviously faster
than the case of large ν. So, we omit detailed analysis for this case and refer to
Chap. 7.3 in [3].

We conclude this section of the Appendix with a summary of our results in
Table 7.

Extended Tower Number Field Sieve: A New Complexity 569

Table 7. Complexity of individual logarithm

Algorithm Rels collection+ lin. algebra Smoothing Special-q descent Extra conditions

exTNFS-JLSV2 (64/9)
1
3 (54/9)

1
3 negligible -

exTNFS-Conj (48/9)
1
3 (27/9)

1
3 negligible �p > 1/2

References

1. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007)

2. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A.,
Rodŕıguez-Henŕıquez, F.: Implementing pairings at the 192-bit security level.
In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195.
Springer, Heidelberg (2013)

3. Barbulescu, R.: Algorithms of discrete logarithm in finite fields. Ph.D. thesis,
Université de Lorraine, December 2013

4. Barbulescu, R.: An appendix for a recent paper of Kim. IACR Cryptology ePrint
Archive 2015:1076 (2015)

5. Barbulescu, R., Gaudry, P., Guillevic, A., Morain, F.: Improving NFS for the dis-
crete logarithm problem in non-prime finite fields. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 129–155. Springer, Heidelberg
(2015)

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer,
Heidelberg (2014)

7. Barbulescu, R., Gaudry, P., Kleinjung, T.: The towed number field sieve. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 31–55. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 2

8. Barbulescu, R., Pierrot, C.: The multiple number field sieve for medium-
and high-characteristic finite fields. LMS J. Comput. Math. 17, 230–246
(2014). The published version contains an error which is corrected in
https://hal.inria.fr/hal-00952610

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

10. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E.,
Rodŕıguez-Henŕıquez, F., Teruya, T.: High-speed software implementation of
the optimal ate pairing over Barreto–Naehrig curves. In: Joye, M., Miyaji, A.,
Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg
(2010)

11. Bistritz, Y., Lifshitz, A.: Bounds for resultants of univariate, bivariate polynomials.
Linear Algebra Appl. 432(8), 1995–2005 (2010). Special Issue Devoted to the 15th
ILAS Conference at Cancun, Mexico, 16–20 June 2008

12. Bouvier, C., Gaudry, P., Imbert, L., Jeljeli, H., Thom, E.: Discrete logarithms in
GF(p) – 180 digits. Announcement available at the NMBRTHRY Archives, item
004703 (2014)

http://dx.doi.org/10.1007/978-3-662-48800-3_2
https://hal.inria.fr/hal-00952610

570 T. Kim and R. Barbulescu

13. Chatterjee, S., Menezes, A., Rodriguez-Henriquez, F.: On implementing pairing-
based protocols with elliptic curves of embedding degree one. Cryptology ePrint
Archive, Report 2016/403 (2016). http://eprint.iacr.org/2016/403

14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: A homomorphic LWE based
E-voting scheme. In: Takagi, T., et al. (eds.) PQCrypto 2016. LNCS, vol. 9606, pp.
245–265. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29360-8 16

15. Commeine, A., Semaev, I.A.: An algorithm to solve the discrete logarithm problem
with the number field sieve. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 174–190. Springer, Heidelberg (2006)

16. Danilov, S., Popovyan, I.: Factorization of RSA-180 (2010). http://eprint.iacr.org/
2010/270

17. European Union Agency of Network and Information Security (ENISA):
Algorithms, key sizes and parameters report, 2013 recommandations, ver-
sion 1.0, October 2013. Publucation https://www.enisa.europa.eu/publications/
algorithms-key-sizes-and-parameters-report

18. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree
10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp.
452–465. Springer, Heidelberg (2006)

19. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010)

20. Gordon, D.M.: Discrete logarithms in GF (p) using the number field sieve. SIAM
J. Discret. Math. 6(1), 124–138 (1993)

21. Granger, R., Kleinjung, T., Zumbrägel, J.: On the powers of 2. Cryptology ePrint
Archive, Report 2014/300 (2014). http://eprint.iacr.org/2014/300

22. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006)

23. Joux, A., Pierrot, C.: The special number field sieve in Fpn . In: Cao, Z., Zhang, F.
(eds.) Pairing 2013. LNCS, vol. 8365, pp. 45–61. Springer, Heidelberg (2014)

24. Kim, T.: Extended tower number field sieve: a new complexity for medium prime
case. IACR Cryptology ePrint Archive 2015:1027 (2015)

25. Lenstra, A.K.: Unbelievable security. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, p. 67. Springer, Heidelberg (2001)

26. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673
(1987)

27. Matyukhin, D.V.: Effective version of the number field sieve for discrete logarithm
in a field GF (pk). Trudy po Diskretnoi Matematike 9, 121–151 (2006)

28. National Institute of Standards and Technology (NIST): NIST Special Publication
800–57 Part 1 (Revised): Recommendation for Key Management, Part 1: Gen-
eral (Revised), July 2012. Publication http://csrc.nist.gov/publications/nistpubs/
800-57/sp800-57-Part1-revised2 Mar08-2007.pdf

29. Odlyzko, A.M.: The future of integer factorization. CryptoBytes (Tech. Newsl.
RSA Lab.) 1(2), 5–12 (1995)

30. Pierrot, C.: The multiple number field sieve with conjugation and generalized Joux-
Lercier methods. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 156–170. Springer, Heidelberg (2015)

31. Sarkar, P., Singh, S.: New complexity trade-offs for the (multiple) number field sieve
algorithm in non-prime fields. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 429–458. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 17

http://eprint.iacr.org/2016/403
http://dx.doi.org/10.1007/978-3-319-29360-8_16
http://eprint.iacr.org/2010/270
http://eprint.iacr.org/2010/270
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report
http://eprint.iacr.org/2014/300
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://dx.doi.org/10.1007/978-3-662-49890-3_17
http://dx.doi.org/10.1007/978-3-662-49890-3_17

Extended Tower Number Field Sieve: A New Complexity 571

32. Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. Lond.
A: Math. Phys. Eng. Sci. 345(1676), 409–423 (1993)

33. Schirokauer, O.: Using number fields to compute logarithms in finite fields. Math.
Comput. 69(231), 1267–1283 (2000)

34. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theor. 32(1), 54–62 (1986)

Efficient Algorithms for Supersingular Isogeny
Diffie-Hellman

Craig Costello(B), Patrick Longa, and Michael Naehrig

Microsoft Research, Redmond, USA
{craigco,plonga,mnaehrig}@microsoft.com

Abstract. We propose a new suite of algorithms that significantly
improve the performance of supersingular isogeny Diffie-Hellman (SIDH)
key exchange. Subsequently, we present a full-fledged implementation
of SIDH that is geared towards the 128-bit quantum and 192-bit
classical security levels. Our library is the first constant-time SIDH
implementation and is up to 2.9 times faster than the previous best
(non-constant-time) SIDH software. The high speeds in this paper are
driven by compact, inversion-free point and isogeny arithmetic and fast
SIDH-tailored field arithmetic: on an Intel Haswell processor, generat-
ing ephemeral public keys takes 46 million cycles for Alice and 52 million
cycles for Bob, while computing the shared secret takes 44 million and
50 million cycles, respectively. The size of public keys is only 564 bytes,
which is significantly smaller than most of the popular post-quantum key
exchange alternatives. Ultimately, the size and speed of our software illus-
trates the strong potential of SIDH as a post-quantum key exchange candi-
date and we hope that these results encourage a wider cryptanalytic effort.

Keywords: Post-quantum cryptography · Diffie-Hellman key exchange ·
Supersingular elliptic curves · Isogenies · SIDH

1 Introduction

Post-quantum Cryptography. The prospect of a large scale quantum com-
puter that is capable of implementing Shor’s algorithm [43] has given rise to
the field of post-quantum cryptography (PQC). Its goal is to develop and ulti-
mately deploy cryptographic primitives that resist cryptanalysis by both classi-
cal and quantum computers. Recent developments in quantum computing (see,
e.g., [16,23,34]) have helped catalyze government and corporate action in this
arena. For example, in April 2015, the National Institute of Standards and Tech-
nology (NIST) held a “Workshop on Cybersecurity in a Post-Quantum World”,
reaching out to academia and industry to discuss potential future standard-
ization of PQC. Later, in August 2015, the National Security Agency (NSA)
released a major policy statement that announced plans to “transition to quan-
tum resistant algorithms in the not too distant future” [35]. In February 2016,
NIST published a draft “Report on Post-Quantum Cryptography” [11], which

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 572–601, 2016.
DOI: 10.1007/978-3-662-53018-4 21

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 573

emphasizes the need to start working towards the deployment of post-quantum
cryptography in our information security systems, and outlines NIST’s plans to
“initiate a standardization effort in post-quantum cryptography”.

In terms of public-key PQC, there are four well-known and commonly cited
classes of cryptographic primitives that are believed to remain secure in the pres-
ence of a quantum computer: code-based cryptography, lattice-based cryptogra-
phy, hash-based cryptography, and multivariate cryptography. Specific examples
for each of these are McEliece’s code-based encryption scheme [29]; Hoffstein,
Pipher and Silverman’s lattice-based encryption scheme “NTRU” [21]; Merkle’s
hash-tree signatures [30]; and Patarin’s “HFEv−” signature scheme [38]. A posi-
tive trait shared by all of these examples is a resistance to decades of attempted
classical and quantum cryptanalysis which has inspired widespread confidence
in their suitability as a post-quantum primitive. However, most of these exam-
ples also share the trait of having enormous public key and/or signature sizes,
particularly when compared to traditional primitives based on the hardness of
integer factorization or (elliptic curve) discrete logarithm computation.

Supersingular Isogeny Diffie-Hellman. In this paper, we study a differ-
ent primitive that does not fall into any of the above classes, but is cur-
rently believed to offer post-quantum resistance: the supersingular isogeny Diffie-
Hellman (SIDH) key exchange protocol proposed by Jao and De Feo in 2011 [22].
The SIDH key exchange protocol is more than a decade younger than all of the
above schemes, so its security is yet to withstand the tests of time and of a
wide cryptanalytic effort. Nevertheless, the current picture of its security prop-
erties looks promising. The best known classical and quantum attacks against
the underlying problem are both exponential in the size of the underlying finite
field, and their complexities make current SIDH key sizes significantly smaller
than their post-quantum key exchange and/or encryption counterparts1.

Our Contributions. We present a full-fledged, high-speed implementation of
(unauthenticated) ephemeral SIDH that currently provides 128 bits of quantum
security and 192 bits of classical security. This implementation uses 48-byte
private keys to produce 564-byte ephemeral Diffie-Hellman public keys, is written
in C and includes an optimized version of the field arithmetic written in assembly.
To our knowledge, our library (see [14]) presents the first SIDH software that runs
in constant-time, i.e., that is designed to resist timing [26] and cache-timing [37]
attacks. On x64 platforms, our implementation runs up to 2.9 times faster than
the (previously fastest) implementation of SIDH by Azarderakhsh et al. [2].
Note that this performance comparison does not take into account the fact that
the implementation from [2] is not protected against timing attacks. The main
technical contributions that lead to these improvements are:

1 An exception here is NTRUEncrypt [21], which has comparable public key sizes –
see https://github.com/NTRUOpenSourceProject/ntru-crypto.

https://github.com/NTRUOpenSourceProject/ntru-crypto

574 C. Costello et al.

Projective Curve Coefficients. A widely-deployed technique in traditional ECC
involves avoiding inversions by working with elliptic curve points in projective
space. Following Jao and De Feo [22], we also employ this technique to work
efficiently with points in P

1 by making use of the fast arithmetic associated with
the Kummer varieties of Montgomery curves. A crucial difference in this work,
however, is that we also work projectively with the curve coefficients; unlike
traditional ECC where the curve is fixed, every SIDH key exchange requires
computations on many different isogenous curves. In Sect. 3 we show that the
Montgomery model also allows all of the necessary isogeny arithmetic to be per-
formed efficiently in P

1. This gives rise to more compact algorithms, significantly
simplifies the overall computation, and means that key generation and shared
secret computations only require one and two field inversions, respectively.

Prime Selection and Tailor-Made Montgomery Multiplication. We select a prime
with form p = �eA

A �eB

B f −1, where �A = 2, �B = 3, and the bit lengths of 2eA and
3eB are slightly smaller than a multiple of 64. This supports efficient arithmetic
on a wide range of platforms and allows access to a large variety of optimizations
such as the efficient use of vector instructions, Karatsuba multiplication, and lazy
reduction. Moreover, it is well-known that primes of a special form can lead to
faster algorithms for computing modular arithmetic in comparison with general-
purpose algorithms. In this work, we note the special shape of these SIDH-
friendly primes and modify the popular Montgomery multiplication algorithm
to speed up modular arithmetic.

Ground Field Scalar Multiplications for Key Generation. Secure key generation
in the SIDH protocol requires the definition of two independent cyclic subgroups
of a fixed order (see Sect. 2). Jao and De Feo [22, Sect. 4.1] propose that genera-
tors of these two groups can be computed by multiplying random curve points by
an appropriate cofactor, and that their linear independence can be checked via
the Weil pairing. In Sect. 4 we employ a well-known technique from the pairing
literature [42, Sect. 5] to work with two advantageous choices of torsion sub-
groups: the base-field and trace-zero subgroups. These choices allow the initial
scalar multiplications that are required during key generation to be performed
entirely over the base field. While these scalar multiplications only constitute
a small fraction of the overall key generation time, and therefore the overall
speedup from this technique is only moderate, a more visible benefit is the sig-
nificant decrease in the size of the public parameters – see Sect. 6. We discuss
possible security implications of this choice in Sect. 4.

Several of the above choices not only aid efficiency, but also the overall sim-
plicity and compactness of the SIDH scheme. Choosing to unify points with their
inverses and to unify Montgomery curves with their quadratic twists (see Sect. 3)
effectively compresses the elements that are sent over the wire, i.e., the public
keys, by a factor of two. Moreover, our software never requires the computation
of square roots.

The timings we present in Sect. 7 reveal that high-security SIDH key exchange
is more efficient than it was previously known to be. Our constant-time software
shows that, if confidence in the security of SIDH warrants real-world deployment

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 575

in the future, the same level of side-channel protection can be achieved in the
SIDH setting as in traditional number-theoretic schemes. We therefore hope that
this paper encourages a wider cryptanalytic effort on the problems underlying
the security of SIDH (see Sect. 2). Moreover, even if cryptanalytic improvements
are made in the future, the huge difference between current SIDH key sizes and
those of other PQC primitives suggest that the problem could remain of interest
to practitioners. So long as the best known attacks remain exponential with a
reasonable exponent (see the discussion below), it is reasonable to suggest that
elliptic curves could offer the same benefit in post-quantum cryptography that
they did in classical cryptography.

Beyond the efficiency improvements above, we present several techniques that
help to bridge the gap between the theoretical SIDH scheme in [22] and its real-
world deployment. Of particular importance are the contributions discussed in
the following two paragraphs.

A Strong ECDH+SIDH Hybrid. Given the uncertainty surrounding the arrival
date of large-scale quantum computers (as well as the time it takes for new
primitives to be thoroughly cryptanalyzed, standardized and deployed), many
real-world cryptographers are hastily pushing for deployment of post-quantum
primitives sooner rather than later. Subsequently, a proposal that is gaining
popularity in the PQC community is the deployment of hybrid schemes, i.e.,
schemes where a long-standing classically-secure primitive P is partnered along-
side a newer post-quantum candidate Q (cf. [5]). The simple reasoning here is
that, even if further cryptanalysis weakens Q’s resistance to classical computers,
the hybrid scheme P+Q is likely to remain classically secure; conversely, P’s pre-
sumed weakness against a quantum computer does not affect the post-quantum
security of P + Q. Taking such a prudent measure in the case of SIDH, which is
much newer than other post-quantum primitives, seems especially wise. In Sect. 8
we present a possibility to partner SIDH public keys alongside traditional elliptic
curve Diffie-Hellman (ECDH) public keys that are extremely strong. In partic-
ular, while our proposed SIDH parameters respectively offer around 128 and
192 bits of security against the best known quantum and classical attacks, the
proposed hybrid offers around 384 bits of classical security based on the elliptic
curve discrete logarithm problem (ECDLP). While this might seem like overkill,
we show that this partnering is a very natural choice and comes at a relatively
small cost: compared to a standalone SIDH, the size of the public keys and the
overall runtime in our SIDH+ ECDH hybrid increase by no more than 17 % and
13 %, respectively, and there is almost no additional code required to include
ECDH in the scheme.

Public Key Validation. The security of unauthenticated ephemeral key exchange
is modeled using passive adversaries, in which case we can assume that both
parties’ public keys are honestly generated. As was pointed out in April 2015 by
a group at the NSA [24], in static key exchange when private keys are reused,
validating public keys in the case of isogeny-based cryptography becomes both
necessary and non-trivial. The suggested indirect public key validation procedure
described in [24] is costly and requires one party to reveal their secret key, such

576 C. Costello et al.

that only the other party can reuse theirs. In Sect. 9 we detail a form of direct
validation for the public keys used in our scheme, and show how to achieve this
validation efficiently in our compact framework.

SIDH History and Security. Beginning with an unpublished preprint with
Rostovtsev in early 2006 [40], and then in a series of Russian papers that
culminated in his thesis [45], Stolbunov proposed a Diffie-Hellman-like cryp-
tosystem based on the difficulty of computing isogenies between ordinary (i.e.,
non-supersingular) elliptic curves. The best algorithm to solve this problem
on a classical computer runs in exponential time and is due to Galbraith and
Stolbunov [18].

In late 2010, however, Childs et al. [12] gave a quantum algorithm that com-
putes isogenies between ordinary curves in subexponential time, assuming the
Generalized Riemann Hypothesis (GRH). Subsequently, in late 2011, Jao and
De Feo [22] put forward SIDH, which is instead based on the difficulty of com-
puting isogenies between supersingular elliptic curves. This problem is immune
to the quantum attack in [12], since this attack crucially relies on the endomor-
phism ring being commutative, which is not the case for a supersingular curve
whose endomorphism ring is isomorphic to an order in a quaternion algebra [44,
Sect. V.3.1].

Given two isogenous supersingular elliptic curves defined over a field of char-
acteristic p, the general supersingular isogeny problem is to construct an isogeny
between them. The best known classical algorithm for this problem is due to
Delfs and Galbraith [15] and requires Õ(p1/2) bit operations, while the best
known quantum algorithm is due to Biasse et al. [6] and requires Õ(p1/4) bit
operations. The problems underlying SIDH (see Sect. 2) are not general in that
the degree of the isogeny, which is smooth and in O(

√
p), is known and public.

As is discussed by De Feo et al. [17, Sect. 5.1]2, this specialized problem can be
viewed as an instance of the claw problem, and the optimal asymptotic classical
and quantum complexities for the claw problem are known to be O(p1/4) and
O(p1/6), respectively [47,52]. Currently, this approach yields the best known
classical and quantum attacks against SIDH.

Organization . In Sect. 2 we recall the key concepts from [17] that are needed
in SIDH. In Sect. 3 we show that all isogeny and point computations can be per-
formed in P

1; here we derive all of the lower-level functions that are called during
the key generation and shared secret operations. In Sect. 4 we fix the underlying
isogeny class used in our software, describe the high-level key exchange opera-
tions, and discuss other implementation choices. In Sect. 5 we detail the special
field arithmetic that is tailored towards our chosen prime (as well as many other
well-chosen SIDH-friendly primes).

We give a summary of the scheme in Sect. 6 and present performance results
of our implementation in Sect. 7. In Sect. 8 we describe our proposal for a strong

2 This is an extended version of the original SIDH paper by Jao and De Feo [22].

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 577

hybrid key exchange scheme that combines classical ECDH with post-quantum
SIDH, and in Sect. 9 we show how to efficiently validate SIDH public keys in
static key exchange settings. We conclude the paper in Sect. 10.

To promote future implementations of SIDH, we have endeavored to make
this paper as self-contained as possible. Essentially, all functions that are needed
to implement SIDH are described in Sect. 3. High level functions can be found
in the appendix of the full version [13]. All other details can be found in the
released code [14].

2 Diffie-Hellman Key Exchange from Supersingular
Elliptic Curve Isogenies

This section sets the stage by introducing notation, giving some basic properties
of torsion subgroups and isogenies, and recalling the supersingular isogeny Diffie-
Hellman key exchange protocol. This is all described in a similar fashion by
De Feo et al. in [17, Sect. 2].

Smooth Order Supersingular Elliptic Curves. SIDH uses isogeny classes
of supersingular elliptic curves with smooth orders so that rational isogenies
of exponentially large (but smooth) degree can be computed efficiently as a
composition of low degree isogenies. Fix two small prime numbers �A and �B ,
an integer cofactor f , and let p be a prime of the form p = �eA

A �eB

B f ± 1. It is
then easy to construct a supersingular elliptic curve E defined over Fp2 of order
(�eA

A �eB

B f)2 [9].
For � ∈ {�A, �B} and e ∈ {eA, eB} the corresponding exponent, we have that

the full �e-torsion group on E is defined over Fp2 , i.e. E[�e] ⊆ E(Fp2). Since
� is coprime to p, E[�e] ∼= (Z/�e

Z) × (Z/�e
Z) [44, III. 6.4]. Let P,Q ∈ E[�e]

be two points that generate E[�e] such that the above isomorphism is given by
(Z/�e

Z)×(Z/�e
Z) → E[�e], (m,n) �→ [m]P +[n]Q. Roughly speaking, the SIDH

secret keys are degree �e isogenies of the base curve E, which are in one-to-one
correspondence with the cyclic subgroups of order �e that form their kernels.
A point [m]P + [n]Q has full order �e if and only if at least either m or n
are not divisible by �. There are �2e−2(�2 − 1) such points. Since distinct cyclic
subgroups only intersect in points of order less than �e and all full-order points
in a single subgroup are coprime multiples of one such point, it follows that there
are �e−1(� + 1) distinct cyclic subgroups of order �e.

Computing Large Degree Isogenies. Given a cyclic subgroup 〈R〉 ⊆ E[�e]
of order �e, there is a unique isogeny φR of degree �e, defined over Fp2 with
kernel 〈R〉 [44, III. 4.12], mapping E to an isogenous elliptic curve E/〈R〉. The
isogeny φR can be computed as the composition of e isogenies of degree � which
in turn can be computed by using Vélu’s formulas [49]. As described in [17,
Sect. 4.2.2], we can start with E0 := E and R0 := R and then iteratively compute
Ei+1 = Ei/〈[�e−i−1]Ri〉 for 0 ≤ i < e as follows. Each iteration computes the

578 C. Costello et al.

degree-� isogeny φi : Ei → Ei+1 whose kernel is the cyclic group 〈[�e−i−1]Ri〉 of
order �, before applying the isogeny to compute Ri+1 = φi(Ri). The point Ri

is an (�e−i)-torsion point and so [�e−i−1]Ri has order �. Thus, the composition
φR = φe−1 ◦ · · · ◦ φ0 has degree �e, which together with (φe−1 ◦ · · · ◦ φ0)(R) =
Re = O shows that ker(φR) = 〈R〉, and therefore that φ = φe−1 ◦ · · · ◦ φ0.

There are two obvious ways of computing φ using the above decomposition.
One of them follows directly from the description above: in each iteration, one
first computes the scalar multiplication [�e−i−1]Ri to obtain a point of order �,
then uses Vélu’s formulas to compute φi, and evaluates it at Ri to obtain the
next point Ri+1. Jao and De Feo [22, Fig. 2] call this the multiplication-based
strategy because it is dominated by the number of scalar multiplications by � that
are needed to obtain the �-torsion points. The second obvious approach is called
the isogeny-based method [22, Fig. 2] because it is dominated by the number
of isogeny evaluations. It requires only one loop of scalar-multiplications that
stores all �-multiples of R, i.e., all intermediate results Qi = [�i]R for 0 ≤ i < e.
The point Qe−1 has order � and can be used to obtain the isogeny φ0 as above.
One then replaces all Qi for 0 ≤ i ≤ (e − 2) by φ0(Qi). At this point Qe−2 has
order � and is used to obtain φ1. This is repeated until one obtains φe−1 and
hence the composition φ.

De Feo et al. [17, Sect. 4.2.2] demonstrate that both of these methods are
rather wasteful and that there is a much more efficient way to schedule the
multiplications-by-� and �-isogeny evaluations. We briefly touch on this in Sect. 4,
and defer the finer details to the full version [13].

SIDH Key Exchange. This paragraph recalls the SIDH key exchange protocol
from [17, Sect. 3.2]. The public parameters are the supersingular curve E0/Fp2

whose group order is (�eA

A �eB

B f)2, two independent points PA and QA that gen-
erate E0[�eA

A], and two independent points PB and QB that generate E0[�eB

B]. To
compute her public key, Alice chooses two secret integers mA, nA ∈ Z/�eA

A Z, not
both divisible by �A, such that RA = [mA]PA +[nA]QA has order �eA

A . Her secret
key is computed as the degree �eA

A isogeny φA : E0 → EA whose kernel is RA, and
her public key is the isogenous curve EA together with the image points φA(PB)
and φA(QB). Similarly, Bob chooses two secret integers mB , nB ∈ Z/�eB

B Z, not
both divisible by �B , such that RB = [mB]PB + [nB]QB has order �eB

B . He
then computes his secret key as the degree �eB

B isogeny φB : E0 → EB whose
kernel is RB, and his public key is EB together with φB(PA) and φB(QA). To
compute the shared secret, Alice uses her secret integers and Bob’s public key
to compute the degree �eA

A isogeny φ′
A : EB → EBA whose kernel is the point

[mA]φB(PA) + [nA]φB(QA) = φB([mA]PA + [nA]QA) = φB(RA). Similarly, Bob
uses his secret integers and Alice’s public key to compute the degree �eB

B isogeny
φ′

B : EB → EAB whose kernel is the point [mB]φA(PB)+[nB]φA(QB) = φA(RB).
It follows that EBA and EAB are isomorphic, so Alice and Bob can compute a
shared secret as the common j-invariant j(EBA) = j(EAB).

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 579

Security Under SSDDH. In [17, Sect. 5], De Feo et al. give a number of
computational problems related to SIDH and discuss their complexity. In [17,
Sect. 6], they prove that SIDH is session-key secure in the authenticated-
links adversarial model of Canneti and Krawczyk [10] under the Supersingu-
lar Decision Diffie-Hellman (SSDDH) problem, which we recall as follows. With
the public parameters as above, one is given a tuple sampled with probabil-
ity 1/2 from either (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB) or from
(EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where EAB

∼= E0/
〈
[mA]PA +

[nA]QA, [mB]PB + [nB]QB

〉
, EC

∼= E0/
〈
[m′

A]PA + [n′
A]QA, [m′

B]PB + [n′
B]QB

〉
,

and the values m′
A, n′

A,m′
B and n′

B are chosen randomly from the same respec-
tive distributions as mA, nA,mB and nB . The SSDDH problem is to determine
from which distribution the tuple is sampled.

3 Projective Points and Projective Curve Coefficients

In this section we present one of our main technical contributions by showing
that, just as the Montgomery form allows point arithmetic to be carried out
efficiently in P

1, in the context of SIDH it also allows isogeny arithmetic to be
carried out in P

1. This gives rise to fast, inversion-free point-and-isogeny oper-
ations that significantly boost the performance of SIDH. In comparison to the
software3 accompanying [17] that computes at least one inversion per isogeny
computation, and therefore O(�) inversions per round of the protocol, our soft-
ware only requires one inversion during key generation and two inversions during
the computation of the shared secret.

Montgomery Curves. Over a field K, a Montgomery curve [33] is defined by
the two constants (a, b) ∈ A

2(K) as E(a,b) : by2 = x3+ax2+x. Unlike traditional
ECC, in this work the defining curve does not stay fixed, but changes as we move
around an isogeny class. As we discuss further below, it is therefore convenient
to work projectively both with points on curves and with the curve coefficients
themselves. Let (A : B : C) ∈ P

2(K) with C ∈ K̄× be such that a = A/C and
b = B/C. Then E(a,b) can alternatively be written as E(A : B : C) : By2 = Cx3 +
Ax2+Cx. The K-rational points on E(a,b) or E(A : B : C) are contained in P

2(K),
so as usual we use the notation (X : Y : Z) ∈ P

2(K) with Z �= 0 to represent all
points (x, y) = (X/Z, Y/Z) in A

2(K), and the point at infinity is O = (0: 1 : 0).
The j-invariants of the curves given by these models are j(Ea,b) = 256(a2−3)3

a2−4

and j(E(A : B : C)) = 256(A2−3C2)3

C4(A2−4C2) .

Kummer Varieties and Points in P
1. Following [33], viewing the x-line P

1

as the Kummer variety of E(a,b) allows for particularly efficient arithmetic in
E(a,b)/〈±1〉 ∼= P

1. Let x : E(a,b) \ {O} → P
1, (X : Y : Z) �→ (X : Z). For the

points P,Q ∈ E(a,b) \ {O} and m ∈ Z, Montgomery [33] gave efficient formulas

3 See https://github.com/defeo/ss-isogeny-software/.

https://github.com/defeo/ss-isogeny-software/

580 C. Costello et al.

for computing the doubling function xDBL : (x(P), a) �→ x([2]P), the function
xADD : (x(P), x(Q), x(Q−P)) �→ x(Q+P) for differential additions, and the func-
tion xDBLADD : (x(P), x(Q), x(Q − P), a) �→ (x([2]P), x(Q − P)) for the merging
of the two. These are all ingredients in the Montgomery ladder function to com-
pute the Z-action on E(a,b)/〈±1〉 ∼= P

1, i.e., LADDER : (x(P), a,m) �→ x([m]P). We
also make use of the Montgomery tripling function xTPL : (x(P), a) �→ x([3]P)
on E(a,b)/{±1}, which is taken from [17].

We note that the xADD function works identically for E(a,b) and E(A : B : C),
while the other functions on E(a,b) that involve a can be trivially modified to work
on E(A : B : C) by substituting a = A/C and avoiding the inversion by carrying
the denominator C through to the projective output. All of these functions are
summarized in Table 1. Conveniently, all of these subroutines are only needed to
work entirely in only one of E(A : B : C) and E(a,b).

During the computations of shared secrets, we found it advantageous to
employ the function LADDER 3 pt : (x(P), x(Q), x(Q − P), a,m) �→ x(P + [m]Q),
which is precisely the “three point ladder” given by De Feo et al. [17, Algorithm 1].

Minimizing the Number of Inversions via Curves in P
1. Observe that

all of the functions mentioned above on E(a,b)/{±1} (resp. E(A : B : C)/{±1})
depend entirely on a (resp. A and C) and are independent of b (resp. B). This is
because, for a fixed a = A/C and up to isomorphism, there are only two curves
found by varying b (resp. B) over K: the curve E and its non-trivial quadratic
twist. Indeed, an elliptic curve and its twist are unified under the quotient by
{±1}, i.e., have the same Kummer variety, so it is no surprise that the Kummer
arithmetic is independent of the Montgomery b (resp. B) coefficient. Moreover,
we see above that the j-invariant is also independent of b (resp. B).

Our implementation profits significantly from these observations, and the
choice of Montgomery form provides two advantages in parallel. The first is
the well-known Montgomery-style point arithmetic that unifies points and their
inverses by ignoring the Y coordinate to work with (X : Z) ∈ P

1; the second is
new isogeny arithmetic that unifies curves and their quadratic twists by ignoring
the B coefficient to instead work only with (A : C) ∈ P

1. In this way all point
operations and isogeny computations are performed in P

1, meaning that only one
inversion is required (at the very end) when generating public keys or computing
shared secrets. In the latter case, the inversion is computed during the j-invariant
function j inv : (A,C) �→ j(E(A : B : C)), while in the former case we use a 3-way
simultaneous inversion [33] to normalize all of the components of the public key
prior to transmission; see Table 1 for more details on these functions.

Projective Three Isogenies. Let x(P) = (X3 : Z3) ∈ P
1 be such that P

has order 3 in E(A : C). Let E′
(A′ : C′) = E(A : C)/〈P 〉, φ : E(A : C) → E′

(A′ : C′),
Q ∈ Ea \ ker(φ), and write x(Q) = (X : Z) ∈ P

1 with x(φ(Q)) = (X ′ : Z ′) ∈ P
1.

Our goal is to derive two sets of explicit formulas: the first set computes the
isogenous curve E(A′ : C′) from (X3 : Z3) and E(A : C), while the second set
is used to evaluate the corresponding isogeny by computing (X ′ : Z ′) from

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 581

the additional input (X : Z). The projective version of [17, Eq. (17)] gives
(A′ : C ′) =

(
(AX3Z3 + 6(Z2

3 − X2
3))X3 : CZ3

3

)
, which can be computed in

6M + 2S + 5a4. However, it is possible to do much better by using Z3 �= 0
and the fact that X3/Z3 is a root of the 3-division polynomial ψ3(x) =
3x4 + 4(A/C)x3 + 6x2 − 1 on E(A : C). This yields the alternative expression
(A′ : C ′) =

(
Z4
3 + 18X2

3Z2
3 − 27X4

3 : 4X3Z
3
3

)
, which is independent of the coef-

ficients of E(A : C) and can be computed in 3M + 3S + 8a; see the function
get 3 isog in Table 1. For the evaluation of the isogeny, we modify the map
in [17, Eq. (17)] to give (X ′ : Z ′) =

(
X(X3X − Z3Z)2 : Z(Z3X − X3Z)2

)
. This

costs 6M + 2S + 2a; see the function eval 3 isog in Table 1.

Projective Four Isogenies. We now let x(P) = (X4 : Z4) ∈ P
1 be such that

P has exact order 4 in E(A : C), and leave all other notation and definitions as
above. As is discussed in [17, Sect. 4.3.2], there are some minor complications in
the derivation of 2- and 4-isogenies, either because a direct application of Vélu’s
formulas [49] for a 2-isogeny do not preserve the Montgomery form, or because
repeated application of the 4-isogeny resulting from Vélu’s formulas is essentially
degenerate. For our purposes, i.e., in the case of 4-isogenies (overall, we found
using 4-isogenies to be significantly faster than using 2-isogenies), the latter
problem is remedied by application of the simple isomorphism in [17, Eq. (15)].
When building the 4e isogenies as a composition of 4-isogenies, this isomorphism
is needed in every 4-isogeny computation except for the very first one, and we
derive explicit formulas for both of these cases.

Note that for the very first 4-isogeny φ0 : E(A : C) → E(A′ : C′) computed in
the public key generation phase, the curve E(A : C) is that which is specified in
the system parameters; and, for the first 4-isogeny in the shared secret compu-
tation, E(A : C) is the curve that is received as part of a public key sent over
the wire. In both cases the curve is normalized so that A = a and C = 1. In
this case we use [17, Eq. (20)] directly, which gives (A′ : C ′) = (2(a + 6): a − 2),
and projectivize the composition of [17, Eqs. (19) and (21)] to give (X ′ : Z ′) =(
(X + Z)2(aXZ + X2 + Z2) : (2 − a)XZ(X − Z)2

)
. This costs 4M + 2S + 9a;

see the function first 4 isog in Table 1.
For the general 4-isogeny, we projectivized the composition of the above

isogeny with the isomorphism in [17, Eq. (15)], making some modifications as
follows. We made use of the xDBL function to parameterize the point of order 2
in [17, Eq. (15)] in terms of the point (X4 : Z4) of order 4. For the isogeny eval-
uation function, we again found it advantageous to simplify under the applica-
ble component of the 4-division polynomial ψ4(x, y) = 4y(x − 1)(x + 1)ψ̂4(x),
which is ψ̂4(x) = x4 + 2(A/C)x3 + 6x2 + 2(A/C)x + 1 and which vanishes
at X4/Z4. For the computation of the isogenous curve, we get (A′ : C ′) =(
2(2X4

4 − Z4
4) : Z4

4

)
, and for the evaluation of the isogeny, we get the image

4 As usual, M, S and a represent the costs of field multiplications, squarings, and
additions, respectively. We always count multiplications by curve coefficients as full
multiplications, since these coefficients change within an isogeny class and thus we
cannot expect any savings by treating them differently to generic elements.

582 C. Costello et al.

point (X ′ : Z ′) where X ′ = X
(
2X4Z4Z − X(X2

4 + Z2
4)

)
(X4X − Z4Z)2 and

Z ′ = Z
(
2X4Z4X − Z(X2

4 + Z2
4)

)
(Z4X − X4Z)2. Since each 4-isogeny is evalu-

ated at multiple points, during the above computation of the isogenous curve,
we also compute and store five values that can be (re)used in the evaluation:
c = [X2

4 + Z2
4 ,X2

4 − Z2
4 , 2X4Z4,X

4
4 , Z4

4].
The computation of the isogenous curve and of the five values in c above

costs 5S + 7a, and on input of c and Q = (X : Z), the isogeny evaluation costs
9M + 1S + 6a; see the functions get 4 isog and eval 4 isog in Table 1.

Summary of Subroutines. All of the point and isogeny operations are sum-
marized in Table 1. We note that the input c ∈ K5 into the eval 4 isog function
is the same tuple of constants output from get 4 isog, as described above.

Table 1. Summary of the subroutines used in our SIDH implementation. Here the
points P and Q are on the curve E(a,b) = E(A : B : C), and E′ = E(A′ : B′ : C′) is used to
denote the isogenous curve. We use n = log2 m− 1 to count operations in loops. For a
more detailed table, see the full version [13].

Function Input (s) Output (s) M S a I

j inv (A, C) j(E) 3 4 8 1

xDBLADD
(
x(P), x(Q), x(Q − P), a+2

4

)
(x([2]P), x(Q + P)) 6 4 8 -

xADD (x(P), x(Q), x(Q − P)) x(Q + P) 3 2 6 -

xDBL
(
x(P), A + 2C, 4C

)
x([2]P) 4 2 4 -

xDBLe (x(P), A, C, e) x([2e]P) 4e 2e 4e -

LADDER
(
x(P), a, m

)
x([m]P) 5n 4n 9n -

LADDER 3 pt (x(P), x(Q), x(Q − P), a, m) x(P + [m]Q) 9n 6n 14n -

xTPL
(
x(P), A + 2C, 4C

)
x([3]P) 8 4 8 -

xTPLe (x(P), A, C, e) x([3e]P) 8e 4e 8e -

get 3 isog x(P) (A′, C′) 3 3 8 -

eval 3 isog (x(P), x(Q)) x(φ(Q)) 6 2 2 -

first 4 isog (x(Q), a) (x(φ0(Q)), A′, C′) 4 2 9 -

get 4 isog x(P) (A′, C′, c) - 5 7 -

eval 4 isog (c, x(Q)) x(φ(Q)) 9 1 6 -

secret pt (P, Q = τ(P), m) x(P + [m]Q) 5n 4n 9n -

distort and diff xP x(τ(P)− P) - 1 2 -

get A (xP , xQ, xQ−P) A 4 1 7 1

inv 3 way (z1, z2, z3) (z−1
1 , z−1

2 , z−1
3) 6 - - 1

4 Parameters and Implementation Choices

Prime Field and Isogeny Class. From here on, the field K is fixed as K =
Fp2 , where p := 2372 · 3239 − 1, and Fp2 = Fp(i) for i2 = −1. In terms of the

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 583

notation from Sect. 2, this means that �A = 2, �B = 3, eA = 372, eB = 239 and
f = 1. We searched for primes of the form 2eA3eBf − 1 with a bit length close
to (but no larger than) 768, aiming to strike a balance �eA

A ≈ �eB

B to ensure that
one side of the key exchange is not appreciably easier to attack than the other
(more on this below), and to balance the computational costs for Alice and Bob.
We originally searched with no restriction on the cofactor f , but did not find
an example of another prime that would perform as fast as ours and where the
overall security was increased enough to warrant f �= 1. Given the best known
classical and quantum attack complexities (see Sect. 1), choosing a prime close
to 768 bits aims to reach a claim of 192 bits of classical security and 128 bits of
quantum security. The arithmetic advantages of this prime choice are detailed
in Sect. 5.

Our implementation works in the isogeny class of elliptic curves over Fp2 that
contains the supersingular Montgomery curve E0/Fp2 : y2 = x3 +x. Every curve
in this isogeny class has (p + 1)2 = (2372 · 3239)2 points and is also supersingular
[44, Exercise 5.4 and 5.10(a)]. The curve E0 is the public parameter that is the
starting point for the key exchange protocol.

The Base-Field and Trace-Zero Torsion Subgroups. A valuable technique
that was introduced by Verheul [50] and that has played a key role in the imple-
mentation of symmetric pairings on supersingular elliptic curves [42], is that of
using a distortion map. Verheul showed that every supersingular elliptic curve
has a distortion map [50]. For a prime power �e | #E0(Fp), such a map connects
the cyclic torsion subgroup E0(Fp)[�e] defined over the base field Fp with the
trace-zero subgroup of E0(Fp2)[�e]. The distortion map we use for E0 is given
by the endomorphism τ : E0(Fp2) → E0(Fp2), (x, y) �→ (−x, iy).

An �e torsion point P ∈ E0(Fp) is mapped to an �e-torsion point τ(P) ∈
E0(Fp2) and the Weil pairing e�e(P, τ(P)) �= 1 is non-trivial. It is easy to see that
the trace of the image point is zero, namely Tr(τ(P)) = τ(P) + πp(τ(P)) = O,
where πp is the p-power Frobenius endomorphism on E0. An advantage of using
the trace-zero subgroup is that its points can be represented by two Fp-elements
only and are therefore half the size of a general curve point defined over Fp2 .

Choosing Generator Points for Torsion Subgroups. We apply a similar
idea in that we fix the public �eA

A -torsion points PA, QA and �eB

B -torsion points
PB, QB as generators of the (respective) base field and trace-zero subgroups,
chosen as follows. Let PA ∈ E0(Fp)[2372] be the point given as [3239](z,

√
z3 + z),

where z is the smallest positive integer such that
√

z3 + z ∈ Fp and PA has order
2372. The point PB is selected in the same way with order and cofactor swapped.
We then take QA = τ(PA) and QB = τ(PB), which produces the following
generators: PA = [3239](11,

√
113 + 11), QA = τ(PA), PB = [2372](6,

√
63 + 6),

and QB = τ(PB).
In addition to the base field representations mentioned above, the simple

relationship between the coordinates of QA and PA and the coordinates of QB

and PB helps to further compactify the public parameters; see Sect. 6. However,

584 C. Costello et al.

choosing {PA, QA} and {PB , QB} as the bases for generating isogeny kernels
from the base-field and trace-zero torsion subgroups can have caveats. For exam-
ple, in the case � = �A = 2, one obtains the following lemma (the proof of which
is in the full version [13]).

Lemma 1. Let E : y2 = x3+x be a supersingular elliptic curve defined over Fp,
p > 3, p ≡ 3 (mod 4), such that #E(Fp) = 2e · N with N odd. Let Fp2 = Fp(i),
i2 = −1, and let E[�e] ⊆ E(Fp2). Let P ∈ E(Fp)[2e] be any point of order 2e and
let Q ∈ E(Fp2)[2e] be any point of order 2e with Tr(Q) = Q + πp(Q) = O. Then
the order of P + Q equals 2e−1.

In particular, Lemma 1 proves that any point of the form P + [m]Q for odd
m has order less than 2e. Also note that if m is even, then the order of P +[m]Q
is 2e because [2e−1](P + [m]Q) = [2e−1]P �= O. Furthermore, this means that
the points P and Q do not generate the full 2e-torsion subgroup, and strictly
speaking, the two points are not independent5.

In the following two paragraphs we show how Alice and Bob can choose their
secret scalars to guarantee that the degrees of their isogenies are maximal, i.e.,
�eA

A and �eB

B respectively.

Sampling Full Order 2-Torsion Points. To sample a 2-torsion point RA

of full order, we sample a uniform random integer m′ ∈ {1, 2, . . . , 2eA−1 − 1 =
2371−1} and set RA = PA +[2m′]QA; RA is guaranteed to have order 2eA by the
above discussion. Because two distinct choices for m′ lead to two distinct cyclic
subgroups generated by the corresponding RA, one can reach 2eA−1−1 = 2371−1
distinct subgroups and thus isogenies with this sampling procedure. We have seen
in Sect. 2 that there are 3 · 2eA−1 distinct full order subgroups in E0[2eA], and
thus our sampling procedure only reaches about one third of those.

Sampling Full Order 3-Torsion Points. To sample a 3-torsion point RB

of full order, we sample a uniform random integer m′ ∈ {1, 2, . . . , 3eB−1 − 1 =
3238 − 1} and set RB = PB + [3m′]QB . Since [3eB−1]RB = [3eB−1]PB �= O, RB

is guaranteed to have order 3eB . In this way, we reach 3238 − 1 of the possible
subgroups and corresponding isogenies. Since there are 4 · 3eB−1 such subgroups
in E0[3eB], we sample from about one quarter of those.

Strategies for Isogeny Computation and Evaluation. For computing and
evaluating �eA

A - and �eB

B -isogenies, we closely follow the methodology described
in [17, Sect. 4.2]. As already described in Sect. 2, such isogenies are composed of
eA isogenies of degree �A and eB isogenies of degree �B , respectively. Figure 2 in
[17] illustrates this computation with the help of a directed acyclic graph. In order
to be able to evaluate the desired isogeny, one needs to compute all points that are

5 Whenever we use the term independent for the points P and Q in what follows, we
mean that the Weil pairing evaluated at P and Q is non-trivial.

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 585

represented by the final vertices, i.e., the leaves in the graph. As described earlier in
Sect. 2, using the multiplication-based or isogeny-based methods to traverse this
graph yields a simple but costly algorithm. De Feo et al. [17, Sect. 4.2.2] provide a
discussion of how to obtain an optimal algorithm. They formally define the notion
of a strategy for evaluating φ along a directed acyclic graph and show how to find
an optimal strategy depending on the relative costs of scalar multiplication-by-�
and �-isogeny evaluation. For the details on the optimal strategies for our chosen
parameters, we refer to the full version [13].

5 Field Arithmetic

In this section, we describe the advantages of the chosen prime and optimizations
to speed up the modular reduction inside SIDH, which were inspired by similar
work on so-called Montgomery-friendly primes (e.g., see [19,27]). We remark
that similar ideas can be easily applied to selecting primes and implementing
their modular arithmetic at different security levels.

In our case, arithmetic is performed modulo the prime p = 2372 · 3239 − 1.
As described in Sect. 4, choosing an SIDH prime such that �eA

A ≈ �eB

B ensures
a certain security strength across the whole key exchange scheme. Additionally,
some implementations benefit from having a prime with a bit length slightly
smaller than a multiple of a word size. Since 768 is the next multiple of 32 and
64 above the bit length of our prime, and log2 p = 751 = 768 − 17, the extra
room available at the word boundaries enables the efficient use of other opti-
mization techniques such as carry-handling elimination, and eases the efficient
use of vector instructions. Working on a field of size slightly smaller than 2768

enables us to, e.g., use 12 × 64-bit limbs to represent field elements, whereas a
prime slightly larger than 2768, such as p768 = 2387 · 3242 − 1 from [2], requires
13 × 64-bit limbs; the latter choice brings a relatively small increase in security
at the expense of a significant increase in the cost of the modular arithmetic.

Since we work over Fp2 , where Fp2 = Fp(i) for i2 = −1, we can leverage the
extensive research done on the efficient implementation of such quadratic exten-
sion fields. In the context of pairings, high-speed implementations have exploited
the combination of Karatsuba multiplication, lazy reduction, and carry-handling
elimination; e.g., these techniques have been combined in optimized implemen-
tations on the curve BN254 [1]. Here we can follow a similar strategy since our
field definition and underlying prime share several common traits with BN254,
e.g., our prime being slightly smaller than a multiple of the word size enables the
computation of several additions without carry-outs in the most significant word.

Efficient Modular Reduction. The cost of modular arithmetic (and, in par-
ticular, of modular multiplication) dominates the cost of the isogeny-based key
exchange, so its efficient implementation is crucial for achieving high perfor-
mance. At first glance, it would seem that SIDH primes prompt the use of generic
Montgomery [32] or Barrett [3] reduction algorithms, which are relatively expen-
sive in comparison with the efficient reduction of certain primes with special

586 C. Costello et al.

form (e.g., pseudo-Mersenne primes). For example, Azarderakhsh et al. [2] use
a generic Barrett reduction for computing the modular multiplication in their
SIDH implementation. However, we note that primes of this form do have a spe-
cial shape that is amenable to faster modular reduction. Consider the case of the
well-known Montgomery reduction [32]: letting R = 2768 and p′ = −p−1 mod R,
then one can compute the Montgomery residue c = aR−1 mod p for an input
a < pR, by using c = (a + (ap′ mod 2768) · p)/2768, which costs approximately
s2 + s multiplications for a 2s-limb value a. For p = 2372 · 3239 − 1, however, this
computation simplifies to c = (a + (ap′ mod 2768) · 2372 · 3239)/2768.

Moreover, p′ = −p−1 mod 2768 also exhibits a special form which reduces
the cost of computing ap′ mod 2768 (e.g., p′ − 1 contains five 64-bit limbs or
eleven 32-bit limbs of value 0). In total, the cost of computing c in this case is
s(s − �372/w�) multiplications for a word-size w. For example, if w = 64 (i.e.,
s = 12), the theoretical speedup for the simplified modular reduction is about
1.85x when applying these optimizations.

It is straightforward to extend the above optimizations to the different Mont-
gomery reduction variants that exist in the literature. For our implementa-
tion, we adapted the Comba-based Montgomery reduction algorithm from [41].
Although merged multiplication/reduction algorithms, such as the coarsely inte-
grated operand scanning (CIOS) Montgomery multiplication [25], offer perfor-
mance advantages in certain scenarios, we prefer an implementation variant that
consists of separate routines for integer multiplication and modular reduction.
This approach enables the use of lazy reduction for the Fp2 arithmetic and
allows easy-to-implement improvements in the integer multiplication, e.g., by
using Karatsuba.

Algorithm 1 is based on the Montgomery reduction algorithm in product
scanning form (a.k.a. Comba) presented in [41]. It has been especially tailored
for efficient computation modulo the prime p = 2372 · 3239 − 1 following the opti-
mizations discussed above. As usual, given a radix-2r field element representation
using s limbs, the algorithm receives as input an operand a < 2rsp (e.g., the inte-
ger product of two Montgomery residues) and outputs the Montgomery residue
c = a · 2−rs mod p. Here c is typically computed as (a + (ap′ mod 2r) · p)/2r

(s times) in a Comba-like fashion, where p′ = −p−1 mod 2r. However, as
mentioned above, this expression simplifies to (a + (a mod 2r) · p̂)/2r where
p̂ = p+1 = 2372 · 3239, since p′ = 1 for our prime. In addition, Algorithm 1 elim-
inates several multiplications due to the fact that the �eA/r� least significant
limbs in p̂ have value 0.

Since our scheme forces the availability of extra room in the radix-2r rep-
resentation (which is made possible by having the additional condition that
p < 2rs−2), there is no overflow in the most significant word during the com-
putation of c in Algorithm 1 (i.e., its intermediate value can be held on exactly
s r-bit registers). Moreover, if field elements are represented as elements in
[0, 2p − 1] (instead of the typical range [0, p − 1]), the output of Algorithm 1
remains bounded without the need of the conditional subtraction in Steps 19–
20 [51].

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 587

Algorithm 1. Optimized Comba-based Montgomery reduction for the prime
p = 2372 · 3239 − 1.
Input: The prime p = 2eA · 3eB − 1; the value p̂ = p + 1 containing z = �eA/r�
0-value terms in its r-bit representation, where eA = 372, eB = 239 and 2r is the
radix; the Montgomery constant 2rs such that 2r(s−1) ≤ p < 2rs−1; and, the operand
a = (a2s−1, ..., a1, a0) with a < 2rsp and s = �log2 p/r�.
Output: The Montgomery residue c = a · 2−rs mod p.

1: (t, u, v) = 0
2: for i = 0 to s − 1 do
3: for j = 0 to i − 1 do
4: if j < i − z + 1 then
5: (t, u, v) = cj × p̂i−j + (t, u, v)
6: (t, u, v) = (t, u, v) + ai

7: ci = v
8: v = u, u = t, t = 0
9: for i = s to 2s − 2 do

10: if z > 0 then
11: z = z − 1
12: for j = i − s + 1 to s − 1 do
13: if j < s − z then
14: (t, u, v) = cj × p̂i−j + (t, u, v)
15: (t, u, v) = (t, u, v) + ai

16: ci−s = v
17: v = u, u = t, t = 0
18: cs−1 = v + a2s−1

19: if c ≥ p then
20: c = c − p
21: return c

Although typical values for r would be w = 32 or 64 to match w-bit archi-
tectures, some redundant representations might benefit from the use of r < w
in order to avoid additions with carries or to facilitate the efficient use of vector
instructions. To this end, the chosen prime is very flexible and supports different
efficient alternatives; for example, it supports the use of a 58-bit representation
with s = 13 limbs when using 64-bit multipliers or the use of a 26-bit represen-
tation with s = 29 limbs when using 32-bit multipliers.

In our 64-bit implementation, we opted for a generic radix-264 representation
using s = 12 limbs, in which case the Montgomery constant is 2rs = 2768. In
this case, given that the initial and final loop iterations can be simplified in an
unrolled implementation of Algorithm 1, the cost of the modular reduction is
83 multiplication instructions. This result almost halves the number of multipli-
cation instructions compared to a näıve Montgomery reduction, which requires
122 + 12 = 156 multiplication instructions (per reduction).

Inversions. Our SIDH implementation requires one modular inversion during key
generation, and two modular inversions during the computation of the shared

588 C. Costello et al.

secret. These inversions can be implemented using Montgomery inversion based
on, e.g., the binary GCD algorithm. However, this method does not run in con-
stant time by default, and therefore requires additional countermeasures to pro-
tect it against timing attacks (e.g., the application of input randomization).
Since inversion is used scarcely in our software, we instead opted for the use of
Fermat’s little theorem, which inverts the field element a via the exponentiation
ap−2 mod p that uses a fixed addition chain. Our experiments showed that the
cost of this exponentiation is around 9 times slower than (an average run of) the
GCD-based method, however even the more expensive inversion only contributes
to less than 1 % of the overall latency of each round of the protocol. Thus, our
choice to compute each isolated inversion via a fixed exponentiation protects the
implementation without impacting the performance in any meaningful way, and
avoids the need for any additional randomness.

6 SIDH Implementation Summary

In this section we pull together all of the main ingredients from Sects. 2–5 to give
a brief overview of the scheme and its implementation. For high-level Magma
code that illustrates the entire SIDH protocol, see SIDH.mag in [14].

Public Parameters. Together with the curve E0 : y2 = x3 + x and the prime
p = 23723239 − 1, the public parameters are PA = [3239](11,

√
113 + 11), QA =

τ(PA), PB = [2372](6,
√

63 + 6), and QB = τ(PB). Given that all these square
roots are in Fp (we choose the “odd” ones), and that QA and QB require no
storage, this means that only 4 Fp-elements (or 3004 bits) are required to fully
specify the public generators. If we were to instead randomly choose extension
field torsion generators without use of the distortion map, as is suggested in [17],
then 16 Fp elements (or 12016 bits) would be required to specify the public
generators.

Key Generation. On input of the public parameters above, and the secret
key mA chosen as in Sect. 4, Alice proceeds as in [13, Algorithm 3] (see [13,
Algorithm 2] for the simple, but slower multiplication-based main loop). She
calls the secret pt function, which computes PA + [mA]QA by calling LADDER
to compute x([mA]QA), before recovering the corresponding y-coordinate using
the Okeya-Sakurai strategy [36]; this allows the addition of PA and [mA]QA.
All of these operations are performed over the ground field and we proceed by
taking only x(PA + [mA]QA) through the main loop.

We note that our implementation requires that Alice’s secret isogeny is evalu-
ated at both of the public parameters xPB

and xQB
, as well as at the x-coordinate

of the difference, xQB−PB
; this allows Bob to kickstart the three pt ladder

function (from [17, Algorithm 1]) during his shared secret phase. Conversely,
Bob must also evaluate his secret isogeny at xQA−PA

. In both cases, rather than
setting xQ−P as a public parameter, it can be computed on-the-fly from xP ,

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 589

since in this special instance, xQ−P = xτ(P)−P = i · (x2
P + 1)/(2xP). This is

fed directly into our projective isogeny evaluation function, so we do not need
xQ−P ∈ A, but can instead compute x(Q − P) = (i(x2

P + 1): 2xP) ∈ P
1, which

costs just one squaring and two additions in Fp; this operation is performed with
the distort and diff function.

At the conclusion of [13, Algorithm 3], Alice outputs her public key as
PKAlice = [xφA(PB), xφA(QB), xφA(QB−PB)] ∈ F

3
p2 . Bob proceeds similarly, as

shown in [13, Algorithm 5] (again, see [13, Algorithm 4] for a simpler, but
slower multiplication-based approach), and outputs his public key as PKBob =
[xφB(PA), xφB(QA), xφB(QA−PA)] ∈ F

3
p2 .

Alice’s fast key generation via [13, Algorithm 3], using the strategies for com-
puting the isogeny trees as given in Sect. 4, requires 638 multiplications-by-4 and
the evaluation of 1330 4-isogenies; calling the simpler [13, Algorithm 2] requires
17020 multiplications-by-4 an 744 4-isogeny evaluations. On Bob’s side, the opti-
mal strategy (i.e., fast key generation) requires 811 multiplications-by-3 and the
evaluation of 1841 3-isogenies; the simpler version requires 28441 multiplications-
by-3 and 956 3-isogeny evaluations. See Sect. 7 for the benchmarks and further
discussion.

Remark 1. Observe that the public keys above only contain x-coordinates of
points, and do not contain the Montgomery coefficient, a, that defines the isoge-
nous curve Ea. This is because a can be recovered (on the other side) by exploit-
ing the relation a = (1−xP xQ−xP xQ−P −xQxQ−P)2

4xP xQxQ−P
−xP −xQ −xQ−P , which holds

if xP , xQ and xQ−P are the respective x-coordinates of three points P , Q and
Q − P on the Montgomery curve with coefficient a [19, Sect. A.2]. Here public
key compression (i.e., dropping the a coefficient) is free, and decompression via
the above equation amounts to 4M+1S+7a+1I; see the function get A in [14].
Compared to the overall shared secret computation, this decompression comes at
a minor cost. In an earlier draft of this paper, we provided an option for a com-
pression that instead transmitted the a coefficient, together with xP , xQ, and
a sign bit that was used to choose the correct square root (during the recovery
of xQ−P). The above compression has the obvious advantage of saving the sign
bit, and, more importantly, means that decompression only requires an inversion
(instead of a square root). Since our software already required inversions, but
did not use square roots anywhere else, the amount of additional code required
to include this compression is minimal. We thank Luca De Feo and Ben Smith
for pointing out this simpler compression.

Shared Secret. On input of PKBob = [xφB(PA), xφB(QA), xφB(QA−PA)] and her
secret key mA, Alice first computes aB = get A(xφB(PA), xφB(QA), xφB(QA−PA)),
then calls [13, Algorithm 7] (again, see [13, Algorithm 6] for a more compact,
but significantly slower main loop) to generate her shared secret. This starts
by calling the three pt ladder function (from [17, Algorithm 1]) to compute
x(φB(PA) + [mA]φB(QA)), which is used to generate the kernel of the isogeny

590 C. Costello et al.

that is computed in the main loop. Finally, Alice uses the j inv function to
compute her shared secret. For Bob’s analogous shared key generation, see [13,
Algorithms 8–9].

Alice’s fast key generation via [13, Algorithm 7], again using the strategies in
Sect. 4, requires 638 multiplications-by-4 and the evaluation of 772 4-isogenies;
calling the simpler [13, Algorithm 6] requires 17020 multiplications-by-4 and 186
4-isogeny evaluations. On Bob’s side, the optimal strategy (i.e., fast key gener-
ation) requires 811 multiplications-by-3 and the evaluation of 1124 3-isogenies;
the simpler version requires 28441 multiplications-by-3 and 239 3-isogeny evalu-
ations. See Sect. 7 for the benchmarks and further discussion.

7 SIDH Performance

To evaluate the performance of the proposed supersingular isogeny system and
the different optimizations, we wrote a software library supporting ephemeral
SIDH key-exchange. The software is mostly written in the C language and has
been designed to facilitate the addition of specialized code for different platforms
and applications. The first release of the library comes with a fully portable C
implementation supporting 32- and 64-bit platforms and two optional x64 imple-
mentations of the field arithmetic: one implementation based on intrinsics (which
is, e.g., supported on Windows OS by Visual Studio) and one implementation
written in x64 assembly (which is, e.g., supported on Linux OS using GNU
GCC and clang compilers). The latter two optional modules are intended for
high-performance applications. All of the software is publicly available in [14].

In Table 2, we present the performance of our software using the x64 assembly
implementation in comparison with the implementation proposed by [2]. Results
for the implementation in [2] were obtained by benchmarking their software6

on the same Intel Sandy Bridge and Haswell machines, running Ubuntu 14.04
LTS. Note that the results in Table 2 differ from what was presented in Table 3
in [2]. The differences might be due to the use of overclocking (i.e., TurboBoost
technology). For our comparisons, we disabled TurboBoost for a more precise
and fair comparison.

Table 2 shows that the total cost of computing one Diffie-Hellman shared key
(adding Alice’s and Bob’s individual costs together) using our software is, on
both platforms, over 2.8 times faster than the software from [2]. These results
are due to the different optimizations discussed throughout this work, the most
prominent two being (i) the elimination of inversions during isogeny computa-
tions by working with projective curve coefficients, and (ii) the faster modu-
lar arithmetic triggered by the selected prime and the tailor-made Montgomery
reduction for SIDH primes. It is important to note that, in particular, the advan-
tage over [2] is not even larger because the numerous inversions used during the
isogeny computations in [2] are not computed in constant time. Making such
inversions constant-time would significantly degrade their performance (see the
related paragraph in Sect. 5).
6 See http://djao.math.uwaterloo.ca/thesis-code.tar.bz2.

http://djao.math.uwaterloo.ca/thesis-code.tar.bz2

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 591

Table 2. Performance results (expressed in millions of clock cycles) of the proposed
SIDH implementation in comparison with the implementation by Azarderakhsh et al.
[2] on x64 platforms. Benchmark tests were taken with Intel’s TurboBoost disabled
and the results were rounded to the nearest 106 clock cycles. Benchmarks were done
on a 3.4 GHz Intel Core i7-2600 Sandy Bridge and a 3.4 GHz Intel Core i7-4770 Haswell
processor running Ubuntu 14.04 LTS.

Operation This work Prior work [2]

Sandy Bridge Haswell Sandy Bridge Haswell

Alice’s keygen 50 46 165 149

Bob’s keygen 57 52 172 152

Alice’s shared key 47 44 133 118

Bob’s shared key 55 50 137 122

Total 207 192 608 540

Remark 2. In Sect. 4 we discussed several specialized choices that were made for
reasons unrelated to performance, e.g., in the name of simplicity and/or com-
pactness. We stress that, should future cryptanalysis reveal that these choices
introduce a security vulnerability, the performance of SIDH and the performance
improvements in Sects. 3 and 5 are unlikely to be affected (in any meaningful
way) by reverting back to the more general case(s). In particular, if it turns out
that sampling from a fraction of the possible 2- and 3-torsion subgroups gives an
attacker some appreciable advantage, then modifying the code to sample from
the full set of torsion subgroups is merely an exercise, and the subsequent per-
formance difference would be unnoticeable. Similarly, if any of (i) starting on
a subfield curve (see [13, Remark 2]), (ii) using of the base-field and trace-zero
subgroups, or (iii) using the distortion map, turns out to degrade SIDH security,
then the main upshot of reverting to randomized public generators or starting
on a curve minimally defined over Fp2 would be the inflated public parameters
(see Sect. 6); the slowdown during key generation would be minor and the shared
secret computations would be unchanged.

8 BigMont: A Strong ECDH + SIDH Hybrid

We now return to the discussion (from Sect. 1) of a hybrid scheme. Put sim-
ply, and in regards to both security and suitability, at present there is not
enough confidence and consensus within the PQC community to warrant the
standalone deployment of one particular post-quantum key exchange primitive.
Subsequently, there is interest (cf. [5]) in deploying classical primitives alongside
post-quantum primitives in order to hedge one’s bets until a confidence-inspiring
PQC key exchange standard arrives. This is particularly interesting in the case
of SIDH, whose security has (because of its relatively short lifespan) received
less cryptanalytic scrutiny than its post-quantum counterparts.

592 C. Costello et al.

In this section we discuss how traditional ECDH key exchange can be
included alongside SIDH key exchange at the price of a very small overhead. The
main benefit of our approach is its simplicity; while SIDH could be partnered
with ECDH on any of the standardized elliptic curves, this would mean that a
lot more code needs to be written and/or maintained. In particular, it is often
the case that the bulk of the code in high-speed ECC implementations relates
to the underlying field arithmetic. Given that none of the fields underlying the
standardized curves are SIDH-friendly7, such a partnership would require either
a generic implementation that would be much less efficient, or two unrelated
implementations of field arithmetic. Our proposal avoids this additional com-
plexity by performing ECDH on an elliptic curve defined over the same ground
field as the one used for SIDH.

For p = 23723239 − 1, recall that our SIDH software works with isogenous
curves Ea/Fp2 : y2 = x3 + ax2 + x whose group orders are of the form #Ea =
2i ·3j , meaning that elliptic curve discrete logarithms are easy on all such curves
by the Pohlig-Hellman algorithm [39]. However, there are also (exponentially
many) ordinary curves of the form Ea/Fp2 that are cryptographically secure. In
particular, over the base field Fp, we can hope to find a ∈ Fp such that Ea/Fp

and its quadratic twist E′
a/Fp are cryptographically strong, i.e., such that Ea/Fp

is twist-secure [4].
Since p ≡ 3 mod 4, we searched for such a curve in exactly the same way

as, e.g., Hamburg’s Goldilocks curve [20] was found. Namely, since the value
(a+2)/4 is the constant that appears in Montgomery’s ladder computation [33],
we searched for the value of a that gave rise to the smallest absolute value of
(a + 2)/4 (when represented as an integer in [0, p)), and such that #Ea and
#E′

a are both 4 times a large prime. For p as above, the first such value is
a = 624450; to make a clear distinction between curves in the supersingular
isogeny class and the strong curve used to perform ECDH, we (re)label this
curve as Ma/Fp : y2 = x3 + ax2 + x with a = 624450. The trace tMa

of the
Frobenius endomorphism on Ma (see [13]) gives #Ma = p + 1 − tMa

= 4ra and
#M ′

a = p + 1 + tMa
= 4r′

a, where ra and r′
a are both 749-bit primes.

Following [4], every element in Fp corresponds to the x-coordinate of a point
on either Ma or on M ′

a. Together with the fact that Montgomery’s LADDER
function correctly computes underlying scalar multiplications independently of
the quadratic twist, Ma being twist-secure allows us to treat all Fp elements as
valid public keys and to perform secure ECDH without the need for any point
validation.

The ECDH secret keys are integers in [0, ra). To ensure an easy constant-
time LADDER function, we search for the smallest α ∈ N such that αra and
(α + 1)ra − 1 are the same bit length, which is α = 3; accordingly, secret keys
are parsed into [3ra, 4ra) prior to the execution of scalar multiplications via
LADDER. Subsequently, for m ∈ [0, ra) and x(P) ∈ P

1(Fp), computing x([m]P) =
LADDER(x(P),m, a) requires 1 call to xDBL and 750 calls to xDBLADD (see Table 1
for the operation counts of these functions, but note that here we can take

7 Nor are any of the fields large enough to support highly (quantum-)secure SIDH.

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 593

Table 3. Comparison of standalone SIDH versus hybrid SIDH+ ECDH. Timing bench-
marks were taken on a 3.4 GHz Intel Core i7-4770 Haswell processor running Ubuntu
14.04 LTS with TurboBoost disabled and results rounded to the nearest 106 clock
cycles. For simplicity, the bit-security of the primitives was taken to be the target
security level and is not intended to be precise.

Comparison Standalone SIDH Hybrid SIDH+ECDH

≈ bit-security (hard problem) Classical 192 (SSDDH) 384 (ECDHP)

PQ 128 (SSDDH) 128 (SSDDH)

Public key size 564 658

Speed (cc ×106) Alice’s keygen 46 52

Bob’s keygen 52 58

Alice’s shared key 44 50

Bob’s shared key 50 57

advantage of the fixed, small constant a). As all of these computations take
place over the ground field, the total time taken to compute ECDH public keys
and shared secrets is only a small fraction of the total time taken to compute
the analogous SIDH keys – see Table 3.

From an implementation perspective, partnering SIDH with ECDH as above
is highly advantageous because the functions required to compute x([m]P) =
LADDER(x(P),m, a) are already available from our Montgomery SIDH frame-
work. In particular, the key generation (see Sect. 6) already has a tailored Mont-
gomery LADDER function that works entirely over the base field, i.e., on the
starting curve E0, so computing ECDH keys is as simple as calling pre-existing
functions on input of a different constant.

Though the speed overhead incurred by adding ECDH to SIDH in this way
is small (see Table 3), choosing to use such a large elliptic curve group makes
concatenated keys larger than they would be if a smaller elliptic curve was used
for ECDH. For example, suppose we were to instead use the curve currently rec-
ommended in Suite B [35], Curve P-384, and (noting that uncompressed Curve
P-384 points are larger than our proposed ECDH public keys) were to compress
ECDH public keys as an x-coordinate and a sign bit. The total public key size
with SIDH-compressed keys would then be 612 bytes, instead of the 658 bytes
reported in Table 3. Though this difference is noticeable, it must be weighed
up against the cost of the extensive additional code required to support Curve
P-384, which would almost certainly share nothing in common with the existing
SIDH code. Moreover, the simplicity of adding ECDH to SIDH as we propose
is not the only reason to justify slightly larger public keys; the colossal 384-bit
security achieved by M624450 also puts it in a position to tolerate the possibility
of significant future advancements in ECDLP attacks. Due to the complexity
of the ECDLP on M624450 in comparison with all of the elliptic curves in the
standards, we dub this curve “BigMont”.

In Table 3 we compare hybrid SIDH+ ECDH versus standalone SIDH. The
take-away message is that for a less than 1.17x increase in public key sizes

594 C. Costello et al.

and less than 1.13x increase in the overall computing cost, we can increase the
classical security of the key exchange from 192 bits (based on the relatively new
SSDDH problem) to 384 bits (based on the long-standing ECDLP).

9 Validating Public Keys

Recall from Sect. 2 that De Feo et al. [17] prove that SIDH is session-key secure
(under SSDDH) in the authenticated-links adversarial model [10]. This model
assumes perfectly authenticated links which effectively forces adversaries to be
passive eavesdroppers; in particular, it assumes that public keys are correctly
generated by honest users. While this model can be suitable for key exchange
protocols that are instantiated in a truly ephemeral way, in real-world scenarios
it is often the case that (static) private keys are reused. This can incentivize
malicious users to create faulty public keys that allow them to learn information
about the other user’s static private key, and in such scenarios validating public
keys becomes a mandatory practical requirement.

In traditional elliptic curve Diffie-Hellman (ECDH), validating public keys
essentially amounts to checking that points are on the correct and cryptographi-
cally secure curve [7]. Such point validation is considered trivial in ECDH, since
checking that a point satisfies a curve equation requires only a handful of field
multiplications and additions, and this is negligible compared to the overall cost
(e.g., of a scalar multiplication).

In contexts where SIDH private keys are reused, public key validation is
equally as important but is no longer as trivial. In April 2015, a group from the
NSA [24] pointed out that “direct public key validation is not always possible
for [...] isogeny based schemes” before describing more complicated options that
validate public keys indirectly. In this section we describe ways to directly vali-
date various properties of our public keys that, in particular, work entirely in our
compact framework, i.e., without the need of y-coordinates or of the Montgomery
b coefficient that fixes the quadratic twist.

Recall from Sect. 6 that an honest user generates public keys of the form
PK =

[
xP , xQ, xQ−P

]
∈ F

3
p2 , where P = (xP , yP) and Q = (xQ, yQ) are of

the same order �e on a Montgomery curve Ea that is Fp2 -isogenous to E0, and
are such that Q �= [λ]P for any λ ∈ Z; the algorithms we describe below will
only deem a purported public key as valid if this is indeed the case. Recall from
Remark 1 that the three x-coordinates in the public key are immediately used to
recover the Montgomery a coefficient that was dropped during compression; this
coefficient must also be considered as part of the public key during validation.

Public key validation must check that the (underlying) points P and Q are
of the full order �e. If not, then an SIDH-like analogue of the Lim-Lee [28] small
subgroup attack becomes a threat; e.g., an attacker could send xQ where Q
has small order q and guess the shared secret (i.e., the kernel 〈P + [m]Q〉) to
learn m mod q. In addition, the procedure must also assert that Q �= [λ]P (or
equivalently, that P �= [λ]Q) for some λ ∈ Z; if this assertion is not made, then
a malicious user can simply send a public key where Q = [λ]P , which ultimately

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 595

forces the shared secret to be independent of the honest party’s private key.
Such capabilities could be catastrophic if the authentication mechanism does
not detect them.

The validation procedure we describe below guards against all of these attacks
by asserting that P and Q both have order �e, and that the Weil pairing e�e(P,Q)
has the maximum possible order, namely the same order as the Weil pairing
of the corresponding public parameters8; this means that the points P and Q
generate as much of the �e torsion as is possible (according to the definition of
the public parameters). This second assertion can be made in a very simple way,
thanks to an observation by Ben Smith, who pointed out the following (using [31,
Lemma 16.2]). If the points P and Q are in E[mn], then the n-th power of the
Weil pairing emn(P,Q) can be computed as emn(P,Q)n = em([n]P, [n]Q), which
allows us to efficiently check that the order of the Weil pairing is as it should be9.

The application of the above validation procedure (to the three x-coordinates
in a public key) is different for Alice and Bob, so we now describe these cases sep-
arately. We then discuss how both parties validate that the curve Ea corresponds
to a supersingular curve in the correct isogeny class, and conclude the section
with performance benchmarks for the validation process. All of the procedures
described below can be found in the file Validate.mag [14].

Alice’s Validation of Bob’s Public Key. Alice must determine whether
Bob’s transmission [xP , xQ, xR] ∈ F

3
p2 passes the tests described above. Recall

from Sect. 4 that a consequence of Lemma 1 is that if the public parameters PA

and QA are chosen from the base field and trace-zero subgroups, then they do
not form a basis for the full �eA

A -torsion. In particular, the order of the Weil
pairing e�

eA
A

(PA, QA) in our case is �eA−1
A = 2371; although this order is less than

�eA

A , it is as large as is possible when the two basis elements are chosen from
these particular torsion subgroups.

If Bob’s public key is honestly generated, then xP and xQ correspond to
points P and Q whose Weil pairing also has order �eA−1

A ; indeed, checking that
this is the case ensures that we maximize the number of torsion subgroups that
are spanned by P + [2m′]Q. Let a be computed from xP , xQ and xR as in
Remark 1, and let m = 4 and n = 2370 so that mn = �eA

A = 2372. We assert
that the exact order of e�

eA
A

(P,Q) is �eA−1
A by showing that e�

eA
A

(P,Q)�
eA−2
A

is non-trivial, making use of the identity above which gives e�
eA
A

(P,Q)�
eA−2
A =

emn(P,Q)n,= em([n]P, [n]Q) = e4
(
[2370]P, [2370]Q

)
. Together with the asser-

tion that P and Q both have exact order 2372, the assertion that the Weil pair-
ing e4

(
[2370]P, [2370]Q

)
is non-trivial completes the validation of xP and xQ.

If indeed P and Q have order 2372, the points P ′ = [2370]P and Q′ = [2370]Q

8 We thank Steven Galbraith and David Jao, who independently pointed out that the
Pohlig-Hellman algorithm [39] can also be used to efficiently check whether P and
Q are dependent.

9 A prior version of this paper made a weaker assertion using a more elaborate com-
putation.

596 C. Costello et al.

have exact order 4. In that case, e4(P ′, Q′) �= 1 if, and only if, x(P ′) �= x(Q′).
This can be seen by an elementary proof using [8, Theorem IX.10(5.)] and [8,
Corollary IX.11] together with the fact that Q′ ∈ 〈P ′〉 implies x(P ′) = x(Q′).
All of these checks can be performed entirely with x-coordinates as follows. We
compute x(P ′) = x([2370]P) = xDBLe(x(P), a, 370) and x(Q′) = x([2370]Q) =
xDBLe(x(Q), a, 370). Next, we assert that x(P ′) �= x(Q′), which is done projec-
tively via a cross-multiplication. To check that P has full order 2372, we then
use two more calls to xDBL to assert that (X : Z) = x([2]P ′) has Z �= 0 and that
(X̃ : Z̃) = x([4]P ′) has Z̃ = 0; we do exactly the same for Q. If any of these
checks fail, the public key is deemed invalid and rejected.

The assertion that xR is the correct difference xQ−P on Ea is implicit from
the computation of a during decompression, and from the combined validation
of xP , xQ and a. Validating that a indeed corresponds to a supersingular curve
in the correct isogeny class is performed in the same way for Alice and Bob, so
we postpone it until after describing Bob’s validation.

Bob’s Validation of Alice’s Public Key. Bob must determine whether
Alice’s transmission [xP , xQ, xR] ∈ F

3
p2 passes the tests described above. In this

case our choice of the base field and trace-zero subgroups does not impede the
possibility of the Weil pairing having full order; indeed, the public generators PB

and QB are such that the order of e(PB , QB) is �eB

B . Thus, honest public keys
also give rise to the Weil pairing e�

eB
B

(P,Q) having order �eB

B . To make use of
the identity above, we set m = 3 and n = 3238 so that mn = �eB

B = 3239, which
gives e�

eB
B

(P,Q)�
eB−1
B = emn(P,Q)n = em([n]P, [n]Q) = e3

(
[3238]P, [3238]Q

)
.

Together with the assertion that P and Q both have exact order 3239, the
assertion that the Weil pairing e3

(
[3238]P, [3238]Q

)
is non-trivial completes

the validation of xP and xQ. If P ′ = [3238]P and Q′ = [3238]Q have order
3, then e3 (P ′, Q′) �= 1 if, and only if, x(P ′) �= x(Q′). This follows directly
from [8, Corollary IX.11]. Again, we perform all of these checks using only x-
coordinates as follows. We compute x(P ′) = x([3238]P) = xTPLe(x(P), a, 238)
and x(Q′) = x([2238]Q) = xTPLe(x(Q), a, 238) and assert that x(P ′) �= x(Q′),
which is again done projectively via a cross-multiplication. To check that P has
full order 3239, we assert that (X : Z) = x(P ′) has Z �= 0, and use one more
call to xTPL to assert that (X̃ : Z̃) = x([3]P ′) has Z̃ = 0; again, we do the same
for Q. If any of these checks fail, the public key is deemed invalid and rejected.

Validating the Curve. We now show how to validate that a (i.e., the curve
coefficient that is computed during the decompression of Alice or Bob’s public
key) corresponds to a Montgomery curve Ea that is a member of the correct
supersingular isogeny class. The validation has two steps: we firstly assert that
j(Ea) /∈ Fp so that Ea is not a subfield curve, then we assert that Ea is in the
correct supersingular isogeny class.

The first step is easy and totals a handful of multiplications in Fp (see the
full version [13]); the less trivial step is to validate that Ea is supersingular.

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 597

To do this, we make use of Sutherland’s probabilistic algorithm [46, Algorithm
1], which (for our purposes) says to pick a random point P ∈ Ea(Fp2), and
to check whether [p − 1]P = O or [p + 1]P = O. If this is the case, then Ea is
supersingular with overwhelming probability: the probability that this test would
pass if Ea was actually an ordinary curve is at most 8p/(p − 1)2 < 1/2747 [46,
Proposition 1].

We now point out that Ea being supersingular is equivalent to either Ea or
its quadratic twist, E′

a, belonging to the correct isogeny class. Namely, by [44,
V.5.10(a)], Ea is supersingular if and only if its trace, tEa

, satisfies tEa
≡ 0 mod

p. Together with [48, Theorem 1], and recalling that −2p ≤ tEa
≤ 2p [44, V.1.1],

this means that there are (at most) 5 possible isogeny classes of supersingular
elliptic curves, those which are described by tEa

∈ {−2p,−p, 0, p, 2p}. Since p ≡
3 mod 4, there are only two possibilities for tEa

that correspond to a Montgomery
curve, i.e., two possible tEa

such that 4 | #Ea [33], namely tEa
= −2p and

tEa
= 2p. These traces respectively correspond to curves with #Ea = (p + 1)2

that are in the correct isogeny class, and to curves with #E′
a = (p−1)2 that are

in the isogeny class containing all of their non-trivial quadratic twists.
In our case we are trying to validate that a corresponds to a curve with

#Ea = (p + 1)2, so at first glance it would seem that the best route is to
pick a random point P ∈ Ea(Fp2) and to assert that [p + 1]P = O. However,
generating such a random point requires a square-root computation, and it turns
out that we can (again) avoid the need for a square root altogether. For a given
a, recall from Sect. 8 (or, in turn, from [4]) that elements in Fp2 are either the
x-coordinate of a point on Ea/Fp2 or the x-coordinate of a point on E′

a/Fp2 . This
means that if Ea is supersingular, every element in Fp2 is the x-coordinate of a
point whose order divides either p − 1 or p + 1. This gives us a way to quickly
assert (with overwhelming probability) that a corresponds to a supersingular
Montgomery curve in the correct isogeny class. With the Montgomery LADDER
function as described in Sect. 3, we simply take a random element r in Fp2 ,
compute (X : Z) = LADDER((r : 1), a, p + 1) and (X ′ : Z ′) = LADDER((r : 1), a, p −
1), and ensure that Z · Z ′ = 0; otherwise, we reject the public key as invalid.
We can compute a condition equivalent to Z · Z ′ = 0 using only one call to the
LADDER function as follows. The condition O ∈ {[p − 1]P, [p + 1]P} is equivalent
to the condition x(P) = x([p]P), which can be checked by computing (X : Z) =
LADDER(x(P), a, p) with x(P) = (xP : 1) and checking that Z ·xP = X. However,
calling LADDER to compute x([p]P) directly is undesirable; given that p + 1 =
2�A3�B , it is instead preferable to write a tailored ladder (consisting only of xDBL
and xTPL operations) that computes a scalar multiplication by p+1. We do this
by noting that the condition x(P) = x([p]P) is equivalent to the condition that
either x([p + 1]P) = x([2]P) or [p + 1]P = O is satisfied.

The Price of Our Public Key Validation Procedure. On our target plat-
forms, i.e., a 3.4 GHz Intel Core i7-2600 Sandy Bridge and a 3.4 GHz Intel
Core i7-4770 Haswell processor running Ubuntu 14.04 LTS, the validation of
Alice’s public key costs (according to the above procedure) around 23 million

598 C. Costello et al.

and 21 million clock cycles, respectively. Similarly, the validation of Bob’s public
key costs around 20 million and 18 million clock cycles, respectively. Refer-
ring back to Table 2, this means that both Alice and Bob’s validation proce-
dures cost between 0.39 and 0.43 times their key generation and shared secret
computations.

Unlike public key validation in some other contexts, e.g., point validation
in ECC, the compute time of the above SIDH public key validation is non-
negligible compared to the compute time of each round of the key exchange.
Nevertheless, in scenarios where static keys are desirable, the above overhead
might be preferred over changes in the protocol description, e.g., the indirect
validation proposed in [24].

10 Conclusion

We presented several new algorithms that have given rise to more efficient SIDH
key exchange. We built a software library around a supersingular isogeny class
determined by a fixed base curve that was chosen to target 128 bits of quan-
tum security, and showed that these techniques give rise to a factor speedup of
up to 2.9x over the previous fastest SIDH software. To our knowledge, our SIDH
key exchange software is the first such implementation to run in constant time,
and offers a range of additional benefits, such as compactness. In addition, we
introduced two new techniques that bridge the gap between theoretical and real-
world deployment of SIDH key exchange: the ECDH+SIDH hybrid and efficient
algorithms for validating properties of public keys. The speed of our software
(and the size of the public keys it generates) highlights the potential that SIDH
currently offers as a candidate for post-quantum key exchange.

Acknowledgements. This paper has been significantly improved due to the feedback
we received on a previous version. We are especially thankful to Ben Smith who pointed
out a much simpler and faster method of our public key validation (see Sect. 9). We
thank Luca De Feo and Ben Smith for pointing out a simplified compression of public
keys (see Sect. 6). We thank Luca De Feo, Steven Galbraith and David Jao for their
useful feedback, and the anonymous reviewers for their comments.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

2. Azarderakhsh, R., Fishbein, D., Jao, D.: Efficient implementations of a quantum-
resistant key-exchange protocol on embedded systems. Technical report (2014).
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf

3. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 599

4. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

5. Bernstein, D.J.: The post-quantum internet. Invited talk at PQCrypto 2016, Feb-
ruary 2016. https://cr.yp.to/talks/2016.02.24/slides-djb-20160224-a4.pdf

6. Biasse, J., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies
between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Berlin (2014)

7. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 131. Springer,
Heidelberg (2000)

8. Blake, I.F., Seroussi, G., Smart, N.P. (eds.): Advances in Elliptic Curve Cryptog-
raphy. London Mathematical Society Lecture Notes Series, vol. 317. Cambridge
University Press, Cambridge (2004)

9. Bröker, R.: Constructing supersingular elliptic curves. J. Comb. Number Theory
1(3), 269–273 (2009)

10. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

11. Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. NISTIR 8105, DRAFT (2016). http://
csrc.nist.gov/publications/drafts/nistir-8105/nistir 8105 draft.pdf

12. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptology 8(1), 1–29 (2014)

13. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman (full version). Cryptology ePrint Archive, Report 2016/413 (2016).
http://eprint.iacr.org/

14. Costello, C., Longa, P., Naehrig, M.: SIDH Library (2016). https://www.microsoft.
com/en-us/research/project/sidh-library/

15. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

16. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum informa-
tion: an outlook. Science 339(6124), 1169–1174 (2013)

17. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Cryptology 8, 209–247 (2014)

18. Galbraith, S.D., Stolbunov, A.: Improved algorithm for the isogeny problem for
ordinary elliptic curves. Appl. Algebra Eng. Commun. Comput. 24(2), 107–131
(2013)

19. Hamburg, M.: Fast and compact elliptic-curve cryptography. IACR Cryptolo-
gyePrint Archive, 2012:309 (2012)

20. Hamburg, M.: Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625 (2015). http://eprint.iacr.org/

21. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

22. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011)

https://cr.yp.to/talks/2016.02.24/slides-djb-20160224-a4.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://eprint.iacr.org/
https://www.microsoft.com/en-us/research/project/sidh-library/
https://www.microsoft.com/en-us/research/project/sidh-library/
http://eprint.iacr.org/

600 C. Costello et al.

23. Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank,
D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A.,
Hoi, I.-C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A.,
Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error
detection in a superconducting quantum circuit. Nature 519, 66–69 (2015)

24. Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller, D.: Failure
is not an option: standardization issues for post-quantum key agreement. Talk at
NIST Workshop on Cybersecurity in a Post-Quantum World, April 2015. http://
www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

25. Koc, C.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

27. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)

28. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a
prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1997)

29. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Cod-
ing Thv 4244, 114–116 (1978)

30. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stan-
ford University (1979)

31. Milne, J.S.: Abelian Varieties. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 103–150. Springer, New York (1986)

32. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

33. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

34. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready?
Cryptology ePrint Archive, Report 2015/1075 (2015). http://eprint.iacr.org/

35. National Security Agency (NSA): Cryptography today, August 2015. https://www.
nsa.gov/ia/programs/suiteb cryptography/

36. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar multipli-
cation algorithm with recovery of the y-coordinate on a Montgomery-form elliptic
curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 126–141. Springer, Heidelberg (2001)

37. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report CSTR-02-003, Department of Computer Science, University of Bristol
(2002). http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

38. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

39. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110
(1978)

40. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006). http://eprint.iacr.org/

41. Scott, M.: Fast machine code for modular multiplication (1995). Manuscript, avail-
able for download at ftp://ftp.computing.dcu.ie/pub/crypto/fastmodmult2.ps

http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://eprint.iacr.org/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf
http://eprint.iacr.org/
ftp://ftp.computing.dcu.ie/pub/crypto/fast mod mult2.ps

Efficient Algorithms for Supersingular Isogeny Diffie-Hellman 601

42. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

43. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science, Proceed-
ings, pp. 124–134. IEEE (1994)

44. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, 2nd edn. Springer, New York (2009)

45. Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian
University of Science and Technology (2012). http://www.item.ntnu.no/ media/
people/personalpages/phd/anton/stolbunov-crypthographic schemes based on
isogenies-phd thesis 2012.pdf

46. Sutherland, A.V.: Identifying supersingular elliptic curves. LMS J. Comput. Math.
15, 317–325 (2012)

47. Tani, S.: Claw finding algorithms using quantum walk. Theor. Comput. Sci.
410(50), 5285–5297 (2009)

48. Tate, J.: Endomorphisms of abelian varieties over finite fields. Inventiones Math.
2(2), 134–144 (1966)

49. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér. AB 273,
A238–A241 (1971)

50. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. J. Cryptology 17(4), 277–296 (2004)

51. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electron.
Lett. 35(21), 1831–1832 (1999)

52. Zhang, S.: Promised and distributed quantum search. In: Wang, L. (ed.) COCOON
2005. LNCS, vol. 3595, pp. 430–439. Springer, Heidelberg (2005)

http://www.item.ntnu.no/_media/people/personalpages/phd/anton/stolbunov-crypthographic_schemes_based_on_isogenies-phd_thesis_2012.pdf
http://www.item.ntnu.no/_media/people/personalpages/phd/anton/stolbunov-crypthographic_schemes_based_on_isogenies-phd_thesis_2012.pdf
http://www.item.ntnu.no/_media/people/personalpages/phd/anton/stolbunov-crypthographic_schemes_based_on_isogenies-phd_thesis_2012.pdf

Symmetric Primitives

New Insights on AES-Like SPN Ciphers

Bing Sun1,2,3(B), Meicheng Liu3,4, Jian Guo3,
Longjiang Qu1(B), and Vincent Rijmen5

1 College of Science, National University of Defense Technology,
Changsha 410073, Hunan, People’s Republic of China

happy come@163.com, ljqu happy@hotmail.com
2 State Key Laboratory of Cryptology,

P.O. Box 5159, Beijing 100878, People’s Republic of China
3 Nanyang Technological University, Central Area, Singapore

meicheng.liu@gmail.com, ntu.guo@gmail.com
4 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, People’s Republic of China

5 Department of Electrical Engineering (ESAT),
KU Leuven and iMinds, Leuven, Belgium

vincent.rijmen@esat.kuleuven.be

Abstract. It has been proved in Eurocrypt 2016 by Sun et al. that if
the details of the S-boxes are not exploited, an impossible differential and
a zero-correlation linear hull can extend over at most 4 rounds of the
AES. This paper concentrates on distinguishing properties of AES-like
SPN ciphers by investigating the details of both the underlying S-boxes
and the MDS matrices, and illustrates some new insights on the secu-
rity of these schemes. Firstly, we construct several types of 5-round zero-
correlation linear hulls for AES-like ciphers that adopt identical S-boxes
to construct the round function and that have two identical elements in a
column of the inverse of their MDS matrices. We then use these linear hulls
to construct 5-round integrals provided that the difference of two sub-key
bytes is known. Furthermore, we prove that we can always distinguish 5
rounds of such ciphers from random permutations even when the differ-
ence of the sub-keys is unknown. Secondly, the constraints for the S-boxes
and special property of the MDS matrices can be removed if the cipher is
used as a building block of the Miyaguchi-Preneel hash function. As an
example, we construct two types of 5-round distinguishers for the hash
function Whirlpool. Finally, we show that, in the chosen-ciphertext mode,
there exist some nontrivial distinguishers for 5-round AES. To the best
of our knowledge, this is the longest distinguisher for the round-reduced
AES in the secret-key setting. Since the 5-round distinguisher for the
AES can only be constructed in the chosen-ciphertext mode, the security

The work in this paper is supported by the National Basic Research Program of
China (973 Program) (2013CB338002), the National Natural Science Foundation of
China (No: 61272484, 61379139, 61402515, 61572016, 11526215), the Program for
New Century Excellent Talents in University (NCET) and the Strategic Priority
Research Program of the Chinese Academy of Science, Grant No. XDA06010701).

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 605–624, 2016.
DOI: 10.1007/978-3-662-53018-4 22

606 B. Sun et al.

margin for the round-reduced AES under the chosen-plaintext attack may
be different from that under the chosen-ciphertext attack.

Keywords: Distinguishinger · AES · Whirlpool · Zero correlation
linear · Integral

1 Introduction

Block ciphers are among the most important primitives in constructing sym-
metric cryptographic schemes such as encryption algorithms, hash functions,
authentication schemes and pseudo-random number generators. The Advanced
Encryption Standard (AES) [12] is currently the most interesting candidate to
build different schemes. For example, in the on-going Competition for Authen-
ticated Encryption: Security, Applicability, and Robustness (CAESAR) [10],
among many others, the permutation of PRIMATEs [1] is designed based on
an AES-like SPN structure, AEGIS [40] uses 4 AES round-functions in the
state update functions, ELmD [13] recommends to use some round-reduced AES
including the 5-round AES to partially encrypt the data, and 4-round AES is
adopted by Marble [21], and used to build the AESQ permutation in PAEQ [5].
Although the security of these candidates does not completely depend on the
underlying primitives, we believe that security of the round-reduced AES could
give some new insights to both the design and cryptanalysis of the authenticated
encryption algorithms.

1.1 Distinguishers

The distinguishing properties refer to those properties of a cipher that random
permutations do not have thus we can distinguish a cipher from random permu-
tations. For example, in differential cryptanalysis [4], one always finds an r-round
differential characteristic with high probability while for random permutations
such a differential characteristic does not exist.

In [11], Daemen et al. proposed a new method that can break more
rounds of SQUARE than differential and linear cryptanalysis, which is named
the SQUARE attack consequently. Some similar ideas such as the satura-
tion attack [30], the multi-set attack [6], and the higher-order differential
attack [23,27] have also been proposed. In [26], Knudsen and Wagner proposed
the integral cryptanalysis as a generalized case of these attacks. In an integral
attack, with some special inputs, one checks whether the sum of the correspond-
ing ciphertexts is zero or not. Integral attacks on the round-reduced AES are
based on the following distinguisher:

Property 1 [12,17]. Let 15 bytes of the input be constants and the remaining
byte take all possible values from F28 . Such a set is called a Λ-set. Then, the
sum of each byte of the output of the third round is 0. Furthermore, let the
4 bytes in the diagonal of the state take all possible values from F

4
28 and the

New Insights on AES-Like SPN Ciphers 607

other 12 bytes be constants, then the output of 1-round AES can be divided
into 224 Λ-sets. Therefore, the sum of each byte of the output of the fourth
round is 0.

Gilbert and Minier showed that the set of functions mapping one active byte
to one byte after 3 rounds depends on 9-byte parameters [20]. Therefore, the
whole set can be described by using a table of 272 entries of 256-byte sequences.
This idea was later generalized by Demirci and Selçuk in [14] using meet-in-the-
middle techniques. They showed that on 4 rounds, the value of each byte of the
ciphertext can be described by a function of the active byte parameterized by
25 in [14] and 24 8-bit parameters in [15].

Property 2 [15]. The set of functions mapping one active byte to one byte after
4 rounds AES depends on 24 one-byte parameters.

Knudsen [24] and Biham et al. [3] independently proposed impossible-differential
cryptanalysis. The main idea of impossible-differential cryptanalysis is to use
differentials that hold with probability zero to discard the wrong keys that lead
to the impossible differential. Now, it is one of the most effective methods towards
many different ciphers. One of the 4-round impossible differentials is shown as
follows:

Property 3 [31,32,34]. The differential, where there is only one nonzero (active)
byte of the input difference and output difference, respectively, is a 4-round
impossible differential of the AES.

Zero-correlation linear cryptanalysis was proposed by Bogdanov and Rijmen
in [9]. They try to construct some linear hulls with correlation exactly zero. The
4-round zero correlation linear hull of the AES is shown as follows:

Property 4 [9]. If there is only one nonzero (active) byte of the input mask and
output mask, respectively, then the correlation of 4-round AES is 0.

In summary, although there exist some 5-round distinguishers for AES-192 and
AES-256 [16], the known distinguishers for all version of the AES only cover at
most 4 rounds.

All the above distinguishers are in the secret-key setting, which were used
in key recovery attacks. At Asiacrypt 2007, Knudsen and Rijmen proposed the
known-key distinguisher for block ciphers [25]. In the setting that the key is
public to the attacker, one can construct 7-round known-key distinguisher for the
AES, which was improved to 8-round and 10-round in [19]. Allowing even more
degrees of freedom to attackers so that they can even choose keys, distinguishers
of 9-round AES were proposed [18] in the chosen-key setting. In this paper, we
restrict ourselves to the secret-key setting, and the distinguishers to be presented
are natural extensions of those used in key recovery attacks.

1.2 Key-Recovery Attacks

The aim of a key-recovery attack is to recover some round keys of a cipher. Usu-
ally, the attack is applied once some distinguishing property of the reduced-round

608 B. Sun et al.

block cipher has been found. Up to date, the biclique attack can recover some
subkeys of the full round AES with slightly less than exhaustive complexity [7].
We briefly list some results of the key-recovery attacks against round-reduced
AES as in Table 1, together with the number of rounds of the underlying distin-
guishers used.

Table 1. Some key-recovery attacks against AES-128

Rounds Technique Data Memory Time Reference Rounds of
distinguisher

6 Integral 6 × 232 28 272 [17] 4

7 Integral 2127.997 264 2120 [17] 4

7 Impossible differential 2112.2 2112.2 2117.2 [31] 4

7 Impossible differential 2106.2 290.2 2110.2 [32] 4

7 Meet-in-the-middle 2105 290 299 [16] 4

7 Meet-in-the-middle 297 298 299 [16] 4

1.3 Details of the Components of a Cipher

If we choose the parameters carefully, the dedicated cipher based on the AES-like
structure can be resilient to both differential [4] and linear cryptanalysis [33].
For example, based on the fact that the branch number of the MixColumns is 5,
it is proved in [12] that the number of active S-boxes of 4-round AES is at least
25. Since the maximal differential probability of the S-box is 2−6, there does not
exist any differential characteristic of 4-round AES with probability larger than
2−6×25 = 2−150.

In most cases, especially in the cryptanalysis of AES, one does not have
the necessity to investigate the details of the S-boxes. Thus, the corresponding
results are independent of the non-linear components. In other words, if some
other S-boxes with similar differential/linear properties are chosen in a cipher,
the corresponding cryptanalytic results remain almost the same. To characterize
what “being independent of the choice of the S-boxes” means, in [37], Sun et al.
proposed the concept of Structure of a block cipher. By structural evaluation,
we mean the domain of cryptography that analyzes a cryptosystem in terms
of generic constructions which keep the linear parts of the cipher and omit the
details of the non-linear components.

The influence of the choices of S-boxes in constructing integral distinguishers
has been studied in [22,29,35]. For example, if ARIA adopts only one S-box,
more balanced bytes could be determined and if the order of different S-boxes is
changed (There are 4 different S-boxes in ARIA), one will get different integral
distinguishers from the one constructed in [29]. In [35], the authors pointed out
that in some cases, the key-recovery attacks based on the integral distinguisher
may fail. Very recently, Todo proposed the division property [38] by which one
could build longer integral distinguishers provided the algebraic degree of the

New Insights on AES-Like SPN Ciphers 609

S-boxes is known. For example, a 6-round integral for MISTY1 was built in [39]
based on which the first cryptanalysis result against the full MISTY1 was found.

Although there are already 4-round impossible differentials and zero-
correlation linear hulls for the AES, the effort to find new impossible differ-
entials and zero-correlation linear hulls that could cover more rounds has never
been stopped. In Eurocrypt 2016, Sun et al. proved that, unless the details of
the S-boxes are exploited, one cannot find any impossible differential or zero-
correlation linear hull of the AES that covers 5 or more rounds:

Property 5 [36]. There does not exist any impossible differential or zero-
correlation linear hull of EAES which covers r ≥ 5 rounds. Or equivalently, there
does not exist any 5-round impossible differential or zero-correlation linear hull
of the AES unless the details of the S-boxes are considered.

To increase the performance of a block cipher, one usually uses an MDS
(Maximal Distance Seperatable) matrix whose elements are restricted to low
hamming weights in order to reduce the workload of the multiplications over
finite fields. Furthermore, it is noticed that not only the MDS matrices are
always circulant, but also there are identical elements in each row. For example,
in AES, the first row of the MDS matrix is (02, 03, 01, 01). However, most known
techniques have not made use of these observations and there is little literature
concentrating on the choices of these matrices in constructing distinguishers of
round-reduced AES. Since known impossible differentials and zero-correlation
linear hulls of round-reduced AES are constructed based on the fact that the
branch number of the MixColumns is 5, these two types of distinguishers still
hold even if a different 4 × 4 MDS matrix over F28 is used. Furthermore, since
the inverse of an MDS matrix also has the MDS property, these distinguishers
hold not only in the chosen-plaintext setting, but also in the chosen-ciphertext
setting.

1.4 Our Contributions

This paper concentrates on the details of both the S-boxes and MDS matrices
that are used in AES-like SPN structures. Denote by MMC the MDS matrix used
in a cipher. If there are two identical elements in a row of (M−1

MC)T and if the
cipher adopts identical S-boxes, then we can construct a 5-round distinguisher.
This implies that applied to AES, our distinguisher covers the most number of
rounds up till now.

(1) If the difference of two sub-key bytes is known, we can construct several types
of 5-round zero-correlation linear hulls for such ciphers without MixColumns
operation in the last round which could be turned into 5-round integrals both
with and without MixColumns operations in the last round. Furthermore,
we not only prove that 5 rounds of such ciphers with MixColumns operation
in the last round can be distinguished from a random permutation, but also
that some sub-keys can be recovered from the distinguisher directly.

610 B. Sun et al.

(2) In a hash function setting, where an AES-like SPN structure is used as a
building block and the chaining value acts as the key, there always exist
5-round distinguishers. As a proof of concept, we give two types of 5-round
distinguishers for the hash function Whirlpool.

For the AES, every row of (M−1
MC)T contains 4 different elements. Thus we cannot

apply the results to the AES directly. However, for the decryption of the AES,
every row of (M−1

MC)T contains twice the same element 01, therefore we can
construct a 5-round distinguisher for the AES in a chosen-ciphertext mode:

(3) For 5-round AES, divide the whole space of plaintext-ciphertext pairs into
the following 28 subsets:

AΔ = {(p, c)|c0,0 ⊕ c1,3 = Δ}.

Then, there always exists a Δ such that
∑

(p,c)∈AΔ
p = 0, while for random

permutations, this happens with probability 1 − (1 − 2−128)2
8 ≈ 2−120.

Furthermore, we can deduce k0,0 ⊕ k1,3 = Δ from the distinguisher.

Since this property only applies in the chosen-ciphertext setting, we conclude
that the security margin of the AES under the chosen-plaintext setting may be
different from the one under the chosen-ciphertext setting. Furthermore, since we
have proved that 5-round AES can be distinguished from a random permutation,
more attention should be paid when round-reduced AES is used as a building
block in some new cryptographic schemes.

Though we have already found some 5-round distinguisher, we leave as an
open problem whether we could mount more efficient key-recovery attack against
round-reduced AES or other AES-based schemes.

2 Preliminaries

Before proceeding to our results, we first introduce some notations here on both
boolean functions and the ciphers we are analyzing.

2.1 Boolean Functions

Given a boolean function G : Fn
2 → F2, the correlation of G is defined by

c(G(x)) �
1
2n

∑
x∈F

n
2

(−1)G(x).

Given a vectorial function H : Fn
2 → F

k
2 , the correlation of the linear approxi-

mation for a k-bit output mask b and an n-bit input mask a is defined by

c(a · x ⊕ b · H(x)) �
1
2n

∑
x∈F

n
2

(−1)a·x⊕b·H(x),

New Insights on AES-Like SPN Ciphers 611

where “·” is the inner product of two elements. If c(a · x ⊕ b · H(x)) = 0, then
a → b is called a zero-correlation linear hull of H, following the same definition
in [9]. Let A ⊆ F

n
2 , B ⊆ F

k
2 , if for all a ∈ A, b ∈ B, c(a · x ⊕ b · H(x)) = 0, then

A → B is called a zero-correlation linear hull of H.
In this paper, we denote by circ(a0, a1, . . . , an−1) a circulant matrix defined

as follows:

circ(a0, a1, . . . , an−1) =

⎛
⎜⎜⎜⎝

a0 a1 . . . an−1

an−1 a0 . . . an−2

...
...

...
...

a1 a2 · · · a0

⎞
⎟⎟⎟⎠ .

For any vector v = (v0, v1, . . . , vn−1) ∈ F
n
2b , the Hamming Weight of v is defined

as the number of non-zero components of v:

wt(v) = #{i|vi �= 0, i = 0, 1, . . . , n − 1}.

Let P ∈ F
n×n
2b , then the branch number of P is defined as

B(P) = min
0 �=x∈F

n

2b

{wt(x) + wt(Px)}.

Obviously, for any x ∈ F
n
2b , we always have wt(Px) ≤ n. Therefore, we can

choose x such that wt(x) = 1 which indicates that B(P) ≤ n + 1. A matrix
P ∈ F

n×n
2b is called Maximum Distance Separable (MDS) matrix if and only

if B(P) = n + 1. In the proof of the security of a cipher against differential
and linear cryptanalysis, one can make use of the branch number to bound the
number of active S-boxes. Since a larger branch number usually gives more active
S-boxes, MDS matrices are widely used in modern block ciphers including AES.

2.2 SPN and AES-Like SPN Ciphers

To keep our results as general as possible, we are going to give a generic
description of the Substitution-Permutation Network (SPN) ciphers and AES-
like ciphers, respectively. We assume that the input can be viewed as an n × n
square matrix over F2b , which implies that both the input (plaintext) and output
(ciphertext) of the block ciphers count n2b bits. The cipher successively applies
R round functions, and we denote respectively by s(r) and k(r) the input and
sub-key states of the r-th round. The state s(0) is initialized with the input plain-
text. One round function is composed of the following layers: a key addition layer
(KA) where an n2b-bit roundkey k(r−1) is xored to s(r−1), a block cipher permu-
tation layer BC that updates the n2b-bit current state of the block cipher after
addition of the subkey, i.e. s(r) = BC(s(r−1) ⊕ k(r−1)). For an SPN cipher, the
permutation BC is composed of SubBytes (SB) which applies non-linear trans-
formations to the n2 b-bit bytes in parallel, and then a layer P which is linear
over F

n2b
2 , i.e. BC = P ◦ SB. The final ciphertext is then defined as s(r) ⊕ k(r).

612 B. Sun et al.

In the following, we will simply use E(n, b, r) to denote an r-round AES-like SPN
cipher which operates on n × n b-bit bytes.

In the case of AES-like ciphers, the internal state of BC can be viewed as a
square matrix of b-bit cells with n rows and n columns. A cell of s(r) is denoted
by s

(r)
i,j , where i is its row position and j its column position in the square

matrix, starting counting from 0. Then, the linear layer itself is composed of the
ShiftRows transformation (SR), which can be defined as a permutation πSR =
(l0, l1, . . . , ln−1) on Zn = {0, 1, . . . , n − 1} that moves cell s

(r)
i,j by li positions

to the left in its own row, and the MixColumns transformation (MC), which
linearly mixes all the columns of the matrix. Overall, for AES-like ciphers, we
always have BC = P ◦ S = MC ◦ SR ◦ SB.

The AES Block Cipher. AES only uses a single S-box which is based on the
inverse function over F28 to construct the round function. The SR and the MC
of AES are defined as follows:

πSR = (0, 1, 2, 3),

MMC =

⎛
⎜⎜⎝
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠ = circ(02, 03, 01, 01).

Since we do not investigate the key-recovery attacks, please refer to [12] for the
details of the key schedule.

3 Zero-Correlation Linear Cryptanalysis of AES-Like
SPN Ciphers

3.1 Zero-Correlation Linear Hull of 4-round AES-Like Ciphers

In zero-correlation linear cryptanalysis, we construct some linear hulls with cor-
relation exactly zero. One of the most efficient methods to construct zero cor-
relation linear hulls is based on the miss-in-the-middle technique, i.e., we start
from the beginning and the end of the cipher, partially encrypt the plaintext and
decrypt the ciphertext, respectively. Then some contradiction could be found in
the middle round of the cipher with probability 1. For example, the 4-round
zero-correlation linear hull of the AES is built as follows [9] (see Fig. 1): if only
the first byte of the input mask is active, then after 1 round, all the 4 bytes in
the first column of the output mask are active. Thus in each column of the input
mask to the second MixColumns, the number of active bytes is 1. Using the
same technique, we find that if there is only 1 active byte in the output mask of
the forth round, in each column of the output mask to the second MixColumns
round, the number of active bytes is 1. Since the branch number of MixColumns
is 5, we find a contradiction which indicates that the correlation of such a linear
hull is 0.

New Insights on AES-Like SPN Ciphers 613

Fig. 1. 4-round zero-correlation linear hull of the AES

To enhance the performance of a cipher, designers usually use identical S-
boxes and a diffusion layer whose elements often have relatively low hamming
weights, which not necessarily but often cause some weakness as shown in the
following.

3.2 New Cryptanalysis of 5-round AES-Like Ciphers

Though it has been proven that the longest zero-correlation linear hull of the
AES only covers 4 rounds if we do not investigate the details of the S-box, we
can improve this result exactly by exploiting these details.

In this section, we are going to use the miss-in-the-middle technique to con-
struct some novel distinguishers of AES-like SPN ciphers, provided that the
difference of two sub-keys bytes is known. Firstly, we recall the following proposi-
tions for the propagation of input-output masks/differentials of linear functions:

Proposition 1. Let L be a linear transformation defined on F
T
2 , and L ∈ F

t×t
2

be the matrix representation of L. Then,

(1) For any input-output mask ΓI → ΓO, if the correlation is nonzero, we always
have ΓO = (L−1)TΓI .

(2) For any input-output difference ΔI → ΔO, if the differential probability is
nonzero, we always have ΔO = LΔI .

Since ShiftRows in the first round does not influence the results, in this
section, we omit SR in the first round. Denote by (M−1

MC)T = (m∗
i,j) the transpose

614 B. Sun et al.

of the inverse of MMC. We assume that an AES-like SPN cipher E(n, b, r) satisfies
the following conditions:

(1) There exists a triplet (i, j0, j1) such that m∗
i,j0

= m∗
i,j1

where j0 �= j1;
(2) Without loss of generality, the S-boxes used at positions (j0, 0) and (j1, 0)

are identical.

Lemma 1. Let E(n, b, r) be an AES-like SPN cipher satisfying conditions (1)
and (2). Define

V = {(si,j) ∈ F
n×n
2b |sj0,0 ⊕ sj1,0 = kj0,0 ⊕ kj1,0}.

For any 0 �= a ∈ F2b , let the input mask be

ΓI = (αi,j)0≤i,j≤n−1, αi,j =

{
a (i, j) = (j0, 0), (j1, 0),
0 otherwise,

and the output mask be ΓO = (βi,j) ∈ F
n×n
2b . Then, if the correlation ΓI → ΓO

of E(n, b, 1) on V is non-zero, we have

wt(β0,0,, β1,0, . . . , βn−1,0) = n − 1,

βi,j = 0 for j ≥ 1, and the absolute value of the correlation is 1.

Proof. Let the output mask of the SB layer be

ΓSB = (γi,j) ∈ F
n×n
2b .

To make the correlation non-zero, γi,j = 0 should hold if αi,j = 0. Next, we will
show γj0,0 = γj1,0. Since sj0,0 ⊕ sj1,0 = kj0,0 ⊕ kj1,0, denote by

x = sj0,0 ⊕ kj0,0 = sj1,0 ⊕ kj1,0,

then

ΓI · X ⊕ ΓSB · S(X) = a · x ⊕ a · x ⊕ γj0,0 · S(x) ⊕ γj1,0 · S(x)
= (γj0,0 ⊕ γj1,0) · S(x),

Since S(x) is a permutation on F2b , if γj0,0 ⊕γj1,0 �= 0, the correlation of (γj0,0 ⊕
γj1,0) · S(x) is always 0. On the other hand, if γj0,0 ⊕ γj1,0 = 0, the correlation
is always 1.

Therefore, to make the correlation non-zero, according to Proposition 1, the
output mask of E(n, b, 1) should be

ΓO = (M−1
MC)TΓSB.

Taking this into consideration, the absolute value of the correlation is always 1
which ends our proof. ��

New Insights on AES-Like SPN Ciphers 615

Lemma 2. Let E(n, b, r) be an AES-like SPN cipher satisfying conditions (1)
and (2). Let Δ = k

(0)
j0,0 ⊕ k

(0)
j1,0, and define

VΔ = {(s(0)i,j) ∈ F
n×n
2b |s(0)j0,0 ⊕ s

(0)
j1,0 = Δ}.

For any 0 �= a ∈ F2b , let the input mask be

ΓI = (αi,j)0≤i,j≤n−1, αi,j =

{
a (i, j) = (j0, 0), (j1, 0),
0 otherwise,

and for any 0 �= d ∈ F2b , (u, v) ∈ Zn × Zn, let the output mask be

Γ
(u,v)
O = (βi,j)0≤i,j≤n−1, βi,j =

{
d (i, j) = (u, v),
0 otherwise.

Then for E(n, b, 5) without MixColumns in the last round, the correlation for
ΓI → Γ

(u,v)
O on VΔ is always 0.

Proof. The proof is divided into 2 halves (Fig. 2 gives the procedure of the proof
for the case n = 4 and πSR = (0, 3, 2, 1)):

Firstly, from the encryption direction, let the input mask be ΓI as defined
above. According to Lemma 1, the output mask of the first round has the fol-
lowing properties: there are n − 1 non-zero elements in the first column and all
of the elements in other columns are zero.

Then, in the second round, the output mask of the SB layer keeps the pattern
of the input mask and SR shifts the n − 1 non-zero elements to n − 1 different
columns. Since MC has the MDS property, we can conclude that the output mask
of the second round has the following properties: there exists 1 column such that
all elements in this columns are 0’s, and all elements in the other columns are
non-zero.

In the third round, the output mask of the SB layer keeps the pattern of the
input mask and SR shifts the n zero elements to n different columns, i.e., there
are n−1 non-zero elements in each column of the input mask of MC in the third
round.

Using the same technique, we can find that from the decryption direction,
there is only 1 non-zero element in each column of the output mask of MC in
the third round.

Since the MC has the MDS property, i.e., the sum of number of non-zero
elements from both the input and output mask of MC is at least n + 1, the
correlation of ΓI → Γ

(u,v)
O is 0. ��

4 Integrals for the AES-Like SPN Ciphers

Links between integrals and zero correlation linear hulls were first studied by
Bogdanov et al. at Asiacrypt 2012 [8], and then refined at CRYPTO 2015 [37].

616 B. Sun et al.

Fig. 2. Proof for the zero correlation linear hull of E(n, b, 5)

In [37], Sun et al. proved that a zero correlation linear hull of a block cipher
always implies the existence of an integral distinguisher which gives a novel
way to construct integrals of a cipher. For example, the 4-round zero-correlation
linear hull of the AES implies the following distinguisher: Let 15 bytes of the
input take all possible values from F

15
28 and the other 1 byte be constant, then

each byte of the output before the MixColumns operation in the forth round
takes each value from F28 exactly 2112 times.

This section mainly discusses the integral properties of the AES-like ciphers
based on the links between zero correlation linear hulls and integrals. It was
pointed out at CRYPTO 2015 [37] that a zero-correlation linear hull always
implies the existence of an integral, based on which we can get the following
results.

Corollary 1. Let E(n, b, r) be an AES-like SPN cipher satisfying conditions (1)
and (2). Let Δ = k

(0)
j0,0 ⊕ k

(0)
j1,0 and the input set be

VΔ = {(s(0)i,j)0≤i,j≤n−1 ∈ F
n×n
2b |s(0)j0,0 ⊕ s

(0)
j1,0 = Δ}.

New Insights on AES-Like SPN Ciphers 617

Then for each output byte of E(n, b, 5) without MixColumns, every value of F2b

appears exactly 2(n
2−2)b times, and the sum of every output byte of E(n, b, 5) with

MixColumns is 0.

Since there exists exactly one value in {0, 1, · · · , 2b − 1} which is equal to
δ = k

(0)
j0,0 ⊕ k

(0)
j1,0, we have:

Theorem 1. Denote by E(n, b, r) an r-round AES-like SPN cipher with Mix-
Columns in the last round, where b and n are the sizes of the S-boxes and
the MDS matrix, respectively. Let (M−1

MC)T = (m∗
i,j) ∈ F

n×n
2b be the transpose

of the inverse of MMC. Assume that there exists a triplet (i, j0, j1) such that
m∗

i,j0
= m∗

i,j1
. Then E(n, b, 5) can be distinguished from a random permutation

R as follows: for F ∈ {E(n, b, 5),R} and Δ = 0, 1, . . . , 2b − 1, divide the whole
input-output space into the following 2b subsets:

AF
Δ = {(p, c)|c = F (p), pj0,a0 ⊕ pj1,a1 = Δ},

where SR moves pj0,a0 and pj1,a1 to the same column, and let

TF
Δ =

∑
(p,c)∈AF

Δ

c.

If the S-boxes applied to pj0,a0 and pj1,a1 are identical, there always exists a
Δ such that T

E(n,b,5)
Δ = 0, while for random permutations, this happens with

probability 1 − (1 − 2−n2b)2
b ≈ 2−(n2−1)b. Furthermore, we can deduce that the

value of kj0,a0 ⊕ kj1,a1 is Δ.

This theorem can be clearly deduced from Corollary 1 above. We can further
give a direct proof as follows.

Proof. Without loss of generality, let (M−1
MC)T = (m∗

i,j) and m∗
0,0 = m∗

0,1 = 01.
Let the input and output of the MixColumns operation be (x0, x0, x1, . . . , xn−2)T

and (y0, y1, . . . , yn−1)T, respectively. Then we have
⎛
⎜⎜⎜⎜⎜⎝

x0

x0

x1

...
xn−2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

01 ∗ · · · ∗ ∗
01 ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗

· · ·
∗ ∗ · · · ∗ ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

y0
y1
y2
...

yn−1

⎞
⎟⎟⎟⎟⎟⎠

,

which implies

x0 = y0 ⊕ l1(y1, . . . , yn−1) = y0 ⊕ l2(y1, . . . , yn−1),

where l1 and l2 are different linear functions on (y1, . . . , yn−1). Accordingly, we
always have

(l1 ⊕ l2)(y1, . . . , yn−1) = 0.

618 B. Sun et al.

Since the dimension of the input is n − 1, we conclude that y0 is independent
of y1, . . . , yn−1, i.e., the number of possible values for (y1, . . . , yn−1) is 2(n−2)b.
Thus the output of the first round can be divided into the following 2(n−2)b

subsets: the last n − 1 bytes of the first columns are fixed to (y1, . . . , yn−1) and
the other n2 − n + 1 bytes take all possible value from F

n2−n+1
2b . Taking the

4-round integral distinguisher into consideration, we conclude that the sum of
the output of the fifth round with MixColumns is 0. ��

Since a lot of AES-based ciphers adopt circulant MDS matrices, now we will
list a result when a cipher uses a circulant MDS matrix:

Corollary 2. Let E(n, b, r) be an AES-like SPN cipher which uses a circulant
MDS matrix MMC = circ(m0,m1, . . . ,mn−1) ∈ F

n×n
2b . Denote by (M−1

MC)T =
circ(m∗

0,m
∗
1, . . . ,m

∗
n−1) the transpose of the inverse of MMC. If there exists a

(j0, j1) where j0 �= j1 such that m∗
j0

= m∗
j1

, then the plaintext-ciphertext space
of E(n, b, 5) can be divided into 2nb subsets AΔ and |AΔ| = 2(n

2−n)b, and there
exists a Δ such that the sum of ciphertexts in AΔ is 0. Moreover, some sub-keys
can also be deduced from the partition.

5 Application to Hashing Schemes

To apply these results to block ciphers directly, we need to know the difference
of the corresponding sub-key bytes which is impossible in most cases. However,
if the cipher is used as a building block of a hash function and the chain value
acts as the key, we can always get a new distinguisher of the hash function based
on these new observations. We use Whirlpool [2] as an example in this section.

5-Round Distinguisher for Whirlpool. Whirlpool [2] is a hash function
proposed by Barreto and Rijmen as a candidate for the NESSIE project. It
iterates the Miyaguchi-Preneel hashing scheme over t padded message blocks
mi, 0 ≤ i ≤ t − 1, using the dedicated 512-bit block cipher W :

Hi = WHi−1(mi−1) ⊕ Hi−1 ⊕ mi−1, i = 1, 2, . . . , t.

The W block cipher only employs one S-box, and the SR and the MC are defined
as follows:

πSR = (0, 1, 2, 3, 4, 5, 6, 7),
MMC = circ(01, 01, 04, 01, 08, 05, 02, 09).

Notice that the SR of Whirlpool applies to columns and MC applies to rows,
respectively (Fig. 3).

Noting that the matrix

(M−1
MC)T = circ(04, 3E, CB, C2, C2, A4, 0E, AE),

has two identical elements in each row, according to Theorem 1, we have the
following distinguishing property for Whirlpool:

New Insights on AES-Like SPN Ciphers 619

Fig. 3. The structure of Whirlpool Hash Function.

Corollary 3. Let V1 = {(pi,j) ∈ F
8×8
28 |p0,3 ⊕ p0,4 = h

(0)
0,3 ⊕ h

(0)
0,4}. Then for

Whirlpool reduced to 5 rounds, the sum of all the outputs over V1 is 0.

Although this distinguisher covers less rounds than the rebound attack [28],
our result shows some new features of Whirlpool that could be exploited in the
future. From the direct proof of Theorem 1, the key point is that the outputs
of the first round could be divided into some known structures which lead to
4-round integrals. Therefore we have the following property:

Corollary 4. Let V2 = {(pi,j) ∈ F
8×8
28 |AE · S(p0,0 ⊕ h

(0)
0,0) = 04 · S(p1,1 ⊕ h

(0)
1,1)}.

Then for Whirlpool reduced to 5 rounds, the sum of all the outputs over V2 is 0.

Proof. Let the input of the first column to the first MixColumns be X =
(x0, . . . , x7)T and Y = (y0, . . . , y7)T be the corresponding output. Then x0 =
S(p0,0⊕h

(0)
0,0), x1 = S(p1,1⊕h

(0)
1,1) and we have AE·x0 = 04·x1. Since X = M−1

MCY ,
therefore,{

x0 = 04 · y0 ⊕ 3E · y1 ⊕ CB · y2 ⊕ C2 · y3 ⊕ C2 · y4 ⊕ A4 · y5 ⊕ 0E · y6 ⊕ AE · y7

x1 = AE · y0 ⊕ 04 · y1 ⊕ 3E · y2 ⊕ CB · y3 ⊕ C2 · y4 ⊕ C2 · y5 ⊕ A4 · y6 ⊕ 0E · y7.

Consequently,

AE(3E · y1 ⊕ CB · y2 ⊕ C2 · y3 ⊕ C2 · y4 ⊕ A4 · y5 ⊕ 0E · y6 ⊕ AE · y7)
= 04(04 · y1 ⊕ 3E · y2 ⊕ CB · y3 ⊕ C2 · y4 ⊕ C2 · y5 ⊕ A4 · y6 ⊕ 0E · y7),

which implies that there exists a linear function l such that

y4 = l(y1, y2, y3, y5, y6, y7).

Since the dimension of the input is n − 1, we know that y0 is independent of
y1, . . . , y7. As in constructing the 4-round integral distinguisher of the AES based
on the 3-round distinguisher, place this property in front of the known 4-round
integral distinguisher for Whirlpool and we conclude that the sum of the outputs
is 0. ��

Furthermore, we can extend the results to the structures with different S-boxes
and no constraints on the elements of (M−1

MC)T.

Theorem 2. In a Miyaguchi-Preneel hashing mode, if the block cipher adopts
a 5-round AES-like structure, there always exists a subset V such that when the
input takes all possible value in V , the sum of output is 0.

620 B. Sun et al.

Let the first two elements in the first column of the inverse MDS matrix be a0

and a1, and the input to these two positions be S0(p0,0⊕h0,0) and S1(p1,1⊕h1,1).
For any p0,0, we can always choose p1,1 such that

a1S0(p0,0 ⊕ h0,0) = a0S1(p1,1 ⊕ h1,1).

Then the conclusion follows from the proof of Corollary 4.

6 Application to AES

AES is one of the most widely used block ciphers since 2000, and many crypto-
graphic primitives adopt round-reduced AES as a building block. The first known
integral distinguisher for the AES covers 3 rounds [12] which was later improved
to a 4-round higher-order integral [17]. However, the technique that improved the
3-round integral to a 4-round one cannot be directly used to improve the integral
from 4 rounds to 5 rounds. In the following, we will show that the improvement
is possible provided the difference of some sub-key bytes is known.

Since for MMC adopted in the AES, we have

(M−1
MC)T =

⎛
⎜⎜⎝
0E 09 0D 0B
0B 0E 09 0D
0D 0B 0E 09
09 0D 0B 0E

⎞
⎟⎟⎠ = circ(0E, 09, 0D, 0B),

i.e., the elements in each row are different from each other, it seems that we
cannot construct such distinguishers for 5-round AES. However, since there are
two 1’s in each columns of MMC = circ(02, 03, 01, 01), we can construct a distin-
guisher for AES−1, i.e., we can turn the chosen-plaintext distinguishers shown
in Theorem 1 into a chosen-ciphertext one.

Lemma 3. Let V = {(xi,j) ∈ F
4×4
28 |x0,0 ⊕ x1,3 = k0,0 ⊕ k1,3} be the input set.

Then for each output byte of 5-round AES−1 without MixColumns operation in
the last round, every value of F28 appears 2112 times and the sum of every output
byte of the 5-round AES−1 with MixColumns operation in the last round is 0.

Theorem 3. 5-round AES with MixColumns in the last round can be distin-
guished from a random permutations as follows. Divide the whole input-output
space into the following 28 subsets:

AΔ = {(p, c)|c0,0 ⊕ c1,3 = Δ},

and let
TΔ =

∑
(p,c)∈AΔ

p.

Then there always exists a Δ such that k0,0 ⊕k1,3 = Δ and TΔ = 0. For random
permutations, this happens with probability 1 − (1 − 2−128)2

8 ≈ 2−120.

New Insights on AES-Like SPN Ciphers 621

To the best of our knowledge, Theorem 3 gives the best distinguisher1 of the
AES with respect to the rounds it covers. Since the AES adopts a circulant MDS
matrix, we can get many other different variants of this property by dividing the
whole set into different subsets. For example,

Corollary 5. 5-round AES with MixColumns in the last round can be distin-
guished from a random permutation as follows. Divide the whole input-output
space into the following 232 subsets:

Aα,β,γ,φ = {(p, c)|c0,0 ⊕ c1,3 = α, c0,1 ⊕ c3,2 = β, c1,2 ⊕ c2,1 = γ, c2,0 ⊕ c3,3 = φ},

and let
Tα,β,γ,φ =

∑
(p,c)∈Aα,β,γ,φ

p.

Then there always exists an (α, β, γ, φ) ∈ F
4
28 such that Tα,β,γ,φ = 0. For random

permutations, this happens with probability 1 − (1 − 2−128)2
32 ≈ 2−96.

7 Conclusion

Distinguishers on AES-like SPN structures are covered extensively in the lit-
erature. For example, we already have 4-round zero-correlation linear hulls for
AES-like structures without MixColumns in the last round and 4-round integral
distinguishers for AES-like structures with MixColumns in the last round. Note
that these distinguishers do not depend on which S-box and MDS matrix are
used in the cipher. This paper gives some new insights on such ciphers especially
with detailed S-boxes and MDS matrices.

Firstly, we observe that if there are two identical elements in a row of the
transpose of the inverse matrix of the MixColumns operation, and the S-boxes
used in these two positions are identical, then we can construct some 5-round
zero-correlation linear hull for a 5-round AES-like SPN structure provided some
differences of the sub-key bytes are known. Then, under the same setting, and
based on the link between zero-correlation linear hulls and integrals, we con-
struct 5-round integrals for such AES-like SPN structures both with and without
the MixColumns operation in the last round. These results show that such 5-
round AES-like SPN structures can be theoretically distinguished from random
permutations.

Secondly, in a hashing scheme where the chaining value serves as the secret
key in block ciphers, we can further remove the constraint on the matrices and
S-boxes. We apply the new results to the Whirlpool hash function and construct
5-round integral-like distinguishers.

Furthermore, since these results do not apply to the AES directly, we find that
although we cannot build a distinguisher in a chosen-plaintext mode, we can con-
struct a 5-round distinguisher for the AES in the chosen-ciphertext mode which is
the best distinguisher for the AES with respect to the number of rounds it covers.
1 This property could be used for instance, when the codebook is provided, to deter-

mine whether it is AES when both the block cipher and the keys are unknown.

622 B. Sun et al.

Our results show that despite the key schedule, there may be some differ-
ence between the security margins of round-reduced AES under chosen-plaintext
attacks and that under chosen-ciphertext attacks. Since we can distinguish 5-
round AES from random permutations, some dedicated cryptographic schemes
should be carefully investigated to guarantee the security claims. Furthermore,
when we design an AES-like cipher, it is better to choose those MDS matrices
MMC such that both MMC and M−1

MC do not have identical elements in the same
columns.

Now that we get some new features of 5-round AES, we leave as an open
problem whether one could mount better key-recovery attack against round-
reduced AES or some other schemes based on the AES-like SPN structure.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their useful comments, and Ruilin Li, Shaojing Fu, Wentao Zhang and Ming Duan for
fruitful discussions.

References

1. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02 Submission to the CAESAR
Competition. http://competitions.cr.yp.to/round2/primatesv102.pdf

2. Barreto, P., Rijmen, V.: NESSIE proposal: Whirlpool (2000). https://www.cosic.
esat.kuleuven.be/nessie/

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, New York (1993)

5. Biryukov, A., Khovratovich, D.: PAEQ v1. http://competitions.cr.yp.to/round1/
paeqv1.pdf

6. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

8. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

9. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanaly-
sis of block ciphers. Des. Codes Crypt. 70(3), 369–383 (2014)

10. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

11. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2002)

http://competitions.cr.yp.to/round2/primatesv102.pdf
https://www.cosic.esat.kuleuven.be/nessie/
https://www.cosic.esat.kuleuven.be/nessie/
http://competitions.cr.yp.to/round1/paeqv1.pdf
http://competitions.cr.yp.to/round1/paeqv1.pdf
http://competitions.cr.yp.to/caesar.html

New Insights on AES-Like SPN Ciphers 623

13. Datta, N., Nandi, M.: ELmD v2.0. http://competitions.cr.yp.to/round2/elmdv20.
pdf

14. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

15. Demirci, H., Taşkın, I., Çoban, M., Baysal, A.: Improved meet-in-the-middle
attacks on AES. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol.
5922, pp. 144–156. Springer, Heidelberg (2009)

16. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

17. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.L.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

18. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)

19. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014)

20. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Can-
didate Conference, pp. 230–241 (2000)

21. Guo, J.: Marble Version 1.1. https://competitions.cr.yp.to/round1/marblev11.pdf
22. Hatano, Y., Sekine, H., Kaneko, T.: Higher order differential attack of camel-

lia(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146.
Springer, Heidelberg (2003)

23. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

24. Knudsen, L.R.: DEAL – a 128-bit block cipher. Technical report, Department of
Informatics, University of Bergen, Norway (1998)

25. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

26. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

27. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello Jr., D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryp-
tography: Two Sides of One Tapestry. The Springer International Series in Engi-
neering and Computer Science, vol. 276, pp. 227–233. Springer, New York (1994)

28. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound
attack and subspace distinguishers: application to whirlpool. J. Cryptol. (JOC)
28(2), 257–296 (2015)

29. Li, P., Sun, B., Li, C.: Integral cryptanalysis of ARIA. In: Bao, F., Yung, M., Lin,
D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 1–14. Springer, Heidelberg
(2010)

30. Lucks, S.: The saturation attack - a bait for twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

31. Lu, J., Dunkelman, O., Keller, N., Kim, J.-S.: New impossible differential attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

http://competitions.cr.yp.to/round2/elmdv20.pdf
http://competitions.cr.yp.to/round2/elmdv20.pdf
https://competitions.cr.yp.to/round1/marblev11.pdf

624 B. Sun et al.

32. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010)

33. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

34. Phan, R.: Impossible differential cryptanalysis of 7-round Advanced Encryption
Standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004)

35. Sun, B., Li, R., Qu, L., Li, C.: SQUARE attack on block ciphers with low algebraic
degree. Sci. China Inf. Sci. 53(10), 1988–1995 (2010)

36. Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of
structures against impossible differential and zero correlation linear cryptanalysis.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp.
196–213. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 8

37. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li,
C.: Links among impossible differential, integral and zero correlation linear crypt-
analysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 95–115. Springer, Heidelberg (2015)

38. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015)

39. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015)

40. Wu, H., Preneel, B.: A fast authenticated encryption algorithm. http://
competitions.cr.yp.to/round1/aegisv1.pdf

http://dx.doi.org/10.1007/978-3-662-49890-3_8
http://competitions.cr.yp.to/round1/aegisv1.pdf
http://competitions.cr.yp.to/round1/aegisv1.pdf

Lightweight Multiplication in GF (2n)
with Applications to MDS Matrices

Christof Beierle(B), Thorsten Kranz, and Gregor Leander

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Bochum, Germany
{christof.beierle,thorsten.kranz,gregor.leander}@rub.de

Abstract. In this paper we consider the fundamental question of opti-
mizing finite field multiplications with one fixed element. Surprisingly,
this question did not receive much attention previously. We investigate
which field representation, that is which choice of basis, allows for an
optimal implementation. Here, the efficiency of the multiplication is mea-
sured in terms of the number of XOR operations needed to implement
the multiplication. While our results are potentially of larger interest, we
focus on a particular application in the second part of our paper. Here
we construct new MDS matrices which outperform or are on par with all
previous results when focusing on a round-based hardware implementa-
tion.

Keywords: Finite fields · Multiplication · XOR-count · Lightweight
cryptography · MDS matrices · Block cipher

1 Introduction

Many cryptographic schemes build on finite fields as their underlying mathematic
structure. In almost all cases, the schemes can be designed without having to
specify a concrete representation of the finite field in advance. However, when
finally being implemented in practice, one necessarily has to choose a partic-
ular representation of the finite field, basically as bit strings. In general, this
choice does not influence the security of the scheme, but might well influence
the performance of the resulting implementation. In this work we focus on this
choice of field representations and derive theoretical results on how to choose
an optimal field representation with respect to multiplication with fixed field
elements. Before going into details, we elaborate on this setup in the special case
of symmetric cryptography.

Symmetric Cryptographic Primitives. Build the back-bone of virtually any
secure communication today. Block ciphers and hash functions can be seen as the
workhorses in cryptography, used for encrypting and authenticating the largest
part of the workload.

Today, we are in the comfortable situation of having at hand a choice of strong
block ciphers and hash functions that seem secure against even the strongest
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 625–653, 2016.
DOI: 10.1007/978-3-662-53018-4 23

626 C. Beierle et al.

adversaries with practically unlimited computational resources. Moreover, those
primitives are based on rather well-understood design principles that allow to
construct efficient, simple and easy to analyze ciphers. Especially in the case of
substitution-permutation (SP) networks, following the seminal ideas of AES [9]
and its predecessor SQUARE [8], arguing the security of ciphers against the
two most powerful generic attacks, that is differential- and linear attacks [6,23],
became significantly easier. In an SP-network the cipher (or the cryptographic
permutation) consists of a number of almost identical rounds, each of which
consists of a layer of S-boxes and an F2-linear layer to mix those parts.

One of the most important design strategies for those primitives is the so-
called wide-trail strategy, initiated in [7], that aims at lower bounding the number
of active S-boxes. Here, for a given linear or differential trail, an S-box is called
active if its input-mask (resp. input-difference) is non-zero. The main observa-
tions of the wide-trail strategy is that it is actually the linear layer that is to a
large extent responsible for the security of the primitive against linear and dif-
ferential attacks. Moreover, the wide-trail strategy allows a natural decoupling
of the design choice for a linear layer and an S-box.

Interestingly, for the linear layer not many general constructions are known.
Two basic approaches can be identified. On the one hand, an ad-hoc approach,
where lower bounding the number of active S-boxes requires computer-aided
tools that search (sometimes heuristically) for optimal trails. This approach is
used e.g. for Serpent [5] or Keccak [4]. On the other hand, a code-based app-
roach, where the linear layers are chosen in such a way that they correspond to
good (often locally optimal) linear codes. This is, most prominently, the case for
AES where a Maximum Distance Separable (MDS) code is implemented via the
MixColumns operation.

Even in the theoretically better circumstantiated code-based approach many
fundamental questions are left open. Here, when using an MDS matrix for (parts
of) the linear layer, the main challenge is to choose an MDS matrix that is most
suitable for an efficient implementation. As those MDS matrices are usually
defined over a finite field with characteristic two, i.e. F2n , one important and so
far almost unstudied question is the choice of an F2-basis of F2n and its impact
on the implementation efficiency.

From a design point of view, one has to choose a linear layer given as a
mapping on F

b
2n and an F2-basis of F2n to concretely specify the primitive.

This is actually a very natural separation of the design of the cipher and its
specification (and thus implementation) on bit level. As nicely explained in [10]
by introducing RIJNDAEL-GF this separation is probably most obvious for
AES itself, but in principle possible for any cipher. Following [10], the choice of
basis is to a large extent independent of the design and the security of the cipher.
However, the choice of basis might have a significant impact on the efficiency of
the cipher on certain platforms.

For software implementations, depending on the details, the choice of basis
is either irrelevant (in e.g. a table-based implementation) or hard to capture
(in e.g. a bit-sliced implementation) as the efficiency might depend on the exact

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 627

instructions offered by a given platform. For hardware implementations, one
has to distinguish between a serial implementation or a round-based imple-
mentation. As the round-based implementation seems most relevant in practice
(cf. [27]), we mainly focus on this use-case here. Surprisingly, compared to a serial
hardware implementation, the case of a round-based hardware implementation
has attracted less attention so far.

For a round-based hardware implementation, the impact of the choice of basis
already becomes apparent when focusing on how to implement the multiplication
with one given element α in F2n . For different choices of bases, the efficiency of
implementations of the resulting F2-linear mappings differs significantly. Thus,
the very fundamental task we study in the first part of the paper is:

For a given element α ∈ F2n find a basis such that multiplication by α can
be implemented most efficiently.1

It is worth pointing out that the related question of how to efficiently multiply
two arbitrary field elements has been studied extensively in the past.

While the above question is of independent interest, with potentially very dif-
ferent applications, we use our results for designing efficient linear layers. Thus,
in the second part, we will give several constructions of MDS matrices. Echoing
the above, the construction of our MDS matrices are independent of the choice of
the basis – actually to a large extent independent of the field size as well.

The combination of the first part, i.e. how to choose a basis that allows
for an optimal implementation, and the second part, i.e. the construction of
MDS matrices, finally results in implementations of MDS matrices that are more
efficient for a large variety of parameters than the best matrices discussed so far
in literature.

Thus, this application serves as a nice example were an improved understand-
ing on how to choose the field representation immediately leads to improved
results. This is even more interesting as the construction of efficient MDS matri-
ces has been an active field of research recently.

1.1 Related Work

In particular the construction of efficient serial MDS matrices is a well-studied
subject. Considering serial implementations of MDS matrices is based on the
initial idea of Guo, Peyrin, and Poschmann used in the design of PHOTON
[13] and later in the block cipher LED [14]. In a nutshell the idea is not to
implement an MDS matrix directly, but rather implement a matrix A such that
Ak is MDS for some small k. When considering a hardware implementation, it
reduces the chip area if implementing A is significantly cheaper than Ak. The
circuit implementing A is then iterated k times, which does not increase its size
significantly. This basic idea has been further generalized and improved in a
series of subsequent papers. In [24,30] the authors focus on even more efficient
1 Note that the choice of basis is of course not restricted to choosing different irre-

ducible polynomials to represent the finite field.

628 C. Beierle et al.

choices for A by considering additive, i.e. F2-linear MDS codes. Their approach
uses symbolic computations in order to derive general conditions on how to
choose the matrix entries independent of the dimension.

In [31] Xu et al. furthermore took into account the cost of implementing the
inverse matrix. At FSE 2014, in [2] Augot and Finiasz improved significantly
upon the efficiency of the search algorithm of [24], allowing them to search for
MDS matrices of much larger dimension than previously possible.

For a round-based implementation, less work has been done so far. The
authors of [27] focus on MDS matrices that have an efficient implementation (in
terms of the XOR-count) and put special emphasis on involutory MDS matrices,
i.e. MDS matrices that are their own inverse. They derive several constructions
and rather efficient search methods for MDS matrices meeting their goals. Very
recently, Liu and Sim [21] improved upon some of those results by characteriz-
ing equivalences in circulant (and circulant-like) MDS matrices and thus further
reduced the search space. In both works, in order to improve the efficiency for
a given MDS matrix defined over a finite field, the authors considered different
representations of the underlying finite fields by running through all possible
irreducible polynomials of the given degree. However, in view of the question of
how to choose an optimal basis, this corresponds to investigating only a small
subset of all possible bases. Work on investigating the XOR-count distribution
for other than the polynomial bases has been done very recently in [25].

Also recently, Li and Wang constructed circulant involutory F2-linear MDS
matrices [19]. While it was already known that circulant MDS matrices over
a finite field cannot be involutory [15], they have shown their existence in the
additive case. Independently, the authors of [21] have shown the existence of
left-circulant involutory MDS matrices over finite fields.

1.2 Our Contribution

After fixing our notation and recalling basic facts in Sect. 2, in the first part of
the paper we focus on the question on how to find an optimal implementation
of the multiplication by a given field element α (cf. Sect. 3). Here efficiency is
measured in terms of the number of XOR operations needed to implement the
corresponding binary matrix. Note that this metric differs from the XOR-count
used in [27]. In [27] the XOR-count of an n × n matrix M was defined as the
number of ones in M minus n. However, the number of (additional) ones in a
matrix does not necessarily correspond to the number of XOR operations needed
for implementation. Thus, while the number of ones in M is certainly an easier
to handle metric, in our opinion it is more appropriate to consider the actual
number of XOR operations as the efficiency metric. Note that this improved
notion was also discussed in [16]. For technical reasons, we focus on the number
of XOR operations without temporary registers, i.e. in-place XOR operations.
One of our main results in this first part of the paper is, that for a non-trivial
element α one can find a basis such that the resulting matrix can be implemented
with one XOR operation if and only if the characteristic polynomial of α is
an irreducible trinomial. Note that an XOR-count equal to one in our notion

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 629

coincides with the definition of the XOR-count in [27]. The interesting part here
is that the condition on the characteristic polynomial is not only sufficient but
also necessary. As an immediate consequence, one cannot hope to implement the
multiplication by any element α �= 1 in F

∗
28 with one XOR only. This follows

by the above and the well-known fact that there are no irreducible trinomials of
degree 8 [28].

We furthermore show that, for any given basis, there are at most two (non-
trivial) elements α and β such that the multiplication with those elements can be
implemented with one XOR operation. In fact, β is necessarily the multiplicative
inverse of α.

While the weight of the (irreducible) characteristic polynomial of an element
α clearly gives an upper bound of the number of XOR operations needed to
implement the corresponding multiplication, we show that this bound is in gen-
eral not tight in the case were the characteristic polynomial is of weight larger
than three.

In particular, for all elements α ∈ F
∗
2n with n ≤ 8 we present an optimal

representation such that the multiplication with α can be implemented with a
minimal number of XOR operations. For all those elements α, that are not con-
tained in a proper subfield of F2n , the multiplication can be implemented with
at most 3 XOR operations (and often with two only). Those results are given
in Tables 3, 4, 5, 6 and 7 and cover the cases which are most relevant for sym-
metric cryptography. Interestingly, and maybe counter-intuitive, multiplication
with non trivial elements in a proper subfield turns out to be among the most
expensive in all the cases explored here.

Moreover, for all n ≤ 2048 for which no irreducible trinomial of degree n
exists, we present one element α ∈ F2n such that multiplication by α requires
two XOR operations, cf. Table 8. Those results are proven optimal by the above
mentioned necessary and sufficient condition.

In the second part of the paper (cf. Sect. 4) we present several (circulant)
matrices. Entries in those matrices are represented as powers of a generic field
element α. By symbolically computing all minors, i.e. the determinants of all
square submatrices, we derive a list of polynomials in F2[α]. Now, whenever α is
chosen such that it is not a root of any of those polynomials, the matrix is MDS.
One nice consequence of this approach is that, as the degree of those polynomials
is limited, our matrices are MDS for almost all elements in F2n as soon as n is
large enough, i.e. larger than the maximal degree of those polynomials.

Finally, the first and second part are combined in Sect. 4.2 to result in the
most efficient MDS matrices in terms of the XOR-count known so far. A sum-
mary of our results and comparison with previous work is given in Tables 1
and 2, respectively. The main observation here is that if multiplication by α can
be implemented with t XOR operations, then multiplication by α±i for i ≥ 0
can be implemented with at most t · i XOR operations.2 Thus, by simply mini-

2 It is exactly this part where considering only in-place XOR operations becomes very
helpful, as otherwise multiplication by α and by α−1 might differ in their XOR-count.

630 C. Beierle et al.

mizing the sum of the (absolute) exponents for our circulant MDS matrices, we
immediately reduce the XOR-count.

As an interesting side result, we like to point out that the XOR-count per
bit actually decreases with increasing field size.3 For example, our 4 × 4 MDS
matrices have a per bit XOR-count of 3 + 3

n , or 3 + 6
n in the case that no

irreducible trinomial of degree n exists.
Thus, even so reducing the number of XOR operations has already received

considerable attention recently, this part nicely shows that our improved under-
standing of how to choose an optimal basis allows us to easily improve upon
known constructions. Note that such improvements are possible independent
from which XOR-count definition is used, that is, we were able to improve exist-
ing results also in the old XOR-count definition by changing the basis. For exam-
ple, we found an element in F28 with only 2 additional non-zero entries which
directly improves the results of [27].

Finally, in Sect. 5 we give a perspective on non-linear, additive MDS matrices.
In particular, we point out that while there exists no α ∈ F28 (resp. F213 , F216)
which can be implemented with only one XOR operation, there does exist an
8 × 8 (resp. 13 × 13, 16 × 16) binary matrix, that can be used in place for the
multiplication by α in the above mentioned 4× 4 matrix to result in an additive
MDS matrix with reduced cost.4 Again, the idea of considering the entries of
the matrix as powers of a single field element is beneficial as the conditions for
the matrix to be MDS remain basically unchanged.

We conclude the paper by pointing to some interesting questions for future
investigations.

2 Preliminaries

If p is a prime, we denote the finite field with p elements by Fp and the extension
field with pn elements by Fpn , respectively. In this work, we consider binary fields,
thus p = 2. Although there exists up to isomorphism only one finite field for every
possible order, we are interested in the specific representation. For instance, if
q ∈ F2[x] is an irreducible polynomial of degree n, then F2n ∼= F2[x]/(q) where
(q) denotes the ideal generated by q. The multiplicative group of some field K is
denoted by K∗. By the term matrix, we refer to matrices with entries in F2. In
general, the ring of n × n matrices over a field K will be denoted by Matn(K).
The symbol 0n will denote the zero matrix and In will be the identity matrix. As
a third important type of matrix in Matn(F2), we introduce Ei,j which consist
of all zeros except in the i-th row of the j-th column for i, j ∈ {1, . . . , n}. We
denote a block diagonal matrix consisting of d matrix blocks Ak as

⊕d
k=1 Ak.

By wt(A), we denote the number of non-zero entries of a matrix A. Analogously,
wt(q) denotes the number of non-zero coefficients of a polynomial q.
3 This is also true for the constructions given in [30], but does not hold for the subfield

(or code-interleaving) construction.
4 Note that the authors of [19] recently constructed a similar 32 × 32 F2-linear MDS

matrix.

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 631

2.1 Some Basic Facts About Linear Transformations

We next recall some basics about finite fields and matrix representations. For
more background the reader is referred to e.g. [20, Sect. 2.5] and [29]. Let V ∼= Kn

be a finite-dimensional vector space over the field K. Every linear mapping
f : V → V can be described as v �→ ABv by a left-multiplication with a matrix
AB ∈ Matn(K). This representation is dependent on the choice of the basis B
for V . For instance, if B = {b1, . . . bn}, the j-th column of AB consists of the
coefficients a1,j , . . . , an,j of f(bj) =

∑n
i=1 ai,jbi. Thus, changing the basis from

B to B′ results in a different matrix representation of f . This transformation is
called the change of basis transformation, which is simply a conjugation of AB .
Thus, AB′ = TABT−1 using an invertible matrix T . In this case, AB and AB′

are are called similar (resp. permutation-similar if T is a permutation matrix).
There is a natural way of representing the elements in a finite field with

characteristic p as vectors with coefficients in Fp. In the following, we consider
the representation of the multiplication by α by a matrix as described in the
following diagram.

F2n F2n
·α

F
n
2 F

n
2

ΦB Φ−1
B

Mα,B

The bijection ΦB maps elements α ∈ F2n to its vectorial representation over
F2 with regard to a basis B (and Φ−1

B vice versa). Mα,B denotes the n×n matrix
representing (left-) multiplication by the element α. For different bases B and
B′, one can obtain Mα,B′ from Mα,B by the change of basis transformation,
in particular Mα,B′ = TMα,BT−1 for an invertible T . We denote similarity of
matrices with the relation symbol ∼, (resp. ∼π for permutation-similarity). The
characteristic polynomial of a matrix A is defined as χA := det(λI − A) ∈
F2[λ] and the minimal polynomial is denoted by mA. Recall that the minimal
polynomial is the (monic) polynomial p of least degree, such that p(A) = 0n.
It is a well-known fact that the minimal polynomial divides the characteristic
polynomial, thus χA(A) = 0n. As the minimal polynomial and the characteristic
polynomial are actually properties of the underlying linear mapping, similar
matrices have the same characteristic and the same minimal polynomial.

A special type of matrix, that will play an important role in the following is
the companion matrix of a polynomial. For a polynomial

q = xn + qn−1x
n−1 + · · · + q1x + q0 ∈ F2[x]

632 C. Beierle et al.

of degree n, the companion matrix of q is defined as

Cq =

⎛
⎜⎜⎜⎜⎜⎝

0 q0
1 0 q1

.
...

1 0 qn−2

1 qn−1

⎞
⎟⎟⎟⎟⎟⎠

.

It is known from linear algebra that the characteristic polynomial and the
minimal polynomial of Cq are equal to q itself, i.e. χCq

= mCq
= q. In addition,

any matrix A is similar to a companion matrix if and only if its characteristic
polynomial coincides with its minimal polynomial. In particular, Cq is exactly
the rational canonical form [11, Sect. 12.2] of A in this case.

2.2 The XOR-Count and the Cycle Normal Form

The XOR-count of a field element was already studied in [17,27]. In the formal
definition in [27], an invertible n-dimensional matrix A has an XOR-count of t
if and only if A can be written as a permutation matrix with t additional non-
zero entries. Formally, A = P +

∑t
k=1 Eik,jk

and wt(A) = n + t. Although all
matrices of that structure can be implemented with at most t XOR operations
(not necessarily without temporary registers), the construction does not contain
all possible matrices which are realizable with at most t XOR operations. For
instance, there are matrices with three additional non-zero entries such that the
result of their defining linear function can be computed with just two additions.
As an example, consider

⎛
⎝1 0 1

1 1 1
0 0 1

⎞
⎠

⎛
⎝v1

v2
v3

⎞
⎠ =

⎛
⎝ v1 + v3

(v1 + v3) + v2
v3

⎞
⎠ .

In the following, we provide an alternative definition which includes the cases
described above.

Definition 1. An invertible matrix A has an XOR-count of t, denoted
wt⊕(A) = t, if t is the minimal number such that A can be written as

A = P

t∏
k=1

(I + Eik,jk
)

with ik �= jk for all k.

Note that if a matrix can be represented in the form P
∏t

k=1(I + Eik,jk
), the

number of factors (I + Eik,jk
) clearly gives an upper bound on the actual XOR-

count. It is worth pointing out that the definition above just counts the number
of XOR operations without using temporary registers. Those are technically

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 633

somewhat easier to handle. However, this restriction does not make a difference
for matrices with XOR-count less or equal to 2, which we are most concerned
about in in the following. In general, allowing temporary registers might well
reduce the number of XOR operations needed for an implementation.

Our definition coincides with the one from [27] for the case that t = 1, that is,
for matrices of XOR-count 1. For other cases, the number of additional non-zero
entries can increase. We will often consider t = 2 within this work. By evaluating
the product, it follows that any A with wt⊕(A) = 2 is of the form

A =

{
P + P (Ei1,j1 + Ei2,j2) iff i2 �= j1

P + P (Ei1,j1 + Ei2,j2 + Ei1,j2) iff i2 = j1.

The XOR-count is invariant under permutation-similarity. Moreover, naturally in
the setting not allowing temporary registers, the XOR-count is invariant under
taking the inverse. This is summarized and formally proven in the following
Lemma and Corollary.

Lemma 1. If A ∼π A′, then wt⊕(A) = wt⊕(A′).

Proof. Let A′ = QAQ−1 where Q is the permutation matrix representing the
permutation σ ∈ Sn. Let I +Eik,jk

be a factor in the XOR-count representation
of A = P

∏t
k=1(I+Eik,jk

) where t = wt⊕(A). Then the following identity holds:

(I + Eik,jk
)Q−1 = Q−1 + Eik,σ−1(jk) = Q−1(I + Eσ(ik),σ−1(jk)).

One is able to commute Q−1 to the front before the first factor by proceeding
for all of the t factors and finally obtain

A′ = QPQ−1
t∏

k=1

(I + Eσ(ik),σ−1(jk)).

It follows that wt⊕(A′) ≤ wt⊕(A). By reverting the above steps we obtain
wt⊕(A) ≤ wt⊕(A′). 	

Corollary 1. If wt⊕(A) = t, then also wt⊕(A−1) = t.

Proof. We show that A−1 is permutation-similar to a matrix with an XOR-count
of t.

(
P

t∏
k=1

(I + Eik,jk
)

)−1

=
1∏

k=t

(I + Eik,jk
)P−1 ∼π P−1

1∏
k=t

(I + Eik,jk
)

	

Later, we would like to be able to exhaustively search over all matrices with
low XOR-count for a given dimension n. Since the number of permutation matri-
ces (which is n!) rapidly increases with n, an exhaustive search will quickly
become infeasible if we do not restrict the structure of P . By a well-known fact
from combinatorics, one is able to assume P to be in a specific form.

634 C. Beierle et al.

Lemma 2. For any permutation matrix P of dimension n, it is

P ∼π

d⊕
k=1

Cxmk+1

for some mk with
∑d

k=1 mk = n and m1 ≥ · · · ≥ md ≥ 1.

Proof. It is well-known that two permutations with the same cycle type are
conjugate [11, Chapter 4.3, Proposition 11]. That is, given the permutations
σ, τ ∈ Sn as

σ = (s1, s2, . . . , sd1)(sd1+1, . . . , sd2) . . . (sdm−1+1, . . . , sdm
)

τ = (t1 , t2 , . . . , td1)(td1+1 , . . . , td2) . . . (tdm−1+1 , . . . , tdm
)

in cycle notation, one can find some π ∈ Sn such that πσπ−1 = τ . This π
operates as a relabeling of indices.

Let σ in the form above be the permutation defined by P . Now, there exits a
permutation π such that πσπ−1 = (d1, 1, 2, . . . , d1 −1)(d2, d1 +1, d1 +2, . . . , d2 −
1) . . . (dm, dm−1 + 1, dm−1 + 2, . . . , dm − 1). If Q denotes the permutation matrix
defined by π, one obtains QPQ−1 in the desired form. 	

We say that any permutation matrix of this structure is in cycle normal form.
The cycle normal form of P is denoted by C(P). Up to permutation-similarity,
we can always assume that the permutation matrix P of a given matrix with
XOR-count t is in cycle normal form, as stated in the following corollary.

Corollary 2.

P

t∏
k=1

(I + Eik,jk
) ∼π C(P)

t∏
k=1

(I + Eσ(ik),σ−1(jk))

for some permutation σ ∈ Sn.

3 Efficient Multiplication in Finite Fields

In this section, we first present some theoretic results towards understanding
the structure of matrices Mα,B representing (left-) multiplication by some finite
field element α ∈ F

∗
2n . The parameter B indicates a basis of F2n considered

as an n-dimensional vector space over F2. The XOR-count of Mα,B is indeed
depending on the choice of the basis B. As described in Corollary 2, we can
assume a certain normal form for matrices with an XOR-count of t.

Not every (invertible) matrix is a representation of a field multiplication. For
example, an obvious condition for that, is that the multiplicative order of the
matrix divides 2n − 1. In order to understand exactly which matrices indeed
represent multiplication with some field element α, Theorem 1 below gives a
characterization that allows to efficiently decide when a given matrix corresponds

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 635

to multiplication by a field element. The crucial part is the minimal polynomial
of α. It is a property of the linear mapping

fα : F2n → F2n , β �→ αβ

and is invariant under changing the specific representation of fα to β �→ Mα,Bβ.

Theorem 1. Let A ∈ Matn(F2) \ {0n}. Then A = Mα,B for some element
α ∈ F

∗
2n with respect to some basis B if and only if mA is irreducible.

Proof. As described in [29], the ring generated by some matrix A defines a field
of order 2n if and only if the characteristic polynomial χA is irreducible. This is
the case since χA(A) = 0 and thus A is the root of an irreducible polynomial of
degree n. One can see that F2(A) = {

∑n−1
i=0 αiA

i | αi ∈ F2} since it must contain
all sums of powers of A. However, for F2(A) being a field it is not necessary that A
has an irreducible characteristic polynomial. It can be possible that A generates
a subfield F2m of F2n . As we show now, this is the case if and only if the minimal
polynomial of α is irreducible and has degree m.

If mA is not irreducible, F2(A) is not a field and thus A cannot represent a
field multiplication. Let now mA be irreducible. The characteristic polynomial
χA is necessarily a power of mA, since both of these polynomials share the same
irreducible factors. So, χA = (mA)d for some positive integer d. Both d and
deg(mA) divide n. Because of the irreducibility of mA, the rational canonical
form of A consists of d blocks of CmA

. Thus, we obtain the similarity

A ∼
d⊕

k=1

CmA
.

Since χCmA
= mA, the matrix A defines a multiplication with some element

in a subfield of F2n . 	

Note that, any field element α is, up to its conjugates α, α2, α22, . . . , α2n−1,
uniquely identified by its minimal polynomial. For every field element α, the
minimal polynomial mα is exactly the minimal polynomial mA of a matrix A
representing multiplication with α. Furthermore, two matrices A,A′ ∈ Matn(F2)
with the same irreducible minimal polynomial are similar. Thus, given a matrix
A, identifying the element α such that A = Mα,B is equivalent to computing the
(irreducible) minimal polynomial of A.

The main question is which field elements can be implemented with a minimal
number of XOR operations, or in particular, what is the minimal XOR-count for
a given (non-trivial) field element α ∈ F

∗
2n . Trivially, multiplication with α = 1

can be implemented with zero additions since M1,B = In for all bases B. On
the other hand, if the XOR-count is 0, the element is equal to 1. In a first place,
we thus aim for an XOR-count of 1 whenever possible. By a simple observation,
this optimal result can be realized if the minimal polynomial of α is a trinomial
of degree n.

636 C. Beierle et al.

Example 1. Let the field with 2n elements be represented as F2n = F2[x]/(q) for
an irreducible q of degree n. For the (left-) multiplication with x in the canonical
basis B = {1, x, x2, . . . , xn−1}, it is Mx,B = Cq. Thus, wt⊕(Mx,B) = wt(q) − 2
and the XOR-count of Mx,B equals 1 if q is a trinomial.

Since our approach is about finding any (non-trivial) element α ∈ F
∗
2n such

that multiplication with α can be implemented with minimal additions, this fact
implies that we cannot hope to improve upon the implementation costs if there
exists an irreducible trinomial of degree n. However, for several n, including
the interesting case where n is a multiple of 8, there does not exist such a
trinomial [28]. The question is what happens for these cases. As one of our
main results, we show that the condition on the minimal polynomial is not only
sufficient but also necessary.

3.1 Characterizing Elements with Optimal XOR-Count

In this section, we prove the converse of the fact described in Example 1, namely
the necessary condition on the minimal (resp. characteristic) polynomial of α
resulting in an XOR-count of 1.

Theorem 2. Let α ∈ F2n . Then there exists a matrix A with wt⊕(A) = 1 such
that A = Mα,B for some basis B if and only if mα is a trinomial of degree n.

Proof. Let Mα,B represent multiplication by some element α ∈ F2n with respect
to the basis B = {b1, . . . , bn} and let further wt⊕(Mα,B) = 1. We show that
the characteristic polynomial χMα,B

is a trinomial and coincides with mα. Since
the XOR-count is 1, we can assume w.l.o.g. that Mα,B = P + Ei,j such that
P =

⊕l
k=1 Cxmk+1 is in cycle normal form. We first show that l = 1. Suppose

l > 1, then, depending on Ei,j , the matrix Mα,B is either in upper or lower
triangular form consisting of at least two diagonal blocks. Since one of them
must be of the form Cxm+1, the polynomial xm+1 must divide the characteristic
polynomial χMα,B

. Since further (x + 1) | (xm + 1), the minimal polynomial of
α is necessarily a multiple of x + 1. This is a contradiction since α �= 1 and mα

must be irreducible. Hence, Mα,B is permutation-similar to Cxn+1 + Ei,j . It is
further i �= j + 1 mod n since otherwise Mα,B would be singular.

We now investigate how α operates on the basis elements bk ∈ B. Considering
the structure of Mα,B , we obtain the following list of equations.

αb1 = b2

...
αbj−1 = bj

αbj = bj+1 + bi

αbj+1 = bj+2

...
αbn = b1.

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 637

By defining γ := bj+1, one can express every basis element bk as a power of α
multiplied by γ. In particular,

bj+k mod n = αk−1γ (1)

for k ∈ {1, . . . , n}. Combining this observation with the identity αbj = bj+1 + bi,
one obtains

αnγ = γ + αtγ (2)

for some exponent t �= 0. Since γ �= 0, the field element α is a root of the trinomial
p = xn + xt + 1. It is left to show that p is exactly the minimal polynomial of
α. Suppose that mα = xm +

∑m−1
k=0 ckxk with constants ck ∈ {0, 1} and m < n.

By multiplying mα(α) with γ, one obtains

αmγ =
m−1∑
k=0

ckαkγ

and thus btm
=

∑m−1
k=0 ckbtk

for some basis elements btk
. We are now able to

express one basis element btk
as a sum of other elements from B which is con-

tradictory to the linear independence of the basis. Hence, deg(mα) = n and thus
mα = p which finally proves the theorem. 	

Note that the polynomial p is exactly the characteristic polynomial of Mα,B

since it must be a monic multiple of mα having degree n. An alternative way of
proving that the characteristic polynomial of a matrix Cxn+1+Ei,j is a trinomial
is given in Appendix A. As a simple corollary one obtains that any α ∈ F

∗
2n with

an XOR-count of 1 cannot be contained in a proper subfield.

Corollary 3. Let α ∈ F
∗
2n \ {1} and let further deg(mα) < n, indicating that α

lies in a proper subfield of F2n . Then, any matrix Mα,B representing multiplica-
tion by a field element α with respect to some basis B has wt⊕(Mα,B) > 1.

This result implies that building MDS layers using a block interleaving con-
struction [1], also called subfield construction in [17], almost always results in
suboptimal implementation costs. Note that specific instances of this construc-
tion are also implicitly used in the AES, LS-Designs [12] and the hash function
Whirlwind [3].

Now let α be an element with XOR-count 1. From Corollary 1 we know that
α−1 has the same XOR-count. Next, we show that there do not exist any further
elements with an XOR-count equal to 1.

Theorem 3. For any given basis B of F2n , there exist at most two field elements
α and α−1 with wt⊕(Mα,B) = wt⊕(Mα−1,B) = 1.

Proof. Let α ∈ F
∗
2n with wt⊕(Mα,B) = 1 for the basis B = {b1, . . . , bn}. We

show that for any β ∈ F2n with wt⊕(Mβ,B) = 1 it holds that β = α±1.

638 C. Beierle et al.

Since w.l.o.g. Mα,B can be assumed to be of the form Cxn+1 +Ei,j , we know
that (1) and (2) hold. We further know that Mβ,B is of the form P + Ei′,j′ and
thus there exist l,m ∈ {1, . . . , n} with l �= m and βbj+l mod n = bj+m mod n.
Using Eq. (1), we can write β = αm−l =: αs where s ∈ {−(n − 1), . . . , n − 1}.
We directly see that s �= 0. It remains to show that −1 ≤ s ≤ 1.

Assume s ≥ 2. We use Eqs. (1) and (2) to obtain

βbj+(n−s+1) mod n = αnγ = γ + αtγ = bj+1 mod n + bj+t+1 mod n.

Since 0 < t < n, it holds that bj+1 mod n �= bj+t+1 mod n and thus the according
column contains an additional 1. For the next column, we have

βbj+(n−s+2) mod n = αn+1γ = αγ + αt+1γ

=

{
bj+2 mod n + bj+t+2 mod n, for t < n − 1
bj+2 mod n + bj+1 mod n + bj mod n, for t = n − 1

Hence, this column also contains at least one additional 1 which is contradictory
to the XOR-count of 1.

For −s ≥ 2 we can construct the same contradiction by considering β−1. 	

We now understand the structure of field elements α that can be implemented
with a single addition. One might think that also for the other cases, the weight
of the minimal polynomial of α strictly lower-bounds XOR-count as wt(mα)−2.
As we will see next, this is not the case.

3.2 Experimental Search for Optimal XOR-Counts

Surprisingly, we often can improve the XOR-count, compared to using the com-
panion matrix for multiplication, if the weight of the minimal polynomial is
greater than 3. For instance, if mα is an irreducible pentanomial, that is of
weight 5, of degree n there often exists a basis B such that wt⊕(Mα,B) = 2.
Indeed, for all n ≤ 2048 for which no irreducible trinomial of degree n exists,
we found some element α ∈ F

∗
2n with an XOR-count of 2 for some basis B.

For every such dimension, we present an example of such a matrix in Table 8.
Thus, for all practically relevant fields, we are able to identify an element such
that multiplication can be implemented with one or two XOR operations. By
Theorem 2, these results are proven to be optimal.

Moreover, as fields of small size are most interesting for SP-networks, we
investigated those in full detail. For the fields F24 , F25 , F26 , F27 and F28 we
present the optimal XOR-count for each non-trivial element α in Tables 3, 4, 5, 6
and 7, respectively. The main observation is that each element which is not
contained in a proper subfield can be implemented with at most 3 additions.
Furthermore, whenever an XOR-count of 2 is possible, the minimal polynomial of
α is a pentanomial in all those cases. However, a more thorough characterization
of elements with non-optimal XOR-count is left as an open problem (see Sect. 6
for more details).

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 639

Those results are based on a search. Since we are only interested in matrices
up to similarity (due to the change of basis), we just need to consider all matrices
in the normal form described in Corollary 2. This will exhaust all possibilities
of similarity classes for a given XOR-count t. In particular, the search space
is reduced from n!(n(n − 1))t to only p(n)(n(n − 1))t where p(n) denotes the
number of partitions of n, which is exactly the number of possible cycle normal
forms of dimension n. This allows us to exhaustively search over all similarity
classes up to t = 3 XOR operations for the fields of small size. The key-point
here is that, instead of searching for an optimal basis for a given field element,
we generated all matrices with small XOR-count and used Theorem 1 in order
to check which field element (if any) the given matrix corresponds to.

In order to identify a single lightweight element for larger field sizes, we
identified conditions in which cases the characteristic polynomial of a matrix
with XOR-count 2 has weight 5, cf. Theorem 4 below. During the search, one
only has to check for irreducibility. This allows to compute the results presented
in Table 8 extremely fast, that is within a couple of minutes on a standard PC.
The proof of Theorem 4 is given in Appendix A.

Theorem 4. Let M = Cxn+1 + Ei1,j1 + Ei2,j2 such that the following relations
hold:

i1 < j1 �= n, i2 > j2 + 1, i1 ≤ j2, i2 ≤ j1, j1 − (i1 − 1) �= n, n − (j1 − i1) �= i2 − j2

The characteristic polynomial of M is a pentanomial of degree n. In particular

χM = λn + λn+i1−j1+i2−j2−2 + λn+i1−j1−1 + λi2−j2−1 + 1.

4 Constructing Lightweight MDS Matrices

Our goal is now to construct lightweight MDS matrices. We use the results
obtained in the previous sections and restrict our search to circulant matrices
and entries with low XOR-count. This simplifies checking the MDS property
and computing an upper bound of the XOR-count of the whole matrix. The
complexity of our algorithm enables us to easily search for MDS matrices up to
dimension 8. Our construction is generic and works for all finite fields F2m with
m > b for a given bound b.

More precisely, we construct circulant matrices with entries of the form α±i

where α is an element in F2m . Choosing entries of this form enables us to easily
upper-bound the XOR-count of the elements since

wt⊕(x±k) ≤ k wt⊕(x).

This can be easily seen by using Corollary 1 and the fact that αk can be imple-
mented by k times implementing α. We want to keep the size of the finite field
over which the matrix is defined generic. Thus, we choose the matrix entries
from a subgroup of the field of fractions of the polynomial ring F2[x], denoted
Quot(F2[x]). That is, every element is of the form

xs + as−1x
s−1 + · · · + a1x + a0

xt + bt−1xt−1 + · · · + b1x + b0
.

640 C. Beierle et al.

More precisely, and as mentioned above, we restrict our search to elements from
〈x〉 which is the multiplicative subgroup of Quot(F2[x]) generated by x. Our
search works by constructing MDS conditions for an n×n matrix M with entries
in 〈x〉. This approach later allows us to substitute the indeterminate x by any
α ∈ F2m that fulfills all of the conditions given below. In this context, we let
M(α) ∈ Matn(F2m) denote the matrix obtained by substituting x with α ∈ F2m .

We define the weight of some circulant matrix with entries in 〈x〉 as the sum
of the absolute values of the exponents in its first row, that is, the number of
times α has to be applied per row. Then, for a given dimension, we are interested
in finding the lightest matrix M which can be made MDS for as many finite fields
as possible. Note that the higher priority here was to find a lightweight matrix.
Thus, there might exist matrices which can be made MDS for even more fields,
but with a probably higher cost.

MDS Conditions. Note that a matrix is MDS, if and only if all its square
submatrices are invertible [22, page 321, Theorem 8]. Thus, given a matrix
M ∈ Matn(Quot(F2[x])), we compute the determinants of all square subma-
trices (called minors) of M in order to check the MDS property. This way one
obtains a list of conditions (polynomials in F2) for a matrix to be MDS. Since the
determinant of a matrix with elements from a field is an element of the field itself,
all of these determinants can be represented as the fraction of two polynomials.
Thus, M is MDS if and only if the numerator of all minors is non-zero. One can
decompose the numerators into their irreducible factors and collect all of them
in a set T . This set now defines the MDS conditions. In particular, M(α) is MDS
if and only if α is not a root of any of these irreducible polynomials in T , that
is, iff mα /∈ T . This trivially holds for m > maxp∈T {deg(p)} and any α ∈ F2m

which is not contained in a proper subfield. In general, if α is not contained
in a proper subfield, the necessary and sufficient condition for the existence of
an MDS matrix M(α) is that not all irreducible polynomials of degree m are
contained in T . We note that there exists a value b which lower bounds the field
size for which M can always be made MDS. That is, for all t > b, there exists
an irreducible polynomial of degree t which is not in T .

4.1 Generic Lightweight MDS Matrices

We now present some results obtained by the approach described above. Given
the restrictions, these matrices achieve the smallest weight, i.e. the smallest sum
of (absolute) exponents of x. Later, we will use these generic matrices to build
concrete instantiations of n × n MDS matrices M(α) for n ∈ {2, 3, . . . , 8} over
a finite field F2m with m > b. We note that the given results are not necessarily
the only possible constructions with the smallest weight.

We also present the conditions for the matrix to be MDS, that is, the irre-
ducible polynomials that must not be equal to mα. However, since the number
of conditions rapidly increases with the dimension of the matrix, we refrain from
presenting a complete list for dimensions 6 to 8. Instead, we give the SageMath

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 641

Listing 1.1. Sage code for computing the set T .

P.<x> = GF(2) []
K = Frac t i onF i e ld (P)

def mds equations (M) :
R = [P(x)]
for i in range (l en (M. rows ()) + 1) [1 :] :

L = M. minors (i)
for l in L :

i f (l != 0) :
F = l i s t (l . numerator () . f a c t o r ())
for f in F:

R. append (f [0])
else :

return
return l i s t (s e t (R))

source code that was used to compute the set T of irreducible polynomials in
Listing 1.1.

2 × 2 and 3 × 3 matrices. The matrices

circ(1, α) =
(

1 α
α 1

)

and

circ(1, 1, α) =

⎛
⎝1 1 α

α 1 1
1 α 1

⎞
⎠

are MDS for all α �= 0, 1.
4 × 4 matrices. For m > 3, there exists an α ∈ F2m such that the matrix
circ(1, 1, α, α−2) is MDS. More precisely, the matrix is MDS iff α is not a root
of any of the following polynomials:

x

x + 1

x2 + x + 1

x3 + x + 1

x3 + x2 + 1

x4 + x3 + x2 + x + 1

x5 + x2 + 1

642 C. Beierle et al.

5 × 5 matrices. For m > 3, there exists an α ∈ F2m such that the matrix
circ(1, 1, α, α−2, α) is MDS. More precisely, the matrix is MDS iff α is not a root
of any of the following polynomials:

x

x + 1

x2 + x + 1

x3 + x + 1

x3 + x2 + 1

x4 + x + 1

x4 + x3 + 1

6 × 6 matrices. For m > 5, there exists an α ∈ F2m such that the matrix
circ(1, α, α−1, α−2, 1, α3) is MDS.
7 × 7 matrices. For m > 5, there exists an α ∈ F2m such that the matrix
circ(1, 1, α−2, α, α2, α, α−2) is MDS.
8 × 8 matrices. For m > 7, there exists an α ∈ F2m such that the matrix
circ(1, 1, α−1, α, α−1, α3, α4, α−3) is MDS.

4.2 Instantiating Lightweight MDS Matrices

We now combine the efficient multiplication in finite fields from Sect. 3 with our
construction of MDS matrices. That is, the presented generic MDS matrices are
instantiated with elements α with low XOR-count.

In a matrix multiplication every element is computed as the sum over mul-
tiplications. The according XOR-count was already discussed in [17,27]. For
our matrices, the total number of XOR operations needed per row is upper
bounded by

(n − 1)m + w · wt⊕(α).

Here, (n − 1)m XORs are the static part which comes from summing over the
multiplication results and w is the weight as defined above. The overhead of
w · wt⊕(α) XORs is needed for multiplying with the single elements. The static
part cannot be changed by fast multiplication. Therefore, this overhead is the
part that has to be minimized.

The cost per bit for the whole matrix is given by

n((n − 1)m + w wt⊕(α))
nm

= n − 1 +
w wt⊕(α)

m
.

One can notice that it decreases for larger field sizes.
For each of the matrices M described in Sect. 4.1, Table 1 presents choices

for α such that M(α) is MDS. Note that concrete instantiations are only given
up to the field size m = 13. The reason is that for larger m, all possible Cp with

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 643

Table 1. Optimal instantiations of the generic MDS matrices for 2 ≤ n ≤ 8. In each
cell, the first entry describes the minimal polynomial of α ∈ F

m
2 and the second entry

describes the overhead of the instantiated n×n matrix M(α). The trinomial xm+xa+1
is denoted by (a) and the pentanomial xm + xa + xb + xc + 1 is denoted by (a, b, c).

n m

2 3 4 5 6 7 8 9 10 11 12 13

2 (1), 1 (1), 1 (1), 1 (2), 1 (1), 1 (1), 1 (6,5,1), 2 (1), 1 (3), 1 (2), 1 (3), 1 (10,9,1), 2

3 (1), 1 (1), 1 (1), 1 (2), 1 (1), 1 (1), 1 (6,5,1), 2 (1), 1 (3), 1 (2), 1 (3), 1 (10,9,1), 2

4 - - (1), 3 (3), 3 (1), 3 (1), 3 (6,5,1), 6 (1), 3 (3), 3 (2), 3 (3), 3 (10,9,1), 6

5 - - (3,2,1), 8 (2), 4 (1), 4 (1), 4 (6,5,1), 8 (1), 4 (3), 4 (2), 4 (3), 4 (10,9,1), 8

6 - - - - (1), 7 (1), 7 (6,5,1), 14 (1), 7 (3), 7 (2), 7 (3), 7 (10,9,1), 14

7 - - - - (1), 8 (1), 8 (6,5,1), 16 (1), 8 (3), 8 (2), 8 (3), 8 (10,9,1), 16

8 - - - - - - (6,5,2), 26 (8), 13 (3), 13 (2), 13 (3), 13 (10,9,1), 26

p as an irreducible degree-m polynomial of weight 3 are valid choices. If no such
trinomial exists, one can choose Mα,B as in Table 8.

Table 2 compares the results presented in this section to the best construc-
tions known so far. It turned out that our construction of the 4×4 MDS matrix in
F24 is identical to the F2-linear matrix constructed in [19,21]. We stress that our
construction leads to the lightest MDS matrices known, improving the results
described in [21,27] for 8 × 8 MDS matrices in F24 and F28 respectively. This is
also the case when considering an unrolled implementation of the serial imple-
mentations in [30]. Unrolled variants of their implementations have an XOR-
count that is slightly larger than ours. Moreover, and more importantly, the
circuit depth is considerably increased due to the optimization with respect to
a serial implementation.

Table 2. Comparison of our results with the (non-involutory) F2m -linear MDS matrices
from [27, Sect. 6.2], [19,21] by overhead. a: In these constructions, the XOR-count is
measured by counting the number of additional 1’s in the corresponding matrix.

(n,m) Our construction Construction in [27]a Construction in [21]a Construction in [19]a

(4,4) 3 5 3 3

(4,8) 6 10 8

(8,8) 26 40 30

Note that our results in Table 2 are measured by the XOR-count from
Definition 1 while the results from [19,21,27] use the old XOR-count definition.
Additionally to these results, our understanding of how to choose an optimal
basis can also be used to improve existing results in the old XOR-count defini-
tion. For example, we can represent the 8 × 8 MDS matrix in F28 from [21] with
28 additional ones instead of 30 by change of basis.

644 C. Beierle et al.

5 Generalizing the MDS Property

Here, following e.g. [30], we consider a generalization to additive MDS codes in
order to improve efficiency.

There are some dimensions for which no field element with an XOR-count of
1 exists, for instance m = 8. However, especially this dimension is very important
since lots of block cipher designs are byte oriented. One would wish to have some
element α with wt⊕(α) = 1. A way of solving this problem is to not restrict to
field elements. Instead, α can be chosen to be some other matrix in the ring
R = Matm(F2). Given an n × n matrix M with elements in Quot(F2[x]), the
substitution M(α) now consists of elements in a commutative ring with unity,
which is the subring of R generated by α. In general, given a commutative
ring with unity R, one can define the determinant detR : Matn(R) → R in a
similar way than for matrices over fields. As described in [18, pp. 212–215], any
A ∈ Matn(R) is invertible if and only if detR(A) is a unit in R. We now define
the MDS property for matrices over a commutative ring.

Definition 2. Let R be a commutative ring with unity. A matrix M ∈ Matn(R)
is MDS if and only if for every 1 ≤ s ≤ n, any s×s submatrix of M is invertible.

For checking the MDS property in our case, we use a well-known fact about
block matrices.

Theorem 5 (Theorem 1 in [26]). Let K be a field and let R be a commutative
subring of Matm(K) for some integer m. For any matrix M ∈ Matd(R), it is

det(M) = det(detR(M)),

where det(M) is the determinant of M considered as M ∈ Matdm(K).

As an implication, M(α) is MDS if and only if p(α) is invertible for all p ∈ T , if
and only if det(p(α)) �= 0 for all p ∈ T .

2 × 2 and 3 × 3 matrices. Given M = circ(1, x) (resp. M = circ(1, 1, x)),
one has to make sure that both x and x + 1 are invertible for M to be MDS.
This is the case if x is substituted by the companion matrix Cxm+x+1 for m ≥ 2.
Thus, M(Cxm+x+1) is MDS and each entry has an XOR-count of 1.
4 × 4 matrices. The MDS conditions are more complex than above. So,
we only present some improvements for m ∈ {8, 13, 16}. The matrix M =
circ(1, 1, α, α−2) is MDS for

α ∈ {Cx8+x2+1, Cx13+x+1, Cx16+x+1}.

Note that a similar matrix for m = 8 was recently constructed in [19].

6 Conclusion and Open Problems

We presented a study of optimal multiplication bases with respect to the XOR-
count. When applied to MDS matrices those lead to very efficient round-based
implementations. We expect our results to be applied in other domains as well.

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 645

Our investigations leave many possibilities for future research. While we have
been able to characterize exactly which field elements can be implemented with
one XOR operation only, the general case is still open. For small fields of dimen-
sion smaller or equal to eight, we were able to compute the optimal bases with
the help of an exhaustive computer search. However, for larger dimensions, this
approach turns quickly inefficient and more insight would be needed. As a first
step, we conjecture the following statement.

Conjecture 1. If wt⊕(Mα,B) = 2, then mα is of weight smaller or equal to 5.

Note that the converse of the conjectured statement is (unlike the case of tri-
nomials) wrong. As can be seen in Table 7, there exist a pentanomial of degree
8 which cannot be implemented with two XOR operations only. Beyond that,
our intuition is that the larger the weight of the minimal polynomial, the larger
the gap between the most efficient multiplication and the efficiency of multiply-
ing by means of the companion matrix. Quantifying and demonstrating such a
statement is an interesting and challenging open problem. Another interesting
question is to get an improved understanding of how to most efficiently multi-
ply with elements in proper subfields. More specifically, as a generalization of
Corollary 3, one may ask the following question.

Question 1. Is the most efficient way to multiply with a subfield element given
by multiplying in the subfield d times, where d is the extension degree of the
field when viewed as an extension of the subfield. More precisely, given an α ∈
F

∗
2m ⊂ F

∗
2n in a proper subfield of dimension m = n

d and let Mα∈F2m ,B′ be
the multiplication matrix in F2m with an optimal XOR-count. Is Mα∈F2n ,B =⊕d

k=1 Mα∈F2m ,B′ a matrix with the lowest possible XOR-count for multiplication
with α ∈ F2n? In particular, is wt⊕(Mα∈F2n ,B) = d wt⊕(Mα∈F2m ,B′)?

Finally, for MDS matrices, it should be noted that we locally achieve the
optimal solution. What would be needed to finally settle the search for light-
weight matrices is a global optimal solution. That is for a given dimension, find
an MDS matrix that can be implemented with the minimal number of XOR
operations.

Finally, when optimizing for software, similar questions can be phrased and
investigating solutions that are valid for more than one specific platform is a
challenging research topic.

Acknowledgements. We would like to thank Thomas Peyrin for some valuable dis-
cussions on the notion of the XOR-count. We would also like to thank Gottfried Herold.
This work was partly supported by the DFG Research Training Group GRK 1817
Ubicrypt and by the BMBF Project UNIKOPS (01BY1040).

646 C. Beierle et al.

A Proofs

In the following, we present an alternative way of proving the fact that the
characteristic polynomial of some matrix M = Cxn+1 + Ei,j with wt⊕(M) = 1
is a trinomial of degree n. This is true in general, even if M does not represent
a multiplication with a field element.

Lemma 3. For M = Cxn+1 + Ei,j with wt(M) = n + 1, the characteristic
polynomial χM of M is a trinomial of degree n.

Proof. It is to compute χM = det(λIn −M) = det(λIn +Cxn+1 +Ei,j). If j = n,
then M = Cxn+xi−1+1 and χM = λn +λi−1 +1 is a trinomial of degree n. Thus,
w.l.o.g. one can assume j < n. To compute the determinant we use Laplace’s
formula by expanding along the n-th column. One obtains

χM = det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 λ
1 λ

. . .
. . .

1 λ
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ Ei−1,j

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ λ det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ
1 λ

. . .
. . .

1 λ
1 λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ Ei,j

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where E0,j := 0 and En,j := 0. Both of these remaining matrices are of dimension
(n − 1) × (n − 1). We now distinguish three cases:

(i) i < j: The additional 1 lies in the upper triangle of M . Now, χM reduces to
χM = 1 + λ det(λIn−1 + Cxn−1 + Ei,j)). In order to compute the remaining
determinant, we keep on expanding along the last column for n−1−j times
until the additional 1 is located in the rightmost column. We now obtain
the determinant of a companion matrix. Thus,

χM = 1 + λn−j det(λIj + Cxj+xi−1)

= 1 + λn−j(λj + λi−1) = λn + λn−j+i−1 + 1.

(ii) i = j: In this case, the additional 1 lies on the main diagonal of M and

χM = 1 + λ(λn−2(λ + 1)) = λn + λn−1 + 1.

(iii) i > j: The additional 1 lies in the lower triangle of M . Because of the
structure of M , it is further i > (j + 1). Defining the m × m matrix Sλ

m as

Sλ
m :=

⎛
⎜⎜⎜⎜⎜⎝

1 λ
1 λ

.
1 λ

1

⎞
⎟⎟⎟⎟⎟⎠

,

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 647

the characteristic polynomial of M reduces to χM = det(Sλ
n−1+Ei−1,j)+λn.

We expand along the last row of Sλ
n−1 + Ei−1,j for n − i times and get

χM = det(Sλ
i−1 + Ei−1,j) + λn.

Now, the additional 1 lies in the last row of the remaining (i − 1) × (i − 1)-
dimensional matrix. The goal is now to shift this 1 to the first column. This
is done by expanding j − 1 times along the first column. We now obtain
χM = det(Sλ

i−j +Ei−j,1)+λn and the additional 1 is in the lower left corner
of the matrix. As a last step, we expand along the first column for one more
time and finally get

χM = λn + det(Sλ
i−j + Ei−j,1) = λn + det(λIi−j−1 + Cxi−j−1) + 1

= λn + λi−j−1 + 1.

We now present the proof of Theorem 4 which makes use of Lemma 3. 	

Theorem 4. Let M = Cxn+1 + Ei1,j1 + Ei2,j2 such that the following relations
hold:

i1 < j1 �= n, i2 > j2 + 1, i1 ≤ j2, i2 ≤ j1, j1 − (i1 − 1) �= n, n − (j1 − i1) �= i2 − j2

The characteristic polynomial of M is a pentanomial of degree n. In particular

χM = λn + λn+i1−j1+i2−j2−2 + λn+i1−j1−1 + λi2−j2−1 + 1.

Proof. The first two conditions ensure that M has exactly one additional non-
zero entry in the upper and one in the lower triangle (not on the main diagonal).
Since j1, j2, i2 �= n, we can expand along the last column and obtain

χM = det(Sλ
n−1 + Ei1−1,j1 + Ei2−1,j2) + λ det(λIn−1 + Cxn−1 + Ei1,j1 + Ei2,j2).

For simplicity, we define A := Sλ
n−1 + Ei1−1,j1 + Ei2−2,j2 and B := λIn−1 +

Cxn−1 + Ei1,j1 + Ei2,j2 . In order to compute the latter part, we “push” the
additional non-zero entry from the upper triangle to the top-right corner by first
expanding n − 1 − j1 times along the last column and then expanding i1 − 1
times along the first row. The condition i2 ≤ j1 ensures that Ei2,j2 will not
be eliminated from expanding along the last column and the condition i1 ≤ j2
ensures that Ei2,j2 will not be eliminated from expanding along the first row.
Using Lemma 3, one obtains

λ det(B) = λλn−1−j1λi1−1 det(λIj1−i1+1 + Cxj1−i1+1+1 + Ei2−i1+1,j2−i1+1)

= λn−1−j1+i1(λj1−i1+1 + λi2−i1+1−j2+i1−1−1 + 1)

= λn + λn+i1−j1+i2−j2−2 + λn+i1−j1−1.

648 C. Beierle et al.

For det(A), we proceed similar to case (iii) in Lemma 3. We first expand
j2 − 1 times along the first column in order to get the additional non-zero value
from the lower triangle to the leftmost column. Because of the condition i1 ≤ j2,
this elimintates Ei1−1,j1 . Now, one can expand n − j2 − (i2 − j2) times along
the last row, until the remaining additional non-zero entry lies in the lower left
corner of the remaining matrix. We finally expand along the first column one
more time and obtain

det(A) = det(Sλ
n−j2 + Ei2−j2,1) = det(Sλ

i2−j2 + Ei2−j2,1) = λi2−j2−1 + 1.

The last two assumptions make sure that all of the five coefficients of det(A) +
λ det(B) are distinct such that χM is indeed a pentanomial. 	

B Minimal XOR-Counts in F2n

Table 3. Minimal XOR-counts for all elements in F
∗
24 .

Minimal polynomial mα Min wt⊕(α) Matrix

x + 1 0 I

x2 + x + 1 2 Cmα ⊕ Cmα

x4 + x + 1 1 Cmα

x4 + x3 + 1 1 Cmα

x4 + x3 + x2 + x + 1 2 Cx4+1 + E2,2 + E3,4

Table 4. Minimal XOR-counts for all elements in F
∗
25 .

Minimal polynomial mα Min wt⊕(α) Matrix

x + 1 0 I

x5 + x2 + 1 1 Cmα

x5 + x3 + 1 1 Cmα

x5 + x3 + x2 + x + 1 2 Cx5+1 + E2,4 + E4,2

x5 + x4 + x2 + x + 1 2 Cx5+1 + E2,2 + E3,5

x5 + x4 + x3 + x + 1 2 Cx5+1 + E2,3 + E3,1 + E3,3

x5 + x4 + x3 + x2 + 1 2 Cx5+1 + E2,2 + E3,4

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 649

Table 5. Minimal XOR-counts for all elements in F
∗
26 .

Minimal polynomial mα Min wt⊕(α) Matrix

x + 1 0 I

x2 + x + 1 3 Cmα ⊕ Cmα ⊕ Cmα

x3 + x + 1 2 Cmα ⊕ Cmα

x3 + x2 + 1 2 Cmα ⊕ Cmα

x6 + x + 1 1 Cmα

x6 + x3 + 1 1 Cmα

x6 + x4 + x2 + x + 1 2 (Cx4+1 ⊕ Cx2+1)(I + E1,5 + E5,4)

x6 + x4 + x3 + x + 1 2 Cx6+1 + E2,3 + E4,6

x6 + x5 + 1 1 Cmα

x6 + x5 + x2 + x + 1 2 Cx6+1 + E2,2 + E3,6

x6 + x5 + x3 + x2 + 1 2 Cx6+1 + E2,2 + E3,5

x6 + x5 + x4 + x + 1 2 Cx6+1 + E2,3 + E3,1 + E3,3

x6 + x5 + x4 + x2 + 1 2 (Cx4+1 ⊕ Cx2+1)(I + E1,5 + E6,1 + E6,5)

Table 6. Minimal XOR-counts for all elements in F
∗
27 .

Minimal polynomial mα Min wt⊕(α) Matrix

x + 1 0 I

x7 + x + 1 1 Cmα

x7 + x3 + 1 1 Cmα

x7 + x3 + x2 + x + 1 2 Cx7+1 + E2,6 + E4,2

x7 + x4 + 1 1 Cmα

x7 + x4 + x3 + x2 + 1 2 (Cx4+1 ⊕ Cx3+1)(I + E1,5 + E5,3)

x7 + x5 + x2 + x + 1 2 (Cx5+1 ⊕ Cx2+1)(I + E1,6 + E6,5)

x7 + x5 + x3 + x + 1 2 Cx7+1 + E2,3 + E4,7

x7 + x5 + x4 + x3 + 1 2 (Cx4+1 ⊕ Cx3+1)(I + E1,5 + E7,2)

x7 + x5 + x4 + x3 + x2 + x + 1 3 Cx7+1 + E2,3 + E4,6 + E4,7

x7 + x6 + 1 1 Cmα

x7 + x6 + x3 + x + 1 2 (Cx6+1 ⊕ Cx1+1)(I + E1,7 + E7,4)

x7 + x6 + x4 + x + 1 2 (Cx6+1 ⊕ Cx1+1)(I + E1,7 + E7,3)

x7 + x6 + x4 + x2 + 1 2 Cx7+1 + E2,4 + E4,1 + E4,4

x7 + x6 + x5 + x2 + 1 2 (Cx5+1 ⊕ Cx2+1)(I + E1,6 + E7,1 + E7,6)

x7 + x6 + x5 + x3 + x2 + x + 1 3 Cx7+1 + E2,2 + E2,3 + E4,7

x7 + x6 + x5 + x4 + 1 2 Cx7+1 + E2,2 + E3,4

x7 + x6 + x5 + x4 + x2 + x + 1 3 Cx7+1 + E2,2 + E3,4 + E3,7

x7 + x6 + x5 + x4 + x3 + x2 + 1 3 Cx7+1 + E2,2 + E2,3 + E4,6

650 C. Beierle et al.

Table 7. Minimal XOR-counts for all elements in F
∗
28 .

Minimal polynomial mα Min wt⊕(α) Matrix

x + 1 0 I

x2 + x + 1 4
⊕4

k=1 Cmα

x4 + x + 1 2 Cmα ⊕ Cmα

x4 + x3 + 1 2 Cmα ⊕ Cmα

x4 + x3 + x2 + x + 1 4
⊕2

k=1(Cx4+1 + E2,2 + E3,4)

x8 + x4 + x3 + x + 1 2 Cx8+1 + E2,6 + E4,2

x8 + x4 + x3 + x2 + 1 3 Cmα

x8 + x5 + x3 + x + 1 2 (Cx5+1 ⊕ Cx3+1)(I + E1,6 + E6,5)

x8 + x5 + x3 + x2 + 1 2 Cx8+1 + E2,6 + E5,2

x8 + x5 + x4 + x3 + 1 2 (Cx5+1 ⊕ Cx3+1)(I + E1,6 + E6,2)

x8 + x5 + x4 + x3 + x2 + x + 1 3 Cx8+1 + E2,5 + E2,7 + E4,2

x8 + x6 + x3 + x2 + 1 2 (Cx6+1 ⊕ Cx2+1)(I + E1,7 + E8,5)

x8 + x6 + x4 + x3 + x2 + x + 1 3 Cx8+1 + E2,3 + E4,7 + E4,8

x8 + x6 + x5 + x + 1 2 Cx8+1 + E2,4 + E4,2

x8 + x6 + x5 + x2 + 1 2 (Cx6+1 ⊕ Cx2+1)(I + E1,7 + E7,2)

x8 + x6 + x5 + x3 + 1 2 Cx8+1 + E2,3 + E4,6

x8 + x6 + x5 + x4 + 1 3 Cmα

x8 + x6 + x5 + x4 + x2 + x + 1 3 Cx8+1 + E2,3 + E2,4 + E5,8

x8 + x6 + x5 + x4 + x3 + x + 1 3 Cx8+1 + E2,3 + E2,5 + E6,8

x8 + x7 + x2 + x + 1 2 Cx8+1 + E2,2 + E3,8

x8 + x7 + x3 + x + 1 2 (Cx7+1 ⊕ Cx+1)(I + E1,8 + E8,5)

x8 + x7 + x3 + x2 + 1 2 Cx8+1 + E2,2 + E3,7

x8 + x7 + x4 + x3 + x2 + x + 1 3 Cx8+1 + E2,2 + E3,6 + E3,8

x8 + x7 + x5 + x + 1 2 (Cx7+1 ⊕ Cx+1)(I + E1,8 + E8,3)

x8 + x7 + x5 + x3 + 1 2 (Cx5+1 ⊕ Cx3+1)(I + E1,6 + E8,1 + E8,6)

x8 + x7 + x5 + x4 + 1 2 Cx8+1 + E2,2 + E3,5

x8 + x7 + x5 + x4 + x3 + x2 + 1 3 Cx8+1 + E2,2 + E3,5 + E3,7

x8 + x7 + x6 + x + 1 2 Cx8+1 + E2,3 + E3,1 + E3,3

x8 + x7 + x6 + x3 + x2 + x + 1 3 Cx8+1 + E2,2 + E2,3 + E4,8

x8 + x7 + x6 + x4 + x2 + x + 1 3 (Cx6+1 ⊕ Cx2+1)(I + E1,7 + E7,3 + E7,8)

x8 + x7 + x6 + x4 + x3 + x2 + 1 3 Cx8+1 + E2,2 + E2,3 + E4,7

x8 + x7 + x6 + x5 + x2 + x + 1 3 Cx8+1 + E2,2 + E3,4 + E3,8

x8 + x7 + x6 + x5 + x4 + x + 1 3 Cx8+1 + E2,3 + E3,1 + E3,3 + E8,3

x8 + x7 + x6 + x5 + x4 + x2 + 1 3 Cx8+1 + E2,2 + E2,5 + E6,7

x8 + x7 + x6 + x5 + x4 + x3 + 1 3 Cx8+1 + E2,2 + E2,3 + E4,6

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 651

Table 8. For each n ≤ 2048 for which no irreducible trinomial of degree n exists, this
table presents a matrix of the form Cxn+1+Ei1,j1+Ei2,j2 with irreducible characteristic
pentanomial. Such a matrix is represented as a 4-tuple (i1, j1, i2, j2). In all cases, the
characteristic polynomial is equal to λn+λn+i1−j1+i2−j2−2+λn+i1−j1−1+λi2−j2−1+1.

n n n n n n n n n n

8 (1,3,3,1) 237 (1,168,3,1) 451 (1,104,3,1) 659 (1,250,3,1) 869 (1,128,3,1) 1067 (1,960,5,1) 1274 (1,1176,3,1) 1480 (1,413,3,1) 1680 (1,645,3,1) 1867 (1,670,3,1)
13 (1,4,3,1) 240 (1,121,4,1) 452 (1,90,3,1) 661 (1,224,3,1) 872 (1,405,3,1) 1068 (1,54,3,1) 1275 (1,1265,3,1) 1483 (1,412,3,1) 1682 (1,5,3,1) 1868 (1,420,3,1)
16 (1,9,4,1) 243 (1,38,3,1) 453 (1,302,3,1) 664 (1,149,3,1) 874 (1,83,3,1) 1069 (1,338,3,1) 1277 (1,230,3,1) 1484 (1,41,3,1) 1683 (1,1278,3,1) 1869 (1,384,3,1)
19 (1,8,3,1) 245 (1,38,3,1) 454 (1,314,3,1) 666 (1,117,3,1) 875 (1,386,3,1) 1070 (1,228,3,1) 1280 (1,81,3,1) 1485 (1,1086,3,1) 1684 (1,730,3,1) 1872 (1,183,3,1)
24 (1,5,3,1) 246 (1,71,3,1) 456 (1,129,3,1) 667 (1,38,4,1) 877 (1,248,5,1) 1072 (1,789,4,1) 1283 (1,344,3,1) 1488 (1,1017,3,1) 1685 (1,816,3,1) 1874 (1,35,4,1)
26 (1,11,3,1) 248 (1,29,3,1) 459 (1,270,3,1) 669 (1,48,3,1) 878 (1,3,3,1) 1073 (1,362,3,1) 1285 (1,1174,3,1) 1491 (1,666,3,1) 1686 (1,72,3,1) 1875 (1,1386,3,1)
27 (1,3,3,1) 251 (1,24,3,1) 461 (1,170,3,1) 672 (1,567,3,1) 880 (1,11,3,1) 1074 (1,801,3,1) 1288 (1,379,3,1) 1493 (1,1002,3,1) 1688 (1,255,3,1) 1876 (1,1204,3,1)
32 (1,3,3,1) 254 (1,19,3,1) 464 (1,55,3,1) 674 (1,307,4,1) 883 (1,589,3,1) 1075 (1,142,3,1) 1290 (1,149,3,1) 1494 (1,620,3,1) 1690 (1,733,3,1) 1877 (1,628,3,1)
37 (1,16,4,1) 256 (1,157,3,1) 466 (1,451,3,1) 675 (1,225,3,1) 885 (1,512,3,1) 1076 (1,49,3,1) 1291 (1,302,3,1) 1496 (1,21,3,1) 1691 (1,26,3,1) 1880 (1,207,3,1)
38 (1,4,3,1) 259 (1,20,3,1) 467 (1,72,3,1) 677 (1,647,3,1) 886 (1,10,3,1) 1077 (1,706,4,1) 1292 (1,473,3,1) 1498 (1,223,3,1) 1693 (1,394,3,1) 1882 (1,399,4,1)
40 (1,14,3,1) 261 (1,12,3,1) 469 (1,188,3,1) 678 (1,312,3,1) 888 (1,501,3,1) 1080 (1,75,3,1) 1293 (1,212,3,1) 1499 (1,3,3,1) 1696 (1,19,3,1) 1883 (1,680,3,1)
43 (1,8,3,1) 262 (1,13,3,1) 472 (1,385,3,1) 680 (1,21,3,1) 891 (1,12,3,1) 1083 (1,92,3,1) 1296 (1,257,3,1) 1501 (1,1222,3,1) 1699 (1,404,3,1) 1885 (1,352,3,1)
45 (1,6,3,1) 264 (1,63,3,1) 475 (1,94,3,1) 681 (1,51,3,1) 893 (1,827,4,1) 1088 (1,3,3,1) 1299 (1,144,3,1) 1502 (1,5,3,1) 1701 (1,540,3,1) 1888 (1,905,3,1)
48 (1,21,3,1) 267 (1,182,3,1) 477 (1,286,4,1) 683 (1,104,3,1) 896 (1,87,3,1) 1091 (1,1026,3,1) 1301 (1,160,3,1) 1504 (1,559,3,1) 1702 (1,262,3,1) 1891 (1,280,3,1)
50 (1,7,3,1) 269 (1,64,3,1) 480 (1,273,5,1) 685 (1,172,3,1) 899 (1,64,3,1) 1093 (1,310,3,1) 1303 (1,380,3,1) 1506 (1,215,3,1) 1704 (1,1617,4,1) 1892 (1,440,3,1)
51 (1,12,3,1) 272 (1,165,3,1) 482 (1,115,3,1) 688 (1,149,3,1) 901 (1,504,4,1) 1096 (1,947,3,1) 1304 (1,391,3,1) 1507 (1,200,3,1) 1706 (1,843,3,1) 1893 (1,344,3,1)
53 (1,4,3,1) 275 (1,20,3,1) 483 (1,26,3,1) 691 (1,606,7,1) 904 (1,241,5,1) 1099 (1,644,3,1) 1307 (1,1200,3,1) 1509 (1,128,5,1) 1707 (1,150,3,1) 1894 (1,391,3,1)
56 (1,13,3,1) 277 (1,208,3,1) 485 (1,158,3,1) 693 (1,278,3,1) 907 (1,142,3,1) 1101 (1,474,3,1) 1309 (1,26,3,1) 1512 (1,381,3,1) 1709 (1,688,3,1) 1896 (1,1053,4,1)
59 (1,14,3,1) 280 (1,73,3,1) 488 (1,359,3,1) 696 (1,77,3,1) 909 (1,480,3,1) 1104 (1,515,3,1) 1312 (1,901,3,1) 1515 (1,14,3,1) 1712 (1,95,3,1) 1897 (1,80,3,1)
61 (1,4,3,1) 283 (1,154,3,1) 491 (1,477,3,1) 699 (1,360,3,1) 910 (1,8,3,1) 1107 (1,936,3,1) 1315 (1,508,3,1) 1517 (1,698,3,1) 1714 (1,1021,3,1) 1898 (1,241,3,1)
64 (1,61,3,1) 285 (1,158,3,1) 493 (1,20,3,1) 701 (1,238,3,1) 912 (1,627,3,1) 1109 (1,278,3,1) 1316 (1,204,3,1) 1520 (1,131,3,1) 1715 (1,250,3,1) 1899 (1,986,3,1)
67 (1,58,3,1) 288 (1,206,3,1) 496 (1,149,3,1) 703 (1,19,3,1) 914 (1,81,3,1) 1112 (1,35,3,1) 1317 (1,820,4,1) 1522 (1,985,3,1) 1717 (1,142,3,1) 1901 (1,230,3,1)
69 (1,42,4,1) 290 (1,96,3,1) 499 (1,40,3,1) 704 (1,195,5,1) 915 (1,320,3,1) 1114 (1,143,3,1) 1318 (1,109,3,1) 1523 (1,906,3,1) 1718 (1,242,3,1) 1904 (1,535,3,1)
70 (1,19,3,1) 291 (1,200,3,1) 501 (1,144,4,1) 706 (1,503,3,1) 917 (1,572,3,1) 1115 (1,328,3,1) 1320 (1,167,3,1) 1525 (1,602,3,1) 1720 (1,133,3,1) 1907 (1,780,3,1)
72 (1,15,5,1) 293 (1,16,3,1) 502 (1,245,3,1) 707 (1,376,3,1) 920 (1,535,3,1) 1117 (1,220,3,1) 1322 (1,405,3,1) 1528 (1,79,3,1) 1723 (1,322,3,1) 1909 (1,46,3,1)
75 (1,36,3,1) 296 (1,109,3,1) 504 (1,141,3,1) 709 (1,230,3,1) 922 (1,299,4,1) 1118 (1,168,3,1) 1323 (1,272,3,1) 1531 (1,910,3,1) 1725 (1,90,3,1) 1910 (1,266,3,1)
77 (1,47,3,1) 298 (1,55,3,1) 507 (1,429,6,1) 710 (1,17,3,1) 923 (1,52,4,1) 1120 (1,1043,3,1) 1325 (1,22,3,1) 1532 (1,66,3,1) 1727 (1,207,3,1) 1912 (1,157,3,1)
78 (1,23,3,1) 299 (1,116,3,1) 509 (1,10,3,1) 712 (1,455,3,1) 925 (1,859,3,1) 1123 (1,410,3,1) 1328 (1,917,3,1) 1533 (1,1160,3,1) 1728 (1,1227,3,1) 1914 (1,639,4,1)
80 (1,5,3,1) 301 (1,154,3,1) 512 (1,425,3,1) 715 (1,110,3,1) 928 (1,537,4,1) 1124 (1,424,3,1) 1330 (1,187,3,1) 1536 (1,39,3,1) 1730 (1,443,3,1) 1915 (1,40,3,1)
82 (1,47,5,1) 304 (1,109,3,1) 515 (1,236,3,1) 717 (1,448,4,1) 929 (1,51,3,1) 1125 (1,254,3,1) 1331 (1,978,3,1) 1538 (1,509,3,1) 1731 (1,338,3,1) 1916 (1,663,3,1)
83 (1,4,3,1) 306 (1,81,3,1) 517 (1,172,3,1) 720 (1,369,4,1) 931 (1,544,3,1) 1128 (1,21,3,1) 1333 (1,530,3,1) 1539 (1,30,3,1) 1732 (1,1250,3,1) 1917 (1,1026,3,1)
85 (1,16,3,1) 307 (1,192,4,1) 520 (1,331,3,1) 723 (1,414,3,1) 933 (1,264,3,1) 1131 (1,552,3,1) 1336 (1,97,3,1) 1541 (1,698,3,1) 1733 (1,128,3,1) 1920 (1,39,3,1)
88 (1,11,3,1) 309 (1,155,3,1) 523 (1,140,3,1) 725 (1,68,3,1) 934 (1,424,3,1) 1132 (1,52,3,1) 1339 (1,820,3,1) 1544 (1,411,3,1) 1736 (1,493,3,1) 1922 (1,1497,3,1)
91 (1,8,3,1) 311 (1,25,3,1) 525 (1,328,4,1) 728 (1,393,3,1) 936 (1,23,3,1) 1133 (1,238,3,1) 1341 (1,732,3,1) 1546 (1,351,4,1) 1739 (1,420,3,1) 1923 (1,326,3,1)
96 (1,9,3,1) 312 (1,7,5,1) 528 (1,35,3,1) 731 (1,80,3,1) 939 (1,288,3,1) 1136 (1,957,3,1) 1342 (1,610,3,1) 1547 (1,62,3,1) 1741 (1,476,3,1) 1925 (1,210,3,1)
99 (1,78,3,1) 315 (1,50,3,1) 530 (1,17,3,1) 733 (1,310,3,1) 940 (1,8,3,1) 1139 (1,246,3,1) 1344 (1,185,3,1) 1549 (1,1220,3,1) 1744 (1,1183,3,1) 1928 (1,83,3,1)

101 (1,20,3,1) 317 (1,90,3,1) 531 (1,44,3,1) 734 (1,56,3,1) 941 (1,382,3,1) 1141 (1,196,3,1) 1346 (1,57,3,1) 1552 (1,325,3,1) 1747 (1,1402,3,1) 1930 (1,569,3,1)
104 (1,94,3,1) 320 (1,53,3,1) 533 (1,56,3,1) 736 (1,271,5,1) 944 (1,191,3,1) 1143 (1,191,3,1) 1347 (1,18,3,1) 1555 (1,404,3,1) 1749 (1,56,3,1) 1931 (1,3,3,1)
107 (1,44,4,1) 323 (1,120,3,1) 535 (1,104,3,1) 739 (1,286,3,1) 946 (1,469,3,1) 1144 (1,335,3,1) 1349 (1,138,5,1) 1557 (1,822,3,1) 1752 (1,1585,4,1) 1933 (1,940,3,1)
109 (1,20,3,1) 325 (1,244,3,1) 536 (1,117,3,1) 741 (1,18,3,1) 947 (1,16,3,1) 1147 (1,598,3,1) 1352 (1,595,3,1) 1560 (1,1027,5,1) 1754 (1,103,3,1) 1936 (1,1657,3,1)
112 (1,91,3,1) 326 (1,27,3,1) 539 (1,3,3,1) 744 (1,635,3,1) 949 (1,550,4,1) 1149 (1,902,5,1) 1355 (1,216,3,1) 1563 (1,198,3,1) 1755 (1,308,3,1) 1939 (1,110,3,1)
114 (1,33,3,1) 328 (1,237,4,1) 541 (1,364,5,1) 747 (1,548,3,1) 950 (1,154,3,1) 1150 (1,130,3,1) 1357 (1,302,5,1) 1565 (1,66,3,1) 1757 (1,988,3,1) 1941 (1,1262,3,1)
115 (1,32,3,1) 331 (1,8,3,1) 542 (1,50,3,1) 749 (1,316,3,1) 952 (1,573,4,1) 1152 (1,11,3,1) 1360 (1,485,3,1) 1568 (1,231,3,1) 1758 (1,213,3,1) 1942 (1,76,3,1)
116 (1,20,3,1) 334 (1,64,3,1) 544 (1,65,5,1) 752 (1,117,3,1) 955 (1,80,3,1) 1155 (1,8,3,1) 1363 (1,1018,3,1) 1571 (1,430,3,1) 1760 (1,273,3,1) 1944 (1,429,3,1)
117 (1,99,4,1) 335 (1,20,3,1) 546 (1,213,3,1) 755 (1,230,3,1) 957 (1,372,3,1) 1157 (1,328,3,1) 1365 (1,488,3,1) 1573 (1,112,3,1) 1761 (1,186,3,1) 1947 (1,210,3,1)
120 (1,15,3,1) 336 (1,35,3,1) 547 (1,302,4,1) 757 (1,751,3,1) 958 (1,80,3,1) 1160 (1,87,3,1) 1368 (1,533,3,1) 1574 (1,284,3,1) 1762 (1,277,3,1) 1949 (1,686,3,1)
122 (1,60,3,1) 338 (1,15,3,1) 548 (1,18,3,1) 760 (1,187,3,1) 960 (1,765,3,1) 1162 (1,451,3,1) 1370 (1,35,3,1) 1576 (1,131,3,1) 1763 (1,266,3,1) 1952 (1,205,3,1)
125 (1,18,3,1) 339 (1,20,3,1) 549 (1,304,4,1) 763 (1,334,3,1) 962 (1,213,3,1) 1163 (1,162,3,1) 1371 (1,528,3,1) 1579 (1,706,3,1) 1765 (1,458,3,1) 1954 (1,71,4,1)
128 (1,61,3,1) 341 (1,278,3,1) 552 (1,195,3,1) 764 (1,40,3,1) 963 (1,38,3,1) 1165 (1,32,3,1) 1373 (1,154,3,1) 1581 (1,1446,3,1) 1766 (1,453,3,1) 1955 (1,1256,4,1)
131 (1,36,3,1) 344 (1,85,3,1) 554 (1,191,3,1) 765 (1,216,3,1) 965 (1,88,3,1) 1168 (1,629,3,1) 1376 (1,151,3,1) 1584 (1,621,3,1) 1768 (1,157,3,1) 1957 (1,1486,3,1)
133 (1,28,3,1) 347 (1,10,3,1) 555 (1,10,4,1) 766 (1,161,3,1) 968 (1,319,3,1) 1171 (1,466,3,1) 1378 (1,611,4,1) 1587 (1,250,7,1) 1771 (1,518,3,1) 1960 (1,31,3,1)
136 (1,11,3,1) 349 (1,58,3,1) 557 (1,318,3,1) 768 (1,117,3,1) 970 (1,415,3,1) 1172 (1,288,3,1) 1379 (1,306,3,1) 1589 (1,128,7,1) 1773 (1,1352,3,1) 1963 (1,1504,3,1)
138 (1,53,3,1) 352 (1,125,3,1) 560 (1,125,3,1) 770 (1,547,3,1) 971 (1,346,3,1) 1173 (1,108,3,1) 1381 (1,1276,3,1) 1592 (1,1135,3,1) 1776 (1,669,3,1) 1965 (1,732,3,1)
139 (1,8,5,1) 355 (1,164,3,1) 562 (1,25,3,1) 771 (1,138,3,1) 973 (1,56,3,1) 1176 (1,57,3,1) 1382 (1,270,3,1) 1594 (1,821,3,1) 1779 (1,1046,3,1) 1968 (1,9,3,1)
141 (1,47,3,1) 356 (1,10,3,1) 563 (1,60,3,1) 773 (1,138,3,1) 974 (1,30,3,1) 1179 (1,56,3,1) 1384 (1,221,3,1) 1595 (1,192,3,1) 1781 (1,36,3,1) 1970 (1,649,3,1)
143 (1,19,3,1) 357 (1,266,3,1) 565 (1,178,3,1) 776 (1,569,3,1) 976 (1,715,3,1) 1181 (1,650,4,1) 1387 (1,140,3,1) 1597 (1,1150,3,1) 1784 (1,1481,3,1) 1971 (1,6,3,1)
144 (1,39,3,1) 360 (1,5,3,1) 568 (1,373,3,1) 779 (1,338,3,1) 978 (1,311,3,1) 1184 (1,701,3,1) 1389 (1,204,3,1) 1598 (1,289,3,1) 1786 (1,1429,3,1) 1972 (1,820,3,1)
149 (1,40,3,1) 361 (1,25,3,1) 571 (1,10,4,1) 781 (1,278,3,1) 980 (1,369,3,1) 1187 (1,530,3,1) 1392 (1,1283,3,1) 1600 (1,529,3,1) 1787 (1,112,4,1) 1973 (1,1918,3,1)
152 (1,3,3,1) 363 (1,258,3,1) 572 (1,35,3,1) 784 (1,169,3,1) 981 (1,42,3,1) 1189 (1,136,3,1) 1394 (1,371,3,1) 1603 (1,134,3,1) 1789 (1,578,3,1) 1976 (1,361,3,1)
157 (1,50,3,1) 365 (1,294,3,1) 573 (1,6,3,1) 786 (1,387,3,1) 984 (1,917,5,1) 1192 (1,397,3,1) 1395 (1,380,3,1) 1605 (1,1328,5,1) 1792 (1,1001,4,1) 1978 (1,289,3,1)
158 (1,12,3,1) 368 (1,25,3,1) 576 (1,41,3,1) 787 (1,52,3,1) 987 (1,308,3,1) 1194 (1,153,3,1) 1397 (1,128,3,1) 1608 (1,273,3,1) 1794 (1,27,4,1) 1979 (1,1190,4,1)
160 (1,91,3,1) 371 (1,20,3,1) 578 (1,507,3,1) 788 (1,26,3,1) 989 (1,138,3,1) 1195 (1,962,3,1) 1400 (1,489,3,1) 1610 (1,561,3,1) 1795 (1,130,3,1) 1981 (1,1930,3,1)
163 (1,104,3,1) 373 (1,34,3,1) 579 (1,114,3,1) 789 (1,294,3,1) 992 (1,33,3,1) 1197 (1,12,3,1) 1403 (1,3,3,1) 1611 (1,506,3,1) 1796 (1,48,3,1) 1982 (1,260,3,1)
164 (1,18,3,1) 374 (1,38,3,1) 581 (1,318,3,1) 790 (1,269,3,1) 995 (1,558,5,1) 1200 (1,179,3,1) 1405 (1,658,3,1) 1613 (1,892,4,1) 1797 (1,8,3,1) 1984 (1,739,3,1)
165 (1,135,3,1) 376 (1,113,3,1) 584 (1,63,3,1) 792 (1,131,3,1) 997 (1,76,3,1) 1203 (1,788,3,1) 1406 (1,97,3,1) 1614 (1,138,3,1) 1800 (1,819,3,1) 1987 (1,1196,3,1)
168 (1,21,3,1) 379 (1,8,3,1) 586 (1,469,3,1) 795 (1,450,3,1) 1000 (1,101,3,1) 1205 (1,590,5,1) 1408 (1,817,3,1) 1616 (1,801,3,1) 1803 (1,1158,3,1) 1989 (1,232,5,1)
171 (1,60,3,1) 381 (1,198,4,1) 587 (1,256,3,1) 796 (1,26,3,1) 1002 (1,225,3,1) 1208 (1,319,3,1) 1411 (1,634,3,1) 1619 (1,578,3,1) 1805 (1,1312,3,1) 1992 (1,177,3,1)
173 (1,32,3,1) 384 (1,195,3,1) 589 (1,70,3,1) 797 (1,336,3,1) 1003 (1,716,3,1) 1211 (1,686,3,1) 1413 (1,880,4,1) 1621 (1,852,4,1) 1808 (1,545,3,1) 1995 (1,710,3,1)
176 (1,19,3,1) 387 (1,102,3,1) 591 (1,95,3,1) 800 (1,523,3,1) 1004 (1,106,3,1) 1213 (1,664,3,1) 1416 (1,461,3,1) 1622 (1,158,3,1) 1811 (1,618,3,1) 1997 (1,366,3,1)
179 (1,10,3,1) 389 (1,38,3,1) 592 (1,241,3,1) 802 (1,47,4,1) 1005 (1,692,3,1) 1216 (1,709,3,1) 1418 (1,149,3,1) 1624 (1,1375,3,1) 1812 (1,702,3,1) 1998 (1,155,3,1)
181 (1,175,3,1) 392 (1,47,3,1) 595 (1,364,3,1) 803 (1,60,3,1) 1006 (1,40,3,1) 1219 (1,676,4,1) 1419 (1,324,3,1) 1626 (1,573,3,1) 1813 (1,14,3,1) 2000 (1,333,3,1)
184 (1,83,3,1) 395 (1,126,3,1) 597 (1,540,3,1) 805 (1,248,3,1) 1008 (1,521,3,1) 1221 (1,200,3,1) 1421 (1,496,3,1) 1627 (1,130,3,1) 1816 (1,83,3,1) 2002 (1,5,3,1)
187 (1,22,3,1) 397 (1,208,3,1) 598 (1,248,3,1) 808 (1,379,3,1) 1011 (1,330,3,1) 1222 (1,181,3,1) 1424 (1,323,3,1) 1629 (1,500,3,1) 1819 (1,926,3,1) 2003 (1,710,3,1)
188 (1,21,3,1) 398 (1,104,3,1) 600 (1,87,3,1) 811 (1,394,3,1) 1013 (1,296,3,1) 1224 (1,545,3,1) 1427 (1,1110,3,1) 1632 (1,791,3,1) 1821 (1,668,3,1) 2005 (1,1074,4,1)
189 (1,63,3,1) 400 (1,283,3,1) 603 (1,453,3,1) 813 (1,98,3,1) 1016 (1,131,3,1) 1227 (1,212,3,1) 1429 (1,400,3,1) 1635 (1,545,3,1) 1822 (1,856,3,1) 2008 (1,445,3,1)
190 (1,16,3,1) 403 (1,124,3,1) 605 (1,248,3,1) 816 (1,285,3,1) 1017 (1,261,3,1) 1229 (1,40,3,1) 1432 (1,1241,3,1) 1637 (1,90,3,1) 1824 (1,1125,4,1) 2011 (1,922,3,1)
192 (1,155,3,1) 405 (1,68,5,1) 608 (1,73,3,1) 819 (1,496,4,1) 1018 (1,937,3,1) 1232 (1,477,3,1) 1435 (1,484,3,1) 1640 (1,401,3,1) 1826 (1,335,3,1) 2012 (1,40,3,1)
195 (1,158,3,1) 408 (1,27,3,1) 611 (1,334,3,1) 821 (1,424,3,1) 1019 (1,3,3,1) 1235 (1,50,3,1) 1437 (1,380,3,1) 1643 (1,3,3,1) 1827 (1,1308,3,1) 2013 (1,108,3,1)
197 (1,126,3,1) 410 (1,117,3,1) 613 (1,368,4,1) 824 (1,233,3,1) 1021 (1,832,3,1) 1237 (1,380,3,1) 1439 (1,300,3,1) 1644 (1,221,3,1) 1829 (1,760,3,1) 2014 (1,170,3,1)
200 (1,53,3,1) 411 (1,108,7,1) 616 (1,597,4,1) 827 (1,680,3,1) 1024 (1,643,3,1) 1240 (1,826,3,1) 1440 (1,901,4,1) 1645 (1,176,3,1) 1832 (1,295,3,1) 2016 (1,645,3,1)
203 (1,3,3,1) 413 (1,36,3,1) 619 (1,118,3,1) 829 (1,560,3,1) 1027 (1,830,3,1) 1243 (1,34,3,1) 1443 (1,348,3,1) 1646 (1,68,3,1) 1834 (1,1820,3,1) 2018 (1,173,3,1)
205 (1,176,3,1) 416 (1,87,3,1) 621 (1,344,3,1) 830 (1,60,3,1) 1032 (1,541,4,1) 1244 (1,46,3,1) 1445 (1,68,3,1) 1648 (1,1249,3,1) 1835 (1,1352,3,1) 2019 (1,1506,3,1)
206 (1,7,3,1) 419 (1,40,5,1) 624 (1,609,3,1) 832 (1,685,3,1) 1035 (1,208,5,1) 1245 (1,360,3,1) 1448 (1,93,3,1) 1651 (1,490,3,1) 1837 (1,1162,4,1) 2021 (1,102,3,1)
208 (1,197,4,1) 421 (1,20,7,1) 627 (1,377,3,1) 835 (1,92,3,1) 1037 (1,758,3,1) 1248 (1,327,3,1) 1450 (1,1183,3,1) 1653 (1,834,3,1) 1840 (1,409,3,1) 2024 (1,1949,4,1)
211 (1,112,3,1) 424 (1,359,3,1) 629 (1,268,3,1) 836 (1,8,3,1) 1038 (1,708,3,1) 1250 (1,313,3,1) 1451 (1,22,3,1) 1654 (1,1000,3,1) 1842 (1,303,3,1) 2027 (1,1980,3,1)
213 (1,24,3,1) 427 (1,22,3,1) 630 (1,80,3,1) 837 (1,542,3,1) 1040 (1,311,3,1) 1251 (1,38,3,1) 1453 (1,146,3,1) 1656 (1,179,3,1) 1843 (1,904,3,1) 2029 (1,4,3,1)
216 (1,11,3,1) 429 (1,18,3,1) 632 (1,117,3,1) 840 (1,173,3,1) 1043 (1,304,3,1) 1253 (1,318,3,1) 1456 (1,29,3,1) 1658 (1,801,3,1) 1845 (1,786,3,1) 2030 (1,337,3,1)
219 (1,201,3,1) 430 (1,49,3,1) 635 (1,60,3,1) 843 (1,200,3,1) 1045 (1,298,3,1) 1254 (1,56,3,1) 1459 (1,496,3,1) 1659 (1,446,3,1) 1848 (1,1077,3,1) 2032 (1,1479,5,1)
221 (1,80,3,1) 432 (1,117,5,1) 637 (1,38,6,1) 848 (1,243,3,1) 1046 (1,38,3,1) 1256 (1,605,3,1) 1461 (1,122,3,1) 1661 (1,156,3,1) 1850 (1,1015,4,1) 2035 (1,442,3,1)
222 (1,71,3,1) 434 (1,119,3,1) 638 (1,3,3,1) 851 (1,58,3,1) 1048 (1,539,3,1) 1258 (1,689,3,1) 1462 (1,913,3,1) 1662 (1,285,3,1) 1851 (1,720,3,1) 2037 (1,210,3,1)
224 (1,83,3,1) 435 (1,122,3,1) 640 (1,35,3,1) 853 (1,142,3,1) 1051 (1,12,4,1) 1259 (1,168,3,1) 1464 (1,1155,3,1) 1664 (1,135,3,1) 1852 (1,46,3,1) 2038 (1,1498,3,1)
226 (1,169,3,1) 437 (1,318,3,1) 643 (1,412,4,1) 854 (1,138,3,1) 1053 (1,1044,3,1) 1261 (1,640,3,1) 1467 (1,782,3,1) 1667 (1,1146,3,1) 1853 (1,906,3,1) 2040 (1,77,3,1)
227 (1,182,3,1) 440 (1,297,3,1) 644 (1,236,3,1) 856 (1,691,3,1) 1056 (1,891,3,1) 1262 (1,285,3,1) 1469 (1,164,4,1) 1669 (1,106,3,1) 1856 (1,861,3,1) 2042 (1,417,3,1)
229 (1,80,3,1) 442 (1,187,4,1) 645 (1,50,3,1) 859 (1,178,3,1) 1059 (1,260,3,1) 1264 (1,283,3,1) 1472 (1,83,3,1) 1670 (1,472,3,1) 1858 (1,1099,3,1) 2043 (1,398,3,1)
230 (1,3,3,1) 443 (1,48,3,1) 648 (1,626,3,1) 863 (1,92,3,1) 1061 (1,268,3,1) 1267 (1,800,4,1) 1474 (1,829,3,1) 1672 (1,881,4,1) 1859 (1,4,3,1) 2045 (1,1554,3,1)
232 (1,133,3,1) 445 (1,88,3,1) 653 (1,478,3,1) 864 (1,39,3,1) 1064 (1,351,3,1) 1269 (1,907,4,1) 1475 (1,68,3,1) 1675 (1,970,4,1) 1861 (1,398,3,1) 2046 (1,240,3,1)
235 (1,26,3,1) 448 (1,119,3,1) 656 (1,295,3,1) 867 (1,48,3,1) 1066 (1,401,3,1) 1272 (1,383,3,1) 1477 (1,140,3,1) 1677 (1,852,3,1) 1864 (1,61,3,1) 2048 (1,83,3,1)

652 C. Beierle et al.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg
(2014)

2. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using
shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol.
8540, pp. 3–17. Springer, Heidelberg (2015)

3. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new
cryptographic hash function. Des. Codes Crypt. 56(2–3), 141–162 (2010)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The Keccak reference. Submission
to NIST (Round 3) (2011)

5. Biham, E., Anderson, R., Knudsen, L.R.: Serpent: a new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, p. 222. Springer, Heidelberg (1998)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

7. Daemen, J.: Cipher and hash function design strategies based on linear and dif-
ferential cryptanalysis. Ph.D. thesis, Doctoral Dissertation, KU Leuven, March
1995

8. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

9. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998). http://csrc.nist.gov/
archive/aes/rijndael/Rijndael-ammended.pdf

10. Daemen, J., Rijmen, V.: Correlation analysis in GF (2n). In: Advanced Linear
Cryptanalysis of Block and Stream Ciphers. Cryptology and Information Security,
pp. 115–131 (2011)

11. Dummit, D.S., Foote, R.M.: Abstract Algebra. Wiley, Hoboken (2004)
12. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-designs: bitslice encryption

for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

13. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

14. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

15. Gupta, K.C., Ray, I.G.: Cryptographically significant MDS matrices based on cir-
culant and circulant-like matrices for lightweight applications. Crypt. Commun.
7(2), 257–287 (2015)

16. Jean, J., Peyrin, T., Sim, S.M.: Minimal implementations of linear and non-linear
lightweight building blocks. Personal communication (2015)

17. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer,
Heidelberg (2014)

18. Knapp, A.W.: Basic Algebra. Birkhäuser, Boston (2006)
19. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS

matrices. In: Fast Software Encryption (FSE), LNCS. Springer, Heidelberg (2016,
to appear)

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

Lightweight Multiplication in GF (2n) with Applications to MDS Matrices 653

20. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press, Cambridge (1994)

21. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Fast Soft-
ware Encryption (FSE). LNCS. Springer, Heidelberg (2016, to appear)

22. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Publishing Company, Amsterdam (1977)

23. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

24. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive diffusion layers
for block ciphers and hash functions. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 385–401. Springer, Heidelberg (2012)

25. Sarkar, S., Sim, S.M.: A deeper understanding of the XOR count distribution
in the context of lightweight cryptography. In: Pointcheval, D., et al. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 167–182. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-31517-1 9

26. Silvester, J.R.: Determinants of block matrices. Math. Gaz. 84(501), 460–467
(2000)

27. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015)

28. Swan, R.G.: Factorization of polynomials over finite fields. Pacific J. Math. 12(3),
1099–1106 (1962)

29. Wardlaw, W.P.: Matrix representation of finite fields. Math. Mag. 67(4), 289–293
(1994)

30. Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (lightweight) block ciphers
and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707,
pp. 355–371. Springer, Heidelberg (2013)

31. Xu, H., Zheng, Y., Lai, X.: Construction of perfect diffusion layers from linear
feedback shift registers. IET Inf. Secur. 9(2), 127–135 (2015)

http://dx.doi.org/10.1007/978-3-319-31517-1_9

Another View of the Division Property

Christina Boura1(B) and Anne Canteaut2

1 University of Versailles, Versailles, France
Christina.Boura@uvsq.fr

2 Inria, Paris, France
Anne.Canteaut@inria.fr

Abstract. A new distinguishing property against block ciphers, called
the division property, was introduced by Todo at Eurocrypt 2015. Our
work gives a new approach to it by the introduction of the notion of parity
sets. First of all, this new notion permits us to formulate and character-
ize in a simple way the division property of any order. At a second step,
we are interested in the way of building distinguishers on a block cipher
by considering some further properties of parity sets, generalising the
division property. We detail in particular this approach for substitution-
permutation networks. To illustrate our method, we provide low-data dis-
tinguishers against reduced-round Present. These distinguishers reach
a much higher number of rounds than generic distinguishers based on
the division property and demonstrate, amongst others, how the distin-
guishers can be improved when the properties of the linear and the Sbox
layers are taken into account. At last, this work provides an analysis of
the resistance of Sboxes against this type of attacks, demonstrates links
with the algebraic normal form of an Sbox as well as its inverse Sbox
and exhibit design criteria for Sboxes to resist such attacks.

Keywords: Division property · Integral attacks · Sboxes · Present

1 Introduction

A new distinguishing property against block ciphers, called the division property,
was recently introduced by Todo [25]. This property, that can be seen as a gen-
eralization of integral [9,16] and higher-order differential [15,17] distinguishers,
was used to present new generic distinguishers against both the SPN and the
Feistel constructions. Later, this attack was used by the same author to present
the first cryptanalysis of the full block cipher Misty [24].

If u = (u1, . . . , un) is a vector of Fn
2 , we denote by xu the coordinate product

x = (x1, . . . , xn) �→
∏n

i=1 xui
i . The division property, as introduced by Todo [25],

is interested in the sum of this quantity taken over all vectors of X. More
precisely, we say that a set X ⊆ Fn

2 has the division property Dn
k , for some

Partially supported by the French Agence Nationale de la Recherche through the
BRUTUS project under Contract ANR-14-CE28-0015.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 654–682, 2016.
DOI: 10.1007/978-3-662-53018-4 24

Another View of the Division Property 655

1 ≤ k ≤ n, if the sum over all vectors x in X of the product xu equals 0, for all
vectors u that have a Hamming weight strictly less than k, i.e.

⊕
x∈X

xu = 0 for all u ∈ Fn
2 such that wt(u) < k.

The division property then generalizes integral attacks in the sense that Dn
2

means that the set X is balanced, while Dn
n means that it is saturated. But the

novelty is that it introduces intermediate properties, Dn
k for 3 ≤ k ≤ n−1, which

do not appear in classical integral attacks. Even if these intermediate properties
do not have a simple interpretation like Dn

2 and Dn
n, they allow to easily propa-

gate the property through the successive rounds of a cipher by capturing some
information resulting from the algebraic degree of the round function. In a nut-
shell, the distinguishers described by Todo in [24,25] are classical higher-order
differential distinguishers, but they are exhibited by exploiting the classical prop-
erties used in integral attacks together with some algebraic properties related to
the degree of several iterations of a nonlinear function like in [6,8].

Our Contribution. This work aims at providing new insights into the division
property, presenting a new approach to it. This new approach enables us to
provide a simpler formulation and interpretation of the division property of any
order. It also improves the strength of the distinguishers that exploit this type
of properties. For this, we introduce a new notion, that we call the parity set.
The parity set of a set X ⊆ Fn

2 is nothing more than the set of all exponents
u ∈ Fn

2 such that
⊕

x∈X xu = 1. The main advantage of this new notion is
that it completely characterises a set X in the sense that there is a one-to-one
correspondence between sets and their parity sets. It also provides a very simple
formulation of the division property. In particular, we show that the division
property of any order can be expressed in an elegant way by using the theory
of Reed-Muller codes. One of the first questions we investigate in this work is
what does it mean for a set X to have the division property Dn

k for some special
values of k. As previously explained, this question was treated for k ∈ {1, 2, n}
in previous works [14,22,25]. However, our approach, and especially the link
with the Reed-Muller codes, permits us to recover in a much simpler way these
previous results and to characterize the property for some other values of k.

We investigate next the question of how to build distinguishers for keyed
permutations by means of parity sets. For this, we start by analyzing the dis-
tinguishers built by Todo in [25] and formulate them in terms of parity sets.
These distinguishers were of a generic nature as they only exploited the clas-
sical integral properties and the propagation of the algebraic degree through
the successive non-linear layers. It is thus natural to believe that these distin-
guishers can be improved if additional information besides the degree is taken
into account, in the same spirit as in cube distinguishers [1,12]. We investigate
this issue here and provide a way to exploit these more precise properties. We
then further show how to find distinguishers on iterated block ciphers, especially
on substitution-permutation networks, by propagating some information on the

656 C. Boura and A. Canteaut

parity set of the output set through the successive rounds of the cipher. For this,
we provide a detailed analysis of the evolution of the parity set through the basic
operations of the round function of an SPN cipher.

We illustrate the above technique by constructing low-data distinguishers on
the Present block cipher. With this example we aim at particularly showing
how the generic distinguishers can be improved when the properties of the linear
and the Sbox layer are taken into account. We manage to provide a distinguisher
on 6 rounds of Present with data complexity 212, while the generic distinguisher
from [25], reaches only 3 rounds for the same quantity of data. Finally, we analyze
the resistance of Sboxes against this type of attack, show a link with the algebraic
normal forms of the Sbox and of its inverse, and we give a criterion that an Sbox
must satisfy in order to resist this kind of attacks.

Organization of the Paper. The rest of the paper is organized as follows. Section 2
introduces the notion of the parity set of a set and shows how it is related to
Reed-Muller codes. Section 3 presents the link between this new notion and the
division property, and it characterizes the division property of any order. It also
focuses on the division property of low and high orders. Section 4 explains how to
build distinguishers by means of parity sets and Sect. 5 analyzes the special case
of SPN ciphers. In Sect. 6, low-data distinguishers for the block cipher Present
are presented. Finally, Sect. 7 discusses the properties that an Sbox must exhibit
in order to resist the above attacks.

2 Parity Set of a Set

2.1 Preliminaries

A Boolean function of n variables can be alternatively represented as a multivari-
ate polynomial, named the Algebraic Normal Form (aka ANF) of the function,
or as a 2n-bit vector (named the value vector) corresponding to all f(x), x ∈ Fn

2 .

Polynomial Representation. We use the following notation for the monomials of
n variables where u is an element of Fn

2 :

xu =
n∏

i=1

xui
i .

The following well-known lemma will be extensively used for evaluating a mono-
mial at a given point.

Lemma 1. Let x and u be two n-bit words. Then xu = 1 if and only if u � x,
i.e., ui ≤ xi for all 1 ≤ i ≤ n.

The previous relation between n-bit words is a partial order. It equivalently
means that the support of u is included in the support of x. In the whole paper,
we will use the following notation for the set of all words less than (resp. greater
than) a given word with respect to this partial order.

Another View of the Division Property 657

Notation 1. Let u ∈ Fn
2 . Then, we define

Prec(u) = {x ∈ Fn
2 : x � u}

Succ(u) = {x ∈ Fn
2 : u � x}.

It is worth noticing that Prec(u) is a linear subspace of dimension wt(u), while
Succ(u) is an affine subspace of dimension (n − wt(u)).

Value Vector. When a Boolean function is represented by its value vector, it is
often convenient to use the terminology coming from coding theory since Boolean
functions have been widely studied for error-correction. In this context, the value
vector of a function is seen as a codeword from a Reed-Muller code [20,21].

Definition 1 (Reed-Muller Codes). Let n be a positive integer and r an
integer such 0 ≤ r ≤ n. The r-th order binary Reed-Muller code of length 2n,
denoted by R(r, n), is the set formed by the value vectors of all Boolean functions
of n variables with degree at most r:

R(r, n) = {(f(x), x ∈ Fn
2), f : Fn

2 → F2 with deg f ≤ r}.

2.2 Parity Set of a Set

We now define a new notion named parity set. We will show that any set is
characterized by its parity set. Any property of a set can then also be expressed
in terms of its parity set, and we will show that the division property has a very
simple expression by means of parity sets.

Definition 2. Let X be a set of elements in Fn
2 . The parity set of X, denoted

by U(X), is the subset of Fn
2 defined by

U(X) = {u ∈ Fn
2 :

⊕
x∈X

xu = 1}.

The parity set provides a complete characterization of a set, as shown by the
following results.

Lemma 2. Let G be the 2n × 2n binary matrix whose entries are indexed by
n-bit vectors and defined by

Gu,a = au, a, u ∈ Fn
2 .

For any subset X of Fn
2 , the incidence vector of U(X) is equal to the product of

G by the incidence vector of X.

Proof. The incidence vector of a set X, vX , is the 2n-bit vector having a one
at position x ∈ Fn

2 if and only if x ∈ X. Then, GvX is equal to the sum of all
columns of G indexed by the elements in the support of vX , i.e., indexed by the
elements in X:

(GvX)u =
⊕
x∈X

xu.

By definition, the support of vU(X) is then the set of all positions u such that
(GvX)u = 1. �	

658 C. Boura and A. Canteaut

We can now deduce that there is a one-to-one correspondence between sets and
their parity sets.

Theorem 1. Let G be the 2n × 2n binary matrix defined by

Gu,a = au, a, u ∈ Fn
2 .

Then, G is non-singular and G−1 = G. Therefore, for any subset U of Fn
2 , there

exists a unique set X ⊂ Fn
2 such that U(X) = U .

Proof. The fact that G is non-singular can be deduced by using that it is a
generator matrix of the Reed-Muller code of length 2n and order n. This code
has dimension 2n [19, p. 376], i.e., G is invertible. Its inverse is equal to G itself.
Indeed, for any u,w ∈ Fn

2 , we have

(G × G)u,w =
⊕

v∈Fn
2

Gu,vGv,w =
⊕

v∈Fn
2

vuwv

= |{v ∈ Fn
2 : u � v and v � w}| mod 2

=
{

2wt(w)−wt(u) mod 2 if u � w
0 otherwise.

We then deduce that (G × G)u,w = 1 if and only if u = w, i.e., G × G = Id. As a
direct consequence, we get that the mapping vX �→ vU(X) is an isomorphism of
the set of 2n-bit vectors. �	

The fact that G is involutive provides a simple way to find the set X correspond-
ing to a given parity set U . Indeed, X corresponds to the parity set of U . Some
useful examples are described in the following corollary.

Corollary 1. Let X be a subset of Fn
2 . Then,

– U(X) is empty if and only if X is empty.
– U(X) = Prec(x) if and only if X = {x}.
– U(X) = {u} if and only if X = Prec(u).
– U(X) = {1} if and only if X = Fn

2 ,

where 1 denotes the all-one vector in Fn
2 .

3 New Insights into the Division Property

3.1 The Division Property by Means of Parity Sets

The division property introduced by Todo in [25] is a distinguishing property of
the set Ek(X) for a given choice of the input set X, where Ek is (typically) a
keyed permutation. This property must be independent from the choice of the
secret key. We now reformulate the division property of order k, Dn

k , on a set X
by a simple property of U(X). Indeed, Dn

k corresponds to a lower bound on the
weights of all elements in U(X).

Another View of the Division Property 659

Definition 3. A set X of elements in Fn
2 is said to fulfill the division property

of order k, Dn
k , if all elements in U(X) have weight at least k, i.e.,

U(X) ⊆ {u ∈ Fn
2 : wt(u) ≥ k}.

It is worth noticing that in [25], the division property is defined for a multiset,
i.e., the elements in X may appear with some multiplicity. However, the origi-
nal division property for a multiset X equivalently corresponds to the division
property for the set composed of all elements in X having an odd multiplicity.
Therefore, we will only focus on sets, instead of multisets.

As a direct consequence of the matrix relationship exhibited in Lemma 2, we
deduce the following two characterizations of the incidence vectors of the sets
satisfying the division property of order k.

Proposition 1. Let X be a set of elements in Fn
2 and k be an integer 1 ≤ k ≤ n.

Then, the following assertions are equivalent:

(i) X fulfills the division property of order k, Dn
k .

(ii) The incidence vector of X belongs to the Reed-Muller code of length 2n and
order (n − k).

(iii) The incidence vector of X belongs to the dual of the Reed-Muller code of
length 2n and order (k − 1).

Proof. Assertion (ii) equivalently means that the incidence vector of U(X) van-
ishes at all positions u with wt(u) ≤ k − 1. This means that, if G′ denotes the
restriction of G to the rows of index u with wt(u) < k, then G′vX is the all-zero
vector. But G′ is a generator matrix of the Reed-Muller code of length 2n and
order (k − 1). The set of all vX such that G′vX = 0 is therefore the dual (i.e.,
the orthogonal) of R(k − 1, n). It is well-known (see e.g. [19, p. 375]) that, for
any r, the dual of R(r, n) is the Reed-Muller code R(n − r − 1, n). We deduce
that G′vX = 0 if and only if vX ∈ R(n − k, n). �	

The first one of the previous characterization, (ii), has been independently exhib-
ited by Khovratovich [14], while the equivalent formulation (iii) is new.

Using the minimum distance of the Reed-Muller codes, we recover very easily
a result from [22] on the minimal size of a set satisfying Dn

k . More importantly,
we are able to characterize the sets of minimal size satisfying Dn

k .

Proposition 2. Let X be a non-empty set of elements in Fn
2 satisfying Dn

k .
Then

|X| ≥ 2k.

Moreover, a set X of size 2k satisfies Dn
k if and only if X is an affine subspace1

of dimension k.

1 In the whole paper, the terminology affine subspace includes any linear subspace or
any coset of a linear subspace.

660 C. Boura and A. Canteaut

Proof. We here use that X satisfies Dn
k if and only if vX belongs to R(n − k, n).

It is well-known that the minimum distance of R(n − k, n) is 2k [19, p. 375].
Using that |X| = wt(vX), we deduce that |X| ≥ 2k.

Moreover, it is known that the minimum-weight codewords in R(n − k, n)
are the incidence vectors of the affine subspaces of dimension k [19, p. 380]. It
follows that a set of size 2k satisfies Dn

k if and only if it is an affine subspace of
dimension k. �	

3.2 Division Property of Low Order

Since the codewords of Reed-Muller codes of low order have a very simple form,
a simple characterization of the division properties of low order directly fol-
lows. The Reed-Muller code R(0, n) consists of the all-zero and all-one words,
R(0, n) = {0, 1}, and R(1, n) \ R(0, n) is composed of all incidence vectors of
affine hyperplanes. Then, we easily recover the characterization of the division
properties of order 1 and 2 exhibited in [25]:

– X fulfills Dn
1 if and only if its cardinality is even.

– X fulfills Dn
2 if and only if its cardinality is even and it has the Balance

property [16], i.e., ⊕x∈Xx = 0.

Then, the division property of order k > 2 generalizes the balance property
used in integral attacks [16] in the following sense.

Proposition 3. Let X be a set of elements in Fn
2 . Then, the following assertions

are equivalent:

(i) X fulfills the division property of order k, Dn
k .

(ii) For any set of coordinates {i1, . . . , it} ⊆ {1, . . . , n} of size t < k and any
constant α ∈ Ft

2, the number of elements in X such that xij = αj for all
1 ≤ j ≤ t is even.

(iii) For any set of coordinates {i1, . . . , it} ⊆ {1, . . . , n} of size t < k, the number
of elements in X such that xij = 0 for all 1 ≤ j ≤ t is even.

Proof. (i) ⇒ (ii) Let I = {i1, . . . , it} be a set of coordinates of size t < k, and u
be the vector in Fn

2 having support I. Then,

{x ∈ X : xij = αj , 1 ≤ j ≤ t} = {x ∈ X : (x ⊕ β) � u}

where β is the n-bit vector such that βij = αj ⊕ 1 for 1 ≤ j ≤ t, and βi = 0
if i �∈ I. It follows that

|{x ∈ X : xij = αj , 1 ≤ j ≤ t}| mod 2 =
⊕
x∈X

(x ⊕ β)u =
⊕
x∈X

⊕
v�u

xvβu⊕v

=
⊕
v�u

βu⊕v

(⊕
x∈X

xv

)
= 0

since the division property of order k implies that all
⊕

x∈X xv vanish when
wt(v) ≤ wt(u) < k.

Another View of the Division Property 661

(ii) ⇒ (iii) Trivial.
(iii) ⇒ (i) Let u ∈ Fn

2 with wt(u) < k. We have
⊕
x∈X

xu =
⊕
x∈X

((x ⊕ u) ⊕ u)u =
⊕
v�u

⊕
x∈X

(x ⊕ u)vuu⊕v

=
⊕
v�u

⊕
x∈X

(x ⊕ u)v =
⊕
v�u

|{x ∈ X : xi = 0,∀i ∈ Supp(v)}| mod 2.

From (iii), all sets involved in the previous sum have even size because
wt(v) < k. We then deduce that

⊕
x∈X xu = 0, i.e. X fulfills the division

property of order k.
�	

It is worth noticing that, more generally, the division property Dn
k implies that

the number of elements in X∩A is even for any affine subspace A of dimension t >
n − k (see e.g. [7, Proposition III.1]).

As a direct corollary, we can for instance characterize the division property
of order 3.

Corollary 2. Let X be a set of elements in Fn
2 . Then, X fulfills the division

property of order 3, Dn
3 , if and only if X and all the n subsets

{x ∈ X with xi = 0}, 1 ≤ i ≤ n,

satisfy the balance property.

Example 1. The following set X ∈ F5
2 composed of 12 elements satisfy the divi-

sion property of order 3:

x1 0 0 0 0 1 1 1 1 1 1 1 1

x2 0 1 0 1 0 1 0 1 1 0 1 0

x3 1 0 0 1 1 0 0 1 1 0 1 0

x4 0 1 0 1 0 1 0 0 0 1 1 1

x5 1 1 1 1 1 1 0 1 0 0 0 1

3.3 Division Property of High Order

The division property of maximal order, i.e., Dn
n, obviously corresponds to the

fact that X is either empty, or equal to the whole set Fn
2 (see the last item in

Corollary 1). But, we are also able to characterize all sets satisfying Dn
n−1.

Proposition 4. Let X be a set of elements in Fn
2 . Then X fulfills Dn

n−1 and
not Dn

n if and only if X is an (affine) hyperplane of Fn
2 .

662 C. Boura and A. Canteaut

Proof. Let v denote the incidence vector of X. From the previous proposition,
we have X satisfies Dn

n−1 and not Dn
n if and only if v ∈ R(1, n) \ R(0, n). This

set consists of the incidence vectors of all (affine) hyperplanes of F2. Then, this
equivalently means that X is an (affine) hyperplane. �	

For instance, it can be easily checked that the multiset of elements of F4
2 defined

in [25, p. 293]

{0x0, 0x3, 0x3, 0x3, 0x5, 0x6, 0x8, 0xb, 0xd, 0xe},

satisfies D4
3 because the corresponding set composed of all elements with an odd

multiplicity
{0x0, 0x3, 0x5, 0x6, 0x8, 0xb, 0xd, 0xe}

is a linear subspace of dimension 3 spanned by {0x3, 0x5, 0x8}.

4 Distinguishers Based on Parity Sets

We now investigate how we can build some distinguishers for a given keyed
permutation EK by means of parity sets. The basic idea consists in choosing an
input set X such that the parity set of the corresponding output set EK(X) has
some specific property for any choice of the key.

Since the size of X determines the data complexity of the distinguisher, it
has to be as small as possible. For this reason, X is always chosen to be an affine
subspace since subspaces are the smallest possible sets satisfying the division
property of a given order (see Proposition 2).

4.1 Todo’s Distinguishers

The strategy proposed by Todo to build a distinguisher is to exhibit an affine
subspace a + V such that the corresponding output set EK(a + V) satisfies the
division property of order 2, i.e., such that EK(a+V) is balanced. This property
can be easily interpreted in terms of higher-order derivatives in the sense of the
following definition.

Definition 4. [17] Let F be a function from Fn
2 into Fm

2 . Let a ∈ Fn
2 . The

derivative of F with respect to a is the function from Fn
2 into Fm

2 defined by

DaF (x) = F (x ⊕ a) ⊕ F (x).

For any k-dimensional subspace V of Fn
2 and for any basis of V , {a1, . . . , ak},

the k-th order derivative of F with respect to V is the function defined by

DV F (x) = Da1Da2 . . . Dak
F (x) =

⊕
v∈V

F (x + v)

We introduce now the following notation.

Another View of the Division Property 663

Notation 2. Let P be a permutation of Fn
2 and P1, P2, . . . , Pn be the n coor-

dinates of P . If x = (x1, . . . , xn) and u = (u1, . . . , un) are vectors of Fn
2 , we

denote by Pu(x) the coordinate product
∏n

i=1 Pi(x)ui .

Proposition 5. Let P be a permutation of Fn
2 . Let V be the linear subspace of

Fn
2 and a ∈ Fn

2 . Then, an element u belongs to U(P (a + V)) if and only if the
derivative of Pu with respect to V satisfies

DV Pu(a) = 1.

In the particular case where V = Prec(v) for some v ∈ Fn
2 , the following formu-

lations are equivalent:

(i) For all a ∈ Fn
2 , u �∈ U(P (a + V))

(ii) The algebraic normal form of the Boolean function x �→ Pu(x) contains no
monomial multiple of xv

(iii) The superpoly of v in x �→ Pu(x) vanishes.

Proof. The fact that DV Pu(a) = 1 if and only if u ∈ U(P (a + V)) is directly
deduced from the definition of the derivative with respect to V using that

DV Pu(a) =
⊕

x∈a+V

Pu(x).

The superpoly of v in Pu is defined [12] as the Boolean function pv such that

Pu(x) = xvpv(x) + q(x)

where q does not contain any monomial multiple of xv. Moreover, it has been
proved in [12, Theorem 1] that

pv(a) =
⊕
x�v

Pu(a ⊕ x) = DV Pu(a).

It then follows that, for V = Prec(v), u �∈ U(P (a + V)) for all a if and only if
the superpoly of v in Pu vanishes, which equivalently means that Pu does not
contain any monomial multiple of xv. �	

4.2 Improving Todo’s Distinguishers

The distinguishers presented in [25] correspond to the existence of a word v such
that EK(a + Prec(v)) satisfies the division property of order 2 for all a, which
equivalently means that the monomial xv does not appear in any coordinate of
EK . Since these distinguishers are constructed by propagating some information
on the smallest Hamming weight of the elements in the parity set, they are based
on the fact that the weight of v exceeds the degree of EK , where the degree of
the coordinates of the cipher after several iterations can be upper bounded by
exploiting the techniques introduced in [5,6]. However, it clearly appears that
this type of distinguishers can be improved in the following two directions:

664 C. Boura and A. Canteaut

– it may happen that a given monomial xu does not appear in the coordinates
of EK even if wt(u) ≤ deg P . This type of property, derived from the sparsity
of some coordinates of the cipher, has been extensively used in cube attacks,
e.g. [1,11,13].

– it may happen that a given monomial xu appears in one coordinate of EK but
not in all functions x �→ Ev

K(x). Then, EK(a + Prec(u)) does not fulfill the
division property of order 2; instead we obtain a weaker distinguisher based on
the fact that a given v does not belong to the parity set of EK(a + Prec(u)).

These two ways of exploiting some additional information besides the degree of
the function are illustrated in the following toy example. In the rest of the paper,
binary words are represented in hexadecimal notation where the least significant
bit corresponds to the rightmost bit in the binary word.

Example 2. Let us consider the 4-bit Sbox S used in Present [2]. This Sbox
has degree 3 which is the maximal degree for a permutation of F4

2. The rows of
Table 1 describes all sets

Vs(u) = {v ∈ Fn
2 : Sv(x) contains xu}.

In others words, the entry at Row u and Column v in this table is an x if and
only if xu appears in the ANF of x �→ Sv(x). Equivalently, the column of index v
in this table corresponds the list of all monomials in the ANF of x �→ Sv(x).

Clearly, we cannot exhibit any u such that S(a+Prec(u)) fulfills the division
property of order 2 for all a (i.e. such that no coordinate of S contains xu) if we
exploit the degree of the Sbox only. Indeed, using that deg(S) = 3, we deduce
that the all-one vector u = 0xf is the only value satisfying this property. This
does not provide any distinguisher since this holds for all permutations.

However, distinguishers can be found by using that not all u ∈ F4
2 of weight

less than or equal to 3 appear in the ANF of the coordinates of S. Indeed u = 0xe
does not appear in any of the coordinates of S, i.e., for u = 0xe, S(a + Prec(u))
fulfills the division property of order 2 for all a. It is worth noticing that this is
the only value of u which provides such a distinguisher.

Instead of searching for u such that the parity set of S(a+Prec(u)) does not
contain any word of weight 1, we can exhibit a few values v which belong to none
of the sets S(a + Prec(u)), a ∈ F4

2. For instance, we can observe that neither S1

nor Se contains a multiple of x3 = x1x2. This means that v = 0x1 and v = 0xe
do not belong to a set S(a + Prec(0x3)). Similarly, the sets S(a + Prec(0x9)) do
not contain v = 0x1 and v = 0xb. The sets S(a + Prec(0xc)) do not contain
v = 0x1 and v = 0x6.

Clearly, these two ideas allow us to decrease the dimension of the input
subspace X = a + Prec(u) involved in the distinguisher. But the distinguisher
based on the division property of order 2 is obviously stronger than the second
one. A precise evaluation of the advantages of these distinguishers is provided in
Appendix.

Another View of the Division Property 665

Table 1. Sets VS(u) for all u ∈ F4
2 for the Present Sbox. All 4-bit words are repre-

sented in hexadecimal notation, and the rightmost bit of the word corresponds to the
least significant bit.

VS(u)

0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 x x x x

1 x x x x

2 x x x x

4 x x x x

8 x x x x x x

3 x x x x x x x x

5 x x x

9 x x x x x x

6 x x x x x x

a x x x x x x x x x x

c x x x x

7 x x x x x x x

b x x x x x x x x x x

d x x x x x x x

e x x x x x x

f x

5 Exhibiting Distinguishers on SPN by Means of Parity
Sets

We now show how to find some distinguishers on iterated block ciphers, especially
on substitution-permutation networks, by propagating some information on the
parity set of the output set through the successive rounds of the cipher. As
previously explained, we choose as input set an affine subspace.

5.1 Propagation Through Key Addition

One of the difficulties for finding a distinguisher for a block cipher is that the
distinguishing property must hold for any value of the secret key. For this rea-
son, we need to exploit a property which can be easily propagated through the
operation inserting the round key, which is usually an XOR. This is the case of
differential properties, or of the algebraic degree. We can show that the parity
set can also be easily propagated.

666 C. Boura and A. Canteaut

Proposition 6. Let X be a subset of Fn
2 with parity set U(X). Then, for any

k ∈ Fn
2 , the parity set of (k + X) satisfies

U(k + X) ⊆
⋃

u∈U(X)

Succ(u).

Proof. We use that
(x ⊕ k)v =

⊕
u�v

xvkv⊕u.

It follows that

⊕
x∈X

(x ⊕ k)v =
⊕
x∈X

⊕
u�v

xukv⊕u =
⊕
u�v

kv⊕u

(⊕
x∈X

xu

)
.

Then, this sum equals zero for all k ∈ Fn
2 if

⊕
x∈X xu = 0 for all u such that

u � v. In other words, if the sum equals one, then there exists u in U(X) such
that u � v, i.e., v satisfies v � u for at least one u ∈ U(X). �	

It is worth noticing that there is no general improvement of the previous result
which holds without any further assumption on k or on X. Indeed, it is easy to
check that, when X = {u}, we have that any v ∈ Succ(u) belongs to U(k + X)
for some k (e.g. k = (u+v) satisfies this property). Thus, Succ(u) is the smallest
set which contains the parity sets of all cosets (k + X) in this case.

5.2 Propagation Through an Sbox

We now investigate how a parity set propagates through a permutation, for
instance through an Sbox or through a linear permutation.

Proposition 7. Let S be a permutation of Fn
2 . For any v ∈ Fn

2 , we define

VS(u). = {v ∈ Fn
2 : Sv(x) contains xu}

Then, for any set X of elements of Fn
2 ,

U(S(X)) ⊆
⋃

u∈U(X)

VS(u).

Proof. By definition, the vectors v which may be in U(S(X)) are those such
that S(x)v contains a monomial xu with u ∈ U(X). Otherwise, we have that⊕

x∈X S(x)v = 0. The result then directly follows. �	

We will discuss in more details in Sect. 7 the properties of an Sbox which make it
resistant or not to this attack. It is worth noticing that the previous proposition
applies to any permutation S, including the case where S corresponds to the
linear layer of the cipher.

Another case of interest is the case where the Sbox can be seen as the con-
catenation of several independent Sboxes, like in a typical Sbox layer.

Another View of the Division Property 667

Proposition 8. Let X be a set of elements in Fmt
2 and let S be an Sbox over

Fmt
2 which consists of the parallel application of t Sboxes S1, . . . , St over Fm

2 :
S(x1, . . . , xt) = (S1(x1), . . . , St(xt)). Then,

U(S(X)) ⊆
⋃

(u1,...,ut)∈U(X)

VS1(u1) × . . . × VSt
(ut)

where VSi
(u) = {v ∈ Fm

2 : Sv
i (x) contains xu}.

Proof. From Proposition 7, we know that

U(S(X)) ⊆
⋃

(u1,...,ut)∈U(X)

VS(u).

We then have to determine all v = (v1, . . . , vt) ∈ (Fm
2)t such that Sv(x) contains

u = (u1, . . . , ut). We use that

Sv(x) = Sv1
1 (x1)Sv2

2 (x2) . . . Svt
t (xt).

Since only Svi
i (xi) may contain xui

i , we deduce that v ∈ VS(u) if and only if
vi ∈ VSi

(ui) for each 1 ≤ i ≤ n. Therefore, VS(u) is the Cartesian product of all
VSi

(ui). �	

5.3 Propagation Through One Round

We now consider an SPN where the round key is inserted by addition at the
end of the round. This implies that each Sbox layer comes after a round-key
addition. Thus, if U(X) denotes the parity set of the input set X before the key
addition, then the parity set after the key addition is included in a union of sets
of the form Succ(u), for some u ∈ Fn

2 . It follows that the parity set after the
Sbox layer satisfies

U(S(X + k)) ⊆
⋃

u∈U(X)

⎛
⎝ ⋃

v∈Succ(u)

VS(v)

⎞
⎠ .

Therefore, propagating the information from U(X) to U(S(X + k)) involves the
sets

VS(u) =
⋃

v∈Succ(u)

VS(v)

which depend on the Sbox only.
These sets VS(u) are then the relevant quantities involved in the propaga-

tion through the Sbox, instead of the sets VS(u), u ∈ Fn
2 . For instance, Table 2

provides all sets VS(u) for the Present Sbox.
The table representing all VS(u) has a few generic properties which hold for

any bijective Sbox. The first obvious remark is that the all-zero vector does not
belong to any VS(u) except when u = 0. Indeed S0 is the all-one function and
then does not contain any monomial except x0. The following property is much
more interesting.

668 C. Boura and A. Canteaut

Table 2. Sets VS(u) for all u ∈ F4
2 for the Present Sbox. All 4-bit words are repre-

sented in hexadecimal notation, and the rightmost bit of the word corresponds to the
least significant bit.

VS(u)

0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 x x x x x x x x x x x x x x x x

1 x x x x x x x x x x x x x x x

2 x x x x x x x x x x x x x x x

4 x x x x x x x x x x x x x x x

8 x x x x x x x x x x x x x x x

3 x x x x x x x x x x x x x

5 x x x x x x x x x x x x x x

9 x x x x x x x x x x x x x

6 x x x x x x x x x x x x x x

a x x x x x x x x x x x x x x

c x x x x x x x x x x x x x

7 x x x x x x x x

b x x x x x x x x x x

d x x x x x x x x

e x x x x x x

f x

Proposition 9. Let S be any permutation of Fn
2 . Then,

VS(1) = {1},

where 1 denotes the all-one vector in Fn
2 .

Proof. Since Succ(1) = 1, we have

VS(1) = VS(1) = {v ∈ Fn
2 : Sv(x) contains x1}

or equivalently VS(1) is the set of all v such that x �→ Sv(x) has degree n. It is
known [6, Proposition 1] that deg(Sv) = n if and only if v = 1. �	

Some further properties of Table 2, specific to the Present Sbox will be
studied in Sect. 7.

6 Low-Data Distinguishers on a Few Rounds of Present

6.1 Distinguisher on 3 Rounds

In [25] Todo presents generic distinguishers for ciphers based on the SPN con-
struction. In particular, it is shown in Table 4 of this same paper that 3 rounds

Another View of the Division Property 669

of an SPN construction whose nonlinear layer is composed of 16 Sboxes over F4
2

of degree 3 can be distinguished from a random permutation with data com-
plexity 212. These results are therefore valid for Present. This distinguisher
improves upon the distinguishers exploiting the algebraic degree since the best
upper bound on the degree of three rounds of such ciphers is 33 = 27, leading
to a distinguisher with data complexity 228.

Todo’s distinguisher can be easily explained in the following way (see
also [14]). Suppose that the input space X is composed of vectors taking all
possible 24 values on the first three nibbles and where the last 13 nibbles are
fixed to a same constant value for all vectors. In this case |X| = 212 and X can
be seen now as a coset of V , i.e. X = a + V , where

V = Prec(0x0000000000000fff).

After the application of the round-key addition and the Sbox layer to X, the
output space Y satisfies the same integral property as X, i.e. Y = b+V . Denote
now by F = R2 ◦P , where R stands for the round function and where P denotes
the linear layer. One can easily see that as F contains two non-linear layers, of
degree 3 each, deg(F) ≤ 9. Therefore, as dim Y = 12 > 9, we have that

⊕
x∈a+V

EK(X) =
⊕

y∈b+V

F (Y) =
⊕
y∈V

F (b ⊕ y) = DV F (b) = 0.

Equivalently, this generic distinguisher on 3 rounds uses the feature that none
of the coordinates of EK contains a multiple of xu for u = 0x0000000000000fff
(see Proposition 5). This distinguisher can therefore be very easily explained in
terms of parity sets. Since X = a + V , where V = Prec(0x0000000000000fff),
we have that U(V) = {0x0000000000000fff} (from Corollary 1), implying that

U(X) ⊆ Succ(0x0000000000000fff).

Since the Sbox S is a permutation, for each Sbox VS(0xf) = {0xf} (Proposition 9)
meaning that after the first Sbox layer the parity set U of the resulting set is again
included in Succ(0x0000000000000fff). By defining the function F as before, we
have that

U(EK(X)) ⊆
⋃

u∈U

VF (u).

But, VF (u) = {v : F v(x) contains xu} contains no vector v with wt(v) ≤ 1 when
wt(u) ≥ 12 since deg(F) ≤ 9. Therefore,

U(EK(X)) ⊆ {v : wt(v) ≥ 2},

meaning that the output of the cipher restricted to 3 rounds has the balanced
property (i.e., satisfies the division property of order 2).

670 C. Boura and A. Canteaut

6.2 Distinguisher on 4 Rounds

As explained in [25] in the case of AES-like ciphers, such generic distinguishers
can be improved by exploiting the structure of the linear layer. In the particular
case of Present, the linear layer (see Fig. 1) is a bit permutation. Moreover,
because of its structure, two rounds of Present (without the last permutation
layer) can be seen as the concatenation of four independent Superboxes operating
on F16

2 . With this structure, it is clear that any coordinate of the output at round
(r + 1) of the cipher only contains monomials involving inputs from the same
Superbox at round r.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

Fig. 1. Round function of the block cipher Present

Therefore, by exploiting the linear layer of Present one can extend the
previous distinguisher to one more round as follows. Suppose now that the input
set X has the form X = a + V , with

V = Prec(0x000000000000fff0).

In this case U(X) ⊆ Succ(0x000000000000fff0). The parity set remains
unchanged after the application of the first nonlinear layer. By applying now the
permutation layer we see that the parity set of the resulting set is included in

Succ(0x000e000e000e000e),

leading to four active Superboxes. As previously explained, after the application
of the Superboxes, so after the non-linear layer of the third round, any output
coordinate only contains monomials coming from the same Superbox. Therefore,
the resulting parity set is included in

{u : wt(u) ≥ 4}.

By applying now the linear layer we have that the parity set is included in

{u with ≥ 2 active nibbles} ∪ {0x00 . . . 0f, . . . , 0xf0 . . . 0}.

Another View of the Division Property 671

This parity set is invariant under the application of the fourth nonlinear layer,
meaning that

U(EK(X)) ⊆ {v : wt(v) ≥ 2}.

We see therefore that the output set has the balanced property after 4 rounds.
However, it can be shown, that by only exploiting the properties of the linear

layer of Present, this distinguisher cannot always be extended to five rounds.
The following table shows a possible propagation of values in the parity sets,
where some output coordinate of the 12th Sbox after 5 rounds may contain the
monomial xu, with u = 0x0000000000000fff0. By looking at rows 2 and 3 of
this table, we can see that this propagation can be realised, among others, if
the Sbox makes the propagations 0xe → 0x2 and 0xe → 0x1 possible. All the
elements of this table should be interpreted as hexadecimal values.

input 0 0 0 0 0 0 0 0 0 0 0 0 f f f 0

output S-layer 1st round 0 0 0 0 0 0 0 0 0 0 0 0 f f f 0

output P-layer 1st round 0 0 0 e 0 0 0 e 0 0 0 e 0 0 0 e

output S-layer 2nd round 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 1

output P-layer 2nd round 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

output S-layer 3rd round 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

output P-layer 3rd round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 7

output S-layer 4th round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8

output P-layer 4th round 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

output S-layer 5th round 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

However, by looking closer at Table 1, one can see that these two propagations
are not possible for the Present Sbox, as 0xe can only be propagated to values
of Hamming weight of at least 2.

6.3 Distinguishers on 5 and 6 Rounds

The previous 4-round distinguisher on Present exploited the algebraic degree
of the Sbox together with the structure of the linear layer. We show here, that
by further taking into account the particular form of the Present Sbox, the
previous distinguisher can be extended to one more round. For doing so, we
consider the same input set X as for the 4-round distinguisher, i.e. X = a + V ,
with V = Prec(0x000000000000fff0). As previously shown (see also the second
row of the table above), after the application of the first round transformations,
the parity set is included in Succ(0x000e000e000e000e). However, the value 0xe
presents, in the case of Present, a particular interest. Indeed, notice that the
row indexed by 0xe in Table 2 contains only a single element of weight 2 and
no element of weight 1. This means that compared to other values u, VS(u)
for u = 0xe contains exceptionally few elements, making more than half of the

672 C. Boura and A. Canteaut

transitions impossible. In particular, the transitions, 0xe → 0x2 and 0xe → 0x1
in the above 5-round path are not possible.

We checked by computer programming that in this setting, there is no u
of weight 1 in U(Ek(X)) if Ek is 5-round Present. Therefore, the output set
after 5 rounds has the balanced property and can then be distinguished from a
random permutation.

However, it is not possible to extend the distinguisher in its actual form to
6 rounds. Indeed, we checked that after 6 rounds, many elements of weight 1
can be found in U(Ek(X)). Nevertheless, it is still possible to exhibit a weaker
distinguisher for 6 rounds of Present, by exploiting the fact that the column
corresponding to the element 0x1 in Table 2 is very sparse, meaning that more
than half of the transitions u → 0x1 are not possible. We were able to check that
in fact, among all the elements of weight 1 present in U(Ek(X)), only the nibble
values 0x2, 0x4 and 0x8 were possible. Therefore, we have exhibited 16 values
which do not belong to U(Ek(X)) after six rounds of Present, leading to a
distinguisher with data complexity 212 and advantage (1 − 2−16) (see Appendix
for the evaluation of the advantage).

6.4 Distinguishers Using More Data

We provide in Table 3 a summary of all the distinguishers obtained for reduced-
round versions of Present by using different sizes of the input space. These
distinguishers were obtained by implementing the propagation of the parity set of
the input subspace in a compact way. We mention here only strong distinguishers
in the sense that we give only the results where the output set has the balanced
property.

Table 3. Input sets leading to the division property of order 2 for reduced-round
Present.

Input set log2(#texts) Rounds

0x000000000000000f 4 4

0x000000000000fff0 12 5

0x00000000ffffffff 32 6

0xfffffffffffff000 52 7

0xfffffffffffffffe 63 8

6.5 Changing the Sbox

We discuss in this section the strength of the above distinguishers in the case
where the Sbox of Present is replaced by some other permutation of degree 3.
For this, we consider exactly the same cipher but we change the nonlinear per-
mutation. For instance, we consider the Sbox used in the block cipher Prince [3]

Another View of the Division Property 673

and we study the propagation of the parity set of the resulting cipher. Table 4
provides the sets VS(u) for all u ∈ F4

2 for this Sbox. However, it has to be noted
that we do not propose in any case to replace the Sbox of Present for obtaining
a more robust design in general. This change is done here only for being able
to run the same experiments by keeping exactly the same other parameters.
Applying for example the same attack to the Prince cipher and compare the
results would not make any sense as the results could be different because of the
different linear layers for example, making the impact of the Sbox unclear. This
paragraph aims only at demonstrating that Present with some other Sbox can
better resist against this type of distinguishers, but we do not argue that this
would necessarily be the case for other type of attacks.

The following table is the equivalent of Table 2 for Present. As one can see,
this table, is much less sparse than Table 2. In particular, even the rows the more
sparse (rows corresponding to 0xb and 0xd), make at least half of the transitions
possible. One can further notice that all rows and columns contain elements of
weight 1 and 2. All the above indicate that whatever the input u of a particular
Sbox, the set VS(u) contains a high number of values, making only very few
transitions impossible.

Table 4. Sets VS(u) for all u ∈ F4
2 for the Prince Sbox. All 4-bit words are represented

in hexadecimal notation.

VS(u)

0 1 2 4 8 3 5 9 6 a c 7 b d e f

0 x x x x x x x x x x x x x x x x

1 x x x x x x x x x x x x x x

2 x x x x x x x x x x x x x x x

4 x x x x x x x x x x x x x x x

8 x x x x x x x x x x x x x x

3 x x x x x x x x x x x x x x

5 x x x x x x x x x x x x x

9 x x x x x x x x x x

6 x x x x x x x x x x x x x x

a x x x x x x x x x x x x

c x x x x x x x x x x x x x

7 x x x x x x x x x x x x

b x x x x x x x

d x x x x x x

e x x x x x x x x x

f x

674 C. Boura and A. Canteaut

Table 5. Example of a 5-round path that is satisfied when the Prince Sbox is plugged
into the Present block cipher. All entries should be interpreted as hexadecimal values.

input 0 0 0 0 0 0 0 0 0 0 0 0 f f f 0

output S-layer 1st round 0 0 0 0 0 0 0 0 0 0 0 0 f f f 0

output P-layer 1st round 0 0 0 e 0 0 0 e 0 0 0 e 0 0 0 e

output S-layer 2nd round 0 0 0 4 0 0 0 2 0 0 0 2 0 0 0 2

output P-layer 2nd round 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0

output S-layer 3rd round 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0

output P-layer 3rd round 0 0 0 0 0 0 0 0 0 0 0 0 0 8 7 0

output S-layer 4th round 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

output P-layer 4th round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

output S-layer 5th round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

We were able to verify, that if we start with the same input space as before,
the output set after five rounds does not satisfy the division property of order 2,
while this was the case for the Present Sbox. Indeed, Table 5 provides a path
that is satisfied when this Sbox is used. As one can see, we end up with a vector
of weight 1 in U(Ek). This was not the case with the original Present Sbox,
proving that the Prince Sbox is more resistant against this kind of property.
A more detailed study of why this is so is provided in the following section.

7 Related Security Criterion for the Sbox

As illustrated by the previous attack, one of the main ingredients of the distin-
guisher is the particular form of the sets VS(u) for the Present Sbox, i.e., the
particular form of Table 2. Two properties of this table are exploited:

1. Column of index 0x1 is very sparse and in particular it does not contain any
element of weight 3 and it contains a single element of weight 2. This property
is exploited at the end of the attack on 6 rounds, where we use that 0x1 only
belongs to a very few sets VS(u), i.e., only a few transitions u → 0x1 are
possible.

2. Row of index 0xe is very sparse and in particular it does not contain any
element of weight 1 and it contains a single element of weight 2. This property
is exploited when we use that VS(0xe) contains a few elements only, implying
that many transitions 0xe → v are impossible.

We now show where these unsuitable properties of the Sbox come from, and
how they can be avoided. The first property has an obvious algebraic interpre-
tation since each column in the table is derived from the ANF of a Boolean
function x �→ Sv(x). In particular, the columns having an index of weight 1 are

Another View of the Division Property 675

derived from the ANF of the coordinates of the Sbox. The ANF of the Present
Sbox is

S1(x1, x2, x3, x4) = x1 + x3 + x4 + x2x3

S2(x1, x2, x3, x4) = x2 + x4 + x2x4 + x3x4 + x1x2x3 + x1x2x4 + x1x3x4

S3(x1, x2, x3, x4) = 1 + x3 + x4 + x1x2 + x1x4 + x2x4 + x1x2x4 + x1x3x4

S4(x1, x2, x3, x4) = 1 + x1 + x2 + x4 + x2x3 + x1x2x3 + x1x2x4 + x1x3x4.

The first weakness of the Present Sbox then comes from the fact that its first
coordinate has degree 2 only and contains a single quadratic term.

The second weakness is related to the fact that the monomial xe = x2x3x4

appears neither in the coordinates of S, nor in most functions SiSj . This second
property can be deduced in a much simpler way from the ANF of the inverse
Sbox, as shown by the following proposition.

Lemma 3. Let S be a permutation of Fn
2 . Then, for any u, v ∈ Fn

2 , the ANF
of x �→ S(x)v contains xu if and only if the ANF of x �→ S∗(x)u contains xv,
where u denotes the vector u ⊕ 1 and S∗ is the permutation x �→ S−1(x).

Proof. Let au denote the coefficient of xu in the ANF of x �→ S(x)v. Then

au =
⊕
x�u

S(x)v

= |{x ∈ Fn
2 : xi = 0, i ∈ Supp(u) and S(x)j = 1, j ∈ Supp(v)}| mod 2

= |{y ∈ Fn
2 : S−1(y)i = 0, i ∈ Supp(u) and yj = 1, j ∈ Supp(v)}| mod 2

where the last equality comes from the fact that S is a permutation, implying
that there is a one-to-one correspondence between x and y = S(x). We now
replace y by z = y and use that S−1(y) = S∗(y). Then,

au = |{z ∈ Fn
2 : S−1(z)i = 0, i ∈ Supp(u) and zj = 0, j ∈ Supp(v)}| mod 2

= |{z ∈ Fn
2 : S∗(z)i = 1, i ∈ Supp(u) and zj = 0, j ∈ Supp(v)}| mod 2

=
⊕
z�v

(S∗(z))u

which means that au is the coefficient of xv in the ANF of x �→ S∗(x)u. �	

The function S∗ corresponding to the Present Sbox has the following ANF:

S∗
1 (x1, x2, x3, x4) = 1 + x1 + x2 + x3 + x4 + x2x4

S∗
2 (x1, x2, x3, x4) = x1 + x4 + x1x3 + x2x3 + x1x2x3 + x1x2x4 + x1x3x4

S∗
3 (x1, x2, x3, x4) = 1 + x2 + x4 + x1x2 + x1x3 + x1x4 + x3x4 + x1x2x3

+x1x2x4 + x1x3x4

S∗
4 (x1, x2, x3, x4) = x2 + x3 + x2x3 + x1x4 + x3x4 + x1x2x3 + x1x3x4

These ANF correspond to the rows with an index of weight 3 in Table 2. In
particular, the form of the row of index 0xe (defining VS(0xe)) comes from the

676 C. Boura and A. Canteaut

fact that the first coordinate of S∗ has degree 2 only, and that its ANF contains
a single monomial of degree 2.

Conversely, we can easily guarantee that, when an n-bit bijective Sbox is
considered, all sets VS(u) with wt(u) < n contain an element of weight 1.

Proposition 10. Let S be a permutation of Fn
2 . Then, all coordinates of S−1

have degree (n − 1) if and only if all sets VS(u), with u �= 1, contain at least one
element of weight 1.

Proof. Since the sets VS(u) include all sets VS(u′) for u′ � u, we only have to
prove the result for the sets VS(u) with wt(u) = n − 1. When wt(u) = n − 1, we
have

VS(u) = VS(u) ∪ VS(1) = VS(u) ∪ {1}
from Proposition 9. Therefore, all sets VS(u) with wt(u) < n contain an element
of weight 1 if and only if all sets VS(u) with wt(u) = n−1 contain an element of
weight 1. This equivalently means that all monomials of degree (n−1) appear in
the ANF of the coordinates of S, or from Lemma 3 that all coordinates of S∗ have
degree (n − 1). But, this last condition equivalently means that all coordinates
of S−1 have degree (n−1). Indeed, the monomials of highest degree in the ANF
of a Boolean function f and in the ANF of f∗ : x �→ f(x)+1 are the same. Then
the i-th coordinates of S∗ and S−1 have the same degree. �	

It is worth noticing that the fact that all coordinates of S−1 have maximal degree
is not equivalent to the fact that the same property holds for S, as shown in the
following example.

Example 3. We consider the permutation of F4
2 corresponding to the inverse of

the function G10 defined in the classification in [18, Table 6]. This Sbox has
optimal cryptographic properties in the sense that it has the smallest possible
differential uniformity and highest nonlinearity. Its coordinates are given by

S1(x1, x2, x3, x4) = x1 + x1x2 + x2x3 + x3x4 + x1x3x4 + x2x3x4

S2(x1, x2, x3, x4) = x2 + x1x3 + x2x4 + x3x4 + x1x2x4 + x1x3x4 + x2x3x4

S3(x1, x2, x3, x4) = x3 + x1x2 + x1x3 + x1x4 + x2x4 + x1x2x4 + x1x3x4

S4(x1, x2, x3, x4) = x4 + x1x2 + x1x3 + x1x2x4.

It can then be checked that all coordinates of S have degree 3 while the monomial
x1x2x3 appears in none of the coordinates, implying that VS(0x7) contains no
element of weight 1. Indeed,

VS(0x7) = {0x9, 0xc, 0x7, 0xb, 0xe, 0xf}.

Actually, S does not satisfy the hypotheses of Proposition 10 since the first coor-
dinate of S−1 has degree 2 only.

It is also worth noticing that the condition on the degree of the coordinates
of S−1 is not invariant under composition (to the right or left) by an affine
permutation.

Another View of the Division Property 677

A simple way to guarantee that all coordinates of the inverse Sbox have max-
imal degree consists in choosing for S an Sbox such that any linear combination
of its coordinates (i.e. any of its components) has maximal degree. In this case, we
obtain the following stronger result on the number of elements of weight 1 in VS(u).

Corollary 3. Let S be a permutation of Fn
2 such that the Boolean functions

x �→ λ · S(x) have degree (n − 1) for all nonzero λ ∈ Fn
2 . Then, for any u ∈ Fn

2 ,
VS(u) contains at least (n − wt(u)) elements of weight 1.

Proof. We will first prove the result for all u with wt(u) = n − 1 by showing
that all coordinates of S−1 have degree (n − 1). Let A denote the n × n binary
matrix such that ai,j is the coefficient of the monomial of degree (n − 1) xej in
the ANF of the i-th coordinate of S where ej denotes the n-bit word having a
single one at position j. A component of S, x �→ λ · S(x), λ �= 0, has degree less
than (n − 1) if and only if the corresponding linear combination of the rows of
A vanishes, i.e., λA = 0. It follows that the number of non-trivial components
of S with degree (n − 1) is equal to 2rk(A) − 1. From Lemma 3, the coefficients
of the monomials of degree (n − 1) in the coordinates of S−1 are defined by
the transpose of A. Then, the number of non-trivial components of S−1 with
degree (n − 1) is equal to 2rk(A

T) − 1. We deduce from Proposition 10 that, if all
components of S have degree (n − 1) (i.e., if rk(A) = rk(AT) = n), all VS(u) for
u �= 1 contain at least one element of weight 1.

Let us now consider any u ∈ Fn
2 . By definition, VS(u) contains all sets VS(ei)

with i �∈ Supp(u) since the k = (n − wt(u)) words ei of weight (n − 1) belong
to Succ(u). As Matrix A has full rank, the k columns of A corresponding to the
monomials xei with i �∈ Supp(u) have rank k, implying that this k×n-submatrix
has at least k nonzero rows. These rows correspond to the words of weight 1
which belong to VS(u), implying that this set contains at least k vectors of
weight 1. �	

Example 4. The 4-bit Sbox used in Prince [3] (as well as all Sboxes with
similar properties recommended for any cipher within the Prince-family [4,
Appendix B]) has been chosen in such a way that all its nontrivial components
have degree 3. Then, we can guarantee that any set VS(u) contains at least
(4 − wt(u)) elements of weight 1. This can be checked on Table 4.

It is worth noticing that the condition exhibited in Corollary 3 offers a similar
guarantee for the inverse Sbox. Indeed, making the decryption function also
immune to this type of attacks may be relevant, even if mounting the attack on
the decryption function is much more difficult in practice because it requires the
knowledge of plaintext-ciphertext pairs corresponding to chosen ciphertexts.

Application to the Misty Sboxes. So far, the most important application of the
division property is the cryptanalysis of the full Misty1 [24]. It is then relevant
to study the Misty Sboxes in the light of the previous criteria. Misty1 is an
unbalanced Feistel network. It then uses two different Sboxes, which are both

678 C. Boura and A. Canteaut

Table 6. Minimum Hamming weight of VS7(u) depending on the Hamming weight
of u for the 7-bit Sbox in Misty1.

wt(u) 1 2 3 4 5 6 7

min{wt(v) : v ∈ VS7(u)} 1 1 1 or 2 2 2 4 7

Table 7. Minimum Hamming weight of VS9(u) depending on the Hamming weight
of u for the 9-bit Sbox in Misty1.

wt(u) 1 2 3 4 5 6 7 8 9

min{wt(v) : v ∈ VS9(u)} 1 1 2 2 3 3 4 4 9

linearly equivalent to a power permutation. More precisely, S7 is a permutation
of degree 3 of F7

2 and S9 is a permutation of degree 2 of F9
2.

We have then computed all sets VS(u) for each of these Sboxes. Most notably,
Tables 6 and 7 give the values of the minimal Hamming weight of an element
in VS(u) depending on the Hamming weight of u for the 7-bit Sbox S7 and
for the 9-bit Sbox S9 respectively. These tables then recover the results on the
propagation of the division property described in [24, p. 420]. The fact that,
for both Sboxes, many sets VS(u) have a large minimal weight show that the
two Misty Sboxes are weak regarding the division property. An interesting new
observation is that, for S7, for some vectors u of weight 3, for instance u = 0x0b,
VS7(u) does not contain any vector of weight 1. This equivalently means that
some monomials of degree 3 do not appear in any of the coordinates of S7.
This property of S7, which is more precise that the propagation of the division
property studied in [24], may then be exploited in an attack.

8 Conclusions

In some contexts, the notion of parity set provides a powerful tool for represent-
ing subsets. We have shown for instance that the division property has a simple
formulation in terms of parity sets, which allows to easily deduce some properties
of the sets satisfying the division property of a given order. Also, focusing on
the parity set, and not only on the minimal weight of its elements, enables the
attacker to capture some algebraic properties of the nonlinear functions used in
the cipher, besides the algebraic degree. This general view also brings to light
the properties of the Sbox which avoid this type of attacks. The counterpart is
that computing the whole parity set after many rounds of a cipher is obviously
more expensive than considering its minimal weight only, as this is done in the
division property. However, a promising technique consists in combining both
approaches where the first and last rounds are analysed with the whole parity
set, while the propagation through the middle rounds only exploits the degree of
the function. Another direction could be to use parity sets for identifying some
sets of weak keys. We have focused on distinguishers which hold for all keys.

Another View of the Division Property 679

But, the addition of an unknown key increases the size of the parity set, since
all words greater than or equal to the words in the input parity set must be
considered. A different approach then consists in considering only round keys of
a particular form. Then, the resulting parity set after key addition may simplify
a lot, and these particular round keys may then be easily detected.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
We also thank Willi Meier and Qingju Wang for insightful discussions.

A Advantages of the Distinguishers Based on Parity Sets

In order to estimate the advantages of the distinguishers exhibited in this paper,
we need to evaluate the probability that, given an input set X, a randomly chosen
permutation π is such that π(X) does not satisfy the division property of order 2.
For the weaker distinguisher, we similarly need to evaluate the probability that a
given u does not belong to U(π(X)). Clearly, the probability that π(X) satisfies
the division property of order 2 (i.e., is balanced) is close to 2−n, while the
probability that a given u does not belong U(π(X)) is close to 1/2. However,
these probabilities may vary with the size of X: for instance, if u is the all-zero
word, we have that u ∈ U(π(X)) if and only if |X| is odd. Also, if |X| is odd,
π(X) cannot satisfy the division property of order 2. A more careful analysis
seems therefore needed. The exact values of these probabilities confirming these
estimates are then given by the following propositions.

Proposition 11. Let u ∈ Fn
2 . The probability over all sets X ⊆ Fn

2 of size k
that u does not belong to U(X) is equal to

1
2

(
1 +

Pk(2n−wt(u))(
2n

k

)
)

,

where Pk(w) is the Krawtchouk polynomial

Pk(x) =
k∑

i=0

(−1)i

(
x

i

)(
2n − x

k − i

)
.

In particular, if wt(u) = 1, this probability equals
⎧⎨
⎩

1
2 if k is odd
1
2

(
1 + (−1)k/2 (2n−1

k/2)
(2nk)

)
� 1

2 if k is even.

Proof. From Lemma 2, u �∈ U(X) if and only if the product between the row Gu

of index u in Matrix G and the incidence vector of X vanishes. The row Gu is
a word of length 2n and weight 2n−wt(u) since Gu,v = 1 if and only if u � v.
Then we need to count the number of vectors vX of weight k such that the scalar

680 C. Boura and A. Canteaut

product Gu · vX = 0. It is known [10, Theorem 4.1] that, for any vector g of
length N = 2n, ∑

v∈FN
2 ,wt(v)=k

(−1)g·v = Pk(wt(g)).

Then,

Pr
X,|X|=k

[u �∈ U(X)] =
1
2

(
1 +

Pk(2n−wt(u))(
2n

k

)
)

.

In the special case where wt(u) = 1, we need to estimate the value of Pk(2n−1).
The generating function of the Krawtchouk polynomials is [23]

(1 + z)N−i(1 − z)i =
N∑

�=0

P�(i)z�.

We deduce that, for i = N/2, this generating function is (1− z2)N/2. It contains
monomials of even degree only, and then

P2�(N/2) = (−1)�

(
N/2

�

)
,

implying that

Pk(2n−1) =

{
0 if k is odd
(−1)k/2

(
2n−1

k/2

)
if k is even.

The probability that u does not belong to U(X) is then is very close to 1/2 in
all cases. Indeed, the ratio of the two binomial coefficients satisfies

(
2n−1

k/2

)
(
2n

k

) = Θ
(
2−2n−1H2(k

2n)
)

where H2 is the binary entropy, H2(x) = −x log2(x) − (1 − x) log2(1 − x). �	

Similarly, the probability that a set X of given size k satisfies the division
property of order d is determined by the number of codewords of weight k in the
Reed-Muller code of length 2n and order (n− d). There is no known formula for
this number in general, but it can be computed when d = 2, which is the case
corresponding to Todo’s distinguishers.

Proposition 12. The probability that a set X ⊆ Fn
2 of size k satisfies the divi-

sion property of order 2 is 0 if k is odd and

2−n + (−1)k/2(1 − 2−n)

(
2n−1

k/2

)
(
2n

k

) � 2−n,

if k is even.

Another View of the Division Property 681

Proof. The result comes from the weight distribution of the Reed-Muller code
R(n − 2, n). Since this code is the dual of R(1, n), its weight distribution can
be derived from the weight distribution of the dual code by the MacWilliams
transform [19, p. 129]: the number of codewords of weight k in R(n − 2, n) is

Ak = 2−(n+1)
(
Pk(0) + (2n+1 − 2)Pk(2n−1) + Pk(2n)

)
,

where the Pk(i) are the previously defined Krawtchouk polynomials. From the
generating function, we get that Pk(0) =

(
2n

k

)
and Pk(2n) = (−1)k

(
2n

k

)
, and the

value of Pk(2n−1) has been computed in the proof of the previous proposition.
The result then directly follows. �	

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

2. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

3. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

4. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - a low-latency block cipher for pervasive computing
applications (full version). Cryptology ePrint Archive, Report 2012/529 (2012).
http://eprint.iacr.org/2012/529

5. Boura, C., Canteaut, A.: On the Influence of the algebraic degree of F−1 on
the algebraic degree of G ◦ F . IEEE Trans. Inf. Theor. 59(1), 691–702 (2013).
http://hal.inria.fr/hal-00738398

6. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

7. Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: On cryptographic properties
of the cosets of R(1,m). IEEE Trans. Inf. Theor. 47(4), 1494–1513 (2001)

8. Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions
and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002)

9. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

10. Delsarte, P.: An algebraic approach to the association schemes of coding theory.
Ph.D. thesis, Université catholique de Louvain, Belgium (1973)

11. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. Cryptology ePrint Archive, Report 2015/418 (2015). http://eprint.iacr.
org/2015/418

http://eprint.iacr.org/2012/529
http://hal.inria.fr/hal-00738398
http://eprint.iacr.org/2015/418
http://eprint.iacr.org/2015/418

682 C. Boura and A. Canteaut

12. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

13. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

14. Khovratovich, D.: Private Communication (2016)
15. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE

1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)
16. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.

(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)
17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceedings of

Symposium on Communication, Coding and Cryptography, in Honor of Massey,
J.L. on the Occasion of his 60’th Birthday. Kluwer Academic Publishers (1994)

18. Leander, G., Poschmann, A.: On the classification of 4 bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

19. MacWilliams, F.J., Sloane, N.J.: The Theory of Error-Correcting Codes. North-
Holland, Secaucus (1977)

20. Muller, D.E.: Application of Boolean algebra to switching circuit design and to
error detection. IEEE Trans. Comput. 3, 6–12 (1954)

21. Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme.
IEEE Trans. Inf. Theor. 4, 38–49 (1954)

22. Sun, B., Hai, X., Zhang, W., Cheng, L., Yang, Z.: New observation on division
property. Cryptology ePrint Archive, Report 2015/459 (2015). http://eprint.iacr.
org/2015/459

23. Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium
Publications, New York (1959)

24. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.J.B.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg
(2015)

25. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015)

http://eprint.iacr.org/2015/459
http://eprint.iacr.org/2015/459

Author Index

Abe, Masayuki III-387
Agrawal, Shweta III-333
Alamati, Navid II-659
Albrecht, Martin I-153
Alwen, Joël II-241
Ananth, Prabhanjan II-491
Applebaum, Benny III-449

Bai, Shi I-153
Barbulescu, Razvan I-543
Bar-On, Achiya I-435
Baum, Carsten III-478
Beierle, Christof I-625, II-123
Bellare, Mihir I-247, I-373
Ben-Zvi, Adi I-179
Bin-Noon, Hod II-521
Biryukov, Alex II-93
Blackburn, Simon R. I-179
Blocki, Jeremiah II-241
Bogdanov, Andrej III-593
Boura, Christina I-654
Bourse, Florian II-62
Boyle, Elette I-509
Brakerski, Zvika I-190, II-551, III-363
Brzuska, Christina II-551

Camenisch, Jan III-208
Canteaut, Anne I-654
Carmer, Brent III-416
Cascudo, Ignacio III-179
Chase, Melissa III-499
Chen, Yu III-303
Ciampi, Michele III-270
Cogliati, Benoît I-121
Cohen, Ran III-240
Coretti, Sandro III-240
Coron, Jean-Sébastien II-607
Costello, Craig I-572
Couteau, Geoffroy I-308

Dai, Yuanxi I-95
Damgård, Ivan II-459, III-179, III-478
David, Bernardo III-179
Degabriele, Jean Paul I-403

Degwekar, Akshay III-533
Del Pino, Rafaël II-62
Derbez, Patrick II-157
Dinur, Itai II-185
Dodis, Yevgeniy I-341, III-93
Döttling, Nico III-179, III-619
Dubovitskaya, Maria III-208
Ducas, Léo I-153
Dulek, Yfke III-3
Dunkelman, Orr II-185
Dupuis, Frédéric III-33
Duval, Sébastien I-457
Dwork, Cynthia III-123
Dziembowski, Stefan II-272

Faust, Sebastian II-272
Fehr, Serge III-33
Fischlin, Marc II-521
Fleischhacker, Nils II-551, III-619
Fouque, Pierre-Alain II-157

Gagliardoni, Tommaso III-60
Ganesh, Chaya III-499
Garay, Juan III-240
Garg, Sanjam II-579, III-563
Gilboa, Niv I-509
Güneysu, Tim II-302
Guo, Jian I-605

Halevi, Shai III-93
Hanaoka, Goichiro II-3
Hazay, Carmit II-397
Hemenway, Brett III-149
Herold, Gottfried II-272
Herzberg, Amir II-521
Hirt, Martin II-335
Hoang, Viet Tung I-3
Hoshino, Fumitaka III-387
Hülsing, Andreas III-60

Ishai, Yuval I-509, II-430, III-593

Jafargholi, Zahra III-149
Jain, Aayush II-491

Jean, Jérémy II-123
Journault, Anthony II-272

Kane, Daniel I-373
Kaplan, Marc II-207
Keller, Nathan I-435, II-185
Kiltz, Eike II-33
Kim, Taechan I-543
Kölbl, Stefan II-123
Koppula, Venkata II-681
Kranz, Thorsten I-625
Krupp, Johannes III-619
Kumaresan, Ranjit II-366
Kunihiro, Noboru II-3
Kushilevitz, Eyal II-430

Lallemand, Virginie I-457
Lamontagne, Philippe III-33
Larsen, Kasper Green III-478
Leander, Gregor I-625, II-123
Lee, Moon Sung II-607
Lepoint, Tancrède II-607
Leurent, Gaëtan II-207
Leverrier, Anthony II-207
Libert, Benoît III-333
Liu, Meicheng I-605
Longa, Patrick I-572

Masny, Daniel II-33, II-272
Maurer, Ueli II-335
Mennink, Bart I-64
Miles, Eric II-629
Minelli, Michele II-62
Mironov, Ilya I-341
Mohassel, Payman III-499, III-563
Moradi, Amir II-123, II-302

Naehrig, Michael I-572
Naor, Moni II-491, III-123
Naya-Plasencia, María II-207
Nielsen, Jesper Buus II-459, III-179
Nielsen, Michael III-478

Ohkubo, Miyako III-387
Ostrovsky, Rafail III-149, III-270

Pan, Jiaxin II-33
Pandey, Omkant II-579
Papamanthou, Charalampos III-563

Paterson, Kenneth G. I-403
Peikert, Chris II-659
Perlman, Renen I-190
Perrin, Léo II-93
Peters, Thomas I-308
Peyrin, Thomas I-33, II-123
Pointcheval, David I-308
Polychroniadou, Antigoni II-459
Prabhakaran, Manoj II-430

Qu, Longjiang I-605

Raghuraman, Srinivasan II-366
Raskin, Michael II-459
Raykov, Pavel III-449
Rial, Alfredo III-208
Rijmen, Vincent I-605
Rogaway, Phillip I-373
Rosulek, Mike III-416
Rotella, Yann I-457
Rothblum, Guy N. III-123
Rothblum, Ron D. III-93

Sahai, Amit II-430, II-491, II-629
Salvail, Louis III-33
Sasaki, Yu II-123
Sasdrich, Pascal II-123
Scafuro, Alessandra III-149
Schaffner, Christian III-3, III-60
Schneider, Tobias II-302
Schröder, Dominique III-619
Schuldt, Jacob C.N. I-403
Sealfon, Adam II-366
Seurin, Yannick I-33, I-121
Shamir, Adi II-185
Shrimpton, Thomas I-277
Shulman, Haya II-521
Sim, Siang Meng II-123
Siniscalchi, Luisa III-270
Speelman, Florian III-3
Srinivasan, Akshayaram II-579
Stam, Martijn I-277
Standaert, François-Xavier II-272
Stehlé, Damien III-333
Steinberger, John I-95
Stephens-Davidowitz, Noah I-341
Sun, Bing I-605

Tackmann, Björn I-247
Tessaro, Stefano I-3

684 Author Index

Tibouchi, Mehdi II-607
Tsaban, Boaz I-179
Tschudi, Daniel II-335

Udovenko, Aleksei II-93

Vaikuntanathan, Vinod III-363, III-533
Vasudevan, Prashant Nalini III-533
Venkitasubramaniam, Muthuramakrishnan

II-397
Viola, Emanuele III-593
Visconti, Ivan III-270

Warinschi, Bogdan I-277
Waters, Brent II-681

Wee, Hoeteck II-62
Wichs, Daniel III-93, III-149
Williamson, Christopher III-593
Woodage, Joanne I-403

Yamada, Shota II-3
Yamakawa, Takashi II-3
Yogev, Eylon II-491
Yu, Ching-Hua II-430
Yu, Yu I-214

Zhandry, Mark I-479, II-629
Zhang, Jiang I-214, III-303
Zhang, Zhenfeng III-303
Zikas, Vassilis II-335, III-240

Author Index 685

	Preface
	Crypto 2016 The 36th IACR International Cryptology Conference
	Contents -- Part I
	Provable Security for Symmetric Cryptography
	Key-Alternating Ciphers and Key-Length Extension: Exact Bounds and Multi-user Security
	1 Introduction
	2 Preliminaries
	3 Indistinguishability Proofs via Point-Wise Proximity
	3.1 The Indistinguishability Framework
	3.2 Point-Wise Proximity
	3.3 From Single-User to Multi-user Security

	4 Exact Bounds for Key-Alternating Ciphers
	4.1 Results and Discussion
	4.2 Proof of Theorem1
	4.3 Multi-user Security of KAC

	5 XOR Cascades
	References

	Counter-in-Tweak: Authenticated Encryption Modes for Tweakable Block Ciphers
	1 Introduction
	2 Counter-in-Tweak for Beyond-Birthday Security
	3 Preliminaries
	4 The CTRT Encryption Mode
	4.1 Syntax and Security of nivE Schemes
	4.2 Definition and Analysis of the CTRT Mode

	5 The PWC and EPWC Message Authentication Codes
	6 The SCT Mode
	6.1 The NSIV Construction
	6.2 From NSIV to SCT

	References

	XPX: Generalized Tweakable Even-Mansour with Improved Security Guarantees
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.3 Outline

	2 Preliminaries
	2.1 Single-Key Security Model
	2.2 Related-Key Security Model
	2.3 Patarin's Technique

	3 XPX
	4 Valid Tweak Sets
	4.1 Examples of Valid Tweak Spaces
	4.2 Minimality of Definition1

	5 Security of XPX
	5.1 Minimality of the Conditions of Theorem 1
	5.2 Proof of Theorem 1(a)

	6 Application to Authenticated Encryption
	6.1 Security Model
	6.2 Prøst-COPA
	6.3 Minalpher

	7 Application to MAC
	7.1 Security Model
	7.2 Chaskey
	7.3 Keyed Sponge

	References

	Indifferentiability of 8-Round Feistel Networks
	1 Introduction
	2 Definitions and Main Result
	3 High-Level Simulator Overview
	4 Proof Overview
	References

	EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-Misuse Resistant MAC
	1 Introduction
	2 Preliminaries
	3 Wegman-Carter MAC Constructions
	3.1 The Standard Wegman-Carter Construction
	3.2 Nonce-Misuse Resistance and the Encrypted Wegman-Carter Construction
	3.3 The New Construction EWCDM

	4 Nonce-Respecting Security of EWCDM
	4.1 Statement of the Result and Overview of the Proof
	4.2 Definition and Probability of Bad Transcripts
	4.3 Analysis of Good Transcripts

	5 Nonce-Misuse Security of EWCDM
	References

	Asymmetric Cryptography and Cryptanalysis I
	A Subfield Lattice Attack on Overstretched NTRU Assumptions
	1 Introduction
	2 Preliminaries
	2.1 Number Fields and Subfields
	2.2 Coprimality in OL
	2.3 Euclidean Geometry
	2.4 OK Modules and Lattices
	2.5 NTRU Assumption
	2.6 Lattice Reduction Algorithms

	3 The Subfield Lattice Attack
	3.1 Norming Down
	3.2 Lattice Reduction in the Subfield
	3.3 Lifting the Short Vector
	3.4 Asymptotic Performance

	4 Applications
	4.1 Fully Homomorphic Encryption
	4.2 Graded Encoding Schemes

	5 Experimental Verification
	6 Conclusions
	References

	A Practical Cryptanalysis of the Algebraic Eraser
	1 Introduction
	2 Notation
	3 The CBKAP Protocol
	3.1 Overview
	3.2 The Protocol

	4 The Proposed Attack
	5 Experiments and Conclusion
	References

	Lattice-Based Fully Dynamic Multi-key FHE with Short Ciphertexts
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Other Related Work

	2 Preliminaries
	2.1 Homomorphic Encryption and Bootstrapping
	2.2 Multi-key Homomorphic Encryption
	2.3 Barrington's Theorem and an On-the-Fly Variant
	2.4 Learning with Errors and the Gadget Matrix

	3 Building Blocks from Previous Works
	3.1 Noise Level of Matrices and Vectors
	3.2 A Single-Hop Multi-key Homomorphic Encryption Scheme

	4 Our Fully Dynamic Multi-key FHE Scheme
	4.1 Homomorphic Evaluation

	A Leveled Multi-key Fully Homomorphic Encryption
	References

	Cryptography with Auxiliary Input and Trapdoor from Constant-Noise LPN
	1 Introduction
	2 Preliminaries
	3 Learning Parity with Noise with Auxiliary Input
	3.1 Leaky Sources and (Pseudo)randomness Extraction
	3.2 The Main Technical Lemma and Immediate Applications

	4 CPA Secure PKE from Constant-Noise LPN
	4.1 Technical Lemmas
	4.2 Weakly Correct 1-bit PKE from Constant-Noise LPN
	4.3 CPA Secure PKE from Constant-Noise LPN
	4.4 Which X Makes a Correct Scheme?

	5 CCA-Secure PKE from Constant-Noise LPN
	5.1 Tag-Based Encryption
	5.2 Our Construction

	A Definitions and Security Notions
	A.1 Symmetric-Key Encryption Schemes with Auxiliary Input
	A.2 Public-Key Encryption Schemes

	B Facts, Lemmas, Inequalities and Proofs Omitted
	References

	Cryptography in Theory and Practice
	The Multi-user Security of Authenticated Encryption: AES-GCM in TLS 1.3
	1 Introduction
	2 Preliminaries
	3 Multi-user Security of Symmetric Encryption
	4 The Schemes
	5 Key-Recovery Security
	5.1 Security of CAU
	5.2 Security of RCAU
	5.3 Security of XCAU

	6 Indistinguishability Security
	6.1 Preparation: A Lemma on CAU
	6.2 Security of CAU
	6.3 Security of RCAU
	6.4 Security of XCAU

	7 Conclusion
	References

	A Modular Treatment of Cryptographic APIs: The Symmetric-Key Case
	1 Introduction
	2 Cryptographic Primitives
	3 Cryptographic APIs
	3.1 Modeling and Syntax
	3.2 Correctness of a Cryptographic API
	3.3 Correctness of an API's Key Management
	3.4 Security of a Cryptographic API
	3.5 Security of an API's Key Management
	3.6 Stickyness: Attribute Security

	4 The Power of Key Management
	5 Instantiating a KM-API
	6 Related Work
	7 Conclusion
	References

	Encryption Switching Protocols
	1 Introduction
	2 Two-Party Computation from ESPs
	2.1 Definitions
	2.2 Security Notions
	2.3 Computational Equality
	2.4 Ring-Homomorphic Encryption Schemes
	2.5 General Secure Two-Party Computation

	3 Applications
	4 An Encryption Switching Protocol over Zn *
	4.1 Computational Assumptions
	4.2 Zn-P: The Paillier Encryption Scheme on Zn
	4.3 Zn *-EG: An ElGamal Variant in Zn *
	4.4 Zn *-ESP : Encryption Switching Protocols on Zn *

	5 An Encryption Switching Protocol over the Ring Zn
	5.1 Zn-EG: Zero-Handling ElGamal Encryption Scheme in Zn
	5.2 Encrypted Zero Test
	5.3 Encryption Switching Protocols on Zn

	6 Security Against Malicious Adversaries
	6.1 Refreshable Twin-Ciphertext Pool
	6.2 Zero-Knowledge Proofs
	6.3 Ensuring Honest Behavior in ESP Protocols
	6.4 From Secure ESP to Secure 2-PC
	6.5 Exponential Relations Among Committed Values

	References

	Compromised Systems
	Message Transmission with Reverse Firewalls---Secure Communication on Corrupted Machines
	1 Introduction
	1.1 Reverse Firewalls
	1.2 Our Results
	1.3 Related Work

	2 Definitions
	2.1 Reverse Firewalls
	2.2 Message-Transmission Protocols
	2.3 Key Agreement

	3 A Two-Round Protocol from Rerandomizable Encryption
	3.1 Hybrid encryption fails.

	4 A Solution Using Key Agreement
	4.1 Key Agreement Secure Against Passive Adversaries

	5 CCA-security Using Key Agreement
	5.1 Key Agreement Secure Against Active Adversaries

	References
	A The symmetric-key setting
	B Less efficient one-round protocols
	B.1 One-round CPA-secure protocols
	B.2 A one-round CCA-secure protocol

	Big-Key Symmetric Encryption: Resisting Key Exfiltration
	1 Introduction
	2 Notation
	3 The Subkey Prediction Lemma
	4 Encapsulating a Key
	5 Big-Key Symmetric Encryption
	6 Standard-Model Big-Key Encryption
	7 Authenticity and Hedged Big-Key Encryption
	References

	Backdoors in Pseudorandom Number Generators: Possibility and Impossibility Results
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Entropy
	2.3 Cryptographic Primitives
	2.4 Pseudorandom Generators
	2.5 Backdoored Pseudorandom Generators
	2.6 Pseudorandom Number Generators with Input
	2.7 Security for Pseudorandom Number Generators with Input

	3 Stronger Models and New Constructions for Backdoored Pseudorandom Generators
	3.1 Backdoored PRGSecurity Models
	3.2 Forward-Secure BPRGsin the Random Oracle Model
	3.3 Standard Model, Forward-Secure BPRGs from Reverse Re-randomizable Encryption

	4 Backdooring PRNGs with Input
	4.1 A Simple Backdoored PRNG
	4.2 Formal Definition for Backdoored PRNGs with Input
	4.3 Backdoored PRNG Construction
	4.4 Extensions and Modifications of Our Main Construction

	5 On the Inherent Resistance of PRNGs with Input to Backdoors
	5.1 An Impossibility Result
	5.2 Discussion and Open Problems

	References

	Symmetric Cryptanalysis
	A 270 Attack on the Full MISTY1
	1 Introduction
	2 Brief Description of MISTY1
	2.1 Notations Used in the Paper

	3 Integral Cryptanalysis Using Division Property and Its Application to MISTY1
	3.1 Integral Cryptanalysis
	3.2 Division Property
	3.3 An Integral Characteristic of 6-round MISTY1
	3.4 Todo's Integral Attack on Full MISTY1

	4 Improved Attack on Full MISTY1
	4.1 Using Todo's Characteristic in the Decryption Direction
	4.2 Preliminaries
	4.3 A New Integral Attack on Full MISTY1 -- The First Phase
	4.4 A New Integral Attack on Full MISTY1 -- The Second Phase

	5 Summary and Conclusions
	References

	Cryptanalysis of the FLIP Family of Stream Ciphers
	1 Introduction
	2 Description of the FLIP Family of Stream Ciphers
	2.1 General Idea: The Filter Permutator Structure
	2.2 The FLIP Family of Stream Ciphers

	3 Preliminary Remarks on the Vulnerabilities of the FLIP Family of Stream Ciphers
	3.1 Attack Scenario and Computation Model
	3.2 The FLIP Family of Stream Ciphers and Guess-and-Determine Attacks
	3.3 Observations on the Boolean Function F
	3.4 Probability of Cancelling all the High-Degree Monomials of F Given that Input Variables are Null

	4 Our Attack
	4.1 Description
	4.2 Discussion and Possible Improvements

	5 Description of the Algorithm
	6 Verification of the Attack on a Toy Version
	7 Conclusion
	References

	Crypto 2016 Award Papers
	The Magic of ELFs
	1 Introduction
	1.1 Our Work
	1.2 Complexity Absorption
	1.3 Non-black Box Simulation
	1.4 On the Minimal Assumptions Needed to Build ELFs

	2 Preliminaries
	3 Extremely Lossy Functions
	3.1 Constructing ELFs

	4 Point Function Obfuscation
	4.1 The Construction

	5 Output Intractability
	5.1 The Construction

	6 Leakage-Resilient PRGs, AIPO and Poly-Many Hardcore Bits
	6.1 The Construction
	6.2 Applications
	6.3 Difficulty of Realizing Applications

	References

	Breaking the Circuit Size Barrier for Secure Computation Under DDH
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of Techniques
	1.3 Future Directions

	2 Preliminaries
	2.1 DDH and Circular Security

	3 Homomorphic Secret Sharing for Branching Programs
	3.1 Share Conversion Procedure
	3.2 Homomorphic Secret Sharing
	3.3 Public-Key HSS for Branching Programs
	3.4 Removing the Circular Security Assumption

	4 Applications
	4.1 Succinct Protocols for Branching Programs
	4.2 Breaking the Circuit Size Barrier for ``Well Structured'' Circuits
	4.3 Function Secret Sharing and Generalized PIR

	5 Examples and Optimizations
	References

	Algorithmic Number Theory
	Extended Tower Number Field Sieve: A New Complexity for the Medium Prime Case
	1 Introduction
	2 Extended TNFS
	2.1 Setting
	2.2 Detailed Descriptions

	3 Complexity
	3.1 exTNFS-JLSV2
	3.2 exTNFS-GJL
	3.3 exTNFS-Conj

	4 Variants
	4.1 The Case When p has a Special Form (SexTNFS)
	4.2 The Multiple Polynomial Variants (MexTNFS)

	5 Comparison and Examples
	5.1 Precise Comparison When p is Arbitrary
	5.2 Precise Comparison When p is SNFS

	6 On the Necessity to Update Key Sizes
	7 Cryptologic Consequences
	A Non-linear Polynomials
	B Individual Logarithm
	References

	Efficient Algorithms for Supersingular Isogeny Diffie-Hellman
	1 Introduction
	2 Diffie-Hellman Key Exchange from Supersingular Elliptic Curve Isogenies
	3 Projective Points and Projective Curve Coefficients
	4 Parameters and Implementation Choices
	5 Field Arithmetic
	6 SIDH Implementation Summary
	7 SIDH Performance
	8 BigMont: A Strong ECDH+SIDH Hybrid
	9 Validating Public Keys
	10 Conclusion
	References

	Symmetric Primitives
	New Insights on AES-Like SPN Ciphers
	1 Introduction
	1.1 Distinguishers
	1.2 Key-Recovery Attacks
	1.3 Details of the Components of a Cipher
	1.4 Our Contributions

	2 Preliminaries
	2.1 Boolean Functions
	2.2 SPN and AES-Like SPN Ciphers

	3 Zero-Correlation Linear Cryptanalysis of AES-Like SPN Ciphers
	3.1 Zero-Correlation Linear Hull of 4-round AES-Like Ciphers
	3.2 New Cryptanalysis of 5-round AES-Like Ciphers

	4 Integrals for the AES-Like SPN Ciphers
	5 Application to Hashing Schemes
	6 Application to AES
	7 Conclusion
	References

	Lightweight Multiplication in GF(2n) with Applications to MDS Matrices
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Some Basic Facts About Linear Transformations
	2.2 The XOR-Count and the Cycle Normal Form

	3 Efficient Multiplication in Finite Fields
	3.1 Characterizing Elements with Optimal XOR-Count
	3.2 Experimental Search for Optimal XOR-Counts

	4 Constructing Lightweight MDS Matrices
	4.1 Generic Lightweight MDS Matrices
	4.2 Instantiating Lightweight MDS Matrices

	5 Generalizing the MDS Property
	6 Conclusion and Open Problems
	A Proofs
	B Minimal XOR-Counts in F2n
	References

	Another View of the Division Property
	1 Introduction
	2 Parity Set of a Set
	2.1 Preliminaries
	2.2 Parity Set of a Set

	3 New Insights into the Division Property
	3.1 The Division Property by Means of Parity Sets
	3.2 Division Property of Low Order
	3.3 Division Property of High Order

	4 Distinguishers Based on Parity Sets
	4.1 Todo's Distinguishers
	4.2 Improving Todo's Distinguishers

	5 Exhibiting Distinguishers on SPN by Means of Parity Sets
	5.1 Propagation Through Key Addition
	5.2 Propagation Through an Sbox
	5.3 Propagation Through One Round

	6 Low-Data Distinguishers on a Few Rounds of Present
	6.1 Distinguisher on 3 Rounds
	6.2 Distinguisher on 4 Rounds
	6.3 Distinguishers on 5 and 6 Rounds
	6.4 Distinguishers Using More Data
	6.5 Changing the Sbox

	7 Related Security Criterion for the Sbox
	8 Conclusions
	A Advantages of the Distinguishers Based on Parity Sets
	References

	Author Index

