How to Prove Knowledge of Small Secrets

Carsten Baum®™) | Tvan Damgard, Kasper Green Larsen, and Michael Nielsen

Department of Computer Science, Aarhus University, Aarhus, Denmark
{cbaum,ivan,larsen,mik}@cs.au.dk

Abstract. We propose a new zero-knowledge protocol applicable to
additively homomorphic functions that map integer vectors to an Abelian
group. The protocol demonstrates knowledge of a short preimage and
achieves amortised efficiency comparable to the approach of Cramer and
Damgard from Crypto 2010, but gives a much tighter bound on what
we can extract from a dishonest prover. Towards achieving this result,
we develop an analysis for bins-and-balls games that might be of inde-
pendent interest. We also provide a general analysis of rewinding of a
cut-and-choose protocol as well as a method to use Lyubachevsky’s rejec-
tion sampling technique efficiently in an interactive protocol when many
proofs are given simultaneously.

Our new protocol yields improved proofs of plaintext knowledge for
(Ring-)LWE-based cryptosystems, where such general techniques were
not known before. Moreover, they can be extended to prove preimages
of homomorphic hash functions as well.

Keywords: Proofs of plaintext knowledge - Lattice-based encryption -
Homomorphic hashing - Integer commitments

1 Introduction

Proofs of Knowledge. In a zero-knowledge protocol, a prover convinces a
sceptical verifier that some claim is true (and in some cases that he knows a
proof) while conveying no other knowledge than the fact that the claim is true.
Zero-knowledge protocols are one of the most fundamental tools in cryptographic
protocol design. In particular, one needs zero-knowledge proofs of knowledge in
multiparty computation to have a player demonstrate that he knows the input
he is providing. This is necessary to be able to show (UC-)security of a protocol.

C. Baum, I. Damgard and M. Nielsen—Supported by The Danish National Research
Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computa-
tion, within which part of this work was performed; by the CFEM research center
(supported by the Danish Strategic Research Council) within which part of this work
was performed; and by the Advanced ERC grant MPCPRO.

K.G. Larsen—Supported by the Center for Massive Data Algorithmics, a Center of
the Danish National Research Foundation, grant DNRF84, a Villum Young Investi-
gator Grant and an AUFF Starting Grant.

© International Association for Cryptologic Research 2016

M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 478-498, 2016.
DOI: 10.1007/978-3-662-53015-3_17

How to Prove Knowledge of Small Secrets 479

In this work, we will consider one-way functions f : Z" +— G where G is
an Abelian group (written additively in the following), and where furthermore
the function is additively homormorphic, i.e., f(a) + f(b) = f(a + b). We will
call such functions wOWF’s (for homomorphic One-Way Functions over Integer
Vectors). This turns out to be a very general notion: the encryption function of
several (Ring-)LWE-based cryptosystems can be seen an ivOWF (such as the
one introduced in [BGV12] and used in the so-called SPDZ protocol [DPSZ12]).
Even more generally, the encryption function of any semi-homomorphic cryp-
tosystem as defined in [BDOZ11] is an ivOWF. Also, in commitment schemes
for committing to integer values, the function one evaluates to commit is typ-
ically an ivOWF (see, e.g., [DF02]). Finally, hash functions based on lattice
problems such as [GGH96, LMPROS8], where it is hard to find a short preimage,
are ivOWFs.

We will look at the scenario where a prover P and a verifier V are given
y € G and P holds a short preimage x of y, i.e., such that ||z|| < S for some
B. P wants to prove in zero-knowledge that he knows such an . When f is an
encryption function and y is a ciphertext, this can be used to demonstrate that
the ciphertext decrypts and P knows the plaintext. When f is a commitment
function this can be used to show that one has committed to a number in a
certain interval.

An obvious but inefficient solution is the following 3-message protocol :

(1) P chooses r at random such that ||r|| < 7 - for some sufficiently large 7,
the choice of which we return to below.

(2) P then sends a = f(7) to V.

(3) V sends a random challenge bit b.

(4) P responds with z =r+b- x.

(5) V checks that f(z) =a+b-y and that ||z|| < 7- .

If 7 is sufficiently large, the distribution of z will be statistically independent of
x, and the protocol will be honest verifier statistical zero-knowledge'. On the
other hand, we can extract a preimage of y from a cheating prover who can
produce correct answers zg, z1 to b = 0,b = 1, namely f(z; — z¢) = y. Clearly,
we have ||z1 — z¢|| < 2-7-3. We will refer to the factor 27 as the soundness slack
of the protocol, because it measures the discrepancy between the interval used
by the honest prover and what we can force a dishonest prover to do. The value
of the soundness slack is important: if f is, e.g., an encryption function, then a
large soundness slack will force us to use larger parameters for the underlying
cryptosystem to ensure that the ciphertext decrypts even if the input is in the
larger interval, and this will cost us in efficiency.

The naive protocol above requires an exponentially large slack to get zero-
knowledge, but using Lyubachevsky’s rejection sampling technique, the sound-
ness slack can made polynomial or even constant (at least in the random oracle
model).

! We will only be interested in honest verifier zero-knowledge here. In applications one
would get security for malicious verifiers by generating the challenge in a trusted way,
e.g., using a maliciously sure coin-flip protocol.

480 C. Baum et al.

The obvious problem with the naive solution is that one needs to repeat the
protocol k times where k is the statistical security parameter, to get soundness
error probability 27%. This means that one needs to generate 2(k) auxiliary
f-values. We will refer to this as the overhead of the protocol and use it as a
measure of efficiency.

One wants, of course as small overhead and soundness slack as possible, but
as long as we only want to give a proof for a single f-value, we do not know
how to reduce the overhead dramatically in general. But if instead we want to
give a proof for k or more f-values, then we know how to reduce the amortised
overhead: Cramer and Damgard [CD09] show how to get amortised overhead
O(1), but unfortunately the soundness slack is 2(¥), even if rejection sampling
is used. In [DKL+13] two protocols were suggested, where one is only covertly
secure, and we will not consider it here as our goal is full malicious security. The
other one can achieve polynomial soundness slack with overhead 2(log(k)?) and
works only in the random oracle model?.

1.1 Contributions and Techniques

In this work, we introduce a new paradigm for zero-knowledge proof of knowledge
of preimage under an ivOWF, abbreviated ZKPoKP. For the first time, we are
able to optimize both parameters, namely we obtain quasi-polynomial soundness
slack (proportional to (2k 4 1)1°8(®)/2) and o(1) ciphertext overhead, all results
hold in the standard model (no random oracles are needed).

For our zero-knowledge proof, we use the following high-level strategy:

(1) Use a cut-and-choose style protocol for the inputs yi, ..., yn-
(2) Repeat the following experiment several times:
(2.1) Let the verifier randomly assign each y; to one of several buckets.
(2.2) For each bucket, add all elements that landed in the bucket and have
the prover demonstrate that he knows a preimage of the sum.

The intuition behind the proof then goes as follows: the first step will ensure that
we can extract almost all of the required n preimages, in fact all but k& where
k is the security parameter. In the second step, since we only have k elements
left that were “bad” in the sense that we could not yet extract a preimage,
then if we have more than k buckets, say ck for a constant ¢ > 1, there is a
significant probability that many of the bad elements will be alone in a bucket.
If this happens, we can extract a preimage by linearity of f. Furthermore, the
cost of doing such a step is at most n additions, plus work that only depends
on the security parameter k and is insignificant if n > k. We can now repeat
the experiment some number of times to extract the remaining bad elements,

2 The protocol in [DKL+13] is actually stated as a proof of plaintext knowledge for
random ciphertexts, but generalizes to a protocol for ivOWFs. It actually offers a
tradeoff between soundness slack and overhead in the sense that the overhead is
M -log(k), where M has to be chosen such that (1/s)™ is negligible. Thus one can
choose s to be poly(k) and M = log(k), or s to be constant and M = k.

How to Prove Knowledge of Small Secrets 481

while adjusting the number of buckets carefully. We are then able to prove that
we can extract all preimages quickly, namely after log(k) repetitions, and this is
what give us the small soundness slack. In comparison, in [CD09], the extraction
takes place in §2(k) stages, which leads to an exponential soundness slack.

Along the way to our main result, we make two technical contributions: first,
we show a general result on what you can extract by rewinding from a prover
that successfully passes a cut-and-choose test. Second, we show a method for
using rejection sampling efficiently in an interactive protocol. In comparison, the
protocol from [DKL+13] also used rejection sampling to reduce the soundness
slack, but in a more simplistic way that leads to a larger overhead. See Sect. 3.1
for more information on this.

Our protocol is honest verifier zero-knowledge and is sound in the sense of a
standard proof of knowledge, i.e., we extract the prover’s witness by rewinding.
Nevertheless, the protocol can be readily used as a tool in a bigger protocol that
is intended to be UC secure against malicious adversaries. Such a construction is
already known from [DPSZ12]. See more details in Sect. 4. Here we also explain
more concretely how to use our protocol when f is an encryption function.

1.2 Related Work

On a high level, our approach is related to Luby Transform (LT) codes [Lub02]:
here, a sender encodes a codeword by splitting it into blocks of equal size and
then sending random sums of these, until the receiver is able to reconstruct
all such blocks (because all sums are formed independently, this yields a so-
called erasure code). We could actually use the LT code approach to construct a
protocol like ours, but it would not be a good solution: LT codes do not have to
consider any noise expansion because they handle vectors over Zs, rather than
integer vectors. This is a problem since in the worst case a block is reconstructed
after n operations, where n is the number of blocks in total, which yields a noise
bound that is exponential.

The same bound can be achieved using the technique due to Cramer and
Damgard [CD09]. The main technique is to prove linear combinations of cipher-
texts using regular 1 out of 2 zero-knowledge proofs. If enough equations are
proven correctly, then one can use gaussian elimination to recompute the plain-
texts. Unfortunately (as with LT codes) this leads to a blowup in the preimage
size that can be exponential, which is not desireable for practical applications.

A different amortization technique was introduced in [DKL+13] and further
improved in the full version of [BDTZ16]. The basic idea here is to produce
a large number of auziliary ciphertexts, open a part of them and open sums
of the plaintexts to be proven and the plaintexts of the auxiliary ciphertexts.
This experiment is repeated multiple times, and a combinatorial argument as in
[NO09] can then be used to estimate the error probability. As already mentioned
above, this proof technique needs £2(log(k))? auxiliary ciphertexts per proven
plaintext, which can be quite substantial for practical applications.

There has been other work conducted for specialized instances of ivOWFs,
such as e.g. the proof of plaintext knowledge from [BCK+14] which only applies

482 C. Baum et al.

to Ring-LWE schemes®. Moreover the protocol of [LNSW13] can be applied to
ivOWFs with a lattice structure, but the protocol comes with a large soundness
gap per instance.

Notation. Throughout this work we will format vectors such as b in lower-case
bold face letters, whereas matrices such as B will be in upper case. We refer to
the ith position of vector b as b[i], let [r] := {1,...,7} and define for b € Z" that
||b]| = max;c[{|b[i]|}. To sample a variable g uniformly at random from a set

G we use g 2. Throughout this work we will let A be a computational and k
be a statistical security parameter. Moreover, we use the standard definition for
polynomial and negligible functions and denote those as poly(-), negl(-).

2 Homomorphic OWFs and Zero-Knowledge Proofs

In this section we will present an abstraction that covers as a special case proofs
of plaintext knowledge for lattice-based cryptosystems, and many other cases
as well, as explained in the introduction. We call the abstraction homomorphic
one-way functions over integer vectors. It follows the standard definition of a
OWF which can be found in [KL14].

Let A € N be the security parameter, G be an Abelian group, 5,7 € N,
f:7Z" — G be a function and A be any algorithm. Consider the following game:

InvertAvf”@()\):
(1) Choose x € Z", ||z|| < 8 and compute y = f(x).
(2) On input (1*,y) the algorithm A computes an z’.
(3) Output 1iff f(x') =y, ||z’|| < B, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)). A
function f : Z" — G is called a homomorphic one-way function over the integers
if the following conditions hold:

(1) There exists a polynomial-time algorithm evaly such that evaly(x) = f(x)
forallzeZ".

(2) For all z, @ € Z" it holds that f(x) + f(2) = f(x+ o).

(8) For every probabilistic polynomial-time algorithm A there exists a negligible
function negl(X) such that

Prlinvert 4 r g(A) = 1] < negl(\)

Our definition is rather broad and does capture, among other primitives,
lattice-based encryption schemes such as [BGV12,GSW13,BV14] where the one-
way property is implied by IND-CPA and f is as large as the plaintext space.
Moreover it also captures hash functions such as [GGH96,LMPROS], where it is
hard to find a preimage for all sufficiently short vectors that have norm smaller
than 3.

3 Their approach only almost yields a proof a plaintext knowledge, due to technical
limitations.

How to Prove Knowledge of Small Secrets 483

2.1 Proving Knowledge of Preimage

Consider a setting with two parties P and V. P holds some values @1, ..., ¢, € Z",
V has some yq,...,y, € R and P wants to prove towards V that y; = f(x;)
and that x; is short, while not giving any knowledge about the x; away. More
formally, the relation that we want to give a zero-knowledge proof of knowledge
for is

RKSP = {(va) v = (yl: 7yn) ANw = (11717 cey mn)/\

= 1@ Al < Ay |

However, like all other protocols for this type of relation, we will have to
live with a soundness slack T as explained in the introduction. What this means
more precisely is that there must exist a knowledge extractor with properties
exactly as in the standard definition of knowledge soundness, but the extracted
values only have to satisfy [y; = f(z:) Allzi|| < 7 - Bligpn)-

3 Proofs of Preimage

We start by constructing an imperfect proof of knowledge. That is, the protocol
will allow to prove the above relation with a certain soundness slack, but the
knowledge extractor is only required to extract almost all preimages. Further-
more, we will use this protocol as a subprotocol in our actual proof of knowledge.
To show knowledge soundness, Goldreich and Bellare [BG93] have shown that it
is sufficient to consider deterministic provers, therefore we only need to consider
deterministic provers when proving the subprotocol.

On the Use of Rejection Sampling. Conceptually, the idea is to run the naive 3-
message protocol 7 from the intro once for each of the n instances to prove. How-
ever, in order to have a small soundness slack, we want to make use of Lyuba-
shevsky’s rejection sampling technique [Lyu08,Lyu09]. The idea here is that the
prover will sometimes abort the protocol after seeing the challenge if he notices
that the random choices he made in the first message will lead him to reveal infor-
mation about his witness if he were to send the final message. This is fine when
used with the Fiat-Shamir heuristic because the prover only has to communicate
the successful execution(s). But in our interactive situation, one has to allow for
enough failed attempts so that the honest prover will succeed. The most straight-
forward idea is to have the prover start up one execution of 7 in parallel for each
instance, complete those that are successful and try again for the rest (this was
essentially the approach taken in [DKL+13]). The expected number of attempts
needed is constant, so we get a protocol that is expected constant round, but may
sometimes run for a longer time. Alternatively, the prover could start so many
attempts in parallel for each instance that he is sure to finish one of them. This
will be exact constant round but wasteful in terms of work needed.

484 C. Baum et al.

Here, we obtain the best of both worlds. The idea is the following: we can
make a large list L of T candidates for the prover’s first message, and then
do standard cut-and-choose where we open half of them to show that most of
the remaining ones are correctly formed. Now, for every instance to prove, the
prover will take the first unused one from L that leads to success and complete
the protocol for that one. Again, since the ezpected number of attempts for one
instance is very close to 1, and we run over many instances, L only needs to be
of length O(n), the prover will run out of candidates only with negligible prob-
ability. Further, since this can all be done in parallel, we get an exact constant
round protocol.

On Eaxtraction by Rewinding from Cut-and-Choose. When we need to extract
knowledge from the prover in the imperfect proof, we need to exploit the fact
that we do cut-and-choose on the list of candidates L as mentioned above, where
each candidate is an image under f. If we just wanted to establish that most of
the candidates are well formed in the sense that they are images of short enough
inputs, it would be easy: if each candidate is opened with probability 1/2, then
if more than k£ candidates are not well formed, the prover clearly survives with
probability at most 27%. However, we have to actually extract preimages of
almost all candidates. Since we want to avoid using random oracles or other
set-up assumptions, we can only resort to rewinding. Now it is not so clear what
happens: it may be that all candidates are well formed, but the corrupt prover
has some (unknown to us) strategy for which challenges he wants to respond to
correctly. All we know is that he will answer a non-negligible fraction of them.
We show that nevertheless, there is a rewinding strategy that will do almost as
well as in the easy case, and we treat this in a separate general lemma, as we
believe the solution to this is of independent interest.

To establish this general point of view, consider any polynomial time com-
putable function g : X — Y and a generic protocol between a prover P and a
verifier V we call Poyrncrooss that works as follows:

(1) P chooses z1,...,xr € X such that all z; satisfy some predicate pre, we say
x; is good if it satisfies pre.

(2) P sets y; = g(x;) for all ¢ and sends y1, ..., yr to V.

(3) V chooses s € {0,1}7 uniformly at random and sends it P.

(4) P returns {z; | s[i] = 0} and V accepts if y; = g(x;) whenever s[i] = 0 and
each such z; is good.

Lemma 1 (Cut-and-Choose Rewinding Lemma). There exists an extrac-
tor € such that the following holds: for any (deterministic) prover P that makes
the verifier in Pcurscuooss accept with probability p > 2=k+1 where T is polyno-
maal in k, € can extract from P at least T—k good x;-values such that g(x;) = y;.
& runs in expected time proportional to O(poly(s) - k?/p), where s is the size of
the inputs.

Proof. Let P be a deterministic prover that makes V accept in Pourncrooss With
probability p > 27¥*1. Consider the following algorithm &:

How to Prove Knowledge of Small Secrets 485

Start P, who in turn outputs YLy ooy YT-

(1
(2
3

(

) .)

) Run T instances of P in parallel, which we denote P, ..., Pr.

) Let A =0 and do the following until |A| > T — k:

(3.1) For each P; sample a random challenge s; & {0,1}7, subject to s;[i] = 0
and run each ’ﬁz on challenge s;.

(3.2) For each instance P; that does not abort, check that the prover’s response
contains x; such that f(x;) = y;. If so, then A = AU {z;}.

(4) Output A.

We will now show that £ runs in the required time. Denote the probability that
P; outputs a good z; in step (3) as p;. We will say that p; is bad if p; < p/k,
and good otherwise.

Let X; be the event that P; eventually outputs a good x;, where X; = 1 if
the event happened or X; = 0 otherwise. If p; is good then, after « iterations

Pr[X; = 0] = (1 — p/k)* < e P/Fe

so after at most @ = k2 /p iterations we can expect that z; was extracted except
with probability negligible in k. This can then be generalized to the success of
all P; (where p; is good) by a union bound, and the probability of failing is still
negligible because T is polynomial in k. Since the experiment of running k?/p
iterations produces success for all good p; with probability essentially 1, the
expected number of times we would need to repeat it to get success is certainly
not more than 2, so the claimed expected run time follows, provided there are
less than k bad p;.

Hence, for the sake of contradiction, assume that there are k£ bad p; which,
for simplicity, are pq, ..., pg. In the protocol, the challenge s is chosen uniformly
at random. The success probability of P can be conditioned on the value of s[1]
as

p = Pr[P succeeds] = 1/2 - py + 1/2 - Pr[P succeeds | s[1] = 1]
since p; is only of our concern if s[1] = 0. Conditioning additionally on s[2]
yields
p<1/2-p1+1/2-(1/2-2-py + 1/2- Pr[P succeeds | s[1] =1 A s[2] = 1])
=1/2- (p1 +p2) + 1/4 - Pr[P succeeds | s[1] = 1A s[2] = 1]

The reason the inequality holds is as follows: the probability that a random
challenge asking to open ay will yield a preimage of as is po. Now, conditioning
on s[1] = 1, which occurs with probability 1/2, will increase that probability
from py to at most 2ps.

Repeating the above argument generalizes to

p = Pr[P succeeds] < 1/2- (p1 + ... + pr) +
27F . Pr[P succeeds | s[1] = 1A ... A s[k] = 1]
<1/2-p+27F

which follows since the first k& p; were bad. But this last inequality implies p <
2-k+1 and this contradicts the assumption we started from, that p > 2=%*+1. O

486 C. Baum et al.

3.1 The Imperfect Proof of Knowledge

We assume the existence of an auxiliary commitment scheme C,,,, that is com-
putationally hiding and perfectly binding, and which allows to commit to values
from the group G that f maps into. The reason we need it is quite subtle and will
show up in the proof of security of PryprrrecrProor- We will denote a commitment
using Cqz to a value x € G as Cyyq () (Fig. 1).

Procedure PryperrecrProor

Let f be an ivOWF and Cyyuz be a commitment scheme over G. P inputs w to the
procedure and V inputs v.

innerProof (v, w, T, T, 3) :
(1) Let v = (41, Yn)sw = (@1, ..., @n). P samples T values gi,...,gr < Z
such that ||g;|| < 7- 3.
(2) P computes a; = f(gi), di = Cauz(a;) and sends d = (di, ..., dr) to V.

)
(3) V samples s & {0,1}7 and sends s to P.
(4) Both parties set C' = {i | s[i] =1}, O =[T]\ C.
(5) P sends (gi)ico as well as the randomness used to generate d; to V who
checks that Vi € O :
(5.1) ai = f(g)
(52) llgill <7-8
(5.3) di = Cauz(ai)
If any check fail he aborts.
(6) Let Z = 0. For i € [n] do the following:
(6.1) Find the first j € C'\ Z such that ||g; + «;|| < (r — 1) - 8. If no such j
exists then continue. Else set z; = g; + @; and Z = Z U {1,...,j}.
(7) If | Z] < n then P aborts.
(8) Else P sends (Z, z1, ..., 2n, (a;)jez) as well as the randomness used to gen-
erate dj,j € Z to V.
(9) V checks that
(9.1) 24| < (r—1)- 8
(92) a; +yi = f(zi)
(9:3) dj = Caua(ay)
If yes, then he outputs accept. Else, he outputs reject.

Fig. 1. Imperfect proof for the relation Rksp

Theorem 1. Let f be an wvOWF, k be a statistical security parameter, Cyy, be a
perfectly binding/computationally hiding commitment scheme over G, 7 = 100-r
and T = 3-n,n > max{10, k}. Then PiyperrrcrProor has the following properties:

Correctness: If P,V are honest and run on an instance of Rksp, then the
protocol succeeds with probability at least 1 — negl(k).

Soundness: For every deterministic prover P that succeeds to run the protocol
with probability p > 27**1 one can extract at least n — k values @, such that

How to Prove Knowledge of Small Secrets 487

f(2) =y and ||Z;|| < 2-7 -, in expected time O(poly(s) - k?/p) where s is
the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-
knowledge.

Proof.

Completeness. By the homomorphic property of f, all the checked equations
hold. The protocol can only abort if P aborts, which can only happen in step
(7). We first show that |C| > 1.1 - n with all but negligible probability for large
enough n. Using this, we show that Pr[Piyperrecrproor aborts | |C] > 1.1 -n] is
negligible in n.

Let #1(s) denote the number of ones in s, then #i(s) ~ BIN /s where
BIN is the Binomial distribution. Using the Chernoff bound we obtain

Pr[#l(s) <1ll-n ‘ s i {Oyl}T] Sexp<—2(1/2'T1'1'n)2)

T
—32
= exp (300 . n)

Since n > k this becomes negligible for large enough n and we can assume that
|C] > 1.1 n.

Consider a single coordinate of a z;. The chance that it fails the bound
is 1/7. Each vector has length r, so z; exceeds the bound with probability
r/7 = 1/100. In such a case, P would take the next (independently chosen) g,
and try again. The ith attempt of P is denoted as X;, where X; = 1 if he fails and
0 otherwise. We allow P to do at most T of these attempts*. Then X; ~ B4 /100
and X ~ BINy 1007, X =Y. X;. We set X = 7X where E[X] = 1/100. Using
Hoeffding’s inequality, one can show that the probability of failure is

Pr[X — E[X] > 0.09] < exp (-22-n- 0.092)

which is negligible in k since we assume n > k.°

Soundness. Let P be a deterministic prover that makes an honest V accept
PrveerrecrProor With probability p > 27%*!. Consider the following algorithm
5ImperfectProof:

(1) Start P, who in turn outputs d = (dy, ..., dr).

(2) Observe that the first part of the protocol is an instance of Peyrncrooss With
g = Cuuz o f and where a preimage g, is good if ||g;|| < 7 - 3, We therefore
run the extractor £ guaranteed by Lemmal which gives us a set A with
T — k good g,-values.

* The probability that P needs more auxiliary ciphertexts is ~0.63" and therefore
negligible in n.
5 In fact, setting n = 40 already makes P abort with probability 271°.

488 C. Baum et al.

(3) Let X =0 and do the following until | X| > n — k:
(3.1) Run a regular instance with P.
(3.2) If the instance was accepting, then for each z; with a corresponding
g; € A,j € C add the preimage to X, i.e. X = X U{z; — g;}.
(4) Output X.

We will now show that ErpperfectProos Tuns in the required time. The run-time
of £ was established in Lemma 1. Using the set A it outputs, we can now argue
that step (3) also terminates as required: Erpmper fectProos reaches step (3.2) after
an expected number of 1/p rounds. At most k of the T' preimages of a; are not
given in A and therefore step (3.2) is only executed once. From the bound on
the a;, the bound on the extracted x; immediately follows.

Zero-Knowledge. Consider the following algorithm StypgrrecrProor

(1) On input (v = (y1,...,Yyn), T, 7, 5) sample the string s & {0,1}T as in the
protocol.

(2) Compute the sets C, O as in PrypgrrecrProor- For each ¢ € O sample g, €
Z",||g;|l <70 and set a; = f(g;) as well as d; = Couz(a;).

(3) For i € C sample z; € Z",||z;|| < 7§ uniformly at random. Let Z’ := {i €
Clllzil| < (r—1)- 5}

(4) If |Z'| < n then for i € C set g; = zi,a; = f(2:),d; = Cauz(a;), output
(s,d1,...,dr,(a;, g;)ico) and abort.

(5) If |Z'| > n then let Z be the first n elements of Z'. For each i € C'\ Z set
a; = f(2i),d; = Cauz(ai).

(6) Denote Z as Z = {i1,...,in}. For all ij € Z set a;; = f(zi,) — yj,di; =
Caux(aij)~

(7) Output (s,dy,...,dr,(ai, g;)ico, Z, (ai, 2i)icz)-

In the simulation, we can assume that there exists a witness w for v accord-
ing to relation Rkgp. We first observe that if an a; and its randomness when
generating a d; are ever revealed, then it holds that d; = Cyyz(a;). For those
commitments that are not opened the computational hiding property implies
that their distribution in the simulated case is indistinguishable from the real
protocol.

What remains to study is the abort probability of the protocol, the sets
C,0,Z and the a;, 7, g;. The choice of C,0O is identical in PrypgrrectProor;
StuperrectProor for an honest verifier since they are computed the same way.

Abort Probability and Z. The probability of abort of SiyperrecrProor il step (4)
is the same as in (7) in PrypgrescrProor- Lhis indeed is true if #1(s) < n and
also if #1(s) > n,|Z’| < n. The second is a little more subtle and can be seen
by arguing what the chance is that a certain z; ends up in Z’: for the sake
of simplicity, assume n = r = 1 since all these vectors and their entries are
chosen i.i.d. In the above simulator, z € [—7 - 3,7 - 5] was chosen uniformly at
random. Hence z ¢ Z’ with probability 1/100. In the case of PrypsrrscrProor We
have z = x + g where g € [—7 - 8,7 -] was chosen uniformly at random and
x € [-3,0], ie. z € [-7- B+ z,7- B+ z] chosen uniformly at random from a

How to Prove Knowledge of Small Secrets 489

shifted interval of equal length. But [—(7—1)-0,(r—=1)-6] C [-7-B+z,7-B+2]
always holds due to the upper bound of z, hence the probability of abort is also
1/100. By the same reasoning, Z has the same distribution in SiypgrrecrProOF
and PryperrectProor-

Dustribution of g;,a; for j € O. Due to the homomorphism of f, the checks from
step (9) do also hold on the simulated output. For all j € O the distribution of
the g NG is the same in both the protocol and SpyperrrcrProor as the values are
chosen exactly the same way.

Distribution of z;,a; fori € Z. Consider the distribution of the z;,, a;;, fori; € Z
when StyperrecrProor Tuns successfully. By the above argument, the distribution
of the z;; is independent of the x; in PryperrectProor- I PhperrectProor €xactly
those z;; will be sent to V where z;, = g;,+x;isin the correct interval. Since by
our assumption there exists a witness w = (1, ..., z},) then due to the linearity
of f there must exist a g; of the same bound as the g; in the protocol, where

a;, = f (g;J) by linearity.

Why Using Cguz ? It may not be directly obvious from the above proof why
the commitment Cp,, is necessary. But a problem can occur in step (7) of
PrurerrectProor With the elements with indices from C'\ Z: although the simulator
can simulate perfectly the choice of this set, we would have a problem if we had
to reveal the corresponding f(g,)-values. The issue is that the g,’s should be
values that cause an abort and we cannot choose such values unless we know
the corresponding secrets. One solution is to apply f to a random input and
make a non-standard assumption that this cannot be distinguished from the
real thing, but this is undesirable. Instead, sending Cl,.(a;) allows to both hide
the distribution, while soundness is still guaranteed because Cyq, © f is hard to
invert due to the binding property of Cgyz- O

3.2 The Full Proof of Knowledge

We use the above imperfect protocol as a building block of the actual proof.
After executing it with the (x;,y;) as input, we can assume that a preimage of
most of the y;’s (in fact, all but k) can be extracted from the prover.

Our strategy for the last part of the protocol is to repeat the following pro-
cedure several times: we let the verifier randomly assign each y; to one of several
buckets. Then, for each bucket, we add all elements that landed in the bucket
and have the prover demonstrate that he knows a preimage of the sum. The
observation is that since we only have k elements left that were “bad” in the
sense that we could not yet extract a preimage, then if we have more than k
buckets, say ck for a constant ¢ > 1, there is a significant probability that many
of the bad elements will be alone in a bucket. If this happens, we can extract
a preimage by linearity of f. Furthermore, the cost of doing such a step is at
most n additions, plus work that only depends on the security parameter k£ and
is insignificant if n > k. Now, by repeating this game some number of times
with the right number of buckets, we shall see that we can extract all preimages
quite quickly.

490 C. Baum et al.

In the following, the experiment where we throw n values randomly into b
buckets will be denoted Exp(b,n). As is apparent from the above discussion,
we will need to analyse the probability that the bad values will be “killed” by
being alone in a bucket. That is, we need to consider Exp(b,v), where v < k
can be thought of as the number of bad elements. We will say that an element
survives if it is not alone in a bucket. We will write ¢ independent repetitions
of the experiment as Exp’(b,v) and we say that an element survives this if it
survives in every repetition. The following lemma will be helpful:

Lemma 2. Notation as above. Consider Exp'(b,v) and assume b > 4v and

t > 8. Then the probability p that at least v/4 elements survive satisfies p < %”et”,

b2
where € = S35 ~ 0.94.

Proof. Consider the event of exactly s bad elements surviving Exp’ (b, v) where
s > v/4. The s surviving elements could be any of the v values, but must cover
less than s/2 buckets in each repeated experiment, since surviving elements are
not alone in a bucket. From this we get the bound

s\ t
b 2
Pr [s survive| < (Z) (<3/2> <Sl/)>)
on which we apply upper bounds on the binomial coefficients:
t
vey\s be \ */? s/2\°
2y () (8
s s/2 b
()
\s 2b
B (ve)l/t (se)l/Q ts
N S 2b
and finally maximize using b > 4v,t > 8 and s € [v/4,v]:
tv/4
()" ()
- v/4 2-4v
1/2 t’U/4
- (3
(100 (&
£5/32 tv
- (25/16)
Using this we can bound the probability p by union bound:

i 3u [e5/32\ "
survive} < Z Pr [s survive] < T <>

p="Pr [> . 95/16
s=v/4

v
— 4

How to Prove Knowledge of Small Secrets 491

Before we continue, let us discuss the implications of the above Lemma. First,
due to the first equation of the proof we yield that, except with probability p,
in an instance of Exp’(b,v) at least one of the t iterations contains at least 3v/4
buckets with single elements. A second, somewhat surprising fact is that for fixed
values of t,b the probability p is not monotone in v. This will be particularly
difficult, as we only know upper bounds on the value v in the proof of the main
protocol.

Our soundness argument implicitly defines an extraction algorithm that runs
in log, (k) rounds, where in each round the same total number of buckets is used
(the number of buckets per iteration drops in half, but the total number of
iterations per round doubles). What we then show (using the above Lemma) is
that the upper bound on the number of unextracted preimages is reduced by a
factor of 2 between each two successive rounds, while the error probability stays
somewhat constant. This is due to the following thought experiment: assume as
an invariant that, for O(k) buckets and k balls, at least k/2 of these balls land
in their own bucket except with probability 2-°*). By running the experiment
again, we see that the error probability now increases because we now only
use k/2 balls. But by independently running the experiment twice, one obtains
that half of the k/2 balls are alone (in one of the two experiments) except
with essentially the same probability as before. This now allows for a recursive
extraction strategy.

Theorem 2. Let f be an wOWF, k be a statistical security parameter, 8 be a
given upper bound and n > k -logy(k). Then PcowrLereProor @S an interactive
honest-verifier zero-knowledge proof of the relation Rxsp with knowledge error
27K+ More specifically, it has the following properties (Fig.2):

Correctness: If P,V are honest then the protocol succeeds with probability at
least 1 — 27O

Soundness: For every deterministic prover P that succeeds to run the protocol
with probability p > 271 one can extract n values @, such that f(x,) = y;
and ||| < O((2k + 1)1°82(F)/2 .y .. B) except with negligible probability, in
expected time poly(s, k)/p, where s is the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-
knowledge.

Proof.

Correctness. The first call to PryperrecrProor in step (1) will succeed with all
but negligible probability due to Theorem 1. For each 7 in step (2) the experiment
is repeated 2% times using 4k - 277 buckets, hence the total number of sums for
each such round is 64k which determines h. A set I; as chosen in step (3) can have
size at most n by definition, therefore ||d,|| < 8- n. The call to PiyprrrscrProor
in step (4) will then be successful according to Theorem 1 with overwhelming
probability.

Soundness. We will first prove the existence of an efficient extractor, then give
a bound on the extraction probability and only establish the bound on the norm
of the preimage afterwards.

492 C. Baum et al.

Procedure PcowrrereProor

Let f be an ivOWF. P inputs w to the procedure and V inputs v. We assume for
simplicity that the security parameter k is a 2-power.

proof (v, w, B) :

(1) Let v = (y1,..., yn),w = (21, ..., &xn). Run innerProof (v, w, 3n, 100r, 8). If V
in PruperrecrProor aborts then abort, otherwise continue.

(2) Fori=0,1,...,log,(k), execute (in parallel) Exp' (b;, n), where
ti = 2”4,()1- = 4k - 27" and where V chooses the randomness for all the
experiments, i.e., chooses how to distribute elements in buckets.

(3) Let h = 64k - (logy(k) + 1) be the total number of buckets used in all the
experiments in the previous step and order all the buckets in some arbitrary
order. Bucket j contains some subset of the m input values, let these be
designated by index set I;. Now, for j = 1,...,h, both players compute
v = Eielj v; and P also computes §; = Zielj ;.

(4) Run innerProof(v, 8, 3h, 100r,nB). If V in PiperescrProor aborts then abort,
otherwise accept.

Fig. 2. A protocol to prove the relation Rxsp

An Efficient Eztractor. From the subprotocol used in step (1) and Theorem 1 all
but k of the n ciphertexts can be extracted. The same holds for step (4) from
which we can argue that at most k£ of the h sums are proven incorrectly. For
each i, observe that of the t; = 2i+% iterations, there must be at least 2¢13 of
them that each contain at most 27¢ - k/4 bad buckets. For otherwise, we would
have at least 2¢+3 iterations that each have at least 27% - k/4 buckets which adds
up to 2k bad buckets.

For ¢ = 0,1,.. the number of bad values entering into the experiment
Exp’i(bj,n) is v; < k-27%, except with negligible probability (we will consider
the error probability later). This can be seen as follows: for i = 0, we have vy < k
due to step (1). So let v; < 27k, then by the proof of Lemma 2 at least one of the
2143 jterations, 3/4-v; or more buckets contain only one of the not-yet extracted
elements and can hence be extracted now. For this instance, we established that
at most 27¢ - k/4 of the sums can be bad, hence

Vig1 <vifd+k/4-27 0 <kj4- 27 k427 = k270!

Hence after Exp" (b;, v;) we can extract at least v;/2 of the ciphertexts. In the last
round we have v),g, (1) < 2 and must prove that after Exp'ios2 () (Blog, (k) Viog, (k))
no unextracted preimages are left. Therefore consider the following two cases:

Vlog,(k) = 1 In this case, for the experiment to fail the remaining unextracted
preimage must be in the bad sum for all 8% instances. For each such instance,
there are 4 buckets out of which at most 1 can be bad. The extraction will
hence only fail with probability 2716%.

Vlog, (k) = 2 To be able to extract, we want both unextracted preimages to be in
different buckets and none of them in a bad bucket. The chance that the first

How to Prove Knowledge of Small Secrets 493

preimage ends up in a bad bucket is 1/4, and the second preimage can either
fall into the bucket with the first preimage (with probability 1/4) or in the
bad bucket, so in total with probability at most 3/4 one of the 8k iterations
will fail, and all will be bad with probability at most (3/4)8% < 272k,

By a union bound, the last experiment will fail with probability at most p;,g, r) =
27k,

For rounds i = 0, oy logy (k) — 1, the extractor will only extract from the
experiment 4 if k-279"1 < v; < k-27% and otherwise safely continue with round
i+ 1. By Lemma 2, extraction will fail in this round with probability at most

= 3/4v; - ti-04
bi = 516[/‘0-2%%)%,]@.2—1‘,]{ / Vi - € }
< 3/4k-27". (2 g
=3k .2%71. 4k

because the actual value of v; is unknown. The extraction process can fail if it
fails in one of the experiments. By a union bound, we obtain

PO+ oo F Dlogy(n) < 3k - 2% - €M . 4 3k - 227l (KL gtk ok
log, (k)—1)
=3k-e*. Y 22 ok
j=0

< 24k - e*F 4ok

which is in 279®) because € < 1 and constant. Since soundness for Theorem 1
fails with probability 2~°®) as well, this proves the claim.

Extraction Bound. Let 7 = 100r be the slackness chosen for the instances of
innerProof. Consider a value) extracted in round 0, i.e. there exists a good
d;,1 € I; such that =, = §; — Zoelj\{m;} x! where all such z! were already
extracted from PryperrecrProor i step (1). Then

il < 116;— D =l

o€I;\{i}
<611 +11 > =l
o€l;\{i}
<2-7-n-f+Mn-1-2-7-0
<4-n-7-0
= 0o

In round 1 each preimage that we extract will be a sum of preimage known from
the cut-and-choose phase and those from round 0, where from the last round at
most k/2 can be part of the sum. Calling this upper bound ; we obtain

5122'7'71'54-;@)

494 C. Baum et al.

The above argument easily generalizes to an arbitrary round ¢ > 0 where it

then holds that -

k
51‘:2'7"”'54—2@5;‘71
j=1

because in round 0 we extracted at most k/2 preimages, in round 1 k/4 and so
on. In particular, the above can be rewritten as

i
k
Bi=2-mn B+) 5B

j=1

1—1 k k
:2‘T'n'5+zlgﬂj—1+§@'—1

]:

k

Sﬂi—1+§ﬁi—1

= (; + 1) Bi—1

In particular, for the bound on the last preimages that are extracted in round
log, (k) one obtains

log, (k)—1 k
Blog, (k) = H <21 + 1) Bo

i=1

To compute a bound on the leading product, we consider the square of the
above bound and reorder the terms as

log, (k)—1 2 log, (k)—1
k k k
1:[1 (2 + 1) = 1:[1 <2i + 1> <210g2(k)_i + 1>

log, (k)—1
k k
= 1:[1 (’“ ot emma T 1)

< (2]’64— 1)10g2(k)
and we can conclude that
ﬂ10g2(k) < (Qk + 1)10g2(k)/2 4-n-7-0
Zero-Knowledge. The simulation algorithm chooses the randomness for all
the experiments like an honest ¥ would do and then uses the simulator from

Theorem 1 to simulate the calls to PrypgrrrcrProor. Lhe computational HVZK
property then follows directly from Theorem 1. O

How to Prove Knowledge of Small Secrets 495

4 Applications

As a first general remark, we note that even though our protocol is only honest
verifier zero-knowlegde and proved sound using extraction by rewinding, we can
nevertheless use it as a tool in a bigger protocol that is intended to be UC
secure against malicious adversaries. Such a construction is already known from
[DPSZ12]. The idea is first to generate the verifier’s challenge using a secure
coin-flip protocol. Then honest verifier zero-knowledge suffices, and the cost of
generating the challenge can be amortised over several proofs. Second, if the
function f is an encryption function, the UC simulator can be given the secret
key and can hence extract straight-line. Rewinding then only takes place in the
reduction to show that the UC simulator works.

In the rest of this section we will first show how to rephrase lattice-based
encryption as ivOWFs and then show how to generalize the result from the
previous section such that it applies in this setting.

4.1 Encryption as ivOWFs

As an example, let us consider a variant of the homomorphic encryption scheme
due to Brakerski et al. [BGV12]. Let n, N, A € Nt p,q € P and ¢ >> p. Moreover,
let x be a distribution over Z such that, with overwhelming probability in k,
e — x = |e| < ¢q/2. We consider A to be the computational security parameter.

KG(1*): Sample ¢ & X", e & XY and B « Zf]\’x”. Let wy = (1,0,...,0) €
ZZH be the unit vector for the first coordinate. Then compute

b—Bt+p-e

a5 1)

where I,,41 is the identity matrix with » + 1 rows and columns. Output
pk «— A sk — t.

Encpi((T)): Check that m € Zy, v € ZYT"T! and output

e ax ()
o (e () i) i

For appropriately chosen parameters, the function Encpy is an ivOWEF (by
the natural embedding of Z, into the integers) assuming that the LWE problem
is hard. It therefore seems natural to apply our proof framework in the above
setting.

Unfortunately we have to show different bounds for different indices of the
preimage, which is impossible for the existing proof.

Decek(s): Compute

and output m’ € Z,.

496 C. Baum et al.

Procedure Pcompiete Proof, f,8

P inputs w to the procedure and V inputs v. We assume for simplicity that the
security parameter k is a 2-power.

pG(v,w,B) :

(1) Let v = (y1,..yYyn)sw = (@1,...,2n). Run iPG(v,w,3n,100r,8). If V in
PrmperfectProof,f,8 aborts then abort, otherwise continue.

(2) For i = 0,1,...,logy(k), execute (in parallel) Exp'i(b;,n), where t; =
214 b; = 4k - 27" and where V chooses the randomness for all the experi-
ments, i.e., chooses how to distribute elements in buckets.

(3) Let h = 64k - (logy(k) + 1) be the total number of buckets used in all the
experiments in the previous step and order all the buckets in some arbitrary
order. Bucket j contains some subset of the m input values, let these be
designated by index set I;. Now, for j = 1,...,h, both players compute
v = Eielj v; and P also computes §; = Zielj ;.

(4) Run iPG(~y,d,3h,100r,n8). If V in PrmperfectProos,f,3 aborts then abort,
otherwise accept.

Fig. 3. A protocol to prove the relation Rxsp, ¢,

4.2 Refining the Proof Technique

To gain more flexibility, we start out by defining a predicate InfNormg, which
we define as follows

T ifBeNtAVie][r]:|z]i] <A

InfNormg(z) = {J_ | -
else

where 3 is supposed to be a coordinatewise upper bound on x.
We call a vector & € Z" to be B-bounded iff InfNormg(x) = T. For a function
f:7Z" — G and the set {cy, ..., ¢} one then tries to prove the following relation

Rxsp r8 = {('v7 w)| v=_(c1,..,ct) Nw=(x1,...,Ts) A

[Ci = f(z;) A Ianormg(azi)]ie[t]}

That is, a proof of plaintext knowledge for our defined cryptosystem would then
set B € NV++2 f = Ency with B[1] = p,B[2] = ... = B[N +n +2] = Br
where (p is the bound on the plaintext and g on the randomness. One then
uses a modified version of the proof PrypgrrecrProor, Namely the protocol from
Fig. 4 and moreover replaces PcowprersProor With Fig. 3.

Theorems 1 and 2 directly generalize to the above setting due to the linearity
of all operations (if the simulators for the rejection sampling just sample from
the appropriate bound for each coordinate). This is possible because none of the
success probabilities changes since these are independent of the bound § in the

How to Prove Knowledge of Small Secrets 497

Procedure PrimperfectProof, f.8

Let f be an ivOWF and Cgyuz be a commitment scheme over G. P inputs w to the
procedure and V inputs v.

iPG(v,w,T,7,3) :

(1) Let v = (y1,--yYn)sw = (@1, ..., En). P samples T values g1, ...,gr Sz
such that InfNorm,.g(g;).
P computes a; = f(gi), di = Cauz(a;) and sends d = (di, ..., dr) to V.

)
(3) V samples s & {0,1}" and sends s to P.
(4) Both parties set C' = {i | s[i] =1}, O = [T]\ C.
(5) P sends (gi)ico as well as the randomness used to generate d; to V who
checks that Vi € O :
(5.1) ai = f(g:)
(5.2) InfNorm-.g(g:)
(5.3) di = Cauz(ai)
If any check fail he aborts.
(6) Let Z = 0. For i € [n] do the following:
(6.1) Find the first j € C'\ Z such that ||g; + «;|| < (7 — 1) - 8. If no such j
exists then continue. Else set z; = g; + @; and Z = Z U {1,...,j}.
(7) If | Z] < n then P aborts.
(8) Else P sends (Z, 21, ..., zn, (a;)jez) as well as the randomness used to gen-
erate dj,j € Z to V.
(9) V checks that
(9.1) InfNorm(._1y.5(2:)
(9.2) a; +yi = f(z:)
(9-3) dj = Caua(ay)
If yes, then he outputs accept. Else, he outputs reject.

(2

Fig. 4. Imperfect proof for the relation Rxsp, ¢ g

first place. The above could be generalized to other predicates which e.g. enforce
fo-norms. We leave this as future work.

References

[BCK+14] Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.:
Better zero-knowledge proofs for lattice encryption and their application to
group signatures. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS,
vol. 8873, pp. 551-572. Springer, Heidelberg (2014)

[BDOZ11] Bendlin, R., Damgérd, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169-188. Springer, Heidelberg (2011)

[BDTZ16] Baum, C., Damgard, 1., Toft, T., Zakarias, R.: Better preprocessing
for secure multiparty computation. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 327-345. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-39555-5_18

http://dx.doi.org/10.1007/978-3-319-39555-5_18

498 C. Baum et al.

[BGY3]

[BGV12]

[BV14]

[CD0Y]

[DF02]

[DKL+13]

[DPSZ12]

[GGHY6]

[GSW13]

[KL14]

[LMPROS]

[LNSW13)]

[Lub02]

[Lyu08]

[Lyu09]

[NOOY]

Bellare, M., Goldreich, O.: On defining proofs of knowledge. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer,
Heidelberg (1993)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS 2012, pp. 309-325. ACM,
New York (2012)

Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831-871 (2014)

Cramer, R., Damgard, I.: On the amortized complexity of zero-knowledge
protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177—
191. Springer, Heidelberg (2009)

Damgard, 1.B., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125-142. Springer, Heidelberg (2002)
Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority — or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1-18. Springer, Heidelberg (2013)

Damgard, 1., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643-662. Springer, Heidelberg
(2012)

Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lat-
tice problems. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 3, pp. 236-241 (1996)

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 75-92. Springer, Heidelberg (2013)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press,
Boca Raton (2014)

Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a mod-
est proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 54-72. Springer, Heidelberg (2008)

Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs
of knowledge for the ISIS problem, and applications. In: Hanaoka, G.,
Kurosawa, K. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107-124. Springer,
Heidelberg (2013)

Luby, M.: Lt codes. In: Proceedings of the 43rd Symposium on Foundations
of Computer Science, p. 271. IEEE Computer Society (2002)
Lyubashevsky, V.: Lattice-based identification schemes secure under active
attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162-179.
Springer, Heidelberg (2008)

Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS,
vol. 5912, pp. 598-616. Springer, Heidelberg (2009)

Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368-386. Springer,
Heidelberg (2009)

	How to Prove Knowledge of Small Secrets
	1 Introduction
	1.1 Contributions and Techniques
	1.2 Related Work

	2 Homomorphic OWFs and Zero-Knowledge Proofs
	2.1 Proving Knowledge of Preimage

	3 Proofs of Preimage
	3.1 The Imperfect Proof of Knowledge
	3.2 The Full Proof of Knowledge

	4 Applications
	4.1 Encryption as ivOWFs
	4.2 Refining the Proof Technique

	References

