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Abstract. We construct an LWE-based key-policy attribute-based
encryption (ABE) scheme that supports attributes of unbounded poly-
nomial length. Namely, the size of the public parameters is a fixed poly-
nomial in the security parameter and a depth bound, and with these
fixed length parameters, one can encrypt attributes of arbitrary length.
Similarly, any polynomial size circuit that adheres to the depth bound
can be used as the policy circuit regardless of its input length (recall that
a depth d circuit can have as many as 2d inputs). This is in contrast to
previous LWE-based schemes where the length of the public parameters
has to grow linearly with the maximal attribute length.

We prove that our scheme is semi-adaptively secure, namely, the adver-
sary can choose the challenge attribute after seeing the public parame-
ters (but before any decryption keys). Previous LWE-based constructions
were only able to achieve selective security. (We stress that the “complex-
ity leveraging” technique is not applicable for unbounded attributes).

We believe that our techniques are of interest at least as much as our
end result. Fundamentally, selective security and bounded attributes are
both shortcomings that arise out of the current LWE proof techniques
that program the challenge attributes into the public parameters. The
LWE toolbox we develop in this work allows us to delay this program-
ming. In a nutshell, the new tools include a way to generate an a-priori
unbounded sequence of LWE matrices, and have fine-grained control over
which trapdoor is embedded in each and every one of them, all with
succinct representation.

1 Introduction

Key-policy attribute-based encryption [22,34] is a special type of public-key
encryption scheme where a (master) public key mpk is used for encryption,
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and users are associated to secret keys skf corresponding to (policy) functions
f : X → {0, 1}. The encryption of a message μ is labeled with a public attribute
x ∈ X , and can be decrypted using skf if and only if f(x) = 0.1

Intuitively, the security requirement is collusion resistance: a coalition of users
learns nothing about the plaintext message μ if none of their individual keys are
authorized to decrypt the ciphertext.

The past few years have seen much progress in constructing secure and effi-
cient attribute-based encryption (ABE) schemes from different assumptions and
for different settings. The first constructions [10,22,23,25,27,30,36] apply to
predicates computable by Boolean formulas (which are equivalent to log-depth
computations). More recently, important progress has been made on construc-
tions for the set of all polynomial-size circuits (of a-priori bounded polynomial
depth): Gorbunov et al. [19] gave a construction from the Learning With Errors
(LWE) assumption, and Garg et al. [14] gave a construction using multilinear
maps. In both constructions the policy functions are represented as Boolean cir-
cuits composed of fan-in 2 gates, and the secret key size is proportional to the
size of the circuit. Boneh et al. [9] constructed an “arithmetic” ABE scheme
where the secret key size is independent of the circuit-size of the function f , but
rather depends only on the circuit-depth. This in turn gave the first construction
of compact reusable garbled circuits [9], and led to constructions of predicate
encryption [20], homomorphic signatures [21] and constrained pseudo-random
functions [11].

However, despite all this progress, there are several deficiencies in these con-
structions. The first is that in all of them, the length of the attribute, represented
as a binary string, has to be determined during the initial setup. This is a prob-
lem not just for ABE, but also for all downstream constructions (of succinct
single-use functional encryption, homomorphic signatures, predicate encryption,
and so on) where the size of the input to be encrypted (or signed) is limited by
the initial setup.2 We know of three exceptions to this: the first is the (selectively
secure) ABE construction of Lewko et al. [26] that handles Boolean formulas,
under assumptions on bilinear maps and the second is the (fully secure) inner
product encryption and ABE construction of Okamoto and Takashima [31] that
again only handles Boolean formulas. Finally, there is the recent work of Ananth
and Sahai [7] who show a functional encryption scheme for Turing machines that
can take arbitrarily long inputs. In particular, this gives rise to an ABE scheme
with the same properties, however this construction uses the huge hammer of
indistinguishability obfuscation (IO) unlike the ones in the previous paragraph.

Q1: Is there an ABE scheme for general circuits with unbounded attribute
length under standard complexity assumptions?

1 We follow, here and after, the convention that f(x) = 0 signifies the ability to
decrypt. This is the opposite of the standard convention, and is done purely for our
convenience in the technical sections.

2 One can modify the circuit-ABE constructions of [9,20] to support unbounded
attributes in the (programmable) random oracle model. Our focus in this paper
is on constructions in the standard model.
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The second shortcoming of the circuit-ABE constructions based on lattices
and LWE is that they are only selectively secure. Selective security means that
the attacker needs to decide which challenge attribute to attack before seeing the
public parameters of the scheme or any of the keys. In adaptive security (also
known as full security), the challenge attribute x∗ can be chosen at any point,
even depending on the public parameters and decryption keys obtained by the
attacker.

While we do know of adaptively secure ABE for formulas [25] based on bilin-
ear maps, and for circuits based on multilinear maps [15] and on indistinguisha-
bility obfuscation [37], achieving adaptive security in LWE-based constructions
seems to require fundamentally new ideas. Recently, Ananth et al. [6] came
up with a generic way to go from selective to adaptive security for (collusion-
resistant) FE schemes, but their transformation does not work for ABE schemes.

A well known “hack” for getting around the selectiveness issue is to use
“complexity leveraging”. This technique is based on the observation that an
adaptive adversary can be made selective at the cost of a factor 2� increase in
the running time (or loss of 2−� in the success probability), where � is the max-
imum attribute length, just by guessing the challenge attribute ahead of time.
Therefore, if we start with a selective scheme that is secure against 2� · poly(λ)
adversaries, then it is also adaptively secure against poly(λ) time adversaries.
Since usually � = poly(λ), this method leads to a considerable increase in security
parameter. More importantly in our situation, if the attribute space is a-priori
unbounded, then complexity leveraging cannot work at all.

An intermediate milestone to adaptively secure ABE is the weaker notion of
semi-adaptive security, introduced by Chen and Wee [13]. Semi-adaptive security
permits an adversary to choose the challenge attributes after it sees the public
parameters, but before it sees the answers to any of its secret-key queries. Chen
and Wee show a simpler construction of adaptively secure ABE for formulas.
Note that for unbounded attributes, complexity leveraging is of no use for this
notion as well.

Q2: Is there an adaptively (or even semi-adaptively) secure ABE for gen-
eral circuits under standard complexity assumptions?

We resolve the first question and (semi-)resolve the second, as follows.

Theorem 1 (Informal). Assuming the (polynomial) hardness of approximat-
ing worst-case lattice problems to within sub-exponential factor, there is a semi-
adaptively secure ABE scheme for circuits of a-priori bounded (polynomial) depth
which supports attributes of unbounded length.

In particular, the setup procedure of our scheme does not require an upper
bound on the length of the attributes that will be encrypted. Quite curiously,
semi-adaptivity in our result seems to come for free from our techniques to
achieve unbounded attribute ABE. We elaborate more on our techniques below.
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1.1 Overview of Our Techniques

We start with an interpretation of the ABE scheme of Boneh et al. [9] (itself
based on the homomorphic encryption scheme of Gentry et al. [18]) which will
be instrumental for our presentation.

Given matrices C1, . . . ,C� of appropriate dimension, and a function f :
{0, 1}� → {0, 1}, represented as a Boolean circuit, one can compute a matrix
Cf which is the “homomorphic evaluation” of f on {Ci}. The property of Cf

is that for all x ∈ {0, 1}� there exists a low-norm matrix H = H�C,f,x (that is,
one with “fairly small” entries, the exact amplitude depends on the depth of f
and does not matter for this high level description) for which

Cf − f(x)G =

⎛
⎜⎝[C1‖ · · · ‖C�]︸ ︷︷ ︸

denote �C

− [x1G‖ · · · ‖x�G]︸ ︷︷ ︸
denote x�G

⎞
⎟⎠ · H.

The matrix G is a special “gadget matrix”. This means that if Ci = ARi +xiG
for some low-norm matrix Ri, then Cf can be expressed as ARf + f(x)G for a
somewhat low-norm matrix Rf .

In the ABE scheme of Boneh et al. [9], the public parameters contain a matrix
A and a set �C = (C1, . . . ,C�) so that � is the length of supported attributes.
The parameters are chosen so that a secret trapdoor can always find a low norm
solution R to any equation of the form C = AR + yG, for all C, y. Encrypting
a message to an attribute x is done (at a high level) by considering [A‖�C−x�G]
as a public key to a dual-Regev encryption scheme [17] and encrypting relative
to this key. An important feature of dual-Regev is that it is possible to modify a
ciphertext which was encrypted with respect to a certain public key into one that
is encrypted with respect to a related key, so long as the new key is obtained by
multiplying the old key by a low-norm matrix. Therefore, given some function
f , the ciphertext can be converted into one that corresponds to the public key
[A‖Cf −f(x)G]. Indeed, ABE secret-keys skf are generated as dual-Regev keys
for the public key [A‖Cf ], and indeed they can decrypt whenever f(x) = 0.3

In the proof of security, A is generated without a trapdoor, but Ci are gen-
erated as ARi +x∗

iG (which is indistinguishable from their honest distribution).
This means that whenever f(x∗) = 1, the matrix [A‖Cf ] equals to [A‖ARf +G].
It had been shown by [3,29] that if Rf is known, then dual-Regev keys can be
generated even without a trapdoor. Finally, the challenge ciphertext is encrypted
relative to [A‖�C − x∗ �G] = A · [I‖�R], which can be shown to be LWE-hard to
break if a trapdoor for A is not known (which indeed it isn’t).

The absolutely vital technique that makes the proof of [9] work4 is the ability
to embed the challenge attributes into the public parameters. It is apparent from
3 Note that this “negated policy” formulation is obviously equivalent to the standard

formulation in the literature wherein decryption succeeds if f(x) = 1. From this
point and on, purely for our convenience in the technical sections, we will assume
that a ciphertext should be decryptable if f(x) = 0 and not decryptable otherwise.

4 The proofs of the other circuit-ABE schemes from standard assumptions, namely
[14,19], follow along similar lines.
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this description that the [9] scheme is inherently selectively secure and attribute
length bounded. It is important that in the security proof, the values of Ci are
set ahead of time to the right values according to the challenge attributes x∗,
making the proof inherently selectively secure. In fact, the entire paradigm of
embedding the challenge ciphertext in the public parameters necessitates, for
pure information-theoretic reasons, that the public parameters grow with the
length of the challenge attribute.

The first thing that we should do if we want to stretch the [9] scheme to
support unbounded length attributes, is to find a way to generate an unbounded
number of Ci matrices out of a-priori bounded public parameters. Our first
observation is that the scheme already exhibits a similar feature in a different
context. Namely, the generation of many Cf out of a bounded number of Ci.
Indeed, in our scheme, the public parameters will contain A and a sequence of
matrices �B. We will consider a predefined and public sequence of functions φi,
where i = 1, 2, . . ., and let Ci be the output of homomorphic evaluation of φi on
�B. Thus, the scheme already allows us to generate exponentially many matrices
out of a few.

This allows us to extend the functionality of the scheme to unbounded
attribute length, but only syntactically, since the proof does not extend to this
setting. In particular, if we try to program the matrices �B in the proof similarly
to �C from previous works, we can set Bi = ARi + σiG for some string σ. If we
do so, we will get that Ci = ARφi

+ φi(σ)G, where Rφi
is low-norm and can

be computed out of the Ri matrices. On the one hand, this is quite encouraging
since it is not too far from what we need, if only there was a way to define φi

and σ so that φi(σ) = x∗
i (the ith bit of the challenge attribute) we would be in

business. On the other hand, this is of course impossible for mere information
theoretic reasons, since the φi are public functions and σ has bounded length,
so they cannot encode an x∗ of arbitrary length.

Let us therefore take a step back and think, as an intermediate step, about
a restricted security model where x∗ is chosen randomly and not adversarially
(except its length, which is still under the adversary’s control). Indeed, a ran-
dom x∗ cannot be compressed, but in the proof of security we can swap x∗ for a
pseudorandom value that can be easily expressible as the output of a pseudoran-
dom function. In particular, we define φi(σ) = PRFσ(i) for some pseudorandom
function family. For a random seed σ, letting x∗

i = PRFσ(i) will be indistin-
guishable from a random value, and will allow us to support random unbounded
length attributes using the proof methods from above.

Indeed, we managed to hack the framework into producing an arbitrarily long
sequence of Ci in such a way that each Ci encodes a trapdoor that corresponds
to x∗

i . We view this as an interesting contribution by itself. However, we would
like to support adversarially chosen attributes, and not just random ones. To do
this, we will show how to “program” the challenge attribute into the PRF values
after the fact. In particular, consider, as a mental experiment, an infinite string
Δ which is defined such that Δi = x∗

i ⊕PRFσ(i). This string is pseudorandom to
the adversary, but combining it with the PRF key σ, it contains the information
about x∗. What we do in the proof, is generate decryption keys for functions
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fΔ(x) = f(x⊕Δ), instead of for f itself. This needs to be offset by changing the
encryption algorithm to encrypt to x ⊕ Δ rather than to x itself (which might
seem impossible at this point, however see below). If we are able to offset our
ciphertext, then the challenge ciphertext will now be encrypted respective to
x∗ ⊕ Δ which is just our PRF value. All of this is done without the adversary
noticing anything, because Δ just seems to him as a completely random string
that does not depend on x∗.

We are left with two problems. The first and easier one is that Δ needs to be
publicly known, but it has unlimited size and in the proof, we need to know x∗

in order to generate it. This is easily managed by noticing that only the �-prefix
of Δ is needed in order to use a secret key for a function with �-bit input. We will
therefore append the appropriate prefix of Δ to any key that we release. This
means that we only need to know the value of Δ when we answer key queries and
not when we generate the public parameters. This very fact allows us to achieve
semi-adaptive security, where x∗ can be specified after the setup phase but before
key generation. We note that of course setting Δ respective to x∗ is only done
in the proof. In the real scheme Δ is a random (or pseudorandom) string that
is maintained by the key authority and whose prefixes are released as needed
(it is important that the same Δ is used for all keys). A savvy reader would
have noticed that this “delayed” definition of Δ is similar to non-committing
proof techniques which, looking back, is not too surprising. It is also not hard
to observe why this technique stops at semi-adaptive security: we managed to
postpone defining Δ to the time when we generate the first secret key. Since Δ
depends on x∗ in the proof, we are restricted to the semi-adaptive world where
all secret-key queries come after the challenge attributes have been declared.

The second and harder problem is how to encrypt in this brave new scheme.
The encryption attribute needs to offset for the effect of Δ on the key, but
Δ itself is not (and must not be) a part of the public parameters and is thus
unknown to the encryption algorithm. This problem is solved by showing that
we can encrypt for all possible values of Δ at the same time. Recall that in the
encryption, we consider the matrices Ci − xiG, for all i. In fact, the encryption
process generates a piece of the ciphertext out of each of these matrices, and
the collection of pieces constitutes the entire ciphertext. In order to allow for
any possible value of Δ, we will generate a ciphertext piece ci,0 for Ci − xiG
(accounting for Δi = 0) and a piece ci,1 for Ci − (xi ⊕ 1)G (accounting for
Δi = 1). This would allow us to take the relevant pieces and use them in the
decryption process. Alas, the security of the [9] scheme shatters completely if
the adversary is allowed to see encryption pieces relative to both Ci and Ci −G.
It appears that we fixed functionality at the expense of security.

Our last technical contribution is to solve this problem by using . . . attribute
based encryption! (in fact, even identity based encryption would suffice, but with
slightly worse parameters). As a part of our public parameters, we include para-
meters for a “small” ABE scheme that only needs to support bounded short
attributes and low depth circuits. We will encrypt the ciphertext piece ci,b with
respect to attribute (i, b) using the “small” scheme. Then, as a part of the func-
tional key, we will also produce a “small” key that will allow to decrypt only
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attributes (i, b) for which b = Δi. This means that an adversary can only see
those ciphertext pieces that are needed for decryption. Furthermore, since the
offset Δ is fixed, the adversary will only ever see ci,0 or ci,1 but not both, thus
keeping security in tact. This completes the description of our scheme.

2 Preliminaries

2.1 Bounded Distributions and Swallowing

As in many previous works based on LWE, we will rely heavily on distributions
that are supported over a bounded domain (with high probability). We will also
rely on the fact that some distributions (e.g. sufficiently wide Gaussians) remain
almost unchanged under small shifts. Formal definitions follow.

Definition 1. A distribution χ supported over Z is (B, ε)-bounded if
Pr

x
$←χ

[|x| > B] < ε.

Definition 2. A distribution χ̃ supported over Z is (B, ε)-swallowing if for all
y ∈ [−B,B] ∩ Z it holds that χ̃ and y + χ̃ are within ε statistical distance.

The following is a straightforward application of the properties of
rounded/discrete Gaussians.

Fact 1. For every B, ε, δ there exists an efficiently sampleable distribution that
is both (B, ε)-swallowing and (B · √log(1/δ)/ε,O(δ))-bounded.

Finally, we will define the notion of a distribution that is swallowing with
respect to another.

Definition 3. A distribution χ̃ supported over Z is (χ, ε)-swallowing, for a dis-
tribution χ, if it holds that χ̃ and χ+ χ̃ are within ε statistical distance. We omit
the ε when it indicates a negligible function in a security parameter that is clear
from the context.

The following corollary summarizes the swallowing properties required for
our scheme.

Corollary 1. Let B(λ) be some function and let B̃(λ) = B(λ) ·λω(1), then there
exists an efficiently sampleable ensemble {χ̃λ}λ such that χ̃ is χ-swallowing for
any B(λ)-bounded {χλ}λ, and also B̃(λ)-bounded.

2.2 Pseudorandom Functions

A pseudorandom function family is a pair of ppt algorithms PRF =
(PRF.Gen,PRF.Eval), such that the key generation PRF.Gen(1λ) takes as input
the security parameter, and outputs a seed σ ∈ {0, 1}η (where η = ηλ is the key
length). The evaluation algorithm PRF.Eval(σ, x) takes a seed σ ∈ {0, 1}η and
in input x ∈ {0, 1}∗ and returns a bit y ∈ {0, 1}.
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Definition 4. A family PRF as above is secure if for every polynomial time
adversary A it holds that

∣∣∣Pr[APRF.Eval(σ,·)(1λ) = 1] − Pr[AO(·)(1λ) = 1]
∣∣∣ = negl(λ),

where σ = PRF.Gen(1λ) and O is a random oracle. The probabilities are taken
over all of the randomness of the experiment.

2.3 KP-ABE with Unbounded Attribute Length

Let F = {Fλ}λ be an ensemble of function classes such that Fλ ⊆ {0, 1}∗ →
{0, 1}. We assume that the functions are represented as boolean circuits. A key-
policy attribute based encryption (KP-ABE) scheme is defined by a tuple of ppt
algorithms ABE = (ABE.Params,ABE.Enc,ABE.Keygen,ABE.Dec) such that:

– The setup algorithm ABE.Params(1λ) takes the security parameter as input
and outputs a master secret key msk and a set of public parameters pp.

– The encryption algorithm ABE.Encpp(μ, x) uses the public parameters pp and
takes as input a message μ from a message space M = Mλ and an attribute
x ∈ {0, 1}∗. It outputs a ciphertext ct ∈ {0, 1}∗.

– The key generation algorithm ABE.Keygenmsk(f) uses the master secret key
msk and takes as input a function f ∈ Fλ. It outputs a secret key skf .

– The decryption algorithm ABE.Decpp(skf , x, ct) takes as input a function secret
key skf , an attribute x ∈ {0, 1}∗ and a ciphertext ct, and outputs a message
μ′ ∈ M.

Definition 5 (Correctness of KP-ABE). A scheme ABE is correct if the
following holds. Consider a sequence of functions {fλ ∈ Fλ}λ and a sequence of
attributes {xλ ∈ {0, 1}∗}λ, such that for all λ, the input size of f is exactly |xλ|
and fλ(xλ) = 0.5 For all such sequences and for any sequence {mλ ∈ Mλ}λ, it
holds that

Pr[ABE.Decpp(skf , x, ct) �= μ] = negl(λ),

where (msk, pp) = ABE.Params(1λ), ct = ABE.Encpp(μ, x), skf =
ABE.Keygenmsk(f).

Definition 6 (Security for KP-ABE). Let ABE be a KP-ABE encryption
scheme as above, and consider the following game between the challenger and
adversary.

1. The challenger generates (msk, pp) = ABE.Params(1λ), and sends pp to the
adversary.

2. The adversary makes arbitrarily many key queries by sending functions fi

(represented as circuits) to the challenger. Upon receiving such function, the
challenger creates ski = ABE.Keygenmsk(fi) and sends ski to the adversary.

5 Recall our convention that f(x) = 0 is the event when decryption succeeds.
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3. The adversary sends an attribute x∗ and a pair of messages m0,m1 to the
challenger. The challenger samples b ∈ {0, 1} and computes the challenge
ciphertext ct∗ = ABE.Encpp(mb, x

∗). It sends ct∗ to the adversary.
4. The adversary makes arbitrarily many key queries as in Step 2 above.
5. The adversary outputs b̃ ∈ {0, 1}.
6. Let legal denote the event where all key queries of the adversary are such that

fi(x∗) = 1. If legal, the output of the game is b′ = b̃, otherwise the output b′

is a uniformly random bit.

The advantage of an adversary A is |Pr[b′ = b] − 1/2|, where b, b′ are generated
in the game played between the challenger and the adversary A(1λ). If x∗ is too
short or too long compared to the prescribed input size of fi then it is truncated
or padded with zeros appropriately (see discussion below).

The game above is called the adaptive security game for ABE, and it has
relaxed variants. In the selective security game, the adversary sends x∗ before
Step 1. In the semi-adaptive security game, the adversary sends x∗ before
Step 2.

The scheme ABE is adaptively/selectively/semi-adaptively secure if any
ppt adversary A only has negligible advantage in the adaptive/selective/semi-
adaptive security game (respectively).

Negated Policies. We allow decryption when f(x) = 0 and require that in the
security game all queries are such that f(x∗) = 1. In LWE-based constructions
it is often much more convenient to work with this negated version of the policy,
which explains the apparent strangeness. This variant is obviously equivalent.

Discussion. Our definition does not place any restrictions on the attribute length
so the only restriction comes from limiting the adversary to run in polynomial
time (so it can only output x∗ and fi that are polynomially bounded). It is
important to notice that in this regime, there are no known generic transforma-
tions from selective to semi-adaptive to adaptive security, even if we strengthen
the hardness assumption. In particular, the complexity leveraging technique, in
which the challenger “guesses” x∗ in the beginning of the experiment, and a sub-
exponential hardness assumption is made to account for the success probability
of this guess, is no longer applicable. In this light, we view our semi-adaptive
security improvement as qualitative rather than quantitative.

Lastly, we note that in the security definition (but not in the correctness
requirement!) we chose to allow f(x∗) to be well defined even if there is a mis-
match between the input length of f and the length of x∗ (by truncating x∗ or
padding with zeros). A different valid approach would be to consider an alternate,
stronger, definition that if there is a mismatch then f(x∗) = 1 (and thus it is legal
for the adversary to query any function that does not have the same input length
as |x∗|). We notice that this notion of security is derived from ours by adding
the length itself to the attribute. More explicitly, when you want to encrypt
with attribute x of length �, use the ABE scheme with attribute (�, x), and in
the key generation process, when you want to generate a key for function f ,
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generate a key for f ′(�, x) that first checks that � is indeed the intended input
length. Therefore, using our definition does not limit generality in this aspect.

3 LWE, Trapdoors, Homomorphism

This section summarizes tools from previous works that are used in our con-
struction. This includes the definition of the LWE problem and its relation to
worst case lattice problems, the notion of trapdoors for lattices and operations
on trapdoors, and homomorphic evaluation of matrices with special properties.

Learning with Errors (LWE). The Learning with Errors (LWE) problem was
introduced by Regev [33] as a generalization of “learning parity with noise”
[5,8]. We now define the decisional version of LWE. (Unless otherwise stated, we
will treat all vectors as column vectors in this paper).

Definition 7 (Decisional LWE (DLWE) [33]). Let λ be the security parame-
ter, n = n(λ), m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability
distribution over Z. The DLWEn,q,χ problem states that for all m = poly(n),
letting A ← Z

n×m
q , s ← Z

n
q , e ← χm, and u ← Z

m
q , the following distributions

are computationally indistinguishable:

(
A, sTA + eT

) c≈ (
A,uT

)

There are known quantum (Regev [33]) and classical (Peikert [32]) reductions
between DLWEn,q,χ and approximating short vector problems in lattices. Specif-
ically, these reductions take χ to be a discrete Gaussian distribution DZ,αq for
some α < 1. We write DLWEn,q,α to indicate this instantiation. We now state a
corollary of the results of [28,29,32,33]. These results also extend to additional
forms of q (see [28,29]).

Corollary 2 [28,29,32,33]. Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and

let α ≥ √
n/q. If there is an efficient algorithm that solves the (average-case)

DLWEn,q,α problem, then:

– There is an efficient quantum algorithm that solves GapSVP
˜O(n/α) (and

SIVP
˜O(n/α)) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis
for a lattice and a parameter d, between the case where the lattice has a vector
shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ · d. SIVP is the search problem of finding a set of “short” vectors. The
best known algorithms for GapSVPγ [35] require at least 2Ω̃(n/ log γ) time. We
refer the reader to [32,33] for more information.
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In this work, we will only consider the case where q ≤ 2n. Furthermore, the
underlying security parameter λ is assumed to be polynomially related to the
dimension n.

Lastly, we derive the following corollary which will allow us to choose the
LWE parameters for our scheme. The corollary follows immediately from the
fact that the discrete Gaussian DZ,αq is (αq · t, 2−Ω(t2))-bounded for all t.

Corollary 3. For all ε > 0 there exist functions q = q(n) ≤ 2n, χ = χ(n) such
that χ is B-bounded for some B = B(n), q/B ≥ 2nε

and such that DLWEn,q,χ is
at least as hard as the classical hardness of GapSVPγ and the quantum hardness
of SIVPγ for γ = 2Ω(nε).

The Gadget Matrix. Let N = n · �log q� and define the “gadget matrix” G =
g ⊗ In ∈ Z

n×N
q where g = (1, 2, 4, . . . , 2�log q�−1) ∈ Z

�log q�
q . We will also refer to

this gadget matrix as the “powers-of-two” matrix. We define the inverse function
G−1 : Zn×m

q → {0, 1}N×m which expands each entry a ∈ Zq of the input matrix
into a column of size �log q� consisting of the bits of the binary representation
of a. We have the property that for any matrix A ∈ Z

n×m
q , it holds that G ·

G−1(A) = A.

Trapdoors. Let n,m, q ∈ N and consider a matrix A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q ,

we let A−1
τ (V) denote the random variable whose distribution is a Gaussian

Dm′
Zm,τ conditioned on A ·A−1

τ (V) = V. A τ -trapdoor for A is a procedure that
can sample from the distribution A−1

τ (V) in time poly(n,m,m′, log q), for any
V. We slightly overload notation and denote a τ -trapdoor for A by A−1

τ .
The following properties had been established in a long sequence of works.

Corollary 4 (Properties of Trapdoors [2–4,12,17,29]). Lattice trapdoors
exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .
2. Given A−1

τ , one can obtain [A‖B]−1
τ and [B‖A]−1

τ for any B.
3. For all A ∈ Z

n×m
q and R ∈ Z

m×N , with N = n �log q�, one can obtain
[AR + G‖A]−1

τ for τ = O(m · ‖R‖∞).
4. There exists an efficient procedure TrapGen(1n, q) that outputs (A,A−1

τ0 )
where A ∈ Z

n×m
q for some m = O(n log q) and is 2−n-uniform, where

τ0 = O(
√

n log q log n).

Homomorphic Evaluation. Consider some n, q ∈ N. Consider C1, . . . ,C� ∈
Z

n×N
q where N = n �log q�, and denote �C = [C1‖ · · · ‖C�]. Let f be a boolean

circuit of depth d computing a function {0, 1}� → {0, 1}, and assume that f

contains only NAND gates. We define Cf = Eval(f, �C) recursively: associate
C1, . . . ,C� with the input wires of the circuit. For every wire w in f , letting u, v
be its predecessors and define Cw = G−Cu ·G−1(Cv). Finally Cf is the matrix
associated with the output wire.
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Denoting x�G = [x1G‖ · · · ‖x�G], it holds that if Cf = Eval(f, �C), then Cf −
f(x)G = (�C − x�G) · Hf,x,�C, for a matrix Hf,x,�C with

∥∥∥Hf,x,�C

∥∥∥
∞

≤ (N + 1)d.

In particular, if Ci = ARi + xiG, i.e. �C = A�R + x�G for �R = [R1‖ · · · ‖R�],
then Cf = ARf + f(x)G for Rf = �R · Hf,x,�C (where H is independent of �R).

4 Our Scheme

We now present our scheme and prove its correctness and security. As in previous
works on LWE-based ABE schemes [9,19], it would be easier for us to work
with “negated policies”, so that skf can decrypt ciphertexts with attribute x if
f(x) = 0. We start by defining the class of depth bounded circuits, to which our
construction is targeted.

Definition 8 (Depth-bounded Circuits). The class of d-bounded circuits,
denoted Pd, for some function d = d(λ) is the ensemble of functions {Pd,λ}λ

such that Pd,λ is the set of boolean circuits of depth at most d(λ) and input
length at most 2ν for some ν(λ) = ω(log λ) which will be clear from the context.

Next, we define another class of circuits. These are very simple circuits that
contain a hardcoded string, and upon receiving an index and bit as input, they
check whether the relevant location in the string is indeed the supplied value.

Definition 9. Consider the family of circuits {BitCheckν,x} s.t. for all ν ∈ N

and x ∈ {0, 1}∗, |x| ≤ 2ν , we define BitCheckν,x : [2ν ] × [2ν ] × {0, 1} → {0, 1}
such that BitCheckν,x(�, i, b) = 0 if and only if |x| = � and also xi = b. Note that
BitCheckν,x can always be computed by a boolean circuit of depth O(log |x|) =
O(ν) (we assume that �, i are in standard ν-bit binary representation).

The Scheme. Let ν = ν(λ) be any super-logarithmic function (so that 2ν is
super-polynomial). Let oldABE = (oldABE.Params, oldABE.Enc, oldABE.Keygen,
oldABE.Dec) be a selectively-secure key-policy ABE scheme for the function
class {{BitCheckν(λ),x : |x| ≤ 2ν}}λ where ν is as above (i.e. oldABE only need
to support bounded length attributes, and furthermore this length can be any
super-logarithmic function). Let PRF be a family of pseudorandom functions and
let η = ηλ be the seed length (for security parameter λ). Let dprf be the depth
of PRF.Eval(σ, x) for |x| = ν (by definition dprf = poly(λ)).

We now present our ABE scheme for any class of circuits of a-priori poly-
nomial depth bound. We note that as in previous works, we submit the depth
bound as an additional parameter to the setup procedure. In order to support
the class Pd, the setup procedure is to be executed on input (1λ, 1d(λ)). Finally,
the scheme is parameterized by a constant ε ∈ (0, 1) that determines the trade-
off between the lattice approximation factor on which security is based, and the
efficiency of the scheme.
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– ABE.Params(1λ, 1d). We start by setting DLWE parameters based on Corol-
lary 3. Let n be s.t. (n2 + 1)2(dprf+d) · 23ν ≤ 2nε

. The solution to the equation
is of the form n ≤ (λd)O(1/ε), which is polynomial in the security parameter
for any constant ε. We choose q, χ,B accordingly based on Corollary 3, and
note that by definition q/B ≥ (N +1)2(dprf+d) · 23ν (recall that N = n�log q�).
We further let χ̃ be a B′-swallowing and B̃-bounded distribution, for B′ =
B · mηN(N + 1)dprf and B̃ = 2ν · B′, whose existence is guaranteed by Corol-
lary 1.

Generate a matrix-trapdoor pair (A,A−1
τ0 ) = TrapGen(1n, q) (see Corol-

lary 4), vector v $← Z
n
q , and matrices B1, . . . ,Bη

$← Z
n×N
q , and denote

�B = [B1‖ . . . ‖Bη]. We assume w.l.o.g that m ≥ n�log q� + 2λ (other-
wise random padding can be applied). Generate a key pair for oldABE:
(oldabemsk, oldabepp) = oldABE.Params(1λ). Generate a seed for a PRF
σ = PRF.Gen(1λ).

We set msk = (A−1
τ , oldabemsk, σ) and pp = (A, �B, oldabepp).

– ABE.Encpp(μ, x), where pp = (A, �B, oldabepp), μ ∈ {0, 1} and x ∈ {0, 1}∗. We
let � = |x| denote the length of the attribute string. For all i ∈ [�], generate
Ci = Eval(PRF.Eval(·, i), �B). (Where PRF.Eval(·, i) is the circuit that takes a
seed σ and outputs PRF.Eval(σ, i).)

Sample s $← Z
n
q , e $← χm, e′ $← χ, let

cT
0 = sT [A‖v] + [eT ‖e′] + μ �q/2� · [0T ‖1].

This is essentially a dual-Regev encryption of μ under public key A,v. The
rest of the ciphertext will contain auxiliary information that will allow to
decrypt given a proper functional secret key. Specifically, we sample for all
i ∈ [�] a noise vector ẽi

$← χ̃N , and compute

cT
i,xi⊕β = sT (Ci − (xi ⊕ β)G) + ẽT

i , (1)

Finally, the vectors ci,xi⊕β are encrypted again using the old ABE scheme:

ψi,β = oldABE.Encoldabepp(ci,xi⊕β , (�, i, β)).

The final ciphertext is

ct =
(
c0, (ψi,β)i∈[�],β∈{0,1}

)
.

– ABE.Keygenmsk(f). Given a circuit f computing a function {0, 1}� → {0, 1},
the key is generated as follows. We recall that we work with negated policies
so skf should decrypt only when f(x) = 0.

For all i, define Δi = PRF.Eval(σ, i). Further let Δ≤� = Δ1 · · · Δ� be the
�-prefix of the infinite string Δ (in fact, we can think of Δ as having length
2ν , which is finite but super-polynomial).

Generate a key for the old scheme oldabesk� = oldABE.Keygenoldabemsk

(BitCheckν,Δ≤�
).
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Note that Δ≤� and oldabesk� depend only on msk and �, and not on f , and
therefore they can be generated and published once and for all for each value of
� (however, since � is a-priori unbounded, it is impossible to publish this infor-
mation for “all possible �” at the same time). Define fΔ : {0, 1}� → {0, 1} as
fΔ(x) = f(x ⊕ Δ≤�).

For all i ∈ [�], generate Ci = Eval(PRF.Eval(·, i), �B) (as in the encryption
algorithm). Let �C = [C1‖ · · · ‖C�] and set Cf = Eval(fΔ, �C). Let

rf = [Cf‖A]−1
τ (v),

where τ = 2ν · mN2(N + 1)d+dprf ≥ τ0 and tf = [−rT
f ‖1]T . Note that

[Cf‖A‖v] · tf = 0.
Output skf = (f,Δ≤�, oldabesk�, tf ).

– ABE.Dec(skf , x, ct). Given skf = (f,Δ≤�, oldabesk�, tf ), x ∈ {0, 1}� such that

f(x) = 0, and ct =
(
c0, (ψi,β)i∈[�],β∈{0,1}

)
, the decryption process runs as

follows.
Use oldabesk� to compute

ci,xi⊕Δi
= oldABE.Dec(oldabesk�, ψi,Δi

, (�, i,Δi)), (2)

and recompose
cT

x⊕Δ≤�
= [cT

1,x1⊕Δ1
‖ · · · ‖cT

�,x�⊕Δ�
].

We again compute Ci = Eval(PRF.Eval(·, i), �B), �C = [C1‖ · · · ‖C�] and Cf =
Eval(fΔ, �C). We also compute H = HfΔ,x⊕Δ≤�,�C. Note that by the properties
stated above, it holds that

(�C − (x ⊕ Δ≤�)�G) · H = Cf − fΔ(x ⊕ Δ≤�)G = Cf ,

since fΔ(x ⊕ Δ≤�) = f(x) = 0.
Recalling that cT

x⊕Δ≤�
is linear (up to noise) in �C − (x ⊕ Δ≤�)�G, we will

set cT
f = cT

x⊕Δ≤�
· HfΔ,x⊕Δ≤�,�C, with intent to show that cT

f is linear (up to
noise) in Cf .

Finally, we compute μ̃ = [cT
f ‖cT

0 ] · tf , and output μ′ = 0 if |μ̃| < q/4 and
μ′ = 1 if |μ̃| ≥ q/4.

4.1 Correctness

Let {(fλ, xλ)}λ be an arbitrary sequence of function-message pairs s.t. fλ has
size poly(λ), depth at most d(λ), and |x| = �(λ) for some �(λ) ≤ 2ν(λ). Consider
properly generated (pp,msk) = ABE.Params(1λ), a properly encrypted cipher-
text ct = Encpp(μ, x) for some value μ ∈ {0, 1} and a properly generated func-
tional key skf = ABE.Keygenmsk(f).

Consider the execution of ABE.Dec(skf , x, ct). The correctness of oldABE
implies that with all but negligible probability, the vectors ci,xi⊕Δi

computed in
Eq. (2) are indeed equal to the ones encrypted in Eq. (1). Namely, that

cT
i,xi⊕Δi

= sT (Ci − (xi ⊕ Δi)G) + eTRi,
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and therefore

cT
x⊕Δ≤�

= sT (�C − (x ⊕ Δ≤�)�G) + ẽT ,

which, recalling that f(x) = 0 and denoting H = HfΔ,x⊕Δ≤�,�C, implies that

cT
f = cT

x⊕Δ≤�
· H = sTCf + ẽTH.

Finally, we get that

[cT
f ‖cT

0 ] = sT [Cf‖A‖v] +
[
ẽTH‖eT ‖e′] + μ �q/2� · [0T ‖1],

and therefore that

[cT
f ‖cT

0 ] · tf =
[
ẽTH‖eT ‖e′] · tf + μ �q/2� .

We conclude that we have correct decryption so long as
∣∣[ẽTH‖eT ‖e′] · tf

∣∣ is
bounded away from q/4. We will produce a fairly loose bound, since the asymp-
totic parameters will only be effected marginally. A precise analysis could be
obtained using standard techniques. We recall that by the properties of discrete
Gaussians, it holds that ‖tf‖∞ ≤ τ

√
m + N with all but 2−(m+N) = negl(λ)

probability, and also that asymptotically � ≤ 2ν . Therefore, with all but negli-
gible probability
[
ẽTH‖eT ‖e′

]
· tf ≤

∥∥∥
[
ẽTH‖eT ‖e′

]∥∥∥
∞

· ‖tf‖∞ · (N + m + 1)

≤
(
B̃ · (N + 1)d · (�N) + B · (m + 1)

)
· ‖tf‖∞ · (N + m + 1)

≤
(
B̃ · (N + 1)d · (�N) + B · (m + 1)

)
τ
√

m + N · (N + m + 1)

≤ B · (N + 1)2(dprf+d)22ν · poly(n, log q).

Since we set q/B ≥ (N +1)2(dprf+d)23ν , we get that correctness holds asymp-
totically for any such �(λ), d(λ).

4.2 Security

We prove that our scheme is semi-adaptively secure as per Definition 6. Our
proof heavily relies on the structure of the string Δ. Whereas Δ has a succinct
representation as the output of a PRF, the view of the adversary does not depend
on the seed of the PRF in any way except through the bits of Δ. Therefore, it
follows from the pseudorandomness property that Δ is indistinguishable from
a completely random string. It follows, therefore, that XORing x∗ into Δ will
go unnoticed by the adversary. However, this allows us to embed the challenge
attribute in the public parameters in an indirect way, namely, now the XOR of
the PRF’s ith bit with Δi is exactly x∗

i . This means that x∗
i ⊕ Δi = PRF(i) and

thus that Ci −(x∗
i ⊕Δi)G is independent of x∗ itself and therefore can be known

to the reduction ahead of time. This will allow us to apply similar techniques to
those in [9] to prove security. A formal statement of the lemma together with a
detailed sketch of the proof follows.
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Lemma 1. Let PRF be a family of secure pseudorandom functions as per
Sect. 2.2, and let oldABE be a selectively secure ABE scheme for the func-
tion class BitCheckν,x for some super-logarithmic ν = ν(λ). Then under the
DLWEn,q,χ assumption, the scheme ABE is a semi-adaptively secure ABE
scheme for the function class Pd.

Proof (Extended sketch). We use �∗ to denote the length of the challenge
attribute x∗. We also extend the notation x∗

i as follows: if i ≤ �∗ then x∗
i denotes

the ith bit of x∗ as usual, however, for i > �∗ our convention is that x∗
i = 0.

The proof follows by a sequence of hybrids. We consider an adversary A for
the semi-adaptive security game in Definition 6. Let Adv[A] denote the advan-
tage of A in the security game. We will denote by AdvH[A] the advantage of A
in the experiment described in hybrid H.

Hybrid H0. This is the ABE semi-adaptive security game as per Definition 5. By
definition Adv[A] = AdvH0 [A].

Hybrid H1. In this hybrid, we change the way the (infinite) string Δ is defined.
Recall that in the previous hybrid, Δi = PRF.Eval(σ, i). However in this hybrid
and throughout the proof we set

Δi =
{

(PRF.Eval(σ, i) ⊕ x∗
i ) if i ≤ �∗,

PRF.Eval(σ, i) otherwise. (3)

Note that now x∗ needs to be known in order to compute Δ. However, Δ is
not used at all until the first key query is answered. Therefore, to execute this
hybrid, the challenger only needs to know x∗ before responding to the first key
query, which is consistent with semi-adaptive security.

To see why the view of the adversary is indistinguishable in H1 and H0,
consider replacing PRF.Eval(σ, i) with an oracle that returns a random bit for
every i. In such case, the distributions in both hybrids are identical. Since σ itself
is not used anywhere except to generate PRF.Eval(σ, i), the pseudorandomness
of PRF guarantees that the views when using PRF.Eval(σ, i) are computationally
indistinguishable. We conclude that

|AdvH1 [A] − AdvH0 [A]| = negl(λ).

We remark that this is the only place where the pseudorandomness of the PRF
is used, and from this hybrid and on one can think of σ as public.

Lastly, we notice that since we extended our notation so that x∗
i = 0 for

i > �∗, we can say that from this hybrid and throughout the proof, it holds that
Δi = PRF.Eval(σ, i) ⊕ x∗

i for all i ∈ N.

Hybrid H2. We now change the way the matrices �B are generated. We will
now generate Bi as follows: Sample Ri

$← {0, 1}m×N and set Bi = ARi + σiG.
Indistinguishability will follow from the leftover hash lemma since m ≥ n�log q�+
2λ. We point out that one has to be careful when applying the leftover hash
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lemma since A is only statistically close to uniform, and it is generated together
with A−1

τ0 . We notice, however that A−1
τ0 − A − ARi is a Markov chain, and

therefore we can think about first sampling A and then sampling A−1
τ0 and

ARi independently from the marginals. Therefore, since (A,ARi) is statistically
indistinguishable from uniform when A is uniform, it also holds true when A is
only statistically close to uniform, and also holds true when A−1

τ0 is known as
well.

|AdvH2 [A] − AdvH1 [A]| = negl(λ).

We notice that in this hybrid, we now have that �B = A�R + σ �G, where
�R = [R1‖ · · · ‖Rη]. Recalling that Ci = Eval(PRF.Eval(·, i), �B), we can define
H∗

i = HPRF.Eval(·,i),σ,�B, and it will hold that

Ci = A�RH∗
i + PRF.Eval(σ, i) · G = A�RH∗

i + (x∗
i ⊕ Δi)G. (4)

We recall that H∗
i is computable given σ, and furthermore ‖H∗

i ‖∞ ≤ (N +1)dprf .
If we denote �H∗ = [H∗

1‖ · · · ‖H∗
� ], we conclude that

�C − (x∗ ⊕ Δ≤�)�G = A�R�H∗. (5)

Hybrid H3. In this hybrid we will switch from generating skf using A−1
τ0 to

generating them using �R. We recall that we are only required to generate keys
for f s.t. f(x∗) = 1, otherwise the adversary loses in the semi-adaptive security
game.

We recall that by definition, in order to derive skf , we need to sample from
[Cf‖A]−1

τ . We recall that we defined Cf = Eval(fΔ, �C), and therefore, denoting
H = HfΔ,(x∗⊕Δ≤�),�C

, it holds that

Cf − fΔ(x∗ ⊕ Δ≤�) · G =
(

�C − (x∗ ⊕ Δ≤�)�G
)

· H.

Plugging in Eq. (5), and since fΔ(x∗ ⊕ Δ≤�) = f(x∗) = 1, we get that

Cf = A�R�H∗H + G.

Therefore, [Cf‖A] = [A · (�R�H∗H) + G‖A]. This means that given �R and the
computable matrices �H∗,H, one can sample from [Cf‖A]−1

τ for all values of

τ ≥ τ ′ for τ ′ = O
(
m ·

∥∥∥�R · �H∗ · H
∥∥∥

∞

)
. Plugging in the known bounds, we get

that

τ ′ = O(m · Nη · (N + 1)dprf · N� · (N + 1)d) = O(�) · (N + 1)d+dprf · mN2,

Recall that we need to sample with τ = 2ν · mN2(N + 1)d+dprf which is asymp-
totically greater than τ ′, which is enabled by our parameter setting.

It follows that changing our method of sampling rf does not change the
resulting distribution, and therefore

AdvH3 [A] = AdvH2 [A].
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We notice that in this hybrid, the challenger does not require A−1
τ0 at all.

Hybrid H4. In this hybrid, we change the distribution of A and sample it uni-
formly from Z

n×m
q rather than via TrapGen. Since TrapGen samples A which is

statistically indistinguishable from uniform, we conclude that the distribution
produced in the two hybrids are statistically indistinguishable as well.

|AdvH4 [A] − AdvH3 [A]| = negl(λ).

Hybrid H5. In this hybrid we change the way the challenge ciphertext is com-
puted. Specifically we change the way we compute ψi,1−Δi

, for all i, and set

ψi,1−Δi
= oldABE.Encoldabepp(0, (�∗, i, 1 − Δi)),

where the zero vector has the same length as ci,x∗
i ⊕Δi⊕1.

Since for all �, i, BitCheckn,Δ≤�
(�, i, 1 − Δi) = 1, and thus for all �, the key

oldabesk� must not decrypt ψi,1−Δi
, we would like to use the security of oldABE

to argue that H5 is computationally indistinguishable from H4. However, some
care needs to be taken since we only assume that oldABE is selectively secure.

The formal proof will proceed via a hybrid argument going over all values of
� and β (note that we at this point we have an upper bound on � given by the
running time of A). In the (i, β) hybrid, we change all ciphertexts ψi′,β′ such that
(i′, β′) < (i, β) (lexicographically) to 0 if β′ �= Δi′ . To argue that two adjacent
hybrids are indistinguishable, we rely on the selective hardness of oldABE for
the fixed attribute (i, β) which can be provided in the beginning of the game as
required for selective security.

We conclude that this hybrid is computationally indistinguishable from the
previous one.

|AdvH5 [A] − AdvH4 [A]| = negl(λ).

Hybrid H6. We again change the contents of the challenge ciphertext as follows.
We generate s, e, e′ as before, and set bT = sTA + eT , and b′ = sTv + e′. The
vector c0 is generated identically to before, but we can express it in terms of
b, b′ as

cT
0 = [bT ‖b′] + μ �q/2� · [0T ‖1].

We recall that as of the previous hybrid, the values ci,x∗
i ⊕Δi⊕1 no longer appear

in the challenge ciphertext, so they are not generated at all. The only change
that we make is in the generation of ci,x∗

i ⊕Δi
. We recall that in the previous

hybrid
cT

i,x∗
i ⊕Δi

= sT (Ci − (x∗
i ⊕ Δi)G) + ẽT

i .

and since at this point (Ci − (x∗
i ⊕Δi)G) = A�RH∗

i , as per Eq. (4), we had that

cT
i,x∗

i ⊕Δi
= sTA�RH∗

i + ẽT
i .

In this hybrid, we change these values to

cT
i,x∗

i ⊕Δi
= bT �RH∗

i + ẽT
i = sTA�RH∗

i + eT �RH∗
i + ẽT

i .
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This distribution, however, is statistically close to the previous one, since the
distribution eT �RH∗

i is
(
B · m · ηN · (N + 1)dprf

)
-bounded and since we selected

χ̃ to be
(
BmηN(N + 1)dprf

)
-swallowing, statistical indistinguishability follows

by definition.

|AdvH6 [A] − AdvH5 [A]| = negl(λ).

We note that in this hybrid, given b, b′, the challenger does not need to know
the values of s, e, e′ since they are not used directly.

Hybrid H7. In the final hybrid, we change the distribution of b, b′ to be uni-
form in Z

m
q ,Zq, respectively. Indistinguishability follows by definition from the

DLWEn,q,χ assumption. We have

|AdvH7 [A] − AdvH6 [A]| = negl(λ).

Clearly, in this hybrid the adversary has no advantage since b′ is uniform and
completely masks the value of μ. It follows therefore that

AdvH7 [A] = 1/2,

and therefore

|Adv[A] − 1/2| = negl(λ),

which completes the proof of security.

4.3 Conclusion

Finally we can put all the pieces together and state our result with all parameters.

Theorem 2. Assume that GapSVP (respectively SIVP) is hard to approximate by
a polynomial time classical (respectively quantum) algorithm to within a factor of
2nε

. Then for any polynomial d = d(λ) there exists a correct and semi-adaptively
secure ABE scheme for the policy class Pd.

Letting k = (λd)1/ε, the public parameters of the scheme are of size poly(k),
ciphertexts are of length � · poly(k), where � is the attribute length, and the key
length is �+poly(k), where � is the input length of the policy function (all poly(·)
notations indicate a specific polynomial function).

Proof. A secure family of pseudorandom functions can be instantiated based
on the existence of any one-way function, and in particular on the hardness of
lattice approximation to within poly(n) � 2nε

factor.
We instantiate oldABE using the scheme from [9]. Recall that oldABE only

needs to support attributes of length O(ν) and policies which can be represented
by circuits of depth O(log(ν)). This means that such a scheme can be based on
the hardness of DLWE with parameters that translate to the hardness of lattice
approximation to within a factor of 2no(1) � 2nε

. The keys and ciphertexts of
oldABE will have overhead poly(λ) for a fixed polynomial.

Combining these primitives with the correctness analysis and with the secu-
rity analysis in Lemma 1, the theorem follows.
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