
Matthew Robshaw
Jonathan Katz (Eds.)

 123

LN
CS

 9
81

6

36th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 14–18, 2016
Proceedings, Part III

Advances in Cryptology –
CRYPTO 2016

Lecture Notes in Computer Science 9816

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Matthew Robshaw • Jonathan Katz (Eds.)

Advances in Cryptology –

CRYPTO 2016
36th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 14–18, 2016
Proceedings, Part III

123

Editors
Matthew Robshaw
Impinj, Inc.
Seattle, WA
USA

Jonathan Katz
University of Maryland
College Park, MD
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53014-6 ISBN 978-3-662-53015-3 (eBook)
DOI 10.1007/978-3-662-53015-3

Library of Congress Control Number: 2016945783

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The 36th International Cryptology Conference (Crypto 2016) was held at UCSB, Santa
Barbara, CA, USA, during August 14–18, 2016. The workshop was sponsored by the
International Association for Cryptologic Research.

Crypto continues to grow. This year the Program Committee evaluated a record 274
submissions out of which 70 were chosen for inclusion in the program. Each paper was
reviewed by at least three independent reviewers, with papers from Program Com-
mittee members receiving at least five reviews. Reviewers with potential conflicts of
interest for specific papers were excluded from all discussions about those papers, and
this policy was extended to the program chairs as well.

The 44 members of the Program Committee were aided in this complex and
time-consuming task by many external reviewers. We would like to thank them all for
their service, their expert opinions, and their spirited contributions to the review pro-
cess. It was a tremendously difficult task to choose the program for this conference, as
the quality of the submissions was very high. It was even harder to identify a single
best paper, but our congratulations go to Elette Boyle, Niv Gilboa, and Yuval Ishai
from IDC Herzliya, Ben Gurion University, and the Technion, respectively, whose
paper “Breaking the Circuit Size Barrier for Secure Computation Under DDH” was
awarded Best Paper. Our congratulations also go to Mark Zhandry of MIT and
Princeton University who won the award for the Best Student Paper “The Magic of
ELFs.”

The invited speakers at Crypto 2016 were Brian Sniffen, Chief Security Architect at
Akamai Technologies, Inc., and Paul Kocher, founder of Cryptography Research.
Brian’s presentation cast a fascinating light on the issues of real-world cryptographic
deployment while Paul’s presentation, a joint invitation from the program co-chairs of
both Crypto 2016 and CHES 2016, marked 20 years since his publication of the first
paper on side-channel attacks at Crypto 1996.

We are, of course, indebted to Brian LaMacchia, the general chair, as well as the
local Organizing Committee, who together proved ideal liaisons for establishing the
layout of the program and for supporting the speakers. Our job as program co-chairs
was made much easier by the excellent tools developed by Shai Halevi; both Shai and
Brian were always available at short notice to answer our queries. Finally, we would
like to thank all the authors who submitted their work to Crypto 2016. Without you the
conference would not exist.

August 2016 Matthew Robshaw
Jonathan Katz

Crypto 2016

The 36th IACR International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 14–18, 2016

Sponsored by the International Association for Cryptologic Research

General Chair

Brian LaMacchia Microsoft

Program Chairs

Matthew Robshaw Impinj, USA
Jonathan Katz University of Maryland, USA

Program Committee

Alex Biryukov University of Luxembourg, Luxembourg
Anne Canteaut Inria, France
Dario Catalano Università di Catania, Italy
Nishanth Chandran Microsoft Research, India
Melissa Chase Microsoft Research, USA
Joan Daemen STMicroelectronics, Belgium and Radboud University,

The Netherlands
Martin Van Dijk University of Connecticut, USA
Itai Dinur Ben-Gurion University, Israel
Pierre-Alain Fouque Université Rennes 1, France
Steven Galbraith Auckland University, New Zealand
Sanjam Garg University of California, Berkeley, USA
S. Dov Gordon George Mason University, USA
Jens Groth University College London, UK
Sorina Ionica Université de Picardie, France
Tetsu Iwata Nagoya University, Japan
Aggelos Kiayias National and Kapodistrian University of Athens,

Greece
Gregor Leander Ruhr Universität Bochum, Germany
Shengli Liu Shanghai Jiao Tong University, China
Alexander May Ruhr Universität Bochum, Germany
Willi Meier FHNW, Switzerland
Payman Mohassel Visa Research, USA

Elke De Mulder Cryptographic Research, France
Steven Myers Indiana University, USA
Phong Nguyen Inria, France and CNRS/JFLI and University of Tokyo,

Japan
Kaisa Nyberg Aalto University, Finland
Kenny Paterson Royal Holloway University of London, UK
Thomas Peyrin Nanyang Technological University, Singapore
Benny Pinkas Bar-Ilan University, Israel
David Pointcheval École Normale Supérieure, France
Manoj Prabhakaran University of Illinois, USA
Bart Preneel KU Leuven, Belgium
Mariana Raykova Yale University, USA
Christian Rechberger TU-Graz, Austria and DTU, Denmark
Mike Rosulek Oregon State University, USA
Rei Safavi-Naini University of Calgary, Canada
Alessandra Scafuro Boston University and Northeastern University, USA
Patrick Schaumont Virginia Tech, USA
Dominique Schröder Saarland University, Germany
Jae Hong Seo Myongji University, Korea
Yannick Seurin ANSSI, France
Abhi Shelat University of Virginia, USA
Nigel Smart University of Bristol, UK
Ron Steinfeld Monash University, Australia
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan

Additional Reviewers

Michel Abdalla
Masayuki Abe
Arash Afshar
Shashank Agrawal
Shweta Agrawal
Ayo Akinyele
Martin Albrecht
Gergely Alpar
Jacob Alperin-Sheriff
Elena Andreeva
Daniel Apon
Gilad Asharov
Gilles Van Assche
Nuttapong Attrapadung
Saikrishna

Badrinarayanan
Josep Balasch

Foteini Baldimtsi
Paulo Barreto
Gilles Barthe
Lejla Batina
Christof Beierle
Mihir Bellare
Fabrice Benhamouda
Sanjay Bhattacherjee
Jean-Francois Biasse
Begul Bilgin
Gaetan Bisson
Nir Bitansky
Simon Blackburn
Olivier Blazy
Matthieu Bloch
Céline Blondeau
Andrej Bogdanov

Dan Boneh
Jonathan Bootle
Raphael Bost
Christina Boura
Florian Bourse
Cyril Bouvier
Elette Boyle
Zvika Brakerski
Lus Brandão
Anne Broadbent
Christina Brzuska
Christian Cachin
Ran Canetti
Angelo De Caro
Guilhem Castagnos
Andrea Cerulli
Pyrros Chaidos

VIII Crypto 2016

André Chailloux
Jie Chen
Céline Chevalier
Chongwon Cho
Seung Geol Choi
Ashish Choudhury
Sherman Chow
Kai-Min Chung
Michele Ciampi
Michael Clear
Ran Cohen
Geoffroy Couteau
Dana Dachman-Soled
Deepesh Data
Jean Paul Degabriele
David Derler
Daniel Dinu
Christoph Dobraunig
Yevgeniy Dodis
Nico Döttling
Natnatee Dokmai
Leo Ducas
Tuyet Duong
Keita Emura
Frederic Ezerman
Pooya Farshim
Sebastian Faust
Dario Fiore
Marc Fischlin
Joe Fitzsimons
Nils Fleischhacker
Emmanuel Fouotsa
Georg Fuchsbauer
Eiichiro Fujisaki
Martin Gagne
François Le Gall
Chaya Ganesh
Juan Garay
Christina Garman
Romain Gay
Essam Ghadafi
Benedikt Gierlichs
Niv Gilboa
Vipul Goyal
Frédéric Grosshans
Aurore Guillevic

Divya Gupta
Felix Günther
Shai Halevi
Mike Hamburg
Shuai Han
Helena Handschuh
Christian Hanser
Carmit Hazay
Ethan Heilman
Ryan Henry
Gottfried Herold
Felix Heuer
Viet Tung Hoang
Dennis Hofheinz
Ziyuan Hu
Yan Huang
Michael Hutter
Malika Izabachene
Håkon Jacobsen
Mahavir Jhawar
Dingding Jia
Keting Jia
Thomas Johansson
Aaron Johnson
Kimmo Järvinen
Yael Tauman Kalai
Bhavana Kanukurthi
Petteri Kaski
Marcel Keller
Nathan Keller
Carmen Kempka
Iordanis Kerenidis
Dmitry Khovratovich
Dakshita Khurana
Eike Kiltz
Jinsu Kim
Taechan Kim
Paul Kirchner
Elena Kirshanova
Susumu Kiyoshima
Simon Knellwolf
Stefan Koelbl
Vlad Kolesnikov
Takeshi Koshiba
Luke Kowalczyk
Thorsten Kranz

Daniel Kraschewski
Anna Krasnova
Hugo Krawczyk
Fernando Krell
Stephan Krenn
Ranjit Kumaresan
Alptekin Kupcu
Fabien Laguillaumie
Virginie Lallemand
Enrique Larraia
Changmin Lee
Hyung Tae Lee
Kwangsu Lee
Nikos Leonardos
Tancrède Lepoint
Anthony Leverrier
Benoit Libert
Fuchun Lin
Rachel Lin
Yehuda Lindell
Feng-Hao Liu
Yi-Kai Liu
Patrick Longa
Steve Lu
Stefan Lucks
Atul Luykx
Anna Lysyanskaya
Lin Lyu
Vadim Lyubashevsky
Mohammad Mahmoody
Hemanta Maji
Giulio Malavolta
Tal Malkin
Alex Malozemoff
Mark Marson
Daniel Masny
Takahiro Matsuda
Florian Mendel
Bart Mennink
Thyla van der Merwe
Peihan Miao
Christof Michel
Ian Miers
Andrew Miller
Brice Minaud
Kazuhiko Minematsu

Crypto 2016 IX

Ilya Mironov
Ameer Mohammad
Amir Moradi
Tal Moran
Nicky Mouha
Pratyay Mukherjee
Jörn Müller-Quade
Valérie Nachef
Michael Naehrig
Maria Naya-Plasencia
Soheil Nemati
Khoa Nguyen
Ivica Nikolic
Ventzi Nikov
Ryo Nishimaki
Anca Nitulescu
Adam O’Neill
Miyako Ohkubo
Go Ohtake
Tatsuaki Okamoto
Ozgur Oksuz
Cristina Onete
Claudio Orlandi
Elisabeth Oswald
Léo Paul Perrin
Jiaxin Pan
Giorgos Panagiotakos
Omkant Pandey
Kostas

Pappagiannopoulos
Anat Paskin-Cherniavsky
Rafael Pass
Valerio Pastro
Arpita Patra
Souradyuti Paul
Christopher Peikert
Rene Peralta
Trevor Perrin
Giuseppe Persiano
Christophe Petit
Rafael Del Pino
Oxana Poburinnaya
Antigoni Polychroniadou
Orazio Puglisi
Baodong Qin
Max Rabkin

Carla Rafols
Srinivasan Raghuraman
Vanishree Rao
Manuel Reinert
Oscar Reparaz
Silas Richelson
Thomas Ristenpart
Damien Robert
Alon Rosen
Adeline Roux-Langlois
Arnab Roy
Tim Ruffing
Hansol Ryu
Sondre Rønjom
Akshayaram Srinivasan
Amin Sakzad
Katerina Samari
Ruediger Schack
Christian Schaffner
John Schanck
Thomas Schneider
Peter Scholl
Peter Schwabe
Sven Schäge
Adam Sealfon
Setareh Sharifian
Tom Shrimpton
Sandeep Shukla
Siang Meng Sim
Luisa Siniscalchi
Daniel Slamanig
Yongsoo Song
Kannan Srinathan
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé
John Steinberger
Marc Stevens
Valentin Suder
Willy Susilo
Björn Tackmann
Katsuyuki Takashima
Qiang Tang
Stefano Tessaro
Aishwarya

Thiruvengadam

Jean-Pierre Tillich
Yosuke Todo
Yiannis Tselekounis
Michael Tunstall
Himanshu Tyagi
Aleksei Udovenko
Jon Ullman
Dominique Unruh
Prashant Vasudevan
Vesselin Velichkov
Muthu

Venkitasubramaniam
Frederik Vercauteren
Damien Vergnaud
Jorge Villar
Dhinakaran

Vinayagamurthy
Ivan Visconti
Michael Walter
Pengwei Wang
Qingju Wang
Xiao Wang
Hoeteck Wee
Mor Weiss
Yunhua Wen
Carolyn Whitnall
Daniel Wichs
Xiaodi Wu
Keita Xagawa
Sophia Yakoubov
Shota Yamada
Kan Yasuda
Arkady Yerukhimovich
Ouyang Yingkai
Thomas Zacharias
Mark Zhandry
Bingsheng Zhang
Liang Feng Zhang
Xiao Zhang
Yupeng Zhang
Hong-Sheng Zhou
Vassilis Zikas
Dionysis Zindros

X Crypto 2016

Contents – Part III

Quantum Techniques

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 3
Yfke Dulek, Christian Schaffner, and Florian Speelman

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting
with Applications . 33

Frédéric Dupuis, Serge Fehr, Philippe Lamontagne, and Louis Salvail

Semantic Security and Indistinguishability in the Quantum World 60
Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner

Spooky Encryption

Spooky Encryption and Its Applications. 93
Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs

Spooky Interaction and Its Discontents: Compilers for Succinct
Two-Message Argument Systems . 123

Cynthia Dwork, Moni Naor, and Guy N. Rothblum

Secure Computation and Protocols II

Adaptively Secure Garbled Circuits from One-Way Functions 149
Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky,
Alessandra Scafuro, and Daniel Wichs

Rate-1, Linear Time and Additively Homomorphic UC Commitments 179
Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Döttling,
and Jesper Buus Nielsen

UC Commitments for Modular Protocol Design and Applications
to Revocation and Attribute Tokens. 208

Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial

Probabilistic Termination and Composability of Cryptographic Protocols 240
Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 270
Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti

http://dx.doi.org/10.1007/978-3-662-53015-3_1
http://dx.doi.org/10.1007/978-3-662-53015-3_2
http://dx.doi.org/10.1007/978-3-662-53015-3_2
http://dx.doi.org/10.1007/978-3-662-53015-3_3
http://dx.doi.org/10.1007/978-3-662-53015-3_4
http://dx.doi.org/10.1007/978-3-662-53015-3_5
http://dx.doi.org/10.1007/978-3-662-53015-3_5
http://dx.doi.org/10.1007/978-3-662-53015-3_6
http://dx.doi.org/10.1007/978-3-662-53015-3_7
http://dx.doi.org/10.1007/978-3-662-53015-3_8
http://dx.doi.org/10.1007/978-3-662-53015-3_8
http://dx.doi.org/10.1007/978-3-662-53015-3_9
http://dx.doi.org/10.1007/978-3-662-53015-3_10

IBE, ABE, and Functional Encryption

Programmable Hash Functions from Lattices: Short Signatures and IBEs
with Small Key Sizes . 303

Jiang Zhang, Yu Chen, and Zhenfeng Zhang

Fully Secure Functional Encryption for Inner Products, from Standard
Assumptions. 333

Shweta Agrawal, Benoît Libert, and Damien Stehlé

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security . . . 363
Zvika Brakerski and Vinod Vaikuntanathan

Automated Tools and Synthesis

Design in Type-I, Run in Type-III: Fast and Scalable Bilinear-Type
Conversion Using Integer Programming . 387

Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo

Linicrypt: A Model for Practical Cryptography . 416
Brent Carmer and Mike Rosulek

Zero Knowledge

On the Relationship Between Statistical Zero-Knowledge and Statistical
Randomized Encodings . 449

Benny Applebaum and Pavel Raykov

How to Prove Knowledge of Small Secrets . 478
Carsten Baum, Ivan Damgård, Kasper Green Larsen,
and Michael Nielsen

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic
Statements with Applications to Privacy Preserving Credentials 499

Melissa Chase, Chaya Ganesh, and Payman Mohassel

Theory

Fine-Grained Cryptography . 533
Akshay Degwekar, Vinod Vaikuntanathan,
and Prashant Nalini Vasudevan

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications
to Searchable Encryption . 563

Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou

XII Contents – Part III

http://dx.doi.org/10.1007/978-3-662-53015-3_11
http://dx.doi.org/10.1007/978-3-662-53015-3_11
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-53015-3_13
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_14
http://dx.doi.org/10.1007/978-3-662-53015-3_15
http://dx.doi.org/10.1007/978-3-662-53015-3_16
http://dx.doi.org/10.1007/978-3-662-53015-3_16
http://dx.doi.org/10.1007/978-3-662-53015-3_17
http://dx.doi.org/10.1007/978-3-662-53015-3_18
http://dx.doi.org/10.1007/978-3-662-53015-3_18
http://dx.doi.org/10.1007/978-3-662-53015-3_19
http://dx.doi.org/10.1007/978-3-662-53015-3_20
http://dx.doi.org/10.1007/978-3-662-53015-3_20

Bounded Indistinguishability and the Complexity of Recovering Secrets 593
Andrej Bogdanov, Yuval Ishai, Emanuele Viola,
and Christopher Williamson

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 619
Nico Döttling, Nils Fleischhacker, Johannes Krupp,
and Dominique Schröder

Author Index . 649

Contents – Part III XIII

http://dx.doi.org/10.1007/978-3-662-53015-3_21
http://dx.doi.org/10.1007/978-3-662-53015-3_22

Quantum Techniques

Quantum Homomorphic Encryption
for Polynomial-Sized Circuits

Yfke Dulek1,2,3(B), Christian Schaffner1,2,3(B), and Florian Speelman2,3(B)

1 University of Amsterdam, Amsterdam, The Netherlands
C.Schaffner@uva.nl

2 CWI, Amsterdam, The Netherlands
3 QuSoft, Amsterdam, The Netherlands

{Y.M.Dulek,F.Speelman}@cwi.nl

Abstract. We present a new scheme for quantum homomorphic encryp-
tion which is compact and allows for efficient evaluation of arbi-
trary polynomial-sized quantum circuits. Building on the framework of
Broadbent and Jeffery [BJ15] and recent results in the area of instanta-
neous non-local quantum computation [Spe15], we show how to construct
quantum gadgets that allow perfect correction of the errors which occur
during the homomorphic evaluation of T gates on encrypted quantum
data. Our scheme can be based on any classical (leveled) fully homomor-
phic encryption (FHE) scheme and requires no computational assump-
tions besides those already used by the classical scheme. The size of our
quantum gadget depends on the space complexity of the classical decryp-
tion function – which aligns well with the current efforts to minimize the
complexity of the decryption function.

Our scheme (or slight variants of it) offers a number of additional
advantages such as ideal compactness, the ability to supply gadgets “on
demand”, and circuit privacy for the evaluator against passive adver-
saries.

Keywords: Homomorphic encryption · Quantum cryptography · Quan-
tum teleportation · Garden-hose model

1 Introduction

Fully homomorphic encryption (FHE) is the holy grail of modern cryptography.
Rivest et al. were the first to observe the possibility of manipulating encrypted
data in a meaningful way, rather than just storing and retrieving it [RAD78].
After some partial progress [GM84,Pai99,BGN05,IP07] over the years, a break-
through happened in 2009 when Gentry presented a fully-homomorphic encryp-
tion (FHE) scheme [Gen09]. Since then, FHE schemes have been simplified
[VDGHV10] and based on more standard assumptions [BV11]. The exciting
developments around FHE have sparked a large amount of research in other
areas such as functional encryption [GKP+13a,GVW13,GKP+13b,SW14] and
obfuscation [GGH+13].

Developing quantum computers is a formidable technical challenge, so
it currently seems likely that quantum computing will not be available
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 3–32, 2016.
DOI: 10.1007/978-3-662-53015-3 1

4 Y. Dulek et al.

immediately to everyone and hence quantum computations have to be out-
sourced. Given the importance of classical1 FHE for “computing in the
cloud”, it is natural to wonder about the existence of encryption schemes
which can encrypt quantum data in such a way that a server can carry
out arbitrary quantum computations on the encrypted data (without inter-
acting with the encrypting party2). While previous work on quantum homo-
morphic encryption has mostly focused on information-theoretic security (see
Sect. 1.2 below for details), schemes that are based on computational assump-
tions have only recently been thoroughly investigated by Broadbent and
Jeffery. In [BJ15], they give formal definitions of quantum fully homomorphic
encryption (QFHE) and its security and they propose three schemes for quantum
homomorphic encryption assuming the existence of classical FHE.

A natural idea is to encrypt a message qubit with the quantum one-time pad
(i.e. by applying a random Pauli operation), and send the classical keys for the
quantum one-time pad along as classical information, encrypted by the classical
FHE scheme. This basic scheme is called CL in [BJ15]. It is easy to see that
CL allows an evaluator to compute arbitrary Clifford operations on encrypted
qubits, simply by performing the actual Clifford circuit, followed by homomor-
phically updating the quantum one-time pad keys according to the commuta-
tion rules between the performed Clifford gates and the Pauli encryptions. The
CL scheme can be regarded as analogous to additively homomorphic encryption
schemes in the classical setting. The challenge, like multiplication in the classical
case, is to perform non-Clifford gates such as the T gate. Broadbent and Jef-
fery propose two different approaches for doing so, accomplishing homomorphic
encryption for circuits with a limited number of T gates. These results lead to
the following main open problem:

Is it possible to construct a quantum homomorphic scheme that allows
evaluation of polynomial-sized quantum circuits?

1.1 Our Contributions

We answer the above question in the affirmative by presenting a new scheme
TP (as abbreviation for teleportation) for quantum homomorphic encryption
which is both compact and efficient for circuits with polynomially many T gates.
The scheme is secure against chosen plaintext attacks from quantum adversaries,
as formalized by the security notion q-IND-CPA security defined by Broadbent
and Jeffery [BJ15].

Like the schemes proposed in [BJ15], our scheme is an extension of the
Clifford scheme CL . We add auxiliary quantum states to the evaluation key which
we call quantum gadgets and which aid in the evaluation of the T gates. The
size of a gadget depends only on (a certain form of) the space complexity of the

1 Here and throughout the article, we use “classical” to mean “non-quantum”.
2 In contrast to blind or delegated quantum computation where some interaction

between client and server is usually required, see Sect. 1.2 for references.

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 5

decryption function of the classical FHE scheme. This relation turns out to be
very convenient, as classical FHE schemes are often optimized with respect to the
complexity of the decryption operation (in order to make them bootstrappable).
As a concrete example, if we instantiate our scheme with the classical FHE scheme
by Brakerski and Vaikuntanathan [BV11], each evaluation gadget of our scheme
consists of a number of qubits which is polynomial in the security parameter.

In TP, we require exactly one evaluation gadget for every T gate that
we would like to evaluate homomorphically. Intuitively, after a T gate is per-
formed on a one-time-pad encrypted qubit XaZb|ψ〉, the result might contain an
unwanted phase Pa depending on the key a with which the qubit was encrypted,
since T XaZb|ψ〉 = PaXaZbT |ψ〉. Obviously, the evaluator is not allowed to know
the key a. Instead, he holds an encryption ã of the key, produced by a classi-
cal FHE scheme. The evaluator can teleport the encrypted qubit “through the
gadget” [GC99] in a way that depends on ã, in order to remove the unwanted
phase. In more detail, the quantum part of the gadget consists of a number of
EPR pairs which are prepared in a way that depends on the secret key of the
classical FHE scheme. Some classical information is provided with the gadget
that allows the evaluator to homomorphically update the encryption keys after
the teleportation steps. On a high level, the use of an evaluation gadget cor-
responds to a instantaneous non-local quantum computation3 where one party
holds the secret key of the classical FHE scheme, and the other party holds the
input qubit and a classical encryption of the key to the quantum one-time pad.
Together, this information determines whether an inverse phase gate P† needs to
be performed on the qubit or not. Very recent results by Speelman [Spe15] show
how to perform such computations with a bounded amount of entanglement.
These techniques are the crucial ingredients for our construction and are the
reason why the garden-hose complexity [BFSS13] of the decryption procedure of
the classical FHE is related to the size of our gadgets.

The quantum part of our evaluation gadget is strikingly simple, which pro-
vides a number of advantages. To start with, the evaluation of a T gate requires
only one gadget, and does not cause errors to accumulate on the quantum state.
The scheme is very compact in the sense that the state of the system after the
evaluation of a T gate has the same form as after the initial encryption, except
for any classical changes caused by the classical FHE evaluation. This kind of
compactness also implies that individual evaluation gadgets can be supplied “on
demand” by the holder of the secret key. Once an evaluator runs out of gadgets,
the secret key holder can simply supply more of them.

Furthermore, TP does not depend on a specific classical FHE scheme, hence
any advances in classical FHE can directly improve our scheme. Our require-
ments for the classical FHE scheme are quite modest: we only require the classical
scheme to have a space-efficient decryption procedure and to be secure against
quantum adversaries. In particular, no circular-security assumption is required.

3 This term is not related to the term ‘instantaneous quantum computation’ [SB08],
and instead first was used as a specific form of non-local quantum computation, one
where all parties have to act simultaneously.

6 Y. Dulek et al.

Since we supply at most a polynomial number of evaluation gadgets, our scheme
TP is leveled homomorphic by construction, and we can simply switch to a new
classical key after every evaluation gadget. In fact, the Clifford gates in the
quantum evaluation circuit only require additive operations from the classical
homomorphic scheme, while each T gate needs a fixed (polynomial) number of
multiplications. Hence, we do not actually require fully homomorphic classical
encryption, but leveled fully homomorphic schemes suffice.

Finally, circuit privacy in the passive setting almost comes for free. When
wanting to hide which circuit was evaluated on the data, the evaluating party
can add an extra randomization layer to the output state by applying his own
one-time pad. We show that if the classical FHE scheme has the circuit-privacy
property, then this extra randomization completely hides the circuit from the
decrypting party. This is not unique to our specific scheme: the same is true
for CL.

In terms of applications, our construction can be appreciated as a constant-
round scheme for blind delegated quantum computation, using computational
assumptions. The server can evaluate a universal quantum circuit on the
encrypted input, consisting of the client’s quantum input and a (classical)
description of the client’s circuit. In this context, it is desirable to minimize
the quantum resources needed by the client. We argue that our scheme can still
be used for constant-round blind delegated quantum computation if we limit
either the client’s quantum memory or the types of quantum operations the
client can perform.

As another application, we can instantiate our construction with a classical
FHE scheme that allows for distributed key generation and decryption amongst
different parties that all hold a share of the secret key [AJLA+12]. In that case,
it is likely that our techniques can be adapted to perform multiparty quantum
computation [BCG+06] in the semi-honest case. However, the focus of this article
lies on the description and security proof of the new construction, and more
concrete applications are the subject of upcoming work.

1.2 Related Work

Early classical FHE schemes were limited in the sense that they could not facili-
tate arbitrary operations on the encrypted data: some early schemes only imple-
mented a single operation (addition or multiplication) [RSA78,GM84,Pai99];
later on it became possible to combine several operations in a limited way
[BGN05,GHV10,SYY99]. Gentry’s first fully homomorphic encryption scheme
[Gen09] relied on several non-standard computational assumptions. Subsequent
work [BGV12,BV11] has relaxed these assumptions or replaced them with more
conventional assumptions such as the hardness of learning with errors (LWE),
which is believed to be hard also for quantum attackers. It is impossible to com-
pletely get rid of computational assumptions for a classical FHE scheme, since
the existence of such a scheme would imply the existence of an information-
theoretically secure protocol for private information retrieval (PIR) [KO97] that

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 7

breaks the lower bound on the amount of communication required for that task
[CKGS98,Fil12].

While quantum fully homomorphic encryption (QFHE) is closely related to
the task of blind or delegated quantum computation [Chi05,BFK09,ABOE10,
VFPR14,FBS+14,Bro15a,Lia15], QFHE does not allow interaction between the
client and the server during the computation. Additionally, in QFHE, the server
is allowed to choose which unitary it wants to apply to the (encrypted) data.

Yu et al. [YPDF14] showed that perfectly information-theoretically secure
QFHE is not possible unless the size of the encryption grows exponentially in the
input size. Thus, any scheme that attempts to achieve information-theoretically
secure QFHE has to leak some proportion of the input to the server [AS06,
RFG12] or can only be used to evaluate a subset of all unitary transformations
on the input [RFG12,Lia13,TKO+14]. Like the multiplication operation is hard
in the classical case, the hurdle in the quantum case seems to be the evaluation
of non-Clifford gates. A recent result by Ouyang et al. provides information-
theoretic security for circuits with at most a constant number of non-Clifford
operations [OTF15].

Broadbent and Jeffery [BJ15] proposed two schemes that achieve homo-
morphic encryption for nontrivial sets of quantum circuits. Instead of trying
to achieve information-theoretic security, they built their schemes based on a
classical FHE scheme and hence any computational assumptions on the classi-
cal scheme are also required for the quantum schemes. Computational assump-
tions allow bypassing the impossibility result from [YPDF14] and work toward
a (quantum) fully homomorphic encryption scheme.

Both of the schemes presented in [BJ15] are extensions of the scheme
CL described in Sect. 1.1. These two schemes use different methods to implement
the evaluation of a T gate, which we briefly discuss here. In the EPR scheme,
some entanglement is accumulated in a special register during every evaluation
of a T gate, and stored there until it can be resolved in the decryption phase.
Because of this accumulation, the complexity of the decryption function scales
(quadratically) with the number of T gates in the evaluated circuit, thereby
violating the compactness requirement of QFHE. The scheme AUX also extends
CL, but handles T gates in a different manner. The evaluator is supplied with
auxiliary quantum states, stored in the evaluation key, that allow him to evalu-
ate T gates and immediately remove any error that may have occurred. In this
way, the decryption procedure remains very efficient and the scheme is compact.
Unfortunately, the required auxiliary states grow doubly exponentially in size
with respect to the T depth of the circuit, rendering AUX useful only for circuits
with constant T depth. Our scheme TP is related to AUX in that extra resources
for removing errors are stored in the evaluation key. In sharp contrast to AUX,
the size of the evaluation key in TP only grows linearly in the number of T gates
in the circuit (and polynomially in the security parameter), allowing the scheme
to be leveled fully homomorphic. Since the evaluation of the other gates causes
no errors on the quantum state, no gadgets are needed for those; any circuit
containing polynomially many T gates can be efficiently evaluated.

8 Y. Dulek et al.

1.3 Structure of the Paper

We start by introducing some notation in Sect. 2 and presenting the necessary
preliminaries on quantum computation, (classical and quantum) homomorphic
encryption, and the garden-hose model which is essential to the most-general
construction of the gadgets. In Sect. 3, we describe the scheme TP and show
that it is compact. The security proof of TP is somewhat more involved, and
is presented in several steps in Sect. 4, along with an informal description of a
circuit-private variant of the scheme. In Sect. 5, the rationale behind the quantum
gadgets is explained, and some examples are discussed to clarify the construction.
We conclude our work in Sect. 6 and propose directions for future research.

2 Preliminaries

2.1 Quantum Computation

We assume the reader is familiar with the standard notions in the field of quan-
tum computation (for an introduction, see [NC00]). In this subsection, we only
mention the concepts that are essential to our construction.

The single-qubit Pauli group is, up to global phase, generated by the bit flip
and phase flip operations,

X =
[

0 1
1 0

]
, Z =

[
1 0
0 −1

]
.

A Pauli operator on n qubits is simply any tensor product of n independent
single-qubit Pauli operators. All four single-qubit Pauli operators are of the
form XaZb with a, b ∈ {0, 1}. Here, and in the rest of the paper, we ignore the
global phase of a quantum state, as it is not observable by measurement.

The Clifford group on n qubits consists of all unitaries C that commute with
the Pauli group, i.e. the Clifford group is the normalizer of the Pauli group.
Since all Pauli operators are of the form Xa1Zb1 ⊗ · · · ⊗ XanZbn , this means
that C is a Clifford operator if for any a1, b1, . . . , an, bn ∈ {0, 1} there exist
a′
1, b

′
1, . . . , a

′
n, b′

n ∈ {0, 1} such that (ignoring global phase):

C(Xa1Zb1 ⊗ · · · ⊗ XanZbn) = (Xa′
1Zb′

1 ⊗ · · · ⊗ Xa′
nZb′

n)C.

All Pauli operators are easily verified to be elements of the Clifford group, and
the entire Clifford group is generated by

P =
[

1 0
0 i

]
, H =

1√
2

[
1 1
1 −1

]
, and CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦.

(See for example [Got98].) The Clifford group does not suffice to simulate arbi-
trary quantum circuits, but by adding any single non-Clifford gate, any quan-
tum circuit can be efficiently simulated with only a small error. As in [BJ15], we
choose this non-Clifford gate to be the T gate,

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 9

T =
[

1 0
0 eiπ/4

]
.

Note that the T gate, because it is non-Clifford, does not commute with the
Pauli group. More specifically, we have TXaZb = PaXaZbT. It is exactly the
formation of this P gate that has proven to be an obstacle to the design of an
efficient quantum homomorphic encryption scheme.

We use |ψ〉 or |ϕ〉 to denote pure quantum states. Mixed states are denoted
with ρ or σ. Let Id denote the identity matrix of dimension d: this allows us to
write the completely mixed state as Id/d.

Define |Φ+〉 := 1√
2
(|00〉 + |11〉) to be an EPR pair.

If X is a random variable ranging over the possible basis states B for a
quantum system, then let ρ(X) be the density matrix corresponding to X,
i.e. ρ(X) :=

∑
b ∈ B Pr[X = b]|b〉〈b|.

Applying a Pauli operator that is chosen uniformly at random results in a
single-qubit completely mixed state, since

∀ρ :
∑

a,b ∈ {0,1}

(
1
4
XaZbρ(XaZb)†

)
=

I2

2

This property is used in the construction of the quantum one-time pad : applying
a random Pauli XaZb to a qubit completely hides the content of that qubit to
anyone who does not know the key (a, b) to the pad. Anyone in possession of the
key can decrypt simply by applying XaZb again.

2.2 Homomorphic Encryption

This subsection provides the definitions of (classical and quantum) homomorphic
encryption schemes, and the security conditions for such schemes. In the current
work, we only consider homomorphic encryption in the public-key setting. For
a more thorough treatment of these concepts, and how they can be transferred
to the symmetric-key setting, see [BJ15].

The Classical Setting. A classical homomorphic encryption scheme HE con-
sists of four algorithms: key generation, encryption, evaluation, and decryption.
The key generator produces three keys: a public key and evaluation key, both of
which are publicly available to everyone, and a secret key which is only revealed
to the decrypting party. Anyone in possession of the public key can encrypt the
inputs x1, . . . , x�, and send the resulting ciphertexts c1, . . . , c� to an evaluator
who evaluates some circuit C on them. The evaluator sends the result to a party
that possesses the secret key, who should be able to decrypt it to C(x1, . . . , x�).

More formally, HE consists of the following four algorithms which run in
probabilistic polynomial time in terms of their input and parameters [BV11]:

(pk , evk , sk) ← HE.KeyGen(1κ)] where κ ∈ N is the security parameter. Three
keys are generated: a public key pk , which can be used for the encryption of

10 Y. Dulek et al.

messages; a secret key sk used for decryption; and an evaluation key evk that
may aid in evaluating the circuit on the encrypted state. The keys pk and
evk are announced publicly, while sk is kept secret.

c ← HE.Encpk (x) for some one-bit message x ∈ {0, 1}. This probabilistic proce-
dure outputs a ciphertext c, using the public key pk .

c′ ← HE.EvalCevk (c1, . . . , c�) uses the evaluation key to output some ciphertext c′

which decrypts to the evaluation of circuit C on the decryptions of c1, . . . , c�.
We will often think of Eval as an evaluation of a function f instead of some
canonical circuit for f , and write HE.Evalfevk (c1, . . . , c�) in this case.

x′ ← HE.Decsk (c) outputs a message x′ ∈ {0, 1}, using the secret key sk .

In principle, HE.Encpk can only encrypt single bits. When encrypting an n-bit
message x ∈ {0, 1}n, we encrypt the message bit-by-bit, applying the encryption
procedure n times. We sometimes abuse the notation HE.Encpk (x) to denote this
bitwise encryption of the string x.

For HE to be a homomorphic encryption scheme, we require correctness in
the sense that for any circuit C, there exists a negligible4 function η such that,
for any input x,

Pr[HE.Decsk (HE.EvalCevk (HE.Encpk (x))) 	= C(x)] ≤ η(κ).

In this article, we assume for clarity of exposition that classical schemes HE are
perfectly correct, and that it is possible to immediately decrypt after encrypting
(without doing any evaluation).

Another desirable property is compactness, which states that the complexity
of the decryption function should not depend on the size of the circuit: a scheme
is compact if there exists a polynomial p(κ) such that for any circuit C and any
ciphertext c, the complexity of applying HE.Dec to the result of HE.EvalC(c) is
at most p(κ).

A scheme that is both correct for all circuits and compact, is called fully
homomorphic. If it is only correct for a subset of all possible circuits (e.g. all
circuits with no multiplication gates) or if it is not compact, it is considered
to be a somewhat homomorphic scheme. Finally, a leveled fully homomorphic
scheme is (compact and) homomorphic for all circuits up to a variable depth L,
which is supplied as an argument to the key generation function [Vai11].

We will use the notation x̃ to denote the result of running HE.Encpk (x): that
is, Decsk (x̃) = x with overwhelming probability. In our construction, we will
often deal with multiple classical key sets (pk i, sk i, evk i)i ∈ I indexed by some
set I. In that case, we use the notation x̃[i] to denote the result of HE.Encpki

(x),
in order to avoid confusion. Here, pk i does not refer to the ith bit of the public
key: in case we want to refer to the ith bit of some string s, we will use the
notation s[i].

When working with multiple key sets, it will often be necessary to transform
an already encrypted message x̃[i] into an encryption x̃[j] using a different key

4 A negligible function η is a function such that for every positive integer d, η(n) <
1/nd for big enough n.

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 11

set j 	= i. To achieve this transformation, we define the procedure HE.Reci→j

that can always be used for this recryption task as long as we have access to an

encrypted version s̃k i

[j]
of the old secret key sk i. Effectively, HE.Reci→j homo-

morphically evaluates the decryption of x̃[i]:

HE.Reci→j(x̃[i]) := HE.EvalHE.Dec
evkj

(
s̃k i

[j]
,HE.Encpkj

(x̃[i])
)
.

The Quantum Setting. A quantum homomorphic encryption scheme QHE,
as defined in [BJ15], is a natural extension of the classical case, and differs from
it in only a few aspects. The secret and public keys are still classical, but the
evaluation key is allowed to be a quantum state. This means that the evalua-
tion key is not necessarily reusable, and can be consumed during the evaluation
procedure. The messages to be encrypted are qubits instead of bits, and the
evaluator should be able to evaluate quantum circuits on them.

All definitions given above carry over quite naturally to the quantum setting
(see also [BJ15]):

(pk , ρevk , sk) ← QHE.KeyGen(1κ) where κ ∈ N is the security parameter. In
contrast to the classical case, the evaluation key is a quantum state.

σ ← QHE.Encpk (ρ) produces, for every valid public key pk and input state ρ
from some message space, to a quantum cipherstate σ in some cipherspace.

σ′ ← QHE.EvalCρevk
(σ) represents the evaluation of a circuit C. If C requires n

input qubits, then σ should be a product of n cipherstates. The evaluation
function maps it to a product of n′ states in some output space, where n′

is the number of qubits that C would output. The evaluation key ρevk is
consumed in the process.

ρ′ ← QHE.Decsk (σ′) maps a single state σ′ from the output space to a quantum
state ρ′ in the message space. Note that if the evaluation procedure QHE.Eval
outputs a product of n′ states, then QHE.Dec needs to be run n′ times.

The decryption procedure differs from the classical definition in that we require
the decryption to happen subsystem-by-subsystem: this is fundamentally differ-
ent from the more relaxed notion of indivisible schemes [BJ15] where an auxiliary
quantum register may be built up for the entire state, and the state can only be
decrypted as a whole. In this work, we only consider the divisible definition.

Quantum Security. The notion of security that we aim for is that of indistin-
guishability under chosen-plaintext attacks, where the attacker may have quan-
tum computational powers (q-IND-CPA). This security notion was introduced in
[BJ15, Definition 3.3] (see [GHS15] for a similar notion of the security of classical
schemes against quantum attackers) and ensures semantic security [ABF+16].
We restate it here for completeness.

Definition 1 [BJ15]. The quantum CPA indistinguishability experiment with
respect to a scheme QHE and a quantum polynomial-time adversary A =
(A1,A2), denoted by PubKcpa

A ,QHE(κ), is defined by the following procedure:

12 Y. Dulek et al.

1. KeyGen(1κ) is run to obtain keys (pk, sk, ρevk).
2. Adversary A1 is given (pk, ρevk) and outputs a quantum state on M ⊗ E.
3. For r ∈ {0, 1}, let Ξcpa,r

QHE : D(M) → D(C) be: Ξcpa,0
QHE (ρ) = QHE.Encpk(|0〉〈0|)

and Ξcpa,1
QHE (ρ) = QHE.Encpk(ρ). A random bit r ∈ {0, 1} is chosen and Ξcpa,r

QHE

is applied to the state in M (the output being a state in C).
4. Adversary A2 obtains the system in C ⊗ E and outputs a bit r′.
5. The output of the experiment is defined to be 1 if r′ = r and 0 otherwise. In

case r = r′, we say that A wins the experiment.

Fig. 1. The quantum CPA indistinguishability experiment PubKcpa
A ,QHE(κ). Double lines

represent classical information flow, and single lines represent quantum information
flow. The adversary A is split up into two separate algorithms A1 and A2, which share
a working memory represented by the quantum state in register E . [BJ15, reproduced
with permission of the authors]

The game PubKcpa
A ,QHE(κ) is depicted in Fig. 1. Informally, the challenger ran-

domly chooses whether to encrypt some message, chosen by the adversary, or
instead to encrypt the state |0〉〈0|. The adversary has to guess which of the two
happened. If he cannot do so with more than negligible advantage, the encryp-
tion procedure is considered to be q-IND-CPA secure:

Definition 2 [BJ15, Definition 3.3]. A (classical or quantum) homomorphic
encryption scheme S is q-IND-CPA secure if for any quantum polynomial-time
adversary A = (A1,A2) there exists a negligible function η such that:

Pr[PubKcpa
A ,S(κ) = 1] ≤ 1

2
+ η(κ).

Analogously to PubKcpa
A ,S(κ), in the game PubKcpa−mult

A ,S (κ), the adversary can
give multiple messages to the challenger, which are either all encrypted, or all
replaced by zeros. Broadbent and Jeffery [BJ15] show that these notions of secu-
rity are equivalent.

2.3 Garden-Hose Complexity

The garden-hose model is a model of communication complexity which was intro-
duced by Buhrman et al. [BFSS13] to study a protocol for position-based quan-
tum cryptography. The model recently saw new use, when Speelman [Spe15] used
it to construct new protocols for the task of instantaneous non-local quantum

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 13

computation, thereby breaking a wider class of schemes for position-based quan-
tum cryptography. (Besides the garden-hose model, this construction used tools
from secure delegated computation. These techniques were first used in the set-
ting of instantaneous non-local quantum computation by Broadbent [Bro15b].)

We will not explain the garden-hose model thoroughly, but instead give a
short overview. The garden-hose model involves two parties, Alice with input
x and Bob with input y, that jointly want to compute a function f . To do
this computation, they are allowed to use garden hoses to link up pipes that
run between them, one-to-one, in a way which depends on their local inputs.
Alice also has a water tap, which she connects to one of the pipes. Whenever
f(x, y) = 0, the water has to exit at an open pipe on Alice’s side, and whenever
f(x, y) = 1 the water should exit on Bob’s side.

The applicability of the garden-hose model to our setting stems from a close
correspondence between protocols in the garden-hose model and teleporting a
qubit back-and-forth; the ‘pipes’ correspond to EPR pairs and the ‘garden hoses’
can be translated into Bell measurements. Our construction of the gadgets in
Sect. 5.2 will depend on the number of pipes needed to compute the decryption
function HE.Dec of a classical fully homomorphic encryption scheme. It will
turn out that any log-space computable decryption function allows for efficiently
constructable polynomial-size gadgets.

3 The TP Scheme

Our scheme TP (for teleportation) is an extension of the scheme CL presented
in [BJ15]: the quantum state is encrypted using a quantum one-time pad, and
Clifford gates are evaluated simply by performing the gate on the encrypted
state and then homomorphically updating the encrypted keys to the pad. The
new scheme TP, like AUX, includes additional resource states (gadgets) in the
evaluation key. These gadgets can be used to immediately correct any P errors
that might be present after the application of a T gate. The size of the evaluation
key thus grows linearly with the upper bound to the number of T gates in the
circuit: for every T gate the evaluation key contains one gadget, along with some
classical information on how to use that gadget.

3.1 Gadget

In this section we only give the general form of the gadget, which suffices to prove
security. The explanation on how to construct these gadgets, which depend on
the decryption function of the classical homomorphic scheme HE.Dec, is deferred
to Sect. 5.

Recall that when a T gate is applied to the state XaZb|ψ〉, an unwanted P
error may occur since TXaZb = PaXaZbT. If a is known, this error can easily be
corrected by applying P† whenever a = 1. However, as we will see, the evaluating
party only has access to some encrypted version ã of the key a, and hence is not
able to decide whether or not to correct the state.

14 Y. Dulek et al.

We show how the key generator can create a gadget ahead of time that
corrects the state, conditioned on a, when the qubit PaXaZbT|ψ〉 is teleported
through it. The gadget will not reveal any information about whether or not a
P gate was present before the correction. Note that the value of a is completely
unknown to the key generator, so the gadget cannot depend on it. Instead, the
gadget will depend on the secret key sk , and the evaluator will use it in a way
that depends on ã.

The intuition behind our construction is as follows. A gadget consists of a
set of fully entangled pairs that are crosswise linked up in a way that depends
on the secret key sk and the decryption function of the classical homomorphic
scheme HE. If the decryption function HE.Dec is simple enough, i.e. computable
in logarithmic space or by low-depth binary circuit, the size of this state is
polynomial in the security parameter.

Some of these entangled pairs have an extra inverse phase gate applied to
them. Note that teleporting any qubit XaZb|ψ〉 through, for example, (P† ⊗
I)|Φ+〉, effectively applies an inverse phase gate to the qubit, which ends up in
the state Xa′

Zb′
P†|ψ〉, where the new Pauli corrections a′,b′ depend on a,b and

the outcome of the Bell measurement.
When wanting to remove an unwanted phase gate, the evaluator of the circuit

teleports a qubit through this gadget state in a way which is specified by ã. The
gadget state is constructed so that the qubit follows a path through this gadget
which passes an inverse phase gate if and only if HE.Decsk (ã) equals 1. The Pauli
corrections can then be updated using the homomorphically-encrypted classical
information and the measurement outcomes.

Specification of Gadget. Assume HE.Dec is computable in space logarithmic
in the security parameter κ. In Sect. 5 we will show that there exists an effi-
cient algorithm TP.GenGadgetpk ′(sk) which produces a gadget: a quantum state
Γpk′(sk) of the form as specified in this section.

The gadget will able to remove a single phase gate Pa, using only knowledge
of ã, where ã decrypts to a under the secret key sk . The public key pk ′ is used
to encrypt all classical information which is part of the gadget.

The quantum part of the gadget consists of 2m qubits, with m
some number which is polynomial in the security parameter κ. Let
{(s1, t1), (s2, t2), . . . , (sm, tm)} be disjoint pairs in {1, 2, . . . , 2m}, and let p ∈
{0, 1}m be a string of m bits. Let g(sk) be a shorthand for the tuple of both of
these, together with the secret key sk ;

g(sk) := ({(s1, t1), (s2, t2), . . . , (sm, tm)}, p, sk).

The tuple g(sk) is the classical information that determines the structure of the
gadget as a function of the secret key sk . The length of g(sk) is not dependent
on the secret key: the number of qubits m and the size of sk itself are completely
determined by the choice of protocol HE and the security parameter κ.

For any bitstring x, z ∈ {0, 1}m, define the quantum state

γx,z

(
g(sk)

)
:=

m∏
i=1

Xx[i]Zz[i]
(
P†)p[i]∣∣Φ+

〉〈
Φ+

∣∣
siti

Pp[i]Zz[i]Xx[i].

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 15

(Here the single-qubit gates are applied to si, the first qubit of the entangled
pair.) This quantum state is a collection of maximally-entangled pairs of qubits,
some with an extra inverse phase gate applied, where the pairs are determined
by the disjoint pairs {(s1, t1), (s2, t2), . . . , (sm, tm)} chosen earlier. The entangled
pairs have arbitrary Pauli operators applied to them, described by the bitstrings
x and z.

Note that, no matter the choice of gadget structure, averaging over all pos-
sible x, z gives the completely mixed state on 2m qubits,

1
22m

∑
x,z ∈ {0,1}m

γx,z

(
g(sk)

)
=

I22m

22m
.

This property will be important in the security proof; intuitively it shows that
these gadgets do not reveal any information about sk whenever x and z are
encrypted with a secure classical encryption scheme.

The entire gadget then is given by

Γpk′(sk) = ρ(HE.Encpk′
(
g(sk)

)
) ⊗ 1

22m

∑

x,z ∈ {0,1}m

ρ(HE.Encpk′(x, z)) ⊗ γx,z

(
g(sk)

)
.

To summarize, the gadget consists of a quantum state γx,z

(
g(sk)

)
, instantiated

with randomly chosen x, z, the classical information denoting the random choice
of x, z, and the other classical information g(sk) which specifies the gadget. All
classical information is homomorphically encrypted with a public key pk ′.

Since this gadget depends on the secret key sk , simply encrypting this infor-
mation using the public key corresponding to sk would not be secure, unless we
assume that HE.Dec is circularly secure. In order to avoid the requirement of
circular security, we will always use a fresh, independent key pk ′ to encrypt this
information. The evaluator will have to do some recrypting before he is able to
use this information, but otherwise using independent keys does not complicate
the construction much. More details on how the evaluation procedure deals with
the different keys is provided in Sect. 3.4.

Usage of Gadget. The gadget is used by performing Bell measurements
between pairs of its qubits, together with an input qubit that needs a correction,
without having knowledge of the structure of the gadget.

The choice of measurements can be generated by an efficient (classical) algo-
rithm TP.GenMeasurement(ã) which produces a list M containing m disjoint
pairs of elements in {0, 1, 2, . . . , 2m}. Here the labels 1 to 2m refer to the qubits
that make up a gadget and 0 is the label of the qubit with the possible P error.
The pairs represent which qubits will be connected through Bell measurements;
note that all but a single qubit will be measured according to M .

Consider an input qubit, in some arbitrary state Pa|ψ〉, i.e. the qubit has
an extra phase gate if a = 1. Let ã be an encrypted version of a, such that
a = HE.Decsk (ã). Then the evaluator performs Bell measurements on Γpk ′(sk)
and the input qubit, according to M ← TP.GenMeasurement(ã). By construction,
one out the 2m + 1 qubits is still unmeasured. This qubit will be in the state

16 Y. Dulek et al.

Xa′
Zb′ |ψ〉, for some a′ and b′, both of which are functions of the specification

of the gadget, the measurement choices which depend on ã, and the outcomes
of the teleportation measurements. Also see Sect. 3.4 (and the full version of
this paper) for a more in-depth explanation of how the accompanying classical
information is updated.

Intuitively, the ‘path’ the qubit takes through the gadget state, goes
through one of the fully entangled pairs with an inverse phase gate whenever
HE.Decsk (ã) = 1, and avoids all such pairs whenever HE.Decsk (ã) = 0.

3.2 Key Generation

Using the classical HE.KeyGen as a subroutine to create multiple classical homo-
morphic keysets, we generate a classical secret and public key, and a classical-
quantum evaluation key that contains L gadgets, allowing evaluation of a circuit
containing up to L T gates. Every gadget depends on a different secret key, and
its classical information is always encrypted using the next public key. The key
generation procedure TP.KeyGen(1κ, 1L) is defined as follows:

1. For i = 0 to L: execute (pk i, sk i, evk i) ← HE.KeyGen(1κ) to obtain L + 1
independent classical homomorphic key sets.

2. Set the public key to be the tuple (pk i)L
i=0.

3. Set the secret key to be the tuple (sk i)L
i=0.

4. For i = 0 to L − 1: Run the procedure TP.GenGadgetpki+1
(sk i) to create the

gadget Γpki+1
(sk i) as described in Sect. 3.1.

5. Set the evaluation key to be the set of all gadgets created in the previous step
(including their encrypted classical information), plus the tuple (evk i)L

i=0.
The resulting evaluation key is the quantum state

L−1⊗
i=0

(
Γpki+1

(sk i) ⊗ |evk i〉〈evk i|
)
.

3.3 Encryption

The encryption procedure TP.Enc is identical to CL.Enc, using the first public
key pk0 for the encryption of the one-time-pad keys. We restate it here for
completeness.

Every single-qubit state σ is encrypted separately with a quantum one-time
pad, and the pad key is (classically) encrypted and appended to the quantum
encryption of σ, resulting in the classical-quantum state:

∑
a,b ∈ {0,1}

1
4
ρ(HE.Encpk0

(a),HE.Encpk0
(b)) ⊗ XaZbσZbXa.

3.4 Circuit Evaluation

Consider a circuit with n wires. The evaluation of the circuit on the encrypted
data is carried out one gate at a time.

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 17

Recall that our quantum circuit is written using a gate set that consists of
the Clifford group generators {H,P,CNOT} and the T gate. A Clifford gate may
affect multiple wires at the same time, while T gates can only affect a single
qubit. Before the evaluation of a single gate U , the encryption of an n-qubit
state ρ is of the form

(
Xa1Zb1 ⊗ · · · ⊗ XanZbn

)
ρ

(
Xa1Zb1 ⊗ · · · ⊗ XanZbn

)
.

The evaluating party holds the encrypted versions ã1
[i], . . . , ãn

[i] and

b̃1
[i]

, . . . , b̃n

[i]
, with respect to the ith key set for some i (initially, i = 0). The goal

is to obtain a quantum encryption of the state UρU†, such that the evaluator
can homomorphically compute the encryptions of the new keys to the quantum
one-time pad. If U is a Clifford gate, these encryptions will still be in the ith
key. If U is a T gate, then all encryptions are transferred to the (i + 1)th key
during the process.

– If U is a Clifford gate, we proceed exactly as in CL.Eval. The gate U is simply
applied to the encrypted qubit, and since U commutes with the Pauli group,
the evaluator only needs to update the encrypted keys in a straightforward
way. For a detailed description of this computation, also see the full version
of this paper, or e.g. [BJ15, Appendix C].

– If U = T, the evaluator should start out by applying a T gate to the appro-
priate wire w. Afterwards, the qubit at wire w is in the state

(
PawXawZbwT

)
ρw

(
T†XawZbw(P†)aw

)
.

In order to remove the P error, the evaluator uses one gadget Γpki+1
(sk i)

from the evaluation key; he possesses the classical information ãw
[i]

encrypted with the correct key to be able to compute measurements M ←
TP.GenMeasurement(ãw

[i]) and performs the measurements on the pairs given
by M . Afterwards, using his own measurement outcomes, the classical infor-
mation accompanying the gadget (encrypted using pk i+1), and the recryp-

tions of ãw
[i] and b̃w

[i]
into ãw

[i+1] and b̃w

[i+1]
, the evaluator homomorphically

computes the new keys ã′
w

[i+1]
and b̃′

w

[i+1]
. See also Fig. 2 and see the full

version of this paper for a detailed description of the update algorithm. After
these computations, the evaluator also recrypts the keys of all other wires
into the (i + 1)th key set.

At the end of the evaluation of some circuit C containing k T gates, the
evaluator holds a one-time-pad encryption of the state C|ψ〉, together with the
keys to the pad, classically encrypted in the kth key. The last step is to recrypt
(in L − k steps) this classical information into the Lth (final) key. Afterwards,
the quantum state and the key encryptions are sent to the decrypting party.

18 Y. Dulek et al.

Fig. 2. The homomorphic evaluation of the (i + 1)th T gate of the circuit. The gadget
is consumed during the process. After the use of the gadget, the evaluator encrypts his
own classical information (including measurement outcomes) in order to use it in the
homomorphic computation of the new keys. HE.Eval evaluates this fairly straightfor-
ward computation that consists mainly of looking up values in a list and adding them

modulo 2. Note that s̃k i

[i+1]
, needed for the recryption procedures, is contained in the

evaluation key.

3.5 Decryption

The decryption procedure is identical to CL.Dec. For each qubit, HE.DecskL
is run

twice in order to retrieve the keys to the quantum pad. The correct Pauli operator
can then be applied to the quantum state in order to obtain the desired state C|ψ〉.

The decryption procedure is fairly straightforward, and its complexity does
not depend on the circuit that was evaluated. This is formalized in a compactness
theorem for the TP scheme:

Theorem 1. If HE is compact, then TP is compact.

Proof. Note that because the decryption only involves removing a one-time pad
from the quantum ciphertext produced by the circuit evaluation, this decryption
can be carried out a single qubit at a time. By compactness of HE, there exists a
polynomial p(κ) such that for any function f , the complexity of applying HE.Dec
to the output of HE.Evalf is at most p(κ). Since the keys to the quantum one-time
pad of any wire w are two single bits encrypted with the classical HE scheme,
decrypting the keys for one wire requires at most 2p(κ) steps. Obtaining the
qubit then takes at most two steps more for (conditionally) applying Xaw and
Zbw . The total number of steps is polynomial in κ and independent of C, so we
conclude that TP is compact. �

4 Security of TP

In order to guarantee the privacy of the input data, we need to argue that
an adversary that does not possess the secret key cannot learn anything about
the data with more than negligible probability. To this end, we show that TP
is q-IND-CPA secure, i.e. no polynomial-time quantum adversary can tell the
difference between an encryption of a real message and an encryption of |0〉〈0|,
even if he gets to choose the message himself (recall the definition of q-IND-CPA

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 19

security from Sect. 2.2). Like in the security proofs in [BJ15], we use a reduction
argument to relate the probability of being able to distinguish between the two
encryptions to the probability of winning an indistinguishability experiment for
the classical HE, which we already know to be small. The aim of this section is
to prove the following theorem:

Theorem 2. If HE is q-IND-CPA secure, then TP is q-IND-CPA secure for
circuits containing up to polynomially (in κ) many T gates.

In order to prove Theorem2, we first prove that an efficient adversary’s per-
formance in the indistinguishability game is only negligibly different whether
or not he receives a real evaluation key with real gadgets, or just a completely
mixed quantum state with encryptions of 0’s accompanying them (Corollary 1).
Then we argue that without the evaluation key, an adversary does not receive
more information than in the indistinguishability game for the scheme CL, which
has already been shown to be q-IND-CPA secure whenever HE is.

We start with defining a sequence of variations on the TP scheme. For � ∈
{0, . . . , L}, let TP(�) be identical to TP, except for the key generation procedure:
TP(�).KeyGen replaces, for every i ≥ �, all classical information accompanying
the ith gadget with the all-zero string before encrypting it. For any number i,
define the shorthand

gi := g(sk i).

As seen in Sect. 3.1, the length of the classical information does not depend on
sk i itself, so a potential adversary cannot gain any information about sk i just
from this encrypted string. In summary,

TP(�).KeyGen(1κ, 1L) :=

L−1⊗

i =0

|evk i〉〈evk i| ⊗
�−1⊗

i =0

Γpki+1(sk i)⊗

L−1⊗

i = �

(
ρ(HE.Encpki+1(0

|gi|))⊗

1

22m

∑

x,z∈{0,1}m

ρ(HE.Encpki+1(0
m, 0m)) ⊗ γx,z(gi)

)
.

Intuitively, one can view TP(�) as the scheme that provides only � usable
gadgets in the evaluation key. Note that TP(L) = TP, and that in TP(0), only
the classical evaluation keys remain, since without the encryptions of the classical
x and z, the quantum part of the gadget is just the completely mixed state. That
is, we can rewrite the final line of the previous equation as

1
22m

∑
x,z ∈ {0,1}m

ρ(HE.Encpki+1
(0m, 0m)) ⊗ γx,z(gi)

= ρ(HE.Encpki+1
(0m, 0m)) ⊗ I22m

22m
. (1)

20 Y. Dulek et al.

With the definitions of the new schemes, we can lay out the steps to prove
Theorem 2 in more detail. First, we show that in the quantum CPA indistin-
guishability experiment, any efficient adversary interacting with TP(�) only has
negligible advantage over an adversary interacting with TP(�−1), i.e. the scheme
where the classical information g�−1 is removed (Lemma 1). By iteratively apply-
ing this argument, we are able to argue that the advantage of an adversary who
interacts with TP(L) over one who interacts with TP(0) is also negligible (Corol-
lary 1). Finally, we conclude the proof by arguing that TP(0) is q-IND-CPA secure
by comparison to the CL scheme.

Lemma 1. Let 0 < � ≤ L. If HE is q-IND-CPA secure, then for any quantum
polynomial-time adversary A = (A1,A2), there exists a negligible function η
such that

Pr[PubKcpa

A ,TP(�)(κ) = 1] − Pr[PubKcpa

A ,TP(�−1)(κ) = 1] ≤ η(κ).

Proof. The difference between schemes TP(�) and TP(�−1) lies in whether the
gadget state γx�−1,z�−1(g�−1) is supplemented with its classical information
g̃�−1, x̃�−1, z̃�−1, or just with an encryption of 0|g�−1|+2m.

Let A = (A1,A2) be an adversary for the game PubKcpa

A ,TP(�)(κ). We will

define an adversary A ′ = (A ′
1 ,A ′

2) for PubKcpa−mult
A ′,HE (κ) that will either simulate

the game PubKcpa

A ,TP(�)(κ) or PubKcpa

A ,TP(�−1)(κ). Which game is simulated will
depend on some s ∈R {0, 1} that is unknown to A ′ himself. Using the assump-
tion that HE is q-IND-CPA secure, we are able to argue that A ′ is unable
to recognize which of the two schemes was simulated, and this fact allows us
to bound the difference in success probabilities between the security games of
TP(�) and TP(�−1). The structure of this proof is very similar to e.g. Lemma 5.3
in [BJ15]. The adversary A ′ acts as follows (see also Fig. 3):

A ′
1 takes care of most of the key generation procedure: he gen-
erates the classical key sets 0 through � − 1 himself, generates
the random strings x0, z0, . . . , x�−1, z�−1, and constructs the gadgets
γx0,z0(g0), . . . , γx�−1,z�−1(g�−1) and their classical information g0, . . . , g�−1. He
encrypts the classical information using the appropriate public keys. Only
g�−1, x�−1 and z�−1 are left unencrypted: instead of encrypting these strings
himself using pk �, A ′

1 sends the strings for encryption to the challenger.
Whether the challenger really encrypts g�−1, x�−1 and z�−1 or replaces the
strings with a string of zeros, determines which of the two schemes is simu-
lated. A ′ is unaware of the random choice of the challenger.
The adversary A ′

1 also generates the extra padding inputs that correspond
to the already-removed gadgets � up to L − 1. Since these gadgets consist
of all-zero strings encrypted with independently chosen public keys that are
not used anywhere else, together with a completely mixed quantum state (as
shown in Eq. 1), the adversary can generate them without needing any extra
information.

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 21

A ′
2 feeds the evaluation key and public key, just generated by A ′

1 , to A1 in order
to obtain a chosen message M (plus the auxiliary state E). He then picks a
random r ∈R {0, 1} and erases M if and only if r = 0. He encrypts the result
according to the TP.Enc procedure (using the public key (pk i)L

i=0 received
from A ′

1), and gives the encrypted state, plus E , to A2, who outputs r′ in
an attempt to guess r. A ′

2 now outputs 1 if and only if the guess by A was
correct, i.e. r ≡ r′.

Because HE is q-IND-CPA secure, the probability that A ′ wins
PubKcpa−mult

A ′,HE (κ), i.e. that s′ ≡ s, is at most 1
2 +η′(κ) for some negligible function

η′. There are two scenarios in which A ′ wins the game:

– s = 1 and A guesses r correctly: If s = 1, the game that is being simulated is
PubKcpa

A ,TP(�)(κ). If A wins the simulated game (r ≡ r′), then A ′ will correctly
output s′ = 1. (If A loses, then A ′ outputs 0, and loses as well).

– s = 0 and A does not guess r correctly: If s = 0, the game that is being
simulated is PubKcpa

A ,TP(�−1)(κ). If A loses the game (r 	≡ r′), then A ′ will
correctly output s′ = 0. (If A wins, then A ′ outputs 1 and loses).

From the above, we conclude that

Pr[s = 1] · Pr[PubKcpa

A ,TP(�) (κ) = 1] + Pr[s = 0] · Pr[PubKcpa

A ,TP(�−1) (κ) = 0] ≤ 1

2
+ η

′
(κ)

⇔ 1

2
Pr[PubKcpa

A ,TP(�) (κ) = 1] +
1

2

(
1 − Pr[PubKcpa

A ,TP(�−1) (κ) = 1]

)
≤ 1

2
+ η

′
(κ)

⇔ Pr[PubKcpa

A ,TP(�) (κ) = 1] − Pr[PubKcpa

A ,TP(�−1) (κ) = 1] ≤ 2η
′
(κ)

Set η(κ) := 2η′(κ), and the proof is complete. �
By applying Lemma 1 iteratively, L times in total, we can conclude that the

difference between TP(L) and TP(0) is negligible, because the sum of polynomially
many negligible functions is still negligible:

Corollary 1. If L is polynomial in κ, then for any quantum polynomial-time
adversary A = (A1,A2), there exists a negligible function η such that

Pr[PubKcpa

A ,TP(L)(κ) = 1] − Pr[PubKcpa

A ,TP(0)(κ) = 1] ≤ η(κ).

Using Corollary 1, we can finally prove the q-IND-CPA security of our scheme
TP = TP(L).

Proof of Theorem 2. The scheme TP(0) is very similar to CL in terms of its key
generation and encryption steps. The evaluation key consists of several classical
evaluation keys, plus some completely mixed states and encryptions of 0 which
we can safely ignore because they do not contain any information about the
encrypted message. In both schemes, the encryption of a qubit is a quantum
one-time pad together with the encrypted keys. The only difference is that in
TP(0), the public key and evaluation key form a tuple containing, in addition
to pk0 and evk0 which are used for the encryption of the quantum one-time

22 Y. Dulek et al.

Fig. 3. A strategy for the game PubKcpa−mult
A ′,HE (κ), using an adversary A for

PubKcpa

A ,TP(�)(κ) as a subroutine. All the wires that form an input to A1 together form

the evaluation key and public key for TP(�) or TP(�−1), depending on s. Note that
Ξcpa,r

TP = Ξcpa,r

TP(�) = Ξcpa,r

TP(�−1) , so A ′
2 can run either one of these independently of s (i.e.

without having to query the challenger). The ‘create padding’ subroutine generates
dummy gadgets for � up to L − 1, as described in the definition of A1.

pad, a list of public/evaluation keys that are independent of the encryption.
These keys do not provide any advantage (in fact, the adversary could have
generated them himself by repeatedly running HE.KeyGen(1κ, 1L)). Therefore,
we can safely ignore these keys as well.

In [BJ15, Lemma 5.3], it is shown that CL is q-IND-CPA secure. Because of
the similarity between CL and TP(0), the exact same proof shows that TP(0) is
q-IND-CPA secure as well, that is, for any A there exists a negligible function
η′ such that

Pr[PubKcpa

A ,TP(0)(κ) = 1] ≤ 1
2

+ η′(κ).

Combining this result with Corollary 1, it follows that

Pr[PubKcpa
A ,TP(κ) = 1] ≤ Pr[PubKcpa

A ,TP(0)(κ) = 1] + η(κ)

≤ 1
2

+ η′(κ) + η(κ).

Since the sum of two negligible functions is itself negligible, we have proved
Theorem 2.

�

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 23

4.1 Circuit Privacy

The scheme TP as presented above ensures the privacy of the input data. It does
not guarantee, however, that whoever generates the keys, encrypts, and decrypts
cannot gain information about the circuit C that was applied to some input ρ by
the evaluator. Obviously, the output value CρC† often reveals something about
the circuit C, but apart from this necessary leakage of information, one may
require a (quantum) homomorphic encryption scheme to ensure circuit privacy
in the sense that an adversary cannot statistically gain any information about C
from the output of the evaluation procedure that it could not already gain from
CρC† itself.

We claim that circuit privacy for TP in the semi-honest setting (i.e. against
passive adversaries5) can be obtained by modifying the scheme only slightly,
given that the classical encryption scheme has the circuit privacy property.

Theorem 3. If HE has circuit privacy in the semi-honest setting, then TP can
be adapted to a quantum homomorphic encryption scheme with circuit privacy.

Proof Sketch. If the evaluator randomizes the encryption of the output data by
applying a quantum one-time pad to the (already encrypted) result of the evalu-
ation, the keys themselves are uniformly random and therefore do not reveal any
information about what circuit was evaluated. The evaluator can then proceed
to update the classical encryptions of those keys accordingly, and by the circuit
privacy of the classical scheme, the resulting encrypted keys will also contain no
information about the computations performed. Because of space constraints,
the full detailed proof is given in the full version of this paper. �

5 Constructing the Gadgets

In this section we will first show how to construct gadgets that have polyno-
mial size whenever the scheme HE has a decryption circuit with logarithmic
depth (i.e., the decryption function is in NC1). This construction will already
be powerful enough to instantiate TP with current classical schemes for homo-
morphic encryption, since these commonly have low-depth decryption circuits.
Afterwards, in Sect. 5.2, we will present a larger toolkit to construct gadgets,
which is efficient for a larger class of possible decryption functions. To illustrate
these techniques, we apply these tools to create gadgets for schemes that are
based on Learning With Errors (LWE). Finally, we will reflect on the possibility
of constructing these gadgets in scenarios where quantum power is limited.

5.1 For Log-Depth Decryption Circuits

The main tool for creating gadgets that encode log-depth decryption cir-
cuits comes from Barrington’s theorem: a classic result in complexity theory,
5 Note that there various ways to define passive adversaries in the quantum setting

[DNS10,BB14]. Here, we are considering adversaries that follow all protocol instruc-
tions exactly.

24 Y. Dulek et al.

which states that all boolean circuits of logarithmic depth can be encoded as
polynomial-sized width-5 permutation branching programs. Every instruction of
such a branching program will be encoded as connections between five Bell pairs.

Definition 3. A width-k permutation branching program of length L on an
input x ∈ {0, 1}n is a list of L instructions of the form 〈i�, σ1

� , σ0
� 〉, for 1 ≤ � ≤ L,

such that i� ∈ [n], and σ1
� and σ0

� are elements of Sk, i.e., permutations of [k].
The program is executed by composing the permutations given by the instructions
1 through L, selecting σ1

� if xi�
= 1 and selecting σ0

� if xi�
= 0. The program

rejects if this product equals the identity permutation and accepts if it equals a
fixed k-cycle.

Since these programs have a very simple form, it came as a surprise when
they were proven to be quite powerful [Bar89].

Theorem 4 (Barrington [Bar89]). Every fan-in 2 boolean circuit C of depth d
can be simulated by a width-5 permutation branching program of length at most
4d.

Our gadget construction will consist of first transforming the decryption func-
tion HE.Dec into a permutation branching program, and then encoding this
permutation branching program as a specification of a gadget, as produced by
TP.GenGadgetpk ′(sk), and usage instructions TP.GenMeasurement(ã).

Theorem 5. Let HE.Decsk (ã) be the decryption function of the classical homo-
morphic encryption scheme HE. If HE.Dec is computable by a boolean fan-in 2
circuit of depth O(log(κ)), where κ is the security parameter, then there exist
gadgets for TP of size polynomial in κ.

Proof. Our description will consist of three steps. First, we write HE.Dec as a
width-5 permutation branching program, of which the instructions alternately
depend on the secret key sk and on the ciphertext ã. Secondly, we specify how
to transform these instructions into a gadget which almost works correctly, but
for which the qubit ends up at an unknown location. Finally, we complete the
construction by executing the inverse program, so that the qubit ends up at a
known location.

The first part follows directly from Barrington’s theorem. The effective input
of HE.Dec can be seen as the concatenation of the secret key sk and the cipher-
text ã. Since by assumption the circuit is of depth O(log κ), there exists width-5
permutation branching program P of length L = κO(1), with the following prop-
erties. We write

P =
(〈i1, σ1

1 , σ
0
1〉, 〈i2, σ1

2 , σ
0
2〉, . . . , 〈iL, σ1

L, σ0
L〉)

as the list of instructions of the width-5 permutation branching program. Without
loss of generality6, we can assume that the instructions alternately depend on bits
6 This can be seen by inserting dummy instructions that always perform the identity

permutation between any two consecutive instructions that depend on the same vari-
able. Alternatively, it would be possible to improve the construction by ‘multiplying
out’ consecutive instructions whenever they depend on the same variable.

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 25

of ã and bits of sk . That is, the index i� refers to a bit of ã if � is odd, and to a bit of
sk if � is even. There are L instructions in total, of which L/2 are odd-numbered
and L/2 are even.

The output of TP.GenGadgetpk ′(sk), i.e., the list of pairs that defines the
structure of the gadget, will be created from the even-numbered instructions,
evaluated using the secret key sk . For every even-numbered � ≤ L, we con-
nect ten qubits in the following way. Suppose the �th instruction evaluates
to some permutation σ� := σ

ski�

� . Label the 10 qubits of this part of the
gadget by 1�,in, 2�,in, . . . , 5�,in and 1�,out, 2�,out, . . . , 5�,out. These will correspond
to 5 EPR pairs, connected according to the permutation: (1�,in, σ�(1)�,out),
(2�,in, σ�(2)�,out), etc., up to (5�,in, σ�(5)�,out).

After the final instruction of the branching program, σL, also perform an
inverse phase gate P† on the qubits labeled as 2L,out, 3L,out, 4L,out, 5L,out. Exe-
cution of the gadget will teleport the qubit through one of these whenever ã = 1.

For this construction, TP.GenMeasurement(ã) will be given by the odd
instructions, which depend on the bits of ã. Again, for all odd � ≤ L, let
σ� := σ

ãi�

� be the permutation given by the evaluation of instruction � on ã. For
all � strictly greater than one, the measurement instructions will be: perform a
Bell measurement according to the permutation σ� between the ‘out’ qubits of
the previous set, and the ‘in’ qubits of the next. The measurement pairs will
then be (1�−1,out, σ(1)�,in), (2�−1,out, σ(2)�,in), up to (5�−1,out, σ(5)�,in).

For � = 1, there is no previous layer to connect to, only the input qubit. For
that, we add the measurement instruction (0, σ(1)1,in), where 0 is the label of
the input qubit.

By Barrington’s theorem, if HE.Decsk (ã) = 0 then the product, say τ ,
of the permutations coming from the evaluated instructions equals the iden-
tity. In that case, consecutively applying these permutations on ‘1’, results
in the unchanged starting value, ‘1’. If instead the decryption would out-
put 1, the consecutive application results in another value in {2, 3, 4, 5},
because in that case, τ is a k-cycle. After teleporting a qubit through these
EPR pairs, with teleportation measurements chosen accordingly, the input
qubit will be present at τ(1)L,out, with an inverse phase gate if τ(1) is
unequal to 1.

The gadget constructed so far would correctly apply the phase gate, condi-
tioned on HE.Decsk (ã), with one problem: afterward, the qubit is at a location
unknown to the user of the gadget, because the user cannot compute τ .

We fix this problem in the following way: execute the inverse branching pro-
gram afterwards. The entire construction is continued in the same way, but
the instructions of the inverse program are used. The inverse program can be
made from the original program by reversing the order of instructions, and then
for each permutation using its inverse permutation instead. The first inverse
instruction is 〈iL, (σ1

L)−1, (σ0
L)−1〉, then 〈iL−1, (σ1

L−1)
−1, (σ0

L−1)
−1〉, with final

instruction 〈i1, (σ1
1)

−1, (σ0
1)

−1〉. One small detail is that iL is used twice in a
row, breaking the alternation; the user of the gadget can simply perform the

26 Y. Dulek et al.

Fig. 4. Structure of the (first half of the) gadget, with measurements, coming from
the 5-permutation branching program for the OR function on the input (0, 0). The
example program’s instructions are displayed above the permutations. The solid lines
correspond to Bell measurements, while the wavy lines represent EPR pairs.

measurements that correspond to the identity permutation e in between, since
(σ0

L)(σ0
L)−1 = (σ1

L)(σ1
L)−1 = e.

After having repeated the construction with the inverse permutation branch-
ing program, the qubit is guaranteed to be at the location where it originally
started: σ1(1) of the final layer of five qubits – that will then be the corrected
qubit which is the output of the gadget.

The total number of qubits which form the gadget, created from a width-5
permutation branching program of length L, of which the instructions alternate
between depending on ã and depending on sk , is 2 · (5L) = 10L. �

Example. The OR function on two bits can be computed using a width-5 permu-
tation branching program of length 4, consisting of the following list of instruc-
tions:

1. 〈1, e, (12345)〉
2. 〈2, e, (12453)〉
3. 〈1, e, (54321)〉
4. 〈2, (14235), (15243)〉
As a simplified example, suppose the decryption function HE.Decsk (ã) is
sk1 OR ã1. Then, for one possible example set of values of ã and sk , half of
the gadget and measurements will be as given in Fig. 4. To complete this gadget,
the same construction is appended, reflected horizontally.

5.2 For Log-Space Computable Decryption Functions

Even though the construction based on Barrington’s theorem has enough power
for current classical homomorphic schemes, it is possible to improve on this con-
struction in two directions. Firstly, we extend our result to be able to handle

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 27

a larger class of decryption functions: those that can be computed in logarith-
mic space, instead of only NC1. Secondly, for some specific decryption functions,
executing the construction of Sect. 5.1 might produce significantly larger gad-
gets than necessary. For instance, even for very simple circuits of depth log κ,
Barrington’s theorem produces programs of length κ2 — a direct approach can
often easily improve on the exponent of the polynomial. See also the garden-
hose protocols for equality [Mar14,CSWX14] and the majority function [KP14]
for examples of non-trivial protocols that are much more efficient than applying
Barrington’s theorem as a black box.

Theorem 6. Let HE.Decsk (ã) be the decryption function of the classical homo-
morphic encryption scheme HE. If HE.Dec is computable by a Turing machine
that uses space O(log κ), where κ is the security parameter, then there exist gad-
gets for TP of size polynomial in κ.

A detailed explanation of how to construct a gadget for a log-space computa-
tion is given in the full version of this paper. All more-complicated constructions
use a different language than the direct encoding of the previous section: there
is a natural way of writing the requirements on the gadgets as a two-player task,
and then writing strategies for this task in the garden-hose model. Writing these
gadgets in terms of the garden-hose model, even though it adds a layer of com-
plexity to the construction, gives more insight into the structure of the gadgets,
and forms its original inspiration. We therefore sketch the link between log-space
computation and gadget construction within this framework.

Besides clarifying the log-space construction, viewing the gadget construction
as an instantiation of the garden-hose mode also makes it easier to construct gad-
gets for specific cases. Earlier work developed protocols in the garden-hose model
for several functions, see for instance [Spe11,BFSS13,KP14], and connections to
other models of computation. These results on the garden-hose model might
serve as building blocks to create more efficient gadgets for specific decoding
functions of classical homomorphic schemes, that are potentially much smaller
than those created as a result of following the general constructions of Theorem5
or 6.

The scheme by Brakerski and Vaikuntanathan [BV11] is well-suited for our
construction, and its decryption function is representative for a much wider class
of schemes which are based on the hardness of Learning With Errors (LWE). As
an example, we construct gadgets that enable quantum homomorphic encryption
based on the BV11 scheme in the full version of our paper.

5.3 Constructing Gadgets Using Limited Quantum Resources

In a setting where a less powerful client wants to delegate some quantum compu-
tation to a more powerful server, it is important to minimize the amount of effort
required from the client. In delegated quantum computation, the complexity of
a protocol can be measured by, among other things, the total amount of com-
munication between client and server, the number of rounds of communication,

28 Y. Dulek et al.

and the quantum resources available to the client, such as possible quantum
operations and memory size.

We claim that TP gives rise to a three-round delegated quantum compu-
tation protocol in a setting where the client can perform only Pauli and swap
operations. TP.Enc and TP.Dec only require local application of Pauli opera-
tors to a quantum state, but TP.KeyGen is more involved because of the gadget
construction. However, when supplied with a set of EPR pairs from the server
(or any other untrusted source), the client can generate the quantum evaluation
key for TP using only Pauli and swap operations. Even if the server produces
some other state than the claimed list of EPR pairs, the client can prevent the
leakage of information about her input by encrypting the input with random
Pauli operations. More details are supplied in the appendix of the full version of
this paper.

Alternatively, TP can be regarded as a two-round delegated quantum compu-
tation protocol in a setting where the client can perform arbitrary Clifford oper-
ations, but is limited to a constant-sized quantum memory, given that HE.Dec is
in NC1. In that case, the gadgets can be constructed ten qubits at a time, by con-
structing the sets of five EPR pairs as specified in Sect. 5.1. By decomposing the
5-cycles into products of 2-cycles, the quantum memory can even be reduced to
only four qubits. The client sends these small parts of the gadgets to the server as
they are completed. Because communication remains one-way until all gadgets
have been sent, this can be regarded as a single round of communication.

6 Conclusion

We have presented the first quantum homomorphic encryption scheme TP that
is compact and allows evaluation of circuits with polynomially many T gates in
the security parameter, i.e. arbitrary polynomial-sized circuits. Assuming that
the number of wires involved in the evaluation circuit is also polynomially related
to the security parameter, we may consider TP to be leveled fully homomorphic.
The scheme is based on an arbitrary classical FHE scheme, and any computa-
tional assumptions needed for the classical scheme are also required for security
of TP. However, since TP uses the classical FHE scheme as a black box, any
FHE scheme can be plugged in to change the set of computational assumptions.

Our constructions are based on a new and interesting connection between
the area of instantaneous non-local quantum computation and quantum homo-
morphic encryption. Recent techniques developed by Speelman [Spe15], based
on the garden-hose model [BFSS13], have turned out to be crucial for our con-
struction of quantum gadgets which allow homomorphic evaluation of T gates
on encrypted quantum data.

6.1 Future Work

Since Yu et al. [YPDF14] showed that information-theoretically secure QFHE
is impossible (at least in the exact case), it is natural to wonder whether it

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 29

is possible to construct a non-leveled QFHE scheme based on computational
assumptions. If such a scheme is not possible, can one find lower bounds on the
size of the evaluation key of a compact scheme? Other than the development
of more efficient QFHE schemes, one can consider the construction of QFHE
schemes with extra properties, such as circuit privacy against active adversaries.
It is also interesting to look at other cryptographic tasks that might be exe-
cuted using QFHE. In the classical world for example, multiparty computation
protocols can be constructed from fully homomorphic encryption [CDN01]. We
consider it likely that our new techniques will also be useful in other contexts
such as quantum indistinguishability obfuscation [AF16].

Acknowledgements. We acknowledge useful discussions with Anne Broadbent,
Harry Buhrman, and Leo Ducas. We thank Stacey Jeffery for providing the inspi-
ration for a crucial step in the security proof, and Gorjan Alagic and Anne Broadbent
for helpful comments on a draft of this article. This work was supported by the 7th
framework EU SIQS and QALGO, and a NWO VIDI grant.

References

[ABF+16] Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C.,
St. Jules, M.: Computational security of quantum encryption (2016).
arXiv preprint arXiv:1602.01441

[ABOE10] Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum
computations. In: Proceeding of Innovations in Computer Science (ICS
2010), pp. 453–469 (2010)

[AF16] Alagic, G., Fefferman, B.: On quantum obfuscation (2016). arXiv
preprint arXiv:1602.01771

[AJLA+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012)

[AS06] Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quantum
Inf. 4(05), 883–898 (2006)

[Bar89] Barrington, D.A.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. J. Comput. Syst. Sci. 164,
150–164 (1989)

[BB14] Baumeler, Ä., Broadbent, A.: Quantum private information retrieval has
linear communication complexity. J. Cryptol. 28(1), 161–175 (2014)

[BCG+06] Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.:
Secure multiparty quantum computation with (only) a strict honest
majority. In: 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2006), pp. 249–260 (2006)

[BFK09] Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum
computation. In: 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, pp. 517–526. IEEE (2009)

[BFSS13] Buhrman, H., Fehr, S., Schaffner, C., Speelman, F.: The garden-hose
model. In: Proceedings of the 4th Innovations in Theoretical Computer
Science Conference, pp. 145–158. ACM (2013)

http://arxiv.org/abs/1602.01441
http://arxiv.org/abs/1602.01771

30 Y. Dulek et al.

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on
ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341.
Springer, Heidelberg (2005)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homo-
morphic encryption without bootstrapping. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pp. 309–325.
ACM (2012)

[BJ15] Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for cir-
cuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg
(2015)

[Bro15a] Broadbent, A.: Delegating private quantum computations. Can. J. Phys.
93(9), 941–946 (2015)

[Bro15b] Broadbent, A.: Popescu-Rohrlich correlations imply efficient instan-
taneous nonlocal quantum computation (2015). arXiv preprint
arXiv:1512.04930

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 97–106, October 2011

[CDN01] Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg
(2001)

[Chi05] Childs, A.M.: Secure assisted quantum computation. Quantum Inf.
Comput. 5(6), 456–466 (2005)

[CKGS98] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. J. ACM (JACM) 45(6), 965–981 (1998)

[CSWX14] Chiu, W.Y., Szegedy, M., Wang, C., Xu, Y.: The garden hose complexity
for the equality function. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM
2014. LNCS, vol. 8546, pp. 112–123. Springer, Heidelberg (2014)

[DNS10] Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum eval-
uation of unitaries against specious adversaries. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 685–706. Springer, Heidelberg
(2010)

[FBS+14] Fisher, K.A.G., Broadbent, A., Shalm, L.K., Yan, Z., Lavoie, J.,
Prevedel, R., Jennewein, T., Resch, K.J.: Quantum computing on
encrypted data. Nat. Commun. 5 (2014). Article number: 3074

[Fil12] Fillinger, M.: Lattice based cryptography and fully homomorphic
encryption. Master of Logic Project (2012). http://homepages.cwi.nl/
schaffne/courses/reports/MaxFillinger FHE 2012.pdf

[GC99] Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal com-
putational primitive. Nature 402, 390–393 (1999)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
STOC, vol. 9, pp. 169–178 (2009)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 40–49. IEEE (2013)

[GHS15] Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security,
indistinguishability in the quantum world (2015). arXiv preprint
arXiv:1504.05255

http://arxiv.org/abs/1512.04930
http://homepages.cwi.nl/ schaffne/courses/reports/MaxFillinger_FHE_2012.pdf
http://homepages.cwi.nl/ schaffne/courses/reports/MaxFillinger_FHE_2012.pdf
http://arxiv.org/abs/1504.05255

Quantum Homomorphic Encryption for Polynomial-Sized Circuits 31

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryp-
tosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 506–522. Springer, Heidelberg (2010)

[GKP+13a] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–
553. Springer, Heidelberg (2013)

[GKP+13b] Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
Proceedings of the 45th Annual ACM Symposium on Theory of Com-
puting, STOC 2013, pp. 555–564 (2013)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984)

[Got98] Gottesman, D.: Theory of fault-tolerant quantum computation. Phys.
Rev. A 57, 127–137 (1998)

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Proceedings of the 45th Annual ACM Symposium on
Theory of Computing, STOC 2013, pp. 545–554 (2013)

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594.
Springer, Heidelberg (2007)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single data-
base, computationally-private information retrieval. In: FOCS, p. 364.
IEEE (1997)

[KP14] Klauck, H., Podder, S.: New bounds for the garden-hose model. In:
34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, pp. 481–492 (2014)

[Lia13] Liang, M.: Symmetric quantum fully homomorphic encryption with per-
fect security. Quantum Inf. Process. 12(12), 3675–3687 (2013)

[Lia15] Liang, M.: Quantum fully homomorphic encryption scheme based on
universal quantum circuit. Quantum Inf. Process. 14(8), 2749–2759
(2015)

[Mar14] Margalit, O.: On the riddle of coding equality function in the garden
hose model. In: Information Theory and Applications Workshop (ITA),
pp. 1–5. IEEE (2014)

[NC00] Nielsen, M., Chuang, I.: Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge (2000)

[OTF15] Ouyang, Y., Tan, S.-H., Fitzsimons, J.: Quantum homomorphic encryp-
tion from quantum codes (2015). arXiv preprint arXiv:1508.00938

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[RAD78] Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks, privacy
homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)

[RFG12] Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with
encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–
126 (1978)

[SB08] Shepherd, D., Bremner, M.J.: Instantaneous quantum computation
(2008). arXiv preprint arXiv:0809:0847

http://arxiv.org/abs/1508.00938
http://arxiv.org/abs/0809:0847

32 Y. Dulek et al.

[Spe11] Speelman, F.: Position-based quantum cryptography, the garden-hose
game. Master’s thesis, University of Amsterdam. arXiv:1210.4353

[Spe15] Speelman, F.: Instantaneous non-local computation of low T-depth
quantum circuits (2015). arXiv preprint arXiv:1505.02695

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, STOC 2014, pp. 475–484 (2014)

[SYY99] Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for
NC1. In: 40th Annual Symposium on Foundations of Computer Science,
pp. 554–566. IEEE (1999)

[TKO+14] Tan, S.-H., Kettlewell, J.A., Ouyang, Y., Chen, L., Fitzsimons, J.F.:
A quantum approach to fully homomorphic encryption (2014). arXiv
preprint arXiv:1411.5254

[Vai11] Vaikuntanathan, V.: Computing blindfolded: new developments in fully
homomorphic encryption. In: 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 5–16. IEEE (2011)

[VDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[VFPR14] Dunjko, V., Fitzsimons, J.F., Portmann, C., Renner, R.: Compos-
able security of delegated quantum computation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 406–425.
Springer, Heidelberg (2014)

[YPDF14] Li, Y., Pérez-Delgado, C.A., Fitzsimons, J.F.: Limitations on
information-theoretically-secure quantum homomorphic encryption.
Phys. Rev. A 90, 050303 (2014)

http://arxiv.org/abs/1210.4353
http://arxiv.org/abs/1505.02695
http://arxiv.org/abs/1411.5254

Adaptive Versus Non-Adaptive Strategies
in the Quantum Setting with Applications

Frédéric Dupuis2, Serge Fehr1, Philippe Lamontagne3(B), and Louis Salvail3

1 CWI, Amsterdam, The Netherlands
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

3 Université de Montréal (DIRO), Montréal, Canada
lamontph@iro.umontreal.ca

Abstract. We prove a general relation between adaptive and non-
adaptive strategies in the quantum setting, i.e., between strategies where
the adversary can or cannot adaptively base its action on some auxiliary
quantum side information. Our relation holds in a very general setting,
and is applicable as long as we can control the bit-size of the side infor-
mation, or, more generally, its “information content”. Since adaptivity is
notoriously difficult to handle in the analysis of (quantum) cryptographic
protocols, this gives us a very powerful tool: as long as we have enough
control over the side information, it is sufficient to restrict ourselves to
non-adaptive attacks.

We demonstrate the usefulness of this methodology with two exam-
ples. The first is a quantum bit commitment scheme based on 1-bit
cut-and-choose. Since bit commitment implies oblivious transfer (in the
quantum setting), and oblivious transfer is universal for two-party com-
putation, this implies the universality of 1-bit cut-and-choose, and thus
solves the main open problem of [9]. The second example is a quantum
bit commitment scheme proposed in 1993 by Brassard et al. It was origi-
nally suggested as an unconditionally secure scheme, back when this was
thought to be possible. We partly restore the scheme by proving it secure
in (a variant of) the bounded quantum storage model.

In both examples, the fact that the adversary holds quantum side
information obstructs a direct analysis of the scheme, and we circumvent
it by analyzing a non-adaptive version, which can be done by means of
known techniques, and applying our main result.

1 Introduction

Adaptive Versus Non-Adaptive Attacks. We consider attacks on crypto-
graphic schemes, and we compare adaptive versus non-adaptive strategies for
the adversary. In our context, a strategy is adaptive if the adversary’s action
can depend on some auxiliary side information, and it is non-adaptive if the
adversary has no access to any such side information. Non-adaptive strategies
are typically much easier to analyze than adaptive ones.

Adaptive strategies are clearly more powerful than non-adaptive ones, but this
advantage is limited by the amount and quality of the side-information available
to the attacker. In the classical case, this can be made precise by the following
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 33–59, 2016.
DOI: 10.1007/978-3-662-53015-3 2

34 F. Dupuis et al.

simple argument. If the side information consists of a classical n-bit string, then
adaptivity increases the adversary’s success probability in breaking the scheme
by at most a factor of 2n. Indeed, a particular non-adaptive strategy is to try to
guess the n-bit side information and then apply the best adaptive strategy. Since
the guess will be correct with probability at least 2−n, it follows that PNA

succ ≥
2−nPA

succ, and thus PA
succ ≤ 2nPNA

succ, where PA
succ and PNA

succ respectively denote
the optimal adaptive and non-adaptive success probabilities for the adversary to
break the scheme. Even though there is an exponential loss, this is a very powerful
relation between adaptive and non-adaptive strategies as it applies very generally,
and it provides a non-trivial bound as long as we can control the size of the side
information, and the non-adaptive success probability is small enough.

Our Technical Result. In this work, we consider the case where the side infor-
mation (and the cryptographic scheme as a whole) may be quantum. A natural
question is whether the same (or a similar) relation holds between adaptive and
non-adaptive quantum strategies. The quantum equivalent to guessing the side
information would be to emulate the n-qubit quantum side information by the
completely mixed state IA

2n . Since it always holds that ρAB ≤ 22n IA

2n ⊗ ρB , we
immediately obtain a similar relation PA

succ ≤ 22nPNA
succ, but with an additional

factor of 2 in the exponent. The bound is tight for certain choices of ρAB , and
thus this additional loss is unavoidable in general; this seems to mostly answer
the above question.

In this work, we show that this is actually not yet the end of the story. Our
main technical result consists of a more refined treatment — and analysis — of
the relation between adaptive and non-adaptive quantum strategies. We show
that in a well-defined and rather general context, we can actually bound PA

succ as

PA
succ ≤ 2Iacc

max(B;A)PNA
succ,

where Iaccmax(B;A) is a new (quantum) information measure that is upper
bounded by the number of qubits of A. As such, we not only recover the classical
relation PA

succ ≤ 2nPNA
succ in the considered context, but we actually improve on it.

In more detail, we consider an abstract “game”, specified by an arbitrary
bipartite quantum state ρAB , of which the adversary Alice and a challenger Bob
hold the respective registers A and B, and by an arbitrary family {Ej}j∈J of
binary-outcome POVMs acting on register B. The game is played as follows:
Alice chooses an index j, communicates it to Bob, and Bob measures his state B
using the POVM Ej = {Ej

0, E
j
1} specified by Alice. Alice wins the game if Bob’s

measurement outcome is 1. In the adaptive version of the game, Alice can choose
the index j by performing a measurement on A; in the non-adaptive version, she
has to decide upon j without resorting to A. As we will see, this game covers a
large class of quantum cryptographic schemes, where Bob’s binary measurement
outcome specifies whether Alice succeeded in breaking the scheme.

Our main result shows that in any such game it holds that PA
succ ≤ 2nPNA

succ

where n = H0(A), i.e., the number of qubits of A. Actually, as already mentioned,
we show a more general and stronger bound PA

succ ≤ 2Iacc
max(B;A)PNA

succ that also

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 35

applies if we have no bound on the number of qubits of A, but we have some
control over its “information content” Iaccmax(B;A), which is a new information
measure that we introduce and show to be upper bounded by H0(A).

To give a first indication of the usefulness of our result, we observe that it
easily provides a lower-bound on the quantity, or quality, of entanglement (as
measured by Iaccmax(B;A)) that a dishonest committer needs in order to carry out
the standard attack [18] on a quantum bit commitment scheme. Let Alice be
the committer and Bob the receiver in a bit commitment scheme in which the
opening phase consists of Alice announcing a classical string j and Bob applying
a verification described by POVM {Ej

accept, E
j
reject}. In the standard attack, Alice

always commits to 0 while purifying her actions and applies an operation on her
register if she wants to change her commitment to 1. If we let ρAB be the state
of Bob’s register B that corresponds to a commitment to 0, then the probability
that a memoryless Alice successfully changes her commitment to 1 is PNA

succ =
maxj tr(Ej

acceptρAB) where the maximum is over all j that open 1. If Alice holds
a register A entangled with B, our main result implies that Iaccmax(B;A) must be
proportional to − log PNA

succ for Alice to have a constant probability of changing
her commitment.

But the real potential lies in the observation that adaptivity is notoriously
difficult to handle in the analysis of cryptographic protocols, and as such our
result provides a very powerful tool: as long as we have enough control over the
side information, it is sufficient to restrict ourselves to non-adaptive attacks.

Applications. We demonstrate the usefulness of this methodology by proving
the security of two commitment schemes. In both examples, the fact that the
adversary holds quantum side information obstructs a direct analysis of the
scheme, and we circumvent it by analyzing a non-adaptive version and applying
our general result.

One-Bit Cut-and-Choose is Universal for Two-Party Computation. As a first
example, we propose and prove secure a quantum bit commitment scheme that
uses an ideal 1-bit cut-and-choose primitive 1CC (see Fig. 1 in Sect. 4) as a black
box. Since bit commitment (BC) implies oblivious transfer (OT) in the quantum
setting [2,7,20], and oblivious transfer is universal for two-party computation,
this implies the universality of 1CC and thus completes the zero/xor/one law
proposed in [9]. Indeed, it was shown in [9] that in the information-theoretic
quantum setting, every primitive is either trivial (zero), universal (one), or can
be used to implement an XOR — except that there was one missing piece in
their characterization: it excluded 1CC (and any primitive that implies 1CC but
not 2CC). How 1CC fits into the landscape was left as an open problem in [9];
we resolve it here.

The BCJL Bit Commitment Scheme in (A Variant of) The Bounded Quantum
Storage Model. As a second application, we consider a general class of non-
interactive commitment schemes and we show that for any such scheme, security

36 F. Dupuis et al.

against an adversary with no quantum memory at all implies security in a slightly
strengthened version of the standard bounded quantum storage model1, with a
corresponding loss in the error parameter.2

As a concrete example scheme, we consider the classic BCJL scheme that was
proposed in 1993 by Brassard et al. [6] as a candidate for an unconditionally-
secure scheme — back when this was thought to be possible — but until now
has resisted any rigorous positive security analysis. Our methodology of relating
adaptive to non-adaptive security allows us to prove it secure in (a variant of)
the bounded quantum storage model.

2 Preliminaries

2.1 Basic Notation

For any string x = (x1, . . . , xn) ∈ {0, 1}n and any subset t = {t1, . . . tk} ⊆ [n], we
write xt for the substring xt = (xt1 , . . . , xtk

) ∈ {0, 1}|t|. The n-bit all-zero string
is denoted as 0n. The Hamming distance between two strings x, y ∈ {0, 1}n is
defined as d(x, y) =

∑n
i=1 xi ⊕ yi. For δ > 0 and x ∈ {0, 1}n, Bδ(x) denotes the

set of all n bit strings at Hamming distance at most δn from x. We denote by
lg (·) the logarithm with respect to base 2. It is well known that the set Bδ(x)
contains at most 2nh(δ) strings where h(δ) = −δ lg(δ) − (1 − δ) lg(1 − δ) is the
binary entropy function.

Ideal cryptographic functionalities (or primitives) are referenced by their
name written in sans-serif font. They are fully described by their input/output
behaviour (see, e.g., functionality 1CC described in Fig. 1 in Sect. 4). Crypto-
graphic protocols have their names written in small capitals with a primitive
name in superscript if the protocol has black-box access to this primitive (e.g.
protocol bc1CC in Sect. 4).

2.2 Quantum States and More

We assume familiarity with the basic concepts of quantum information; we
merely fix notation and terminology here. We label quantum registers by capital
letters A,B etc. and their corresponding Hilbert spaces are respectively denoted
by HA,HB etc. We say that a quantum register A is “empty” if dim(HA) = 1.
The state of a quantum register is specified by a density operator ρ, a positive
semidefinite trace-1 operator. We typically write ρA for the state of A, etc. The
set of density operators for register A is denoted D(HA). We write X ≥ 0 to
express that the operator X is positive semidefinite, and Y ≥ X to express that
Y − X is positive semidefinite.
1 Beyond bounding the adversary’s quantum memory, we also restrict its measure-

ments to be projective; this can be justified by the fact that to actually implepro-
jections onto thement a non-projective measurement, additional quantum memory
is needed.

2 We have already shown above how to argue for the standard attack [18] against
quantum bit commitment schemes; taking care of arbitrary attacks is more involved.

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 37

We measure the distance between two states ρ and σ in terms of their trace
distance D(ρ, σ) := 1

2‖ρ − σ‖1, where ‖X‖1 := tr(
√

X†X) is the trace norm. We
say that ρ and σ are ε-close if D(ρ, σ) ≤ ε, and we call them indistinguishable if
their trace distance is negligible (in the security parameter).

The computational (or rectilinear) basis for a single qubit quantum register
is denoted by {|0〉+, |1〉+}, and the diagonal basis by {|0〉×, |1〉×}. Recall that
|0〉× = 1√

2
(|0〉+ + |1〉+) and |1〉× = 1√

2
(|0〉+ − |1〉+). For any x ∈ {0, 1}n and

θ ∈ {+,×}n, we set |x〉θ :=
⊗n

i=1 |xi〉θi
. In the following, we will view and

represent any sequence of diagonal and computational bases by a bit string
θ ∈ {0, 1}n, where θi = 0 represents the computational basis and θi = 1 the
diagonal basis. In other words, for b ∈ {0, 1}, |b〉0 := |b〉+ and |b〉1 := |b〉×. And
for θ, x ∈ {0, 1}n, we define |x〉θ :=

⊗n
i=1 |xi〉θi

.
Operations on quantum registers are modeled as completely-positive trace-

preserving (CPTP) maps. To indicate that a CPTP map E takes inputs in A
and outputs to B, we use subscript A → B. If EA→B is a CPTP map acting on
register A, we slightly abuse notation and write E(ρAC) instead of E ⊗ IC(ρAC)
where IC is the CPTP map that leaves register C unchanged. A measurement
on a quantum register A, producing a measurement outcome X, is a CPTP map
EA→X of the form

E(ρA) =
∑
x∈X

tr(ExρA)|x〉〈x|X ,

where {|x〉} a basis of HX and E = {Ex}x∈X is a POVM, i.e., a collection of
positive semidefinite operators satisfying

∑
x∈X Ex = I.

The spectral norm of an operator X is defined as ‖X‖ := max|u〉 ‖X|u〉‖,
where the maximum is over all normalized vectors |u〉, and an operator is called
an orthogonal projector if X† = X and X2 = X. The following was shown in [8].

Lemma 1. For any two orthogonal projectors X and Y : ‖X +Y ‖ ≤ 1+‖XY ‖.

2.3 Entropy and Privacy Amplification

In the following, the two notions of entropy that we will be dealing with are the
min-entropy and the zero-entropy of a quantum register. They are defined as
follows:

Definition 1. The min-entropy of a bipartite quantum state ρAB relative to
register B is the largest number H∞(A|B)ρ such that there exists a σB ∈ D(HB),

2−H∞(A|B)ρ · IA ⊗ σB ≥ ρAB .

The zero-entropy of a state ρA is defined as

H0(A)ρ = lg (rank(ρA)).

We write H∞(A|B) and H0(A) when the state of the registers is clear from the
context.

38 F. Dupuis et al.

The min-entropy has the following operational interpretation [13]. Let ρXB

be a so-called cq-state, i.e., of the from ρXB =
∑

x PX(x)|x〉〈x|X ⊗ ρx
B . Then

Pguess(X|B) = 2−H∞(X|B)ρ where Pguess(X|B) is the probability of guessing the
value of the classical random variable X, maximized over all POVMs on B.

Let Gn be a family of hash functions g : {0, 1}n → {0, 1} with a binary
output. The family Gn is said to be two-universal if for any x, y ∈ {0, 1}n with
x = y and G ∈R Gn,

Pr (G(x) = G(y)) ≤ 1
2
.

Privacy amplification against quantum side information, in case of hash func-
tions with a binary-output, can be stated as follows:

Theorem 1 (Privacy Amplification [19]). Let Gn be a two-universal family
of hash functions g : {0, 1}n → {0, 1} with a binary output. Furthermore, let
ρXE =

∑
x∈{0,1}n PX(x)|x〉〈x|X ⊗ ρx

E be an arbitrary cq-state, and let

ρY GXE :=
1

|Gn|
∑

g∈Gn

∑
x∈{0,1}n

PX(x)|g(x)〉〈g(x)|Y ⊗ |g〉〈g|G ⊗ |x〉〈x|X ⊗ ρx
E

be the state obtained by choosing a random g in Gn, applying g to the value stored
in X, and storing the result in register Y . Then,

D

(
ρY GE ,

IY

2
⊗ ρGE

)
≤ 1

2
· 2− 1

2 (H∞(X|E)−1).

3 Main Result

We consider an abstract game between two parties Alice and Bob. The game is
specified by a joint state ρAB , shared between Alice and Bob who hold respective
registers A and B, and by a non-empty finite family E = {Ej}j∈J of binary-
outcome POVMs Ej = {Ej

0, E
j
1} acting on B. An execution of the game works

as follows: Alice announces an index j ∈ J to Bob, and Bob measures register
B of the state ρAB using the POVM Ej specified by Alice’s choice of j. Alice
wins the game if the measurement outcome is 1. We distinguish between an
adaptive and a non-adaptive Alice. An adaptive Alice can obtain j by performing
a measurement on her register A of ρAB ; on the other hand, an non-adaptive
Alice has to produce j from scratch, i.e., without accessing A. This motivates
the following formal definitions.

Definition 2. Let ρAB be a bipartite quantum state, and let E = {Ej}j∈J be a
non-empty finite family of binary-outcome POVMs Ej = {Ej

0, E
j
1} acting on B.

Then, we define

Psucc(ρAB ,E) := max
{Fj}j

∑
j∈J

tr
((

Fj ⊗ Ej
1

)
ρAB

)
,

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 39

where the maximum is over all POVMs {Fj}j∈J acting on A. We call
Psucc(ρAB ,E) the adaptive success probability, and we call Psucc(ρB ,E) the non-
adaptive success probability, where the latter is naturally understood by consid-
ering an “empty” A, and it equals

Psucc(ρB ,E) = max
j∈J

tr
(
Ej

1ρB

)
.

If ρAB and E are clear from the context, we write PA
succ and PNA

succ instead of
Psucc(ρAB ,E) and Psucc(ρB ,E).

As a matter of fact, for the sake of generality, we consider a setting with
an additional quantum register A′ to which both the adaptive and the non-
adaptive Alice have access to, but, as above only the adaptive Alice has access
to A. In that sense, we will compare an adaptive with a semi-adaptive Alice.
Formally, we will consider a tripartite state ρAA′B and relate Psucc(ρAA′B,E) to
Psucc(ρA′B,E). Obviously, the special case of an “empty” A′ will then provide a
relation between PA

succ and PNA
succ.

We now introduce a new measure of (quantum) information Iaccmax(B;A|A′)ρ,
which will relate the adaptive to the non- or semi-adaptive success probability
in our main theorem. In its unconditional form Iaccmax(B;A)ρ, it is the accessible
version of the max-information Imax(B;A)ρ introduced in [3]; this means that
it is the amount of max-information that can be accessed via measurements on
Alice’s share.

Definition 3. Let ρAA′B be a tripartite quantum state. Then, we define
Iaccmax(B;A|A′)ρ as the smallest real number such that, for every measurement
MAA′→X there exists a measurement NA′→X such that

M(ρAA′B) ≤ 2Iacc
max(B;A|A′)ρN (ρA′B).

The unconditional version Iaccmax(B;A)ρ is naturally defined by considering A′ to
be “empty”; the above condition then coincides with

M(ρAB) ≤ 2Iacc
max(B;A)ρσX ⊗ ρB ,

for some normalized density matrix σX ∈ D(HX), which can be interpreted as
the outcome of a measurement NC→X on an “empty” register.

We are now ready to state and prove our main result.

Theorem 2. Let ρAA′B be a tripartite quantum state, and let E = {Ej}j∈J be
a non-empty finite family of binary-outcome POVMs Ej acting on B. Then, we
have that

Psucc(ρAA′B,E) ≤ 2Iacc
max(B;A|A′)ρPsucc(ρA′B ,E).

By considering an “empty” A′, we immediately obtain the following.

Corollary 1. Let ρAB be a bipartite quantum state, and let E = {Ej}j∈J be as
above. Then,

PA
succ ≤ 2Iacc

max(B;A)ρPNA
succ.

40 F. Dupuis et al.

Proof (of Theorem 2). Let {Fj}j∈J be an arbitrary POVM acting on AA′, and
let MAA′→J be the corresponding measurement M(σAA′) =

∑
j tr(Fjσ)|j〉〈j|.

We define the map

EJB→C(σJB) :=
∑

j

tr((|j〉〈j| ⊗ Ej
1)σJB),

which is completely positive (but not trace-preserving in general). From the
definition of Iaccmax, we know that there exists a measurement NA′→J , i.e., a CPTP
map of the form N (σA′) =

∑
j tr(F ′

jσ)|j〉〈j| for a POVM {F ′
j}j∈J acting on A′,

such that
M(ρAA′B) ≤ 2Iacc

max(B;A|A′)ρN (ρA′B).

Applying E on both sides gives

(E ◦ M)(ρAA′B) ≤ 2Iacc
max(B;A|A′)ρ(E ◦ N)(ρA′B),

and expanding both sides using the definitions of E , M and N gives
∑

j

tr((Fj ⊗ Ej
1)ρAA′B) ≤ 2Iacc

max(B;A|A′)ρ

∑
j

tr((F ′
j ⊗ Ej

1)ρA′B)

≤ 2Iacc
max(B;A|A′)ρPsucc(ρA′B ,E).

This yields the theorem statement, since the left-hand side equals to
Psucc(ρAA′B ,E) when maximized over the choice of the POVM {Fj}j∈J . ��
By the following proposition, we see that Corollary 1 implies a direct generaliza-
tion of the classical bound, which ensures that giving access to n bits increases
the success probability by at most 2n, to qubits.

Proposition 1. For any ρAB, we have that Iaccmax(B;A)ρ ≤ H0(A)ρ.

Proof. Let |ψ〉ABR be a purification of ρAB and let MA→X be a measurement
on A. Since |ψ〉 is also a purification of ρA, there exists a linear operator VĀ→BR

from a register Ā of the same dimension as A into BR such that |ψ〉ABR =
(IA ⊗ V)|Φ〉AĀ, with |Φ〉 =

∑
i |i〉A ⊗ |i〉Ā. Now, first note that

2−H0(A)(M ⊗ I)(ΦAĀ) =
∑

x

λx|x〉〈x|X ⊗ ωx
Ā ≤

∑
x

λx|x〉〈x|X ⊗ IĀ,

where {λx} is a probability distribution, and each ωx
Ā

is normalized because
tr(Φ) = 2H0(A). Multiplying both sides of the inequality by 2H0(A) and conju-
gating by V , we get

(M ⊗ I)(|ψ〉〈ψ|) ≤ 2H0(A)
∑

x

λx|x〉〈x| ⊗ V V †.

Using the fact that V V † = ψBR := trA(|ψ〉〈ψ|), this yields

(M ⊗ I)(|ψ〉〈ψ|) ≤ 2H0(A)
∑

x

λx|x〉〈x| ⊗ ψBR.

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 41

Tracing out R on both sides and defining σX =
∑

x λx|x〉〈x| then yields

(M ⊗ I)(ρAB) ≤ 2H0(A)σX ⊗ ρB ,

which proves the claim. ��
One might naively expect that also the conditional version Iaccmax(B;A|A′)ρ is
upper bounded by H0(A)ρ, implying a corresponding statement for a semi-
adaptive Alice: giving access to n additional qubits increases the success probabil-
ity by at most 2n. However, this is not true, as the following example illustrates.
Let register B contain two random classical bits, and let A and A′ be two qubit
registers, containing one of the four Bell states, and which one it is, is deter-
mined by the two classical bits. Alice’s goal is to guess the two bits. Clearly,
A′ alone is useless, and thus a semi-adaptive Alice having access to A′ has a
guessing probability of at most 1

4 . On the other hand, adaptive Alice can guess
them with certainty by doing a Bell measurement on AA′.

However, Proposition 1 does generalize to the conditional version in case of
a classical A′.

Proposition 2. For any state ρZAB with classical Z:

Iaccmax(B;A|Z)ρ ≤ max
z

Iaccmax(B;A)ρz ≤ H0(A)ρ.

An additional property of Iaccmax is that quantum operations that are in ten-
sor product form on registers A and B cannot increase the max-accessible-
information.

Proposition 3. Let EAB→A′B′ be a CPTP map of the form E = EA ⊗EB. Then

Iaccmax(B
′;A′)E(ρ) ≤ Iaccmax(B;A)ρ.

The proofs the two previous results can be found in Appendix A.

4 Application 1: 1CC Is Universal

4.1 Background

It is a well-known fact that information-theoretically secure two-party computa-
tion is impossible without assumptions. As a result, one of the natural questions
that arises is: what are the minimal assumptions required to achieve it? One way
to attack this question is to try to identify the simplest cryptographic primitives
which, when made available in a black-box way to the two parties, allow them
to perform arbitrary two-party computations. We then say that such a primitive
is “universal”. Perhaps the best known such primitive is one-out-of-two oblivi-
ous transfer (OT), which has been shown to be universal by Kilian [10]. Since
then, the power of various primitives for two-party computation has been stud-
ied in much more detail [11,12,14–17]. Recently, it has been shown in [16] that
every non-trivial two-party primitive (i.e. any primitive that cannot be done

42 F. Dupuis et al.

Fig. 1. The cut-and-choose functionality. The one-bit and two-bit versions of the func-
tionality refer to the length of x. One player chooses x, and the other player chooses
whether he wants to see x or not. The first player then learns the choice that was made.

from scratch without assumptions) can be used as a black-box to implement one
of four basic primitives: oblivious transfer (OT), bit commitment (BC), an XOR
between Alice’s and Bob’s inputs, or a primitive called cut-and-choose (CC) as
depicted in Fig. 1.

Interestingly, this picture becomes considerably simpler when we consider
quantum protocols. First, BC can be used to implement OT [2,7,20] and is
therefore universal. Furthermore, as was shown in [9], even a 2-bit cut-and-
choose (2CC) is universal in the quantum setting, giving rise to what they call
a zero/xor/one law: every primitive is either trivial (zero), universal (one), or
can be used to implement an XOR. However, there was one missing piece in this
characterization: it applies to all functionalities except those that are sufficient
to implement 1-bit cut-and-choose (1CC), but not 2CC. In this section, we resolve
this issue by showing that 1CC is universal. We do this by presenting a quantum
protocol for bit commitment that uses 1CC as a black box, and we prove its
security using our adaptive to non-adaptive reduction.

4.2 The Protocol

The protocol is given in Fig. 2, where Alice is the committer and Bob the receiver.
The protocol is parameterized by N ∈ N, which acts as security parameter, and
by constants q, τ and r, where q, τ > 0 are small and r < 1 is close to 1.
Intuitively, our bit commitment protocol uses the 1CC primitive to ensure that
the state Alice sends to Bob is close to what it is supposed to be: |0N 〉θ for
some randomly chosen but fixed basis θ. Indeed, the 1CC primitive allows Bob
to sample a small random subset of the qubits and check for correctness on that
subset; if the state looks correct on this subset, we expect that it cannot be too
far off on the unchecked part.

Note that our protocol uses the B92 [1] encoding ({|0〉+, |0〉×}), rather than
the more common BB84 encoding. This allows us to get away with a one-bit cut-
and-choose functionality; with the BB84 encoding, Alice would have to “commit”
to two bits: the basis and the measurement outcome.

We use the quantum sampling framework of Bouman and Fehr [4] to analyze
the checking procedure of the protocol. Actually, we use the adaptive version
of [9], which deals with an Alice that can decide on the next basis adaptively
depending on what Bob has asked to see so far. On the other hand, to deal with
Bob choosing his sample subset adaptively depending on what he has seen so

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 43

Fig. 2. Bit commitment protocol bc1CC based on the 1-bit cut-and-choose primitive.

far, we require the sample subset to be rather small, so that we can then apply
union bound over all possible choices.

4.3 Security Proofs

We use the standard notion of hiding for a (quantum) bit commitment scheme.

Definition 4 (Hiding). A bit-commitment scheme is ε-hiding if, for any dis-
honest receiver Bob, his state ρ0 corresponding to a commitment to b = 0 and
his state ρ1 corresponding to a commitment to b = 1 satisfy D(ρ0, ρ1) ≤ ε.

Since the proof that our protocol is hiding uses a standard approach, we only
briefly sketch it.

Theorem 3. Protocol commit1CC
N,q,τ,r is 2− 1

2N(lg(1/γ)−2q−(1−r))-hiding, where
γ = cos2(π/8) ≈ 0.85 (and hence lg(1/γ) ≈ 0.23).

Proof (sketch). We need to argue that there is sufficient min-entropy in θt̄ for
Bob; then, privacy amplification does the job. This means that we have to show
that Bob has small success probability in guessing θt̄. What makes the argument

44 F. Dupuis et al.

slightly non-trivial is that Bob can choose t depending on the qubits |0N 〉θ. Note
that since Alice aborts in case |t| > 2qN , we may assume that |t| ≤ 2qN .

It is a straightforward calculation to show that Bob’s success probability in
guessing θ right after step 1 of the protocol, i.e., when given the qubits |0N 〉θ, is
γN , where γ = cos2(π/8) ≈ 0.85. From this it then follows that right after step 2,
Bob’s success probability in guessing θt̄ is at most γN ·22qN : if it was larger, then
he could guess θ right after step 1 with probability larger than γN by simulating
the sampling and guessing the |t| ≤ 2qN bits θi that Alice provides. It follows
that right after step 2, Bob’s min-entropy in θt̄ is N(lg(1/γ) − 2q). Finally, by
the chain rule for min-entropy, Bob’s min-entropy in θt̄ when additionally given
the syndrome s is N

(
lg(1/γ) − 2q

) − (n − k) = N
(
lg(1/γ) − 2q

) − n(1 − k/n) ≥
N

(
lg(1/γ) − 2q − (1 − r)

)
. The statement then directly follows from privacy

amplification (Theorem 1) and the triangle inequality. ��
As for the binding property of our commitment scheme, as we will show, we

achieve a strong notion of security that not only guarantees the existence of a
bit to which Alice is bound in that she cannot reveal the other bit, but this
bit is actually universally extractable from the classical information held by Bob
together with the inputs to the 1CC:

Definition 5 (Universally Extractable). A bit-commitment scheme (in the
1CC-hybrid model) is ε-universally extractable if there exists a function c that
acts on the classical information viewBob,1CC held by Bob and 1CC after the
commit phase, so that for any pure commit and open strategy for dishonest Alice,
she has probability at most ε of successfully unveiling the bit 1 − c(viewBob,1CC).

Our strategy for proving the binding property for our protocol is as follows.
First, we show that due to the checking part, the (joint) state after the commit
phase is of a restricted form. Then, we show that, based on this restriction on
the (joint) state, a non-adaptive Alice who has no access to her quantum state,
cannot open to the “wrong” bit. And finally, we apply our main result to conclude
security against a general (adaptive) Alice.

The following lemma follows immediately from (the adaptive version of)
Bouman and Fehr’s quantum sampling framework [4,9]. Informally, it states that
if Bob did not abort during sampling, then the post-sampling state of Bob’s reg-
ister is close to the correct state, up to a few errors. In other words, after the
commit phase, Bob’s state is a superposition of strings close to 0n in the basis
specified by θt̄.

Lemma 2. Consider an arbitrary pure strategy for Alice in protocol
commit1CC

N,q,τ,r. Let ρAB be the joint quantum state at the end of the commit
phase, conditioned (and thus dependent) on t, θ, g, w and s. Then, for any δ > 0,
on average over the choices of t, θ, g, w and s, the state ρAB is ε-close to an
“ideal state” ρ̃AB (which is also dependent on t, θ etc.) with the property that
the conditional state of ρ̃AB conditioned on Bob not aborting is pure and of the
form

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 45

|φAB〉 =
∑

y∈Bδ(0n)

αy|ξy〉A|y〉θt̄
(1)

where |ξy〉 are arbitrary states on Alice’s register and ε ≤ √
4 exp(−q2δ2N/8).

The following lemma implies that after the commit phase, if Alice and Bob
share a state of the form of (1), then a non-adaptive Alice is bound to a fixed
bit which is defined by some string θ′.

Lemma 3. For any t, θ and s there exists θ′ with syndrome s such that for every
θ′′ = θ′ with syndrome s, and for every state |φAB〉 of the form of (1),

tr
(
(I ⊗ |0〉〈0|θ′′)φAB

) ≤ 2− d
2+nh(δ).

Proof. Let θ′ ∈ {0, 1}n be the string with syndrome s closest to θt̄ (in Hamming
distance). Then, since the set of strings with a fixed syndrome form an error
correcting code of distance d, every other θ′′ ∈ {0, 1}n of syndrome s is at
distance at least d/2 from θt̄. Bob’s reduced density operator of state (1) is
φB =

∑
y,y′∈Bδ(0n) αyα∗

y′〈ξy′ |ξy〉|y〉〈y′|θt̄
. Using the fact that d(θt̄, θ

′′) ≥ d/2 for

every θ′′ = θ′ (and hence | tr(|0〉〈0|θ′′ |y〉〈y′|θt̄
)| ≤ 2− d

2) and the triangle inequality,
we get:

tr(|0〉〈0|θ′′φB) ≤ 2− d
2

∑
y,y′∈Bδ(0n)

∣∣αyα∗
y′〈ξy′ |ξy〉∣∣

≤ 2− d
2

∑
y,y′∈Bδ(0n)

|αy||α∗
y′ |

= 2− d
2

(∑
y

|αy|
)2

≤ 2− d
2+nh(δ),

where the last inequality is argued by viewing
∑

y |αy| as inner product of the
vectors

∑
y |αy||y〉 and

∑
y |y〉, and applying the Cauchy-Schwarz inequality. ��

We are now ready to prove that the scheme is universally extractable:

Theorem 4. For any δ > 0, commit1CC
N,q,τ,r is ε-universally extractable with

ε ≤ 2−N(1−2q)(τ/2−2h(δ)) +
√

4 exp(−q2δ2N/8).

Proof. We need to show the existence of a binary-valued function c(θ, t, g, w, s)
as required by Definition 5, i.e., such that for any commit strategy, there is no
opening strategy that allows Alice to unveil c̄, except with small probability. We
define this function as c(t, θ, g, s, w) := g(θ′) ⊕ w where θ′ is as in Lemma 3,
depending on t, θ and s only.

Now, consider an arbitrary pure strategy for Alice in protocol commit1CC.
Let θ, g, w and s be the values chosen by Alice during the commit phase and let

46 F. Dupuis et al.

ρAB be the joint state of Alice and Bob after the commit phase. Fix δ > 0 and
consider the states ρ̃AB and |φAB〉 as promised by Lemma 2. Recall that ρAB is
ε-close to ρ̃AB (on average over θ, g, w and s, and for ε ≤ √

4 exp(−q2δ2N/8)),
and ρ̃AB is a mixture of Bob aborting in the commit phase and of |φAB〉; there-
fore, we may assume that Alice and Bob share the pure state φAB = |φAB〉〈φAB |
instead of ρAB by taking into account the probability at most ε that the two
states behave differently.

Let B be the set of strings θ′′ with syndrome s such that g(θ′′) ⊕ w = c̄ and
let E = {{Eθ′′

0 , Eθ′′
1 }}θ′′∈B be the family of POVMs that correspond to Bob’s

verification measurement when Alice announces θ′′, i.e. where Eθ′′
1 = |0〉〈0|θ′′

and Eθ′′
0 = I − |0〉〈0|θ′′ . Then, Alice’s probability of successfully unveiling bit

c̄ equals Psucc(φAB ,E) as defined in Sect. 3. In order to apply Corollary 1, we
must first control the size of the side-information that Alice holds. By looking
at the definition of |φAB〉 in (1), we notice that it is a superposition of at most
|Bδ(0n)| ≤ 2nh(δ) terms. Therefore, the rank of φA is at most 2nh(δ) and H0(A) ≤
nh(δ). We can now bound Alice’s probability of opening c̄:

Psucc(φAB ,E) ≤ 2H0(A)Psucc(φB ,E) ≤ 2− d
2+2nh(δ) ≤ 2−n(τ/2−2h(δ))

where the first inequality follows from Corollary 1 and Proposition 1, and the
second from the bound on H0(A) and from Lemma 3. ��

Regarding the choice of parameters q, τ and r, and the choice of the code,
we note that the Gilbert-Varshamov bound guarantees that the code defined by
a random binary n × (n − rn) generator matrix G has minimal distance d ≥ τn,
except with negligible probability, as long as r < 1 − h(τ). On the other hand,
for the hiding property, we need that r > 1 − 0.23 + 2q. As such, as long as
h(τ) < 0.23 − 2q, there exists a suitable rate r and a suitable generator matrix
G, so that our scheme offers statistical security against both parties.

4.4 Universality of 1CC

By using our 1CC-based bit commitment scheme bc1CC in the standard construc-
tion for obtaining OT from BC in the quantum setting [2,7], we can conclude
that 1CC implies OT in the quantum setting, and since OT is universal we thus
immediately obtain the universality of 1CC. However, strictly speaking, this does
not solve the open problem of [9] yet. The caveat is that [9] asks about the uni-
versality of 1CC in the UC security model [20], in other words, whether 1CC is
“universally-composable universal”. So, to truly solve the open problem of [9]
we still need to argue UC security of the resulting OT scheme, for instance by
arguing that our scheme bc1CC is UC secure.

UC-security of bc1CC against malicious Alice follows immediately from our
binding criterion (Definition 5); after the commit phase, Alice is bound to a bit
that can be extracted in a black-box way from the classical information held
by Bob and the 1CC functionality. Thus, a simulator can extract that bit from

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 47

malicious Alice and input it into the ideal commitment functionality, and since
Alice is bound to this bit, this ideal-world attack is indistinguishable from the
real-world attack.

However, it is not clear if bc1CC is UC-secure against malicious Bob. The
problem is that it is unclear whether it is universally equivocable, which is a
stronger notion than the standard hiding property (Definition 4).

Nevertheless, we can still obtain a UC-secure OT scheme in the 1CC-hybrid
model, and so solve the open problem of [9]. For that, we slightly modify the
standard BC-based OT scheme [2,7] with BC instantiated by bc1CC as follows:
for every BB84 qubit that the receiver is meant to measure, he commits to the
basis using bc1CC, but he uses the 1CC-functionality directly to “commit” to the
measurement outcome, i.e., he inputs the measurement outcome into 1CC— and
if the sender asks 1CC to reveal it, the receiver also unveils the accompanying
basis by opening the corresponding commitment.

Definition 5 ensures universal extractability of the committed bases and thus
of the receiver’s input. This implies UC-security against dishonest receiver. In
order to argue UC-security against dishonest sender, we consider a simulator
that acts like the honest receiver, i.e., chooses random bases and commits to
them, but only measures those positions that the sender wants to see — because
the simulator controls the 1CC-functionality he can do that. Then, once he has
learned the sender’s choices for the bases, he can measure all (remaining) qubits
in the correct basis, and thus reconstruct both messages and send them to the
ideal OT functionality. The full details of the proof are in Appendix B.

5 Application 2: On the Security of BCJL Commitment
Scheme

In this section, we show that for a wide class of bit-commitment schemes,
the binding property of the scheme in (a slightly strengthened version of) the
bounded-quantum-storage model reduces to its binding property against a dis-
honest committer that has no quantum memory at all. We then demonstrate
the usefulness of this on the example of the bcjl commitment scheme [6].

5.1 Setting up the Stage

The class of schemes to which our reduction applies consists of the schemes that
are non-interactive: all communication goes from Alice, the committer, to Bob,
the verifier. Furthermore, we require that Bob’s verification be “projective” in
the following sense.

Definition 6. We say that a bit-commitment scheme is non-interactive and
with projective verification, if it is of the following form.

Commit: Alice sends a classical message x and a quantum register B to Bob.
Opening to b: Alice sends a classical opening yb to Bob, and Bob applies a
binary-outcome projective measurement {Vx,yb

, I − Vx,yb
} to register B.

48 F. Dupuis et al.

Since x is fixed after the commit phase, we tend to leave the dependency of Vx,yb

from x implicit and write Vyb
instead. Also, to keep language simple, we will

just speak of a non-interactive bit-commitment scheme and drop the projective
verification part in the terminology.

We consider the security — more precisely: the binding property — of such
bit-commitment schemes in a slightly strengthened version of the bounded-
quantum-storage model [8], where we bound the quantum memory of Alice,
but we also restrict her measurement (for producing yb in the opening phase)
to be projective. This restriction on Alice’s measurement is well justified since a
general non-projective measurement requires additional quantum storage in the
form of an ancilla to be performed coherently. From a technical perspective, this
restriction (as well as the restriction on Bob’s verification) is a byproduct of our
proof technique, which requires the measurement operator describing the (joint)
opening procedure to be repeatable; avoiding it is an open question.3

Formally, we capture the binding property as follows in this variation of the
bounded-quantum-storage model.

Definition 7 (Binding). A non-interactive bit commitment scheme is called
ε-binding against q-quantum-memory-bounded (or q-QMB for short) projective
adversaries if, for all states ρAB ∈ D(HA ⊗ HB) with dim(HA) ≤ 2q and for all
classical messages x,

PA
0 (ρAB) + PA

1 (ρAB) ≤ 1 + ε

where
PA

b (ρAB) := max
{Fyb

}yb

∑
yb

tr((Fyb
⊗ Vx,yb

)ρAB)

is the probability of successfully opening bit b, maximized over all projective
measurements {Fyb

}yb
.

In case q = 0, where the above requirement reduces to

PNA
0 (ρAB) + PNA

1 (ρAB) ≤ 1 + ε with PNA
b (ρAB) := max

yb

tr(Vx,yb
ρB)

and ρB = trA(ρAB), we also speak of ε-binding against non-adaptive adversaries.

On the Binding Criterion for Non-interactive Commitment Schemes.
Binding criteria analogous to the one specified in Definition 7 have traditionally
been weak notions of security against dishonest committers for quantum com-
mitment schemes, as opposed to criteria that are more in the spirit of a bit that
cannot be opened by the adversary. While more convenient for proving security
of commitment schemes, a notable flaw of the p0 +p1 ≤ 1+ ε definition is that it
does not rule out the following situation. An adversary might, by some complex
measurement, either completely ruin its capacity to open the commitment, or be

3 The standard technique (using Naimark’s dilation theorem) does not work here.

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 49

able to open the bit of its choice. Then the total probability of opening 0 and 1
sum to 1, but, conditioned on the second outcome of this measurement, they sum
to 2. This is obviously an undesirable property of a quantum bit-commitment
scheme.

Non-interactive schemes that are secure according to Definition 7 are binding
in a stronger sense. For instance, the above problem of the p0 + p1 ≤ 1 + ε
definition does not hold for non-interactive schemes. If a scheme is ε-binding,
then any state ρ obtained by conditioning on some measurement outcome must
satisfy PA

0 (ρ) + PA
1 (ρ) ≤ 1 + ε. If the total probability of opening 0 and 1 was

any higher, then the adversary could have prepared the state ρ in the first place,
contradicting the fact that the protocol is ε-binding. It remains an open question
how to accurately describe the security of non-interactive commitment schemes
that satisfy Definition 7.

5.2 The General Reduction

We want to reduce security against a q-QMB projective adversary to the secu-
rity against a non-adaptive adversary (which should be much easier to show)
by means of applying our general adaptive-to-non-adaptive reduction. However,
Corollary 1 does not apply directly; we need some additional gadget, which is in
the form of the following lemma. It establishes that if there is a commit strategy
for Alice so that the cumulative probability of opening 0 and 1 exceeds 1 by a
non-negligible amount, then there is also a commit strategy for her so that she
can open 0 with certainty and 1 with still a non-negligible probability.

Lemma 4. Let ρ ∈ D(HA ⊗HB) and ε > 0 be such that PA
0 (ρ)+PA

1 (ρ) ≥ 1+ε.
Then, there exists ρ0 ∈ D(HA ⊗ HB) such that PA

0 (ρ0) = 1 and PA
1 (ρ0) ≥ ε2.

Proof. Let {Fy0}y0 and {Gy1}y1 be the projective measurements maximizing
PA
0 (ρ) and PA

1 (ρ), respectively. Define the projections onto the 0/1-accepting
subspaces as

P0 :=
∑
y0

Fy0 ⊗ Vy0 and P1 :=
∑
y1

Gy1 ⊗ Vy1 .

Since tr((P0+P1)ρ) = PA
0 (ρ)+PA

1 (ρ) ≥ 1+ε, it follows that ‖P0+P1‖ ≥ 1+ε.
From Lemma 1, we have that

1 + ‖P1P0‖ ≥ ‖P0 + P1‖ ≥ 1 + ε.

Therefore there exists |φ〉 such that ‖P1P0|φ〉‖ ≥ ε. Define |φ0〉 := P0|φ〉/‖P0|φ〉‖,
which we claim has the required properties. The probability to open 0 from |φ0〉
is ‖P0|φ0〉‖2 = 1, and the probability to open 1 from |φ0〉 is ‖P1P0|φ0〉‖2 =
‖P1P0|φ〉‖2/‖P0|φ〉‖2 ≥ ε2. ��
Now, we are ready to state and prove the general reduction.

50 F. Dupuis et al.

Theorem 5. If a non-interactive bit-commitment scheme is ε-binding against
non-adaptive adversaries, then it is (2

1
2 q

√
ε)-binding against q-QMB projective

adversaries.

Proof. Let ρAB ∈ D(HA ⊗ HB) be the joint state of Alice and Bob where
dim(HA) ≤ 2q and let α > 0 be such that the opening probabilities sat-
isfy PA

0 (ρ) + PA
1 (ρ) = 1 + α. From Lemma 4, we know that there exists

ρ0AB ∈ D(HA ⊗ HB) constructed from ρ such that

PA
0 (ρ0) = 1 and PA

1 (ρ0) ≥ α2.

We use Corollary 1 and the assumption that the protocol is ε-binding against
non-adaptive adversaries to show that α cannot be too large. Let {Fy0}y0 be
the measurement that maximizes PA

0 (ρ0). Let us consider Bob’s reduced density
operator of ρ0:

ρ0B = trA(ρ0AB) =
∑
y0

trA((Fy0 ⊗ I)ρ0AB) =
∑
y0

λy0σy0

where for each y0, it holds that tr(Vy0σy0) = 1. This implies tr(Vy1σy0) ≤ ε for
every y1 that opens 1 from our assumption of the non-adaptive security of the
commitment scheme. Then

PNA
1 (ρ0AB) = max

y1
tr(Vy1ρ

0
B) = max

y1

∑
y0

λy0 tr(Vy1σy0) ≤ ε.

Applying Corollary 1 completes the proof:

α2 ≤ PA
1 (ρ0) ≤ 2Iacc

max(B;A)ρ0 PNA
1 (ρ0) ≤ 2H0(A)ρ0 ε ≤ 2qε.

��

5.3 Special Case: The BCJL Bit-Commitment Scheme

In this subsection, we use the results of the previous section to prove the security
of the bcjl scheme in the bounded storage model against projective measure-
ment attacks.

The bcjl bit-commitment scheme was proposed in 1993 by Brassard et al. [6].
They proposed to hide the committed bit using a two-universal family of hash
functions applied on the codeword of an error correcting code and then send this
codeword through BB84 qubits. The idea behind this protocol is that privacy
amplification hides the committed bit while the error correcting code makes it
hard to change the value of this bit without being detected. While their intuition
was correct, their proof ultimately was not, as shown by Mayers’ impossibility
result for bit commitment [18].

The following scheme (Fig. 3) differs only slightly from the original [6], this
allows us to recycle some of the analysis from Sect. 4.

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 51

Fig. 3. The bcjl bit-commitment scheme

Theorem 6. bcjl is statistically hiding as long as 0.22 − (1 − k/n) ∈ Ω(1).

The proof of Theorem 6 is straightforward. It follows the same approach as that
of Theorem 3 by noticing that Bob has the same uncertainty about each xi as
he had about θi in protocol commit1CC.

Instead of proving that bcjl is binding, we prove that an equivalent scheme
bcjlδ (see Fig. 4) is binding. The bcjlδ scheme is a modified version of bcjl
in which Bob has unlimited quantum memory and stores the qubits sent by
Alice during the commit phase instead of measuring them. The opening phase
of bcjlδ is characterized by a parameter δ which determines how close it is to
the opening phase of bcjl. The following lemma shows that the two protocols
are equivalent from Alice’s point of view; if Alice can cheat an honest Bob then
she can cheat a Bob with unbounded quantum computing capabilities.

Lemma 5. Let δ > 0. If bcjlδ is ε-binding then bcjl is (ε + 2 · 2−δn)-binding.

Proof. Let (x, θ) be an opening to 0. First notice that Bob’s actions in bcjl
are equivalent to holding onto his state until the opening procedure, measuring
in basis θ and verifying xT = x̂T for a randomly chosen sample T ⊆ [n]. From
this point of view, Bob’s measurement result is identically distributed in both
protocols and we can speak of x̂ without ambiguity. If d(x, x̂) > δn, then the
probability that xi = x̂i for all i ∈ T is at most 2−δn. Therefore, if Bob rejects
in revealδ with measurement outcome x̂, then the probability that he rejects
in reveal with the same outcome is at least 1− 2−δn. If we let p0 denote Bob’s
accepting probability in the original protocol and pδ

0 in the modified protocol,
we have p0 ≤ pδ

0 + 2−δn. Since the same holds for openings to 1, we have

52 F. Dupuis et al.

Fig. 4. The bcjlδ bit-commitment scheme.

p0 + p1 ≤ pδ
0 + pδ

1 + 2 · 2−δn ≤ 1 + ε + 2 · 2−δn.

��
The following proposition establishes the security of bcjlδ in the non-

adaptive setting. Its proof is straightforward and can be found in Appendix A.

Proposition 4. bcjlδ is 2−d/2+δn+h(δ)n-binding against non-adaptive adver-
saries.

Since the bit-commitment scheme bcjlδ is non-interactive, it directly follows
from Theorem 5 and Proposition 4 that bcjlδ is 2

1
2 (q−d/2+δn+h(δ)n)-binding

against q-QMB projective adversaries. Combining the above with Lemma 5, we
have the following statement for the bcjl scheme.

Theorem 7. The bcjl bit-commitment scheme is (2
1
2 (q−d/2+δn+h(δ)n)+2·2−δn)-

binding against q-QMB projective adversaries.

Acknowledgments. FD acknowledges the support of the Czech Science Foundation
(GAČR) project no. GA16-22211S and of the EU FP7 under grant agreement no.
323970 (RAQUEL). LS is supported by Canada’s NSERC discovery grant.

A Additional proofs

Proposition 2. For any state ρZAB with classical Z:

Iaccmax(B;A|Z)ρ ≤ max
z

Iaccmax(B;A)ρz ≤ H0(A)ρ.

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 53

Proof. By assumption, ρZAB is of the form ρZAB =
∑

z PZ(z)|z〉〈z| ⊗ ρz
AB . Let

MZA→X be a measurement on Z and A. By linearity, and by definition of Iaccmax,
we have that

M(ρZAB) =
∑

z

PZ(z)M(|z〉〈z| ⊗ ρz
AB

)

≤
∑

z

PZ(z) · 2Iacc
max(B;A|Z)|z〉〈z|⊗ρz N z

(|z〉〈z| ⊗ ρz
B

)

for suitably chosen measurements N z
Z→X . Now, noting that Iaccmax(B;

A|Z)|z〉〈z|⊗ρz = Iaccmax(B;A)ρz , and that there exists a fixed measurement NZ→X

so that N z(|z〉〈z|) = N (|z〉〈z|) for all z, it follows that

M(ρZAB) ≤ 2maxz Iacc
max(B;A)ρz N (ρZB),

which implies the first claimed inequality. The second inequality follows imme-
diately by observing that Iaccmax(B;A)ρz ≤ H0(A)ρz ≤ H0(A)ρ. ��
Proposition 3. Let EAB→A′B′ be a CPTP map of the form E = EA ⊗EB. Then

Iaccmax(B
′;A′)E(ρ) ≤ Iaccmax(B;A)ρ.

Proof. Since the CPTP map EB commutes with any measurement applied on
Alice’s register, it cannot increase the maximal accessible information.

To show that the CPTP map EA cannot increase Iaccmax, it suffices to show
that for every measurement M on register A, the CPTP map M ◦ EA is also
a measurement. Let {Ek}k be the Kraus operators associated with EA and let
{Fx}x be the POVM operators describing the measurement M. Then, the pos-
itive operators F ′

x :=
∑

k E†
kFxEk describe a POVM M′, and

M ◦ EA(ρ) = M′(ρ) ≤ 2Iacc
max(B;A)ρσX ⊗ ρB

by the definition of Iaccmax(B;A)ρ for some normalized σX . ��
Proposition 4. Protocol bcjlδ is 2−d/2+δn+h(δ)n-binding against non-adaptive
adversaries.

Proof. Let ρAB ∈ D(HA ⊗ HB) be the joint state of Alice and Bob and
let V

δ
x,θ :=

∑
z∈Bδ(x) |z〉〈z|θ be the projective measurement corresponding to

Bob’s verification procedure in protocol bcjlδ if Alice announced (x, θ). Using
Lemma 1, we have that for any two distinct openings (x, θ) and (x′, θ′),

tr(Vδ
x,θρB) + tr(Vδ

x′,θ′ρB) = tr((Vδ
x,θ + V

δ
x′,θ′)ρB)

≤ ||Vδ
x,θ + V

δ
x′,θ′ ||

≤ 1 + ||Vδ
x,θV

δ
x′,θ′ ||.

Using techniques from [5], we can show that

||Vδ
x,θV

δ
x′,θ′ || ≤ max

z∈Bδ(x)

z′∈Bδ(x′)

|〈z|θ|z′〉θ′ |
√

|Bδ(x)||Bδ(x′)|.

54 F. Dupuis et al.

Using the fact that d(z, z′) ≥ d − 2δn for z ∈ Bδ(x) and z′ ∈ Bδ(x′) for any two
strings x and x′ with the same syndrome, and the fact that |Bδ(x)| ≤ 2h(δ)n, it
follows that when maximizing over openings to 0 and 1, we obtain

PNA
0 (ρAB) + PNA

1 (ρAB) ≤ 1 + 2−d/2+δn+h(δ)n.

��

B UC-Completeness of 1CC

B.1 The UC Model

In order to show that a scheme securely implements a given functionality F in
the universally composable (UC) model, one has to show that for any adversary
that attacks the scheme by corrupting participants, there exists a simulator S
that instead attacks the functionality, but is indistinguishable from the adversary
from an outside observer’s perspective. More precisely, one considers an environ-
ment Z that interacts with the adversary in the real model where the scheme is
executed, or with S in the ideal model where the functionality F is executed, and
it provides input to and obtains output from the uncorrupt players (see Fig. 5).
The scheme is said to statistically quantum-UC-emulate the functionality if the
environment cannot distinguish the real from the ideal model with non-negligible
probability. For a more detailed description of the quantum UC framework, we
refer to [9,20].

Fig. 5. The real model (top) and the ideal model (bottom) for protocol bc1CC and
functionality BC, respectively, with a dishonest Alice. bc1CC statistically quantum-UC-
emulates BC (against dishonest Alice) if the two models are indistinguishable for Z.

Most UC security proofs follow a similar mold. S internally runs a copy
of the adversary, and it simulates the actions and interactions of the honest
party, and of functionalities that are possibly used as subroutines in the scheme.
S must look like the real model adversary to the environment Z, so it forwards
any message it receives from Z to (its internal execution of) the adversary and
vice versa. Furthermore, from the interaction with the adversary, it extracts the
input(s) it has to provide to F (see Fig. 6).

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 55

Fig. 6. The standard way for constructing S: run dishonest Alice internally and simu-
late honest Bob and the calls to the functionality 1CC, and extract the input to BC.

In all our proofs below, the honest party is simulated by S by running it hon-
estly, up to possible small modifications that are unnoticeable to the adversary,
and that do not affect the (simulated) honest party’s output. As such, in our
proofs below, for showing indistinguishability of the real and the ideal model, it
is sufficient to argue that, in the ideal model, the output of the simulated honest
party equals what F outputs to Z upon the input that is provided by S.

B.2 UC Security of OT from 1CC

As explained in Sect. 4.4, our protocol bc1CC does not seem to satisfy the UC
security definition in case of a corrupted verifier Bob. As such, we cannot con-
clude UC security of the standard BC-based OT scheme [2,7] with BC instanti-
ated by bc1CC. Instead, we show UC security of OT from 1CC by means of the
following strategy.

First, we show UC security of bc1CC against a corrupted committer Alice
(Proposition 5). Then, we show that BC and 1CC together imply 2CC (actually,
a variation of 2CC that gives Alice the option to abort) by means of a straight-
forward protocol (Proposition 6), and we recall that 2CC implies OT by means
of the protocol ot2CC from [9]. Instantiating the underlying functionality BC
by bc1CC then gives us a protocol ot1CC (Fig. 8) with UC security against a
corrupted receiver (Lemma 6). Finally, it is rather straightforward to prove UC
security of ot1CC against a corrupted sender directly (Lemma 7).

Proposition 5. Protocol bc1CC statistically quantum-UC-emulates BC against
corrupted committer Alice.

Proof. The construction of S follows the paradigm outlined above. S runs dis-
honest Alice internally, and it simulates honest Bob and 1CC by running them
honestly. Note that S gets to see Alice’s inputs to 1CC. Once Alice announces
g, w and s at the end of the commit phase, S computes b = g(θ′) ⊕ w, where
θ′ is the string of syndrome s closest to the stored θt, and inputs “(commit, b)”
into the BC functionality. Finally, when corrupted Alice opens her commitment,
S inputs “open” into BC if Bob accepted the opening, and inputs “abort” if Bob
aborted.

It now follows immediately from Lemma 3 that the bit b′ output by the simu-
lated Bob equals the bit b computed by S and input to BC, except with negligible
probability. As such, real and ideal model are statistically indistinguishable. ��

56 F. Dupuis et al.

Fig. 7. Protocol 2ccBC,1CC.

Consider the candidate 2-bit cut-and-choose protocol 2ccBC,1CC from Fig. 7.
This protocol does not implement the full-fledged 2CC functionality, but a vari-
ation 2CC′ that gives the sender the option to abort after it sees the receiver’s
input c. This is because in the protocol the sender can refuse to open its com-
mitments (or try to cheat when opening them so that the receiver will reject).
In that case, the receiver will only learn one of the receiver’s two inputs. This
will not influence the security of the resulting OT scheme since aborting in any
instance of 2CC′ will stop the protocol.

Formally, 2CC′ is described as follows: it first waits for inputs (s0, s1) from
Alice and c from Bob. Upon reception of both inputs, it sends c to Alice. If c = 0,
it sends ⊥ to Bob. If c = 1, it waits for response “abort” or “continue” from
Alice. On input “continue”, 2CC′ outputs (s0, s1) to Bob and on input “abort”,
it outputs “abort”.

Proposition 6. Protocol 2ccBC,1CC statistically quantum-UC-emulates 2CC′.

Proof. We first consider a corrupted sender Alice. S simulates Bob, BC and 1CC
by running them honestly. After step 2, when S has learned Alice’s respective
inputs s0 and s1 to BC and 1CC, it inputs (s0, s1) into the functionality 2CC′.
After receiving c from the 2CC′, S makes Bob input c into the 1CC. If c = 0
then the simulated Bob and 2CC′ both output ⊥. If c = 1 then Alice is supposed
to open her commitment. If she refuses then S inputs “abort” into 2CC′, and
the simulated Bob and 2CC′ both output “abort”. Otherwise, i.e., if Alice opens
the commitment (to s0), S inputs “continue”, and the simulated Bob and 2CC′

both output (s0, s1). This proves the claim for a corrupted sender Alice. Security
against a corrupted receiver Bob is similarly straightforward. ��
Corollary 2. Protocol 2cc1CC, obtained by replacing each instance of BC by
bc1CC, statistically quantum-UC-emulates 2CC′ against corrupted sender.

Proof. Since bc1CC statistically quantum UC-emulates BC against malicious
committer, and since the sender in 2ccBC,1CC is the committer of BC, we can
replace BC with bc1CC in protocol 2ccBC,1CC and still maintain UC-security
against corrupted sender. ��

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 57

Fig. 8. Protocol ot1CC.

Lemma 6. Protocol ot1CC statistically quantum UC-emulates OT for corrupted
receiver.

Proof. Note that steps 3a through 3c of protocol ot1CC are identical to protocol
2cc1CC defined above with Bob as the sender and Alice as the receiver. Since
2cc1CC statistically quantum-UC-emulates 2CC′ against corrupted sender, we
may replace steps 3a–3c by a single call to 2CC′ with Bob as the sender and
Alice as the receiver, and analyze the security of this protocol instead. The only
difference between this protocol and the 2CC-based oblivious-transfer protocol
from [9] is that the former uses 2CC′ instead. However, this change does not
affect UC-security since any adversary that aborts during one of the 2cc1CC

subroutines is indistinguishable from an adversary that aborts right after the
same subroutine. It directly follows from the analysis of [9], that protocol ot1CC

statistically quantum-UC-emulates OT against corrupted receiver. ��
Lemma 7. Protocol ot1CC statistically quantum UC-emulates OT for corrupted
sender.

Proof. Let Alice be the corrupted sender and Bob the honest receiver. S simu-
lates Bob and 1CC by running them honestly, except that Bob does not measure

58 F. Dupuis et al.

the received state in step 2 but stores it, and in step 3b, whenever Alice inputs
ti = 1 into 1CC, S “rushes” and measures the ith qubit in basis θB

i and inputs
the outcome xB

i in the 1CC. Furthermore, in step 5, S replies to Alice with a
random partition (I0, I1). At the end of the protocol, S measures the remaining
qubits in Alice’s basis θ̂A to obtain x̂B , computes si = mi ⊕ f(x̂B

Ii
) for i = 0, 1,

and sends (s0, s1) to the ideal OT functionality.
The output of OT, i.e., sc, coincides with the string that a fully honest Bob

would have output; hence, we have indistinguishability between the real and the
ideal model. ��
Theorem 8. 1CC is statistically quantum UC-complete.

Proof. We have shown that ot1CC statistically quantum-UC-emulates OT. Since
OT is quantum-UC-complete, we conclude that 1CC is also quantum-UC-
complete. ��

References

1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys.
Rev. Lett. 68, 3121–3124 (1992)

2. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992)

3. Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem
based on one-shot information theory. Commun. Math. Phys. 306(3), 579–615
(2011)

4. Bouman, N.J., Fehr, S.: Sampling in a quantum population, and applications. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 724–741. Springer, Heidelberg
(2010)

5. Bouman, N.J., Fehr, S., González-Guillén, C., Schaffner, C.: An all-but-one
entropic uncertainty relation, and application to password-based identification. In:
Kawano, Y. (ed.) TQC 2012. LNCS, vol. 7582, pp. 29–44. Springer, Heidelberg
(2012)

6. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment
scheme provably unbreakable by both parties. In: Proceedings of the 34th Annual
IEEE Symposium on the Foundation of Computer Science, pp. 362–371 (1993)

7. Crépeau, C.: Quantum oblivious transfer. J. Mod. Opt. 41(12), 2445–2454 (1994)
8. Damg̊ard, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-

quantum-storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)
9. Fehr, S., Katz, J., Song, F., Zhou, H.-S., Zikas, V.: Feasibility and completeness of

cryptographic tasks in the quantum world. In: Sahai, A. (ed.) TCC 2013. LNCS,
vol. 7785, pp. 281–296. Springer, Heidelberg (2013)

10. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
ACM Symposium on Theory of Computing, STOC 1988, pp. 20–31. ACM, New
York (1988)

11. Kilian, J.: A general completeness theorem for two party games. In: Proceedings
of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC
1991, pp. 553–560 (1991)

Adaptive Versus Non-Adaptive Strategies in the Quantum Setting 59

12. Kilian, J.: More general completeness theorems for secure two-party computation.
In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Com-
puting, STOC 2000, pp. 316–324 (2000)

13. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-
entropy. IEEE Trans. Inf. Theor. 55(9), 4337–4347 (2009)

14. Kraschewski, F.: Complete primitives for information-theoretically secure two-
party computation. Ph.D. thesis, Karlsruhe Institute of Technology (2013)

15. Kraschewski, D., Müller-Quade, J.: Completeness theorems with constructive
proofs for finite deterministic 2-party functions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)

16. Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryptographic com-
plexity with respect to computational UC security. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)

17. Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of complete-
ness and triviality for secure function evaluation. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer, Heidelberg (2012)

18. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys.
Rev. Lett. 78, 3414–3417 (1997)

19. Renner, R.S., König, R.: Universally composable privacy amplification against
quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–
425. Springer, Heidelberg (2005)

20. Unruh, D.: Universally composable quantum multi-party computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer,
Heidelberg (2010)

Semantic Security and Indistinguishability
in the Quantum World

Tommaso Gagliardoni1(B), Andreas Hülsing2(B),
and Christian Schaffner3,4,5(B)

1 Technische Universität Darmstadt, Darmstadt, Germany
tommaso@gagliardoni.net

2 TU Eindhoven, Eindhoven, The Netherlands
andreas@huelsing.net

3 Institute for Logic, Language and Compuation (ILLC), University of Amsterdam,
Amsterdam, The Netherlands

c.schaffner@uva.nl
4 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

5 QuSoft, Amsterdam, The Netherlands

Abstract. At CRYPTO 2013, Boneh and Zhandry initiated the study of
quantum-secure encryption. They proposed first indistinguishability def-
initions for the quantum world where the actual indistinguishability only
holds for classical messages, and they provide arguments why it might
be hard to achieve a stronger notion. In this work, we show that stronger
notions are achievable, where the indistinguishability holds for quantum
superpositions of messages. We investigate exhaustively the possibilities
and subtle differences in defining such a quantum indistinguishability
notion for symmetric-key encryption schemes. We justify our stronger
definition by showing its equivalence to novel quantum semantic-security
notions that we introduce. Furthermore, we show that our new security
definitions cannot be achieved by a large class of ciphers – those which
are quasi-preserving the message length. On the other hand, we pro-
vide a secure construction based on quantum-resistant pseudorandom
permutations; this construction can be used as a generic transformation
for turning a large class of encryption schemes into quantum indistin-
guishable and hence quantum semantically secure ones. Moreover, our
construction is the first completely classical encryption scheme shown to
be secure against an even stronger notion of indistinguishability, which
was previously known to be achievable only by using quantum messages
and arbitrary quantum encryption circuits.

1 Introduction

Quantum computers [20] threaten many cryptographic schemes. By using Shor’s
algorithm [22] and its variants [25], an adversary in possession of a quantum com-
puter can break the security of every scheme based on factorization and discrete
logarithms, including RSA, ElGamal, elliptic-curve primitives and many oth-
ers. Moreover, longer keys and output lengths are required in order to maintain
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 60–89, 2016.
DOI: 10.1007/978-3-662-53015-3 3

Semantic Security and Indistinguishability in the Quantum World 61

the security of block ciphers and hash functions [5,12]. These difficulties led to
the development of post-quantum cryptography [2], i.e., classical cryptography
resistant against quantum adversaries.

When modeling the security of cryptographic schemes, care must be taken in
defining exactly what property one wants to achieve. In classical security mod-
els, all parties and communications are classical. When these notions are used
to prove post-quantum security, one must consider adversaries having access to
a quantum computer. This means that, while the communication between the
adversary and the user is still classical, the adversary might carry out computa-
tions on a quantum computer.

Such post-quantum notions of security turn out to be unsatisfying in certain
scenarios. For instance, consider quantum adversaries able to use quantum super-
positions of messages

∑
x αx |x〉 instead of classical messages when communicat-

ing with the user, even though the cryptographic primitive is still classical. This
kind of scenario is considered, e.g., in [4,8,23,26,28]. Such a setting might for
example occur in a situation where one party using a quantum computer encrypts
messages for another party that uses a classical computer and an adversary is
able to observe the outcome of the quantum computation before measurement.
Other examples are an attacker which is able to trick a classical device into
showing quantum behavior, or a classical scheme which is used as subprotocol in
a larger quantum protocol. Another possibility occurs when using obfuscation.
There are applications where one might want to distribute the obfuscated code
of a symmetric-key encryption scheme (with the secret key hardcoded) in order
to allow a third party to generate ciphertexts without being able to retrieve the
key - think of this as building public-key encryption from symmetric-key encryp-
tion using Indistinguishability Obfuscation. Because in these cases an adversary
receives the classical code for producing encryptions, he could implement the
code on his local quantum computer and query the resulting quantum circuit
on a superposition of inputs. Moreover, even in quantum reductions for classical
schemes situations could arise where superposition access is needed. A typical
example are impossibility results (such as meta-reductions [7]), where giving the
adversary additional power often rules out a broader range of secure reductions.
Notions covering such settings are often called quantum-security notions. In this
work we propose new quantum-security notions for encryption schemes.

For encryption, the notion of semantic security [10,11] has been traditionally
used. This notion models in abstract terms the fact that, without the correspond-
ing decryption key, it is impossible not only to correctly decrypt a ciphertext,
but even to recover any non-trivial information about the underlying plaintext.
The exact definition of semantic security is cumbersome to work with in secu-
rity proofs as it is simulation-based. Therefore, the simpler notion of ciphertext
indistinguishability has been introduced. This notion is given in terms of an
interactive game where an adversary has to distinguish the encryptions of two
messages of his choice. The advantage of this definition is that it is easier to
work with than (but equivalent to) semantic security.

To the best of our knowledge, no quantum semantic-security notions for
classical encryption schemes have been proposed so far. For indistinguishability,

62 T. Gagliardoni et al.

Boneh and Zhandry introduced indistinguishability notions for quantum-secure
encryption under chosen-plaintext attacks in a recent work [4]. They consider a
model (IND-qCPA) where a quantum adversary can query the encrypting device
in superposition during a learning phase but is limited to classical communica-
tion during the actual challenge phase. However, in the symmetric-key scenario,
this approach has the following shortcoming: If we assume that an adversary
can get quantum access in a learning phase, it seems unreasonable to assume
that he cannot get such access when the actual message of interest is encrypted.
Boneh and Zhandry showed that a seemingly natural notion of quantum indis-
tinguishability is unachievable. In order to restore a meaningful definition, they
resorted to the compromise of IND-qCPA.

Our Contributions. In this paper we achieve two main results. On the one
hand, we initiate the study of semantic security in the quantum world, pro-
viding new definitions and a thorough discussion about the motivations and
difficulties of modeling these notions correctly. This study is concluded by a
suitable definition of quantum semantic security under chosen plaintext attacks
(qSEM-qCPA). On the other hand, we extend the fundamental work initiated
in [4] in finding suitable notions of indistinguishability in the quantum world.
We show that the compromise that had to be reached there in order to define
an achievable notion instead of a more natural one (i.e., IND-qCPA vs. fqIND-
qCPA) can be overcome – although not trivially. We show how various other
possible notions of quantum indistinguishability can be defined. All these secu-
rity notions span a tree of possibilities which we analyze exhaustively in order
to find the most suitable definition of quantum indistinguishability under chosen
plaintext attacks (qIND-qCPA). We prove this notion to be achievable, strictly
stronger than IND-qCPA, and equivalent to qSEM-qCPA, thereby completing
an elegant framework of security notions in the quantum world, see Fig. 2 below
for an overview.

Furthermore, we formally define the notion of a core function and quasi–
length-preserving ciphers – encryption schemes which essentially do not increase
the plaintext size, such as stream ciphers and many block ciphers including AES –
and we show the impossibility of achieving our new security notion for this kind
of schemes. While this impossibility might look worrying from an application
perspective, we also present a transformation that turns a block cipher into
an encryption scheme fulfilling our notion. This transformation also works in
respect to an even stronger notion of indistinguishability in the quantum world,
which was introduced in [6], and previously only known to be achievable in
the setting of computational quantum encryption, that is, the scenario where all
the parties have quantum computing capabilities, and encryption is performed
through arbitrary quantum circuits operating on quantum data. Even if this
scenario goes in a very different direction from the scope of our work, it is
interesting to note that our construction is the first fully classical scheme secure
even in respect to such a purely quantum notion of security.

Related Work. The idea of considering scenarios where a quantum adver-
sary can force other parties into quantum behaviour has been first considered

Semantic Security and Indistinguishability in the Quantum World 63

in [8]. Attacks exploiting classical encryptions in quantum superposition have
been described in [13,16,17,21]. In [4] the authors also consider the security
of signature schemes where the adversary can have quantum access to a sign-
ing oracle. Quantum superposition queries have also been investigated relatively
to the random oracle model [3]. Another quantum indistinguishability notion
has been suggested (but not further analyzed) by Velema in [24]. Prior work has
considered the security of quantum methods to encrypt classical data in the com-
putational setting [15,27]. In concurrent and independent work, Broadbent and
Jeffery [6] introduce indistinguishability notions for the public- and secret-key
encryption of quantum messages in the context of fully homomorphic quantum
computation. We refer to Page 15 for a more detailed description of how their
definitions relate to our framework. A more complete overview for these notions,
including semantic security for quantum encryption schemes, can be found in
another concurrent work [1].

2 Preliminaries

In this section, we briefly recall the classical security notions for encryption
schemes secure against chosen plaintext attacks (CPA). In addition, we revisit
the two existing indistinguishability notions for the quantum world. We start by
introducing notation we will use throughout the paper.

We say that a function f : N → R is polynomially bounded iff there exists
a polynomial p and a value n̄ ∈ N such that: for every n ≥ n̄ we have that
f(n) ≤ p(n); in this case we will just write f = poly (n). We say that a function
ε : N → R is negligible, if and only if for every polynomial p, there exists an
np ∈ N such that ε(n) ≤ 1

p(n) for every n ≥ np; in this case we will just write
ε = negl (n). In this work, we focus on secret-key encryption schemes. In all that
follows we use n ∈ N as the security parameter.

Definition 2.1 (Secret-Key Encryption Scheme [10]). A secret-key
encryption scheme is a triple of probabilistic polynomial-time algorithms (Gen,
Enc, Dec) operating on a message space M = {0, 1}m (where m = poly (n) ∈ N)
that fulfills the following two conditions:

1. The key generation algorithm Gen(1n) on input of security parameter n in
unary outputs a bitstring k.

2. For all k in the range of Gen(1n) and any message x ∈ M, the algorithms
Enc (encryption) and Dec (decryption) satisfy Pr[Dec(k,Enc(k, x)) = x] = 1,
where the probability is taken over the internal coin tosses of Enc and Dec.

We write K for the range of Gen(1n) (the key space) and Enck(x) for Enc(k, x).

2.1 Classical Security Notions: IND-CPA and SEM-CPA

We turn to security notions for encryption schemes. In this work, we will only
look at the notions of indistinguishability of ciphertexts under adaptively cho-
sen plaintext attack (IND-CPA), and semantic security under adaptively chosen
plaintext attack (SEM-CPA), which are known to be equivalent (e.g., [10]).

64 T. Gagliardoni et al.

Game-Based Definitions. In general these notions can be defined as a game
between a challenger C and an adversary A. First, C generates a legitimate key
running k ←− Gen(1n) which he uses throughout the game. The game starts
with a first learning phase. A challenge phase follows where A receives a chal-
lenge. Afterwards, a second learning phase follows, and finally A has to output a
solution. The learning phases define the type of attack, and the challenge phase
the notion captured by the game. We give all our definitions by referring to this
game framework and by defining a learning and a challenge phase.

The CPA Learning Phase: A is allowed to adaptively ask C for encryptions
of messages of his choice. C answers the queries using key k. Note that this is
equivalent to saying that A gets oracle access to an encryption oracle that was
initialized with key k.

The IND Challenge Phase: A defines a challenge template consisting of two
equal-length messages x0, x1, and sends it to C. The challenger C samples a
random bit b

$←− {0, 1} uniformly at random, and replies with the encryption
Enck(xb). A’s goal is to guess b.

Definition 2.2 (IND-CPA). A secret-key encryption scheme is called IND-
CPA secure if the success probability of any probabilistic polynomial-time adver-
sary winning the game defined by CPA learning phases and an IND challenge
phase is at most negligibly (in n) close to 1/2.

The SEM Challenge Phase: A sends C a challenge template (Sm, hm, fm)
consisting of a poly-sized circuit Sm specifying a distribution over m-bit long
plaintexts, an advise function hm : {0, 1}m → {0, 1}∗, and a target function
fm : {0, 1}m → {0, 1}∗. The challenger C replies with the pair (Enck(x), hm(x))
where x is sampled according to Sm. A’s challenge is to output fm(x).

In the definition of semantic security it is not required that A’s probability
of winning the game is always negligible. Instead, A’s success probability is
compared to that of a simulator S that plays in a reduced game: On one hand,
S gets no learning phases. On the other hand, during the challenge phase, S does
not receive the ciphertext but only the output of the advice function. This use
of a simulator is what makes the notion hard to work with in proofs as one has
to construct a simulator for every possible A to prove a scheme secure.

Definition 2.3 (SEM-CPA). A secret-key encryption scheme is called SEM-
CPA secure if for any probabilistic polynomial-time adversary A there exists
a probabilistic polynomial-time simulator S such that the challenge templates
produced by S and A are identically distributed and the success probability of A
winning the game defined by CPA learning phases and a SEM challenge phase
(computed over the coins of A, Gen, and Sm) is negligibly close (in n) to the
success probability of S winning the reduced game.

Semantic security models what we want an encryption scheme to achieve:
An adversary given a ciphertext can learn nothing about the encrypted message

Semantic Security and Indistinguishability in the Quantum World 65

which he could not also learn from his knowledge of the message distribution
and possibly existing side-information (modeled by hm). Indistinguishability of
ciphertexts is an equivalent technical notion introduced to simplify proofs.

2.2 Previous Notions of Security in the Quantum World

We briefly recall the results from [4] about quantum indistinguishability notions.
We refer to [20] for commonly used notation and quantum information-theoretic
concepts. Given security parameter n, let {Hn}n be a family of complex Hilbert
spaces such that dim Hn = 2poly (n). We assume that Hn contains all the sub-
spaces where the message states, the ciphertext states and any auxiliary state
live. For the sake of simplicity we will not make a distinction when writing that
a state |ϕ〉 belongs to one particular subspace, and we will omit the index n
when the security parameter is implicit, therefore writing just |ϕ〉 ∈ H. We will
denote pure states with ket notation, e.g., |ϕ〉, while mixed states will be denoted
by lowercase Greek letters, e.g. ρ. We start by defining what we call a classical
description of a quantum state:

Definition 2.4 (Classical Description). A classical description of a quantum
state ρ is a (classical) bitstring describing a quantum circuit S which (takes no
input but starts from a fixed initial state |0〉 and) outputs ρ.

This definition will be used later in our new notions of security. We deviate
here from the traditional meaning of ‘classical description’ referring to individual
numerical entries of the density matrix. The reason is that our definition also
covers the cases where those numerical entries are not easily computable, as
long as we can give an explicit constructive procedure for that state. Clearly,
every pure quantum state |ϕ〉 has a classical description given by a description
of the quantum circuit which implements the unitary that maps |0〉 to |ϕ〉. The
classical description of a mixed state ρA is given by the circuit which first creates
a purification |ϕ〉AR of ρA and then only outputs the A register. Note that a state
admitting a classical description cannot be entangled with any other system.

For encryption, following the approach in [4] and many other works, we define
the following:

Definition 2.5 (Quantum Encryption Oracle [4]). Let Enc be the encryp-
tion algorithm of a secret-key encryption scheme E. We define the quantum
encryption oracle UEnck

associated with E and initialized with key k as (a family
of) unitary operators defined by:

UEnck
:
∑
x,y

αx,y |x〉 |y〉 �→
∑
x,y

αx,y |x〉 |y ⊕ Enck(x)〉 (1)

where the same randomness r is used in superposition in all the executions of
Enck(x) within one query1 – for each new query, a fresh independent r is used.

1 As shown in [4], this is not restrictive.

66 T. Gagliardoni et al.

The first indistinguishability notion proposed in [4] replaces all classical com-
munication between A and C by quantum communication. A and C are now
quantum circuits operating on quantum states, and sharing a certain number of
qubits (the quantum communication register). The definition for the new secu-
rity game is obtained from Definition 2.2 by changing the learning and challenge
phases as follows:

Quantum CPA Learning Phase (qCPA): A gets oracle access to UEnck
.

Fully Quantum IND Challenge Phase (fqIND): A prepares the com-
munication register in the state

∑
x0,x1,y αx0,x1,y |x0〉 |x1〉 |y〉, consisting of two

m-qubit states (the two input-message superpositions) and an ancilla state to

store the ciphertext. C samples a bit b
$←− {0, 1} and applies the transformation:

∑
x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y〉 �→
∑

x0,x1,y

αx0,x1,y |x0〉 |x1〉 |y ⊕ Enck(xb)〉 .

A’s goal is to output b.
The resulting security notion in [4] is called indistinguishability under fully

quantum chosen-message attacks (IND-fqCPA). We decided to rename it to fully
quantum indistinguishability under quantum chosen-message attacks (fqIND-
qCPA) in order to fit into our naming scheme: It consists of a quantum CPA
learning phase and a fully quantum IND challenge phase.

Definition 2.6 (fqIND-qCPA). A secret-key encryption scheme is said to
be fqIND-qCPA secure if the success probability of any quantum probabilistic
polynomial-time adversary winning the game defined by qCPA learning phases
and a fqIND challenge phase is at most negligibly close (in n) to 1/2.

As already observed in [4], this notion is unachievable. The separation by
Boneh and Zhandry exploits the entanglement of quantum states, namely the
fact that entanglement can be created between plaintext and ciphertext.

Theorem 2.7 (BZ Attack [4, Theorem 4.2]). No symmetric-key encryption
scheme can achieve fqIND-qCPA security.

Proof. The attack works as follows: The adversary A chooses as challenge mes-
sages the states |0m〉 and H |0m〉 (where H denotes the m-fold tensor Hadamard
transform), i.e. he prepares the register in the state

∑
x

1
2m/2 |0m, x, 0m〉. When

the challenger C performs the encryption, we can have two cases:

– if b = 0, i.e. the first message state is chosen, the state is transformed into
∑

x

1
2m/2

|0m, x,Enck(0m)〉 = |0m〉 ⊗ H |0m〉 ⊗ |Enck(0m)〉 ;

– if b = 1, i.e. the second message state is chosen, the state is transformed into
∑

x

1
2m/2

|0m, x,Enck(x)〉 = |0m〉 ⊗
∑

x

1
2m/2

|x,Enck(x)〉 .

Semantic Security and Indistinguishability in the Quantum World 67

Notice that in the second case we have a fully entangled state between the second
and the third register. At this point, A does the following:

1. measures (traces out) the third register;
2. applies again H to the second register;
3. measures the second register;
4. outputs b′ = 1 iff the outcome of this last measurement is 0m, else outputs 0.

In fact, if b = 0, then the second register is left untouched: By applying again the
Hadamard transformation it will be reset to the state |0m〉, and a measurement
on this state will yield 0m with probability 1. If b = 1 instead, tracing out
one half of a fully entangled state results in a complete mixture in the second
register. Applying a Hadamard transform and measuring in the computational
basis necessarily gives a fully random outcome, and hence outcome 0m only with
probability 1

2m , which is negligible in n, because m = poly (n). ��
Theorem 2.7 implies that the fqIND-qCPA notion is too strong. In order to

weaken it, the following notion of indistinguishability under adaptively chosen
quantum plaintext attacks was introduced:

Definition 2.8 (IND-qCPA [4]). A secret-key encryption scheme is said to
be IND-qCPA secure if the success probability of any quantum probabilistic poly-
nomial-time adversary winning the game defined by qCPA learning phases and
a classical IND challenge phase is at most negligibly close (in n) to 1/2.

In this definition, the CPA queries are allowed to be quantum, but the chal-
lenge query is required to be classical. It has been shown that, under standard
computational assumptions, IND-qCPA is strictly stronger than IND-CPA:

Theorem 2.9 (IND-CPA ⇒ IND-qCPA [4, Theorem 4.8]). If classically
secure PRFs exist and order-finding in prime groups is classically hard, then
there exists an encryption scheme E which is IND-CPA secure, but not IND-
qCPA secure.

3 New Notions of Quantum Indistinguishability

IND-qCPA might be viewed as classical indistinguishability (IND) under a quan-
tum chosen plaintext attack (qCPA). The authors in [4] resorted to this defi-
nition in order to overcome their impossibility result on one seemingly natural
notion of quantum indistinguishability (fqIND-qCPA) which turned out to be
too strong. This raises the question whether IND-qCPA is the only possible
quantum indistinguishability notion (and hence no classical encryption scheme
can achieve indistinguishability of ciphertext superpositions) or if there exists a
stronger notion which can be achieved.

In this section we show that by defining fqIND-qCPA, there are many choices
which are made implicitly, and that on the other hand there exist other possible
quantum indistinguishability notions. We discuss these choices spanning a binary

68 T. Gagliardoni et al.

‘security tree’ of possible notions. Afterwards, we obtain a small set of candidate
notions, eliminating those that are either ill-posed or unachievable because of
the BZ attack from Theorem 2.7. In all these notions, we implicitly assume
‘quantum CPA learning phases’, as in the case of IND-qCPA. However, we limit
the discussion in this section to the design of a quantum challenge phase. In the
end, we select a suitable ‘qIND-’notion amongst all the possible candidate ones.

3.1 The ‘Security Tree’

To define a general notion of indistinguishability in the quantum world, we have
to consider many different distinctions for possible candidate models. For exam-
ple, can we rule out certain forms of entanglement? How? Does the adversary
have complete control over the challenger device? Each of these distinctions
leads to a fork in a ‘security-model binary tree’. We analyze every ‘leaf’ of the
tree2. Some of them lead to unreasonable or ill-posed models, some of them yield
unachievable security notions, and others are analyzed in more detail.

Game Model: Oracle (O) vs. Challenger (C). This distinction decides how
the game, and especially the challenge phase, is implemented. In the classical
world, the following two cases are equivalent but in the quantum world they
differ. In the oracle model, the adversary A gets oracle access to encryption and
challenge oracles, i.e., he plays the game by performing calls to unitary gates
O1, . . . ,Oq. In this case A is modeled as a quantum circuit which implements a
sequence of unitary gates U0, . . . , Uq, intertwined by calls to the Oi’s. Given an
input state |ϕ〉, the adversary therefore computes the state:

UqOq . . . U1O1U0 |ϕ〉 .

The structure of the oracle gates Oi itself is unknown to A, who is only
allowed to apply them in a black-box way. The fqIND notion uses this model.

In what we call the challenger model instead, the game is played against
an external (quantum) challenger. Here, A is a quantum circuit which shares a
quantum register (the communication channel) with another quantum circuit C.
The main difference is that in this case we can also consider what happens if
C has additional input or output lines out of A’s control. Moreover, A does
not automatically gain access to the inverse (adjoint) of quantum operations
performed by C, and C cannot be ‘rewound’ by the adversary, which would be
far too powerful possibilities. This scenario also covers the case of ‘unidirectional’
state transmission, i.e., when qubits are sent over a quantum channel to another
party, and they are not available afterwards until that party sends them back.
Regardless, in security proofs in the (C) model, it is still allowed for an external
entity (e.g. a simulator, or a reduction) to rewind the joint circuit composed by
adversary and challenger together, if need be. However, we are not aware of any
known reduction involving rewinding in this form for encryption schemes in the
quantum world.

2 We do not rule out that some of them might eventually lead to the same model.

Semantic Security and Indistinguishability in the Quantum World 69

In order to keep consistency with this choice of the model, when also con-
sidering qCPA queries, we implicitly assume the same access mode to the Enck

oracle as in the qIND game. That is, if we are in the (O) scenario, during the
qCPA phase A has quantum oracle access to Enck. In the (C) case, instead,
superposition access to Enck is provided to A by an external challenger.

At first glance, the (O) model intuitively represents the scenario where A
has almost complete control of some encryption device, whereas the (C) model is
more suited to a ‘network’ scenario where A wants to compromise the security
of some external target.

Plaintexts: Quantum States (Q) vs. Classical Description (c). In the (Q)
model, the two m-qubit plaintexts chosen by A for the challenge template can
be arbitrary (BQP-producible) quantum states and can be entangled with each
other and other states. In the (c) model, instead, A is only allowed to choose
classical descriptions of two m-qubit quantum states according to Definition 2.4,
thus being only allowed to send classical information to C: the challenger C will
read the states’ descriptions and will build one of the two states depending on
his challenge bit b.

In classical models, there is no difference between sending a description of a
message or the message itself. In the quantum world, there is a big difference
between these two cases, as the latter allows A to establish entanglement of
the message(s) with other registers. This is not possible when using classical
descriptions. It might intuitively appear that the (Q) model (considered for the
fqIND-qCPA notion) is more natural. However, the (c) scenario models the case
where A is well aware of the message that is encrypted, but the message is not
constructed by A himself. Giving A the ability to choose the challenge messages
for the IND game models the worst case that might happen: A knows that the
ciphertext he receives is the encryption of one out of the two messages that
he can distinguish best. This closely reflects the intuition behind the classical
IND notions: in that game, the adversary is allowed to send the two messages
not because in the real world he would be allowed to do so, but because we
want to achieve security even for the best possible choice of messages from the
adversary’s perspective. Hence, the (c) model is a valid alternative. Will further
discuss the difference between these two models later.

Relaying of Plaintext States: Yes (Y) vs. No (n). If C is not relaying (n),
this means that the two plaintext states chosen by A will not be ‘sent back’ to
A (in other words: their registers will not be available anymore to A after the
challenge encryption). In circuit terms, this means that at the beginning of the
game, C will have (one or two) ancilla registers in his internal (private) memory.
During the encryption phase, C will swap these register(s) with the content of
the original plaintext register(s), hence transferring their original content outside
of A’s control.

If the challenger is relaying (Y) instead, this means that the two plaintext
states will be left in the original register (or channel), and may be accessed by
A at any moment. This is the model considered for fqIND.

70 T. Gagliardoni et al.

Again, the (Y) case is more fitting to those cases where A ‘implements locally’
the encryption device and has almost full control of it, whereas the (n) case is
more appropriate when the game is played against some external entity which is
not under A’s control. This is a rather natural assumption, for example, when
states are sent over some quantum channel and not returned. We stress that
this distinction in relaying is not trivial: it is not possible for A, in general, to
simulate relaying by keeping internal states entangled with the plaintexts. As an
example, consider the attack in Theorem 2.7: it is easy to see that this cannot
be performed without relaying.

Type of Unitary Transformation: (1) vs. (2). In quantum computing, the
‘canonical’ way of evaluating a function f(x) in superposition is by using an
auxiliary register:

∑
x,y

αx,y |x, y〉 �→
∑
x,y

αx,y |x, y ⊕ f(x)〉 .

This way ensures that the resulting operator is invertible, even if f is not. We call
this type-(1) transformations: if Enck is an encryption mapping m-bit plaintexts
to �-bit ciphertexts, the resulting operator in this case will act on m + � qubits
in the following way:

∑
x,y

αx,y |x, y〉 �→
∑
x,y

αx,y |x, y ⊕ Enck(x)〉 ,

where the y’s are ancillary values. This approach is also used for fqIND.
In our case, though, we do not consider arbitrary functions, but encryptions,

which act as bijections on some bit-string spaces (assuming that the randomness
is treated as an input). Therefore, provided that the encryption does not change
the size of a message, the following transformation is also invertible:

∑
x

αx |x〉 �→
∑

x

αx |Enck(x)〉 . (2)

For the more general case of arbitrary message expansion factors, we will consider
transformations of the form:∑

x,y

αx,y |x, y〉 �→
∑
x,y

αx,y |ϕx,y〉 ,

where the length of the ancilla register is |y|= |Enck(x)|− |x| and ϕx,0= Enck(x)
for every x – i.e., initializing the ancilla y register in the |0〉 state produces a
correct encryption, which is what we expect from an honest quantum executor.
One might ask what happens if the ancilla is not initialized to 0, and we leave the
general case of arbitrary ancillas manipulation as an interesting open problem,
but we stress the fact that this behavior is not considered in the case of honest
parties. We call these type-(2) transformations3.
3 These are called minimal quantum oracles in [14].

Semantic Security and Indistinguishability in the Quantum World 71

Notice that, in general, type-(1) and type-(2) transformations are very differ-
ent: having quantum oracle access to a type-(2) unitary U

(2)
Enc and its adjoint also

gives access to the related type-(2) decryption oracle U
(2)
Dec :

∑
x αx |Enck(x)〉 �→∑

x αx |x〉. In fact, notice that (U (2)
Enc)

† = U
(2)
Dec, while the adjoint of a type-(1)

encryption operator, (U (1)
Enc)

†, is generally not a type-(1) decryption operator. In
particular, type-(2) operators are ‘more powerful’ in the sense that knowledge of
the secret key is required in order to build any efficient quantum circuit imple-
menting them. However, we stress the fact that whenever access to a decryption
oracle is allowed, the two models are completely equivalent, because then we
can simulate a type-(2) operator by using ancilla qubits and ‘uncomputing’ the
resulting garbage lines (see Fig. 1) (as we will see, this will be the case for the
challenger in our qIND notion).

Fig. 1. Equivalence between type-(1) and type-(2) in the case of 1-qubit messages. Left:
building a type-(1) encryption oracle by using a type-(2) encryption oracle (and its
inverse) as a black-box. Right: building a type-(2) encryption oracle by using type-(1)
encryption and decryption oracles as black-boxes.

3.2 Analysis of the Models

By considering these 4 distinctions in the security tree we have 24 = 16 possi-
ble candidate models to analyze. We label each of these candidate models by
appending each one of the 4 labels of every tree branch in brackets. Clearly,
16 different definitions of quantum indistinguishability is too much, but luckily
most of these are unreasonable or unachievable. To start with, we can ignore the
following:

Leaves of the Form (Oc . . .). In the O scenario, the oracle is actually a
quantum gate inside A’s quantum circuitry. Therefore A has the capability of
querying the oracle on states which are possibly entangled with other registers
kept by A itself.

Leaves of the Form (OQn . . .). Again, the oracle is a gate which has no
internal memory to store and keep the plaintext states sent by A.

Leaves of the Form (. . . Y 2). Relaying is not taken into account in type-(2)
transformations. In these transformations, to some extent, one of the two plain-
text registers is always relayed (after having been ‘transformed’ into a cipher-
text). If the other plaintext was to be relayed as well, this would immediately
compromise indistinguishability (because one of the two states would be modified
and the other not, and both of them would be handed over to A).

72 T. Gagliardoni et al.

Excluding these options leaves us with 7 models, but it is easy to see that 3
of them are unachievable because of the attack from Theorem 2.7. This is the
case for (OQY 1) (which is exactly fqIND-qCPA), (CQY 1), and (CcY 1). Of the
remaining 4, notice that (CQn1) and (Ccn1) are equivalent to the IND-qCPA
notion from [4]. The reason is that from A’s perspective, a non-relaying C is
indistinguishable from a C tracing out (measuring) the plaintext register (other-
wise A and C could communicate faster than light). This measuring operation
would make the ciphertext collapse into a single (classical) ciphertext. And since
tracing out the challenge register and applying the type-(1) operator U

(1)
Enc com-

mute, one can consider (without loss of generality) the case that A himself first
measures the plaintext register, and then initiates a classical IND query with C,
therefore recovering a classical definition of IND challenge query4. Therefore,
using any of (CQn1) or (Ccn1) would lead to a weaker notion of quantum indis-
tinguishability. Since we are interested in achieving stronger notions, we will
hence consider the more challenging scenarios (CQn2) and (Ccn2).

This argument also leads to the following interesting observation. Ultimately,
whether a challenger (or encryption device) performs type-(1) or type-(2) oper-
ations depends on its architecture which we cannot say anything about - we will
focus on the (. . . 2) models in order to be on the ‘safe side’, as they lead to secu-
rity notions which are harder to achieve. In order to design a secure encryption
device, it is good advice to avoid the possibility that it can be accessed in type-
(2) mode. For such a device, it would be sufficient to provide IND-qCPA security,
which is weaker and therefore easier to achieve. Clearly, providing guidelines on
how to construct encryption devices resilient to type-(2) access lies outside the
scope of this work.

3.3 qIND

At this point we are left with only two candidate notions: (Ccn2) and (CQn2).
From now on we will denote them as ‘quantum indistinguishability of ciphertexts’
(qIND) and ‘general quantum indistinguishability of ciphertexts’ (gqIND) resp.,
and we summarize the resulting challenge phases as follows.

Quantum IND Challenge Phase (qIND): A chooses two quantum states
ρ0, ρ1 having efficient (poly-sized) classical descriptions, and sends to C a chal-
lenge template consisting of these two classical descriptions according to Defini-
tion 2.4. C samples a bit b and replies to A with the state obtained by applying
the type-(2) operator U

(2)
Enck

as defined in (2) to ρb. A’s goal is to output b.

General Quantum IND Challenge Phase (gqIND): A chooses two quan-
tum states ρ0, ρ1, and sends them to C. C samples a bit b, discards (traces out)
4 However, we stress that this interpretation is not entirely correct. In fact, one might

consider composition scenarios where the IND query is just an intermediate step,
and the plaintext and ciphertext registers are reunited at some later step. In such
scenarios, not relaying would not be equivalent to measuring. We ignore such con-
siderations in this work, and leave the general case of composable security as an
interesting open question.

Semantic Security and Indistinguishability in the Quantum World 73

ρ1−b, and replies to A with the state obtained by applying the type-(2) operator
U

(2)
Enck

as defined in (2) to ρb. A’s goal is to output b.

Using these challenge phases and the notion of a qCPA learning phase, we
define qIND-qCPA and gqIND-qCPA as follows.

Definition 3.1 (qIND-qCPA). A secret-key encryption scheme is said to be
qIND-qCPA secure if the success probability of any quantum probabilistic poly-
nomial time adversary winning the game defined by qCPA learning phases and
the qIND challenge phase above is at most negligibly close (in n) to 1/2.

Definition 3.2 (gqIND-qCPA). A secret-key encryption scheme is said to
be gqIND-qCPA secure if the success probability of any quantum probabilistic
polynomial time adversary winning the game defined by qCPA learning phases
and the gqIND challenge phase above is at most negligibly close (in n) to 1/2.

Since we mainly consider type-(2) transformations from now on, we will over-
load notation and also use UEnck

to denote the type-(2) encryption operator.

Theorem 3.3 (gqIND-qCPA ⇒ qIND-qCPA). Let E be a symmetric-key
encryption scheme. If E is gqIND-qCPA secure, then E is also qIND-qCPA
secure.

The reason is that quantum states admitting an efficient classical description
(used in qIND) are just a special case of arbitrary quantum plaintext states (used
in gqIND). Despite this implication, we will mainly focus on the qIND notion in
the following, and we will use the gqIND notion only as a comparison to other
existing notions. The main reason for this choice is that in the context of classical
encryption schemes resistant to superposition quantum access, we believe that
it is important to not lose focus of what the capabilities of a ‘reasonable’ adver-
sary should be. Namely, recall the following classical IND argument: allowing
the adversary to send plaintexts to the challenger is equivalent to the fact that
indistinguishability must hold even for the most favorable case from the adver-
sary’s perspective. Such an argument does not hold anymore quantumly. In fact,
the (Q) model considered in gqIND presents the following issues:

– it allows entanglement between the adversary and the challenger: A could
prepare a state of the form ρAB = 1√

2
|00〉+ 1√

2
|11〉, sending ρA as a plaintext

but keeping ρB ;
– it allows the adversary to create certain non-reproduceable states. For exam-

ple, consider the state |ψ〉 =
∑

x∈X
1√
|X| |x, h(x)〉, where h is a collision-

resistant hash function. A could measure the second register, obtaining a
random outcome y, and knowing therefore that the remaining state is the
superposition of the preimages of y, |ψy〉 =

∑
x∈X:h(x)=y

1√
|{ x∈X:h(x)=y }| |x〉.

A could then use |ψy〉 as a plaintext in the challenge phase, but note that A
cannot reproduce |ψy〉 for a given value y.

74 T. Gagliardoni et al.

Both of the above examples are not reasonable in our scenario. Entanglement
between A and C represents a sort of ‘quantum watermarking’ of messages, which
goes beyond what a meaningful notion of indistinguishability should achieve.
Knowledge of intermediate, unpredictable measurements also renders A too pow-
erful, because it gives A access to information not available to C itself - e.g., in
the example above C would not even know the value of y. As it is C who prepares
the state to be encrypted, it is reasonable to assume that it is C who should know
these intermediate measurements, not A. In the example above, what A could
see instead (provided he knows the circuit generating the state, as we assume in
qIND) is that the plaintext is a mixture Ψ =

∑
y ψy for all possible values of y.

The possibility offered by gqIND of allowing the adversary to play the IND
game with arbitrary states is certainly elegant from a theoretical point of view,
but from the perspective of the quantum security of the kind of schemes we
are considering, it is too broad in scope. The (c) model used in qIND, on the
other hand, inherently provides guidelines and reasonable limitations on what a
quantum adversary can or cannot do. Also, qIND is often easier to deal with:
notice that in the (c) model, unlike in the (Q) model, A always receives back an
unentangled state from a challenge query. In security reductions, this means that
we can more easily simulate the challenger, and that we do not have to take care
of measures of entanglement when analyzing the properties of quantum states -
for example, indistinguishability of states can be shown by only resorting to the
trace norm instead of the more general diamond norm.

Furthermore, it is important to notice that all our new results in Sect. 6 are
unaffected by the choice of either qIND or gqIND. Our impossibility result from
Theorem 6.3 holds for qIND, and hence also for gqIND because of Theorem 3.3.
On the other hand, the security proof of Construction 6.6 (Theorem 6.9) is
given for gqIND, and holds therefore also for qIND. In fact, it remains unclear
whether a separation between qIND and gqIND can be found at all in the realm
of classical encryption schemes. We leave this as an interesting open question.

Finally, we note that the q-IND-CPA-2 indistinguishability notion for secret-
key encryption of quantum messages introduced by Broadbent and Jeffery
[6, Appendix B] resembles our gqIND notion, and it is in fact equivalent to it in
the case that the encryption operation is a symmetric-key classical functionality
operating in type-(2) mode.

Theorem 3.4 (gqIND-qCPA ⇔ q-IND-CPA-2). Let E be a symmetric-key
encryption scheme. Then E is gqIND-qCPA secure if and only if E is q-IND-
CPA-2 secure.

A proof of the above theorem can be found in the full version [9]. A general-
ization of q-IND-CPA-2 to arbitrary quantum encryption schemes, together with
equivalent notions of quantum semantic security, was given and analyzed in [1].
All these security notions are given in the context of ‘fully quantum encryption’,
in the sense that the encryption schemes considered in [6] and [1] are arbitrary
quantum circuits acting natively on quantum data, while in this work we con-
sider the quantum security of classical encryption schemes. The fully quantum

Semantic Security and Indistinguishability in the Quantum World 75

homomorphic schemes which are shown to be secure in [6], and the other quan-
tum encryption schemes shown to be secure in [1], do not fall into the category
of classical encryption schemes which we are studying here. On the other hand,
as Theorem 6.9 shows, our Construction 6.6 is the first known example of a clas-
sical symmetric-key encryption scheme which is secure even against these kinds
of ‘fully quantum’ security notions.

4 New Notions of Quantum Semantic Security

In this section, we initiate the study of suitable definitions of semantic security
in the quantum world. As in the classical case, we are particularly interested in
notions that can be proven equivalent to some version of quantum indistinguisha-
bility. So these definitions actually describe the semantics of the equivalent IND
notions. As in the classical case, we present these notions in the non-uniform
model of computation.

Working towards a quantum SEM notion, we restrict our analysis to the SEM
challenge phase. For the learning phase, we stick to the ‘qCPA learning phase’, as
in Definition 2.5, where the adversary has access to a quantum encryption oracle.
In the end, we give a definition for quantum semantic security under quantum
chosen-plaintext attacks (qSEM-qCPA) which we later prove equivalent to qIND-
qCPA, thereby adding semantics to our qIND-qCPA notion.

4.1 Classical Semantic Security Under Quantum CPA

As a first notion of semantic security in the quantum world, we consider what
happens if, like in the IND-qCPA notion, we stick to the classical definition
but we allow for a quantum chosen-plaintext-attack phase. The definition uses
a SEM-qCPA game that is obtained by combining qCPA learning phases with a
classical SEM challenge phase as defined in Sect. 2. As in the classical case, A’s
success probability is compared to that of a simulator S that plays in a reduced
game: S gets no learning phase and during the challenge phase it only receives
the advice hm(x), not the ciphertext.

Definition 4.1 (SEM-qCPA). A secret-key encryption scheme is called SEM-
qCPA-secure if for every quantum polynomial-time machine A, there exists a
quantum polynomial-time machine S such that the challenge templates produced
by S and A are identically distributed and the success probability of A winning the
game defined by qCPA learning phases and a SEM challenge phase is negligibly
close (in n) to the success probability of S winning the reduced game.

Spoiler. It is easy to see that the SEM-qCPA notion of semantic security is
equivalent to IND-qCPA, see Theorem 5.1.

In the full version [9] we discuss what happens if one also allows quantum
advice states in this scenario, and why this option would not add anything
meaningful.

76 T. Gagliardoni et al.

4.2 Quantum Semantic Security

We now define quantum semantic security under chosen-plaintext attacks (qSEM-
qCPA). As in the classical case, we want the definition of semantic security to
formally capture what we intuitively understand as a strong security notion.
In the quantum case, there are several choices to be made. We start by giv-
ing our formal definition of quantum semantic security, and justify our choices
afterwards.

Quantum SEM (qSEM) Challenge Phase: A sends to C a challenge tem-
plate consisting of classical descriptions of

– a quantum circuit Gm taking poly (n)-bit classical input and outputting
m-qubit plaintext states,

– a quantum circuit hm taking m-qubit plaintexts as input and outputting
poly (n)-qubit advice states,

– a quantum circuit fm taking m-qubit plaintexts as input and outputting
poly (n)-qubit target states.

The challenger C samples y
$←− {0, 1}poly (n) and computes two copies of the

plaintext ρy = Gm(y). One is used to compute auxiliary information hm(ρy)
and one to compute the ciphertext UEnck

ρy U†
Enck

. C then replies with the pair(
UEnck

ρy U†
Enck

, hm(ρy)
)
. A’s goal is to output fm(ρy). We say that A wins the

qSEM-qCPA game if no quantum polynomial-time distinguisher can distinguish
A’s output from the target state fm(ρy) with non-negligible advantage.

In the reduced game, S receives no encryption, but only the auxiliary infor-
mation hm(ρy) from C. Analogously to the above case, Swins the qSEM-qCPA
game if no quantum polynomial-time distinguisher can distinguish S’s output
from the target state fm(ρy) with non-negligible advantage.

Definition 4.2 (qSEM-qCPA). A secret-key encryption scheme is called
qSEM-qCPA-secure if for every quantum polynomial-time machine A, there
exists a quantum polynomial-time machine S such that the challenge templates
produced by S and A are identically distributed and the success probability of A
winning the game defined by qCPA learning phases and a qSEM challenge phase
is negligibly close (in n) to the success probability of S winning the reduced game.

When defining quantum semantic security, we have to deal with several issues:
First, we have to define how the plaintext distribution is described. In the classi-
cal definition, the distribution is produced by a (classical) circuit Gm running on
uniform input bits. We take the same approach here, but let Gm output m-qubit
plaintexts.

The second question is how to define the advice function. While the input
should be the plaintext quantum state ρy, the output could be either quantum
or classical. We decided to allow quantum advice as it leads to a more general
model and it includes classical outputs as a special case. In order for the chal-
lenger to compute both the encryption of the plaintext state ρy and the advice

Semantic Security and Indistinguishability in the Quantum World 77

state hm(ρy) without violation of the no-cloning theorem, we exploit how we gen-
erate the message state. We simply run Sm twice on the same classical randomness
y to generate two copies of the plaintext state ρy. Another option would have been
to allow for entanglement between the plaintext message ρy and the advice state
hm(ρy). Allowing such entanglement would model side-channel information the
attacker could obtain, for instance by learning the content of some internal regis-
ter of the attacked device. However, the resulting notion would not be equivalent
with qIND-qCPA anymore, because in qIND-qCPA, the challenge plaintexts are
provided by their classical descriptions and can therefore not be entangled with
the attacker.

Third, we have chosen to model the target function fm in the same way as
the advice function hm, i.e. we allow arbitrary quantum circuits that might out-
put quantum states. The reasoning behind allowing quantum output is again to
use the strongest possible, most general model. Allowing quantum output how-
ever leads to the problem that, in general, we cannot physically test anymore
if an adversary A outputs exactly the result of the target function fm(ρy). One
option would be to require A’s output to be close to fm(ρy) in terms of their
trace distance. But two quantum states can be quantum-polynomial-time indis-
tinguishable even if their trace distance is large5. Since we are only interested in
computational security notions, we solve this problem by requiring QPT indis-
tinguishability as success condition for winning the SEM game.

Spoiler. Our qSEM-qCPA notion of semantic security is equivalent to qIND-
qCPA, and unachievable for those schemes which leave the size of the message
unchanged (like most block ciphers), see Sect. 6.1.

5 Relations

In this section we show relations between our new notions of indistinguishability
and semantic security in the quantum world. It is already known [10,11] that
classically, IND-CPA and semantic security are equivalent. Our goal is to show
a similar equivalence for our new notions, plus to show a hierarchy of equivalent
security notions. Our results are summarized in Fig. 2.

Theorem 5.1 (IND-qCPA ⇔ SEM-qCPA). Let E be a symmetric-key
encryption scheme. Then E is IND-qCPA secure if and only if E is SEM-qCPA
secure.

We split the proof of Theorem 5.1 into two propositions – one per direction.
They closely follow the proofs for the classical case (see [10, Proof of Th. 5.4.11]),
we recall them as they work as guidelines for the following proofs.

5 Think of two different classical ciphertexts which are encrypted using a quantum-
computationally secure encryption scheme. Then, the ciphertext states are orthog-
onal (and hence their trace distance is maximal), but they are computationally
indistinguishable.

78 T. Gagliardoni et al.

Fig. 2. The relations between notions of indistinguishability and semantic security in
the quantum world (previously known results in gray).

Proposition 5.2 (IND-qCPA ⇒ SEM-qCPA).

Proposition 5.3 (SEM-qCPA ⇒ IND-qCPA).

Proof (of Proposition 5.2 – Sketch). The idea of the proof is to hand A’s circuit
as non-uniform advice to the simulator S. S runs A’s circuit and impersonates
the challenger C by generating a new key and answering all of A’s queries using
this key. When it comes to the challenge query, S encrypts the 1 . . . 1 string of
the same length as the original message. It follows from the indistinguishability
of encryptions that the adversary’s success probability in this game must be
negligibly close to its success probability in the real semantic-security game,
which concludes the proof. The only difference in the -qCPA case is that A and
S are quantum circuits, and that S has to emulate the quantum encryption
oracle instead of a classical one. ��

Proof (of Proposition 5.3). We recall here the full proof as it is short. Assume there
exists an efficient distinguisher A against the IND-qCPA security of E . Then we
show how to construct an oracle machine MA that has access to A and breaks the
SEM-qCPA security of the scheme. MA runs A, emulating the quantum encryp-
tion oracle by simply forwarding all the qCPA queries to its own oracle. As A
executes an IND challenge query on m-bit messages (x0, x1),MA produces the
SEM template (Gm, hm, fm) with Gm describing the uniform distribution over
{x0, x1 } , hm = 1n (or any other function such that hm(x0) = hm(x1)), and fm

a function that fulfills fm(x0) = 0 and fm(x1) = 1 (i.e., the distinguishing func-
tion). Then MA performs a SEM challenge query with this template, and given
challenge ciphertext c, uses it to answer A’s query. If, at that point, A performs
more qCPA queries, MA answers again by forwarding all these queries to its own
oracle. Finally, MA outputs A’s output. As A distinguishes encryptions of x0 and
x1 with non-negligible success probability, A will return the correct value of fm

with recognizably higher probability than guessing. As hm is independent of the
encrypted message, no simulator can do better than guessing. Hence, MA has a
non-negligible advantage to output the right value of fm. ��

Theorem 5.4 (qIND-qCPA ⇔ qSEM-qCPA). Let E be a symmetric-key
encryption scheme. Then E is qIND-qCPA secure if and only if E is qSEM-qCPA
secure.

Again, we split the proof of Theorem 5.4 into two propositions.

Semantic Security and Indistinguishability in the Quantum World 79

Proposition 5.5 (qIND-qCPA ⇒ qSEM-qCPA).

Proposition 5.6 (qSEM-qCPA ⇒ qIND-qCPA).

Proof (of Proposition 5.5 – Sketch). The proof follows that of Proposition 5.2,
with some careful observations. Since A is a QPT adversary against the qSEM-
qCPA game, A’s circuit has a short classical representation ξ. So S gets ξ as non-
uniform advice and hence can implement and run A. The simulator S simulates
C for A by generating a new key and answering all of A’s qCPA queries. When
it comes to the challenge query, A produces a qSEM template, which S forwards
to the real C. Then S forwards C’s reply, plus a bogus encrypted state (e.g.,
UEnck

|1 . . . 1〉), to A. If at this point A outputs a state ϕ which can be efficiently
distinguished from the correct fm(ρy) computed by the real C, we would have
an efficient distinguisher against the qIND-qCPA security of the scheme. Hence,
A’s (and therefore also S’s) output must be indistinguishable from fm(ρy) for
any QPT distinguisher, which concludes the proof. ��
Proof (of Proposition 5.6). This is also similar to the proof of Proposition 5.3.
Given an efficient distinguisher A for the qIND-qCPA game, our adversary for
the qSEM-qCPA game is an oracle machine MA running A and acting as fol-
lows. Concerning A’s qCPA queries, as usual MA just forwards everything to the
qSEM-qCPA challenger C. When A performs a challenge qIND query by send-
ing the classical descriptions of two states ϕ0 and ϕ1, MA prepares the qSEM
template (Gm, hm, fm), with Gm outputing ϕ0 for half of the possible y values
and ϕ1 for the other half, hm(ρy) = 1n, and fm the identity map fm(ρy) = ρy.
Then MA performs a qSEM challenge query with this template. Given challenge
ciphertext state UEnck

ϕb U†
Enck

(for b ∈ {0, 1}), he forwards it as an answer to
A’s challenge query. As A distinguishes UEnck

ϕ0 U†
Enck

from UEnck
ϕ1 U†

Enck
with

non-negligible success probability, A returns the correct value of b with non-
negligible advantage over guessing. Then MA, having recorded a copy of the
classical descriptions of ϕ0 and ϕ1, is able to compute the state fm(ϕb) exactly,
and consequently win the qSEM-qCPA game with non-negligible advantage. As
hm generates the same advice state hm(ρy) = 1n independently of the encrypted
message, no simulator can do better than guessing the plaintext. This concludes
the proof. ��

Finally, we show the separation result between the two classes of security we
have identified (we show it between IND-qCPA and qIND-qCPA). This shows
that qIND-qCPA (and equivalently qSEM-qCPA) is a strictly stronger notion
than IND-qCPA (which is equivalent to SEM-qCPA).

Theorem 5.7 (IND-qCPA � qIND-qCPA). There exists a symmetric-key
encryption scheme E which is IND-qCPA secure but not qIND-qCPA secure.

Proof (of Theorem 5.7). The scheme we use as a counterexample is the one from
[10] (Construction 5.3.9). It has been proven in [4] that this scheme is IND-qCPA

80 T. Gagliardoni et al.

secure if the used PRF is post-quantum secure. We exhibit a distinguisher A
which breaks the qIND-qCPA security of this scheme with high probability. For
ease of notation we restrict to the case of single-bit messages 0 and 1. A will
simply choose as challenge states: |ϕ0〉 = H |0〉 = 1√

2
|0〉 + 1√

2
|1〉, and |ϕ1〉 =

H |1〉 = 1√
2

|0〉− 1√
2

|1〉. When the challenger C applies the type-2 transformation
to either of these two states, it is easy to see that in any case the state is left
unchanged. This is because UEnck

just applies a permutation in the space of
the basis elements, but |ϕ0〉 and |ϕ1〉 have the same amplitudes on all their
components, except for the sign. As these two states are orthogonal, they can
be reliably distinguished by the adversary A who can then win the qIND-qCPA
game with probability 1. ��

The above proof can be generalized to message states of arbitrary length, as
our impossibility result in Sect. 6.1 shows.

6 Impossibility and Achievability Results

In this section we show that qIND-qCPA (and equivalently qSEM-qCPA) is
impossible to achieve for encryption schemes which do not expand the mes-
sage (such as stream ciphers and many block ciphers, without considering the
randomness part in the ciphertext). Therefore, for a scheme to be secure accord-
ing to this new definition, it is necessary (but not sufficient) to increase the
message size during the encryption. Interestingly, such an increase happens in
most public-key post-quantum encryption schemes, like for example LWE based
schemes [18] or the McEliece scheme [19].

Then we propose a construction of a qIND-qCPA–secure symmetric-key
encryption scheme. Our construction works for any (quantum-secure) pseudo-
random permutation (PRP). Given that block ciphers are usually modelled as
PRPs, it seems reasonable to assume that we can obtain a secure scheme when
using block ciphers with sufficiently large key and block size. Hence, our con-
struction can be used to patch existing schemes, or as a guideline in the design
of quantum-secure encryption schemes from block ciphers.

6.1 Impossibility Result

First we formally define what it means for a cipher to expand or keep con-
stant the message size by defining the core function of a (secret-key) encryption
scheme. Intuitively, the definition splits the ciphertext into the randomness and
a part carrying the message-dependent information. This definition covers most
encryption schemes in the literature.

Definition 6.1 (Core Function). Let (Gen,Enc,Dec) be a secret-key encryp-
tion scheme. We call the function f : K × {0, 1}τ × M → Y the core function of
the encryption scheme if, for some τ ∈ N:

Semantic Security and Indistinguishability in the Quantum World 81

– for all k ∈ K and x ∈ M, Enck(x) can be written as (r, f(k, r, x)), where
r ∈ {0, 1}τ is independent of the message; and

– there exists a function f ′ such that for all k ∈ K, r ∈ {0, 1}τ , x ∈ M, we have:
f ′(k, r, f(k, x, r)) = x.

For example, in case of Construction 5.3.9 from [10] (where Enck(x) is defined
as (r, Fk(r) ⊕ x) for a PRF F) the core function is f(k, r, x) = Fk(r) ⊕ x, with
f ′(k, r, z) = z ⊕ Fk(r).

Definition 6.2 (Quasi–Length-Preserving Encryption). We call a secret-
key encryption scheme with core function f quasi–length-preserving if

∀x ∈ M, r ∈ {0, 1}τ , k ∈ K ⇒ |f(k, x, r)| = |x|,

i.e., if the output of the core function has the same bit length as the message.

Continuing the above example, Construction 5.3.9 from [10] is quasi–length-
preserving.

The crucial observation is the following: For a quasi–length-preserving
encryption scheme, the space of possible input and (core function) output bit-
strings (with respect to plaintext and ciphertext) coincide, therefore these ciphers
act as permutations on this space. This means that if we start with an input
state which is a superposition of all the possible basis states, all of them with the
same amplitude, this state will be unchanged by the unitary type-2 encryption
operation (because it will just ‘shuffle’ in the basis-state space amplitudes which
are exactly the same).

Theorem 6.3 (Impossibility Result). No quasi–length-preserving secret-key
encryption scheme can be qIND secure.

Proof. Let (Gen,Enc,Dec) be a quasi–length-preserving scheme. We show an
attack that is a generalization of the distinguishing attack in Theorem 5.7.

1. for m-bit message strings, the distinguisher D sets the two plaintext states
for the qIND- game to be: |ϕ0〉 = H |0m〉 , |ϕ1〉 = H |1m〉, where H is the
m-fold tensor Hadamard transformation. Notice that both these states admit
efficient classical representations, and are thus allowed in the qIND game.

2. The challenger flips a random bit b and returns |ψ〉 = UEnck
|ϕb〉.

3. D applies H to the core-function part of the ciphertext |ψ〉 and measures it
in the computational basis. D outputs 0 if and only if the outcome is 0m, and
outputs 1 otherwise.

As already observed, applying UEnck
to H |0m〉 leaves the state untouched:

since the encryption oracle merely performs a permutation in the basis space, and
since |ϕ0〉 is a superposition of every basis element with the same amplitude, it
follows that whenever b is equal to 0, the ciphertext state will be unchanged. In
this case, after applying the self-inverse transformation H again, D obtains mea-
surement outcome 0m with probability 1. On the other hand, if b = 1, |ϕ1〉 =

82 T. Gagliardoni et al.

1
2m/2

∑
y(−1)y·1m |y〉 where a · b denotes the bitwise inner product between a and

b. Hence, |ϕ1〉 is a superposition of every basis element where (depending on the
parity of y) half of the elements have a positive amplitude and the other half have a
negative one, but all of them will be equal in absolute value. Applying UEnc,k to this
state, results in 1

2m/2

∑
y(−1)y·1m |Enck(y)〉. After re-applying H, the amplitude

of the basis state |0m〉 becomes
∑

y(−1)y·1m+Enck(y)·0m

which is easily calculated
to be 0. Hence, the above attack gives D a way of perfectly distinguishing between
encryptions of the two plaintext states. ��

Notice that the above attack also works if A is allowed to send quantum
states to C directly. Therefore, it also holds for the gqIND notion of quantum
indistinguishability described in Sect. 3. In particular, the above theorem shows
that [10, Construction 5.3.9], which in [4] was shown to be IND-qCPA if the
used PRF is quantum secure, does not fulfill qIND, nor gqIND.

This attack is a consequence of the well-known fact that, in order to perfectly
(information-theoretically) encrypt a single quantum bit, two bits of classical
information are needed: one to hide the basis bit, and one to hide the phase (i.e.
the signs of the amplitudes). The fact that we are restricted to quantum opera-
tions of the form UEnck

- that is, quantum instantiations of classical encryptions -
means that we cannot afford to hide the phase as well, and this restriction allows
for an easy distinguishing procedure.

6.2 Secure Construction

Here we propose a construction of a qIND-qCPA secure symmetric-key encryp-
tion scheme from any family of quantum-secure pseudorandom permutations
(see the full version [9] for formal definitions).

Construction 6.4. For security parameter n, let m = poly (n) and τ =
poly (n). Consider an efficient family of permutations Πm+τ = (I,Π,Π−1) with
key space KΠ that operates on bit strings of length m + τ , and consider a plain-
text message space M = {0, 1}m, key space K = KΠ , and ciphertext space
C = {0, 1}m+τ . The construction is given by the following algorithms:

Key generation algorithm k ←− Gen(1n): on input of security parameter n,
the key generation algorithm runs k ←− I(1m+τ) and returns secret key k.

Encryption algorithm y ←− Enck(x): on input of message x ∈ M and key

k ∈ K, the encryption algorithm samples a τ -bit string r
$←− {0, 1}τ uniformly

at random, and outputs y = πk(x‖r) (‖ denotes string concatenation).
Decryption algorithm x ←− Deck(y): on input of ciphertext y ∈ C and key

k ∈ K, the decryption algorithm first runs x′ = π−1
k (y), and then returns the

first m bits of x′.

The soundness of the construction can be easily checked. The security is
stated in the following theorem.

Semantic Security and Indistinguishability in the Quantum World 83

Theorem 6.5 (qIND-qCPA Security of Construction 6.4). If Πm+τ is a
family of quantum-secure pseudorandom permutations (qPRP), then the encryp-
tion scheme (Gen,Enc,Dec) defined in Construction 6.4 is qIND-qCPA secure.

In the next section, we prove the security of a more powerful scheme which
includes the above theorem as special case of a single message block.

6.3 Length Extension

Construction 6.4 has the drawback that the message length is upper bounded
by the input length of the qPRP (minus the bit length of the randomness).
However, like in the case of block ciphers, we can overcome this issue with a
mode of operation. More specifically, we can handle arbitrary message lengths
by splitting the message into m-bit blocks and applying the encryption algorithm
of Construction 6.4 independently to each message block (using the same key
but new randomness for each block). This procedure is akin to a ‘randomized
ECB mode’, in the sense that each message block is processed separately, like in
the ECB (Electronic Code Book) mode, but in our case the underlying cipher
is inherently randomized (since we use fresh randomness for each block), so we
can still achieve qCPA security. For simplicity we consider only message lengths
which are multiples of m. The construction can be generalized to arbitrary mes-
sage lengths using standard padding techniques. Moreover, the randomness for
every block can be generated efficiently using a random seed and a post-quantum
secure PRNG.

Construction 6.6. For security parameter n, let m = poly (n) and τ =
poly (n). Consider an efficient family of permutations Πm+τ = (I,Π,Π−1) with
key space KΠ that operates on bit strings of length m + τ , and consider a plain-
text message space M = {0, 1}μm for μ ∈ N, μ = poly (n), key space K = KΠ ,
and ciphertext space C = {0, 1}μ(m+τ). The construction is given by the following
algorithms:

Key generation algorithm k ←− Gen(1n): on input of security parameter n,
the key generation algorithm runs k ←− I(1m+τ) and returns secret key k.

Encryption algorithm y ←− Enck(x): on input of message x ∈ M and key
k ∈ K, the encryption algorithm splits x into μ m-bit blocks x1, . . . , xμ. For

each block xi, the encryption algorithm samples a new τ -bit string ri
$←−

{0, 1}τ uniformly at random, and outputs yi = πk(xi‖ri) (‖ denotes string
concatenation). The ciphertext is y = y1‖ . . . ‖yμ.

Decryption algorithm x ←− Deck(y): on input of ciphertext y ∈ C and key
k ∈ K, the decryption algorithm first splits y into μ m+τ -bit blocks y1, . . . , yμ.
Then, it runs x′

i = (π−1
k (yi))m for each block (where (s)m refers to taking the

first m bits of bit string s). It returns the plaintext x′ = x′
1, . . . , x

′
μ.

The soundness of the construction can be checked easily. For the security, we
observe that splitting a μm-qubit plaintext state into μ blocks of m-qubits can
introduce entanglement between the blocks. We will address this issue through
the following technical lemma.

84 T. Gagliardoni et al.

Lemma 6.7. Let E be the quantum channel that takes as input an arbitrary m-
qubit state, attaches another τ qubits in state |0〉, and then applies a permutation
picked uniformly at random from S2m+τ to the computational basis space. Let T
be the constant channel which maps any m-qubit state to the totally mixed state
on m + τ qubits. Then, ‖E − T ‖� ≤ 2−τ+2.

Proof. In order to consider the fact that the m-qubit input state might be entan-
gled with something else, we have to start with a purification of such a state.
Formally, this is a bipartite pure 2m-qubit state |φ〉XY =

∑
x,y αx,y |x〉X |y〉Y

whose m-qubit Y register is input into the channel and gets transformed into
idX ⊗ E(|φ〉〈φ|) = trΠ |ψ〉〈ψ| where

|ψ〉 =
∑

x∈{0,1}m,y∈{0,1}m,π∈S2m+τ

αx,y |x〉X |π(y||0)〉C |π〉Π .

By definition of the diamond-norm, we have to show that for any 2m-qubit state
ρ, we have that ‖(id ⊗ E)(ρ) − (id ⊗ T)(ρ)‖tr ≤ 2−τ+2. Due to the convexity
of the trace distance, we may assume that ρ = |φ〉〈φ| is pure with |φ〉XY =∑

x,y αx,y |x〉X |y〉Y . Hence, we obtain

(idX ⊗ E)(|φ〉〈φ|) = trΠ |ψ〉〈ψ|
=

1
2m+τ !

∑
x,x′,y,y′,π

αx,yαx′,y′ |x〉〈x′|X ⊗ |π(y‖0)〉 〈π(y′‖0)|C

=
1

2m+τ !

∑
x,x′,y

αx,yαx′,y|x〉〈x′|X ⊗
∑

π

|π(y‖0)〉 〈π(y‖0)|C

+
1

2m+τ !

∑
x,x′,y �=y′

αx,yαx′,y′ |x〉〈x′|X ⊗
∑

π

|π(y‖0)〉 〈π(y′‖0)|C

=
∑

x,x′,y

αx,yαx′,y|x〉〈x′|X ⊗ 1
2m+τ

∑
z

|z〉〈z|C

+
∑

x,x′,y �=y′
αx,yαx′,y′ |x〉〈x′|X ⊗ 1

2m+τ (2m+τ − 1)

∑
z �=z′

|z〉〈z′|C

= trY |φ〉〈φ| ⊗ τC + χXC

= (idX ⊗ T)(|φ〉〈φ|) + χXC ,

where we defined the “difference state”

χXC :=
∑

x,x′,y �=y′
αx,yαx′,y′ |x〉〈x′|X ⊗ 1

2m+τ (2m+τ − 1)

∑
z �=z′

|z〉〈z′|C .

In order to conclude, it remains to show that ‖χXC‖tr ≤ 2−τ+2. For the
C-register χC = 1

2m+τ (2m+τ −1)

∑
z �=z′ |z〉〈z′|C , one can verify that the 2m+τ

eigenvalues are (c · (2m+τ − 1),−c,−c, . . . ,−c) where c := 1
2m+τ (2m+τ −1) . Hence,

the trace norm (which is the sum of the absolute eigenvalues) is exactly
c · 2(2m+τ − 1) = 2−m−τ+1.

Semantic Security and Indistinguishability in the Quantum World 85

For the X-register, we split χX into two parts χX = ξX − ξ′
X where

ξX :=
∑
x,x′

|x〉〈x′|
∑
y,y′

αx,yαx′,y′ ,

ξ′
X :=

∑
x,x′

|x〉〈x′|
∑

y

αx,yαx′,y,

and use the triangle inequality for the trace norm ‖χX‖tr = ‖ξX − ξ′
X‖tr ≤

‖ξX‖tr + ‖ξ′
X‖tr. Observe that ‖ξX‖tr = ‖∑

x,y αx,y |x〉 ∑
x′,y′ αx′,y′ 〈x′| ‖tr =

‖|s〉〈s|‖tr for the (non-normalized) vector |s〉 :=
∑

x,y αx,y |x〉. Hence, the trace-
norm ‖ξX‖tr = | 〈s | s〉 | =

∑
x |∑y αx,y|2 ≤ ∑

x

∑
y |αx,y|2 · 2m = 2m by the

Cauchy-Schwarz inequality and the normalization of the αx,y’s. Furthermore, we
note that ξ′

X is exactly the reduced density matrix of |φ〉XY after tracing out
the Y register. Hence, ξ′

X is positive semi-definite and its trace norm is equal to
its trace which is 1. In summary, we have shown that

‖χXC‖tr = ‖χX‖tr · ‖χC‖tr ≤ (‖ξX − ξ′
X‖tr) · 2−m−τ+1

≤ (‖ξX‖tr + ‖ξ′
X‖tr) · 2−m−τ+1 ≤ (2m + 1) · 2−m−τ+1 ≤ 2−τ+2.

��
If we consider a slightly different encryption channel ET which still maps m
qubits to m + τ qubits but where the permutation π is not picked uniformly
from S2m+τ , but instead we are guaranteed that a certain set T ⊂ {0, 1}m+τ

of outputs never occurs, we can consider such permutations w.l.o.g. as picked
uniformly at random from a smaller set S2m+τ −|T |. In this setting, we are inter-
ested in the distance of the encryption operation ET from the slightly different
constant channel T T which maps all inputs to the (m + τ)-qubit state which is
completely mixed on the smaller set {0, 1}m+τ \ T . By modifying slightly the
proof of Lemma 6.7 we get the following.

Corollary 6.8. Let ET and T T be the channels defined above. Then,

‖ET − T T ‖� ≤ 4
2τ − |T |/2m

. (3)

We can now prove the security of Construction 6.6. We give the proof for
gqIND-qCPA, and then qIND-qCPA follows immediately from Theorem 3.3.

Theorem 6.9 (gqIND-qCPA Security of Construction 6.6). If Πm+τ is a
family of quantum-secure pseudorandom permutations (qPRP), then the encryp-
tion scheme (Gen,Enc,Dec) defined in Construction 6.6 is gqIND-qCPA secure.

Proof. We want to show that no QPT distinguisher D can win the gqIND-qCPA
game with probability substantially better than guessing. We first transform the
game through a short game-hopping sequence into an indistinguishable game for
which we can bound the success probability of any such D.

86 T. Gagliardoni et al.

Game 0. This is the original gqIND-qCPA game.

Game 1. This is like Game 0, but instead of using a permutation drawn from
the qPRP family Πm+τ , a random permutation π ∈ S2m+τ is chosen from the
set of all permutations over {0, 1}m+τ . The difference in the success probability
of D winning one or the other of these two games is negligible. Otherwise, we
could use D to distinguish a random permutation drawn from Πm+τ from one
drawn from S2m+τ . This would contradict the assumption that Πm+τ is a qPRP.

Game 2. This is like Game 1, but D is guaranteed that the randomness used for
each encryption query are μ new random τ -bit strings that were not used before.
In other words, the challenger keeps track of all random values used so far and
excludes those when sampling a new randomness. Since in Game 1 the same
randomness is sampled twice only with negligible probability, the probability of
winning these two games differs by at most a negligible amount.

Game 3. This is like Game 2 except that the answer to each query asked by D
also contains the randomness r1, . . . , rμ used by the challenger for answering that
query. Clearly, D’s probability of winning this game is at least the probability
of winning Game 2.

When the modified gqIND game 3 starts, D chooses two different plaintext
states and sends them to the challenger, who will then choose one of them and
send it back encrypted with fresh randomness r̂1, . . . , r̂μ. Let Q denote the set of
q · μ = poly(n) query values used during the previous qCPA-phase. We have to
consider that from this phase, D knows a set T ⊂ {0, 1}m+τ of ‘taken’ outputs,
i.e. he knows that any π(x‖r̂i) will not take one of these values as r̂i has not been
used before. So, from the adversary’s point of view, π is a permutation randomly
chosen from S′, the set of those permutations over {0, 1}m+τ that fix these |T |
values. In order to simplify the proof, we will consider a very conservative bound
where |T | = q · μ · 2m, and the size of S′ is |S′| = (2m+τ − |T |)! (notice that
this bound is very conservative because it assumes that the adversary learns 2m

different (classical) ciphertexts for every of the q · μ ‘taken’ randomnesses, but
as we will see, this knowledge will be still insufficient to win the game).

By construction, the encryption of a μm-qubit (possibly mixed) state σ is
performed in μ separate blocks of m qubits each. We are guaranteed that fresh
randomness is used in each block, hence it follows from Corollary 6.8 that Enck(σ)
is negligibly close to the ciphertext state where the first m+τ qubits are replaced
with the completely mixed state (by noting that |T |/2m = q · μ is polynomial
in n in our case, and hence the right-hand side of (3) is negligible). Another
application of Corollary 6.8 gives negligible closeness to the ciphertext state
where the first 2(m+τ) qubits are replaced with the completely mixed state etc.
After μ applications of Corollary 6.8, we have shown that Enck(σ) is negligibly
close to the totally mixed state on μ(m + τ) qubits. As this argument can be
made for any cleartext state σ, we have shown that from D’s point of view, all
encrypted states are negligibly close to the totally mixed state and therefore
cannot be distinguished. ��

Semantic Security and Indistinguishability in the Quantum World 87

Corollary 6.10 (qIND-qCPA Security of Construction 6.6). If Πm+τ is a
family of quantum-secure pseudorandom permutations (qPRP), then the encryp-
tion scheme (Gen,Enc,Dec) defined in Construction 6.6 is qIND-qCPA secure.

7 Conclusions and Further Directions

We believe that many of the current security notions used in different areas of
cryptography are unsatisfying in case quantum computers become reality. In this
respect, our work contributes to a better understanding of which properties are
important for the long-term security of modern cryptographic primitives. Our
work leads to many interesting follow-up questions.

There are many other directions to investigate, once the basic framework
of ‘indistinguishability versus semantic security’ presented in this work is com-
pleted. A natural direction is to look at quantum CCA1 security in this frame-
work. This topic was also initiated in [4] relative to the IND-qCPA model; it
would be interesting to extend the definition of CCA1 security to stronger notions
obtained by starting from our qIND-qCPA model.

In Sect. 3.3 we left open the interesting question on whether it is possible
at all to find a separating example between the notions of qIND and gqIND.
That is, find a symmetric-key encryption scheme E which is qIND-secure, but
not gqIND-secure. Finding such an example (or provable lack of) would shed
further light on the security model we consider.

We have so far not taken into account models where the adversary is allowed
to initialize the ancilla qubits used in the encryption operation used by the
challenger (i.e. the |y〉 in |x, y〉 �→ |x, y ⊕ Enck(x)〉). These models lead to the
study of quantum fault attacks, because they model cases where the adversary
is able to ‘watermark’ or tamper with part of the challenger’s internal memory.
Moreover, we have not considered superpositions of keys or randomness: these
lead to a quantum study of weak-key and bad-randomness models. The authors
of this paper are not aware of any results in these directions.

One outstanding open problem is to define CCA2 (adaptive chosen ciphertext
attack) security in the quantum world. The problem is that in the CCA2 game
the challenger has to ensure that the attacker does not ask for a decryption of
the actual challenge ciphertext leading to a trivial break. While this is easily
implemented in the classical world, it raises several issues in the quantum world.
What does it mean for a ciphertext to be different from the challenge ciphertext?
And, more importantly: How can the challenger check? There might be several
reasonable ways to solve the first issue but, as long as the queries are not classical,
we are not aware of any possibility to solve the second issue without disturbing
the challenge ciphertext and the query states.

Our secure construction shows how to turn block ciphers into qIND-qCPA
secure schemes. An interesting research question is whether there exists a general
patch transforming an IND-qCPA secure scheme into a qIND-qCPA secure one.
It is also important to study how our transformation can be applied to modes
of operation different from Construction 6.6.

88 T. Gagliardoni et al.

Acknowledgements. The authors would like to thank Ronald de Wolf and Boris
Škorić for helpful discussions, the anonymous reviewers for useful comments, and the
organizers of Dagstuhl Seminar 15371 “Quantum Cryptanalysis” for networking, use-
ful interactions, and support. T.G. was supported by the German Federal Ministry
of Education and Research (BMBF) within EC SPRIDE and CROSSING. A.H. was
supported by the Netherlands Organisation for Scientific Research (NWO) under grant
639.073.005 and the Commission of the European Communities through the Horizon
2020 program under project number 645622 PQCRYPTO. C.S. was supported by a 7th
framework EU SIQS grant and a NWO VIDI grant. Part of this work was supported
by the COST Action IC1306.

References

1. Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C.,
St. Jules, M.: Computational security of quantum encryption (2016). http://arXiv.
org/abs/1602.01441

2. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random Oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)

4. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013)

5. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem
(1997). arXiv:quant-ph/9705002

6. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
T -gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 609–629. Springer, Heidelberg (2015)

7. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat-Shamir transformation in a
quantum world. In: ASIACRYPT 2013, Part II, pp. 62–81 (2013)

8. Damg̊ard, I., Funder, J., Nielsen, J.B., Salvail, L.: Superposition attacks on cryp-
tographic protocols. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 146–165.
Springer, Heidelberg (2014)

9. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. Cryptology ePrint Archive, Report 2015/355 (2015)

10. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

11. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

12. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC
1996, pp. 212–219. ACM Press (1996)

13. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: CRYPTO 2016 (2016, to appear)

14. Kashefi, E., Kent, A., Vedral, V., Banaszek, K.: Comparison of quantum oracles.
Phys. Rev. A 65(5), 050304 (2002)

15. Koshiba, T.: Security notions for quantum public-key cryptography. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. J90-A(5), 367–375 (2007)

16. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: ISIT 2010, pp. 2682–2685 (2010)

http://arXiv.org/abs/1602.01441
http://arXiv.org/abs/1602.01441
http://arxiv.org/abs/quant-ph/9705002
http://arXiv.org/abs/quant-ph/9705002

Semantic Security and Indistinguishability in the Quantum World 89

17. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In:
ISITA 2012, pp. 312–316 (2012)

18. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

19. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. 42(44), 114–116 (1978)

20. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

21. Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryp-
tographic primitives (2016)

22. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: FOCS 1994, pp. 124–134. IEEE Computer Society Press (1994)

23. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012)

24. Velema, M.: Classical encryption and authentication under quantum attacks. Mas-
ter’s thesis, Master of Logic, University of Amsterdam (2013)

25. Watrous, J.: Quantum algorithms for solvable groups. In: STOC 2001, pp. 60–67.
ACM Press (2001)

26. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

27. Xiang, C., Yang, L.: Indistinguishability and semantic security for quantum encryp-
tion scheme. In: Proceeding of the SPIE, vol. 8554, pp. 85540G–85540G-8 (2012)

28. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, pp.
679–687. IEEE (2012)

Spooky Encryption

Spooky Encryption and Its Applications

Yevgeniy Dodis1(B), Shai Halevi2(B), Ron D. Rothblum3(B),
and Daniel Wichs4(B)

1 NYU, New York, NY, USA
dodis@cs.nyu.edu

2 IBM Research, Yorktown Heights, NY, USA
shaih@alum.mit.edu

3 MIT, Cambridge, MA, USA
rothblum@gmail.com

4 Northeastern University, Boston, MA, USA
danwichs@gmail.com

Abstract. Consider encrypting n inputs under n independent public
keys. Given the ciphertexts {ci = Encpki

(xi)}i, Alice outputs cipher-
texts c′

1, . . . , c
′
n that decrypt to y1, . . . , yn respectively. What relation-

ships between the xi’s and yi’s can Alice induce?
Motivated by applications to delegating computations, Dwork et al.

[11] showed that a semantically secure scheme disallows signaling in this
setting, meaning that yi cannot depend on xj for j �= i. On the other
hand if the scheme is homomorphic then any local (component-wise) rela-
tionship is achievable, meaning that each yi can be an arbitrary function
of xi. However, there are also relationships which are neither signaling
nor local. Dwork et al. asked if it is possible to have encryption schemes
that support such “spooky” relationships. Answering this question is the
focus of our work.

Our first result shows that, under the LWE assumption, there exist
encryption schemes supporting a large class of “spooky” relationships,
which we call additive function sharing (AFS) spooky. In particular, for
any polynomial-time function f , Alice can ensure that y1, . . . , yn are
random subject to

∑n
i=1 yi = f(x1, . . . , xn). For this result, the public

keys all depend on common public randomness. Our second result shows
that, assuming sub-exponentially hard indistinguishability obfuscation
(iO) (and additional more standard assumptions), we can remove the
common randomness and choose the public keys completely indepen-
dently. Furthermore, in the case of n = 2 inputs, we get a scheme that
supports an even larger class of spooky relationships.

We discuss several implications of AFS-spooky encryption. Firstly, it
gives a strong counter-example to a method proposed by Aiello et al. [1]
for building arguments for NP from homomorphic encryption. Secondly,
it gives a simple 2-round multi-party computation protocol where, at the
end of the first round, the parties can locally compute an additive secret
sharing of the output. Lastly, it immediately yields a function secret
sharing (FSS) scheme for all functions.

We also define a notion of spooky-free encryption, which ensures
that no spooky relationship is achievable. We show that any non-
malleable encryption scheme is spooky-free. Furthermore, we can con-
struct spooky-free homomorphic encryption schemes from SNARKs, and

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 93–122, 2016.
DOI: 10.1007/978-3-662-53015-3 4

94 Y. Dodis et al.

it remains an open problem whether it is possible to do so from falsifiable
assumptions.

1 Introduction

Imagine Alice and Bob, standing on different planets light years apart. They
are “simultaneously” given some input bits x1 and x2 respectively, and must
answer by outputting bits y1 and y2 respectively. Classical physics allows them to
implement local (component-wise) strategies where y1 is an arbitrary function of
x1 and y2 is a function of x2. On the other hand, the impossibility of faster-than-
light communication disallows signaling strategies, meaning that the distribution
of y1 cannot depend on the value of x2 and vice versa.

However, there are strategies that are neither local nor signaling. For exam-
ple, perhaps Alice and Bob want to ensure that y1, y2 are random bits subject
to y1 ⊕ y2 = x1 ∧ x2. In this case, the distribution of y1 does not depend on x2

(and vice versa) so the strategy is not signaling, but it’s also not local. Surpris-
ingly some such strategies which are neither signaling nor local are achievable
using quantum mechanics, if Alice and Bob share an entangled quantum state.
Einstein referred to this phenomenon as “spooky action at a distance”.

In this work, we consider an analogous scenario, first considered by Dwork
et al. [11], where the separation between x1, x2 is enforced not via physical
distance but by encrypting these bits under two independent public keys.1 Here
Alice gets the two ciphertexts c1 ← Encpk1(x1), c2 ← Encpk2(x2), and outputs
two other ciphertexts c′

1, c
′
2 which are decrypted as yi ← Decski(c

′
i), i = 1, 2.

As in the physical analogy, here too we can rule out signaling strategies (if the
encryption is semantically secure), and can implement local strategies (if the
encryption is homomorphic). But can we replace the entangled state from above
by a special “spooky encryption scheme” that would allow Alice to implement
spooky strategies? Answering this question is the focus of this work, and we
obtain the following results:

– Assuming the hardness of learning with errors (LWE), there exists a secure
encryption scheme in which Alice can implement a wide class of spooky strate-
gies that we call additive function sharing (AFS) spooky. Namely, for any
two-argument function f : ({0, 1}∗)2 → {0, 1}, Alice can convert encryption
of inputs ci ← Encpki

(xi) to encryption of outputs yi ← Decski
(c′

i), ensuring
that y1 ⊕ y2 = f(x1, x2), except for a small error probability.
This construction, described in Sect. 3, uses the LWE-based multi-key FHE
schemes from [7,22,26], and it inherits from these multi-key scheme their
dependence on a common random string.

– In Sect. 4 we describe a spooky scheme that supports arbitrary two-input
spooky relations on short inputs, as well as a very wide class of two-input
spooky relations on long inputs. This construction uses probabilistic indis-
tinguishability obfuscation (piO), which is an extension of iO to probabilistic

1 Dwork et al. considered PIR rather than encryption, but the translation is immediate.

Spooky Encryption and Its Applications 95

circuits recently introduced by Canetti et al. [6], in conjunction with lossy
encryption schemes which are homomorphic and ensure circuit privacy against
malicious adversaries. This construction works in the plain model without
common-random string and has no error, and it can be realized based on
exponentially strong iO, exponentially strong PRFs, and DDH.

– In Sect. 5 we describe a transformation from a scheme that supports only two-
input spooky relations on one-bit inputs to one that supports AFS spooky rela-
tions on arbitrary number of inputs (of arbitrarily length each). This transfor-
mation can be applied to both our LWE-based and piO-based constructions from
above.

– We show several implications of (AFS-)spooky encryption. On a negative, it
gives a strong counter-example to a method proposed by Aiello et al. [1] for
building succinct arguments for NP from homomorphic encryption2, resolving
a question posted by [11]. On a positive, it immediately yields a function secret
sharing (FSS) scheme for all functions [4,15], and also gives a simple 2-round
multi-party computation protocol where, at the end of the first round, the
parties can locally compute an additive secret sharing of the output. These
application are discussed in Sect. 6.

– We also study in Sect. 7 the concept of spooky free encryption, i.e., an encryp-
tion scheme where we can prove that no spooky strategy is feasible. We
show that any non-malleable encryption scheme is spooky-free, and also build
spooky-free homomorphic encryption schemes from SNARKs. It remains an
open problem to construct spooky-free homomorphic encryption under more
standard assumptions. Spooky-free homomorphic encryption can be used to
instantiate the approach of Aiello et al. to get succinct arguments for NP.

1.1 Technical Overview

LWE-Based Construction. Our LWE-based construction builds on the multi-
key FHE schemes from [7,22,26]. In these schemes (after some syntactic mas-
saging) secret keys and single-key ciphertexts are vectors in Z

n
q , and decryption

consists of computing w = 〈s, c〉 mod q, then rounding to the nearest multiple
of q/2, outputting zero if w is closer to 0 or one if w is closer to q/2.

These schemes, however, also support homomorphic computation across
ciphertexts relative to different keys. Roughly, they feature a “lifting proce-
dure” where a dimension-n ciphertext vector relative to one key si is “lifted”
to a dimension �n vector c′ = (c′

1, . . . , c
′
�) relative to the concatenated key

s′ = (s1, . . . , s�) of dimension �n. These lifted ciphertexts can still be com-
puted on, and the decryption procedure proceeds just as before, except using
the higher-dimension vectors. Namely, to decrypt c′ using s′, one first computes
the inner product w′ = 〈s′, c′〉 modulo q, then rounds to the nearest multiple
of q/2. In other words, we compute the individual inner products wi = 〈si, c

′
i〉,

then add them all up and round to the nearest multiple of q/2.
2 Although included in the ICALP conference proceedings, the article [1] was with-

drawn before the conference and was not presented there.

96 Y. Dodis et al.

We observe (cf. Lemma 1) that for the special case of two keys, � = 2, instead
of adding the wi’s and then rounding, we can first round each wi to the nearest
multiple of q/2 and then add, and this yields the same result with high prob-
ability. Specifically, the error probability is proportional to the rounding error
for the overall sum w′. This observation immediately yields additive function
sharing (AFS) spooky encryption for two-argument functions: We use one of
the schemes from [7,22,26] to encrypt the two arguments x1, x2 under two keys,
then use the multi-key evaluation procedure to compute a multi-key ciphertext
c′ = (c′

1, c
′
2) encrypting the value f(x1, x2). Viewing each c′

i as a single-key
ciphertext, we apply the usual decryption procedure to each of them, and the
resulting two bits are an additive secret sharing of f(x1, x2), except with a small
error probability. The error probability can be made negligible by relying on
LWE with a super-polynomial approximation factor.

piO-Based Construction. In Sect. 4 we show that using iO we can construct
an AFS encryption scheme without CRS and without errors, and moreover we
can support arbitrary spooky relations on two bits, not just additive sharing.
For this overview, let us focus on the simpler task of constructing AFS spooky
scheme for the multiplication function MULT(b1, b2) = b1 · b2.

The starting point of the construction takes a homomorphic encryption scheme
(Gen,Enc,Dec,Eval) and adds to the public key an obfuscation of the random-
ized functionality that decrypts, computes the functions f , and re-encrypts secret-
sharing of the result. Specifically, let us denote for any x1, y1 ∈ {0, 1} the function
fx1,y1(x2) = x1 · x2 ⊕ y1, and consider the following randomized program:

Program Psk1,pk1(c1, pk2, c2)
1. y1 ← {0, 1}. 4. c′

2 = Eval(pk2, fx1,y1 , c2).
2. c′

1 ← Encpk1(y1). 5. Output (c′
1, c

′
2).

3. x1 = Decsk1(c1).

Given the two pairs (pk1,Encpk1(x1)), (pk2,Encpk2(x2)), and access to the
program Psk1,pk1 , we can run Psk1,pk1(c1, pk2, c2) to get two ciphertexts c′

1 and
c′
2, encrypting y1, y2, respectively, such that y1 ⊕ y2 = x1 · x2. We would like,

therefore, to add an obfuscation of Psk1,pk1 to the public key, thereby obtaining
AFS spooky multiplication.

As described, however, this construction is not even secure when
Psk1,pk1(c1, pk2, c2) is only accessed by a perfect black box. The reason is that if
the underlying homomorphic encryption is not circuit private, then the evaluated
ciphertext c′

2 could leak information about x1. To fix this issue, we require the
use of circuit-private homomorphic encryption in this construction. In fact, since
the adversary could run the program Psk1,pk1(c1, pk2, c2) on arbitrary inputs of
its choice, we need a stronger notion of circuit privacy against malicious adver-
saries [24], that guarantees privacy even if the public-key and ciphertext given
to the evaluation algorithm are generated adversarially.

Using a malicious circuit private homomorphic encryption scheme, the con-
struction above would be secure if the program Psk1,pk1(c1, pk2, c2) is accessed

Spooky Encryption and Its Applications 97

as a perfect black box (e.g., using VBB obfuscation). However, we would like
to rely on the weaker notion of indistinguishability obfuscation (iO), or rather
probabilistic iO [6] (since we are dealing with a randomized program). We need
to somehow argue that the secret key sk1 that is encoded within the program
Psk1,pk1 is hidden by the weaker obfuscation, and we do it using a technique from
the work of Canetti et al. [6], employing a lossy encryption scheme.

We note that the construction above only uses homomorphic computations
for single-bit functions (in addition to probabilistic iO), and there are only four
such function (identity, negation, constant 0 and constant 1). A secure and
malicious-circuit-private encryption scheme that supports these operations was
constructed by Naor and Pinkas [23] based on the DDH assumption.

From 2-Spooky to n-Spooky. Both the LWE and piO based constructions
above only support two-argument spooky relations. Specifically the LWE-based
scheme only supports AFS-spooky relations for two-argument functions, and
the piO-based scheme supports a large class of spooky relations but again, only
on two inputs. We extend the supported spooky relations by showing how to
transform a scheme that supports (multiple hops of) AFS-spooky two-input
multiplication and single-key additive homomorphism, into a leveled AFS spooky
scheme for any number of inputs of any length.

The transformation is inspired by the Goldreich-Micali-Wigderson MPC
protocol [16]: Suppose that we are given n public keys pk1, . . . , pkn, bit-by-
bit encryptions of the input values Encpki

(xi), and an arithmetic circuit C :
({0, 1}∗)n → {0, 1} that we want to evaluate (i.e., to produce encrypted shares of
C(x1, . . . , xn)). We process the circuit gate by gate, while maintaining the invari-
ant that for every wire w we produce ciphertexts Encpk1(w1), . . . ,Encpkn

(wn) such
that ⊕i∈[n]wi is equal to the wire w’s value. The wires are processed inductively:

1. For an input wire holding a bit b, which is part of the j’th input xj ,
we take the ciphertext c that encrypts b relative to pkj , and append to
it the ciphertexts ci ← Encpki

(0) for all i 	= j. Clearly the ciphertexts
(c1, . . . , cj−1, c, cj+1, . . . , cn) are encryptions of an additive sharing of the
wire’s value b.

2. For an addition gate with input wires u, v and output wire w, by induction
we already have Encpk1(u1), . . . ,Encpkn

(un) and Encpk1(v1), . . . ,Encpkn
(vn).

Using just an additive homomorphism on each key individually, we can pro-
duce Encpk1(u1 ⊕ v1), . . . ,Encpkn

(un ⊕ vn) which is the desired secret sharing.
3. For a multiplication gate with input wires u, v and output wire w, again

by induction we already have Encpk1(u1), . . . ,Encpkn
(un) and Encpk1(v1), . . . ,

Encpkn
(vn). Using the AFS spooky multiplication we compute an encrypted

tensor product of the u and v vectors. Namely, for every i, j we use spooky
multiplication to compute(

Encpki
(xi,j),Encpkj

(yi,j)
) ← SpookyMult

(
Encpki

(ui),Encpkj
(uj)

)
,

such that xi,j ⊕ yi,j = ui · vj . Then we collapse this tensor product back into
an n-vector using the additive homomorphism relative to each key separately.

98 Y. Dodis et al.

That is, for every i ∈ [n] we can compute a ciphertext Encpki
(wi) such that

wi =
⊕

j∈[n] xi,j ⊕⊕
j∈[n] yj,i. We observe that these ciphertexts form a secret

sharing of u · v. Indeed, adding up the plaintexts we get:

⊕

i∈[n]

⎛

⎝
⊕

j∈[n]

xi,j ⊕
⊕

j∈[n]

zj,i

⎞

⎠ =
⊕

i,j∈[n]

(xi,j ⊕ yi,j) =
⊕

i,j∈[n]

ui · vj = (
⊕

i

ui) · (
⊕

j

vj)

(1)

Thus, if the scheme can support 2d interleaved hops of (two-key) spooky
multiplication and (single-key) additive homomorphism then it is an AFS-spooky
scheme for the class of all depth d arithmetic circuits. We note that the resulting
scheme does not depend on the number of inputs or their length, and it only
depends on the complexity of C inasmuch as the underlying scheme depends on
the depth of the evaluated circuit.

Applications of Spooky Encryption. In Sect. 6 we describe both positive
and negative applications of spooky encryption. On the positive, it immediately
yields a function secret sharing (FSS) scheme for all functions [4,15]. Previously
such a general function secret sharing scheme was only known to follow from
sub-exponentially hard indistinguishability obfuscation [4] whereas we can base
it on LWE (using our LWE based spooky encryption).

Spooky encryption also gives a simple 2-round multi-party computation pro-
tocol. Roughly, AFS-spooky encryption lets each party broadcast an encryption
of its input under its own key, then everyone individually performs the AFS-
spooky evaluation locally, each party can locally decrypt and recover a share of
the output, and the output is recover using another round of communication.
There are some technicalities that should be addressed for this idea to work,
and perhaps the easiest way of addressing them is to use AFS-spooky encryp-
tion to construct multi-key FHE with threshold decryption (TMFHE), which can
then be used to get a two-round protocol as done in [22]. Using our obfuscation
based construction (which does not require a CRS), this gives the first 2-round
semi-honest secure MPC protocol in the plain model.3

On the negative side, AFS-spooky encryption yields a counter-example for
the transformation of Aiello et al. [1] from multi-prover (MIP) to single-prover
protocols. Their idea was to send all of the MIP queries to a single prover, but
encrypted under independents keys of a homomorphic encryption scheme. The
single prover can homomorphically implement the actions of the MIP provers
on the individual encrypted queries, and hopefully the fact that the queries are
encrypted under independent keys means that no cross-influence is possible. It
is easy to see that spooky encryption violates this hope (by its very nature).
Moreover, we show that this transformation can lead to a total break of sound-
ness - in Sect. 6.1 we show how using AFS-spooky encryption can lead to an

3 In contrast, [12] and [22] construct 2-round protocols in the CRS model. As for
security against a malicious adversary, [20] show that 5 rounds are necessary in the
plain model (with respect to black-box proofs of security).

Spooky Encryption and Its Applications 99

unsound single-prover protocol, when the transformation is applied to a simple
two-prover protocol for graph 3-colorability.

Spooky-Free Encryption. Finally, in Sect. 7 we discuss the notion of spooky-
free (SF) encryption, which provably ensures that any correlation that an
attacker can induce between the original messages (m1, . . . ,mn) and “tampered
messages” (m′

1, . . . ,m
′
n), can be simulated by a “local simulator” that produces

m′
i only as a function of mi (and some shared randomness), see Definition 6.

To validate this definition, we show that a spooky-free FHE suffices to prove
the security of the natural approach of Aiello et al. [1], which was discussed
above, of converting a succinct MIP into a succinct one-round argument dis-
cussed above. Indeed, spooky-freeness ensures that the attacker cannot cause
more damage from seeing all n ciphertexts than what it could have done by
seeing each plaintext independently.

We then turn to the systematic study of spooky-free encryption. First, we
show that spooky-freeness implies semantic security. On the other hand, a very
weak form of non-malleability (called 1-non-malleability here, or 1-bounded
CCA security in [8]) implies spooky-freeness. However, since the scheme is non-
malleable, it is inherently not homomorphic and so we cannot use it to obtain a
delegation scheme via the foregoing approach.

Indeed, to instantiate the approach of Aiello et al. constructing succinct argu-
ments for NP, we need a homomorphic encryption scheme which is spooky free.
As a proof of concept, in the full paper [9] we show how to built such a homomor-
phic spooky-free encryption using succinct non-interactive arguments of knowl-
edge (SNARKs [3,14]), true-simulation-extractable NIZKs [10] and regular FHE.
While the use of SNARKs makes this construction uninteresting in the applica-
tion to succinct arguments, the clean definition of SF-encryption, coupled with
our “proof of concept” implementation, might open the door for more useful
future constructions.

1.2 Related Work

The starting point for this line of work is the natural approach, suggested by
Aiello et al. [1], for constructing a secure delegation scheme by combining a multi-
prover interactive proof-system (MIP) with a homomorphic encryption scheme
as described above. This intuition was questioned by Dwork et al. [11] and our
work confirms that the approach of [1] is not always secure.

An approach to overcoming this barrier was taken by Kalai et al. [18,19].
They designed a specific MIP (for P) that is sound even against arbitrary no-
signaling adversaries. Since semantic-security rules out signaling strategies, they
obtain a secure delegation protocol for any language in P.

Spooky Free vs. Homomorphism Extraction. Bitansky and Chiesa defined in [2] a
security notion called homomorphism extraction, that they show can be used to
securely instantiate the construction of Aiello et al. and get succinct arguments
for NP. Intuitively, this notion says that to produce a valid encryption of m′

100 Y. Dodis et al.

from an encryption of m, you must know a function f such that m′ = f(m).
Compared to our notion of spooky-free (which is also sufficient for the Aiello
et al. transformation), the main difference is that of “extraction vs. soundness”,
so homomorphism extraction seems a stronger requirement. For example, homo-
morphism extraction implies some form of “plaintext awareness” and therefore
is non-trivial even for schemes that aren’t homomorphic, whereas we show that
any non-malleable encryption scheme is spooky-free.

Multi-key FHE. A notion that is related to spooky-encryption, introduced by
López-Alt et al. [21] is that of multi-key FHE. In a multi-key FHE, similarly
to a spooky encryption scheme, the homomorphic evaluation procedure gets as
input n ciphertexts encrypted under different keys. The difference is that the
output of the evaluation in a multikey FHE is a single ciphertext that can only
be decrypted by combining all the n keys. In contrast, in a spooky encryption
scheme the result of the spooky evaluation is n ciphertexts, c1, . . . , cn where each
ci is encrypted under the ith original. Thus, spooky encryption can be thought
of as a specific type of multi-key FHE.

2 Definitions

2.1 Local, No-Signaling, and Spooky Relations

We say that two distributions D1,D2 over a (finite) universe U are ε-close if
their statistical distance 1

2 ||D1 − D2||1 is at most ε, and denote it by D1
ε≈ D2.

We write D1 ≡ D2 to denote that the distributions are identical. We say that
D1,D2 are δ-far if their statistical distance is at least δ.

Definition 1. Let f : {0, 1}�1 × · · · {0, 1}�n → {0, 1}�′
1 × · · · {0, 1}�′

n be a ran-
domized mapping from n input to n outputs. For input x = (x1, . . . , xn) to f ,
we denote the i’th component of the output by f(x)i, and more generally for
a subset I ⊂ [n] we denote the projected input by xI = (xi : i ∈ I) and the
projected output by f(x)I = (f(x)i : i ∈ I).

– f is local if there exist n randomized “component mappings” fi : {0, 1}�i →
{0, 1}�′

i such that for all (x1, . . . , xn) ∈ {0, 1}�1 × · · · {0, 1}�n , the distribution
f(x1, . . . , xn) is a product distribution f(x1, . . . , xn) ≡ f1(x1) × · · · × fn(xn).

– f is no-signaling if for every subset I ∈ [n] and every two inputs x,x′ with
the same I projection, xI = x′

I , the corresponding projected distributions are
equal, f(x)I ≡ f(x′)I .

– We say that f is ε-spooky for some ε > 0 if it is no-signaling, but for every
local f ′ there exists some input x such that f(x) and f ′(x) are at least ε-far.

These definitions extends to an ensemble of mappings F = {fk : k ∈ N}, with
the mapping parameters n, �i, �

′
i and the distance bound ε possibly depending on

the ensemble parameter k. In this case we say that F is spooky if the fk’s are
ε-spooky for a non-negligible ε = ε(k).

Spooky Encryption and Its Applications 101

As an example, consider the randomized function f(x1, x2) = (y1, y2) where
y1, y2 are uniformly random subject to y1 ⊕ y2 = x1 ∧ x2. This function is
no-signaling since the distributions f(x)1 and f(x)2 are individually uniform,
no matter what x is. However, it’s easy to show that for any local function
f ′ = (f ′

1, f
′
2) there is an input x = (x1, x2) such that Pr[f ′

1(x1) ⊕ f ′
2(x2) =

x1 ∧ x2] ≤ 1/2. Therefore the function f is ε-spooky for ε = 1/2.

2.2 Spooky Encryption

A public-key encryption scheme consists of a tuple (Gen,Enc,Dec) of polynomial-
time algorithms. The key-generation algorithm Gen gets as input a security para-
meter κ ∈ N and outputs a pair of public/private keys (pk, sk). The encryption
algorithm Enc gets as input the public-key pk and a bit m ∈ {0, 1}poly(κ) and
outputs a ciphertext c, whereas the decryption algorithm Dec gets as input the
private-key sk and the ciphertext c and outputs the plaintext bit m. The basic
correctness guarantee is that Pr[Decsk(Encpk(m)) = m] > 1 − negl(k), where the
probability is over the randomness of all these algorithms. The security require-
ment is that for every pair of polynomial-sized adversaries (A1, A2) it holds that

Pr
(pk,sk)←Gen(1κ)

b←{0,1}

[
(m0,m1) ← A1(pk) s.t. |m0| = |m1|

A2 (pk,Encpk(mb)) = b

]
≤ 1

2
+ negl(κ).

If the message space consists of just a single bit then we say that the scheme is
a bit encryption scheme.

Definition 2 (Spooky Encryption). Let (Gen,Enc,Dec) be a public-key bit-
encryption scheme and Spooky-Eval be a polynomial-time algorithm that takes
as input a (possibly randomized) circuit with n = n(κ) inputs and n outputs,
C : ({0, 1}∗)n → ({0, 1}∗)n, and also n pairs of (public-key, ciphertext), and
outputs n ciphertexts.

Let C be a class of such circuits, we say that (Gen,Enc,Dec,Spooky-Eval) is a
C-spooky encryption scheme if for every security parameter κ, every randomized
circuit C ∈ C, and every input x = (x1, . . . , xn) for C, the distributions

SPOOK[C, x1, . . . , xn] def=⎧⎨
⎩(Dec(sk1, c′

1), . . . ,Dec(skn, c′
n)) :

∀i ∈ [n] (pki, ski) ← Gen(1κ),
ci ← Enc(pki, xi),

(c′
1, . . . , c′

n) ← Spooky-Eval(C, (pki, ci)i)

⎫⎬
⎭

and C(x1, . . . , xn) are close upto a negligible distance in κ.

We note that the name spooky encryption stems from the application of
Definition 2 to circuits C that compute spooky mappings. Indeed, as shown
by Dwork et al. [11], the semantic security of (Gen,Enc,Dec) implies that only
(almost) no-signaling C’s can be realized, and every homomorphic scheme can
realize C’s that compute product mappings.

102 Y. Dodis et al.

Spooky Encryption with CRS. We say that (Gen,Enc,Dec,Spooky-Eval) is a
C-spooky encryption scheme with CRS if Definition 2 is satisfied except that we
allow all algorithms (and the adversary) to get as input also a public uniformly
distributed common random string.

2.3 Additive-Function-Sharing Spooky Encryption

An important special case of spooky encryption allow us to take encryptions
ci ← Encpki

(xi) under n independent keys of inputs x1, . . . , xn to an n-argument
function f , and produce new ciphertexts under the same n keys that decrypt
to additive secret-shares of y = f(x1, . . . , xn). An encryption scheme that sup-
ports such “non-interactive sharing” is called additive-function-sharing spooky
encryption (or AFS-spooky). Several variants of this concept are defined below:

– We can either insist on getting a random secret sharing of y, or contend
ourselves with any secret sharing. Below we call the latter variant weak AFS-
spooky, and the former is strong AFS-spooky (or just AFS-spooky).

– Similarly to homomorphic encryption schemes, we can have either a leveled
variant where key-generation receives an additional depth parameter d and the
result supports only circuits of depth upto d, or a fully AFS-spooky scheme
that supports any circuit with a fixed parameter setting.

– We can either allow non-negligible error probability (i.e., the probability that
the computation fails to produce a secret-sharing of the right output y), or
insist on a negligible error probability. Below we denote by ε-AFS-spooky
the variant where the error probability is bounded by some ε (that need not
be negligible), and the variant with negligible error probability is just AFS-
spooky.

– Sometimes we want to consider only two-argument functions f(x1, x2),
a scheme that only supports two-argument functions is called AFS-2-spooky.

The formal definition itself is provided in the full version [9], where we also
show that the weak and strong variants are essentially equivalent.

3 LWE-Based Spooky Encryption

3.1 Learning with Errors (LWE) and Multi-key FHE

The LWE assumption roughly says that adding just a little noise to a set of
linear equations makes them hard to solve. In our context, we consider equations
modulo some integer q and the noise consists of numbers whose magnitude is
much smaller than q, as expressed via a noise distribution χ that yields such
“small numbers” with high probability. Below we identify Zq with the symmetric
interval [−q/2, q/2) and let [x]q denote the reduction of x modulo q into this
interval.

Spooky Encryption and Its Applications 103

Definition 3 (Learning with Errors [28]). Let n = n(κ), q = q(κ) ∈ Z

be functions of the security parameter κ and χ = {χ(κ)}κ be a distribution
ensemble over Z. The decision-LWE assumption with parameters (n, q, χ) says
that for any polynomial m = m(κ) ∈ Z, the following two distribution ensembles
are computationally indistinguishable

LWE [n, m, q, χ]
def
=
{
(A, b) : A ← Z

n×m
q , s ← Z

n
q , e ← χm, b := [sA + e]q

}
,

and U [n, m, q]
def
=
{
(A, b) : A ← Z

n×m
q , b ← Z

m
q

}
(i.e., uniform over Z

(n+1)×m
q).

For α = α(κ) ∈ (0, 1), the α-DLWE assumption asserts the existence of para-
meters n, q, χ as above with n polynomial in κ, such that e ← χ yields |e| < αq
with overwhelming probability.

Note that the α-DLWE assumption becomes stronger as α gets smaller, and it
is known to be false in the extreme case where α = 2−Ω(n) using lattice-reduction
techniques. On the other hand, we have ample evidence to belive the α-DLWE
assumption with α = 1/poly(n) [5,25,28], and it is commonly belived to hold
also for super-polynomially (and perhaps even sub-exponentially) small α’s.

We show that assuming hardness of the learning-with-errors problem, there
exists a function-secret sharing (in the common-random-string model) for any
n-argument function f . Our construction can be built on the multi-key fully
homomorphic encryption construction of Mukherjee and Wichs [22] or the one
of Peikert and Shiehian [26], which are variations of the Clear-McGoldrick scheme
from [7]. We summarize the relevant properties of these constructions:

Theorem 1 [7,22,26]. Assuming the hardness of α-DLWE (for some α(κ)),
there exists a multi-key homomorphic encryption with the following properties:

– The construction works in the common-random-string model. For parameters
n,m, q = poly(κ), all instances have access to a uniformly random matrix
A ∈ Z

(n−1)×m
q .

– For any depth parameter d, the scheme supports multi-key evaluation of depth-
d circuits using public keys of size d · poly(κ), while secret keys are vectors
s ∈ Z

n
q , regardless of the depth parameter.

Specifically, there is an efficient procedure Eval that is given as input:
• Parameters d, � ∈ N;
• A depth-d circuit computing an �-argument function f : ({0, 1}∗)� →

{0, 1};
• Public keys (pk1, . . . , pkn) and fresh encryptions (bit-by-bit) of each argu-

ment xi ∈ {0, 1}∗ under key pki, denoted ci ← Encpki
(xi).

On such input, the Eval procedure outputs a dimension n�-vector, c′ = (c′
1 . . . c′

�)
(with each c′

i ∈ Z
n
q),4 such that for the secret keys si corresponding to pki it

holds that
�∑

i=1

〈si, c
′
i〉 = �q/2� · f(x1, . . . , xn) + e (mod q)

for some error e ∈ Zq with |e| < αq · poly(κ).

4 Referring to [22, Sect. 5.4], the vector c′
i is the result of the product Ĉ(i) ×Ĝ−1(ŵT),

without the added noise term esm
i .

104 Y. Dodis et al.

By further making a circular-security assumption, there exists a scheme that
supports evaluation of circuits of any depth without growing the public keys.

3.2 LWE-Based AFS Spooky Encryption

Below we show that under the decision-LWE assumption we can construct AFS-
spooky encryption schemes (in the common-random-string model). Namely, for
every n-argument function f(x1, . . . , xn), given encryption of the arguments
under n independent public keys, we can compute an encryption of shares under
the same keys of an additive secret-sharing of the output y = f(x1, . . . , xn).

Theorem 2. Assuming the hardness of α-DLWE, there exists a leveled ε-AFS-2-
Spooky encryption scheme for ε = α ·poly(κ). Further making a circular-security
assumption, we get a (non-leveled) ε-AFS-2-spooky encryption scheme.

Proof. We show that the encryption scheme from Theorem 1 is already essen-
tially a leveled weak AFS-2-spooky encryption scheme. Specifically, Theorem 1
tells us that given the description of a depth-d circuit C, computing a 2-argument
function f : ({0, 1}∗)2 → {0, 1}, together with two public-key and correspond-
ing bit-by-bit encryptions, ci ← Encpki

(xi), the Eval procedure yields (c′
1, c

′
2) ←

Eval(C, (pk1, c1), (pk2, x2)) such that 〈sk1, c′
1〉 + 〈sk2, c′

2〉 = y · q/2 + e (mod q),
where the ski’s are the secret keys corresponding to the pki’s, y = f(x1, x2), and
|e| < αq · poly(κ) = εq.

Denote vi = [〈ski, c
′
i〉]q for i = 1, 2 and v = [v1 + v2]q. Lemma 1 below says

that instead of first adding the vi’s and then rounding to the nearest multiple of
q/2, we can first round and then add, and this will yield the same result except
with error probability of at most 2ε. The only catch is that Lemma 1 assumes
that v1, v2 are chosen at random subject to their sum modulo q being v, whereas
in our case we do not have this guarantee. To account for this, we modify our
Spooky-Eval procedure, letting it choose a random shift amount δ ∈ Zq and
adding/subtracting it from v1, v2, respectively. More detail is provided in the
full version [9].

Lemma 1. Fix some modulus q ∈ Z, bit b ∈ {0, 1}, and a value v ∈ Zq such
that v = b ·q/2+e (mod q) for some bounded error |e| < q/4. Consider choosing
v1, v2 uniformly at random in Zq subject to v1 + v2 = v (mod q), and denote
vi = bi · q/2 + ei (mod q) with bi = [�vi · 2/q�]2 ∈ {0, 1} and |ei| ≤ q/4. Then
Prv1,v2 [b1 ⊕ b2 = b] > 1 − 2(|e| + 1)/q.

Proof. We break the proof into four cases, namely b = 0 vs. b = 1 and e ≥ 0 vs.
e < 0. Below we prove only the first the case b = 0 and v = e ≥ 0, the other
three cases are similar. For the first case consider choosing at random v1 ∈ Zq

and setting v2 = [v−v1]q = [e−v1]q. It is straightforward (but tedious) to check
that the condition b1 ⊕ b2 = b = 0 is satisfied whenever we have

either v1, v2 ∈ (−q

4
+ e,

q

4
)
, or v1, v2 ∈ [−q

2
,
−q

4
) ∪ (q

4
+ e,

q

2
)
.

Spooky Encryption and Its Applications 105

For example when v1 ∈ (
q
4 + e, q

2

)
then we have b1 = 1 and

v2 = e − v1 ∈
(
e − q

2
, e − (

q

4
+ e)

)
⊆ (− q

2
, − q

4
)
,

so we get also b2 = 1 and therefore b1 ⊕ b2 = 0 = b.
The only error regions are v1, v2 ∈ (−q

4 , −q
4 + e), v1, v2 ∈ (q

4 , q
4 + v), and

(depending on rounding) also upto two of the four points v1 ∈ {±q
4 , ±q

4 +e}∩Z.

3.3 Beyond AFS-2-Spooky Encryption

The construction from Theorem 2 does not directly extend to functions with
more than two arguments, since Lemma 1 no longer holds for more than two
vi’s (even for the no-error case of e = 0). Instead, we can use the GMW-like
transformation that was sketched in the introduction and is described in detail
in Sect. 5 to get a general AFS-spooky scheme.

To support this transformation, we need an AFS-2-spooky scheme which is
multi-hop (in the sense of [13]), i.e. we need to apply the spooky evaluation
procedure not just to fresh ciphertexts, but also to evaluated ciphertexts that
resulted from previous applications of spooky evaluation. The AFS-2-spooky
scheme in Theorem 2 may or may not have this property, depending on the
underlying multi-key FHE scheme. In particular the Peikert-Shiehian scheme in
[26] is “natively multi-hop,” so we can base our construction on that scheme
and get directly a multi-hop AFS-2-spooky scheme which is suitable for our
transformation.

On the other hand, the schemes from [7,22] support only one hop, since only
fresh cipehrtexts can be processed in a multi-key fashion. We can stil use them
for our purposes by applying the same bootstrapping-based transformation as
in [13, Theorem 4], which transforms any compact fully-homomorphic scheme
to a multi-hop one:5 More details are provided in the full version [9].

Theorem 3. Assuming the hardness of α-DLWE, there exists a leveled FHE
scheme that supports d interleaved levels of AFS-2-spooky multiplications and
single-key addition, with total error probability ε = α · d · poly(κ).

Corollary 1. Assuming the hardness of α-DLWE, there exists a leveled ε-AFS-
spooky encryption scheme for ε = α·d·poly(κ). Further making a circular-security
assumption, we get a (non-leveled) ε-AFS-spooky encryption scheme. ��

4 piO Based Spooky Encryption

In this section we show a construction based on probabilistic iO, in conjunction
with lossy homomorphic encryption, that can support many 2-key spooky rela-
tions, even beyond AFS-spooky. Compared to our LWE-based construction from
5 The transformation in [13] is described for single-key FHE schemes, but it applies

also to multi-key schemes.

106 Y. Dodis et al.

Sect. 3, the construction here does not need a CRS and has zero error probability,
and it supports more spooky distributions. On the other hand, we are making a
much stronger assumption here, and also we need a different scheme for different
spooky relations.6

The construction in this section supports in particular the functionality that
we need for our generic transformation from Sect. 5, that turns an AFS-2-spooky
scheme to an AFS-n-spooky one. The resulting AFS-n-spooky also does not use a
CRS and has no error probability. Moreover, applying this transformation yields
a single scheme supporting all AFS-spooky relations.

Organization of this Section. In Sect. 4.1 we introduce our tools, defining prob-
abilistic indistinguishability obfuscation (using a slightly weaker variant of the
definition of Canetti et al. [6]) and lossy homomorphic encryption with malicious
circuit privacy. In Sect. 4.2 we describe and prove our construction for 2-input
spooky encryption scheme, and finally in Sect. 4.3 we show how to obtain a
multi-input AFS-spooky encryption.

4.1 Tools

Probabilistic Indistinguishability Obfuscation. Our construction uses
probabilistic iO, a notion that was recently introduced by Canetti et al. [6].
Loosely speaking, this is an obfuscator for probabilistic circuits with the guar-
antee that the obfuscations of any two “equivalent” circuits are computationally
indistinguishable.

Canetti et al. define several variants of piO, where the main distinction is the
precise formulation of what it means for circuits to be equivalent. Our definition
corresponds to a (weakened variant) of their X-Ind piO (which can be realized
assuming sub-exponentially secure iO and sub-exponentially secure OWF, see
Theorem 4 below). Roughly, our variant only considers pairs of circuits with the
property that for every input, their output distributions are identical, while the
definition in [6] allows a small statistical gap.

To formally define piO, we consider a (possibly randomized) PPT sam-
pling algorithm S that given as input a security parameter 1κ, outputs a triple
(C0, C1, z), where C0 and C1 are randomized circuits (to be obfuscated) and z is
some auxiliary input. We say that a sampler S is an equivalent-circuit-sampler
if with probability 1 it outputs circuits C0 and C1 such that for every x the
circuits C0(x) and C1(x) generate identical distributions.

Definition 4 (Probabilistic Indistinguishable Obfuscation (piO), [6]). A
probabilistic indistinguishability obfuscator is a probabilistic polynomial-time algo-
rithm piO that, given as input a security parameter 1κ and a probabilistic circuit
C, outputs a circuit C ′ = piO(1κ, C) (which may be deterministic) of size at most
|C ′| = poly(κ, |C|) such that the following two properties hold:
6 We can extend the construction so that a single scheme can handle an entire class

of spooky relations, as long as we can describe relations in that class and verify that
a given relation is no-signaling.

Spooky Encryption and Its Applications 107

1. For every individual input x, the distribution C(x) and
(
piO(1κ, C)

)
(x) are

identical.7
2. For every equivalent-circuit-sampler S, drawing (C0, C1, z) ← S(1κ) we get

computationally indistinguishable distributions:

{(C0, C1, z, piO(1κ, C0))} c= {(C0, C1, z, piO(1κ, C1))}
We note that our correctness guarantee is incomparable to that given by [6].

Indeed, motivated by their PRF based construction, the definition in [6] basically
requires that no PPT adversary can distinguish between oracle access to C and to
piO(1κ, C) (so long as the adversary is not allowed to repeat its queries). On the
one hand our definition is weaker in that it only considers each input individually,
but on the other hand it is stronger in that it requires that for each such individ-
ual input the distributions are identical. Our correctness guarantee can be easily
obtained from the construction in [6], by using an underlying PRF {fs}s with the
property that fs(x) is individually uniformly random for every x. The latter can
be easily obtained by taking any PRF and xor-ing its output with a fixed random
string.

Theorem 4 [6]. Assuming the existence of a sub-exponentially indistinguish-
able indistinguishability obfuscator for circuits and a sub-exponentially secure
puncturable PRF, there exists a probabilistic indistinguishability obfuscator.

Lossy Encryption. Loosely speaking, a lossy encryption scheme has a procedure
G̃en for generating “lossy public keys.” These keys are indistinguishable from
normal public keys, but have the property that ciphertexts generated using such
lossy keys contain no information about their plaintext. We defer the formal
definition to the full version [9].

Malicious Circuit-Private Encryption. A public-key encryption scheme
(Gen,Enc,Dec), with message space {0, 1}�, is a homomorphic encryption scheme
for a class of Boolean circuits C on �-bit inputs if there exists a PPT algo-
rithm Eval, such that for every key-pair (pk, sk), circuit C ∈ C and ciphertext
c = Encpk(x), where x ∈ {0, 1}�, on input (C, c) the algorithm Evalpk outputs c∗

such that Decsk(c∗) = C(x). If the length of c∗ does not depend on C then we
say that the scheme is compact.

As noted in the introduction, our construction requires a homomorphic
encryption scheme that has malicious circuit privacy, which means that the
ciphertext c∗ does not reveal any non-trivial information about the circuit C
which was used to generate it, even for an adversarially chosen public-key pk
and ciphertext c. We defer the formal definition to the full version [9].

Malicious circuit privacy for evaluating NC1 circuits can be achieved by a
“folklore” combination of an information theoretic variant of Yao’s garbled cir-
cuit [17] with an oblivious transfer protocol that has perfect security against a
7 The latter distribution is defined also over the randomnees of piO. Note that this

does not imply that the joint distribution for multiple inputs will be the same in the
two cases.

108 Y. Dodis et al.

malicious receiver. The latter can be constructed based on DDH [23]. Moreover,
these schemes can be made lossy using standard techniques.

Moreover, we can apply the techniques of Ostrovsky et al. [24] to bootstrap
this result to any poly-circuit, assuming the existence of (leveled) fully homo-
morphic encryption with NC1 decryption. The latter scheme can be instantiated
based on LWE, see more details in the full version [9]. Hence we obtain:

Theorem 5. Assuming the hardness of LWE and DDH, there exists a lossy lev-
eled fully-homomorphic encryption scheme with malicious circuit privacy.

4.2 Two-Key Spooky Encryption from piO

Our construction relies on a property of two-input relations that we call re-
sampleability. Roughly, it should be possible to sample efficiently from the dis-
tribution of the second coordinate conditioned on a particular fixed value for the
first coordinate.

Definition 5 (Efficiently Re-sampleable). A randomized polynomial-size
circuit C : {0, 1}�1 × {0, 1}�2 → {0, 1}�′

1 × {0, 1}�′
2 is efficiently re-sampleable

if there exists a polynomial-size randomized “resampling circuit” RSC , such that
for any input (x1, x2) to C, the distribution C(x1, x2) is identical to the “resam-
pled distribution” {(y1, y′

2) : (y1, y2) ← C(x1, x2), y′
2 ← RSC(x1, x2, y1)} .

We construct a 2-key spooky scheme that supports any 2 input/output circuit
that is both efficiently re-sampleable and no-signaling.

Theorem 6 (2-Key Spooky Encryption from piO). Let C : {0, 1}�1 ×
{0, 1}�2 → {0, 1}�′

1 × {0, 1}�′
2 be an efficiently re-sampleable no-signaling circuit,

with re-sampling circuit RSC . If there exist (1) piO, and (2) a perfectly-lossy
homomorphic encryption scheme that can evaluate C and RSC , and is perfectly
malicious circuit private, then there exists a C-spooky encryption scheme, which
is also perfectly lossy (and hence semantically secure).

We stress that the encryption scheme that we need for Theorem 6 must be
able to evaluate C and RSC and be perfectly malicious circuit private, but it
need not be compact. In the full paper we describe such a scheme for NC1 circuits
based on DDH. Hence, under DDH and piO, we get a C-spooky scheme for every
re-sampleable and no-signaling C in NC1. Moreover, we can use the techniques
of Ostrovsky et al. [24] to supports any poly-size circuit, assuming both DDH
and FHE. Since [6] show that full-fledged FHE can be built based on piO, we get
a construction under DDH and piO for C-spooky scheme for every re-sampleable
and no-signaling polynomial-size circuit C.

Remark 1 (Almost No-Signaling). A natural relaxation of no-signaling circuits,
considered in previous works (e.g., [11,18,19]), allows the distributions C(x, y)1
and C(x, y′)1 to be indistinguishable (rather than identical). Such circuit is called
almost no-signaling.

Spooky Encryption and Its Applications 109

It is clear that for a secure C-spooky encryption scheme to exist, C must be
(at least) almost no-signaling (cf. [11]). However our construction does not extend
to the “almost” case, Theorem 6 requires that C to be perfectly no-signaling, i.e.
C(x, y)1 and C(x, y′)1 must be identically distributed for all x, y, y′. Supporting
almost no-signaling circuits is left to future work.

Proof of Theorem 6. Let piO be a probabilistic indistinguishability obfuscator
and let (Gen,Enc,Dec) be the encryption scheme from the theorem statement,
with G̃en the corresponding lossy key generation algorithm and Eval the homo-
morphic evaluation algorithm with malicious circuit privacy.

Each instance of our construction uses two public/secret keys pairs, where
only the first pair is used for “normal encryption and decryption,” and the other
pair is only used for spooky evaluation. In addition to the two pairs, the public
key also contains an obfuscated program that implements spooky evaluation
using the secret key. That obfuscated program has a secret key hard-wired,
and given two ciphertexts c1, c2 it decrypt the first one, then evaluates the re-
sampling circuit RSC homomorphically on the other. A complete description of
the resulting scheme is found in Fig. 1.

We first show that the scheme supports spooky evaluation of C and then show
that it is a lossy encryption scheme (and in particular is semantically secure).

Lemma 2. The scheme (Gen-Spooky,Enc-Spooky,Dec-Spooky,Spooky-Eval) is
C-spooky.

Proof. The spooky evaluation procedure gets as input two public-keys
pk-spooky1 =

(
pk11, pk21, P̃1

)
, pk-spooky2 =

(
pk12, pk22, P̃2

)
, and match-

ing ciphertexts c1 = Enc-Spooky(pk-spooky1, x1) and c2 = Enc-Spooky
(pk-spooky2, x2) (for some inputs x1, x2 to C). It simply runs the obfuscated pro-
gram P̃1 = piO(1κ, P [sk11, pk21]) on input (c1, pk12, c2) and returns its output.

By construction and using the correctness of piO, this procedure outputs c′
1

and c′
2 such that c′

1 ← Enc(pk21, y1), where y1 ← (
C(x1, 0�2)

)
1
, and c′

2 ←
Evalpk12(RS[x1, y1, r], c2), where RS[x1, y1, r](x2) ≡ RSC(x1, x2, y1; r). By the
no-signaling property y1 is distributed identically to y′

1 ← (
C(x1, x2)

)
1

and
so c′

2 is distributed as Evalpk12(RS[x1, y
′
1, r], c2). Hence

Dec-Spooky(sk-spooky1, c
′
1) = Decsk11 (Enc(pk21, y′

1)) = y′
1

and Dec-Spooky(sk-spooky2, c
′
2) = RS[x1, y

′
1, r](x2) = RSC

(
x1, x2, y

′
1; r

)
2
.

By the definition of re-sampling, the joint distribution
(
Dec-Spooky(sk-spooky1,

c′
1),Dec-Spooky(sk-spooky2, c

′
2)

)
is identical to C(x1, x2), as required.

Lemma 3. The scheme (Gen-Spooky,Enc-Spooky,Dec-Spooky) is a perfectly
lossy encryption scheme.

110 Y. Dodis et al.

Fig. 1. piO based spooky encryption

Fig. 2. The probabilistic circuits P ′[sk1, pk2] and P ′′[pk2]

Spooky Encryption and Its Applications 111

Proof. We need to show that there is an alternative key-generation procedure
˜Gen-Spooky, producing public keys that are indistinguishable from the real ones,

but such that ciphertexts encrypted relative to these keys contain no information
about the encrypted plaintext.

The main challenge in establishing the lossiness of the scheme is in showing
that the public-keys are indistinguishable from lossy keys despite the obfuscated
programs in the public-key (which depend on the corresponding secret keys).
Toward that end, we will (gradually) show that these obfuscated programs are
computationally indistinguishable from programs that do not depend on the
secret keys.

Below we state and prove a few claims, where we consider the distributions
(pk1, sk1), (pk2, sk2) ← Gen(1κ) and p̃k1, p̃k2 ← G̃en(1κ), where G̃en is the lossy
key-generation of the underlying encryption scheme.

Claim 4.1.
(
pk1, pk2, piO(1κ, P [sk1, pk2])

)
c=

(
pk1, p̃k2, piO(1κ, P [sk1, p̃k2])

)
.

Proof. Follows from the indistinguishability between standard and lossy public-
keys of the underlying scheme.

Claim 4.2.
(
pk1, p̃k2, piO(1κ, P [sk1, p̃k2])

)
c=

(
pk1, p̃k2, piO(1κ, P ′[sk1, p̃k2])

)
,

where P ′[sk1, p̃k2] is similar to P [sk1, p̃k2] except that it encrypts 0�1 rather
than y1 in Step 3, see Fig. 2.

Proof. Since p̃k2 is a lossy public-key, Encp̃k2(0
�1) and Encp̃k2(y1) are identically

distributed. Hence P and P ′ have identical output distribution for every input,
and so their piO-obfuscations are indistinguishable.

We proceed to the main claim:

Claim 4.3.
(
pk1, p̃k2, piO(1κ, P ′[sk1, p̃k2])

)
c=

(
pk1, p̃k2, piO(1κ, P ′′[p̃k2])

)
,

where the program P ′′[p̃k2], defined in Fig. 2, does not have the secret key sk1
(hence it cannot recover x1 or compute y1), so on c = Encpk(x2) it evaluates
homomorphically f ′′(x2) = C(0�1 , x2)2 rather than f ′(x2) = RSC(x1, x2, y1).

Proof. We will show that for every valid secret key sk1 and arbitrary public
key p̃k2, the randomized programs P ′[sk1, p̃k2] and P ′′[p̃k2] are functionally
identical, in the sense that their outputs are identically distributed for every
input. The claim will then follow from the fact that piO is a probabilistic indis-
tinguishability obfuscator (see Definition 4).

Note that the first output c′
1 = Encp̃k2(0

�′
1) is generated identically by the two

programs, and is independent of everything else that happens in these programs,
so we only need to show that the second output c′

2 is identically distributed. To
show this, we first establish that c′

2 is an encryption under pk of a value y2
that is distributed identically in the two programs, and then we appeal to the
malicious circuit-privacy of the underlying scheme to conclude that also c′

2 itself
is identically distributed.

112 Y. Dodis et al.

For starters, fix some arbitrary x1 ∈ {0, 1}�1 and x ∈ {0, 1}�2 , and consider
the following distributions

D1[x1, x] =
{
y1 ← C(x1, 0�2)1, output y2 ← RSC(x1, x, y1)

}
, // Output distribution of P ′

D2[x1, x] =
{
y1 ← C(x1, x)1, output y2 ← RSC(x1, x, y1)

}
,

D3[x1, x] =
{
output y2 ← C(x1, x)2

}
,

D4[x] =
{
output y2 ← C(0�1 , x)2

}
. // Output distribution of P ′′

Since C is a no-signaling circuit then D1[x1, x] = D2[x1, x] and D3[x1, x] = D4[x],
and since RC is the re-sampling circuit for C then we also have D2[x1, x] =
D3[x1, x]. We therefore conclude that the two distributions D1[x1, x] and D4[x]
are identical for every x1, x.

Now consider x1 = Decsk1(c1), and x which is the “effective plaintext” for
pk, c (such x must exist since the underlying scheme is malicious circuit-private).
Recall that the second output of P ′[sk1, p̃k2] consists of a homomorphic evalu-
ation of D1[x1, x], while the second output of P ′′[p̃k2] consists of homomorphic
evaluation of D4[x]. Using perfect malicious circuit privacy, we conclude that
these outputs are identically distributed.

Having established that the output distributions of P ′[sk1, p̃k2] and P ′′[p̃k2]
are identical (for every input), the claim follows because piO is a probabilistic
indistinguishability obfuscator.

Claim 4.4.
(
pk1, p̃k2, piO(P ′′

p̃k2
)
)

c=
(
p̃k1, p̃k2, piO(P ′′

p̃k2
)
)
.

Proof. This claim follows from the indistinguishability between standard and
lossy public-keys of the underlying scheme.

Combining Claims 4.1-4.3, the two distributions
(
pk1, pk2, piO(Psk1,pk2)

)
and(

p̃k1, p̃k2, piO(P ′′
p̃k2

)
)

are computationally indistinguishable. We complete the
proof of Lemma 3 by observing that keys drawn from the latter distribution
are lossy, since the key p̃k1 is lossy, the Enc-Spooky procedure just uses the
underlying encryption procedure with p̃k1, and the program P ′′[pk2] that we
obfuscate is independent of p̃k1.

4.3 piO Based Multi-key Spooky Encryption

To obtain spooky encryption for more than two inputs, we would like to invoke
our general transformation from 2-key spooky encryption to n-key spooky
encryption (see Theorem 8). The scheme in Theorem 6 supports spooky mul-
tiplication, but we need it to support multiple alternating hops of (single-key)
additive homomorphism and spooky multiplication. This is obtained by the fol-
lowing lemma:

Lemma 4. Assume the existence of (1) piO and (2) a lossy encryption scheme
that is homomorphic for all one-bit to one-bit functions with perfect malicious

Spooky Encryption and Its Applications 113

circuit privacy. Then, for every d = d(κ), there exists an encryption scheme
that supports d interleaved levels of AFS-2-spooky multiplications and single-key
additions.

Proof (Proof Sketch). To obtain an additive homomorphism, we use a construc-
tion of Canetti et al. [6] which, assuming piO, transforms any lossy encryption
into a d-leveled FHE. This is done by taking d copies of keys of the original lossy
scheme and publishing d − 1 obfuscated programs where the ith obfuscated pro-
gram takes as input two ciphertexts encrypted under the ith key, decrypts them
(using the ith private-key which is hard-wired) applies one operation (AND,
XOR, NAND, etc.) and encrypts the result under the (i + 1)th key. Using the
fact that the scheme is lossy, Canetti et al. show that the piO obfuscation hides
the hard-wired private keys and semantic security is maintained.

For our application, we need to compute multiple spooky multiplications,
and then sum them up with single-key addition. To get n-input AFS-spooky we
need to sum up n ciphertexts, which can be done using an addition tree of depth
d = log n.

Looking more closely at the construction from [6], we observe that by set-
ting d = i log n we can already support i interleaving hops of (single-key) addi-
tive homomorphism and 2-input spooky multiplications. This follows since the
transformation in [6] has the property that after every additive homomorphic
operation, we obtain a fresh ciphertext (under a new-key).

Using the scheme from Lemma 4 and applying Theorem 8, we get:

Theorem 7 (n-Key Spooky from piO). Assume existence of (1) piO and
(2) a lossy encryption scheme that is homomorphic for all single-bit to single-
bit functions with perfect malicious circuit privacy. Then there exists a leveled
AFS-spooky encryption scheme.

5 From 2-Input to n-Input AFS-Spooky

Theorem 8 (2-Spooky to n-Spooky). Let d = d(κ) and assume that there
exists a public-key bit-encryption scheme that supports 2d (interleaving) hops of
(1) single-key compact additive homomorphism and (2) two-key spooky multipli-
cation. Then, that same scheme is a d-level AFS-spooky encryption.

Proof. Let (Gen,Enc,Dec) be the encryption scheme in the theorem statement,
let Spooky-Mult be the spooky multiplication PPT algorithm and let Eval be the
single-key homomorphic evaluation algorithm (that supports compact additive
homomorphism). We show a procedure that given as input:

1. A depth-d, fan-in-2, n-input arithmetic circuit over GF(2), C : ({0, 1}∗)n →
{0, 1};

2. n public-keys pk1, . . . , pkn; and
3. n ciphertexts c1, . . . , cn, where cj = Enc(pkj , xj),

114 Y. Dodis et al.

outputs a sequence of ciphertexts c′
1, . . . , c

′
n such that

∑
j∈[n] Decskj (c

′
j) =

C(x1, . . . , xn) (where addition is over GF(2)).

The procedure processes the circuit wire by wire. We maintain the invari-
ant that whenever a wire w is processed, the procedure generates ciphertexts
c
(w)
1 , . . . , c

(w)
n such that

∑
j∈[n] Decskj

(c(w)
j) is the correct value of the wire w

when the circuit C is evaluated on input (x1, . . . , xn). Furthermore, if the wire
w is at distance i from the input then c

(w)
1 , . . . , c

(w)
n have passed at most 2i hops

of homomorphic operations. In particular, at the end of the process the pro-
cedure will have generated the sequence of ciphertexts cout1 , . . . , coutn such that∑

j∈[n] Decskj
(coutj) is equal to the output value of the circuit, as required. We

proceed to describe how the wires are (inductively) processed.
Consider an input wire w, corresponding to an input bit b which is part of

the ith input xi, and for which we are given the input ciphertext c = Encpki
(b).

For that wire we set c
(w)
i = c and c

(w)
j = Encpkj′ (0) for all j 	= i. Hence,∑

j∈[n] Decskj (c
(w)
j) = Decski(c) = b, which is the correct value for the wire w.

Consider a gate g with input wires u, v and output wire w. Let bu (resp., bv)
be the value on the wire u (resp., v) when C is evaluated on input (x1, . . . , xn). By
induction, we have already generated ciphertexts c

(u)
1 , . . . , c

(u)
n and c

(v)
1 , . . . , c

(v)
n

such that
∑

j∈[n] Decskj
(c(u)j) = bu and

∑
j∈[n] Decskj

(c(v)j) = bv.

For the case that g is an addition gate, we set c
(w)
j = Eval

(
pkj ,⊕, c

(u)
j , c

(v)
j

)
and we get:

∑
j∈[n]

Decskj (c
(w)
j) =

∑
j∈[n]

Decskj (Evalpkj (⊕, c
(u)
j , c

(v)
j)) =

∑
j∈[n]

Decskj (c
(u)
j) ⊕ Decskj (c

(v)
j) = bu ⊕ bv,

which is the correct value for the wire w. Furthermore, each new ciphertext was
obtained by just a single homomorphic operation.

Now consider the case that g is a multiplication gate. We first compute
auxiliary ciphertexts (fj,j′ , gj,j′) = Spooky-Mult(pkj , pkj′ , c

(u)
j , c

(v)
j′), for every

j, j′ ∈ [n]. We then set

c
(w)
j = Evalpkj

(⊕, fj,1, . . . , fj,n, g1,j , . . . , gn,j).

We obtain that:∑
j∈[n]

Decskj

(
c
(w)
j

)
=

∑
j∈[n]

Decskj

(
Evalpkj

(⊕, xj,1, . . . , xj,n, y1,j , . . . , yn,j)
)

=
∑
j∈[n]

∑
j′∈[n]

Decskj
(fj,j′) ⊕ Decskj

(gj′,j)

=
∑
j∈[n]

∑
j′∈[n]

Decskj
(c(u)j) · Decskj

(c(v)j′)

=
(∑

j∈[n]

Decskj
(c(u)j)

)
·
(∑

j′∈[n]

Decskj
(c(v)j′)

)
= bu · bv,

Spooky Encryption and Its Applications 115

which is the correct value for the wire w (where the fourth equality is due to
the Spooky-Mult guarantee). Furthermore, each new ciphertext was obtained by
applying two hops of homomorphic operations.

6 Applications of Spooky Encryption

6.1 Counter Example for the [1] Heuristic

Building on [11], we show that AFS-2-spooky encryption gives a counter-example
to a natural method proposed by Aiello et al. [1] for building succinct arguments
for NP, resolving a question posed by [11]. The suggestion of Aiello et al. [1] was
to take any multi-prover interactive proof-system (MIP) and to use that proof-
system using only a single prover by sending all of the MIP queries encrypted
under independents keys of a homomorphic encryption scheme.8 The fact that
the scheme is homomorphic allows the honest prover to answer the different
queries (homomorphically) and the intuition was that the use of different keys
means that only local homomorphisms are possible. Dwork et al. [11] questioned
this intuition and raised the question of whether there exist spooky encryption
schemes that allow for other kinds of attacks which can break the soundness
of the [1] protocol. We show that this is indeed the case: there exists an MIP
(suggested by [11]) which, when combined with any AFS-2-spooky encryption
scheme via the [1] transformation, yields an insecure protocol. The MIP that we
use is based on a PCP for 3-coloring due to Petrank [27]:

Theorem 9 [27]. There exists a universal constant ε > 0 such that distinguish-
ing between the following two types of graphs is NP complete:

– G is 3-colorable.
– Every 3-coloring of G has at least ε fraction of monochromatic edges.

This PCP leads to the following natural MIP protocol between a verifier V
and two non-communicating provers P1 and P2 (who, in case G is 3-colorable,
also have access to the same 3-coloring of G).

1. V chooses a random edge (u, v) ∈ E, then with probability 1/3 it sets q1 =
u and q2 = v, with probability 1/3 it sets q1 = u and q2 = u, and with
probability 1/3 it sets q1 = v and q2 = v. V sends q1 to P1 and q2 to P2.

2. Each Pi sends the color ai ∈ {0, 1, 2} of the vertex qi (encoded as two bits).
3. V accepts if q1 = q2 and a1 = a2, or if q1 	= q2 and a1 	= a2.

Completeness and soundness are easy to see, some details are given in the
full version [9].

Insecurity of the 3-Coloring MIP. Composed the foregoing MIP with any AFS-
2-spooky encryption scheme yields an insecure protocol. More specifically, the
8 Actually, the original suggestion in [1] was to use a PCP (rather than an MIP).

Dwork et al. [11] show that using PCPs is not sound and raise the question of
whether soundness can be obtained by replacing the PCP with an MIP.

116 Y. Dodis et al.

cheating prover is given ciphertexts c1 = Encpk1(q1) and c2 = Encpk2(q2). Loosely
speaking, using the spooky evaluation algorithm it can produce ciphertexts
Encpk1(a1) and Encpk2(a2) for bits a1, a2 ∈ {0, 1} such that a1 = a2 if and only if
u = v. It sends as its answers to V the ciphertext

(
Encpk1(0),Encpk1(a1)

)
as its

answer to the first query and
(
Encpk1(0),Encpk1(a2)

)
as its answer to the second

query (the extra encryption of 0 is used simply because the verifier expects an
answer with 2 bits).

Now, if the verifier choose q1 = u and q2 = v (corresponding to the first of
the three possibilities) then q1 	= q2 and so a1 	= a2 and the verifier accepts.
Otherwise, (i.e. if q1 = q2) then we have that a1 = a2 and again the verifier
accepts. Hence, we have shown a strategy that breaks the soundness of the
scheme with probability 1.

6.2 2-Round MPC from AFS-Spooky Encryption

AFS-spooky encryption seems to be a useful tool for minimally-interactive multi-
party protocols: it lets each party broadcast an encryption of its input under its
own key, then everyone individually performs the AFS-spooky evaluation locally,
and each party can locally decrypt and recover a share of the output (relative to
an additive n-out-of-n secret-sharing scheme). Finally another round of commu-
nication can be used to recover the secret from all the shares. Implementing this
the approach requires attention to some details, such as ensuring that the spooky
evaluation is deterministic (so that all the parties arrive at the same sharing)
and making the shares simulatable. The latter can be done by having each party
distribute a random additive sharing of 0 in the first round, and then adding all
their received shares to their spooky generated share before broadcasting it in
the second round.

A different (but similar) avenue for implementing 2-round MPC, is by
reducing AFS-spooky encryption to multi-key FHE with threshold decryp-
tion (TMFHE). This primitive was recently formalized by Mukherjee and
Wichs [22], who showed how to use it to generically construct 2-round
MPC. Just like spooky encryption, a TMFHE scheme can homomorphically
process n ciphertexts c1, . . . , cn, encrypting values x1, . . . , xn under indepen-
dent public keys pk1, . . . , pkn, producing for any function f a ciphertext
c∗ = Eval(f, (pk1, c1), . . . , (pkn, cn)). The ciphertexts c∗ cannot be decrypted
by any single secret keys ski individually, but each party can compute a par-
tial decryption yi = PartDecski

(c∗) and these y’s can be combined to get
y = FinDec(y1, . . . , yn) = f(x1, . . . , xn). For security, Mukherjee and Wichs
required that for each individual i, the partial decryption yi can be simulated
given the evaluated ciphertext c∗, the final output y and the secret key skj for
j 	= i (see [22] for formal definitions).

We observe that an AFS-spooky encryption with perfect correctness imme-
diately yields a TMFHE scheme. The homomorphic evaluation procedure Eval
of the TMFHE runs the Spooky-Eval procedure of the AFS-spooky encryption
and sets c∗ = (c′

1, . . . , c
′
n) to be the resulting ciphertexts. The partial decryption

procedure PartDecski
(c∗) outputs yi = Decski

(c′
i) and the combination procedure

Spooky Encryption and Its Applications 117

FinDec(y1, . . . , yn) outputs y =
⊕n

i=1 yi. For security, we observe that each par-
tial decryption yi can be simulated given c∗ = (c′

1, . . . , c
′
n), y and skj for j 	= i

by computing yj = Decskj
(c′

j) and setting yi = y ⊕ (
⊕

j �=i yj).9 This proves the
following theorem.

Theorem 10. An AFS-spooky encryption scheme with perfect correctness
implies a multi-key FHE with threshold decryption (TMFHE).

Using the above theorem and the results of [22] which constructs a 2-round
MPC from TMFHE, we get the following corollaries.

Corollary 2. Assuming the existence of a weak AFS-spooky encryption scheme:

– There exists a 2-round MPC protocol with semi-honest security. If the encryp-
tion scheme is in the plain model then so is the MPC protocol and if the
encryption scheme requires a CRS then so does the MPC protocol.

– Furthermore, assuming the existence of NIZKs in the CRS model, there exists
a 2-round MPC protocol with malicious security in the CRS model.

Combining this with our construction of AFS-spooky encryption without a CRS
from iO, we get the first construction of a 2-round semi-honest MPC protocol in
the plain model.

Corollary 3. Assume existence of (1) piO and (2) a lossy encryption scheme
that is homomorphic for all single-bit to single-bit functions with perfect mali-
cious circuit privacy. Then, there exists a 2-round MPC protocol with semi-honest
security in the plain model.

6.3 Function Secret Sharing

Function secret sharing (FSS), recently introduced by Boyle, Gilboa and Ishai
[4], allows a dealer to split a function f into k succinctly described functions
f̂1, . . . , f̂k such that (1) any strict subset of the f̂i’s reveals nothing about f

and (2) for any x it holds that the values f̂1(x), . . . , f̂k(x) are an additive secret
sharing of f(x). Boyle et al. gave constructions under standard assumptions for
certain restricted families of functions and a general construction for any poly-
size circuit, based on piO. We show how to construct such a general FSS scheme
given any AFS-spooky encryption scheme. In particular, we obtain a leveled FSS
scheme assuming only LWE.

To construct such an FSS scheme, the dealer first generates a k-out-of-k
secret sharing f1, . . . , fk of the description of the function f . The dealer also
generates k key pairs (pki, ski)i∈[k] for the AFS spooky scheme and publishes

f̂i
def=

(
ski, pk1, . . . , pkk,Encpk1(f1), . . . ,Encpkk

(fk)
)

as the ith share. Assuming

9 We note that imperfect correctness of the AFS-spooky scheme will translate into a
security problem for the TMFHE scheme, as the simulated yi will have a different
distribution than the real ones.

118 Y. Dodis et al.

the scheme is semantically secure, any strict subset of the f̂i’s hides the original
function f (upto its description length).

For the FSS functionality, given an input x we can consider the circuit Cx

that takes as input k shares of a function f , adds them up and applies the
resulting function to the input x (which, say, is hardwired). To evaluate f̂i on x,
we run the spooky evaluation algorithm, which we assume wlog is deterministic,
on Encpk1(f1), . . . ,Encpkk

(fk) with respect to the circuit Cx. Thus, given each f̂i

separately, we can generate the same ciphertexts c1, . . . , ck which are encryptions
of an additive secret sharing of f(x). Each function f̂i can then be used to decrypt
ci and publish its share of f(x).

A De-centralized View. We remark that the above construction can be viewed
as a de-centralized FSS. More specifically, we may have some k (not necessarily
secret or functional) shares f1, . . . , fk of a function f , where each share is owned
by a different player. Player i can generate a key pair (pki, ski) and broadcast
(pki,Encpki

(fi)) to all other players. Using our scheme, after learning the input
x, the players can (non-interactively) generate an additive secret sharing of f(x).

7 Spooky-Free Encryption

We turn now to study spooky-free encryption, i.e. an encryption scheme that
ensures that no spooky relations can be realized by an adversary. The formal def-
inition roughly states that any correlation that an attacker can induce between
the original messages (m1, . . . ,mn) and “tampered messages” (m′

1, . . . ,m
′
n), can

be simulated by a “local simulator” that produces m′
i only as a function of mi

(and some shared randomness).

Definition 6 (Spooky-Free Encryption). An encryption scheme (Gen,Enc,
Dec) is spooky-free if for every PPT adversary A there exists a PPT sim-
ulator S such that for all PPT message distributions D, the two distri-
butions REALD,A(κ) and SIMD,S(κ) specified below are computationally
indistinguishable:

REALD,A(κ): 1. Sample (m1, . . . , mn, α) ← D(1κ); // α is auxiliary information

2. Choose (pki, ski) ← Gen(1κ), set ci ← Encpki
(mi) for i = 1, . . . , n;

3. Let (c′
1, . . . , c′

n) ← A(pk1, . . . , pkn, c1, . . . , cn);
4. Set m′

i = Decski
(ci) for i = 1, . . . , n;

5. Output (m1, . . . , mn, m′
1, . . . , m′

n, α).

SIMD,S(κ): 1. Sample (m1, . . . , mn, α) ← D(1κ); // α is auxiliary information

2. Sample a random r, let m′
i = S(1κ, 1n, i, mi; r) for i = 1, . . . , n;

3. Output (m1, . . . , mn, m′
1, . . . , m′

n, α).

It is not hard to see that spooky-freeness for n ≥ 2 implies semantic security.
As a small subtlety, here the attacker must choose the messages it claims to
distinguish before seeing the public-key, since the message sampler D does not
know anything public keys used in the real experiment. (We defined it this way

Spooky Encryption and Its Applications 119

since stronger security was not needed for our delegation application.) Of course,
this minor difference from standard semantic security is without loss of generality
when the message space is polynomial small (e.g., for bit encryption).

Lemma 5. A spooky-free scheme for n ≥ 2 is semantically secure (in the “selec-
tive” sense discussed above).

Proof. Suppose that a scheme (Enc,Dec,Gen) is not semantically secure, and let
B be an attacker that can distinguish Encpk(x0) from Encpk(x1). We use B to
construct a sampler D and attacker A that can fool any simulator S with non-
negligible probability. We assume that D and A (and S) know the messages x0

and x1 whose encryption B can distinguish.
D draws at random m1 ← {x0, x1} and sets mi := 0 for i > 1. Upon seeing n

ciphertexts c1, . . . , cn, A gives c1 to B, asking him to guess whether it encrypts
x0 or x1. Let σ be the guess that B makes, then we know that m1 = xσ with
probability ≥ 1/2 + ε. A then sets c′

i = ci for all i 	= 2, and sets c′
2 to be a fresh

encryption of xσ under pk2.
As we can see, the output of the real experiment has the tuple (m1,m

′
2)

distributed as (xb, xσ), where b is a random bit and σ = b with probability
≥ 1/2 + ε. On the other hand, the simulator for the second message m′

2 is only
given m2 = 0 as the input, and has to guess σ′ s.t., Pr[b = σ′] ≥ 1/2 + ε, which
is impossible information-theoretically.

In the full version of this work [9] we show that spooky-free homomorphic
encryption is exactly the ingredient needed to instantiate the idea of Aiello
et al. [1] for converting general multi-prover (MIP) systems into single-prover
arguments.10 We also show there that non-malleable encryption is always
spooky-free (albeit without any homomorphic capabilities), and we construct
a spooky-free FHE scheme using a strong security component called succinct
non-interactive argument of knowledge (SNARK).11

Spooky-Free Encryption with CRS. Definition 6 can be naturally extended to
the common-reference-string model. We use this relaxation in the full version
to gain somewhat better efficiency (at the price of a slightly harder proof of
security). We note that, unlike the setting of spooky encryption from Sect. 3, we
do not need the CRS to get the desired functionality, but rather use it only to
improve efficiency. Our construction remains spooky-free (but slower) if all the
public keys are chosen completely independently.

10 An alternate route for instantiating the [1] idea due to [18,19] is to use special types
of MIP, which satisfy a stronger soundness condition, together with any (possibly
spooky) homomorphic encryption scheme.

11 Of course, this construction does not give any new one-round delegation schemes,
since SNARKs trivially imply the existence of such a scheme directly (i.e., without
building spooky-free encryption). Still, if better constructions of spooky-free FHE
are found, they would immediately imply new delegation schemes for NP.

120 Y. Dodis et al.

Acknowledgments. This work was done in part while the authors were visiting the
Simons Institute for the Theory of Computing, supported by the Simons Founda-
tion and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-1523467.

The first author was partially supported by gifts from VMware Labs and Google,
and NSF grants 1319051, 1314568, 1065288, 1017471.

The second author was supported in part by the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office(ARO) under Contract No.
W911NF-15-C-0236.

The third author was supported by NSF MACS - CNS-1413920, DARPA
IBM - W911NF-15-C-0236, SIMONS Investigator award Agreement Dated 6-5-12 and
DARPA NJIT - W911NF-15-C-0226.

The last author was supported in part by NSF grants CNS-1347350, CNS-1314722,
CNS-1413964.

References

1. Aiello, W., Bhatt, S., Ostrovsky, R., Rajagopalan, S.R.: Fast verification of any
remote procedure call: short witness-indistinguishable one-round proofs for NP. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
463–474. Springer, Heidelberg (2000)

2. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012)

3. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Goldwasser, S. (ed.) Innovations in Theoretical
Computer Science, Cambridge, MA, USA, 8–10 January 2012, pp. 350–366. ACM
(2012)

4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015)

5. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, 1–4 June 2013, pp. 575–584. ACM (2013)

6. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

7. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015)

8. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A.,
Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

9. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. IACR Cryptology ePrint Archive 2016:272 (2016)

10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

Spooky Encryption and Its Applications 121

11. Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct proofs for
NP and spooky interactions (2004, Unpublished manuscript). http://www.cs.bgu.
ac.il/∼kobbi/papers/spooky sub crypto.pdf

12. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014)

13. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and
rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010). http://eprint.iacr.org/2010/145

14. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108 (2011)

15. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, New York, USA, pp. 218–229
(1987)

17. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo
Beach, California, USA, pp. 294–304 (2000)

18. Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: STOC,
pp. 565–574 (2013)

19. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31–June 03 2014, pp. 485–494 (2014)

20. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

21. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, 19–22 May 2012, pp. 1219–1234 (2012)

22. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key
FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26.
http://eprint.iacr.org/2015/345

23. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, 7–9 January 2001, Washing-
ton, DC, USA, pp. 448–457 (2001)

24. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-
ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014).
https://eprint.iacr.org/2013/307

25. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31–June 2 2009, pp. 333–342. ACM (2009)

http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://eprint.iacr.org/2010/145
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://eprint.iacr.org/2015/345
https://eprint.iacr.org/2013/307

122 Y. Dodis et al.

26. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. Cryptology ePrint
Archive, report 2016/196 (2016). http://eprint.iacr.org/

27. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4,
133–157 (1994)

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

http://eprint.iacr.org/

Spooky Interaction and Its Discontents:
Compilers for Succinct Two-Message

Argument Systems

Cynthia Dwork1, Moni Naor2, and Guy N. Rothblum3(B)

1 Microsoft Research, Mountain View, USA
2 Department of Computer Science and Applied Math,

Weizmann Institute of Science, Rehovot, Israel
3 Samsung Research America, Mountain View, USA

rothblum@alum.mit.edu

Abstract. We are interested in constructing short two-message argu-
ments for various languages, where the complexity of the verifier is small
(e.g. linear in the input size, or even sublinear if the input is coded appro-
priately).

In 2000 Aiello et al. suggested the tantalizing possibility of obtaining
such arguments for all of NP . These have proved elusive, despite exten-
sive efforts. Our work builds on the compiler of Kalai and Raz, which
takes as input an interactive proof system consisting of several rounds
and produces a two-message argument system. The proof of soundness
of their compiler relies on superpolynomial hardness assumptions.

In this work we obtain a succinct two-message argument system for
any language in NC, where the verifier’s work is linear (or even polylog-
arithmic). Soundness relies on any standard (polynomially hard) private
information retrieval scheme or fully homomorphic encryption scheme.
This is the first non trivial two-message succinct argument system that
is based on a standard polynomial-time hardness assumption. We obtain
this result by proving that the compiler is sound (under standard polyno-
mial hardness assumptions) if the verifier in the original protocol runs in
logarithmic space and public coins. We obtain our two-message argument
by applying the compiler to an interactive proof protocol of Goldwasser,
Kalai and Rothblum. On the other hand, we prove that under standard
assumptions there is a sound interactive proof protocol that, when run
through the compiler, results in a protocol that is not sound.

M. Naor—Incumbent of the Judith Kleeman Professorial Chair. Research supported
in part by grants from the Israel Science Foundation, BSF and Israeli Ministry
of Science and Technology and from the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation (grant No. 4/11). Part of
this work was done while visiting Microsoft Research.
G.N. Rothblum—Part of this work was done while the author was at Microsoft
Research Silicon Valley.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 123–145, 2016.
DOI: 10.1007/978-3-662-53015-3 5

124 C. Dwork et al.

1 Introduction

Imagine going on vacation and upon your return you find that not only has
your home computer ordered the garden robot to mow the lawn but it has
also commissioned from some vendor a lengthy computation that you have been
postponing for a while. While verifying that the lawn has been properly mowed
is simple, you are suspicious about the computation and would like to receive
a confirmation that it was performed correctly. Ideally such a proof would be a
short certificate attached to the result of the program. Hence we are interested
in proofs or arguments1 that are either non-interactive or two-message.

The problem of constructing short two-message arguments for various lan-
guages where the verifier is very efficient (e.g. linear in the input size, or even
sublinear if it is coded properly) has received quite a lot of attention over the last
twenty years (see Sect. 1.1). Suppose that we have a low communication pub-
lic coins interactive (multi-round) protocol for proving (or arguing) membership
in the language. A possible approach for obtaining short arguments is using a
“compiler” that takes any protocol consisting of several rounds and removes the
need for interaction, producing a two-message argument system.

One approach to constructing such a compiler is having the verifier encrypt
and send all of its (public coin) challenges, where encryption is performed using
a very malleable2 scheme, such as Private Information Retrieval (PIR) or Fully
Homomorphic Encryption (FHE)3. The prover uses the malleability to simu-
late his actions had the queries been given in plaintext, generating and sending
back the appropriate ciphertexts (which should correspond to encryption of the
answers the prover would give in the plain protocol). This compiler was studied
by Kalai and Raz [KR09], as well as Kalai et al. [KRR14].

We investigate whether this compiler can be proved secure under standard
cryptographic assumptions. That is, we do not want to base security on assump-
tions such as “having access to random oracles” or on so-called “knowledge
assumptions”, i.e. that one can extract from any machine that computes a cer-
tain function a value that is seemingly essential to that computation. Further-
more, we prefer not to rely on “super-polynomial hardness assumptions”, i.e.
that a certain cryptographic primitive is so hard it remains secure even if given
enough time to break another primitive. In particular, such assumptions are
not falsifiable in the sense of Naor [Nao03],4 and they assume a strict hierarchy
beyond P �= NP . Also we want the underlying assumptions to be simple to state
such as “Learning With Errors is hard”. We prove positive and negative results
about the above compiler:
1 An argument is a “proof” that is sound (under cryptographic assumptions) so long

as its creator is computationally bounded.
2 Malleable in the cryptographic sense means that it is possible to manipulate a given

ciphertext to generate related ciphertexts.
3 As we shall see, the latter is needed if the prover’s messages in the multi-round

protocol depend on super-logarithmically-many bits sent by the verifier.
4 A “falsifiable” cryptographic assumption is one that can be refuted efficiently.

Falsifiability is a basic “litmus test” for cryptographic assumptions.

Spooky Interaction and Its Discontents 125

– Assume FHE or PIR exist. Then there exists a sound interactive proof proto-
col, and there exists an FHE or PIR (respectively) scheme E, such that when
the compiler is applied to the proof system using E, the resulting two-message
argument is insecure. In fact, the compiler (when applied to this protocol) is
insecure using all known FHE schemes. See Theorem 2.

– For any FHE or PIR, if the verifier in the original protocol is log-space and uses
only public coins, then the compiled argument is sound (See Theorem4). Com-
bining this with the work of Goldwasser et al. [GKR15], we obtain a succinct
two-message argument system for any language in NC, where the verifier’s
work is linear (or even polylogarithmic if the input is coded appropriately).
See Theorem 5. This is the first succinct two-message argument based on stan-
dard polynomial-time hardness assumptions.

1.1 Background

Obtaining succinct (e.g. sub-linear) two-message proof (or argument) systems
has been a long-standing goal in the literature. Two primary approaches have
been explored, both using cryptography to transform information-theoretic proof
systems (interactive proofs, PCPs, or multi-prover interactive proofs) into non-
interactive or two-message computationally-sound arguments.

Two-Message Arguments from PIR or FHE. The compiler studied in this work
is rooted in a tantalizing suggestion of Aiello et al. [ABOR00a] in 2000, who
proposed combining two powerful tools: The PCP (probabilistically checkable
proofs) Theorem5 and Computational PIR schemes6 in order to obtain a succinct
two-message argument system. In particular, leveraging the full strength of the
PCP theorem, one could hope to obtain such arguments for all of NP. However,
shortly thereafter Dwork et al. [DLN+] pointed out problems in the proof and
showed various counter examples for techniques of proving such a statement
(see [ABOR00b]). No direct refutation was shown.7

Kalai and Raz [KR09] modified the Aiello et al. method, and suggested using
it as a general compiler for turning public-coin interactive proofs (rather than
PCPs) into two argument systems (without increasing the communication sig-
nificantly, see below). They showed that, for any interactive proof system, one
can tailor the compiler to that proof system by taking a large enough security
parameter (polynomial in the communication of the proof system), and obtain

5 That states that for every language L ∈ NP there exist a polynomial size wit-
ness/proof that may be verified, with constant error probability, by probing only a
constant number of locations of the proof.

6 Enabling a two-party protocol where one party holds a long string S and the other
party is interested the value of the string at a particular location i; the second party
does not want to reveal i and the goal is to have a low communication (much shorter
than S) protocol; See Sect. 2.

7 The original Aiello et al. [ABOR00a] protocol had an additional oversight, having to
do with verifying the consistency of query answers. As Dwork et al. [DLN+] showed,
this can be corrected using a probabilistic consistency check.

126 C. Dwork et al.

a secure two-message argument. This requires subexponential hardness assump-
tions about the PIR or FHE. Applying the compiler to the interactive proofs of
Goldwasser et al. [GKR08,GKR15] (see below), they obtain two-message argu-
ments for bounded-depth computations.

Kalai et al. [KRR14] study no-signalling proof systems, a restricted type of
multi-prover interactive proof. They showed that, fixing any no-signalling proof,
the compiler can also be tailored to that proof system, again giving a secure
two-message argument (and also using sub-exponential hardness assumptions).
Since no-signalling proof systems are more powerful than interactive proofs, they
obtain two-message arguments for a larger class of computations (going from
bounded-depth in [KR09] to P in [KRR14]).

Kilian, Micali, et Sequelae. In 1992 Kilian [Kil92] suggested a short argument
system for any language in NP. The protocol required 4 messages and the total
amount of bits sent was polylog(n), where n is the input length, times a secu-
rity parameter. The cryptographic assumption needed was fairly conservative,
namely the existence of collision-resistant hash functions. Provided the prover
has a witness, the work done by the prover is polynomial in the instance plus the
witness sizes. In this protocol, the prover first committed to a PCP proof using
a hash function provided by the verifier via a Merkle Tree (first two messages).
The verifier then issued queries to the PCP and the prover needed to open its
commitment in the specified locations in a way that would make the PCP verifier
accept8 (requiring two additional messages).

Some time later, Micali [Mic00] suggested using the Fiat-Shamir methodol-
ogy [FS86] of removing interaction from public-coin protocols using an idealized
hash function (random oracle) to obtain a two-message (or even non-interactive)
succinct argument for any language in NP. Micali’s work raised the issue of
whether it is possible to obtain such argument systems in the “real world” (rather
than in an idealized model). Barak and Goldreich [BG08] showed that security
for the 4-message protocol could be based on standard (polynomial-time) hard-
ness assumptions, but no secure instantiation of non-interactive arguments for
NP is known under standard cryptographic assumptions.

Negative Results and Perspective. On the negative side, Gentry and
Wichs [GW11] have shown that constructing two-message adaptively sound
arguments for NP is going to be tricky: take any short two-message (even
designated-verifier) proof system for NP, and assume that there are exponen-
tially hard one-way functions. Then, paradoxically, any black-box reduction from
a cheating prover to a falsifiable assumption can actually be used to break the
assumption. One can interpret this result in several ways: (i) We need to find
non black-box techniques in this realm. (ii) We should explore the boundaries
of the Gentry-Wichs proof, i.e. when can we obtain black-box reductions and
in particular what happens to computation in P (as opposed to NP). (iii) Use

8 This is not a precise representation of Kilian’s work, for instance the PCP Theorem
did not exist in its ‘final’ form when he proved his result.

Spooky Interaction and Its Discontents 127

a non-falsifiable assumption. We prefer the first two interpretations, but there
are quite a few works taking approach (iii). Thus, Kalai and Raz [KR09] and
Kalai et al. [KRR14] used super-polynomial hardness assumptions and obtained
two-message succinct protocols for all languages computable in bounded depth
and in P (respectively). Several works, Mie [Mie08], Groth [Gro10], Bitansky
et al. [BCCT12] and Goldwasser et al. [GLR11] used a knowledge assumption
(where one assumes that in order to perform a certain computation another piece
of information is necessary and extractable).

Proofs for Muggles. Goldwasser et al. [GKR08,GKR15] were able to obtain
a succinct interactive proof system (with many rounds) for any language that
can be computed using small-depth circuits of polynomial size (NC, or, more
generally, bounded-depth circuits). The prover in their system runs in polynomial
time. The verifier runs in nearly-linear time and logarithmic space, and uses only
public-coin. The communication and round complexities are related to the circuit
depth (using bounded fan-in circuits).

Other Related Works. Paneth and Rothblum [PR14] construct non-interactive
arguments in a common reference string model for any computation in P. Their
constructions are based on efficiently falsifiable assumptions over multilinear
maps. Candidates for multilinear maps have been suggested recently, starting
with the work of Garg et al. [GGH13a], but the security of these objects is not yet
well understood, and is an active area of research. Looking ahead, we note that
our construction of two-message arguments for bounded-depth computations is
currently the only other construction based on efficiently falsifiable assumptions;
we assume only PIR or FHE, rather than assumptions over multilinear maps. In
a different vein, Bitansky et al. [BGL+15] construct non-interactive arguments
using Indistinguishability Obfuscation (IO). This can be instantiated using the
candidate of Garg et al. [GGH+13b] (which itself builds on multilinear maps).

Gennaro et al. [GGP10] have suggested a combination of garbled circuits and
FHE in order to obtain non-interactive verification of outsourced work. In their
setting a long setup message is sent by the verifier (whose length is proportional
to the total amount of work) and for each subsequent input the verifier only
needs to send a message proportional in length to the input size. The prover
sends a short message and verification is quick.

1.2 Our Results

We investigate the compiler for converting public-coin interactive protocols into
two-message protocols and show positive and negative results. On the positive
side, we show that if the verifier uses only public coins and logarithmic space
(and in particular, it has no secret memory), then the compiler is secure. This
result can then be used to show that any language in NC has a succinct two-
message protocol based on any FHE. More generally, if the computation involves
a circuit of depth D(n), then it can be proven by sending a message whose length
is polynomial in D(n) times the length of FHE ciphertexts. This is because not

128 C. Dwork et al.

only does NC have log-space public-coin interactive proofs [FL93], but these can
be made succinct, and moreover, such interactive proofs exist for any bounded-
depth computation [GKR15]. These results are described in Sect. 5.

An application of the positive results could be for cases where exhaustive
search is involved, and the entity performing the search wishes to show that it
was unsuccessful or that the given result is the best possible. (A recent instance of
such cases occurs in pools for mining Bitcoins: the goal is to search for a “nonce”
that when added to the current block and hashed yields a certain number of
ending 0’s.) Such an entity (in the Bitcoin case, the participant in the pool) can
provide a two-message argument that the computation was properly performed
but alas, the search was not successful; the length of the argument is poly-
logarithmic in the space searched (in case of Bitcoin the argument length would
be polynomial in the length of the nonce). See details in Sect. 5.3.

On the negative side, we show that if FHE schemes exist, then there exists a
simple three-message interactive proof (i.e. with unconditional soundness) that,
when compiled, yields an unsound argument. In particular, this example means
that to instantiate the compiler one must consider the protocol compiled and take
into account the communication and runtimes of the parties. This is described
in Sect. 4.

The Compiler is described in detail in Sect. 3 and general definitions are given
in Sect. 2.

2 Definitions and Basic Properties

A function μ : N → [0, 1] is negligible, denoted by μ = negl(n), if for every
polynomial p, there exists n0 ∈ N such that for every n ≥ n0, μ(n) ≤ 1

p(n) .

2.1 Interactive Protocols

In this work, an interactive protocol consists of a pair (P,V) of interactive Turing
machines that are run on a common input x, whose length we denote by n = |x|.
The first machine is called the prover and is denoted by P, and the second
machine, which is probabilistic, is called the verifier and is denoted by V. At the
end of the protocol, the verifier accepts or rejects (this is the protocol’s output).

Public-Coin Protocols. An interactive protocol is public coins if each bit sent
from the verifier to the prover is uniformly random and independent of the rest
of the communication transcript.

Definition 1 (Interactive Proof [GMR89]). An interactive protocol (P,V)
(as above) is an Interactive Proof for a language L if it satisfies the following
two properties:

– completeness: For every x ∈ L, if V interacts with P on common input x,
then V accepts with probability 1.9

9 More generally, there could be a small completeness error.

Spooky Interaction and Its Discontents 129

– sIP -soundness: For every x /∈ L and every (computationally unbounded)
cheating prover strategy P∗, the probability that the verifier V accepts when
interacting with P∗ is at most sIP = sIP (n), where sIP is called the soundness
error of the proof-system. The probability is over the verifier’s coin tosses.

A verifier is log-space and public-coin if it is public coin (as above), and uses
only a O(log n)-size memory tape (on top of one-way access to the communica-
tion and randomness tapes).

Definition 2 (λ-History-Aware Interactive Proof). An interactive proof
is λ = λ(n)-history-aware if on top of the requirements of Definition 1, it is also
the case that each message sent by the (honest) prover P is only a function of
the last λ bits sent by the verifier.

Note that in the above definition we make no assumptions on the strategies that
can be employed by cheating provers. Note also that we do not use the related
“history ignorant” terminology of [KR09], as we prefer the convenience of the
“history-aware” definition.

We add explicit timing and probability parameters to the usual definition of
argument systems.

Definition 3 (Argument System). An interactive protocol (P,V) (as above)
is an Argument System for L if it is complete, as per Definition 1, and satisfies
computational soundness:

– sarg-soundness against Targ-time cheating provers: For every x /∈ L
and every cheating prover P∗ whose strategy can be implemented by a Targ =
Targ(n)-time Turing Machine, the probability that the verifier V accepts when
interacting with P∗ is at most sarg = sarg(n). The probability is over the
verifier’s coin tosses.

2.2 FHE

Both FHE and PIR schemes allow one party to send to another party a relatively
short string that is an encryption of a query. The second party then computes a
ciphertext of a message that is supposed to be a function of the original message
and information that the second party possesses. In the case of FHE, the query
is a vector y in (say) {0, 1}m, the second party possesses a function f : {0, 1}m →
{0, 1}, and the answer-ciphertext is an encryption of f(y).

Definition 4 (Fully Homomorphic Encryption). An FHE scheme is
defined by algorithms: KeyGen,Enc,Dec,Eval, who all get as part of their input
the security parameter 1κ and an input length parameter m (we omit these two
inputs when they are clear from the context). The KeyGen algorithm outputs a
pair of public and secret keys (pk , sk). The encryption algorithm Enc takes the
public key and a vector y ∈ {0, 1}m, and outputs an encryption of y. The Eval
algorithm takes as input the public key pk, an encryption of y (under pk) and

130 C. Dwork et al.

a function f : {0, 1}m → {0, 1}, and outputs an encryption of f(y). Finally, the
decryption algorithm takes as input the secret key sk and the encryption of f(y)
produced by Eval and outputs the plaintext f(y). We require:

– Completeness: ∀κ,m ∈ N , y ∈ {0, 1}m, for any function f of circuit-size
poly(m) and (pk , sk) generated by KeyGen, we have:

Dec(sk ,Eval(pk , f,Enc(pk , y))) = f(y).

– Semantic Security: ∀κ,m ∈ N , y, y′ ∈ {0, 1}m, the distributions Enc(pk , y)
and Enc(pk , y′) (where pk is generated by KeyGen) are negl(κ)-
indistinguishable.

– Complexity: The algorithm KeyGen runs in time poly(κ). The algo-
rithms Enc,Dec run in time poly(κ,m). The algorithm Eval runs in time
poly(κ,m, |f |). The outputs of Enc and Eval are of length poly(κ,m).

The possible existence of FHE scheme was an open question for many years
until Gentry’s work [Gen09] and we know now that FHE schemes can be con-
structed under standard lattice assumptions such as LWE [BV14].

2.3 PIR

Here the query is an index y ∈ [λ], the second party possesses a database Z ∈
{0, 1}λ, and the answer-ciphertext is an encryption of Zy.

Definition 5 (Private Information Retrieval (PIR) Scheme). A PIR
scheme is defined by three algorithms: Enc,Dec,Eval, who all get as part of their
input the security parameter 1κ and database length λ (we omit these two inputs
when they are clear from the context). Enc also takes as input an index y ∈ [λ],
and outputs an “encryption” c of y, and a “secret key” sk for decryption. The
Eval algorithm takes as input an encryption of y and a database Z ∈ {0, 1}λ, and
outputs an “encryption” of Zy (the y-th bit of Z). Finally, Dec takes as input
the secret key sk and a ciphertext generated by Eval and outputs Zy. We make
the following requirements:

– Completeness: ∀κ, λ ∈ N , y ∈ [λ], Z ∈ {0, 1}λ, and (c, sk) ← Enc(y) we
have that:

Dec(sk ,Eval(Z, c)) = Zy.

– Semantic Security: ∀κ, λ ∈ N , y, y′ ∈ [λ], taking (c, sk) ← Enc(y)
and (c′, sk ′) ← Enc(y′), the distributions of c and of c′ are negl(κ)-
indistinguishable.

– Complexity: The algorithms Enc,Dec run in time poly(κ, log λ). The algo-
rithm Eval runs in time poly(κ, λ). In particular, the outputs of Enc and Eval
are of length poly(κ, log λ).

Spooky Interaction and Its Discontents 131

PIR Schemes exist under a variety of assumptions such as quadratic residu-
osity [KO97], Φ-hiding [CMS99] and Learning with Errors [BV14].

3 Detailed Description of the Compiler

3.1 The Compiler: FHE Variant

We now describe the compiler in detail, focusing first on the FHE variant and
in Sect. 3.2 the PIR variant. The compiler starts with a many-round public-
coin interactive proof (PIP ,VIP), and produces a two-message argument system
(Parg,Varg). It is based on that of Kalai and Raz [KR09]. However, we leave
the security parameter free, rather than tailoring it to the Interactive Proof
(PIP ,VIP) to be compiled.10

We denote by Encpk (y) the encryption of y ∈ {0, 1}m under public key pk.
Note that this is really a distribution on ciphertexts. Assume that (PIP ,VIP)
consists of k rounds (and 2k messages). For each round i, in which the verifier
should send a random value αi, the (compiled) verifier chooses an independent
key pki from the underlying encryption system. In a single message, it sends the
public keys {pk i}k

i=1 and the ciphertexts {ai = Encpki
(α1, α2, . . . αi)}k

i=1. That
is, the ciphertext ai = Encpki

(α1, α2, . . . αi) is the encryption of the messages
sent in rounds 1, . . . , i of the simulated protocol. The prover uses the ciphertext
ai to homomorphically compute an encryption of the answer that it would have
sent given the queries α1, α2, . . . αi, i.e., what it “would have done” at round i.

Let the (efficiently computable) function that computes the i-th prover mes-
sage in the interactive protocol be Pi(α1, α2, . . . αi). So the prover computes
and sends bi = Encpki

(Pi(α1, α2, . . . αi)). This is done simultaneously for all
the rounds. The verifier then decrypts the messages it receives, where βi is the
decryption of the ciphertext bi, and accepts if and only if the simulated verifier
accepts the transcript (α1, β1, . . . , αk, βk).

The resulting protocol is given in Fig. 1. By construction, it is a two-message
protocol. Completeness rests on the completeness of the FHE scheme, i.e. if
the scheme is complete, then so is the resulting protocol. The communication
complexity of the new protocol increases: the verifier sends k2/2 bit-encryptions
and k public keys. The prover responds with k ciphertexts. Letting γ bound the
length of ciphertexts and public keys, the total communication complexity is
O(k2 · γ). The soundness of the resulting protocol is the main issue addressed in
this work.

Historical Note: Multi-prover Proof Systems. A related compiler starts with
a multi-prover two-message scheme instead of a single-prover protocol (this is
closer to the original idea of [ABOR00a]). As in the above compiler, the idea is
for the verifier to encrypt the queries using independent keys and then ask that
the prover perform the computation it would have done to answer the queries
in the original protocol.

10 The compiler can be based on FHE or PIR, see Sect. 3.2 for the PIR-based variant.

132 C. Dwork et al.

Protocol (Parg, Varg)(x, 1κ) for Language L

The compiler uses an FHE scheme, with security parameter κ. Without loss of gener-
ality, we assume that each message in Π = (PIP , VIP) is only a single bit.

Varg → Parg: The verifier Varg simulates the interactive verifier VIP to generate its
k challenges α1, . . . , αk ∈ {0, 1}. For each i ∈ [k], Varg chooses keys (pk i, sk i) for
the PIR or FHE.
Varg then sends the keys and ciphertexts {pk i,Encpki

(α1, . . . , αi)}i∈[k] (as a single
message).

Parg → Varg: The prover Parg simulates the interactive prover PIP , where the
function Pi that computes PIP ’s i-th message is applied to the encrypted challenges
sent under pk i. I.e., Parg homomorphically computes bi = Encpki

(Pi(α1, . . . , αi)).
Parg then sends th ciphertexts {bi}i∈[k] to Varg (as a single message)

Verification: The verifier Varg decrypts each ciphertext bi to retrieve the message
βi. It accepts if and only if the interactive verifier VIP accepts the transcript
(α1, β1, . . . , αk, βk).

Fig. 1. Compiler (FHE variant): compiling k-round interactive proof (PIP , VIP) to
2-msg argument (Parg, Varg). Based on [KR09].

3.2 The Compiler: PIR Variant

The PIR-based variant of the compiler is given in Fig. 2. We assume that the
interactive proof to be compiled (PIP ,VIP) is only λ-history-aware, so the
prover’s i-th message only depends on the last λ bits sent by the verifier.

The verifier Varg simulates the interactive verifier VIP to generate its k mes-
sages α1, . . . , αk ∈ {0, 1}. For each i ∈ [k], Varg uses the PIR scheme to compute:
(ci, sk i) ← Enc(αi−λ+1, . . . , αi), where we interpret αj as α1 if j < 1 (this will
occur when i < λ). For each i ∈ [k], the prover Parg interprets ci, which encrypts
a string of λ′ ≤ λ bits, as a PIR query into a database of size at most 2λ′

. For each
i, Parg computes a database Z(i) containing all 2λ′

answers, one for each possible
λ′-bit history that PIP might have encountered in its i-th round in the underly-
ing interactive proof (PIP ,VIP). Parg responds with bi ← Eval(Z(i), ci), which
contains the answer to the λ′-bit history encrypted in the i-th verifier query.

In the compiled protocol, the honest prover Parg runs in time 2λ. When λ is at
most logarithmic in the input length, the running time of Parg remains polyno-
mial. Indeed, in our positive result we apply the compiler to the interactive proof
of [GKR15], which has a logarithmic λ (see Sect. 5). The communication complex-
ity of the new protocol is as follows: the verifier sends k PIR queries into a database
of size 2λ, and the prover responds with k answers to the PIR queries. Letting γ
be the communication complexity of the PIR scheme (the combined length of the
PIR query and response for databases of size 2λ), the total communication com-
plexity is kγ. Note that (for logarithmic λ) this is an improvement over the O(k2γ)
obtained using FHE.

Spooky Interaction and Its Discontents 133

Protocol (Parg, Varg)(x, 1κ) for Language L

The compiler uses a PIR scheme with security parameter κ. Without loss of generality,
we assume that each message in Π = (PIP , VIP) is only a single bit.

Varg → Parg: The verifier Varg simulates the interactive verifier VIP to generate its
k messages α1, . . . , αk ∈ {0, 1}. For each i ∈ [k], Varg uses the PIR scheme to
compute:

(ci, sk i) ← Enc(αi−λ+1, . . . , αi).

Varg then sends the PIR queries {ci}i∈[k] (as a single message).
Parg → Varg: For each i ∈ [k], the prover Parg interprets ci, which encrypts a λ-bit

string, as a PIR query into a database of size 2λ. For each i, Parg computes a
database Z(i) containing all 2λ answers, one for each possible λ-bit history that
PIP might have encountered in its i-th round in the underlying interactive proof
(PIP , VIP).
For each i ∈ [k], Parg computes bi ← Eval(Z(i), ci), and sends the strings {bi}i∈[k]

to Varg (as a single message).
Verification: The verifier Varg decrypts each value bi using the key sk i and retrieves

a message βi. It accepts if and only if the interactive verifier VIP accepts the
transcript (α1, β1, . . . , αk, βk).

Fig. 2. Compiler (PIR variant). Compiling k-round λ-history-aware interactive proof
(PIP , VIP) to 2-message argument (Parg, Varg)

4 The Negative Result: A Protocol that Does Not Compile
Well

We now present a protocol (PIP ,VIP) that does not compile well under the Com-
piler of Sect. 3. We work with the FHE variant of the compiler. The results hold
mutatis mutandis for the PIR variant (see Remark 1 below).

This is what we would like to be able to say: “For any possible instantiation
of the compiler with an FHE, there exists an (unconditionally sound) interactive
protocol that, when compiled, yields an unsound two-message argument system.”
What we can actually say is: “For any possible instantiation of the compiler with
an FHE, there exist another instantiation of the compiler with a (different) FHE
and an interactive protocol that, when compiled, yields an unsound two-message
argument”. That is, given the FHE we will need to modify it a bit (still getting
an FHE), so that the compiler will fail. We suggest two alternate modifications to
the underlying FHE to undermine the compiler. We stress that the compiler fails
under all known implementations of FHE (without any modification).

The rough idea of the interactive protocol (PIP ,VIP) is for the prover to com-
mit to a string xp ∈ {0, 1}n in the first round. The verifier then sends a “guess”
for this commitment string in the form of xv ∈ {0, 1}n chosen uniformly at ran-
dom. Finally the prover opens his commitment to the string xp. The prover wins
if the opening of xp is legitimate (i.e. accepted by the receiver in the commitment

134 C. Dwork et al.

protocol) and xv = xp. Obviously, since xv is chosen after xp, if the commitment is
perfect (there is only one way to open any commitment), then the probability that
the prover succeeds is 1/2n. This as an interactive proof protocol for the empty
language.

Perfect and Weak Commitments. The protocol (PIP ,VIP) uses a public-key
encryption scheme to commit to the string xp. To commit, the prover sends a
public key pk and an encryption of xp. To open the commitment, he sends the
randomness used in the encryption. The resulting protocol is sound so long as
the encryption scheme is committing: for every public key, and every ciphertext,
there is only one message-randomness pair that yields that ciphertext.

We cannot base the above protocol on “non-committing” encryption, where
some ciphertexts can be opened to all possible values, as is the case in deniable
encryption [CDNO97,SW14]. If we use such an encryption scheme in the above
protocol, then the resulting protocol will not be sound (the prover can win).
Simply put, the prover can open the encryption as the string that the verifier
sent.

Nevertheless, we can relax the commitment property a bit. Instead of a per-
fect commitment, we can use a weak commitment scheme, where we modify the
requirement that there is a unique opening, to one where there are few openings.
If there are at most w different values that can be opened, then the probability
of the prover winning the above game (guessing at most w strings that include
the one chosen by the verifier) is at most w/2n. We can then use any semanti-
cally secure public-key encryption scheme (even a non-committing one) to get
a weak commitment as follows. The commitment is as above (i.e. consists of a
public key and a ciphertext). To open the commitment, the committer sends
a decryption key sk corresponding to pk . Assuming the decryption algorithm
is deterministic (which is w.l.o.g, since we can fix the coins), there is a unique
plaintext corresponding to the ciphertext given a candidate for sk .

For this to make sense we need to make sure that the length of the decryption
key is much shorter than n = |x|, and we get a weak commitment as above (the
number of possible openings is bounded from above by the number of decryption
keys, w = 2|sk |, much smaller than 2|x|).

4.1 The Protocol (PIP ,VIP)

(PIP ,VIP) is an interactive proof for the empty language, i.e. the verifier should
reject any input w.h.p. The proposed protocol consists of 4 messages and uses
public coins, where the first message, sent by the verifier, is empty. We can base
it on any committing encryption scheme as above (and in parenthesis describe
how to deal with non committing encryption). The notation Encpk (x, r) indicates
that the message x is encrypted under public key pk using randomness r.

The protocol (PIP ,VIP) is:

Spooky Interaction and Its Discontents 135

1. V 	→ P: Empty message.
2. P 	→ V: The prover uses a committing encryption scheme. It picks public key

pkp, string xp ∈ {0, 1}n, randomness rp and sends (pkp, cp = Encpkp
(xp, rp)).

(Same is done in the non-committing case.)
3. V 	→ P: The verifier picks random xv ∈ {0, 1}n and sends it.
4. P 	→ V: The prover sends m = (xp, rp).

Verification. The verifier checks whether xp = xv and cp = Encpkp
(xp, rp) and

accepts if they are both satisfied. Note that to perform this check, the verifier
needs to “remember” pkp, cp and xv (we refer to this fact in Sect. 5).

In the non-committing encryption variant of the protocol, in Step 4 the prover
sends the decryption key skp corresponding to pkp. In the verification step, the
verifier decrypts cp using skp and accepts if the answer equals xv.

Theorem 1. For any perfectly committing encryption scheme (respectively,
non-committing scheme), the above protocol is complete and sound, with sound-
ness error at most 1/2n (respectively, 2|sk |/2n for the non-commiting variant).

4.2 The Compiled Protocol

Let (Parg,Varg), described next, be the argument system obtained by applying
the compiler of Fig. 1 to the interactive proof (PIP ,VIP) for the empty language,
described in Sect. 4.1.

Varg 	→ Parg: Verifier picks and sends pkv,1 (for the first round’s empty message),
and pkv,2, cv = Encpkv,2(xv, rv) (for the verifier’s second message in
(PIP ,VIP)).

Parg 	→ Varg: The (honest) prover Parg sends Encpkv,1
((pkp, cp = Encpkp

(xp, rp)), r′) (for the first prover message), and Encpkv,2(m = (xp, rp), r′′)
(for the second message).

The verifier decrypts the first prover message using skv,1 to retrieve (pkp, cp),
decrypts the second message using skv,2 to retrieve m = (xp, rp), and accepts
if the original protocol’s verifier accepts.

Speaking intuitively, the compiler will fail because a cheating prover can use
the encryption cv of the message xv that the compiled verifier sends him to come
up with a commitment to xp = xv. The challenge to the cheating prover then is
how to obtain an encryption of the randomness rp sent in Step 3 of (PIP ,VIP).
This seems like quite an obstacle for an arbitrary FHE scheme.

Suppose, however, that FHE scheme E “makes the cheating prover’s life
easy”. That is, every encryption also includes an encryption of the randomness r
(using freshly chosen randomness radd) (the decryption algorithm simply ignores
the second part of the ciphertext). The cheating prover for (Parg,Varg) can use
this encryption of the randomness rp to break soundness. Any FHE can be
tweaked in this way, without harming its homomorphic or security properties.
The case of a non-committing encryption is handled similarly.

136 C. Dwork et al.

Breaking the Compiled Protocol. Given pkv,1, pkv,2 and cv = Encpkv,2(xv, rv),
the cheating prover P ∗ sends Encpkv,1

(pkv,2, cv) as its first message, and cv as
its second message. Recall that cv = Encpkv,2(xv, rv), and this includes both an
encryption of xv and of rv, since we assumed that the cryptosystem Enc is such
that it also gives an encryption of the random string. Thus, by following this
strategy, P ∗ makes Varg accept with probability 1 (based on perfect completeness
of the encryption scheme).

Alternatively, for non-committing encryption, we assume that the public key
includes an encryption of the secret key. Thus, the public key pkv,2 includes
Encpkv,2

(skv,2), which can be sent by the cheating prover P ∗ as its second mes-
sage to “de-commit” and break security. Thus, we can use a “circular-secure”
FHE scheme, where semantic security holds even when the public key includes an
encryption of the secret key, to show that the compiler fails. We note that it is not
known in general whether “circular security” holds, namely whether including an
encryption of the secret key in the public key always preserves semantic security
(see e.g. Rothblum [Rot13]). However, for known FHE schemes, an encryption of
the secret key is already included in the public key to enable “bootstrapping” (see
e.g. Gentry [Gen09]). Thus, the compiler is insecure when instantiated with all
known concrete FHE candidates. Moreover, even if a new (and non-committing)
FHE candidate is discovered, we can modify its public key to include an encryp-
tion of the secret key. If the modified scheme remains semantically secure, then
(as above) the compiler fails on (PIP ,VIP). Thus, proving that the compiler is
secure with the modified scheme would require proving that the original FHE
scheme is not circular secure.

We can see that in both cases the cheating prover P ∗ succeeds and the verifier
accepts. We therefor have:

Theorem 2. If an FHE scheme Enc exists, then there exists an instantiation of
the compiler of Fig. 1 with a (possibly) modified FHE scheme and a sound protocol
in the public coins model such that the resulting compiled protocol is not sound.

Remark 1. The same protocol “misbehaves” under the PIR-based compiler in
Fig. 2. The compiled protocol is unsound when the compiler uses a PIR scheme
that is directly based on the same FHE: where ciphertexts are modified to include
encryptions of the randomness (in the perfectly committing case), or of the secret
key (in the weakly committing case). The PIR scheme operates by sending the
(modified) encryption of the index being queried. The Eval algorithm responds
with an answer-ciphertext, and the Dec algorithm simply decrypts this ciphertext
using the FHE decryption.

5 Positive Results

We show that the Compiler of Fig. 1 is secure when applied to interactive proofs
with a public-coin log-space verifier. More generally, the compiler is secure for
interactive proofs where (for any fixed partial transcript) the optimal continua-
tion strategy, i.e. the strategy that maximizes the verifier’s success probability,

Spooky Interaction and Its Discontents 137

can be computed in polynomial time. We only assume the existence of standard
(polynomially hard) PIR or FHE. This result is in Theorem4 below, which we
prove using a careful analysis of the Kalai-Raz compiler [KR09]. Recall that the
negative example of Sect. 4 shows that the compiler is insecure for general inter-
active proofs. In particular, recall that (as noted above) the verifier needs enough
space to “remember” pkp, cp, xv. Thus, we need to leverage additional structure in
order to prove security, and we do so via the space complexity of the verifier (or the
optimal-continuation strategy). Kalai and Raz, in contrast, showed that security
could be obtained by making super-polynomial hardness assumptions and simul-
taneously tailoring the compiler’s security parameter to a given interactive proof
system (that is, they choose the security parameter after seeing the interactive
proof to be compiled).

Recall that for any language computable by depth D(n) (log-space uniform)
circuits, there exists an interactive proof where the verifier uses logarithmic space
and public coins [GKR15]. By applying the compiler to these interactive proofs,
we obtain a succinct two-message argument using any (polynomially-hard) PIR
scheme. The communication is Õ(D(n)·γ), where γ is the communication required
by the PIR scheme (for a database of length poly(n)). Similarly to [KR09], we use
the fact that every prover message in the succinct interactive proof only depends
on a logarithmic number of bits sent by the verifier. This result is in Theorem5.
In Sect. 5.3 we discuss applications to proving the results of an exhaustive search.

5.1 Security of the Compiler

As described above, our main insight is that if there is a polynomial time algo-
rithm that computes an optimal prover-strategy for any interactive proof, then
we can compile the protocol with no significant soundness error. For a log-space
public-coin verifier this is possible and arguments of this type were used by Con-
don [Con91] and Fortnow and Sipser (see [For89]) to show that these proof systems
can only compute languages in P. In fact, for any fixed partial transcript between
the prover and verifier, we show how to efficiently compute an optimal prover
strategy for continuing the interaction. The main cause for the super-polynomial
security gap in the Kalai-Raz security reduction was the running time required
to compute an optimal prover strategy (for a fixed partial transcript). For general
interactive proofs, this requires time that is exponential in the communication. We
leverage the polynomial-time transcript-completion algorithm to obtain a tighter
security reduction and our main result.

We proceed by first defining the optimal transcript completion task for an
interactive proof. We then show that (i) for log-space public-coin interactive
proofs, there is an efficient transcript completion algorithm (Theorem 3), and
(ii) we can strengthen the Kalai-Raz security reduction from the security of the
argument to the security of the PIR scheme to reduce the loss in security: rather
than exponential in the communication complexity of the interactive proof, as in
[KR09], it is polynomial in the time required for optimal transcript completion and
in the security parameter (Theorem 4).

138 C. Dwork et al.

Definition 6 (Optimal Transcript Completion). We say that a public-coin
interactive proof (PIP ,VIP) with communication complexity �IP supports optimal
transcript completion in time TIP (n), if there exists an algorithm P ′, running in
time TIP (n), that, on input any partial transcript of communication with the ver-
ifier VIP and ending with a message sent by VIP , produces a next message from
the prover to the verifier, satisfying the following guarantee: For any algorithm P∗

(with unbounded running time), the probability that VIP accepts when the transcript
is completed using P∗ is no greater than the probability that VIP accepts when the
transcript is completed using P ′.

Remark 2. We note that even if the interactive proof has an efficient (i.e. poly(n)-
time) honest prover, there may not be an efficient optimal transcript completion
algorithm P ′. Indeed, we can build explicit examples under (mild) cryptographic
assumptions—e.g. using the Interactive Proof described in Sect. 4.

We now show that any interactive proof with a log-space public-coin verifier
supports (polynomial time) optimal transcript completion:

Theorem 3 (See also [Con91,For89]). Let (PIP ,VIP) be a log-space public-
coin interactive proof. Then (PIP ,VIP) supports optimal transcript completion in
poly(n) time.

Proof (Proof Sketch). The transcript completion algorithm P ′ constructs the ver-
ifier’s directed layered state graph, where every node is a possible memory con-
figuration for the verifier. We assume w.l.o.g. that the verifier keeps track of the
current round, and that each message in the protocol is a single bit. Each round
consists of a pair of messages: a single random bit sent from the verifier to the
prover, and a single bit sent in response from the prover to the verifier. For round
i and memory configuration u, and round (i + 1) and memory configuration v,
there is an edge from (i, u) to (i + 1, v) iff starting with configuration u just after
round i, the verifier can reach configuration v just after round (i + 1). Since each
round consists of two single-bit messages, each node in the graph has at most 4
successors. This completes the description of the graph, and we note that it is of
poly(n) size (because the verifier runs in O(log n) space).

Now, for any verifier state (i, u) we compute the optimal prover strategy as
follows. We start from terminal nodes and work our way “backwards” in the state
graph to nodes corresponding to states in earlier rounds. For each node/state,
we compute the probability that the verifier accepts once it reaches that state,
and the optimal prover response to the next verifier challenge. For node (i, u) we
denote this by a(i, u). For terminal nodes, the acceptance probability is either 0 or
1 (depending on whether this is a rejecting or accepting node). Once the accept-
ing probabilities have been computed for all round-(i + 1)-states we can compute
the accepting probabilities (and best prover responses) for round-i-states. For a
non-terminal node (i, u), there are 4 possible transcripts for round i: 00, 01, 10, 11,
where transcript (α, β) leads to state (i + 1, wα,β) (here α, β ∈ {0, 1}). For each

Spooky Interaction and Its Discontents 139

verifier challenge α, the “best response” is the message leading to the state that
maximizes the acceptance probability:

b(α) = argmaxβ∈{0,1}(a(i + 1, wα,β))

and the (maximal) probability of acceptance is

a(i, u) =
a(i + 1, w0,b(0)) + a(i + 1, w1,b(1))

2
.

By construction, this procedure computes an optimal prover strategy for any
verifier state.

Given a partial transcript, P ′ can compute the current verifier state and use
this procedure to complete a best-response strategy.

Next, we give a strengthened security analysis for the Kalai-Raz compiler,
where the reduction is parameterized in terms of the time required for optimal
transcript completion (see in comparison Lemma 4.2 of [KR09] where “brute-
force” completion is used):

Theorem 4. Let Π = (PIP ,VIP) be a public-coin interactive proof for a language
L that is λ(n)-history-aware (as in Definition 2), with completeness cIP (n), sound-
ness sIP (n) and communication complexity �IP (n). Let PIR be a PIR scheme with
communication �PIR(m,κ).

Then (Parg,Varg), the argument system of Fig. 2 instantiated with (PIP ,VIP)
and PIR, is a 2-message argument system for L, with completeness carg = cIP ,
communication complexity �arg(n, κ) = �IP (n) · �PIR(2λ(n), κ), and the following
properties:

1. Computational Soundness: If the interactive proof supports optimal tran-
script completion, as in Definition 6, in time TIP (n), and the PIR system is
secure against adversaries running in time TPIR(κ), then the argument system
has soundness sarg(n) = (�IP (n) · (sIP (n)+negl(κ))) against adversaries run-
ning in time Targ = TPIR(κ)/poly(n, �IP (n), TIP (n)).

2. Honest Prover Complexity. Parg runs in time poly(TIP (n), κ, 2λ(n)).

Security of the Compiler Using FHE. An analogous theorem statement holds for
the FHE version of the compiler. The advantage over the PIR version is that there
is no need to assume that the interactive proof is λ-history aware. The disadvan-
tage (other than the stronger assumption) is the quadratic blowup in the commu-
nication complexity (see Sect. 3).

Proof (Proof of Theorem 4). We assume w.l.o.g. that the each message sent by the
verifier is 1 bit long, and take k to be the number of rounds. Suppose that there
exists an input x∗ /∈ L and a cheating prover P∗

arg that manages to convince Varg

with probability ε.

140 C. Dwork et al.

Definition of pi. For i ∈ {0, 1, . . . , k}, define pi to be the success probabil-
ity of the following process called Experimenti: run the argument system with
the cheating prover P∗

arg. Let {(pk i, sk i)}i∈[k] be the keys and αi be the bits
encrypted in the challenges sent by Varg. Let {bi}i∈[k] be the ciphertext answers
returned by P∗

arg, and let βi be the plaintext value in bi. Fixing the partial
transcript (α1, β1, . . . , αi, βi) for the first i rounds, run the optimal-completion
strategy P ′

IP with the verifier VIP (who simply generates random messages) to
complete the transcript (i.e. for the last (k − i) rounds), generating messages
(α′

i+1, β
′
i+1, . . . , α

′
k, β′

k). Experimenti succeeds if and only if VIP accepts the result-
ing transcript (α1, β1, . . . , αi, βi, α

′
i+1, β

′
i+1, . . . , α

′
k, β′

k).

Claim. There exists i∗ ∈ [k] s.t.:

pi∗ − pi∗−1 ≥ ε − sIP

k

Proof. The proof is by a hybrid argument. p0 is bounded by the success probability
of a cheating prover in the (sound) interactive proof, and thus it is at most sIP

(since x∗ /∈ L). pk is exactly the success probability of the cheating prover P∗
arg

in the two-message argument system, and thus by assumption it is at least ε.

Breaking the Encryption. We show that any P∗
arg that succeeds with probability

at least ε, can be used to break semantic security of the encryption scheme with
advantage at least (ε − sIP)/k. We do this by constructing a distinguisher for
the following two distributions. In both distributions, generate keys (pk i, sk i)i∈[k],
random bits (α1, . . . , αk), and the challenge ciphertexts {ai}i∈[k]. The distribution
outputs all of the public keys and ciphertexts, the first (i∗ −1) secret keys, and all
plaintext values except the i∗-th, i.e. {αi}i�=i∗ . So far the distributions are iden-
tical, the only difference is in a final output value α (see below). In particular, a
sample from D1 or D2 is of the form:({pk i, ai}i∈[k], {sk i}i<i∗ , (α1, . . . , αi∗−1, α, αi∗+1, . . . , αk)

)
,

where in D1 we set α = αi∗ , and in D2 we draw a uniformly random and indepen-
dent bit α′

i∗ , and set α = α′
i∗ . By construction, if the distinguisher distinguishes

D1 and D2 with non-negligible advantage, then semantic security is broken.
We now use the cheating prover P∗

arg to construct such a distinguisher. The
distinguisher runs P∗

arg on the public keys and ciphertexts (these are distributed
identically in D1 and D2). P∗

arg outputs its response ciphertexts {b1, . . . , bk},
and the distinguisher uses the secret keys {sk i}i<i∗ to retrieve the plaintexts
(β1, . . . , βi∗−1). Starting with the partial transcript (α1, β1, . . . , αi∗−1, βi∗−1, α),
the distinguisher completes the transcript by simulating the interaction between
the “optimal-completion prover” P ′

IP and the verifier VIP . It outputs 1 if the ver-
ifier accepts and 0 otherwise. Observe that:

– On distribution D2, the probability that the distinguisher outputs 1 is exactly
pi∗−1: the distribution of the partial transcript (α1, β1, . . . , αi∗−1, βi∗−1) is iden-
tical to Experimenti∗−1. When drawing according to D2, the i∗-th verifier chal-
lenge is α′

i∗ , which is uniformly random and independent of the preceding par-
tial transcript, as it is in Experimenti∗−1. The remainder of the transcript is also

Spooky Interaction and Its Discontents 141

generated using the optimal-completion strategy, exactly as in Experimenti∗−1.
The verifier accepts with probability pi∗−1.

– On distribution D1, the probability that the distinguisher outputs 1 is at least
pi∗ : the distribution of the partial transcript (α1, β1, . . . , αi∗−1, βi∗−1) is iden-
tical to Experimenti∗ . When drawing by D1, the i∗-th challenge αi∗ equals the
plaintext encrypted in the ciphertext ai∗ , exactly as in Experimenti∗ . Here, how-
ever, the i∗-th prover message β′

i∗ is drawn according to the optimal completion
strategy, whereas in Experimenti∗ we use the plaintext βi∗ generated by P∗

arg.
Still, since the remainder of the transcript will be computed using random ver-
ifier queries, replacing the i∗-th prover message with the optimal-completion
strategy cannot decrease the probability that the verifier accepts. The verifier
accepts with probability pi∗ .

The above distinguisher runs in time |P∗
arg| + k · TIP (n), and has advantage

at least (ε − sIP)/k in distinguishing the distributions D1 and D2. The theorem
follows.

5.2 Succinct Two-Message Arguments

Instantiating the secure compiler of Theorem 4 with the Interactive Proof of
Theorem 6 below, we obtain succinct two-message arguments for bounded-depth
computations:

Theorem 5. Assume the existence of a PIR scheme with communication
�PIR(m,κ) that is secure against time TPIR(κ), as per Definition 5. Then any lan-
guage L that can be computed by logspace-uniform circuits of size poly(n) and
depth D(n) ≥ log n has a two-message argument system (Parg,Varg) with perfect
completeness and negligible soundness error against adversaries that run in time
TPIR(κ)/poly(n). The communication complexity is �PIR(poly(n), κ)·poly(D(n)).
Parg runs in time poly(κ, n) and Varg runs in time n · poly(κ,D(n)).

This represents an exponential improvement in the security of the resulting
argument system. Previously, Kalai and Raz [KR09] showed a similar result,
but proved security of the argument system against adversaries running in
time TPIR(κ)/2poly(D(n)).11 Interpreting their result, for a language L in NC, to
obtain any argument system with poly(n) communication complexity and security
against polynomial-time adversaries (i.e., a non-trivial argument system), quasi-
polynomial hardness assumptions are needed (as one needs to have a PIR scheme
that is secure against adversaries running in time TPIR(κ)
 2poly(D(n))). In com-
parison, our results show that a PIR scheme secure against polynomial-time adver-
saries is sufficient for obtaining poly(n) communication.

Before proving Theorem 5, we review the main result of Goldwasser
et al. [GKR08,GKR15]:

11 The denominator in their result was super-polynomial in n; In particular, it was at
least nD(n).

142 C. Dwork et al.

Theorem 6 (GKR Interactive Proof [GKR15]). Any language L that can be
computed by logspace-uniform circuits of size poly(n) and depth D(n) ≥ log n
has a multi-round interactive proof (PIP ,VIP) with perfect completeness, negligible
soundness error, and communication complexity D(n)·polylog(n). Moreover, PIP

runs in time poly(n) and is O(log n)-history-aware; VIP is a public-coin logspace
verifier, runs in time n · poly(D(n)), and sends messages of length O(log(n)).

Proof (Proof of Theorem 5). By Theorem 6, the GKR Interactive Proof [GKR15]
for L is λ-history-aware, has a log-space public-coin verifier, and verifier messages
of length O(log n). By Theorem 3, we conclude that it supports optimal transcript
completion in time poly(n). Plugging this interactive proof into the transforma-
tion of Fig. 2, and using Theorem 4, we obtain a two-message argument with neg-
ligible soundness error against poly(n, κ)-time adversaries. The communications
complexity and the prover and verifier running times follow by the parameters of
the interactive proof, the PIR scheme, and Theorem 4.

5.3 Application to Exhaustive Search

The methods of this section are appropriate for the verification of a type of com-
putation that is often distributed among not completely trusted servers, that of
exhaustive search. In this setting there is some space of solutions S that is parti-
tioned into subspaces {Si}i and processor i is assigned to search all possible solu-
tions in Si.

Usually it is easy to identify a successful search, say it satisfies some set of con-
straints. Therefore it is easy to verify the work of a processor that was successful.
But how about verifying the work of an unsuccessful search? How can such an
unlucky processor convince, say a central authority, that it performed the compu-
tation properly?

A good illustrating example to consider is the case of Bitcoin mining (but see
caveat below), used to maintain the so called block chain of transactions. Here the
processors (miners) are looking for a value called a ‘nonce’, such that when the
current block content is (cryptographically) hashed together with the nonce, the
result ends with a certain number of leading 0’s (i.e. is numerically smaller than
the current difficulty target).

A successful search is worth a certain number of Bitcoins (25 as of 2015). Now
suppose there is a pool of miners who cooperate in order to reduce the variance in
the reward. How can the pool manager verify that searches over the nonce space
that were not successful were properly executed?

Given that exhaustive search is “embarrassingly parallel” (one for which no
effort is required to separate the problem into a number of parallel tasks), it follows
that we can apply the framework of Theorem5.

We can express the search that a processor i should perform of the set Si as a set
of constraints over the set Si, and for each element in Si check whether it satisfies
the constraints. The circuit will be of depth proportional to log |Si| plus the depth
of checking whether the set of constraints is satisfied. By Theorem 5, assuming the
appropriate PIR scheme exists, we will have an argument system whose length is

Spooky Interaction and Its Discontents 143

proportional to polynomial in log |Si| plus the complexity of checking an instance.
In the context of Bitcoin this means that any participant can provide a proof of
search whose length is proportional to the nonce length plus the complexity of the
hash functions.

Bitcoin pools reward members who come up with nearly-satisfying solutions,
i.e. partition the prize according to the closeness. This makes perfect sense in the
random oracle world. Our solution may be viewed as more equitable, and does not
rely on random oracles for fairness: everybody gets rewarded for the work they
perform.

Caveat: given that many things in the Bitcoin world are based on heuristics
and on modeling functions as random oracles, the above ideas can probably be
thought of as casting pearls before swine. So we prefer to think of it as an illus-
trating example rather than an actual application.

Acknowledgments. We thank Pavel Hubáček and Ilan Komargodski for helpful com-
ments on the paper.

References

[ABOR00a] Aiello, W., Bhatt, S.N., Ostrovsky, R., Rajagopalan, S.: Fast verification
of any remote procedure call: short witness-indistinguishable one-round
proofs for NP. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 463–474. Springer, Heidelberg (2000)

[ABOR00b] Aiello, W., Bhatt, S.N., Ostrovsky, R., Rajagopalan, S.: Fast verification
of any remote procedure call: short witness-indistinguishable one-round
proofs for NP. IACR Cryptology ePrint Archive 2000:018 (2000)

[BCCT12] Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and
back again. In: Goldwasser, S. (ed.) ITCS, pp. 326–349. ACM (2012)

[BG08] Barak, B., Goldreich, O.: Universal arguments and their applications.
SIAM J. Comput. 38(5), 1661–1694 (2008)

[BGL+15] Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct random-
ized encodings and their applications. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, 14–17 June 2015, pp. 439–448 (2015)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[CDNO97] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104.
Springer, Heidelberg (1997)

[CMS99] Cachin, C., Micali, S., Stadler, M.A.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

[Con91] Condon, A.: Space-bounded probabilistic game automata. J. ACM 38,
472–494 (1991)

[DLN+] Dwork, C., Langberg, M., Naor, M., Nissim, K., Reingold, O.: Succinct
proofs for NP ander spooky interactions. http://www.wisdom.weizmann.
ac.il/∼naor/PAPERS/spooky.pdf

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/spooky.pdf
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/spooky.pdf

144 C. Dwork et al.

[FL93] Fortnow, L., Lund, C.: Interactive proof systems and alternating time-space
complexity. Theor. Comput. Sci. 113(1), 55–73 (1993)

[For89] Fortnow, L.: Complexity-theoretic aspects of interactive proof systems.
Technical report, Ph.D. thesis, Laboratory for Computer Science, MIT
(1989)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31–June 2, 2009, pp. 169–178 (2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 40–49
(2013)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: STOC, pp. 113–122 (2008)

[GKR15] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. J. ACM 62(4), 27 (2015)

[GLR11] Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation with-
out rejection problem from designated verifier cs-proofs. IACR Cryptology
ePrint Archive 2011:456 (2011)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) STOC, pp.
99–108. ACM (2011)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A.,
Ellis, J.A. (eds.) STOC, pp. 723–732. ACM (1992)

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE data-
base, computationally-private information retrieval. In: 38th Annual Sym-
posium on Foundations of Computer Science, FOCS 1997, Miami Beach,
Florida, USA, 19–22 October 1997, pp. 364–373 (1997)

[KR09] Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg
(2009)

[KRR14] Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the
power of no-signaling proofs. In: STOC 2014, pp. 485–494 (2014)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

Spooky Interaction and Its Discontents 145

[Mie08] Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptol.
2(4), 343–363 (2008)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003)

[PR14] Paneth, O., Rothblum, G.N.: Publicly verifiable non-interactive arguments
for delegating computation. IACR Cryptology ePrint Archive 2014:981
(2014)

[Rot13] Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A.
(ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable
encryption, and more. In: Proceedings of the 46th Annual ACM Sympo-
sium on Theory of Computing, STOC 2014, pp. 475–484. ACM, New York
(2014)

Secure Computation and Protocols II

Adaptively Secure Garbled Circuits
from One-Way Functions

Brett Hemenway1, Zahra Jafargholi2, Rafail Ostrovsky3,
Alessandra Scafuro2,4(B), and Daniel Wichs2

1 University of Pennsylvania, Philadelphia, USA
fbrett@cis.upenn.edu

2 Northeastern University, Boston, USA
{zahra,wichs}@ccs.neu.edu

3 University of California, Los Angeles, USA
rafail@cs.ucla.edu

4 Boston University, Boston, USA
scafuro@bu.edu

Abstract. A garbling scheme is used to garble a circuit C and an input x
in a way that reveals the output C(x) but hides everything else. In many
settings, the circuit can be garbled off-line without strict efficiency con-
straints, but the input must be garbled very efficiently on-line, with much
lower complexity than evaluating the circuit. Yao’s garbling scheme [31]
has essentially optimal on-line complexity, but only achieves selective
security, where the adversary must choose the input x prior to seeing
the garbled circuit. It has remained an open problem to achieve adaptive
security, where the adversary can choose x after seeing the garbled cir-
cuit, while preserving on-line efficiency.

In this work, we modify Yao’s scheme in a way that allows us to
prove adaptive security under one-way functions. In our main instantia-
tion we achieve on-line complexity only proportional to the width w of
the circuit. Alternatively we can also get an instantiation with on-line
complexity only proportional to the depth d (and the output size) of the
circuit, albeit incurring in a 2O(d) security loss in our reduction. More
broadly, we relate the on-line complexity of adaptively secure garbling
schemes in our framework to a certain type of pebble complexity of the
circuit. As our main tool, of independent interest, we develop a new

R. Ostrovsky—Supported in part by NSF grants 09165174, 1065276, 1118126 and
1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foun-
dation Award, Teradata Research Award, Lockheed-Martin Corporation Research
Award and by DARPA Safeware program. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.
A. Scafuro—Supported by NSF grants 1012798, CNS-1414119.
D. Wichs—Supported by NSF grants CNS-1347350, CNS-1314722, CNS-1413964.
This work was done in part while some of the authors were visiting the Simons
Institute for the Theory of Computing, supported by the Simons Foundation and
by the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-
1523467.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 149–178, 2016.
DOI: 10.1007/978-3-662-53015-3 6

150 B. Hemenway et al.

notion of somewhere equivocal encryption, which allows us to efficiently
equivocate on a small subset of the message bits.

Keywords: Adaptive security · Garbled circuits · Online/offline two-
party computation

1 Introduction

Garbled Circuits. A garbling scheme (also referred to as a randomized encoding)
can be used to garble a circuit C and an input x to derive a garbled circuit C̃
and a garbled input x̃. It’s possible to evaluate C̃ on x̃ and get the correct output
C(x). However, the garbled values C̃, x̃ should not reveal anything else beyond
this. In particular, there is a simulator that can simulate C̃, x̃ given only C(x).

The notion of garbled circuits was introduced by Yao in (oral presentations
of) [31,32], and can be instantiated based on one-way functions. Garbled circuits
have since found countless applications in diverse areas of cryptography, most
notably to secure function evaluation (SFE) starting with Yao’s work, but also
in parallel cryptography [5,6], verifiable computation [7,16], software protec-
tion [20,22], functional encryption [19,21,30], key-dependent message security
[3,9], obfuscation [4] and many others. These applications rely on various effi-
ciency/functionality properties of garbled circuits and a comprehensive study of
this primitive is explored in the work of Bellare et al. [12].

On-line Complexity. In many applications, the garbled circuit C̃ can be com-
puted in an off-line pre-processing phase before the input is known, and therefore
the efficiency of this procedure may not be of paramount importance. On the
other hand, once the input x becomes available in the on-line phase, creating
the garbled input x̃ should be extremely efficient. Therefore, the main efficiency
measure that we consider here is the on-line complexity, which is the time it
takes to garble an input x, and hence also a bound on the size of x̃. Ideally, the
on-line complexity should only be linear in the input size |x| and independent
of the potentially much larger circuit size |C|.1

Yao’s Scheme. Yao’s garbling scheme already achieves essentially optimal on-
line complexity, where the time to garble an input x and the size of x̃ are only
linear in the input size |x|, independent of the circuit size.2 However, it only
realizes a weak notion of security called selective security, which corresponds to
a setting where adversary must choose the input x before seeing the garbled

1 Note that, without any other restrictions on the structure of the garbling scheme,
there is a trivial scheme where C̃ is empty and x̃ = C(x), whose on-line complexity
is proportional to |C|.

2 More precisely, in Yao’s garbled circuits, the garbled input is of size |x|·poly(λ) where
λ is the security parameter. The work of [8] shows how to reduce this to |x|+poly(λ)
assuming stronger assumptions such as DDH, RSA or LWE.

Adaptively Secure Garbled Circuits from One-Way Functions 151

circuit C̃. In particular, the adversary first chooses both C and x and then gets
the garbled values C̃, x̃ which are either correctly computed using the “real”
garbling scheme or “simulated” using only C(x). The adversary should not be
able to distinguish between the real world and the simulated world.

Selective vs. Adaptive Security. Selective security is often unsatisfactory in pre-
cisely the scenarios envisioned in the off-line/on-line setting, where the garbled
circuit C̃ is given out first and the garbled input x̃ is only given out later. In
such settings, the adversary may be able to (partially) influence the choice of the
input x after seeing the garbled circuit C̃. Therefore, we need a stronger notion
called adaptive security, defined via the following two stage game:

1. The adversary chooses a circuit C and gets the garbled circuit C̃.
2. After seeing C̃ the adversary adaptively chooses an input x and gets the

garbled input x̃.

In the real world C̃, x̃ are computed correctly using the garbling scheme, while
in the simulated world they are created by a simulator who only gets the output
C(x) in step (2) of the game but does not get the input x. The adversary should
not be able to distinguish these two worlds.

The work of Bellare, Hoang and Rogaway [11] gave the first thorough treat-
ment of adaptively secure garbling schemes and showed that this notion is crucial
in many applications. They point out that it remains unknown whether Yao’s
garbling scheme or any of its many variants can satisfy adaptive security, and the
proof techniques that work in the selective security setting do not extend to the
adaptive setting. They left it as the main open problem to construct adaptively
secure garbling schemes where the on-line complexity is smaller than the circuit
size.3

Finally we emphasize that the problem of achieving adaptively secure garbled
circuits is different from the problem of achieving adaptively secure two-party
computation (with constant rounds) using an approach based on garbled circuits.
The latter means that the adversary can corrupt the players adaptively. It is not
known whether either problem can be reduced to the other.

1.1 Prior Approaches to Adaptive Security

Lower Bound and Yao’s Scheme. The work of Applebaum et al. [8] (see also [24])
gives a lower bound on the on-line complexity of circuit garbling in the adaptive
setting, showing that the size of the garbled input x̃ must exceed the output
size of the circuit. This is in contrast to the selective security setting, where

3 The adaptive security notion we described, is denoted prv1 by [11]. They also con-
sider a stronger variant called prv2, where the adversary adaptively chooses bits of
the input x one at a time and gets the corresponding bits of the garbled input x̃.
They show that there is an efficiency preserving transformation from prv1 to prv2
following the ideas from [20]. Therefore, in this work we can focus solely on achieving
prv1.

152 B. Hemenway et al.

Yao’s garbling scheme achieves on-line complexity that depends only on the
input size and not the output size. In particular, this shows that Yao’s garbling
scheme cannot directly be adaptively secure.

Complexity Leveraging. It turns out that there is a simple and natural modifica-
tion of Yao’s garbling scheme (i.e., by withholding the mapping of output-wire
keys to output bits until the on-line phase) that would match the above lower
bound and could plausibly be conjectured to provide adaptive security. In fact,
one can prove that the above variant of Yao’s scheme is secure in the adaptive
setting using complexity leveraging, but only at a 2n security loss in the reduc-
tion, where n is the input size. There is no known proof of security that avoids
this loss.4

One-Time Pad and Random-Oracles. An alternate approach, suggested by [11],
is to use one-time pad encryption to encrypt a Yao garbled circuit in the off-
line phase and then provide the decryption key with the garbled input in the
on-line phase. Intuitively, since a one-time pad encryption is “non-committing”
and the ciphertext can be equivocated to any possible message by providing a
corresponding key, the adversary does not gain any advantage in seeing such a
ciphertext in the off-line phase. Unfortunately, this solution blows up the on-line
complexity to be at least as large as the circuit size.

The work of [11] also noted that one can replace the one-time pad encryption
in the above solution with a random-oracle based encryption scheme, which can
be equivocated by programming random oracle outputs. This gives an adaptively
secure garbled circuit construction with optimal parameters in the random ora-
cle model. In fact, this approach can even be used to prove security in parameter
regimes that beat the lower bound of [8], and therefore we should be suspicious
about it’s implications in the standard model, when the random oracle is replaced
by a hash function. In particular, the construction is using the random oracle for
equivocation in ways that we know to be uninstantiable in the standard model [29].

UCE-Security. Bellare et al. [10] show that a variant of Yao garbled circuits
(which does not violate the lower bound of [8]) can be proven secure when instan-
tiated with a hash function that satisfies a security notion called Universal Com-
putational Extractor (UCE) security. However, UCE is a strong, non-standard
and non-falsifiable assumption.

Heavy Hammers. Lastly, we mention two approaches that get adaptively
secure garbled circuits with good on-line complexity under significantly stronger
assumptions than one-way functions. The work of Boneh et al. [13] implic-
itly provides such schemes where the on-line complexity is proportional to the
input/output size and the depth d of the circuit, under the learning with errors

4 Even if we’re willing to assume exponentially secure primitives, the use of complexity
leveraging blows up parameter sizes so that the garbled input must be of size at least
n2 · poly(λ) where λ is the security parameter to get any meaningful security.

Adaptively Secure Garbled Circuits from One-Way Functions 153

assumption with a modulus-to-noise ratio of 2poly(d). This translates to assuming
the hardness of lattice problems with 2poly(d) approximation factors. The work
of Ananth and Sahai [2] shows how to get an essentially optimal scheme, where
the on-line complexity is only proportional to the input/output size of the cir-
cuit, assuming indistinguishability obfuscation. In terms of both assumptions and
practical efficiency, these schemes are a far cry from Yao’s original scheme.

1.2 Our Results

In this work, we construct the first adaptively secure garbling scheme whose
on-line complexity is smaller than the circuit size and which only relies on the
existence of one-way functions. Our construction is an adaptation of Yao’ scheme
that maintains essentially all of its desirable properties, such as having highly
parallelizable circuit garbling and projective/decomposable input garbling.5 In
particular, our construction simply encrypts a Yao garbled circuit with a some-
where equivocal symmetric-key encryption scheme, which is a new primitive that
we define and construct from one-way functions. The encrypted Yao garbled
circuit is sent in the off-line phase, and the Yao garbled input along with the
decryption key is sent in the on-line phase. We get various provably secure instan-
tiations of the above approach depending on how we set the parameters of the
encryption scheme.

As our main instantiation, we get a garbling scheme whose on-line complexity
is w ·poly(λ) where w is the width of the circuit and λ is the security parameter,
but is otherwise independent of the depth d of the circuit.6 Note that, if we think
of the circuit as representing a Turing Machine or RAM computation, then the
width w of the circuit corresponds to the maximum of the input size n, output
size m, and space complexity s of the computation, meaning that our on-line
complexity is (n + m + s) · poly(λ), but otherwise independent of the run-time
of the computation.

Alternately, we also get a different instantiation where the on-line complexity
is only (n+m+d) ·poly(λ), where n is the input size, m is the output size, and d
is the depth of the circuit, but is otherwise independent of the circuit’s width w.
In this case, we also incur a 2O(d) security loss in our reduction, but this can be
a significant improvement over the naive complexity-leveraging approach which
incurs a 2n security loss, where n is the input size. In particular, in the case
of NC1 circuits where d = O(log n), we get a polynomial reduction and achieve
optimal on-line complexity of (n + m) · poly(λ).7

5 Each bit of the garbled input only depends on one bit of the original input.
6 We consider circuits made up of fan-in 2 gates with arbitrary fan-out. The circuit is

composed of levels and wires can only connect gates in level i with those at the next
level i + 1. The width of the circuit is the maximal number of gates in any level and
the depth is the number of levels.

7 For NC1 circuits, there are perfectly (information theoretically) secure variants of
Yao [25,26] which also achieve adaptive security. However, the on-line complexity in
these schemes grows exponentially in the circuit depth d whereas ours is only linear
in d. For example, for a boolean NC1 circuit with depth d = 100 log n, the on-line
complexity of those schemes is O(n100) whereas ours would be O(n).

154 B. Hemenway et al.

More broadly, we develop a connection between constructing adaptively
secure schemes in our framework and a certain type of pebble complexity of
the given circuit. The size of the garbled input is proportional to the maximal
number of pebbles and the number of hybrids in our reduction is proportional
to the number of moves needed to pebble the circuit.

1.3 Applications of Our Results

We briefly mention how our results can be used to get concrete improvements
in several applications of garbled circuits in prior works.

On-line/Off-line Two-Party Computation. One of the main uses of garbled cir-
cuits is in two-party secure computation protocols. In this setting, Alice holds
an input xA, Bob holds an input xB and they wish to compute f(xA, xB). To
do so, Alice creates a garbled circuit C̃f for the function f and sends C̃f along
with her portion of the garbled input x̃A to Bob. Bob runs an oblivious transfer
(OT) protocol to get the garbled version of his input x̃B without revealing xB

to Alice. This can be done if the garbling scheme is projective/decomposable
(see footnote 9) so that each bit of the garbled input only depends on one bit of
the original input. Security against fully malicious parties can be obtained via
zero-knowledge proofs or cut-and-choose techniques. It is possible to instantiate
the above construction with selectively secure garbled circuits, by having Bob
commit to xB before he gets the garbled circuit C̃f . This ensures that the choice
of the input cannot depend on the garbled circuit.

However, in many cases, creating the garbled circuit C̃f for the function f
is expensive and we would like to do this off-line before the inputs xA, xB are
known to Alice and Bob. Once the inputs become known, the on-line phase
should be extremely efficient, and ideally much smaller than the size of the cir-
cuit of f . This setting was recently explored in the work of Lindell and Riva
[28] who showed how to solve this problem very efficiently using cut-and-choose
techniques, given an adaptively secure garbling scheme with low on-line complex-
ity. To instantiate the latter primitive, they relied on the random oracle model.
Using our construction of adaptively secure garbled circuit, we can instantiate
the scheme of [28] in the standard model, where the on-line complexity of the
two-party computation protocol would match that of our garbling schemes.

One-Time Programs and Verifiable Computation. As noted by [11], two prior
works from the literature on one-time programs [20] and verifiable computation
[16] implicitly require adaptively secure garbling.8 In both cases, we can plug in
our construction of adaptively secure garbling to these constructions.

8 The work of [20] requires an even stronger notion of adaptivity called prv2 but this
can be generically achieved given an adaptively secure scheme in our sense. See
footnote 7.

Adaptively Secure Garbled Circuits from One-Way Functions 155

In the case of one-time programs, the on-line complexity of the garbling
scheme translates to the number of hardware tokens needed to create the one-
time program. In the case of verifiable computation, the on-line complexity of
the garbling scheme translates to the complexity of the verification protocol –
it is essential that this is smaller than the circuit size to make the verification
protocol non-trivial.

Compact Functional Encryption. The recent work of [1] shows how to convert
any selectively secure functional encryption (FE) scheme into an adaptively
secure FE. However, their transformation is not compact and the ciphertext
size is as large as the maximum circuit size of the allowed functions. This is true
even if the selectively secure FE that they start with is compact. Implicitly, the
main bottleneck in the transformation is having adaptively secure garbled cir-
cuits with low on-line complexity. The work of [2] gives an alternate and modular
transformation from a selectively secure compact FE to an adaptively secure one
using adaptively secure garbled circuits (actually, their main construction is for
Turing Machines and relies on garbling TMs which require heavier machinery
– however, it can be scaled down to work for circuits to get the above result).
This transformation applies to both bounded-collusion schemes and unbounded-
collusion schemes. By plugging in our construction of adaptively secure garbled
circuits into the above result we get a transformation from compact selectively
secure FE to adaptive FE where the ciphertext size is only proportional to the
on-line complexity of our garbling scheme.

1.4 Our Techniques

In order to explain our techniques, we must first explain the difficulties in proving
the adaptive security of Yao’s garbling schemes. Since these difficulties are subtle,
we begin with a description of the scheme and the proof of selective security,
following Lindell and Pinkas [27]. This allows us to fix a precise notation and
terminology which will be needed to also explain our new construction and proof.
We expect that the reader is already familiar with the basics of Yao circuits and
refer to [27] for further details.

Yao’s Scheme and the Challenge of Adaptive Security. Yao’s Scheme.
For each wire w in the circuit, we pick two keys k0

w, k1
w for a symmetric-

key encryption scheme. For each gate in the circuit computing a function
g : {0, 1}2 → {0, 1} and having input wires a, b and output wire c we create
a garbled gate consisting of 4 randomly ordered ciphertexts created as:

c0,0 = Enck0
a
(Enck0

b
(kg(0,0)

c)) c1,0 = Enck1
a
(Enck0

b
(kg(1,0)

c)),
c0,1 = Enck0

a
(Enck1

b
(kg(0,1)

c)) c1,1 = Enck1
a
(Enck1

b
(kg(1,1)

c))
(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃ con-
sists of all of the gabled gates, along with an output mapping {k0

w → 0, k1
w → 1}

156 B. Hemenway et al.

which gives the correspondence between the keys and the bits they represent for
each output wire w. To garble an n-bit value x = x1x2 · · · xn, the garbled input x̃
consists of the keys kxi

wi
for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt
(exactly) one ciphertext in each garbled gate and get the key k

v(w)
w corresponding

to the bit v(w) going over the wire w during the computation C(x). Once the
keys for the output wires are computed, it’s possible to recover the actual output
bits by looking them up in the output mapping.

Selective Security Simulator. To prove the selective security of Yao’s scheme, we
need to define a simulator that gets the output y = y1y2 · · · ym = C(x) and must
produce C̃, x̃. The simulator picks random keys k0

1, k
1
w for each wire w just like

the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0
a
(Enck0

b
(k0

c)) c1,0 = Enck1
a
(Enck0

b
(k0

c)),
c0,1 = Enck0

a
(Enck1

b
(k0

c)) c1,1 = Enck1
a
(Enck1

b
(k0

c)) (2)

where all four ciphertext encrypt the same key k0
c . It creates the output mapping

{k0
w → yw, k1

w → 1 − yw} by “programming it” so that the key k0
w corresponds

to the correct output bit yw for each output wire w. This defines the simulated
garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0

w for each input wire w. Note that, when evaluating the
simulated garbled circuit on the simulated garbled input, the adversary only
sees the keys k0

w for every wire w.

Selective Security Hybrids. To prove indistinguishability between the real world
and the simulation, there is a series of carefully defined hybrid games that switch
the distribution of one garbled gate at a time, starting with the input level and
proceeding up the circuit level by level. In each step we switch the distribution
of the ciphertexts in the targeted gate to:

c0,0 = Enck0
a
(Enck0

b
(kv(c)

c)) c1,0 = Enck1
a
(Enck0

b
(kv(c)

c)),
c0,1 = Enck0

a
(Enck1

b
(kv(c)

c)) c1,1 = Enck1
a
(Enck1

b
(kv(c)

c))
(3)

where v(c) is the correct value of the bit going over the wire c during the com-
putation of C(x).

Let us give names to the three modes for creating garbled gates that we
defined above: (1) is called RealGate mode, (2) is called SimGate mode, and
(3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x.

We can switch a gate from RealGate to InputDepSimGate mode if the gates
in the previous level are in InputDepSimGate mode (or we are in the input level)
by CPA security of encryption. In particular, we are not changing the value
contained in ciphertext cv(a),v(b) encrypted under the keys k

v(a)
a , k

v(b)
b that the

adversary obtains during evaluation, but we can change the values contained in

Adaptively Secure Garbled Circuits from One-Way Functions 157

all of the other ciphertexts since the keys k1−v(a), k1−v(b) do not appear anywhere
inside the garbled gates in the previous level.

At the end of the above sequence of hybrid games, all gates are switched
from RealGate to InputDepSimGate mode and the output mapping is computed
as in the real world. The resulting distribution is statistically identical to the
simulation where all the gates are in SimGate mode and the output mapping is
programmed. This is because, at any level that’s not the output, the keys k0

c , k1
c

are used completely identically in the subsequent level so there is no difference
between always encrypting k

v(c)
c (InputDepSimGate) and k0

c (SimGate). At the
output level there is no difference between encrypting k

v(c)
c and giving the real

mapping k
v(c)
c → yc or encrypting k0

c and giving the programmed mapping
k0

c → yc where yc is the output bit on wire c.

Challenges in Achieving Adaptive Security. There are two issues in using the
above strategy in the adaptive setting: an immediate but easy to fix problem
and a more subtle but difficult to overcome problem.

The first immediate issue is that the selective simulator needs to know the
output y = C(x) to create the garbled circuit C̃ and in particular to program the
output mapping {k0

w → yw, k1
w → 1 − yw} for the output wires w. However, the

adaptive simulator does not get the output y until after it creates the garbled
circuit C̃. Therefore, we cannot (even syntactically) use the selective security
simulator in the adaptive setting. This issue turns out to be easy to fix by
modifying the construction to send the output-mapping as part of the garbled
input x̃ in the on-line phase, rather than as part of the garbled circuit C̃ in the
off-line phase. This modification raises on-line complexity to also being linear in
the output size of the circuit, which we know to be necessary by the lower bound
of [8]. With this modification, the adaptive simulator can program the output
mapping after it learns the output y = C(x) in the on-line phase and therefore
we get a syntactically meaningful simulation strategy in the adaptive setting.

The second problem is where the true difficulty lies. Although we have a syn-
tactically meaningful simulation strategy, the previous proof of indistinguishabil-
ity of the real world and the simulation completely breaks down in the adaptive
setting. Recall that the proof consisted of a sequence of hybrids where we changed
one garbled gate at a time (starting from the input level) from RealGate mode
to the InputDepSimGate mode. In the latter mode, the gate is created in a way
that depends on the input x, but in the adaptive setting the input x is chosen
adaptively after the garbled circuit is created, leading to a circularity. In other
words, the distribution of InputDepSimGate as specified in Eq. (3) doesn’t even
syntactically make sense in the adaptive setting. Therefore, although we have
a syntactically meaningful simulation strategy for the adaptive setting, we do
not have any syntactically meaningful sequence of intermediate hybrids to prove
indistinguishability between the real world and the simulated world.

(One could hope to bypass InputDepSimGate mode altogether and define the
hybrids by changing a gate directly from RealGate mode to SimGate mode. Unfor-
tunately, this change is easily distinguishable already for the very first gate we

158 B. Hemenway et al.

would hope to change at the input level – the output value on the gate would
no longer be v(w) but 0 which may result in an overall incorrect output since
we have not programmed the output map yet. On the other hand, we cannot
immediately jump to a hybrid where we program the output map since all of
the keys and their semantics are contained under encryption in prior levels of
the circuit and we haven’t argued about the security of the ciphertexts in these
levels yet.)

Our Solution. Outer Encryption Layer. Our construction starts with the app-
roach of [11] which is to encrypt the entire garbled circuit with an additional
outer encryption layer in the off-line phase (this is unrelated to the encryption
used to construct the garbled gates). Then, in the on-line phase, we give out
the secret key for this outer encryption scheme. The approach of [11] required a
symmetric-key, one-time encryption scheme which is equivocal, meaning that the
ciphertext doesn’t determine the message and it is possible to come up with a
secret key that can open the ciphertext to any possible message. Unfortunately,
any fully equivocal encryption scheme where a ciphertext can be opened to any
message (e.g., the one-time pad) must necessarily have a secret key size which
is as large as the message size. In our case, this is the entire garbled circuit and
therefore this ruins the on-line efficiency of the scheme. Our main idea is to use a
new type of partially equivocal encryption scheme, we call somewhere equivocal.

Somewhere Equivocal Encryption. Intuitively, a somewhere equivocal encryption
scheme allows us to create a simulated ciphertext which contains “holes” in some
small subset of the message bit positions I chosen by the simulator, but all other
message bits are fixed. The simulator can later equivocate this ciphertext and
“plug the holes” with any bits it wants by deriving a corresponding secret key. An
adversary cannot distinguish between seeing a real encryption of some message
m = m1m2 · · · mn and the real secret key, from seeing a simulated encryption
created using only (mi)i�∈I with “holes” in positions I and an equivocated secret
key that later plugs the holes to the correct bits (mi)i∈I . We show how to
construct somewhere equivocal encryption using one-way functions. The size of
the secret key is only proportional to the maximum number of holes t = |I| that
we allow, which we call the “equivocation parameter”, but can be much smaller
than the message size.9

Our proof of security departs significantly from that of [11]. In particular, our
simulator does not take advantage of the equivocation property of the encryption
scheme at all, and in fact, our simulation strategy is identical to the adaptive
simulator we outlined above for the variant of Yao’s garbling where the output
map is sent in the on-line phase. However, we crucially rely on the equivocation

9 A different notion of partially equivocal encryption, called somewhat non-committing
encryption, was introduced in [15]. The latter notion allows a ciphertext to be opened
to some small, polynomial size, set of messages which can be chosen arbitrarily by
the simulator at encryption time. The two notions are incomparable.

Adaptively Secure Garbled Circuits from One-Way Functions 159

property to carefully define a meaningful sequence of hybrids that allows us to
prove the indistinguishability of the real and simulated worlds.

Hybrids for Adaptive Security. We define hybrid distributions where various
garbled gates will be created in one of three modes discussed above: RealGate,
SimGate and InputDepSimGate. However, to make the last option meaningful
(even syntactically) in the adaptive setting, we rely on the somewhere equivocal
encryption scheme. For these hybrids, when we create the encrypted garbled
circuit in the off-line phase, we will simulate the outer encryption layer with a
ciphertext that contains “holes” in place of all gates that are in InputDepSimGate
mode. Only when we open the outer encryption in the on-line phase after the
input x is chosen, we will “plug the holes” by sampling these gates correctly in
InputDepSimGate mode in a way that depends on the input x. Our equivocation
parameter t for the somewhere equivocal encryption scheme therefore needs to
be large enough to support the maximum number of gates in InputDepSimGate
mode that we will have in any hybrid.

Sequence of Hybrids. For our main result, we use the following sequence of
hybrids to prove indistinguishability of real and simulated worlds. We start
by switching the first two levels of gates (starting with the input level) to
InputDepSimGate mode. We then switch the first level of gates to SimGate mode
and switch the third level InputDepSimGate mode. We continue this process,
where in each step i we maintain level i in InputDepSimGate mode but switch
the previous level i − 1 from InputDepSimGate to SimGate and then switch the
next level i+1 from RealGate to InputDepSimGate. Eventually all gates will be in
SimGate mode as we wanted. We can switch a level i − 1 from InputDepSimGate
to SimGate mode when the subsequent level i is in InputDepSimGate mode since
the keys k0

c , k1
c for wires c crossing from level i − 1 to i are used identically in

level i and therefore there is statistically no difference between encrypting the
key k

v(c)
c (InputDepSimGate) and k0

c (SimGate). We can also switch a level i + 1
from RealGate to InputDepSimGate when the previous level i is InputDepSimGate
(or i + 1 is the input level) by CPA security following the same argument as in
the selective setting. With this strategy, at any point in time we have at most
two levels in InputDepSimGate mode and therefore our equivocation parameter
only needs to be proportional to the circuit width w.

Connection to Pebbling. We can generalize the above idea and get other meaning-
ful sequences of hybrids with different parameters and implications. We can think
of the process of switching between RealGate, SimGate and InputDepSimGate
modes as a new kind of graph pebbling game, where pebbles can be placed on the
graph representing the circuit according to certain rules. Initially, all gates are
in RealGate mode, which we associate with not having any pebble on them. We
associate InputDepSimGate mode with having a black pebble and SimGate mode
with having a gray pebble. The rules of the game go as follows:

– We can place or remove a black pebble on a gate as long as both predecessors
of that gate have black pebbles on them (or the gate is an input gate).

160 B. Hemenway et al.

– We can replace a black pebble with a gray pebble on a gate as long as all
successors of that gate have black or gray pebbles on them (or the gate is an
output gate).

The goal of the game is to end up with a gray pebble on every gate. Any such
pebbling strategy leads to a sequence of hybrids that shows the indistinguisha-
bility between the real world and the simulation. The number of moves needed
to complete the pebbling corresponds to the number of hybrids in our proof, and
therefore the security loss of our reduction. The maximum number of black peb-
bles that are in play at any given time corresponds to the equivocation parameter
needed for our somewhere equivocal encryption scheme.

For example, the sequence of hybrids discussed above corresponds to a peb-
bling strategy where the number of black pebbles used is linear in the circuit
width w (but independent of the depth) and the number of moves is linear in the
circuit size. We give an alternate recursive pebbling strategy where the number
of black pebbles used is linear in the circuit depth d (but independent of the
width) and the number of moves is 2O(d) times the circuit size.

Constructing Somewhere Equivocal Encryption. Lastly, we discuss our construc-
tion of somewhere equivocal encryption from one-way functions, which may be
of independent interest. Recall that a somewhere equivocal encryption provides
a method for equivocating some small number (t out of n) of bits of the message.

Our construction is based on the techniques developed in recent construc-
tions of distributed point functions [14,17]. These techniques give us a way to
construct a pseudorandom function (PRF) family fk with the following equivo-
cation property: for any input x, we can create two PRF keys k0, k1 that each
individually look uniformly random but such that fk0(x

′) = fk1(x
′) for all x′ �= x

and fk0(x) �= fk1(x). The construction is based on a clever adaptation of the
Goldreich-Goldwasser-Micali (GGM) PRF [18].

Using distributed point functions, we can immediately create a somewhere
equivocal encryption with equivocation parameter t = 1. We rely on a PRF
family fk with the above equivocation property and with one-bit output. To
encrypt a message m = m1m2 · · · mn ∈ {0, 1}n we create a ciphertext c =
fk(1) ⊕ m1||fk(2) ⊕ m2|| · · · ||fk(n) ⊕ mn using the PRF outputs as a one-time
pad. To create a simulated encryption with a hole in position i, the simulator
samples two PRF keys k0, k1 that only differ on input x = i. The simulator
encrypts the n-bit message by setting the unknown value in position i to mi := 0
and using k0. If it later wants to open this value to 0, it sets the decryption key
to k0 else k1.

We can extend the above approach to an arbitrarily large equivocation para-
meter t, by using the XOR of t independently chosen PRFs with the above
equivocation property. The key size will be t · poly(λ).

2 Preliminaries

General Notation. For a positive integer n, we define the set [n] := {1, . . . , n}.
We use the notation x ← X for the process of sampling a value x according to

Adaptively Secure Garbled Circuits from One-Way Functions 161

the distribution X. For a vector m = (m1,m2, · · · ,mn), and a subset P ⊂ [n],
we use (mi)i∈P to denote a vector containing only the values mi in positions
i ∈ P and ⊥ symbols in all other positions. We use (mi)i/∈P as shorthand for
(mi)i∈[n]\P .

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and
wires w1, w2, . . . , wp. A gate is defined by the tuple gatei = (g, wa, wb, wc) where
g : {0, 1}2 → {0, 1} is the function computed by the gate, wa, wb are the
incoming wires, and wc is the outgoing wire. Although each gate has a unique
outgoing wire wc, this wire can be used as an incoming wire to several different
gates and therefore this models a circuit with fan-in 2 and unbounded fan-out.
We let q denote the number of gates in the circuit, n denotes the number of input
wires and m denote the number of output wires. The total number of wires is
p = n + q (since each wire can either be input wire or an outgoing wire of some
gate). For convenience, we denote the n input wires by in1, . . . , inn and the m
output wires by out1, . . . , outm. For x ∈ {0, 1}n we write C(x) to denote the
output of evaluating the circuit C on input x.

We say C is leveled, if each gate has an associated level and any gate at level
l has incoming wires only from gates at level l − 1 and outgoing wires only to
gates at level l+1. We let the depth d denote the number of levels and the width
w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, wa, wb, wc).
We use Φtopo(C) to refer to the topology of a circuit– which indicates how gates
are connected, without specifying the function implemented by each gate. In
other words, Φtopo(C) is the list of sanitized gate tuples ĝatei = (⊥, wa, wb, wc)
where the function g that the gate implements is removed from the tuple.

3 Garbling Scheme

We now give a formal definition of a garbling scheme. There are many vari-
ants of such definitions in the literature, and we refer the reader to [12] for a
comprehensive treatment.

Definition 1. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit,
GInput, Eval) such that:

– (C̃, k) $← GCircuit(1λ, C): takes as input a security parameter λ, a circuit
C : {0, 1}n → {0, 1}m, and outputs the garbled circuit C̃, and key k.

– x̃ ← GInput(k, x): takes as input x ∈ {0, 1}n, and key k and outputs x̃.
– y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈

{0, 1}m.

Correctness. There is a negligible function ν such that for any λ ∈ N, any
circuit C and input x it holds that Pr[C(x) = Eval(C̃, x̃)] = 1 − ν(λ), where
(C̃, k) ← GCircuit(1λ, C), x̃ ← GInput(k, x).

162 B. Hemenway et al.

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such
that, for any PPT adversary A, there exists a negligible function ν such that:

Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1] − Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1] ≤ ν(λ)

where the experiment ExpadaptiveA,GC,Sim(1λ, b) is defined as follows:

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:
– if b = 0: (C̃, k) ← GCircuit(1λ, C),
– if b = 1: (C̃, state) ← SimC(1λ, Φtopo(C)), where Φtopo(C) reveals the

topology of C.
2. The adversary A specifies x and gets x̃ created as follows:

– if b = 0, x̃ ← GInput(k, x),
– if b = 1, x̃ ← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

On-line Complexity. The time it takes to garble an input x, (i.e., time complexity
of GInput(·, ·)) is the on-line complexity of the scheme. Clearly the on-line com-
plexity of the scheme gives a bound on the size of the garbled input x̃. Ideally,
the on-line complexity should be much smaller than the circuit size |C|.
Projective Scheme. A garbling scheme is projective if each bit of the garbled input
x̃ only depends on one bit of the actual input x. In other words, each bit of the
input, is garbled independently of other bits of the input. Projective schemes
are essential for two-party computation where the garbled input is transmitted
using an oblivious transfer (OT) protocol. Our constructions will be projective.

Hiding Topology. A garbling scheme that satisfies the above security definition
may reveal the topology of the circuit C. However, there is a way to transform
any such garbling scheme into one that hides everything, including the topology
of the circuit, without a significant asymptotic efficiency loss. More precisely,
we rely on the fact that there is a function HideTopo(·) that takes a circuit C
as input and outputs a functionally equivalent circuit C ′, such that for any two
circuits C1, C2 of equal size, if C ′

1 = HideTopo(C1) and C ′
2 = HideTopo(C2), then

Φtopo(C ′
1) = Φtopo(C ′

2). An easy way to construct such function HideTopo is by
setting C ′ to be a universal circuit, with a hard-coded description of the actual
circuit C. Therefore, to get a topology-hiding garbling scheme, we can simply
use a topology-revealing scheme but instead of garbling the circuit C directly,
we garble the circuit HideTopo(C).

4 Somewhere Equivocal Symmetric-Key Encryption

We introduce a new cryptographic primitive called somewhere equivocal encryp-
tion scheme. Intuitively, a somewhere equivocal encryption scheme allows one
to create a simulated ciphertext which contain “holes” in some small subset of
the messages in positions I chosen by the simulator, but all other messages are

Adaptively Secure Garbled Circuits from One-Way Functions 163

fixed. The simulator can later equivocate this ciphertext and “plug the holes”
with any message it wants by deriving a corresponding secret key.

In more detail, encryptions can be computed in two modes: real mode and
simulated mode. In the real mode, a key key ← KeyGen(1λ) is generated using
the honest key generation procedure and a vector of n messages m = m1, . . . ,mn

is encrypted using the honest encryption procedure c ← Enc(key,m).
In the simulated mode, there is an encryption procedure SimEnc that given

a set I (set of holes) and only a subset of messages (mi)i/∈I , outputs simulated
ciphertext c that is equivocal in positions I. In a later stage, upon learning the
remaining messages (mi)i∈I , there exists a procedure SimKey that plugs the
holes by generating a key key′ that will decrypt c correctly according to m.

The security property that we require is that the distributions of {c, key}
generated in the two modes are indistinguishable. To capture this property, one
could envision a non-adaptive security game where and adversary A first selects
the full vector m and the set I, then it receives the tuple (c, key) and needs
to distinguish which distribution it belongs to. However, such security defini-
tion is not sufficient for our indistinguishability proof where instead we need an
adversary to decide on the missing messages after she receives the ciphertext c.
Therefore, we consider an adaptive security definition where the security game
is defined in two stages: in the first stage, the adversary chooses I, an incomplete
vector of messages (mi)i/∈I , and a challenge index j /∈ I and receives the cipher-
text c. In the second stage, the adversary sends the remaining messages (mi)i∈I

and gets key. The adversary knows that all positions in I are equivocal and are
plugged to the values (mi)i∈I chosen in the second stage. The challenge is to
distinguish whether the position j is also equivocal or not. Note that this two-
stage (adaptive) security definition is stronger than the non-adaptive security
definition sketched above. For completeness, we give the simpler non-adaptive
definition and prove the above implication in the full version [23].

Definition 2. A somewhere equivocal encryption scheme with block-length s,
message-length n (in blocks), and equivocation-parameter t (all polynomials in
the security parameter) is a tuple of probabilistic polynomial algorithms Π =
(KeyGen, Enc,Dec, SimEnc, SimKey) such that:

– The key generation algorithm KeyGen takes as input the security parameter 1λ

and outputs a key: key ← KeyGen(1λ).
– The encryption algorithm Enc takes as input a vector of n messages m =

m1, . . . ,mn, with mi ∈ {0, 1}s, and a key key, and outputs ciphertext c ←
Enc(key,m).

– The decryption algorithm Dec takes as input ciphertext c and a key key and
outputs a vector of messages m = m1, . . . ,mn. Namely, m ← Dec(key, c).

– The simulated encryption algorithm SimEnc takes as input a set of indexes
I ⊂ [n], such that |I| ≤ t, and a vector of n−|I| messages (mi)i/∈I and outputs
ciphertext c, and a state state. Namely, (state, c) ← SimEnc((mi)i/∈I , I).

– The simulated key algorithm SimKey, takes in the variable state and messages
(mi)i∈I and outputs a key key′. Namely, key′ ← SimKey(state, (mi)i∈I).

164 B. Hemenway et al.

and satisfies the following properties:

Correctness. For every key ← KeyGen(1λ), m ∈ {0, 1}s×n it holds that:

Dec(key, (Enc(key,m)) = m

SimulationwithNoHoles.We require that the distribution of (c, key) computed
via (c, state) ← SimEnc(m, ∅) and key ← SimKey(state, ∅) to be identical to
key ← KeyGen(1λ) and c ← Enc(key,m). In other words, simulation when there
are no holes (i.e., I = ∅) is identical to honest key generation and encryption.

Security. For any PPT adversary A, there is a negligible function ν(λ) s.t.:

Pr[Expsimenc
A,Π (1λ, 0) = 1] − Pr[Expsimenc

A,Π (1λ, 1) = 1] ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π (1λ, b)

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, vector
(mi)i/∈I , and a challenge index j ∈ [n] \ I. Let I ′ = I ∪ j.

2. – If b = 0, compute c as follows: (state, c) ← SimEnc((mi)i/∈I , I).
– If b = 1, compute c as follows: (state, c) ← SimEnc((mi)i/∈I′ , I ′).

3. Send c to the adversary A.
4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key ← SimKey(state, (mi)i∈I).
– If b = 1, compute key as follows: key ← SimKey(state, (mi)i∈I′).

5. Send key to the adversary A.
6. A outputs b′ which is the output of the experiment.

In the full version of this paper, [23], we construct somewhere equivocal
encryption from one-way functions, proving the following theorem.

Theorem 1. Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, block-
length s, and equivocation parameter t, having key size t·s·poly(λ) and ciphertext
of size n · s bits.

5 Adaptively Secure Garbling Scheme and Simulator

In this section we describe our garbling scheme and the simulation strategy.

5.1 Construction

Our adaptively-secure garbling scheme consists in two simple steps: (1) gar-
ble the circuit using Yao’s garbling scheme; (2) hide the garbled circuit (with-
out the output tables) under an outer layer of encryption instantiated with a
somewhere-equivocal encryption scheme. In the on-line phase, the garbled input
consists of Yao’s garbled input plus the output tables. Next we provide the formal
description of our scheme that contains the details of Yao’s garbling scheme.

Adaptively Secure Garbled Circuits from One-Way Functions 165

Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with
inputs size n, output size m, depth d and width w. Let q denote the number of
gates in C. Recall that wires are uniquely identified with labels w1, w2, . . . , wp,
and a circuit C is specified by a list of gate tuples gate = (g, wa, wb, wc). To
simplify the description of our construction, we first describe the procedure for
garbling a single gate, that we denote by GarbleGate. Let Γ = (G,E,D) be a
CPA-secure symmetric-key encryption scheme satisfying the special correctness
property, that is, the decryption procedure will abort if an incorrect key is used.
GarbleGate(g, {kσ

a , kσ
b , kσ

c }σ∈{0,1}) computes 4 ciphertexts cσ0,σ1 : σ0, σ1 ∈ {0, 1}
as defined below and outputs them in a random order as g̃ = [c1, c2, c3, c4].

c0,0 ← Ek0
a
(Ek0

b
(kg(0,0)

c)) c0,1 ← Ek0
a
(Ek1

b
(kg(0,1)

c))

c1,0 ← Ek1
a
(Ek0

b
(kg(1,0)

c)) c1,1 ← Ek1
a
(Ek0

b
(kg(1,1)

c))

Let Π = (KeyGen, Enc,Dec, SimEnc, SimKey) be a somewhere-equivocal
symmetric-encryption scheme as defined in Sect. 4. Recall that in this primitive
the plaintext is a vector of n blocks, each of which has s bits. In our construction
we use the following parameters: the vector size n = q is the number of gates
and the block size s = |g̃| is the size of a single garbled gate. The equivocation
parameter t is defined by the strategy used in the security proof and will be
specified later. The garbling scheme is formally described in Fig. 1.

Fig. 1. Adaptively-secure garbling scheme.

166 B. Hemenway et al.

5.2 Adaptive Simulator

The adaptive security simulator for our garbling scheme is essentially the same as
the static security simulator for Yao’s scheme (as in [27]), with the only difference
that the output table is sent in the on-line phase, and is computed adaptively
to map to the correct output. Note that the garbled circuit simulator does not
rely on the simulation properties of the somewhere equivocal encryption scheme
- these are only used in the proof of indistinguishability.

More specifically, the adaptive simulator (SimC,SimIn) works as follows.
In the off-line phase, SimC computes the garbled gates using procedure
GarbleSimGate, that generates 4 ciphertexts that encrypt the same output key.
More precisely, GarbleSimGate({kσ

wa
, kσ

wb
}σ∈{0,1}, k′

wc
) takes both keys for input

wires wa, wb and a single key for the output wire wc, that we denote by k′
wc

.
It then outputs g̃c = [c1, c2, c3, c4] where the ciphertexts, arranged in random
order, are computed as follows.

c0,0 ← Ek0
a
(Ek0

b
(k′

c)) c0,1 ← Ek0
a
(Ek1

b
(k′

c))

c1,0 ← Ek1
a
(Ek0

b
(k′

c)) c1,1 ← Ek1
a
(Ek0

b
(k′

c))

The simulator invokes GarbleSimGate on input k′
c = k0

c . It then encrypts
the garbled gates so obtained by using the honest procedure for the somewhere
equivocal encryption.

In the on-line phase, SimIn, on input y = C(x) adaptively computes the
output tables so that the evaluator obtains the correct output. This is easily
achieved by associating each bit of the output, yj , to the only key encrypted in
the output gate goutj , which is k0

outj . For the input keys, SimIn just sends keys
k0
ini

for each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Fig. 2.

Fig. 2. Simulator for adaptive security.

Adaptively Secure Garbled Circuits from One-Way Functions 167

6 Hybrid Games

We now need to prove the indistinguishability of our garbling scheme and the
simulation. We devise a modular approach for proving indistinguishability using
different strategies that result in different parameters. We first provide a tem-
plate for defining hybrid games, where each such hybrid game is parametrized by
a circuit configuration, that is, a vector indicating the way the gates are garbled
and encrypted. Then we define the rules that allow us to indistinguishably move
from one configuration to another. With this framework in place, an indistin-
guishability proof consists of a strategy to move from the circuit configuration
of the real game to the circuit configuration of the simulated game, using the
allowed rules.

6.1 Template for Defining Hybrid Games

Gate/Circuit Configuration. We start by defining a gate configuration. A gate
configuration is a pair (outer mode, garbling mode) indicating the way a gate
is computed. The outer encryption mode can be {EquivEnc,BindEnc} depend-
ing on whether the outer encryption contains a “hole” in place of that gate or
whether it is binding on that gate. The garbling mode can be {RealGate, SimGate,
InputDepSimGate} which corresponds to the distributions outlined in Fig. 3. We
stress that, if the garbling mode of a gate is InputDepSimGate then we require
that the outer encryption mode is EquivEnc. This means that there are 5 valid
gate configurations for each gate.

Fig. 3. Garbling gate modes: RealGate (left), SimGate (center), InputDepSimGate
(right). The value v(c) depends on the input x and corresponds to the bit going over
the wire c in the computation C(x).

A circuit configuration simply consists of the gate configuration for each gate
in the circuit. More specifically, we represent a circuit configuration by a tuple
(I, (modei)i∈[q]) where

– Set I ⊆ [q] contains the indices of the gates i whose outer mode is EquivEnc.
– The value modei ∈ {RealGate,SimGate, InputDepSimGate} describes the gar-

bling mode of gate i.

A valid circuit configuration is one where all indexes i such that modei =
InputDepSimGate satisfy i ∈ I.

168 B. Hemenway et al.

Fig. 4. The hybrid game.

The Hybrid Game Hyb(I, (modei)i∈[q]). Every valid circuit configuration I,
(modei)i∈[q] defines a hybrid game Hyb(I, (modei)i∈[q]) as specified formally
Fig. 4 and described informally below. The hybrid game consists of two pro-
cedures: GCircuit′ for creating the garbled circuit C̃ and GInput′ for creating the
garbled input x̃ respectively. The garbled circuit is created by picking random
keys kσ

wj
for each wire wj . For each gate i, such that modei ∈ {RealGate,SimGate}

it creates a garbled gate g̃i using the corresponding distribution as described in
Fig. 3. The garbled circuit C̃ is then created by simulating the outer encryp-
tion using the values g̃i in locations i �∈ I and “holes” in the locations I. The
garbled input is created by first sampling the garbled gates g̃i for each i such
that modei = InputDepSimGate using the corresponding distribution in Fig. 3
and using knowledge of the input x. Then the decryption key key is simulated
by plugging in the holes in locations I with the correctly sampled garbled gates

Adaptively Secure Garbled Circuits from One-Way Functions 169

g̃i. There is some subtlety about how the input labels K[i] and the output label
maps d̃j are created when computing x̃:

– If all of the gates having ini as an input wire are in SimGate mode, then
K[i] := k0

ini
else K[i] := kxi

ini
.

– If the unique gate having outj as an output wire is in SimGate mode, then we
give the simulated output map d̃j := [(kyj

outj → 0), (k1−yj

outj → 1)] else the real
one d̃j := [(k0

outj → 0), (k1
outj → 1)].

Real game and Simulated Game. By definition of adaptively secure garbled cir-
cuits (Definition 1), the real game ExpadaptiveA,GC,Sim(1λ, 0) is equivalent to Hyb(I =
∅, (modei = RealGate)i∈[q]) and the simulated game ExpadaptiveA,GC,Sim(1λ, 1) is equiva-
lent to Hyb(I = ∅, (modei = SimGate)i∈[q]). Therefore, the main aim is to show
that these hybrids are indistinguishable.10

6.2 Rules for Indistinguishable Hybrids

Next, we provide rules that allow us to move from one configuration to another
and prove that the corresponding hybrid games are indistinguishable. We define
three rules that allow us to do this. We define mode

def= (modei)i∈[q].

Indistinguishability Rule 1: Changing the Outer Encryption Mode
BindEnc↔EquivEnc. This rule allows to change the outer encryption of a single
gate. It says that one can move from a valid circuit configuration (I,mode) to
a circuit configuration (I ′,mode) where I ′ = I ∪ j. Thus one more gate is now
computed equivocally (and vice versa).

Lemma 1. Let (I,mode) be any valid circuit configuration, let j ∈ [q]\I and let
I ′ = I ∪ j. Then Hyb(I,mode)

comp≈ Hyb(I ′,mode) are computationally indistin-
guishable as long as Π = (KeyGen, Enc,Dec, SimEnc, SimKey) is a somewhere
equivocal encryption scheme with equivocation parameter t such that |I ′| ≤ t.

Proof. Towards a contradiction, assume there exists a PPT distinguisher A that
distinguishes the distributions H0 = Hyb(I,mode) and H1 = Hyb(I ′,mode) as
defined in the Lemma.

We construct a distinguisher B for the security of somewhere equivocal
encryption scheme as follows. Informally, adversary B is playing in experiment
Expsimenc

B,Π (1λ, b) and uses her oracle access to SimEnc to reproduce the distri-
bution of Hb. B, on input I, j and mode = mode1, . . . ,modeq computes each
garbled gate g̃i on its own exactly as in H0/ H1 accordingly to modei. B com-
putes the outer encryptions of the gates by sending the gates, along with sets
I, j to Expsimenc.
10 Note that, the games Hyb(· · ·) use the simulated encryption and key generation

procedures of the somewhere equivocal encryption, while the games ExpadaptiveA,GC,Sim(1λ, b)
only use the real key generation and encryption procedures. However, by definition,
these are equivalent when I = ∅ (no “holes”).

170 B. Hemenway et al.

In the on-line phase, after obtaining x from A, B computes the values for
the missing gates (g̃i)i∈I and send them to Expsimenc, and obtain a key key′. B
uses such key to compute the garbled inputs x̃.

Now, if B is playing the game Expsimenc
B,Π (1λ, b) with a bit b, then the view

generated by B is distributed identically to Hb. Thus, B distinguishes whether
it is playing the game with b = 0 or b = 1 with the same probability that A
distinguishes H0 from H1. A more detailed description of adversary B is provided
in the full version [23].

Indistinguishability Rule 2. Changing the Garbling Mode,
RealGate ↔ InputDepSimGate. This rule allows us to change the mode of
a gate j from RealGate to InputDepSimGate as long as j ∈ I and that gatej =
(g, wa, wb, wc) has incoming wires wa, wb that are either input wires or are the
outgoing wires of some predecessor gates both of which are in InputDepSimGate
mode.

Double Encryption Security. For convenience, we use the notion of double encryp-
tion security, following [27]. This notion is implied by standard CPA security but
is more convenient to use in our security proof of garbled circuit security. See
the full version [23] for more details.

Definition 3 (Predecessor/Successor/Sibling Gates). Given a circuit C
and a gate j ∈ [q] of the form gatej = (g, wa, wb, wc) with incoming wires wa, wb

and outgoing wire wc:

– We define the predecessors of j, denoted by Pred(j), to be the set of gates whose
outgoing wires are either wa or wb. If wa, wb are input wires then Pred(j) = ∅,
else |Pred(j)| = 2.

– We define the successors of j, denoted by Succ(j) to be the set of gates that
contain wc as an incoming wire. If wc is an output wires then Succ(j) = ∅.

– We define the siblings of j, denoted by Siblings(j) to be the set of gates that
contain either wa or wb as an incoming wire.

Lemma 2. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let
j ∈ I be an index such that modej = RealGate and for all i ∈ Pred(j): modei =
InputDepSimGate. Let mode′ = (mode′

i)i∈[q] be defined by mode′
i = modei for

all i �= j and mode′
j = InputDepSimGate. Then the games Hyb(I,mode)

comp≈
Hyb(I,mode′) are computationally indistinguishable as long as Γ = (G,E,D) is
an encryption scheme secure under chosen double encryption.

Proof. Let I,mode, j and mode′ be as in the statement of the Lemma. Towards
a contradiction, assume that there exists a PPT adversary A distinguishing
distributions generated in H0 := Hyb(I,mode) and H1 := Hyb(I,mode′).

We construct an adversary B that breaks the CPA-security of the inner
encryption scheme Γ = (G,E,D) which is used to garble gates. More specifically,
we show that B wins the chosen double encryption security game which is implied
by CPA security. Informally, B, on input mode, I and target gate j aims to use

Adaptively Secure Garbled Circuits from One-Way Functions 171

her CPA-oracle access in Expdouble(1λ, b) to generate a distribution Hb. Recall
that the only difference between H0 and H1 is in the way that the garble gate g̃j

is computed. On a high level, the reduction B will compute all garbled gates g̃i for
i �= j, according to experiment Hyb(I,mode), and will compute the garbled gate
g̃j using the ciphertexts obtained as a challenge in the experiment Expdouble(1λ, b).

In more detail, let gatej = (g, wa, wb, wc) be the target gate. Recall j ∈ I
and therefore the value g̃j is only needed in the on-line phase. If the values
going over the wires wa, wb during the computation C(x) are α, β respectively,
the reduction B will know all wire keys except for k1−α

wa
, k1−β

wb
. To create the

garbled gate g̃j it will create the ciphertext cα,β as an encryption of k
g(α,β)
wc on

its own, but the remaining three ciphertexts cα′,β′ will come from the experiment
Expdouble(1λ, b) as either encryptions of different values k

g(α′,β′)
wc (real) or of the

same value k
g(α,β)
wc .

The one subtlety is that reduction needs to create encryptions under the keys
k1−α

wa
, k1−β

wb
to create garbled gates g̃i for gates i that are siblings of gate j. It

can do that by using the encryption oracles which are given to it as part of the
experiment Expdouble(1λ, b). However, since some of the sibling gates i might be
in RealGate or SimGate modes, the reduction needs to create these encryptions
already in the offline phase and therefore needs to know the values of α, β in the
offline phase before the input x is chosen. To deal with this, we simply have the
reduction guess the bits α, β randomly in the offline phase. If in the online phase
it finds out that the guess is incorrect it outputs a random bit and aborts, else
continues. See the full version [23], for a detailed description of the reduction B.

Let Correct be the event that B guesses α and β correctly. Then

|Pr[ExpdoubleB (1λ, 0) = 1] − Pr[ExpdoubleB (1λ, 1) = 1]|
=

1
4
|Pr[ExpdoubleB (1λ, 0) = 1|Correct] − Pr[ExpdoubleB (1λ, 1) = 1|Correct]|

=
1
4
|Pr[H0

A(1λ) = 1] − Pr[H1
A(1λ)]|

=⇒ |Pr[H0
A(1λ) = 1] − Pr[H1

A(1λ)]|
≤ 4|Pr[ExpdoubleB (1λ, 0) = 1] − Pr[ExpdoubleB (1λ, 1) = 1]| ≤ negl(λ)

which proves the Lemma.

Indistinguishability Rule 3. Changing the Garbling Mode:
InputDepSimGate ↔ SimGate. This rule allows us to change the mode of a
gate j from InputDepSimGate to SimGate under the condition that all successor
gates i ∈ Succ(j) satisfy that modei ∈ {InputDepSimGate,SimGate}.

Lemma 3. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and
let j ∈ I be an index such that modej = InputDepSimGate and for all i ∈
Succ(j) we have modei ∈ {SimGate, InputDepSimGate}. Let mode′ = (mode′

i)i∈[q]

be defined by mode′
i = modei for all i �= j and mode′

j = SimGate. Then the games
Hyb(I,mode) ≡ Hyb(I,mode′) are identically distributed.

172 B. Hemenway et al.

Proof. Define H0 := Hyb(I,mode) and H1 := Hyb(I,mode′). Let gatej = (g, wa,
wb, wc), and let v(c) be the bit on the wire wc during the computation C(x),
which is defined in the on-line phase.

The main difference between the hybrids is how the garbled gate g̃j is created:

– In H0, we set g̃j ← GarbleSimGate((kσ
wa

, kσ
wb

)σ∈{0,1}, k
v(c)
wc).

– In H1, we set g̃j ← GarbleSimGate((kσ
wa

, kσ
wb

)σ∈{0,1}, k0
wc

).

If j is not an output gate, and all successor gates i ∈ Succ(j) are in {SimGate,
InputDepSimGate} modes then the keys k0

wc
and k1

wc
are treated symmetrically

everywhere in the game other than in g̃j . Therefore, by symmetry, there is no
difference between using k0

wc
and k

v(c)
wc in g̃j

If j is an output gate then the keys k0
wc

and k1
wc

are only used in g̃j and in
the output map d̃j . Therefore, by symmetry, there is no difference between using
k

yj
wc in g̃j and setting d̃j := [(k0

outj → 0), (k1
outj → 1)] (in H0) versus using k0

wc
in

g̃j and setting d̃j := [(kyj

outj → 0), (k1−yj

outj → 1)] (in H1).
One last difference between the hybrids occurs if some wire ini becomes only

connected to gates that are in SimGate in H1. In this case, when we create the
garbled input x̃, then in H0 we give K[i] := kxi

ini
but in H1 we give K[i] := k0

ini
.

Since the keys k0
ini

, k1
ini

are treated symmetrically everywhere in the game (both
in H0 and H1) other than in K[i], there is no difference between setting K[i] :=
k0
ini

versus K[i] := kxi

ini
.

7 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration
(I,mode). We also gave 3 rules, which describe ways that allow us to indistin-
guishably move from one configuration to another. Now our goal is to use the
given rules so as to define a sequence of indistinguishable hybrid games that
takes us from the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) to the simula-
tion Hyb(I = ∅, (modei = SimGate)i∈[q]).

Pebbling Game. We show that the problem of finding such sequences of hybrid
games can be captured by a certain type of pebbling game on the circuit C.
Each gate can either have no pebble, a black pebble, or a gray pebble on it (this
will correspond to RealGate, InputDepSimGate and SimGate modes respectively).
Initially, the circuit starts out with no pebbles on any gate. The game consist of
the following possible moves:

Rule A. We can place or remove a black pebble on a gate as long as both
predecessors of that gate have black pebbles (or the gate is an input gate).

Rule B. We can replace a black pebble with a gray one, only if successors of
that gate have black or gray pebbles on them (or the gate is an output gate).

A pebbling of a circuit C is a sequence of γ moves that follow rules A and B
and that end up with a gray pebble on every gate. We say that a pebbling uses

Adaptively Secure Garbled Circuits from One-Way Functions 173

t black pebbles if this is the maximal number of black pebbles on the circuit at
any point in time during the game.

From Pebbling to Sequence of Hybrids. In our next theorem we prove that any
pebbling of a circuit C results in a sequence of hybrids that shows indistinguisha-
bility of the real and simulated games. The number of hybrids is proportional
to the number of moves in the pebbling and the equivocation parameter is pro-
portional to the number of black pebbles it uses.

Theorem 2. Assume that there is a pebbling of the circuit C in γ moves.
Then there is a sequence of 2 · γ + 1 hybrid games, starting with the real
game Hyb(I = ∅, (modei = RealGate)i∈[q]) and ending with the simulated game
Hyb(I = ∅, (modei = SimGate)i∈[q]) such that any two adjacent hybrid games in
the sequence are indistinguishable by rules 1, 2 or 3 from the previous section.
Furthermore if pebbling uses t∗ black pebbles then every hybrid Hyb(I,mode) in
the sequence satisfies |I| ≤ t∗. In particular, indistinguishability holds as long as
the equivocation parameter is at least t∗.

Proof. A pebble configuration specifies whether each gate contains no pebble, a
black pebble, or a gray pebble. A pebbling in γ moves gives rise to a sequence
of γ + 1 pebble configurations starting with no pebbles and ending with a gray
pebble on each gate. Each pebble configuration follows from the preceding one
by a move that satisfies pebbling rules A or B.

We let each pebble configuration define a hybrid Hyb(I,mode) where:

– For every gate i ∈ [q], we set modei = RealGate if gate i has no pebble,
modei = InputDepSimGate if gate i has a black pebble, and modei = SimGate
if gate i has a gray pebble.

– We set I to be the set of gates with black pebbles on them.

Therefore a pebbling defines a sequence of hybrids Hybα =Hyb(Iα,modeα) for α
= 0, . . . , γ where Hyb0 = Hyb(∅, (mode0i = RealGate)i∈[q]) is the real game and
Hybγ = Hyb(∅, (modeγ

i =SimGate)i∈[q]) is the simulated game, and each Hybα

is induced by the pebbling configuration after α moves. We will need to add
additional intermediate hybrids (which we call “half steps”) to ensure that each
pair of consecutive hybrids is indistinguishable by rules 1, 2 or 3. We do this as
follows:

– Assume that move α+1 of the pebbling applies rule A to place a black pebble
on gate j.
Let Hybα = Hyb(Iα,modeα) and Hybα+1= Hyb(Iα+1,modeα+1). Then Iα+1

= Iα ∪ {j}, modeα+1
i = modeα

i for all i �= j, and modeα
j = RealGate, modeα+1

j

= InputDepSimGate.
Define the intermediate “half-step” hybrid Hybα+ 1

2
:= Hyb(Iα+1, modeα).

It holds that Hybα

comp≈ Hybα+ 1
2

by rule 1, and Hybα+ 1
2

comp≈ Hybα+1 by rule
2. The conditions needed to apply rule 2 are implied by pebbling rule A.

174 B. Hemenway et al.

– Assume that move α + 1 of the pebbling applies rule A to remove a black
pebble from gate j.
Let Hybα = Hyb(Iα,modeα) and Hybα+1 = Hyb(Iα+1,modeα+1). Then Iα+1

= Iα \ {j}, modeα+1
i = modeα

i for all i �= j, and modeα
j = InputDepSimGate,

modeα+1
j = RealGate.

Define the intermediate “half-step” hybrid Hybα+ 1
2

:= Hyb(Iα,modeα+1).

It holds that Hybα

comp≈ Hybα+ 1
2

by rule 2, and Hybα+ 1
2

comp≈ Hybα+1 by rule
1. The conditions needed to apply rule 2 are implied by pebbling rule A.

– Assume that move α + 1 of the pebbling applies rule B to replace a black
pebble with a gray pebble on gate j.
Let Hybα = Hyb(Iα,modeα) and Hybα+1= Hyb(Iα+1, modeα+1). Then Iα+1 =
Iα \ {j}, modeα+1

i = modeα
i for all i �= j, and modeα

j = InputDepSimGate,
modeα+1

j = SimGate.
Define the intermediate “half-step” hybrid Hybα+ 1

2
:= Hyb(Iα,modeα+1).

It holds that Hybα

comp≈ Hybα+ 1
2

by rule 3, and Hybα+ 1
2

comp≈ Hybα+1 by rule
1. The conditions needed to apply rule 3 are implied by pebbling rule B.

Therefore the sequence Hyb0,Hyb 1
2
,Hyb1,Hyb1+ 1

2
,Hyb2, . . . ,Hybγ consisting

of 2γ + 1 hybrids satisfies the conditions of the theorem.

Combining Theorems 2 and 1 we obtain the following corollary.

Corollary 1. There exists an adaptively secure garbling scheme such that the
following holds. Assuming the existence of one-way functions, there is an instan-
tiation of the garbling scheme that has on-line complexity (n + m + t∗)poly(λ)
for any circuit C that admits a pebbling with γ = poly(λ) moves and t∗ black
pebbles. Furthermore, assuming the existence of sub-exponentially secure one-
way functions, there is an instantiation of the garbling scheme that has on-line
complexity (n+m+ t∗)poly(λ, log γ) for any circuit C admits a pebbling strategy
with γ = 2poly(λ) moves and t∗ black pebbles.

Proof. We instantiate our construction from Sect. 5 with a CPA-secure “inner
encryption” Γ having special correctness, and a somewhere-equivocal “outer
encryption” Π from Sect. 4 using an equivocation parameter t = t∗. Both com-
ponents can be instantiated from one-way functions. Assuming that γ = poly(λ),
Theorem 2 tells us that the resulting garbling scheme is adaptively secure as long
as Γ,Π are. The on-line complexity consists of n + m keys for Γ along with the
key of Π for a total of (n + m)poly(λ) + t∗poly(λ) as claimed.

When γ = 2poly(λ), then Theorem 2 tells us that the resulting garbling scheme
is adaptively secure as long as the schemes Γ,Π provide a higher level of secu-
rity so as to survive 2γ + 1 hybrids, meaning that the distinguishing advantage
for each of the schemes needs to be 2−(2γ+1)negl(λ). This can be accomplished
assuming sub-exponentially secure one-way functions by setting the security
parameter of Γ,Π to some λ′ = poly(λ, log γ) and results in on-line complex-
ity (n + m)poly(λ, log γ) + t∗poly(λ, log γ) as claimed.

Adaptively Secure Garbled Circuits from One-Way Functions 175

7.1 Pebbling Strategies

In this section we give two pebbling strategies for arbitrary circuit with width
w, depth d, and q gates. The first strategy uses O(q) moves and O(w) black
pebbles. The second strategy uses O(q2d) moves and O(d) black pebbles.

Strategy 1. To pebble the circuit proceed as follows:

Pebble(C):
1. Put a black pebble on each gate at the input level (level 1).
2. For i = 1 to d − 1, repeat:

(a) Put a black pebble on each gate at level i + 1.
(b) For each gate at level i, replace the black pebble with a gray pebble.
(c) i ← i + 1

3. For each gate at level d, replace the black pebble with a gray pebble.

This strategy uses γ = 2q moves and t∗ = 2w black pebbles. By instantiating
Corollary 1 with this strategy, we obtain the following corollary.

Corollary 2. Assuming the existence of one-way functions there exists an adap-
tively secure garbling scheme with on-line complexity w · poly(λ), where w is the
width of the circuit.

Strategy 2. This is a recursive strategy defined as follows.

– Pebble(C):
• For each gate i in C starting with the gates at the top level moving to

the bottom level:
1. RecPutBlack(C, i)
2. Replace the black pebble on gate i with a gray pebble.

– RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) are the two pre-
decessors of gate i in C.
1. If gate i is an input gate, put a black pebble on i and return.
2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i))
3. Put a black pebble on gate i.
4. Run RecRemoveBlack(C, LeftPred(C, i))

and RecRemoveBlack(C,RightPred(C, i))
– RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead

of putting a black pebble on gate i, in steps 1 and 3, we remove it.

To analyze the correctness of this strategy, we note the following invariants:
if the circuit C is in a configuration where it does not contain any pebbles at
any level below that of gate i, then (1) the procedure RecPutBlack(C, i) results
in a configuration where a single black pebble is added to gate i, but nothing
else changes, (2) the procedure RecRemoveBlack(C, i) results in a configuration
where a single black pebble is removed from gate i, but nothing else changes.
Using these two invariants the correctness of of the entire strategy follows.

176 B. Hemenway et al.

To calculate the number of black pebbles used and the number of moves
that the above strategy takes to pebble C, we use the following simple recursive
equations. Let #PebPut(d) and #PebRem(d) be the number of black pebbles on
gate i and below it used to execute RecPutBlack and RecRemoveBlack on a gate
at level d, respectively. We have,

#PebPut(1) = 1, #PebPut(d) ≤ max(#PebPut(d − 1),#PebRem(d − 1)) + 2
#PebRem(1) = 1, #PebRem(d) ≤ max(#PebPut(d − 1),#PebRem(d − 1)) + 2

Therefore the strategy requires at most 2d black pebbles to pebble the circuit.
To calculate the number of moves it takes run Pebble(C), we use the following

recursive equations. Let #Moves(d) be the number of moves it takes to put a
black pebble on, or remove a black pebble from, a gate at level d. Then

#Moves(1) = 1, #Moves(d) = 4(#Moves(d − 1)) + 1

Hence, each call of RecPutBlack takes at most 4d moves, and the total number
of moves to pebble the circuit is at most q4d.

In summary, the above gives us a strategy to pebble any circuit with at most
γ = q4d moves and t∗ = 2d black pebbles. By instantiating Corollary 1 with the
above strategy, we obtain the following corollary.

Corollary 3. Assuming the existence of (standard) one-way functions, there
exists an adaptively secure garbling schemes that has on-line complexity
(n + m)poly(λ) for all circuits having depth d = O(log λ).

Assuming the existence of sub-exponentially secure one-way functions,
there exists an adaptively secure garbling scheme that has on-line complexity
(n + m)poly(λ, d), for arbitrary circuits of depth d = poly(λ).

8 Conclusions

We have shown how to achieve adaptively secure garbling schemes under one-
way functions by augmenting Yao’s construction with an additional layer of
somewhere-equivocal encryption. The on-line complexity in our constructions
can be significantly smaller than the circuit size. In our main instantiation, the
on-line complexity only scales with the width w of the circuit, which corresponds
to the space complexity of the computation.

It remains as an open problem to get the optimal on-line complexity
(n + m)poly(λ) which does not depend on the circuit depth or width. Currently,
this is only known assuming the existence of indistinguishability obfuscation
and therefore it remains open to achieve the above under one-way functions
or even stronger assumptions such as DDH or LWE. It also remains open if
Yao’s scheme (or more precisely, a variant of it where the output map is sent
in the on-line phase) can already achieve adaptive security without relying on
somewhere-equivocal encryption. We have no proof nor a counter-example. It
would be interesting to see if there is some simple-to-state standard-model secu-
rity assumption that one could make on the encryption scheme used to create

Adaptively Secure Garbled Circuits from One-Way Functions 177

the garbled gates in Yao’s construction (e.g., circular security, key-dependent
message security, etc.), under which one could prove that the resulting garbling
scheme is adaptively secure.

References

1. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

2. Ananth, P., Sahai, A.: Functional encryption for turing machines. Cryptology
ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/

3. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011)

4. Applebaum, B.: Bootstrapping obfuscators via fast pseudorandom functions. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 162–
172. Springer, Heidelberg (2014)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE Computer Society Press, October 2004

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: 20th Annual IEEE Conference on Com-
putational Complexity (CCC 2005), San Jose, CA, USA, 11–15 June 2005, pp.
260–274. IEEE Computer Society (2005)

7. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010)

8. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013)

9. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

10. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp.
398–415. Springer, Heidelberg (2013)

11. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 134–153. Springer, Heidelberg (2012)

12. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: ACM
CCS 2012, pp. 784–796. ACM Press, October 2012

13. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

14. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015)

http://eprint.iacr.org/

178 B. Hemenway et al.

15. Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and
efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009)

16. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

17. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–
658. Springer, Heidelberg (2014)

18. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of
random functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol.
196, pp. 276–288. Springer, Heidelberg (1985)

19. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 555–564. ACM
Press, June 2013

20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

22. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010)

23. Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adaptively
secure garbled circuits from one-way functions. IACR Cryptology ePrint Archive
2015:1250 (2015)

24. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: ITCS 2015, pp. 163–172. ACM, January 2015

25. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA,
12–14 November 2000, pp. 294–304 (2000)

26. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

27. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

28. Lindell, Y., Riva, B.: Cut-and-choose yao-based secure computation in the
online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014)

29. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

30. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS 2010, pp. 463–472. ACM Press, October 2010

31. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

32. Yao, A.C.-C: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

Rate-1, Linear Time and Additively
Homomorphic UC Commitments

Ignacio Cascudo1, Ivan Damg̊ard2, Bernardo David2(B), Nico Döttling3,
and Jesper Buus Nielsen2

1 Aalborg University, Aalborg, Denmark
2 Aarhus University, Aarhus, Denmark

bernardo@cs.au.dk
3 University of California, Berkeley, USA

Abstract. We construct the first UC commitment scheme for binary
strings with the optimal properties of rate approaching 1 and linear
time complexity (in the amortised sense, using a small number of seed
OTs). On top of this, the scheme is additively homomorphic, which allows
for applications to maliciously secure 2-party computation. As tools for
obtaining this, we make three contributions of independent interest: we
construct the first (binary) linear time encodable codes with non-trivial
distance and rate approaching 1, we construct the first almost universal
hash function with small seed that can be computed in linear time, and
we introduce a new primitive called interactive proximity testing that
can be used to verify whether a string is close to a given linear code.

1 Introduction

Commitment schemes are one of the fundamental building blocks of cryptographic
protocols. In a nutshell, a commitment scheme is a two party protocol that allows
a prover P to commit to a secret without revealing it to the verifier V . Later on, in
an unveil phase P can convince V that the commitment contains a specific secret.
Classically, two security properties are required of commitment schemes: The hid-
ing property requires that the verifier V does not learn anything about the com-
mitted secret before the unveil and the binding property requires that the prover
P cannot change the committed secret after the commit phase.

A stronger security requirement is (stand-alone) simulation-based security,
where we require that any interaction with a commitment protocol is indis-
tinguishable from a perfectly secure ideal commitment. Commitment schemes
that satisfy these security notions can be realized stand-alone (i.e. no trusted
setup required) from basic and highly efficient cryptographic primitives such as
pseudorandom generators [Nao91].

However, commitment schemes are rarely used just by themselves; they are
used as components in complex protocols. In such a situation, the stand-alone
simulation-based security guarantee breaks down as several (nested) instances
of a commitment protocol might be executed with correlated secrets.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 179–207, 2016.
DOI: 10.1007/978-3-662-53015-3 7

180 I. Cascudo et al.

The most prominent security framework that captures this scenario of proto-
cols running in a larger context is Canetti’s UC framework [Can01]. UC security
offers very strong composability guarantees; in particular UC secure protocols
can be used in arbitrary contexts retaining their security properties. This how-
ever comes at a price, as UC commitments cannot be realized without trusted
setup assumptions such as common reference strings [CF01]. On the positive
side, it is well known that realizing UC secure commitments is sufficient for
general UC secure two-party and multiparty computation [CLOS02].

Any commitment scheme that is UC secure must be both straight-line
extractable and equivocal, meaning a simulator must have means to efficiently
obtain the message in a commitment sent by a malicious prover and also change
the contents of a commitment sent to a malicious verifier without having (non-
black-box) access to these machines. To obtain these strong properties, earlier
constructions of UC commitments (e.g. [CF01,Lin11,BCPV13]) relied on expen-
sive public key primitives for every single instance of the protocol, which makes
them considerably less efficient than stand-alone secure commitments (which, as
mentioned above, can be realized from minimal cryptographic primitives). The
most efficient UC commitment protocols based directly on public key assump-
tions [Lin11,BCPV13] require exponentiations in groups of larger order and have
therefore a typical computational complexity of Ω(n3) for commitments to n-bit
messages.

A recent line of research [GIKW14,DDGN14,CDD+15,FJNT16,Bra16] is
concerned with the construction of UC secure commitments schemes for which
the use of public key primitives is confined to a once-and-for-all setup phase, the
cost of which can be amortized over many sessions later on.

This gives us the possibility to build extremely efficient commitment schemes.
Let us therefore consider what we can hope to achieve: Clearly, the best running
time we can have is O(n) for committing and opening n bits, since one must look
at the entire committed string. As for communication, let us define the rate of a
commitment scheme to be the size of the committed string divided by the size
of a commitment. Now, a UC commitment must be of size at least the string
committed to, because the simulator we need for the proof of UC security must
be able to extract the committed string from the commitment. Therefore the
rate of a UC commitment scheme must be at most 1.1 If a commitment to n
bits has size n + o(n) bits, we will say it has rate approaching 1.

Another desirable property for commitment schemes is the additively homo-
morphic property: we interpret the committed strings as vectors over some finite
field, and V can add any two commitments, to vectors a, b. The result will be
a commitment that can be opened to (only) a + b while revealing nothing else
about a and b. Note that this additive property is crucial in applications of
string commitments to secure computation: In [FJN+13], it was shown how to
do maliciously secure 2-party computation by doing cut-and-choose on garbled

1 However, as we shall see, if one only needs to commit to random bit strings, one
can hope to generate these pseudorandomly from a short seed, and have rate higher
than 1 for commitment (but of course not for opening).

Rate-1, Linear Time and Additively Homomorphic UC Commitments 181

gates rather than on garbled circuits. This performs asymptotically better than
conventional cut-and-choose but requires an additive commitment scheme to
“glue” the garbled gates together to a circuit. In [AHMR15], additive commit-
ments were used in a similar way for secure RAM computation. Any efficiency
improvements for commitments are directly inherited by these applications.

1.1 Previous Work

In [GIKW14,Bra16] rate 1 was achieved. On the other hand, [DDGN14] achieved
constant rate and additively homomorphic commitments. In follow-up work, lin-
ear time and additive homomorphism were achieved in [CDD+15], and shortly
after, in [FJNT16], rate 1 and additively homomorphic commitments were
achieved.

Now, the obvious question is of course: can this line of research be closed,
by constructing a commitment scheme with the optimal properties of rate 1 and
linear time – and also with the additive property?

To see why the answer is not clear from previous works in this line of research
[GIKW14,DDGN14,CDD+15,FJNT16], let us briefly describe the basic ideas in
those constructions:

P will encode the vector s to commit to using a linear error correcting code
C, to get an encoding C(s). Now he additively secret-shares each entry in C(s)
and a protocol is executed in which V learns one share of each entry while P
does not know which shares are given to V . This phase uses a small number
of seed OT’s that are done in a once-and-for-all set-up phase analogous to the
set-up of “watchlists” in the MPC-in-the-head and IPS compiler constructions
[IPS09,IPS08]. To open, P reveals the codeword and both shares of each entry.
V checks that the shares are consistent with those he already knew, reconstructs
C(s) and checks that it is indeed a codeword. This is clearly hiding because V
has no information on C(s) at commit time. Binding also seems to follow easily:
if P wants to change his mind to another codeword, he has to change many
entries and hence at least one share of each modified entry. We can expect that
V will notice this with high probability since P does not know which share he
can change without being caught. There is a problem, however: a corrupt P does
not have to send shares of a codeword at commitment time, so he does not have
to move all the way from a codeword to the next one, and it may not be clear
(to the simulator) which string is being committed.

Three solutions to this have been proposed in earlier work: in [CDD+15] the
minimum distance of C is chosen so large that P ’s only chance is to move to the
closest codeword. This has a cost in efficiency and also means we cannot have the
additive property: if we add codewords with errors, the errors may accumulate
and binding no longer holds. In [DDGN14], a verifiable secret-sharing scheme was
used on top of the coding, this allows V to do some consistency checks that forces
P to use codewords, except with negligible probability. But it also introduces a
constant factor overhead which means there is no hope to get rate 1. Finally,
in [FJNT16], the idea was to force P to open some random linear combinations
of the codewords. In the case of binary strings, k linear combinations must be

182 I. Cascudo et al.

opened, where k is the security parameter. This indeed forces P to use codewords
and gives us the additive property. Also, a couple of tricks were proposed in
[FJNT16] which gives commitments with rate 1, if the code C has rate 1. On
the other hand, they could not get linear time this way, first because no linear
time encodable codes with rate approaching 1 were known2, and second because
one needs to visit each of prover’s codewords Ω(k) times to compute the linear
combinations.

Table 1. Comparison between the UC commitment schemes presented in [GIKW14,
DDGN14,CDD+15,FJNT16,Bra16] and the scheme presented in this paper (ΠHCOM).

Scheme Rate 1 Linear time Additively homomorphic

[GIKW14] ✓ ✗ ✗

[DDGN14] ✗ ✗ ✓

[CDD+15] ✗ ✓ ✓

[FJNT16] ✓ ✗ ✓

[Bra16] ✓ ✗ ✗

This work ✓ ✓ ✓

1.2 Our Contribution

In this paper, we show that we can indeed have UC commitments that have
simultaneously rate approaching 1, linear time and additive homomorphism.
A comparison between our results and previous works can be seen in Table 1.
While we follow the same blue-print as in previous work, we overcome the obsta-
cles outlined above via three technical contributions that are of independent
interest:

1. We introduce a primitive we call interactive proximity testing that can be
used to verify whether a given string s is in an interleaved linear code C�m,
or at least close to C�m.3 The idea is to choose a random almost universal
and linear hash function h and test whether h(s) ∈ h(C�m). We show that if
s is “too far” away from C�m, then this test will fail with high probability.
Intuitively, this makes sense to use in a 2-party protocol because the party
holding s can allow the other party to do the test while only revealing a small
amount of information on s, namely h(s). Of course, this assumes that the
verifying party has a way to verify that the hash value is correct, more details
on this are given later.

2 Of course, rate 1 and linear time is trivial if there are no demands to the distance:
just use the identity as encoding. What we mean here is that the code has length
n + o(n) and yet, as n grows, the distance remains larger than some parameter k.

3 A codeword in an interleaved code is a matrix in which all m columns are in some
underlying code C.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 183

2. In order to be able to use interactive proximity testing efficiently in our pro-
tocol, we construct the first family of (linear) almost universal hash functions
that can be computed in linear time, where for a fixed desired collision prob-
ability, the size of the seed only depends logarithmically on the input size.
We note that the verification method from [FJNT16] is a special case of our
proximity testing, where the hash function is a random linear function (which
cannot be computed in linear time)4.

3. We present the first explicit construction of linear time encodable (binary)
codes with rate approaching 1. The construction is basically a family of iter-
ated Sipser-Spielman codes [Spi96] and uses a family of explicit expander
graphs constructed by Capalbo et al. [CRVW02]. Previous linear time encod-
able codes [Spi96,GI02,GI03,GI05,DI14] did not approach rate 1, which was
a clear obstacle to our results.

2 Preliminaries

In the sections we establish notation and introduce notions that will be used
throughout the paper. We borrow much of the notation from [CDD+15].

2.1 Notation

The set of the n first positive integers is denoted [n] = {1, 2, . . . , n}. Given a
finite set D, sampling a uniformly random element from D is denoted r

$←D
and sampling a uniformly random subset of n elements from D is denoted
{r1, . . . , rn} $←D. Vectors of elements of some field are denoted by bold lower-case
letters, while matrices are denoted by bold upper-case letters. Concatenation of
vectors is represented by ‖. For z ∈ F

k, z[i] denotes the i’th entry of the vec-
tor, where z[1] is the first element of z. For a matrix M ∈ F

n×k, we let M[·, j]
denote the j’th column of M and M[i, ·] denote the i’th row. The column span
of M, denoted by 〈M〉col is the vector subspace of F

n spanned over F by the
columns M[·, 1], . . . ,M[·, k] of M. The row support of M is the set of indices
I ⊆ {1, . . . , n} such that M[i, ·] �= 0.

We say that a function ε is negligible in n if for every positive polynomial p
there exists a constant c such that ε(n) < 1

p(n) when n > c. Two ensembles X =
{Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables are
said to be statistically indistinguishable, denoted by X ≈s Y , if for all z it holds
that | Pr[D(Xκ,z) = 1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic
algorithm (distinguisher) D. In case this only holds for computationally bounded
(non-uniform probabilistic polynomial-time (PPT)) distinguishers we say that
X and Y are computationally indistinguishable and denote it by ≈c.

4 On the other hand, we pay a small price for having a non-random function, namely
the output size for the hash function needs to be Θ(s) + log(m) rather than Θ(s),
where s is the security parameter and m is the number of commitments.

184 I. Cascudo et al.

2.2 Coding Theory

We denote finite fields by F and write Fq for the finite field of size q. For a vector
x ∈ F

n, we denote the Hamming-weight of x by ‖x‖0 = |{i ∈ [n] : x[i] �= 0}|.
Let C ⊂ F

n be a linear subspace of F
n. We say that C is an F-linear [n, k, s]

code, if C has dimension k and it holds for every nonzero x ∈ C that ‖x‖0 ≥ s,
i.e., the minimum distance of C is at least s. The distance dist(C,x) between C
and a vector x ∈ F

n is the minimum of ‖c − x‖0 when c ∈ C. The rate of an
F-linear [n, k, s] code is k

n and its relative minimum distance is s
n .

A matrix G ∈ F
n×k is a generator matrix of C if C = {Gx : x ∈ F

k}. The
code C is systematic if it has a generator matrix G such that the submatrix given
by the top k rows of G is the identity matrix I ∈ F

k×k. A matrix P ∈ F
(n−k)×n

of maximal rank n − k is a parity check matrix of C if Pc = 0 for all c ∈ C.
When we have fixed a parity check matrix P of C we say that the syndrome of
an element v ∈ F

n is Pv.
For an F-linear [n, k, s] code C, we denote by C�m the m-interleaved product

of C, which is defined by

C�m = {C ∈ F
n×m : ∀i ∈ [m] : C[·, i] ∈ C} .

In other words, C�m consists of all Fn×m matrices for which all columns are
in C. We can think of C�m as a linear code with symbol alphabet Fm, where we
obtain codewords by taking m arbitrary codewords of C and bundling together
the components of these codewords into symbols from F

m. For a matrix E ∈
F

n×m, ‖E‖0 is the number of nonzero rows of E, and the code C�m has minimum
distance at least s′ if all nonzero C ∈ C�m satisfy ‖C‖0 ≥ s′. Furthermore, P is
a parity-check matrix of C if and only if PC = 0 for all C ∈ C�m.

2.3 Universal Composability

The results presented in this paper are proven secure in the Universal Compos-
ability (UC) framework introduced by Canetti in [Can01]. We refer the reader
to AppendixA and [Can01] for further details.

Adversarial Model: Our protocols will be proved secure against static and
active adversaries. This means that corruption is assumed to take place before
the protocols starts execution and that the adversary may deviate from the
protocol in any arbitrary way.

Setup Assumption: Since UC commitment protocols cannot be obtained in
the plain model [CF01], they need a setup assumption, i.e., some resource avail-
able to all parties before the protocol starts. In the case of our protocol, our goal
is to prove security in the FOT-hybrid model [Can01,CLOS02], where the parties
have access to an ideal 1-out-of-2 OT functionality. In order to attain this, we
first prove our protocol secure in the FROT-hybrid model, where the resource

Rate-1, Linear Time and Additively Homomorphic UC Commitments 185

Functionality FHCOM

FHCOM interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds
as follows:
– Commit Phase: The length of the committed messages λ is fixed and known

to all parties.
• If Ps is honest, upon receiving a message (commit, sid, ssid, Ps, Pr) from

Ps, sample a random m ← {0, 1}λ, record the tuple (ssid, Ps, Pr,m),
send the message (commit, sid, ssid, Ps, Pr,m) to Ps and send the message
(receipt, sid, ssid, Ps, Pr) to Pr and S. Ignore any future commit messages
with the same ssid from Ps to Pr.

• If Ps is corrupted, upon receiving a message (commit, sid, ssid, Ps, Pr,m)
from Ps, where m ∈ {0, 1}λ, record the tuple (ssid, Ps, Pr,m) and send the
message (receipt, sid, ssid, Ps, Pr) to Pr and S. Ignore any future commit
messages with the same ssid from Ps to Pr.

• If a message (abort, sid, ssid) is received from S, the functionality halts.
– Open Phase: Upon receiving a message (reveal, sid, ssid) from Ps: If

a tuple (ssid, Ps, Pr,m) was previously recorded, then send the message
(reveal, sid, ssid, Ps, Pr,m) to Pr and S. Otherwise, ignore.

– Addition: Upon receiving a message (add, sid, ssid1, ssid2, ssid3, Ps, Pr) from
Ps: If tuples (ssid1, Ps, Pr,m1), (ssid2, Ps, Pr,m2) were previously recorded
and ssid3 is unused, record (ssid3, Ps, Pr,m1 + m2) and send the message
(add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) to Ps, Pr and S.

Fig. 1. Functionality FHCOM

that the parties have access to is an 1-out-of-2 random OT functionality, which
we describe below. Since we can implement FROT in the FOT-hybrid model, as
shown in AppendixB, the composability guarantees of the UC framework imply
that we can achieve security for our commitment scheme in the FOT-hybrid
model too.

Ideal Functionalities: In Sect. 5, we construct an additively homomorphic
string commitment protocol that UC-realizes the functionality FHCOM, which is
described in Fig. 1. This functionality basically augments the standard multiple
commitments functionality FMCOM from [CLOS02] by introducing a command
for adding two previously stored commitments and an abort command in the
Commit Phase. FHCOM differs from a similar functionality of [CDD+15] in that
it gives an honest sender commitments to random messages instead of letting it
submit a message as input. In order to model corruptions, functionality FHCOM

lets a corrupted sender choose the messages it wants to commit to. The abort
is necessary to deal with inconsistent commitments that could be sent by a
corrupted party.

In fact, our additively homomorphic commitment protocol is constructed in
the FROT-hybrid model. Functionality FROT models a random oblivious transfer
of n × m matrices R0,R1 where the receiver learns a matrix S where each row

186 I. Cascudo et al.

Functionality FROT

FROT interacts with a sender Ps, a receiver Pr and an adversary A, and it proceeds
as follows:

– If both parties are honest, FROT waits for messages (sender, sid, ssid) and
(receiver, sid, ssid) from Ps and Pr, respectively. Then FROT samples random

bits b1, . . . , bn
$←{0, 1}n and two random matrices R0,R1

$←{0, 1}n×m with
n rows and m columns. It computes a matrix S such that for i = 1, . . . , n:
S[i, ·] = Rbi [i, ·]. It sends (sid, ssid,R0,R1) to Ps and (sid, ssid, b1, . . . , bn,S)
to Pr. That is, for each row-position, Pr learns a row of R0 or of R1, but Ps

does not know the selection.
– If Ps is corrupted, FROT waits for messages (receiver, sid, ssid) from Pr and

(adversary, sid, ssid,R0,R1) from A. FROT samples (b1, .., bn)
$←{0, 1}n, sets

S[i, ·] = Rbi [i, ·] for i = 1, . . . , n and sends (sid, ssid, b1, . . . , bn,S) to Pr.
– If Pr is corrupted, FROT waits for messages (sender, sid, ssid) from Ps and

(adversary, sid, ssid, b1, . . . , bn,S) from A. FROT samples random matrices

R0,R1
$←{0, 1}n×m , subject to S[i, ·] = Rbi [i, ·], for i = 1, . . . , n. FROT sends

(sid, ssid,R0,R1) to Ps.

Notice that S can equivalently be specified as S = ΔR1 + (I − Δ)R0, where I is
the identity matrix and Δ is the diagonal matrix with b1, . . . , bn on the diagonal.

Fig. 2. Functionality FROT

is selected from either R0 or R1. Notice that this functionality can be trivially
realized in the standard FOT-hybrid model as shown in AppendixB. We define
FOT in AppendixB and FROT in Fig. 2 following the syntax of [CLOS02]. Notice
that FOT can be efficiently UC-realized by the protocol in [PVW08], which can
be used to instantiate the setup phase of our commitment protocols.

3 Interactive Proximity Testing

In this section, we will introduce our interactive proximity testing technique.
It consists in the following argument: suppose we sample a function H from
an almost universal family of linear hash functions (from F

m to F
�), and we

apply this to each of the rows of a matrix X ∈ F
n×m, obtaining another matrix

X′ ∈ F
n×�; because of linearity, if X belonged to an interleaved code C�m, then

X′ belongs to the interleaved code C��. This suggests that we can test whether
X is close to C�m by testing instead if X′ is close to C��. Theorem 1 states that
indeed the test gives such guarantee (with high probability over the choice of
the hash function) and moreover, if these elements are close to the respective
codes, the “error patterns” (the set of rows that have to be modified in each of
the matrices in order to correct them to codewords) are the same.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 187

Definition 1 (Almost Universal Linear Hashing). We say that a family H
of linear functions F

n → F
s is ε-almost universal, if it holds for every non-zero

x ∈ F
n that

Pr
H

$←H
[H(x) = 0] ≤ ε,

where H is chosen uniformly at random from the family H. We say that H is
universal, if it is |F−s|-almost universal. We will identify functions H ∈ H with
their transformation matrix and write H(x) = H · x.

We will first establish a property of almost universal hash functions that can
be summarized as follows. Applying a randomly chosen linear hash function H
from a suitable family H to a matrix M will preserve its rank, unless the rank
of M exceeds a certain threshold r. If the rank of M is bigger than r, we still
have the guarantee that the rank of H · M does not drop below r.

Lemma 1. Let H : F
m → F

r+s+t be a family of |F|−(r+s)-almost universal
linear functions. Fix a matrix M ∈ F

m×n. Then it holds for H $←H that

Pr[rank(H · M) < min(rank(M), r)] ≤ |F|−s
.

Remark 1. Since rank is preserved by transposition, we can state the conse-
quence of the Lemma equivalently as

Pr[rank(M�H�) < min(rank(M�), r)] ≤ |F|−s
.

Proof. If rank(M) = 0 the statement is trivial. Thus assume rank(M) > 0. Let
V = 〈M〉col be the column-span of M. We will first compute E[| ker(H)∩V |−1].
By linearity of expectation we have that

E[| ker(H) ∩ V | − 1] = E[|{v ∈ V \{0} : H(v) = 0}|]
=

∑
v∈V \{0}

Pr
H

[H(v) = 0]

≤ (|V | − 1)|F|−(r+s)

≤ |V | · |F|−(r+s)
.

As | ker(H) ∩ V | − 1 is non-negative, it follows by the Markov inequality that

Pr[| ker(H) ∩ V | − 1 ≥ |V | · |F|−r] ≤ E[| ker(H) ∩ V | − 1]
|V | · |F|−r

≤ |V ||F|−(r+s)

|V | · |F|−r

= |F|−s
.

Thus it follows that

Pr[| ker(H) ∩ V | > |V | · |F|−r] ≤ |F|−s
. (1)

188 I. Cascudo et al.

– If rank(M) = dim(V) ≤ r, then it holds that

|V | · |F|−r ≤ 1

and (1) implies
Pr[| ker(H) ∩ V | > 1] ≤ |F|−s

.

But since dim(ker(H) ∩ V) = rank(M) − rank(HM), this means that

Pr[rank(HM) < rank(M)] ≤ |F|−s
.

– On the other hand, if rank(M) = dim(V) ≥ r, then we can restate (1) as

Pr[dim(ker(H) ∩ V) > rank(M) − r] ≤ |F|−s
.

Again using dim(ker(H) ∩ V) = rank(M) − rank(HM) we obtain

Pr[rank(HM) < r] ≤ |F|−s
.

All together, we obtain

Pr[rank(HM) < min(rank(M), r)] ≤ |F|−s
,

which concludes the proof.

The next lemma states that we obtain a lower bound the distance of a matrix
X from an interleaved code C�m by the rank of PX.

Lemma 2. Let C be a F-linear [n, k, s] code with a parity check matrix P. It
holds for every X ∈ F

n×m that dist(C�m,X) ≥ rank(PX).

Proof. Let E ∈ F
n×m be a matrix of minimal row support such that X − E ∈

C�m, i.e., ‖E‖0 = dist(C�m,X). Clearly PX = PE. It follows that

rank(PX) = rank(PE) ≤ rank(E) ≤ ‖E‖0 = dist(C�m,X).

Lemma 3. Let C be a F-linear [n, k, s] code with a parity check matrix P. Let
X ∈ F

n×m and X′ ∈ F
n×m′

. If it holds that

〈PX〉col ⊆ 〈PX′〉col,

then for any C′ ∈ C�m′
there exists a C ∈ C�m such that the row support of

X−C is contained in the row support of X′ −C′. As a consequence, it also holds
that

dist(C�m,X) ≤ dist(C�m′
,X′).

Proof. As 〈PX〉col ⊆ 〈PX′〉col, we can express PX as

PX = PX′T,

Rate-1, Linear Time and Additively Homomorphic UC Commitments 189

for a matrix T ∈ F
m′×m. This implies that P(X − X′T) = 0, from which it

follows that X − X′T ∈ C�m. Thus there exists a Ĉ ∈ C�m with

X − X′T = Ĉ. (2)

Now fix an arbitrary C′ ∈ C�m′
. Rearranging Eq. (2), we obtain

X − (Ĉ + C′T) = (X′ − C′)T.

Setting C = Ĉ + C′T it follows directly that the row support of X − C is
contained in the row support of X′ − C′, as X − C = (X′ − C′)T.

Theorem 1. Let H : F
m → F

2s+t be a family of |F|−2s-almost universal
F-linear hash functions. Further let C be an F-linear [n, k, s] code. Then for every
X ∈ F

n×m at least one of the following statements holds, except with probability
|F|−s over the choice of H $←H:

1. XH� has distance at least s from C�(2s+t)

2. For every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that XH� − C′ and
X − C have the same row support

Remark 2. If the first item in the statement of the Theorem does not hold,
the second one must hold. Then we can efficiently recover a codeword C with
distance at most s − 1 from X using erasure correction, given a codeword C′ ∈
C�(2s+t) with distance at most s − 1 from XH�. More specifically, we compute
the row support of XH� − C′, erase the corresponding rows of X and recover
C from X using erasure correction5. The last step is possible as the distance
between X and C is at most s − 1.

Proof. We will distinguish two cases, depending on whether rank(PX) ≥ s or
rank(PX) < s.

– Case 1: rank(PX) ≥ s. It follows by Lemma 1 that rank(PXH�) is at least
s, except with probability |F|−s over the choice of H $←H. Thus fix a H ∈ H
with rank(PXH�) ≥ s. It follows by Lemma 2 that dist(C�m,XH�) ≥ s, i.e.,
the first item holds.

– Case 2: rank(PX) < s. It follows from Lemma 1 that rank(PXH�) =
rank(PX), except with probability |F|−s over the choice of H $←H. Thus fix
a H ∈ H with rank(PXH�) = rank(PX). Since 〈PXH�〉col ⊆ 〈PX〉col and
rank(PXH�) = rank(PX), it holds that 〈PXH�〉col = 〈PX〉col. It follows
from Lemma 3 that for every C′ ∈ C�(2s+t) there exists a C ∈ C�m such that
XH� −C′ and X−C have the same row support, i.e., the second item holds.

4 Linear Time Primitives

In this section, we will provide constructions of almost universal hash functions
and rate-1 codes with linear time complexity.
5 Recall that erasure correction for linear codes can be performed efficiently via

gaussian elimination.

190 I. Cascudo et al.

4.1 Linear Time Almost Universal Hashing with Short Seeds

Theorem 2 [IKOS08,DI14]. Fix a finite field F of constant size. For all integers
n,m with m ≤ n there exists a family of linear universal hash functions G : Fn →
F

m such that each function G ∈ G can be described by O(n) bits and computed
in time O(n).

It is well know that evaluating a polynomial of degree at most d over a
field F is a (d − 1)/|F|-almost universal hash function. We will use the family
provided in Theorem 2 to pre-hash the input in a block-wise manner, such that
the computation time of the polynomial hash function becomes linear in the size
of the original input. A similar speed-up trick was used in [IKOS08] to construct
several cryptographic primitives, for instance pseudorandom functions, that can
be computed in linear time.

Lemma 4. Let d = d(s) be a positive integer. Let F be a finite field of constant
size and F

′ be an extension field of F of degree �s + log|F|(d)�. Let n = n(s, d) be
such that a multiplication in F

′ can be performed in time O(n). Let G : Fn → F
′

be a family of F-linear universal hash functions which can be computed in time
O(n) and has seed length O(n). For a function G ∈ G and an element α ∈ F

′,
define the function HG,α : Fd·n → F

′ ∼= F
s+log|F|(d) by

HG,α(x) =
d−1∑
i=0

G(xi)αi,

where x = (x0, . . . ,xd−1) ∈ (Fn)d. Define the family H by H = {HG,α : G ∈
G, α ∈ F

′}. Then the family H is 2−s-almost universal, has sub-linear seed-length
O(n) and can be computed in linear time O(d · n).

Remark 3. We can choose the function n(s, d) as small as O((s + log|F|(d)) ·
polylog(s + log|F|(d))), if a fast multiplication algorithm for F

′ is used.

Proof. We will first show that H is 2−s almost universal. Let x =
(x0, . . . ,xd−1) �= 0. Thus there exists an i ∈ {0, . . . , d − 1} such that xi �= 0.
Consequently, it holds for a randomly chosen G

$←G that G(xi) �= 0, except with
probability 1/|F′|. Suppose now that 0 �= (G(x0), . . . , G(xd−1)) ∈ F

′d.

P (X) =
d−1∑
i=0

G(xi)Xi

is a non-zero polynomial of degree at most d − 1, and consequently P (X) has at
most d − 1 zeros. It follows that for a random α

$←F
′ that

HG,α(x) =
d−1∑
i=0

G(xi)αi = P (α) �= 0,

Rate-1, Linear Time and Additively Homomorphic UC Commitments 191

except with probability (d − 1) |F′|. All together, we can conclude that HG,α

(x) �= 0, except with probability

1/|F′| + (d − 1)/|F′| = d/|F′| = |F|−s

over the choice of G
$←G and α

$←F
′, as |F′| = |F|s+log|F|(d).

Notice that the seed size of HG,α is

|G| + log(|F′|) = O(n) + (s + log|F|(d)) log(|F|) = O(n).

We will finally show that for any choice of G ∈ G and α ∈ F
′ the function

HG,α can be computed in linear time in the size of its input x. Computing
G(x1), . . . , G(xd) takes time O(d ·n), as computing each G(xi) takes time O(n).
Next, evaluating the polynomial P (X) =

∑d−1
i=0 G(xi)Xi at α naively costs d−1

additions and 2(d − 1) multiplications. Since both additions and multiplications
in F

′ can be performed in time O(n), the overall cost of evaluating P (X) at α
can be bounded by O(d ·n). All together, we can compute HG,α in time O(d ·n),
which is linear in the size of the input.

Instantiating the family G in Lemma 4 with the family provided in Theorem2,
we obtain the following theorem.

Theorem 3. Fix a finite field F of constant size. There exists an explicit family
H : Fn → F

s+O(log(n)) of |F|−s-universal hash functions that can be represented
by O(s2) bits and computed in time O(n).

4.2 Linear Time Rate-1 Codes

For the construction in this section we will need a certain kind of expander
graph, called unique-neighbor expander.

Definition 2. Let Γ = (L,R,E) be a bipartite graph of left-degree d with |L| = n
and |R| = m. We say that Γ is a (n,m, d, w)-unique neighbor expander, if for
every non-empty subset S ⊆ L of size at most w, there exists at least one vertex
r ∈ R such that |Γ (r) ∩ S| = 1, where Γ (r) = {l ∈ L : (l, r) ∈ E} is the
neighborhood of r.

Lemma 5. Fix a finite field F of constant size. Let C be an F-linear [m, k, s]
code. Further let Γ be a (n,m, d, w)-unique-neighbor expander such that w ·d < s.
Let HΓ be the adjacency matrix of Γ . Then the code C′ = {c ∈ F

n|HΓ · c ∈ C}
is an F-linear [n, n − m + k,w] code.

Proof. Clearly, C′ has length n. If HC is a parity check matrix of C, then HC ·
HΓ ∈ F

(m−k)×n is a parity check matrix of C′. Thus, the dimension of C′ is at
least n−m+k. Now, let e ∈ F

n be a non-zero vector of weight less than w. Then,
by the unique neighbor expansion property of Γ , HΓ · e is a non-zero vector of
weight at most d · w. But now it immediately holds that HΓ · e /∈ C, as C has
distance at least s > d · w. Thus, C′ has minimum distance at least w.

192 I. Cascudo et al.

Remark 4. The same arguments show that if Γ is a (n,m, d, w)-unique-neighbor
expander (with no additional conditions on the parameters), the code C′′ = {c ∈
F

n|HΓ · c = 0} is an F-linear [n, n − m,w] code.

We will now use the statement of Lemma 5 on a suitable chain of expander
graphs to obtain codes with rate 1 and a linear time parity check operation. We
will use the following families of explicit expander graphs due to Capalbo et al.
[CRVW02].

Theorem 4 [CRVW02]. For all integers n, m < n there exists an explicit
(n,m, d, w)-unique-neighbor expander Γ with

d = (log(n) − log(m))O(1)

w = Ω
(m

d

)
.

Moreover, if n = O(m), then Γ can be constructed efficiently.

Lemma 6. Fix a finite field F of constant size. There exists a constant γ > 0 and
an explicit family (Cs)s of F-linear codes, where Cs has length O(s2), minimum
distance s and rate 1 − s−γ , i.e. the rate of Cs approaches 1. Moreover, the parity
check operation of C can be performed in O(s2), which is linear in the codeword
length.

Proof. By Theorem 4, there exists a constant d and a constant α, such that for all
choices of m there exists a (2m,m, d,w)-unique-neighbor expander Γ with w ≥
αm/d. Now let t be a constant such that t · α ≥ 1 and let � > 0 be an integer.
Choosing mi = t · 2i−1d�s, we obtain a chain of (2mi,mi, d, wi)-unique-neighbor
expanders Γi with wi ≥ αmi/d. For 1 ≤ i ≤ � we can get a lower bound for wi by

wi ≥ αmi/d ≥ αt · 2i−1d�−1s ≥ d�−is,

as αt ≥ 1 and i ≥ 1. We thus obtain that Γi is also a (t·2id�s, t·2i−1d�s, d, d�−is)-
unique neighbor expander.

We will choose C1 = {c ∈ F : HΓ1c = 0}, which is a code of length t2d�s
and distance at least d�−1s by Remark 4. Applying Lemma 5 on C1 with the
expander Γ2, we obtain a code C2 of length t22d�s and distance d�−2s. Iterating
this procedure for i ≤ �, applying Lemma 5 on Ci with expander Γi+1, we obtain
codes Ci of length t2id�s and distance d�−is. Thus, C� is a code of length t(2d)�s
and minimum distance s. By construction, the matrix

H� = HΓ1 · HΓ2 . . .HΓ�

is its parity check matrix. Notice that multiplication H� can be performed in
linear time O(t(2d)�s) in the codeword length. This can be seen as multiplication
with HΓi

can be performed it time O(d · t2id�s) and thus multiplication with H�

can be performed in time

�∑
i=1

O(d · t2id�s) = O(d�+1ts

�∑
i=1

2i) = O(d�+1ts2�+1) = O(t(2d)�s)

Rate-1, Linear Time and Additively Homomorphic UC Commitments 193

We can also see from H� that the dimension of C� is at least t(2d)�s − td�s, i.e.
C� has rate 1 − 2−�. Now, choosing � = �log(s)/ log(2d)� we obtain a code C of
length O(s2), minimum distance s and rate 1 − s−γ , where γ ≥ 1/ log(2d) is a
constant. This concludes the proof.

We will now convert the codes constructed in Lemma 6 into codes with linear
time encoding operation. The idea is simple: compute a syndrome of a message
with respect to the parity check matrix promised in Lemma 6, encode this syn-
drome using a good code C2 and append the encoded syndrome to the message.
This systematic code has a linear time encoding operation, and the next Lemma
shows that it has also good distance and rate.

Lemma 7. Fix a finite field F of constant size. Let C1 be an F-linear [n, n−m, d]
code with linear time computable parity check operation with respect to a parity
check matrix H1. Further let C2 be an F-linear [l,m, d] code with a linear time
encoding operation with respect to a generator matrix G2. Then the code C3,
defined via the encoding operation x �→ (x,G2 ·H1 ·x) is an F-linear [n + l, n, d]
code with linear time encoding operation.

Proof. The fact that C3 is linear time encodable follows immediately, as multipli-
cation with both H1 and G2 are linear time computable. Moreover, it also follows
directly from the definition of C3 that C3 has length n + l and dimension n. We
will now show that C3 has minimum distance at least d. Let e = (e1, e2) ∈ F

n+l

be a non-zero vector of weight less than d. Clearly it holds that both e1 and
e2 have weight less than d. If e2 is non-zero, then e2 /∈ C2, as C2 has minimum
distance d. On the other hand, if e1 is non-zero, then H1 · e1 is non-zero as C1

has distance d. But then, G2 · H1e1 has weight at least d, as C2 has minimum
distance d and H1 · e1 is non-zero. Consequently, G · H1 · e1 �= e2, as e2 has
weight less than d. We conclude that (e1, e2) /∈ C3.

To use Lemma 7, we need a family of linear time encodable codes with con-
stant rate and constant relative minimum distance. Such codes were first con-
structed by Spielman [Spi96].

Theorem 5 [Spi96,GI05]. Fix a finite field F of constant size. Then there exists
a family {Cn} of F-linear codes with constant rate and constant relative minimum
distance which supports linear time encoding.

We can now bootstrap the statement of Lemma 6 into a linear time encodable
code of rate 1 using Lemma 7 and Theorem 5.

Theorem 6. Fix a finite field F of constant size. There exists a constant γ > 0
and an explicit family of F-linear codes (Cs)s of length O(s2), minimum distance
s and rate 1 − s−γ , which approaches 1. Moreover, C has an encoding algorithm
Enc that runs in time O(s2), which is linear in the codeword length.

194 I. Cascudo et al.

5 Linear Time and Rate 1 Additive Commitments

In this section we construct a protocol for additively homomorphic commitments
that UC realizes functionality FHCOM. This protocol achieves (amortized) lin-
ear computational complexity for both parties and rate 1, meaning that the
ratio between the size of the committed messages and the size of the data
exchanged by the parties in the protocol approaches one. We will show how to
make commitments to random strings, which allows the protocol to achieve sub-
linear communication complexity in the commitment phase while keeping rate
1 in the opening phase, a property that finds applications in different scenarios
of multiparty computation [FJN+13]. This protocol can be trivially extended to
standard commitments by having the sender also send the difference between
the random and the desired strings. The resulting protocol maintains rate 1 and
linear computational complexity.

The construction in this section will be based on a systematic binary linear
code C, an [n, k, s] code, where s is the statistical security parameter and n is
k+O(s). It follows from the construction in Sect. 4.2 that for any desired value of
s, we can make such a code for any k, that is, the rate tends to 1 as k grows, and
furthermore that encoding in C takes linear time. We also need a family of linear
time computable almost universal hash functions H. Furthermore the functions
in H must be linear. The functions will map m-bit strings to l-bit strings, where
m is a parameter that can be chosen arbitrarily large (but polynomially related
to n, k and l). We use the construction from Theorem 3, and hence, since we will
need collision probability 2−2s, we set l = 2s + log(m).

We will build commitments to k-bit random strings, and the protocol will pro-
duce m − l such commitments. In AppendixC we show how our protocol can be
used to commit to arbitrary messages achieving still preserving linear computa-
tional complexity and rate-1. In fact, in Sect. 5.1 we show that we can get even
higher rate when committing to random messages. In the following, all vectors
and matrices will be assumed to have binary entries. The construction can easily
be generalized to other finite fields. The Commitment Phase is described in Fig. 3
and the Addition procedure and Opening Phase are described in Fig. 4. Notice that
the Opening Phase presented in Fig. 4 does not achieve rate-1 but we show how to
do so in Sect. 5.1. The security of our protocols is formally stated in Theorem 7.

As shown in AppendixB, we can implement FROT based on n one-out-of-two
OT’s on short strings (of length equal to a computational security parameter)
using a pseudo-random generator and standard techniques. This will give the
result mentioned in the introduction: we can amortize the cost of the OT’s over
many commitments.

Theorem 7. ΠHCOM UC-realizes FHCOM in the FROT-hybrid model with sta-
tistical security against a static adversary. Formally, there exists a simulator S
such that for every static adversary A, and any environment Z, the environment
cannot distinguish ΠHCOM composed with FROT and A from S composed with
FHCOM. That is, we have

IDEALFHCOM,S,Z ≈s HYBRIDFROT
ΠHCOM,A,Z .

Rate-1, Linear Time and Additively Homomorphic UC Commitments 195

Protocol ΠHCOM (Commitment Phase)

Let C be a systematic binary linear [n, k, s] code, where s is the statistical security
parameter and n is k + O(s). Let H be a family of linear almost universal hash
functions H : {0, 1}m → {0, 1}l. Protocol ΠHCOM is run by a sender P and a
receiver V and proceeds as follows:

Commitment Phase

1. The parties P and V invoke FROT with inputs (sender, sid, ssid) and
(receiver, sid, ssid), respectively. P receives (sid, ssid,R0,R1) from FROT and
sets R = R0 + R1. V receives (sid, ssid, b1, . . . , bn,S) from FROT and sets
the diagonal matrix Δ such that it contains b1, . . . , bn in the diagonal. R will
contain in the top k rows the data to commit to. Note that R0,R1 forms an
additive secret sharing of R, and in each row V knows shares from either R0

or R1.
2. P now adjusts the bottom n−k rows of R so that all columns are codewords in

C, and V will adjust his shares accordingly, as follows: P constructs a matrix W
with dimensions as R and 0s in the top k rows, such that A := R+W ∈ C�m

(recall that C is systematic). P sends (sid, ssid,W) to V (of course, only the
bottom n − k = O(s) rows need to be sent).

3. P sets A0 = R0,A1 = R1 + W and V sets B = ΔW + S. Note that now we
have

A = A0 + A1, B = ΔA1 + (I − Δ)A0, A ∈ C�m ,

i.e., A is additively shared and for each row index, V knows either a row from
A0 or from A1.

4. V chooses a seed H ′ for a random function H ∈ H and sends (sid, ssid, H ′) to
P , we identify the function with its matrix (recall that all functions in H are
linear).

5. P computes T0 = A0H,T1 = A1H and sends (sid, ssid,T0,T1) to V . Note
that AH = A0H + A1H = T0 + T1, and AH ∈ C�l. So we can think of
T0,T1 as an additive sharing of AH, where again V knows some of the shares,
namely the rows of BH.

6. V checks that ΔT0 + (I − Δ)T1 = BH and that T0 + T1 ∈ C�l. If any check
fails, he aborts.

7. We sacrifice some of the columns in A to protect P ’s privacy: Note that each
column j in AH is a linear combination of some of the columns in A, we let
A(j) denote the index set for these columns. Now for each j the parties choose
an index a(j) ∈ A(j) such that all a(j)’s are distinct. P and V now discard
all columns in A,A0,A1 and B indexed by some a(j). For simplicity in the
following, we renumber the remaining columns from 1.

8. P saves A,A0 and A1, and V saves B and Δ (all of which now have m − l
columns).

Fig. 3. Protocol ΠHCOM (commitment phase)

196 I. Cascudo et al.

Protocol ΠHCOM (Addition and Opening Phase)

Assuming that the Commitment phase has been completed as specified in Figure 3,
Protocol ΠHCOM is run by a sender P and a receiver V and proceeds as follows:

Addition of Commitments

1. To add commitments with index i and j, P appends the column A[·, j]+A[·, i]
to A, likewise he appends to A0 and A1 the sum of their i’th and j’th columns.
P sends (add, sid, ssid, i, j) to V .

2. Upon receiving (add, sid, ssid, i, j), V appends B[·, j] + B[·, i] to B. Note that
this maintains the properties A = A0 + A1, B = ΔA1 + (I − Δ)A0, and

A ∈ C�m′
, where m′ is the current number of columns.

Opening Phase

1. To open commitment number j, P sends (sid, ssid,A0[·, j],A1[·, j]) to V and
halts.

2. V checks that A0[·, j] + A1[·, j] ∈ C and that for i = 1, . . . , n, it holds that
B[i, j] = Abi [i, j] (recall that bi is the i’th entry on the diagonal of Δ). If this
is the case, he outputs the first k entries in A0[·, j] + A1[·, j] as the opened
string and halts, otherwise, he aborts outputting (sid, ssid, ⊥).

Fig. 4. Protocol ΠHCOM (addition and opening phase)

Proof. Simulation when both players are honest is trivial, so the theorem follows
from the Lemmas 8 and 9 below, which establish security against a corrupt P
and a corrupt V , respectively.

Lemma 8. There exists a simulator SP such that for every static adversary A
who corrupts P , and any environment Z, the environment cannot distinguish
ΠHCOM composed with FROT and A from SP composed with FHCOM. That is,
we have

IDEALFHCOM,SP ,Z ≈s HYBRIDFROT
ΠHCOM,A,Z

Proof. Assume that the sender P is corrupted. We use P̂ to denote the corrupted
sender. In the UC framework, this is actually the adversary, which might in turn
be controlled by the environment. We describe the simulator SP in Fig. 5. The
simulator SP will run protocol ΠHCOM with an internal copy of P̂ exactly as the
honest V would have done. First, SP runs the instance of FROT used by P̂ and
V exactly as in the real execution. In the commitment phase, if V aborts, then
the simulator aborts. If V does not abort, then the simulator inspects FROT

and reads off the matrices R0 and R1 that P̂ gave as input. Now let W be
the correction matrix sent by P̂ and define A0 = R0 and A1 = R1 + W. Let
A = A0 + A1. Notice that because P̂ is malicious, it might be the case that
A �∈ C�m.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 197

Simulator SP

Simulator SP interacts with environment Z , functionality FHCOM and an internal
copy of adversary P̂ . Upon being activated by Z, SV proceeds as follows:

1. Emulating FROT: Upon receiving (adversary, sid, ssid,R0,R1) from P̂ , SP ,

stores (sid, ssid,R0,R1) samples (b1, .., bn)
$←{0, 1}n, sets S[i, ·] = Rbi [i, ·] for

i = 1, . . . , n and stores (sid, ssid, b1, . . . , bn,S).
2. Commitment Phase: Upon receiving (sid, ssid,W) from P̂ , SP runs the

rest of the steps of the commitment phase of ΠHCOM exactly like an honest
V would do. If an honest V would abort at any point then SP also aborts.
Otherwise, SP uses its knowledge of (sid, ssid,R0,R1) to reconstruct A. For
j = 1, . . . , m − l, SP decodes column A[·, j] obtaining message mj and sends
(commit, sid, ssidj , Ps, Pr,mj) to FHCOM. We will show that if SP does not
abort after executing V ’s steps in ΠHCOM, then the remaining m − l columns
of A can indeed be decoded to their corresponding committed messages except
with negligible probability.

3. Addition: Upon receiving (add, sid, ssid, i, j) from P̂ , SP execute the
steps of ΠHCOM for addition, chooses an unused ssid ssida and sends
(add, sid, ssidi, ssidj , ssida, Ps, Pr) to FHCOM.

4. Opening Phase: Upon receiving (sid, ssid,A0[·, j],A1[·, j]) from P̂ , SP runs
the checks performed by V exactly as in ΠHCOM. If A0[·, j],A1[·, j] is not a
consistent opening, SP outputs whatever P̂ outputs and aborts. Otherwise SP

sends (reveal, sid, ssidj) to FHCOM, outputs whatever P̂ outputs and halts.

Fig. 5. Simulator SP

We now describe how the simulator decodes the columns of A. The simulator
will identify < s rows such that A is in C�m except for the identified rows. As
the code has distance s, this allows to erasure decode each column j of A to C
and the corresponding decoded message will be the extracted message mj that
the simulator will input to FHCOM. We now give the details.

Let R ⊂ [n] be a set of indices specifying rows of A. For a column vector
c ∈ F

n we let πR(c) = (c[i])i∈[n]\R be the vector punctured at the indices i ∈ R.
For a matrix M we let MR = πR(M) be the matrix with each column punctured
using πR and for a set S we let SR = {πR(s)|s ∈ S}. The simulator will need to
find R ⊂ [n] with |R| < s such that

AR ∈ C�m
R . (3)

It should furthermore hold that

H∞((bi)i∈R|P̂) = 0 (4)

H∞((bi)i∈[n]\R|P̂) = n − |R|, (5)

where P̂ here denotes the view of P̂ in the simulator so far, i.e., the adversary
can guess R and each choice bit bi for i ∈ R with certainty at this point in the
simulation and has no extra information on bi for i �∈ R.

198 I. Cascudo et al.

Define T := AH. Let T̂0 and T̂1 be the values sent by P and let T̂ = T̂0+T̂1.
Let T0 = R0H and T1 = (R1 + W)H be the values that P̂ should have sent.
Let T = T0 +T1. Let R be the smallest set such that T̂R = TR. We claim that
this set fulfills (3), (4) and (5).

We know that the receiver did not abort, which implies that ΔT̂0 + (I −
Δ)T̂1 = BH. The i’th row of ΔT̂0 + (I − Δ)T̂1 can be seen to be T̂bi

[i, ·]. The
i’th row of B can be seen to be biW[i, ·]+Rbi

, so the i’th row of BH is Tbi
[i, ·].

We thus have for all i that

T̂bi
[i, ·] = Tbi

[i, ·].

For each i ∈ R we have that T̂[i, ·] �= T[i, ·], so we must therefore have for all
i ∈ R that

T̂1−bi
[i, ·] �= T1−bi

[i, ·].
It follows that if V for position i had chosen the choice bit 1 − bi instead of bi,
then the protocol would have aborted. Since P̂ can compute the correct values
Tbi

[i, ·] and T1−bi
[i, ·] it also knows which value of bi will make the test pass.

By assumption the protocol did not abort. This proves (4). It also proves that
the probability of the protocol not aborting and R having size |R| is at most
2−|R| as P̂ has no information on b1, . . . , bn prior to sending T̂0 and T̂1 so P̂
can guess (bi)i∈R with probability at most 2−|R|. It is easy to see that the value
of the bits bi for i �∈ R do not affect whether or not the test succeeds. Therefore
these bits are still uniform in the view of P̂ at this point.

In particular, we can therefore continue under the assumption that |R| < s.
We can then apply Theorem 1 where we set X = A. From |R| < s it follows
that XH has distance less than s to C�m, so we must be in case 2 in Theorem 1.
Now, since the receiver checks that T̂ ∈ C�l and the protocol did not abort, we
in particular have that T̂R ∈ C�l

R from which it follows that TR ∈ C�l
R , which

in turn implies that ARH ∈ C�l
R and thus XRH ∈ C�l

R . We can therefore pick a
codeword C′ ∈ C�l such that the row support of XH−C′ is R. From Theorem 1
we then get that there exists C ∈ C�m such that the row support of A − C is
R. From this it follows that AR = CR, which implies (3).

Now notice that since C has distance s and |R| < s the punctured code
CR will have distance at least 1. Therefore the simulator can from each column
A[i, ·]R ∈ CR decode the corresponding message mj ∈ {0, 1}k. This the message
that the simulator will input to FHCOM on behalf of P̂ .

In order to fool SP and open a commitment to a different message than the
one that has been extracted from A[·, j], P̂ would have to provide A′

0[·, j],A′
1[·, j]

such that A′[·, j] = A′
0[·, j] + A′

1[·, j] is a valid codeword of C corresponding to
a different message m′. However, notice that since CR has distance s− |R|, that
would require P̂ to modify an additional s − |R| positions of A that are not
contained in B so that it does not get caught in the checks performed by a
honest V in the opening phase. That means that P̂ would have to guess s − |R|
of the choice bits bi for i �∈ R. It follows from (5) that this will succeed with
probability at most 2s−|R|.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 199

Simulator SV

Simulator SV interacts with environment Z , functionality FHCOM and an internal
copy of adversary V̂ . Upon being activated by Z, SV proceeds as follows:

1. Emulating FROT: Upon receiving (adversary, sid, ssid, b1, . . . , bn,S) from V̂ ,

SV perfectly simulates FROT by sampling random matrices R0,R1
$←{0, 1}n×m

, subject to S[i, ·] = Rbi [i, ·], for i = 1, . . . , n. Finally, it stores
(sid, ssid,R0,R1).

2. Commitment Phase: Upon receiving (receipt, sid, ssid, Ps, Pr) from FHCOM,
SV runs the steps of P in the commitment phase exactly as in ΠHCOM.

3. Addition: Upon receiving (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) from
FHCOM, SV runs the steps of P exactly as in ΠHCOM (setting i and j corre-
sponding to ssid1, ssid2).

4. Opening Phase: Upon receiving (reveal, sid, ssid, Ps, Pr,m) from FHCOM,
SV uses its knowledge of b1, . . . , bn to compute alternative columns
A0

′[·, j],A1
′[·, j] such that A′[·, j] = A0

′[·, j] + A1
′[·, j] is a valid commitment

to m that can opened without being caught by V̂ even though m is different
from the messages committed to in the commitment phase. Namely, let G be
the generating matrix of C, SV computes cm = Gm , initially sets A0

′[·, j] =
A0[·, j],A1

′[·, j] = A1[·, j] and then sets A′
1−bi

[·, j] = cm [j] − Abi [·, j]. Note
that matrices A0

′[·, j],A1
′[·, j] only differ from matrices A0[·, j],A1[·, j] ob-

tained in the commitment phase in positions that are not known by V̂ . Finally,
SV sends (sid, ssid,A0

′[·, j],A1
′[·, j]) to V̂ , outputs whatever V̂ outputs and

halts.

Fig. 6. Simulator SV

Lemma 9. There exists a simulator SV such that for every static adversary A
who corrupts V , and any environment Z, the environment cannot distinguish
ΠHCOM composed with FROT and A from SV composed with FHCOM. That is,
we have

IDEALFHCOM,SV ,Z ≈s HYBRIDFROT
ΠHCOM,A,Z

Proof. In case V is corrupted, the simulator SV has to run ΠHCOM with an
internal copy of V̂ , commit to a dummy string and then be able to equivocate
this commitment (i.e. open it to an arbitrary message) when it gets the actual
message from FHCOM. In order to achieve this, we can construct a SV that exe-
cutes the commitment phase exactly as in ΠHCOM only deviating in the opening
phase. Note that after the commit phase V̂ has no information at all about the
committed strings. This holds because the additive shares in S trivially contain
no information and furthermore because the columns in sacrificed positions a(j)
contain uniformly random data and are never opened. This completely random-
izes the data seen by V̂ in the verification stage (T0,T1).

Therefore, SV can use its knowledge of b1, . . . , bn to open a commitment
to an arbitrary message without being caught, by modifying position of the
matrices that are unknown to V̂ (i.e. unknown to V in the real world).

200 I. Cascudo et al.

We describe SV in Fig. 6. Note that SV exactly follows all the steps of ΠHCOM

(and FROT) except for when it opens commitments. Instead, in the opening
phase, SV sends A0

′[·, j],A1
′[·, j], which differ from A0[·, j],A1[·, j] that was set

in the commitment phase and that would be sent in a real execution of ΠHCOM.
However, A0

′[·, j],A1
′[·, j], only differ from A0[·, j],A1[·, j] in positions that are

unknown by V̂ . Hence, the joint distribution of the ideal execution with simula-
tor SV is statistically indistinguishable from the real execution of ΠHCOM with
a corrupted receiver.

5.1 Computational Complexity and Rate

It is straightforward to verify that the Commitment, Addition and Opening
protocols run in linear time, or more precisely, that the computational cost per
bit committed to is constant. Indeed, it follows easily from the fact that C is
linear time encodable and that H can be computed in linear time. This holds,
even if we consider the cost of implementing FROT and FOT: the first cost is
linear if we use a PRG that costs only a constant number of operations per
output bit. The cost of the OT operations is amortized away if we consider a
sufficiently large number of commitments.

Furthermore, the commitment protocol achieves rate 1, i.e., the amortized
communication overhead per committed bit is o(1) as we increase the number
of bits committed in one commitment. This follows from the fact that C is rate-
1 and that the communication cost of the verification in the final steps of the
protocol only depends on the security parameter, and hence is “amortized away”.
Note that in the case where the sender only wants to be committed to random
messages, it is possible to achieve rate higher than 1 in the commitment phase.
This happens if we plug in the implementation of FROT based on FOT, since
then the random strings output from FROT are generated locally from a short
seed using a PRG, and later the sender is only required to send the bottom n−k
rows of W and the matrices T0,T1, which are both of the order of O(s).

The opening protocol does not achieve rate 1 as it stands because the com-
munication is about twice the size of the committed string (both A0[·, j] and
A1[·, j] are sent). However, for sufficiently long messages, we can get rate-1 by
using the same verification method as used in the commitment protocol, namely
we open many commitments at once. We can think of this as opening an entire
matrix A instead of its columns one by one. The idea is then that V selects a
hash function H and P sends A as well as T0 = A0H and T1 = A1H. The
receiver checks that AH = T0 + T1, that all columns in A are in C and that
ΔT0+(I−Δ)T1 = BH. This can be shown secure by essentially the same proof
as we used to show the commitment protocol secure against a corrupt sender.
Now the communication overhead for verification is insignificant for large enough
matrices A.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 201

Acknowledgements. A major part of this work was done while Ignacio Cascudo and
Nico Döttling were also with Aarhus University.

The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61361136003) for the
Sino-Danish Center for the Theory of Interactive Computation and from the Center
for Research in Foundations of Electronic Markets (CFEM), supported by the Danish
Strategic Research Council.

In addition, Ignacio Cascudo acknowledges support from the Danish Council for
Independent Research, grant no. DFF-4002-00367.

Nico Döttling gratefully acknowledges support by the DAAD (German Academic
Exchange Service) under the postdoctoral program (57243032). While at Aarhus Uni-
versity, he was supported by European Research Council Starting Grant 279447. His
research is also supported in part from a DARPA/ARL SAFEWARE award, AFOSR
Award FA9550-15-1-0274, and NSF CRII Award 1464397. The views expressed are
those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

Jesper Buus Nielsen was supported by European Research Council Starting Grant
279447.

The authors thank the anonymous reviewers of CRYPTO 2016 for their comments,
which contributed to improve the paper.

A Universal Composability

We adopt description of the Universal Composability (UC) framework given
in [CDD+15]. In this framework, protocol security is analyzed under the real-
world/ideal-world paradigm, i.e. by comparing the real world execution of a pro-
tocol with an ideal world interaction with the primitive that it implements. The
model has a composition theorem, that basically states that UC secure protocols
can be arbitrarily composed with each other without any security compromises.
This desirable property not only allows UC secure protocols to effectively serve
as building blocks for complex applications but also guarantees security in prac-
tical environments where several protocols (or individual instances of protocols)
are executed in parallel, such as the Internet.

In the UC framework, the entities involved in both the real and ideal
world executions are modeled as probabilistic polynomial-time Interactive Tur-
ing Machines (ITM) that receive and deliver messages through their input and
output tapes, respectively. In the ideal world execution, dummy parties (pos-
sibly controlled by an ideal adversary S referred to as the simulator) interact
directly with the ideal functionality F , which works as a trusted third party
that computes the desired primitive. In the real world execution, several parties
(possibly corrupted by a real world adversary A) interact with each other by
means of a protocol π that realizes the ideal functionality. The real and ideal
executions are controlled by the environment Z, an entity that delivers inputs
and reads the outputs of the individual parties, the adversary A and the simu-
lator S. After a real or ideal execution, Z outputs a bit, which is considered as

202 I. Cascudo et al.

the output of the execution. The rationale behind this framework lies in showing
that the environment Z (that represents all the things that happen outside of
the protocol execution) is not able to efficiently distinguish between the real and
ideal executions, thus implying that the real world protocol is as secure as the
ideal functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the
real-world execution of protocol π between n parties with an adversary A under
security parameter κ, input z and randomness r̄ = (rZ , rA, rP1 , . . . , rPn

), where
(z, rZ), rA and rPi

are respectively related to Z, A and party i. Analogously,
we denote by IDEALF,S,Z(κ, z, r̄) the output of the environment in the ideal
interaction between the simulator S and the ideal functionality F under security
parameter κ, input z and randomness r̄ = (rZ , rS , rF), where (z, rZ), rS and
rF are respectively related to Z, S and F . The real world execution and the
ideal executions are respectively represented by the ensembles REALπ,A,Z =
{REALπ,A,Z(κ, z, r̄)}κ∈N and IDEALF,S,Z = {IDEALF,S,Z(κ, z, r̄)}κ∈N with z ∈
{0, 1}∗ and a uniformly chosen r̄.

In addition to these two models of computation, the UC framework also
considers the G-hybrid world, where the computation proceeds as in the real-
world with the additional assumption that the parties have access to an auxiliary
ideal functionality G. In this model, honest parties do not communicate with the
ideal functionality directly, but instead the adversary delivers all the messages
to and from the ideal functionality. We consider the communication channels to
be ideally authenticated, so that the adversary may read but not modify these
messages. Unlike messages exchanged between parties, which can be read by the
adversary, the messages exchanged between parties and the ideal functionality
are divided into a public header and a private header. The public header can be
read by the adversary and contains non-sensitive information (such as session
identifiers, type of message, sender and receiver). On the other hand, the private
header cannot be read by the adversary and contains information such as the
parties’ private inputs. We denote the ensemble of environment outputs that
represents the execution of a protocol π in a G-hybrid model as HYBRIDG

π,A,Z
(defined analogously to REALπ,A,Z). UC security is then formally defined as:

Definition 3. A n-party (n ∈ N) protocol π is said to UC-realize an ideal func-
tionality F in the G-hybrid model if, for every adversary A, there exists a sim-
ulator S such that, for every environment Z, the following relation holds:

IDEALF,S,Z ≈ HYBRIDG
π,A,Z

We say that the protocol is statistically secure if the same holds for all Z with
unbounded computing power.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 203

Functionality FOT

FOT interacts with a sender Ps, a receiver Pr and an adversary S, and it proceeds
as follows:
– Upon receiving a message (sender, sid, ssid,x0,x1) from Ps, where each xi ∈

{0, 1}λ , store the tuple (ssid,x0,x1) (The lengths of the strings λ is fixed and
known to all parties). Ignore further messages from Ps to Pr with the same
ssid.

– Upon receiving a message (receiver, sid, ssid, c) from Pr, where c ∈ {0, 1}, check
if a tuple (ssid,x0,x1) was recorded. If yes, send (received, sid, ssid,xc) to Pr

and (received, sid, ssid) to Ps and halt. If not, send nothing to Pr (but continue
running).

Fig. 7. Functionality FOT

B Implementing FROT

For the sake of simplicity we construct our commitment protocol in the FROT-
hybrid model. Here we show that FROT can be realized in the FOT-hybrid model
in a straightforward manner. Intuitively, we have Ps sample two random matrices
R0,R1 and do an OT for each row, where it inputs a row from each matrix
(i.e. R0[i, ·],R1[i, ·]) and Pr inputs a random choice bit. However, this näıve
construction has communication complexity that depends on the size of the
matrices, since it needs n OTs of m-bit strings.

Using both a pseudorandom number generator prg and access to FOT (Fig. 7),
it is possible to realize FROT in a way that its communication complexity only
depends on the number of rows of the matrices and a computational security
parameter (Fig. 8). This is a key fact in achieving rate 1 for our commitment
scheme, since the number of rows required in our protocol is independent from
the number of commitments to be executed, allowing the communication cost to
be amortized over many commitments. On the other hand, (amortized) linear
time can be obtained by employing a pseudorandom number generator that only
requires a constant number of operations per output bit (e.g. [VZ12]). As shown
in the protocol description, expensive OT operations are only used n (the number
of rows) times while the number of calls to the prg is a fraction of the number
of commitments (the number of columns). This allows us to obtain an arbitrary
number of commitments from a fixed number of OTs and a small number of
calls to prg.

Let prg : {0, 1}κ → {0, 1}� be a pseudorandom number generator that
stretches a seed s

$←{0, 1}κ into a pseudorandom string r ∈ {0, 1}�. Intuitively,
for i = 1, . . . , n, we call FOT with Ps’s input equal to r0,i, r1,i

$←{0, 1}κ and Pr’s
input equal to bi

$←{0, 1}. After all the OTs are done, Ps sets R0[i, ·] = prg(r0,i)
and R1[i, ·] = prg(r1,i), while Pr sets S[i, ·] = prg(rbi,i). The output matrices
have n rows and � columns. However, an arbitrary number of columns m can be
obtained by saving the last κ bits of every output of prg, repeatedly running prg
using these bits as seeds and concatenating the outputs (minus the last κ bits)
until m bits are obtained.

204 I. Cascudo et al.

Protocol ΠROT

1. OT Phase: For i = 1, . . . , n, Ps samples random r0,i, r1,i
$←{0, 1}κ and sends

(sender, sid, ssidi, r0,i, r1,i) to FOT, while Pr samples bi
$←{0, 1} and sends

(receiver, sid, ssidi, bi) to FOT.
2. Seed Expansion Phase: For i = 1, . . . , n, Ps sets R0[i, ·] = prg(r0,i) and

R1[i, ·] = prg(r1,i), while Pr sets S[i, ·] = prg(rbi,i). Ps outputs R0,R1 and
Pr outputs b1, . . . , bn,S.

Fig. 8. Protocol ΠROT

Lemma 10. ΠROT UC-realizes FROT in the FOT-hybrid model with computa-
tional security against a static adversary. Formally, there exists a simulator S
such that for every static adversary A and any environment Z:

IDEALFROT,S,Z ≈c HYBRIDFOT
ΠROT,A,Z

Proof (Sketch). The simulator S acts as FOT when running ΠROT with
an internal copy of A. In case Ps is corrupted, S extracts the inputs
(r0,1, r1,1), . . . , (r0,n, r1,n) given by A to FOT, constructs R0,R1 according
to the protocol and sends them to FROT. In case Pr is corrupted, S extracts
the inputs b1, . . . , bn, samples random matrices R0,R1

$←{0, 1}n×�, constructs
S according to the protocol and sends (b1, . . . , bn),S to FROT. Basically, the
ideal and the real distributions are computationally indistinguishable due to
prg’s pseudorandomness, i.e. an environment Z that distinguishes between the
ideal and real distributions could be used to distinguish a pseudorandom string
output by prg from a uniformly random string of same size.

C Committing to Arbitrary Messages

Protocol ΠHCOM described in Sect. 5 realizes FHCOM and thus only allows the
sender to commit to random messages. However, this can be trivially used to
commit to arbitrary messages while preserving all properties of our scheme,
namely, additive homomorphism, linear computational complexity and rate 1.
This is achieved by having the sender also give the receiver the difference between
the random string that it is committed to through ΠHCOM and the arbitrary
string that he wishes to commit to. First, P runs the commitment phase of
ΠHCOM and becomes committed to a string m, then it computes c = m′ − m
and sends c to V (where m′ is the message that P wishes to commit to). The
addition of two commitments can proceed the same way as in ΠHCOM with an
extra step of setting c3 = c1 + c2 = m′

1 + m′
2 − m1 − m2. In the opening

phase, P proceeds exactly like in ΠHCOM and V obtains the intended message
by computing m′ = c + m. We call this protocol ΠAHCOM and described it in
the FHCOM-hybrid model in Fig. 9.

Rate-1, Linear Time and Additively Homomorphic UC Commitments 205

Protocol ΠAHCOM

Protocol ΠAHCOM is run by a sender P with input m′ ∈ {0, 1}k and a receiver V
interacting with FHCOM, and proceeds as follows:

1. Commitment Phase:
(a) P sends (commit, sid, ssid, Ps, Pr) to FHCOM. Upon receiving

(commit, sid, ssid, Ps, Pr,m) as answer, P sets c = m′ − m, and
sends (c, sid, ssid,) to V .

2. Addition:
(a) P sends (add, sid, ssid1, ssid2, ssid3, Ps, Pr) to FHCOM and sets c3 = c1 +

c2 = m′
1 + m′

2 − m1 − m2.
(b) Upon receiving (add, sid, ssid1, ssid2, ssid3, Ps, Pr, success) from FHCOM,

V also sets c3 = c1 + c2 = m′
1 + m′

2 − m1 − m2.
3. Opening Phase:

(a) P sends (reveal, sid, ssid) to FHCOM and halts.
(b) Upon receiving (reveal, sid, ssid, Ps, Pr,m) from FHCOM, V computes

m′ = c + m and outputs m′. Note that, even if c is an addition of two
commitments c1 and c2, this procedure is still valid since c3 = c1 + c2 =
m′

1 + m′
2 − m1 − m2.

Fig. 9. Protocol ΠAHCOM: using ΠHCOM to commit to arbitrary messages.

The security of ΠAHCOM can be trivially observed since all we do is sending
the difference between a random string that the sender is already committed to
and the arbitrary string he wishes to commit to. The random string acts as a
one-time pad hiding all information and binding is guaranteed by FHCOM, hence
we obtain statistical security in the FHCOM-hybrid model (which is realized by
ΠHCOM). Notice that the extra communication does not reduce the rate of the
resuting commitment scheme, since in ΠHCOM’s commitment phase only the
n − k bottom rows of W are sent6 and here we send the remaining k bits that
define m′. Moreover, it is possible to embed the difference c in W so that no
extra rounds are required.

References

[AHMR15] Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate
RAM programs with malicious security. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg
(2015)

[BCPV13] Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Analysis and
improvement of Lindell’s UC-secure commitment schemes. In: Jacobson
Jr., M.J., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 534–551. Springer, Heidelberg (2013)

6 Apart from T0,T1, which only depend on the security parameter and are amortized
over many commitments.

206 I. Cascudo et al.

[Bra16] Brandão, L.T.A.N.: Very-efficient simulatable flipping of many coins into
a well. In: Cheng, C.M., et al. (eds.) PKC 2016. LNCS, vol. 9615, pp.
297–326. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8 12

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

[CDD+15] Cascudo, I., Damg̊ard, I., David, B.M., Giacomelli, I., Nielsen, J.B., Tri-
filetti, R.: Additively homomorphic UC commitments with optimal amor-
tized overhead. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515.
Springer, Heidelberg (2015)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg
(2001)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503
(2002)

[CRVW02] Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness
conductors and constant-degree lossless expanders. In: Proceedings on
34th Annual ACM Symposium on Theory of Computing, 19–21 May 2002,
Montréal, Québec, Canada, pp. 659–668 (2002)

[DDGN14] Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and
efficient homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 213–232. Springer, Hei-
delberg (2014)

[DI14] Druk, E., Ishai, Y.: Linear-time encodable codes meeting the gilbert-
varshamov bound and their cryptographic applications. In: Naor, M. (ed.)
Innovations in Theoretical Computer Science, ITCS 2014, Princeton, NJ,
USA, 12–14 January 2014, pp. 169–182. ACM (2014)

[FJN+13] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi,
C.: MiniLEGO: efficient secure two-party computation from general
assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 537–556. Springer, Heidelberg (2013)

[FJNT16] Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the
complexity of additively homomorphic uc commitments. In: Kushilevitz,
E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 542–565. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49096-9 23

[GI02] Guruswami, V., Indyk, P.: Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In: Reif,
J.H. (ed.) Proceedings on 34th Annual ACM Symposium on Theory of
Computing, 19–21 May 2002, Montréal, Québec, Canada, pp. 812–821.
ACM (2002)

[GI03] Guruswami, V., Indyk, P.: Linear time encodable and list decodable codes.
In: Larmore and Goemans [LG03], pp. 126–135

[GI05] Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with
near-optimal rate. IEEE Trans. Inf. Theor. 51(10), 3393–3400 (2005)

[GIKW14] Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC
commitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 677–694. Springer, Heidelberg (2014)

[IKOS08] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with
constant computational overhead. In: Dwork, C. (ed.) STOC, pp. 433–
442. ACM (2008)

http://dx.doi.org/10.1007/978-3-662-49387-8_12
http://dx.doi.org/10.1007/978-3-662-49096-9_23

Rate-1, Linear Time and Additively Homomorphic UC Commitments 207

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivi-
ous transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 572–591. Springer, Heidelberg (2008)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation
with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 294–314. Springer, Heidelberg (2009)

[LG03] Larmore, L.L., Goemans, M.X. (eds.) Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, 9–11 June 2003, San Diego,
CA, USA. ACM (2003)

[Lin11] Lindell, Y.: Highly-efficient universally-composable commitments based
on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2),
151–158 (1991)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

[Spi96] Spielman, D.A.: Linear-time encodable and decodable error-correcting
codes. IEEE Trans. Inf. Theor. 42(6), 1723–1731 (1996)

[VZ12] Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying
pseudorandom generator constructions. In: Proceedings of the 44th Sym-
posium on Theory of Computing, pp. 817–836. ACM (2012)

UC Commitments for Modular Protocol Design
and Applications to Revocation and Attribute

Tokens

Jan Camenisch1(B), Maria Dubovitskaya1(B), and Alfredo Rial2(B)

1 IBM Reseach - Zurich, Rüschlikon, Switzerland
{jca,mdu}@zurich.ibm.com

2 University of Luxembourg, Luxembourg, Luxembourg
alfredo.rial@uni.lu

Abstract. Complex cryptographic protocols are often designed from
simple cryptographic primitives, such as signature schemes, encryption
schemes, verifiable random functions, and zero-knowledge proofs, by
bridging between them with commitments to some of their inputs and
outputs. Unfortunately, the known universally composable (UC) func-
tionalities for commitments and the cryptographic primitives mentioned
above do not allow such constructions of higher-level protocols as hybrid
protocols. Therefore, protocol designers typically resort to primitives
with property-based definitions, often resulting in complex monolithic
security proofs that are prone to mistakes and hard to verify.

We address this gap by presenting a UC functionality for non-
interactive commitments that enables modular constructions of complex
protocols within the UC framework. We also show how the new function-
ality can be used to construct hybrid protocols that combine different UC
functionalities and use commitments to ensure that the same inputs are
provided to different functionalities. We further provide UC functionali-
ties for attribute tokens and revocation that can be used as building blocks
together with our UC commitments. As an example of building a complex
system from these new UC building blocks, we provide a construction (a
hybrid protocol) of anonymous attribute tokens with revocation. Unlike
existing accumulator-based schemes, our scheme allows one to accumu-
late several revocation lists into a single commitment value and to hide
the revocation status of a user from other users and verifiers.

Keywords: Universal composability · Commitments · Attribute
tokens · Revocation · Vector commitments

1 Introduction

Complex cryptographic protocols are often designed from simple cryptographic
primitives, such as signature schemes, encryption schemes, verifiable random

This work was supported by the European Commission through the Seventh Frame-
work Programme, under grant agreements #321310 for the PERCY grant.
A Rial—Work done while at IBM Research – Zurich.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 208–239, 2016.
DOI: 10.1007/978-3-662-53015-3 8

UC Commitments for Modular Protocol Design and Applications 209

functions, zero-knowledge proofs, and commitment schemes. Proving the security
of such cryptographic protocols as well as verifying their security proofs are
far from trivial and rather error-prone. Composability frameworks such as the
Universal Composability (UC) framework [6] can help here. They guarantee
that cryptographic primitives remain secure under arbitrary composition and
thus enable a modular design and security analysis of cryptographic protocols
constructed from such primitives. That is, they allow one to describe higher-
level protocols as hybrid protocols that use the ideal functionalities of primitives
rather than their realizations. Unfortunately, the known UC functionalities for
cryptographic primitives allow only for very simple hybrid protocols, and thus
protocols found in the literature foremost use basic ideal functionalities, such as
the common reference string functionality FCRS, registration functionality FREG,
and secure message transmission functionality FSMT, and resort to constructions
with property-based primitives, which typically results in complex monolithic
security proofs that are prone to mistakes and hard to verify.

Consider for instance a two-party protocol where one party needs to compute
a complex function F (that might include commitments, signatures, encryption,
and zero-knowledge proofs) on the input and send the output to the second
party. The original input of the first party might be hidden from the second
party. The most common approach for building such a protocol is to describe
the ideal functionality for that function F , provide a monolithic realization, and
prove that the latter securely implements the former. Following this approach,
however, will result into a complex security proof.

A better approach would be a modular construction that breaks down the
complex function into smaller building blocks each realized by a separate func-
tionality. This will result in much simpler and structured protocols and proofs.
However, this construction approach requires a mechanism to ensure that the
input values to different subfunctionalities are the same. The most natural way to
implement such a mechanism is to use cryptographic commitment functionality
(FCOM) and build a realization in the FCOM-hybrid model.

In a nutshell, the hybrid protocol would work as follows. The ideal functional-
ities of the building blocks are modified in such a way that they also accept com-
mitments to the input values as input. When a party needs to guarantee that the
inputs to two or more functionalities are equal, the party first sends that input
value to the commitment functionality to obtain a commitment and the corre-
sponding opening, and then sends the input to those functionalities along with
the commitment and the opening. When the second party receives a commitment
it can perform the verification without learning the original input value.

As a concrete example, consider a privacy-preserving attribute-based creden-
tial system [3] that uses a commitment to a revocation handle to bridge a proof
of knowledge of a signature that signs the revocation handle with a proof that
the committed revocation handle is not revoked. The commitment guarantees
that the same revocation handle is used in both proofs even if they are computed
separately by different building blocks. This allows the composition of a protocol
for proving possession of a signature with a protocol for proving non-revocation
using commitments. The construction, definitions, and security proofs of such

210 J. Camenisch et al.

systems are all property-based and indeed rather complex [3]. Simplifying such a
construction and its security proofs by using the UC model seems very attractive.
However, that requires an ideal functionality for commitments that mirrors the
way property-based primitives are combined with commitments. Unfortunately,
none of the existing UC functionalities for commitments [6,8,9,11,12,15–17,19]
fit this bill because they do not output cryptographic values or implement any
other mechanism to ensure that a committed message is equal to the input
of other functionalities. With the existing functionalities for commitments, the
committer sends the committed message to the functionality, which informs the
verifying party that a commitment has been sent. When the committer wishes
to open the commitment, the functionality sends the message to the verifying
party. Because no cryptographic value is ever output by the known functionali-
ties, they cannot be used in our revocation example to guarantee the equality of
the revocation handle or in any other similar case where one has to ensure that
the message sent as input to the functionality for commitments equals the mes-
sage sent as input to other functionalities. However, as we shall see, outputting
just a cryptographic value for a commitment will not be sufficient.

1.1 UC Non-interactive Commitments for Hybrid Protocols

We provide a new ideal functionality FNIC for commitments. The main differ-
ences between FNIC and the existing commitment functionalities are that ours
outputs cryptographic values and is non-interactive. In this respect it is similar
to the signature functionality FSIG [8].

Our functionality behaves as follows. When a party wishes to commit to a
message, FNIC computes a cryptographic commitment and an opening for that
commitment (using algorithms provided by the simulator/environment upon ini-
tialization) and sends them as output to the calling party. When a party wishes
to verify a commitment, it sends the commitment, the message and the opening
to the functionality, which verifies the commitment and sends the verification
result to the party. Therefore, our functionality does not involve interaction
between a committer and a verifier. Furthermore, when a party requests a com-
mitment to a message, the identity of the verifier is not sent to the functionality.
Analogously, when a party verifies a commitment, the identity of the committer
is not sent to the functionality.

FNIC ensures that commitments are hiding and binding. We show that FNIC

can be realized by a standard commitment scheme that is binding and has a trap-
door (which implies it is hiding), such as the Pedersen commitment scheme [22].
All extra properties, such as non-malleability, simulation-sound trapdoor [18],
etc., that are required to construct the standard UC functionalities are not nec-
essary. We prove that the construction realizes FNIC in the FCRS-hybrid model,
which is also required for UC commitments in general [8].

There are protocols, however, that require extractable commitments. This
is similar to requiring extractability in zero-knowledge proofs (ZKP). For some
protocols, extractability is needed and thus a functionality for ZKP of knowledge
must be used, whereas for other protocols sound ZKPs are sufficient and it is

UC Commitments for Modular Protocol Design and Applications 211

possible (and more efficient) to use a functionality for zero-knowledge that does
not require extractability.

Therefore, we also propose an ideal functionality FENIC for extractable com-
mitments and give a construction that realizes FENIC. We compare both func-
tionalities in Sect. 3.1 and explain why FNIC suffices for some cases.

1.2 Modular Protocol Design in FNIC-Hybrid Model

Our ideal functionality for commitments can be used to construct higher-level
protocols in a hybrid model because it allows one to bridge different ideal func-
tionalities. To this end, the ideal functionalities of the building blocks can be
modified so that their input values are accompanied by commitments and corre-
sponding openings. These commitment and opening values are generated by the
party providing the input using FNIC. Then, to convince a second party that the
same inputs were provided to different functionalities, the first party sends the
commitments to the second party, who will then also input the commitments
to the different functionalities. For this to work, the building-block functionali-
ties need to validate the commitments received and check whether the openings
provided are correct. As functionalities cannot interact with each other, a verifi-
cation algorithm COM.Verify needs to be provided as part of the commitment for
local verification. The main challenge now is to ensure that a local verification
implies a global binding property enforced by FNIC. We show how this challenge
can be overcome.

We remark that our technique for modular protocol design based on FNIC

is very general. Any functionality that needs to be used in a protocol can be
amended to receive committed inputs and to check those inputs by running
COM.Verify. Therefore, our technique allows one to modularly describe a wide
variety of hybrid protocols in the UC model. Moreover, we believe a similar app-
roach could also be applied to functionalities that output cryptographic values
that need to be verified inside other functionalities.

1.3 Example: Flexible Revocation for Attribute-Based Credentials

As a real-life example of building a complex system from our UC building
blocks, we provide a construction for anonymous attribute tokens with revo-
cation. We first provide the respective ideal functionalities for revocation and
attribute tokens (signatures with the proofs of knowledge of signature posses-
sion). Then, we construct a protocol that uses those functionalities together with
FNIC to compose a protocol for proving possession of a non-revoked credential
(signature). In fact, unlike existing accumulator-based schemes, our new scheme
allows one to accumulate several revocation lists into a single commitment value
and to hide the revocation status of a user from other users and verifiers.

In the literature, different privacy-preserving revocation mechanisms have
been proposed for attribute-based credentials, such as signature lists [20], accu-
mulators [1,5,21], and validity refreshing [2]. We provide a detailed overview of
the related work on revocation in the full version of this paper. In some cases,

212 J. Camenisch et al.

credentials need to be revoked globally, e.g., when the related secret keys have
been exposed, the attribute values have changed, or the user loses her right to
use a credential. Often, credentials may be revoked only for specific contexts,
i.e., when a user is not allowed to use her credential with a particular verifier,
but can still use it elsewhere.

In such scenarios, the revocation authority needs to maintain multiple revo-
cation lists. Because of their binary value limitation, the existing revocation
systems require a separate application of a revocation mechanism for each list.
This imposes an extra storage and computational overhead, not only to the
users, but also to the revocation authority. Furthermore, in signature lists and
accumulators, the revocation lists are disclosed to the other users and verifiers.

We propose a mechanism that allows one to commit several revocation lists
into a single commitment value. Each user needs only one witness for all the revo-
cation lists. Using this witness, a user can prove in a privacy-preserving manner
the revocation status of her revocation handle in a particular revocation list.

We provide two ideal functionalities FREV for revocation and propose two dif-
ferent constructions built from the vector commitments [10]. The first one hides
the revocation status of a user from other users and from the verifiers, whereas
in the second one, as for accumulators, revocation lists are public. Additionally,
our schemes are flexible in the sense that revocation lists can be added (up to
a maximum number) and removed without any cost, i.e., the cost is the same
as for a revocation status update that does not change the number of lists,
whereas accumulators would require one to set up a new accumulator and to
issue witnesses to users, or delete them.

We note that aside from extending the standard revocation scenario with
a central revocation authority and multiple revocation lists, our revocation
schemes can be used to build an efficient dynamic attribute-based access con-
trol system in a very elegant way. Instead of issuing a list of credentials to each
user, each certifying a certain attribute or role, in our revocation scheme a user
can be issued just one base credential, which can be made valid or revoked for
any context. The resulting solution saves the users, verifiers and the revocation
authority a lot of storage and computational effort. That is, instead of having
multiple credentials and corresponding revocation witnesses, a single credential
and a single witness suffice to achieve the same goal.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
notation and conventions used to describe functionalities and their realizations in
the UC model. In Sect. 3, we provide the ideal functionalities for non-interactive
commitments and extractable commitments, and show the corresponding con-
structions that securely realize those functionalities. We also describe the generic
approach of how to build modular constructions in the FNIC-hybrid model and
to prove them secure. In Sect. 5, we describe an ideal functionality for attribute
tokens with revocation, FTR, and provide a hybrid construction, ΠTR, that uses
FNIC, FREV and FAT to realize FTR. We prove that the construction ΠTR real-
izes FTR in that section.

UC Commitments for Modular Protocol Design and Applications 213

2 Universally Composable Security

The universal composability framework [6] is a framework for defining and ana-
lyzing the security of cryptographic protocols so that security is retained under
arbitrary composition with other protocols. The security of a protocol is defined
by means of an ideal protocol that carries out the desired task. In the ideal
protocol, all parties send their inputs to an ideal functionality F for the task.
The ideal functionality locally computes the outputs of the parties and provides
each party with its prescribed output.

The security of a protocol ϕ is analyzed by comparing the view of an environ-
ment Z in a real execution of ϕ against that of Z in the ideal protocol defined
in Fϕ. The environment Z chooses the inputs of the parties and collects their
outputs. In the real world, Z can communicate freely with an adversary A who
controls both the network and any corrupt parties. In the ideal world, Z inter-
acts with dummy parties, who simply relay inputs and outputs between Z and
Fϕ, and a simulator S. We say that a protocol ϕ securely realizes Fϕ if Z can-
not distinguish the real world from the ideal world, i.e., Z cannot distinguish
whether it is interacting with A and parties running protocol ϕ or with S and
dummy parties relaying to Fϕ.

2.1 Notation

Let k ∈ N denote the security parameter and a ∈ {0, 1}∗ denote an input.
Two binary distribution ensembles X = {X(k, a)}k∈N,a∈{0,1}∗ and Y =
{Y (k, a)}k∈N,a∈{0,1}∗ are indistinguishable (X ≈ Y) if for any c, d ∈ N there
exists k0 ∈ N such that for all k > k0 and all a ∈ ∪κ≤kd{0, 1}κ, |Pr [X(k, a) =
1] − Pr [Y (k, a) = 1]| < k−c. Let REALϕ,A,Z(k, a) denote the distribution given
by the output of Z when executed on input a with A and parties running ϕ,
and let IDEALFϕ,S,Z(k, a) denote the output distribution of Z when executed
on input a with S and dummy parties relaying to Fϕ. We say that protocol ϕ
securely realizes Fϕ if, for all polynomial-time A, there exists a polynomial-time
S such that, for all polynomial-time Z, REALϕ,A,Z ≈ IDEALFϕ,S,Z .

A protocol ϕG securely realizes F in the G-hybrid model when ϕ is allowed
to invoke the ideal functionality G. Therefore, for any protocol ψ that securely
realizes functionality G, the composed protocol ϕψ, which is obtained by replac-
ing each invocation of an instance of G with an invocation of an instance of ψ,
securely realizes F .

2.2 Conventions

When describing ideal functionalities, we use the following conventions:

Interface Naming Convention. An ideal functionality can be invoked by using
one or more interfaces. The name of a message in an interface consists of three
fields separated by dots, e.g., com.setup.ini in the commitment functionality
described in Sect. 3.1. The first field indicates the name of the functionality

214 J. Camenisch et al.

and is the same in all interfaces of the functionality. This field is useful for dis-
tinguishing between invocations of different functionalities in a hybrid protocol
that uses two or more different functionalities. The second field indicates the
kind of action performed by the functionality and is the same in all messages
that the functionality exchanges within the same interface. The third field dis-
tinguishes between the messages that belong to the same interface, and can take
six different values. A message ∗. ∗ .ini is the incoming message received by the
functionality, i.e., the message through which the interface is invoked. A message
∗. ∗ .end is the outgoing message sent by the functionality, i.e., the message that
ends the execution of the interface. The message ∗. ∗ .sim is used by the func-
tionality to send a message to the simulator, and the message ∗. ∗ .rep is used
to receive a message from the simulator. The message ∗. ∗ .req is used by the
functionality to send a message to the simulator to request the description of
algorithms from the simulator, and the message ∗. ∗ .alg is used by the simulator
to send the description of those algorithms to the functionality.

Subsession Identifiers. Some interfaces in a functionality can be invoked more
than once. When the functionality sends a message ∗. ∗ .sim to the simulator in
such an interface, a subsession identifier ssid is included in the message. The
subsession identifier must also be included in the response ∗. ∗ .rep sent by the
simulator. The subsession identifier is used to identify the message ∗. ∗ .sim to
which the simulator replies with a message ∗. ∗ .rep. We note that, typically,
the simulator in the security proof may not be able to provide an immediate
answer to the functionality after receiving a message ∗. ∗ .sim. The reason is
that the simulator typically needs to interact with the copy of the real adversary
it runs in order to produce the message ∗. ∗ .rep, but the real adversary may
not provide the desired answer or may provide a delayed answer. In such cases,
when the functionality sends more than one message ∗. ∗ .sim to the simulator,
the simulator may provide delayed replies, and the order of those replies may
not follow the order of the messages received.

Aborts. When we say that an ideal functionality F aborts after being activated
with a message (∗, . . .), we mean that F stops the execution of the instruction and
sends a special abortion message (∗,⊥) to the party that invoked the functionality.

Network vs. Local Communication. The identity of an interactive Turing
machine (ITM) instance (ITI) consists of a party identifier pid and a session
identifier sid . A set of parties in an execution of a system of ITMs is a protocol
instance if they have the same session identifier sid . ITIs can pass direct inputs
to and outputs from “local” ITIs that have the same pid . An ideal function-
ality F has pid = ⊥ and is considered local to all parties. An instance of F
with the session identifier sid only accepts inputs from and passes outputs to
machines with the same session identifier sid . Some functionalities require the
session identifier to have some structure. Those functionalities check whether
the session identifier possesses the required structure in the first message that
invokes the functionality. For the subsequent messages, the functionality implic-
itly checks that the session identifier equals the session identifier used in the first

UC Commitments for Modular Protocol Design and Applications 215

message. Communication between ITIs with different party identifiers must take
place over the network. The network is controlled by the adversary, meaning
that he can arbitrarily delay, modify, drop, or insert messages.

Delayed Outputs. We say that an ideal functionality F sends a public delayed
output v to a party P if it engages in the following interaction. F sends to
simulator S a note that it is ready to generate an output to P. The note includes
value v, identity P, and a unique identifier for this output. When S replies to
the note by echoing the unique identifier, F outputs the value v to P. A private
delayed output is similar, but value v is not included in the note.

3 UC Non-interactive Commitments

In existing commitment functionalities [8], the committer sends the committed
message to the functionality, which informs the verifying party that a commit-
ment has been sent. When the committer wishes to open the commitment, the
functionality sends the message to the verifying party.

In contrast, our commitment functionalities do not involve any interaction
between committer and verifier. In our commitment functionality, any party
is allowed to request a commitment, and, when doing so, the identity of the
verifier is not specified. Analogously, any party can verify a commitment, and
the identity of the committer is not specified during verification.

In Sect. 3.1, we describe two ideal functionalities for non-interactive com-
mitments FNIC and FENIC. Our commitment functionalities are similar to the
functionalities of public key encryption and signatures [7,8,14]. For example, the
signature functionality receives a message from the signer, computes a signature,
and sends that signature to the signer. A verifying party sends a message and a
signature to the functionality, which verifies the signature and sends the verifica-
tion result. One of the reasons that the signature functionality has a “signature
string” as part of its interface is to support the modularity of modeling complex
protocols such as sending an encrypted signature [7].

Analogously, our ideal functionalities (unlike existing UC ideal functionalities
for commitments) can be used in a hybrid protocol that also uses other function-
alities that receive commitments as inputs. In a nutshell, a party would obtain
a tuple (ccom, cm, copen), which consists of a commitment, a message and an
opening, from FNIC or FENIC, and send (ccom, cm, copen) as input to the other
functionalities. The use of commitments as input to those functionalities is useful
when it is necessary to ensure that the inputs to those functionalities are equal.

For instance, our construction of anonymous attribute tokens with revoca-
tion in Sect. 5.2 uses an anonymous attribute token functionality, FAT, and a
revocation functionality, FREV, that receive commitments output by FNIC as
input. The commitments allow us to prove that the revocation handle used as
input to FREV equals the one used as input to FAT.

FENIC requires commitments to be extractable, whereas FNIC does not. FNIC

suffices for our construction of anonymous attribute tokens with revocation

216 J. Camenisch et al.

described in Sect. 5.2. The reason is that, in that construction, commitments
are always sent along with their openings or along with proofs of knowledge
of their openings, which provides the extraction property. In Sect. 3.4, we show
that FNIC can be realized by any trapdoor and binding commitment scheme.
We describe a construction for FENIC and prove its security in the full version
of this paper.

3.1 Ideal Functionalities FNIC and FENIC for Non-interactive
Commitments

FNIC and FENIC are parameterized with the system parameters sp. This allows
the parameters of the commitment scheme to depend on parameters generated
externally, which could also be used in other schemes. For example, if a com-
mitment scheme is used together with a non-interactive zero-knowledge proof of
knowledge scheme, sp could include parameters shared by both the parameters
of the commitment scheme and the parameters of the proof of knowledge scheme.

UC Commitments for Modular Protocol Design and Applications 217

FNIC and FENIC interact with parties Pi that create the parameters of the
commitment scheme and compute and verify commitments. The interaction
between FNIC (or FENIC) and Pi takes place through the interfaces com.setup.∗,
com.validate.∗, com.commit.∗, and com.verify.∗.

1. Any party Pi can call the interface com.setup.∗ to initialize the functionality.
Only the first call will affect the functionality.

2. Any party Pi uses the interface com.validate.∗ to verify that ccom contains
the correct commitment parameters and verification algorithm.

3. Any party Pi uses the interface com.commit.∗ to send a message cm and then
obtain a commitment ccom and an opening copen.

4. Any party Pi uses the interface com.verify.∗ to verify that ccom is a commit-
ment to the message cm with the opening copen.

FNIC and FENIC use a table Tblcom. Tblcom consists of entries of the form
[ccom, cm, copen, u], where ccom is a commitment, cm is a message, copen is an
opening, and u is a bit whose value is 1 if the tuple (ccom, cm, copen) is valid
and 0 otherwise.

In the figure below, we depict FNIC and FENIC and use a box to indicate
those computations that take place only in FENIC.

We now discuss the four interfaces of the ideal functionalities FNIC and
FENIC. We mention FENIC only in those computations that are exclusive to
FENIC.

218 J. Camenisch et al.

1. The com.setup.ini message is sent by any party Pi. If the functionality has not
yet been initialized, it will trigger a com.setup.req message to ask the simula-
tor S to send algorithms COM.TrapCom, COM.TrapOpen, COM.Extract, and
COM.Verify, the commitment parameters and the trapdoor. Once the simula-
tor has provided the algorithms for the first time, FNIC stores the algorithms,
the commitment parameters cparcom and the trapdoor ctdcom, and then
notifies Pi that initialization was successful. If the functionality has already
been set up, Pi is just told that initialization was successful.

2. The com.validate.ini message is sent by an honest party Pi. FNIC checks if
Pi has already run the setup. This is needed because otherwise in the real-
world protocol the party would have to retrieve the parameters to validate the
commitment, and this retrieval cannot be simulated because FNIC enforces
that the validation of a commitment must be local. The computation and
verification of commitments are also local. FNIC parses the commitment, and
checks if the parameters and the verification algorithm from the commitment
match with those stored by the functionality.

3. The com.commit.ini message is sent by any honest party Pi on input a mes-
sage cm. FNIC aborts if Pi did not run the setup. FNIC runs the algorithm
COM.TrapCom on input cparcom and ctdcom to get a simulated commitment
ccom and state information cinfo. COM.TrapCom does not receive the message
cm to compute ccom, and therefore a commitment scheme that realizes this
functionality must fulfill the hiding property. FNIC also aborts if the table
Tblcom already stores an entry [ccom, cm ′, copen ′, 1] such that cm �= cm ′

because this would violate the binding property. FNIC runs the algorithm
COM.TrapOpen on input cm and cinfo to get an opening copen and checks the
validity of (ccom, cm, copen) by running COM.Verify. If COM.Verify outputs
1, FNIC stores [ccom, cm, copen, 1] in Tblcom, appends (cparcom,COM.Verify)
to ccom, and sends (ccom, copen) to Pi.

4. The com.verify.ini message is sent by any honest party Pi on input a com-
mitment ccom, a message cm and an opening copen. FNIC aborts if Pi did
not run the setup. If there is an entry [ccom, cm, copen, u] already stored in
Tblcom, then the functionality returns the bit u. Therefore, a commitment
scheme that realizes this functionality must be consistent. If there is an entry
[ccom, cm ′, copen ′, 1] such that cm �= cm ′, the functionality returns 0. There-
fore, a scheme that realizes the functionality must fulfill the binding property.
Else, in FENIC, the functionality checks whether the output of COM.Extract
equals the message sent for verification and rejects the commitment if that is
not the case. Then, the functionality runs the algorithm COM.Verify to verify
(ccom, cm, copen). The functionality records the result in Tblcom and returns
that result.

The functionality FNIC does not allow the computation and verification of
commitments using any parameters cparcom that were not generated by the
functionality. As can be seen, the interfaces com.commit.∗ and com.verify.∗ use
the commitment parameters that are stored by the functionality to compute and
verify commitments. Therefore, a construction that realizes this functionality

UC Commitments for Modular Protocol Design and Applications 219

must ensure that the honest parties use the same commitment parameters. In
general, such a “CRS-based” setup is required to realize UC commitments [8].

We note that we introduce the com.validate.∗ interface so that the parties can
ensure that the commitment contains the right parameters and verification algo-
rithm. This is needed especially for the parties that only receive a commitment
value, without the opening. Otherwise, the com.verify.∗ interface can be called
directly. Another way of doing this is to introduce an interface in the commit-
ment functionality that returns the parameters and verification algorithm and
require parties to call it first and compare the received parameters with the ones
from the commitment.

3.2 Binding and Hiding Properties of FNIC and FENIC

Let us analyse the security properties of our two commitment functionalities.
While inspection readily shows that both functionalities satisfy the standard
binding and hiding properties, this merits some discussion.

We first note that both functionalities are perfectly hiding (because the com-
mitment is computed independently of the message to be committed) and per-
fectly binding (the functionalities will accept only one value per commitment as
committed value). Both properties being perfect seems like a contradiction, but
it is not because the functionalities will only be computationally indistinguish-
able from their realizations. This implies of course that only computationally
binding and hiding are enforced onto realizations.

Having said this, the binding property of FNIC merits further discussion,
because, although it is guaranteed that adversarially computed commitments
(outside FNIC) can only be opened in one way, it is conceivable that an adversary
could produce a commitment that it could open in two ways, and then, depending
on its choice, provide one or the other opening, which would be allowed by
FNIC. This seems like a weaker property than what a traditional commitment
scheme offers. There, after computing a commitment on input a message, that
commitment can only be opened to that message. In this respect, we first remark
that for traditional, perfectly hiding commitments, this might also be possible
(unless one can extract more than one opening from an adversary, for instance,
via rewinding). Second, we can show the following proposition, stating that for
all realizations of FNIC, no adversary is actually able to provide two different
openings for adversarially generated commitments (the proof is provided in the
full version of this paper).

Proposition 1. For any construction ΠNIC that realizes FNIC, there is no algo-
rithm COM.Verify input by the simulator SNIC to FNIC such that, for any
tuples (ccom, cm, copen) and (ccom, cm ′, copen ′) such that cm �= cm ′, 1 =
COM.Verify(sid , cparcom, ccom, cm, copen) and 1 = COM.Verify(sid , cparcom,
ccom, cm ′, copen ′).

Let us finally note that the behaviour of FENIC is different here, i.e., if the
extraction algorithm is deterministic, it is guaranteed that there exists only one
value to which a commitment can be opened.

220 J. Camenisch et al.

3.3 Using FNIC in Conjunction with Other Functionalities

We turn to our main goal, namely how FNIC can be used to ensure that the
same value is used as input to different functionalities or that an output from
one functionality is used as an input to another functionality. We show the first
case in detail with a toy example and then discuss the second case.

Ensuring Consistent Inputs. Let us consider the case where a construction
requires that one party provides the same value to two (or more) different func-
tionalities. To achieve this, the two functionalities need to get as input that value
and also a commitment to that value and the corresponding opening value. It
is further necessary that (1) also the other parties input the same commitment
to the functionalities (or, alternatively, get the commitment from the function-
alities and then check that they get the same commitment from them); (2) it is
verified that the commitment is valid w.r.t. FNIC, and that (3) the functionali-
ties are able to somehow verify whether the value provided is indeed contained
in the commitment. For the last item, it would seem natural that FNIC would
be queried, but the UC framework does not allow that, and therefore we need to
use a different mechanism: the commitments themselves contain a verification
algorithm such that if the algorithm accepts an opening, then it is implied that
FNIC would also accept the value and the opening for that commitment.

To enable this, let us start with two observations. In Proposition 1, we showed
that COM.Verify will only accept one opening per adversarially computed com-
mitment. However, this is not sufficient, because COM.Verify could accept dif-
ferent openings for commitments computed by FNIC because in that case FNIC

does not invoke COM.Verify when processing requests to com.verify.ini and it is
indeed conceivable that COM.Verify could behave differently.

However, for any secure realization ΠNIC, calls to the algorithm com.verify.ini
of ΠNIC are indistinguishable from calls on the com.verify.ini interface to
FNIC‖SΠNIC , and com.verify.ini must be a non-interactive algorithm. Therefore, if
SΠNIC (i.e., the simulator such that FNIC‖SΠNIC is indistinguishable from ΠNIC)
provides the real-world algorithm com.verify.ini of ΠNIC as COM.Verify() algo-
rithm to FNIC, then calling COM.Verify() in another functionality to verify an
opening and committed message w.r.t. a commitment will necessarily produce
the same result as a call to the com.verify.ini interface to FNIC‖SΠNIC . We will
use the latter in an essential way when composing different functionalities, as we
will illustrate with an example in the following.

We note that the assumption that SΠNIC provides the algorithms to
FNIC‖SΠNIC that are used in the real world is natural and not a serious restric-
tion. After all, the purpose of defining a functionality using cryptographic algo-
rithms is that the functionality specifies the behavior of the real algorithms,
especially those that are used to verify cryptographic values. Assuming that the
calls com.commit.ini and com.verify.ini to ΠNIC are local to the calling parties is
also natural as this is how traditional commitment schemes are realized.

Furthermore, we note that FNIC restricts SΠNIC to send the real-world veri-
fication algorithm as COM.Verify. The reason is that FNIC outputs COM.Verify

UC Commitments for Modular Protocol Design and Applications 221

inside ccom through the (com.commit.end, sid , ccom, copen) message. In the real
world, any construction for FNIC outputs the real-world verification algorithm
through the (com.commit.end, sid , ccom, copen) message. Therefore, because the
outputs in the real-word and in the ideal-world must be indistinguishable, any
simulator must input the real-world verification algorithm as COM.Verify to
FNIC. Otherwise the message com.commit.end in the ideal world can be dis-
tinguished from that in the real world by the environment.

Functionality Fi

1. On input (fi.in.ini, sid , a, ccom1, copen) from a party P1, check if sid = (P1, P2, sid
′)

for some P2 and sid ′, and no record is stored. If so, record (a, ccom1, copen) and send
(fi.in.end, sid) to P1, otherwise (fi.in.end, sid , ⊥) to P1.

2. On input (fi.eval.ini, sid , ccom2) from P2, check if sid = (P1, P2, sid
′) for some

P1 and sid ′, if a record (a, ccom1, copen) is stored, and if ccom1 = ccom2 and
COM.Verify(sid , cparcom, ccom1, a, copen) = 1 holds. If so, send delayed (fi.eval.end,
sid , fi(a)) to P2. Otherwise send delayed (fi.eval.end, sid , ⊥) to P2.

Functionality F(1,2)

1. On input (f12.eval.ini, sid , a) from a party P1, check if sid = (P1, P2, sid
′). If

so, send delayed (f12.eval.end, sid , (f1(a), f2(a))) to P2 and otherwise send delayed
(f12.eval.end, sid , ⊥) to P1.

Construction Π(1,2)

1. On input (f12.eval.ini, sid , a), P1 proceeds as follows.
(a) i. P1 checks if sid = (P1, P2, sid

′).
ii. P1 calls FNIC with (com.setup.ini, sid) and receives (com.setup.end,

sid ,OK).
iii. P1 calls FNIC with (com.commit.ini, sid , a) to receive (com.commit.end,

sid , ccom, copen).
iv. P1 calls F1 with (f1.in.ini, sid , a, ccom, copen) and receives (f1.in.end, sid).
v. P1 calls F2 with (f2.in.ini, sid , a, ccom, copen) and receives (f2.in.end, sid).
vi. P1 sends (smt.send.ini, sid , ccom) to P2 using FSMT.

(b) Upon receiving (smt.send.end, sid , ccom) from P1 via FSMT, P2 proceeds as fol-
lows.
i. P2 checks if sid = (P1, P2, sid

′).
ii. P2 calls FNIC with (com.setup.ini, sid) and receives (com.setup.end,

sid ,OK).
iii. P2 calls FNIC with (com.validate.ini, sid , ccom).
iv. P2 calls F1 with (f1.eval.ini, sid , ccom) and receives (f1.eval.end, sid , f1(a)).
v. P2 calls F2 with (f2.eval.ini, sid , ccom) and receives (f2.eval.end, sid , f2(a)).
vi. P2 outputs (f12.eval.end, sid , (f1(a), f2(a))).

If at any step a party receives a wrong message from a functionality or some check fails, it
outputs (f12.eval.end, sid , ⊥).

We are now ready to show how our goal can be achieved using a toy example.
To this end, let us define three two party functionalities F1, F2, and F(1,2). The

222 J. Camenisch et al.

first two F1 and F2 compute the function f1(·) and f2(·), respectively, on P1’s
input and send the result to P2. Analogously, F(1,2) computes (f1(·), f2(·)) on
P1’s input and sends the result to P2. Our goal is now to realize F(1,2) by a
hybrid protocol Π(1,2) using F1 and F2 to compute f1(·) and f2(·), respectively,
and FNIC to ensure that the inputs to both F1 and F2 are the same. To achieve
this, F1 and F2 will take as inputs also commitments and do some basic checks
on them. These functionalities and construction Π(1,2) are as follows.

We next show that Π(1,2) realizes F(1,2) and thereby give an example of a
security proof that uses FNIC and does not need to reduce to property-based
security definitions of a commitment scheme. Note that although formally we
consider a FNIC‖SΠNIC -hybrid protocol, our example protocol Π(1,2) uses FNIC

in the same way as any other functionality, i.e., without having to consider the
simulator SΠNIC for some realization ΠNIC of FNIC.

Theorem 1. Assume that FNIC‖SΠNIC is indistinguishable from ΠNIC and that
SΠNIC provides ΠNIC’s verification algorithm as COM.Verify() to FNIC. Then
Π(1,2) realizes F(1,2) in the (FSMT,F1,F2,FNIC‖SΠNIC)-hybrid model. FSMT [6]
is described in the full version.

Proof. We provide a simulator SΠ(1,2) and prove that F(1,2)‖SΠ(1,2) is indistin-
guishable from Π(1,2) if there exists a ΠNIC that realizes FNIC.

We consider four cases, depending on which party is corrupt. In case both P1

and P2 are corrupt, there is nothing to simulate. In case both parties are honest,
the simulator will be asked by F(1,2) to send (f12.eval.end, sid , (f1(a), f2(a))) to P2

and then proceed as follows. First it initializes FNIC. It then picks a random value
a′ and executes Π(1,2) as P1 and P2 using a′ as the input of P1 and running FSMT,
F1, F2, and FNIC‖SΠNIC as they are specified, with exception that when F1 and
F2 would output f1(a′) and f2(a′), respectively, to P2, the simulator instead
make these two functionalities output f1(a) and f2(a), respectively (which are
the values SΠ(1,2) had obtained earlier from F(1,2)). If this protocol execution is
successful, SΠ(1,2) will let the delayed output (f12.eval.end, sid , (f1(a), f2(a))) to
P2 pass. Otherwise it will drop it, as it will have already sent (f12.eval.end, sid ,⊥)
to P2 or P1 according to the protocol specification. It is not hard to see that this
simulation will cause the same distribution on the values sent to the adversary
as the real protocol. The only difference is that the simulator uses a different
input value for P1 and the only other value that depends in a′ is copen (by the
specification of FNIC). As the environment/adversary never sees any of these
two values or any value that depends on it (which is seen by inspection of all
simulated functionalities and because f1(a′) and f2(a′) are replaced by f1(a) and
f2(a) in the outputs of F1 and F2), the argument follows.

As next case, assume that P1 is honest and P2 is corrupt. This case is similar
to the one where both are honest. The simulator proceeds the same way only
that it will not execute the steps of P2 and it will allow the delivery of the
message (f12.eval.end, sid , (f1(a), f2(a))) to P2. The argument that the simulation
is successful remains essentially the same. Here, the environment will additionally
see ccom which, as said before, does not depend on a′.

UC Commitments for Modular Protocol Design and Applications 223

As last case, assume that P2 is honest and P1 is corrupt. Thus, SΠ(1,2) inter-
acts with the adversarial P1 and the environment/adversary, simulating Π1,2

towards P1 and the functionalities FSMT, F1, F2, and FNIC‖SΠNIC towards both
the environment and P1, and finally P1 towards F1,2. Simulation is straightfor-
ward: the simulator just runs everything as specified, learning P1’s input a from
P1’s input to FNIC‖SΠNIC , F1, and F2. If this simulation reaches Step 1(b)vi,
SΠ(1,2) will input that a to F(1,2) as P1, causing it to send a delayed output
(f12.eval.end, sid , (f1(a), f2(a))) to P2 for SΠ(1,2) to deliver, which it will do. This
simulation will be correct, as long as P1 cannot cause F1 and F2 to send a result
for a different input value. However, this cannot happen because if both func-
tionalities accept P1’s input, the committed value must be identical thanks to
the properties of COM.Verify (cf. discussion above). 	

Comparison with a Construction that Used a Standard Commitment Scheme.
One could of course also realize F(1,2) with a construction that uses a standard
commitment scheme, i.e., one defined by property-based security definitions,
instead of FNIC. The resulting construction and the security proof would be less
modular, comparable to a construction that uses a standard signature scheme
instead of FSIG. For the security proof, the overall strategy would be rather
similar, the main difference being that one would have to do reductions to the
properties of the commitment scheme, i.e., additional game hops. That is, one
would have to show that the binding property does not hold if an adversarial P1

manages to send different inputs to F1 and F2. Also, one would have to show
that the hiding property does not hold if an adversarial P2 is able to distinguish
between the real protocols and the simulator that interacts with the functionality
F(1,2) and thus has to send P2 a commitment to a different value.

Ensuring an Output is Used as an Input. Let us consider a two-party construc-
tion that requires that an output from one functionality be used as an input
to another functionality. This can be achieved in different ways, the simplest
way seems to be that the first party, upon obtaining its output from the first
functionality, calls FNIC to obtain a commitment on that value and an opening
and sends the commitment and the opening to the first functionality. The first
functionality will then check whether the commitment indeed contains the out-
put and, if so, will send the commitment to the second party who can then use
that commitment as input to the second functionality. We leave the details of
this to the reader.

3.4 Construction of UC Non-interactive Commitments

We now provide our construction for UC non-interactive commitments. It uses a
commitment scheme (CSetup, Com, VfCom) that fulfils the binding and trapdoor
properties [13].

Our construction works in the FCSetup
CRS -hybrid model, where parties use the

ideal functionality FCSetup
CRS that is parameterized by the algorithm CSetup, which

takes as input the system parameters sp.

224 J. Camenisch et al.

Construction Πsp
NIC

ConstructionΠNIC is parameterized by system parameters sp, and uses the ideal functionality
FCSetup,sp

CRS and a commitment scheme (CSetup, Com, VfCom).
1. On input (com.setup.ini, sid), a party P executes the following program:
(a) Send (crs.setup.ini, sid) to FCSetup,sp

CRS to receive (crs.setup.end, sid , parc).
(b) Store (parc ,VfCom) and output (com.setup.end, sid ,OK).

2. On input (com.validate.ini, sid , ccom), a party P executes the following program:
(a) If (parc ,VfCom) is not stored, abort.
(b) Parse ccom as (ccom ′, parc ′,VfCom′).
(c) Set v ← 1 if parc ′ = parc and VfCom′ = VfCom. Otherwise, set v ← 0.
(d) Output (com.validate.end, sid , v).

3. On input (com.commit.ini, sid , cm), a party P executes the following program:
(a) If (parc ,VfCom) is not stored, abort.
(b) Abort if cm /∈ M, where M is defined in parc .
(c) Run (com, open) ← Com(parc , cm).
(d) Output (com.commit.end, sid , ccom ← (com, parc ,VfCom), open).

4. On input (com.verify.ini, sid , ccom, cm, copen), P executes the following program:
(a) If (parc ,VfCom) is not stored, abort.
(b) Abort if cm /∈ M or if copen /∈ R, where M and R are defined in parc .
(c) Parse ccom as (ccom ′, parc ′,VfCom′).
(d) If parc ′ = parc and VfCom′ = VfCom then run v ← VfCom(parc , ccom

′, cm,
copen). Otherwise, set v ← 0.

(e) Output (com.verify.end, sid , v).

Theorem 2. The construction ΠNIC realizes FNIC in the FCSetup
CRS -hybrid model

if the underlying commitment scheme (CSetup, Com, VfCom) is binding and
trapdoor.

We provide the proof in the full version of this paper.

4 The Ideal Functionalities FREV and FAT

We describe our ideal functionality for non-hiding and hiding revocation, FREV,
in Sect. 4.1. Our constructions for non-hiding and hiding revocation and their
security analysis can be found in the full version of this paper. The construc-
tion for non-hiding revocation uses a non-hiding vector commitment scheme,
whereas the hiding construction employs a trapdoor vector commitment scheme.
In the full version of this paper we also define the trapdoor property for vector
commitments and propose a construction for non-hiding and trapdoor vector
commitments.

We describe our ideal functionality for attribute tokens, FAT, in Sect. 4.2.
We provide the construction and prove it secure in the full version of this paper.

4.1 Ideal Functionality for Revocation FREV

Here we describe our ideal functionality FREV for revocation. FREV interacts
with a revocation authority RA, users U and any verifying parties P. The revo-

UC Commitments for Modular Protocol Design and Applications 225

cation authority RA associates a revocation status x[rh] with every revocation
handle rh. A revocation status consists of m bits, such that each bit x[rh, j]
denotes the revocation status of the revocation handle rh with respect to the
revocation list j ∈ [1,m]. The time is divided into epochs ep, and the revocation
authority RA can change the revocation status of every revocation handle at
the beginning of each epoch.

A user U can obtain a proof pr that the revocation status of the revocation
handle rh committed in a commitment ccom is x[rh, j] for the list j at the epoch
ep. Given pr , ccom, x[rh, j], j, and ep, any party P can verify the proof pr .

226 J. Camenisch et al.

UC Commitments for Modular Protocol Design and Applications 227

FREV describes two ideal functionalities: a hiding revocation functionality
where, if the revocation authority is honest, the revocation status of a revoca-
tion handle is only revealed to the user associated with that revocation handle,
and a non-hiding revocation functionality where the revocation statuses of all
revocation handles are public. We provide a unified description of both ideal
functionalities. The box H: . . . is used to describe something that occurs only
in the hiding revocation functionality, whereas the box NH: . . . is used in the
same way for the non-hiding revocation functionality.

FREV interacts with the revocation authority RA, the users U and any
verifying parties P through the interfaces rev.setup.∗, rev.get.∗, rev.epoch.∗,
rev.getepoch.∗, rev.getstatus.∗, rev.prove.∗, and rev.verify.∗.

1. The revocation authority RA uses the rev.setup.∗ interface to receive the
revocation parameters parr .

2. Any party P invokes the rev.get.∗ interface to receive parr .
3. The revocation authority RA uses the rev.epoch.∗ interface to send a list

〈 H: Ui, rhi,x[rhi]〉n′
i=1 of revocation handles and revocation statuses for the

epoch ep and receive the epoch information info for the epoch ep.
4. Any party P uses the rev.getepoch.∗ interface to get the epoch information

info for the epoch ep. In the non-hiding functionality, P also obtains the
full list of revocation handles and revocation statuses 〈rhi,x[rhi]〉n′

i=1 for the
epoch ep.

5. In the hiding revocation functionality, a user U with a revocation handle rh
uses the rev.getstatus.∗ interface to receive the revocation status x[rh] at a
given epoch ep.

228 J. Camenisch et al.

6. An honest user U uses the rev.prove.∗ interface to obtain a proof pr that the
revocation status of the revocation handle rh committed in a commitment
ccom is x[rh, j] for the list j at the epoch ep.

7. Any honest party P uses the rev.verify.∗ interface to verify a proof pr on input
ccom, x[rh, j], j and ep.

FREV uses the following tables:

Tblep . For the epoch ep, Tblep stores entries of the form [H: U , rh,x[rh]] that
associate the revocation handle rh with the revocation status x[rh]. In the
hiding functionality, if RA is honest, a user U is also associated with rh.

Tblpr . Tblpr stores entries of the form [〈ccom, ep, j,x[rh, j]〉, pr , u], where 〈ccom,
ep, j,x[rh, j]〉 is part of the instance of a proof, pr is the proof, and u is a bit
that indicates the validity of the proof.

FREV also uses a set P. P contains the identifiers of the parties that retrieved
the revocation parameters parr . Additionally, FREV uses a set Eep that, for an
epoch ep, stores the identifiers of the parties that retrieved the epoch information
info and, in the non-hiding functionality, the revocation statuses in Tblep . The
hiding functionality FREV also uses a set Sep , which for an epoch ep stores the
identifiers of the parties that retrieved the revocation statuses x[rh] of their
revocation handles.

We now discuss the seven interfaces of the ideal functionality FREV.

1. The rev.setup.ini message is sent by the revocation authority. FREV aborts
if the rev.setup.ini message has already been sent. Otherwise FREV asks the
simulator S to provide the parameters parr , the trapdoor tdr , and the algo-
rithms REV.SimProve and REV.Extract. When S provides them, FREV aborts
if they have already been sent. Otherwise, FREV initializes an empty set P

and a table Tblpr to store proofs, and sends the revocation parameters to the
revocation authority.

2. The rev.get.ini message is sent by any party P to get the parameters parr .
3. The rev.epoch.ini message is sent by the revocation authority on input an

epoch identifier ep and a list of revocation handles and revocation statuses
〈 H: Ui, rhi,x[rhi]〉n′

i=1. In the hiding revocation functionality, the list also
includes user identifiers Ui. FREV asks S to provide the epoch information
info for the epoch ep. In the hiding functionality, info is computed without
knowledge of 〈 H: Ui, rhi,x[rhi]〉n′

i=1, whereas in the non-hiding functionality

S receives 〈rhi,x[rhi]〉n′
i=1. The epoch information info is later given as input

to the algorithms REV.SimProve and REV.Extract. When S sends info, FREV

aborts if the list 〈 H: Ui, rhi,x[rhi]〉n′
i=1 for ep was not received before or if

info for the epoch ep has already been received. Otherwise FREV creates a
table Tblep to store the list for the epoch ep and stores (sid , ep, info,Tblep).
In the hiding functionality, if the revocation authority is corrupt, Tblep is left
empty and therefore the information 〈 H: Ui, rhi,x[rhi]〉n′

i=1 is not required.
The reason is that, if the hiding functionality requires this information when

UC Commitments for Modular Protocol Design and Applications 229

RA is corrupt, a construction that realizes this functionality would need to
allow the extraction of 〈 H: Ui, rhi,x[rhi]〉n′

i=1 in the security proof. In the
construction, this would imply the use of extractable vector commitments,
which, for the sake of efficiency, we chose to avoid. Therefore, the hiding
FREV, if RA is corrupt, learns the revocation statuses when they are disclosed
through the rev.getstatus.∗ interface or the rev.verify.∗ interface. Finally, FREV

sends the epoch ep and the epoch information info to the revocation authority.
4. The rev.getepoch.ini message is sent by any party P on input an epoch ep.

After the simulator prompts the response with a message (rev.getepoch.rep,
sid , ssid), the functionality sends the epoch information info to P. In the
non-hiding case, the functionality also sends the revocation statuses of all
revocation handles to P.

5. In the hiding functionality, the rev.getstatus.ini message is sent by a user Ui

on input a revocation handle rhi and an epoch ep. FREV works differently,
depending on whether the revocation authority is corrupt or not:
(a) If RA is honest, FREV aborts if there is no entry in Tblep for Ui

and rhi. After the simulator prompts the response with a message
(rev.getstatus.rep, sid , ssid), FREV sends the revocation status of rhi to
Ui.

(b) If RA is corrupt, FREV asks the simulator to provide the revocation sta-
tus of rhi. Then, if it was not stored in Tblep , FREV stores the revocation
status of rhi in Tblep and sends it to Ui. If it is already stored, FREV

only sends the revocation status to the user if the status sent by the func-
tionality equals the one stored. Therefore, even if RA is corrupt, FREV

ensures that RA associates a unique revocation status with a revocation
handle during a given epoch.

6. The rev.prove.ini message is sent by an honest user Ui on input a commitment
ccom to a revocation handle rh with the opening copen. Ui also inputs the epoch
ep and the revocation list j. The commitment ccom consists of a commitment
value ccom, commitment parameters cparcom, and a commitment verification
algorithm COM.Verify. FREV aborts if rh and copen are not a valid opening of
ccom. It also aborts if the revocation handle rhi is not in Tblep . (In the hid-
ing functionality, it also aborts if the revocation authority is honest and rhi

is not associated with Ui.) FREV runs REV.SimProve(sid , parr , cparcom, ccom,
ep, infoep , j,x[rh, j], tdr) to compute a proof pr that x[rh, j] is the revocation
status of revocation handle rh with respect to the revocation list j at epoch ep.
We note that pr does not reveal any information on the revocation handle rh,
the opening copen, or the revocation status x[rh] with respect to revocation
lists other than j. FREV stores the proof as valid in Tblpr .

7. The rev.verify.ini message is sent by any honest party P on input a proof pr
that b is the revocation status with respect to the revocation list j at epoch ep
and to the revocation handle committed to in ccom. ccom consists of a com-
mitment value ccom, commitment parameters cparcom, and a commitment
verification algorithm COM.Verify. If the proof and the instance are stored in
Tblpr , FREV outputs the verification result stored in Tblpr to ensure consis-
tence. Otherwise FREV runs the algorithm REV.Extract to extract the revo-

230 J. Camenisch et al.

cation handle rh, the opening copen, and the revocation status x[rh] from the
proof pr . Any construction that realizes FREV must allow extractable proofs.
If extraction fails or if ccom is not a commitment to rh and copen, FREV

marks the proof as invalid. Otherwise, if the revocation authority is corrupt
and the revocation status of rh is not stored in Tblep , FREV stores it in Tblep .
After that, FREV also marks the proof as invalid if rh is not in Tblep or if
b �= x[rh, j], where x[rh, j] is the revocation status stored in Tblep for the
revocation handle rh. In the hiding functionality, the proof is also marked as
invalid when b = x[rh, j] but the revocation authority is honest and the user
U associated with rh is honest. The reason is that the hiding functionality
must prevent corrupt users from computing proofs about revocation handles
associated with honest users because this constitutes a violation of the pri-
vacy of the revocation statuses. A construction that realizes FREV must use
non-malleable proofs, i.e., it should not be possible to obtain a new proof
from a valid proof without knowing the witness. We note that proofs for hon-
est users are computed by FREV in the rev.prove.∗ interface and registered in
Tblpr as valid, and are thus accepted by FREV in the verification interface
without running the algorithm REV.Extract.

We note that FREV does not allow parties to send their own revocation
parameters parr through the rev.prove.∗ and rev.verify.∗ interfaces. This means
that a construction that realizes this functionality must use some form of trusted
registration that allows the revocation authority to register parr and the other
parties to retrieve parr in order to ensure that all honest parties use the same
parameters.

FREV asks the simulator S to provide prove and extract algorithms at setup.
Alternatively, it would be possible that the functionality asks the simulator to
compute proofs and extract from proofs when the rev.prove.∗ and rev.verify.∗
interfaces are invoked. We chose the first alternative because it hides the com-
putation and verification of proofs by the parties from the simulator.

4.2 Ideal Functionality for Anonymous Attribute Tokens FAT

Next, we describe the ideal functionality of anonymous attribute tokens, FAT.
FAT interacts with an issuer I, users Ui and any verifying parties P. The issuer
I issues some attributes 〈al〉Ll=1 to a user Ui . A user Ui can obtain a proof that
some commitments 〈ccom l〉Ll=1 commit to attributes that were issued by I. Any
party P can verify a proof.

The interaction between the functionality FAT and the issuer I, the users Ui

and the verifying parties P takes place through the interfaces at.setup.∗, at.get.∗,
at.issue.∗, at.prove.∗, and at.verify.∗.

1. The issuer I uses the at.setup.∗ interface to initialize the functionality and
obtain the parameters parat of the anonymous attribute token scheme.

2. Any party P invokes the at.get.∗ interface to obtain the parameters parat .
3. The issuer I uses the at.issue.∗ interface to issue some attributes 〈al〉Ll=1 to a

user Ui .

UC Commitments for Modular Protocol Design and Applications 231

4. An honest user Ui uses the at.prove.∗ interface to get a proof pr that some
commitments 〈ccom l〉Ll=1 commit to attributes that were issued by the issuer
I to the user Ui .

5. Any honest party P uses the at.verify.∗ interface to verify a proof pr .

As we described before, the commitment parameters and the verification
algorithm are attached to the commitment itself, and the functionality parses
the commitment value to obtain them to run a commitment verification. FAT

uses the following tables.

Tbla . Tbla stores entries of the form [Ui , 〈al〉Ll=1], which map a user Ui to a list
of attributes 〈al〉Ll=1 issued by I.

Tblpr . Tblpr stores entries of the form [〈ccom l〉Ll=1, pr , u], which consist of a proof
instance 〈ccom l〉Ll=1, a proof pr , and a bit u that indicates whether the proof
is valid.

FAT also uses a set P. P contains the identifiers of the parties P that retrieved
the attribute tokens parameters parat .

232 J. Camenisch et al.

We now discuss the five interfaces of the ideal functionality FAT.
1. The at.setup.ini message is sent by the issuer I. The restriction that the

issuer’s identity must be included in the session identifier sid = (I, sid ′)
guarantees that each issuer can initialize its own instance of the functional-
ity. FAT requests the simulator S for the parameters and algorithms. S sends
the parameters parat , the trapdoor tdat , and the algorithms (AT.SimProve,
AT.Extract) for proof computation and proof extraction. Finally, FAT initial-
izes two empty tables, Tbla and Tblpr , and sends the received parameters
parat to I.

2. The at.get.ini message allows any party to request parat .
3. The at.issue.ini message is sent by the issuer on input a user identity and a

list of attributes. FAT creates a subsession identifier ssid and sends the user
identity to the simulator. The simulator indicates when the issuance is to
be finalized by sending a (at.issue.rep, sid , ssid) message. At this point, the
issuance is recorded in Tbla . If the user is honest, the issuance is recorded
under the correct user’s identity, which in the real world requires any instanti-
ating protocol to set up an authenticated channel to the user to ensure this. If
the user is corrupt, the attributes are recorded as belonging to the simulator,
modeling that corrupt users may pool their attribute tokens. Note that the
simulator is not given the attribute values issued, so the real-world protocol
must hide these from the adversary.

UC Commitments for Modular Protocol Design and Applications 233

4. The at.prove.ini message lets an honest user Ui request a proof that the
attributes 〈al〉Ll=1 issued to her by I are committed in the commitments
〈com l〉Ll=1. The commitment parameters and the commitment verification
algorithm attached to each commitment value allow FAT to compute and
verify proofs about commitments to attributes, such that the commitments
are generated externally, e.g., by the functionality FNIC.

FAT computes a proof by running AT.SimProve, which does not receive
the witness as input. Therefore, any construction that realizes FAT must use
zero-knowledge proofs. FAT stores the proof in Tblpr and sends the proof to
Ui .

5. The at.verify.ini message allows any honest party to request the verification
of a proof pr with respect to the instance 〈ccom l〉Ll=1. If the instance-proof
pair is stored in the table Tblpr , then the functionality replies with the stored
verification result to ensure consistency. If not, the functionality runs the
algorithm AT.Extract. If the issuer is corrupt, the functionality interprets the
output of AT.Extract as a bit b that indicates whether the proof is valid or not.
If the issuer is honest, the functionality interprets the output as the witness
〈al , copen l〉Ll=1. The functionality only marks the proof as correct if extraction
did not fail, if 〈al , copen l〉Ll=1 are correct openings of the commitments in the
instance, and if any corrupt user was issued the attributes 〈al〉Ll=1. A construc-
tion that realizes FAT must use non-malleable proofs, i.e., FAT enforces that
it is not possible to obtain a new proof from a valid proof without knowing
the witness. We note that proofs for honest users are computed by FAT in the
at.prove.∗ interface and registered in Tblpr as valid, and are thus accepted by
FAT in the verification interface without running the algorithm AT.Extract.
Finally, the functionality stores the proof-instance pair and the verification
result in Tblpr and sends the verification result to the party.

We note that FAT does not allow parties to send their own revocation para-
meters parat through the at.prove.∗ and at.verify.∗ interfaces. This means that a
construction that realizes this functionality must use some form of trusted reg-
istration that allows the issuer to register parat and the other parties to retrieve
parat to ensure that all honest parties use the same parameters.

FAT asks the simulator S to provide prove and extract algorithms at setup.
Alternatively, it would be possible that the functionality asks the simulator to
compute proofs and extract from proofs when the at.prove.∗ and at.verify.∗ inter-
faces are invoked. We chose the first alternative because it hides the computation
and verification of proofs by the parties from the simulator.

We refer to the full version of the paper for a construction that realizes FAT

and its security analysis.

5 Anonymous Attribute Tokens with Revocation

In this section we a high-level description of the ideal functionality FTR of anony-
mous attribute tokens with revocation. For its formal description we defer to the

234 J. Camenisch et al.

full version of this paper. Similarly, we here consider only the version of function-
ality FTR where the revocation statuses of every revocation handle are public.
We then describe a construction for this version of FTR that uses the function-
alities FNIC, FREV, and FAT and illustrates how to modularly design hybrid
protocols in the UC framework.

5.1 Ideal Functionality FTR of Anonymous Attribute Tokens
with Revocation

FTR interacts with an issuer I, a revocation authority RA, users Ui , and any
verifying party P. The issuer I issues some attributes 〈al〉Ll=1 and a revocation
handle rh to a user Ui . The revocation authority RA associates a revocation
status x[rh] with each revocation handle rh. x[rh] is a vector of m bits, such
that each bit x[rh, j] denotes the revocation status of the revocation handle rh
with respect to the revocation list j ∈ [1,m]. A user Ui can prove to any party
that a set of attributes 〈al〉Ll=1 and a revocation handle were issued by I. Ui

also proves that b is the revocation status that the revocation authority RA
associated with rh for the revocation list j and the epoch ep.

The interaction between the functionality FTR and the issuer I, the revo-
cation authority RA, the users Ui , and any verifying party P takes place
through the interfaces tr.setupi.∗, tr.setupra.∗, tr.setupp.∗, tr.issue.∗, tr.epoch.∗,
tr.getepoch.∗, and tr.prove.∗.

1. The issuer I invokes the tr.setupi.∗ interface for initialization.
2. The revocation authority RA invokes the tr.setupra.∗ interface for initializa-

tion.
3. Any user or verifying party P invokes the tr.setupp.∗ interface for initializa-

tion.
4. The issuer I uses the tr.issue.∗ interface to issue the attributes 〈al〉Ll=1 and

the revocation handle rh to a user Ui .
5. The revocation authority RA uses the tr.epoch.∗ interface to send a list of

revocation handles rh along with their respective revocation statuses x[rh]
for the epoch ep.

6. Any party P uses the rev.getepoch.∗ interface to get the full list of revocation
handles and revocation statuses 〈rhi,x[rhi]〉n′

i=1 for the epoch ep.
7. A user Ui uses the tr.prove.∗ interface to prove that some attributes 〈al〉Ll=1

and a revocation handle rh were issued by I. Ui also proves that x[rh, j] is the
revocation status associated with rh for the revocation list j and the epoch ep.

5.2 Construction of Anonymous Attribute Tokens with Revocation

We now describe the construction of anonymous attribute tokens with revoca-
tion ΠTR. The construction ΠTR works in the (FSMT, FASMT, FNIC, FREV,
FAT)-hybrid model, where the parties make use of the ideal functionalities for
secure message transmission FSMT and anonymous secure message transmis-
sion FASMT in [4]. The parties also use the ideal functionality for commitments

UC Commitments for Modular Protocol Design and Applications 235

FNIC described in Sect. 3.1, the ideal functionality for revocation FREV described
in Sect. 4.1, and the ideal functionality for anonymous attribute tokens FAT

described in Sect. 4.2.
This construction illustrates our mechanism for a modular design of hybrid

protocols in the UC framework. In the issuing phase, the users receive attributes
and a revocation handle from the issuer through FAT. To compute an attribute
token and show that it has not been revoked, a user first obtains a commitment
to the revocation handle and an opening from FNIC. Then the revocation handle,
the commitment and the opening are sent to FREV to get a non-interactive proof
of non-revocation. Similarly, the revocation handle, the commitment and the
opening, along with commitments and openings to some attributes issued along
with the revocation handle, are sent to FAT to obtain an attribute token. Thanks
to the fact that FAT and FREV run the commitment verification algorithm, it is
ensured that FAT and FREV receive the same revocation handle.

The construction ΠTR is executed by an issuer I, a revocation authority
RA, users Ui , and any verifying party P. Those parties are activated through
the tr.setupi.∗, tr.setupra.∗, tr.setupp.∗, tr.issue.∗, tr.epoch.∗, tr.getepoch.∗, and
tr.prove.∗ interfaces. Briefly, the construction ΠTR works as follows.

1. The issuer I receives (tr.setupi.ini, sid) as input. If the functionality FAT was
not set up, I invokes the at.setup.∗ interface of FAT; else I aborts.

2. The revocation authority receives (tr.setupra.ini, sid) as input. RA aborts if
setup has already been run. Otherwise, RA invokes the at.get.∗ interface of
FAT and aborts if FAT does not return the attribute token parameters. In
addition, RA invokes the com.setup.∗ interface of FNIC to setup the commit-
ment functionality. Finally, RA invokes the rev.setup.∗ interface of FREV.

3. A user or a verifying party P receives (tr.setupp.ini, sid) as input. P aborts if
the setup has already been run. Otherwise P invokes the at.get.∗ interface of
FAT and aborts if FAT does not return the attribute token parameters. Then
P invokes the (rev.get.ini, sid) interface of FREV and aborts if FREV does not
return the revocation parameters. Finally P invokes the com.setup.∗ interface
of FNIC.

4. The issuer I receives (tr.issue.ini, sid ,Ui , 〈al〉Ll=1, rh) as input. If the issuer
setup has not been run, I aborts. Otherwise I invokes the at.issue.∗ interface
of FAT to issue the attributes 〈al〉Ll=1 and the revocation handle rh to the
user Ui . Ui aborts if the user setup has not been run by Ui .

5. The revocation authority RA receives (tr.epoch.ini, sid , 〈rhi,x[rhi]〉n′
i=1) as

input. RA aborts if the RA setup has not been run or if the input values
are invalid. Otherwise RA uses the rev.epoch.∗ interface of FREV to send the
revocation information and obtain the epoch information info for the current
epoch ep.

6. A party P receives (tr.getepoch.ini, sid , ep) as input. P aborts if it did not
run the setup. Otherwise P invokes the interface rev.getepoch.∗ of FREV to
get the revocation information Tblep for ep.

236 J. Camenisch et al.

UC Commitments for Modular Protocol Design and Applications 237

7. The user Ui receives (tr.prove.ini, sid ,P, 〈al〉Ll=1, rh, ep, j, b) as input. Ui aborts
if the revocation handle and the attributes were not issued to her, if Ui did
not get the epoch ep or if the revocation status given by RA is not b for
list j and rh at epoch ep. Otherwise Ui invokes the com.commit.∗ interface
of functionality FNIC to obtain commitments and openings for the attributes
and for the revocation handle that were issued by I. Note that, for simplicity,
we reveal all attributes of the token, except the revocation handle. Then Ui

invokes the at.prove.∗ interface of FAT to get a proof that the committed
attributes were issued by I. Ui also invokes the rev.prove.∗ interface of FREV

to get a proof that the revocation status of the committed revocation handle
for list j at epoch ep is b. The user Ui sends the commitments, the proofs,

238 J. Camenisch et al.

and the openings of the commitments to the attributes through an instance
of FASMT to the verifying party P. P aborts if it did not get the epoch ep.
Otherwise P validates the commitment parameters for the commitment to
the revocation handle by calling the com.validate.∗ interface of FNIC, because
it cannot verify the full commitment itself without the opening, and invokes
the com.verify.∗ interface of FNIC to verify the openings of the commitments
to the attributes revealed. The at.verify.∗ interface of FAT and the rev.verify.∗
interface of FREV are used to verify the respective proofs.

6 Conclusion and Future Work

We have proposed a method for the modular design of cryptographic protocols
in the UC framework. Our method allows one to compose two or more function-
alities and to ensure that some inputs to those functionalities are equal or an
output of one functionality is used as input to another functionality. For this pur-
pose, the functionalities are amended to receive commitments as inputs and to
verify them. In addition, we propose new ideal functionalities for commitments
that, unlike existing ones, output cryptographic commitments. To illustrate our
framework, we have shown a protocol for attribute tokens with revocation that
uses our commitment functionality and ideal functionalities for attribute tokens
and for revocation that receive committed inputs. As future work, we consider
the modular design of other cryptographic protocols with our method as well
as investigating the relations between our UC-based definitions and game-based
definitions for attribute-based tokens and revocation.

References

1. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: PKC, pp. 481–500 (2009)

2. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update
of anonymous credentials. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS,
vol. 6280, pp. 454–471. Springer, Heidelberg (2010)

3. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G.,
Pedersen, M.Ø.: Formal treatment of privacy-enhancing credential systems. In:
Dunkelman, O., et al. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-31301-6 1

4. Camenisch, J., Lehmann, A., Neven, G., Rial, A.: Privacy-preserving auditing for
attribute-based credentials. In: ESORICS, pp. 109–127 (2014)

5. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

7. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW, p. 219 (2004)

8. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 19. Springer, Heidelberg (2001)

http://dx.doi.org/10.1007/978-3-319-31301-6_1

UC Commitments for Modular Protocol Design and Applications 239

9. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: STOC, pp. 494–503 (2002)

10. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC, pp.
55–72 (2013)

11. Damg̊ard, I.B., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, p. 581. Springer, Heidelberg (2002)

12. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity
of additively homomorphic UC commitments. ePrint, Report 2015/694

13. Groth, J.: Homomorphic trapdoor commitments to group elements. ePrint,
2009/007

14. Hofheinz, D., Backes, M.: How to break and repair a universally composable sig-
nature functionality. In: ICS, pp. 61–72 (2004)

15. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004)

16. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: EUROCRYPT, pp. 115–128 (2007)

17. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: EUROCRYPT, pp. 446–466 (2011)

18. MacKenzie, P., Yang, K.: On simulation-sound trapdoor commitments. In: EURO-
CRYPT, pp. 382–400 (2004)

19. Moran, T., Segev, G.: David, goliath commitments: UC computation for asymmet-
ric parties using tamper-proof hardware. In: EUROCRYPT, pp. 527–544 (2008)

20. Nakanishi, T., Fujii, H., Yuta, H., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, pp. 50–62 (2010)

21. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO, pp. 129–140 (1992)

Probabilistic Termination and Composability
of Cryptographic Protocols

Ran Cohen1(B), Sandro Coretti2, Juan Garay3, and Vassilis Zikas4

1 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
cohenrb@cs.biu.ac.il

2 Department of Computer Science, ETH Zurich, Zürich, Switzerland
corettis@inf.ethz.ch

3 Yahoo Research, Sunnyvale, USA
garay@yahoo-inc.com

4 Department of Computer Science, RPI, Troy, USA
vzikas@cs.rpi.edu

Abstract. When analyzing the round complexity of multi-party com-
putation (MPC), one often overlooks the fact that underlying resources,
such as a broadcast channel, can by themselves be expensive to imple-
ment. For example, it is impossible to implement a broadcast channel
by a (deterministic) protocol in a sub-linear (in the number of corrupted
parties) number of rounds. The seminal works of Rabin and Ben-Or
from the early 80’s demonstrated that limitations as the above can be
overcome by allowing parties to terminate in different rounds, igniting
the study of protocols with probabilistic termination. However, absent a
rigorous simulation-based definition, the suggested protocols are proven
secure in a property-based manner, guaranteeing limited composability.
In this work, we define MPC with probabilistic termination in the UC
framework. We further prove a special universal composition theorem
for probabilistic-termination protocols, which allows to compile a pro-
tocol using deterministic-termination hybrids into a protocol that uses
expected-constant-round protocols for emulating these hybrids, preserv-
ing the expected round complexity of the calling protocol.

We showcase our definitions and compiler by providing the first com-
posable protocols (with simulation-based security proofs) for the follow-
ing primitives, relying on point-to-point channels: (1) expected-constant-
round perfect Byzantine agreement, (2) expected-constant-round perfect
parallel broadcast, and (3) perfectly secure MPC with round complexity
independent of the number of parties.

The full version of this paper can be found at the IACR Cryptology ePrint
Archive [16].
R. Cohen—Work supported by a grant from the Israel Ministry of Science, Technol-
ogy and Space (grant 3-10883) and by the National Cyber Bureau of Israel.
S. Coretti—Work supported by the Swiss NSF project no. 200020-132794.
J. Garay and V. Zikas—Work done in part while the author was visiting the Simons
Institute for the Theory of Computing, supported by the Simons Foundation and
by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467.
V. Zikas—Work supported in part by the Swiss NSF Ambizione grant PZ00P2 142549.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 240–269, 2016.
DOI: 10.1007/978-3-662-53015-3 9

Probabilistic Termination and Composability of Cryptographic Protocols 241

1 Introduction

In secure multi-party computation (MPC) [27,49] n parties P1, . . . , Pn wish to
jointly perform a computation on their private inputs in a secure way, so that
no coalition of cheating parties can learn more information than their outputs
(privacy) or affect the outputs of the computation any more than by choosing
their own inputs (correctness).

While the original security definitions had the above property-based flavor
(i.e., the protocols were required to satisfy correctness and privacy—potentially
along with other security properties, such as fairness and input independence), it
is by now widely accepted that security of multi-party cryptographic protocols
should be argued in a simulation-based manner. Informally, in the simulation
paradigm for security, the protocol execution is compared to an ideal world
where the parties have access to a trusted third party (TTP, aka the “ideal
functionality”) that captures the security properties the protocol is required to
achieve. The TTP takes the parties’ inputs and performs the computation on
their behalf. A protocol is regarded as secure if for any adversary attacking it,
there exists an ideal adversary (the simulator) attacking the execution in the
ideal world, such that no external distinguisher (environment) can tell the real
and the ideal executions apart.

There are several advantages in proving a protocol secure in this way. For
starters, the definition of the functionality captures all security properties the
protocol is supposed to have, and therefore its design process along with the secu-
rity proof often exposes potential design flaws or issues that have been overlooked
in the protocol design. A very important feature of many simulation-based secu-
rity definitions is composability, which ensures that a protocol can be composed
with other protocols without compromising its security. Intuitively, composabil-
ity ensures that if a protocol πG which uses a “hybrid” G (a broadcast channel,
for example) securely realizes functionality F, and protocol ρ securely realizes
the functionality G, then the protocol πρ/G , which results by replacing in π calls
to G by invocations of ρ, securely realizes F. In fact, simulation-based security
is the one and only way known to ensure that a protocol can be generically used
to implement its specification within an arbitrary environment.

Round Complexity. The prevalent model for the design of MPC protocols is the
synchronous model, where the protocol proceeds in rounds and all messages sent
in any given round are received by the beginning of the next round. In fact, most
if not all implemented and highly optimized MPC protocols (e.g., [15,18,20,37,
43]) are in this model. When executing such synchronous protocols over large
networks, one needs to impose a long round duration in order to account for
potential delay at the network level, since if the duration of the rounds is too
short, then it is likely that some of the messages that arrive late will be ignored
or, worse, assigned to a later round. Thus, the round complexity, i.e., the number
of rounds it takes for a protocol to deliver outputs, is an important efficiency
metric for such protocols and, depending on the network parameters, can play
a dominant role in the protocol’s running time.

242 R. Cohen et al.

An issue often overlooked in the analysis of the round complexity of protocols
is that the relation between a protocol’s round complexity and its actual running
time is sensitive to the “hybrids” (e.g., network primitives) that the protocol is
assumed to have access to. For example, starting with the seminal MPC works
[6,14,27,47,49], a common assumption is that the parties have access to a broad-
cast channel, which they invoke in every round. In reality, however, such a
broadcast channel might not be available and would have to be implemented
by a broadcast protocol designed for a point-to-point network. Using a standard
(deterministic) broadcast protocol for this purpose incurs a linear (in n, the
number of parties1) blow-up on the round complexity of the MPC protocol, as
no deterministic broadcast protocol can tolerate a linear number of corruptions
and terminate in a sublinear number of rounds [22,24]. Thus, even though the
round complexity of these protocols is usually considered to be linear in the mul-
tiplicative depth d of the computed circuit, in reality their running time could
become linear in nd (which can be improved to O(n + d) [34]) when executed
over point-to-point channels.2

In fact, all so-called constant-round multi-party protocols (e.g., [1,3,17,25,
30,32,38,44]) rely on broadcast rounds—rounds in which parties make calls to a
broadcast channel—and therefore their running time when broadcast is imple-
mented by a standard protocol would explode to be linear in n instead of con-
stant.3 As the results from [22,24] imply, this is not a consequence of the specific
choice of protocol but a limitation of any protocol in which there is a round such
that all parties are guaranteed to have received their output; consistently with
the literature on fault-tolerant distributed computing, we shall refer to proto-
cols satisfying this property as deterministic-termination protocols. In fact, to
the best of our knowledge, even if we allow a negligible chance for the broadcast
to fail, the fastest known solutions tolerating a constant fraction of corruptions
follow the paradigm from [23] (see below), which requires a poly-logarithmic (in
n) number of rounds.4

Protocols with Probabilistic Termination. A major breakthrough in fault-tolerant
distributed algorithms (recently honored with the 2015 Dijkstra Prize in Distrib-
uted Computing), was the introduction of randomization to the field by Ben-Or [4]
and Rabin [46], which, effectively, showed how to circumvent the above limitation
by using randomization. Most relevant to this submission, Rabin [46] showed that

1 More precisely, in the number of corruptions a protocol can tolerate, which is a
constant fraction of n.

2 Throughout this work we will consider protocols in which all parties receive their
output. If one relaxes this requirement (i.e., allows that some parties may not
receive their output and give up on fairness) then the techniques of Goldwasser and
Lindell [29] allow for replacing broadcast with a constant-round multi-cast primitive.

3 We remark that even though those protocols are for the computational setting, the
lower bound on broadcast round complexity also applies.

4 Note that this includes even FHE-based protocols, as they also assume a broadcast
channel and their security fails if multi-cast over point-to-point channels is used
instead.

Probabilistic Termination and Composability of Cryptographic Protocols 243

linearly resilient Byzantine agreement protocols [40,45] (BA, related to broadcast,
possibility- and impossibility-wise) in expected constant rounds were possible,
provided that all parties have access to a “common coin” (i.e., a common source
of randomness).5 This line of research culminated with the work of Feldman and
Micali [23], who showed how to obtain a shared random coin with constant prob-
ability from “scratch,” yielding a probabilistic BA protocol tolerating the max-
imum number of misbehaving parties (t < n/3) that runs in expected constant
number of rounds. The randomized BA protocol in [23] works in the information-
theoretic setting; these results were later extended to the computational setting
by Katz and Koo [33], who showed that assuming digital signatures there exists
an (expected-)constant-round protocol for BA tolerating t < n/2 corruptions.
The speed-up on the running time in all these protocols, however, comes at the
cost of uncertainty, as now they need to give up on guaranteed (eventual) termi-
nation (no fixed upper bound on their running time6) as well as on simultaneous
termination (a party that terminates cannot be sure that other parties have also
terminated7) [21]. These issues make the simulation-based proof of these protocols
a very delicate task, which is the motivation for the current work.

What made the simulation-based approach a more accessible technique in
security proofs was the introduction simulation-based security frameworks. The
ones that stand out in this development—and are most often used in the
literature—are Canetti’s modular composition (aka stand-alone security) [9] and
the universal composition (UC) frameworks [10,11]. The former defines security
of synchronous protocols executed in isolation (i.e., only a single protocol is run
at a time, and whenever a subroutine-protocol is called, it is run until its com-
pletion); the latter allows protocols to be executed alongside arbitrary (other)
protocols and be interleaved in an arbitrary manner. We remark that although
the UC framework is inherently asynchronous, several mechanisms have been
proposed to allow for a synchronous execution within it (e.g., [11,12,36,39]).

Despite the wide-spread use of the simulation-based paradigm to prove secu-
rity of protocols with deterministic termination, the situation has been quite
different when probabilistic-termination protocols are considered. Here, despite
the existence of round-efficient BA protocols as mentioned above [23,33], to our
knowledge, no formal treatment of the problem in a simulation-based model
exists, which would allow us to apply the ingenious ideas of Rabin and Ben-Or
in order to speed up cryptographic protocols. We note that Katz and Koo [33]
even provided an expected-constant-round MPC protocol using their fast BA
protocol as a subroutine, employing several techniques to ensure proper use of
randomized BA. In lack, however, of a formal treatment, existing constructions

5 Essentially, the value of the coin can be adopted by the honest parties in case dis-
agreement at any given round is detected, a process that is repeated multiple times.

6 Throughout this paper we use running time and round complexity interchangeably.
7 It should be noted however that in many of these protocols there is a known (constant)

“slack” of c rounds, such that if a party terminates in round r, then it can be sure
that every honest party will have terminated by round r + c.

244 R. Cohen et al.

are usually proved secure in a property-based manner or rely on ad hoc, less
studied security frameworks [42].8

A simulation-based and composable treatment of such
probabilistic-termination (PT for short) protocols would naturally allow, for
example, to replace the commonly used broadcast channel with a broadcast pro-
tocol, so that the expected running time of the resulting protocol is the same as
the one of the original (broadcast-hybrid) protocol. A closer look at this replace-
ment, however, exposes several issues that have to do not only with the lack of
simulation-based security but also with other inherent limitations. Concretely, it
is usually the case in an MPC protocol that the broadcast channel is accessed by
several (in many cases by all) parties in the same (broadcast) round in parallel.
Ben-Or and El-Yaniv [5] observed that if one näıvely replaces each such invoca-
tion by a PT broadcast protocol with expected constant running-time, then the
expected number of rounds until all broadcasts terminate is no longer constant;
in fact, it is not hard to see that in the case of [23], the expected round complex-
ity would be logarithmic in the number of instances (and therefore also in the
player-set size). Nevertheless, in [5] a mechanism was proposed for implement-
ing such parallel calls to broadcast so that the total number of rounds remains
constant.

The difficulties arising with generic parallel composition are not the only issue
with PT protocols. As observed by Lindell et al. [42], composing such protocols in
sequence is also problematic. The main issue here is that, as already mentioned,
PT protocols do not have simultaneous termination and therefore a party cannot
be sure how long after he receives his output from a call to such a PT protocol
he can safely carry on with the execution of the calling protocol. Although PT
protocols usually guarantee a constant “slack” of rounds (say, c) in the output of
any two honest parties, the näıve approach of using this property to synchronize
the parties—i.e., wait c rounds after the first call, 2c rounds after the second
call, and so on—imposes an exponential blow-up on the round complexity of
the calling protocol. To resolve this, [42] proposed using fixed points in time at
which a re-synchronization subroutine is executed, allowing the parties to ensure
that they never get too far out-of-sync. Alternative approaches for solving this
issue was also proposed in [8,33] but, again, with a restricted (property-based)
proof.

Despite their novel aspects, the aforementioned results on composition of PT
protocols do not use simulation-based security, and therefore it is unclear how
(or if) they could be used to, for example, instantiate broadcast within a higher-
level cryptographic protocol. In addition, they do not deal with other impor-
tant features of modern security definitions, such as adaptive security and strict
polynomial time execution. In fact, this lack of a formal cryptographic treat-
ment places some of their claims at odds with the state-of-the-art cryptographic
definitions—somewhat pointedly, [5] claims adaptive security, which, although

8 As we discuss below, the protocol of Katz and Koo has an additional issue with
adaptive security in the rushing adversary model, as defined in the UC framework,
similar to the issue exploited in [31].

Probabilistic Termination and Composability of Cryptographic Protocols 245

it can be shown to hold in a property-based definition, is not achieved by the
specified construction when simulation-based security is considered (cf. Sect. 5).

Our Contributions. In this paper we provide the first formal simulation-based
(and composable) treatment of MPC with probabilistic termination. Our treat-
ment builds on Canetti’s universal composition (UC) framework [10,11]. In order
to take advantage of the fast termination of PT protocols, parties typically pro-
ceed at different paces and therefore protocols might need to be run in an inter-
leaved manner—e.g., in an MPC protocol a party might initiate the protocol for
broadcasting his r-round message before other parties have received output from
the broadcasting of messages for round r − 1. This inherent concurrency along
with its support for synchrony makes the UC framework the natural candidate
for our treatment.

Our motivating goal, which we achieve, is to provide a generic compiler
that allows us to transform any UC protocol π making calls to deterministic-
termination UC protocols ρi in a “stand-alone fashion” (similar to [9], i.e., the
protocols ρi are invoked sequentially and in each round exactly one protocol is
being executed by all the parties) into a protocol in which each ρi is replaced by
a (faster) PT protocol ρ′

i. The compiled protocol achieves the same security as
π and has (expected) round complexity proportional to

∑
i diri, where di is the

expected number of calls π makes to ρi and ri is the expected round complexity
of ρi.

Towards this goal, the first step is to define what it means for a proto-
col to (UC-)securely realize a functionality with probabilistic termination in
a simulation-based manner, by proposing an explicit formulation of the func-
tionality that captures this important protocol aspect. The high-level idea is to
parameterize the functionality with an efficiently sampleable distribution D that
provides an upper bound on the protocol’s running time (i.e., number of rounds),
so that the adversary cannot delay outputs beyond this point (but is allowed to
deliver the output to honest parties earlier, and even in different rounds).

Next, we prove our universal composability result. Informally, our result pro-
vides a generic compiler that takes as input a “stand-alone” protocol ρ, realizing
a probabilistic-termination functionality FD (for a given distribution D) while
making sequential calls to (deterministic-termination) secure function evaluation
(SFE)-like functionalities, and compiles it into a new protocol ρ′ in which the
calls to the SFEs are replaced by probabilistic-termination protocols realizing
them. The important feature of our compiler is that in the compiled protocol,
the parties do not need to wait for every party to terminate their emulation of
each SFE to proceed to the emulation of the next SFE. Rather, shortly after a
party (locally) receives its output from one emulation, it proceeds to the next
one. This yields an (at most) multiplicative blow-up on the expected round com-
plexity as discussed above. In particular, if the protocols used to emulate the
SFE’s are expected constant round, then the expected round complexity of ρ′ is
the same (asymptotically) as that of ρ.

We then showcase our definition and composition theorem by provid-
ing simulation-based (therefore composable) probabilistic-termination protocols

246 R. Cohen et al.

and security proofs for several primitives relying on point-to-point channels:
expected-constant-round perfect Byzantine agreement, expected-constant-round
perfect parallel broadcast, and perfectly secure MPC with round complexity
independent of the number of parties. Not surprisingly, the simulation-based
treatment reveals several issues, both at the formal and at the intuitive levels,
that are not present in a property-based analysis, and which we discuss along
the way. We now elaborate on each application in turn. Regarding Byzantine
agreement, we present a protocol that perfectly securely UC-implements the
probabilistic-termination Byzantine agreement functionality for t < n/3 in an
expected-constant number of rounds. (We will use RBA to denote probabilistic-
termination BA, as it is often referred to as “randomized BA.”9) Our protocol
follows the structure of the protocol in [23], with a modification inspired by Gol-
dreich and Petrank [28] to make it strict polynomial time (see the discussion
below), and in a sense it can be viewed as the analogue for RBA of the well-
known “CLOS” protocol for MPC [13]. Indeed, similarly to how [13] converted
(and proved) the “GMW” protocol [26] from statically secure in the stand-alone
setting into an adaptively secure UC version, our work transforms the broadcast
and BA protocols from [23] into adaptively UC-secure randomized broadcast
and RBA protocols.10

Our first construction above serves as a good showcase of the power of our
composition theorem, demonstrating how UC-secure RBA is built in a modu-
lar manner: First, we de-compose the sub-routines that are invoked in [23] and
describe simple(r) (SFE-like) functionalities corresponding to these sub-routines;
this provides us with a simple “backbone” of the protocol in [23] making calls
to these hybrids, which can be easily proved to implement expected-constant-
round RBA. Next, we feed this simplified protocol to our compiler which outputs
a protocol that implements RBA from point-to-point secure channels; our com-
position theorem ensures that the resulting protocol is also expected constant
round.

There is a sticky issue here that we need to resolve for the above to work:
the protocol in [23] does not have guaranteed termination and therefore the dis-
tribution of the terminating round is not sampleable by a strict probabilistic
polynomial-time (PPT) machine.11 A way around this issue would be to modify
the UC model of execution so that the corresponding ITMs are expected PPTs.
Such a modification, however, would impact the UC model of computation, and
would therefore require a new proof of the composition theorem—a trickier task
than one might expect, as the shift to expected polynomial-time simulation is
known to introduce additional conceptual and technical difficulties (cf. [35]),
9 BA is a deterministic output primitive and it should be clear that the term “ran-

domized” can only refer to the actual number of rounds; however, to avoid confusion
we will abstain from using this term for functionalities other than BA whose output
might also be probabilistic.

10 As we show, the protocol in [23] does not satisfy input independence, and therefore
is not adaptively secure in a simulation-based manner (cf. [31]).

11 All entities in UC, and in particular ideal functionalities, are strict interactive PPT
Turing machines, and the UC composition theorem is proved for such PPT ITMs.

Probabilistic Termination and Composability of Cryptographic Protocols 247

whose resolution is beyond the scope of this work. Instead, here we take a dif-
ferent approach which preserves full compatibility with the UC framework: We
adapt the protocol from [23] using ideas from [28] so that it implements a func-
tionality which samples the terminating round with almost the same probability
distribution as in [23], but from a finite (linear-size) domain; as we show, this
distribution is sampleable in strict polynomial time and can therefore be used
by a standard UC functionality.

Next, we use our composition theorem to derive the first simulation-based
and adaptively (UC) secure parallel broadcast protocol, which guarantees that
all broadcast values are received within an expected constant number of rounds.
This extends the results from [5,33] in several ways: first, our protocol is perfectly
UC-secure which means that we can now use it within a UC-secure SFE proto-
col to implement secure channels, and second, it is adaptively secure against a
rushing adversary.12

Finally, by applying once again our compiler to replace calls to the broad-
cast channel in the SFE protocol by Ben-Or, Goldwasser, and Wigderson [6]
(which, recall, is perfectly secure against t < n/3 corruptions in the broadcast-
hybrid model [2]) by invocations to our adaptively secure UC parallel broadcast
protocol, we obtain the first UC-secure PT MPC protocol in the point-to-point
secure channels model with (expected) round complexity O(d), independently of
the number of parties, where d is the multiplicative depth of the circuit being
computed. As with RBA, this result can be seen as the first analogue of the UC
compiler by Canetti et al. [13] for SFE protocols with probabilistic termination.

We stress that the use of perfect security to showcase our composition the-
orem is just our choice and not a restriction of our composition theorem. In
fact, our theorem can be also applied to statistically or computationally secure
protocols. Moreover, if one is interested in achieving better constants in the
(expected) round complexity then one can use SFE protocols that attempt to
minimize the use of the broadcast channel (e.g., [34]). Our composition theorem
will give a direct methodology for this replacement and will, as before, eliminate
the dependency of the round complexity from the number of parties.13

2 Model

We consider n parties P1, . . . , Pn and an adaptive t-adversary, i.e., the adversary
corrupts up to t parties during the protocol execution.14 We work in the UC
model and assume the reader has some familiarity with its basics. To capture
synchronous protocols in UC we use the framework of Katz et al. [36]. Concretely,

12 Although security against a “dynamic” adversary is also claimed in [5], the protocol
does not implement the natural parallel broadcast functionality in the presence of
an adaptive adversary (see Sect. 5).

13 Note that even a single round of broadcast is enough to create the issues with parallel
composition and non-simultaneous termination discussed above.

14 In contrast, a static adversary chooses the set of corrupted parties at the onset of
the computation.

248 R. Cohen et al.

the assumption that parties are synchronized is captured by assuming that the
protocol has access to a “clock” functionality Fclock. The functionality Fclock

maintains an indicator bit which is switched once all honest parties request the
functionality to do it. At any given round, a party asks Fclock to turn the bit
on only after having finished with all operations for the current round. Thus,
this bit’s value can be used to detect when every party has completed his round,
in which case they can proceed to the next round. As a result, this mechanism
ensures that no party sends his messages for round r + 1 before every party has
completed round r. For clarity, we retain from writing this clock functionality
in our theorem statement; however, all our results assume access to such a clock
functionality.

In the communication network of [36], parties have access to bounded-delay
secure channels. These channels work in a so-called “fetch” mode, i.e., in order
to receive his output the receiver issues a fetch-output command. This allows
to capture the property of a channel between a sender Ps and a receiver Pr,
delaying the delivery of a message by an amount δ: as soon as the sender Ps

submits an input y (message to be sent to the receiver) the channel function-
ality starts counting how many times the receiver requests it.15 The first δ − 1
such fetch-output requests (plus all such requests that are sent before the
sender submits input) are ignored (and the adversary is notified about them);
the δth fetch-output request following a submitted input y from the sender
results in the channel sending (output, y) to Pr. In this work we take an alter-
native approach and model secure channels as special simple SFE functionalities.
These SFEs also work in a fetch mode16 and provide the same guarantee as the
bounded-delay channels.

There are two important considerations in proving the security of a synchro-
nous UC protocol: (1) The simulator needs to keep track of the protocol’s current
round, and (2) because parties proceed at the same pace, they can synchronize
their reaction to the environment; most fully synchronous protocols, for exam-
ple, deliver output exactly after a given number of rounds. In [36] this property
is captured as follows: The functionality keeps track of which round the protocol
would be in by counting the number of activations it receives from honest par-
ties. Thus, if the protocol has a regular structure, where every party advances
the round after receiving a fixed number μ of activations from its environment
(all protocols described herein will be in this form), the functionality can easily
simulate how rounds in the protocol advance by incrementing its round index
whenever it receives μ messages from all honest parties; we shall refer to such a
functionality as a synchronous functionality. Without loss of generality, in this
work we will describe all functionalities for μ = 1, i.e., once a functionality
receives a message from every party it proceeds to the simulation of the next
protocol round. We stress that this is done to simplify the description, and the

15 Following the simplifying approach of [36], we assume that communication channels
are single use, thus each message transmission uses an independent instance of the
channel.

16 In fact, for simplicity we assume that they deliver output on the first “fetch”.

Probabilistic Termination and Composability of Cryptographic Protocols 249

in an actual evaluation, as in the synchronous setting of [36], in order to give
the simulator sufficiently many activations to perform its simulation, function-
alities typically have to wait for μ > 1 messages from each party where the last
μ − 1 of these messages are typically “dummy” activations (usually of the type
fetch-output).

To further simplify the description of our functionalities, we introduce the
following terminology. We say that a synchronous functionality Fis in round
ρ if the current value of the above internal round counter in F is r = ρ. All
synchronous functionalities considered in this work have the following format:
They treat the first message they receive from any party Pi as Pi’s input17—if
this message is not of the right form (input, ·) then a default value is taken as
Pi input; as soon as an honest party sends its first message, any future message
by this party is treated as a fetch-output message.

3 Secure Computation with Probabilistic Termination

The work of Katz et al. [36] addresses (synchronous) cryptographic protocols
that terminate in a fixed number of rounds for all honest parties. However, as
mentioned in Sect. 1, Ben-Or [4] and Rabin [46] showed that in some cases,
great asymptotic improvements on the expected termination of protocols can
be achieved through the use of randomization. Recall, for example, that in the
case of BA, even though a lower bound of O(n) on the round complexity of
any deterministic BA protocol tolerating t = Ω(n) corruptions exists [22,24],
Rabin’s global-coin technique (fully realized later on in [23]) yields an expected-
constant-round protocol. This speed-up, however, comes at a price, namely, of
relinquishing both fixed and simultaneous termination [21]: the round complexity
of the corresponding protocols may depend on random choices made during the
execution, and parties may obtain output from the protocol in different rounds.

In this section we show how to capture protocols with such probabilistic termi-
nation (PT), i.e., without fixed and without simultaneous termination, within
the UC framework. To capture probabilistic termination, we first introduce a
functionality template Fcsf called a canonical synchronous functionality (CSF).
Fcsf is a simple two-round functionality with explicit (one-round) input and
(one-round) output phases. Computation with probabilistic termination is then
defined by wrapping Fcsf with an appropriate functionality wrapper that enables
non-fixed, non-simultaneous termination.

3.1 Canonical Synchronous Functionalities

At a high level, Fcsf corresponds to a generalization of the UC secure function
evaluation (SFE) functionality to allow for potential leakage on the inputs to the

17 Note that this implies that also protocol machines treats its first message as their
input.

250 R. Cohen et al.

adversary and potential adversarial influence on the outputs.18 In more detail,
Fcsf has two parameters: (1) a (possibly) randomized function f that receives n+
1 inputs (n inputs from the parties and one additional input from the adversary)
and (2) a leakage function l that leaks some information about the input values
to the adversary.

Fcsf proceeds in two rounds: in the first round all the parties hand Fcsf their
input values, and in the second round each party receives its output. This is
very similar to the standard (UC) SFE functionality; the difference here is that
whenever some input is submitted to Fcsf, the adversary is handed some leakage
function of this input—similarly, for example, to how UC secure channels leak
the message length to the adversary. The adversary can use this leakage when
deciding the inputs of corrupted parties. Additionally, he is allowed to input an
extra message, which—depending on the function f—might affect the output(s).
The detailed description of Fcsf is given in Fig. 1.

Functionality Ff,l
csf(P)

Fcsf proceeds as follows, parametrized by a function f : ({0, 1}∗ ∪ {⊥})n+1 →
({0, 1}∗)n and a leakage function l : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗, and running with
parties P = {P1, . . . , Pn} and an adversary S.

– Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn, and the
adversary’s value a to ⊥.

– In round ρ = 1:
• Upon receiving (adv-input, sid, v) from the adversary, set a ← v.
• Upon receiving a message (input, sid, v) from some party Pi ∈ P, set xi ← v

and send (leakage, sid, Pi, l(x1, . . . , xn)) to the adversary.
– In round ρ = 2:

• Upon receiving (adv-input, sid, v) from the adversary, if y1 = . . . = yn = ⊥,
set a ← v. Otherwise, discard the message.

• Upon receiving (fetch-output, sid) from some party Pi ∈ P, if y1 = . . . = yn =
⊥ compute (y1, . . . , yn) = f(x1, . . . , xn, a). Next, send (output, sid, yi) to Pi

and (fetch-output, sid, Pi) to the adversary.

Fig. 1. The canonical synchronous functionality

Next, we point out a few technical issues about the description of Fcsf.
Following the simplifications from Sect. 2, Fcsf advances its round as soon as it
receives μ = 1 message from each honest party. This ensures that the adversary
cannot make the functionality stall indefinitely. Thus, formally speaking, the
functionality Fcsf is not well-formed (cf. [13]), as its behavior depends on the
identities of the corrupted parties.19 We emphasize that the non-well-formedness
18 Looking ahead, this adversarial influence will allow us to describe BA-like function-

alities as simple and intuitive CSFs.
19 This is, in fact, also the case for the standard UC SFE functionality.

Probabilistic Termination and Composability of Cryptographic Protocols 251

relates only to advancing the rounds, and is unavoidable if we want to restrict
the adversary not to block the evaluation indefinitely (cf. [36]).

We point out that as a generalization of the SFE functionality, CSFs are
powerful enough to capture any deterministic well-formed functionality. In fact,
all the basic (unwrapped) functionalities considered in this work will be CSFs.
We now describe how standard functionalities from the MPC literature can be
cast as CSFs:

– Secure Message Transmission (aka Secure Channel). In the secure
message transmission (SMT) functionality, a sender Pi with input xi sends its
input to Pj . Since Fcsf is an n-party functionality and involves receiving input
messages from all n parties, we define the two-party task using an n-party
function. The function to compute is f i,j

smt (x1, . . . , xn, a) = (λ, . . . , xi, . . . , λ)
(where xi is the value of the j’th coordinate) and the leakage function is
li,jsmt(x1, . . . , xn) = y, where y = |xi| in case Pj is honest and y = xi in case
Pj is corrupted. We denote by F i,j

smt the functionality Fcsf when parametrized
with the above functions f i,j

smt and li,jsmt, for sender Pi and receiver Pj .
– Broadcast. In the (standard) broadcast functionality, a sender Pi with

input xi distributes its input to all the parties, i.e., the function to compute
is f i

bc(x1, . . . , xn, a) = (xi, . . . , xi). The adversary only learns the length of the
message xi before its distribution, i.e., the leakage function is libc(x1, . . . , xn) =
|xi|. This means that the adversary does not gain new information about
the input of an honest sender before the output value for all the parties is
determined, and in particular, the adversary cannot corrupt an honest sender
and change its input after learning the input message. We denote by F i

bc the
functionality Fcsf when parametrized with the above functions f i

bc and libc, for
sender Pi.

– Secure Function Evaluation. In the secure function evaluation function-
ality, the parties compute a randomized function g(x1, . . . , xn), i.e., the func-
tion to compute is fg

sfe(x1, . . . , xn, a) = g(x1, . . . , xn). The adversary learns the
length of the input values via the leakage function, i.e., the leakage function
is lsfe(x1, . . . , xn) = (|x1| , . . . , |xn|). We denote by Fg

sfe the functionality Fcsf

when parametrized with the above functions fg
sfe and lsfe, for computing the

n-party function g.
– Byzantine Agreement (aka Consensus). In the Byzantine agreement

functionality, defined for the set V , each party Pi has input xi ∈ V . The
common output is computed such that if n − t of the input values are the
same, this will be the output; otherwise the adversary gets to decide on the
output. The adversary is allowed to learn the content of each input value from
the leakage (and so it can corrupt parties and change their inputs based on
this information). The function to compute is fba(x1, . . . , xn, a) = (y, . . . , y)
such that y = x if there exists a value x such that x = xi for at least n − t
input values xi; otherwise y = a. The leakage function is lba(x1, . . . , xn) =
(x1, . . . , xn). We denote by FV

ba the functionality Fcsf when parametrized with
the above functions fba and lba, defined for the set V .

252 R. Cohen et al.

3.2 Probabilistic Termination in UC

Having defined CSFs, we turn to the notion of (non-reactive) computation with
probabilistic termination. This is achieved by defining the notion of an output-
round randomizing wrapper. Such a wrapper is parametrized by an efficient prob-
abilistic algorithm D, termed the round sampler, that may depend on a specific
protocol implementing the functionality. The round sampler D samples a round
number ρterm by which all parties are guaranteed to receive their outputs no mat-
ter what the adversary strategy is. Moreover, since there are protocols in which
all parties terminate in the same round and protocols in which they do not, we
consider two wrappers: the first, denoted Wstrict, ensures in a strict manner that
all (honest) parties terminate in the same round, whereas the second, denoted
Wflex, is more flexible and allows the adversary to deliver outputs to individual
parties at any time before round ρterm.

A delicate issue that needs to be addressed is the following: While an ideal
functionality can be used to abstractly describe a protocol’s task, it cannot hide
the protocol’s round complexity. This phenomenon is inherent in the synchro-
nous communication model: any environment can observe how many rounds the
execution of a protocol takes, and, therefore, the execution of the corresponding
ideal functionality must take the same number of rounds.20

As an illustration of this issue, let F be an arbitrary functionality realized by
some protocol π. If F is to provide guaranteed termination (whether probabilistic
or not), it must enforce an upper bound on the number of rounds that elapse
until all parties receive their output. If the termination round of π is not fixed
(but may depend on random choices made during its execution), this upper
bound must be chosen according to the distribution induced by π.

Thus, in order to simulate correctly, the functionality F and π’s simulator
S must coordinate the termination round, and therefore F must pass the upper
bound it samples to S. However, it is not sufficient to simply inform the simula-
tor about the guaranteed-termination upper bound ρterm. Intuitively, the reason
is that protocol π may make probabilistic choices as to the order in which it
calls its hybrids (and, even worse, these hybrids may even have probabilistic
termination themselves). Thus, F needs to sample the upper bound based on π
and the protocols realizing the hybrids called by π. As S needs to emulate the
entire protocol execution, it is now left with the task of trying to sample the
protocol’s choices conditioned on the upper bound it receives from F. In gen-
eral, however, it is unclear whether such a reverse sampling can be performed in
(strict) polynomial time.

To avoid this issue and allow for an efficient simulation, we have F output all
the coins that were used for sampling round ρterm to S. Because S knows the round
sampler algorithm, it can reproduce the entire computation of the sampler and use
it in its simulation. In fact, as we discuss below, it suffices for our proofs to have F
output a trace of its choices to the simulator instead of all the coins that were used

20 In particular, this means that most CSFs are not realizable, since they always guar-
antee output after two rounds.

Probabilistic Termination and Composability of Cryptographic Protocols 253

to sample this trace. In the remainder of this section, we motivate and formally
describe our formulation of such traces. The formal description of the wrappers,
which in particular sample traces, can then be found at the end of this section.

Execution Traces. As mentioned above, in the synchronous communication
model, the execution of the ideal functionality must take the same number of
rounds as the protocol. For example, suppose that the functionality F in our
illustration above is used as a hybrid by a higher-level protocol π′. The func-
tionality G realized by π′ must, similarly to F, choose an upper bound on the
number of rounds that elapse before parties obtain their output. However, this
upper bound now not only depends on π′ itself but also on π (in particular, when
π is a probabilistic-termination protocol).

Given the above, the round sampler of a functionality needs to keep track
of how the functionality was realized. This can be achieved via the notion of
trace. A trace basically records which hybrids were called by a protocol, and
in a recursive way, for each hybrid, which hybrids would have been called by
a protocol realizing that hybrid. The recursion ends with the hybrids that are
“assumed” by the model, called atomic functionalities.21

Building on our running illustration above, suppose protocol π′ (realizing G)
makes ideal hybrid calls to F and to some atomic functionality H. Assume that
in an example execution, π′ happens to make (sequential) calls to instances of H
and F in the following order: F, then H, and finally F again. Moreover, assume
that F is replaced by protocol π (realizing F) and that π happens to make two
(sequential) calls to H upon the first invocation by π′, and three (sequential)
calls to H the second time. Then, this would result in the trace depicted in Fig. 2.

G

F H F

H H H H
π

π′

π

H

Fig. 2. Example of an execution trace

Assume that π is a probabilistic-termination protocol and π′ a deterministic-
termination protocol. Consequently, this means that F is in fact a flexibly
wrapped functionality of some CSF F ′, i.e., F = WDF

flex (F ′), where the dis-
tribution DF samples (from a distribution induced by π) depth-1 traces with
root WDF

flex (F ′) and leaves H.22 Similarly, G is a strictly wrapped functionality

21 In this work, atomic functionalities are always Fpsmt CSFs.
22 Note that the root node of the trace sampled from DF is merely labeled by WDF

flex (F ′),
i.e., this is not a circular definition.

254 R. Cohen et al.

of some CSF G′, i.e., G = WDG
strict(G′), where the distribution DG first samples

(from a distribution induced by π′) a depth-1 trace with root WDG
strict(G′) and

leaves WDF
flex (F ′) as well as H. Then, each leaf node WDF

flex (F′) is replaced by a
trace (independently) sampled from DF . Thus, the example trace from Fig. 2
would look as in Fig. 3.

WDG
strict(G′)

H

H H H H
π

π′

π

H

WDF
flex(F ′) WDF

flex(F ′)

Fig. 3. An execution trace with probabilistic-termination and deterministic-
termination protocols

Formally, a trace is defined as follows:

Definition 1 (Traces). A trace is a rooted tree of depth at least 1, in which all
nodes are labeled by functionalities and where every node’s children are ordered.
The root and all internal nodes are labeled by wrapped CSFs (by either of the two
wrappers), and the leaves are labeled by unwrapped CSFs. The trace complexity
of a trace T , denoted ctr(T), is the number of leaves in T . Moreover, denote by
flextr(T) the number of flexibly wrapped CSFs in T .

Remark. The actual trace of a protocol may depend on the input values and the
behavior of the adversary. For example, in the setting of Byzantine agreement,
the honest parties may get the output faster in case they all have the same input,
which results in a different trace. However, the wrappers defined below sample
traces independently of the inputs. All protocols considered in this work can be
shown to realize useful ideal functionalities in spite of this restriction.

Strict Wrapper Functionality. We now proceed to give the formal descriptions of
the wrappers. The strict wrapper functionality, defined in Fig. 4, is parametrized
by (a sampler that induces) a distribution D over traces, and internally runs a
copy of a CSF functionality F. Initially, a trace T is sampled from D; this trace
is given to the adversary once the first honest party provides its input. The
trace T is used by the wrapper to define the termination round ρterm ← ctr(T).
In the first round, the wrapper forwards all the messages from the parties and
the adversary to (and from) the functionality F. Next, the wrapper essentially
waits until round ρterm, with the exception that the adversary is allowed to send
(adv-input, sid, ·) messages and change its input to the function computed by
the CSF. Finally, when round ρterm arrives, the wrapper provides the output
generated by F to all parties.

Probabilistic Termination and Composability of Cryptographic Protocols 255

Wrapper Functionality WD
strict(F)

Wstrict, parametrized by an efficiently sampleable distribution D, internally runs a
copy of F and proceeds as follows:

– Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T).
Send (trace, sid, T) to the adversary.a

– At all times, forward (adv-input, sid, ·) messages from the adversary to F.
– In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In

addition, forward (leakage, sid, ·) messages from F to the adversary.
– In rounds ρ > 1: Upon receiving a message (fetch-output, sid) from some party

Pi ∈ P, proceed as follows:
• If ρ = ρterm, forward the message to F, and the response (output, sid, yi) to Pi.
• Else, send (fetch-output, sid, Pi) to the adversary.

aTechnically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

Fig. 4. The strict-wrapper functionality

Wrapper Functionality WD
flex(F)

Wflex, parametrized by an efficiently sampleable distribution D, internally runs a
copy of F and proceeds as follows:

– Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T).
Send (trace, sid, T) to the adversary.a In addition, initialize termination indicators
term1, . . . , termn ← 0.

– At all times, forward (adv-input, sid, ·) messages from the adversary to F.
– In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In

addition, forward (leakage, sid, ·) messages from F to the adversary.
– In rounds ρ > 1:

• Upon receiving (fetch-output, sid) from some party Pi ∈ P, proceed as follows:
∗ If termi = 1 or ρ = ρterm (and Pi did not receive output yet), forward the

message to F, and the output (output, sid, yi) to Pi.
∗ Else, send (fetch-output, sid, Pi) to the adversary.

• Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1.

aTechnically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

Fig. 5. The flexible-wrapper functionality

256 R. Cohen et al.

Flexible-Wrapper Functionality. The flexible-wrapper functionality, defined in
Fig. 5, follows in similar lines to the strict wrapper. The difference is that the
adversary is allowed to instruct the wrapper to deliver the output to each party
at any round. In order to accomplish this, the wrapper assigns a termination
indicator termi, initially set to 0, to each party. Once the wrapper receives an
early-output request from the adversary for Pi, it sets termi ← 1. Now, when
a party Pi sends a fetch-output request, the wrapper checks if termi = 1, and
lets the party receive its output in this case (by forwarding the fetch-output
request to F). When the guaranteed-termination round ρterm arrives, the wrapper
provides the output to all parties that didn’t receive it yet.

4 (Fast) Composition of PT Protocols

Canonical synchronous functionalities that are wrapped using the flexible wrap-
per (cf. Sect. 3.2), i.e., functionalities that correspond to protocols with non-
simultaneous termination, are cumbersome to be used as hybrid functionalities
for protocols. The reason is that the adversary can cause parties to finish in dif-
ferent rounds, and, as a result, after the execution of the first such functionality,
the parties might be out of sync.

This “slack” can be reduced, however, only to a difference of one round, unless
one is willing to pay a linear blow-up in round complexity [22,24]. Hence, all
protocols must be modified to deal with a non-simultaneous start of (at least) one
round, and protocols that introduce slack must be followed by a slack-reduction
procedure. Since this is a tedious, yet systematic task, in this section we provide
a generic compiler that transforms protocols designed in a simpler “stand-alone”
setting, where all parties remain synchronized throughout the protocol (and no
slack and round-complexity issues arise) into UC protocols that deal with these
issues while maintaining their security.

Out starting point are protocols that are defined in the “stand-alone” setting.
In such protocols all the hybrids are CSFs and are called in a strictly sequential
manner.

Definition 2 (SNF). Let F1, . . . ,Fm be canonical synchronous functionali-
ties. A synchronous protocol π in the (F1, . . . ,Fm)-hybrid model is in synchro-
nous normal form (SNF) if in every round exactly one ideal functionality Fi is
invoked by all honest parties, and in addition, no honest party hands inputs to
other CSFs before this instance halts.

Clearly, designing and proving the security of SNF protocols, which only
make calls to simple two-round CSFs is a much simpler task than dealing with
protocols that invoke more complicated hybrids, potentially with probabilistic
termination (see Sect. 5 for concrete examples).

SNF protocols are designed as an intermediate step, since the hybrid func-
tionalities Fi are two-round CSFs, and can, in general, not be realized by real-
world protocols. To that end, we define a protocol compiler that transforms SNF
protocols into (non-SNF) protocols making calls to wrapped hybrids that can

Probabilistic Termination and Composability of Cryptographic Protocols 257

be realized in the real world, while maintaining their security and asymptotic
(expected) round complexity. At the same time, the compiler takes care of any
potential slack that is introduced by the protocol and ensures that the protocol
can be executed even if the parties do not start the protocol simultaneously.

In Sect. 4.1 we apply this approach to deterministic-termination protocols
that use deterministic-termination hybrids, and in Sect. 4.2 generalize it to the
probabilistic-termination setting. Section 4.3 covers the base case of realizing the
wrapped Fpsmt using only Fsmt functionalities.

4.1 Composition with Deterministic Termination

We start by defining a slack-tolerant variant of the strict wrapper (cf. Sect. 3.2),
which can be used even when parties operate with a (known) slack. Then, we
show how to compile an SNF protocol π realizing a strictly-wrapped CSF F into
a (non-SNF) protocol π′ realizing a version of F wrapped with the slack-tolerant
strict wrapper and making calls to wrapped hybrids.

Slack-Tolerant Strict Wrapper. The slack-tolerant strict wrapper WD,c
sl-strict, for-

mally defined in Fig. 6, is parametrized by an integer c ≥ 0, which denotes the

Wrapper Functionality WD,c
sl-strict(F)

WD,c
sl-strict, parametrized by an efficiently sampleable distribution D and a non-

negative integer c, internally runs a copy of F and proceeds as follows:

– Initially, sample a trace T ← D and compute the output round ρterm ← Bc ·
ctr(T), where Bc := 3c + 1. Send (trace, sid, T) to the adversary.a Initialize slack
indicators c1, . . . , cn ← 0.

– At all times, forward (adv-input, sid, ·) messages from the adversary to F.
– In rounds ρ = 1, . . . , 2c + 1: Upon receiving a message from some party Pi ∈ P,

proceed as follows:
• If the message is (input, sid, ·), forward it to F, forward the (leakage, sid, ·)

message F subsequently outputs to the adversary, and set Pi’s local slack ci ←
ρ − 1.

• Else, send (fetch-output, sid, Pi) to the adversary.
– In rounds ρ > 2c + 1: Upon receiving a message (fetch-output, sid) from some

party Pi ∈ P, proceed as follows:
• If ρ = ρterm + ci, send the message to F, and the output (output, sid, yi) to Pi.
• Else, send (fetch-output, sid, Pi) to the adversary.

aTechnically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

Fig. 6. The slack-tolerant strict wrapper functionality

258 R. Cohen et al.

amount of slack tolerance that is added, and a distribution D over traces. The
wrapper Wsl-strict is similar to Wstrict but allows parties to provide input within
a window of 2c + 1 rounds and ensures that they obtain output with the same
slack they started with. The wrapper essentially increases the termination round
by a factor of Bc = 3c + 1, which is due to the slack-tolerance technique used
to implement the wrapped version of the atomic parallel SMT functionality (cf.
Sect. 4.3).

Deterministic-Termination Compiler. Let F,F1, . . . ,Fm be canonical synchro-
nous functionalities, and let π an SNF protocol that UC-realizes the strictly
wrapped functionality WD

strict(F), for some distribution D, in the (F1, . . . ,Fm)-
hybrid model, assuming that all honest parties receive their inputs at the same
round. We define a compiler Compc

dt, parametrized with a slack parameter c ≥ 0,
that receives as input the protocol π and distributions D1, . . . , Dm over traces
and replaces every call to a CSF Fi with a call to the wrapped CSF WDi,c

sl-strict(Fi).
We denote the output of the compiler by π′ = Compc

dt(π,D1, . . . , Dm).23

As shown below, π′ realizes WDfull,c
sl-strict(F), for a suitably adapted distribution

Dfull, assuming all parties start within c + 1 consecutive rounds. Consequently,
the compiled protocol π′ can handle a slack of up to c rounds while using hybrids
that are realizable themselves.

Calling the wrapped CSFs instead of the CSFs (F1, . . . ,Fm) affects the trace
corresponding to F. The new trace Dfull = full-trace(D,D1, . . . , Dm) is obtained
as follows:

1. Sample a trace T ← D, which is a depth-1 tree with root label WD
strict(F)

and leaves from the set {F1, . . . ,Fm}.
2. For each leaf node F ′ = Fi, for some i ∈ [m], sample a trace Ti ← Di and

replace node F ′ by the trace Ti.
3. Output the resulting trace T ′.

The following theorem states that the compiled protocol π′ UC-realizes the
wrapped functionality WDfull,c

sl-strict(F).

Theorem 1. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and
let π an SNF protocol that UC-realizes WD

strict(F) in the (F1, . . . ,Fm)-
hybrid model, for some distribution D, assuming that all honest parties
receive their inputs at the same round. Let D1, . . . , Dm be arbitrary dis-
tributions over traces, Dfull = full-trace(D,D1, . . . , Dm), and c ≥ 0.
Then, protocol π′ = Compc

dt(π,D1, . . . , Dm) UC-realizes WDfull,c
sl-strict(F) in the

(WD1,c
sl-strict(F1), . . . ,WDm,c

sl-strict(Fm))-hybrid model, assuming that all honest par-
ties receive their inputs within c + 1 consecutive rounds.

23 The distributions Di depend on the protocols realizing the strictly wrapped func-
tionalities WDi,c

sl-strict(Fi). Note, however, that the composition theorems in Sects. 4.1
and 4.2 actually work for arbitrary distributions Di.

Probabilistic Termination and Composability of Cryptographic Protocols 259

The expected round complexity of the compiled protocol π′ is

Bc ·
∑

i∈[m]

di · E[ctr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled
from Di, and Bc = 3c + 1 is the blow-up factor in WDfull,c

sl-strict.

The proof of Theorem1 can be found in the full version [16].

4.2 Composition with Probabilistic Termination

The composition theorem in Sect. 4.1 does not work if the protocol π itself intro-
duces slack (e.g., the fast broadcast protocol by Feldman and Micali [23]) or if
one of the hybrids needs to be replaced by a slack-introducing protocol (e.g.,
instantiating the broadcast hybrids with fast broadcast protocols in BGW [6]).

As in Sect. 4.1, we start by adjusting the flexible wrapper (cf. Sect. 3.2) to
be slack-tolerant. In addition, the slack-tolerant flexible wrapper ensures that
all parties will obtain their outputs within two consecutive rounds. Then, we
show how to compile an SNF protocol π realizing a CSF F, wrapped with the
flexible wrapper, into a (non-SNF) protocol π′ realizing a version of F wrapped
with slack-tolerant flexible wrapper. The case where π implements a strictly
wrapped CSF, but some of the hybrids are wrapped with the slack-tolerant
flexible wrapper follows along similar lines.

Slack-Tolerant Flexible Wrapper. The slack-tolerant flexible wrapper WD,c
sl-flex,

formally defined in Fig. 7, is parametrized by an integer c ≥ 0, which denotes
the amount of slack tolerance that is added, and a distribution D over traces.
The wrapper Wsl-flex is similar to Wflex but allows parties to provide input within
a window of 2c + 1 rounds and ensures that all honest parties will receive their
output within two consecutive rounds. The wrapper essentially increases the
termination round to

ρterm = Bc · ctr(T) + 2 · flextr(T) + c,

where the blow-up factor Bc is as explained in Sect. 4.1, and the additional factor
of 2 results from the termination protocol described below for every flexibly
wrapped CSF, which increases the round complexity by at most two additional
rounds (recall that flextr(T) denotes the number of such CSFs), and c is due to
the potential slack. Wsl-flex allows the adversary to deliver output at any round
prior to ρterm but ensures that all parties obtain output with a slack of at most
one round. Moreover, it allows the adversary to obtain the output using the
(get-output, sid) command, which is necessary in order to simulate the above
termination protocol.

260 R. Cohen et al.

Wrapper Functionality WD,c
sl-flex(F)

WD,c
sl-flex, parametrized by an efficiently sampleable distribution D and a non-negative

integer c, internally runs a copy of F and proceeds as follows:

– Initially, sample a trace T ← D and compute the output round ρterm ← Bc ·
ctr(T) + B′ · flextr(T) + c, where Bc := 3c + 1 and B′ = 2. Send (trace, sid, T) to
the adversary.a Initialize termination indicators term1, . . . , termn ← 0.

– At all times, forward (adv-input, ·) messages from the adversary to F.
– In rounds ρ = 1, . . . , 2c + 1: Upon receiving a message from some party Pi ∈ P,

proceed as follows:
• If the message is (input, sid, ·), forward it to F, forward the (leakage, sid, ·)

message F subsequently outputs to the adversary.
• Else, send (fetch-output, sid, Pi) to the adversary.

– In rounds ρ > 2c + 1:
• Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed

as follows:
∗ If termi = 1 or ρ = ρterm, forward the message to F, and the output

(output, sid, y) to Pi.
∗ Else, output (fetch-output, sid, Pi) to the adversary.

• Upon receiving (get-output, sid) from the adversary, if the output value y was
not copmuted yet, send (fetch-output, sid) to F on behalf of some party Pi.
Next, send (output, sid, y) to the adversary.

• Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1 and
ρterm ← min{ρterm, ρ + 1}.

aTechnically, the trace is sent to the adversary at the first activation of the
functionality along with the first message.

Fig. 7. The slack-tolerant flexible wrapper functionality

Probabilistic-Termination Compilers. Let F,F1, . . . ,Fm be canonical synchro-
nous functionalities, and let π be an SNF protocol that UC-realizes the flexibly
wrapped functionality WD

flex(F), for some distribution D, in the (F1, . . . ,Fm)-
hybrid model, assuming all parties start at the same round. Define the following
compiler Compptr, parametrized by a slack parameter c ≥ 0. It receives as input
the protocol π, distributions D1, . . . , Dm over traces, and a subset I ⊆ [m] index-
ing which CSFs Fi are to be wrapped with Wsl-flex and which with Wsl-strict; it
replaces every call to a CSF Fi with a call to the wrapped CSF WDi,c

sl-flex(Fi) if
i ∈ I or to WDi,c

sl-strict(Fi) if i /∈ I.
In addition, the compiler adds the following termination procedure, based on

an approach originally suggested by Bracha [7], which ensures all honest parties
will terminate within two consecutive rounds:

– As soon as a party is ready to output a value y (according to the prescribed
protocol) or upon receiving at least t + 1 messages (end, y) for the same value
y (whichever happens first), it sends (end, sid, y) to all parties.

Probabilistic Termination and Composability of Cryptographic Protocols 261

– Upon receiving n−t messages (end, sid, y) for a single value y, a party outputs
y as the result of the computation and halts.

Observe that this technique only works for public-output functionalities, and,
therefore, only CSFs with public output can be wrapped by Wsl-flex. We denote
the output of the compiler by π′ = Compc

ptr(π,D1, . . . , Dm, I).
The following theorem states that the compiled protocol π′ UC-realizes the

wrapped functionality WDfull,c
sl-flex(F), again for an adapted distribution Dfull. Con-

sequently, the compiled protocol π′ can handle a slack of up to c rounds, while
using hybrids that are realizable themselves, and ensuring that the output slack
is at most one round (as opposed to π). Calling the wrapped hybrids instead of
the CSFs affects the trace corresponding to F in exactly the same way as in the
case with deterministic termination (cf. Sect. 4.1).24

Theorem 2. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and
let π an SNF protocol that UC-realizes WD

flex(F), for some distribution D, in the
(F1, . . . ,Fm)-hybrid model, assuming that all honest parties receive their inputs
at the same round. Let I ⊆ [m] be the subset (of indices) of functionalities to
be wrapped using the flexible wrapper, let D1, . . . , Dm be arbitrary distributions
over traces, denote Dfull = full-trace(D,D1, . . . , Dm) and let c ≥ 0. Assume that
F and Fi for every i ∈ I are public-output functionalities.

Then, protocol Compc
ptr(π,D1, . . . , Dm, I) UC-realizes WDfull,c

sl-flex(F) in the
(W(F1), . . . ,W(Fm))-hybrid model, assuming that all honest parties receive
their inputs within c + 1 consecutive rounds, where W(Fi) = WDi,c

sl-flex(Fi) if
i ∈ I and W(Fi) = WDi,c

sl-strict(Fi) if i /∈ I.
The expected round complexity of the compiled protocol π; is

Bc ·
∑

i∈[m]

di · E[ctr(Ti)] + 2 ·
∑

i∈[m]

di · E[flextr(Ti)] + 2

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled
from Di, and Bc = 3c + 1 is the blow-up factor.

The proof of Theorem 2 can be found in the full version [16].
Consider now the scenario where SNF protocol π realizes a strictly wrapped

functionality, yet soem of the CSF hybrids are to be wrapped by flexible wrap-
pers. The corresponding compiler Comppt works as Compptr except that it does
not perform the slack-reduction protocol in the end. The proof of the following
theorem follows that of Theorem 2.

Theorem 3. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and
let π an SNF protocol that UC-realizes WD

strict(F) for some distribution D, in the
(F1, . . . ,Fm)-hybrid model, assuming that all honest parties receive their inputs
at the same round. Let I ⊆ [m] be the subset (of indices) of functionalities to

24 Of course, the root of the trace T sampled from D is a flexibly wrapped functionality
WD

flex(F) in the probabilistic-termination case.

262 R. Cohen et al.

be wrapped using the flexible wrapper, let D1, . . . , Dm be arbitrary distributions
over traces, denote Dfull = full-trace(D,D1, . . . , Dm) and let c ≥ 0. Assume that
Fi for every i ∈ I is a public-output functionalities.

Then, protocol π′Compc
pt(π,D1, . . . , Dm, I) UC-realizes WDfull,c

sl-flex(F) in the
(W(F1), . . . ,W(Fm))-hybrid model, where W(Fi) = WDi,c

sl-flex(Fi) if i ∈ I and
W(Fi) = WDi,c

sl-strict(Fi) if i /∈ I, assuming that all honest parties receive their
inputs within c + 1 consecutive rounds.

The expected round complexity of the compiled protocol π′ is

Bc ·
∑

i∈[m]

di · E[ctr(Ti)] + 2 ·
∑

i∈[m]

di · E[flextr(Ti)]

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled
from Di, and Bc = 3c + 1 is the blow-up factor.

4.3 Wrapping Secure Channels

The basis of the top-down, inductive approach taken in this work consists of
providing protocols realizing wrapped atomic functionalities, using merely secure
channels Fsmt. Due to the restriction to SNF protocols, which may only call a
single CSF hybrid in any given round, a parallel variant Fpsmt of Fsmt (defined
below) is used as an atomic functionality. This ensures that in SNF protocols
parties can securely send messages to each other simultaneously.

Parallel SMT. The parallel secure message transmission functionality Fpsmt

is a CSF for the following functions fpsmt and lpsmt Each party Pi has a
vector of input values (xi

1, . . . , x
i
n) such that xi

j is sent from Pi to Pj .
That is, the function to compute is fpsmt((x1

1, . . . , x
1
n), . . . , (xn

1 , . . . , xn
n), a) =

((x1
1, . . . , x

n
1), . . . , (x1

n, . . . , xn
n)). As we consider rushing adversaries, that can

determine the messages sent by the corrupted parties after receiving the mes-
sages sent by the honest parties, the leakage function should leak the messages
that are to be delivered from honest parties to corrupted parties. Therefore, the
leakage function is lpsmt((x1

1, . . . , x
1
n), . . . , (xn

1 , . . . , xn
n)) = (y1

1 , y
1
2 , . . . , y

n
n−1, y

n
n),

where yi
j = |xi

j | in case Pj is honest and yi
j = xi

j in case Pj is corrupted.

Realizing Wrapped Parallel SMT. The remainder of this section deals with
securely realizing WDpsmt,c

sl-strict(Fpsmt) in the Fsmt-hybrid model, for a particular
distribution Dpsmt and an arbitrary non-negative integer c. Note that the cor-
responding protocol πpsmt is not an SNF protocol; this is of no concern since it
directly realizes a wrapped functionality and therefore need not be compiled.
There is a straight-forward (non-SNF) protocol realizing Fpsmt in the Fsmt-
hybrid model, and therefore (due to the UC composition theorem) it suffices
to describe protocol πpsmt in the Fpsmt-hybrid model.

A standard solution to overcome asynchrony by a constant number of rounds
c ≥ 0, introduced by Lindell et al. [41] and used by Katz and Koo [33], is
to expand each communication round to 2c + 1 rounds. Each party listens for

Probabilistic Termination and Composability of Cryptographic Protocols 263

messages throughout all 2c + 1 rounds, and sends its own messages in round
c + 1. It is straight-forward to verify that if the slack is c, i.e., the parties start
within c + 1 rounds from each other, round r-messages (in the original protocol,
without round-expansion) are sent, and delivered, before round (r+1)-messages
and after round (r − 1)-messages.

The solution described above does not immediately apply to our case, due
to the nature of canonical synchronous functionalities. Recall that in a CSF the
adversary can send an adv-input message (and affect the output) only before
any honest party has received an output from the functionality. If only 2c + 1
rounds are used a subtle problem arises: Assume for simplicity that c = 1 and
say that P1 is a fast party and P2 is a slow party. Initially, P1 listens for one
round. In the second round P2 listens and P1 send its messages to all the parties.
In the third round P2 sends its messages and P1 receives its message, produces
output and completes the round. Now, P2 listens for an additional round, and the
adversary can send it messages on behalf of corrupted parties. In other words, the
adversary can choose the value for P2’s output after P1 has received its output
– such a phenomena cannot be modeled using CSFs. For this reason we add an
additional round where each party is idle; if P1 waits one more round (without
listening) before it produces its output, then P2 will receive all the messages
that determine its output, and so once P1 produces output and completes, the
adversary cannot affect the output of P2.

As a result, in protocol πpsmt, each round is expanded to 3c+1 rounds, where
during the final c rounds, parties are simply idle and ignore any messages they
receive. Denote by Dpsmt the deterministic distribution that outputs a depth-1
trace consisting of a single leaf Fpsmt. In the full version [16] of this paper, we
prove the following lemma.

Lemma 1. Let c ≥ 0. Protocol πpsmt UC-realizes WDfull
psmt,c

sl-strict(Fpsmt) in the Fsmt-
hybrid model, assuming that all honest parties receive their inputs within c + 1
consecutive rounds.

5 Applications of Our Fast Composition Theorem

In this section we demonstrate the power of our framework by providing some
concrete applications. All of the protocols we present in this section enjoy perfect
security facing adaptive adversaries corrupting less than a third of the parties.

5.1 Fast and Perfectly Secure Byzantine Agreement

We start by describing the binary and multi-valued randomized Byzantine agree-
ment protocols (the definition of Fba appears in Sect. 3.1). These protocols are
based on techniques due to Feldman and Micali [23] and Turpin and Coan [48],
with modifications to work in the UC framework. We provide simulation-based
proofs for these protocols.

At a high level, protocol πrba proceeds as follows. Initially, each party sends
its input to all other parties over a point-to-pint channel using Fpsmt, and sets its

264 R. Cohen et al.

vote to be its input bit. Next, the parties proceed in phases, where each phase
consists of invoking the oblivious coin functionality Foc (see the full version)
followed by a voting process consisting of three rounds of sending messages via
Fpsmt. The voting ensures that (1) if all honest parties agree on their votes at
the beginning of the phase, they will terminate at the end of the phase, (2)
in each phase, all honest parties will agree on their votes at the end of each
phase with probability at least p, and (3) if an honest party terminates in some
phase then all honest parties will terminate with the same value by the end of
the next phase. In the negligible event that the parties do not terminate after
τ = log1.5(k) + 1 phases, the parties use the Byzantine agreement functionality
Fba in order to ensure termination.

In the full version [16] we prove the following theorem.

Theorem 4. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable dis-
tribution D such that the functionality WD,c

sl-flex(F{0,1}
ba) has an expected constant

round complexity, and can be UC-realized in the Fsmt-hybrid model, with perfect
security, in the presence of an adaptive malicious t-adversary, assuming that all
honest parties receive their inputs within c + 1 consecutive rounds.

5.2 Fast and Perfectly Secure Parallel Broadcast

As discussed in Sect. 1 composing protocols with probabilistic termination
näıvely does not retain expected round complexity. Ben-Or and El-Yaniv [5]
constructed an elegant protocol for probabilistic-termination parallel broadcast25

with a constant round complexity in expectation, albeit under a property-based
security definition. In this section we adapt the [5] protocol to the UC frame-
work and show that it does not realize the parallel broadcast functionality, but
rather a weaker variant which we call unfair parallel broadcast. Next, we show
how to use unfair parallel broadcast in order to compute (fair) parallel broadcast
in constant excepted number of rounds.

In a standard broadcast functionality (cf. Sect. 3.1), the sender provides a
message to the functionality which delivers it to the parties. Hirt and Zikas [31]
defined the unfair version of the broadcast functionality, in which the function-
ality informs the adversary which message it received, and allows the adversary,
based on this information, to corrupt the sender and replace the message. Fol-
lowing the spirit of [31], we now define the unfair parallel broadcast functionality,
using the language of CSF.

– Unfair Parallel Broadcast. In the unfair parallel broadcast function-
ality, each party Pi with input xi distributes its input to all the parties.
The adversary is allowed to learn the content of each input value from the
leakage function (and so it can corrupt parties and change their messages prior
to their distribution, based on this information). The function to compute is
fupbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)) and the leakage function

25 In [5] the problem is referred to as “interactive consistency.”

Probabilistic Termination and Composability of Cryptographic Protocols 265

is lupbc(x1, . . . , xn) = (x1, . . . , xn). We denote by Fupbc the functionality Fcsf

when parametrized with the above functions fupbc and lupbc.

In the full version [16] we present an adaptation of the [5] protocol, show that
it perfectly UC-realizes (a wrapped version of) Fupbc, and prove the following
result.

Theorem 5. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable dis-
tribution D such that the functionality WD,c

sl-flex(Fupbc) has an expected constant
round complexity, and can be UC-realized in the Fsmt-hybrid model, with perfect
security, in the presence of an adaptive malicious t-adversary, assuming that all
honest parties receive their inputs within c + 1 consecutive rounds.

We now turn to define the (fair) parallel broadcast functionality.

– Parallel Broadcast. In the parallel broadcast functionality, each party
Pi with input xi distributes its input to all the parties. Unlike the unfair
version, the adversary only learns the length of the honest parties’ mes-
sages before their distribution, i.e., the leakage function is lpbc(x1, . . . , xn) =
(|x1| , . . . , |xn|). It follows that the adversary cannot use the leaked informa-
tion in a meaningful way when deciding which parties to corrupt. The func-
tion to compute is identical to the unfair version, i.e., fpbc(x1, . . . , xn, a) =
((x1, . . . , xn), . . . , (x1, . . . , xn)). We denote by Fpbc the functionality Fcsf when
parametrized with the above functions fpbc and lpbc.

Unfortunately, the unfair parallel broadcast protocol πupbc (see the full ver-
sion [16]) fails to realize (a wrapped version of) the standard parallel broadcast
functionality Fpbc. The reason is similar to the argument presented in [31]: in
the first round of the protocol, each party distributes its input, and since we con-
sider a rushing adversary, the adversary learns the messages before the honest
parties do. It follows that the adversary can corrupt a party before the honest
parties receive the message and replace the message to be delivered. This attack
cannot be simulated in the ideal world where the parties interact with Fpbc,
since by the time the simulator learns the broadcast message in the ideal world,
the functionality does not allow to change it.

Although protocol πupbc does not realize Fpbc, it can be used in order to
construct a protocol that does. Each party commits to its input value before any
party learns any new information, as follows. Each party, in parallel, first secret
shares its input using a t-out-of-n secret-sharing protocol.26 In the second step,
every party, in parallel, broadcast a vector with all the shares he received, by
use of the above unfair parallel broadcast functionality Fupbc, and each share
is reconstructed based on the announced values. The reason this modification
achieves fair broadcast is the following: If a sender Pi is not corrupted until he dis-
tributes his shares, then a t-adversary has no way of modifying the reconstructed
output of Pi’s input, since he can at most affect t < n/3 shares. Thus, the only
26 In [31] verifiable secret sharing (VSS) is used; however, as we argue, this is not

necessary.

266 R. Cohen et al.

way the adversary can affect any of the broadcast messages is by corrupting
the sender independently of his input, an attack which is easily simulated. We
describe this protocol, denoted πpbc, in Fig. 8.

Protocol πpbc

1. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the envi-
ronment, Pi secret shares xi using a t-out-of-n secret sharing scheme, denoted
by (x1

i , . . . , x
n
i). Next, Pi sends for every party Pj its share (sid, xj

i) (via Fpsmt).
Denote by xi

j the value received from Pj .
2. In the second round, Pi broadcasts the values xi = (xi

1, . . . , x
i
n) using the unfair

parallel broadcast functionality, i.e., Pi sends (input, sid,xi) to Fupbc. Denote
by yj = (yj

1, . . . , y
j
n) the value received from Pj . Now, Pi reconstructs all the

input values, i.e., for every j ∈ [n] reconstructs yj from the shares (y1
j , . . . , yn

j),
and outputs (output, sid, (y1, . . . , yn)) .

Fig. 8. The parallel broadcast protocol, in the (Fpsmt,Fupbc)-hybrid model

We conclude with the following theorem, see the full version [16] for the proof.

Theorem 6. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable
distribution D such that the functionality WD,c

sl-flex(Fpbc) has an expected constant
round complexity, and can be UC-realized in the Fsmt-hybrid model, with perfect
security, in the presence of an adaptive malicious t-adversary, assuming that all
honest parties receive their inputs within c + 1 consecutive rounds.

5.3 Fast and Perfectly Secure SFE

We conclude this section by showing how to construct a perfectly UC-secure
SFE protocol which computes a given circuit in expected O(d) rounds, inde-
pendently of the number of parties, in the point-to-point channels model. The
protocol is obtained by taking the protocol from [6],27 denoted πbgw. This pro-
tocol relies on (parallel) broadcast and (parallel) point-to-point channels, and
therefore it can be described in the (Fpsmt,Fpbc)-hybrid model. It follows from
Theorem 3, that the compiled protocol Compc

pt(πbgw) UC-realizes the corre-
sponding wrapped functionality WD,c

sl-flex(Fsfe) (for an appropriate distribution

D), in the (WDfull
psmt,c

sl-strict(Fpsmt),WDfull
pbc,c

sl-flex (Fpbc))-hybrid model, resulting in the fol-
lowing.

Theorem 7. Let f be an n-party function, C an arithmetic circuit with mul-
tiplicative depth d computing f , and t < n/3. Then there exists an efficiently

27 A full simulation proof of the protocol with a black-box straight-line simulation was
recently given by [2] and [19].

Probabilistic Termination and Composability of Cryptographic Protocols 267

sampleable distribution D such that the functionality WD,c
sl-flex(Ff

sfe) has round
complexity O(d) in expectation, and can be UC-realized in the Fsmt-hybrid model,
with perfect security, in the presence of an adaptive malicious t-adversary,
assuming that all honest parties receive their inputs within c + 1 consecutive
rounds.

References

1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

2. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly-secure
multiparty computation. Electron. Colloquium Comput. Complex. (ECCC) 18, 36
(2011)

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

4. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement
protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro, N. (eds.)
2nd ACM PODC, pp. 27–30. ACM Press, August 1983

5. Ben-O, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant time.
Distrib. Comput. 16(4), 249–262 (2003)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

7. Bracha, G.: An asynchronou [(n − 1)/3]-resilient consensus protocol. In: Probert,
R.L., Lynch, N.A., Santoro, N. (eds.) 3rd ACM PODC, pp. 154–162. ACM Press,
August 1984

8. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001)

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143–202 (2000)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

11. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/2003/
239

12. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015)

13. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002

14. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

15. Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party computation
from cut-and-choose. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 513–530. Springer, Heidelberg (2014)

http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239

268 R. Cohen et al.

16. Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. Cryptology ePrint Archive, Report 2016/350
(2016). http://eprint.iacr.org/

17. Damg̊ard, I.B., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005)

18. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

19. Damg̊ard, I., Nielsen, J.B.: Adaptive versus static security in the UC model. In:
Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol.
8782, pp. 10–28. Springer, Heidelberg (2014)

20. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

21. Dolev, D., Reischuk, R., Raymond Strong, H.: Early stopping in Byzantine agree-
ment. J. ACM 37(4), 720–741 (1990)

22. Dolev, D., Raymond Strong, H.: Authenticated algorithms for Byzantine agree-
ment. SIAM J. Comput. 12(4), 656–666 (1983)

23. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

24. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

25. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: TCC, pp. 74–94 (2014)

26. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In: 27th
FOCS, pp. 174–187. IEEE Computer Society Press, October 1986

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

28. Goldreich, O., Petrank, E.: The best of both worlds: guaranteeing termination in
fast randomized Byzantine agreement protocols. Inf. Process. Lett. 36(1), 45–49
(1990)

29. Goldwasser, S., Lindell, Y.: Secure multi-party computation without agreement. J.
Cryptology 18(3), 247–287 (2005)

30. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015)

31. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010)

32. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
572–591. Springer, Heidelberg (2008)

33. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006)

34. Katz, J., Koo, C.-Y.: Round-efficient secure computation in point-to-point net-
works. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328.
Springer, Heidelberg (2007)

http://eprint.iacr.org/

Probabilistic Termination and Composability of Cryptographic Protocols 269

35. Katz, J., Lindell, Y.: Handling expected polynomial-time strategies in simulation-
based security proofs. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 128–149.
Springer, Heidelberg (2005)

36. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchro-
nous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013)

37. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.)
ACM CCS 2013, pp. 549–560. ACM Press, November 2013

38. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988

39. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: Kleinberg, J.M. (ed.) 38th ACM STOC, pp.
109–118. ACM Press, May 2006

40. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

41. Lindell, Y., Lysyanskaya, A., Rabin, T.: On the composition of authenticated
Byzantine agreement. In: 34th ACM STOC, pp. 514–523. ACM Press, May 2002

42. Lindell, Y., Lysyanskaya, A., Rabin, T.: Sequential composition of protocols with-
out simultaneous termination. In: Ricciardi, A. (ed.) 21st ACM PODC, pp. 203–
212. ACM Press, July 2002

43. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015)

44. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26

45. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

46. Rabin, M.O.: Randomized Byzantine generals. In: 24th Annual Symposium on
Foundations of Computer Science, Tucson, Arizona, USA, 7–9 November 1983,
pp. 403–409. IEEE Computer Society (1983)

47. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

48. Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multivalued
Byzantine agreement. Inf. Process. Lett. 18(2), 73–76 (1984)

49. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

http://dx.doi.org/10.1007/978-3-662-49896-5_26

Concurrent Non-Malleable Commitments
(and More) in 3 Rounds

Michele Ciampi1, Rafail Ostrovsky2, Luisa Siniscalchi1, and Ivan Visconti1(B)

1 DIEM, University of Salerno, Fisciano, Italy
{mciampi,lsiniscalchi,visconti}@unisa.it

2 UCLA, Los Angeles, USA
rafail@cs.ucla.edu

Abstract. The round complexity of commitment schemes secure
against man-in-the-middle attacks has been the focus of extensive
research for about 25 years. The recent breakthrough of Goyal et al. [22]
showed that 3 rounds are sufficient for (one-left, one-right) non-malleable
commitments. This result matches a lower bound of [41]. The state of
affairs leaves still open the intriguing problem of constructing 3-round
concurrent non-malleable commitment schemes.

In this paper we solve the above open problem by showing how to
transform any 3-round (one-left one-right) non-malleable commitment
scheme (with some extractability property) in a 3-round concurrent non-
malleable commitment scheme. Our transform makes use of complex-
ity leveraging and when instantiated with the construction of [22] gives
a 3-round concurrent non-malleable commitment scheme from one-way
permutations secure w.r.t. subexponential-time adversaries.

We also show a 3-round arguments of knowledge and a 3-round iden-
tification scheme secure against concurrent man-in-the-middle attacks.

Keywords: Non-malleability · Commitments · Identification schemes

1 Introduction

Commitment schemes are fundamental in Cryptography. They require a sender
to fix a message that can not be changed anymore, but that will remain hidden
to a receiver until the sender decides to reveal it.

In order to model modern real-world adversaries, commitment schemes have
been proposed with additional security properties. Here we consider the intrigu-
ing question of constructing a scheme that remains secure against man-in-the-
middle (MiM) attacks: a non-malleable (NM) commitment scheme [15].

Pass proved that NM commitments1 require at least 3 rounds [41] when
security is proved through a black-box reduction to a falsifiable (polynomial
or subexponential time) hardness assumption. Instead by weakening the secu-
rity definition admitting an inefficient challenger we know constructions of non-
interactive NM commitments [38].
1 We consider the notion of NM commitment w.r.t. commitment.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 270–299, 2016.
DOI: 10.1007/978-3-662-53015-3 10

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 271

The round complexity of NM commitment schemes in the standard model
has puzzled researchers for long time. Starting from the construction of [15] that
required a logarithmic number of rounds, various constant-round schemes were
proposed [1,19,20,28,29,42–44,46] reducing the round complexity to 4 rounds
[5,11,23] with respect to concurrent MiM attacks, a setting that corresponds
to what can actually happen when sender and receiver are connected through
a communication network like the Internet. In such a much more interesting
setting a MiM adversary receives multiple commitments from senders and sends
his commitments to multiple receivers.

1.1 Towards 3-Round (Concurrent) NM Commitments

The existence of 3-round NM commitment schemes is an important question
first because 3 is the best possible constant (in light of the lower bound of [41]),
and second because 3 is the smallest number of rounds for a primitive that often
makes use of commitment schemes: proofs of knowledge.

The importance of obtaining 3-round (and not just any constant-round) NM
commitments motivated the very recent and innovative work of [22] that, by just
relying on any non-interactive commitment scheme and exploiting the power of
non-malleable codes in the split-state model, shows a 3-round NM commitment
scheme. Interestingly, such construction is not claimed to be secure against con-
current man-in-the-middle attacks. Therefore the following natural and impor-
tant question remains open.

Main Open Question: Can we construct a 3-round concurrent non-malleable
commitment scheme matching the lower bound of [41]?

Other 3-Round Challenges. We list here 3 other interesting settings where no
3-round construction is known against concurrent MiM adversaries.

– Proofs2 of knowledge are very useful in Cryptography. Despite their impor-
tance, there is no construction for 3-round proofs of knowledge (PoK) that
is sufficiently secure under concurrent MiM attacks. This is due to the fact
that such attacks are in general extremely difficult to deal with. Even though
there exist constructions with a constant number of rounds, the case of just
3 rounds so far has remained unsolved.

– In [27]3 Lapidot and Shamir proposed a 3-round public-coin witness indis-
tinguishable PoK for NP (the LS protocol) where the input (except its size)
is needed only when playing the 3rd round. This special completeness prop-
erty named “delayed input” in [12,13] has been used in many applications
(e.g., [14,24,26,48,49] in particular recently [11,18,24,33]), and in [12,13] it
was considered for the OR composition of Σ-protocols instead of relying on LS.

2 For simplicity in the informal part of the paper we will not make a strict distinction
between proofs and arguments. In the formal part we will use appropriate terms.

3 See [37] for a detailed description of [27].

272 M. Ciampi et al.

When a PoK is used as sub-protocol the delayed-input feature is instrumen-
tal to give a better round complexity to the external protocol. An additional
features of delayed-input protocols is that they allow to shift large part of the
computation to an off-line phase. Unfortunately the LS protocol and the PoKs
of [12,12] are not secure against concurrent MiM attacks and this penalizes
those applications where both round complexity and security against concur-
rent MiM attacks are important.

– We notice that identification schemes have been often proposed (e.g., [17])
through the paradigm of proving “knowledge” of a secret4. Under this formu-
lation there are constant-round constructions that are proven secure against
concurrent MiM attacks [2]. However no 3-round scheme known in literature
is proven secure in presence of a concurrent MiM adversary.

1.2 Results of This Work

In this work we study 3-round commitment scheme in presence of concurrent
MiM attacks and solve in the positive the above open problems.

3-Round Concurrent NM Commitment Schemes. In the main result of this
submission, we show a transform that on input any 3-round NM commitment
scheme5 gives a 3-round concurrent NM commitment scheme. The construction
of [22] can be used to instantiate our transform, therefore obtaining a 3-round
concurrent NM commitment scheme based on any one-way permutation secure
against subexponential-time adversaries. Moreover our scheme (still when instan-
tiated with the one of [22] and using a proper one-way permutation) is public
coin and (if desired6) has the delayed-input property.

Our transform extends the security of the underlying commitment scheme
to multiple receivers. It is known that this implies security also with multiple
senders [30]. The crucial idea of our transform is to combine the underlying NM
commitment scheme along with a one-time pad, to produce a commitment of
a message that by itself, in case of a malleability attack, will have sufficient
structure to be recognized by a distinguisher in the session in which it appears.
Therefore a successful concurrent MiM even playing multiple commitments with
multiple receivers will have to maul the underlying commitment scheme in at
least one session. Since the message has sufficient structure with respect to that

4 Other notions based on signature or decryption capabilities are considered weaker
since in some applications the verifier wants to make sure that the prover is the
actual entity matching the announced identity. Indeed without a PoK a prover could
give some partial information about his secret to others that can still succeed in
convincing the verifier, even though they do not know the full secret.

5 We also require the scheme to be extractable. Extractability often comes for free
since it is commonly used in the non-malleability proof.

6 Our transform can be instantiated in two ways. In the former the message to commit
is required already when playing the first round, while in the latter the message to
commit is required when playing the third round only.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 273

single session, we are able to translate the concurrent MiM attack into a non-
concurrent MiM that violates the security of the underlying (non-concurrent)
NM commitment scheme. We will implement the idea of committing to a message
with structure by forcing a successful concurrent MiM to commit to the solution
of a puzzle in at least one session. We will use complexity leveraging to show
that the attack of the concurrent MiM is indistinguishable from the attack of a
polynomial-time simulator that plays with receivers only.

Just for completeness, we also show an explicit concurrent MiM adversary
A for the scheme of [21]. The crucial point here, following a technique of [16] is
that the scheme of [21] allows A to spread the message committed by the honest
sender over several commitments that the adversary sends to multiple receivers.
The scheme presented in [22] is slightly different and became available after our
work was already submitted, therefore when describing A we stick with [21].

3-Round Arguments of Knowledge and ID Schemes Against Concurrent MiM
Attacks. Our 3-round concurrent NM commitment scheme is a commit-and-
prove argument of knowledge (AoK). This means that one can see our scheme
as a commitment followed by an AoK about the committed value. By applying
a simple change to the statement of the underlying AoK we obtain a 3-round
concurrent NM witness-indistinguishable AoK (concurrent NMWIAoK) a notion
introduced in [34] and later on extended in [31]. We stress that the delayed-
input and public-coin properties of our commitment scheme are preserved by
our concurrent NMWIAoK.

In [34] it is shown how to get concurrent NM zero knowledge (NMZK)
in the bare public-key (BPK) model [6] with just two executions of a con-
current NMWIAoK. Therefore we directly obtain a round-efficient concurrent
NMZKAoK in the BPK model. By making use of delayed-input completeness
the simulator can extend a main thread avoiding issues due to aborting adver-
saries as discussed in [36,47].

Finally, we notice that one can get an identification scheme secure in the
PoK sense in the concurrent7 setting of [2] as well as under the stronger defini-
tion based on matching conversations of [3,25] naturally extended to concurrent
sessions. Following [9,34], the key idea consists in using an identity that has two
possible secrets such that knowledge of one witness does not allow to compute
the other one in polynomial time. By using our implementation of a concurrent
NMWIAoK for proving knowledge of a secret associated to such identity we
obtain a 3-round identification scheme secure against concurrent MiM attacks.

Challenges for Future Work. The existence of OWPs is a standard falsifiable
hardness assumption. Our scheme relies on a strengthening of this standard
assumption w.r.t. subexponential-time adversaries. Notice that the lower bound
of [41] still applies in case of subexponential-time hardness, therefore our 3-round

7 In [2] the notion CR2 is proposed to deal with concurrent MiM attacks and reset
attacks. Reset attack were also considered in the notion CR+ of [4]. Since reset
attacks are out of the scope of this work, we focus on concurrent MiM attacks only.

274 M. Ciampi et al.

concurrent non-malleable scheme is round optimal. Various natural and fascinat-
ing questions on commitments and proofs of knowledge remain open after our
work and as such we think our results will motivate further research. Examples
of open questions about concurrent NM commitments are the following: (1) the
existence of 3-round schemes based on standard falsifiable hardness assumptions
w.r.t. polynomial-time adversaries only; (2) the existence of 3-round schemes
with black-box use of primitives; (3) the existence of practical schemes.

2 Notation, Definitions and Tools

We denote the security parameter by λ and use “|” as concatenation operator
(i.e., if a and b are two strings then by a|b we denote the concatenation of a
and b). For a finite set Q, x ← Q denotes the algorithm that chooses x from Q
with uniform distribution. Usually we use the abbreviation ppt that stays for
probabilistic polynomial-time. We use poly(·) to indicate a generic polynomial
function of the input.

A polynomial-time relation Rel (or polynomial relation, in short) is a subset
of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness
for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation
(that is, RelL is such that L = LRelL).

Let A and B be two interactive probabilistic algorithms A and B. We denote
by 〈A(α), B(β)〉(γ) the distribution of B’s output after running on private input
β with A using private input α, both running on common input γ. Typically,
one of the two algorithms receives 1λ as input. A transcript of 〈A(α), B(β)〉(γ)
consists of the messages exchanged during an execution where A receives a pri-
vate input α, B receives a private input β and both A and B receive a common
input γ. Moreover, we will refer to the view of A as the messages it received dur-
ing the execution of 〈A(α), B(β)〉(γ), along with its randomness and its input.
We denote by Ar an algorithm A that receives as randomness r. We say that a
protocol (A,B) is public coin if B sends to A random bits only.

A function ν(·) from non-negative integers to reals is called negligible, if for
every constant c > 0 and all sufficiently large λ ∈ N we have ν(λ) < λ−c. Stan-
dard definitions of one-way permutations (OWPs), proof/argument systems, wit-
ness indistinguishability (WI) and proofs of knowledge along with their strength-
ened versions secure again subexponential-time adversaries and adaptive-input
selection can be found in the full version of this work [10].

2.1 Commitment Schemes

Definition 1 (Commitment Scheme). Given a security parameter 1λ, a
commitment scheme (Sen,Rec) is a two-phase protocol between two ppt interac-
tive algorithms, a sender Sen and a receiver Rec. In the commitment phase Sen

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 275

on input a message m interacts with Rec to produce a commitment com. In the
decommitment phase, Sen sends to Rec a decommitment information d such that
Rec accepts m as the commitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment
scheme if the following properties hold:

Correctness:
• Commitment phase. Let com be the commitment of the message m (i.e.,
com is the transcript of an execution of CS = (Sen,Rec) where Sen runs
on input a message m). Let d be the private output of Sen in this phase.

• Decommitment phase8. Rec on input m and d accepts m as decommitment
of com.

Hiding [32]: for a ppt adversary A and a randomly chosen bit b ∈ {0, 1},
consider the following hiding experiment ExpHidingb

A,CS(λ):
• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that
are of the same length.

• Sen on input the message mb interacts with A to produce a commitment
of mb.

• A outputs a bit b′ and this is the output of the experiment.
For any ppt adversary A, there exist a negligible function ν, such that:

∣∣∣Prob
[

ExpHiding0A,CS(λ) = 1
] − Prob

[
ExpHiding1A,CS(λ) = 1

] ∣∣∣ < ν(λ).

Binding: for every commitment com generated during the commitment phase
by a possibly malicious unbounded sender Sen� interacting with an honest
receiver Rec, there exists at most one message m that Rec accepts as decom-
mitment of com.

We also consider the definition of a commitment scheme where the hiding
property still holds against an adversary A running in time bounded by T = 2λα

for some positive constant α < 1. In this case we will say that a commitment
scheme is T -hiding. We will also say that a commitment scheme is T̃ -breakable
to specify that an algorithm running in time T̃ = 2λβ

, for some positive constant
β < 1, recovers the (if any) only message that can be successfully decommitment.

In the rest of the paper we also use a non-interactive commitment schemes,
with secure parameter λ. In this case we consider a commitment scheme as a
pair of ppt algorithms (NISen,NIRec) where:

– NISen takes as input (m;σ), where m ∈ {0, 1}poly(λ) is the message to be
committed and σ ← {0, 1}λ is randomness, and outputs the commitment com
and the decommitment dec;

– NIRec takes as input (dec, com, m) and outputs 1 if it accepts m as a decom-
mitment of com and 0 otherwise.

8 In this paper we consider a non-interactive decommitment phase only.

276 M. Ciampi et al.

3-Round Extractable Commitment Schemes. Informally, a 3-round commitment
scheme is extractable if there exists an efficient extractor that having black-box
access to any efficient malicious sender ExCom� that successfully performs the
commitment phase, outputs the only committed string that can be successfully
decommitted.

Definition 2 (3-Round Extractable Commitment Scheme [45]). A
3-round perfectly binding commitment scheme ExCS = (ExCom,ExRec) is an
extractable commitment scheme if given oracle access to any malicious sender
ExCom�, there exists an expected ppt extractor Ext that outputs a pair (τ, σ�)
such that the following properties hold:

– Simulatability: the simulated view τ is identically distributed to the view of
ExCom� (when interacting with an honest ExRec) in the commitment phase.

– Extractability: there exists no decommitment of τ to σ, where σ �= σ�.

2.2 Non-Malleable Commitment Schemes

Here we follow [30]9. Let Π = (Sen,Rec) be a statistically binding commitment
scheme. Consider MiM adversaries that are participating in left and right ses-
sions in which poly(λ) commitments take place. We compare between a MiM
and a simulated execution. In the MiM execution the adversary A, with aux-
iliary information z, is simultaneously participating in poly(λ) left and right
sessions. In the left sessions the MiM adversary A interacts with Sen receiving
commitments to values m1, . . . ,mpoly(λ) using identities id1, . . . , idpoly(λ) of its
choice. In the right session A interacts with Rec attempting to commit to a
sequence of related values m̃1, . . . , m̃poly(λ) again using identities of its choice
ĩd1, . . . , ĩdpoly(λ). If any of the right commitments is invalid, or undefined, its
value is set to ⊥. For any i such that ĩdi = idj for some j, set m̃i =⊥ (i.e., any
commitment where the adversary uses the same identity of one of the honest
senders is considered invalid). Let mim

A,m1,...,mpoly(λ)

Π (z) denote a random vari-
able that describes the values m̃1, . . . , m̃poly(λ) and the view of A, in the above
experiment. In the simulated execution, an efficient simulator S directly inter-
acts with Rec. Let simS

Π(1λ, z) denote the random variable describing the values
m̃1, . . . , m̃poly(λ) committed by S, and the output view of S; whenever the view
contains in the i-th right session the same identity of any of the identities of the
left session, then m̃i is set to ⊥.

We denote by δ̃ a value associated with the right session (where the adversary
A plays with a receiver MMRec) where δ is the corresponding value in the left
session. For example, the sender commits to v in the left session while A commits
to ṽ in the right session.

Definition 3 (Concurrent NM Commitment Scheme [30]). A commit-
ment scheme is concurrent NM with respect to commitment (or a many-
many NM commitment scheme) if, for every ppt concurrent MiM adversary
9 In this paper we will consider only NM commitments w.r.t. commitments. Difficulties

on achieving also the notion of NM w.r.t. decommitments were discussed in [7,35].

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 277

A, there exists a ppt simulator S such that for all mi ∈ {0, 1}poly(λ) for
i = {1, . . . , poly(λ)} the following ensembles are computationally indistinguish-
able:

{mim
A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}� ≈ {simS
Π(1λ, z)}z∈{0,1}� .

As in [30] we also consider relaxed notions of concurrent non-malleability:
one-many and one-one NM commitment schemes. In a one-many NM commit-
ment scheme, A participates in one left and polynomially many right sessions.
In a one-one (i.e., a stand-alone secure) NM commitment scheme, we consider
only adversaries A that participate in one left and one right session. We will
make use of the following proposition of [30].

Proposition 1. Let (Sen,Rec) be a one-many NM commitment scheme. Then,
(Sen,Rec) is also a concurrent (i.e., many-many) NM commitment scheme.

We also consider the definition of a NM commitment scheme secure against a
MIM A running in time bounded by T = 2λα

for some positive constant α < 1.
In this case we will say that a commitment scheme is T -non-malleable.

When the identity is selected by the sender then the above id-based defini-
tions guarantee non-malleability without ids as long as the MiM does not behave
like a proxy (an unavoidable attack). Indeed the sender can pick as id the public
key of a strong signature scheme signing the transcript. The MiM will have to
use a different id or to break the signature scheme.

2.3 3-Round One-One NM Commitment Scheme

As main tool we need a 3-round one-one NM commitment scheme (NMCS) that
enjoys the extractability property. In the rest of the paper we will refer to such
a commitment scheme as ΠNM = (SenNM,RecNM).

In [22] the authors provide the first 3-round one-one NM commitment scheme.
Their scheme enjoys also the extractability property10 and public coin.

By ΠNM = ((Sen1
NM,Sen2

NM),RecNM) we denote a 3-round one-one NM com-
mitment scheme such that:

– the algorithm Sen1
NM takes as input (id,m; ρ), where id ∈ {0, 1}λ is the iden-

tity, m is the message to be committed and ρ ← {0, 1}λ is a randomness, and
outputs a that is the first round of the commitment scheme to be sent to the
receiver;

– the algorithm Sen2
NM takes as input (id, c,m; ρ), where c is the second round

received by Rec, m is the message to be committed, id is the same identity
received as input by Sen1

NM, ρ is the randomness, and outputs (z, dec) where
z is the last round of the commitment, and dec is the decommitment value.

The reveal phase consists in sending dec and m to the receiver. The receiver
RecNM, on input the randomness it used during the commitment phase, the
transcript com = (a, c, z, id), m and dec outputs 1 if dec is valid w.r.t. com and
m and outputs 0 otherwise.
10 Extractability is informally stated in Claim 12 of [21].

278 M. Ciampi et al.

2.4 The LS Proof of Knowledge and NMWI Argument Systems

In this paper we use the 3-round public-coin WI adaptive proof of knowledge
proposed by Lapidot and Shamir [27], that we denote by LS. LS is delayed-input
since the inputs for the prover and the verifier are needed only to play the last
round, while only the size of the common input is needed earlier. For this reason
we will refer to a prover P as a pair (P1,P2). More formally, LS for a relation Rel
is a pair Π = (P = (P1,P2),V), with security parameter λ, where P executes
the algorithms P1 and P2 defined as follows. The algorithm P1, takes as input
(;α), is the instance length and α ← {0, 1}λ is the randomness, and outputs
the 1st round of the LS protocol. The algorithm P2 takes as input (x,w, c;α),
where x, w are such that (x,w) ∈ Rel, c is the challenge sent by V and α is the
randomness11 and outputs the 3rd round of the LS protocol.

In this paper we also consider a definition where the WI property of LS still
holds against a distinguisher with running time bounded by T = 2λα

for some
constant positive constant α < 1. In this case we say that the instantiation of
LS is T -witness indistinguishable (T -WI).

Witness Indistinguishability and MiM Attacks. The definition of non-malleable
witness indistinguishability (NMWI) given in [34] requires that the witness
encoded in the proof given by the MiM A be independent of the witness used by
the honest prover in his proof. For details see [10].

3 3-Round Concurrent Non-Malleable Commitments

In this section we show our transform that takes as input a 3-round extractable
one-one NM commitment scheme ΠNM, a OWP f , a non-interactive perfectly
binding commitment scheme NI, the 3-round delayed-input adaptive WI/PoK
LS and outputs a 3-round fully concurrent (i.e., many-many) NM commitment
scheme ΠMMCom = (MMSen,MMRec).

Let m be the message that MMSen wants to commit. The high-level idea of
our transform is depicted in Fig. 1. The sender MMSen, on input the session-id
id and the message m, computes the 1st round of the protocol by running LS
and sending the 1st round of NM to commit to a random message s0 using id as
session-id. In the 2nd round the receiver MMRec sends the challenges of NM and
LS, also sends a random value Y in the range of the OWP f12. In the last round
MMSen commits to message m using NI, therefore obtaining com, then computes
the last round of NM, completes the transcript of LS, and finally sends a random
string s1. The protocol LS is used by MMSen to prove to MMRec that either
she knows message m and the randomness used to compute com, or she knows
the values (s0, dec), such that f(s0 ⊕ s1) = Y and dec is a valid decommitment
to s0 w.r.t. the commitment computed using ΠNM. We observe that MMSen

11 The same α is passed to P1 and P2 so that P2 can reconstruct the state of P1.
12 When sampling from the range of f corresponds to picking a random string, we have

that our commitment scheme is public coin.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 279

needs m only when computing the 3rd round, therefore our construction enjoys
delayed-input correctness.

aNM(s0), aLS

cNM(s0), cLS, Y

s1, zNM(s0), zLS, com(m)

MMSen(m) MMRec

– Y is an element taken from the range of the OWP f .
– com(m) is the perfectly binding commitment of m computed using NI.
– (aNM(s0), cNM(s0), zNM(s0)) = τ is the transcript of the execution of the NM

commitment scheme ΠNM when the sender commits to s0.
– (aLS, cLS, zLS) = π is the transcript of LS proving knowledge of either m and the

randomness used to compute com, or of (s0, dec), s.t. f(s0 ⊕ s1) = Y and dec

is a valid decommitment of s0 w.r.t. τ .

Fig. 1. Informal description of our 3-round concurrent NM commitment scheme.

Our transform needs the following tools:

1. a OWP f that is secure against ppt adversaries and T̃f -breakable;
2. a non interactive perfectly binding commitment scheme NI = (NISen,NIRec)

that is TNI-hiding and T̃NI-breakable;
3. a 3-round extractable one-one NM commitment scheme ΠNM =

(SenNM = (Sen1
NM,Sen2

NM),RecNM) that is TNM-hiding/non-malleable, and
T̃NM-breakable;

4. the LS proof system LS = (P = (P1,P2),V) for the language

L =
{(

(a, c, z), Y, s1, com, id
)

: ∃ (m,σ) s.t. com = NISen(m;σ) OR
(∃(ρ, s0)

s.t. a = Sen1
NM(id, s0; ρ) AND z = Sen2

NM(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)
)}

that is TLS-WI for the corresponding relation RelL.

Let λ be the security parameter of our scheme. We will use wlog λ also as
security parameter for the hardness to invert f with respect to polynomial time
adversaries. Then we consider the following hierarchy of security levels for the
above tools: Tf << TNI <<

√
TNM << TNM <<

√
TLS << TLS where by “T <<

T ′” we mean that “T · poly(λ) < T ′”. We also require that: (1) NI is TNI-hiding,
but is also T̃NI =

√
TNM-breakable; (2) ΠNM is TNM hiding/non-malleable, but the

hiding is also T̃NM =
√

TLS-breakable. Now we need to define different security
parameters, one for each tool involved in the security proof to be consistent with
the hierarchy of security levels defined above (a similar use of security parameters
has been proposed in [46]). Given the security parameter λ of our scheme, we
will make use of the following security parameters (all polynomially related to

280 M. Ciampi et al.

Common input: Security parameters: λ, (λNI, λNM, λLS) = Params(λ).
MMSen’s identity: id ∈ {0, 1}λ.
Input to MMSen: m ∈ {0, 1}poly{λ}.

Commitment Phase:

1. MMSen → MMRec
1.1. Pick s0 ∈ {0, 1}λ.
1.2. Pick a randomness ρ ∈ {0, 1}λNM and compute aNM = Sen1

NM(id, s0; ρ).
1.3. Pick a randomness α ∈ {0, 1}λLS and compute aLS = P1(; α).
1.4. Send (aNM, aLS) to MMRec.

2. MMRec → MMSen
2.1. Pick a randomness γ and run RecNM on input (id, aNM; γ) to obtain cNM.
2.2. Pick a randomness β and run V to obtain cLS.
2.3. Pick a random y ∈ {0, 1}λ and compute Y = f(y).
2.4. Send (cNM, cLS, Y) to MMSen.

3. MMSen → MMRec
3.1. Pick a randomness σ ∈ {0, 1}λNI and compute (com, dec) = NISen(m; σ).
3.2. Pick s1 ← {0, 1}λ.
3.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
3.4. Set x = (aNM, cNM, zNM), Y, s1, com, id and w = (m, σ, ⊥, ⊥) with (|x| =).

Run zLS = P2(x, w, cLS; α) where x is the theorem to be proven and w is the
witness.

3.5. Send (zNM, com, zLS, s1) to MMRec.
4. MMRec: Set x = (aNM, cNM, zNM), Y, s1, com, id and abort iff (aLS, cLS, zLS) is

not accepting for V with respect to x.

Decommitment Phase:

1. MMSen → MMRec: Send (dec, m, decNM, s0) to MMRec.
2. MMRec: Accept m as the committed message iff

2.1. NIRec(dec, com, m) = 1 and
2.2. RecNM on input γ, (aNM, cNM, zNM, id), s0 and decNM outputs 1.

Fig. 2. Our 3-round concurrent NM commitment scheme.

λ and such that the above hierarchy of security levels holds): λ for f , λNI for NI,
λNM for ΠNM, λLS for LS.

We denote by Params the function that on input λ outputs (λNI, λNM, λLS,)
where is the size of the theorem to be proved using LS13. Our concurrent NM
commitment scheme ΠMMCom = (MMSen,MMRec) is fully described in Fig. 2.

Theorem 1. Suppose there exist OWPs secure against subexponential-time
adversaries, then ΠMMCom is a perfectly binding delayed-input commitment
scheme.

13 To compute 1st and 2nd round of LS only the length � of the instance is required.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 281

Proof. The delayed-input correctness of ΠMMCom follows by inspection from the
delayed-input completeness of LS, and the correctness of ΠNM and NI.

Observe that the message given in output in the decommitment phase of
ΠMMCom is the message committed using NI. Moreover the decommitment phase
of ΠMMCom coincides with the decommitment of NI and ΠNM. Since NI and ΠNM

is perfectly binding we have that ΠMMCom is perfectly binding too.
The hiding property follows from the non-malleability property proved in

Theorem 2. Indeed the proof of Theorem 2 does not rely on the hiding of ΠMMCom.

Theorem 2. Suppose there exist OWPs secure against subexponential-time
adversaries, then ΠMMCom is concurrent (i.e., many-many) non-malleable.

Proof. Since we can use Proposition 1, we only need to prove that our com-
mitment enjoys one-many non-malleability. More formally with respect to a
one-many adversary A, we need to show that for all m ∈ {0, 1}poly(λ) it holds
that: {mimA,m

ΠMMCom
(z)}z∈{0,1}� ≈ {simS

ΠMMCom
(1λ, z)}z∈{0,1}� where S is the simula-

tor depicted in Fig. 3. This means that the real execution in which the sender
runs MMSen to commit to a message m must be indistinguishable with respect
to an execution in which a simulator S runs internally the MiM adversarial A
sending a commitment of 0λ, and then forwards the messages that A sends in
the right sessions to receivers MMRec1, . . . ,MMRecpoly(λ).

In the security proof we denote by δ̃i a value associated with the i-th
right session (where the adversary A plays with a receiver MMReci with
i ∈ {1, . . . , poly(λ)}) where δ is the corresponding value in the left session. For
example, the sender commits to v in the left session while A commits to ṽi in
the i-th right session.

To prove the indistinguishability of the above two experiments we show 3
hybrid experiments14 Hm

i (z) with i = 1, 2, 3, where m is the message committed
in the left session. Following [28] we denote by {mimA

Hm
i

(z)}z∈{0,1}� the random
variable describing the view of the MiM A combined with the value it commits in
the right interaction in hybrid Hm

i (z) (as usual, the committed value is replaced
by ⊥ if the right interaction does not correspond to a commitment that can be
successfully opened or if A has copied the identity of the left interaction).

The 1st hybrid is the experiment Hm
1 (z) in which in the left session MMSen

commits to m, while in the right session we run MMRec1, . . . ,MMRecpoly(λ) for
the rights sessions played by A.
Hm

1 (z).

Left session:
1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , ;α).
1.4. Send (aNM, aLS) to A.

14 We will describe the hybrid experiments in a succinct way focusing on the key steps
(e.g., omitting sampling of randomness, generation of parameters λNI, λNM, λLS, �).

282 M. Ciampi et al.

2. Third round, upon receiving (cNM, cLS, Y) from A.
2.1. Compute (com, dec) = NISen(m;σ).
2.2. Pick s1 ← {0, 1}λ.
2.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.4. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with

(|x| =). Run zLS = P2(x,w, cLS;α).
2.5. Send (zNM, com, zLS, s1) to A.

Right sessions: act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

We have that for all m ∈ {0, 1}poly(λ) {mimA
Hm

1
(z)}z∈{0,1}� corresponds to

{mimA,m
ΠMMCom

(z)}z∈{0,1}� . We now prove that, for all i ∈ {1, . . . , poly(λ)} A does
not manage to invert any values Ỹi in the right sessions by sending a value s̃1i

such that f(s̃0i ⊕ s̃1i) = Ỹi where s̃0i is the message committed in the i-th right
session through NM.

Lemma 1. Let pi be the probability that in the i-th right session, for i ∈
{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the value
committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not
hold. We can construct an adversary Af that inverts the OWP f in polynomial
time. We consider a challenger Cf of f that chooses a random Y in the range of
f and sends it to Af . Af wins if it gives as output y such that Y = f(y). Before
describing the adversary we need to consider the augmented machine Sn→1 that
will be used by Af . Sn→1 internally executes A, and interacts with an external
receiver Recext of the protocol ΠNM acting as the sender.
Sn→1(Y, ϕ, z)

1. Act in the left session with A (that runs using randomness ϕ) as in Hm
1 (z).

2. For all j �= i ∈ {1, . . . poly(λ)} run MMRecj as in Hm
1 (z). Instead run MMReci

as described in steps 3, 4 and 5.
3. Upon receiving the 1st round of the i-th right session (ãNMi

, ãLSi
) from A,

send ãNMi
to Recext.

4. Upon receiving c̃NMi from Recext, run as follows:
4.1. Run V to obtain c̃LSi .
4.2. Set Ỹi = Y .
4.3. Send (c̃NMi , c̃LSi , Ỹi) to A.

5. Upon receiving the 3rd round of the i-th right session (z̃NMi
, ˜comi, z̃LSi

, s̃1i),
set x̃ =

(
(ãNMi , c̃NMi , z̃NMi), Ỹ , s̃1i

, ˜comi, ĩd
)

and abort iff (ãLSi , c̃LSi , z̃LSi) is
not accepting for V with respect to x̃.

6. Send z̃NMi
to Recext.

Notice that the above execution of Sn→1 is distributed identically to Hm
1 (z)

when Recext plays identically as honest receiver. Now we can conclude the proof
of this lemma by describing how Af works. Af runs the extractor of ΠNM using
Sn→1 as sender (recall that an extractor of ΠNM plays only having access to
a sender of ΠNM). We have that the extractor with non-negligible probability

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 283

outputs the committed message of an execution that inverts f . By using the ran-
domness ϕ, Af can reconstruct the view of A and retrive the value s̃1i. Therefore
A running in polynomial time15 outputs with non-negligible probability the value
y = s̃0i ⊕ s̃1i such that f(y) = Y .

We now consider the 2nd hybrid experiment Hm
2 (z) where in the left session,

after receiving Y from A, the sender in time Tf finds a value y such that Y =
f(y). Then the sender sets and sends s1 = y⊕s0, where s0 is the value committed
using ΠNM. The only difference between this hybrid experiment and Hm

1 (z) is
that Hm

2 (z) runs in time sub-exponential in λ, and the value s1 is equal to y⊕s0
where Y = f(y).
Hm

2 (z).

Left session:
1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , ;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y) from A.
2.1. Compute (com, dec) = NISen(m;σ).
2.2. Run in time Tf to compute y such that Y = f(y).
2.3. Set s1 = y ⊕ s0.
2.4. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.5. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with

(|x| =). Run zLS = P2(x,w, cLS;α).
2.6. Send (zNM, com, zLS, s1) to MMRec.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

When switching from Hm
1 (z) to Hm

2 (z) we will make sure that the following
two properties hold.

1. For all message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

1
(z) ≈ mimA

Hm
2

(z).16

2. Let pi be the probability that in the i-th right session of H2, for i ∈
{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

We now prove that the above two properties hold.

15 The extractor is an expected polynomial-time algorithm while Af must be a strict
polynomial-time algorithm. Therefore Af will run the extractor up to a given upper-
bounded number of steps that is higher than the expected running time of the
extractor. Obviously with non-negligible probability the truncated extraction proce-
dure will be completed successfully and this is sufficient for Af to invert f . The same
standard argument about truncating the execution of an expected polynomial-time
algorithm will be needed later but for simplicity we will not repeat this discussion.

16 To simplify the notation here, and in the rest of the proof, we will omit that the
indistinguishability between two distributions must hold for every auxiliary input z.

284 M. Ciampi et al.

Lemma 2. For all message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

1
(z) ≈

mimA
Hm

2
(z).

Proof. Suppose by contradiction that the distribution of mimA
Hm

1
(z) is distin-

guishable from mimA
Hm

2
(z); this means that there exists a distinguisher D that

can tell apart such two distributions. We now use D and A to construct an
adversary AHiding that breaks the hiding of ΠNM in time poly(λ) · TNI therefore
reaching a contradiction17. Let CHiding be the challenger of the hiding game, we
consider two randomly chosen challenge messages (m0,m1) sent to CHiding. We
now provide a formal description of the adversary AHiding.
AHiding(m0,m1, z)

1. Upon receiving the 1st round aNM from CHiding, run as follows:
1.1. Compute aLS = P1(1λLS , ;α).
1.2. Send (aNM, aLS) to A.

2. Upon receiving (cNM, cLS, Y) from A, send cNM to CNM.
3. Upon receiving the 3rd round zNM from CHiding, run as follows:

3.1. Compute y such that Y = f(y), set s1 = m0 ⊕ y.
3.2. Compute (com, dec) = NISen(m;σ).
3.3. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (m,σ,⊥,⊥) with

(|x| =). Run zLS = P2(x,w, cLS;α).
3.4. Send (zNM, com, zLS, s1) to A.

4. Simulate MMRec1, . . . ,MMRecpoly(λ) with A when A plays as a sender.
5. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)}, consider ˜comi, the non-

interactive commitment received by MMReci, run in time TNI to compute m̃i

such that ∃ ˜dec : 1 = NIRec(˜comi, ˜dec, m̃i) and add m̃i to M .
6. Give M and the view of A to the distinguisher D and output what D outputs.

The proof ends with the observation that if CHiding has committed to m0 then
the xor of the committed value with s1 is equal to y such that f(y) = Y , like
in Hm

2 (z). If instead CHiding has committed to m1 then the xor of the committed
value and s1 is equal to a random value, like in Hm

1 (z).

Lemma 3. Let pi be the probability that in the i-th right session of H2, for
i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not
hold. We can construct a distinguisher DNM and an adversary ANM that break
the non-malleability of ΠNM. Let CNM be the challenger of the NM commitment
and let (m0,m1) be two randomly chosen challenge messages given to CNM.

17 Recall that ΠNM is secure against adversaries running in time poly(λ) · TNI < TNM.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 285

ANM (m0,m1, z)

Left session:
1. Act as AHiding acts in the left session.
Right sessions:
1. For all j �= i ∈ {1, . . . , poly(λ)} run MMRecj as in Hm

2 (z). Instead run
MMReci as described in steps 1.1, 1.2 and 1.3.

1.1. Forward ãNMi
to RecNM.

1.2. Upon receiving c̃NM from RecNM, pick a random c̃LSi , pick a random
Ỹi and send (c̃NMi

, c̃LSi
, Ỹi) to A.

1.3. Upon receiving z̃NMi
from A, send it to RecNM.

Let mimANM(z) be the view of mimANM(z) and the tuple of committed mes-
sages in the right session. The distinguisher DNM takes as input mimANM(z) and
acts as follows.
DNM(mimANM(z)): Let s̃0i be the committed message sent in the i-right session
by ANM to MMRec. Reconstruct the output messages of A (using the same
randomness of mimANM(z)) to pick s̃1i. If f(s̃1i ⊕ s̃0i) = Ỹi output 1 and output
0 otherwise. The proof ends with the observation that if CNM has committed to
m0 then the xor of the committed value with s1i is equal to y such that f(y) = Y
like in Hm

2 . If instead CHiding has committed to m1 then the xor of the committed
value with s1i is equal to a random string as in Hm

1 .

The 3rd hybrid experiment that we consider is equal to Hm
2 (z) with the difference

that the LS proof system is executed using s0 and the randomness of the non-
malleable commitment of s0. Recall that f(s0 ⊕ s1) = Y . We observe that in
the left session of Hm

2 (z) it already holds that f(s0 ⊕ s1) = Y , therefore we can
switch the witness used in LS and complete the execution of the proof system.
Hm

3 (z).

Left sessions:
1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(1λLS , ;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y) from A.
2.1. Compute (com, dec) = NISen(m;σ).
2.2. Run in time Tf to compute y such that Y = f(y).
2.3. Set s1 = s0 ⊕ y.
2.4. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.5. Compute (com, dec) = NISen(1λNI ,m;σ).
2.6. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with

(|x| =). Run zLS = P2(x,w, cLS;α).
2.7. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

286 M. Ciampi et al.

Even in this case we need to prove the following two properties.

1. For all message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

2
(z) ≈ mimA

Hm
3

(z).
2. Let pi be the probability that in the i-th right session of H3, for any i ∈

{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Lemma 4. For any message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

2
(z) ≈

mimA
Hm

3
(z).

Proof. Suppose by contradiction that there exist a adversary A and a distin-
guisher D that can tell apart such two distributions. We can use this adver-
sary and the associated distinguisher to construct an adversary ALS for the
TLS-witness-indistinguishable property of the LS protocol. Let CLS be the WI
challenger, the adversary works as follows.
ALS(z)

1. Pick s0 ← {0, 1}λ.
2. Compute aNM = Sen1

NM(id, s0; ρ).
3. Upon receiving aLS from CLS, send (aNM, aLS) to A.
4. Upon receiving (cNM, cLS, Y) from A run as follows:

4.1. Run in time Tf to compute y such that Y = f(y).
4.2. Set s1 = s0 ⊕ y.
4.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
4.4. Compute (com, dec) = NISen(1λNI ,m;σ).
4.5. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
, w0 = (⊥,⊥, s0, ρ), w1 =

(m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.
5. Upon receiving zLS from CLS, send (zNM, com, zLS) to A.
6. Simulate MMRec1, . . . ,MMRecpoly(λ) with A, when A plays as a sender.
7. Let M be an empty tuple. For all i ∈ {1, . . . , poly(λ)}, consider ˜comi, the non-

interactive commitment received by MMReci, and run in time T̃NI to compute
m̃i such that ∃ ˜dec : 1 = NIRec(˜comi, ˜dec, m̃i) and add m̃i to M .

8. Give M and the view of A to the distinguisher D.
9. Output what D outputs.

The proof ends with the observation that if CLS has has used as witness the
randomness of the non-malleable commitment of the value s0 such that f(s0 ⊕
s1) = Y then we are in the hybrid experiment Hm

3 (z). If instead CLS has used as
a witness the randomness used to compute the non-interactive commitment NI
then we are in the hybrid experiment Hm

2 (z).

Lemma 5. Let pi be the probability that in the i-th right session of Hm
3 , for

i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that for a right session i the claim does not hold,
then we can construct an adversary A′

LS for the TLS witness-indistinguishable
property of the LS protocol. Let CLS be the WI challenger, the adversary works
as follows.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 287

A′
LS(z)

1. Pick s0 ← {0, 1}λ.
2. Compute aNM = Sen1

NM(id, s0; ρ).
3. Upon receiving aLS from CLS, send (aNM, aLS) to A.
4. Upon receiving (cNM, cLS, Y) from A, run as follow:

4.1. Run in time Tf to compute y such that Y = f(y).
4.2. Set s1 = s0 ⊕ y.
4.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
4.4. Compute (com, dec) = NISen(1λNI ,m;σ).
4.5. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
, w0 = (⊥,⊥, s0, ρ), w1 =

(m,σ,⊥,⊥) and send (x, cLS, w0, w1) to CLS.
5. Upon receiving zLS from CLS, send (zNM, com, zLS) to A.
6. Simulate MMRec1, . . . ,MMRecpoly(λ) with A, when A plays as a sender.
7. Run in time T̃NM to extract the value s̃0i from the non-malleable commitment

sent by A in the i-th session. Output 1 if f(s̃0i ⊕ s̃1i) = Ỹi and output 0
otherwise.

The proof ends with the observation that if CLS has used w0 = (⊥,⊥, s0, ρ)
as a witness then A acts as in Hm

3 (z), sending with non-negligible probability
two shares such that the xor of them gives a puzzle solution. If CLS has used
w1 = (m,σ,⊥,⊥) then the xor of the two shares is with overwhelming probability
different from a puzzle solution as in Hm

2 (z).

The next hybrid experiment that we consider is H0
3(z). The only differences

between this hybrid experiment and Hm
3 (z) is that the sender, using NI, commits

to a message 0λ instead of m.
H0

3(z).

Left session:
1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y) from A, run as follows:
2.1. Run in time Tf to compute y such that Y = f(y).
2.2. Set s1 = s0 ⊕ y.
2.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.4. Compute (com, dec) = NISen(0λ;σ).
2.5. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with

(|x| =). Run zLS = P2(x,w, cLS;α).
2.6. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

We now prove the following properties.

288 M. Ciampi et al.

1. Let pi be the probability that in the i-th right session of H0
3, for any i ∈

{1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

2. For any message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

3
(z) ≈ mimA

H0
3
(z).

Lemma 6. Let pi be the probability that in the i-th right session of H0
3, for

i ∈ {1, . . . , poly(λ)}, A sends s̃1i such that f(s̃1i ⊕ s̃0i) = Ỹi where s̃0i is the
value committed using NM. Then pi < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that there exists a right session i ∈
{1, . . . , poly(λ)} in which A commit to a string s̃0 such that f(s̃0i ⊕ s̃1i) = Ỹi

using ΠNM. Then we can construct an adversary ANI that breaks the hiding
property of the non interactive commitment scheme NI. Let CNI be the chal-
lenger that on input m0 = 0λ and m1 = m, picks a random bit b, computes
(com, dec) = NISen(1λNI ,mb;σ) and sends com to ANI.

Before describing ANI we need to consider, as in the proof of Lemma 1, a
machine Sn→1 that internally executes A, and interacts with a receiver Recext of
the protocol ΠNM acting as the sender.
Sn→1(com, ϕ, z) Run A using randomness ϕ.

1. Pick s0 ← {0, 1}λ.
2. Compute aNM = Sen1

NM(id, s0; ρ).
3. Compute aLS = P1(1λLS , ;α).
4. Send (aNM, aLS) to A.
5. Upon receiving (cNM, cLS, Y) from A, run as follows:

5.1. Run in time Tf to compute y such that Y = f(y).
5.2. Set s1 = s0 ⊕ y.
5.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
5.4. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with

(|x| =). Run zLS = P2(x,w, cLS;α).
5.5. Send (zNM, com, zLS, s1) to A.

6. Let i ∈ {1, . . . , poly(λ)} be the right session that contradicts the claim. For all
j �= i ∈ {1, . . . poly(λ)} run MMRecj as in H4(m, z). Run MMReci as follows.

6.1. Upon receiving the 1rd round of the i-th right session (ãNMi , ãLSi) from
A, send ãNMi

to the external receiver Recext.
6.2. Upon receiving c̃NMi from Recext, run as follows:

i. Run V to obtain c̃LSi .
ii. Pick a random Ỹi.
iii. Send (c̃NMi , c̃LSi , Ỹi) to A.

6.3. Upon receiving the 3rd round of the i-th right session (z̃NMi
, ˜comi,

z̃LSi
, s̃1i), set x̃ =

(
(ãNMi

, c̃NMi
, z̃NMi

), Ỹ , s̃1i, ˜comi, ĩd
)

and abort iff
(ãLSi , c̃LSi , z̃LSi) is not accepted by V with respect to x̃.

6.4. Send z̃NMi
to Recext.

Now we can conclude the proof of this lemma by describing how ANI works.
ANI runs the extractor of the protocol ΠNM using Sn→1 as sender (recall that
an extractor of ΠNM plays only having access to a sender of ΠNM). Since the

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 289

extractor with non-negligible probability outputs the committed message we
have that ANI retrives s̃0i. Moreover ANI gets s̃1i by reconstructing the view of
A using the randomness ϕ. Since by contradiction A contradicts the claim of this
lemma, we have that ANI can break the hiding of NI because f(s̃0i⊕s̃1i) = Ỹ with
non-negligible probability in H0

3(z) where m0 = 0λ is committed in com, while
the same happens with negligible probability only in Hm

3 (z) where m1 = m.
Therefore if this happens, ANI outputs 0, otherwise ANI outputs a random bit.

Lemma 7. For any message m ∈ {0, 1}poly(λ) it holds that mimA
Hm

3
(z) ≈

mimA
H0

3
(z).

Proof. Suppose by contradiction that there exists a distinguisher D and an
adversary A such that mimA

Hm
3

(z) is distinguishable from mimA
H0

3
(z) then we can

construct an adversary ANI that breaks the hiding property of the non-interactive
commitment scheme NI. Let CNI be the challenger that on input m0 = 0λ and
m1 = m, picks a random bit b, computes (com, dec) = NISen(1λNI ,mb;σ) and
sends com to ANI. Before describing ANI, we consider the following experiment
Emb

(ϕ, com, z).
Emb

(ϕ, com, z).
The randomness required from all next steps is take from ϕ.

Run A(z).
Left session:
1. First round.

1.1. Pick s0 ← {0, 1}λ.
1.2. Compute aNM = Sen1

NM(id, s0; ρ).
1.3. Compute aLS = P1(;α).
1.4. Send (aNM, aLS) to A.

2. Third round. Upon receiving (cNM, cLS, Y) from A, run as follows:
2.1. Run in time Tf to compute y such that Y = f(y).
2.2. Set s1 = s0 ⊕ y.
2.3. Compute (zNM, decNM) = Sen2

NM(id, cNM, s0; ρ).
2.4. Set x =

(
(aNM, cNM, zNM), Y, s1, com, id

)
and w = (⊥,⊥, s0, ρ) with

(|x| =). Run zLS = P2(x,w, cLS;α).
2.5. Send (zNM, com, zLS, s1) to A.

Right sessions: Act as a proxy between A and MMRec1, . . . ,MMRecpoly(λ).

Now we are ready to describe the adversary ANI for the hiding of NI. ANI

executes the following steps.

1. Let M be an empty tuple. ANI runs Emb
(ϕ, com, z).

2. For all i ∈ {1, . . . , poly(λ)}, ANI runs the extractor of LS on the i-th right
session of the execution of Emb

(ϕ, com, z) obtaining m̃i and adds it to M .
3. Using the randomness ϕ, ANI reconstructs the view of A in the execution of

Emb
(ϕ, com, z). Use such view and M as input to D.

4. Output what D outputs.

290 M. Ciampi et al.

Common input: Security parameters: λ, (λNI, λNM, λLS) = Params(λ). Identity:
id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Pick s0 ← {0, 1}λ.
2. Pick a randomness ρ, and compute (decNM, aNM) = Sen1

NM(id, s0; ρ).
3. Pick a randomness α and compute aLS = P1(; α).
4. Send (aNM, aLS) to A.
5. Upon receiving (cNM, cLS, Y) from A.

5.1. Pick a randomness σ and compute (com, dec) = NISen(1λNI , 0λ; σ).
5.2. Pick s1 ← {0, 1}λ.
5.3. Compute zNM = Sen2

NM(id, cNM, s0; ρ).
5.4. Set x = (aNM, cNM, zNM), Y, s1, com, id and w = (0λ, σ, ⊥, ⊥) with (|x| =).

Run zLS = P2(x, w, cLS; α) where x is the theorem to be proven and w is the
witness.

5.5. Send (zNM, com, zLS, s1) to A.

Stand-alone commitment:

1. S acts as a proxy between A and MMReci for i = 1, . . . , poly(λ).

Fig. 3. The simulator S.

The proof ends with the observation that if CNI has committed to 0λ then the
view of A and the distribution of the committed messages coincide with H0

3(z),
otherwise they coincide with Hm

3 (z).

The entire security proof now is almost over because we have proved that for
all m ∈ {0, 1}poly(λ) the following relation holds:

{mimA,m
ΠMMCom

(z)}z∈{0,1}� = {mimA
Hm

1
(z)}z∈{0,1}� ≈ {mimA

Hm
2

(z)}z∈{0,1}� ≈
{mimA

Hm
3

(z)}z∈{0,1}� ≈ {mimA
H0

3
(z)}z∈{0,1}� ≈ {mimA

H0
2
(z)}z∈{0,1}� ≈

{mimA
H0

1
(z)}z∈{0,1}� = {simS

ΠMMCom
(1λ, z)}z∈{0,1}� .

We observe that in this proof we had to consider a delayed-input version of
our commitment scheme. Indeed, the sender can choose the message m to be
committed by sending the non-interactive commitment com of the message m in
the 3rd round. It is easy to see that the same security proof still works when
the non-interactive commitment is sent in the 1st round, but then clearly the
delayed-input property is lost.

4 More Protocols Against Concurrent MiM Attacks

In this section we show 3-round arguments of knowledge and identification
schemes that are secure against concurrent MiM attacks.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 291

4.1 Non-Malleable WI Arguments of Knowledge

Our concurrent NM commitment scheme when instantiated without sessions ids,
can be used to obtain almost directly a commit-and-prove AoK. Recall that in
our scheme there is a non-interactive commitment com of m and then rest of
the protocol is an AoK. This AoK is used by the sender to claim that either he
knows the message committed in com, or he committed through ΠNM to a share
s0 that allows to compute the solution of the puzzle.

In order to be fully compliant with the notion of commit-and-prove AoK, we
just need to make a trivial change to the statement of the LS subprotocol. Given
an instance x ∈ L and a witness w the prover of our commit-and-prove AoK
uses the non-interactive commitment to commit to w, and uses the rest to prove
that either he knows the committed message w that moreover is a witness for
x ∈ L or again, he committed through ΠNM to a share s0 that allows to compute
the solution of the puzzle.

More formally, we define a commit-and-prove AoK ΠCaP = (PCaP,VCaP) that
corresponds to our concurrent NM commitment scheme with some minimal
changes. First, PCaP and VCaP have as a common input an instance x ∈ L,
where L is an NP-language. Second, PCaP has as private input w such that
(x,w) ∈ RelL. Third, PCaP runs MMSen on w, while VCaP runs MMRec with the
exception of running LS for the statement:

LCaP =
{(

x, (a, c, z), Y, s1, com, id
)

: (∃ (w, σ) s.t. com = NISen(w; σ) AND (x, w) ∈ RelL)

OR
(∃(ρ, s0) s.t. a = Sen1

NM(id, s0; ρ) AND z = Sen2
NM(id, c, s0; ρ) AND Y = f(s0 ⊕ s1)

)}

that is WI for the corresponding NP relation RelLCaP
.

Theorem 3. Suppose there exist OWPs w.r.t. subexponential-time adversaries,
then ΠCaP is a 3-round concurrent NMWI argument of knowledge.

Proof. The proof of this theorem is pretty straightforward given the previous
proof for the concurrent non-malleability of our commitment scheme, therefore
here we just point out the main intuition.

First of all, ΠCaP is clearly a commit-and-prove AoK. Indeed, there exists a
commitment of the witness and there is an AoK proving that the committed
message is a witness. In order to see this, notice that for any ppt malicious
prover succeeding with non-negligible probability in proving a statement x ∈ L,
the extractor of LS (of course this needs to be run against an augmented machine)
would return (in expected polynomial time and with overwhelming probability)
the committed witness since otherwise it would return a share s0 that combined
with s1 allows to invert the OWP in polynomial time.

We can now focus on the concurrent NMWI property, and we can assume
(by contradiction) that the adversary succeeds in encoding in the right sessions
witnesses that are related to the witnesses encoded in the left sessions. Notice
that the proof is almost identical to the one of Theorem 2. We can indeed prove
the case of one prover and multiple verifiers (i.e., one-many), and then we can
apply the fact that any one-many NMWIAoK is also a concurrent NMWIAoK.
Indeed this was used in [34] and follows similar arguments given in [30,42]. For

292 M. Ciampi et al.

the one-many case we can therefore follow the proof of Theorem 2 with the
following trivial change. Instead of running hybrid experiments starting with a
message m and ending with a message 0, in the proof of one-many concurrent
NMWI we start with a witness w0 and end with a witness w1. Everything else
remains untouched and all the reductions work directly.

ΠCaP can be instantiated to be public-coin and delayed-input, precisely as our
concurrent NM commitment scheme. While what we discussed above applies to
arguments only, techniques to obtain proofs can be found in [8].

Instances with Just One Witness and Non-Transferability. Recall that the defi-
nition of NMWI considers two experiments that differ only on the witness used
by the prover. Therefore it is unclear which security is given by a NMWIAoK
when the instance has only one witness. In order to understand the security
guaranteed by ΠCaP in such a case, consider the proof of concurrent NMWI, and
thus, in turn, consider the proof of concurrent non-malleability of our commit-
ment scheme. Notice that while the sequence of hybrids goes from an experiment
where the committed message is m to an experiment where the committed mes-
sage is 0, there is an experiment H3(·, z) in which the committed message is irrel-
evant. Indeed, the entire execution is based on inverting the OWP, in encrypting
it through the shares s0 and s1 and in using this witness in the execution of LS.
This experiment can be seen as the execution of a quasi-polynomial time simula-
tor that breaks the puzzle18 following the approach of [39]19. Therefore following
the same observations of [39,40] on the security offered by quasi-polynomial time
simulation, our concurrent NMWIAoK even for instances with just one witness
would not help the adversary in proving a statement whose witness is much
harder to compute than breaking the puzzle.

The above discussion explains also the non-transferability flavor of ΠCaP.
Indeed, at first sight, a MiM attack of an adversary A to an AoK should be an
attempt of A to transfer the proof that it gets from the prover to a verifier. As
such, an AoK that is secure against concurrent MiM attacks should provide some
non-transferability guarantee. Since the success of A during a MiM attack can be
replicated without a MiM attack by a quasi-polynomial time simulator, we have
that ΠCaP guarantees non-transferability whenever computing the witnesses for
the considered instances is assumed to be harder than breaking the puzzle.

NMWI for NMZK in the Bare Public-Key (BPK) Model. In [34] it is shown that
a concurrent NMWIAoK Π gives directly a concurrent NMZKAoK in the BPK
model. The construction is straightforward as it just consists of running Π twice,
first from the verifier to the prover (proving knowledge of one out of two secrets)
and then from the prover to the verifier (proving knowledge of either a witness
for x ∈ L or of one out of the two secrets of the verifier). Our construction

18 The puzzle can be implemented through a OWP that can be inverted in quasi-
polynomial time.

19 The work of Pass did not take into account MiM attacks.

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 293

from Theorem 3 when combined with the construction of [34] gives a candidate
round-efficient concurrent NMZKAoK in the BPK model.

4.2 Identification Schemes

We show here a 3-round identification scheme secure against concurrent MiM
attacks following the concept of proving knowledge of a secret.

Identification Schemes Based on Proving Knowledge of a Secret. The importance
of this setting was for instance discussed in [9] mentioning the following example.
Consider a verifier V that provides a service to restricted group of provers P. A
malicious prover P� could give to another party B that is not part of the group,
some partial information about his secret that is sufficient for B to obtain the
service from V, while still B does not know P�’s secret. The paradigm of prov-
ing knowledge of a secret in an identification scheme allows to prevent attacks
like the one just described. When the identification scheme consists in proving
knowledge of a secret the sole fact that B convinces V is sufficient to claim that
one can extract the whole secret from B. This implies that B obtained P�’s
secret corresponding to his identity, and thus B is actually P�20.

We give a security definition that considers concurrent MiM attacks similarly
to the definition CR2 (concurrent-reset on-line) of [2]. The definition of [2] also
includes possible reset attacks in addition to allowing A to invoke multiple con-
current executions of the prover in the left sessions while A is interacting with
the verifier. In the remaining part of this section we will ignore reset attacks since
they are out of the purpose of our work. As described in [25] in most network-
based settings reset attacks are not an issue. Following the notation of [25] we
now give a formal security definitions for an identification scheme.

Definition 4. Let Π = (K,P,V) be a tuple of ppt algorithms. We say Π is an
identification scheme secure against MiM attacks if the following two properties
hold. (1) Correctness. For all (pk, sk) ← K(1λ),Prob [〈P(sk),V〉(pk) = 1] = 1.
(2) Security. For all ppt adversaries A there exists a negligible function ν such
that Prob

[
(pk, sk) ← K(1λ) : 〈AP(sk),V〉(pk) = 1 AND τ /∈ T

]
< ν(λ), where

A has oracle access to a stateful (i.e., non-resettable) P(sk), T is defined as the
transcripts set of the interactions between P(sk) and A, and τ is defined as the
transcript of one of the interactions between A and V. All interactions can be
arbitrarily interleaved and A controls the scheduling of the messages.

Identification Scheme from NMWI. Our construction ΠID = (KID,PID,VID)
follows the approach of [9,34]. Let f : {0, 1}λ → {0, 1}λ be a OWP, let λ be
the security parameter. The public key of PID is the pair (pk0, pk1), the secret
key is skb for a randomly chosen bit b, such that pkb = f(skb). Therefore the
algorithm KID takes as input the security parameter and outputs ((pk0, pk1), skb)
as described above. The protocol simply consists in PID running our 3-round
20 This is instead not likely to happen in scenarios where the same secret key is used

for other critical tasks such as signatures of any type of document.

294 M. Ciampi et al.

concurrent NMWIAoK ΠCaP with VID to prove that it knows the pre-image of
either pk0 or pk1. Formally, let Lid be the following language Lid = {(y0, y1) :
∃ x ∈ {0, 1}λ such that y0 = f(x) ∨ y1 = f(x)}, then the identification scheme
consists of PID proving the statement (pk0, pk1) ∈ Lid using ΠCaP.

Theorem 4. Assuming the existence of OWPs w.r.t. subexponential-time adver-
saries, there is an identification scheme secure against concurrent MiM attacks.

The proof is again straight-forward. If a PPT A succeeds then concurrent
NMWI of ΠCaP guarantees that the witness that he encoded in the proof is
independent of the one encoded in the proofs given by P. Therefore by using the
AoK property of ΠCaP we can invert f with non-negligible probability.

5 Concurrent Malleability of [21]

Here we briefly explain the intuition behind the fact that the 3-round NM com-
mitment scheme ΠNM = (SenNM,RecNM) of [21] is malleable with respect to a
concurrent MiM attack. We use ideas from [16]. We describe a succeeding con-
current MiM adversary A along with a distinguisher D. We will refer to a NM
commitment of the message m using the scheme ΠNM as nmcom(m). We stress
that nmcom(m) is the result of a 3-round interaction between the sender SenNM

and the receiver RecNM. We start by describing the high-level idea of the proto-
col ΠNM. In the 1st round a left-state L is computed using a special split-state
non-malleable code. Let n = |L|. Then a non-interactive commitment comL of L is
sent in the 1st round, while in the 3rd round the sender computes the right-state
R corresponding to the message m and sends it in the clear. In parallel there
is also a PoK of the message L committed in comL. This PoK can be seen as a
PoK of each bit of L. Therefore there are n PoKs where the j-th proof is used
to prove knowledge of the bit Lj of L.

The actual scheme of [21] is more sophisticated than what we have just
described, there are various other components but however they have no impact
on the work done by our A, so we will omit them from this short description.
Essentially, we will show here that a simplified version of the scheme of [21] is
concurrently malleable. However all our arguments apply to their full scheme.

The proposed adversary A interacts with one sender SenNM in the left ses-
sion and with many receiver RecNM1, . . . ,RecNMpoly(λ) in the right sessions. The
behavior of A in the left and right session can be summarized as following.

Left Session. SenNM computes the 1st round of ΠNM as follows. First, he
computes L, then he computes a perfectly binding commitment comL of L and
computes n PoKs one for each bit of the message committed in comL. In the
last round of ΠNM SenNM completes the n PoKs and sends R to A such that the
pair (L,R) is a valid encoding of m according to the special non-malleable code.
Hence in the left session A receives comL, R and n PoKs one for each bit of the
string committed in comL, therefore a PoK for each bit Lj of L.

Right Sessions. In the right sessions A interacts with RecNM1, . . . ,
RecNMpoly(λ) mauling the commitments received on the left. More specifi-
cally, it starts 2n right sessions where n of them should correspond to

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 295

nmcom(L1), . . . , nmcom(Ln) such that L = L1 . . . Ln, and the other n sessions
should correspond to invalid commitments (we refer to such commitments as
nmcom(⊥)).

More precisely, our adversary computes, for each bit Lj of L, two NM com-
mitments nmcom(1λ), nmcom(0λ) such that if Lj = 1 then nmcom(0λ) is invalid,
otherwise nmcom(1λ) is invalid. In order to poison one out of nmcom(0λ) and
nmcom(1λ), A will rely on the PoK of Lj received on the left. The PoK of
Lj will be plugged in the PoKs of nmcom(0λ) and in the PoKs of nmcom(1λ).
More precisely one of the n PoKs of nmcom(0λ) that correspond to a PoK of
the bit 0 will be replaced with the PoK of Lj . The same approach is applied
when A computes nmcom(1λ) with the only difference that the PoK that A will
replace corresponds to a PoK of a bit 1. In this way only one out of nmcom(0λ)
and nmcom(1λ) still remain a valid commitment. In particular nmcom(Lj) will
remain a valid commitment while nmcom(1 − Lj) will be poisoned and thus will
correspond to an invalid commitment (Fig. 4).

There is however a subtlety. Since the PoK played on the right is for one
component copied from the PoK played on the left, it can be completed success-

comL

. . .· · ·

R · · ·

Sen

⊥

⊥

Lpoly(n)

Rec1

Recpoly(n)

L1

D((. . . ,R, . . .), (L1, . . . , Lpoly(n)))

nmcom(m) Rec1

Recpoly(n)

A

Left Session Right Session

∀j ∈ {1, . . . , n}∃ij > 0 : Lij = Lj ∧ ∀t ∈ {ij + 1, . . . , ij+1 − 1}
Lt =⊥ ∧1 < i1 < · · · < in < poly(n)

Fig. 4. The one-many MiM A.

296 M. Ciampi et al.

fully with constant probability and the adversary has to abort the session if it
can not complete the PoK. Therefore each of the above 2n right sessions could
be repeated multiple times, but however the total amount of right sessions will
still be polynomial in the security parameter. Finally our distinguisher D given
as input the committed bits L1, . . . , Ln and R contained in the view of A, can
easily recover the message m committed in the left interaction.

Acknowledgments. We thank Vipul Goyal, and Silas Richelson for remarkable dis-
cussions on [22]. Research supported in part by “GNCS - INdAM”, EU COST Action
IC1306, NSF grants 1065276, 1118126 and 1136174, US-Israel BSF grant 2008411,
OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty
Research Award, B. John Garrick Foundation Award, Teradata Research Award, and
Lockheed-Martin Corporation Research Award. This material is based upon work sup-
ported in part by DARPA Safeware program. The views expressed are those of the
authors and do not reflect the official policy or position of the Department of Defense
or the U.S. Government. The work of the 1st, 3rd and 4th authors has been done in
part while visiting UCLA.

References

1. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: Proceedings of 43rd Symposium on Foundations of
Computer Science (FOCS 2002), Vancouver, BC, Canada, 16–19 November 2002,
pp. 345–355 (2002)

2. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification protocols secure
against reset attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 495–511. Springer, Heidelberg (2001)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Blundo, C., Persiano, G., Sadeghi, A.-R., Visconti, I.: Improved security notions
and protocols for non-transferable identification. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 364–378. Springer, Heidelberg (2008)

5. Brenner, H., Goyal, V., Richelson, S., Rosen, A., Vald, M.: Fast non-malleable
commitments. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 1048–
1057 (2015)

6. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge
(extended abstract). In: Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, Portland, OR, USA, 21–23 May 2000, pp. 235–244
(2000). http://doi.acm.org/10.1145/335305.335334

7. Cao, Z., Visconti, I., Zhang, Z.: Constant-round concurrent non-malleable statis-
tically binding commitments and decommitments. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 193–208. Springer, Heidelberg (2010)

8. Cao, Z., Visconti, I., Zhang, Z.: On constant-round concurrent non-malleable proof
systems. Inf. Process. Lett. 111(18), 883–890 (2011)

9. Cho, C., Ostrovsky, R., Scafuro, A., Visconti, I.: Simultaneously resettable argu-
ments of knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 530–547.
Springer, Heidelberg (2012)

http://doi.acm.org/10.1145/335305.335334

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 297

10. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). Cryptology ePrint
Archive, Report 2016/566. http://eprint.iacr.org/

11. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: On round-efficient non-
malleable protocols. Cryptology ePrint Archive, Report 2016/621 (2016). http://
eprint.iacr.org/2016/621

12. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved
OR-composition of sigma-protocols. In: Kushilevitz, E., et al. (eds.) TCC 2016-
A. LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49099-0 5

13. Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Online/offline
OR composition of sigma protocols. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49896-5 3

14. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowl-
edge with concurrent soundness in the bare public-key model. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)

15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
New Orleans, Louisiana, USA, 5–8 May 1991, pp. 542–552 (1991)

16. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

17. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing 1987, New York,
USA, pp. 210–217 (1987)

18. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 16

19. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011,
San Jose, CA, USA, 6–8 June 2011, pp. 695–704 (2011)

20. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commit-
ments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012,
pp. 51–60 (2012)

21. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. IACR
Cryptology ePrint Archive 2015 (2015). Version 20151210: 144729 (posted10-Dec-
2015 14: 47: 29 UTC). http://eprint.iacr.org/2015/1178

22. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the 48th Annual ACM Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, 19–21 June 2016

23. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-
malleability. In: 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 41–50 (2014)

24. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party computa-
tion. Cryptology ePrint Archive, Report 2016/074 (2016). http://eprint.iacr.org/

25. Katz, J.: Efficient cryptographic protocols preventing “Man-in-the-Middle”
attacks. Ph.D. thesis, Columbia University (2002)

http://eprint.iacr.org/
http://eprint.iacr.org/2016/621
http://eprint.iacr.org/2016/621
http://dx.doi.org/10.1007/978-3-662-49099-0_5
http://dx.doi.org/10.1007/978-3-662-49099-0_5
http://dx.doi.org/10.1007/978-3-662-49896-5_3
http://dx.doi.org/10.1007/978-3-662-49896-5_3
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://dx.doi.org/10.1007/978-3-662-49896-5_16
http://eprint.iacr.org/2015/1178
http://eprint.iacr.org/

298 M. Ciampi et al.

26. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). http://dx.doi.org/10.1007/978-3-540-28628-8 21

27. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991)

28. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 705–714 (2011)

29. Lin, H., Pass, R.: Constant-round nonmalleable commitments from any one-way
function. J. ACM 62(1), 5:1–5:30 (2015)

30. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008)

31. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent
security: universal composability from stand-alone non-malleability. In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31–June 2 2009, pp. 179–188 (2009)

32. Lindell, Y.: Foundations of cryptography 89–856 (2010). http://u.cs.biu.ac.il/
∼lindell/89-856/complete-89-856.pdf

33. Mittelbach, A., Venturi, D.: Fiat-shamir for highly sound protocols is instantiable.
Cryptology ePrint Archive, Report 2016/313 (2016). http://eprint.iacr.org/

34. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent non-malleable
zero knowledge in the bare public-key model. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
II. LNCS, vol. 5126, pp. 548–559. Springer, Heidelberg (2008)

35. Ostrovsky, R., Persiano, G., Visconti, I.: Simulation-based concurrent non-
malleable commitments and decommitments. In: Reingold, O. (ed.) TCC 2009.
LNCS, vol. 5444, pp. 91–108. Springer, Heidelberg (2009)

36. Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and upper bounds
for selective decommitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
559–578. Springer, Heidelberg (2013)

37. Ostrovsky, R., Visconti, I.: Simultaneous resettability from collision resistance.
Electronic Colloquium on Computational Complexity (ECCC) 19, 164 (2012)

38. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008)

39. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol com-
position. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Hei-
delberg (2003)

40. Pass, R.: Bounded-concurrent secure multi-party computation with a dishonest
majority. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, 13–16 June 2004, pp. 232–241 (2004)

41. Pass, R.: Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 334–354.
Springer, Heidelberg (2013)

42. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: Proceedings of
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005),
Pittsburgh, PA, USA, 23–25 October 2005, pp. 563–572 (2005)

http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://eprint.iacr.org/

Concurrent Non-Malleable Commitments (and More) in 3 Rounds 299

43. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 533–542 (2005)

44. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Comput.
37(6), 1891–1925 (2008)

45. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009)

46. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010)

47. Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare
public-key model. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 153–171. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-29011-4 11

48. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, 23–26 October 2010, Las Vegas, Nevada, USA, pp. 531–540. IEEE
Computer Society (2010)

49. Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in the bare
public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
129–147. Springer, Heidelberg (2007)

http://dx.doi.org/10.1007/978-3-642-29011-4_11

IBE, ABE, and Functional Encryption

Programmable Hash Functions from Lattices:
Short Signatures and IBEs with Small Key Sizes

Jiang Zhang1(B), Yu Chen2(B), and Zhenfeng Zhang3(B)

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
jiangzhang09@gmail.com

2 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

yuchen.prc@gmail.com
3 Trusted Computing and Information Assurance Laboratory, Institute of Software,

Chinese Academy of Sciences, Beijing, China
zfzhang@tca.iscas.ac.cn

Abstract. Driven by the open problem raised by Hofheinz and Kiltz
[34], we study the formalization of lattice-based programmable hash
function (PHF), and give two types of constructions by using sev-
eral techniques such as a novel combination of cover-free sets and lat-
tice trapdoors. Under the Inhomogeneous Small Integer Solution (ISIS)
assumption, we show that any (non-trivial) lattice-based PHF is collision-
resistant, which gives a direct application of this new primitive. We
further demonstrate the power of lattice-based PHF by giving generic
constructions of signature and identity-based encryption (IBE) in the
standard model, which not only provide a way to unify several previ-
ous lattice-based schemes using the partitioning proof techniques, but
also allow us to obtain a new short signature scheme and a new fully
secure IBE scheme with keys consisting of a logarithmic number of matri-
ces/vectors in the security parameter κ. Besides, we also give a refined
way of combining two concrete PHFs to construct an improved short sig-
nature scheme with short verification keys from weaker assumptions. In
particular, our methods depart from the confined guessing technique of
Böhl et al. [8] that was used to construct previous standard model short
signature schemes with short verification keys by Ducas and Micciancio
[24] and by Alperin-Sheriff [6], and allow us to achieve existential unforge-
ability against chosen message attacks (EUF-CMA) without resorting to
chameleon hash functions.

1 Introduction

As a primitive capturing the partitioning proof techniques, programmable hash
function introduced by Hofheinz and Kiltz [33] is a powerful tool to construct
provably secure cryptographic schemes in the standard model. Informally, a PHF
H = {HK} is a keyed group hash function over some finite group G, which can
work in two (statistically) indistinguishable modes depending on how the key is
generated: if the key K is generated in the normal mode, then the hash function
behaves normally and maps an input X into a group element HK(X) ∈ G; while
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 303–332, 2016.
DOI: 10.1007/978-3-662-53015-3 11

304 J. Zhang et al.

if the key K ′ is generated in the trapdoor mode, then (with the help of some
trapdoor information td) it can additionally output a secret pair (aX , bX) such
that HK′(X) = gaX hbX holds for some prior fixed group generators g, h ∈ G.
More formally, let u, v ∈ Z be some positive integers, H is said to be (u, v)-
programmable if given any inputs X1, . . . , Xu and Y1, . . . , Yv satisfying Xi �= Yj

for any i and j, the probability Pr[aX1 = · · · = aXu
= 0 ∧ aY1 , . . . , aYv

�= 0] ≥
1/poly(κ) for some polynomial poly(κ) in the security parameter κ, where the
probability is over the random coins used in generating K ′ and td. This feature
gives a partition of all inputs in terms of whether aX = 0, and becomes very
useful in security proofs when the discrete logarithm (DL) is hard in G [33].

Since its introduction, PHFs have attracted much attention from the research
community [15,26,31,34,51], and had been used to construct many crypto-
graphic schemes (such as short signature schemes [32]) in the standard model.
However, both the definition and the constructions of traditional PHFs seem
specific to hash functions defined over groups where the “DL problem” is hard.
This might be the reason why almost all known PHFs were constructed from
“DL groups”. Actually, it was left as an open problem [34] to find instantiations
of PHF from different assumptions, e.g., lattices.

Facing the rapid development of quantum computers, the past decade has
witnessed remarkable advancement in lattice-based cryptography. Nevertheless,
the silhouette of lattice-based PHFs is still not very clear. At Crypto 2013, Freire
et al. [26] extended the notion of PHF to the multilinear maps setting. However,
recent study shows that there is a long way to go before obtaining a practical and
secure multilinear maps from lattices [16,18,19,27,35]. An intriguing question
of great interest is to construct lattice-based PHFs or something similar based
on standard hard lattice problems.

Lattice-Based Short Signatures. It is well-known that digital signature
schemes [36] can be constructed from general assumptions, such as one-way
functions. Nevertheless, these generic signature schemes suffer from either large
signatures or large verification keys, thus a main open problem is to reduce the
signature size as well as the verification key size. The first direct constructions of
lattice-based signature schemes were given in [29,40]. Later, many works (e.g.,
[7,22,39]) significantly improved the efficiency of lattice-based signature schemes
in the random oracle model. In comparison, the progress in constructing efficient
lattice-based signature schemes in the standard model was relatively slow. At
Eurocrypt 2010, Cash et al. [14] proposed a signature scheme with a linear num-
ber of vectors in the signatures. The first standard model short signature scheme
with signatures consisting of a single lattice vector was due to Boyen [12], which
was later improved by Micciancio and Peikert [43]. However, the verification keys
of both schemes in [12,43] consist of a linear number of matrices.

In 2013, Böhl et al. [8] constructed a lattice-based signature scheme with
constant verification keys by introducing the confined guessing proof technique.
Later, Ducas and Micciancio [24] adapted the confined guessing proof technique
to ideal lattices, and proposed a short signature scheme with logarithmic ver-
ification keys. Recently, Alperin-Sheriff [6] constructed a short signature with

Programmable Hash Functions from Lattices: Short Signatures and IBEs 305

constant verification keys based on a stronger hardness assumption by using the
idea of homomorphic trapdoor functions [30]. Due to the use of the confined
guessing technique, the above three signature schemes [6,8,24] shared two unde-
sired byproducts. First, the security can only be directly proven to be existen-
tially unforgeable against non-adaptive chosen message attacks (EUF-naCMA).
Even if an EUF-naCMA secure scheme can be transformed into an EUF-CMA
secure one by using known techniques such as chameleon hash functions [37], in
the lattice setting [24] this usually introduces an additional tag to each signature
and roughly increases the signature size by twice. Second, a reduction loss about
(Q2/ε)c for some parameter c > 1 seems unavoidable, where Q is the number of
signing queries of the forger F , and ε is the success probability of F . Therefore,
it is desirable to directly construct an EUF-CMA secure scheme that has short
signatures, short verification keys, as well as a relatively tight security proof.

Identity-Based Encryption from Lattices. Shamir [48] introduced identity-
based encryption (IBE) in 1984, but the first realizations were due to Boneh and
Franklin from pairings [10] and Cocks from quadratic residues [17]. In the lattice
setting, Gentry et al. [29] proposed the first IBE scheme based on the learn-
ing with errors (LWE) assumption in the random oracle model. Later, several
works [2,14,23,52] were dedicated to the study of lattice-based (hierarchical)
IBE schemes also in the random oracle model. There were a few works focus-
ing on designing standard model lattice-based IBE schemes [1,2,14]. Concretely,
the scheme in [2] was only proven to be selective-identity secure in the standard
model. By using standard complexity leverage technique [9], one can generally
transform a selective-identity secure IBE scheme into a fully secure one. But the
resulting scheme has to suffer from a reduction loss proportional to L, where L is
the number of distinct identities for the IBE system and is independent from the
number Q of the adversary’s private key queries in the security proof. Since L is
usually super-polynomial and much larger than Q, the above generic transfor-
mation is a very unsatisfying approach [28]. In [1,14], the authors showed how
to achieve full security against adaptive chosen-plaintext and chosen-identity
attacks, but both standard model fully secure IBE schemes in [1,14] had large
master public keys consisting of a linear number of matrices. In fact, Agrawal,
Boneh and Boyen left it as an open problem to find fully secure lattice-based
IBE schemes with short master public keys in the standard model [1].

1.1 Our Contributions

Because of the (big) differences in the algebraic structures between lattices and
DL groups, the traditional definition of PHFs does not seem to work on lattices.
This makes it highly non-trivial to find instantiations of traditional PHFs on
lattices. In this paper, we introduce the notion of lattice-based programmable
hash function (PHF). Although our lattice-based PHF has gone beyond the
realm of traditional PHFs, we prefer to still name it as PHF because it inherits
the concept of traditional PHFs and aims at capturing the partitioning proof
trick on lattices. By carefully exploiting the algebraic properties of lattices, we
give several different constructions of lattice-based PHFs.

306 J. Zhang et al.

Under the Inhomogeneous Small Integer Solution (ISIS) assumption, we show
that any (non-trivial) lattice-based PHF is collision-resistant. This gives a direct
application of lattice-based PHFs. We further demonstrate the power of lattice-
based PHFs by showing a generic way to construct short signature schemes. Under
the ISIS assumption, our generic signature scheme is EUF-CMA secure in the
standard model. We also give a generic IBE scheme from lattice-based PHFs with
a property called high min-entropy. Under the LWE assumption, our generic IBE
scheme is secure against adaptive chosen-plaintext and chosen-identity attacks in
the standard model. Moreover, our IBE scheme can be extended to support hier-
archical identities, and achieve chosen ciphertext security.

We find that lattice-based PHFs are implicitly used as the backbones in the
signature schemes [12,43] and the IBE schemes [1]. Therefore, our results provide
a way to unify and clarify those lattice-based cryptographic schemes using the
partitioning proof strategy. Furthermore, by instantiating the generic schemes
with our new PHF constructions, we obtain a new short signature scheme and
a new IBE scheme. Compared to previous schemes, our instantiated schemes
have several appealing advantages. Besides, we also construct an improved short
signature scheme with short verification keys by carefully combining two concrete
PHFs. Comparisons between our schemes and previous ones will be given in
Sects. 1.3 and 1.4.

1.2 Techniques

We introduce the notion of lattice-based PHFs by carefully exploiting the specific
algebraic structure of lattices. As the traditional PHFs, our lattice-based PHF
H = {HK} can work in two modes. Given a key K generated in either the normal
mode or the trapdoor mode, the hash function HK maps its input X ∈ X
into a matrix HK(X) ∈ Z

n×m
q for some positive n,m, q ∈ Z. In the trapdoor

mode, there additionally exists a secret trapdoor td allowing to compute matrices
RX ∈ Z

m̄×m
q and SX ∈ Z

n×n
q for some integer m̄ ∈ Z, such that HK(X) =

ARX + SXB ∈ Z
n×m
q holds with respect to user-specified “generators” A ∈

Z
n×m̄
q and B ∈ Z

n×m
q . For non-triviality, we require that the keys generated

in the two modes are statistically indistinguishable (even conditioned on the
matrix A that was used to generate the trapdoor mode key), and that the two
“generators” A ∈ Z

n×m̄
q and B ∈ Z

n×m
q have essential differences for embedding

hard lattice problems. More precisely, in our definition A ∈ Z
n×m̄
q is required

to be uniformly distributed (and thus can be used to embed the ISIS problem),
while B ∈ Z

n×m
q is a trapdoor matrix that allows to efficiently sample short

vector e ∈ Z
m satisfying Be = v for any vector v ∈ Z

n
q .

In order to explore the differences between A ∈ Z
n×m̄
q and B ∈ Z

n×m
q in

the security reduction, we require that the largest singular value of RX defined
by s1(RX) = maxu ‖RXu‖ is small where the maximum is taken over all unit
vectors u ∈ R

m, and that SX ∈ In∪{0} where In is the set of invertible matrices
in Z

n×n
q . More concretely, for any positive integer u, v ∈ Z and real β ∈ R, a

(u, v, β)-PHF H should satisfy the following two conditions: (1) s1(RX) ≤ β
holds for any input X; and (2) given any inputs X1, . . . , Xu and Y1, . . . , Yv

Programmable Hash Functions from Lattices: Short Signatures and IBEs 307

satisfying Xi �= Yj for any i and j, the probability Pr[SX1 = · · · = SXu
=

0 ∧ SY1 , . . . ,SYv
∈ In] is at least 1/poly(n), where the probability is taken over

the random coins in producing td and K ′. Besides, if the second condition only
holds for some prior fixed X1, . . . , Xu (chosen before generating the trapdoor
mode key K ′), we say that the hash function H is a weak (u, v, β)-PHF.

Looking ahead, if the trapdoor mode key K ′ is generated by using A ∈ Z
n×m̄
q

and trapdoor matrix B ∈ Z
n×m
q , then for any input X the matrix AX :=

(A‖HK′(X)) = (A‖ARX +SXB) ∈ Z
n×(m̄+m)
q has a trapdoor RX with respect

to tag SX . The programmability comes from the fact that such a trapdoor
enables us to sample short vector e satisfying AXe = v for any vector v ∈ Z

n
q

when SX is invertible, and loses this ability when SX = 0. This gives us the
possibility to adaptively embed the ISIS problem depending on each particular
input X. Since this feature is only useful when the key K ′ is used together with
the “generator” A ∈ Z

n×m̄
q , we require the keys in both modes to be statistically

indistinguishable even conditioned on the information of A.
Our Type-I PHF construction is a high-level abstraction of the functions that

were (implicitly) used in both signature schemes (e.g., [8,12,43]) and encryption
schemes (e.g., [1,43]). Formally, let E be an encoding function from some domain
X to (Zn×n

q)�, where � is an integer. Then, for any input X ∈ X , the Type-I PHF
construction H = {HK} from X toZn×m

q is defined as HK(X) = A0+
∑�

i=1 CiAi,
where K = (A0,A1, . . . ,A�) and E(X) = (C1, . . . ,C�). For appropriate choices
of parameters and encoding function E, the literatures (implicitly) showed that
the Type-I construction satisfies our definition of lattice-based PHFs. Concretely,
if one sets X = {0, 1}�, and E(X) = ((−1)X1 · In, . . . , (−1)X� · In) for any input
X = (X1, . . . , X�), where In is the n × n identity matrix. Then, the instanti-
ated PHF is exactly the hash functions that were used to construct the signature
scheme in [12] and the IBE scheme in [1]. Since the Type-I PHF construction is
independent from the particular choice of B ∈ Z

n×m
q , it allows us to use any trap-

door matrix B when generating the trapdoor mode key. On the downside, such a
construction has a large key size, i.e., the number of matrices in the key is linear
in the input length �.

Our Type-II PHF construction has keys only consisting of O(log �) matrices,
which substantially reduces the key size by using a novel combination of the
cover-free sets and the publicly known trapdoor matrix B = G in [43], where
G = In ⊗ gt ∈ Z

n×nk
q , k =
log2 q� and g = (1, 2, . . . , 2k−1)t ∈ Z

k
q . Concretely,

for any positive L ∈ Z, by [L] we denote the set {0, 1, . . . , L − 1}. Recall that
if CF = {CFX}X∈[L] is a family of v-cover-free sets over domain [N] for some
integers v, L,N ∈ Z, then for any subset S ⊆ [L] of size at most v and any
Y /∈ S, there is at least one element z∗ ∈ CFY ⊆ [N] that is not included in the
union set ∪X∈SCFX . The property of cover-free sets naturally gives a partition
of [L], and was first used in constructing traditional PHFs in [32]. However,
a direct application of the cover-free sets in constructing (lattice-based) PHFs
will result in a very large key size (which is even worse than that of the Type-I
PHF). Actually, for an input size L = 2�, the key of the PHF in [32] should
contain an associated element for each element in [N], where N is as large

308 J. Zhang et al.

as poly(�). We solve this problem by using the nice property of G and the
binary representation of the cover-free sets. Formally, let G−1(C) be the binary
decomposition of some matrix C. By the definition of G, we have G ·G−1(C) =
C. Now, we set the key K of the Type-II PHF as K = (A, {Ai}i∈{0,...,μ−1}),
where μ =
log2 N� = O(log �). For any input X ∈ [L], we first map X into the
corresponding set CFX ∈ CF . Then, for each z ∈ CFX ⊆ [N], we “recover”
an associated matrix Az = Func(K, z, 0) from K and the binary decomposition
(b0, . . . , bμ−1) of z, where Func is recursively defined as

Func(K, z, i) =
{

Aμ−1, if i = μ − 1
(Ai − biG) · G−1(Func(K, z, i + 1)), otherwise

Finally, we output the hash value HK(X) = A +
∑

z∈CFX
Az.

In the trapdoor mode, we randomly choose a “target” element z∗ ∈ [N], and
set A = ÂR − (−1)c · G and Ai = ÂRi + (1 − b∗

i) · G for all i ∈ {0, . . . , μ − 1},
where (b∗

0, . . . , b
∗
μ−1) is the binary decomposition of z∗ and c is the number of

1’s in the vector (b∗
0, . . . , b

∗
μ−1). By doing this, we have that Az = ÂR̂z + ŜzG

holds for some matrices R̂z and Ŝz =
∏μ−1

i=0 (1− b∗
i − bi) ·In, where (b0, . . . , bμ−1)

is the binary decomposition of z. This means that Ŝz = 0 for any z �= z∗, and
Ŝz∗ = (−1)c · In. By the definition of HK(X) = A +

∑
z∈CFX

Az, we have that
HK(X) = ÂR̂X + ŜXG holds for some matrices R̂X = R +

∑
z∈CFX

R̂z and
ŜX = −(−1)c · In +

∑
z∈CFX

Ŝz. Obviously, we have that ŜX = 0 if and only if
z∗ ∈ CFX , otherwise ŜX = −(−1)c · In. By the property of the cover-free sets,
there is at least one element in CFY ⊆ [N] that is not included in the union set
∪X∈SCFX for any S = {X1, . . . , Xv} and Y /∈ S. Thus, if z∗ is randomly chosen
and is statistically hidden in the key K = (A, {Ai}i∈{0,...,μ−1}), we have the
probability that HK(Xi) = ÂR̂Xi

−(−1)c ·G for all Xi ∈ S and HK(Y) = ÂR̂Y ,
is at least 1/N = 1/poly(�).

1.3 Short Signatures

We now outline the idea on how to construct a generic signature scheme SIG
from lattice-based PHFs in the standard model. Let n, m̄,m′, �, q be some posi-
tive integers, and let m = m̄ + m′. Given a lattice-based PHF H = {HK} from
{0, 1}� to Z

n×m′
q , let B ∈ Z

n×m′
q be a trapdoor matrix that is compatible with

H. Then, the verification key of the generic signature scheme SIG consists of a
uniformly distributed (trapdoor) matrix A ∈ Z

n×m̄
q , a uniformly random vector

u ∈ Z
n
q , and a random key K for H, i.e., vk = (A,u,K). The signing key is a

trapdoor R of A that allows to sample short vector e satisfying Ae = v for any
vector v ∈ Z

n
q . Given a message M ∈ {0, 1}�, the signing algorithm first com-

putes AM = (A‖HK(M)) ∈ Z
n×m
q , and then uses the trapdoor R to sample a

short vector e ∈ Z
m satisfying AMe = u by employing the sampling algorithms

in [14,29,43]. Finally, it returns σ = e as the signature on the message M . The
verifier accepts σ = e as a valid signature on M if and only if e is short and

Programmable Hash Functions from Lattices: Short Signatures and IBEs 309

AMe = u. The correctness of the generic scheme SIG is guaranteed by the nice
properties of the sampling algorithms in [29,43].

In addition, if H = {HK} is a (1, v, β)-PHF for some integer v and real β,
we can show that under the ISIS assumption, SIG is existentially unforgeable
against adaptive chosen message attacks (EUF-CMA) in the standard model as
long as the forger F makes at most Q ≤ v signing queries. Intuitively, given
an ISIS challenge instance (Â, û) in the security reduction, the challenger first
generates a trapdoor mode key K ′ for H by using (Â,B). Then, it defines vk =
(Â, û,K ′) and keeps the trapdoor td of K ′ private. For message Mi in the i-th
signing query, we have AMi

= (Â‖HK′(Mi)) = (Â‖ÂRMi
+ SMi

B) ∈ Z
n×m
q .

By the programmability of H, with a certain probability we have that SMi
is

invertible for all the Q signing messages {Mi}i∈{1,...,Q}, but SM∗ = 0 for the
forged message M∗. In this case, the challenger can use RMi

to perfectly answer
the signing queries, and use the forged message-signature pair (M∗, σ∗) to solve
the ISIS problem by the equation u = AM∗σ∗ = Â(Im̄‖RM∗)σ∗.

Each signature in the generic scheme SIG only has a single vector, which
is as short as that in [12,43]. In fact, our generic scheme SIG encompasses
the two signature schemes from [12,43] in the sense that both schemes can be
seen as the instantiations of SIG using the Type-I PHF construction. Due to the
inefficiency of the concrete PHFs, both schemes [12,43] had large verification keys
consisting of a linear number of matrices. By instantiating SIG with our efficient
Type-II PHF construction, we obtain a concrete scheme SIG1 with verification
keys consisting of a logarithmic number of matrices. Unlike the prior schemes
in [6,8,24], our methods do not use the confined guessing proof technique [8], and
enable us to directly achieve EUF-CMA security without using chameleon hash
functions. This also allows us to get a security proof of SIG1 with a reduction
loss only about nv2, which is independent from the forger’s success probability ε.
We remark that this improvement does not come for free: the underlying ISIS
assumption should hold for parameter β̄ = v2 ·Õ(n5.5), where v ≥ Q is required.1

By carefully combining our Type-II (1, v, β)-PHF with a simple weak Type-I
PHF and introducing a very short tag to each signature, we further remove
the condition v ≥ Q such that a much smaller v = ω(log n) can be used to
construct an improved short signature scheme SIG2 from (relatively) weaker
ISIS assumption, which further removes a factor of Q2 (resp. Q) from the ISIS
parameter (resp. the reduction loss) of our generic signature scheme.

In Table 1, we give a (rough) comparison of lattice-based signature schemes
in the standard model. For simplicity, the message length is set to be n. Let
constant c > 1 and d = O(logc n) be the parameters for the use of the confined
guessing technique in [6,8,24]. We compare the size of verification keys and
signatures in terms of the number of “basic” elements as in [6,24]. On general
lattices, the “basic” element in the verification keys is a matrix over Zq whose size
is mainly determined by the underlying hard lattices, while the “basic” element
in the signatures is a lattice vector. On ideal lattices, the “basic” element in the
verification keys can be represented by a vector. Almost all schemes on general

1 We write f(n) = Õ(g(n)) if f(n) = O(g(n) · logc(n)) for some constant c.

310 J. Zhang et al.

Table 1. Rough comparison of lattice-based signatures in the standard model (Since
all schemes only have a single “basic” element in the signing keys, we also omit the
corresponding comparison in the size of signing keys for succinctness. The reduction
loss is the ratio ε/ε′ between the success probability ε of the forger and the success
probability ε′ of the reduction. Real β̄ is the parameter for the (I)SIS problem, and
“CMH?” denotes the necessity of chameleon hash functions to achieve EUF-CMA
security. Constant c > 1 and d = O(logc n) are the parameters in [6,8,24])

Schemes Verification key Signature Reduction loss (I)SIS param β̄ CMH?

LM08 [40] ∗ 1 log n Q Õ(n2) No

CHKP10 [14] n log n Q Õ(n1.5) Yes

Boyen10 [12] n 1 Q Õ(n3.5) No

MP12 [43] † n 1 Q Õ(n2.5) Yes

BHJ+14 [8] 1 d (Q2/ε)c Õ(n2.5) Yes

DM14 [24] ∗ d 1 (Q2/ε)c Õ(n3.5) Yes

AS15 [6] 1 1 (Q2/ε)c Õ(d2d · n5.5) Yes

Our SIG1 log n 1 n · Q2 Q2 · Õ(n5.5) No

Our SIG2 log n 1 Q · Õ(n) Õ(n5.5) No

lattices such as [6,8,12,14,43] and ours can be instantiated from ideal lattices,
and thus roughly saves a factor of n in the verification key size. However, the two
schemes [24,40] (marked with ‘∗’) from ideal lattices have no realizations over
general lattices. We ignore the constant factors in the table to avoid clutter.
Since all schemes only have a single “basic” element in the signing keys, we also
omit the corresponding comparison in the size of signing keys for succinctness.
Finally, we note that the signature scheme in [43] (marked with ‘†’) is essentially
identical to the one in [12] except that an improved security reduction under
a weaker assumption was provided in the EUF–naCMA model. As shown in
Table 1, the scheme in [6] only has a constant number of “basic” elements in the
verification key. However, because a large (I)SIS parameter β̄ = Õ(d2d · n5.5)
is needed (which requires a super-polynomial modulus q > β̄), the actual bit
size to represent each “basic” element in [6] is at least O(d) = O(log n) times
larger than that in [24] and our schemes. Even if we do not take account of the
reduction loss, the bit size of the verification key in [6] is already as large as that
in [24] and our schemes.

1.4 Identity-Based Encryptions

At STOC 2008, Gentry et al. [29] constructed a variant of the LWE-based public-
key encryption (PKE) scheme [47]. Informally, the public key of their scheme [29]
contained a matrix A and a vector u, and the secret key was a short vector e
satisfying Ae = u. Recall that in our generic signature scheme SIG, any valid
message-signature pair (M,σ) under the verification key vk = (A,u,K) also
satisfies an equation AMσ = u, where AM = (A‖HK(M)). A natural question

Programmable Hash Functions from Lattices: Short Signatures and IBEs 311

is whether we can construct a generic IBE scheme from lattice-based PHFs
by combining our generic signature scheme SIG with the PKE scheme in [29].
Concretely, let the master public key mpk and the master secret key msk of the
IBE system be the verification key vk and the secret signing key sk of SIG,
respectively, i.e., (mpk,msk) = (vk, sk). Then, for each identity id, we simply
generate a “signature” skid = σ on id under the master public key mpk as the
user private key, i.e., Aidskid = u, where Aid = (A‖HK(id)). Finally, we run
the encryption algorithm of [29] with “public key” (Aid,u) as a sub-routine to
encrypt plaintexts under the identity id. The problem is that we do not know
how to rely the security of the above “IBE” scheme on the LWE assumption.

Fortunately, the work [1] suggested a solution by adding an “artificial” noise
in the ciphertext, which was later used in other advanced lattice-based encryp-
tion schemes such as functional encryptions [3]. To adapt their techniques to the
above IBE construction, the challenge ciphertext C∗ under identity id∗ must con-
tain a term Rt

id∗w for some w ∈ Z
m̄
q , where HK′(id∗) = ARid∗ (i.e., Sid∗ = 0)

for some trapdoor mode key K ′. This means that C∗ will leak some information
of Rid∗ , which is not captured by our definition of lattice-based PHF, and might
compromise the security of H. An intuitive solution is directly resorting to an
enhanced definition of PHF such that all the properties of H still hold even
when the information of Rt

id∗w (for any given w) is leaked. For our particular
generic construction of IBE, we can handle it more skillfully by introducing two
seemingly relaxed conditions: (1) the PHF key K ′ in the trapdoor mode is still
statistically close to the key K in the normal mode even conditioned on (A
and) Rt

id∗w for any given vector w ∈ Z
m̄
q ; (2) the hidden matrix Rid∗ has high

min-entropy in the sense that Rt
id∗w (conditioned on w) is statistically close to

uniform over Z
m
q when w ∈ Z

m̄
q is uniformly random. Formally, we say that a

PHF H has high min-entropy if it additionally satisfies the above two conditions.
Intuitively, the high min-entropy property ensures that when w is uniformly ran-
dom, Rt

id∗w statistically leaks no information of Rid∗ , and thus will not affect
the original PHF property of H. In the security proof, we will make use of
this fact by switching w to a uniformly random one under the LWE assumption.
Interestingly, by choosing appropriate parameters, all our PHF constructions sat-
isfy the high min-entropy property. In other words, such a property is obtained
almost for free, which finally allows us to construct a generic IBE scheme IBE
from lattice-based PHFs with high min-entropy. Similarly, our generic scheme
IBE subsumes the concrete IBE schemes due to Agrawal et al. [1]. Besides, by
instantiating IBE with our efficient Type-II PHF construction, we obtain the
first standard model IBE scheme IBE1 with master public keys consisting of a
logarithmic number of matrices. We also show how to extend our IBE scheme to
a hierarchical IBE (HIBE) scheme and how to achieve CCA security, by using
the trapdoor delegations [1,14,43] and the CHK transformation [13].

In Table 2, we give a (rough) comparison of lattice-based IBEs in the standard
model. For simplicity, the identity length is set to be n. (Note that one can use
a collision-resistant hash function with output length n to deal with identities
with arbitrary length.) Similarly, we compare the size of master public keys and
ciphertexts in terms of the number of “basic” elements. On general lattices, the

312 J. Zhang et al.

Table 2. Rough comparison of lattice-based IBEs in the standard model (Since all the
schemes only have a single “basic” element in both the master secret key and the user
private key, we omit them in the comparison for succinctness. The reduction loss is the
ratio ε/ε′ between the success probability ε of the attacker and the success probability
ε′ of the reduction. Real α is the parameter for the LWE problem, and “security”
standards for the corresponding security model for security proofs)

Schemes Master Ciphertext Reduction LWE param 1/α Security

public key loss

ABB10a [2] n3 n2 1 Õ(n2n) Selective

ABB10b [1] 1, n 1 1, Q Õ(n2) Selective, Full

CHKP10 [14] n n Q2 Õ(n1.5) Full

Our IBE1 log n 1 n · Q2 Q2 · Õ(n6.5) Full

“basic” element in the master public keys is a matrix, while the “basic” element
in the ciphertexts is a vector. If instantiated from ideal lattices, the “basic”
element in the master public keys can be represented by a vector, and thus
roughly saves a factor of n in the master public key size. We ignore the constant
factor in the table to avoid clutter. Compared to the two fully secure IBEs [1,14]
in the standard model, our concrete scheme IBE1 only has a logarithmic number
of matrices in the master public key. However, such an improvement is not
obtained without a penalty: the instantiated scheme IBE1 has a large security
loss and requires a strong LWE assumption. Since both the improvement and
the downside are inherited from the concrete Type-II PHF construction, this
situation can be immediately changed if one can find a better lattice-based PHF.

1.5 Other Related Work

Hofheinz and Kiltz [33] first introduced the notion of PHF based on group hash
functions, and gave a concrete (2, 1)-PHF instantiation. Then, the work [32]
constructed a (u, 1)-PHF for any u ≥ 1 by using cover-free sets. Later, Yamada
et al. [51] reduced the key size from O(u2�) in [32] to O(u

√
�) by combining the

two-dimensional representation of cover-free sets with the bilinear groups, where
� was the bit size of the inputs. At CRYPTO 2012, Hanaoka et al. [31] showed
that it was impossible to construct algebraic (u, 1)-PHF over prime order groups
in a black-box way such that its key has less than u group elements.2 Later,
Freire et al. [26] got around the impossibility result of [31] and constructed a
(poly, 1)-PHF by adapting PHFs to the multilinear maps setting. Despite its
great theoretical interests, the current state of multilinear maps might be a big
obstacle in any attempt to securely and efficiently instantiate the PHFs in [26].
More recently, Catalano et al. [15] introduced a variant of traditional PHF called

2 Informally, an algorithm is algebraic if there is way to compute the representation of
a group element output by the algorithm in terms of its input group elements [11].

Programmable Hash Functions from Lattices: Short Signatures and IBEs 313

asymmetric PHF over bilinear maps, and used it to construct (homomorphic)
signature schemes with short verification keys.

All the above PHF constructions [15,26,32,33,51] seem specific to groups
with nice properties, which might constitute a main barrier to instantiate them
from lattices. Although several lattice-based schemes [1,14] had employed a sim-
ilar partitioning proof trick as that was captured by the traditional PHFs, it
was still an open problem to formalize and construct PHFs from lattices [34].
We put forward this study by introducing the lattice-based PHF and demon-
strate its power in constructing lattice-based signatures and IBEs in the stan-
dard model. Our PHFs also provide a modular way to investigate several existing
cryptographic constructions from lattices [1,12,43].

1.6 Roadmap

After some preliminaries in Sect. 2, we give the definition of lattice-based PHFs,
and two types of constructions in Sect. 3. We construct signatures and IBEs from
lattice-based PHFs in Sects. 4 and 5, respectively.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all other quantities are implicitly
dependent on κ. The function logc denotes the logarithm with base c, and we
use log to denote the natural logarithm. The standard notation O,ω are used to
classify the growth of functions. If f(n) = O(g(n) · logc(n)) for some constant c,
we write f(n) = Õ(g(n)). By poly(n) we denote an arbitrary function f(n) =
O(nc) for some constant c. A function f(n) is negligible in n if for every positive
c, we have f(n) < n−c for sufficiently large n. By negl(n) we denote an arbitrary
negligible function. A probability is said to be overwhelming if it is 1 − negl(n).
The notation ←r denotes randomly choosing elements from some distribution
(or the uniform distribution over some finite set). If a random variable x follows
some distribution D, we denote it by x � D.

By R (resp. Z) we denote the set of real numbers (resp. integers). For any
positive N ∈ Z, the notation [N] denotes the set {0, 1, . . . , N − 1}. Vectors are
used in the column form and denoted by bold lower-case letters (e.g., x). Matrices
are treated as the sets of column vectors and denoted by bold capital letters (e.g.,
X). The concatenation of the columns of X ∈ R

n×m followed by the columns
of Y ∈ R

n×m′
is denoted as (X‖Y) ∈ R

n×(m+m′). For any element 0 ≤ v ≤ q,
we denote BitDecompq(v) ∈ {0, 1}k as the k-dimensional bit-decomposition of v,
where k =
log2 q�. By ‖·‖ and ‖·‖∞ we denote the l2 and l∞ norm, respectively.
The norm of a matrix X is defined as the norm of its longest column (i.e., ‖X‖
= maxi ‖xi‖). The largest singular value of a matrix X is s1(X) = maxu ‖Xu‖,
where the maximum is taken over all unit vectors u.

We say that a hash function H : Zn
q → Z

n×n
q is an encoding with full-rank

differences (FRD) if the following two conditions hold: (1) for any u �= v, the

314 J. Zhang et al.

matrix H(u) − H(v) ∈ Z
n×n
q is invertible over Z

n×n
q ; and (2) H is computable

in polynomial time in n log q. As shown in [1,20], FRD encodings supporting the
exponential size domain Z

n
q can be efficiently constructed.

2.2 Lattices and Gaussian Distributions

An m-dimensional full-rank lattice Λ ⊂ R
m is the set of all integral combinations

of m linearly independent vectors B = (b1, . . . ,bm) ∈ R
m×m, i.e., Λ = L(B) =

{∑m
i=1 xibi : xi ∈ Z}. For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆

Z
m centered at c ∈ R

m with parameter s > 0 as ρs,c(x) = exp(−π‖x − c‖2/s2).
Let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define the discrete Gaussian distribution over

Λ as DΛ,s,c(y) = ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. The subscripts s and c are taken to be

1 and 0 (resp.) when omitted. The following result was proved in [29,44,46].

Lemma 1. For any positive integer m ∈ Z, vector y ∈ Z
m and large enough

s ≥ ω(
√

log m), we have that

Pr
x←rDZm,s

[‖x‖ > s
√

m] ≤ 2−m and Pr
x←rDZm,s

[x = y] ≤ 21−m.

Following [24,43], we say that a random variable X over R is subgaussian with
parameter s if for all t ∈ R, the (scaled) moment-generating function satisfies
E(exp(2πtX)) ≤ exp(πs2t2). If X is subgaussian, then its tails are dominated by
a Gaussian of parameter s, i.e., Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2) for all t ≥ 0. As a
special case, any B-bounded symmetric random variable X (i.e., |X| ≤ B always)
is subgaussian with parameter B

√
2π. Besides, we say that a random matrix X

is subgaussian with parameter s if all its one-dimensional marginals utXv for
unit vectors u,v are subgaussian with parameter s. In such a definition, the
concatenation of independent subgaussian vectors with parameter s, interpreted
either as a vector or as a matrix, is subgaussian with parameter s. In particular,
the distribution DΛ,s for any lattice Λ ⊂ R

n and s > 0 is subgaussian with
parameter s. For random subgaussian matrix, we have the following result from
the non-asymptotic theory of random matrices [49].

Lemma 2. Let X ∈ R
n×m be a random subgaussian matrix with parameter s.

There exists a universal constant C ≈ 1/
√

2π such that for any t ≥ 0, we have
s1(X) ≤ C · s · (

√
m +

√
n + t) except with probability at most 2 exp(−πt2).

Let A ∈ Z
n×m
q be a matrix for some positive n,m, q ∈ Z, consider the fol-

lowing two lattices: Λ⊥
q (A) = {e ∈ Z

m s.t. Ae = 0 mod q} and Λq(A) = {y ∈
Z

m s.t. ∃s ∈ Z
n, Ats = y mod q}. By definition, we have Λ⊥

q (A) = Λ⊥
q (CA)

for any invertible C ∈ Z
n×n
q . In 1999, Ajtai [5] proposed the first trapdoor gener-

ation algorithm to output an essentially uniform trapdoor matrix A that allows
to efficiently sample short vectors in Λ⊥

q (A). This trapdoor generation algo-
rithm had been improved in [43]. Let In be the n × n identity matrix. We now
recall the publicly known trapdoor matrix G in [43]. Formally, for any prime
q > 2, integer n ≥ 1 and k =
log2 q�, define g = (1, 2, . . . , 2k−1)t ∈ Z

k
q and

Programmable Hash Functions from Lattices: Short Signatures and IBEs 315

G = In ⊗ gt ∈ Z
n×nk
q , where ‘⊗’ represents the tensor product.3 Then, the

lattice Λ⊥
q (G) has a publicly known short basis T = In ⊗ Tk ∈ Z

nk×nk with
‖T‖ ≤ max{√5,

√
k}. Let (q0, q1, . . . , qk−1) = BitDecompq(q) ∈ {0, 1}k, we have

G =

⎛
⎜⎜⎜⎝

· · ·gt · · ·
· · ·gt · · ·

. . .
· · ·gt · · ·

⎞
⎟⎟⎟⎠ Tk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 q0
−1 2 q1

−1 q2
. . .

...
2 qk−2

−1 qk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

For any vector u ∈ Z
n
q , the basis T = In ⊗ Tk ∈ Z

nk×nk
q can be used to sample

short vector e ∼ DZnk,s satisfying Ge = u for any s ≥ ω(
√

log n) in quasilinear
time. Besides, one can deterministically compute a short vector v = G−1(u) ∈
{0, 1}nk such that Gv = u. This fact will be frequently used in this paper.

Definition 1 (G-trapdoor [43]). For any integers n, m̄, q ∈ Z, k =
log2 q�,
and matrix A ∈ Z

n×m̄
q , the G-trapdoor for A is a matrix R ∈ Z

(m̄−nk)×nk

such that A
[

R
Ink

]
= SG for some invertible tag S ∈ Z

n×n
q . The quality of the

trapdoor is measured by its largest singular value s1(R).

If R is a G-trapdoor for A, one can obtain a G-trapdoor R′ for any extension
(A‖B) by padding R with zero rows. In particular, we have s1(R′) = s1(R).

Besides, the rows of
[

R
Ink

]
in Definition 1 can appear in any order, since this

just induces a permutation of A’s columns [43].

Proposition 1 [43]. Given any integers n ≥ 1, q > 2, sufficiently large
m̄ = O(n log q) and a tag S ∈ Z

n×n
q , there is an efficient randomized algo-

rithm TrapGen(1n, 1m̄, q,S) that outputs a matrix A ∈ Z
n×m̄
q and a G-trapdoor

R ∈ Z
(m̄−nk)×nk
q with quality s1(R) ≤ √

m̄ ·ω(
√

log n) such that the distribution

of A is negl(n)-far from uniform and A
[

R
Ink

]
= SG, where k =
log2 q�.

In addition, given a G-trapdoor R of A ∈ Z
n×m̄
q for some invertible tag

S ∈ Z
n×n
q , any U ∈ Z

n×n′
q for some integer n′ ≥ 1 and real s ≥ s1(R)·ω(

√
log n),

there is an algorithm SampleD(R,A,S,U, s) that samples from a distribution
within negl(n) statistical distance of E ∼ (DZm̄,s)n′

satisfying AE = U.

We also need the following useful facts from [29,43,46].

Lemma 3. For any positive integer n, prime q > 2, sufficiently large m =
O(n log q) and real s ≥ ω(

√
log m), we have that for a uniformly random matrix

A ←r Z
n×m
q , the following facts hold:

3 One can define G by using any base b ≥ 2 and g = (1, b, . . . , bk−1)t for k = �logb q�.
In this paper, we fix b = 2 for simplicity.

316 J. Zhang et al.

– for variable e ∼ DZm,s, the distribution of u = Ae mod q is statistically close
to uniform over Z

n
q ;

– for any c ∈ R
m and every y ∈ Λ⊥

q (A), Prx←rD
Λ⊥

q (A),s,c
[x = y] ≤ 21−m;

– for any fixed u ∈ Z
n
q and arbitrary v ∈ R

m satisfying Av = u mod q, the
conditional distribution of e ∼ DZm,s given Ae = u mod q is exactly v +
DΛ⊥

q (A),s,−v.

2.3 Learning with Errors (LWE) and Small Integer Solutions (SIS)

For any positive integer n, q, real α > 0, and any vector s ∈ Z
n
q , the distri-

bution As,α over Z
n
q × Zq is defined as As,α = {(a,ats + x mod q) : a ←r

Z
n
q , x ←r DZ,αq}, where DZ,αq is the discrete Gaussian distribution over Z with

parameter αq. For m independent samples (a1, y1), . . . , (am, ym) from As,α, we
denote it in matrix form (A,y) ∈ Z

n×m
q × Z

m
q , where A = (a1, . . . ,am) and

y = (y1, . . . , ym)t. We say that an algorithm solves the LWEq,α problem if, for
uniformly random s ←r Z

n
q , given polynomial samples from As,α it outputs s

with noticeable probability. The decisional variant of LWE is that, for a uni-
formly random s ←r Z

n
q , the solving algorithm is asked to distinguish As,α from

the uniform distribution over Zn
q ×Zq (with only polynomial samples). For certain

modulus q, the average-case decisional LWE problem is polynomially equivalent
to its worst-case search version [47].

Proposition 2 [47]. Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such
that αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that

solves LWEq,α, then there exists an efficient quantum algorithm for approximat-
ing SIVP (in the l2 norm) on n-dimensional lattices, in the worst case, to within
Õ(n/α) factors.

The Small Integer Solution (SIS) problem was first introduced by Ajtai [4].
Formally, given positive n,m, q ∈ Z, a real β > 0, and a uniformly random
matrix A ∈ Z

n×m
q , the SISq,m,β problem asks to find a non-zero vector e ∈ Z

m

such that Ae = 0 mod q and ‖e‖ ≤ β. In [29], Gentry et al. introduced the
ISIS problem, which was an inhomogeneous variant of SIS. Specifically, given
an extra random syndrome u ∈ Z

n
q , the ISISq,m,β problem asks to find a vector

e ∈ Z
m such that Ae = u mod q and ‖e‖ ≤ β. Both the two problems were

shown to be as hard as certain worst-case lattice problems [29].

Proposition 3 [29]. For any polynomially bounded m,β = poly(n) and prime
q ≥ β ·ω(

√
n log n), the average-case problems SISq,m,β and ISISq,m,β are as hard

as approximating SIVP on n-dimensional lattices, in the worst case, to within
certain γ = β · Õ(

√
n) factors.

3 Programmable Hash Functions from Lattices

We now give the definition of lattice-based programmable hash function (PHF).
Let �, m̄,m, n, q, u, v ∈ Z be some polynomials in the security parameter κ. By In

Programmable Hash Functions from Lattices: Short Signatures and IBEs 317

we denote the set of invertible matrices in Z
n×n
q . A hash function H : X → Z

n×m
q

consists of two algorithms (H.Gen,H.Eval). Given the security parameter κ, the
probabilistic polynomial time (PPT) key generation algorithm H.Gen(1κ) out-
puts a key K, i.e., K ← H.Gen(1κ). For any input X ∈ X , the efficiently deter-
ministic evaluation algorithm H.Eval(K,X) outputs a hash value Z ∈ Z

n×m
q ,

i.e., Z = H.Eval(K,X). For simplicity, we write HK(X) = H.Eval(K,X).

Definition 2 (Lattice-Based Programmable Hash Function). A hash
function H : X → Z

n×m
q is a (u, v, β, γ, δ)-PHF if there exist a PPT trapdoor key

generation algorithm H.TrapGen and an efficiently deterministic trapdoor eval-
uation algorithm H.TrapEval such that given a uniformly random A ∈ Z

n×m̄
q

and a (public) trapdoor matrix B ∈ Z
n×m
q ,4 the following properties hold:

Syntax: The PPT algorithm (K ′, td) ← H.TrapGen(1κ,A,B) outputs a key K ′

together with a trapdoor td. Moreover, for any input X ∈ X , the determin-
istic algorithm (RX ,SX) = H.TrapEval(td,K ′,X) returns RX ∈ Z

m̄×m
q and

SX ∈ Z
n×n
q such that s1(RX) ≤ β and SX ∈ In∪{0} hold with overwhelming

probability over the trapdoor td that is produced along with K ′.
Correctness: For all possible (K ′, td) ← H.TrapGen(1κ,A,B), all X ∈ X and

its corresponding (RX ,SX) = H.TrapEval(td,K ′,X), we have HK′(X) =
H.Eval(K ′,X) = ARX + SXB.

Statistically Close Trapdoor Keys: For all (K ′, td) ← H.TrapGen(1κ,A,B)
and K ← H.Gen(1κ), the statistical distance between (A,K ′) and (A,K) is
at most γ.

Well-distributed Hidden Matrices: For all (K ′, td) ← H.TrapGen(1κ,A,B),
any inputs X1, . . . , Xu, Y1, . . . , Yv ∈ X such that Xi �= Yj for any i, j, let
(RXi

,SXi
) = H.TrapEval(td,K ′,Xi) and (RYi

,SYi
) = H.TrapEval(td,K ′,

Yi). Then, we have that

Pr[SX1 = · · · = SXu
= 0 ∧ SY1 , . . . ,SYv

∈ In] ≥ δ,

where the probability is over the trapdoor td produced along with K ′.

If γ is negligible and δ > 0 is noticeable, we simply say that H is a (u, v, β)-PHF.
Furthermore, if u (resp. v) is an arbitrary polynomial in κ, we say that H is a
(poly, v, β)-PHF (resp. (u,poly, β)-PHF).

A weak programmable hash function is a relaxed version of PHF, where
the H.TrapGen algorithm additionally takes a list X1, . . . , Xu ∈ X as inputs
such that the well-distributed hidden matrices property holds in the follow-
ing sense: For all (K ′, td) ← H.TrapGen(1κ,A,B, {X1, . . . , Xu}), any inputs
Y1, . . . , Yv ∈ X such that Yj /∈ {X1, . . . , Xu} for all j, let (RXi

,SXi
) =

H.TrapEval(td,K ′,Xi) and (RYi
,SYi

) = H.TrapEval(td,K ′, Yi), we have that
Pr[SX1 = · · · = SXu

= 0 ∧ SY1 , . . . ,SYv
∈ In] ≥ δ, where the probability is over

the trapdoor td produced along with K ′.
4 A general trapdoor matrix B is used for utmost generality, but the publicly known

trapdoor matrix B = G in [43] is recommended for both efficiency and simplicity.

318 J. Zhang et al.

Besides, a hash function H : X → Z
n×m
q can be a (weak) (u, v, β)-PHF for

different parameters u and v, since there might exist different pairs of trapdoor
key generation and trapdoor evaluation algorithms for H. If this is the case, one
can easily show that the keys output by these trapdoor key generation algorithms
are statistically indistinguishable by definition.

3.1 Type-I Construction

We describe the Type-I construction of lattice-based PHFs in the following.

Definition 3. Let �, n,m, q ∈ Z be some polynomials in the security parameter
κ. Let E be a deterministic encoding from X to (Zn×n

q)�, the hash function H =
(H.Gen,H.Eval) with key space K ⊆ (Zn×m

q)�+1 is defined as follows:

– H.Gen(1κ): Randomly choose (A0, . . . ,A�) ←r K, return K = {Ai}i∈{0,...,�}.
– H.Eval(K,X): Let E(X) = (C1, . . . ,C�), return Z = A0 +

∑�
i=1 CiAi.

We note that the above hash function has actually been (implicitly) used to
construct both signatures (e.g., [8,12,45]) and encryptions (e.g., [1,43]). Let In

be the n × n identity matrix. In the following theorems, we summarize several
known results which were implicitly proved in [1,12,43].

Theorem 1. Let K = (Zn×m
q)�+1 and X = {0, 1}�. In addition, given an input

X = (X1, . . . , X�) ∈ X , the encoding function E(X) returns Ci = (−1)Xi · In

for i = {1, . . . , �}. Then, for large enough integer m̄ = O(n log q) and any fixed
polynomial v = v(κ) ∈ Z, the instantiated hash function H of Definition 3 is a
(1, v, β, γ, δ)-PHF with β ≤ √

�m̄ · ω(
√

log n), γ = negl(κ) and δ = 1
qt (1 − v

qt),
where t is the smallest integer satisfying qt > 2v.

Theorem 2. For large enough m̄ = O(n log q), the hash function H given in
Definition 3 is a weak (1,poly, β, γ, δ)-PHF with β ≤ √

�m̄ · ω(
√

log n), γ =
negl(κ), and δ = 1 when instantiated as follows:

– Let K = (Zn×m
q)2 (i.e., � = 1) and X = Z

n
q . Given an input X ∈ X , the

encoding E(X) returns H(X) where H : Zn
q → Z

n×n
q is an FRD encoding.

– Let K = (Zn×m
q)�+1 and X = {0, 1}�. Given an input X = (X1, . . . , X�) ∈ X ,

the encoding E(X) returns Ci = Xi · In for all i ∈ {1, . . . , �}.
Unlike the traditional PHFs [15,32,33] where a bigger u is usually better in

constructing short signature schemes, our lattice-based PHFs seem more useful
when the parameter v is bigger (e.g., a polynomial in κ). There is a simple expla-
nation: although both notions aim at capturing some kind of partitioning proof
trick, i.e., each programmed hash value contains a hidden element behaving as
a trigger of some prior embedded trapdoors, for traditional PHFs the trapdoor
is usually triggered when the hidden element is zero, while in the lattice set-
ting the trapdoor is typically triggered when the hidden element is a non-zero
invertible one. This also explains why previous known constructions on lattices
(e.g., the instantiations in Theorems 1 and 2) are (weak) (1, v, β)-PHFs for some
polynomial v ∈ Z and real β ∈ R.

Programmable Hash Functions from Lattices: Short Signatures and IBEs 319

3.2 Type-II Construction

Let integers �, m̄, n, q, u, v, L,N be some polynomials in the security parameter
κ, and let k =
log2 q�. We now exploit the nice property of the publicly known
trapdoor matrix B = G ∈ Z

n×nk
q to construct more efficient PHF from lattices

for any v = poly(κ). We begin by first recalling the notion of cover-free sets.
Formally, we say that set S does not cover set T if there exists at least one
element t ∈ T such that t /∈ S. Let CF = {CFX}X∈[L] be a family of subsets
of [N]. The family CF is said to be v-cover-free over [N] if for any subset
S ⊆ [L] of size at most v, then the union ∪X∈SCFX does not cover CFY for
all Y /∈ S. Besides, we say that CF is η-uniform if every subset CFX in the
family CF = {CFX}X∈[L] have size η ∈ Z. Furthermore, there exists an efficient
algorithm to generate cover-free sets [25,38]. Formally,

Lemma 4. There is a deterministic polynomial time algorithm that on inputs
integers L = 2� and v ∈ Z, returns an η-uniform, v-cover-free sets CF =
{CFX}X∈[L] over [N], where N ≤ 16v2� and η = N/4v.

In the following, we use the binary representation of [N] to construct lattice-
based PHFs with short keys.

Definition 4. Let n, q ∈ Z be some polynomials in the security parameter κ.
For any �, v ∈ Z and L = 2�, let N ≤ 16v2�, η ≤ 4v� and CF = {CFX}X∈[L]

be defined as in Lemma 4. Let μ =
log2 N� and k =
log2 q�. Then, the hash
function H = (H.Gen,H.Eval) from [L] to Z

n×nk
q is defined as follows:

– H.Gen(1κ): Randomly choose Â,Ai ←r Z
n×nk
q for i ∈ {0, . . . , μ − 1}, return

the key K = (Â, {Ai}i∈{0,...,μ−1}).
– H.Eval(K,X): Given K = (Â, {Ai}i∈{0,...,μ−1}) and integer X ∈ [L], the

algorithm performs the Procedure I in Fig. 1 to compute Z = HK(X).

We now show that for any prior fixed v = poly(κ), the hash function H given
in Definition 4 is a (1, v, β)-PHF for some polynomially bounded β ∈ R.

Theorem 3. For any �, v ∈ Z and L = 2�, let N ≤ 16v2�, η ≤ 4v� and CF =
{CFX}X∈[L] be defined as in Lemma 4. Then, for large enough m̄ = O(n log q),
the hash function H in Definition 4 is a (1, v, β, γ, δ)-PHF with β ≤ μv�m̄1.5 ·
ω(

√
log m̄), γ = negl(κ) and δ = 1/N , where μ =
log2 N�.

In particular, if we set � = n and v = ω(log n), then β = Õ(n2.5), and the
key of H only consists of μ = O(log n) matrices.

Proof. We now construct a pair of trapdoor algorithms for H as follows:

– H.TrapGen(1κ,A,G): Given a uniformly random A ∈ Z
n×m̄
q and matrix G ∈

Z
n×nk
q for sufficiently large m̄ = O(n log q), let s ≥ ω(

√
log m̄) ∈ R satisfy

the requirement in Lemma 3. Randomly choose R̂,Ri ←r (DZm̄,s)nk for i ∈
{0, . . . , μ−1}, and an integer z∗ ←r [N]. Let (b∗

0, . . . , b
∗
μ−1) = BitDecompN (z∗),

and let c be the number of 1’s in the vector (b∗
0, . . . , b

∗
μ−1). Then, compute

Â = AR̂ − (−1)c · G and Ai = ARi + (1 − b∗
i) · G. Finally, return the key

K ′ = (Â, {Ai}i∈{0,...,μ−1}) and the trapdoor td = (R̂, {Ri}i∈{0,...,μ−1}, z∗).

320 J. Zhang et al.

Procedure I

Z := Â

For all z ∈ CFX

(b0, . . . , bµ−1) := BitDecompN (z)

Bz := Aµ−1 − bµ−1 · G

For i = µ − 2, . . . , 0

Bz := (Ai − bi · G) · G−1(Bz)

Z := Z + Bz

Return Z

Procedure II

RX := R̂,SX := −(−1)c · In
For all z ∈ CFX

(b0, . . . , bµ−1) := BitDecompN (z)

Bz := Aµ−1 − bµ−1 · G
Rz := Rµ−1

Sz := (1 − b∗
µ−1 − bµ−1) · In

For i = µ − 2, . . . , 0

Bz := (Ai − bi · G) · G−1(Bz)

Rz := Ri · G−1(Bz) + (1 − b∗
i − bi) · Rz

Sz := (1 − b∗
i − bi) · Sz

RX := RX + Rz,SX := SX + Sz

Return (RX ,SX)

Fig. 1. The procedures used in Definition 4 and Theorem 3

– H.TrapEval(td,K ′,X): Given td and an input X ∈ [L], the algorithm first
computes CFX by Lemma 4. Then, let (b∗

0, . . . , b
∗
μ−1) = BitDecompN (z∗), and

perform the Procedure II in Fig. 1 to compute (RX ,SX).

Since s ≥ ω(
√

log m̄) and R̂,Ri ←r (DZm̄,s)nk, each matrix in the key
K ′ = (Â, {Ai}i∈{0,...,μ−1}) is statistically close to uniform over Z

n×nk
q by

Lemma 3. Using a standard hybrid argument, it is easy to show that the statisti-
cal distance γ between (A,K ′) and (A,K) is negligible, where K ← H.Gen(1κ).
In particular, this means that z∗ is statistically hidden in K ′.

For correctness, we first show that Bz = ARz +SzG always holds during the
computation. By definition, we have that Bz = Aμ−1 − bμ−1 · G = ARz + SzG
holds before entering the inner loop. Assume that Bz = ARz + SzG holds
before entering the j-th (i.e., i = j) iteration of the inner loop, we now show
that the equation Bz = ARz + SzG still holds after the j-th iteration. Since
Aj − bj · G = ARj + (1 − b∗

j − bj) · G, we have that Bz := (Aj − bj · G) ·
G−1(Bz) = ARj ·G−1(Bz)+(1− b∗

j − bj) · (ARz +SzG). This means that if we
set Rz := Rj ·G−1(Bz)+(1−b∗

j −bj)·Rz and Sz := (1−b∗
j −bj)·Sz, the equation

Bz = ARz+SzG still holds. In particular, we have that Sz =
∏μ−1

i=0 (1−b∗
i −bi)·In

holds at the end of the inner loop. It is easy to check that Sz = 0 for any z �= z∗,
and Sz = (−1)c · In for z = z∗, where c is the number of 1’s in the binary vector
(b∗

0, . . . , b
∗
μ−1) = BitDecompN (z∗). The correctness of the trapdoor evaluation

algorithm follows from that fact that Z = H.Eval(K ′,X) = Â +
∑

z∈CFX
Bz =

AR̂− (−1)c ·G+
∑

z∈CFX
(ARz +SzG) = ARX +SXB. In particular, we have

that SX = −(−1)c · In if z∗ /∈ CFX , else SX = 0.
Since s1(G−1(Bz)) ≤ nk by the fact that G−1(Bz) ∈ {0, 1}nk×nk, and

s1(R̂), s1(Ri) ≤ (
√

m̄ +
√

nk) · ω(
√

log m̄) by Lemma 2, we have that s1(Rz) ≤
μm̄1.5 · ω(

√
log m̄) holds except with negligible probability for any z ∈ CFX .

Using |CFX | = η ≤ 4v�, the inequality s1(RX) ≤ μv�m̄1.5 · ω(
√

log m̄)

Programmable Hash Functions from Lattices: Short Signatures and IBEs 321

holds except with negligible probability for any X ∈ [L]. Besides, for any
X1, Y1, . . . , Yv ∈ [L] such that X1 �= Yj for all j ∈ {1, . . . , v}, there is at least one
element in CFX1 ⊆ [N] that does not belong to the union set ∪j∈{1,...,v}CFYj

.
This is because the family CF = {CFX}X∈[L] is v-cover-free. Since z∗ is ran-
domly chosen from [N] and is statistically hidden in the key K ′, the probability
Pr[z∗ ∈ CFX1 ∧ z∗ /∈ ∪j∈{1,...,v}CFYj

] is at least 1/N . Thus, we have that
Pr[SX1 = 0 ∧ SY1 = · · · = SYv

= −(−1)c · In ∈ In] ≥ 1
N . ��

3.3 Collision-Resistance and High Min-Entropy

Collision-Resistance. Let H = {HK : X → Y}K∈K be a family of hash
functions with key space K. We say that H is collision-resistant if for any PPT
algorithm C, its advantage

Advcr
H,C(κ) = Pr[K ←r K; (X1, X2) ←r C(K, 1κ) : X1 �= X2 ∧ HK(X1) = HK(X2)]

is negligible in the security parameter κ.

Theorem 4. Let n, v, q ∈ Z and β̄, β ∈ R be polynomials in the security para-
meter κ. Let H = (H.Gen, H.Eval) be a (1, v, β, γ, δ)-PHF with γ = negl(κ) and
noticeable δ > 0. Then, for large enough m̄,m ∈ Z and v ≥ 1, if there exists
an algorithm C breaking the collision-resistance of H, there exists an algorithm
B solving the ISISq,m̄,β̄ problem for β̄ = β

√
m · ω(log n) with probability at least

ε′ ≥ (ε − γ)δ.

For space reason, we defer the proof of Theorem 4 to the full version [53].

High Min-Entropy. Let H : X → Z
n×m
q be a (1, v, β, γ, δ)-PHF with γ =

negl(κ) and noticeable δ > 0. Note that the well-distributed hidden matrices
property of H holds even for an unbounded algorithm A that chooses {Xi} and
{Yj} after seeing K ′. For any noticeable δ > 0, this can only happen when the
decomposition HK′(X) = ARX + SXB is not unique (with respect to K ′) and
the particular pair determined by td, i.e., (RX ,SX) = H.TrapEval(td,K ′,X),
is information-theoretically hidden from A. We now introduce a property called
high min-entropy to formally capture this useful feature.

Definition 5 (PHF with High Min-Entropy). Let H : X → Z
n×m
q be a

(1, v, β, γ, δ)-PHF with γ = negl(κ) and noticeable δ > 0. Let K be the key
space of H, and let H.TrapGen and H.TrapEval be a pair of trapdoor generation
and trapdoor evaluation algorithms for H. We say that H is a PHF with high
min-entropy if for uniformly random A ∈ Z

n×m̄
q and (publicly known) trapdoor

matrix B ∈ Z
n×m
q , the following conditions hold.

1. For any (K ′, td) ← H.TrapGen(1κ,A,B),K ← H.Gen(1κ), any X ∈ X and
any w ∈ Z

m̄
q , the statistical distance between (A,K ′,Rt

Xw) and (A,K,Rt
Xw)

is negligible in κ, where (RX ,SX) = H.TrapEval(td,K ′,X).

322 J. Zhang et al.

2. For any (K ′, td) ← H.TrapGen(1κ,A,B), any X ∈ X , any uniformly ran-
dom v ∈ Z

m̄
q , and any uniformly random u ←r Z

m
q , the statistical dis-

tance between (A,K ′,v,Rt
Xv) and (A,K ′,v,u) is negligible in κ, where

(RX ,SX) = H.TrapEval(td,K ′,X).

Remark 1. Note that the well-distributed hidden matrices property of PHF only
holds when the information (except that is already leaked via the key K ′) of the
trapdoor td is hidden. This means that it provides no guarantee when some
information of RX for any X ∈ X (which is usually related to the trapdoor td)
is given public. However, for a PHF with high min-entropy, this property still
holds when the information of Rt

Xv for a uniformly random vector v is leaked.

For appropriate choices of parameters, the work [1] implicitly showed that
the Type-I PHF construction satisfied the high min-entropy property. Now, we
show that our Type-II PHF construction also has the high min-entropy property.

Theorem 5. Let integers n, m̄, q be some polynomials in the security parameter
κ, and let k =
log2 q�. For any �, v ∈ Z and L = 2�, let N ≤ 16v2�, η ≤ 4v�
and CF = {CFX}X∈[L] be defined as in Lemma 4. Then, for large enough
m̄ = O(n log q), the hash function H : [L] → Z

n×nk
q given in Definition 4 (and

proved in Theorem 3) is a PHF with high min-entropy.

Proof. By Definition 4, the real key K of H is uniformly distributed over
(Zn×nk

q)2μ+1. To prove that H satisfies the first condition of high min-entropy,
we must show that for any (K ′, td) ← H.TrapGen(1κ,A,G), any X ∈ X and
(RX ,SX) = H.TrapEval(td,K ′,X), the key K ′ is statistically close to uniform
over (Zn×nk

q)2μ+1 even conditioned on Rt
Xw ∈ Z

nk
q . Formally, for any w ∈ Z

m̄
q ,

let fw : Z
m̄×nk
q → Z

nk
q be the function defined by fw(X) = Xtw ∈ Z

nk
q .

Then, given I = {fw(R̂), {fw(Ri)}i∈{0,...,μ−1})} and (K ′,X, z∗), one can com-
pute Rt

Xw by simulating the Procedure II in Theorem 3. Thus, it suffices to
show that K ′ is statistically close to uniform over (Zn×nk

q)2μ+1 conditioned on
I and z∗. Since each matrix in the key K ′ always has a form of AR̃ + bG for
some randomly chosen R̃ ←r (DZm̄,s)nk, and a bit b ∈ {0, 1} depending on a
random z∗ ←r [N]. Using a standard hybrid argument, it is enough to show that
conditioned on A and fw(R̃), AR̃ is statistically close to uniform over Z

n×nk
q .

Let f ′
w : Zm̄

q → Zq be defined by f ′
w(x) = xtw, and let R̃ = (r1, . . . , rnk).

Then, fw(R̃) = (f ′
w(r1), . . . , f ′

w(rnk))t ∈ Z
nk
q . By Lemma 1, the guessing prob-

ability γ(ri) is at most 21−m̄ for all i ∈ {1, . . . , nk}. By the generalized leftover
hash lemma in [21], conditioned on A and f ′

w(ri) ∈ Zq, the statistical distance
between Ari ∈ Z

n
q and uniform over Z

n
q is at most 1

2 ·
√

21−m̄ · qn · q, which
is negligible if we set m̄ = O(n log q) > (n + 1) log q + ω(log n). Using a stan-
dard hybrid argument, we have that conditioned on A and fw(R̃), the matrix
AR̃ = (Ar1‖ . . . ‖Arnk) is statistically close to uniform over Z

n×nk
q .

Now, we show that H satisfies the second condition in Definition 5. By The-
orem 3 for any input X and (RX ,SX) = H.TrapEval(td,K ′,X), we always
have that RX = R̂ + R̃ for some R̃ that is independent from R̂. Let Rt

Xv =

Programmable Hash Functions from Lattices: Short Signatures and IBEs 323

R̂tv+R̃tv = û+ũ, it suffices to show that given K ′ and v, the element û = R̂tv
is uniformly random. Since R̂ ←r (DZm̄,s)nk for s ≥ ω(

√
log m̄) is only used to

generate the matrix Â = AR̂ − (−1)c · G in the key K ′, we have that for large
enough m̄ = O(n log q), the pair (AR̂, ût = vtR̂) is statistically close to uni-
form over Z

n×nk
q × Z

nk
q by the fact in Lemma 3.5 Thus, Rt

Xv = R̂tv + R̃tv is
uniformly distributed over Z

nk
q . This completes the proof of Theorem 5. ��

3.4 Programmable Hash Function from Ideal Lattices

As many cryptographic schemes over general lattices (e.g., [43]), we do not see
any obstacle preventing us from adapting our definition and constructions of
PHFs to ideal lattices defined over polynomial rings, e.g., R = Z[x]/(xn + 1)
or Rq = Zq[x]/(xn + 1) where n is a power of 2. In general, one can benefit
from the rich algebraic structures of ideal lattices in many aspects. For example,
compared to their counterparts over general lattices, the constructions over ideal
lattices roughly save a factor of n in the key size (e.g., [41,42]).

At CRYPTO 2014, Ducas and Micciancio [24] proposed a short signature
scheme by combining the confined guessing technique [8] with ideal lattices,
which substantially reduced the verification key size from previous known O(n)
elements to O(log n) elements. We note that their construction implicitly used
a weak (1,poly, β)-PHF for some β = poly(κ) ∈ R (we omit the details for
not involving too many backgrounds on ideal lattices). But as noted by the
authors, their methods used for constructing signatures with short verification
keys (as well as the underlying PHF) seem specific to the ideal lattice setting,
and thus cannot be instantiated from general lattices. In fact, it was left as an
open problem [24] to construct a standard model short signature scheme with
short verification keys from general lattices.

4 Short Signature Schemes from Lattice-Based PHFs

A digital signature scheme SIG = (KeyGen,Sign,Verify) consists of three PPT
algorithms. Taking the security parameter κ as input, the key generation algo-
rithm outputs a verification key vk and a secret signing key sk, i.e., (vk, sk) ←
KeyGen(1κ). The signing algorithm takes vk, sk and a message M ∈ {0, 1}∗ as
inputs, outputs a signature σ on M , briefly denoted as σ ← Sign(sk,M). The
verification algorithm takes vk, message M ∈ {0, 1}∗ and a string σ ∈ {0, 1}∗

as inputs, outputs 1 if σ is a valid signature on M , else outputs 0, denoted as
1/0 ← Verify(vk,M, σ). For correctness, we require that for any (vk, sk) ←
KeyGen(1κ), any message M ∈ {0, 1}∗, and any σ ← Sign(sk,M), the equation
Verify(vk,M, σ) = 1 holds with overwhelming probability, where the probability
is taken over the choices of the random coins used in KeyGen, Sign and Verify.

We defer the security definition of existential unforgeability against chosen
message attacks (EUF-CMA) to the full version [53].
5 This is because one can first construct a new uniformly random matrix A′ by append-

ing the row vector vt to the rows of A, and then apply the fact in Lemma 3.

324 J. Zhang et al.

4.1 A Short Signature Scheme with Short Verification Key

Let integers �, n,m′, v, q ∈ Z, β ∈ R be some polynomials in the security para-
meter κ, and let k =
log2 q�. Let H = (H.Gen,H.Eval) be any (1, v, β)-PHF
from {0, 1}� to Z

n×m′
q . Let m̄ = O(n log q), m = m̄ + m′, and large enough

s > max(β,
√

m) · ω(
√

log n) ∈ R be the system parameters. Our generic signa-
ture scheme SIG = (KeyGen,Sign,Verify) is defined as follows.

KeyGen(1κ): Given a security parameter κ, compute (A,R) ← TrapGen(1n, 1m̄,

q, In) such that A ∈ Z
n×m̄
q , R = Z

(m̄−nk)×nk
q , and randomly choose u ←r Z

n
q .

Then, compute K ← H.Gen(1κ), and return a pair of verification key and
secret signing key (vk, sk) = ((A,u,K),R).

Sign(sk,M ∈ {0, 1}�): Given sk = R and any message M , compute AM =
(A‖HK(M)) ∈ Z

n×m
q , where HK(M) = H.Eval(K,M) ∈ Z

n×m′
q . Then, com-

pute e ← SampleD(R,AM , In,u, s), and return the signature σ = e.
Verify(vk,M, σ): Given vk, a message M and a vector σ = e, compute AM =

(A‖HK(M)) ∈ Z
n×m
q , where HK(M) = H.Eval(K,M) ∈ Z

n×m′
q . Return 1 if

‖e‖ ≤ s
√

m and AMe = u, else return 0.

The correctness of our scheme SIG can be easily checked. Besides, the
schemes with linear verification keys in [12,43] can be seen as instantiations
of SIG with the Type-I PHF construction in Theorem 1.6 Since the size of the
verification key is mainly determined by the key size of H, one can instantiate H
with our efficient Type-II PHF construction in Definition 4 to obtain a signature
scheme with verification keys consisting of a logarithmic number of matrices. As
for the security, we have the following theorem.

Theorem 6. Let �, n, m̄,m′, q ∈ Z and β̄, β, s ∈ R be some polynomials in the
security parameter κ, and let m = m̄ + m′. Let H = (H.Gen, H.Eval) be a
(1, v, β, γ, δ)-PHF from {0, 1}� to Z

n×m′
q with γ = negl(κ) and noticeable δ > 0.

Then, for large enough m̄ = O(n log q) and s > max(β,
√

m) · ω(
√

log n) ∈ R,
if there exists a PPT forger F breaking the EUF-CMA security of SIG with
non-negligible probability ε > 0 and making at most Q ≤ v signing queries, there
exists an algorithm B solving the ISISq,m̄,β̄ problem for β̄ = βs

√
m · ω(

√
log n)

with probability at least ε′ ≥ εδ − negl(κ).

Since a proof sketch is given in Sect. 1.3, we omit the details of the proof.
Let SIG1 denote the signature scheme obtained by instantiating SIG with our
Type-II PHF construction in Definition 4. Then, the verification key of SIG1 has
O(log n) matrices and each signature of SIG1 consists of a single lattice vector.

Corollary 1. Let n, q ∈ Z be polynomials in the security parameter κ. Let m̄ =
O(n log q), v = poly(n) and � = n. If there exists a PPT forger F breaking the
EUF-CMA security of SIG1 with non-negligible probability ε and making at most
Q ≤ v signing queries, then there exists an algorithm B solving the ISISq,m̄,β̄

problem for β̄ = v2 · Õ(n5.5) with probability at least ε′ ≥ ε
16nv2 − negl(κ).

6 Note that the scheme in [12] used a syndrome u = 0, we prefer to use a random
chosen syndrome u ←r Z

n
q as that in [43] for simplifying the security analysis.

Programmable Hash Functions from Lattices: Short Signatures and IBEs 325

4.2 An Improved Short Signature Scheme from Weaker Assumption

Compared to prior constructions in [6,8,24], our SIG1 only has a reduction
loss about 16nQ2, which does not depend on the forger’s success probability ε.
However, because of v ≥ Q, our improvement requires the ISISq,m̄,β̄ problem to
be hard for β̄ = Q2 · Õ(n5.5), which means that the modulus q should be bigger
than Q2 ·Õ(n5.5). Even though q is still a polynomial of n in an asymptotic sense,
it might be very large in practice. In this section, we further remove the direct
dependency on Q from β̄ by introducing a short tag about O(log Q) bits to each
signature. For example, this only increases about 30 bits to each signature for a
number Q = 230 of the forger’s signing queries.

At a high level, our basic idea is to relax the requirement on a (1, v, β)-PHF
H = {HK} so that a much smaller v = ω(log n) can be used by employing a
simple weak PHF H′ = {H′

K′} (recall that v ≥ Q is required in the scheme
SIG). Concretely, for each message M to be signed, instead of using HK(M)
in the signing algorithm of SIG, we choose a short random tag t, and compute
H′

K′(t) + HK(M) to generate the signature on M . Thus, if the trapdoor keys of
both PHFs are generated by using the same “generators” A and G, we have that
H′

K′(t) + HK(M) = A(R′
t + RM) + (S′

t + SM)G, where H′
K′(t) = AR′

t + S′
tG

and HK(M) = ARM + SMG. Moreover, if we can ensure that S′
t + SM ∈ In

when S′
t ∈ In or SM ∈ In, then SM is not required to be invertible for all

the Q signing messages. In particular, v = ω(log n) can be used as long as the
probability that S′

t + SM ∈ In is invertible for all the Q signing messages, but
S′

t∗ + SM∗ = 0 for the forged signature on the pair (t∗,M∗), is noticeable.
Actually, the weak PHF H′ and the (1, v, β)-PHF H = (H.Gen,H.Eval) are,

respectively, the first instantiated Type-I PHF H′ in Theorem 2 and the Type-
II PHF H = (H.Gen,H.Eval) given in Definition 4. Since H′ is very simple,
we directly plug its construction into our signature scheme SIG2. Specifically,
let n, q ∈ Z be some polynomials in the security parameter κ, and let k =

log2 q�, m̄ = O(n log q),m = m̄ + nk and s = Õ(n2.5) ∈ R. Let H : Zn

q → Z
n×n
q

be the FRD encoding in [1] such that for any vector v = (v, 0 . . . , 0)t,v1,v2 ∈ Z
n
q ,

we have that H(v) = vIn and H(v1) + H(v2) = H(v1 + v2) hold. For any
t ∈ {0, 1}� with � < n, we naturally treat it as a vector in Z

n
q by appending it

(n − �) zero coordinates. The weak PHF H′ from {0, 1}� to Z
n×nk
q has a form

of H′
K′(t) = A0 + H(t)G, where K ′ = A0. We restrict the domain of H′ to be

{0}×{0, 1}� for � ≤ n−1 such that S′
t+SM is invertible when (S′

t,SM) �= (0,0).
Our signature scheme SIG2 = (KeyGen,Sign,Verify) is defined as follows.

KeyGen(1κ): Given a security parameter κ, compute (A,R) ← TrapGen(1n, 1m̄,

q, In) such that A ∈ Z
n×m̄
q , R = Z

(m̄−nk)×nk
q . Randomly choose A0 ←r

Z
n×nk
q and u ←r Z

n
q . Finally, compute K ← H.Gen(1κ), and return

(vk, sk) = ((A,A0,u,K),R).
Sign(sk,M ∈ {0, 1}n): Given the secret key sk and a message M , randomly

choose t ←r {0, 1}�, and compute AM,t = (A‖(A0 +H(0‖t)G) + HK(M)) ∈
Z

n×m
q , where HK(M) = H.Eval(K,M) ∈ Z

n×nk
q . Then, compute e ←

SampleD(R,AM,t, In,u, s), and return the signature σ = (e, t).

326 J. Zhang et al.

Verify(vk,M, σ): Given vk, message M and σ = (e, t), compute AM,t =
(A‖(A0 + H(0‖t)G) + HK(M)) ∈ Z

n×m
q , where HK(M) = H.Eval(K,M) ∈

Z
n×nk
q . Return 1 if ‖e‖ ≤ s

√
m and AM,te = u. Otherwise, return 0.

Since R is a G-trapdoor of A, by padding with zero rows it can be extended
to a G-trapdoor for AM,t with the same quality s1(R) ≤ √

m · ω(
√

log n). Since
s = Õ(n2.5) > s1(R) · ω(

√
log n), the vector e output by SampleD follows the

distribution DZm,s satisfying AM,te = u. In other words, ‖e‖ ≤ s
√

m holds with
overwhelming probability by Lemma 1. This shows that SIG2 is correct.

Note that if we set v = ω(log n), the key K only has μ = O(log n) number of
matrices and each signature consists of a vector plus a short �-bit tag. We have
the following theorem for security.

Theorem 7. Let �, m̄, n, q, v ∈ Z be polynomials in the security parameter κ.
For appropriate choices of � = O(log n) and v = ω(log n), if there exists a PPT
forger F breaking the EUF-CMA security of SIG2 with non-negligible probability
ε and making at most Q = poly(n) signing queries, there exists an algorithm B
solving the ISISq,m̄,β̄ problem for β̄ = Õ(n5.5) with probability at least ε′ ≥

ε
16·2�nv2 − negl(κ) = ε

Q·Õ(n)
.

We defer the proof of Theorem 7 to the full version [53].

5 Identity-Based Encryptions from Lattice-Based PHFs

An identity-based encryption (IBE) scheme consists of four PPT algorithms
IBE = (Setup,Extract,Enc, Dec). Taking the security parameter κ as input, the
randomized key generation algorithm Setup outputs a master public key mpk
and a master secret key msk, denoted as (mpk,msk) ← Setup(1κ). The (ran-
domized) extract algorithm takes mpk,msk and an identity id as inputs, out-
puts a user private key skid for id, briefly denoted as skid ← Extract(msk, id).
The randomized encryption algorithm Enc takes mpk, id and a plaintext M as
inputs, outputs a ciphertext C, denoted as C ← Enc(mpk, id,M). The deter-
ministic algorithm Dec takes skid and C as inputs, outputs a plaintext M , or
a special symbol ⊥, which is denoted as M/⊥ ← Dec(skid, C). In addition, for
all (mpk,msk) ← Setup(1κ), skid ← Extract(msk, id) and any plaintext M , we
require that Dec(skid, C) = M holds for any C ← Enc(mpk, id,M).

5.1 An Identity-Based Encryption with Short Master Public Key

Let integers n,m′, v, β, q be polynomials in the security parameter κ, and let
k =
log2 q�. Let H = (H.Gen,H.Eval) be any (1, v, β)-PHF with high min-
entropy from {0, 1}n to Z

n×m′
q . Let H.TrapGen and H.TrapEval be a pair of

trapdoor generation and trapdoor evaluation algorithm of H that satisfies the
conditions in Definition 5. For convenience, we set both the user identity space
and the message space as {0, 1}n. Let integers m̄ = O(n log q),m = m̄ + m′,
α ∈ R, and large enough s > max(β,

√
m) ·ω(

√
log n) be the system parameters.

Our generic IBE scheme IBE = (Setup,Extract,Enc,Dec) is defined as follows.

Programmable Hash Functions from Lattices: Short Signatures and IBEs 327

Setup(1κ): Given a security parameter κ, compute (A,R) ← TrapGen(1n, 1m̄,

q, In) such that A ∈ Z
n×m̄
q , R = Z

(m̄−nk)×nk
q . Randomly choose U ←r Z

n×n
q ,

and compute K ← H.Gen(1κ). Finally, return (mpk,msk) = ((A,K,U),R).
Extract(msk, id ∈ {0, 1}n): Given msk and a user identity id, compute Aid =

(A‖HK(id)) ∈ Z
n×m
q , where HK(id) = H.Eval(K, id) ∈ Z

n×m′
q . Then, com-

pute Eid ← SampleD(R,Aid, In,U, s), and return skid = Eid ∈ Z
m×n.

Enc(mpk, id ∈ {0, 1}n,M ∈ {0, 1}n): Given mpk, id and plaintext M , com-
pute Aid = (A‖HK(id)) ∈ Z

n×m
q , where HK(id) = H.Eval(K, id) ∈ Z

n×m′
q .

Then, randomly choose s ←r Z
n
q , x0 ←r DZn,αq,x1 ←r DZm̄,αq, and com-

pute (K ′, td) ← H.TrapGen(1κ,A,B) for some trapdoor matrix B ∈ Z
n×m′
q ,

(Rid,Sid) = H.TrapEval(td,K ′, id). Finally, compute and return the cipher-
text C = (c0, c1), where

c0 = Uts + x0 +
q

2
M, c1 = At

ids +
(x1

Rt
idx1

)
=

(
Ats + x1

HK(id)ts + Rt
idx1

)
.

Dec(skid,C): Given skid = Eid and a ciphertext C = (c0, c1) under identity id,
compute b = c0−Et

idc1 ∈ Z
n
q . Then, treat each coordinate of b = (b1, . . . , bn)t

as an integer in Z, and set Mi = 1 if |bi − � q
2�| ≤ � q

4�, else Mi = 0, where
i ∈ {1, . . . , n}. Finally, return the plaintext M = (M0, . . . ,Mn)t.

By Proposition 1, we have that s1(R) ≤ O(
√

m̄) · ω(
√

log n). For large
enough s ≥ √

m · ω(
√

log n), by the correctness of SampleD we know that
AidEid = U and ‖Eid‖ ≤ s

√
m hold with overwhelming probability. In this

case, c0 − Et
idc1 = c0 − Et

id (At
ids + x̂) = c0 − Uts − Et

idx̂ = q
2M + x0 − Et

idx̂,

where x̂ =
(x1

Rt
Xx1

)
. Now, we estimate the size of ‖x0 − Et

idx̂‖∞. Since x0 ←r

DZn,αq,x1 ←r DZm̄,αq, we have that ‖x0‖, ‖x1‖ ≤ αq
√

m holds with overwhelm-
ing probability by Lemma 1. In addition, using the fact that s1(RX) ≤ β, we
have that ‖x̂‖ ≤ αq

√
m(β2 + 1). Thus, we have that ‖Et

idx̂‖∞ ≤ αqms
√

β2 + 1,
and ‖x0 − Et

idx̂‖∞ ≤ 2αqms
√

β2 + 1. This means that the decryption algo-
rithm is correct if we set parameters such that 2αqms

√
β2 + 1 < q

4 holds. For
instance, we can set the parameters as follows: m = 4n1+ψ, s = β ·ω(

√
log n), q =

β2m2 · ω(
√

log n), α = (β2m1.5 · ω(
√

log n))−1, where real ψ ∈ R satisfies
log q < nψ.

For security, we will use the notion called indistinguishable from random
(known as INDr-ID-CPA) in [1], which captures both semantic security and
recipient anonymity by requiring the challenge ciphertext to be indistinguish-
able from a uniformly random element in the ciphertext space. The formal defi-
nition of INDr-ID-CPA security is given in the full version [53]. Under the LWE
assumption, our generic IBE scheme IBE is INDr-ID-CPA secure in the standard
model.

Theorem 8. Let n, q,m′ ∈ Z and α, β ∈ R be polynomials in the security
parameter κ. For large enough v = poly(n), let H = (H.Gen,H.Eval) be
any (1, v, β, γ, δ)-PHF with high min-entropy from {0, 1}n to Z

n×m′
q , where

γ = negl(κ) and δ > 0 is noticeable. Then, if there exists a PPT adversary

328 J. Zhang et al.

A breaking the INDr-ID-CPA security of IBE with non-negligible advantage ε
and making at most Q < v user private key queries, there exists an algorithm B
solving the LWEq,α problem with advantage at least ε′ ≥ εδ/3 − negl(κ).

The proof is very similar to that in [1]. We defer it to the full version [53]
for lack of space. Actually, by instantiating H in the generic scheme IBE with
the Type-I PHF construction, we recover the fully secure IBE scheme due to
Agrawal et al. [1]. Besides, if H is replaced by a weak (1, v, β)-PHF with high
min-entropy, we can further show that the resulting scheme is INDr-sID-CPA
secure, and subsumes the selectively secure IBE scheme in [1]. Formally,

Corollary 2. Let n,m′, q ∈ Z and α, β ∈ R be polynomials in the security
parameter κ. For large enough v = poly(n), let H = (H.Gen,H.Eval) be any
weak (1, v, β, γ, δ)-PHF with high min-entropy from {0, 1}n to Z

n×m′
q , where γ =

negl(κ) and δ > 0 is noticeable. Then, under the LWEq,α assumption, the generic
IBE scheme IBE is INDr-sID-CPA secure.

By instantiating the generic IBE scheme IBE with our efficient Type-II PHF
in Definition 4, we can obtain a fully secure IBE scheme with master public key
containing O(log n) number of matrices. Let IBE1 be the instantiated scheme.

Corollary 3. If there exists a PPT adversary A breaking the INDr-ID-CPA
security of IBE1 with non-negligible advantage ε and making at most Q =
poly(κ) user private key queries, then there exists an algorithm B solving the
LWEq,α problem with advantage at least ε′ ≥ ε

48nQ2 − negl(κ).

Remark 2. Since our Type-II (1, v, β)-PHF depends on the parameter v in sev-
eral aspects, the instantiated IBE scheme IBE1 relies on the particular number
Q of user private key queries (because of Q ≤ v) in terms of the master public
key size and the reduction loss. On the first hand, the size of the master pub-
lic key only depends on Q in a (somewhat) weak sense: for any polynomial Q
it only affects the constant factor hidden in the number O(log n) of matrices
in the master public key. When implementing the IBE scheme, one can either
prior determine the target security level (or the maximum number Q of allowed
user private key queries) before the setup phase, or set a super polynomial v
to generate the master public keys. For example, for v = nlog(log n), the master
public key only contains O(log(log n) log n) matrices, which is still much smaller
than the linear function O(n) as that in [1,14]. On the other hand, the reduction
loss of IBE1 also depends on Q (due to our proof of Theorem 3). Unlike the
signature scheme SIG2, it is unclear if one can reduce the reduction loss with
some modifications/improvements. Besides, it is also interesting to investigate
the possibility of giving a proof of Theorem 3 with an improved δ > 0.

5.2 Extensions

Hierarchical IBE. Using the trapdoor delegation techniques in [1,14,43], one
can extend our generic IBE scheme IBE into a generic hierarchical IBE (HIBE)

Programmable Hash Functions from Lattices: Short Signatures and IBEs 329

scheme. We now give a sketch of the construction. For identity depth d ≥ 1, we
include d different PHF keys {Ki}i∈{1,...,d} in master public key, and the “public
key” Aid for any identity id = (id1, . . . , idd′) with depth d′ ≤ d is defined as
Aid = (A‖HK1(id1)‖ · · · ‖HKd′ (idd′)). Then, one can use Aid to encrypt plain-
texts the same as in our generic IBE scheme. In order to enable the delegation
of user private keys, the user private key should be replaced by a new trapdoor
extended by the trapdoor of A using the algorithms in [1,14,43]. We note that
as previous schemes using similar partitioning techniques [1,14], such a construc-
tion seems to inherently suffer from a reduction loss depending on the identity
depth d in the exponent. It is still unclear whether one can adapt the dual system
of Waters [50] to construct lattice-based (H)IBEs with tight security proofs.

Chosen Ciphertexts Security. Obviously, one can use the CHK technique in [13]
to transform a CPA secure HIBE for identity depth d to a CCA secure HIBE
for identity depth d − 1, by appending each identity in the encryption with
the verification key of a one-time strongly EUF-CMA signature scheme. In our
case, one can obtain an INDr-ID-CCA secure IBE scheme by using a two-level
INDr-ID-CPA HIBE scheme. Since the CHK technique only requires “selective-
security” to deal with the one-time signature’s verification key, we can construct
a more efficient CCA secure IBE scheme by directly combining a normal PHF
with a weak one. Since a weak PHF is usually simpler and more efficient, the
resulting IBE could be more efficient than the one obtained by directly applying
the CHK technique to a two-level fully secure HIBE scheme. We now give the
sketch of the improved construction. In addition to a normal PHF key K in the
master public key of our generic IBE scheme IBE , we also include it a weak
PHF key K1. When generating user private key for identity id, we compute
a new trapdoor of Aid = (A‖HK(id)) as the user private key, by using the
trapdoor delegation algorithms in [1,14,43]. In the encryption algorithm, we
generate a one-time signature verification key vk (for simplicity we assume the
length of vk is compatible with the weak PHF), and uses the matrix Aid,vk =
(Aid‖HK1(vk)) = (A‖HK(id)‖HK1(vk)) to encrypt the plaintext as IBE .Enc.
The decryption algorithm is the same as IBE .Dec except that it first computes
the “user private key” for Aid,vk from the user private key of Aid.

Acknowledgments. We would like to thank Eike Kiltz and Xusheng Zhang for their
helpful discussions. We also thank the anonymous reviewers of Crypto 2016 for their
insightful advices. Jiang Zhang and Zhenfeng Zhang are supported by the National
Grand Fundamental Research (973) Program of China under Grant No. 2013CB338003
and the National Natural Science Foundation of China under Grant No. U1536205. Yu
Chen is supported by the National Natural Science Foundation of China under Grant
Nos. 61303257 and 61379141, and by the State Key Laboratory of Cryptologys Open
Project under Grant No. MMKFKT201511.

330 J. Zhang et al.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC 1996, pp. 99–108. ACM (1996)

5. Ajtai, M.: Generating hard instances of the short basis problem. In:
Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 1–9. Springer, Heidelberg (1999)

6. Alperin-Sheriff, J.: Short signatures with short public keys from homomorphic
trapdoor functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 236–255.
Springer, Heidelberg (2015)

7. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based
on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp.
28–47. Springer, Heidelberg (2014)

8. Böhl, F., Hofheinz, D., Jager, T., Koch, J., Seo, J.H., Striecks, C.: Practical signa-
tures from standard assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 461–485. Springer, Heidelberg (2013)

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

12. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

13. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

15. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
254–274. Springer, Heidelberg (2015)

16. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

Programmable Hash Functions from Lattices: Short Signatures and IBEs 331

17. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

18. Coron, J.S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 247–266. Springer, Heidelberg (2015)

19. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

20. Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

21. Dodis, Y., Rafail, O., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38, 97–139
(2008)

22. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

23. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 22–41. Springer, Heidelberg (2014)

24. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp.
335–352. Springer, Heidelberg (2014)

25. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Isr. J. Math. 51(1–2), 79–89 (1985)

26. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

27. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

28. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

29. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

30. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC 2015, pp. 469–477. ACM (2015)

31. Hanaoka, G., Matsuda, T., Schuldt, J.C.N.: On the impossibility of constructing
efficient key encapsulation and programmable hash functions in prime order groups.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 812–
831. Springer, Heidelberg (2012)

32. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011)

33. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

34. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J.
Cryptol. 25(3), 484–527 (2012)

332 J. Zhang et al.

35. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 21

36. Katz, J.: Digital Signatures. Springer, Berlin (2010)
37. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)
38. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting prob-

lems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999)

39. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

40. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

41. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

42. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

43. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

44. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37, 267–302 (2007)

45. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015)

46. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assump-
tions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 145–166. Springer, Heidelberg (2006)

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

48. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

49. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices
(2010). arXiv preprint arXiv:1011.3027

50. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

51. Yamada, S., Hanaoka, G., Kunihiro, N.: Two-dimensional representation of cover
free families and its applications: short signatures and more. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 260–277. Springer, Heidelberg (2012)

52. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Canetti, R., Safavi-Naini, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Heidelberg (2012)

53. Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices: short
signatures and IBEs with small key sizes. Cryptology ePrint Archive, Report
2016/523 (2016)

http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://arxiv.org/abs/1011.3027
http://arXiv.org/abs/1011.3027

Fully Secure Functional Encryption for Inner
Products, from Standard Assumptions

Shweta Agrawal1, Benôıt Libert2(B), and Damien Stehlé2

1 IIT Delhi, New Delhi, India
2 Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),

ENS de Lyon, Lyon, France
benoit.libert@ens-lyon.fr

Abstract. Functional encryption is a modern public-key paradigm
where a master secret key can be used to derive sub-keys SKF asso-
ciated with certain functions F in such a way that the decryption oper-
ation reveals F (M), if M is the encrypted message, and nothing else.
Recently, Abdalla et al. gave simple and efficient realizations of the prim-
itive for the computation of linear functions on encrypted data: given an
encryption of a vector y over some specified base ring, a secret key SKx

for the vector x allows computing 〈x,y〉. Their technique surprisingly
allows for instantiations under standard assumptions, like the hardness
of the Decision Diffie-Hellman (DDH) and Learning-with-Errors (LWE)
problems. Their constructions, however, are only proved secure against
selective adversaries, which have to declare the challenge messages M0

and M1 at the outset of the game.
In this paper, we provide constructions that provably achieve secu-

rity against more realistic adaptive attacks (where the messages M0 and
M1 may be chosen in the challenge phase, based on the previously col-
lected information) for the same inner product functionality. Our con-
structions are obtained from hash proof systems endowed with homo-
morphic properties over the key space. They are (almost) as efficient as
those of Abdalla et al. and rely on the same hardness assumptions.

In addition, we obtain a solution based on Paillier’s composite residu-
osity assumption, which was an open problem even in the case of selective
adversaries. We also propose LWE-based schemes that allow evaluation of
inner products modulo a prime p, as opposed to the schemes of Abdalla
et al. that are restricted to evaluations of integer inner products of short
integer vectors. We finally propose a solution based on Paillier’s com-
posite residuosity assumption that enables evaluation of inner products
modulo an RSA integer N = p · q.

We demonstrate that the functionality of inner products over a prime
field is powerful and can be used to construct bounded collusion FE for
all circuits.

Keywords: Functional encryption · Adaptive security · Standard
assumptions · DDH · LWE · Extended LWE · Composite residuosity

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 333–362, 2016.
DOI: 10.1007/978-3-662-53015-3 12

334 S. Agrawal et al.

1 Introduction

Functional encryption (FE) [19,56] is a generalization of public-key encryption,
which overcomes the all-or-nothing, user-based access to data that is inherent to
public key encryption and enables fine grained, role-based access that makes it
very desirable for modern applications. A bit more formally, given an encryption
enc(X) and a key corresponding to a function F , the key holder only learns
F (X) and nothing else. Apart from its theoretical appeal, the concept of FE
also finds numerous applications. In cloud computing platforms, users can store
encrypted data on a remote server and subsequently provide the server with
a key SKF which allows it to compute the function F of the underlying data
without learning anything else.

In some cases, the message X = (IND,M) consists of an index IND (which
can be thought of as a set of descriptive attributes) and a message M , which
is sometimes called “payload”. One distinguishes FE systems with public index,
where IND is publicly revealed by the ciphertext but M is hidden, from those
with private index, where IND and M are both hidden. Public index FE is
popularly referred to as attribute based encryption.

A Brief History of FE. The birth of Functional Encryption can be traced
back to Identity Based Encryption [17,57] which can be seen as the first non-
trivial generalization of Public Key Encryption. However, it was the work of
Sahai and Waters [56] that coined the term Attribute Based Encryption, and
the subsequent, natural unification of all these primitives under the umbrella of
Functional Encryption took place only relatively recently [19,49]. Constructions
of public index FE have matured from specialized – equality testing [13,17,35],
keyword search [1,16,44], Boolean formulae [42], inner product predicates [44],
regular languages [58] – to general polynomial-size circuits [18,34,40] and even
Turing machines [37]. The journey of private index FE has been significantly
more difficult, with inner product predicate constructions [3,44] being the state
of the art for a long time until the recent elegant generalization to polynomial-
size circuits [41].

However, although private index FE comes closer than ever before to the goal
of general FE, it falls frustratingly short. This is because all known constructions
of private index FE only achieve weak attribute hiding, which severely restricts
the function keys that the adversary can request in the security game – the
adversary may request keys for functions fi that do not decrypt the challenge
ciphertext (IND∗,M∗), i.e., fi(IND∗) �= 0 holds for all i. The most general notion
of FE – private index, strongly attribute hiding – has been built for the restricted
case of bounded collusions [38,39] or using the brilliant, but ill-understood1

machinery of multi-linear maps [33] and indistinguishability obfuscation [33].
These constructions provide FE for general polynomial-size circuits and Turing
machines [37], but, perhaps surprisingly, there has been little effort to build the
general notion of FE ground-up, starting from smaller functionalities.
1 Indeed, the two candidate multi-linear maps [24,32] put forth in 2013 were recently

found to be insecure [23,43].

Fully Secure FE for Inner Products, from Standard Assumptions 335

This appears as a gaping hole that begs to be filled. Often, from the practical
standpoint, efficient constructions for a smaller range of functionalities, such as
linear functions or polynomials, are extremely relevant, and such an endeavour
will also help us understand the fundamental barriers that thwart our attempts
for general FE. This motivates the question:

Can we build FE for restricted classes of functions, satisfying standard secu-
rity definitions, under well-understood assumptions?

In 2015, Abdalla et al. [2] considered the question of building FE for linear
functions. Here, a ciphertext C encrypts a vector y ∈ D� over some ring D,
a secret key for the vector x ∈ D� allows computing 〈x,y〉 and nothing else
about y. Note that this is quite different from the inner product predicate func-
tionality of [3,44]: the former computes the actual value of the inner product
while the latter tests whether the inner product is zero or not, and reveals a
hidden bit M if so. Abdalla et al. [2] showed, surprisingly, that this functionality
allows for very simple and efficient realizations under standard assumptions like
the Decision Diffie-Hellman (DDH) and Learning-with-Errors (LWE) assump-
tions [53]. The instantiation from DDH was especially unexpected since DDH is
not known to easily lend itself to the design of such primitives.2 What enables
this surprising result is that the functionality itself is rather limited – note that
with � queries, the adversary can reconstruct the entire message vector. Due to
this, the scheme need not provide collusion resistance, which posits that no col-
lection of secret keys for functions F1, . . . , Fq should make it possible to decrypt
a ciphertext that no individual such key can decrypt. Collusion resistance is usu-
ally the chief obstacle in proving security of FE schemes. On the contrary, for
linear FE constructions, if two adversaries combine their keys, they do get a valid
new key, but this key gives them a plaintext which could anyway be computed
by their individual plaintexts. Hence, collusion is permitted by the functionality
itself, and constructions can be much simpler. As we shall see below, linear FE
is already very useful and yields many interesting applications, as we discuss in
the full version of the paper [4].

More recently, Bishop et al. [12] considered the same functionality as Abdalla
et al. in the secret-key setting with the motivation of achieving function privacy.

While [12] considers adaptive adversaries, their construction requires bilin-
ear maps and does not operate over standard DDH-hard groups. In the public-
key setting, Abdalla et al. [2] only proved their schemes to be secure against
selective adversaries, that have to declare the challenge messages M0,M1 of
the semantic security game upfront, before seeing the master public key mpk.
Selective security is usually too weak a notion for practical applications and
is often seen as a stepping stone to proving full adaptive security. Historically,
most flavors of functional encryption have been first realized for selective adver-
saries [13,33,42,44,56] before being upgraded to attain full security. Boneh and
Boyen [14] observed that a standard complexity leveraging argument can be used

2 And indeed, this unsuitability partially manifests itself in the limitation of mes-
sage/function space of the aforementioned construction: message/function vectors
must be short integer vectors, and the inner product is evaluated over the integers.

336 S. Agrawal et al.

to argue that a selectively-secure system is also adaptively secure. However, this
argument is not satisfactory in general as the reduction incurs an exponential
security loss in the message length. Quite recently, Ananth et al. [8] described a
generic method of building adaptively secure functional encryption systems from
selectively secure ones. However their transformation is based on the existence
of a sufficiently expressive selectively secure FE scheme, where sufficiently secure
roughly means capable of evaluating a weak PRF. Since no such scheme from
standard assumptions is known, their transformation does not apply to our case,
and in any case would significantly increase the complexity of the construction,
even if it did.

Our Results. In this paper, we describe fully secure functional encryption sys-
tems for the evaluation of inner products on encrypted data. We propose schemes
that evaluate inner products of integer vectors, based on DDH, LWE and the
Composite Residuosity hardness assumptions. Our DDH-based and LWE-based
constructions for integer inner products are of efficiency comparable to those of
Abdalla et al. [2] and rely on the same standard assumptions. Note that a system
based on Paillier’s composite residuosity assumption was an open problem even
for the case of selective adversaries, which we resolve in this work.

Additionally, we propose schemes that evaluate inner products modulo a
prime p or a composite N = pq, based on the LWE and Composite Residu-
osity hardness assumptions. In contrast, the constructions of [2] must restrict
the ring D to the ring of integers, which is a significant drawback. Indeed,
although their DDH-based realization allows evaluating 〈x,y〉 mod p when the
latter value is sufficiently small, their security proof restricts the functionality
to the computation of 〈x,y〉 ∈ Z.

The functionality of inner products over a prime field is powerful: we show
that it can be bootstrapped all the way to yield a conceptually simple construc-
tion for bounded collusion FE for all circuits. The only known construction for
general FE handling bounded collusions is by Gorbunov et al. [39]. Our construc-
tion is conceptually simpler, albeit a bit more inefficient. Also, since it requires
the inner product functionality over a prime field, it can only be instantiated
with our LWE-based scheme for now.

1.1 Overview of Techniques

We briefly summarize our techniques below.

Fully Secure Linear FE: Hash Proof Systems. Our DDH-based construc-
tion and its security proof implicitly build on hash proof systems [26]. It involves
public parameters comprised of group elements

(
g, h, {hi = gsi · hti}�

i=1

)
, where

g, h generate a cyclic group G of prime order q, and the master secret key is
msk = (s, t) ∈ Z

�
q × Z

�
q. On input of a vector y = (y1, . . . , y�) ∈ Z

�
q, the encryp-

tion algorithm computes (gr, hr, {gyi · hr
i }�

i=1) in such a way that a secret key
of the form SKx = (〈s,x〉, 〈t,x〉) allows computing g〈y,x〉 in the same way as
in [2]. Despite its simplicity and its efficiency (only one more group element than

Fully Secure FE for Inner Products, from Standard Assumptions 337

in [2] is needed in the ciphertext), we show that the above system can be proved
fully secure using arguments – akin to those of Cramer and Shoup [25] – which
consider what the adversary knows about the master secret key (s, t) ∈ Z

�
q ×Z

�
q

in the information theoretic sense. The security proof is arguably simpler than
its counterpart in the selective case [2]. As in all security proofs based on hash
proof systems, it uses the fact that the secret key is known to the reduction at
any time, which makes it simpler to handle secret key queries without knowing
the adversary’s target messages y0,y1 ∈ Z

�
q in advance.

While our DDH-based realization only enables efficient decryption when the
inner product 〈x,y〉 is contained in a sufficiently small interval, we show how
to eliminate this restriction using Paillier’s cryptosystem in the same way as
in [21,22]. We thus obtain the first solution based on the Composite Residuosity
assumption, which was previously an open problem (even in the case of selective
security).

LWE-Based Fully Secure Linear FE. Our LWE-based construction builds on
the dual Regev encryption scheme from Gentry et al. [35]. Its security analysis
requires more work. The master public key contains a random matrix A ∈ Z

m×n
q .

For simplicity, we restrict ourselves to plaintext vectors and secret key vectors
with binary coordinates. Each vector coordinate i ∈ {1, . . . , �} requires a master
public key component uT

i = zT
i ·A ∈ Z

n
q , for a small norm vector zi ∈ Z

m made
of Gaussian entries which will be part of the master secret key msk = {zi}�

i=1.
Each {ui}�

i=1 can be seen as a syndrome in the GPV trapdoor function for
which vector zi is a pre-image. Our security analysis will rely on the fact that
each GPV syndrome has a large number of pre-images and, conditionally on
ui ∈ Z

n
q , each zi retains a large amount of entropy. In the security proof, this

will allow us to apply arguments similar to those of hash proof systems [26]
when we will generate the challenge ciphertext using {zi}�

i=1. More precisely,
when the first part c0 ∈ Z

m
q of the ciphertext is a random vector instead of an

actual LWE sample c0 = A · s + e0, the action of {zi}�
i=1 on c0 ∈ Z

m
q produces

vectors that appear statistically uniform to any legitimate adversary. In order to
properly simulate the challenge ciphertext using the master secret key {zi}�

i=1,
we use a variant of the extended LWE assumption [50] (eLWE) so as to have the
(hint) values {〈zi, e0〉}�

i=1 at disposal. One difficulty is that the reductions from
LWE to eLWE proved in [7,20] handle a single hint vector z. Fortunately, we
extend the techniques of Brakerski et al. [20] using the gadget matrix from [45]
to obtain a reduction from LWE to the multi-hint variant of eLWE that we use
in the security proof. More specifically, we prove that the multi-hint variant of
eLWE remains at least as hard as LWE when the adversary obtains as many as
n/2 hints, where n is the dimension of the LWE secret.

Evaluation Inner Products Modulo p. Our construction from the DDH
assumption natively supports the computation of inner products modulo a
prime p as long as the remainder 〈x,y〉 mod p falls in a polynomial-size interval.
Under the Paillier and LWE assumptions, we first show how to compute integer

338 S. Agrawal et al.

inner products 〈x,y〉 ∈ Z. In a second step, we upgrade our Paillier and LWE-
based systems so as to compute inner products modulo a composite N = pq and
a prime p, respectively, without leaking the actual value 〈x,y〉 over Z.

Hiding anything but the remainder modulo N or p requires additional tech-
niques. In the context of LWE-based FE, this is achieved by using an LWE mod-
ulus of the form q = p · p′ and multiplying plaintexts by p′, so that an inner
product modulo q over the ciphertext space natively translates into an inner
product modulo p for the underlying plaintexts.

The latter plaintext/ciphertext manipulations do not solve another difficulty
which arises from the discrepancy between the base rings of the master key
and the secret key vectors: indeed, the master key consists of integer vectors,
whereas the secret keys are defined modulo an integer. When the adversary
queries a secret key vector x ∈ Z

�
p (or Z�

N), it gets the corresponding combination
modulo p of the master key components. By making appropriate vector queries
that are linearly dependent modulo p (and hence valid), an attacker could learn
a combination of the master key components which is singular modulo p but
invertible over the field of rational numbers: it would then obtain the whole
master key! However, note that as long as the adversary only queries secret keys
for � − 1 independent vectors over Z

�
p (or Z

�
N), there is no reason not to reveal

more than �−1 secret keys overall. In order to make sure that the adversary only
obtains redundant information by making more than � − 1 queries, we assume
that a trusted authority keeps track of all vectors x for which secret keys were
previously given out (more formally, the key generation algorithm is stateful).

Compiling Linear FE to Bounded Collusion General FE. We provide a
conceptually simpler way to build q-query Functional Encryption for all circuits.
The only known construction for this functionality was suggested by Gorbunov
et al. in [39]. At a high level, the q-query construction by Gorbunov et al. is built
in several layers, as follows:

1. They start with a single key FE scheme for all circuits, which was provided
by [55].

2. The single FE scheme is compiled into a q-query scheme for NC1 circuits.
This is the most non-trivial part of the construction. They run N copies of
the single key scheme, where N = O(q4). To encrypt, they encrypt the views
of some N -party MPC protocol computing some functionality related to C,
à la “MPC in the head”. For the MPC protocol, they use the BGW [10] semi-
honest MPC protocol without degree reduction and exploit the fact that this
protocol is completely non-interactive when used to compute bounded degree
functions. The key generator provides the decryptor with a subset of the
single query FE keys, where the subsets are guaranteed to have small pairwise
intersections. This subset of keys enables the decryptor to recover sufficiently
many shares of C(x) which enables her to compute C(x) via polynomial
interpolation. However, an attacker with q keys only learns a share xi in the
clear if two subsets of keys intersect, and due to small pairwise intersections,
this does not occur often enough for him learn sufficiently many shares of x,
hence, by the guarantees of secret sharing, input x remains hidden.

Fully Secure FE for Inner Products, from Standard Assumptions 339

3. Finally, they bootstrap the q-query FE for NC1 to a q-query FE for all circuits
using computational randomized encodings [9]. They must additionally use
cover-free sets to ensure that fresh randomness is used for each randomized
encoding.

Our construction replaces steps 1 and 2 with a inner product modulo p FE
scheme, and then uses step 3 as in [39]. Thus, the construction of single key
FE in step 1 by Sahai and Seyalioglu, and the nontrivial “MPC in the head”
of step 2 can both be replaced by the simple abstraction of an inner product
FE scheme. For step 3, observe that the bootstrapping theorem of [39] provides
a method to bootstrap an FE for NC1 that handles q queries to an FE for all
polynomial-size circuits that is also secure against q queries. The bootstrapping
relies on the result of Applebaum et al. [9, Theorem 4.11] which states that every
polynomial time computable function f admits a perfectly correct computational
randomized encoding of degree 3. In more detail, let C be a family of polynomial-
size circuits. Let C ∈ C and let x be some input. Let C̃(x,R) be a randomized
encoding of C that is computable by a constant depth circuit with respect to
inputs x and R. Then consider a new family of circuits G defined by:

GC,Δ(x,R1, . . . , RS) =
{

C̃
(
x; ⊕

a∈Δ
Ra

)
: C ∈ C, Δ ⊆ [S]

}
,

for some sufficiently large S (quadratic in the number of queries q). As observed
in [39], circuit GC,Δ(·, ·) is computable by a constant degree polynomial (one
for each output bit). Given an FE scheme for G, one may construct a scheme
for C by having the decryptor first recover the output of GC,Δ(x,R1, . . . , RS)
and then applying the decoder for the randomized encoding to recover C(x).

However, to support q queries the decryptor must compute q randomized
encodings, each of which needs fresh randomness. This is handled by hardcod-
ing S random elements in the ciphertext and using random subsets Δ ⊆ [S]
(which are cover-free with overwhelming probability) to compute fresh random-
ness ⊕

a∈Δ
Ra for every query. The authors then conclude that bounded query FE

for NC1 suffices to construct a bounded query FE scheme for all circuits.
We observe that the ingredient required to bootstrap is not FE for the entire

circuit class NC1 but rather only the particular circuit class G as described above.
This circuit class, being computable by degree 3 polynomials, may be supported
by a linear FE scheme, via linearization of the degree 3 polynomials! To illustrate,
let us consider FE secure only for a single key. Then, the functionality that the
initial FE must support is exactly the randomized encoding of [9], which, indeed,
is in NC0. Now, to support q queries, we must ensure that each key uses a fresh
piece of randomness, and this is provided using a cover-free set family S as
in [39] – the key generator picks a random subset Δ ⊆ [S] and sums up its
elements to obtain i.i.d. randomness for the key being requested. To obtain a
random element in this manner, addition over the integers does not suffice, we
must take addition modulo p. Here, our inner product modulo p construction
comes to our rescue!

340 S. Agrawal et al.

Putting it together, the encryptor encrypts all degree 3 monomials in the
inputs R1, . . . , RS and x1, . . . , x�. Note that this ciphertext is polynomial in
size. Now, for a given circuit C, the keygen algorithm samples some Δ ⊆ [S]
and computes the symbolic degree 3 polynomials which must be released to the
decryptor. It then provides the linear FE keys to compute the same. By correct-
ness and security of Linear FE as well as the randomizing polynomial construc-
tion, the decryptor learns C(x) and nothing else. The final notion of security
that we obtain is non-adaptive simulation based security NA-SIM [39,49], i.e.
(poly,poly, 0) SIM security, where the adversary can request a polynomial num-
ber of pre-challenge keys, ask for polynomially sized challenge ciphertexts but
may not request post-challenge keys. For more details, we refer the reader to
Sect. 6. We note that the construction of [39] also achieves the stronger AD-SIM
security, but for a scheme that supports only a single ciphertext and bounded
number of keys. The bound on the number of ciphertexts is necessary due to a
lower bound by [19]. The notion of single ciphertext, bounded key FE appears
to be quite restrictive, hence we do not study AD-SIM security here.

We note that subsequent to our work, Agrawal and Rosen [6] used our adap-
tively secure mod p inner products FE scheme in a more sophisticated manner
than we do here, to achieve ciphertext size that improves upon the construction
of [39].

2 Background

In this section, we recall the hardness assumptions underlying the security of the
schemes we will describe. The functionality and security definitions of functional
and non-interactive controlled functional encryption schemes are given in the
full version of the paper [4].

Our first scheme relies on the standard DDH assumption in ordinary (i.e.,
non-pairing-friendly) cyclic groups.

Definition 1. In a cyclic group G of prime order q, the Decision
Diffie-Hellman (DDH) problem is to distinguish the distributions D0 =
{(g, ga, gb, gab) | g ←↩ G, a, b ←↩ Zq},D1 = {(g, ga, gb, gc) | g ←↩ G, a, b, c ←↩ Zq}.
A variant of our first scheme relies on Paillier’s composite residuosity assumption.

Definition 2 [51]. Let N = pq, for prime numbers p, q. The Decision Com-
posite Residuosity (DCR) problem is to distinguish the distributions D0 :=
{z = zN

0 mod N2 | z0 ←↩ Z∗
N} and D1 := {z ←↩ Z∗

N2}.
Our third construction builds on the Learning-With-Errors (LWE) problem,

which is known to be at least as hard as certain standard lattice problems in the
worst case [20,54].

Definition 3. Let q, α,m be functions of a parameter n. For a secret s ∈ Z
n
q ,

the distribution Aq,α,s over Z
n
q × Zq is obtained by sampling a ←↩ Zn

q and an
e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e) ∈ Z

n+1
q . The Learning With Errors

Fully Secure FE for Inner Products, from Standard Assumptions 341

problem LWEq,α,m is as follows: For s ←↩ Zn
q , the goal is to distinguish between

the distributions:

D0(s) := U(Zm×(n+1)
q) and D1(s) := (Aq,α,s)m.

We say that a PPT algorithm A solves LWEq,α if it distinguishes D0(s) and D1(s)
with non-negligible advantage (over the random coins of A and the randomness
of the samples), with non-negligible probability over the randomness of s.

3 Fully Secure Functional Encryption for Inner Products
from DDH

In this section, we show that an adaptation of the DDH-based construction of
Abdalla et al. [2] provides full security under the standard DDH assumption.
Like [2], the scheme computes inner products over Z as long as they land in a
sufficiently small interval.

In comparison with the solution of Abdalla et al., we only introduce one
more group element in the ciphertext and all operations are just as efficient as
in [2]. Our scheme is obtained by modifying [2] in the same way as Damg̊ard’s
encryption scheme [27] was obtained from the Elgamal cryptosystem. The orig-
inal DDH-based system of [2] encrypts a vector y = (y1, . . . , y�) ∈ Z

�
q by com-

puting (gr, {gyi · hr
i }�

i=1), where {hi = gsi}�
i=1 are part of the master public

key and skx =
∑�

i=1 si · xi mod q is the secret key associated with the vector
x = (x1, . . . , x�) ∈ Z

�
q. Here, we encrypt y in the fashion of Damg̊ard’s Elgamal,

by computing (gr, hr, {gyi · hr
i }�

i=1). The decryption algorithm uses secret keys
of the form skx = (

∑�
i=1 si · xi,

∑�
i=1 ti · xi), where hi = gsi · hti for each i and

s = (s1, . . . , s�) ∈ Z
�
q and t = (t1, . . . , t�) ∈ Z

�
q are part of the master key msk.

The scheme and its security proof also build on ideas from the Cramer-
Shoup cryptosystem [25,26]. Analogously to the bounded-collusion-resistant IBE
schemes of Goldwasser et al. [36], the construction can be seen as an applying a
hash proof system [26] with homomorphic properties over the key space. It also
bears similarities with the broadcast encryption system of Dodis and Fazio [29]
in the way to use hash proof systems to achieve adaptive security.

Setup(1λ, 1�): Choose a cyclic group G of prime order q > 2λ with generators
g, h ←↩ G. Then, for each i ∈ {1, . . . , �}, sample si, ti ←↩ Zq and compute
hi = gsi · hti . Define msk := {(si, ti)}�

i=1 and

mpk :=
(
G, g, h, {hi}�

i=1

)
.

Keygen(msk,x): To generate a key for the vector x = (x1, . . . , x�) ∈ Z
�
q, compute

skx = (sx, tx) = (
∑�

i=1 si · xi,
∑�

i=1 ti · xi) = (〈s,x〉, 〈t,x〉).
Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y�) ∈ Z

�
q, sample r ←↩ Zq and

compute

C = gr, D = hr, {Ei = gyi · hr
i }�

i=1.

Return Cy = (C,D,E1, . . . , E�).

342 S. Agrawal et al.

Decrypt(mpk, skx, Cy): Given skx = (sx, tx), compute

Ex = (
�∏

i=1

Exi
i)/(Csx · Dtx).

Then, compute and output logg(Ex).

The decryption algorithm requires to compute a discrete logarithm. This is
in general too expensive. Like in [2], this can be circumvented by imposing that
the computed inner product lies in an interval {0, . . . , L}, for some polynomially
bounded integer L. Then, computing the required discrete logarithm may be
performed in time Õ(L1/2) using Pollard’s kangaroo method [52]. As reported
in [11], this can be reduced to Õ(L1/3) operations by precomputing a table of
size Õ(L1/3). Note that even though the functionality is limited (decryption may
not be performed efficiently for all key vectors and for all message vectors), while
proving security we will let the adversary query any key vector in Z

�
q.

Before proceeding with the security proof, we would like to clarify that,
although the scheme of [2] only decrypts values in a polynomial-size space, the
usual complexity leveraging argument does not prove it fully secure via a poly-
nomial reduction. Indeed, when � is polynomial in λ, having the inner product
〈y,x〉 in a small interval does not mean that original vector y ∈ Z

�
q lives in a

polynomial-size universe. In Sect. 5, we show how to eliminate the small-interval
restriction using Paillier’s cryptosystem [51].

The security analysis uses similar arguments to those of Cramer and
Shoup [25,26] in that it exploits the fact that mpk does not reveal too much
information about the master secret key. At some step, the challenge ciphertext
is generated using msk instead of the public key and, as long as msk retains
a sufficient amount of entropy from the adversary’s view, it will perfectly hide
which vector among y0,y1 is actually encrypted. The reason why we can prove
adaptive security is the fact that, as usual in security proofs relying on hash
proof systems [25,26], the reduction knows the master secret key at any time. It
can thus correctly answer all secret key queries without knowing the challenge
messages y0,y1 beforehand.

The DDH-based scheme can easily be generalized so as to rely on weaker
variants of DDH, like the Decision Linear assumption [15] or the Matrix DDH
assumption [31].

Theorem 1. The scheme provides full security under the DDH assumption.
(The proof is given in the full version of the paper [4]).

4 Full Security Under the LWE Assumption

We describe two LWE-based schemes: the first one for integer inner products of
short integer vectors, the second one for inner products over a prime field Zp.

In both cases, the security relies on the hardness of a variant of the extended-
LWE problem. The extended-LWE problem introduced by O’Neill et al. [50] and

Fully Secure FE for Inner Products, from Standard Assumptions 343

further investigated in [7,20]. At a high level, the extended-LWE problem can be
seen as LWEα,q with a fixed number m of samples, for which some extra infor-
mation on the LWE noises is provided: the adversary is provided a given linear
combination of the noise terms. More concretely, the problem is to distinguish
between the distributions(

A, A · s + e,z, 〈e,z〉) and
(
A, u, z, 〈e,z〉),

where A ←↩ Z
m×n
q , s ←↩ Z

n
q ,u ←↩ Z

m
q ,e ←↩ Dm

Z,αq, and z is sampled from a
specified distribution. Note that in [50], a noise was added to the term 〈e,z〉.
The LWE to extended-LWE reductions from [7,20] do not require such an extra
noise term.

We will use a variant of extended-LWE for which multiple hints (zi, 〈e,zi〉)
are given, for the same noise vector e.

Definition 4 (Multi-hint Extended-LWE). Let q,m, t be integers, α be a real
and τ be a distribution over Z

t×m, all of them functions of a parameter n. The
multi-hint extended-LWE problem mheLWEq,α,m,t,τ is to distinguish between the
distributions of the tuples(

A, A · s + e,Z, Z · e
)

and
(
A, u, Z, Z · e

)
,

where A ←↩ Zm×n
q , s ←↩ Zn

q ,u ←↩ Zm
q ,e ←↩ Dm

Z,αq, and Z ←↩ τ .

A reduction from LWE to mheLWE is presented in Subsect. 4.3.

4.1 Integer Inner Products of Short Integer Vectors

In the description hereunder, we consider the message space P = {0, . . . , P −1}�,
for some integer P and where � ∈ poly(n) denotes the dimension of vectors to
encrypt. Secret keys are associated with vectors in V = {0, . . . , V − 1}� for some
integer V . As in the DDH case, inner products are evaluated over Z. However,
unlike our DDH-based construction, we can efficiently decrypt without confining
inner product values within a small interval: here the inner product between the
plaintext and key vectors belongs to {0, . . . , K − 1} with K = �PV , and it is
possible to set parameters so that the scheme is secure under standard hardness
assumptions while K is more than polynomial in the security parameter. We
compute ciphertexts using a prime modulus q, with q significantly larger than K.

Setup(1n, 1�, P, V): Set integers m, q ≥ 2, real α ∈ (0, 1) and distribution τ over
Z

�×m as explained below. Set K = �PV . Sample A ←↩ Zm×n
q and Z ←↩ τ .

Compute U = Z · A ∈ Z
�×n
q . Define mpk := (A,U,K, P, V) and msk := Z.

Keygen(msk,x): Given a vector x ∈ V, compute and return the secret key
zx := xT · Z ∈ Z

m.
Encrypt(mpk,y): To encrypt a vector y ∈ P, sample s ←↩ Zn

q , e0 ←↩ Dm
Z,αq and

e1 ←↩ D�
Z,αq and compute

c0 = A · s + e0 ∈ Z
m
q ,

c1 = U · s + e1 +
⌊ q

K

⌋
· y ∈ Z

�
q.

344 S. Agrawal et al.

Then, return C := (c0, c1).
Decrypt(mpk,x,zx, C): Given a ciphertext C := (c0, c1) and a secret key zx

for x ∈ V, compute μ′ = 〈x, c1〉 − 〈zx, c0〉 mod q and output the value μ ∈
{−K + 1, . . . ,K − 1} that minimizes |
 q

K � · μ − μ′|.
Setting the Parameters. Let Bτ be such that with probability ≥1 − n−ω(1),
each row of sample from τ has norm ≤Bτ . As explained just below, correctness
may be ensured by setting

α−1 ≥ K2Bτω(
√

log n) and q ≥ α−1ω(
√

log n).

The choice of τ is driven by the reduction from LWE to mheLWE (as sum-
marized in Theorem 4), and more precisely from Lemma 4 (another constraint
arises from the use of [35, Corollary 2.8] at the end of the security proof). We
may choose τ = D

�×m/2
Z,σ1

× (DZm/2,σ2,δ1
× . . . × DZm/2,σ2,δ�

), where δi ∈ Z
�

denotes the ith canonical vector, and the standard deviation parameters satisfy
σ1 = Θ(

√
n log m max(

√
m,K)) and σ2 = Θ(n7/2m1/2 max(m,K2) log5/2 m).

To ensure security based on LWEq,α′,m in dimension ≥c ·n for some c ∈ (0, 1)
via Theorems 2 and 4 below, one may further impose that � ≤ (1 − c) · n and
m = Θ(n log q), to obtain α′ = Ω(α/(n6K log2 q log5/2 n)). Note that LWEq,α′,m
enjoys reductions from lattice problems when q ≥ Ω(

√
n/α′).

Combining the security and correctness requirements, we may choose α′ =
1/((n log q)O(1) ·K2) and q = Ω(

√
n/α′), resulting in LWE parameters that make

LWE resist all known attacks running in time 2λ, as long as n ≥ Ω̃(λ log K).

Decryption Correctness. To show the correctness of the scheme, we first
observe that, modulo q:

μ′ = 〈x, c1〉 − 〈zx, c0〉 =
q/K� · 〈x,y〉 + 〈x,e1〉 − 〈zx,e0〉.
Below, we show that the magnitude of the term 〈x,e1〉 − 〈zx,e0〉 is ≤

�V Bταqω(
√

log n) with probability ≥ 1 − n−ω(1). Thanks to the choices of α
and q, the latter upper bound is ≤
q/K�/4, which suffices to guarantee decryp-
tion correctness.

Note that e1 is an integer Gaussian vector of dimension � and standard
deviation αq ≥ ω(

√
log n), and that ‖x‖ ≤ √

�V . As a result, we have
that |〈x,e1〉| ≤ √

�V αqω(
√

log n) holds with probability 1 − n−ω(1). Similarly,
as ‖zx‖ ≤ �V Bτ , we obtain that |〈zx,e0〉| ≤ �V Bταqω(

√
log n) holds with

probability 1 − n−ω(1).

Full Security. In order to prove adaptive security of the scheme, we use the
multi-hint extended-LWE from Definition 4. Before we provide the formal proof,
we provide some intuition.

Intuition. Here we describe some challenges in proving adaptive security for our
LWE construction. To begin we describe the approach used by Abdalla et al. [2]
in showing selective security for a similar construction. In the selective game, the
adversary must announce the challenge vectors y0,y1 at the outset of the game.

Fully Secure FE for Inner Products, from Standard Assumptions 345

By definition of an admissible adversary, every query xi made must satisfy the
property that 〈xi, (y0−y1)〉 = 0 (over Z) for all i. For ease of exposition, consider
challenge messages y0,y1 that only differ in the last co-ordinate. Then, the
simulator knows at the very beginning of the game, the subspace within which
all queries must lie. Since the secret key is structured as (xi)T Z, it suffices for the
simulator to pick all but the final column of Z in order to answer all legitimate
key requests. It can set the public parameters by constructing all except one
row of U using its choice of Z, and receiving the final u� from the LWE oracle.
Now the challenge ciphertext can be embedded along this dimension to argue
security.

In the adaptive game however, the simulator cannot know in advance which
subspace the adversary’s queries will lie in, hence it must pick the entire master
secret key Z to answer key requests. Given that the simulator has no secrets,
it is unclear how it may leverage the adversary. To handle this, our approach
is to carefully analyze the entropy loss that occurs in the master secret Z via
that keys seen by the adversary. We show that despite seeing linear relations
involving Z, there is enough residual entropy left in the master secret so that
the challenge ciphertext created using this appears uniform to the adversary.

To the best of our knowledge, this proof technique has not been used in prior
constructions of LWE based FE systems, which mostly rely on a “punctured trap-
door” approach. This approach roughly provides the simulator with a trapdoor
that can be used to answer key requests but vanishes w.h.p for the challenge.
Our simulator does not use trapdoors, but relies on an argument about entropy
leakage as described above. We now proceed with the formal proof.

Theorem 2. Assume that � ≤ nO(1), m ≥ 4n log2 q, q > �K2 and τ is as
described above. Then the functional encryption scheme above is fully secure,
under the mheLWEq,α,m,�,τ hardness assumption.

Proof. The proof proceeds with a sequence of games that starts with the real
game and ends with a game in which the adversary’s advantage is negligible. For
each i, we call Si the event that the adversary wins in Game i.

Game 0: This is the genuine full security game. Namely: the adversary A is
given the master public key mpk; in the challenge phase, adversary A comes
up with two distinct vectors y0,y1 ∈ P and receives an encryption C of yβ

for β ←↩ {0, 1} sampled by the challenger; when A halts, it outputs β′ ∈ {0, 1}
and S0 is the event that β′ = β. Note that any vector x ∈ V queried by A to
the secret key extraction oracle must satisfy 〈x,y0〉 = 〈x,y1〉 over Z if A is a
legitimate adversary.

Game 1: We modify the generation of C = (c0, c1) in the challenge phase.
Namely, at the outset of the game, the challenger picks s ←↩ Zn

q , e0 ←↩ Dm
Z,αq

(which may be chosen ahead of time) as well as Z ←↩ τ . The master public
key mpk is computed by setting U = Z · A mod q. In the challenge phase,
the challenger picks a random bit β ←↩ {0, 1} and encrypts yβ by computing
(modulo q)

346 S. Agrawal et al.

c0 = A · s + e0,

c1 = Z · c0 − Z · e0 + e1 +
q/K� · yβ ,

with e1 ←↩ D�
Z,αq. As the distribution of C is the same as in Game 0, we have

Pr[S1] = Pr[S0].

Game 2: We modify again the generation of C = (c0, c1) in the challenge phase.
Namely, the challenger picks u ←↩ Zm

q , sets c0 = u and computes c1 using c0,Z
and e0 as in Game 1.

Under the mheLWE hardness assumption with t = �, this modification has
no noticeable effect on the behavior of A. Below, we prove that Pr[S2] ≈ 1/2,
which completes the proof of the theorem.

Let xi ∈ V be the vectors corresponding to the secret key queries made
by A. As A is a legitimate adversary, we have 〈xi,y0〉 = 〈xi,y1〉 over Z for
each secret key query xi. Let g �= 0 be the gcd of the coefficients of y1 − y0 and
define y = (y1, . . . , y�) = 1

g (y1 − y0). We have that 〈xi,y〉 = 0 (over Z) for all i.
Consider the lattice {x ∈ Z

� : 〈x,y〉 = 0}: all the queries xi must belong to that
lattice. Without loss of generality, we assume the n0 first entries of y are zero
(for some n0), and all remaining entries are non-zero. Further, the rows of the
following matrix form a basis of a full-dimensional sublattice:

Xtop =

⎛
⎜⎜⎜⎜⎜⎝

In0

−yn0+2 yn0+1

−yn0+3 yn0+2

.
−y� y�−1

⎞
⎟⎟⎟⎟⎟⎠

∈ Z
(�−1)×�.

We may assume that through the secret key queries, the adversary learns
exactly XtopZ, as all the queried vectors xi can be obtained as rational combi-
nations of the rows of Xtop.

Let Xbot = yT ∈ Z
1×�. Consider the matrix X ∈ Z

�×�
q obtained by putting

Xtop on top of Xbot. We claim that X is invertible modulo q. To see this, observe
that

XXT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

In0

y2
n0+1 + y2

n0+2 −yn0+1 · yn0+3

−yn0+1 · yn0+3 y2
n0+2 + y2

n0+3

. . .
.

−y�−2 · y� y2
�−1 + y2

�

‖y‖2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

It can be proved by induction that its determinant is

det(XXT) = (
�−1∏

k=n0+2

y2
k) · ‖y‖4.

Fully Secure FE for Inner Products, from Standard Assumptions 347

As each of the yk’s is small and non-zero, they are all non-zero modulo prime q.
Similarly, the integer (

∑�
k=n0+1 y2

k) is non-zero and < �P 2 < q. This shows that
(detX)2 �= 0 mod q, which implies that X is invertible modulo q.

In Game 2, we have c1 = Zu − f +
q/K� · yβ , with f := −Ze0 + e1. We
write:

c1 = X−1 · X · (
Zu − f +
q/K� · yβ

)
mod q.

We will show that the distribution of X · c1 mod q is (almost) independent of β.
As X is (almost) independent of β and invertible over Zq, this implies that the
distribution of c1 is (almost) independent of β and Pr[S2] ≈ 1/2.

The first � − 1 entries of X · c1 do not depend on β because Xtop · y0 =
Xtop · y1 mod q.

It remains to prove that the last entry of X · c1 mod q is (almost) inde-
pendent of β. For this, we show that the residual distribution of XbotZ given
the tuple (A,ZA,XtopZ) has high entropy. Using (a variant of) the leftover
hash lemma with randomness XbotZ and seed u, we will then conclude that
given (A,ZA,XtopZ), the pair (u,XbotZu) is close to uniform and hence sta-
tistically hides
q/K� · yβ in c1.

Write A = (AT
1 |AT

2)T with A1,A2 ∈ Z
(m/2)×n
q . Similarly, write Z = (Z1|Z2)

with Z1,Z2 ∈ Z
�×(m/2)
q . Recall that by construction, every entry of Z1 is inde-

pendently sampled from a zero-centered integer Gaussian of standard devia-
tion parameter σ1 = Θ(

√
n log m max(

√
m,K)). Further, every entry of Z2 is

independently sampled from a (not zero-centered) integer Gaussian of standard
deviation parameter σ2 that is larger than σ1.

Lemma 1. Conditioned on (A,ZA,XtopZ1), the row vector XbotZ1 is distrib-
uted as c + D‖y‖2Zm/2,‖y‖σ1,−c for some vector c that depends only on XtopZ1.

Proof. Thanks to [35, Corollary 2.8], we have that Z2A2 is within 2−Ω(n)

statistical distance to uniform. It hence statistically hides the term Z1A1 in
ZA = Z1A1+Z2A2, and we obtain that given (A,ZA), the distribution of each
entry of Z1 is still DZ,σ1 .

Note that in XtopZ1 and XbotZ1, matrices Xtop and Xbot act in parallel on
the columns of Z1. To prove the claim, it suffices to consider the distribution
of Xbotz conditioned on Xtopz, with z sampled from DZ�,σ1 . Let b = Xtopz ∈
Z

�−1 and fix z0 ∈ Z
� arbitrary such that b = Xtopz0. The distribution of z

given that Xtopz = b is z0 + DΛ,σ1,−z0 , with Λ = {x ∈ Z
� : Xtopx = 0}. By

construction of X, we have that Λ = Zy. As a result, the conditional distribution
of Xbotz is c + D‖y‖2Z,‖y‖σ1,−c with c = 〈y,z0〉 ∈ Z. ��

Now, let us write u = (uT
1 |uT

2)T for vectors u1,u2 ∈ Z
m/2
q . We

have XbotZu = XbotZ1u1 + XbotZ2u2. Thanks to the claim above
and the result of [35, Corollay 2.8], we obtain that the distribution
of (u1, 〈D‖y‖2Zm/2,‖y‖σ1,−c,u1〉) is within 2−Ω(n) statistical distance to uni-
form (note that ‖y‖2 is invertible modulo q, that D‖y‖2Zm/2,‖y‖σ1,−c = ‖y‖2 ·

348 S. Agrawal et al.

DZm/2,σ1/‖y‖,−c/‖y‖2 , and that σ1/‖y‖ satisfies the assumption of [35, Corol-
lay 2.8]). This implies that given (A,ZA,XtopZ), the pair (u,XbotZu) is close
to uniform, which completes the security proof. ��

4.2 Inner Products Modulo a Prime p

We now modify the LWE-based scheme above so that it enables secure functional
encryption for inner products modulo prime p. The plaintext and key vectors
now belong to Z

�
p.

Note that the prior scheme evaluates inner products over the integers and is
insecure if ported as is to the modulo p setting. To see this, consider the following
simple attack in which the adversary requests a single key x so that integer
inner product with the challenge messages y0 and y1 are different by a multiple
of p. Since the functionality posits that the inner product evaluations only agree
modulo p, this is an admissible query. However, since decryption is performed
over Zq with q much larger than p, the adversary can easily distinguish. To
prevent this attack, we scale the encrypted message by a factor of q/p (instead
of
q/K� as in the previous scheme): decryption modulo q forces arithmetic
modulo p on the underlying plaintext.

A related difficulty in adapting the previous LWE-based scheme to modu-
lar inner products is the distribution of the noise component after inner product
evaluation. Ciphertexts are manipulated modulo q, which internally manipulates
plaintexts modulo p. If implemented naively, the carries of the plaintext com-
putations may spill outside of the plaintext slots and bias the noise components
of the ciphertexts. This may result in distinguishing attacks. To handle this, we
take q a multiple of p. This adds some technical complications, as Zq is hence
not a field anymore.

A different attack is that the adversary may request keys for vectors that are
linearly dependent modulo p but linearly independent over the integers. Note
that with � such queries, the attacker can recover the master secret key. To
prevent this attack, we modify the scheme in that the authority is now stateful
and keeps a record of all key queries made so far, so that it can make sure that
key queries that are linearly dependent modulo p remain so modulo q. We also
take q a power of p to simplify the implementation of this idea.

We note that for our application to bounded query FE for all circuits, all
queries will be linearly independent modulo p, hence we will not require a stateful
keygen. For details, see Sect. 6.

We now describe our scheme for inner products modulo p.

Setup(1n, 1�, p): Set integers m, q = pk for some integer k, real α ∈ (0, 1) and
distribution τ over Z�×m as explained below. Sample A ←↩ Zm×n

q and Z ←↩ τ .
Compute U = Z · A ∈ Z

�×n
q . Define mpk := (A,U) and msk := Z.

Keygen(msk,x, st): Given a vector x ∈ Z
�
p, and an internal state st, compute

the secret key zx as follows. Recall that Keygen is a stateful algorithm with
empty initial State st. At any point in the scheme execution, State st contains
at most � tuples (xi,xi,zi) where the xi’s are (a subset of the) key queries

Fully Secure FE for Inner Products, from Standard Assumptions 349

that have been made so far, and the (xi,zi)’s are the corresponding secret
keys. If x is linearly independent from the xi’s modulo p, set x = x ∈ Z

�

(with coefficients in [0, p)), zx = xT · Z ∈ Z
m and add (x,x,zx) to st.

If x =
∑

i kixi mod p for some ki’s in [0, p), then set x =
∑

i kixi ∈ Z
�

and zx =
∑

i kizi ∈ Z
m. In both cases, return (x,zx).

Encrypt(mpk,y): To encrypt a vector y ∈ Z
�
p, sample s ←↩ Zn

q , e0 ←↩ Dm
Z,αq and

e1 ←↩ D�
Z,αq and compute

c0 = A · s + e0 ∈ Z
m
q ,

c1 = U · s + e1 + pk−1 · y ∈ Z
�
q.

Then, return C := (c0, c1).
Decrypt(mpk, (x,zx), C): Given a ciphertext C := (c0, c1) and a secret key

(x,zx) for x ∈ Z
�
p, compute μ′ = 〈x, c1〉 − 〈zx, c0〉 mod q and output the

value μ ∈ Zp that minimizes |pk−1 · μ − μ′|.
Decryption Correctness. Correctness derives from the following observation:

μ′ = 〈x, c1〉 − 〈zx, c0〉 = pk−1 · (〈x,y〉 mod p) + 〈x,e1〉 − 〈zx,e0〉 mod q.

By adapting the proof of the first LWE-based scheme, we can show that the
magnitude of the term 〈x,e1〉 − 〈zx,e0〉 is ≤�2p2Bταqω(

√
log n) with probabil-

ity ≥1 − n−ω(1). This follows from the bound ‖zx‖ ≤ �‖x‖ ≤ �2p2Bτ .

Setting the Parameters. The main difference with the previous LWE-based
scheme with respect to parameter conditions is the choice of q of the form q = pk

instead of q prime. As explained just above, correctness may be ensured by
setting

α−1 ≥ �2p3Bτω(
√

log n) and q ≥ α−1ω(
√

log n).

The choice of τ is driven by Lemma 2 below (the proof requires that σ1 is
large) and the reduction from LWE to mheLWE (as summarized in Theorem 4),
and more precisely from Lemma 4. We may choose τ = D

�×m/2
Z,σ1

× (DZm/2,σ2,δ1
×

. . . × DZm/2,σ2,δ�
), where δi ∈ Z

� denotes the ith canonical vector, and the
standard deviation parameters satisfy σ1 = Θ(

√
n log m max(

√
m,K ′)) and σ2 =

Θ(n7/2m1/2 max(m,K ′2) log5/2 m), with K ′ = (
√

�p)�.
To ensure security based on LWEq,α′,m in dimension ≥c ·n for some c ∈ (0, 1)

via Theorems 2 and 4 below, one may further impose that � ≤ (1 − c) · n and
m = Θ(n log q), to obtain α′ = Ω(α/(n6K ′ log2 q log5/2 n)). Remember that
LWEq,α′,m enjoys reductions from lattice problems when q ≥ Ω(

√
n/α′).

Note that the parameter conditions make the scheme efficiency degrade
quickly when � increases, as K ′ is exponential in �. Assume that p ≤ nO(1)

and � = Ω(log n). Then σ1, σ2, 1/α, 1/α′ and q can all be set as 2Õ(�). To
maintain security against all 2o(λ) attacks, one may set n = Θ̃(�λ).

350 S. Agrawal et al.

Theorem 3. Assume that � ≤ nO(1), m ≥ 4n log2 q and τ is as described above.
Then the stateful functional encryption scheme above is fully secure, under the
mheLWEq,α,m,�,τ hardness assumption.

Proof. The sequence of games in the proof of Theorem 2 can be adapted to the
modified scheme. The main difficulty is to show that in the adapted version of
the last game, the winning probability is close to 1/2. Let us recall that game.

Game 2′: At the outset of the game, the challenger picks s ←↩ Zn
q , e0 ←↩ Dm

Z,αq

as well as Z ←↩ τ . The master public key mpk is computed by setting U =
Z·A mod q and is provided to the adversary. In the challenge phase, adversary A
comes up with two distinct vectors y0,y1 ∈ Z

�
p. The challenger picks a random

bit β ←↩ {0, 1},u ←↩ Zm
q and encrypts yβ by computing (modulo q)

c0 = u,

c1 = Z · c0 − Z · e0 + e1 + pk−1 · yβ ,

with e1 ←↩ D�
Z,αq. Note that any vector x ∈ Z

�
p queried by A to the secret

key extraction oracle must satisfy 〈x,y0〉 = 〈x,y1〉 mod p if A is a legitimate
adversary. Adversary A is then given a secret key (x,zx) as in the real scheme.
When A halts, it outputs β′ ∈ {0, 1} and wins in the event that β′ = β.

Define y = y1 − y0 ∈ Z
�
p. Let xi ∈ Z

�
p be the vectors corresponding to

the secret key queries made by A. As A is a legitimate adversary, we have
〈xi,y〉 = 0 mod p for each secret key query xi.

We consider the view of the adversary after it has made exactly j key queries
that are linearly independent modulo p, for each j from 0 up to � − 1. In fact,
counter j may stop increasing before reaching �−1, but without loss of generality,
we may assume that it eventually reaches �−1. We are to show by induction that
for any j, the view of the adversary is almost independent of β. In particular,
for all j < � − 1, this implies that the (j + 1)th linearly independent key query
is almost (statistically) independent of β. It also implies, for j = � − 1, that the
adversary’s view through Game 2′ is almost independent of β, which is exactly
what we are aiming for. In what follows, we take j ∈ {0, . . . , � − 1}, and assume
that state st is independent from β. We also assume that the jth private key
query occurs after the challenge phase since the adversary’s view is trivially
independent of β before the generation of the challenge ciphertext.

At this stage, the state st contains exactly j tuples (xi,xi,zi), where the
vectors {xi}j

i=1 form a Zp-basis of a subspace of the (� − 1)-dimensional vector
space y⊥ := {x ∈ Z

�
p : 〈x,y〉 = 0 mod p}. From y, we deterministically extend

{xi}j
i=1 into a basis of y⊥ that is statistically independent of β. A way to inter-

pret this is to imagine that the challenger makes dummy private key queries
{xi}�−1

i=j+1 for itself so as to get a full basis of y⊥ and creates the corresponding
{xi}�−1

i=j+1 in Z
�. We define Xtop ∈ Z

(�−1)×� as the matrix whose ith row is xi

for all i, including the genuine and dummy keys. Through the secret key queries,
the adversary learns at most XtopZ ∈ Z

(�−1)×m.
Let x′ ∈ Z

�
p be a vector that does not belong to y⊥, and Xbot ∈ Z

1×� be the
canonical lift of (x′)T over the integers. Consider the matrix X ∈ Z

�×� obtained

Fully Secure FE for Inner Products, from Standard Assumptions 351

by putting Xtop on top of Xbot. By construction, the matrix X is invertible
modulo p, and hence modulo q = pk. Also, by induction and construction, X ∈
Z

�×� is statistically independent of β ∈ {0, 1}.
In Game 2′, we have c1 = Zu − f + pk−1 · yβ , with f := −Ze0 + e1. We

write:

c1 = X−1 · X · (
Zu − f + pk−1 · yβ

)
mod q.

We will show that the distribution of X · c1 mod q is (almost) independent of β.
As the matrix X is independent of β ∈ {0, 1} and invertible over Zq, this implies
that the distribution of c1 is statistically independent of β (recall that X is
information-theoretically known to A, which means that, if c1 carries any notice-
able information on β, so does X · c1 mod q). This ensures that the winning
probability in Game 2′ is negligibly far from 1/2.

First, the first �−1 entries of X ·c1 do not depend on β because we have the
equality pk−1 · Xtop · y0 = pk−1 · Xtop · y1 mod q by construction of Xtop.

It remains to prove that the last entry of X·c1 mod q is (almost) independent
of β. Let us write A = (AT

1 |AT
2)T with A1,A2 ∈ Z

(m/2)×n
q . Similarly, we also

write Z = (Z1|Z2) with Z1,Z2 ∈ Z
�×(m/2). Recall that by construction, every

entry of Z1 is independently sampled from a zero-centered integer Gaussian
of standard deviation parameter σ1 = Θ(

√
n log m max(

√
m,K ′)) with K ′ =

(
√

�p)�. Further, every entry of Z2 is independently sampled from a (not zero-
centered) integer Gaussian of standard deviation parameter σ2 that is larger
than σ1.

Lemma 2. Conditioned on (A,ZA,XtopZ1), the row vector XbotZ1 mod p is
within negligible statistical distance from the uniform distribution over Z

m/2
p .

Proof. Thanks to [35, Corollary 2.8], we have that Z2A2 is within 2−Ω(n) statisti-
cal distance to uniform over Z(�−1)×m

q . It hence statistically hides the term Z1A1

in ZA = Z1A1 + Z2A2 mod q, and we obtain that given (A,ZA), the distribu-
tion of each entry of Z1 is still DZ,σ1 .

Note that in XtopZ1 and XbotZ1, matrices Xtop and Xbot act in parallel on the
columns of Z1. To prove the claim, it suffices to consider the distribution of Xbotz
conditioned on Xtopz, with z sampled from DZ�,σ1 . Let b = Xtopz ∈ Z

�−1

and fix z0 ∈ Z
� arbitrary such that b = Xtopz0. The distribution of z given

that Xtopz = b is z0 + DΛ,σ1,−z0 , with Λ = {x ∈ Z
� : Xtopx = 0} (where the

equality holds over the integers). Note that Λ is a 1-dimensional lattice in Z
�.

We can write Λ = y′ ·Z, for some y′ ∈ Z
�. Note that there exists α ∈ Zp \{0}

such that y′ = α ·y mod p: otherwise, the vector y′/p would belong to Λ \y′ ·Z,
contradicting the definition of y′. Further, we have ‖y′‖ = det Λ ≤ det Λ′, where
Λ′ is the lattice spanned by the rows of Xtop (see, e.g., [48], for properties on
orthogonal lattices). Hadamard’s bound implies that ‖y′‖ ≤ (

√
�p)�−1.

By [35, Corollary 2.8], the fact that σ1 ≥ √
n(

√
�p)� implies that the distri-

bution (DΛ,σ1,−z0 mod pΛ) is within 2−Ω(n) statistical distance from the uni-
form distribution over Λ/pΛ � yZp. We conclude that the conditional distri-
bution of (Xbotz mod p) is within exponentially small statistical distance from

352 S. Agrawal et al.

the uniform distribution over Zp (here we use the facts that p is prime and
that Xboty �= 0 mod p, by construction of Xbot). ��

Now, write u = (uT
1 |uT

2)T with u1,u2 ∈ Z
m/2
q . We have XbotZu =

XbotZ1u1 + XbotZ2u2. Thanks to Lemma 2 and a variant of the leftover
hash lemma modulo q = pk (given in the full version of the paper [4]), we
obtain that conditioned on (A,ZA,XtopZ), the distribution of (u1,XbotZ1u1)
is within 2−Ω(n) statistical distance to uniform modulo q (here we used the
assumption that m ≥ k + n/(log p)). This implies that given (A,ZA,XtopZ),
the pair (u,XbotZu) is close to uniform, which completes the security proof. ��

4.3 Hardness of Multi-hint Extended-LWE

In this section, we prove the following theorem, which shows that for some para-
meters, the mheLWE problem is no easier than the LWE problem.

Theorem 4. Let n ≥ 100, q ≥ 2, t < n and m with m = Ω(n log n) and
m ≤ nO(1). There exists ξ ≤ O(n4m2 log5/2 n) and a distribution τ over Z

t×m

such that the following statements hold:

• There is a reduction from LWEq,α,m in dimension n − t to mheLWEq,αξ,m,t,τ

that reduces the advantage by at most 2Ω(t−n),
• It is possible to sample from τ in time polynomial in n,
• Each entry of matrix τ is an independent discrete Gaussian τi,j = DZ,σi,j ,ci,j

for some ci,j and σi,j ≥ Ω(
√

mn log m),
• With probability ≥1 − n−ω(1), all rows from a sample from τ have norms ≤ξ.

Our reduction from LWE to mheLWE proceeds as the reduction from LWE
to extended-LWE from [20], using the matrix gadget from [45] to handle the
multiple hints. We first reduce LWE to the following variant of LWE in which the
first samples are noise-free. This problem generalizes the first-is-errorless LWE
problem from [20].

Definition 5 (First-are-errorless LWE). Let q, α,m, t be functions of a para-
meter n. The first-are-errorless LWE problem faeLWEq,α,m,t is defined as follows:
For s ←↩ Zn

q , the goal is to distinguish between the following two scenarios. In the
first, all m samples are uniform over Z

n
q ×Zq. In the second, the first t samples

are from Aq,{0},s (where {0} denotes the distribution that is deterministically
zero) and the rest are from Aq,α,s.

Lemma 3. For any n > t, m, q ≥ 2, and α ∈ (0, 1), there is an efficient
reduction from LWEq,α,m in dimension n − t to faeLWEq,α,m,t in dimension n
that reduces the advantage by at most 2−n+t+1.

The proof, postponed to the appendices, is a direct adaptation of the one
of [20, Lemma 4.3].

In our reduction from faeLWE to mheLWE, we use the following gadget
matrix from [45, Corollary 10]. It generalizes the matrix construction from [20,
Claim 4.6].

Fully Secure FE for Inner Products, from Standard Assumptions 353

Lemma 4. Let n,m1,m2 with 100 ≤ n ≤ m1 ≤ m2 ≤ nO(1). Let σ1, σ2 > 0
be standard deviation parameters such that σ1 ≥ Ω(

√
m1n log m1), m1 ≥

Ω(n log(σ1n)) and σ2 ≥ Ω(n5/2√m1σ
2
1 log3/2(m1σ1)). Let m = m1 + m2. There

exists a probabilistic polynomial time algorithm that given n,m1,m2 (in unary)
and σ1, σ2 as inputs, outputs G ∈ Z

m×m such that:

• The top n × m submatrix of G is within statistical distance 2−Ω(n) of τ =
Dn×m1

Z,σ1
× (DZm2 ,σ2,δ1 × . . . × DZm2 ,σ2,δn

)T with δi denoting the ith canonical
unit vector,

• We have |det(G)| = 1 and ‖G−1‖ ≤ O(
√

nm2σ2), with probability ≥ 1 −
2−Ω(n).

Lemma 5. Let n,m1,m2,m, σ1, σ2, τ be as in Lemma 4, and ξ ≥ Ω(
√

nm2σ2).
Let q ≥ 2, t ≤ n, α ≥ Ω(

√
n/q). Let τt be the distribution obtained by keeping

only the first t rows from a sample from τ . There is a (dimension-preserving)
reduction from faeLWEq,α,m,t to mheLWEq,2αξ,m,t,τt

that reduces the advantage
by at most 2−Ω(n).

Proof. Let us first describe the reduction. Let (A, b) ∈ Z
m
q × Zq be the

input, which is either sampled from the uniform distribution, or from distri-
bution At

q,{0},s × Am−t
q,α,s for some fixed s ←↩ Z

n
q . Our objective is to distin-

guish between the two scenarios, using an mheLWE oracle. We compute G as
in Lemma 4 and let U = G−1. We let Z ∈ Z

t×m denote the matrix formed
by the top t rows of G, and let U′ ∈ Z

m×(m−t) denote the matrix formed by
the right m − t columns of U. By construction, we have ZU′ = 0. We define
A′ = U · A mod q. We sample f ←↩ Dαq(ξ2I−U′U′T)1/2 (thanks to Lemma 4 and
the choice of ξ, the matrix ξ2I − U′U′T is positive definite). We sample e′ from
{0}t ×Dm−t

αq and define b′ = U ·(b+e′)+f . We then sample c ←↩ D
Zm−b′,

√
2αξq,

and define h = Z(f + c).
Finally, the reduction calls the mheLWE oracle on input (A′, b′ +c,Z,h), and

outputs the reply.
Correctness is obtained by showing that distribution At

q,{0},s × Am−t
q,α,s is

mapped to the mheLWE “LWE” distribution and that the uniform distribution
is mapped to the mheLWE “uniform” distribution, up to 2−Ω(n) statistical dis-
tances (we do not discuss these tiny statistical discrepancies below). The proof
is identical to the reduction analysis in the proof of [20, Lemma 4.7]. ��

Theorem 4 is obtained by combining Lemmas 3, 4 and 5.

5 Constructions Based on Paillier

In this section, we show how to remove the main limitation of our DDH-based
system which is its somewhat expensive decryption algorithm. To this end, we use
Paillier’s cryptosystem [51] and the property that, for an RSA modulus N = pq,
the multiplicative group Z

∗
N2 contains a subgroup of order N (generated by

(N + 1)) in which the discrete logarithm problem is easy. We also rely on the
observation [21,22] that combining the Paillier and Elgamal encryption schemes
makes it possible to decrypt without knowing the factorization of N = pq.

354 S. Agrawal et al.

5.1 Computing Inner Products over Z

In the following scheme, key vectors x and message vectors y are assumed to
be of bounded norm ‖x‖ ≤ X and ‖y‖ ≤ Y , respectively. The bounds X and Y
are chosen so that X · Y < N , where N is the composite modulus of Paillier’s
cryptosystem. Decryption allows to recover 〈x,y〉 mod N , which is exactly 〈x,y〉
over the integers, thanks to the norm bounds. The security proof further requires
that �Y 2 < N and we thus assume X,Y < (N/�)1/2.

Setup(1λ, 1�,X, Y): Choose safe prime numbers p = 2p′ + 1, q = 2q′ + 1 with
sufficiently large primes p′, q′ > 2l(λ), for some polynomial l, and compute
N = pq > XY . Then, sample g′ ←↩ Z

∗
N2 and compute g = g′2N mod N2,

which generates the subgroup of (2N)th residues in Z
∗
N2 with overwhelming

probability. Then, sample an integer vector s = (s1, . . . , s�)T ←↩ DZ�,σ with
discrete Gaussian entries of standard deviation σ >

√
λ · N5/2 and compute

hi = gsi mod N2. Define

mpk :=
(
N, g, {hi}�

i=1, Y
)

and msk := ({si}�
i=1,X). The prime numbers p, p′, q, q′ are no longer needed.

Keygen(msk,x): To generate a key for the vector x = (x1, . . . , x�) ∈ Z
�

with ‖x‖ ≤ X, compute skx =
∑�

i=1 si · xi over Z.
Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y�) ∈ Z

� with ‖y‖ ≤ Y ,
sample r ←↩ {0, . . . ,
N/4�} and compute

C0 = gr mod N2,

Ci = (1 + yiN) · hr
i mod N2, ∀i ∈ {1, . . . , �}.

Return Cy = (C0, C1, . . . , C�) ∈ Z
�+1
N2 .

Decrypt(mpk, skx, Cy): Given skx ∈ Z, compute

Cx =

(
�∏

i=1

Cxi
i

)
· C−skx

0 mod N2.

Then, compute and output log(1+N)(Cx) = Cx−1 mod N2

N .

As in previous constructions (including those of [2]), our security proof
requires inner products to be evaluated over Z, although the decryptor tech-
nically computes 〈x,y〉 mod N . The reason is that, since secret keys are com-
puted over the integers, our security proof only goes through if the adversary
is restricted to only obtain secret keys for vectors x such that 〈x,y0〉 = 〈x,y1〉
over Z.

Theorem 5. The scheme provides full security under the DCR assumption.
(The proof is available in the full version of the paper [4]).

Fully Secure FE for Inner Products, from Standard Assumptions 355

5.2 A Construction for Inner Products over ZN

Here, we show that our first DCR-based scheme can be adapted in order to
compute the inner product 〈y,x〉 mod N instead of computing it over Z. To
do this, a first difficulty is that, as in our LWE-based system, private keys are
computed over the integers and the adversary may query private keys for vectors
that are linearly dependent over Z

�
N but independent over Z

�. This problem is
addressed as previously, by having the authority keep track of all previously
revealed private keys. As in our LWE-based construction over Zp, we also need
to increase the size of private keys (by a factor ≈ �) because we have to use a
different information-theoretic argument in the last step of the security proof.

Setup(1λ, 1�): Choose safe prime numbers p = 2p′+1, q = 2q′+1 with sufficiently
large primes p′, q′ > 2l(λ), for some polynomial l, and compute N = pq.
Then, sample g′ ←↩ Z∗

N2 and compute g = g′2N mod N2, which generates the
subgroup of (2N)th residues in Z

∗
N2 with overwhelming probability. Then,

sample an integer vector s = (s1, . . . , s�)T ←↩ DZ�,σ with discrete Gaussian
entries of standard deviation σ >

√
λ(

√
�N)�+1 and compute hi = gsi mod

N2. Define msk := {si}�
i=1 and

mpk :=
(
N, g, {hi}�

i=1

)
.

Keygen(msk,x, st): To generate the jth secret key skx for a vector x ∈ Z
�
N using

the master secret key msk and an (initially empty) internal state st, a stateful
algorithm is used. At any time, st contains at most � tuples (xi,xi,zxi

)
where the (xi,zxi

)’s are the previously revealed secret keys and the xi are
the corresponding vectors.

– If x is linearly independent from the xi’s modulo N , set x = x ∈ Z
�

(with coefficients in [0, N)), zx = 〈s,x〉 ∈ Z and add (x,x,zx) to st.
– If x =

∑
i kixi mod N for some coefficients {ki}i≤j−1 in ZN , then com-

pute x =
∑

i ki · xi ∈ Z
� and zx =

∑
i ki · zxi

∈ Z
m.

In either case, return skx = (x,zx).
Encrypt(mpk,y): To encrypt a vector y = (y1, . . . , y�) ∈ Z

�
N , sample r ←↩

{0, . . . ,
N/4�} and compute

C0 = gr mod N2,

Ci = (1 + yiN) · hr
i mod N2, ∀i ∈ {1, . . . , �}.

Return Cy = (C0, C1, . . . , C�) ∈ Z
�+1
N2 .

Decrypt(mpk, skx, Cy): Given skx = (x,zx) ∈ Z
� × Z with x = (x1, . . . , x�),

compute

Cx =

(
�∏

i=1

Cxi
i

)
· C−zx

0 mod N2.

Then, compute and output log(1+N)(Cx) = Cx−1 mod N2

N .

356 S. Agrawal et al.

From a security standpoint, the following result is proved in the full version
of the paper [4].

Theorem 6. The above stateful scheme provides full security under the DCR
assumption.

6 Bootstrapping Linear FE to Efficient Bounded
FE for All Circuits

In this section, we describe how to compile our Linear FE scheme, denoted by
LinFE which computes linear functions modulo p (for us p = 2), into a bounded
collusion FE scheme for all circuits, denoted by BddFE. The underlying scheme
LinFE is assumed to be AD-IND secure, which, by [49], is equivalent to non-
adaptive simulation secure NA-SIM, since linear functions are “preimage sam-
pleable”. We refer the reader to [49] for more details.

Let C be a family of polynomial-size circuits. Let C ∈ C and let x be some
input. Let C̃(x, R) be a randomized encoding of C that is computable by a
constant depth circuit with respect to inputs x and R (see [9]). Then consider a
new family of circuits G defined by:

GC,Δ(x,R1, . . . , RS) =
{

C̃
(
x; ⊕

a∈Δ
Ra

)
: C ∈ C, Δ ⊆ [S]

}
,

for some S to be chosen below. As observed in [39, Sect. 6], circuit GC,Δ(·, ·) is
computable by a constant degree polynomial (one for each output bit). Given
an FE scheme for G, one may construct a scheme for C by having the decryptor
first recover the output of GC,Δ(x, R1, . . . , RS) and then applying the decoder
for the randomized encoding to recover C(x).

Note that to support q queries the decryptor must compute q randomized
encodings, each of which needs fresh randomness. As shown above, this is handled
by hardcoding sufficiently many random elements in the ciphertext and taking
a random subset sum of these to generate fresh random bits for each query.
As in [39], the parameters are chosen so that the subsets form a cover-free sys-
tem, so that every random subset yields fresh randomness (with overwhelming
probability).

In more details, we let the set S, v,m be parameters to the construction. Let
Δi for i ∈ [q] be a uniformly random subset of S of size v. To support q queries,
we identify the set Δi ⊆ S with query i. If v = O(λ) and S = O(λ · q2) then
the sets Δi are cover-free with high probability. For details, we refer the reader
to [39, Sect. 5]. We now proceed to describe our construction. Let L � (�+S ·m)3,
where m ∈ poly(λ) is the size of the random input in the randomized encoding
and � is the length of the messages to be encrypted.

BddFE.Setup(1λ, 1�): Upon input the security parameter λ and the message
space M = {0, 1}�, invoke (mpk,msk) = LinFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk, C): Upon input the master secret key and a circuit C, do:

Fully Secure FE for Inner Products, from Standard Assumptions 357

1. Sample a uniformly random subset Δ ⊆ S of size v.
2. Express C(x) by GC,Δ(x, R1, . . . , RS), which in turn can be expressed as

a sequence of degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).
3. Linearize each polynomial Pi and let P ′

i be its vector of coefficients. Note
that the ordering of the coefficients can be aribitrary but should be public.

4. Output BddFE.SKC = {SKi = LinFE.KeyGen(LinFE.msk, P ′
i)}i∈[k].

BddFE.Enc(x,mpk): Upon input the public key and the plaintext x, do:
1. Sample R1, . . . , RS ← {0, 1}m.
2. Compute all symbolic monomials of degree 3 in the variables x1, . . . , x�

and Ri,j for i ∈ [S], j ∈ [m]. The number of such monomials is L =
(� + S · m)3. Arrange them according to the public ordering and denote
the resulting vector by y.

3. Output CTx = LinFE.Enc(LinFE.mpk,y).
BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a

secret key SKC = {SKi}i∈[k] for circuit C, do the following:
1. Compute GC,Δ(x, R1, . . . , RS) = {Pi(Y)}i∈[k] = {LinFE.Dec(CTx, SKi)}i∈[k].
2. Run the decoder for the randomized encoding to recover C(x) from

GC,Δ(x, R1, . . . , RS).

Correctness follows from the correctness of LinFE and the correctness of ran-
domized encodings.

Security. The definition for q-NA-SIM security is provided in the full version of
the paper [4]. We proceed to describe our simulator Bdd.Sim. Let RE.Sim be the
simulator guaranteed by the security of randomized encodings and LinFE.Sim be
the simulator guaranteed by the security of the LinFE scheme.

Simulator Bdd.Sim
({Ci, Ci(x),SKi}i∈[q∗]

)
: The simulator Bdd.Sim receives the

secret key queries Ci, the corresponding (honestly generated) secret keys SKi and
the values Ci(x) for i ∈ [q∗] where q∗ ≤ q, and must simulate the ciphertext CTx.
It proceeds as follows:

1. Sample Δ1, . . . ,Δq ⊆ S, of size v each.
2. For each i ∈ [q∗], invoke RE.Sim(Ci(x)) to learn GCi

(x, R̂i) for some R̂i chosen
by the simulator. Interpret

R̂i = ⊕Ra
a∈Δi

and GCi,Δi
(x, R1, . . . , RS) = GCi

(x, R̂i) =
(
P1(Y), . . . , Pk(Y)

)
.

3. Let CTx = LinFE.Sim
({GCi,Δi

, GCi,Δi
(x, R1, . . . , RS),SKi}i∈[q∗]

)
and out-

put it.

The correctness of Bdd.Sim follows from the correctness of RE.Sim and
LinFE.Sim.

A last remaining technicality is that the most general version of our con-
struction for FE for inner product modulo p is stateful. This is because a general
adversary against LinFE may request keys that are linearly dependent modulo p

358 S. Agrawal et al.

but linearly independent over the integers, thus learning new linear relations in
the master secret. This forces the simulator (and hence the key generator) to
maintain a state.

However, in our application, we can make do with a stateless variant, since
all the queries will be linearly independent over Z2. To see this, note that in
the above application of LinFE, each query is randomized by a unique random
set Δi. Recall that by cover-freeness, the element ⊕

a∈Δi

Ra must contain at least

one fresh random element, say R∗, which is not contained by ∪
j �=i

Δj . Stated a bit

differently, if we consider the query vectors of size L, then cover-freeness implies
that no query vector lies within the linear span of the remaining queries made by
the adversary. For any query Q, there is at least one position j ∈ [L] so that this
position is nonzero in the L vector representing Q but zero for all other vectors.
Hence the query vectors are linearly independent over Z2, for which case, our
construction of Sect. 4.2 is stateless.

Acknowledgements. We thank Fabrice Benhamouda and Hoeteck Wee for help-
ful discussions. This work has been supported in part by ERC Starting Grant ERC-
2013-StG-335086-LATTAC. Part of this work was also funded by the “Programme
Avenir Lyon Saint-Etienne de l’Université de Lyon” in the framework of the programme
“Investissements d’Avenir” (ANR-11-IDEX-0007).

A Definitions for Functional Encryption

We now recall the syntax of Functional Encryption, as defined by Boneh
et al. [19], and their indistinguishability-based security definition.

Definition 6 [19]. A functionality F defined over (K,Y) is a function F : K ×
Y → Σ ∪ {⊥}, where K is a key space, Y is a message space and Σ is an output
space, which does not contain the special symbol ⊥.

Definition 7. A functional encryption (FE) scheme for a functionality F is
a tuple FE = (Setup,Keygen,Encrypt,Decrypt) of algorithms with the following
specifications:

Setup(1λ): Takes as input a security parameter 1λ and outputs a master key
pair (mpk,msk).

Keygen(msk,K): Given the master secret key msk and a key (i.e., a function)
K ∈ K, this algorithm outputs a key skK .

Encrypt(mpk, Y): On input of a message Y ∈ Y and the master public key mpk,
this randomized algorithm outputs a ciphertext C.

Decrypt(mpk, skK , C): Given the master public key mpk, a ciphertext C and a
key skK , this algorithm outputs v ∈ Σ ∪ {⊥}.

We require that, for all (mpk,msk) ← Setup(1λ), all keys K ∈ K and all messages
Y ∈ Y, if skK ← Keygen(msk,K) and C ← Encrypt(mpk, Y), with overwhelming
probability, we have Decrypt(mpk, skK , C) = F (K,Y) whenever F (K,Y) �=⊥.

Fully Secure FE for Inner Products, from Standard Assumptions 359

In some cases, we will also give a state st as input to algorithm Keygen, so
that a stateful authority may reply to key queries in a way that depends on the
queries that have been made so far. In that situation, algorithm Keygen may
additionally update state st.

Indistinguishability-based security. From a security standpoint, what we
expect from a FE scheme is that, given C ← Encrypt(mpk, Y), the only thing
revealed by a secret key skK about the underlying Y is the function evaluation
F (K,Y). In the natural definition of indistinguishability-based security (see,
e.g., [19]), one asks that no efficient adversary be able to differentiate encryptions
of Y0 and Y1 without obtaining secret keys skK such that F (K,Y0) �= F (K,Y1).

A detailed definition of indistinguishability-based security (which initially
comes from [19, Sect. 4]) is given in the full version of the paper. It captures
adaptive security in that the adversary is allowed to choose the messages Y0, Y1

in the middle of the game, based on the information obtained so far. Abdalla
et al. [2] considered a weaker notion, called selective security, where the adversary
has to declare the messages Y0, Y1 before even seeing mpk. In this scenario, the
adversary can receive the challenge ciphertext at the same time as the public
key.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, relation
to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 205–222. Springer, Heidelberg (2005)

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015)

3. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. Cryptology ePrint Archive: report 2015/608

5. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013)

6. Agrawal, S., Rosen, A.: Online-offline functional encryption for bounded collusions.
Cryptology ePrint Archive, Report 2016/361 (2016). http://eprint.iacr.org/

7. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012)

8. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015)

9. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

http://eprint.iacr.org/

360 S. Agrawal et al.

10. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of STOC,
pp. 1–10. ACM (1988)

11. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In:
Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–
338. Springer, Heidelberg (2012)

12. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6 20

13. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

14. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24(4), 659–693 (2011)

15. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

16. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003). (electronic)

18. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

19. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011)

20. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: On the classical
hardness of learning with errors. In: Proceedings of STOC, pp. 575–584. ACM
(2013)

21. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S. (ed.)
ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003)

22. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of dis-
crete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

23. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

24. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

25. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

26. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

http://dx.doi.org/10.1007/978-3-662-48797-6_20

Fully Secure FE for Inner Products, from Standard Assumptions 361

27. Damg̊ard, I.B.: Towards practical public key systems secure against chosen cipher-
text attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

28. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 519–535. Springer,
Heidelberg (2013)

29. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
100–115. Springer, Heidelberg (2002)

30. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

31. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

32. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

33. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of FOCS, pp. 40–49 (2013)

34. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

35. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of STOC, pp. 197–206. ACM (2008)

36. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012)

37. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

38. Goldwasser, S., Tauman Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Proceedings of
STOC, pp. 555–564. ACM Press (2013)

39. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012)

40. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Proceedings of STOC, pp. 545–554. ACM Press (2013)

41. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015)

42. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of ACM-CCS 2006, pp.
89–98. ACM Press (2006)

43. Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49890-3 21

http://dx.doi.org/10.1007/978-3-662-49890-3_21

362 S. Agrawal et al.

44. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

45. Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R.: Hardness of k -LWE and applications
in traitor tracing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 315–334. Springer, Heidelberg (2014)

46. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

47. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

48. Nguyên, P.Q., Stern, J.: Merkle-Hellman revisited: a cryptanalysis of the Qu-
Vanstone cryptosystem based on group factorizations. In: Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer, Heidelberg (1997)

49. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010). http://eprint.iacr.org/

50. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rog-
away, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg
(2011)

51. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

52. Pollard, J.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13, 433–447
(2000)

53. Regev, O.: On lattices, learning with errors, random linear codes, cryptography.
In: Proceedings of STOC, pp. 84–93. ACM (2005)

54. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34 (2009)

55. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS 2010 (2010)

56. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

57. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

58. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

http://eprint.iacr.org/

Circuit-ABE from LWE: Unbounded Attributes
and Semi-adaptive Security

Zvika Brakerski1,2(B) and Vinod Vaikuntanathan1,2

1 Weizmann Institute of Science, Rehovot, Israel
zvika.brakerski@weizmann.ac.il

2 MIT, Cambridge, USA

Abstract. We construct an LWE-based key-policy attribute-based
encryption (ABE) scheme that supports attributes of unbounded poly-
nomial length. Namely, the size of the public parameters is a fixed poly-
nomial in the security parameter and a depth bound, and with these
fixed length parameters, one can encrypt attributes of arbitrary length.
Similarly, any polynomial size circuit that adheres to the depth bound
can be used as the policy circuit regardless of its input length (recall that
a depth d circuit can have as many as 2d inputs). This is in contrast to
previous LWE-based schemes where the length of the public parameters
has to grow linearly with the maximal attribute length.

We prove that our scheme is semi-adaptively secure, namely, the adver-
sary can choose the challenge attribute after seeing the public parame-
ters (but before any decryption keys). Previous LWE-based constructions
were only able to achieve selective security. (We stress that the “complex-
ity leveraging” technique is not applicable for unbounded attributes).

We believe that our techniques are of interest at least as much as our
end result. Fundamentally, selective security and bounded attributes are
both shortcomings that arise out of the current LWE proof techniques
that program the challenge attributes into the public parameters. The
LWE toolbox we develop in this work allows us to delay this program-
ming. In a nutshell, the new tools include a way to generate an a-priori
unbounded sequence of LWE matrices, and have fine-grained control over
which trapdoor is embedded in each and every one of them, all with
succinct representation.

1 Introduction

Key-policy attribute-based encryption [22,34] is a special type of public-key
encryption scheme where a (master) public key mpk is used for encryption,

Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14), the
Alon Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307)
and Google Faculty Research Award.
V. Vaikuntanathan—Research supported in part by DARPA Safeware Grant, NSF
CAREER Award CNS-1350619, NSF Grant CNS-1413964 (MACS: A Modular App-
roach to Computer Security), US-Israel Binational Science Foundation Grant No.
712307, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, NEC
Corporation and a Steven and Renee Finn Career Development Chair from MIT.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 363–384, 2016.
DOI: 10.1007/978-3-662-53015-3 13

364 Z. Brakerski and V. Vaikuntanathan

and users are associated to secret keys skf corresponding to (policy) functions
f : X → {0, 1}. The encryption of a message μ is labeled with a public attribute
x ∈ X , and can be decrypted using skf if and only if f(x) = 0.1

Intuitively, the security requirement is collusion resistance: a coalition of users
learns nothing about the plaintext message μ if none of their individual keys are
authorized to decrypt the ciphertext.

The past few years have seen much progress in constructing secure and effi-
cient attribute-based encryption (ABE) schemes from different assumptions and
for different settings. The first constructions [10,22,23,25,27,30,36] apply to
predicates computable by Boolean formulas (which are equivalent to log-depth
computations). More recently, important progress has been made on construc-
tions for the set of all polynomial-size circuits (of a-priori bounded polynomial
depth): Gorbunov et al. [19] gave a construction from the Learning With Errors
(LWE) assumption, and Garg et al. [14] gave a construction using multilinear
maps. In both constructions the policy functions are represented as Boolean cir-
cuits composed of fan-in 2 gates, and the secret key size is proportional to the
size of the circuit. Boneh et al. [9] constructed an “arithmetic” ABE scheme
where the secret key size is independent of the circuit-size of the function f , but
rather depends only on the circuit-depth. This in turn gave the first construction
of compact reusable garbled circuits [9], and led to constructions of predicate
encryption [20], homomorphic signatures [21] and constrained pseudo-random
functions [11].

However, despite all this progress, there are several deficiencies in these con-
structions. The first is that in all of them, the length of the attribute, represented
as a binary string, has to be determined during the initial setup. This is a prob-
lem not just for ABE, but also for all downstream constructions (of succinct
single-use functional encryption, homomorphic signatures, predicate encryption,
and so on) where the size of the input to be encrypted (or signed) is limited by
the initial setup.2 We know of three exceptions to this: the first is the (selectively
secure) ABE construction of Lewko et al. [26] that handles Boolean formulas,
under assumptions on bilinear maps and the second is the (fully secure) inner
product encryption and ABE construction of Okamoto and Takashima [31] that
again only handles Boolean formulas. Finally, there is the recent work of Ananth
and Sahai [7] who show a functional encryption scheme for Turing machines that
can take arbitrarily long inputs. In particular, this gives rise to an ABE scheme
with the same properties, however this construction uses the huge hammer of
indistinguishability obfuscation (IO) unlike the ones in the previous paragraph.

Q1: Is there an ABE scheme for general circuits with unbounded attribute
length under standard complexity assumptions?

1 We follow, here and after, the convention that f(x) = 0 signifies the ability to
decrypt. This is the opposite of the standard convention, and is done purely for our
convenience in the technical sections.

2 One can modify the circuit-ABE constructions of [9,20] to support unbounded
attributes in the (programmable) random oracle model. Our focus in this paper
is on constructions in the standard model.

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 365

The second shortcoming of the circuit-ABE constructions based on lattices
and LWE is that they are only selectively secure. Selective security means that
the attacker needs to decide which challenge attribute to attack before seeing the
public parameters of the scheme or any of the keys. In adaptive security (also
known as full security), the challenge attribute x∗ can be chosen at any point,
even depending on the public parameters and decryption keys obtained by the
attacker.

While we do know of adaptively secure ABE for formulas [25] based on bilin-
ear maps, and for circuits based on multilinear maps [15] and on indistinguisha-
bility obfuscation [37], achieving adaptive security in LWE-based constructions
seems to require fundamentally new ideas. Recently, Ananth et al. [6] came
up with a generic way to go from selective to adaptive security for (collusion-
resistant) FE schemes, but their transformation does not work for ABE schemes.

A well known “hack” for getting around the selectiveness issue is to use
“complexity leveraging”. This technique is based on the observation that an
adaptive adversary can be made selective at the cost of a factor 2� increase in
the running time (or loss of 2−� in the success probability), where � is the max-
imum attribute length, just by guessing the challenge attribute ahead of time.
Therefore, if we start with a selective scheme that is secure against 2� · poly(λ)
adversaries, then it is also adaptively secure against poly(λ) time adversaries.
Since usually � = poly(λ), this method leads to a considerable increase in security
parameter. More importantly in our situation, if the attribute space is a-priori
unbounded, then complexity leveraging cannot work at all.

An intermediate milestone to adaptively secure ABE is the weaker notion of
semi-adaptive security, introduced by Chen and Wee [13]. Semi-adaptive security
permits an adversary to choose the challenge attributes after it sees the public
parameters, but before it sees the answers to any of its secret-key queries. Chen
and Wee show a simpler construction of adaptively secure ABE for formulas.
Note that for unbounded attributes, complexity leveraging is of no use for this
notion as well.

Q2: Is there an adaptively (or even semi-adaptively) secure ABE for gen-
eral circuits under standard complexity assumptions?

We resolve the first question and (semi-)resolve the second, as follows.

Theorem 1 (Informal). Assuming the (polynomial) hardness of approximat-
ing worst-case lattice problems to within sub-exponential factor, there is a semi-
adaptively secure ABE scheme for circuits of a-priori bounded (polynomial) depth
which supports attributes of unbounded length.

In particular, the setup procedure of our scheme does not require an upper
bound on the length of the attributes that will be encrypted. Quite curiously,
semi-adaptivity in our result seems to come for free from our techniques to
achieve unbounded attribute ABE. We elaborate more on our techniques below.

366 Z. Brakerski and V. Vaikuntanathan

1.1 Overview of Our Techniques

We start with an interpretation of the ABE scheme of Boneh et al. [9] (itself
based on the homomorphic encryption scheme of Gentry et al. [18]) which will
be instrumental for our presentation.

Given matrices C1, . . . ,C� of appropriate dimension, and a function f :
{0, 1}� → {0, 1}, represented as a Boolean circuit, one can compute a matrix
Cf which is the “homomorphic evaluation” of f on {Ci}. The property of Cf

is that for all x ∈ {0, 1}� there exists a low-norm matrix H = H�C,f,x (that is,
one with “fairly small” entries, the exact amplitude depends on the depth of f
and does not matter for this high level description) for which

Cf − f(x)G =

⎛
⎜⎝[C1‖ · · · ‖C�]︸ ︷︷ ︸

denote �C

− [x1G‖ · · · ‖x�G]︸ ︷︷ ︸
denote x�G

⎞
⎟⎠ · H.

The matrix G is a special “gadget matrix”. This means that if Ci = ARi +xiG
for some low-norm matrix Ri, then Cf can be expressed as ARf + f(x)G for a
somewhat low-norm matrix Rf .

In the ABE scheme of Boneh et al. [9], the public parameters contain a matrix
A and a set �C = (C1, . . . ,C�) so that � is the length of supported attributes.
The parameters are chosen so that a secret trapdoor can always find a low norm
solution R to any equation of the form C = AR + yG, for all C, y. Encrypting
a message to an attribute x is done (at a high level) by considering [A‖�C−x�G]
as a public key to a dual-Regev encryption scheme [17] and encrypting relative
to this key. An important feature of dual-Regev is that it is possible to modify a
ciphertext which was encrypted with respect to a certain public key into one that
is encrypted with respect to a related key, so long as the new key is obtained by
multiplying the old key by a low-norm matrix. Therefore, given some function
f , the ciphertext can be converted into one that corresponds to the public key
[A‖Cf −f(x)G]. Indeed, ABE secret-keys skf are generated as dual-Regev keys
for the public key [A‖Cf], and indeed they can decrypt whenever f(x) = 0.3

In the proof of security, A is generated without a trapdoor, but Ci are gen-
erated as ARi +x∗

iG (which is indistinguishable from their honest distribution).
This means that whenever f(x∗) = 1, the matrix [A‖Cf] equals to [A‖ARf +G].
It had been shown by [3,29] that if Rf is known, then dual-Regev keys can be
generated even without a trapdoor. Finally, the challenge ciphertext is encrypted
relative to [A‖�C − x∗ �G] = A · [I‖�R], which can be shown to be LWE-hard to
break if a trapdoor for A is not known (which indeed it isn’t).

The absolutely vital technique that makes the proof of [9] work4 is the ability
to embed the challenge attributes into the public parameters. It is apparent from
3 Note that this “negated policy” formulation is obviously equivalent to the standard

formulation in the literature wherein decryption succeeds if f(x) = 1. From this
point and on, purely for our convenience in the technical sections, we will assume
that a ciphertext should be decryptable if f(x) = 0 and not decryptable otherwise.

4 The proofs of the other circuit-ABE schemes from standard assumptions, namely
[14,19], follow along similar lines.

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 367

this description that the [9] scheme is inherently selectively secure and attribute
length bounded. It is important that in the security proof, the values of Ci are
set ahead of time to the right values according to the challenge attributes x∗,
making the proof inherently selectively secure. In fact, the entire paradigm of
embedding the challenge ciphertext in the public parameters necessitates, for
pure information-theoretic reasons, that the public parameters grow with the
length of the challenge attribute.

The first thing that we should do if we want to stretch the [9] scheme to
support unbounded length attributes, is to find a way to generate an unbounded
number of Ci matrices out of a-priori bounded public parameters. Our first
observation is that the scheme already exhibits a similar feature in a different
context. Namely, the generation of many Cf out of a bounded number of Ci.
Indeed, in our scheme, the public parameters will contain A and a sequence of
matrices �B. We will consider a predefined and public sequence of functions φi,
where i = 1, 2, . . ., and let Ci be the output of homomorphic evaluation of φi on
�B. Thus, the scheme already allows us to generate exponentially many matrices
out of a few.

This allows us to extend the functionality of the scheme to unbounded
attribute length, but only syntactically, since the proof does not extend to this
setting. In particular, if we try to program the matrices �B in the proof similarly
to �C from previous works, we can set Bi = ARi + σiG for some string σ. If we
do so, we will get that Ci = ARφi

+ φi(σ)G, where Rφi
is low-norm and can

be computed out of the Ri matrices. On the one hand, this is quite encouraging
since it is not too far from what we need, if only there was a way to define φi

and σ so that φi(σ) = x∗
i (the ith bit of the challenge attribute) we would be in

business. On the other hand, this is of course impossible for mere information
theoretic reasons, since the φi are public functions and σ has bounded length,
so they cannot encode an x∗ of arbitrary length.

Let us therefore take a step back and think, as an intermediate step, about
a restricted security model where x∗ is chosen randomly and not adversarially
(except its length, which is still under the adversary’s control). Indeed, a ran-
dom x∗ cannot be compressed, but in the proof of security we can swap x∗ for a
pseudorandom value that can be easily expressible as the output of a pseudoran-
dom function. In particular, we define φi(σ) = PRFσ(i) for some pseudorandom
function family. For a random seed σ, letting x∗

i = PRFσ(i) will be indistin-
guishable from a random value, and will allow us to support random unbounded
length attributes using the proof methods from above.

Indeed, we managed to hack the framework into producing an arbitrarily long
sequence of Ci in such a way that each Ci encodes a trapdoor that corresponds
to x∗

i . We view this as an interesting contribution by itself. However, we would
like to support adversarially chosen attributes, and not just random ones. To do
this, we will show how to “program” the challenge attribute into the PRF values
after the fact. In particular, consider, as a mental experiment, an infinite string
Δ which is defined such that Δi = x∗

i ⊕PRFσ(i). This string is pseudorandom to
the adversary, but combining it with the PRF key σ, it contains the information
about x∗. What we do in the proof, is generate decryption keys for functions

368 Z. Brakerski and V. Vaikuntanathan

fΔ(x) = f(x⊕Δ), instead of for f itself. This needs to be offset by changing the
encryption algorithm to encrypt to x ⊕ Δ rather than to x itself (which might
seem impossible at this point, however see below). If we are able to offset our
ciphertext, then the challenge ciphertext will now be encrypted respective to
x∗ ⊕ Δ which is just our PRF value. All of this is done without the adversary
noticing anything, because Δ just seems to him as a completely random string
that does not depend on x∗.

We are left with two problems. The first and easier one is that Δ needs to be
publicly known, but it has unlimited size and in the proof, we need to know x∗

in order to generate it. This is easily managed by noticing that only the �-prefix
of Δ is needed in order to use a secret key for a function with �-bit input. We will
therefore append the appropriate prefix of Δ to any key that we release. This
means that we only need to know the value of Δ when we answer key queries and
not when we generate the public parameters. This very fact allows us to achieve
semi-adaptive security, where x∗ can be specified after the setup phase but before
key generation. We note that of course setting Δ respective to x∗ is only done
in the proof. In the real scheme Δ is a random (or pseudorandom) string that
is maintained by the key authority and whose prefixes are released as needed
(it is important that the same Δ is used for all keys). A savvy reader would
have noticed that this “delayed” definition of Δ is similar to non-committing
proof techniques which, looking back, is not too surprising. It is also not hard
to observe why this technique stops at semi-adaptive security: we managed to
postpone defining Δ to the time when we generate the first secret key. Since Δ
depends on x∗ in the proof, we are restricted to the semi-adaptive world where
all secret-key queries come after the challenge attributes have been declared.

The second and harder problem is how to encrypt in this brave new scheme.
The encryption attribute needs to offset for the effect of Δ on the key, but
Δ itself is not (and must not be) a part of the public parameters and is thus
unknown to the encryption algorithm. This problem is solved by showing that
we can encrypt for all possible values of Δ at the same time. Recall that in the
encryption, we consider the matrices Ci − xiG, for all i. In fact, the encryption
process generates a piece of the ciphertext out of each of these matrices, and
the collection of pieces constitutes the entire ciphertext. In order to allow for
any possible value of Δ, we will generate a ciphertext piece ci,0 for Ci − xiG
(accounting for Δi = 0) and a piece ci,1 for Ci − (xi ⊕ 1)G (accounting for
Δi = 1). This would allow us to take the relevant pieces and use them in the
decryption process. Alas, the security of the [9] scheme shatters completely if
the adversary is allowed to see encryption pieces relative to both Ci and Ci −G.
It appears that we fixed functionality at the expense of security.

Our last technical contribution is to solve this problem by using . . . attribute
based encryption! (in fact, even identity based encryption would suffice, but with
slightly worse parameters). As a part of our public parameters, we include para-
meters for a “small” ABE scheme that only needs to support bounded short
attributes and low depth circuits. We will encrypt the ciphertext piece ci,b with
respect to attribute (i, b) using the “small” scheme. Then, as a part of the func-
tional key, we will also produce a “small” key that will allow to decrypt only

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 369

attributes (i, b) for which b = Δi. This means that an adversary can only see
those ciphertext pieces that are needed for decryption. Furthermore, since the
offset Δ is fixed, the adversary will only ever see ci,0 or ci,1 but not both, thus
keeping security in tact. This completes the description of our scheme.

2 Preliminaries

2.1 Bounded Distributions and Swallowing

As in many previous works based on LWE, we will rely heavily on distributions
that are supported over a bounded domain (with high probability). We will also
rely on the fact that some distributions (e.g. sufficiently wide Gaussians) remain
almost unchanged under small shifts. Formal definitions follow.

Definition 1. A distribution χ supported over Z is (B, ε)-bounded if
Pr

x
$←χ

[|x| > B] < ε.

Definition 2. A distribution χ̃ supported over Z is (B, ε)-swallowing if for all
y ∈ [−B,B] ∩ Z it holds that χ̃ and y + χ̃ are within ε statistical distance.

The following is a straightforward application of the properties of
rounded/discrete Gaussians.

Fact 1. For every B, ε, δ there exists an efficiently sampleable distribution that
is both (B, ε)-swallowing and (B · √log(1/δ)/ε,O(δ))-bounded.

Finally, we will define the notion of a distribution that is swallowing with
respect to another.

Definition 3. A distribution χ̃ supported over Z is (χ, ε)-swallowing, for a dis-
tribution χ, if it holds that χ̃ and χ+ χ̃ are within ε statistical distance. We omit
the ε when it indicates a negligible function in a security parameter that is clear
from the context.

The following corollary summarizes the swallowing properties required for
our scheme.

Corollary 1. Let B(λ) be some function and let B̃(λ) = B(λ) ·λω(1), then there
exists an efficiently sampleable ensemble {χ̃λ}λ such that χ̃ is χ-swallowing for
any B(λ)-bounded {χλ}λ, and also B̃(λ)-bounded.

2.2 Pseudorandom Functions

A pseudorandom function family is a pair of ppt algorithms PRF =
(PRF.Gen,PRF.Eval), such that the key generation PRF.Gen(1λ) takes as input
the security parameter, and outputs a seed σ ∈ {0, 1}η (where η = ηλ is the key
length). The evaluation algorithm PRF.Eval(σ, x) takes a seed σ ∈ {0, 1}η and
in input x ∈ {0, 1}∗ and returns a bit y ∈ {0, 1}.

370 Z. Brakerski and V. Vaikuntanathan

Definition 4. A family PRF as above is secure if for every polynomial time
adversary A it holds that

∣∣∣Pr[APRF.Eval(σ,·)(1λ) = 1] − Pr[AO(·)(1λ) = 1]
∣∣∣ = negl(λ),

where σ = PRF.Gen(1λ) and O is a random oracle. The probabilities are taken
over all of the randomness of the experiment.

2.3 KP-ABE with Unbounded Attribute Length

Let F = {Fλ}λ be an ensemble of function classes such that Fλ ⊆ {0, 1}∗ →
{0, 1}. We assume that the functions are represented as boolean circuits. A key-
policy attribute based encryption (KP-ABE) scheme is defined by a tuple of ppt
algorithms ABE = (ABE.Params,ABE.Enc,ABE.Keygen,ABE.Dec) such that:

– The setup algorithm ABE.Params(1λ) takes the security parameter as input
and outputs a master secret key msk and a set of public parameters pp.

– The encryption algorithm ABE.Encpp(μ, x) uses the public parameters pp and
takes as input a message μ from a message space M = Mλ and an attribute
x ∈ {0, 1}∗. It outputs a ciphertext ct ∈ {0, 1}∗.

– The key generation algorithm ABE.Keygenmsk(f) uses the master secret key
msk and takes as input a function f ∈ Fλ. It outputs a secret key skf .

– The decryption algorithm ABE.Decpp(skf , x, ct) takes as input a function secret
key skf , an attribute x ∈ {0, 1}∗ and a ciphertext ct, and outputs a message
μ′ ∈ M.

Definition 5 (Correctness of KP-ABE). A scheme ABE is correct if the
following holds. Consider a sequence of functions {fλ ∈ Fλ}λ and a sequence of
attributes {xλ ∈ {0, 1}∗}λ, such that for all λ, the input size of f is exactly |xλ|
and fλ(xλ) = 0.5 For all such sequences and for any sequence {mλ ∈ Mλ}λ, it
holds that

Pr[ABE.Decpp(skf , x, ct) �= μ] = negl(λ),

where (msk, pp) = ABE.Params(1λ), ct = ABE.Encpp(μ, x), skf =
ABE.Keygenmsk(f).

Definition 6 (Security for KP-ABE). Let ABE be a KP-ABE encryption
scheme as above, and consider the following game between the challenger and
adversary.

1. The challenger generates (msk, pp) = ABE.Params(1λ), and sends pp to the
adversary.

2. The adversary makes arbitrarily many key queries by sending functions fi

(represented as circuits) to the challenger. Upon receiving such function, the
challenger creates ski = ABE.Keygenmsk(fi) and sends ski to the adversary.

5 Recall our convention that f(x) = 0 is the event when decryption succeeds.

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 371

3. The adversary sends an attribute x∗ and a pair of messages m0,m1 to the
challenger. The challenger samples b ∈ {0, 1} and computes the challenge
ciphertext ct∗ = ABE.Encpp(mb, x

∗). It sends ct∗ to the adversary.
4. The adversary makes arbitrarily many key queries as in Step 2 above.
5. The adversary outputs b̃ ∈ {0, 1}.
6. Let legal denote the event where all key queries of the adversary are such that

fi(x∗) = 1. If legal, the output of the game is b′ = b̃, otherwise the output b′

is a uniformly random bit.

The advantage of an adversary A is |Pr[b′ = b] − 1/2|, where b, b′ are generated
in the game played between the challenger and the adversary A(1λ). If x∗ is too
short or too long compared to the prescribed input size of fi then it is truncated
or padded with zeros appropriately (see discussion below).

The game above is called the adaptive security game for ABE, and it has
relaxed variants. In the selective security game, the adversary sends x∗ before
Step 1. In the semi-adaptive security game, the adversary sends x∗ before
Step 2.

The scheme ABE is adaptively/selectively/semi-adaptively secure if any
ppt adversary A only has negligible advantage in the adaptive/selective/semi-
adaptive security game (respectively).

Negated Policies. We allow decryption when f(x) = 0 and require that in the
security game all queries are such that f(x∗) = 1. In LWE-based constructions
it is often much more convenient to work with this negated version of the policy,
which explains the apparent strangeness. This variant is obviously equivalent.

Discussion. Our definition does not place any restrictions on the attribute length
so the only restriction comes from limiting the adversary to run in polynomial
time (so it can only output x∗ and fi that are polynomially bounded). It is
important to notice that in this regime, there are no known generic transforma-
tions from selective to semi-adaptive to adaptive security, even if we strengthen
the hardness assumption. In particular, the complexity leveraging technique, in
which the challenger “guesses” x∗ in the beginning of the experiment, and a sub-
exponential hardness assumption is made to account for the success probability
of this guess, is no longer applicable. In this light, we view our semi-adaptive
security improvement as qualitative rather than quantitative.

Lastly, we note that in the security definition (but not in the correctness
requirement!) we chose to allow f(x∗) to be well defined even if there is a mis-
match between the input length of f and the length of x∗ (by truncating x∗ or
padding with zeros). A different valid approach would be to consider an alternate,
stronger, definition that if there is a mismatch then f(x∗) = 1 (and thus it is legal
for the adversary to query any function that does not have the same input length
as |x∗|). We notice that this notion of security is derived from ours by adding
the length itself to the attribute. More explicitly, when you want to encrypt
with attribute x of length �, use the ABE scheme with attribute (�, x), and in
the key generation process, when you want to generate a key for function f ,

372 Z. Brakerski and V. Vaikuntanathan

generate a key for f ′(�, x) that first checks that � is indeed the intended input
length. Therefore, using our definition does not limit generality in this aspect.

3 LWE, Trapdoors, Homomorphism

This section summarizes tools from previous works that are used in our con-
struction. This includes the definition of the LWE problem and its relation to
worst case lattice problems, the notion of trapdoors for lattices and operations
on trapdoors, and homomorphic evaluation of matrices with special properties.

Learning with Errors (LWE). The Learning with Errors (LWE) problem was
introduced by Regev [33] as a generalization of “learning parity with noise”
[5,8]. We now define the decisional version of LWE. (Unless otherwise stated, we
will treat all vectors as column vectors in this paper).

Definition 7 (Decisional LWE (DLWE) [33]). Let λ be the security parame-
ter, n = n(λ), m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability
distribution over Z. The DLWEn,q,χ problem states that for all m = poly(n),
letting A ← Z

n×m
q , s ← Z

n
q , e ← χm, and u ← Z

m
q , the following distributions

are computationally indistinguishable:

(
A, sTA + eT

) c≈ (
A,uT

)

There are known quantum (Regev [33]) and classical (Peikert [32]) reductions
between DLWEn,q,χ and approximating short vector problems in lattices. Specif-
ically, these reductions take χ to be a discrete Gaussian distribution DZ,αq for
some α < 1. We write DLWEn,q,α to indicate this instantiation. We now state a
corollary of the results of [28,29,32,33]. These results also extend to additional
forms of q (see [28,29]).

Corollary 2 [28,29,32,33]. Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and

let α ≥ √
n/q. If there is an efficient algorithm that solves the (average-case)

DLWEn,q,α problem, then:

– There is an efficient quantum algorithm that solves GapSVPÕ(n/α) (and
SIVPÕ(n/α)) on any n-dimensional lattice.

– If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for
GapSVPÕ(n/α) on any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis
for a lattice and a parameter d, between the case where the lattice has a vector
shorter than d, and the case where the lattice doesn’t have any vector shorter
than γ · d. SIVP is the search problem of finding a set of “short” vectors. The
best known algorithms for GapSVPγ [35] require at least 2Ω̃(n/ log γ) time. We
refer the reader to [32,33] for more information.

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 373

In this work, we will only consider the case where q ≤ 2n. Furthermore, the
underlying security parameter λ is assumed to be polynomially related to the
dimension n.

Lastly, we derive the following corollary which will allow us to choose the
LWE parameters for our scheme. The corollary follows immediately from the
fact that the discrete Gaussian DZ,αq is (αq · t, 2−Ω(t2))-bounded for all t.

Corollary 3. For all ε > 0 there exist functions q = q(n) ≤ 2n, χ = χ(n) such
that χ is B-bounded for some B = B(n), q/B ≥ 2nε

and such that DLWEn,q,χ is
at least as hard as the classical hardness of GapSVPγ and the quantum hardness
of SIVPγ for γ = 2Ω(nε).

The Gadget Matrix. Let N = n · �log q� and define the “gadget matrix” G =
g ⊗ In ∈ Z

n×N
q where g = (1, 2, 4, . . . , 2�log q�−1) ∈ Z

�log q�
q . We will also refer to

this gadget matrix as the “powers-of-two” matrix. We define the inverse function
G−1 : Zn×m

q → {0, 1}N×m which expands each entry a ∈ Zq of the input matrix
into a column of size �log q� consisting of the bits of the binary representation
of a. We have the property that for any matrix A ∈ Z

n×m
q , it holds that G ·

G−1(A) = A.

Trapdoors. Let n,m, q ∈ N and consider a matrix A ∈ Z
n×m
q . For all V ∈ Z

n×m′
q ,

we let A−1
τ (V) denote the random variable whose distribution is a Gaussian

Dm′
Zm,τ conditioned on A ·A−1

τ (V) = V. A τ -trapdoor for A is a procedure that
can sample from the distribution A−1

τ (V) in time poly(n,m,m′, log q), for any
V. We slightly overload notation and denote a τ -trapdoor for A by A−1

τ .
The following properties had been established in a long sequence of works.

Corollary 4 (Properties of Trapdoors [2–4,12,17,29]). Lattice trapdoors
exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .
2. Given A−1

τ , one can obtain [A‖B]−1
τ and [B‖A]−1

τ for any B.
3. For all A ∈ Z

n×m
q and R ∈ Z

m×N , with N = n �log q�, one can obtain
[AR + G‖A]−1

τ for τ = O(m · ‖R‖∞).
4. There exists an efficient procedure TrapGen(1n, q) that outputs (A,A−1

τ0)
where A ∈ Z

n×m
q for some m = O(n log q) and is 2−n-uniform, where

τ0 = O(
√

n log q log n).

Homomorphic Evaluation. Consider some n, q ∈ N. Consider C1, . . . ,C� ∈
Z

n×N
q where N = n �log q�, and denote �C = [C1‖ · · · ‖C�]. Let f be a boolean

circuit of depth d computing a function {0, 1}� → {0, 1}, and assume that f

contains only NAND gates. We define Cf = Eval(f, �C) recursively: associate
C1, . . . ,C� with the input wires of the circuit. For every wire w in f , letting u, v
be its predecessors and define Cw = G−Cu ·G−1(Cv). Finally Cf is the matrix
associated with the output wire.

374 Z. Brakerski and V. Vaikuntanathan

Denoting x�G = [x1G‖ · · · ‖x�G], it holds that if Cf = Eval(f, �C), then Cf −
f(x)G = (�C − x�G) · Hf,x,�C, for a matrix Hf,x,�C with

∥∥∥Hf,x,�C

∥∥∥
∞

≤ (N + 1)d.

In particular, if Ci = ARi + xiG, i.e. �C = A�R + x�G for �R = [R1‖ · · · ‖R�],
then Cf = ARf + f(x)G for Rf = �R · Hf,x,�C (where H is independent of �R).

4 Our Scheme

We now present our scheme and prove its correctness and security. As in previous
works on LWE-based ABE schemes [9,19], it would be easier for us to work
with “negated policies”, so that skf can decrypt ciphertexts with attribute x if
f(x) = 0. We start by defining the class of depth bounded circuits, to which our
construction is targeted.

Definition 8 (Depth-bounded Circuits). The class of d-bounded circuits,
denoted Pd, for some function d = d(λ) is the ensemble of functions {Pd,λ}λ

such that Pd,λ is the set of boolean circuits of depth at most d(λ) and input
length at most 2ν for some ν(λ) = ω(log λ) which will be clear from the context.

Next, we define another class of circuits. These are very simple circuits that
contain a hardcoded string, and upon receiving an index and bit as input, they
check whether the relevant location in the string is indeed the supplied value.

Definition 9. Consider the family of circuits {BitCheckν,x} s.t. for all ν ∈ N

and x ∈ {0, 1}∗, |x| ≤ 2ν , we define BitCheckν,x : [2ν] × [2ν] × {0, 1} → {0, 1}
such that BitCheckν,x(�, i, b) = 0 if and only if |x| = � and also xi = b. Note that
BitCheckν,x can always be computed by a boolean circuit of depth O(log |x|) =
O(ν) (we assume that �, i are in standard ν-bit binary representation).

The Scheme. Let ν = ν(λ) be any super-logarithmic function (so that 2ν is
super-polynomial). Let oldABE = (oldABE.Params, oldABE.Enc, oldABE.Keygen,
oldABE.Dec) be a selectively-secure key-policy ABE scheme for the function
class {{BitCheckν(λ),x : |x| ≤ 2ν}}λ where ν is as above (i.e. oldABE only need
to support bounded length attributes, and furthermore this length can be any
super-logarithmic function). Let PRF be a family of pseudorandom functions and
let η = ηλ be the seed length (for security parameter λ). Let dprf be the depth
of PRF.Eval(σ, x) for |x| = ν (by definition dprf = poly(λ)).

We now present our ABE scheme for any class of circuits of a-priori poly-
nomial depth bound. We note that as in previous works, we submit the depth
bound as an additional parameter to the setup procedure. In order to support
the class Pd, the setup procedure is to be executed on input (1λ, 1d(λ)). Finally,
the scheme is parameterized by a constant ε ∈ (0, 1) that determines the trade-
off between the lattice approximation factor on which security is based, and the
efficiency of the scheme.

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 375

– ABE.Params(1λ, 1d). We start by setting DLWE parameters based on Corol-
lary 3. Let n be s.t. (n2 + 1)2(dprf+d) · 23ν ≤ 2nε

. The solution to the equation
is of the form n ≤ (λd)O(1/ε), which is polynomial in the security parameter
for any constant ε. We choose q, χ,B accordingly based on Corollary 3, and
note that by definition q/B ≥ (N +1)2(dprf+d) · 23ν (recall that N = n�log q�).
We further let χ̃ be a B′-swallowing and B̃-bounded distribution, for B′ =
B · mηN(N + 1)dprf and B̃ = 2ν · B′, whose existence is guaranteed by Corol-
lary 1.

Generate a matrix-trapdoor pair (A,A−1
τ0) = TrapGen(1n, q) (see Corol-

lary 4), vector v $← Z
n
q , and matrices B1, . . . ,Bη

$← Z
n×N
q , and denote

�B = [B1‖ . . . ‖Bη]. We assume w.l.o.g that m ≥ n�log q� + 2λ (other-
wise random padding can be applied). Generate a key pair for oldABE:
(oldabemsk, oldabepp) = oldABE.Params(1λ). Generate a seed for a PRF
σ = PRF.Gen(1λ).

We set msk = (A−1
τ , oldabemsk, σ) and pp = (A, �B, oldabepp).

– ABE.Encpp(μ, x), where pp = (A, �B, oldabepp), μ ∈ {0, 1} and x ∈ {0, 1}∗. We
let � = |x| denote the length of the attribute string. For all i ∈ [�], generate
Ci = Eval(PRF.Eval(·, i), �B). (Where PRF.Eval(·, i) is the circuit that takes a
seed σ and outputs PRF.Eval(σ, i).)

Sample s $← Z
n
q , e $← χm, e′ $← χ, let

cT
0 = sT [A‖v] + [eT ‖e′] + μ �q/2� · [0T ‖1].

This is essentially a dual-Regev encryption of μ under public key A,v. The
rest of the ciphertext will contain auxiliary information that will allow to
decrypt given a proper functional secret key. Specifically, we sample for all
i ∈ [�] a noise vector ẽi

$← χ̃N , and compute

cT
i,xi⊕β = sT (Ci − (xi ⊕ β)G) + ẽT

i , (1)

Finally, the vectors ci,xi⊕β are encrypted again using the old ABE scheme:

ψi,β = oldABE.Encoldabepp(ci,xi⊕β , (�, i, β)).

The final ciphertext is

ct =
(
c0, (ψi,β)i∈[�],β∈{0,1}

)
.

– ABE.Keygenmsk(f). Given a circuit f computing a function {0, 1}� → {0, 1},
the key is generated as follows. We recall that we work with negated policies
so skf should decrypt only when f(x) = 0.

For all i, define Δi = PRF.Eval(σ, i). Further let Δ≤� = Δ1 · · · Δ� be the
�-prefix of the infinite string Δ (in fact, we can think of Δ as having length
2ν , which is finite but super-polynomial).

Generate a key for the old scheme oldabesk� = oldABE.Keygenoldabemsk

(BitCheckν,Δ≤�
).

376 Z. Brakerski and V. Vaikuntanathan

Note that Δ≤� and oldabesk� depend only on msk and �, and not on f , and
therefore they can be generated and published once and for all for each value of
� (however, since � is a-priori unbounded, it is impossible to publish this infor-
mation for “all possible �” at the same time). Define fΔ : {0, 1}� → {0, 1} as
fΔ(x) = f(x ⊕ Δ≤�).

For all i ∈ [�], generate Ci = Eval(PRF.Eval(·, i), �B) (as in the encryption
algorithm). Let �C = [C1‖ · · · ‖C�] and set Cf = Eval(fΔ, �C). Let

rf = [Cf‖A]−1
τ (v),

where τ = 2ν · mN2(N + 1)d+dprf ≥ τ0 and tf = [−rT
f ‖1]T . Note that

[Cf‖A‖v] · tf = 0.
Output skf = (f,Δ≤�, oldabesk�, tf).

– ABE.Dec(skf , x, ct). Given skf = (f,Δ≤�, oldabesk�, tf), x ∈ {0, 1}� such that

f(x) = 0, and ct =
(
c0, (ψi,β)i∈[�],β∈{0,1}

)
, the decryption process runs as

follows.
Use oldabesk� to compute

ci,xi⊕Δi
= oldABE.Dec(oldabesk�, ψi,Δi

, (�, i,Δi)), (2)

and recompose
cT

x⊕Δ≤�
= [cT

1,x1⊕Δ1
‖ · · · ‖cT

�,x�⊕Δ�
].

We again compute Ci = Eval(PRF.Eval(·, i), �B), �C = [C1‖ · · · ‖C�] and Cf =
Eval(fΔ, �C). We also compute H = HfΔ,x⊕Δ≤�,�C. Note that by the properties
stated above, it holds that

(�C − (x ⊕ Δ≤�)�G) · H = Cf − fΔ(x ⊕ Δ≤�)G = Cf ,

since fΔ(x ⊕ Δ≤�) = f(x) = 0.
Recalling that cT

x⊕Δ≤�
is linear (up to noise) in �C − (x ⊕ Δ≤�)�G, we will

set cT
f = cT

x⊕Δ≤�
· HfΔ,x⊕Δ≤�,�C, with intent to show that cT

f is linear (up to
noise) in Cf .

Finally, we compute μ̃ = [cT
f ‖cT

0] · tf , and output μ′ = 0 if |μ̃| < q/4 and
μ′ = 1 if |μ̃| ≥ q/4.

4.1 Correctness

Let {(fλ, xλ)}λ be an arbitrary sequence of function-message pairs s.t. fλ has
size poly(λ), depth at most d(λ), and |x| = �(λ) for some �(λ) ≤ 2ν(λ). Consider
properly generated (pp,msk) = ABE.Params(1λ), a properly encrypted cipher-
text ct = Encpp(μ, x) for some value μ ∈ {0, 1} and a properly generated func-
tional key skf = ABE.Keygenmsk(f).

Consider the execution of ABE.Dec(skf , x, ct). The correctness of oldABE
implies that with all but negligible probability, the vectors ci,xi⊕Δi

computed in
Eq. (2) are indeed equal to the ones encrypted in Eq. (1). Namely, that

cT
i,xi⊕Δi

= sT (Ci − (xi ⊕ Δi)G) + eTRi,

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 377

and therefore

cT
x⊕Δ≤�

= sT (�C − (x ⊕ Δ≤�)�G) + ẽT ,

which, recalling that f(x) = 0 and denoting H = HfΔ,x⊕Δ≤�,�C, implies that

cT
f = cT

x⊕Δ≤�
· H = sTCf + ẽTH.

Finally, we get that

[cT
f ‖cT

0] = sT [Cf‖A‖v] +
[
ẽTH‖eT ‖e′] + μ �q/2� · [0T ‖1],

and therefore that

[cT
f ‖cT

0] · tf =
[
ẽTH‖eT ‖e′] · tf + μ �q/2� .

We conclude that we have correct decryption so long as
∣∣[ẽTH‖eT ‖e′] · tf

∣∣ is
bounded away from q/4. We will produce a fairly loose bound, since the asymp-
totic parameters will only be effected marginally. A precise analysis could be
obtained using standard techniques. We recall that by the properties of discrete
Gaussians, it holds that ‖tf‖∞ ≤ τ

√
m + N with all but 2−(m+N) = negl(λ)

probability, and also that asymptotically � ≤ 2ν . Therefore, with all but negli-
gible probability
[
ẽTH‖eT ‖e′

]
· tf ≤

∥∥
∥
[
ẽTH‖eT ‖e′

]∥∥
∥

∞
· ‖tf‖∞ · (N + m + 1)

≤
(
B̃ · (N + 1)d · (�N) + B · (m + 1)

)
· ‖tf‖∞ · (N + m + 1)

≤
(
B̃ · (N + 1)d · (�N) + B · (m + 1)

)
τ
√

m + N · (N + m + 1)

≤ B · (N + 1)2(dprf+d)22ν · poly(n, log q).

Since we set q/B ≥ (N +1)2(dprf+d)23ν , we get that correctness holds asymp-
totically for any such �(λ), d(λ).

4.2 Security

We prove that our scheme is semi-adaptively secure as per Definition 6. Our
proof heavily relies on the structure of the string Δ. Whereas Δ has a succinct
representation as the output of a PRF, the view of the adversary does not depend
on the seed of the PRF in any way except through the bits of Δ. Therefore, it
follows from the pseudorandomness property that Δ is indistinguishable from
a completely random string. It follows, therefore, that XORing x∗ into Δ will
go unnoticed by the adversary. However, this allows us to embed the challenge
attribute in the public parameters in an indirect way, namely, now the XOR of
the PRF’s ith bit with Δi is exactly x∗

i . This means that x∗
i ⊕ Δi = PRF(i) and

thus that Ci −(x∗
i ⊕Δi)G is independent of x∗ itself and therefore can be known

to the reduction ahead of time. This will allow us to apply similar techniques to
those in [9] to prove security. A formal statement of the lemma together with a
detailed sketch of the proof follows.

378 Z. Brakerski and V. Vaikuntanathan

Lemma 1. Let PRF be a family of secure pseudorandom functions as per
Sect. 2.2, and let oldABE be a selectively secure ABE scheme for the func-
tion class BitCheckν,x for some super-logarithmic ν = ν(λ). Then under the
DLWEn,q,χ assumption, the scheme ABE is a semi-adaptively secure ABE
scheme for the function class Pd.

Proof (Extended sketch). We use �∗ to denote the length of the challenge
attribute x∗. We also extend the notation x∗

i as follows: if i ≤ �∗ then x∗
i denotes

the ith bit of x∗ as usual, however, for i > �∗ our convention is that x∗
i = 0.

The proof follows by a sequence of hybrids. We consider an adversary A for
the semi-adaptive security game in Definition 6. Let Adv[A] denote the advan-
tage of A in the security game. We will denote by AdvH[A] the advantage of A
in the experiment described in hybrid H.

Hybrid H0. This is the ABE semi-adaptive security game as per Definition 5. By
definition Adv[A] = AdvH0 [A].

Hybrid H1. In this hybrid, we change the way the (infinite) string Δ is defined.
Recall that in the previous hybrid, Δi = PRF.Eval(σ, i). However in this hybrid
and throughout the proof we set

Δi =
{

(PRF.Eval(σ, i) ⊕ x∗
i) if i ≤ �∗,

PRF.Eval(σ, i) otherwise. (3)

Note that now x∗ needs to be known in order to compute Δ. However, Δ is
not used at all until the first key query is answered. Therefore, to execute this
hybrid, the challenger only needs to know x∗ before responding to the first key
query, which is consistent with semi-adaptive security.

To see why the view of the adversary is indistinguishable in H1 and H0,
consider replacing PRF.Eval(σ, i) with an oracle that returns a random bit for
every i. In such case, the distributions in both hybrids are identical. Since σ itself
is not used anywhere except to generate PRF.Eval(σ, i), the pseudorandomness
of PRF guarantees that the views when using PRF.Eval(σ, i) are computationally
indistinguishable. We conclude that

|AdvH1 [A] − AdvH0 [A]| = negl(λ).

We remark that this is the only place where the pseudorandomness of the PRF
is used, and from this hybrid and on one can think of σ as public.

Lastly, we notice that since we extended our notation so that x∗
i = 0 for

i > �∗, we can say that from this hybrid and throughout the proof, it holds that
Δi = PRF.Eval(σ, i) ⊕ x∗

i for all i ∈ N.

Hybrid H2. We now change the way the matrices �B are generated. We will
now generate Bi as follows: Sample Ri

$← {0, 1}m×N and set Bi = ARi + σiG.
Indistinguishability will follow from the leftover hash lemma since m ≥ n�log q�+
2λ. We point out that one has to be careful when applying the leftover hash

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 379

lemma since A is only statistically close to uniform, and it is generated together
with A−1

τ0 . We notice, however that A−1
τ0 − A − ARi is a Markov chain, and

therefore we can think about first sampling A and then sampling A−1
τ0 and

ARi independently from the marginals. Therefore, since (A,ARi) is statistically
indistinguishable from uniform when A is uniform, it also holds true when A is
only statistically close to uniform, and also holds true when A−1

τ0 is known as
well.

|AdvH2 [A] − AdvH1 [A]| = negl(λ).

We notice that in this hybrid, we now have that �B = A�R + σ �G, where
�R = [R1‖ · · · ‖Rη]. Recalling that Ci = Eval(PRF.Eval(·, i), �B), we can define
H∗

i = HPRF.Eval(·,i),σ,�B, and it will hold that

Ci = A�RH∗
i + PRF.Eval(σ, i) · G = A�RH∗

i + (x∗
i ⊕ Δi)G. (4)

We recall that H∗
i is computable given σ, and furthermore ‖H∗

i ‖∞ ≤ (N +1)dprf .
If we denote �H∗ = [H∗

1‖ · · · ‖H∗
�], we conclude that

�C − (x∗ ⊕ Δ≤�)�G = A�R�H∗. (5)

Hybrid H3. In this hybrid we will switch from generating skf using A−1
τ0 to

generating them using �R. We recall that we are only required to generate keys
for f s.t. f(x∗) = 1, otherwise the adversary loses in the semi-adaptive security
game.

We recall that by definition, in order to derive skf , we need to sample from
[Cf‖A]−1

τ . We recall that we defined Cf = Eval(fΔ, �C), and therefore, denoting
H = HfΔ,(x∗⊕Δ≤�),�C

, it holds that

Cf − fΔ(x∗ ⊕ Δ≤�) · G =
(

�C − (x∗ ⊕ Δ≤�)�G
)

· H.

Plugging in Eq. (5), and since fΔ(x∗ ⊕ Δ≤�) = f(x∗) = 1, we get that

Cf = A�R�H∗H + G.

Therefore, [Cf‖A] = [A · (�R�H∗H) + G‖A]. This means that given �R and the
computable matrices �H∗,H, one can sample from [Cf‖A]−1

τ for all values of

τ ≥ τ ′ for τ ′ = O
(
m ·

∥∥∥�R · �H∗ · H
∥∥∥

∞

)
. Plugging in the known bounds, we get

that

τ ′ = O(m · Nη · (N + 1)dprf · N� · (N + 1)d) = O(�) · (N + 1)d+dprf · mN2,

Recall that we need to sample with τ = 2ν · mN2(N + 1)d+dprf which is asymp-
totically greater than τ ′, which is enabled by our parameter setting.

It follows that changing our method of sampling rf does not change the
resulting distribution, and therefore

AdvH3 [A] = AdvH2 [A].

380 Z. Brakerski and V. Vaikuntanathan

We notice that in this hybrid, the challenger does not require A−1
τ0 at all.

Hybrid H4. In this hybrid, we change the distribution of A and sample it uni-
formly from Z

n×m
q rather than via TrapGen. Since TrapGen samples A which is

statistically indistinguishable from uniform, we conclude that the distribution
produced in the two hybrids are statistically indistinguishable as well.

|AdvH4 [A] − AdvH3 [A]| = negl(λ).

Hybrid H5. In this hybrid we change the way the challenge ciphertext is com-
puted. Specifically we change the way we compute ψi,1−Δi

, for all i, and set

ψi,1−Δi
= oldABE.Encoldabepp(0, (�∗, i, 1 − Δi)),

where the zero vector has the same length as ci,x∗
i ⊕Δi⊕1.

Since for all �, i, BitCheckn,Δ≤�
(�, i, 1 − Δi) = 1, and thus for all �, the key

oldabesk� must not decrypt ψi,1−Δi
, we would like to use the security of oldABE

to argue that H5 is computationally indistinguishable from H4. However, some
care needs to be taken since we only assume that oldABE is selectively secure.

The formal proof will proceed via a hybrid argument going over all values of
� and β (note that we at this point we have an upper bound on � given by the
running time of A). In the (i, β) hybrid, we change all ciphertexts ψi′,β′ such that
(i′, β′) < (i, β) (lexicographically) to 0 if β′ �= Δi′ . To argue that two adjacent
hybrids are indistinguishable, we rely on the selective hardness of oldABE for
the fixed attribute (i, β) which can be provided in the beginning of the game as
required for selective security.

We conclude that this hybrid is computationally indistinguishable from the
previous one.

|AdvH5 [A] − AdvH4 [A]| = negl(λ).

Hybrid H6. We again change the contents of the challenge ciphertext as follows.
We generate s, e, e′ as before, and set bT = sTA + eT , and b′ = sTv + e′. The
vector c0 is generated identically to before, but we can express it in terms of
b, b′ as

cT
0 = [bT ‖b′] + μ �q/2� · [0T ‖1].

We recall that as of the previous hybrid, the values ci,x∗
i ⊕Δi⊕1 no longer appear

in the challenge ciphertext, so they are not generated at all. The only change
that we make is in the generation of ci,x∗

i ⊕Δi
. We recall that in the previous

hybrid
cT

i,x∗
i ⊕Δi

= sT (Ci − (x∗
i ⊕ Δi)G) + ẽT

i .

and since at this point (Ci − (x∗
i ⊕Δi)G) = A�RH∗

i , as per Eq. (4), we had that

cT
i,x∗

i ⊕Δi
= sTA�RH∗

i + ẽT
i .

In this hybrid, we change these values to

cT
i,x∗

i ⊕Δi
= bT �RH∗

i + ẽT
i = sTA�RH∗

i + eT �RH∗
i + ẽT

i .

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 381

This distribution, however, is statistically close to the previous one, since the
distribution eT �RH∗

i is
(
B · m · ηN · (N + 1)dprf

)
-bounded and since we selected

χ̃ to be
(
BmηN(N + 1)dprf

)
-swallowing, statistical indistinguishability follows

by definition.

|AdvH6 [A] − AdvH5 [A]| = negl(λ).

We note that in this hybrid, given b, b′, the challenger does not need to know
the values of s, e, e′ since they are not used directly.

Hybrid H7. In the final hybrid, we change the distribution of b, b′ to be uni-
form in Z

m
q ,Zq, respectively. Indistinguishability follows by definition from the

DLWEn,q,χ assumption. We have

|AdvH7 [A] − AdvH6 [A]| = negl(λ).

Clearly, in this hybrid the adversary has no advantage since b′ is uniform and
completely masks the value of μ. It follows therefore that

AdvH7 [A] = 1/2,

and therefore

|Adv[A] − 1/2| = negl(λ),

which completes the proof of security.

4.3 Conclusion

Finally we can put all the pieces together and state our result with all parameters.

Theorem 2. Assume that GapSVP (respectively SIVP) is hard to approximate by
a polynomial time classical (respectively quantum) algorithm to within a factor of
2nε

. Then for any polynomial d = d(λ) there exists a correct and semi-adaptively
secure ABE scheme for the policy class Pd.

Letting k = (λd)1/ε, the public parameters of the scheme are of size poly(k),
ciphertexts are of length � · poly(k), where � is the attribute length, and the key
length is �+poly(k), where � is the input length of the policy function (all poly(·)
notations indicate a specific polynomial function).

Proof. A secure family of pseudorandom functions can be instantiated based
on the existence of any one-way function, and in particular on the hardness of
lattice approximation to within poly(n) � 2nε

factor.
We instantiate oldABE using the scheme from [9]. Recall that oldABE only

needs to support attributes of length O(ν) and policies which can be represented
by circuits of depth O(log(ν)). This means that such a scheme can be based on
the hardness of DLWE with parameters that translate to the hardness of lattice
approximation to within a factor of 2no(1) � 2nε

. The keys and ciphertexts of
oldABE will have overhead poly(λ) for a fixed polynomial.

Combining these primitives with the correctness analysis and with the secu-
rity analysis in Lemma 1, the theorem follows.

382 Z. Brakerski and V. Vaikuntanathan

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006)

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010)

4. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
99–108. ACM (1996)

5. Alekhnovich, M.: More on average case vs. approximation complexity. In: Proceed-
ings of the 44th Symposium on Foundations of Computer Science (FOCS 2003),
Cambridge, MA, USA, 11–14 October 2003, pp. 298–307. IEEE Computer Society
(2003)

6. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Gennaro and Robshaw [16], pp. 657–677
(2015)

7. Ananth, P., Sahai, A.: Functional encryption for turing machines. IACR Cryptol-
ogy ePrint Archive 2015:776 (2015)

8. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

10. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013)

11. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015)

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

13. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for Boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Heidelberg (2014)

14. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

15. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. IACR Cryptology ePrint Archive 2014:622 (2014)

16. Gennaro, R., Robshaw, M. (eds.): CRYPTO 2015. LNCS, vol. 9216. Springer,
Heidelberg (2015)

Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security 383

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

18. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on The-
ory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013,
pp. 545–554. ACM (2013)

20. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro and Robshaw [16], pp. 503–523 (2015)

21. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, 14–17 June 2015, pp. 469–477. ACM (2015)

22. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November
2006, pp. 89–98. ACM (2006)

23. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

24. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) Proceedings of the
10th ACM Conference on Computer and Communications Security, CCS 2003,
Washington, DC, USA, 27–30 October 2003, pp. 155–164. ACM (2003)

25. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

26. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

27. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

28. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

29. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

30. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

31. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

384 Z. Brakerski and V. Vaikuntanathan

32. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 333–342
(2009)

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

34. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

35. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

36. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

37. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro and Robshaw [16], pp. 678–697 (2015)

Automated Tools and Synthesis

Design in Type-I, Run in Type-III: Fast
and Scalable Bilinear-Type Conversion Using

Integer Programming

Masayuki Abe1,3(B), Fumitaka Hoshino1,4, and Miyako Ohkubo2

1 Information Sharing Platform Laboratories, NTT Corporation, Tokyo, Japan
abe.masayuki@lab.ntt.co.jp

2 Security Fundamentals Laboratory, CSRI, NICT, Tokyo, Japan
3 Graduate School of Informatics, Kyoto University, Kyoto, Japan

4 School of Computing, Department of Mathematical and Computing Science,

Tokyo Institute of Technology, Tokyo, Japan

Abstract. Bilinear type conversion is to convert cryptographic schemes
designed over symmetric groups instantiated with imperilled curves into
ones that run over more secure and efficient asymmetric groups. In this
paper we introduce a novel type conversion method called IPConv using
0–1 Integer Programming. Instantiated with a widely available IP solver,
it instantly converts existing intricate schemes, and can process large-
scale schemes that involves more than a thousand variables and hundreds
of pairings.

Such a quick and scalable method allows a new approach in designing
cryptographic schemes over asymmetric bilinear groups. Namely, design-
ers work without taking much care about asymmetry of computation but
the converted scheme runs well in the asymmetric setting. We demonstrate
the usefulness of conversion-aided design by presenting somewhat counter-
intuitive examples where converted DLIN-based Groth-Sahai proofs are
more compact than manually built SXDH-based proofs.

Keywords: Conversion · Bilinear groups · Integer programming ·
Groth-Sahai proofs · Zero-knowledge

1 Introduction

1.1 Background

Prime-order bilinear groups consist of source groups G0 and G1, target group GT ,
and a pairing e : G0 × G1 → GT . In so called Type-I bilinear groups, G0 = G1,
i.e., the pairing is symmetric. It has been a popular choice in early research and
development. Recent progress in analyzing symmetric pairing groups instanti-
ated with small characteristic curves [9,26,30,31] motivates crypto designers to
move to Type-III groups where G0 �= G1, i.e., the pairing is asymmetric, and no
efficient mapping is known between G0 and G1. For Type-III groups, no such
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 387–415, 2016.
DOI: 10.1007/978-3-662-53015-3 14

388 M. Abe et al.

weakness has been observed until now and efficient instantiations have been
developed. Yet Type-I setting is useful for presenting and understanding cryp-
tographic schemes for their simplicity. Besides, number of schemes have been
designed only for Type-I groups in the literature, e.g. [2,8,16,36,37,40,41].

Bilinear-type conversion is a method to translate schemes designed for Type-
I groups into ones that work over Type-III groups. Cryptographic schemes
designed in Type-I setting do not necessarily work in Type-III due to the
presence of symmetric pairings, e(X,X). A workaround is to convert the algo-
rithm by duplicating the variables. That is, the variable is represented by a pair
(X,X ′) ∈ G0 × G1. Duplication however clearly slows down the performance
since all relevant computations are ’duplicated’ in G0 and G1 as well. Besides,
duplication is not always possible due to mathematical constraints or external
requirements. For instance, it is not known how to pick random and consistent
pair X and X ′ while retaining the hardness of the discrete logarithm problem on
X and X ′. An automated conversion finds the best allocation of variables over
G0 and G1 that makes all group operations doable with minimal overhead.

Besides saving existing schemes over Type-I groups, conversion plays the role
in putting “Design in Type-I and Run in Type-III” paradigm into practice as sug-
gested in the pioneering work by Akinyele et al. [7]. That is, let crypto design-
ers focus on their high-level idea of construction without taking much care about
asymmetry of computation by designing in Type-I setting, and then convert the
results to obtain executable schemes over Type-III groups. For conversion tools
to be useful, the processing speed and scalability are of importance on top of
the performance of the final executables. Like compilers for high-level program-
ming languages a conversion tool will be executed over and over again throughout
the development. Quick response is strongly desired for productivity and stress-
free developing environment. Its importance increases when large-scale systems
that consist of several building blocks are targeted. Nevertheless, only small-scale
monolithic schemes has been targeted so far. Hence the validity of the design par-
adigm has not been well substantiated yet.

1.2 Our Contribution

We propose a new efficient conversion algorithm, which we call ‘IPConv’, based
on 0–1 Integer Programming (IP). A technical highlight that separates this work
from previous ones [6,7] is how to encode several kinds of constraints into a
system of linear relations over binary variables, and how to implement ones
metric into an objective function the 0–1 IP minimizes subject to the constraints.
The idea of encoding computational constraints into an objective function follows
from previous works. Our novelty is the encoding method that allows one to use
Integer Programming that fits well to our optimization problem with various
constraints. Besides, using such a tool is advantageous in the sense that there
are publicly available (both commercial and non-commercial) software packages
such as [5,24,28,33–35].

Performance of IPConv is demonstrated by experiments over real crypto-
graphic schemes in the literature. IPConv instantly completes the task even for

Design in Type-I, Run in Type-III 389

complex schemes. To measure the scalability, large systems with thousands of
variables and pairings are generated randomly subject to some reasonably look-
ing structures. IPConv processed them in a few minutes to hours even with
non-commercial IP solver SCIP [5] as an engine. The concrete figures of course
become magnitude of better with a powerful commercial IP solver e.g. [28].
Scaling up to thousands of pairings may seem an overkill. However, for instance,
schemes that include Groth-Sahai (GS) proof system [27] easily involve dozens
or even hundreds of pairings when their security proofs are taken into account.
Furthermore, tools such as [10–12] would allow automated synthesis that reach
to or even exceed such a scale. Our method not only contributes to speedup
the process of conversion but also opens the door to automated synthesis and
optimization of large scale cryptographic applications over bilinear groups.

Next we, for the first time, prove the usefulness of the conversion-assisted
design for middle-scale schemes. It is shown that schemes involving GS proofs
based on decision linear assumption (DLIN) can be converted to ones based on
XDLIN assumption [1] in Type-III so that they are more efficient than their
direct instantiation based on the symmetric external Diffie-Hellman assumption
(SXDH). The result may be counter-intuitive since the commitments and proofs
of SXDH-based GS-proofs require less group elements than those based on DLIN.
Key observations that explain our result are:

– Relations such as e(X,A) = e(B, Y) for variables X and Y are considered as
linear pairing product equations (PPEs) in Type-I whose proof consists of 3
elements whereas they are more costly two-sided PPEs in Type-III that costs
8 elements. Proving linear PPEs can be converted without duplicating the
proofs and commitments in general.

– Commitments and proofs in the converted proof system are allocated mostly
in G0 whereas they appear in both G0 and G1 in direct SXDH-based instan-
tiation. Taking the fact that elements in G1 is typically twice as long as those
in G0 in bits, the former can be shorter than the latter in some cases.

Our first example in Sect. 5.2 is a scheme for showing ones possession of a cor-
rect structure-preserving signature [3] on a public message in zero-knowledge.
The scheme obtained by conversion yields proofs that are up to 50% shorter
(asymptotic in the message length) than those generated by direct construc-
tions based on SXDH. It uses a novel fine-tuning for zero-knowledge GS-proofs
(GSZK) presented in Sect. 5.1 that takes the above mentioned advantages.

Our second example in Sect. 5.3 is to demonstrate that our framework can
be applied to schemes that is already designed in Type-III setting to seek for
better instantiations. We pick an automorphic blind signature scheme [3] that
involves GS-proofs and is secure under SXDH assumption in Type-III setting.
We show that the proofs can be replaced with the DLIN-based ones and it can
be converted to work in Type-III under XDLIN assumption. Though the GS-
proofs are witness indistinguishable for this time, it still can take the above
mentioned advantages and saves 28 % in the length of the signatures compared
to the originally manufactured SXDH-based scheme.

390 M. Abe et al.

Although our primary metric for optimization is the size of intended objects,
we also compare their computational workload in the number of pairings in sig-
nature verification. Interestingly, the winner changes depending on the message
size, acceptable duplication, and also the use of batch verification technique [13].
This unveils an open issue on optimization of schemes involving GS-proofs.

1.3 Related Works

There are some conversion systems in the literature. Early works on type conver-
sion, e.g. [17–19,39], study and suggest heuristic guidelines for when a scheme
allows or resists conversion. To our best knowledge, AutoGroup introduced by
Akinyele et al. in [7] is the first automated conversion system that converts
schemes from Type-I to Type-III. Given a target scheme described in their
scheme description language, the system finds set of ‘valid’ solutions that sat-
isfy constraints over pairings by using a satisfiability modulo theory solver [21].
It then search for the ’optimal’ solution that conforms to other mathematical
constraints and ones preferences. When there are number of possible solutions,
the performance gets lower. In this pioneering work, the security of the resulting
converted scheme was not guaranteed. In [4], Abe et al., established a theoreti-
cal ground for preserving security during conversion. Their framework, reviewed
in Sect. 2, provides useful theorems for security guarantee. But their conversion
algorithm is basically a brute-force search over all possible conversions and it
requires exponential time in the number of pairings. Recently in [6], Akinyele,
Garman, and Hohenberger introduced an upgraded system called AutoGroup+
that integrates the framework of [4] to AutoGroup. Though the system becomes
more solid in terms of security, their approach for finding an optimal solution
remains the same as before. They cover only small scale cryptographic schemes.

Regarding Groth-Sahai zero-knowledge proofs, the closest work is the one by
Escala and Groth in [22]. They observe that commitment of 1Zp

can be seen as
a commitment of the default generator G and uses the fact that a commitment
of G can be equivocated to G0 to construct more efficient zero-knowledge proofs
for pairing product equations (PPEs) with constant pairings of the form e(G,A)
in Type-III setting. Our fine-tuning in Sect. 5.1 uses the same property for the
commitment of G but use it in a different manner that is most effective in Type-I
setting. Another close work is [25] that presents a DLIN-based variant of GS-
proof system over asymmetric bilinear groups. Their scheme bases on SDLIN
assumption where independent DLIN in G0 and G1 are assumed as hard, and
uses independently generated CRSes for commitments in G0 and G1. Thus their
proof system is inherently asymmetric, which cannot exploit nice properties of
symmetric setting as done in this work. Besides, SDLIN-based instantiation is
less efficient than SXDH-based one. We therefore use the original SXDH-based
instantiation for comparison in this paper.

In [23,29], a more efficient instantiation of GS-proofs by using recently intro-
duced Matrix assumptions. Although DLIN-based GS-proofs are used through-
out this paper, matrix-based assumption might be an alternative to further gain
efficiency if the Type-III analogue of the assumption is acceptable.

Design in Type-I, Run in Type-III 391

2 Conversion Based on Dependency Graphs

2.1 Overview

In this section we review the framework in [4]. To guarantee the security of the
resulting scheme, it converts not only algorithms that form the target scheme
but also all algorithms that appear in the security proof as well as underlying
assumptions. Namely, it assumes that the security is proven by the existence
of reduction algorithms from some assumptions in Type-I, and converts the
algorithms and assumptions into Type-III. This way, the security proof is pre-
served under the converted assumption. It is proven in [4] that if the original
assumptions are valid in Type-I generic bilinear group model [15], the converted
assumptions are valid in Type-III generic bilinear group model. Most typically,
the DLIN assumption is converted to XDLIN.

In their framework relations among variables in target algorithms are
described by using a graph called a dependency graph, and the central task
of conversion is reduced to find a’split’ of the graph so that each graph implies
variables and computations in each source group in the Type-III setting.

We follow the framework of [4] that consists of the following four steps.

1. Verify that the target scheme in Type-I and its security proof follows the
abstraction of bilinear groups.

2. Describe the generic bilinear group operations over source group G by using
a dependency graph as we shall explain later.

3. Split the dependency graph into two that satisfy some conditions. The result-
ing graphs imply variables and group operations in G0 and G1 respectively.

4. Describe the resulting scheme in Type-III as suggested by the graphs.

As well as [4], we focus on step 3 and propose an efficient algorithm for the task
of finding a split. Thus, when we conduct an experiment for demonstrating the
performance, we start from a dependency graph as input and complete when a
desirable split of the input graph is obtained.

2.2 Dependency Graph

A dependency graph is a directed graph that represents computational depen-
dencies among variables storing source group elements in the target system. In
Fig. 1, we show an example of a dependency graph for a program that computes
some group operations over Type-I bilinear groups. In the right is a sample pro-
gram that takes source group elements A,B,D as input and computes C and E
via group operations (multiplication and exponentiation), and outputs a result
of pairing e(C,E). In the left is a dependency graph that corresponds to the
algorithm. Nodes represent the source group elements and edges correspond to
group operations. Each input to the pairing operation is represented by a connec-
tion to node PCE[b] called a pairing node. As the graph only describes relations
between group elements via group operations, it does not show the structure of

392 M. Abe et al.

Sample(a,A,B,D):

a ∈ Zp, A,B,C,D,E ∈ G

if a = 0 then

C := A · B, E := D
else

C := Da, E := D3

endif

Output e(C,E)

Fig. 1. An example of a dependency graph for a program in Type-I bilinear groups.

the program like “if-then-else” directive or involve non source group elements
like a ∈ Zp. Operations in the target group are irrelevant either.

There are several types of nodes in a dependency graph. Node types can be
considered as attributes attached to the nodes or lists of nodes. We use either
way according to the context.

– Pairing nodes (P). They represent inputs to pairing operations. Every pairing
node has only one incoming edge and no outgoing edges. Each pairing node
is paired with another pairing node so that the pair constitutes an input to a
pairing operation.

– Control nodes (CT). These are the ones added to the graph to control the
assignment to their parent nodes. A control node has one or more incoming
edges but no outgoing edges. By specifying which group to assign to a control
node, its parent nodes are also assigned to the same group. For instance, when
two variables associated to nodes n and n′ are to be compared, a control node
is added with incoming edges from n and n′. This results in assigning n and n′

to the same group the control node is assigned. The control nodes are used also
to implement user specified preferences such as grouping as we shall explain
later.

– Regular nodes (R). All nodes other than pairing nodes and control nodes are
regular nodes. Regular nodes may have other attributes named as follows.

• Bottom nodes (B). A regular node is a bottom node if it does not have
outgoing edges. This includes a ‘pseudo’ bottom node that virtually works
as a bottom node in a closure.

• Prohibited nodes (PH). These are nodes that must not be duplicated
for some reasons. They are assigned to either of the source groups but
the assignment is not fixed in advance. Nodes representing variables as
an output of “hash-to-group” function that directly maps to group ele-
ments must be a prohibited node. Currently known technology does not
allow us to hash an input onto two source group elements in a way that
their exponents are unknown but remain in a preliminary fixed relation.
Another example of the prohibiting nodes are inputs given to the target
scheme from outside like messages in a signature scheme. They are sub-
ject to other building blocks and hence demanding duplicated messages

Design in Type-I, Run in Type-III 393

loses generality of the signature scheme. Thus it is generally desirable
that messages are considered as prohibited nodes.

From the above classification, we have V = P ∪ CT ∪ R. The nodes that will be
assigned to either of the source groups exclusively are called constrained nodes.
Precisely, we define constrained nodes C by C := P ∪ CT ∪ B ∪ PH.

2.3 Valid Split

It has been shown in [4] that if a dependency graph is split into two graphs
that satisfy four conditions below then the converted scheme derived from the
graphs works over Type-III bilinear groups and is secure in the same sense as the
original scheme but based on converted assumptions. Such a pair of graphs is
called a valid split. Let Anc(Γ,X) denote a subgraph of Γ that consists of X and
all paths that reach to X. Let NoDup be a list of nodes representing variables
as output of hash-to-group function.

Definition 1 (Valid Split). Let Γ = (V,E) be a dependency graph for Π̃. Let
P = (p1[0], . . . , pnp

[1]) ⊂ V be pairing nodes. A pair of graphs Γ0 = (V0, E0) and
Γ1 = (V1, E1) is a valid split of Γ with respect to NoDup ⊆ V if:

1. merging Γ0 and Γ1 recovers Γ ,
2. for each i ∈ {0, 1} and every X ∈ Vi \ P , the subgraph Anc(Γ,X) is in Γi,
3. for each i ∈ {1, . . . , np}, paring nodes pi[0] and pi[1] are separately included

in V0 and V1, and
4. V0 ∩ V1 ∩ NoDup = ∅.

The first condition guarantees that all variables and computations are pre-
served during conversion. The second condition guarantees that all variables
needed to compute a variable belong to the same source group. The third con-
dition guarantees consistency of pairing operations by forcing that every pairing
operation takes inputs from G0 and G1. The last condition is to conform with
the constraint about the hash-to-group functions. In Fig. 2, we illustrate a valid
split for the dependency graph shown in Fig. 1 and the resulting program in
Type-III.

Note that a valid split as defined above only meets the mathematical con-
straint over the pairings and those given by NoDup. There could be large number
of valid splits for a dependency graph and it is another issue how to pick the
optimal one according the metric and constraints given by the user.

3 Finding Optimal Valid Split with IP

3.1 Users’ Preferences

One may want to avoid duplication regarding specific set of variables as much as
possible. Typical practical demands would be to look for the minimal duplication
in the public key elements, or the smallest possible duplication in the instance
of assumptions. We show in the following several types of preferences that can
be handled in our conversion procedure.

394 M. Abe et al.

Fig. 2. A valid split for the dependency graph in Fig. 1, and a converted program.

1. Priority. We allow users to give a priority to some nodes so that they avoid
duplication as much as possible than other nodes. Concretely, a priority is
given by a list of sets of nodes. Let (I1, I2, · · ·) be a sequence of non-empty
sets of nodes where every set consists of arbitrary number of nodes and the
sets are pairwise disjoint. It is considered that nodes in Ii are given more
priority for non-duplication than those in Ii+1. For instance, suppose that I1
includes nodes representing a public key and I2 includes nodes representing
a signature. By specifying (I1, I2) as a priority, a solution that includes less
duplication in a public key is preferred. If only one node in a public key
is duplicated in solution A, and all nodes in a signature are duplicated in
solution B, then solution B will be taken. Unspecified nodes are given the
least priority.

2. Prohibiting Duplication. By specifying a node as ‘prohibited’, the node
will never be duplicated.

3. Grouping. By specifying a set of nodes, they are assigned to the same group.
(But it does not solely mean no duplication for individual node.)

4. Exclusive Assignment. By specifying two nodes, different groups are
assigned to each node. The specified nodes are implicitly specified as pro-
hibited so that the exclusive assignment holds. This option, together with
the prohibition, allows one to describe schemes designed in Type-III without
concretely specifying groups to every variable.

5. Specific Assignment. By specifying a particular group to a particular node,
the group is assigned to the node. (But the node may still be duplicated unless
it is specified as ‘prohibited’ as well.)

6. Magnification Factor. Often a node represents multiple of variables treated
in the same manner in the converting program. For instance, a message m
consisting of several group elements m = (m[0], . . . ,m[k]) with constant k
can be represented by a node referred to by m[i]. Such a node should have a
magnification factor of k. It must be equal or larger than one.

In the next section, we explain how these preferences are incorporated to the
objective function and constraints given to Integer Programming.

Design in Type-I, Run in Type-III 395

3.2 IPConv Procedure

We present a new method, which we call ‘IPConv’ for finding an optimal valid
split. IPConv takes the task in the third step of the conversion procedure men-
tioned in Sect. 2.1. It takes as input a dependency graph Γ for source group G

of Type-I scheme, and outputs two dependency graphs Γ0 and Γ1 for G0 and
G1, respectively, of the converted Type-III scheme.

IPConv consists of the following stages. Details are given after the overview.

1. Preprocessing on the Graph. The input dependency graph is modified
to implement some user-specified preferences. The output of this stage is the
modified dependency graph and a list of constrained nodes.

2. Establishing the Objective Function. Binary variables that represent
(non-)membership in each source group are placed on constraint nodes. They
must satisfy relations for consistency and for user’s preferences. Sanity check-
ing is done to assure the existence of a solution that conforms to the con-
straints. Then the objective function over the variables is established.

3. Running Integer Programming. Run 0–1 Integer Programming for find-
ing an assignment to the variables that minimizes the objective function sub-
ject to the constraints.

4. Composing the Final Split. The assignment decides which constraint
nodes belong to which source group, and further decides on other nodes.
Thus a valid split is composed from the assignment.

Preprocessing on the Graph. First of all, user preference in prohibiting dupli-
cation is dealt simply by including the specified nodes to the list of prohibited
nodes PH. A specific assignment to a specific node, say n, is handled by adding
a new control node, c, and edge (n, c) to the graph. As the specific group is
assigned to c, the same group must be assigned to n as well since n is an ances-
tor of c. Grouping of nodes n1, . . . , nk is handled in the same manner by adding a
new control node c, and edges (n1, c), . . . , (nk, c) to the graph. This step outputs
the updated graph with attributes that identifies the constraint nodes.

Establishing the Objective Function. By |Gb| we denote number of bits necessary
to represent arbitrary element in Gb. Let Γ = (V,E) be a dependency graph.
By dec(n) for node n ∈ V , we denote all descendant nodes of n in Γ , i.e., all
nodes that can be reached from n. For every node n ∈ C we associate a binary
variable xnb for b = 0, 1 that1:

xnb =

{
1 (n ∈ Gb)
0 (n �∈ Gb)

(1)

Let x denote the set of all those variables; x := {xnb |n ∈ V, b ∈ {0, 1}}. Let
Φ(x) be a collection of relations on variables in x needed for consistency of
1 Instead, we can associate a single variable xn set to b if the node is in Gb as done

in our proof of concept implementation. It slightly reduces the number of relations,
but here we choose xnb for comprehensible explanation.

396 M. Abe et al.

assignments. Since every constrained node should be exclusively assigned to
either of the source groups, relation xn0 + xn1 = 1 for all n ∈ C are included
in Φ(x). For every pair of pairing nodes, say n and n′, they must get exclusive
assignment to either of the source groups. Thus it must hold that xn0 +xn′1 = 1
and xn1 + xn′0 = 1. The same relation should hold for every pair of nodes
specified to have exclusive assignment. For every pair of nodes n and n′ in C, if
n′ ∈ dec(n), then xn0 − xn′0 = 0 and xn1 − xn′1 = 0 must be included in Φ(x)
as they have to receive the same assignment. For a control node n for specifying
assignment Gb to a regular node, relation xnb = 1 is included in Φ(x). Control
nodes for prohibiting duplication and grouping need no further treatment since
they are already treated as a constrained nodes.

We apply a sanity checking that the constraints in Φ(x) are satisfiable.
Observe that relations in Φ(x) can be seen as a system of equations over GF (2).
Then Φ(x) is satisfiable if and only if the system of equations is not overde-
termined. Such a checking can be done in O(|C|3) binary operations. Despite
the asymptotic growth rate, the sanity check indeed finishes instantly even for
large inputs and in fact negligible compared to the main workload shown in the
next. By Φ(x) = 1, we denote that constraints in Φ(x) are satisfiable. We denote
Φ(x) = 0, otherwise.

We then establish the objective function, E , and constraints Ψ . Define a

function n
?∈ Gb for n ∈ V and b = 0, 1 by

n
?∈ Gb =

{
1 (n ∈ Gb)
0 (n �∈ Gb)

. (2)

For every node n ∈ C, it is clear, by definition, that

(n
?∈ Gb) = xnb. (3)

For regular nodes (as defined in Sect. 2.2) other than those included in C, i.e.,
n ∈ V \ C = R \ (B ∪ PH), observe that n ∈ Gb holds if there is a constrained
node in the descendant of n that is assigned to Gb. Let Cn denote C ∩ dec(n)
that are the constrained nodes reached from node n. Then we have

(n
?∈ Gb) =

∨
d∈Cn

xdb = ¬
∧

d∈Cn

¬xdb = 1 −
∏

d∈Cn

(1 − xdb). (4)

We now use a well known lemma [20] to remove the higher-order term in the
above formula.

Lemma 2. For binary variables x1, . . . , xk and y, relation
k∏

i=1

xi = y (5)

holds if and only if the following relations hold:

k − 1 −
k∑

i=1

xi + y ≥ 0 and xi − y ≥ 0 for all i = 1, . . . , k. (6)

Design in Type-I, Run in Type-III 397

With this trick, we write (4) using a new variable, ynb, as

(n
?∈ Gb) = 1 −

∏
d∈Cn

(1 − xdb) = ynb (7)

and put constraints
∑
d∈Cn

xdb − ynb ≥ 0, and ynb − xdb ≥ 0 for all d ∈ Cn. (8)

Define function eval(n) for every regular node n ∈ R by

eval(n) :=
∑

b∈{0,1}
wnb · (n

?∈ Gb) (9)

where wnb is a positive real number associated to node n. Also define

eval max (n) := wn0 + wn1,

eval 2nd(n) :=
{

wn0 + wn1 (if wn0 = wn1),
max(wn0, wn1) (if wn0 �= wn1),

eval min(n) := min(wn0, wn1),

(10)

which means the maximum, second-minimum, and minimum value eval(n) can
take respectively.

Parameter wnb represents the cost of having node n in Gb and the concrete
value for the parameter is defined according to one’s metrics. In this work, we
set wn0 := 1 and wn1 := 2 according to the typical ratio of bit length of elements
in G0 and G1. When a magnification factor kn is defined, they are multiplied by
kn. The idea for the setting is that we seek for a conversion requiring minimum
space for storing objects specified in the priority.

We then compose an objective function according to the given priority
(I1, . . . , Ik). Let Ik+1 be regular nodes that do not appear in the priority, i.e.,
Ik+1 := R \ (

⋃k
i=1 Ii). For each node n, let

Δn := eval max (n) − eval min(n) (11)

which means the relative impact of duplicating n in the priority of n. And for
each Ii, let

Ξi := min
n∈Ii

{eval 2nd(n) − eval min(n)}, (12)

that is the relative minimum impact in the Ii of the assigning one single node
to the larger group. For every Ii, we define priority factor ρi as

ρi · Ξi >
k+1∑

j=i+1

ρj

∑
n∈Ij

Δn. (13)

398 M. Abe et al.

This means that assigning one single node to the larger group in any level of
priority has more significant impact than duplicating all nodes in all lower levels
of priority. For example, it is enough to let ρk+1 := 1 and

ρi := 1 +
1
Ξi

k+1∑
j=i+1

ρj

∑
n∈Ij

Δn (14)

for i = k down to 1. Let v denote all variables xnb and ynb. We define the target
function E(v) by

E(v) :=
k+1∑
i=1

ρi

∑
n∈Ii

eval(n) − eval min(n), (15)

which is linear over variables in v. By Ψ(v) we denote associated constraints that
include all relations in Φ(x) and relations in (8). By Ψ(v) = 1 we denote that all
constrains in Ψ(v) are fulfilled. Otherwise Ψ(v) = 0.

Running 0–1 Integer Programming. Now we run 0–1 IP solver by giving E(v) and
Ψ(v) as input. The output is an assignment to v that minimizes E(v) subject to
Ψ(v) = 1. Note that the IP solver, SCIP, used in our implementation recognizes
unsolvable inputs by nature as a part of its functionality. It makes the sanity
check in the previous stage redundant. Nevertheless, the sanity check in the
earlier stage is useful for debugging.

Composing the Final Split. Given the assignment to v one can compute (n
?∈ Gb)

for all n ∈ V , and construct two dependency graphs for G0 and G1 in such a
way that every edge (n, n′) in the input dependency graph is included in at least
one of the resulting graphs that include the destination n′. Since the assignment
conforms to all given constraints, this yields a valid split. The split is optimal in
the sense that it minimizes the target value E(v) that measures one’s preferences.
This completes the description of our IPConv method.

3.3 Optimality of the Output

According to our implementation of the objective function, IPConv outputs a
solution whose variables given the top priority have minimal space to store. That
is, those variables avoid duplication and are allocated in G0 as much as possible.
Then, subject to the allocation in the top priority, variables in the second priority
are allocated to have minimal space to store, and so forth. Concrete meaning
of optimality is defined by the variables specified in the order of priority. If
one’s target is a public-key encryption scheme, for instance, and elements in a
public-key are set as the top priority, the outcome is a scheme whose public-key
has the shortest representation possible. (But it never reduces the number of
group elements in the public-key, which is left for the designers’ work.) To see
the balance between several options in the order of priority, one may repeat

Design in Type-I, Run in Type-III 399

Table 1. Processing time of IPConv with SCIP. Figures in parenthesis are those
of AutoGroup+ in the same environment. The upper half is small-scale monolithic
schemes and the lower half is middle-scale schemes consisting of several building blocks.
(# vertices) counts all nodes including the pairing nodes in the input graph. (# pair-
ings) counts pairs of pairing nodes.

Target scheme Graph size Processing Notes

#vertices #pairings time

Waters’ DSE [41] 95 13 146ms (4639ms)

BBS HIBE [14] 283 56 262ms (15667ms)

BlindAutoSIG [3] 339 116 142ms -

AHO [3] + GSZK [27] 597 222 463ms -

Trace. Group Enc. [38] 1604 588 6306ms -

the conversion to the same scheme with different preferences. Each result of
conversion is optimal with respect to the given preference.

In the context of bilinear-type conversion, optimizing the size of objects is a
reasonable choice for better efficiency as avoiding duplication not only saves the
space but also saves relevant computation. Yet extending the objective function
to implement more elaborate metrics is a potential direction for further research.
For instance, it is desirable to incorporate the cost of computation each variable
is involved in. It requires the dependency graph to carry more information than
the relations by group operations. We leave it for future development.

4 Performance

Throughout the paper, experiments are done on a standard PC: CPU: Intel Core
i5-3570 3.40GHz, OS: Linux 3.16.0-34-generic #47-Ubuntu. For Integer Program-
ming, we use SCIP [5] (non-commercial) and GUROBI [28] (commercial).

4.1 Processing Time for Real Schemes

Small-Scale Schemes. In the first two rows of Table 1, we show the processing
time of IPConv for converting Boneh-Boyen HIBE [14] with � = 9 hierarchy, and
Waters’ Dual-system encryption [41]. Their dependency graphs are relatively
small but have number of possible splits. A comparison to AutoGroup+ is done
in the same environment. For fair comparison, we need to offset the overhead for
processing high-level I/O format in AutoGroup+. According to [6], it takes about
500ms to handle the smallest case in their experiments. Even after offsetting
similar amount as an overhead, the speedup with IPConv is obvious.

400 M. Abe et al.

Middle-scale schemes. We also conduct experiments on middle scale schemes
that involve GS-proofs and other building blocks. The results are summarized
in Table 1.

AHO Signature + GSZK: Our first experiment is for a structure-preserving
signature scheme in [3], a.k.a. AHO signature scheme, combined with zero-
knowledge proof of a correct signature on a public message. We set the mes-
sage length for AHO signatures to n = 4 and instantiate the zero-knowledge
proof with the DLIN-based GS-proofs and convert the entire scheme to Type-
III. More details appear in Sect. 5.

Blind Automorphic Signature Scheme: The second experiment is for the
automorphic blind signature scheme from [3]. This experiment is to demon-
strate that our framework can handle schemes that is already in Type-III.
Overall structure of the target scheme is the same as the first one; a com-
bination of a signature scheme and a NIWI GS-proof of a correct signature.
Unlike the first one, however, the scheme is constructed under SXDH assump-
tion that holds only in the Type-III setting. We describe a dependency graph
for the scheme using exclusive assignment directive so that SXDH assump-
tion is consistently incorporated to the framework. It may be interesting to
see that assumptions are the only part that need to set constraints originated
from the asymmetry of groups. Constraints in all upper layer algorithms are
automatically taken from the assumptions. More details appear in Sect. 5.3.

Traceable Group Encryption: Our last experiment is for a traceable group
encryption scheme from [38] that is more intricate involving several building
blocks such as a tag-based encryption [32], AHO signatures, and one-time
signatures, and GS-proofs. Taking reduction algorithms in the security proofs
of each building block, the corresponding dependency graph becomes as large
as consisting of 1604 nodes including 588 × 2 pairing nodes, which is beyond
the scale that existing automated conversion can process within a practical
time.

4.2 Scalability

Though the experiment in the previous section already demonstrates the scala-
bility of IPConv to some extent, we would like to see overall behavior of IPConv
against the size of inputs. Generally it is exponential due to the nature of IP.
Yet it is worth to know the threshold for the practical use.

On Random Graphs. To measure the performance and the tolerance in the
scale, it is necessary to sample dependency graphs from reasonable and scalable
distribution. However, it is indeed impossible to consider the distribution over
all constructable cryptographic schemes. It does not make sense to consider
it over all possible graphs, either, since most of them do not correspond to
meaningful cryptographic schemes. We therefore use some heuristics to define the
distribution. Through the experiments in the previous section, we have observed
that dependency graphs for real cryptographic schemes follow some structure.

Design in Type-I, Run in Type-III 401

We simulate it in a scalable manner in the following way: Let N be the number
of regular nodes, P be the number of pairings, and k be the maximum fan-in to
a regular node. Every regular node is indexed by i ∈ {1, . . . , N}. Pairing nodes
pij [0] and pij [1] represent a pairing with nodes i and j as input.

[Random Dependency Graph Generation]

1. Generate regular nodes 1, . . . , N .
2. For every regular node i ∈ {1, . . . , N}, select k′ ← {1, . . . , k} and repeat the

following k′ times:
– Select j ← {1, . . . , i − 1}.
– Generate an edge (j, i).

3. Repeat the following P times:
– Randomly select two regular nodes i and j(≥ i) (discard and redo if the

pair has been chosen before).
– Generate pairing nodes pij [0] and pij [1] and edges (i, pij [0]) and (j, pij [1]).

Our preliminary experiment shows that large k results in so dense graphs
that do not well simulate the graphs for real schemes in the previous section.
Throughout our experiments, we set k = 6 and N = P as they are close to the
average for those in the real examples. With such a heuristic parameter setting
we are not able to claim theoretical rigorousness to the result of our experiments.
But they do show some tendency in the scalability.

We first examine the permissible scale of IPConv by measuring its processing
time for random dependency graphs having up to 600 pairings and equal number
of regular nodes. Figure 3 illustrates the results for 1200 inputs. IPConv finds an
optimal solution in well affordable time up to around N = P = 600. But after
that point, the processing time gets more dispersed depending on the input.

We next compare the performance with AutoGroup+. The result is illus-
trated in Fig. 4 that includes 250 samples for each AutoGroup+ and IPConv.
Around 150 nodes, the SMT solver used in AutoGroup+ rarely fails for some

250 500 750 1,000 1,250 1,500 1,750

1 · 10−2

0.1

1

10

100

1,000

of nodes

P
ro

ce
ss

in
g

ti
m

e
(s

ec
)

SCIP

GUROBI

Fig. 3. Processing time in the semi-log scale for random dependency graphs.

402 M. Abe et al.

25 50 75 100 125 150

1 · 10−2

0.1

1

10

100

1,000

10,000

1 · 105

of nodes

P
ro

ce
ss

in
g

ti
m

e
(s

ec
)

findsplit (SCIP)

findsplit (GUROBI)

autogroup+

Fig. 4. Comparison between IPConv and AutoGroup+ regarding stability of processing
time.

unidentified reason. With graphs containing 150 nodes, the processing time
between two conversion methods differ 100 to 106 times. This result shows that
middle to large scale conversion is out of the scope of AutoGroup+. Compar-
ing the absolute processing time based on Fig. 4 is not perfectly fair as IPConv
only takes the task of finding an optimal split whereas AutoGroup+ deals with
higher-level inputs and outputs. But from the figure, one can see less dispersion
in the processing time with IPConv, and its scalability is well observed.

On Cluster Graphs. We next evaluate the performance for more structured
dependency graphs based on a prospect that large scale systems over bilinear
groups are built in a modular fashion by combining several building blocks and
GS-proofs. How would dependency graphs for such systems look like? Observe
that, (1) only a small number of objects will be passed from one building block
to others, (2) every building block would be used only through the legitimate
interface during security proofs, and (3) the default generator is connected to
a number of nodes in each building blocks. We thus foresee that a dependency
graph for a modularly-built large-scale system would form sparsely connected
clusters of dependency graphs with a single node that has relatively dense con-
nection to nodes in every cluster.

We generate random cluster dependency graphs in a way that each cluster has
similar volume and structure as that of AHO signature plus GS zero-knowledge
proof in the previous experiment. Namely, a cluster consists of a randomly con-
nected thirty six regular nodes and some of the nodes are involved in two random
PPEs for GS zero-knowledge proofs whose dependency is automatically encoded
to the graph. Then every two clusters are randomly connected each other with
a fixed number of edges. The performance of IPConv for the random cluster
graphs are measured up to n = 19 clusters. The experiment is repeated 10 times
for each n. At n = 19, a graph consists of 13046 nodes and 5182 pairings in
average. Comparing Fig. 5 with Fig. 3, there is a clear stretch in the handleable

Design in Type-I, Run in Type-III 403

2,500 5,000 7,500 10,000 12,500

1

10

100

1,000

10,000

of nodes

P
ro

ce
ss

in
g

ti
m

e
(s

ec
)

SCIP

GUROBI

Fig. 5. Processing time in the semi-log scale for cluster dependency graphs.

number of vertices. If there are no connections between the clusters (except for
those from the node representing the default generator), the processing time will
be linear in the number of the clusters assuming that the processing time for
each cluster is the same. We can thus see that the sparse connection among the
clusters did not add much complexity.

5 Using Conversion in Cryptographic Design

In this section we show how conversion plays the role in designing cryptographic
schemes. We begin by introducing a new fine-tuned construction of GS Zero-
knowledge proofs in Type-I setting in Sect. 5.1. It is followed by an example that
combines the GS ZK with the AHO signature scheme in Sect. 5.2. We then show
another example in Sect. 5.3 that demonstrates conversion of an automorphic
blind signature scheme designed originally in Type-III.

5.1 Fine-Tuned GS Proof of Correct Commitment via Conversion

In the Groth-Sahai NIZK for PPE relations, it is often needed to prove that [X]
is a correct commitment of a public constant A in such a way that the proof
can be simulated with X = 1G. In the original paper [27], it is done by proving
a relation represented by a general multi-scalar multiplication equation (MSE).
We present a technique that does the job with a less costly linear pairing product
equation (PPE).

The Original Construction. Recall that, in the symmetric setting under
the DLIN assumption, committing to a scalar value a ∈ Zp requires two ran-
dom values, say r1 and r2, in Zp, and committing to a group element A ∈ G uses
three random values, s1, s2, s3 ∈ Zp. We denote the commitment by [a; r1, r2], and
[A; s1, s2, s3], respectively. The genuine prover algorithm computes a default com-
mitment of 1Zp

as [1Zp
; 0, 0], and a proof for multi-scalar multiplication equation

404 M. Abe et al.

[X]1 · A−[1Zp] = 1G. (16)

Zero-knowledge simulation with a hiding CRS is done as follows. The simu-
lator opens the default commitment [1Zp

; 0, 0] as [0Zp
; r′

1, r
′
2] by using the trap-

door. It then sets X = 1G and computes [X] which is perfectly indistinguish-
able from [A]. With respect to those commitments relation (16) is read as
[1G]1 · A−[0Zp] = 1G, which is true. Thus the simulator can generate a proof
following the legitimate procedure.

Fine-Tuning in Type-I. Instead of using default [1Zp
], the prover algorithm

uses default commitment [G1; 0, 0, 0]. Then prove a PPE

e([X], G)e(A−1, [G1]) = 1GT
. (17)

instead of (16). Since we are considering the DLIN-based instantiation for now,
(17) is a linear PPE that costs only 3 group elements whereas proof of (16)
requires 9 elements.

Zero-knowledge simulation with a hiding CRS is done by first equivocating
[G1; 0, 0, 0] into [G0; s1, s2, s3] using the trapdoor. Then, by setting X = 1G, rela-
tion (17) is e([1G], G)e(A−1, [G0]) = 1GT

, which is true. Thus the zero-knowledge
simulator can prove it using the witness.

Converting to Type-III. By converting the above proof system, we have an
analogue proof system in the asymmetric setting based on the XDLIN assump-
tion [1]. While the security is guaranteed by the conversion framework of [4], the
quality of the resulting proof system must be examined.

Speaking from the conclusion, we have a clean split of its dependency graph
without duplication except for the nodes representing the CRS. Thus, with dupli-
cated CRS in G0 and G1, every group operation is done in either G0 or G1 and
asymmetric pairing computation can be performed consistently. More impor-
tantly, the proof remains consisting of 3 group elements (and they are all in G0).
Below,we present the resulting proof system in detail. It is particularly impor-
tant to see that A and [X] in (17) are in the same group without duplicating A.
Full details are presented in the following.

To cope with the original description of the Groth-Sahai proof system, we
switch to additive notation in the rest of this section. Let us define some nota-
tions used in the following. Let (p,G0,G1,GT , e,G, G̃) be an asymmetric bilinear
group with e : G0×G1 → GT . For X,Y ∈ G

n
b , operation X+Y denotes the result

of element-wise group operations in Gb. By Matn×m, we denote all matrices of
size n × m over Zp. Let F̃ be a function that

F̃

⎛
⎝

⎛
⎝X1

X2

X3

⎞
⎠ ,

⎛
⎝Y1

Y2

Y3

⎞
⎠

⎞
⎠ :=

⎛
⎝ ê(X1, Y1) ê(X1, Y2) ê(X1, Y3)

ê(X2, Y1) ê(X2, Y2) ê(X2, Y3)
ê(X3, Y1) ê(X3, Y2) ê(X3, Y3)

⎞
⎠ (18)

where

ê(X,Y) =

⎧⎪⎨
⎪⎩

e(X,Y) (X ∈ G0 ∧ Y ∈ G1)
e(Y,X) (Y ∈ G0 ∧ X ∈ G1)
⊥ (otherwise)

. (19)

Design in Type-I, Run in Type-III 405

By X •̃ Y , we denote F̃ (X,Y). For vectors X = (X(1), . . . , X(n)) and Y =
(Y (1), . . . , Y (n)), we denote X •̃Y for shorthand of

∑n
i=1

(
X(i) •̃Y (i)

)
.

It is important to see that computation in F̃ and •̃ can be carried out as
long as X and Y are taken exclusively from G0 and G1. We use convention that
large case letters like A represent elements in G0, and those with tilde like Ã
represent elements in G1.

Now we are ready to describe how to prove that [X] is a correct commitment
of A ∈ G0 with the GS proof system instantiated in Type-III setting based on
XDLIN.

[CRS Generation]
Choose α, β, ξ1, ξ2 ← Zp and compute G1 := Gα, G2 := Gβ , u1 := (G1,O, G),
u2 := (O, G2, G), and

u3 = (G31, G32, G33) := ξ1 · u1 + ξ2 · u2 + (O,O,−γ · G) (20)
= (ξ1 · G1, ξ2 · G2, (ξ1 + ξ2 − γ) · G) (21)

where γ = 0 for binding and γ = 1 for hiding mode. Compute ũ1, ũ2, and
ũ3 exactly in the same way using the same randomness (α, β, ξ1, ξ2) but with
generator G̃ instead of G. Then CRS is (u, ũ) where

u :=

⎛
⎝u1

u2

u3

⎞
⎠ , and ũ :=

⎛
⎝ ũ1

ũ2

ũ3

⎞
⎠ . (22)

[Prover Algorithm]
Given A ∈ G0 as a witness, first commit to X := A using randomness SX :=
(s1,X , s2,X , s3,X) ← Mat1×3 as

[X] := (O,O,X) + SX u = (C1,X , C2,X , C3,X). (23)

Set (s1,G̃, s2,G̃, s3,G̃) = (0, 0, 0) ∈ Z
3
p. Compute proof θ(17) as

θ(17) :=

⎛
⎝s1,X s1,G̃

s2,X s2,G̃

s3,X s3,G̃

⎞
⎠

(O O G
O O A−1

)
=

⎛
⎝O O θ1,(17)

O O θ2,(17)

O O θ3,(17)

⎞
⎠ . (24)

Output [X] and θ(17) as a proof. Dropping trivial elements, they consist of 6
group elements in G0.

[Verifier Algorithm]
Compute the default commitment of G̃ as

[G̃] := (O,O, G̃) + (0, 0, 0)u = (O,O, G̃) = (C̃1,G̃, C̃2,G̃, C̃3,G̃). (25)

Then output 1 if the following holds. Output 0, otherwise.
⎛
⎝C1,X

C2,X

C3,X

⎞
⎠ •̃

⎛
⎝O

O
G̃

⎞
⎠ +

⎛
⎜⎝

C̃1,G̃

C̃2,G̃

C̃3,G̃

⎞
⎟⎠ •̃

⎛
⎝O

O
A−1

⎞
⎠ = (ũ)�•̃(θ(17))� (26)

406 M. Abe et al.

[Zero-Knowledge Simulation]
Generate CRS with γ = 1 (hiding mode). Given A ∈ G0 and trapdoor
(α, β, ξ1, ξ2), set (s1,G̃, s2,G̃, s3,G̃) := (ξ1, ξ2,−1), which equivocate the default
commitment [G̃1; 0, 0, 0] to [G̃0; ξ1, ξ2,−1]. Also set X := G0. Then follow the
prover algorithm using these witnesses.

Direct Fine-Tuning in Type-III. The above idea can be applied to SXDH-
based GS-proofs in Type-III as well. However, it is limited to the case where A
is duplicated. The reason is that, relation (17) must be proved as one-side PPE
in Type-III where involved commitments appear only in one side of the pairing
operations. Namely, (17) has to be rewritten as

e([X], G̃)e([G1], Ã−1) = 1GT
. (27)

Thus we need A ∈ G0 to compute [X] and additionally need Ã ∈ G1 to verify
the proof.

If duplicating A is not acceptable, we have to get back to the original con-
struction that proves MSE (16) instead. It costs 6 group elements. Note that it
is also possible to prove (17) as a two-side PPE but it costs 8 group elements.

5.2 AHO Signature + GSZK

AHO signature scheme in Type-I setting is summarized as follows. Let gk :=
(p,G,GT , e,G) be a symmetric bilinear groups. A public-key is (gk , A0, A1, A2,
A3, B0, B1, B2, B3, Gz, Gr,Hz,Hu, G1, . . . , Gn,H1, . . . , Hn) for the message
space of Gn. A signature for message (M1, . . . ,Mn) is σ = (Z,R, S, T, U, V,W) ∈
G

7. To prove possession of a correct signature for a message in the clear, a prover
randomizes (S, T, V,W) into (S′, T ′, V ′,W ′) in a way that e(S, T) = e(S′, T ′)
and e(V,W) = e(V ′,W ′) hold and then proves that pairing product equations

e(A0, [A1]) e(A2, [A3]) = e(Gz, [Z])e(Gr, [R])e(S′, [T ′])
n∏

i=1

e(Gi, [Mi]) (28)

e(B0, [B1]) e(B2, [B3]) = e(Hz, [Z])e(Hu, [U])e(V ′, [W ′])
n∏

i=1

e(Hi, [Mi]) (29)

hold with respect to committed variables in the brackets. Additionally, relation
(17) for every public value X ∈ {A1, A3, B1, B3,M1, . . . ,Mn} is proved by using
the technique in Sect. 5.1 to show the correctness of the commitments.

We then consider four approaches to obtain Type-III counterpart of the above
scheme. Table 2 summarizes the performance of the resulting schemes in Type-III
in terms of the proof size and number of pairings in verification.

Conversion: By converting the above scheme we obtain a scheme in Type-
III. Details for the proof part are presented in Appendix A. In the resulting
scheme, CRS is entirely duplicated but elements in the proofs, public-keys,

Design in Type-I, Run in Type-III 407

Table 2. Comparison of proof size and number of pairings between conversion-aided
and three direct constructions. The message is in G0. Proof size is for GS commitments
and proofs. Column”naive” counts the number of pairings literally in the verification
equations, and “batched” counts the number of pairings in batch verification.

Construction Duplicated Proof size # of pairings

object G0 G1 In bits Naive Batched

Conversion crs 6n + 39 6 (6n + 51)λ 18n + 90 2n + 20

Direct (1) msg 2n + 18 3n + 12 (8n + 42)λ 12n + 60 2n + 17

Direct (2) pk 4n + 26 4n + 16 (12n + 58)λ 20n + 84 n + 23

Direct (3) - 4n + 26 4n + 20 (12n + 66)λ 22n + 100 2n + 22

and messages are assigned to either G0 or G1 without duplication. It is par-
ticularly important to point out that X and [X] in (17) are assigned to the
same group without duplicating X while proving (17) as a linear PPE. This
approach is the most efficient in the proof size since most of commitments
and proofs can be allocated in G0.

Direct Instantiation 1 (with Duplicated Messages): Next we consider
instantiating the GS-proofs directly over Type-III groups based on the SXDH
assumption. As observed in Sect. 5.1, the fine-tuned construction is only
possible when public constants paired with committed variables are dupli-
cated. Therefore, elements {A1, A3, B1, B3,M1, . . . ,Mn} have to be dupli-
cated. Duplicated key elements, A1, A3, B1, and B3 will be a part of the
public-key. On the other hand, duplicated message M1, . . . ,Mn must be sent
to the verifier as a part of the proof.

Direct Instantiation 2 (with Duplicated Keys): When duplicating Mi is
prohibiting, a workaround would be to commit to public-key elements Gi

and Hi instead. Duplicated Gi and Hi can be included in the public-key
(thus we do not count it in the proof size). Unfortunately, this approach is
not efficient in terms of proof size since the proofs of correct commitment for
both Gi and Hi doubles the proof length. On the other hand, it allows efficient
batch verification. The reason is that pairings corresponding to e([Gi],Mi)
and e([Hi],Mi) in the verification can be merged into one pairing associated
to Mi while at least two pairings are needed to deal with e(Gi, [Mi]) and
e(Hi, [Mi]) in the above approaches.

Direct Instantiation 3 (Without Duplication): Finally, we consider avoid-
ing duplication at all in the direct instantiation of GS proofs in Type-III by
following the original approach using MSE (16) as shown in the beginning of
Sect. 5.1. As expected, both proof size and number of pairings increase due
to the MSEs. Use of batch verification is not quite effective, either.

As we see from Table 2, there is no clear winner. The scheme obtained by
conversion yields the most compact proofs for messages of n > 5. But for short
and duplicable messages, direct construction produces more compact proofs.

408 M. Abe et al.

Regarding the computational workload, when batch verification is taken into
account, there is not much difference for small n no matter what approach is
taken. But for large n, direct instantiation in Type-III with duplicated public-key
is more advantageous.

5.3 Automorphic Blind Signature Scheme

Examples so far deals with schemes designed purely in Type-I. Now we show that
schemes designed originally in Type-III are also incorporated into our framework
for finding optimal deployment of source groups and perhaps finding more effi-
cient GS-proofs used there.

In the automorphic blind signature scheme in [3], a blind signature is a GS-
proof for one’s possession of a correct (plain) automorphic signature on a clear
message. A plain automorphic signature consists of five group elements σ :=
(A,B, D̃,R, S̃) verified by PPEs:

e(A, Ỹ · D̃) = e(K · M, G̃) e(T, S̃), (30)

e(B, G̃) = e(F, D̃), e(R, G̃) = e(G, S̃). (31)

An automorphic blind signature is a GS-proof of (30) and (31) with (A,B, D̃,R, S̃)
as a witness. The security of the original construction bases on SXDH assumption
and Asymmetric Double Hidden Strong DH Assumption (ADHDH) [3].

To incorporate the scheme into the conversion framework, we need to build
a dependency graph in such a manner that the original scheme is included in a
possible solution of conversion. First, a special treatment is needed to the nodes
representing X and Ỹ that are already in the duplicated form since they should
not be individually duplicated by conversion. We set dependency Y → X, and
prohibit duplication of X. In this way, Y will be duplicated so that X is assigned
to Gb and Ỹ is assigned to G1−b. Such a treatment is applied to (M,N) and
(R,S) as well. Second, we need to build a dependency graph for the assumptions.
Since ADHDH is known to hold even in the Type-I generic bilinear group model,
we simply ignore the distinction of G0 and G1. For SXDH, we prohibit dupli-
cation of any variable in its instance and use grouping of variables so that they
are allocated to the same group. In this way, the assumption remains valid when
converted back to Type-III. Finally, the GS-proof part is described by using
the DLIN-based instantiation of GS-proofs. They are witness indistinguishable
proofs and we do not rely on the fine-tuning as in the previous case.

After conversion, the resulting scheme in Type-III is secure based on SXDH,
ADHDH with duplicated D̃, and XDLIN assumptions. We present details of
the converted scheme for the part of generating and verifying a blind signature
in Appendix B. Table 3 summarizes the performance in comparison with the
original construction. The converted scheme saves 28% of blind signature in bits
and equal or slightly better in verification workload.

Design in Type-I, Run in Type-III 409

Table 3. Comparison of the signature size and number of pairings in verification
between conversion-aided and direct instantiations of verifier’s algorithm for the auto-
morphic blind signature scheme [3]. The message is (M, N) ∈ G0 × G1. Duplication of
D̃ is needed for computing proofs but not for verification.

Construction Duplicated Size of blind sig. # of pairings

objects G0 G1 in bits Naive Batched

Conversion crs, D̃ 24 6 36 λ 64 13

Original [3] - 18 16 50 λ 68 13

6 Conclusion

We have proposed an efficient type conversion method based on 0–1 Integer
Programming. It is shown how to represent several constraints into a system of
linear binary equations so that a 0–1 IP solver can find an optimal solution that
meets the constraints. The performance and scalability are demonstrated over
real schemes and randomly generated samples.

Usefulness of the conversion-aided design approach is demonstrated by exam-
ples that outputs more compact GS-proofs than those manufactured directly in
Type-III setting. A fine-tuning technique that improves the performance of con-
verted GS-proofs is introduced.

Nevertheless, results in this paper can be seen as a step toward realizing
automated modular design of cryptographic protocols. Depending on the target
schemes, direct instantiation in Type-III based on SXDH can yield better results.
It is in fact another optimization issue that machines can help to find a globally
optimal solution. We include it as an interesting research and engineering target
in our future plan.

Finally, a proof-of-concept implementation with source codes and data files
for experiments in Sect. 5 are available from the authors for review. Open source
development is certainly in our future plan.

Acknowledgements. The authors thank Susan Hohenberger Waters and co-authors
of [6,7] for their help to understand AutoGroup. We also thank to Takeya Tango for
an alternative sanity checking method. Special thanks to the developers of SCIP [5] for
their quality software.

A Converted GSZK for AHO Signature

Let parameters for AHO signature scheme be asymmetric bilinear groups
gk := (p,G0,G1,GT , e,G, G̃), verification-key pk := (gk , G̃z, G̃r, H̃z, H̃u, {G̃i,
H̃i}n

i=1, Ã0, A1, Ã1, A2, B̃0, B1, B̃1, B2), message msg := (M1, . . . ,Mn), and sig-
nature σ := (Z,R,U, S̃, T, Ṽ ,W). CRS u ∈ G

3
0 and ũ ∈ G̃

3
1 are generated in

exactly the same manner as described in Sect. 5.1. The relations to prove are
PPEs (28), (29), and (17) re-numbered as follows.

410 M. Abe et al.

ê(Ã0, [A1]) ê(Ã2, [A3]) = ê(G̃z, [Z]) ê(G̃r, [R]) ê(S̃′, [T ′])
n∏

i=1

ê(G̃i, [Mi]) (32)

ê(B̃0, [B1]) ê(B̃2, [B3]) = ê(H̃z, [Z]) ê(H̃u, [U]) ê(Ṽ ′, [W ′])
n∏

i=1

ê(H̃i, [Mi]) (33)

ê(G̃, [X]) ê([G̃],X−1) = 1GT
for each X ∈ {A1, A3, B1, B3,Mi}. (34)

With pairing ê defined as (19), the relations can be regarded as linear PPEs.
In the rest of this section, we switch to additive notation for convenience of
presenting GS-proofs.

[Prover Algorithm]
Commit to Y ∈ (Z,R,U, T ′,W ′, A1, A3, B1, B3,Mi) by computing

[Y] := (O,O, Y) + SY u = (C1,Y , C2,Y , C3,Y) ∈ G
3
0. (35)

with independently uniform SY ← Mat1×3. Let SG̃ := (0, 0, 0) ∈ Z
3
p, and let

S(32) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

SA1

SA3

SZ

SR

ST ′

SMi

⎞
⎟⎟⎟⎟⎟⎟⎠

, S(33) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

SB1

SB3

SZ

SU

SW ′

SMi

⎞
⎟⎟⎟⎟⎟⎟⎠

, and S(34),X :=
(SG̃

SX

)
. (36)

Compute θ̃(32), θ̃(33) and θ(34),X for X ∈ {A1, A3, B1, B3,M1, . . . ,Mi} where:

θ̃(32) := S�
(32)

⎛
⎜⎜⎜⎜⎜⎜⎝

O O Ã0

O O Ã2

O O G̃−1
z

O O G̃−1
r

O O G̃−1
t

O O G̃−1
i

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝O O θ̃1,(32)

O O θ̃2,(32)

O O θ̃3,(32)

⎞
⎠ ∈ G̃

3×3
1 , (37)

θ̃(33) := S�
(33)

⎛
⎜⎜⎜⎜⎜⎜⎝

O O B̃0

O O B̃2

O O H̃−1
z

O O H̃−1
u

O O H̃−1
w

O O H̃−1
i

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝O O θ̃1,(33)

O O θ̃2,(33)

O O θ̃3,(33)

⎞
⎠ ∈ G̃

3×3
1 , (38)

θ(34),X := S�
(34),X

(O O G
O O X−1

)
=

⎛
⎝O O θ1,(34),X

O O θ2,(34),X

O O θ3,(34),X

⎞
⎠ ∈ G

3×3
0 . (39)

Output all [Y], θ̃(32), θ̃(33), and θ(34),X dropping redundant O.

Design in Type-I, Run in Type-III 411

[Verifier Algorithm]
Given the above proof and CRS as input, output 1 (as accept) if all the following
equations hold. Output 0, otherwise.

⎛
⎝ O

O
Ã0

⎞
⎠ •̃

⎛
⎝C1,A1

C2,A1

C3,A1

⎞
⎠ +

⎛
⎝ O

O
Ã2

⎞
⎠ •̃

⎛
⎝C1,A3

C2,A3

C3,A3

⎞
⎠ +

⎛
⎝O

O
G̃−1

z

⎞
⎠ •̃

⎛
⎝C1,Z

C2,Z

C3,Z

⎞
⎠

+

⎛
⎝O

O
G̃−1

r

⎞
⎠ •̃

⎛
⎝C1,R

C2,R

C3,R

⎞
⎠ +

⎛
⎝O

O
S̃′−1

⎞
⎠ •̃

⎛
⎝C1,T ′

C2,T ′

C3,T ′

⎞
⎠ +

n∑
i=1

⎛
⎝O

O
G̃−1

i

⎞
⎠ •̃

⎛
⎝C1,Mi

C2,Mi

C3,Mi

⎞
⎠

=
(
θ̃(32)

)�
•̃ (u)� (40)

⎛
⎝ O

O
B̃0

⎞
⎠ •̃

⎛
⎝C1,B1

C2,B1

C3,B1

⎞
⎠ +

⎛
⎝ O

O
B̃2

⎞
⎠ •̃

⎛
⎝C1,B3

C2,B3

C3,B3

⎞
⎠ +

⎛
⎝O

O
H̃−1

z

⎞
⎠ •̃

⎛
⎝C1,Z

C2,Z

C3,Z

⎞
⎠

+

⎛
⎝O

O
H̃−1

u

⎞
⎠ •̃

⎛
⎝C1,U

C2,U

C3,U

⎞
⎠ +

⎛
⎝O

O
Ṽ ′−1

⎞
⎠ •̃

⎛
⎝C1,W ′

C2,W ′

C3,W ′

⎞
⎠ +

n∑
i=1

⎛
⎝O

O
H̃−1

i

⎞
⎠ •̃

⎛
⎝C1,Mi

C2,Mi

C3,Mi

⎞
⎠

=
(
θ̃(33)

)�
•̃ (u)� (41)

⎛
⎝C1,X

C2,X

C3,X

⎞
⎠ •̃

⎛
⎝O

O
G̃

⎞
⎠ +

⎛
⎜⎝

C̃1,G̃

C̃2,G̃

C̃3,G̃

⎞
⎟⎠ •̃

⎛
⎝O

O
X−1

⎞
⎠ = (ũ)� •̃ (

θ(34),X
)� (42)

for X ∈ {A1, A3, B1, B3,Mi} where (C̃1,G̃, C̃2,G̃, C̃3,G̃) := (O,O, G̃).

B Converted Automorphic Blind Signature Scheme

This section presents details of automorphic blind signature scheme obtained by
conversion. A full description includes key generation, blinding, signing, unblind-
ing, verification algorithms, and also security proofs. Here, we focus on pre-
senting user’s and verifier’s algorithms in transferring a blind signature. They
actually consist of prover and verifier algorithms like the previous case. CRS
u ∈ G

3
0 and ũ ∈ G̃

3
1 are generated as described in Sect. 5.1. Let parameters

be asymmetric bilinear groups gk := (p,G0,G1,GT , e,G, G̃), verification-key
pk := (gk , F,K, T,X(= Gx), Ỹ (= G̃x)), message (M(= Gm), Ñ(= G̃m)). An
automorphic blind signature is a witness indistinguishable GS-proof for relations
(30) and (31) as re-numbered as follows.

ê([A], Ỹ) ê([A], [D̃]) = ê(K, G̃) ê(M, G̃) ê(T, [S]) (43)

ê([B], G̃) = ê(F, [D̃]) (44)

ê([R], G̃) = ê(G, [S]) (45)

412 M. Abe et al.

With pairing ê defined as (19), the second and third relations are regarded as
linear PPEs. Again, we switch to additive notation while describing GS-proofs
in the following.

[Blind Signature Issuing Algorithm]
Commit to δ ∈ (A,B,R) and ρ̃ ∈ (D̃, S̃) by

[δ] := (O,O, δ) + Sδ u = (C1,δ, C2,δ, C3,δ) ∈ G
3
0, and (46)

[ρ̃] := (O,O, ρ̃) + Sρ̃ ũ = (C1,ρ̃, C2,ρ̃, C3,ρ̃) ∈ G
3
1 (47)

where Sδ ← Mat1×3 and Sρ̃ ← Mat1×3. Let Tp be a random 3 × 3 matrix over
Zp. Compute θ(43), θ(44), and θ(45) as:

θ(43) = S�
A (O,O,X) + S�

A (O,O,D) + S�
D̃

(O,O, A) + S�
A SD̃ u

− S�
S̃

(O,O, T) + (Tp − T�
p)u (48)

θ(44) = S�
B (O,O, G) − S�

D̃
(O,O, F) (49)

θ(45) = S�
R (O,O, G) − S�

S̃
(O,O, G) (50)

Output all [δ], [ρ̃], θ(43), θ(44), and θ(45) without redundant O as a blind signature.

[Verifier Algorithm]
Given the above blind signature and message msg := (M, Ñ), output 1 if all the
following equations hold. Output 0, otherwise.

⎛
⎝C1,A

C2,A

C3,A

⎞
⎠ •̃

⎛
⎝O

O
Ỹ

⎞
⎠ +

⎛
⎝C1,A

C2,A

C3,A

⎞
⎠ •̃

⎛
⎝C1,D̃

C2,D̃

C3,D̃

⎞
⎠ (51)

=

⎛
⎝O

O
K

⎞
⎠ •̃

⎛
⎝O

O
G̃

⎞
⎠ +

⎛
⎝O

O
M

⎞
⎠ •̃

⎛
⎝O

O
G̃

⎞
⎠ +

⎛
⎝O

O
T

⎞
⎠ •̃

⎛
⎝C1,S̃

C2,S̃

C3,S̃

⎞
⎠ +

(
θ(43)

)� •̃ (ũ)�

⎛
⎝O

O
G̃

⎞
⎠ •̃

⎛
⎝C1,B

C2,B

C3,B

⎞
⎠ =

⎛
⎝O

O
F

⎞
⎠ •̃

⎛
⎝C1,D̃

C2,D̃

C3,D̃

⎞
⎠ +

(
θ(44)

)� •̃ (ũ)� (52)

⎛
⎝O

O
G̃

⎞
⎠ •̃

⎛
⎝C1,R

C2,R

C3,R

⎞
⎠ =

⎛
⎝O

O
G

⎞
⎠ •̃

⎛
⎝C1,S̃

C2,S̃

C3,S̃

⎞
⎠ +

(
θ(45)

)� •̃ (ũ)� (53)

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012)

Design in Type-I, Run in Type-III 413

2. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013)

3. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. J. Cryptol. 29(2), 363–
421 (2016)

4. Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes
from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014)

5. Achterberg, T.: CIP: solving constraint integer programs. Math. Program. Comput.
1(1), 1–41 (2009). http://mpc.zib.de/index.php/MPC/article/view/4

6. Akinyele, J.A., Garman, C., Hohenberger, S.: Automating fast and secure transla-
tions from type-I to type-III pairing schemes. In: ACM CCS 2015, pp. 1370–1381.
ACM (2015)

7. Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design
tasks for encryption and signature schemes. In: ACM CCS 2013, pp. 399–410. ACM
(2013)

8. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM CCS 2013, pp. 863–874. ACM (2013)

9. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic. IACR ePrint Archive,
report 2013/400 (2013). http://eprint.iacr.org

10. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Auto-
mated analysis of cryptographic assumptions in generic group models. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 95–112.
Springer, Heidelberg (2014)

11. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

12. Blanchet, B.: Cryptoverif: A computationally sound mechanized prover for crypto-
graphic protocols. In: Dagstuhl seminar Formal Protocol Verification Applied, vol.
10 (2007)

13. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth–Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 218–235. Springer, Heidelberg (2010)

14. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

15. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

16. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
CCS 2004, pp. 168–177. ACM (2004)

17. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Des. Codes Crypt. 55(2–3), 141–167 (2010)

18. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of psi revisited. IACR ePrint Archive, Report 2009/480 (2009).
http://eprint.iacr.org

19. Chatterjee, S., Menezes, A.: On cryptographic protocols employing asymmetric
pairings - the role of revisited. Discrete Appl. Math. 159(13), 1311–1322 (2011)

http://mpc.zib.de/index.php/MPC/article/view/4
http://eprint.iacr.org
http://eprint.iacr.org

414 M. Abe et al.

20. Chen, D.-S., Batson, R.G., Dang, Y.: Applied Integer Programming: Modeling and
Solution. Wiley, Hoboken (2009)

21. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

22. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014)

23. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

24. Gamrath, G., Lübbecke, M.E.: Experiments with a generic Dantzig-Wolfe decom-
position for integer programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
239–252. Springer, Heidelberg (2010)

25. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth–Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

26. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities: Application to discrete logarithms
in f19712 . IACR ePrint Archive, Report 2013/074 (2013). http://eprint.iacr.org

27. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

28. Gurobi Optimization, Inc., Gurobi optimizer reference manual. https://www.
gurobi.com/documentation/6.5/refman.pdf. http://www.gurobi.com/

29. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces:
a new framework for composite-to-prime-order transformations. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer,
Heidelberg (2014)

30. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

31. Joux, A.: A new index calculus algorithm with complexity l(1/4+o(1)) in very
small characteristic. IACR ePrint Archive, Report 2013/095 (2013). http://eprint.
iacr.org

32. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

33. Koch, T.: Rapid mathematical prototyping. Ph.D. thesis, Technische Universität
Berlin (2004)

34. LINDO Systems. LINDO. http://www.lindo.com/
35. Melnick, M.: LiPS. http://lipside.sourceforge.net/
36. Libert, B., Joye, M.: Group signatures with message-dependent opening in the

standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–
306. Springer, Heidelberg (2014)

37. Libert, B., Joye, M., Yung, M., Peters, T.: Secure efficient history-hiding append-
only signatures in the standard model. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 450–473. Springer, Heidelberg (2015)

38. Libert, B., Yung, M., Joye, M., Peters, T.: Traceable group encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 592–610. Springer,
Heidelberg (2014)

39. Smart, N.P., Vercauteren, F.: On computable isomorphisms in efficient asymmetric
pairing-based systems. Discrete Appl. Math. 155(4), 538–547 (2007)

http://eprint.iacr.org
https://www.gurobi.com/documentation/6.5/refman.pdf
https://www.gurobi.com/documentation/6.5/refman.pdf
http://www.gurobi.com/
http://eprint.iacr.org
http://eprint.iacr.org
http://www.lindo.com/
http://lipside.sourceforge.net/

Design in Type-I, Run in Type-III 415

40. Waters, B.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

41. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

Linicrypt: A Model for Practical Cryptography

Brent Carmer(B) and Mike Rosulek

Oregon State University, Corvallis, USA
{carmerb,rosulekm}@eecs.oregonstate.edu

Abstract. A wide variety of objectively practical cryptographic schemes
can be constructed using only symmetric-key operations and linear oper-
ations. To formally study this restricted class of cryptographic algo-
rithms, we present a new model called Linicrypt. A Linicrypt program
has access to a random oracle whose inputs and outputs are field ele-
ments, and otherwise manipulates data only via fixed linear combina-
tions.

Our main technical result is that it is possible to decide in polyno-
mial time whether two given Linicrypt programs induce computation-
ally indistinguishable distributions (against arbitrary PPT adversaries,
in the random oracle model).

We show also that indistinguishability of Linicrypt programs can be
expressed as an existential formula, making the model amenable to auto-
mated program synthesis. In other words, it is possible to use a SAT/SMT
solver to automatically generate Linicrypt programs satisfying a given
security constraint. Interestingly, the properties of Linicrypt imply that
this synthesis approach is both sound and complete. We demonstrate this
approach by synthesizing Linicrypt constructions of garbled circuits.

1 Introduction

Throughout cryptography, we find many examples of objectively practical con-
structions that share common features. In particular, they treat blocks of bits
as atomic units, and manipulate these units by calling a symmetric-key primi-
tive or by interpreting them as elements in a field and applying strictly linear
operations to them. Below are just some examples:

– Standard block cipher modes like CBC, OFB, PCBC for privacy, and LRW
modes [34] for tweakable block ciphers consist of calls to the underlying block
cipher and xor, the linear operation in GF (2n). (This ignores matters of
padding/ciphertext stealing, where the input is not an exact multiple of field
elements.)

– Constructions in other settings also consist of calls to an underlying symmetric
primitive along with xor operations: the Davies-Meyer construction & its
variants [13,47] for collision-resistance; the Even-Mansour [18] and Feistel [35]
constructions for PRPs; NMAC, HMAC [31], and VMAC [32] for authenticity;
Naor’s commitment scheme [41].

Authors supported by NSF award 1149647.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 416–445, 2016.
DOI: 10.1007/978-3-662-53015-3 15

Linicrypt: A Model for Practical Cryptography 417

– Some constructions use GF (2n)-linear transformations with (fixed) coefficients
other than 1 (i.e., these constructions use multiplication by fixed field ele-
ments). These include: OCB mode [50] for authenticated encryption, CMC
mode [23] for disk encryption, XE/XEX modes [49] for tweakable block
ciphers, PMAC [12] for authentication.

– Signing algorithms for lightweight one-time signature schemes like those of
Lamport [33] and Winternitz [52] consist purely of calls to a one-way or [target]
collision-resistant hash function. Variants like W-OTS+ [25] incorporate xor
operations. Few-time signature schemes like HORS and variants [45,48] also
use only a random oracle. These simple signature schemes can be composed
to give many-use signature schemes using Merkle trees [39] and derivatives
thereof [11,14–16,21,40,44]. These extensions do not introduce any additional
operations on the atomic field elements.

– Practical constructions of garbled circuits [22,29,30,42,53] simply use xor
and calls to an underlying hash function/KDF, while the construction of [46]
uses polynomial interpolation (with fixed points of evaluation) over GF (2n),
which is a linear operation.

1.1 Overview of Our Results

Inspired by the constructions above, we introduce a restricted model of com-
putation called Linicrypt. Programs in the Linicrypt model have access to a
random oracle (to model a symmetric-key primitive), whose inputs and outputs
are elements of a field F. The field F is public and its size should be exponential
in the security parameter.

Beyond calling a random oracle, Linicrypt programs can manipulate field
elements only by uniformly sampling them or by applying fixed linear combi-
nations. More formally, a (pure) Linicrypt program is a fixed sequence of
statements of the following form:

vi
$← F: sample a value uniformly from F.

vi :=
∑

j cjvj : apply a linear combination to existing variables, using
fixed coefficients.

vi := H(t‖vj1‖vj2‖ · · · ‖vjk): call the random oracle on a set of existing variables, and
optionally a string t which is fixed with the program
(useful for domain separation).

output (vj1 , . . . , vjk): output an ordered sequence of variables.

Linicrypt is expressive enough to capture cryptographic construction of interest,
but still restrictive enough that it provides several key benefits:

1. It is tractable to reason about cryptographic properties of Linicrypt programs.
Our main technical result is that it is possible to decide, in polynomial
time, whether two Linicrypt programs induce indistinguishable output distri-
butions (in the random oracle model, against arbitrary PPT adversaries).

We also point out that unforgeability properties (e.g., given the output of
a program P, it is hard to predict an internal value v∗) can be easily trans-
formed into indistinguishability properties, making many standard styles of
security definition expressible (and efficiently decidable) in Linicrypt.

418 B. Carmer and M. Rosulek

2. Unlike in other restricted models, Linicrypt programs manipulate data as
atomic units. This makes it possible to prove fine-grained lower bounds to
the level of optimal constant factors (e.g., “this cryptographic task cannot
be done in Linicrypt with keys smaller than 5λ bits”). Such lower bounds
for Linicrypt hold in the random oracle model, and hence they also imply
impossibility of a black-box construction from one-way functions.

3. The question of finding a Linicrypt program whose output is indistinguishable
from some specification (e.g., its output is pseudorandom) can be expressed as
an existential formula. One can then use an SAT/SMT solver to find a witness
— i.e., automatically synthesize a secure Linicrypt construction. Additionally,
if the formula is found to be unsatisfiable, it implies that no secure Linicrypt
construction exists for the task — i.e., this paradigm for program synthesis
is both sound and complete.

In Sect. 2 we formally define Linicrypt, develop techniques to reason about
its algorithms, and prove our main technical result. Later in Sect. 3 we give an
example application of our approach to program synthesis. We show how to use
an SMT solver to synthesize secure Linicrypt constructions of garbled circuits.
Specifically, for a given boolean function f : {0, 1}k → {0, 1}� (e.g., an adder, a
multiplexer), we synthesize Linicrypt procedures to garble f (as an atomic unit)
in a way that is compatible with the Free XOR optimization of [30].

1.2 Related Work and Inspiration

Minicrypt. Linicrypt is inspired in name by Impagliazzo’s [26] Minicrypt, which
refers to a hypothetical world in which one-way functions exist but no “fancier”
cryptography is possible. Minicrypt is formalized (as in [27]) by having a random
oracle and allowing adversaries to be computationally unbounded (but with only
polynomially many queries to the oracle). In this way, the random oracle becomes
the only available source of computational cryptography.

The main distinction therefore between Linicrypt & Minicrypt is the addi-
tional constraint of linearity. This restriction allows Linicrypt lower bounds to
resolve optimal constant factors, whereas optimal constant factors are not typ-
ically well-defined in Minicrypt. For example, imagine instantiating a secure
Minicrypt scheme with security parameter λ/c; as a function of λ, the resulting
construction would typically have constants reduced by a factor of c but still be
secure.

Generic Group Model. Linicrypt has many similarities to the generic group
model (GGM) of Shoup [51]. In the GGM, adversaries are restricted to manip-
ulating elements of a cyclic group in a black-box way using only the prescribed
group operations. While the GGM was originally proposed as a heuristic model
for adversaries, one can also use GGM constructions to prove lower bounds.
Dodis et al. [17] show that full-domain hashing from RSA cannot be proven
secure using techniques that treat the RSA group as a generic multiplicative
group. Papakonstantinou et al. [43] show that identity-based encryption is
impossible via a GGM construction (without a bilinear pairing).

Linicrypt: A Model for Practical Cryptography 419

GGM lower bounds can identify optimal constant factors, which is one of
the goals of Linicrypt. A line of work by Abe et al. [1–3] considers the case
of structure-preserving digital signatures. They prove (among other things) that
3 group elements are optimal for structure-preserving signatures implemented
by GGM algorithms. More recently, synthesis has been effectively applied [7] to
generate novel and optimal structure-preserving schemes.

Despite these similarities, we point out some important technical differences:

(1) In the GGM, group elements are represented via a random encoding into
bits, and adversaries are allowed to “look at” these encodings. This is slightly
less restricting than our compartmentalized approach in which encodings
don’t play a part (and hence Linicrypt programs cannot perform equality
tests). In that regard, our model is similar to the generic-group variant of
Maurer [38]. Since our goal is to place restrictions on constructions rather
than adversaries, the distinction does not seem to be very significant.

(2) Linicrypt includes a random oracle, which has not yet been considered in
GGM lower bound results to the best of our knowledge. The random oracle
is indeed a source of technical complications in Linicrypt.

(3) Both Linicrypt and GGM allow only linear operations (e.g., in the GGM, a
value “in the exponent” can only be manipulated in linear ways). However,
a Linicrypt program must apply linear operations with fixed (i.e., known
to the adversary) coefficients, while the GGM model allows constructions
to choose random (secret) coefficients. This difference is what allows Diffie-
Hellman-style constructions to be modeled in GGM but not in Linicrypt.
Namely, a GGM algorithm can hide a random value “in the exponent” by
performing the generic operation g �→ gx, but the analogous operation in
Linicrypt (v �→ xv) hides nothing since x would always be considered fixed.

Algebraic Cryptography Model. Applebaum et al. [6] define a model for arith-
metic cryptography, building on earlier work by Ishai et al. [28]. Their model
has some similarities to Linicrypt but also fundamental differences. Compared to
Linicrypt, the arithmetic model allows for general field operations on its elements,
not just linear combinations. More importantly, the defining feature of the arith-
metic model is that the construction is oblivious to the underlying field/ring —
the construction must work no matter what field/ring is used. In order to model
cryptographic practice, Linicrypt allows the ring to be specified by the construc-
tion. Additionally, their model does not currently include random oracles, and
hence it is only applicable to information-theoretic constructions or computa-
tional assumptions that can be obtained from the algebraic structure in a black-
box way. The model is not equipped to consider standard assumptions like the
existence of pseudorandom functions or collision-resistant hash functions.

Linear Garbling. In this work we study Linicrypt programs in the context of
garbled circuit constructions. This is inspired in part by the lower bound of
Zahur et al. [53]. They too observe that practical garbled circuit constructions
consist of only linear operations and calls to a random oracle. They prove a lower

420 B. Carmer and M. Rosulek

bound, namely, that such “linear garbling schemes” require 2 field elements to
garble a single and gate.

In concurrent and independent work, Pastro et al. [36] extend the model of
linear garbling and characterize security in terms of linear-algebraic properties
like span. They generalize the garbling scheme of [53] to natively support low-
degree polynomials (not just AND-gates).

Later in Sect. 3 we go into more detail about the ZRE lower bound in the
context of Linicrypt. For now, we simply point out the main differences between
our work and the two above: (1) in this work we present a full theory of Linicrypt,
not constrained only to garbled circuits; (2) the above models of linear garbling
only consider “Linicrypt programs” that make non-adaptive calls to the random
oracle, whereas our general Linicrypt model has no such restriction (arguably,
the ability to reason about arbitrary oracle queries is the most important feature
of Linicrypt). The difference is important specifically in the context of garbled
circuits since, in most schemes, adaptive oracle queries result when composing
several gates together in a larger circuit.

Synthesis of Cryptographic Constructions. Synthesis has been effectively used
in the generic group model to discover batching schemes for signature verifica-
tion [5] and optimal structure-preserving signatures [7]. Both of these results
synthesize constructions involving bilinear pairings.

Malozemoff et al. [37] synthesized IND-CPA secure block cipher modes by
expressing the main loop of a mode as a directed graph. They defined typing
rules for the vertices of this graph and showed that if a valid assignment of
types exists, then the resulting scheme is secure. Using a SAT solver, they were
able to check for valid type assignments for candidate modes and subsequently
enumerate secure modes. In a followup work, Hoang et al. [24] extended the
synthesis to authenticated encryption modes built from tweakable block ciphers.

Prior work of Gagné et al. [19,20] developed techniques for automated proofs
of security for (CPA-secure) block cipher modes. Akinyele et al. [4] use an SMT
solver to automate transformations of pairing-based signature schemes.

In all of the works involving block cipher modes [19,20,24,37] the techniques
are developed for modes involving just xor operations and [tweakable] block
cipher calls. This corresponds to a natural special case of Linicrypt. We empha-
size, however, that in these works the methods are sound but not complete.1

2 Linicrypt

2.1 Basic Model

A pure Linicrypt program over field F is a tuple P = (in, out, cmds),
where: in is a nonnegative integer, out is an ordered sequence of indices from
1 In [37] the authors explicitly say, “we prevent a random value from both being output

as ciphertext and input into a PRF . . . This does not mean there do not exist secure
schemes which have this property; however, our tool does not allow such schemes”.
In [19,20] the techniques involve a logic that uses only local invariants.

Linicrypt: A Model for Practical Cryptography 421

{1, . . . , |cmds|}, and cmds is an ordered sequence of Linicrypt commands.
The ith command in cmds must have one of the following forms:

– (inp, j), where 1 ≤ j ≤ in [retrieve a value from input]
– (samp) [sample an element of F]
– (lin, c1, . . . , ci−1), where each cj ∈ F [perform a linear combination of values]
– (hash, t, j1, . . . , jk), where t ∈ {0, 1}∗ and j1, . . . , jk < i [call the random

oracle on a set of variables, and additional (fixed) string t]

Intuitively, the program P takes as input a vector from F
in, then performs the

operations specified by cmds. Each of the internal values of P is assigned to a
variable v[i]. Finally, the program outputs the values whose indices are in the
set out. More formally, we define the behavior of P as a process via:

PH(x ∈ F
in):

for i = 1 to |cmds|:
if cmds[i] = (inp, j): v[i] := x[j]

if cmds[i] = (samp): v[i] $← F

if cmds[i] = (lin, c1, . . . , ci−1): v[i] :=
∑

cjv[j]
if cmds[i] = (hash, t, j1, . . . , jk): v[i] := H(t; v[j1], . . . , v[jk])

return
(
v[j]

)
j∈out

Note that H is an oracle with type H : {0, 1}∗ ×F
∗ → F. In informal discussions,

we often omit the first argument to H when it is an empty string.

2.2 Mixed Linicrypt Programs and Modelling Real-World
Primitives

Most of the cryptographic primitives listed in the introduction cannot actually
be implemented strictly as pure Linicrypt programs. For example, consider the
one-time Winternitz signature of a single “digit” x ∈ [m]. The secret key sk ← F

is chosen uniformly. The public key is then pk := H(m)(sk). To sign x, release
σ := H(x)(sk). Then to verify, check pk

?= H(m−x)(σ).
The main operations in Winternitz are simply repeated calls to the hash/one-

way function H, which are certainly allowed in Linicrypt. However, the signing
algorithm uses x in a non-linear way — to choose how many Linicrypt commands
to execute!

We therefore extend the scope of Linicrypt beyond pure Linicrypt programs.
A mixed Linicrypt program is one in which we designate some inputs to be
non-linear and the others to be linear. For instance, in the signing algorithm of
Winternitz signatures there is a for-loop whose exit condition is non-linear in x.

We can associate any mixed Linicrypt program with a collection of pure
Linicrypt programs. Think of any mixed Linicrypt program as a switch/case
statement (based on its non-linear input) selecting which pure Linicrypt program
to run. See Fig. 1 for the example of Winternitz signatures. Each sign(·, x) is a
pure Linicrypt program. Since x is public in the security definition for signatures,

422 B. Carmer and M. Rosulek

sign(sk, x)

σ := sk
for i = 1 to x:

σ := H(σ)
return σ

=⇒

sign(sk, x)

if x = 1: v1 := H(sk)
return v1

else if x = 2: v1 := H(sk)
v2 := H(v1)
return v2

else if · · ·

Fig. 1. The signing algorithm for one-time Winternitz signatures as a mixed Linicrypt
program. Each inner box on the right-hand side is a pure Linicrypt programs, sign(·, x),
for fixed x.

we can express the security of the (mixed) signing algorithm in terms of the
properties of each (pure) program sign(·, x).

The way one decides to model some inputs as non-linear and other inputs as
linear is highly application-specific. In general, it makes the most sense to let the
length of non-linear inputs to be a constant c: First, the complexity of deciding
security and synthesizing constructions grows exponentially with c. Second, this
implies that all of the security properties are a result of the Linicrypt operations
(the random oracle and linear operations over a field F, whose size is exponential
in the security parameter) and not the non-linear behavior. In other words, in a
security game an adversary could guess with constant probability the non-linear
input, leaving a residual pure Linicrypt program. So security is reduced to the
security properties of the individual pure Linicrypt programs in the collection.

Throughout the rest of this section we develop a general theory of Linicrypt,
and restrict our attention to pure Linicrypt programs. Later when discussing
specific applications of Linicrypt to garbled circuits, we explicitly discuss mixed
Linicrypt programs and non-linear inputs, etc.

2.3 Algebraic Representation

Let P be a (pure) Linicrypt program with notation as above. Say that v[i] is a
derived variable if cmds[i] is of the form (lin, · · ·). Otherwise say that v[i] is
a base variable. That is, a base variable is the result of a command with one
of samp, hash, or inp. Let base denote the number of base variables. The main
idea behind manipulating Linicrypt programs in an algebraic way is to observe
that all values of importance can be expressed as linear functions of the base
variables.

In more detail, fix an ordering of the base variables and denote them by the
vector vbase. Then for the ith command in cmds, define row(i) to be the vector
in F

base such that v[i] = row(i) ·vbase, where the · denotes dot product of vectors.
More formally:

row(i) def=

⎧⎪⎨
⎪⎩[

j−1︷ ︸︸ ︷
0 0 · · · 0 1 0 · · · 0] if v[i] is the jth base variable∑

j cjrow(j) if cmds[i] = (lin, c1, . . . , ci−1)
.

Linicrypt: A Model for Practical Cryptography 423

We create a matrix to represent the output of a Linicrypt program:

M def=

⎡
⎢⎣

— row(o1) —
...

— row(ok) —

⎤
⎥⎦ , where out = (o1, . . . , ok).

M therefore characterizes the direct correlations among the program’s output
variables. Yet, it contains no information about how these variables may be
correlated via the random oracle! So, our characterization of a Linicrypt program
includes a set of oracle constraints. The idea behind an oracle constraint
〈t,Q,a〉 is that if the random oracle is called on input (t;Q × vbase) then the
response will be a · vbase.

C def=

⎧⎪⎨
⎪⎩

〈
t,

⎡
⎢⎣

— row(j1) —
...

— row(jk) —

⎤
⎥⎦ , row(i)

〉 ∣∣∣∣∣∣∣
cmds[i] = (hash, t, j1, . . . , jk)

⎫⎪⎬
⎪⎭

Without loss of generality, we can assume that no two constraints share (t,Q)
in common. Under that restriction, the set {a | 〈t,Q,a〉 ∈ C} is a linearly
independent set — i.e., the results of distinct random oracle queries are linearly
independent.

Finally, we define the algebraic representation of a Linicrypt program P
to be (M, C). We refer to M as the output matrix and C as the set of oracle
constraints.

To demonstrate the different ways of viewing a Linicrypt program, consider
the following example, with in = 0:

plain-language: Linicrypt cmds: var type: matrix representation:
v1 ← F 1: (samp) base
v2 ← F 2: (samp) base
v3 := v1 − v2 3: (lin, 1,−1) derived

⎡
⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
1 −1 0
0 0 1
1 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎣v1

v2
v4

⎤
⎦

v4 := H(foo, v3, v2) 4: (hash, foo, 3, 2) base
v5 := v4 + v1 5: (lin, 1, 0, 0, 1) derived
return (v4, v5) // out = (4, 5)

algebraic representation:

M =
[
0 0 1
1 0 1

]
; C =

{
〈foo,

[
1 −1 0
0 1 0

]
, [0 0 1]〉

}

There are three base variables. With v4, v5 being output variables, the out-
put matrix M consists of row(4), row(5). There is one hash-command “v4 :=
H(foo, v3, v2),” leading to a single oracle constraint 〈foo,

[
row(3)
row(2)

]
, row(4)〉.

In the rest of this paper, we specialize to input-less (i.e., in = 0) Linicrypt
programs. Restricting our domain to input-less programs simplifies the defini-
tions & proofs. This is justified by our main application to garbled circuits. In
the security definition for garbled circuits, the adversary chooses an input x to

424 B. Carmer and M. Rosulek

the function, but since we model x as non-linear input, what is left over is a
collection of security experiments, one for each x, each involving an input-less
(pure) Linicrypt program.

We hereafter overload notation and write P = (M, C). We claim that (M, C)
completely characterizes the behavior of P. In more detail, let P be an input-
less Linicrypt program, let A be an oracle machine, and consider the following
canonical simulation of P.

SA
P ():

1. vbase
$← F

base

2. vout := Mvbase

3. cache := empty associative array
4. return AH(vout), where H implemented as below:

H(t; q ∈ F
∗):

// if the adversary found a collision among oracle constraints

5. if ∃〈t,Q,a〉, 〈t,Q′,a′〉 ∈ C with a
= a′ and Qvbase = Q′vbase = q:
6. abort
// if there is an oracle constraint for the query q

7. if ∃〈t,Q,a〉 ∈ C with Qvbase = q:
8. return a · vbase

// honest simulation of a random oracle beyond this point

9. if cache[t; q] does not exist:

10. cache[t; q] $← F

11.return cache[t; q]

(1)

The idea is to simply sample all of the base variables upfront, instead of deriving
some of them via calls to the random oracle. But then to make the simulation
of the random oracle consistent, we “patch” the random oracle so that when
queried on (t,Qvbase), the consistent result a ·vbase is simulated (lines 7–8). The
simulation aborts when two oracle constraints are in conflict (lines 5–6).

Lemma 1 (Canonical Simulation). Let P be an input-less (i.e., in =
0) Linicrypt program that executes n hash-commands. Then for all oracle
machines A:

Pr
[
SA

P () = 1
]

− Pr
H

[
AH(PH()) = 1

]
≤ n(n + 1)

2|F| .

We emphasize that A here is an arbitrary program. It need not be linear,
it may be computationally unbounded, and (at least for this lemma) it is even
unrestricted in the number of oracle queries it makes.

Proof (Sketch). Conditioned on the simulation not aborting in line 6, the simula-
tion is perfect. Essentially, each query to H answered in lines 7–8 is answered with
a randomly chosen base variable (since each a is a canonical basis vector), exactly
matching how queries are answered by an honest random oracle. Hence, the error

Linicrypt: A Model for Practical Cryptography 425

in the simulation is the probability that the condition in line 5 is true. This hap-
pens if Qvbase = Q′vbase for some distinct constraints 〈t,Q,a〉, 〈t,Q′,a′〉 ∈ C.
Since WLOG no two constraints share (t,Q), we have that Q − Q′ is a nonzero
matrix, and therefore that

Qvbase = Q′vbase ⇐⇒ (Q − Q′)vbase = 0 ⇐⇒ vbase ∈ kernel(Q − Q′).

Note that kernel(Q−Q′) is a proper subspace of Fbase with maximum dimen-
sion (base− 1). Then, when vbase is chosen uniformly from F

base, the probability
that it is in a particular proper subspace is at most |F|base−1/|F|base = 1/|F|.
Recall that P executes n hash-commands. Then there are

(
n
2

)
= n(n + 1)/2

possible pairs of distinct oracle constraints. By the union bound, the probabil-
ity that there exist some pair of oracle constraints with Q and Q′ for which
vbase ∈ kernel(Q − Q′) is at most n(n + 1)/2|F|.

2.4 Linear Transformations, Basis Changes and Composition

The algebraic representation for Linicrypt programs turns out to be convenient,
as we can perform linear-algebraic manipulations to Linicrypt programs.

For instance, consider applying a linear transformation to a Linicrypt
program. Let P = (M, C) be a Linicrypt program. Recall that the width of the
vectors in M and C is base. Now let B be a base × base matrix with entries in
F and consider the Linicrypt representation (MB, CB), where

CB
def= {〈t,QB,aB〉 | 〈t,Q,a〉 ∈ C}.

When B is an invertible matrix, we refer to (MB, CB) as a basis change of B
applied to (M, C). Such a basis change has no effect on the output distribution
of the Linicrypt program. More precisely:

Proposition 2. Let P = (M, C) be an input-less Linicrypt program, and let
P ′ = (MB, CB) for some invertible matrix B. Then for all oracle machines A,
we have:

Pr
[
SA

P () = 1
]

= Pr
[
SA

P′() = 1
]
.

Proof. A basis change by B is equivalent to adding a statement “vbase := Bvbase”
between lines 1 and 2 in Eq. 1. Since B is invertible, this additional statement
has no effect on the distribution of vbase.

Composition. We can use the idea of a linear transformation to reason alge-
braically about the composition of two Linicrypt programs. Let P = (M, C) be
a Linicrypt program with no input and out outputs, and let P ′ = (M′, C′) be a
Linicrypt program with out inputs, so that it makes sense to feed the output of
P as input to P ′. Without loss of generality, we make the following assumptions:

– Both programs have the same number of base variables (so that M, M′ have
the same number of columns and so on).

426 B. Carmer and M. Rosulek

– The first out base variables of P ′ are identified with its input variables.

The algebraic representation of P ′ implicitly treats all of its input variables as
linearly independent. So the case when M has full rank is easiest. To compose
the programs, one simply applies a basis change to either program to align P’s
output variables (M) and P ′’s input variables (expressed as [I | 0], where I is
the out × out identity matrix), and similarly align the oracle constraints of the
programs. If such a basis change has been applied, then the composed program’s
output is characterized by M′ and its oracle constraints are simply C ∪ C′.

However, in general the output of P may have linear correlations, and this can
have a serious effect on the behavior of P ′. Take for example the case where P ′

takes two input variables (v1, v2) and outputs H(v1)−H(v2). Then the behavior
of P ′ is qualitatively different when v1 and v2 are linearly independent vs. when
they are correlated as v1 = v2, for instance.

In general, we consider applying a linear transformation to P ′ that “collapses”
the appropriate base variables (they become associated with the same vector
in the algebraic representation). Collapsing input base variables may result in
the collapse of oracle queries that use these variables. In the example above,
H(v1) and H(v2) are themselves base variables which are linearly independent
in general; yet they collapse to the same base variable when v1 = v2.

Hence, to compose P with P ′ we consider a linear transformation Γ applied
to P ′, with the following properties:

1. Γ aligns the input variables of P ′ (the first out base variables) with the output
M of P. That is, M = [I | 0] × Γ where I is the out × out identity matrix.

2. Γ consistently aligns the oracle queries of P ′ to those in P. That is, if
〈t,Q,a〉 ∈ C′Γ , and 〈t,Q,a′〉 ∈ C, then a = a′.

3. Γ collapses appropriate oracle constraints in P ′: that is, if Γ causes (previ-
ously distinct) oracle constraints to now share the same t and Q components,
then they must now also share the same a component. More formally, the
constraints in C′Γ should all have distinct t,Q values. However, note that C′Γ
may have fewer constraints than C′ due to collapses induced by Γ .

4. Γ should only collapse base variables that are absolutely required by the
above conditions. In other words, the rank of Γ should be as large as possible
given the above constraints. Note that if M has full rank, then Γ will indeed
be a basis change. However, in general Γ may not be a basis change — this
is consistent with the fact that feeding linearly correlated values into P ′ may
indeed fundamentally change its behavior. A basis change exactly preserves
behavior.

Given such a transformation Γ , then (M′Γ, C∪C′Γ) is an algebraic representation
for the composition of programs P ′ ◦ P.

2.5 Indistinguishability vs. Unpredictability

When we consider Linicrypt programs that implement cryptographic primitives,
the most fundamental question is: when do two Linicrypt programs induce indis-
tinguishable distributions (in the random oracle model)?

Linicrypt: A Model for Practical Cryptography 427

Definition 3. Let P1 and P2 be two input-less Linicrypt programs over F. Let
λ = log |F| be the security parameter. We say that P1 and P2 are indistinguish-
able, and write P1

∼= P2, if for every (possibly computationally unbounded) ora-
cle machine A that queries its oracle a polynomial (in λ) number of times, we
have

Pr[AH(PH
1 ()) = 1] − Pr[AH(PH

2 ()) = 1] is negligible in λ.

The probabilities are over the choice of random oracle H and the coins of P1,
P2, and A.

We point out that indistinguishability can be used to reason about unforge-
ability properties as well. Suppose P is a Linicrypt program that has some special
internal variable v∗, and we wish to formalize the idea that “v∗ is hard to predict
(in the random oracle model) given the output of P”. Now define the following
two related programs:

– P1 runs P and outputs whatever P outputs, along with an additional output
vextra = H(t∗; v∗), where t∗ is a “tweak” that is not used in P.

– P2 runs P and outputs whatever P outputs, along with an additional output
vextra

$← F.

Note that P1 and P2 are a Linicrypt programs if P is. Now observe that the
following statements are equivalent:

1. Given the output of P, the probability that an adversary (with access to the
random oracle) outputs v∗ is negligible.

2. Given the output of P, the probability that an adversary queries the random
oracle on H(t∗; v∗) is negligible.

3. Given the output of P, the value H(t∗; v∗) is indistinguishable from uniform.
This follows simply from the definition of the random oracle model, and the
fact that P itself does not use any values of the form H(t∗; ·).

4. P1
∼= P2.

Hence, standard unforgeability properties of a Linicrypt program can be
expressed as the indistinguishability of two Linicrypt programs. From now on,
we therefore focus on indistinguishability only. And indeed, our main character-
ization theorem will include reasoning like that above, regarding which oracle
queries can be made by an adversary with non-negligible probability.

2.6 Normalization

We now describe a procedure for “normalizing” a Linicrypt program. Specif-
ically, normalizing corresponds to removing “unnecessary” calls to the oracle.
We illustrate the ideas with a brief example, below:

428 B. Carmer and M. Rosulek

plain language: Linicrypt cmds: matrix representation:

v1
$← F 1: (samp)

v2 := H(foo, v1) 2: (hash, foo, 1)
v3 := v1 − v2 3: (lin, 1,−1)

⎡
⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

v1
v2
v4
v5

⎤
⎥⎥⎦

v4 := H(bar, v3) 4: (hash, bar, 3)
v5 := H(baz, v3) 5: (hash, baz, 3)
output (v3, v5)

This program has 3 oracle queries, two of which are “unnecessary” in some sense.

– It is instructive to consider what information the adversary can collect about
the base variables vbase. From the output of P, one obtains v3 = [1 −1 0 0]·vbase

and v5 = [0 0 0 1] · vbase. Then one can call the oracle as H(bar, v3) to obtain
v4 = [0 0 1 0] · vbase. However, it is hard to predict v1 = [1 0 0 0] · vbase

given just the output of P. More specifically, [1 0 0 0] is not in the span of
{[1 −1 0 0], [0 0 1 0], [0 0 0 1]}.

In other words, the probability of an adversary querying H on v1 is negligi-
ble, so we call this oracle query unreachable. Conditioned on the adver-
sary not querying H on v1, its output v2 = H(foo, v1) looks uniformly
random. Removing the corresponding oracle constraint therefore has negli-
gible effect. Note that removing the oracle constraint corresponds to replacing
“v2 := H(foo, v1)” with “v2

$← F”; i.e., changing cmds[2] from (hash, foo, 1)
to (samp).

– Oracle query H(bar, v3) is reachable, since the output of P includes v3. How-
ever, its result is v4 which is not used anywhere else in the program. This can
be seen by observing that all other row vectors in the algebraic representation
have a zero in the position corresponding to v4. Hence this oracle call can be
replaced with “v4

$← F” with no effect on the adversary. We call this query
useless.

– Oracle query H(baz, v3) is similarly reachable, but it is useful. The result of
this query is H(baz, v3) = v5 which is included in the output of P and hence
visible to the adversary. It cannot be removed because an adversary could
query H(baz, v3) and check that it matches v5 from the output.

More generally, we normalize a Linicrypt program by computing which oracle
queries/constraints are reachable and which are useless in the above sense.

To compute which oracle queries are reachable, we perform the following
procedure until it reaches a fixed point: Given Linicrypt program P = (M, C),
mark the rows of M as reachable. Then, if any oracle constraint 〈t,Q,a〉 ∈ C
has every row of Q in the span of reachable vectors, then mark a as reachable.

Instead of computing which queries are useful, it is more straight-forward to
compute which queries are useless, one by one. Intuitively, a constraint 〈t,Q,a〉
is useless if a is linearly independent of all other vectors appearing in M and
C′ (either as rows of M or rows of some Q′ or as an a′). After removing one
useless constraint, other constraints might become useless. For instance, consider
a Linicrypt program that outputs v but also internally computes H(H(H(v))).

Linicrypt: A Model for Practical Cryptography 429

normalize(P = (M, C)):

Reachable := rows(M)
C′ := ∅
until C′ reaches a fixed point:

for each 〈t, Q,a〉 ∈ C \ C′:
if rows(Q) ⊆ span(Reachable):

add a to Reachable
add 〈t, Q,a〉 to C′

Useless := ∅
until Useless reaches a fixed point:

V := (multiset of) all row vectors in M and C′ \ Useless
for each 〈t, Q,a〉 ∈ C′ \ Useless:

if a
∈ span(V \ {a}):
add 〈t, Q,a〉 to Useless

C′′ := C′ \ Useless

return (M, C′′)

Fig. 2. Procedure to normalize a Linicrypt program. Since V is a multiset, we clarify
that “V \ {a}” means to decrease the multiplicity of a in multiset V by only one. So
V \ {a} may yet include a. One reason for a to have high multiplicity in V is if a
appears both in an oracle constraint and as a row of M.

Only the outermost call to H is initially useless. After it is removed, the “new”
outermost call is marked useless, and so on, until a fixed point is reached.

The details of the normalize procedure are given in Fig. 2. In the full version
we prove the following:

Lemma 4. If P is an input-less Linicrypt program, then normalize(P) ∼= P
(Fig. 2).

2.7 Main Characterization

We can now present our main technical theorem about Linicrypt programs:

Theorem 5 (Linicrypt Characterization). Let P1 and P2 be two input-
less Linicrypt programs over F. Then P1

∼= P2 if and only if normalize(P1) and
normalize(P2) differ by a basis change.

Proof (Proof Sketch). The nontrivial case is to show the ⇒ direction. Without
loss of generality assume that P1 and P2 are normalized, and suppose they do not
differ by a basis change. The idea is to first construct a “profile” for P1 and for
P2. In the code of normalize, we compute the reachable subspace of a program;
the profile simply refers to the order in which reachable oracle constraints are
activated during this process.

430 B. Carmer and M. Rosulek

We use the profile to construct a family of canonical distinguishers for P1. It
processes oracle constraints in the order determined by the profile. It maintains
the invariant that at all stages of the computation, if R is the set of currently
reachable vectors, the distinguisher holds r = R × vbase, where vbase refers to
the base variables in the canonical simulation of P1.

A side-effect of normalization is that all oracle constraints are reachable and
useful. Because of this, the set of reachable vectors will eventually contain non-
trivial linear relations — as a matrix, the set of reachable vectors has a nontrivial
kernel. A canonical distinguisher chooses some element z from this kernel and
tests whether z�r = 0. By construction, z�r = z�Rvbase. Since z ∈ ker(R),
the distinguisher always outputs true in the presence of P1.

Now the challenge is to show that, for some choice of z ∈ ker(R), the distin-
guisher outputs false with overwhelming probability in the presence of P2. To
see why, we consider the first point at which the profiles of P1 and P2 disagree
(if the profiles agree fully, then it is easy to obtain a basis change relating P1

to P2). The most nontrivial case is when P1 contains an oracle constraint that
no basis change can bring into alignment with P2. This implies that when the
distinguisher makes the query in the presence of P2, it will not trigger any oracle
constraint and the result will be random and independent of everything else in
the system. But because this oracle constraint was useful in P1, we can eventu-
ally choose a final kernel-test z that is “sensitive” to the result in the following
way: While in P1, the kernel-test always results in zero, in P2 the kernel test
will be independently random.

The actual proof is considerably more involved concerning the different cases
for why the profiles of P1 and P2 disagree.

3 Synthesizing Linicrypt Garbled Circuits

In this section we describe how to express the security of garbled circuits in the
language of Linicrypt, culminating in a method to leverage an SMT solver to
automatically synthesize secure schemes. We assume some familiarity with the
classical (textbook) Yao garbling scheme. Roughly speaking, each wire in the
circuit is associated with two labels (bitstrings) W 0 and W 1, encoding false
and true, respectively. The evaluator will learn exactly one of these two labels
for each wire. Then, for each gate in the circuit, the evaluator uses the labels
for the input wires, along with garbled gate information (classically, the garbled
truth table), to compute the appropriate label on the output wire. We restrict
our synthesis technique to the context of two basic garbled circuit techniques:
Free-XOR and Point-and-Permute.

Free-XOR. In the Free-XOR garbling technique of Kolesnikov and Schneider
[30], the garbler chooses a random Δ that is global, and arranges for W 0⊕W 1 =
Δ on every wire. Hereafter, we typically write the false label simply as W and
the true wirelabel as W ⊕Δ; more generally, the wirelabel encoding b is W ⊕bΔ.

Using Free-XOR, no ciphertexts are necessary to garble an xor gate. For
instance, let A and B be the false input wirelabels. Set the false output

Linicrypt: A Model for Practical Cryptography 431

wirelabel to C = A⊕B. Then when the evaluator holds wirelabels A∗ = A⊕aΔ
and B∗ = B ⊕ bΔ (encoding a and b, respectively), she can compute A∗ ⊕ B∗ =
A⊕aΔ⊕B⊕bΔ = C⊕(a⊕b)Δ. That is, the result will be the wirelabel correctly
encoding truth value a⊕b. We note that no garbled gate information is required in
the garbled circuit, nor must the evaluator perform any cryptographic operations
to evaluate the gate — just an xor of strings.

Free-XOR is ubiquitous in practical implementations of garbled circuits. For
that reason (and because it conveniently reduces degrees of freedom over choice
of wirelabels), we restrict our attention to garbling schemes that are compatible
with Free-XOR.

Point-and-Permute and Non-linearity. The point-and-permute optimization of
[8] is used in all practical garbling schemes. The idea is to append to each
wirelabel a random bit χ (which we call the “color bit”). The two labels on
each wire have opposite (but random) color bits.

Now consider the naive/classical garbling of an and gate, in which the gar-
bler generates 4 ciphertexts. Because color bits are independent of truth values,
the garbler can arrange the ciphertexts in order of the color bits of the input
wirelabels. The evaluator selects and decrypts the correct ciphertext indicated
by the color bits of the input wirelabels she holds. Importantly, this makes the
color bits non-linear inputs with respect to Linicrypt! The color bits determine
which linear combination the evaluator will apply.

Similarly, the garbler’s behavior is non-linear in a complementary way. We
refer to σ as the “select bit” such that the wirelabel encoding truth value v
has color χ = v ⊕ σ. Equivalently, σ is the (random) color bit of the false
wire. We emphasize that σ is known only to the garbler, and χ is known only to
the evaluator, effectively hiding the truth value v. In typical garbling schemes,
the garbler’s behavior depends non-linearly on σ but is otherwise within the
Linicrypt model.

We treat garbling schemes as mixed Linicrypt programs, as in Sect. 2.2. Then,
a mixed Linicrypt garbling scheme is a collection of pure Linicrypt garbling
programs indexed by color bits and select bits.

Restricting to Linicrypt with xor as the Linear Operation. Technically speaking,
a Linicrypt program is an infinite family of programs, one for each value of the
security parameter. Unfortunately, we can only synthesize an object of finite size.
Hence we restrict our focus to single Linicrypt programs that are compatible with
an infinite family of fields/security parameters, in the following way.

Suppose a Linicrypt program uses field GF (p) for prime p. Then that
Linicrypt program is also compatible with field GF (pλ) for any λ, since GF (p) ⊆
GF (pλ) in a natural way. A very natural special case is p = 2, which corresponds
to Linicrypt programs that use GF (2λ) and use only linear combinations with
coefficients from {0, 1} — in other words, Linicrypt programs that are restricted
to using xor as their only linear operation. Hereafter we restrict our attention
to xor-only Linicrypt programs.

432 B. Carmer and M. Rosulek

3.1 Gate-Garbling

A garbling scheme for an entire circuit is a non-trivially large object — much
too large to synthesize using a SAT/SMT solver. We instead focus on techniques
for garbling individual gates in a way that allows them to be securely composed
with other gates and the Free-XOR technique to yield a garbling scheme for
arbitrary circuits.

Notation. A wirelabel that carries the truth-value false is always signified W , a
wirelabel that carries true is always W ⊕ Δ, and a wirelabel carrying unknown
truth-value is always W ∗. We collect wirelabels into vectors notated as follows:
W = W1, . . . ,Wn. Operations over vectors are computed componentwise. For
instance, A ⊕ B = A1 ⊕ B1, . . . , An ⊕ Bn. When Δ ∈ GF (2λ) and x is a
string of n bits, we write xΔ to mean the vector x1Δ, . . . , xnΔ. For example, if
W = W1, . . . ,Wn are a vector of false wirelabels, then W ⊕ xΔ is a vector of
wirelabels encoding truth values x.

Syntax. Let τ : {0, 1}m → {0, 1}n be the functionality of an m-ary boolean
gate that we wish to garble. Let σ = σ1 || . . . ||σm be a string of select bits and
χ = χ1 || . . . ||χm be a string of color bits. Then, a free-XOR compatible
garbled gate consists of algorithms:

GateGb(σ; A1, . . . , Am,Δ) → (C1, . . . , Cn; G1, . . . , G�)
GateEv(χ; A∗

1, . . . , A
∗
m, G1, . . . , G�) → (C∗

1 , . . . , C∗
n)

The semantics are as follows. GateGb takes m false input wirelabels A =
A1, . . . , Am, their select bits σ, and global constant Δ. It returns the n false out-
put wirelabels C = C1, . . . , Cm, and garbled gate information G = G1, . . . , G�.
The evaluator takes m input wirelabels with unknown truth values A∗ =
A∗

1, . . . , A
∗
m, their color bits χ, and the garbled gate information G. It returns

output wirelabels with unknown truth values C∗ = C∗
1 , . . . , C∗

n.
We emphasize that when GateGb and GateEv are Linicrypt programs, all

inputs and outputs besides σ and χ are field elements in GF (2λ).

Correctness. If a gate garbling scheme is correct, then the evaluator can always
produce the correct output wirelabels according to τ . That is, when the evaluator
holds wirelabels encoding x on the input wires, the result of evaluating the gate
is the wirelabels encoding τ(x) on the output wires.

Definition 6. A Free-XOR-compatible garbled gate (GateGb,GateEv) correctly
computes functionality τ : {0, 1}m → {0, 1}n if for all inputs x ∈ {0, 1}m, select
bit strings σ ∈ {0, 1}m, and color bit string χ ∈ {0, 1}m, with x = σ ⊕ χ, false
input wirelabels A = A1, . . . , Am, global Free-XOR constant Δ:

(C,G) ← GateGb(σ; A,Δ) =⇒ GateEv(χ; A ⊕ xΔ, G) = C ⊕ τ(x)Δ

Linicrypt: A Model for Practical Cryptography 433

Security. One important consideration is that in the free-XOR setting, the labels
of different wires can have linear correlations. The gate should be secure even
for such correlated input wirelabels.2

We define security in terms of the evaluator’s view in a typical garbling sce-
nario. Then we define ViewH

R (χ, x) to encapsulate the information the evaluator
sees for this gate, when the visible color bits are χ, the logical gate inputs are
x, and the input wirelabels have correlations described by an m × m matrix R.

ViewH
R (χ, x):

Δ, r1, . . . , rm ← {0, 1}λ

A = (A1, . . . , Am) := R × [r1, . . . , rm]
(C,G) ← GateGbH(χ ⊕ x; A,Δ)
return (A ⊕ xΔ, G, C ⊕ τ(x)Δ)

We call R non-degenerate if no row of R is all-zeroes, as that would lead to a
zero wirelabel (whose complementary wirelabel would immediately leak Δ). In
particular, if R = I then the wirelabels are independent.

Importantly, if GateGbH is a Linicrypt program and parameters χ and x are
fixed, then ViewH

R (χ, x) is a input-less Linicrypt program. We can therefore apply
the results of Sect. 2 to reason about the indistinguishability and unforgeability
properties required of ViewH . The fact that these properties can be expressed
algebraically is the core of our synthesis technique.

We define the following security property for a Free-XOR compatible garbled
gate scheme:

Definition 7. A Free-XOR compatible garbled gate is secure if:

1. for all χ, x ∈ {0, 1}m, all non-degenerate R ∈ {0, 1}m×m, and all polynomial-
time oracle algorithms A, the probability Pr[AH(ViewH

R (χ, x)) = Δ] is
negligible in λ,

2. for all χ, x, x′ ∈ {0, 1}m and all non-degenerate R ∈ {0, 1}m×m, we have
ViewH

R (χ, x) ∼= ViewH
R (χ, x′).

In other words, the garbled gate should not leak Δ to the evaluator (this is
important for arguing that such garbled gates compose to yield a garbling scheme
for circuits), and the garbled gates should hide the truth value. Furthermore, this
should hold for all ways that the input wire labels could be correlated.

Composition. We now discuss how (free-XOR-compatible) gate-level garbling
procedures can be combined to yield a circuit garbling scheme. The details are
given in Fig. 3. Roughly speaking, we follow the general approach of Free-XOR
garbling, first choosing a global offset Δ. Recall that for each wire i we associate
a wirelabel Wi encoding false; Wi ⊕Δ will encode true. These false wirelabels
are chosen uniformly for input wires. Thereafter, we process gates in topological

2 In fact, some natural garbled gate constructions are secure for independent input
wirelabels but insecure when they are correlated, as illustrated strikingly in [9].

434 B. Carmer and M. Rosulek

order. Each gate-garbling operation determines the garbled-gate information G
as well as the false wirelabels of the gate’s output wires.

For each wire we choose a random select bit σi as described above. For each
gate, the garbling scheme must provide a way for the evaluator to learn the
correct color bits for the output wires. In many practical schemes, the random
oracle calls used to evaluate the gate can serve double-duty and also be made to
convey the color bits. However, in our case, we aim for complete generality so
our scheme manually encrypts the color bits (the G′ values in Fig. 3). In more
detail, if the evaluator has color bits χ on the input wires, then she should obtain
color bits σ(out) ⊕ τ(σ(in) ⊕ χ) for the output wires, where σ(in) and σ(out) are
the select bits for the input/output wires of this gate, respectively. We use the
wirelabels encoding truth value σ(in) ⊕χ(in) as the key to a one-time encryption
that encodes the output color bits.

We point out that these color-ciphertexts are of constant size — 2m of them,
each n bits long (e.g., for a traditional boolean gate with fan-in 2, the cost is 4
bits). As mentioned above, in specific cases it may be possible to eliminate the
extra random oracle calls used for these color-bit encryptions.

One subtlety we point out is that each call to a gate-level garbling scheme
is restriced to a disjoint set of possible random oracle calls — the gth gate is
instructed to use H(g; ·) as its random oracle. This domain separation is crucially
important in arguing that the gate-level security properties are inherited by the
circuit-level garbling scheme.

Lemma 8. Let B be a set of boolean functions. Suppose for each τ ∈ B,
(GateGbτ ,GateEvτ) is a correct and secure free-XOR-compatible gate garbling
scheme for gate functionality τ (according to Definitions 6 and 7).

Then the garbling scheme in Fig. 3 satisfies the prv, aut, and obv security
definitions of [10] in the random oracle model, for circuits expressed in terms of
B-gates.

Proof (Proof Sketch). We sketch here the proof of prv-security; that is, if f(x) =
f(x′) then (F,X, d) collectively hide whether they were generated with X =
En(e, x) or X = En(e, x′). The proofs of the other security properties obv & aut
follow using standard modifications.

We show a sequence of hybrids, beginning with an interaction in which
(F,X, d) are generated with X = En(e, x). In this initial hybrid, Gb is written in
terms of what the garbler sees/knows. The only “persistent” values maintained
throughout the main loop are the false wirelabels Wi and select bits σi. We
rearrange Gb to instead be in terms of what the evaluator sees: the “visible”
wirelabels W ∗ and their color bits χi. We achieve this change by using x to
compute the truth value vi on each wire i. Then we replace all references to W vi

i

with W ∗
i ; references to W vi

i with W ∗
i ⊕ Δ; references to σi with χi ⊕ vi. The

adversary’s view in this modified hybrid is unchanged.
After this change, each main loop is a Linicrypt program that takes the

previously-computed visible wirelabels, along with Δ, and computes the next gar-
bled gate and output wirelabels (we ignore the encryptions of color bits for now).

Linicrypt: A Model for Practical Cryptography 435

GbH(1λ, f):

Δ ← {0, 1}λ

for each wire i of f :
σi ← {0, 1}

for each input wire i of f :
Wi ← F

e[i, 0] := (Wi, σi); e[i, 1] := (Wi ⊕ Δ, σi)
for each gate g in f , in topological order:

let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ

W (in) := (Wi1 , . . . , Wim)

σ(in) := σi1‖ · · · ‖σim ; σ(out) := σj1‖ · · · ‖σjn

(W (out);G) ← GateGb
H(g,·)
τ (σ(in);W (in), Δ)

(Wj1 , . . . , Wjn) := W (out)

for χ in {0, 1}m:

v := σ(in) ⊕ χ

G′
χ := H(color‖g‖χ;W (in) ⊕ vΔ) ⊕ (σ(out) ⊕ τ(v))

F [g] := (G; G′
0m , . . . , G′

1m)
for each output wire i of f :

d[i, 0] := H(out‖i; Wi); d[i, 1] := H(out‖i; Wi ⊕ Δ)
return F, e, d

En(e, x):

for i = 1 to |x|:
Xi = e[i, xi]

return X

De(d, Y):

for i = 1 to |Y |:
if Yi = d[i, 0] then yi = 0
elsif Yi = d[i, 1] then yi = 1
else return ⊥

return y

EvH(F, X):

for each input wire i of f :
(W ∗

i , χi) := Xi

for each gate g in f , in topological order:
let g have input wires i1, . . . , im, output wires j1, . . . , jn, functionality τ

χ(in) := χi1‖ · · · ‖χim

(G; G′
0m , . . . , G′

1m) := F [g]

(W ∗
j1 , . . . , W ∗

jn) ← GateEv
H(g,·)
τ (χ(in); W ∗

i1 , . . . , W ∗
im ,G)

χj1‖ · · · ‖χjn := H(color‖g‖χ(in); W ∗
i1 , . . . , W ∗

im) ⊕ G′
χ(in)

for each output wire i of f :
Yi := H(out‖i; W ∗

i)
return Y

Fig. 3. Gate-level garbling composed into a circuit garbling scheme.

In fact, such a computation is preciselyViewR(χ, v) defined above, for some appro-
priate R that describes the correlations among previous input wirelabels.

The security of the GateGb components (Definition 6) says that View(χ; v)
and View(χ; v′) are indistinguishable. But this statement only applies when Δ

436 B. Carmer and M. Rosulek

is a local variable to these views, whereas in the garbling scheme Δ is shared
among all gates. So first we must argue that this shared state is not a problem.
To do this, we prove a general composition lemma which shows that, if several
programs individually satisfy Definition 6, and they use guaranteed disjoint calls
to the random oracle, then their composition also satisfies Definition 6. It is in
this composition lemma that we use the fact that the output of each View also
hides Δ. We ensure disjointness of oracle queries by using random oracle H(g; ·)
when garbling gate g.

We use similar reasoning to handle the color bits, since they are not strictly
within the scope of Linicrypt (they use distinct oracle calls and do not leak Δ).
Collectively the entire output given to the adversary’s view hides the truth values
vi which are used to select which View to run. The only other place where the vi

truth values are used is in the computation of the garbled decoding information
d. And in this case, vi are required only for the output wirelabels, which are
the same when garbling either x or x′. Hence, we can replace x with x′ with
negligible effect on the adversary’s view, and the proof is complete.

3.2 Synthesis Approach

One of our motivating goals for Linicrypt is the ability to synthesize secure
cryptographic constructions. We do precisely that for free-XOR-compatible gate
garbling schemes.

We have written a synthesis tool, Linisynth which takes as input the desired
parameters of a garbled gate construction. These parameters include:

– The gate functionality τ : {0, 1}m → {0, 1}n

– The arity of the random oracle arity ∈ N (e.g., whether the oracle is called
with 1 or 2 field elements, etc.)

– The number of oracle queries made by GateGb and GateEv: callsgb, callsev ∈ N

– The size (in field elements) of the garbled gate information size ∈ N

– Whether adaptive queries to the oracle are allowed adaptive ∈ {0, 1} (see
below).

Given such parameters, Linisynth constructs an appropriate SMT formula encod-
ing the required security properties, invokes an SMT solver, and finally interprets
the witness (if any) as a human-readable garbled gate construction.

High-Level Outline. Gate garbling schemes as defined in Definitions 6 and 7
are meant to be nonlinear in their use of inputs σ and χ. Hence, to synthesize
a complete gate-garbling scheme, we must actually synthesize a collection of
GateGb(σ; · · ·) and GateEv(χ; · · ·) — one for each choice of σ and χ — each of
which is a pure Linicrypt program.

We now describe roughly how the gate-garbling search problem is expressed
as an existential SAT/SMT formula. Recall that pure Linicrypt programs can be
represented algebraically as an output matrix M and a set of oracle constraints C.
When restricted to Free-XOR compatible garbling, the entries in these matrices

Linicrypt: A Model for Practical Cryptography 437

are single bits. These bits comprise the existentially quantified variables of our
SMT formula.

Not every bit in the oracle constraints C has to be an unconstrained variable.
Specifically, if the Linicrypt program in question has k input variables, then we
identify these with the first k base variables. This means that the first oracle
query made by the program can be a linear combination only of these first k
base variables. For the corresponding oracle constraint 〈t,Q,a〉, this means that
each row of Q must end in a certain number of zeroes — say, i zeroes. Then we
can associate the output of this oracle query with the (k + 1)th base variable,
fixing a to be [0 · · · 0︸ ︷︷ ︸

k

1 0 · · · 0]. Then the next oracle query can be a linear

combination of only the first k + 1 variables, and so on. Overall, many of the
existential variables comprising the oracle constraints can be fixed in this way.
Furthermore, we can seamlessly enforce non-adaptive oracle queries by forcing
all constraints 〈t,Q,a〉 to have Q depending only on the input variables, and not
on further base variables. This is what is referred to by the adaptive parameter.

We then express the requirements of Definitions 6 and 7 as clauses over the
variables that comprise the programs themselves. The formula is satisfiable if
and only if a secure gate-garbling scheme exists with the given parameters.

Correctness. Correctness (Definition 6) can be expressed in terms of compos-
ing ViewR(χ, x) (which generates input wirelabels along with the garbled gate
information) with GateEv(χ, ·) in a particular way. We can apply the concepts
of Sect. 2.4 to reason about their composition.

We make some simplifiying observations that lead us to synthesize only “min-
imal” gate garbling schemes:

– Correctness needs to hold only for independently distributed input wirelabels
(R = I). In this setting, the wirelabel inputs to GateEv will have full rank.

– We can assume the garbled gate information has full rank. If any linear depen-
dencies existed, then the same dependencies must exist in GateGb(σ, ·) for all
σ, or else security is trivially violated (malicious evaluator can obtain infor-
mation about σ by detecting a linear dependency among garbled gate info).
Hence the correlations can be removed from all GateGb(σ, ·) and reconstructed
if needed in all GateGb(χ, ·). The result would be a smaller but equivalent &
secure scheme.

– The entire input to GateEv (garbled gate information and input wirelabels
together) has full rank. If there is a linear dependency between garbled
gate information and input wirelabels, then the same dependency must exist
regardless of σ, or else security will be trivially violated. Then again, the
dependency could be removed from all GateGb(σ, ·) and reconstructed by all
GateGb(χ, ·), resulting in a smaller scheme.

We therefore consider a composition of ViewR(χ, x) and GateEv(χ, ·) in which
the input to GateEv is of full rank. This simplifies the task, since it now suffices
to find a basis change to GateEv that aligns it with the corresponding output of
ViewR(χ, x).

438 B. Carmer and M. Rosulek

Let MR,χ,x denote the output matrix of ViewR(χ, x). We split this matrix
into a top and bottom: Mtop

R,χ,x,Mbot
R,χ,x, where the top matrix corresponds to

the input wirelabels for x along with garbled gate information, while the bottom
matrix corresponds to the output wirelabels for the result τ(x).

Following Sect. 2.4, we seek a basis change B such that Mtop
R,χ,x = [I | 0]×B,

which represents the input base variables of GateEv(χ, ·). The basis change must
also bring all oracle constraints between the two programs into alignment. We
assume that every oracle query made by GateEv is also made by GateGb. This
is without loss of generality if we assume that GateEv is “minimal”, since such
oracle queries can be removed with no effect (if not, it is easy to see that correct-
ness or security is violated). Hence, we check that for every oracle constraint in
GateEv, the basis change brings one of the constraints of GateGb into agreement.

Having identified the correct basis change, we simply check that the output
matrix of GateEv equals the output matrix Mbot

R,χ,x (under the basis change).
In other words, the wirelabels that GateEv outputs always coincide with the
“correct” wirelabels specified by ViewR.

We also must ensure that B is invertible. To do so we simply guess its inverse
B−1 and check that B × B−1 is the identity matrix. We point out that multi-
plication of boolean matrices is straight-forward to express in an SMT formula.

Putting it all together, the clause is as follows. Recall that the input x = σ⊕χ,
and that we have restricted R = I. We use (MR,χ,x, CR,χ,x) to refer to the
algebraic representation of ViewR(χ, x), and use (MGateEv,χ, CGateEv,χ) to denote
the algebraic representation of GateEv(χ, ·).

∀σ, χ ∈ {0, 1}m : ∃B,B−1 : B × B−1 = I

∧ [∀〈t,Q,a〉 ∈ CGateEv,χ : 〈t,Q × B,a × B〉 ∈ CR,χ,x

]
∧ MGateEv,χ × B = Mbot

R,χ,x ∧ [I | 0] × B = Mtop
R,χ,x

We point out that the universal quantifiers are over a constant number of terms
(22m choices of (σ, χ) and callsev constraints) and are explicitly expanded in the
formula we pass to the SMT solver. Likewise, the test for 〈t,Q×B,a×B〉 ∈ CR,χ,x

is expressed as a logical-OR of callsgb equality checks.

Security, Condition 1. The first condition of Definition 7 is that row(Δ) is
unreachable (in the sense of Fig. 2). If the SAT solver could discover the lin-
ear subspace R of reachable vectors, it could simply test whether this subspace
includes row(Δ). However, to do this iteratively as in Fig. 2 is impractical in a
SAT formula, so we employ a trick.

Our idea is to guess a basis change B that maps the reachable space to some
canonical form that is easily testable by the SAT solver. In particular, consider
a basis change B under which the reachable vectors are exactly those that have
zero in their rightmost several positions. The SAT formula can easily check for
such a condition. To check that our guess for B indeed maps the reachable
subspace to the desired canonical form, we observe that the reachable space is
characterized by the following properties:

Linicrypt: A Model for Practical Cryptography 439

– Every row of the output matrix M is contained in the reachable space
– For every oracle constraint 〈t,Q,a〉 ∈ C, if every row of Q is in the reachable

space, then so is a.

For the reachable space after the basis change, the membership condition is
simply that the vector ends in the correct number of zeroes.

We note that from the input parameters, we can compute the dimension of
the reachable space (and from that derive the required number of trailing zeroes
in the vectors) as d = m + callsev + size, where m is the number of inputs, callsev
is the number of oracle queries allowed the evaluator, and size is the size of
the garbled gate information. This assumes that each oracle query of GateEv
increases the dimension of the reachable space — an assumption that is without
loss of generality for “minimal” schemes since oracle queries not of this kind are
superfluous.

Putting everything together, the formula is as follows. We write (MR,χ,x,
CR,χ,x) to denote the algebraic representation of ViewR(χ, x), which can be
obtained in a systematic way from the algebraic representation of GateGb(χ; ·)
(which comprise the existentially quantified variables of the SAT formula). We
use row(Δ) to refer to the appropriate vector in this representation.

∀σ, χ ∈ {0, 1}m, non-degenerate R : ∃B, B−1 :
B × B−1 = I ∧¬RightZeroes(row(Δ) × B) ∧ RightZeroes(MR,χ,x × B)

∧[∀〈t, Q,a〉 ∈ CR,χ,x : RightZeroes(Q × B) ⇒ RightZeroes(a × B)
]

(2)
Here RightZeroes simply means that the argument vector/matrix has the appro-
priate number of zeroes in its rightmost columns. The universal quantifiers are
over a constant number of terms (22m choices of (σ, χ), 2m2

choices of R, and
callsgb constraints) and are explicitly expanded in the formula we pass to the
SMT solver.

Security, Condition 2. The second condition of Definition 7 is that ViewR(χ, x)
and ViewR(χ, x0) are indistinguishable. Here we fix x0 and show indistinguisha-
bility with respect to this fixed ViewR(χ, x0). Since the programs involved are
inputless Linicrypt programs, from Theorem 5 it suffices to show that they differ
by a basis change after normalization (unreachable and useless oracle queries
removed).

We make an assumption that all reachable oracle constraints in ViewR(χ, x)
are in fact useful, and hence we can only synthesize gate-garbling schemes with
this property. However, if a secure scheme has reachable and useless constraints
in some ViewR(χ, x = χ ⊕ σ), then the same constraint must be also reachable
and useless in all ViewR(χ, x′ = χ ⊕ σ′) by security. Hence it can be removed
from every GateGb(σ; ·) resulting in an even less expensive yet equivalent and
secure gate-garbling scheme.

To show that ViewR(χ, x) and ViewR(χ, x0) are indistinguishable, we there-
fore only need to find a basis change aligning their output matrices and their
reachable oracle constraints. Note that from the previous clause, the SAT solver
has already obtained a basis B that maps the reachable subspace of ViewR(χ, x)

440 B. Carmer and M. Rosulek

to a canonical form (vectors ending in some number of zeroes). Hence we can
easily check whether a given oracle constraint is reachable. Also note that B
is not constrained in how it operates within the reachable subspace. Hence we
can let this B basis serve double-duty and ask for it to also align the reachable
subspace of ViewR(χ, x) to that of ViewR(χ, x0).

In more detail, let BR,χ,x be the basis matrix that is already quantified cor-
responding to ViewR(χ, x) from security condition 1. We want MR,χ,x × BR,χ,x

and MR,χ,x0 ×BR,χ,x0 to coincide, and we want CR,χ,xBR,χ,x and CR,χ,x0BR,χ,x0

to coincide, but only for reachable constraints. Hence:

MR,χ,x × BR,χ,x = MR,χ,x0 × BR,χ,x0 ∧
[
∀〈t, Q,a〉 ∈ CR,χ,x : RightZeroes(Q × BR,χ,x)

⇒ 〈t, Q × BR,χ,x × B−1
R,χ,x0

,a × BR,χ,x × B−1
R,χ,x0

〉 ∈ CR,χ,x0

]

Note that 〈t,Q×BR,χ,x ×B−1
R,χ,x0

,a×BR,χ,x ×B−1
R,χ,x0

〉 ∈ CR,χ,x0 is equivalent
to saying 〈t,QBR,χ,x,aBR,χ,x〉 ∈ CR,χ,x0BR,χ,x0 . Hence the bracketed expres-
sion captures the requirement that CR,χ,xBR,χ,x and CR,χ,x0BR,χ,x0 coincide for
reachable constraints.

As usual, the quantifications over constraints are expanded within the formula.

3.3 Implementation Results

We implemented Linisynth using Python and the SMT solver Z33. Linisynth
extracts the resulting witness and prints it as a human-readable garbling scheme.
We used Linisynth to successfully synthesize variants of known gate garbling
schemes as well as some of our own creations (i.e., garbled LT gates and gar-
bled EQ gates). Linicrypt can also enumerate constructions that satisfy given
parameters. Our code is available at https://github.com/osu-crypto/linisynth.

Linisynth works as follows. For each value in the algebraic representation
of GateGb and GateEv, it creates a boolean variable. After it has created all
the variables, it makes a formula that constrains them in the following way. For
each combination of σ and χ, the invertiblity, correctness, and security conditions
from Sect. 3.2 hold (expressed as boolean formulas over the variables). This often
results in rather large formulas (see Fig. 4). Linisynth then hands the formula
over to Z3. If Z3 finds a solution, it maps the satisfying assignment back to the
garbling scheme and prints it.

Synthesis Results. We rediscovered known constructions. For example, our tool
was able to discover that xor gates can be garbled for free. It also rediscovered
many garbled and-gate constructions that are equivalent to the half-gates con-
struction of Zahur et al. [53] (costing 2 ciphertexts). An example of such a garbled
and-gate is given in Fig. 5. We synthesized garbling schemes for a number of differ-
ent gates (garbled <, garbled =, garbled mux, etc.), but they all had comparable
performance to and, explained below. A summary is presented in Fig. 4.
3 https://github.com/Z3Prover/z3.

https://github.com/osu-crypto/linisynth
https://github.com/Z3Prover/z3

Linicrypt: A Model for Practical Cryptography 441

name τ size arity callsgb callsev adaptive vars p-size time sat

free-xor ⊕ : 2 → 1 0 1 0 0 0 224 5,102 1s 1
half-gate ∧ : 2 → 1 2 1 4 2 0 1,972 117,586 5s 1
half-gate-cheaper ∧ : 2 → 1 2 1 4 1 1 1,960 92,690 6.2h 0
half-gate-h2 ∧ : 2 → 1 2 2 4 2 0 2,000 114,397 2h 0
one-third-gate ∧ : 2 → 1 1 1 4 2 1 4,104 716,454 74s 0
1-out-of-2-mux mux : 3 → 1 2 1 4 2 1 9,416 654,433 29s 1
2-bit-eq = : 4 → 1 2 1 4 2 1 44,144 3,497,286 6m 1
2-bit-eq-small = : 4 → 1 1 1 4 2 1 39,248 3,535,942 6m 0
2-bit-leq ≤ : 4 → 1 1 1 2 1 1 23,296 1,155,686 77s 0
2-bit-lt < : 4 → 1 2 1 4 2 1 44,144 3,502,425 3.5h 0

Fig. 4. Selection of our synthesis results on an Intel Xeon 3.4 GHz processor with 16GB
memory. Satisfiable schemes are listed in the full version. Notation: “f : m → n” is
shorthand for a function with m bits of input and n bits of output that performs the
operation f on the input, “vars” and “p-size” refer to the number of variables and
nodes in the security & correctness formula. “sat” refers to whether the formula was
satisfiable.

half-gate

∧ : {0, 1}2 → {0, 1}
size = 2

arity = 1

callsgb = 4

callsev = 2

adaptive = 0

time = 5s

GateGbH(σ, A, B, Δ) : GateEvH(χ, A∗, B∗, G0, G1) :

h1 = H(A) return [1, 3]A∗ + [0, 2]B∗ +
h2 = H(A + Δ) [0, 1]G0 + [1, 3]G1 +
h3 = H(A + B) H(A∗) + H(A∗ + B∗)
h4 = H(A + B + Δ)
G0 = [0, 2]Δ + h3 + h4

G1 = A + B + [0, 2]Δ + h1 + h2 + h3 + h4

C0 = B + [0]Δ + [0, 2]h1 + [1, 3]h2 + [1, 2]h3 + [0, 3]h4

return G0, G1, C0

Fig. 5. An example of one of our synthesized schemes. This scheme is an alternative to
the half-gates and gate of [53], with identical parameters (number of ciphertexts, and
number of calls to H). The notation is as follows: GateGb: When S is a set of indices,
“[S]W” refers to nonlinear behavior “if σ ∈ S then W else 0λ” GateEv: When S is a
set of indices, “[S]W” refers to nonlinear behavior “if χ ∈ S then W else 0λ”

We were not able to synthesize a garbling scheme better than 2 ciphertexts
per and gate. We suspect that this may be a hard limit (if compatibility with
free-XOR is required), in support of the half-gates lower-bound presented in
[53]. We formalize that hypothesis here. First, note that B = {and,not,xor }
is a universal basis for boolean circuits. Then take any boolean gate τ and
decompose it into some combination of and, not, and xor. Let circ-minand(τ)
be the minimum number of and gates necessary to construct τ with basis B.
Our hypothesis is this: for all gates τ , the minimum number of ciphertexts to
garble τ with full security and compatibility with free-XOR is 2×circ-minand(τ).
Verification of this hypothesis is left as future work.

442 B. Carmer and M. Rosulek

Enumeration of Solutions. Linisynth can also enumerate schemes. Let p be a for-
mula generated according to Sect. 3.2 and let w be a satisfying assignment with
p(w) = 1. When Linisynth gets w from the solver, it prints the corresponding
scheme, sets p := ¬w∧p, and asks the solver to find a new solution. Since pysmt
provides access to an active instance of Z3, we can use Z3’s push/pop function-
ality to add an assertion without causing the solver to restart. Each new scheme
is found in a fraction of the time it takes to find the first one. Using enumera-
tion, we found thousands of schemes equivalent to half-gates (with parameters
size = 4, arity = 1, callsgb = 4, callsev = 2, and adaptive = 0).

Acknowledgement. We thank Viet Tung Hoang for pointing out to us some sub-
tleties that arise when wires have correlated labels.

References

1. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011)

2. Abe, M., et al.: Structure-preserving signatures from type II pairings. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 390–407.
Springer, Heidelberg (2014)

3. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014)

4. Akinyele, J.A., Green, M., Hohenberger, S.: Using SMT solvers to automate design
tasks for encryption and signature schemes. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 399–410. ACM Press, November 2013

5. Akinyele, J.A., Green, M., Hohenberger, S., Pagano, M.W.: Machine-generated
algorithms, proofs and software for the batch verification of digital signature
schemes. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 474–487.
ACM Press, October 2012

6. Applebaum, B., Avron, J., Brzuska, C.: Arithmetic cryptography: extended
abstract. In: Roughgarden, T. (ed.) Proceedings of the Conference on Innovations
in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, 11–13 January 2015,
pp. 143–151. ACM (2015)

7. Barthe, G., Fagerholm, E., Fiore, D., Scedrov, A., Schmidt, B., Tibouchi, M.:
Strongly-optimal structure preserving signatures from type II pairings: synthesis
and lower bounds. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 355–376.
Springer, Heidelberg (2015)

8. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

9. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp.
478–492. IEEE Computer Society Press, May 2013

10. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACMPress, October
2012

Linicrypt: A Model for Practical Cryptography 443

11. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015)

12. Black, J.A., Rogaway, P.: A block-cipher mode of operation for parallelizable mes-
sage authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 384–397. Springer, Heidelberg (2002)

13. Black, J.A., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

14. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure signa-
ture scheme based on minimal security assumptions. Cryptology ePrint Archive,
Report 2011/484 (2011). http://eprint.iacr.org/2011/484

15. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)

16. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an
improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

17. Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA
signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer,
Heidelberg (2012)

18. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991.
LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993)

19. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated security
proof for symmetric encryption modes. In: Datta, A. (ed.) ASIAN 2009. LNCS,
vol. 5913, pp. 39–53. Springer, Heidelberg (2009)

20. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated verification
of block cipher modes of operation, an improved method. In: Garcia-Alfaro, J.,
Lafourcade, P. (eds.) FPS 2011. LNCS, vol. 6888, pp. 23–31. Springer, Heidelberg
(2012)

21. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987)

22. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 567–578.
ACM Press, October 2015

23. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

24. Hoang, V.T., Katz, J., Malozemoff, A.J.: Automated analysis and synthesis of
authenticated encryption schemes. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015, pp. 84–95. ACM Press, October 2015

25. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013)

26. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Min-
nesota, USA, 19–22 June 1995, pp. 134–147. IEEE Computer Society (1995)

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (1990)

http://eprint.iacr.org/2011/484

444 B. Carmer and M. Rosulek

28. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009)

29. Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates
that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014)

30. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

31. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-hashing for message authen-
tication. In: IETF RFC 2104 (1997). https://www.ietf.org/rfc/rfc2104.txt

32. Krovetz, T., Dai, W.: VMAC: message authentication code using univer-
sal hashing. CFRG Working Group (2007). http://www.fastcrypto.org/vmac/
draft-krovetz-vmac-01.txt

33. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

34. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

35. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp.
447–447. Springer, Heidelberg (1986)

36. Malkin, T., Pastro, V., Shelat, A.: An algebraic approach to garbling. Unpublished
Manuscript (2016). Presented at Simons Institute workshop on securing computa-
tion: https://simons.berkeley.edu/talks/tal-malkin-2015-06-10

37. Malozemoff, A.J., Katz, J., Green, M.D.: Automated analysis and synthesis of
block-cipher modes of operation. In: IEEE 27th Computer Security Foundations
Symposium, CSF, pp. 140–152. IEEE (2014)

38. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Hei-
delberg (2005)

39. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

40. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: have they become
practical? Cryptology ePrint Archive, Report 2005/442 (2005). http://eprint.iacr.
org/2005/442

41. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158
(1991)

42. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp.
129–139. ACM, New York (1999)

43. Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the DDH
hard groups? Cryptology ePrint Archive, Report 2012/653 (2012). http://eprint.
iacr.org/2012/653

44. Pereira, G.C., Puodzius, C., Barreto, P.S.: Shorter hash-based signatures. J. Syst.
Softw. 116, 95–100 (2016)

45. Pieprzyk, J., Wang, H., Xing, C.: Multiple-time signature schemes against adaptive
chosen message attacks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 88–100. Springer, Heidelberg (2004)

https://www.ietf.org/rfc/rfc2104.txt
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt
http://www.fastcrypto.org/vmac/draft-krovetz-vmac-01.txt
https://simons.berkeley.edu/talks/tal-malkin-2015-06-10
http://eprint.iacr.org/2005/442
http://eprint.iacr.org/2005/442
http://eprint.iacr.org/2012/653
http://eprint.iacr.org/2012/653

Linicrypt: A Model for Practical Cryptography 445

46. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

47. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

48. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol.
2384, pp. 144–153. Springer, Heidelberg (2002)

49. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

50. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: O.C.B: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–
205.ACM Press, November 2001

51. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

52. Winternitz, R.S.: Producing a one-way hash function from DES. In: Chaum, D.
(ed.) CRYPTO 1983, pp. 203–207. Plenum Press, New York (1983)

53. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015)

Zero Knowledge

On the Relationship Between Statistical
Zero-Knowledge and Statistical Randomized

Encodings

Benny Applebaum and Pavel Raykov(B)

School of Electrical Engineering, Tel-Aviv University, Tel Aviv, Israel
{bennyap,pavelraykov}@post.tau.ac.il

Abstract. Statistical Zero-knowledge proofs (Goldwasser et al.
[GMR89]) allow a computationally unbounded server to convince a com-
putationally limited client that an input x is in a language Π with-
out revealing any additional information about x that the client can-
not compute by herself. Randomized encoding (RE) of functions (Ishai
and Kushilevitz [IK00]) allows a computationally limited client to pub-
lish a single (randomized) message, Enc(x), from which the server learns
whether x is in Π and nothing else.

It is known that SRE , the class of problems that admit statistically
private randomized encoding with polynomial-time client and computa-
tionally unbounded server, is contained in the class SZK of problems
that have statistical zero-knowledge proof. However, the exact relation
between these two classes, and, in particular, the possibility of equiva-
lence was left as an open problem.

In this paper, we explore the relationship between SRE and SZK,
and derive the following results:
– In a non-uniform setting, statistical randomized encoding with one-

side privacy (1RE) is equivalent to non-interactive statistical zero-
knowledge (NISZK). These variants were studied in the past as
natural relaxation/strengthening of the original notions. Our theorem
shows that proving SRE = SZK is equivalent to showing that 1RE =
SRE and SZK = NISZK. The latter is a well-known open problem
(Goldreich et al. [GSV99]).

– If SRE is non-trivial (not in BPP), then infinitely-often one-way
functions exist. The analog hypothesis for SZK yields only auxiliary-
input one-way functions (Ostrovsky [Ost91]), which is believed to be
a significantly weaker implication.

– If there exists an average-case hard language with perfect random-
ized encoding, then collision-resistance hash functions (CRH) exist.
Again, a similar assumption for SZK implies only constant-round
statistically-hiding commitments, a primitive which seems weaker
than CRH.

We believe that our results sharpen the relationship between SRE and
SZK and illuminates the core differences between these two classes.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 449–477, 2016.
DOI: 10.1007/978-3-662-53015-3 16

450 B. Applebaum and P. Raykov

1 Introduction

Consider a “computationally-weak” client, Alice, which holds an input x ∈
{0, 1}n to a language, or promise problem, Π which is beyond her computa-
tional power. We will be interested in the following two related scenarios.

– Alice contacts a computationally-strong server Bob, and asks him to prove
that x is a yes-instance of Π. The server wishes to do so without revealing
any additional information about x that Alice cannot compute by herself.
That is, we are interested in an interactive proof system in which, for every
yes-instance, the client is able to simulate her view without any interaction
with the server.

– Alice would like to send to the server Bob a single (randomized) message
Enc(x) which allows Bob to tell whether x is a yes-instance or a no-instance
but hides any other information about x. That is, the message Enc(x) should
be private in the sense that all yes-instances (resp., no-instances) are mapped
by Enc(x) to the same universal yes-distribution Simyes (resp., no-distribution
Simno); In addition, Enc(x) should be correct (i.e., it should be possible
to decode membership in Π) and so the yes-distribution is required to be
statistically-far from the no-distribution.

The first setting is captured by the notion of zero-knowledge (ZK) proofs
introduced in [GMR89], while the second is captured by the notion of randomized
encoding (RE) of functions [IK00,AIK04]. In this paper, we model the client as a
polynomial-time machine, the server as a computationally-unbounded party, and
ask for information-theoretic security.1 Problems that admit such a statistical
zero-knowledge proofs (resp., such statistical randomized encodings) give rise to
the complexity class SZK (resp., SRE).

The class SZK and its variants were extensively studied and we have rela-
tively rich insights about its power and structure including non-trivial upper-
bounds (e.g., SZK ⊆ AM ∩ co-AM [AH87]), complete problems [SV03,GV99],
and closure properties [Oka00,Vad99]. Unfortunately, the status of SRE is very
different. Although randomized encoding are extensively used in cryptography
(see the surveys [App11,Ish13]), the class SRE was left relatively unexplored.
The main known result (observed in [App14]) is that

SRE ⊆ SZK.

That is, a statistical randomized encoding for a problem Π can be transformed
into a statistical zero knowledge proof system for the same problem. The exact
relation between SRE and SZK, and, in particular, the intriguing possibility
that these two classes are actually equivalent was left as an open problem. This
question was recently addressed by Agrawal et al. [AIKP15] who provided an
1 The literature contains many other natural choices for security (e.g., computational

[AIK05]) and efficiency (e.g., client with low parallel complexity and polynomial-
time server [AIK04]). Following Agrawal et al. [AIKP15], we view the current choice
as a natural starting point for a complexity-theoretic treatment.

On the Relationship Between Statistical ZK and Statistical RE 451

oracle separation between the two classes, in addition to candidates for problems
in SRE that are not solvable in (non-uniform) polynomial-time. As usual, an
oracle separation tells us that equivalence cannot be established via relativized
techniques, and so it essentially addresses the proof of equivalence (or technical
barriers against it). However, such separations tell us very little on the state-
ment itself (SRE = SZK) and its potential implications on the landscape of
computational complexity.2

1.1 Our Results

In this paper, we continue the complexity theoretic study of SRE , as advo-
cated by [AIKP15], and further explore the exact relationship between SRE and
SZK. We study variants of these classes, prove their equivalence, and sharpen
the difference between SRE and SZK. We also point out several interesting
complexity-theoretic implications of an equivalence between SRE and SZK.
Overall, we believe that our results shed light on the causes for which SZK is
(seemingly) more powerful than SRE .

Non-interactive ZK is Equivalent to Semi-private RE. Zero-knowledge
proofs differ from randomized-encoding in many aspects. Most notably, the flow
of information is reversed (Server-to-Client for ZK-proofs vs. Client-to-Sever
for encodings). Let us ignore this major difference and focus on two seemingly
less important syntactic differences. First, recall that REs are non-interactive
while zero-knowledge proofs are allowed to use interaction. Secondly, the privacy
condition of REs should hold for both yes and no-instances, whereas the ZK
condition is defined only with respect to yes-instances. In an attempt to make a
“fair” comparison between these two notions, we consider non-interactive zero-
knowledge proofs (NISZK) [BFM88] and statistical randomized encoding with
one-sided privacy (1RE) [AIK04,AIK15].

The NISZK model, introduced by Blum et al. [BFM88], restricts the prover
to send a single message to the verifier at the expense of allowing the parties to
share a common reference string that was pre-sampled by a trusted (efficient)
dealer.3 The notion of statistical randomized encoding with one-sided privacy
was introduced by Applebaum et al. [AIK04] (under the term semi-private encod-
ing) as a relaxation of REs in which the privacy condition should hold only for
yes-instances.

2 Moreover, there are examples for classes which are separated relative to some oracle,
but, without an oracle, are actually equal. (E.g., IP vs. PSPACE ; see the discussion
in [CCG+94]).

3 Our description corresponds to the public-parameter model, which is widely used in
the literature (see [PS05] and references therein). This setting generalizes the original
common random string (crs) model proposed by Blum et al. [BFM88], in which the
reference string is simply a uniformly random string of polynomial length. Following
[CCKV08], we use the superscripts pub and crs to distinguish between these two
variants. Observe that NISZKcrs ⊆ NISZKpub.

452 B. Applebaum and P. Raykov

We show that the corresponding complexity classes NISZKpub and 1RE are
essentially equivalent.

Theorem 1. It holds that NISZKpub ⊆ 1RE and, in the non-uniform setting,
1RE ⊆ NISZKpub.

The “non-uniform” setting refers to the case where all efficient entities (the client,
the dealer, and the RE/SZK simulators) are modeled by polynomial-size circuits.
The theorem shows that, non-uniformly, the class NISZKpub is equivalent to
the class 1RE . It is known that NISZKpub ⊆ SZK [PS05] and, by definition, we
have that SRE ⊆ 1RE . Hence, together with Theorem 1, we derive the following
interesting picture (in the non-uniform setting):

SRE ⊆ 1RE = NISZKpub ⊆ SZK.

Note that if SZK collapses to SRE then all intermediate classes also collapse.
This means that the question of putting SZK inside SRE boils down to two
separate questions: “Can statistical zero-knowledge be made non-interactive?”
(NISZKpub = SZK?) and “Can one-side privacy be upgraded to full privacy?”
(SRE = 1RE?). Nicely, each of these well motivated questions is “pure” in the
sense that it only addresses one object (either randomized encoding or zero-
knowledge proofs). We further mention that the first question (NISZK =
SZK?) is a well-known open problem that was studied before by [GSV99].4

Consequences of Randomized Encoding for Intractable Problems.
Another way to compare SZK to SRE is by asking what are the consequences of
the existence of computationally-intractable problems in the class. For example,
the following theorem was proven by Ostrovsky.

Theorem 2 [Ost91]. If SZK is not in BPP, then Auxiliary-Input One-way
functions exist.5

Auxiliary-input one-way functions (ai-OWF) are keyed functions that achieve
a very weak form of one-wayness. Roughly speaking, for each adversary there
exists a set of hard keys on which the adversary fails to invert the function. (See
[Gol01] for definition.) However, it may be the case that there is no universal set
of keys which is simultaneously hard for all efficient adversaries.

For SRE we prove (Sect. 6) the following stronger implication:

Theorem 3. If SRE is not in BPP, then infinitely-often one-way functions
exist.
4 More precisely, [GSV99] focused on the crs model, and provided several necessary

and sufficient conditions for the equality NISZKcrs = SZK.
5 This theorem, and all the other results in this section, is formulated in the uniform

setting. If one considers a non-uniform variant of SZK, then the theorem holds by
changing BPP to P/poly and by relaxing the notion of AIOWFs to be computable by
polynomial-size circuits. Similar modifications can be applied to the other theorems
of this section.

On the Relationship Between Statistical ZK and Statistical RE 453

Infinitely-often one-way functions (io-OWFs) are essentially standard one-
way functions except that their hardness holds over a (universal) set of infinitely
many input lengths. This notion is considered to be significantly stronger than
ai-OWFs. For example, while it is possible to construct ai-OWFs based on the
worst-case hardness of graph-isomorphism (GI), it is unknown how to obtain io-
OWF from such an assumption. By Theorem3, such a GI-based io-OWF would
follow from the equivalence of SZK and SRE . More generally, a proof of such
an equivalence would allow us to base io-OWFs on worst-case hardness in SZK
improving the 25-year old classical result of [Ost91].

Theorem 3 also explains why all the candidates of Agrawal et al. [AIKP15] for
computationally-hard problems in SRE imply the existence of one-way functions
– Such an assumption is inherently necessary to separate SRE from BPP.

We can further ask what are the implications of an average-case hard problem
in these complexity classes. Roughly speaking, a promise problem Π is average-
case hard if it is equipped with a probability distribution D such that no efficient
algorithm can classify correctly an instance x sampled from D with probability
significantly better than 1/2. Ostrovsky’s result can be used to prove that the
existence of an average-case hard language in SZK implies the existence of a
one-way function. The following (stronger) theorem is implicit in the work of
Ong and Vadhan [OV08].

Theorem 4 (implicit in [OV08]). If there exists an average-case hard language
in SZK then a constant-round statistically-hiding commitments (CRSC) exists.

As a general primitive, CRCS implies the existence of one-way functions, and
is believed to be strictly stronger due to the black-box separation of [HHRS15].
We derive a stronger implication if we have randomized encoding for an average-
case hard problem. Specifically, we consider the class PRE of problems that
admit perfect randomized encoding [AIK04] – a stronger variant of SRE which
achieves perfect correctness (zero-decoding error), perfect privacy (the simulators
perfectly simulate the encoding) and enjoys some additional syntactic properties.
(See Sect. 4 for a formal definition.)

Theorem 5. If there exists an average-case hard language in PRE then
collision-resistance hash functions (CRH) exist.

The proof of the theorem is sketched in Sect. 7. CRH imply CRSC but the
converse is not known to be true. Hence, this implication is seemingly stronger
than the one proven in [OV08]. Extending this theorem to the case of SRE is
left as an interesting open problem.

2 Our Techniques

Let us outline the main ideas behind the proofs of Theorems 1, 3 and 5.

Proof of Theorem 1. We begin with the equivalence of 1RE and NISZKpub.
It is instructive to note that all the complexity classes SZK,NISZK, 1RE

454 B. Applebaum and P. Raykov

and SRE essentially capture different variants of “statistical-distance” prob-
lems. Indeed, as we already saw, for a SRE-problem Π, the membership of x
boils down to determining whether the distribution Enc(x) is close to one of two
distributions Simyes and Simno which are statistically-far apart from each other.
Notably, these distributions are universal and they depend only on the prob-
lem Π (and not on the input x). The work of [SV03] also shows that, for any
SZK-problem Π, there exists an efficient mapping from an instance x to a pair
of distributions (Ax, Bx) which are statistically-close if x is a yes-instance and
statistically-far otherwise. However, in contrast to the case of SREs, the distrib-
utions (Ax, Bx) are instance dependent. In particular, two different yes-instances
x and x′ may be mapped to completely different pairs of distributions (Ax, Bx)
and (Ax′ , Bx′).

In the intermediate notion of NISZK, one of the distributions, say B, cor-
responds to the dealer’s distribution and so it becomes universal [SCPY98,
GSV99].6 Correspondingly, all yes-instances x are mapped to this single uni-
versal distribution, i.e., Ax ≈ B. (Ax essentially corresponds to the simulated
version of the public-parameter). For no-instances, the distribution Ax may be
instance-dependent. Similarly, for 1RE , only yes-instances are mapped by Enc(x)
to some universal yes-distribution Simyes, whereas the encoding of a no-instance
Enc(x) may be instance-dependent. Overall, the privacy properties of 1RE and
the zero-knowledge properties of NISZK match nicely. Still, there is one tech-
nical difference with respect to the requirements on the distributions of no-
instances.

In 1RE , correctness requires the existence of a single decoder that distin-
guishes between the yes-distribution Simyes and all possible no-distributions
{Enc(x)}x ∈ Πno

. This means that Simyes is “universally-far” from all the no-
distributions. In contrast, the soundness property of NISZK requires from
every no-distribution Ax to be “disjoint” from B in the following sense: A
random sample from the universal distribution b

R← B should fall, with high
probability, outside the support of Ax. To prove Theorem 1 we should be able
to move from “universal-farness” to “disjointness” and vice versa. While it is
relatively straightforward to convert disjointness to universal-farness (e.g., via
parallel-repetition), the converse direction requires some work.

As a concrete (and somewhat simplified) example, imagine the case where we
have a single pair of distributions X and Y , where X outputs, with probability
1−ε, a random n-bit string whose first bit is 1, and, with probability ε, a random
n-bit string whose first bit is 0. Assume that Y does exactly the opposite. These
distributions are (1 − 2ε)-far in statistical distance, but they do not satisfy the
disjointness property as their supports are equal. The key observation is to note
that a typical y

R← Y value, has much larger weight under Y compared to its
weight under X. When these distributions are implemented by circuits that use
m random bits as inputs, this means that the set of preimages Y −1(y) is likely
to be significantly larger than the set X−1(y). In other words, the entropy e1

6 Interestingly, in the crs model, this distribution is simply the uniform distribution
and it is therefore also problem-independent.

On the Relationship Between Statistical ZK and Statistical RE 455

of the conditional distribution [r|Y (r) = y] is larger than the entropy e2 of the
conditional distribution [r|X(r) = y]. Following the approach of [GSV99], we can
turn these distributions to be disjoint by hashing out about e1 � e � e2 random
bits from r, and appending the result h(r) to the output. That is, we define a pair
of new distributions by X ′ = (X(r), h, h(r)) and Y ′ = (Y (r), h, h(r)) where h is
sampled from a 2-universal family of hash functions.7 One can now show that for
a typical y

R← Y (and most h’s), the conditional distribution [h(r)|Y (r) = y] is
almost uniform, whereas the conditional distribution [h(r)|X(y) = y] has small
support. This means that a random sample from Y ′ is likely to land out of the
support of X ′, as required.

The actual construction introduces some additional technicalities. Most
notably, it requires an estimation on the amount of entropy of the distribu-
tion which is sampled by Simyes, the simulator of the original encoding. We
overcome this problem by treating this value as a non-uniform advice. We note
that this advice is short (of logarithmic length) and so one may hope to simply
try all possible values. The problem is that some of these values will violate the
zero-knowledge property, while others would violate soundness. Unfortunately,
we do not know how to “combine” together several faulty NISZK protocol into
a single good protocol. The question of finding a way around this problem and
achieving a fully uniform reduction is left for future research.

Proof of Theorem 3. Recall that Theorem 3 asserts that if infinitely-often one-
way functions do not exist, then any language Π in SRE can be decided by some
BPP algorithm A. The proof is based on the following observation: Given an
instance x, one can probabilistically decide if x ∈ Π by first sampling an encoding
y = Enc(x), and then outputting “yes” if the weight of y under the distribution
Simyes is larger than its weight under Simno. Note that the latter problem can be
reduced to the following “distributional inversion” problem. Define the function

g(r, b) =

{
Simno(r), if b = 0,

Simyes(r), if b = 1;

sample a random preimage (r, b) of y under g, and output the bit b. (I.e., when
b = 0 the instance x is classified as a no-instance, and if b = 1 then x is classified
as a yes-instance.) It can be shown, based on the privacy and the correctness
guaranties of the encoding, that b is likely to classify x correctly. By the results
of Impagliazzo and Luby [IL89], the distributional inversion problem can be
efficiecntly solved (up to small, inverse-polynomial, deviation error), assuming
that infinitely-often one-way functions do not exist.

It is instructive to compare the above to the SZK setting. The RE simulators
give rise to a universal function g (independent of the instance x) whose inver-
sion is as hard as deciding Π. In contrast, in the SZK setting, the correspond-
ing distributions depend on x, and so deciding x ∈ Π reduces to inverting an

7 More generally, we could use any seeded randomness extractor that extracts e almost
uniform bits from any e2-bit source.

456 B. Applebaum and P. Raykov

instance-dependent function gx. Correspondingly, the intractability of Π yields
only auxiliary-input one-way functions.

Proof of Theorem 5. In Theorem 5 we show that if an average-case hard
language Π admits a prefect RE then CRH exist. The notion of perfect encoding
guarantees that the image of the encoder Enc can be partitioned into two equal
sets Y and N and that for any yes-instance (resp., no-instance) x, the mapping
Enc(x; r) is a bijection from the randomness space to Y (resp., N). Similarly
both simulators, Simyes(r) and Simno(r), form a bijective mapping from the
randomness space to Y and N , respectively. Let us define a pair of functions,
keyed by instances x, y,

h0
x(r, b) =

{
g(x; r), if b = 0,
Simno(r), otherwise;

h1
y(r, b) =

{
g(y; r), if b = 0,
Simyes(r), otherwise;

Since the encoding is perfect, h0
x and h1

y are permutations if x is a yes-instance
and y is a no-instance; on the other hand, if x is a no-instance and y is a yes-
instance the images of the functions are disjoint. Suppose that there exists an
efficiently samplable distribution Y over yes-instances which is indistinguishable
from some efficiently samplable distribution N over no-instances. Then, we can
sample a pair of yes/no instances (x, y) R← Y × N which is indistinguishable
from a pair of no/yes instances (x′, y′) R← N ×Y. This means that, although the
functions h0

x, h1
y are permutations with identical images, it is computationally

hard to find a pair (u, v) which forms a “claw”, i.e., h0
x(u) = h1

y(u). (Indeed, a
claw-finder can be used to distinguish (x, y) from (x′, y′).) Such claw-free per-
mutations [Dam87,GMR88] imply the existence of CRH. The argument extends
to the case where there exists only a single “hard” distribution over yes/no
instances of Π (as opposed to a pair of “pure” distributions). In this case, we
get claw-free pseudo-permutations [Rus95], whose existence still implies CRH.

2.1 A Broader Perspective

So far we emphasized the differences between SRE and SZK, however, from
a broader point of view, our results may be interpreted as saying that the two
classes are actually close variants of each other. This is similar in spirit to a
recent result [AR16] that reveals a close connection between private simultaneous
message protocols (PSM) [FKN94] and Zero-Information Arthur-Merlin (ZAM)
protocols [GPW15]. PSMs and ZAMs can be viewed as the communication-
complexity analog of Randomized Encodings and Zero-Knowledge proofs, where
instead of limiting the computational power of the client, we split it into two
non-communicating (computationally-unbounded) parties Alice and Bob each
holding different parts of the input x = (xA, xB). It is shown in [AR16] that the
communication complexity of ZAM protocols is closely related to the randomness
complexity of (variants of) PSMs, and vice versa. This is conceptually similar to
some of the current results (e.g., 1RE = NISZKpub) though the computational
setting introduces different technical challenges, and correspondingly it requires
a significantly different approach.

On the Relationship Between Statistical ZK and Statistical RE 457

Organization. We begin with some standard preliminaries in Sect. 3. In Sect. 4
we provide formal definitions of statistical zero knowledge proofs, statistical ran-
domized encoding and their variants. Theorem1 is proved in Sect. 5, Theorem 3
in Sect. 6 and Theorem 5 in Sect. 7.

3 Preliminaries

Basic Definitions. For a finite set S, let s
R← S denote an element that is

sampled uniformly at random from S, and let U(S) denote the corresponding
random variable. The uniform distribution over n-bit strings is denoted by Un.
The support of a random variable X is the set supp(X) := {x | Pr[X = x] >
0}. The Shannon entropy of X is H(X) := −∑

z Pr[X = z] log Pr[X = z].
For a distribution D, we let ⊗kD be the probability distribution over k-tuples
where each element is sampled independently according to D. Similarly, for
a randomized algorithm F (x), we let ⊗kF (x) be a k-tuple of k independent
samples of F (x). We sometimes make the coins of a randomized algorithm F

explicit by writing F (x; r) where r
R← Us(x) denotes the random coins used on

an input x and s(x) denotes the randomness complexity of F on an input x,
which, by default, is assumed to solely depend on the length of x.

Statistical Distance. The statistical distance between a pair of random variables
X and Y distributed over the set Z is defined as

Δ(X;Y) :=
1
2

∑
z ∈ Z

|Pr[X = z] − Pr[Y = z]| .

Equivalently, Δ(X;Y) = maxA |Pr[A(X) = 1] − Pr[A(Y) = 1]| where the maxi-
mum ranges over all Boolean functions A : Z → {0, 1}. We write

Δ
x1

R←D1,...,xk
R←Dk

(F (x1, . . . , xk);G(x1, . . . , xk))

to denote the statistical distance between two random variables obtained as
a result of sampling xi’s from Di’s and applying the functions F and G to
(x1, . . . , xk), respectively. We will use the following properties of statistical dis-
tance and entropy.

Fact 1. Let X and Y be a pair of random variables. Then the following holds:

1. [Vad99, Fact 3.2.2] For every (possibly randomized) function F , we have that
Δ(F (X);F (Y)) ≤ Δ(X;Y).

2. [Vad99, Fact 3.3.9] Let D be the range of X and Y , then |H(X) − H(Y)| ≤
(log |D|) · Δ(X;Y) + 1.

3. [Vad99, Lemma 3.1.15] For any integer q > 0, we have that
1 − 2 exp(−q(Δ(X;Y))2/2) ≤ Δ(⊗qX;⊗qY) ≤ qΔ(X;Y).

458 B. Applebaum and P. Raykov

4. [SV03, Fact 2.5] Suppose that X = (X1,X2) and Y = (Y1, Y2) are dis-
tributed over a set D × E such that: (a) X1 and Y1 are identically dis-
tributed; and (b) with probability greater than 1 − ε over x

R← X1, we have
Δ(X2|X1 = x, Y2|Y1 =x) ≤ δ. Then Δ(X,Y) ≤ ε + δ.

5. (cf. AppendixA.1) If Δ(X;Y) ≥ 1 − ε, then, for any t > 1, it holds that
Pr

x
R←X

[Pr[X = x] < t · Pr[Y = x]] ≤ εt.

Flattening. We will use the following notion of Δ-flat distributions from [GSV99].

Definition 1 (Flat Distributions). Let X be a distribution. An element x of
supp(X) is called ε-typical if |log(1/Pr[X = x]) − H(X)| ≤ ε. We say that X
is Δ-flat if for every t > 0 the probability that an element chosen from X is
(t · Δ)-typical is at least 1 − 2−t2+1.

A 0-flat distribution is uniform on its support, and is simply referred to as a flat
distribution. A natural way to flatten a distribution is via parallel repetition.

Lemma 1 (Flattening Lemma [Vad99,GSV99]). Let D be a distribution such
that for all x from supp(D) we have that D(x) ≥ 2−m. Then, for any k ∈ N, the
distribution ⊗kD is (

√
k · m)-flat.

Hashing. A family H of functions mapping a domain D to a range R is 2-
universal [CW79] if for every two elements x = y from D and a, b from R it
holds that Pr

h
R←H[h(x) = a ∧ h(y) = b] = 1

|R|2 . We write Hn,m to denote a
2-universal family from {0, 1}n to {0, 1}m. There are efficient constructions of
2-universal families of hash functions Hn,m that can be evaluated and sampled
in poly(n,m) time [CW79].

Lemma 2 (Leftover Hash Lemma [ILL89,GSV99]). Let H be a 2-universal
family of hash functions mapping a domain D to a range R. Let X be a flat
distribution on D such that for all x ∈ supp(X) we have that Pr[X = x] ≤
α/|R|. Then

Δ
h

R←H
((h, h(X)); (h,U(R))) ≤ O(α1/3).

Sampling Distributions via Circuits. Let X be a circuit with m input and n
output gates. We will sometimes abuse notation and use X to denote the ran-
dom variable X(Um) which corresponds to the output distribution of the circuit
induced by “feeding” a uniformly chosen n-bit input. We let X−1(x) denote the
set of preimages of x under X, i.e., X−1(x) := {r ∈ {0, 1}m | X(r) = x}. Observe
that Pr[X = x] = 2−m · |X−1(x)|.

4 NISZK and SRE
A promise problem [ESY84] Π is a pair of two non-intersecting sets of strings
(Πyes,Πno). The strings in Πyes are called yes-instances and the strings in Πno

are called no-instances. Let χΠ(x) be the characteristic function of Π which

On the Relationship Between Statistical ZK and Statistical RE 459

outputs 1 on yes-instances and 0 on no-instances. Note that a promise problem
is a generalization of a language L ⊆ {0, 1}∗, i.e., L is translated into a promise
problem ΠL where L corresponds to the set of yes-instances and {0, 1}∗ \ L
corresponds to the set of no-instances. (See [Gol06] for a survey.)

Definition 2 (Statistical Randomized Encoding [IK00,AIK04]). We say
that an efficient randomized algorithm Enc is a ε-private and δ-correct statistical
randomized encoding of a promise problem Π = (Πyes,Πno) (abbreviated (ε, δ)-
SRE), if the following holds:

ε-privacy for yes-instances: There exists an efficient simulator Simyes such
that for every yes-instance xyes of length n from Π,

Δ(Simyes(1n);Enc(xyes)) ≤ ε(n).

ε-privacy for no-instances: There exists an efficient simulator Simno, such
that for every no-instance xno of length n from Π,

Δ(Simno(1n);Enc(xno)) ≤ ε(n).

δ-correctness: There exists a computationally-unbounded decoder Dec, such
that for every instance x ∈ (Πyes ∪ Πno) of length n,

Pr[Dec(Enc(x)) = χΠ(x)] ≤ δ(n).

By default, ε(n) and δ(n) are required to be negligible functions.

Perfect Encoding [AIK04]. A randomized encoding which is 0-private (resp.,
0-correct) is called perfectly private (resp., perfectly correct). For an input of
length n, let s(n) denote the length of the random strings used by Enc and let
t(n) be the output length of the encoding. A perfectly private and perfectly
correct randomized encoding whose simulators Simyes and Simno use s(n) coins,
supp(Simyes(1n)) ∪ supp(Simno(1n)) = {0, 1}t(n), and 1 + s(n) = t(n) is called
perfect. (See [AIK04] for an intuitive explanation of these requirements.)

One-Sided Encoding [AIK04,AIK15]. A randomized encoding which is ε-private
on yes-instances and δ-correct is called one-sided (or semi-private) random-
ized encoding (denoted with (ε, δ)-1RE) [AIK04,AIK15]. Clearly, any (ε, δ)-
SRE is also (ε, δ)-1RE, though the converse does not necessarily hold. A dis-
joint one-sided randomized encoding is an encoding which is ε-private on
yes-instances and, instead of standard correctness, it satisfies the following ρ-
disjointness property: For every no-instance xno of length n from Π, it holds
that Pr[Simyes(1n) ∈ supp(Enc(xno))] ≤ ρ(n). We refer to such an encoding as
(ε, ρ)-D1RE.

Definition 3 (Non-interactive Statistical Zero-Knowledge [BSMP91]).
A non-interactive statistical zero-knowledge proof system (NISZK) for a promise
problem Π = (Πyes,Πno) is defined by probabilistic algorithms Prov (prover),
Deal (dealer), Sim (simulator), and a deterministic algorithm Ver (verifier), such
that for every n-bit instance x the following holds

460 B. Applebaum and P. Raykov

α-Completeness: If x ∈ Πyes then Pr[Ver(x, σ,Prov(x, σ)) = 1] ≤ α(n), where
σ

R← Deal(1n).
β-Soundness: If x ∈ Πno then Pr[∃p = p(x, σ) : Ver(x, σ, p) = 1] ≤ β(n), where

σ
R← Deal(1n).

γ-Zero-Knowledge: If x ∈ Πyes then the pair (σ, p) is γ(n)-close in statistical
distance to the pair (σ′, p′) where σ

R← Deal(1n), p R← Prov(x, σ) and (σ′, p′) R←
Sim(x).

The algorithms Ver,Deal, and Sim are required to be efficient, while the prover’s
algorithm Prov is allowed to be computationally unbounded. By default, α, β and
γ are assumed to be negligible in n.

Variants. In the special case where the dealer Deal(1n) samples σ uniformly from
the set of all strings of length r(n) (for some polynomial r(·)), the proof system is
called an interactive zero-knowledge proof system in the common random string
model and is denoted by (α, β, γ)-NISZKcrs [BFM88]. We will focus on the more
general setting (defined above) where the dealer is allowed to use any arbitrary
(polynomial-time samplable) distribution. This setting is referred to as the public
parameter model and protocols in the model are denoted by (α, β, γ)-NISZKpub.8

Remark 1 (Efficiency: Uniformity vs. Non-Uniformity). Randomized encodings
and non-interactive statistical-zero knowledge proof systems can be defined either
in the uniform setting where all efficient entities (encoder, RE-simulator, verifier,
dealer, and NISZK-simulator) are assumed to be probabilistic polynomial-time
algorithms, or in the non-uniform setting where these entities are represented by
probabilistic polynomial-time algorithms which take a non-uniform advice. We
will emphasize this distinction only when it matters (Theorem 6), and otherwise,
(when the results are insensitive to the difference) ignore it.

Definition 4 (Complexity classes). The complexity class SRE (resp., 1RE,
NISZKpub) is the set of all the promise problems that have an SRE (resp., 1RE,
NISZKpub).

5 NISZKpub = 1RE
In this section we will prove Theorem 1. We start by showing that the notions
of 1RE and D1RE are equivalent in Sect. 5.1. Then, based on this equivalence
we prove that NISZKpub = 1RE . In the first part of the proof we show that
NISZKpub ⊆ 1RE (cf. Sect. 5.2). In the second part of the proof we show that
1RE ⊆ NISZKpub (cf. Sect. 5.3).

8 The class NISZKpub was implicitly considered in [BDLP88], and was later referred
to as NISZK in the auxiliary string model [Dam00] and as protocol-dependent NISZK
by [GB00]. Our terminology (NISZK in public parameter model) is taken from [PS05].

On the Relationship Between Statistical ZK and Statistical RE 461

5.1 Equivalence of 1RE and D1RE

We start by showing how to convert a 1RE F for a promise problem Π into a
D1RE G for the same problem. The construction is inspired by the techniques of
[GSV99]. The encoding G consists of sufficiently many independent copies of F
together with a hash of the randomness used to generate the copies. In order to
achieve disjointness, while keeping privacy, the length of the hash is chosen such
that for yes-instance the hash is close to uniform and in the case of no-instances
the support of the hash output is relatively small.

We note that this construction is non-uniform. That is, the length of the
hash is chosen using a non-uniform advice that depends on the entropy of the
encoding distribution on yes-instances. It is an interesting open question whether
one can give a uniform construction achieving disjointness.

Theorem 6. If the promise problem Π has a (possibly non-uniform) 1RE F ,
then it also has a non-uniform D1RE G. Moreover, if F is uniform then G can
be implemented based on F and an advice of O(log n) bits.

Proof. Let Π be a promise problem that has an ε-private and δ-correct 1RE F ,
where ε and δ are negligible. Let SimF be the simulator showing the privacy of
F on yes-instances. For an input length of n, let m = m(n) = poly(n) denote
the maximum bit-length of the randomness used by SimF and F . We define a
D1RE G(x) for Π as follows:

To simplify notation, we let Jx(r) = (F (x, r1), . . . , F (x, rq)) and write Jx to

denote the distribution induced by a uniform choice of r
R← Um′ . We let

Sn = ⊗qSimF (1n), and let H denote the family Hm′,�.
We proceed with an analysis of the encoding G, starting with privacy. We

define the simulator SimG(1n) to generate the random variable (Sn, U(H), U�).
Fix some yes-instance x of length n from Π. Our goal is to show that the
statistical distance ε′(n) between SimG(1n) and G(x) is upper-bounded by some
negligible function. First observe that, by the triangle inequality, ε′ is upper-
bounded by

Δ(SimG(1n); (Jx, U(H), U�)) + Δ((Jx, U(H), U�); G(x)). (1)

By the ε-privacy of the original encoding and by Fact 1 item 3, the first summand
satisfies

Δ(SimG(1n); (Jx, U(H), U�)) = Δ((Sn, U(H), U�); (Jx, U(H), U�))
≤ Δ(Sn, Jx)

462 B. Applebaum and P. Raykov

≤ qε(n) = neg(n).

It is left to analyze the second summand in (1), i.e., to upper-bound the quantity

Δ
r

R←{0,1}m′
,h

R←H
((Jx(r), h, U�); (Jx(r), h, h(r))). (2)

Since the first entry is identically distributed in both distributions, it suffices
to analyze the statistical distance between the two tuples conditioned on the
outcome of the first entry Jx. Indeed, we prove the following claim.

Claim 1. With probability 1 − 2−Ω(n) over z
R← Jx, it holds that

Δ
r

R←{0,1}m′
,h

R←H
([Jx(r), h, U�|Jx(r) = z]; [Jx(r), h, h(r)|Jx(r) = z]) < 2−Ω(n). (3)

It follows (by Fact 1 item 4) that (2) is upper-bounded by 2−Ω(n).

Proof. (Proof of Claim 1). Recall that on any input x the encoding F uses at
most m random bits, and so any element in its support has weight at least
2−m. Hence, due to the Flattening Lemma 1, the distribution Jx is Δ-flat for
Δ =

√
qm. Since z

R← Jx is (
√

nΔ)-typical with probability at least 1 − O(2−n),
it suffices to show that (3) holds for every (

√
nΔ)-typical z.

Fix some (
√

nΔ)-typical z from Jx and consider the distribution
(Jx(r), h, h(r)) conditioned on Jx(r) = z. The conditional distribution of r is
uniform over the set J−1

x (z). We will show below that

log(|J−1
x (z)|) ≥ � + n (4)

Therefore we can apply the Leftover Hash Lemma 2 to the distribution of r
R←

J−1
x (z) with R = {0, 1}� and α = 2−n, and conclude that the distribution of

(Jx(r), h, h(r)) conditioned on Jx(r) = z is O(2−n/3)-close to the distribution
(z, U(H), U�).

It remains to prove (4). First, we show that the entropies H(Jx) and H(Sn)
are close. Indeed, by the privacy of F , we have that Δ(SimF (1n);F (x)) ≤ ε(n)
and therefore (by Fact 1 item 3) Δ(Jx;Sn) ≤ qε(n). Hence, by Fact 1 item 2, we
get that, for all sufficiently large n’s,

|H(Jx) − H(Sn)| ≤ m′qε(n) + 1 ≤ 2, (5)

where the second inequality follows by noting that ε(n) is negligible in n, and
m′, q are polynomials in n. Now, recall that z is (

√
nΔ)-typical, and therefore

log(|J−1
x (z)|) ≥ m′ − H(Jx) − √

nΔ. Plugging in (5) we conclude that

log(|J−1
x (z)|) ≥ m′ − H(Sn) − 2 − √

nΔ

≥ �m′ − H(Sn) − √
nΔ − 2n�

︸ ︷︷ ︸
=�

+(n − 3) + n

≥ � + n,

where the last inequality holds for n ≥ 3. ��

On the Relationship Between Statistical ZK and Statistical RE 463

We move on to prove the disjointness property. Fix some no-instance x. Our
goal is to upper-bound

Pr [SimG(1n) ∈ supp(G(x))] = Pr [(Sn, U(H), U�) ∈ supp(G(x))] (6)

by some negligible function. For z
R← Sn, let E = E(z) be the event that

|J−1
x (z)| ≤ 2�−n. By marginalizing the probability, we can upper-bound (6) by

Pr
z

R←Sn,h
R←H,w

R←{0,1}�

[(z, h, w) ∈ supp(G(x)) | E(z)] + Pr
z

R←Sn

[¬E(z)].

We will show that both the first and second summand are negligible in n.

Claim 2. Pr
z

R←Sn,h
R←H,w

R←{0,1}� [(z, h, w) ∈ supp(G(x)) | E(z)] ≤ 2−n.

Proof. By definition supp(G(x)) = {(Jx(r), h, h(r)) | r ∈ {0, 1}m′
, h ∈ H}.

Therefore, for any fixed z and h the probability, over w
R← {0, 1}�, that the

triple (z, h, w) lands in supp(G(x)) is exactly

|h(J−1
x (z))|
2�

≤ |J−1
x (z)|
2�

,

which is upper-bounded by 2�−n/2� = 2−n when we condition on E(z). ��

We conclude the proof by showing that for z
R← Sn the event E(z) happens

almost surely.

Claim 3. Pr
z

R←Sn
[log |J−1

x (z)| ≤ � − n] ≥ 1 − 2−Ω(n).

Proof. Call z good if

z is (
√

nΔ)-typical, where Δ =
√

qm, (7)

and
Pr[Sn = z] ≥ 2q/10 Pr[Jx = z]. (8)

We begin by showing that, except with probability 2−Ω(n), a random z
R← Sn is

good. First, recall that SimF (1n) uses at most m random bits, and so any element
in its support has weight at least 2−m. Hence, due to the Flattening Lemma 1, the
distribution Sn is Δ-flat for Δ =

√
qm which implies that a random z

R← Sn satis-
fies (7) with probability at least 1−2−Ω(n). Next, we show that, except with prob-
ability 2−Ω(n), a random z

R← Sn satisfies (8). Indeed, due to the correctness prop-
erty of F , we have that Δ(SimF (1n);F (x)) ≥ 1/2 which implies (by Fact 1 item 3)
that Δ(Sn, Jx) ≥ 1 − 2 exp(−q/8). Applying Fact 1 item 5, we conclude that

Pr
z

R←Sn

[Pr[Sn = z] < t Pr[Jx = z]] ≤ t · 2 exp(−q/8),

for any t ≥ 1. Taking t := 2q/10, and noting that

464 B. Applebaum and P. Raykov

t · 2 exp(−q/8) ≤ 2t · 2−q/8 = 2 · 2q/10 · 2−q/8 = 2−q/40+1 = 2−Ω(n),

we conclude that (8) holds for all but 2−Ω(n)-fraction of the z
R← Sn. It follows,

by a union-bound, that, except with probability 2−Ω(n), a random z
R← Sn is

good.
Finally, we prove that for any good z it holds that log |J−1

x (z)| ≤ � − n. By
definition

|J−1
x (z)| = 2m′ · Pr[Jx = z]

and by (8) the latter is upper-bounded by

2m′−q/10 · Pr[Sn = z].

Recalling that Pr[Sn = z] ≤ 2−H(Sn)+
√

nΔ (since z is
√

nΔ-typical) we con-
clude that

|J−1
x (z)| ≤ 2m′−q/10−H(Sn)+

√
nΔ.

Hence, we get that

log |J−1
x (z)| ≤ m′ − H(Sn) +

√
nΔ − q/10

≤ �(m′ − H(Sn) − √
nΔ − 2n)�︸ ︷︷ ︸

=�

−n + (3n + 3
√

nΔ − q/10)︸ ︷︷ ︸
T

.

Since q = 106nm2 the expression T is always negative, and the claim follows. ��
This completes the proof of Theorem 6.

Now we show that if we repeat a D1RE polynomially many times we preserve
the privacy of the encoding on yes-instances and gain the correctness security
property of 1RE.

Theorem 7. Let Π be a promise problem that has an ε-private and ρ-disjoint
D1RE F , where ε and ρ are negligible. Then, there exists G a 1RE for Π that is
ε′-private and δ-correct, where ε′ and δ are negligible.

Proof. For an instance x of length n, we define a randomized encoding G(x) to
be ⊗nF (x). Since F is efficient, the encoding G is also efficient. We prove that
G is a 1RE for Π.

privacy for yes-instances: Let SimF be the simulator showing the privacy of
F on yes-instances. Define SimG(1n) := ⊗nSimF (1n). Take any yes-instance
x from Π. We have that

Δ(SimG(1n);G(x)) = Δ(⊗nSimF (1n);⊗nF (x)) ≤ n · ε(n),

where the last inequality holds due to Fact 1 item 3. Since ε(n) is negligible,
we have that ε′(n) := n · ε(n) is also negligible.

On the Relationship Between Statistical ZK and Statistical RE 465

Correctness: Let Z =
⋃

x∈Πno
supp(G(x)). The decoder Dec on input s out-

puts 0 if s ∈ Z; and outputs 1, otherwise. Clearly, a no-instance is always
decoded correctly. For a yes-instance x, we upper-bound the decoding error by
showing that Pr[G(x) ∈ Z] is negligible. Since G is ε′-private on yes-instances,
we have that

Pr[G(x) ∈ Z] ≤ Pr[SimG(1n) ∈ Z] + ε′(n).

By ρ-disjointness, it holds that Pr[SimF (1n) ∈ supp(F (xno))] ≤ ρ(n), for any
no-instance xno. This implies that if we repeat this experiment n times we get
that Pr[SimG(1n) ∈ supp(G(xno))] ≤ ρ(n)n. By a union bound, we conclude
that Pr[SimG(1n) ∈ Z] ≤ 2nρ(n)n, which implies that

Pr[G(x) ∈ Z] ≤ 2nρ(n)n + ε′(n) ≤ neg(n).

The theorem follows. ��

5.2 From NISZKpub to 1RE

In this section we prove that NISZKpub ⊆ 1RE .

Theorem 8. NISZKpub ⊆ 1RE.

Proof. Let Π be a promise problem with (α, β, γ)-NISZKpub proof system con-
sisting of (Prov,Ver,Deal,Simzk), where α, β, γ are negligible. By Theorem7, it
suffices to show that Π has a (ε, ρ)-D1RE Enc for some negligible ε and ρ. For
an n-bit string x, we define a randomized encoding Enc(x) as follows9:

Observe that Enc is efficient because Simzk and Ver are efficient. We prove that
Enc is a D1RE.

Privacy: We define Simyes(1n) = Deal(1n) and prove that for any yes-instance
x the distribution Simyes(1n) is ε(n)-close to Enc(x) where ε(n) = α(n) + 2 ·
γ(n) = neg(n). Fix some yes-instance x of length n. Due to the zero-knowledge
property of NISZK, we have that

Δ
σ

R←Deal(1n)

(Simzk(x), (σ,Prov(x, σ))) ≤ γ(n).

By the definition of the statistical distance, this implies that∣∣∣∣∣ Pr
σ

R←Deal(n)

[Ver(σ, x,Prov(x, σ)) = 1] − Pr
(σ,p)

R←Simzk(x)

[Ver(σ, x, p) = 1]

∣∣∣∣∣ ≤ γ(n).

9 For example, such a z(n) can be efficiently constructed by appending a trailing 1 to
the output of Deal(1n) and setting z(n) to the all-zero string.

466 B. Applebaum and P. Raykov

Because of the correctness property of NISZK, we have that

Pr
σ

R←Deal(n)

[Ver(σ, x,Prov(x, σ)) = 1] ≤ α(n).

This implies that

Pr
(σ,p)

R←Simzk(x)

[Ver(σ, x, p) = 1] ≤ α(n) + γ(n).

The latter inequality means that in the execution of Enc(x) the bit b equals
to 1 except with the probability α(n)+γ(n). Hence, Δ(Enc(x);Simzk(x)[1]) ≤
α(n) + γ(n), where Simzk(x)[1] denotes the first component of the tuple out-
put by the simulator. Because of the zero-knowledge property of NISZK and
due to Fact 1 item 1, we have that Δ(Simzk(x)[1];Deal(1n)) ≤ γ(n). Finally,
combining the last two inequalities, we get that

Δ(Enc(x);Deal(1n)) ≤ α(n) + 2 · γ(n) = neg(n).

Disjointness: Let x be a no-instance of Π. Let E ⊆ supp(Deal(1n)) denote
the set of the strings admitting a proof for the no-instance x, i.e., E := {σ ∈
supp(Deal(1n)) | ∃p : Ver(σ, x, p) = 1}. By Enc’s construction we have that
supp(Enc(x)) ⊆ E ∪ {zn}. This implies that

Pr[Deal(1n) ∈ supp(Enc(x))] ≤ Pr[Deal(1n) ∈ E ∪ {zn}]
(�)
= Pr[Deal(1n) ∈ E]
≤ β(n),

where the last inequality follows from the soundness property of NISZK, and
the equality () holds because zn ∈ supp(Deal(1n)). ��

5.3 From 1RE to NISZKpub

Theorem 9. If the promise problem Π has a (possibly non-uniform) 1RE F ,
then it also has a non-uniform NISZKpub proof system. Moreover, if F is uniform
then the NISZKpub proof system can be implemented based on F and an advice
of O(log n) bits.

Proof. Let Π ∈ 1RE . Due to Theorem 6, there exists a non-uniform (ε, ρ)-D1RE
Enc for Π such that ε and ρ are negligible. Let s(n) denote the randomness com-
plexity of the encoding Enc when it is applied to an n-bit input x, and let Simre

be the simulator showing the privacy of Enc on yes-instances. We construct a
proof system (Prov,Ver,Deal,Simzk) for Π as follows:

On the Relationship Between Statistical ZK and Statistical RE 467

We show that (Prov,Ver,Deal,Simzk) forms a NISZK for Π.

Completeness: Consider some yes-instance x of length n. Recall that, by
the privacy of D1RE, the simulator’s distribution Simre(1n) is ε(n)-close to
Enc(x), which implies that

Pr[Simre(1n) ∈ supp(Enc(x))] ≥ 1 − ε(n).

Hence, except with probability ε(n), for a string σ generated by Simre(1n),
the prover Prov can find r, such that Enc(x, r) = σ.

Soundness: For all no-instances x of Π, we have that

Pr
σ

R←Deal(1n)

[∃p : V (x, σ, p) = 1] = Pr
σ

R←Simre(1n)

[σ ∈ supp(Enc(x))] ≤ δ(n),

where the last inequality follows from the disjointness property of Enc.
Zero Knowledge: For all yes-instances x of Π, we have that

Δ
σ

R←Deal(1n)

(Simzk(x); (σ,Prov(x, σ))) =

Δ
σ

R←Simre(1n),r
R←{0,1}s(n)

((Enc(x, r), r); (σ,Prov(x, σ))) =

Δ
σ

R←Simre(1n),r
R←{0,1}s(n)

((Enc(x, r),Prov(x,Enc(x, r))); (σ,Prov(x, σ))) ≤

Δ
σ

R←Simre(1n),r
R←{0,1}s(n)

(Enc(x, r);σ) ≤

ε(n),

where the second equality follows by recalling that Prov(σ) samples a ran-
dom r subject to Enc(x, r) = σ and so (Enc(x, r), r) is identically distributed
to (Enc(x, r),Prov(x,Enc(x, r))), and the first inequality follows from Fact 1
item 1 ��.

6 If SRE Is Non-trivial Then One-Way Functions Exist

In this section we prove Theorem 3:

Theorem 3 (Restated). If SRE is non-trivial (not in BPP), then infinitely-
often one-way functions exist.

Proof. Assume that infinitely-often one-way functions do not exist. Impagliazzo
and Luby [IL89] showed that in this case every efficiently computable function
g(x) can be “distributionally-inverted” in the following sense: For every inverse
polynomial α(·), there exists an efficient adversary A such that, for random
x ∈ {0, 1}n, the pair (x, g(x)) is α(n)-close to the pair (A(g(x)), g(x)). In other
words, for most x’s, A finds an almost uniform preimage of g(x). We refer to α
as the deviation of the inverter and set it to 1/10.

468 B. Applebaum and P. Raykov

We will show that such an inverter allows to put SRE in BPP. Let Π be
a promise problem in SRE with ε-private δ-correct statistical encoding Enc for
some negligible ε and δ. Let Simyes and Simno be the simulators of the encoding
and define Sim(b, r) to be a “joint” simulator which takes as an input a single bit
b ∈ {0, 1} and random string r and outputs a sample from Simyes(r) if b = 1 and
from Simno(r) if b = 0.10 We decide Π via the following BPP procedure B: Given
a string x ∈ {0, 1}n, sample an encoding y

R← Enc(x) and α-distributionally
invert the simulator Sim on the string y. Take the resulting preimage (b, r) (where
r is the coins of the simulator) and output the bit b. We analyze the success
probability of deciding Π with this procedure.

Claim 4. The procedure B decides Π with error probability of at most 1/6 +
5δ + ε + α.

Proof. Let us focus on the case where x ∈ {0, 1}n is a yes-instance (the other case
is symmetric). First consider an “ideal” version B′ of the algorithm B in which
(1) the string y is sampled from Simyes(r) and (2) the distributional inversion
algorithm is perfect and has zero deviation. Observe that the gap between the
error probability of the real algorithm B to the error probability of the ideal
algorithm B′ is at most ε + α (this is due to ε-privacy and to α-deviation of
the actual inverter). Hence, it suffices to show that the ideal version errs with
probability of at most 1/6 + 5δ.

For a given encoding y, the ideal algorithm outputs the right answer b =
1 with probability p1(y)

p0(y)+p1(y)
where p0(y) denotes the weight of y under the

distribution sampled by Simno and p1(y) denotes the weight of y under Simyes.
By the δ-correctness of the encoding and by Fact 1 item 5 (instantiated with
t = 5), it holds that, except with probability at most 5δ over y

R← Simyes, we
have that p1(y) ≥ 5p0(y). It follows, by a union bound, that the ideal algorithm
errs with probability of at most 5δ + 1/6, as required. ��
It remains to notice, that since δ and ε are negligible and α is an inverse poly-
nomial, we have that Π can be decided with success probability at least 2/3.

7 If PRE Is Hard on the Average Then CRH Exist

In this section we will study the consequences of the existence of an average-case
hard problem Π ∈ PRE .

10 We omit the unary input 1n of the simulators, and assume that the randomness com-
plexity m(n) of the simulators uniquely determines the instance length n. Similarly,
we assume that the output of Sim(b, r) uniquely determines n. Both requirements
can be achieved without loss of generality via standard padding conventions. (E.g.,
pad the randomness r and concatenate the input length 1n to the encoding and to
the output of Sim.).

On the Relationship Between Statistical ZK and Statistical RE 469

Definition 5. We say that a promise problem Π = (Πyes,Πno) is hard on
average if there exists an efficient sampler S that given 1n outputs an n-bit
instance of Π such that for every non-uniform efficient algorithm A,∣∣∣∣∣ Pr

x
R←S(1n)

[A(x) = χΠ(x)] − 1/2

∣∣∣∣∣ < neg(n).

We say that the problem has efficient Yes/No samplers if it is possible to effi-
ciently sample from the conditional Yes distribution Yn = [S(1n)|S(1n) ∈ Πyes]
and from the conditional No distribution Nn = [S(1n)|S(1n) ∈ Πno].

A collection of claw-free pseudo-permutations (CFPP) [Dam87,GMR88,
Rus95] is a set of pairs of efficiently computable functions f0, f1 : {0, 1}n →
{0, 1}n for which it is hard to find a pair (u, v) which forms a claw, i.e.,
f0(u) = f1(v), or a collapse, i.e., f b(u) = f b(v) and u = v for some bit b. Col-
lections of claw-free permutations (CFPs) correspond to the special case where
f0 and f1 are permutations and so collapses simply do not exist.

Definition 6 (Claw-free Functions). A collection of pairs of functions con-
sists of an infinite set of indices, denoted I, finite sets Di for each i ∈ I, and two
functions f0

i and f1
i mapping Di to Di, respectively. Such a collection is called a

claw-free pseudo-permutations if there exist three probabilistic polynomial-time
algorithms I, D, and F such that the following conditions hold:

Easy to sample and compute: The random variable I(1n) is assigned values
in the set I ∩ {0, 1}p(n) for some polynomial p(·). For each i ∈ I, the random
variable D(i) is distributed uniformly over Di. For each i ∈ I, b ∈ {0, 1} and
x ∈ Di, F (b, i, x) = f b

i (x).
Hard to form claws: A pair (x, y) satisfying f0

i (x) = f1
i (y) is called a claw

for index i. Let Ci denote the set of claws for index i. It is required that for
every probabilistic polynomial-time algorithm A,

Pr
i

R←I(1n)

[A(i) ∈ Ci] < neg(n).

Hard to form collapses: A pair (x, y) satisfying f b
i (x) = f b

i (y) is called a
collapse for an index i and a bit b. Let Ti,b denote the set of collapses for
(i, b). It is required that for every probabilistic polynomial-time algorithm A
and every b ∈ {0, 1},

Pr
i

R←I(1n)

[A(i) ∈ Ti,b] < neg(n).

If the last item holds for unbounded adversaries, i.e., f0
i and f1

i are permutations
over Di, then the collection is called a collection of claw-free permutations.

It is known that CFPP’s imply Collision-Resistant Hash functions (CRH)
[Rus95]. We will show that the existence of an average-case hard problem Π ∈
PRE implies the existence of CFPPs. We begin with the simpler case in which
Π has an efficient Yes/No samplers and show that, in this case, we obtain a
collection of claw-free permutations.

470 B. Applebaum and P. Raykov

Theorem 10. If there exists an average-case hard language in PRE with effi-
cient Yes/No samplers then CFPs exist.

We will need the following simple claim.

Claim 5. Let Π be a promise problem with perfect randomized encoding g whose
simulators are Simyes and Simno. Define the functions h0

x, h1
y which are indexed

by a pair of instances (x, y) of Π as follows:

h0
x(r, b) =

{
g(x; r), if b = 0,
Simno(r), otherwise;

h1
y(r, b) =

{
g(y; r), if b = 0,
Simyes(r), otherwise;

(9)

Then the following holds for any n-bit strings x and y:

1. If x ∈ Πyes, then h0
x is a permutation.

2. If y ∈ Πno, then h1
y is a permutation.

3. If (x, y) ∈ Πno × Πyes then Im
(
h0

x

) ∩ Im
(
h1

y

)
= ∅.

Proof. Let R0 and R1 denote Im(Simno) and Im(Simyes), respectively. Let s(n)
denote the randomness complexity of g and let t(n) denote the output length
of g. Since g is a perfect randomized encoding, we have that R0 ∩ R1 = ∅,
R0 ∪ R1 = {0, 1}t(n), and t(n) = s(n) + 1. Consider the case where x ∈ Πyes.
Then h0

x(·, 0) : {0, 1}s(n) → R1 is a bijection and h0
x(·, 1) : {0, 1}s(n) → R0. Since

R0 ∩ R1 = ∅, the function h0
x(·, ·) is a permutation on R0 ∪ R1 = {0, 1}t(n).

Similarly, if y ∈ Πno, the function h1
y(·, ·) is a permutation on {0, 1}t(n).

In order to prove the third item, we observe that if x ∈ Πno, then Im
(
h0

x

)
=

R0; and if y ∈ Πyes, then Im
(
h1

y

)
= R1. This implies that for all (x, y) ∈

Πno × Πyes it holds that Im
(
h0

x

) ∩ Im
(
h1

y

)
= R0 ∩ R1 = ∅. ��

We can now prove Theorem 10.

Proof (Proof of Theorem 10). Let Π be an average-case hard language with
efficient Yes/No samplers (Yn, Nn), and let g be a perfect randomized encoding
for Π. For a pair of inputs (x, y) from Π, we say that (x, y) is a (yes,no)-
instance (resp., (no,yes)), if x is a yes-instance and y is a no-instance (resp., if
x is a no-instance and y is a yes-instance).

We construct a CFP family which is indexed by pairs (x, y) ∈ Πyes × Πno.
Given a security parameter 1n, an index (x, y) is chosen by sampling x

R← Yn

and y
R← Nn. For each index (x, y) we let f0

(x,y) ≡ h0
x and f1

(x,y) ≡ h1
y, where

h0
x and h1

x are defined as in (9). Recall that the domain and range of f b
x,y are

{0, 1}t(n) where t(n) is the output length of g’s output. Clearly this collection
is efficiently samplable and efficiently computable. Moreover, since our sampler
always samples a (yes,no)-instance (x, y), it holds, due to Claim 5, that f0

(x,y) ≡
h0

x and f1
(x,y) ≡ h1

y are permutations on {0, 1}t(n). We complete the proof by
showing that claws are hard to find.

On the Relationship Between Statistical ZK and Statistical RE 471

Recall that we assume that the distribution ensemble {Yn} is computationally
indistinguishable from {Nn}. By a standard hybrid argument, it follows that
the pair (Yn, Nn) is computationally indistinguishable from the pair (Yn, Yn)
which, in turn, is computationally indistinguishable from the pair (Nn, Yn). Now
assume, for the sake of contradiction, that there exists an efficient algorithm A

that given (x, y) R← (Yn, Nn) can find claws with non-negligible probability ε.
We can use A to distinguish (Yn, Nn) from (Nn, Yn) as follows: Given (x, y) call
A(x, y) and output 1 if A’s output (u, v) forms a collision under h0

x and h1
y. By

assumption, the resulting distinguisher outputs 1 when (x, y) R← (Yn, Nn) with
probability ε. In contrast, when (x, y) R← (Nn, Yn), the distinguisher never finds
a claw since claws do not exist (due to Claim 5). Hence the distinguisher has a
noticeable advantage of ε, in contradiction to our assumption. ��

We continue by considering the more general case where Π is hard on average
but does not admit efficient Yes/No samplers, and obtain, in this case, claw-
free pseudo-permutations (whose existence still implies collision-resistance hash
functions).

Theorem 11. If there exists an average-case hard language in PRE then claw-
free pseudo-permutations (CFPP) exist.

Proof. The construction is identical to the one presented in Theorem10, except
that the index (x, y) ∈ Π ×Π is chosen by sampling both x and y independently
from the distribution S(1n) over which Π is average-case hard. By definition,
the collection f b

(x,y) = hb
x, where h is defined as in (9), is efficiently samplable

and efficiently computable. We verify that it is CFPP.
We begin by showing that f0

(x,y) = h0
x is a pseudo-permutation (the case

of f1
(x,y) is analogous). Assume for the sake of contradiction that there is an

algorithm A that can find collapses for f0
(x,y) with a non-negligible probability

ε. Using A we construct a new algorithm A′ that has a non-negligible advantage
in guessing χΠ(x) for x

R← S(1n). Given an input x
R← S(1n), the algorithm

A′ samples y ← S(1n), and then invokes A(x, y) to find a collapse (u, v) for
f0
(x,y) = h0

x. If A finds a valid collapse (i.e., u = v and h0
x(u) = h0

x(v)), the
algorithm A′ classifies the input x as a no-instance and outputs 0; otherwise A′

outputs a random bit. Recall that when x is a yes-instance the function h0
x is

a permutation, and so it does not have collapses. Hence, A′ outputs a correct
answer whenever A finds a collapse. Also, when a collapse is not found, the
success probability of A′ is 1/2. Hence, the overall success probability of A′ is

Pr
x

R←S(1n)

[A′(x) = χΠ(x)] = 1/2 · (1 − ε) + 1 · ε = 1/2 + ε/2,

in contradiction to the average-case hardness of Π.
We move on to show that it is hard to find claws. Assume for the sake of

contradiction that there exists an efficient algorithm A that finds claws with a

472 B. Applebaum and P. Raykov

non-negligible probability ε. We construct a new algorithm A′ that has a non-
negligible advantage in guessing χΠ(x) for x

R← S(1n). Let

p = Pr
x

R←S(1n),y
R←S(1n)

[A(x, y) finds a claw |x ∈ Πno].

We distinguish between two cases based on the value of p.
First, consider the case where p ≥ ε/2. Then, by an averaging argument,

there exists some fixed no-instance x0 for which

Pr
y

[A(x0, y) finds a claw] ≥ ε/2.

Recall that when the index is a (no,yes) pair there are no claws and so when A
finds a claw, y must be a no-instance We can therefore construct a non-uniform
algorithm that decides y

R← S(1n) as follows: Call A(x0, y) and output zero
(“no”) if a collision is found and otherwise toss a random coin. The success
probability is at least ε/2 + (1 − ε/2)/2 = 1/2 + ε/4.

Second, consider the case where p < ε/2. In this case, we determine whether
x

R← S(1n) is a yes-instance or a no-instance via the following procedure A′.
Sample y

R← S(1n), and call A(x, y) if A returns a valid claw, outputs 1 (classify
x as a yes-instance); otherwise, output a random bit. The success probability of
A′ can be marginalized as follows:

Pr
x

[A′(x) succeeds] = Pr
x,y

[A′(x) succeeds |A(x, y) finds a claw] · ε

+ Pr
x,y

[A′(x) succeeds |A(x, y) doesn’t find a claw] · (1 − ε)

= Pr
x

[x ∈ Πyes|A(x, y) finds a claw] · ε + (1 − ε)/2,

Therefore, it suffices to show that

Pr
x

[x ∈ Πyes|A(x, y) finds a claw] ≥ 2/3 (10)

since this implies that A′ succeeds with probability of at least 2/3 · ε + (1 −
ε)/2 = 1/2 + ε/6. To prove (10), we upper-bound by 1/3 the probability of the
complementary event:

Pr
x

[x ∈ Πno|A(x, y) finds a claw] =

Prx,y[A(x, y) finds a claw|x ∈ Πno] · Prx[x ∈ Πno]
Pr[A(x, y) finds a claw]

≤
(ε/2) · (2/3)

ε
=

1
3
,

where the inequality follows by our assumption (p < ε/2) and by the fact that
Prx[x ∈ Πno] < 2/3 (since otherwise the trivial adversary that always outputs 0
breaks the average-case hardness of Π over S(1n)). The proof follows. ��

On the Relationship Between Statistical ZK and Statistical RE 473

Acknowledgements. Research supported by the European Union’s Horizon 2020
Programme (ERC-StG-2014-2020) under grant agreement no. 639813 ERC-CLC, ISF
grant 1155/11, GIF grant 1152/2011, and the Check Point Institute for Information
Security. This work was done in part while the first author was visiting the Simons
Institute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

A Omitted Proofs

A.1 Proof of Item 5 of Fact 1

We prove that if Δ(X;Y) ≥ 1 − ε, then, for any t > 1, it holds that
Pr

x
R←X

[Pr[X = x] < t · Pr[Y = x]] ≤ εt.

Proof. We start by proving an additional claim:

Claim 6. For any two distributions X,Y and a subset S of their domain, it holds
that:

Δ(X;Y) ≤ 1 −
∑
x ∈ S

min(Pr[X = x],Pr[Y = x]).

Proof.

2Δ(X;Y) =
∑

x

|Pr[X = x] − Pr[Y = x]|

=
∑
x�∈S

|Pr[X = x] − Pr[Y = x]| +
∑
x∈S

|Pr[X = x] − Pr[Y = x]|

≤
∑
x�∈S

Pr[X = x] +
∑
x�∈S

Pr[Y = x] +
∑
x∈S

|Pr[X = x] − Pr[Y = x]|

=
∑

x

Pr[X = x] +
∑

x

Pr[Y = x]−
∑
x∈S

(Pr[X = x] + Pr[Y = y] − |Pr[X = x] − Pr[Y = x]|)

= 2 − 2
∑
x∈S

min(Pr[X = x],Pr[Y = x]).

The last equality holds because
∑

x Pr[X = x] = 1 =
∑

x Pr[Y = x], and for all
a, b we have that a + b − |a − b| = 2min(a, b). ��

Now we proceed to the proof of the lemma. Let S := {x | Pr[X = x] <
t · Pr[Y = x]}. Due to the claim, we have that

Δ(X;Y) ≤ 1 −
∑
x ∈ S

min(Pr[X = x],Pr[Y = x]) (11)

474 B. Applebaum and P. Raykov

We now give a lower bound for each summand min(Pr[X = x],Pr[Y = x]).
Namely, we show that

∀x ∈ S min(Pr[X = x],Pr[Y = x]) ≥ Pr[X = x]/t. (12)

By the construction of S, we have that for any x ∈ S Pr[Y = x] > Pr[X = x]/t.
Hence, min(Pr[X = x],Pr[Y = x]) ≥ min(Pr[X = x],Pr[X = x]/t). Since
t > 1, we have that min(Pr[X = x],Pr[X = x]/t) = Pr[X = x]/t. Combining
inequalities 11 and 12, we get that

Δ(X;Y) ≤ 1 −
∑
x ∈ S

min(Pr[X = x],Pr[Y = x])

≤ 1 −
∑
x ∈ S

Pr[X = x]/t

= 1 − Pr[X ∈ S]/t.

Recall that by assumption 1 − ε ≤ Δ(X;Y), and therefore, we conclude that
ε ≥ Pr[X ∈ S]/t implying that Pr[X ∈ S] ≤ εt. ��

References

[AH87] Aiello, W., H̊astad, J.: Perfect zero-knowledge languages can be recognized
in two rounds. In: 28th Annual Symposium on Foundations of Computer
Science, Los Angeles, California, USA, 27–29 October 1987, pp. 439–448.
IEEE Computer Society (1987)

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: Pro-
ceedings of 45th Symposium on Foundations of Computer Science (FOCS
2004), 17–19 October 2004, Rome, Italy, pp. 166–175. IEEE Computer
Society (2004)

[AIK05] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private ran-
domizing polynomials and their applications. In: 20th Annual IEEE Con-
ference on Computational Complexity (CCC 2005), 11–15 June 2005, San
Jose, CA, USA, pp. 260–274. IEEE Computer Society (2005)

[AIK15] Applebaum, B., Ishai, Y., Kushilevitz, E., Minimizing locality of one-way
functions via semi-private randomized encodings. Electronic Colloquium
on Computational Complexity (ECCC), 22:45 (2015)

[AIKP15] Agrawal, S., Ishai, Y., Khurana, D., Paskin-Cherniavsky, A.: Statistical
randomized encodings: a complexity theoretic view. In: Halldórsson, M.M.,
Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol.
9134, pp. 1–13. Springer, Heidelberg (2015)

[App11] Applebaum, B.: Randomly encoding functions: a new cryptographic para-
digm. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 25–31. Springer,
Heidelberg (2011)

[App14] Applebaum, B.: Cryptography in Constant Parallel Time. Information
Security and Cryptography. Springer, Heidelberg (2014)

[AR16] Applebaum, B., Raykov, P.: From private simultaneous messages to zero
information Arthur-Merlin protocols and back. To appear in TCC 2016A,
2016. Available as eprint report 2015/1046. http://eprint.iacr.org/

http://eprint.iacr.org/

On the Relationship Between Statistical ZK and Statistical RE 475

[BDLP88] Brandt, J., Damg̊ard, I.B., Landrock, P., Pedersen, T.P.: Zero-knowledge
authentication scheme with secret key exchange (extended abstract). In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 583–588. Springer,
Heidelberg (1990)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: Simon, J. (ed.) Proceedings of the
20th Annual ACM Symposium on Theory of Computing, 2–4 May 1988,
Chicago, Illinois, USA, pp. 103–112. ACM (1988)

[BSMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

[Can08] Canetti, R. (ed.): Theory of Cryptography. LNCS, vol. 4948. Springer,
Heidelberg (2008)

[CCG+94] Chang, R., Chor, B., Goldreich, O., Hartmanis, J., H̊astad, J., Ranjan, D.,
Rohatgi, P.: The random Oracle hypothesis is false. J. Comput. Syst. Sci.
49(1), 24–39 (1994)

[CCKV08] Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.P.: Interactive and
noninteractive zero knowledge are equivalent in the help model. In: Canetti
[Can08], pp. 501–534

[CW79] Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput.
Syst. Sci. 18(2), 143–154 (1979). Preliminary version appeared in STOC
1977

[Dam87] Damg̊ard, I.B.: Collision free hash functions and public key signature
schemes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS,
vol. 304, pp. 203–216. Springer, Heidelberg (1988)

[Dam00] Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
418–430. Springer, Heidelberg (2000)

[ESY84] Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems
with applications to public-key cryptography. Inf. Control 61(2), 159–173
(1984)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing,
23–25 May 1994, Montréal, Québec, Canada, pp. 554–563. ACM (1994)

[GB00] Gutfreund, D., Ben-Or, M.: Increasing the power of the dealer in non-
interactive zero-knowledge proof systems. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 429–442. Springer, Heidelberg (2000)

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308
(1988)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SICOMP: SIAM J. Comput. 18, 291–304 (1989)

[Gol01] Goldreich, O.: The Foundations of Cryptography - Basic Techniques, vol.
1. Cambridge University Press, Cambridge (2001)

[Gol06] Goldreich, O.: On promise problems: a survey. In: Goldreich, O.,
Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science.
LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006)

476 B. Applebaum and P. Raykov

[GPW15] Göös, M., Pitassi, T., Watson, T.: Zero-information protocols and unam-
biguity in Arthur-Merlin communication. In: Roughgarden, T. (ed.) Pro-
ceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, 11–13 January 2015, pp. 113–122.
ACM (2015)

[GSV99] Goldreich, O., Sahai, A., Vadhan, S.P.: Can statistical zero knowledge
be made non-interactive? Or on the relationship of SZK and NISZK.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 467. Springer,
Heidelberg (1999)

[GV99] Goldreich, O., Vadhan, S.P.: Comparing entropies in statistical zero knowl-
edge with applications to the structure of SZK. In: Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, Atlanta, Georgia,
USA, 4–6 May 1999, p. 54. IEEE Computer Society (1999)

[HHRS15] Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in inter-
active protocols - tight lower bounds on the round and communication
complexities of statistically hiding commitments. SIAM J. Comput. 44(1),
193–242 (2015)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, FOCS 2000, 12–14
November 2000, Redondo Beach, California, USA, pp. 294–304. IEEE Com-
puter Society (2000)

[IL89] Impagliazzo, R., Luby, M.: One-way functions are essential for complexity
based cryptography (extended abstract). In: 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October–1 November 1989, pp. 230–235. IEEE Computer Society
(1989)

[ILL89] Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from
one-way functions (extended abstracts). In: Johnson, D.S. (ed.) Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, 14–17
May 1989, Seattle, Washigton, USA, pp. 12–24. ACM (1989)

[Ish13] Ishai, Y.: Randomization techniques for secure computation. In: Prab-
hakaran, M., Sahai, A. (eds.) Secure Multi-party Computation. Cryp-
tology and Information Security Series, vol. 10, pp. 222–248. IOS Press,
Amsterdam (2013)

[Oka00] Okamoto, T.: On relationships between statistical zero-knowledge proofs.
J. Comput. Syst. Sci. 60(1), 47–108 (2000)

[Ost91] Ostrovsky, R.: One-way functions, hard on average problems, and statisti-
cal zero-knowledge proofs. In: Proceedings of the Sixth Annual Structure
in Complexity Theory Conference, Chicago, Illinois, USA, 30 June–3 July
1991, pp. 133–138. IEEE Computer Society (1991)

[OV08] Ong, S.J., Vadhan, S.P.: An equivalence between zero knowledge and com-
mitments. In: Canetti [Can08], pp. 482–500

[PS05] Pass, R., Shelat, A.: Unconditional characterizations of non-interactive
zero-knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
118–134. Springer, Heidelberg (2005)

[Rus95] Russell, A.: Necessary and sufficient condtions for collision-free hashing. J.
Cryptol. 8(2), 87–100 (1995)

On the Relationship Between Statistical ZK and Statistical RE 477

[SCPY98] De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: Image density is
complete for non-interactive-SZK. In: Larsen, K.G., Skyum, S., Winskel, G.
(eds.) ICALP 1998. LNCS, vol. 1443, pp. 784–795. Springer, Heidelberg
(1998)

[SV03] Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge.
J. ACM 50(2), 196–249 (2003)

[Vad99] Vadhan, S.P.: A study of statistical zero-knowledge proofs. Ph.D. thesis
(1999)

How to Prove Knowledge of Small Secrets

Carsten Baum(B), Ivan Damg̊ard, Kasper Green Larsen, and Michael Nielsen

Department of Computer Science, Aarhus University, Aarhus, Denmark
{cbaum,ivan,larsen,mik}@cs.au.dk

Abstract. We propose a new zero-knowledge protocol applicable to
additively homomorphic functions that map integer vectors to an Abelian
group. The protocol demonstrates knowledge of a short preimage and
achieves amortised efficiency comparable to the approach of Cramer and
Damg̊ard from Crypto 2010, but gives a much tighter bound on what
we can extract from a dishonest prover. Towards achieving this result,
we develop an analysis for bins-and-balls games that might be of inde-
pendent interest. We also provide a general analysis of rewinding of a
cut-and-choose protocol as well as a method to use Lyubachevsky’s rejec-
tion sampling technique efficiently in an interactive protocol when many
proofs are given simultaneously.

Our new protocol yields improved proofs of plaintext knowledge for
(Ring-)LWE-based cryptosystems, where such general techniques were
not known before. Moreover, they can be extended to prove preimages
of homomorphic hash functions as well.

Keywords: Proofs of plaintext knowledge · Lattice-based encryption ·
Homomorphic hashing · Integer commitments

1 Introduction

Proofs of Knowledge. In a zero-knowledge protocol, a prover convinces a
sceptical verifier that some claim is true (and in some cases that he knows a
proof) while conveying no other knowledge than the fact that the claim is true.
Zero-knowledge protocols are one of the most fundamental tools in cryptographic
protocol design. In particular, one needs zero-knowledge proofs of knowledge in
multiparty computation to have a player demonstrate that he knows the input
he is providing. This is necessary to be able to show (UC-)security of a protocol.

C. Baum, I. Damg̊ard and M. Nielsen—Supported by The Danish National Research
Foundation and The National Science Foundation of China (under the grant
61061130540) for the Sino-Danish Center for the Theory of Interactive Computa-
tion, within which part of this work was performed; by the CFEM research center
(supported by the Danish Strategic Research Council) within which part of this work
was performed; and by the Advanced ERC grant MPCPRO.
K.G. Larsen—Supported by the Center for Massive Data Algorithmics, a Center of
the Danish National Research Foundation, grant DNRF84, a Villum Young Investi-
gator Grant and an AUFF Starting Grant.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 478–498, 2016.
DOI: 10.1007/978-3-662-53015-3 17

How to Prove Knowledge of Small Secrets 479

In this work, we will consider one-way functions f : Z
r �→ G where G is

an Abelian group (written additively in the following), and where furthermore
the function is additively homormorphic, i.e., f(a) + f(b) = f(a + b). We will
call such functions ivOWF ’s (for homomorphic One-Way Functions over Integer
Vectors). This turns out to be a very general notion: the encryption function of
several (Ring-)LWE-based cryptosystems can be seen an ivOWF (such as the
one introduced in [BGV12] and used in the so-called SPDZ protocol [DPSZ12]).
Even more generally, the encryption function of any semi-homomorphic cryp-
tosystem as defined in [BDOZ11] is an ivOWF. Also, in commitment schemes
for committing to integer values, the function one evaluates to commit is typ-
ically an ivOWF (see, e.g., [DF02]). Finally, hash functions based on lattice
problems such as [GGH96,LMPR08], where it is hard to find a short preimage,
are ivOWFs.

We will look at the scenario where a prover P and a verifier V are given
y ∈ G and P holds a short preimage x of y, i.e., such that ||x || ≤ β for some
β. P wants to prove in zero-knowledge that he knows such an x . When f is an
encryption function and y is a ciphertext, this can be used to demonstrate that
the ciphertext decrypts and P knows the plaintext. When f is a commitment
function this can be used to show that one has committed to a number in a
certain interval.

An obvious but inefficient solution is the following 3-message protocol π:

(1) P chooses r at random such that ||r || ≤ τ · β for some sufficiently large τ ,
the choice of which we return to below.

(2) P then sends a = f(r) to V.
(3) V sends a random challenge bit b.
(4) P responds with z = r + b · x .
(5) V checks that f(z) = a + b · y and that ||z || ≤ τ · β.

If τ is sufficiently large, the distribution of z will be statistically independent of
x , and the protocol will be honest verifier statistical zero-knowledge1. On the
other hand, we can extract a preimage of y from a cheating prover who can
produce correct answers z 0, z 1 to b = 0, b = 1, namely f(z 1 − z 0) = y. Clearly,
we have ||z 1−z 0|| ≤ 2 ·τ ·β. We will refer to the factor 2τ as the soundness slack
of the protocol, because it measures the discrepancy between the interval used
by the honest prover and what we can force a dishonest prover to do. The value
of the soundness slack is important: if f is, e.g., an encryption function, then a
large soundness slack will force us to use larger parameters for the underlying
cryptosystem to ensure that the ciphertext decrypts even if the input is in the
larger interval, and this will cost us in efficiency.

The naive protocol above requires an exponentially large slack to get zero-
knowledge, but using Lyubachevsky’s rejection sampling technique, the sound-
ness slack can made polynomial or even constant (at least in the random oracle
model).
1 We will only be interested in honest verifier zero-knowledge here. In applications one

would get security for malicious verifiers by generating the challenge in a trusted way,
e.g., using a maliciously sure coin-flip protocol.

480 C. Baum et al.

The obvious problem with the naive solution is that one needs to repeat the
protocol k times where k is the statistical security parameter, to get soundness
error probability 2−k. This means that one needs to generate Ω(k) auxiliary
f -values. We will refer to this as the overhead of the protocol and use it as a
measure of efficiency.

One wants, of course as small overhead and soundness slack as possible, but
as long as we only want to give a proof for a single f -value, we do not know
how to reduce the overhead dramatically in general. But if instead we want to
give a proof for k or more f -values, then we know how to reduce the amortised
overhead: Cramer and Damg̊ard [CD09] show how to get amortised overhead
O(1), but unfortunately the soundness slack is 2Ω(k), even if rejection sampling
is used. In [DKL+13] two protocols were suggested, where one is only covertly
secure, and we will not consider it here as our goal is full malicious security. The
other one can achieve polynomial soundness slack with overhead Ω(log(k)2) and
works only in the random oracle model2.

1.1 Contributions and Techniques

In this work, we introduce a new paradigm for zero-knowledge proof of knowledge
of preimage under an ivOWF, abbreviated ZKPoKP. For the first time, we are
able to optimize both parameters, namely we obtain quasi-polynomial soundness
slack (proportional to (2k + 1)log(k)/2) and o(1) ciphertext overhead, all results
hold in the standard model (no random oracles are needed).

For our zero-knowledge proof, we use the following high-level strategy:

(1) Use a cut-and-choose style protocol for the inputs y1, . . . , yn.
(2) Repeat the following experiment several times:

(2.1) Let the verifier randomly assign each yi to one of several buckets.
(2.2) For each bucket, add all elements that landed in the bucket and have

the prover demonstrate that he knows a preimage of the sum.

The intuition behind the proof then goes as follows: the first step will ensure that
we can extract almost all of the required n preimages, in fact all but k where
k is the security parameter. In the second step, since we only have k elements
left that were “bad” in the sense that we could not yet extract a preimage,
then if we have more than k buckets, say ck for a constant c > 1, there is a
significant probability that many of the bad elements will be alone in a bucket.
If this happens, we can extract a preimage by linearity of f . Furthermore, the
cost of doing such a step is at most n additions, plus work that only depends
on the security parameter k and is insignificant if n � k. We can now repeat
the experiment some number of times to extract the remaining bad elements,

2 The protocol in [DKL+13] is actually stated as a proof of plaintext knowledge for
random ciphertexts, but generalizes to a protocol for ivOWFs. It actually offers a
tradeoff between soundness slack and overhead in the sense that the overhead is
M · log(k), where M has to be chosen such that (1/s)M is negligible. Thus one can
choose s to be poly(k) and M = log(k), or s to be constant and M = k.

How to Prove Knowledge of Small Secrets 481

while adjusting the number of buckets carefully. We are then able to prove that
we can extract all preimages quickly, namely after log(k) repetitions, and this is
what give us the small soundness slack. In comparison, in [CD09], the extraction
takes place in Ω(k) stages, which leads to an exponential soundness slack.

Along the way to our main result, we make two technical contributions: first,
we show a general result on what you can extract by rewinding from a prover
that successfully passes a cut-and-choose test. Second, we show a method for
using rejection sampling efficiently in an interactive protocol. In comparison, the
protocol from [DKL+13] also used rejection sampling to reduce the soundness
slack, but in a more simplistic way that leads to a larger overhead. See Sect. 3.1
for more information on this.

Our protocol is honest verifier zero-knowledge and is sound in the sense of a
standard proof of knowledge, i.e., we extract the prover’s witness by rewinding.
Nevertheless, the protocol can be readily used as a tool in a bigger protocol that
is intended to be UC secure against malicious adversaries. Such a construction is
already known from [DPSZ12]. See more details in Sect. 4. Here we also explain
more concretely how to use our protocol when f is an encryption function.

1.2 Related Work

On a high level, our approach is related to Luby Transform (LT) codes [Lub02]:
here, a sender encodes a codeword by splitting it into blocks of equal size and
then sending random sums of these, until the receiver is able to reconstruct
all such blocks (because all sums are formed independently, this yields a so-
called erasure code). We could actually use the LT code approach to construct a
protocol like ours, but it would not be a good solution: LT codes do not have to
consider any noise expansion because they handle vectors over Z2, rather than
integer vectors. This is a problem since in the worst case a block is reconstructed
after n operations, where n is the number of blocks in total, which yields a noise
bound that is exponential.

The same bound can be achieved using the technique due to Cramer and
Damg̊ard [CD09]. The main technique is to prove linear combinations of cipher-
texts using regular 1 out of 2 zero-knowledge proofs. If enough equations are
proven correctly, then one can use gaussian elimination to recompute the plain-
texts. Unfortunately (as with LT codes) this leads to a blowup in the preimage
size that can be exponential, which is not desireable for practical applications.

A different amortization technique was introduced in [DKL+13] and further
improved in the full version of [BDTZ16]. The basic idea here is to produce
a large number of auxiliary ciphertexts, open a part of them and open sums
of the plaintexts to be proven and the plaintexts of the auxiliary ciphertexts.
This experiment is repeated multiple times, and a combinatorial argument as in
[NO09] can then be used to estimate the error probability. As already mentioned
above, this proof technique needs Ω(log(k))2 auxiliary ciphertexts per proven
plaintext, which can be quite substantial for practical applications.

There has been other work conducted for specialized instances of ivOWFs,
such as e.g. the proof of plaintext knowledge from [BCK+14] which only applies

482 C. Baum et al.

to Ring-LWE schemes3. Moreover the protocol of [LNSW13] can be applied to
ivOWFs with a lattice structure, but the protocol comes with a large soundness
gap per instance.

Notation. Throughout this work we will format vectors such as b in lower-case
bold face letters, whereas matrices such as B will be in upper case. We refer to
the ith position of vector b as b[i], let [r] := {1, ..., r} and define for b ∈ Z

r that
||b|| = maxi∈[r]{|b[i]|}. To sample a variable g uniformly at random from a set

G we use g
$←− G. Throughout this work we will let λ be a computational and k

be a statistical security parameter. Moreover, we use the standard definition for
polynomial and negligible functions and denote those as poly(·), negl(·).

2 Homomorphic OWFs and Zero-Knowledge Proofs

In this section we will present an abstraction that covers as a special case proofs
of plaintext knowledge for lattice-based cryptosystems, and many other cases
as well, as explained in the introduction. We call the abstraction homomorphic
one-way functions over integer vectors. It follows the standard definition of a
OWF which can be found in [KL14].

Let λ ∈ N be the security parameter, G be an Abelian group, β, r ∈ N,
f : Zr → G be a function and A be any algorithm. Consider the following game:

InvertA,f,β(λ):

(1) Choose x ∈ Z
r, ||x || ≤ β and compute y = f(x).

(2) On input (1λ, y) the algorithm A computes an x ′.
(3) Output 1 iff f(x ′) = y, ||x ′|| ≤ β, and 0 otherwise.

Definition 1 (Homomorphic OWF over Integer Vectors (ivOWF)). A
function f : Zr → G is called a homomorphic one-way function over the integers
if the following conditions hold:

(1) There exists a polynomial-time algorithm evalf such that evalf (x) = f(x)
for all x ∈ Z

r.
(2) For all x,x′ ∈ Z

r it holds that f(x) + f(x′) = f(x + x′).
(3) For every probabilistic polynomial-time algorithm A there exists a negligible

function negl(λ) such that

Pr[InvertA,f,β(λ) = 1] ≤ negl(λ)

Our definition is rather broad and does capture, among other primitives,
lattice-based encryption schemes such as [BGV12,GSW13,BV14] where the one-
way property is implied by IND-CPA and β is as large as the plaintext space.
Moreover it also captures hash functions such as [GGH96,LMPR08], where it is
hard to find a preimage for all sufficiently short vectors that have norm smaller
than β.
3 Their approach only almost yields a proof a plaintext knowledge, due to technical

limitations.

How to Prove Knowledge of Small Secrets 483

2.1 Proving Knowledge of Preimage

Consider a setting with two parties P and V. P holds some values x 1, ...,xn ∈ Z
r,

V has some y1, ..., yn ∈ R and P wants to prove towards V that yi = f(x i)
and that x i is short, while not giving any knowledge about the x i away. More
formally, the relation that we want to give a zero-knowledge proof of knowledge
for is

RKSP =
{

(v, w)
∣∣∣∣ v = (y1, ..., yn) ∧ w = (x 1, ...,xn)∧

[
yi = f(x i) ∧ ||x i|| ≤ β

]
i∈[n]

}

However, like all other protocols for this type of relation, we will have to
live with a soundness slack τ as explained in the introduction. What this means
more precisely is that there must exist a knowledge extractor with properties
exactly as in the standard definition of knowledge soundness, but the extracted
values only have to satisfy [yi = f(x i) ∧ ||x i|| ≤ τ · β]i∈[n].

3 Proofs of Preimage

We start by constructing an imperfect proof of knowledge. That is, the protocol
will allow to prove the above relation with a certain soundness slack, but the
knowledge extractor is only required to extract almost all preimages. Further-
more, we will use this protocol as a subprotocol in our actual proof of knowledge.
To show knowledge soundness, Goldreich and Bellare [BG93] have shown that it
is sufficient to consider deterministic provers, therefore we only need to consider
deterministic provers when proving the subprotocol.

On the Use of Rejection Sampling. Conceptually, the idea is to run the naive 3-
message protocol π from the intro once for each of the n instances to prove. How-
ever, in order to have a small soundness slack, we want to make use of Lyuba-
shevsky’s rejection sampling technique [Lyu08,Lyu09]. The idea here is that the
prover will sometimes abort the protocol after seeing the challenge if he notices
that the random choices he made in the first message will lead him to reveal infor-
mation about his witness if he were to send the final message. This is fine when
used with the Fiat-Shamir heuristic because the prover only has to communicate
the successful execution(s). But in our interactive situation, one has to allow for
enough failed attempts so that the honest prover will succeed. The most straight-
forward idea is to have the prover start up one execution of π in parallel for each
instance, complete those that are successful and try again for the rest (this was
essentially the approach taken in [DKL+13]). The expected number of attempts
needed is constant, so we get a protocol that is expected constant round, but may
sometimes run for a longer time. Alternatively, the prover could start so many
attempts in parallel for each instance that he is sure to finish one of them. This
will be exact constant round but wasteful in terms of work needed.

484 C. Baum et al.

Here, we obtain the best of both worlds. The idea is the following: we can
make a large list L of T candidates for the prover’s first message, and then
do standard cut-and-choose where we open half of them to show that most of
the remaining ones are correctly formed. Now, for every instance to prove, the
prover will take the first unused one from L that leads to success and complete
the protocol for that one. Again, since the expected number of attempts for one
instance is very close to 1, and we run over many instances, L only needs to be
of length O(n), the prover will run out of candidates only with negligible prob-
ability. Further, since this can all be done in parallel, we get an exact constant
round protocol.

On Extraction by Rewinding from Cut-and-Choose. When we need to extract
knowledge from the prover in the imperfect proof, we need to exploit the fact
that we do cut-and-choose on the list of candidates L as mentioned above, where
each candidate is an image under f . If we just wanted to establish that most of
the candidates are well formed in the sense that they are images of short enough
inputs, it would be easy: if each candidate is opened with probability 1/2, then
if more than k candidates are not well formed, the prover clearly survives with
probability at most 2−k. However, we have to actually extract preimages of
almost all candidates. Since we want to avoid using random oracles or other
set-up assumptions, we can only resort to rewinding. Now it is not so clear what
happens: it may be that all candidates are well formed, but the corrupt prover
has some (unknown to us) strategy for which challenges he wants to respond to
correctly. All we know is that he will answer a non-negligible fraction of them.
We show that nevertheless, there is a rewinding strategy that will do almost as
well as in the easy case, and we treat this in a separate general lemma, as we
believe the solution to this is of independent interest.

To establish this general point of view, consider any polynomial time com-
putable function g : X �→ Y and a generic protocol between a prover P and a
verifier V we call PCutnChoose that works as follows:

(1) P chooses x1, ..., xT ∈ X such that all xi satisfy some predicate pre, we say
xi is good if it satisfies pre.

(2) P sets yi = g(xi) for all i and sends y1, ..., yT to V.
(3) V chooses s ∈ {0, 1}T uniformly at random and sends it P.
(4) P returns {xi | s[i] = 0} and V accepts if yi = g(xi) whenever s[i] = 0 and

each such xi is good.

Lemma 1 (Cut-and-Choose Rewinding Lemma). There exists an extrac-
tor E such that the following holds: for any (deterministic) prover P̂ that makes
the verifier in PCutnChoose accept with probability p > 2−k+1, where T is polyno-
mial in k, E can extract from P̂ at least T −k good xi-values such that g(xi) = yi.
E runs in expected time proportional to O(poly(s) · k2/p), where s is the size of
the inputs.

Proof. Let P̂ be a deterministic prover that makes V accept in PCutnChoose with
probability p > 2−k+1. Consider the following algorithm E :

How to Prove Knowledge of Small Secrets 485

(1) Start P̂, who in turn outputs y1, ..., yT .
(2) Run T instances of P̂ in parallel, which we denote P̂1, ..., P̂T .
(3) Let A = ∅ and do the following until |A| ≥ T − k:

(3.1) For each P̂i sample a random challenge si
$←− {0, 1}T , subject to si[i] = 0

and run each P̂i on challenge si.
(3.2) For each instance P̂i that does not abort, check that the prover’s response

contains xi such that f(xi) = yi. If so, then A = A ∪ {xi}.
(4) Output A.

We will now show that E runs in the required time. Denote the probability that
P̂i outputs a good xi in step (3) as pi. We will say that pi is bad if pi < p/k,
and good otherwise.

Let Xi be the event that P̂i eventually outputs a good xi, where Xi = 1 if
the event happened or Xi = 0 otherwise. If pi is good then, after α iterations

Pr[Xi = 0] = (1 − p/k)α ≤ e−p/k·α

so after at most α = k2/p iterations we can expect that xi was extracted except
with probability negligible in k. This can then be generalized to the success of
all P̂i (where pi is good) by a union bound, and the probability of failing is still
negligible because T is polynomial in k. Since the experiment of running k2/p
iterations produces success for all good pi with probability essentially 1, the
expected number of times we would need to repeat it to get success is certainly
not more than 2, so the claimed expected run time follows, provided there are
less than k bad pi.

Hence, for the sake of contradiction, assume that there are k bad pi which,
for simplicity, are p1, ..., pk. In the protocol, the challenge s is chosen uniformly
at random. The success probability of P̂ can be conditioned on the value of s[1]
as

p = Pr[P̂ succeeds] = 1/2 · p1 + 1/2 · Pr[P̂ succeeds | s[1] = 1]

since p1 is only of our concern if s[1] = 0. Conditioning additionally on s[2]
yields

p ≤ 1/2 · p1 + 1/2 · (1/2 · 2 · p2 + 1/2 · Pr[P̂ succeeds | s[1] = 1 ∧ s[2] = 1])
= 1/2 · (p1 + p2) + 1/4 · Pr[P̂ succeeds | s[1] = 1 ∧ s[2] = 1]

The reason the inequality holds is as follows: the probability that a random
challenge asking to open a2 will yield a preimage of a2 is p2. Now, conditioning
on s[1] = 1, which occurs with probability 1/2, will increase that probability
from p2 to at most 2p2.

Repeating the above argument generalizes to

p = Pr[P̂ succeeds] ≤ 1/2 · (p1 + ... + pk) +
2−k · Pr[P̂ succeeds | s[1] = 1 ∧ ... ∧ s[k] = 1]

< 1/2 · p + 2−k

which follows since the first k pi were bad. But this last inequality implies p <
2−k+1, and this contradicts the assumption we started from, that p > 2−k+1. �

486 C. Baum et al.

3.1 The Imperfect Proof of Knowledge

We assume the existence of an auxiliary commitment scheme Caux that is com-
putationally hiding and perfectly binding, and which allows to commit to values
from the group G that f maps into. The reason we need it is quite subtle and will
show up in the proof of security of PImperfectProof. We will denote a commitment
using Caux to a value x ∈ G as Caux(x) (Fig. 1).

Fig. 1. Imperfect proof for the relation RKSP

Theorem 1. Let f be an ivOWF, k be a statistical security parameter, Caux be a
perfectly binding/computationally hiding commitment scheme over G, τ = 100 ·r
and T = 3·n, n ≥ max{10, k}. Then PImperfectProof has the following properties:

Correctness: If P,V are honest and run on an instance of RKSP, then the
protocol succeeds with probability at least 1 − negl(k).

Soundness: For every deterministic prover P̂ that succeeds to run the protocol
with probability p > 2−k+1 one can extract at least n − k values x′

i such that

How to Prove Knowledge of Small Secrets 487

f(x′
i) = yi and ||x′

i|| ≤ 2 · τ · β, in expected time O(poly(s) · k2/p) where s is
the size of the input to the protocol.

Zero-Knowledge: The protocol is computational honest-verifier zero-
knowledge.

Proof.

Completeness. By the homomorphic property of f , all the checked equations
hold. The protocol can only abort if P aborts, which can only happen in step
(7). We first show that |C| ≥ 1.1 · n with all but negligible probability for large
enough n. Using this, we show that Pr[PImperfectProof aborts | |C| ≥ 1.1 · n] is
negligible in n.

Let #1(s) denote the number of ones in s, then #1(s) ∼ BIN 1/2,T where
BIN is the Binomial distribution. Using the Chernoff bound we obtain

Pr[#1(s) ≤ 1.1 · n | s $←− {0, 1}T] ≤ exp
(

− 2
(1/2 · T − 1.1 · n)2

T

)

= exp
(−32

300
· n

)

Since n ≥ k this becomes negligible for large enough n and we can assume that
|C| ≥ 1.1 · n.

Consider a single coordinate of a z i. The chance that it fails the bound
is 1/τ . Each vector has length r, so z i exceeds the bound with probability
r/τ = 1/100. In such a case, P would take the next (independently chosen) g j

and try again. The ith attempt of P is denoted as Xi, where Xi = 1 if he fails and
0 otherwise. We allow P to do at most T of these attempts4. Then Xi ∼ B1/100

and X ∼ BIN 1/100,T ,X =
∑

Xi. We set X = 1
T X where E[X] = 1/100. Using

Hoeffding’s inequality, one can show that the probability of failure is

Pr[X − E[X] ≥ 0.09] ≤ exp
(

− 2.2 · n · 0.092
)

which is negligible in k since we assume n ≥ k.5

Soundness. Let P̂ be a deterministic prover that makes an honest V accept
PImperfectProof with probability p > 2−k+1. Consider the following algorithm
EImperfectProof :

(1) Start P̂, who in turn outputs d = (d1, ..., dT).
(2) Observe that the first part of the protocol is an instance of PCutnChoose with

g = Caux ◦ f and where a preimage g i is good if ||g i|| ≤ τ · β, We therefore
run the extractor E guaranteed by Lemma 1 which gives us a set A with
T − k good g i-values.

4 The probability that P needs more auxiliary ciphertexts is ≈ 0.63n and therefore
negligible in n.

5 In fact, setting n = 40 already makes P abort with probability 2−10.

488 C. Baum et al.

(3) Let X = ∅ and do the following until |X| ≥ n − k:
(3.1) Run a regular instance with P̂.
(3.2) If the instance was accepting, then for each z i with a corresponding

g j ∈ A, j ∈ C add the preimage to X, i.e. X = X ∪ {z i − g j}.
(4) Output X.

We will now show that EImperfectProof runs in the required time. The run-time
of E was established in Lemma 1. Using the set A it outputs, we can now argue
that step (3) also terminates as required: EImperfectProof reaches step (3.2) after
an expected number of 1/p rounds. At most k of the T preimages of aj are not
given in A and therefore step (3.2) is only executed once. From the bound on
the ai, the bound on the extracted x i immediately follows.

Zero-Knowledge. Consider the following algorithm SImperfectProof

(1) On input (v = (y1, ..., yn), T, τ, β) sample the string s
$←− {0, 1}T as in the

protocol.
(2) Compute the sets C,O as in PImperfectProof. For each i ∈ O sample g i ∈

Z
r, ||g i|| ≤ τ · β and set ai = f(g i) as well as di = Caux(ai).

(3) For i ∈ C sample z i ∈ Z
r, ||z i|| ≤ τ · β uniformly at random. Let Z ′ := {i ∈

C | ||z i|| ≤ (τ − 1) · β}.
(4) If |Z ′| < n then for i ∈ C set g i = z i, ai = f(z i), di = Caux(ai), output

(s, d1, ..., dT , (ai, g i)i∈O) and abort.
(5) If |Z ′| ≥ n then let Z be the first n elements of Z ′. For each i ∈ C \ Z set

ai = f(z i), di = Caux(ai).
(6) Denote Z as Z = {i1, ..., in}. For all ij ∈ Z set aij = f(z ij) − yj , dij =

Caux(aij).
(7) Output (s, d1, ..., dT , (ai, g i)i∈O, Z, (ai, z i)i∈Z).

In the simulation, we can assume that there exists a witness w for v accord-
ing to relation RKSP. We first observe that if an ai and its randomness when
generating a di are ever revealed, then it holds that di = Caux(ai). For those
commitments that are not opened the computational hiding property implies
that their distribution in the simulated case is indistinguishable from the real
protocol.

What remains to study is the abort probability of the protocol, the sets
C,O,Z and the ai, zi, g i. The choice of C,O is identical in PImperfectProof,
SImperfectProof for an honest verifier since they are computed the same way.

Abort Probability and Z. The probability of abort of SImperfectProof in step (4)
is the same as in (7) in PImperfectProof. This indeed is true if #1(s) < n and
also if #1(s) ≥ n, |Z ′| < n. The second is a little more subtle and can be seen
by arguing what the chance is that a certain z i ends up in Z ′: for the sake
of simplicity, assume n = r = 1 since all these vectors and their entries are
chosen i.i.d. In the above simulator, z ∈ [−τ · β, τ · β] was chosen uniformly at
random. Hence z �∈ Z ′ with probability 1/100. In the case of PImperfectProof we
have z = x + g where g ∈ [−τ · β, τ · β] was chosen uniformly at random and
x ∈ [−β, β], i.e. z ∈ [−τ · β + x, τ · β + x] chosen uniformly at random from a

How to Prove Knowledge of Small Secrets 489

shifted interval of equal length. But [−(τ −1) ·β, (τ −1) ·β] ⊂ [−τ ·β+x, τ ·β+x]
always holds due to the upper bound of x, hence the probability of abort is also
1/100. By the same reasoning, Z has the same distribution in SImperfectProof

and PImperfectProof.

Distribution of g j , aj for j ∈ O. Due to the homomorphism of f , the checks from
step (9) do also hold on the simulated output. For all j ∈ O the distribution of
the g j , aj is the same in both the protocol and SImperfectProof as the values are
chosen exactly the same way.

Distribution of z i, ai for i ∈ Z. Consider the distribution of the z ij , aij for ij ∈ Z
when SImperfectProof runs successfully. By the above argument, the distribution
of the z ij is independent of the x j in PImperfectProof. In PImperfectProof exactly
those z ij will be sent to V where z ij = g ij +x j is in the correct interval. Since by
our assumption there exists a witness w = (x ′

1, ...,x
′
n) then due to the linearity

of f there must exist a g ′
ij

of the same bound as the g i in the protocol, where
aij = f(g ′

ij
) by linearity.

Why Using Caux? It may not be directly obvious from the above proof why
the commitment Caux is necessary. But a problem can occur in step (7) of
PImperfectProof with the elements with indices from C\Z: although the simulator
can simulate perfectly the choice of this set, we would have a problem if we had
to reveal the corresponding f(g i)-values. The issue is that the g i’s should be
values that cause an abort and we cannot choose such values unless we know
the corresponding secrets. One solution is to apply f to a random input and
make a non-standard assumption that this cannot be distinguished from the
real thing, but this is undesirable. Instead, sending Caux(ai) allows to both hide
the distribution, while soundness is still guaranteed because Caux ◦ f is hard to
invert due to the binding property of Caux. �

3.2 The Full Proof of Knowledge

We use the above imperfect protocol as a building block of the actual proof.
After executing it with the (x i, yi) as input, we can assume that a preimage of
most of the yi’s (in fact, all but k) can be extracted from the prover.

Our strategy for the last part of the protocol is to repeat the following pro-
cedure several times: we let the verifier randomly assign each yi to one of several
buckets. Then, for each bucket, we add all elements that landed in the bucket
and have the prover demonstrate that he knows a preimage of the sum. The
observation is that since we only have k elements left that were “bad” in the
sense that we could not yet extract a preimage, then if we have more than k
buckets, say ck for a constant c > 1, there is a significant probability that many
of the bad elements will be alone in a bucket. If this happens, we can extract
a preimage by linearity of f . Furthermore, the cost of doing such a step is at
most n additions, plus work that only depends on the security parameter k and
is insignificant if n � k. Now, by repeating this game some number of times
with the right number of buckets, we shall see that we can extract all preimages
quite quickly.

490 C. Baum et al.

In the following, the experiment where we throw n values randomly into b
buckets will be denoted Exp(b, n). As is apparent from the above discussion,
we will need to analyse the probability that the bad values will be “killed” by
being alone in a bucket. That is, we need to consider Exp(b, v), where v ≤ k
can be thought of as the number of bad elements. We will say that an element
survives if it is not alone in a bucket. We will write t independent repetitions
of the experiment as Expt(b, v) and we say that an element survives this if it
survives in every repetition. The following lemma will be helpful:

Lemma 2. Notation as above. Consider Expt(b, v) and assume b ≥ 4v and
t ≥ 8. Then the probability p that at least v/4 elements survive satisfies p ≤ 3v

4 εtv,
where ε = e5/32

25/16
≈ 0.94.

Proof. Consider the event of exactly s bad elements surviving Expt(b, v) where
s ≥ v/4. The s surviving elements could be any of the v values, but must cover
less than s/2 buckets in each repeated experiment, since surviving elements are
not alone in a bucket. From this we get the bound

Pr [s survive] ≤
(

v

s

)((
b

s/2

)(
s/2
b

)s)t

on which we apply upper bounds on the binomial coefficients:

≤
(ve

s

)s
((

be

s/2

)s/2 (
s/2
b

)s
)t

=
(ve

s

)s (se

2b

)ts/2

=
((ve

s

)1/t (se

2b

)1/2
)ts

and finally maximize using b ≥ 4v, t ≥ 8 and s ∈ [v/4, v]:

≤
((

ve

v/4

)1/8 (ve

2 · 4v

)1/2
)tv/4

=
(

(4e)1/8
(e

8

)1/2
)tv/4

=
(

e5/32

25/16

)tv

Using this we can bound the probability p by union bound:

p = Pr
[
≥ v

4
survive

]
≤

v∑
s=v/4

Pr [s survive] ≤ 3v

4

(
e5/32

25/16

)tv

�

How to Prove Knowledge of Small Secrets 491

Before we continue, let us discuss the implications of the above Lemma. First,
due to the first equation of the proof we yield that, except with probability p,
in an instance of Expt(b, v) at least one of the t iterations contains at least 3v/4
buckets with single elements. A second, somewhat surprising fact is that for fixed
values of t, b the probability p is not monotone in v. This will be particularly
difficult, as we only know upper bounds on the value v in the proof of the main
protocol.

Our soundness argument implicitly defines an extraction algorithm that runs
in log2(k) rounds, where in each round the same total number of buckets is used
(the number of buckets per iteration drops in half, but the total number of
iterations per round doubles). What we then show (using the above Lemma) is
that the upper bound on the number of unextracted preimages is reduced by a
factor of 2 between each two successive rounds, while the error probability stays
somewhat constant. This is due to the following thought experiment: assume as
an invariant that, for O(k) buckets and k balls, at least k/2 of these balls land
in their own bucket except with probability 2−O(k). By running the experiment
again, we see that the error probability now increases because we now only
use k/2 balls. But by independently running the experiment twice, one obtains
that half of the k/2 balls are alone (in one of the two experiments) except
with essentially the same probability as before. This now allows for a recursive
extraction strategy.

Theorem 2. Let f be an ivOWF, k be a statistical security parameter, β be a
given upper bound and n > k · log2(k). Then PCompleteProof is an interactive
honest-verifier zero-knowledge proof of the relation RKSP with knowledge error
2−k+1. More specifically, it has the following properties (Fig. 2):

Correctness: If P,V are honest then the protocol succeeds with probability at
least 1 − 2−O(k).

Soundness: For every deterministic prover P̂ that succeeds to run the protocol
with probability p > 2−k+1 one can extract n values x′

i such that f(x′
i) = yi

and ||x′
i|| ≤ O((2k + 1)log2(k)/2 · n · r · β) except with negligible probability, in

expected time poly(s, k)/p, where s is the size of the input to the protocol.
Zero-Knowledge: The protocol is computational honest-verifier zero-

knowledge.

Proof.

Correctness. The first call to PImperfectProof in step (1) will succeed with all
but negligible probability due to Theorem1. For each i in step (2) the experiment
is repeated 2i+4 times using 4k ·2−i buckets, hence the total number of sums for
each such round is 64k which determines h. A set Ij as chosen in step (3) can have
size at most n by definition, therefore ||δj || ≤ β · n. The call to PImperfectProof

in step (4) will then be successful according to Theorem 1 with overwhelming
probability.

Soundness. We will first prove the existence of an efficient extractor, then give
a bound on the extraction probability and only establish the bound on the norm
of the preimage afterwards.

492 C. Baum et al.

Fig. 2. A protocol to prove the relation RKSP

An Efficient Extractor. From the subprotocol used in step (1) and Theorem 1 all
but k of the n ciphertexts can be extracted. The same holds for step (4) from
which we can argue that at most k of the h sums are proven incorrectly. For
each i, observe that of the ti = 2i+4 iterations, there must be at least 2i+3 of
them that each contain at most 2−i · k/4 bad buckets. For otherwise, we would
have at least 2i+3 iterations that each have at least 2−i ·k/4 buckets which adds
up to 2k bad buckets.

For i = 0, 1, .. the number of bad values entering into the experiment
Expti(bi, n) is vi ≤ k · 2−i, except with negligible probability (we will consider
the error probability later). This can be seen as follows: for i = 0, we have v0 ≤ k
due to step (1). So let vi ≤ 2−ik, then by the proof of Lemma2 at least one of the
2i+3 iterations, 3/4 ·vi or more buckets contain only one of the not-yet extracted
elements and can hence be extracted now. For this instance, we established that
at most 2−i · k/4 of the sums can be bad, hence

vi+1 ≤ vi/4 + k/4 · 2−i ≤ k/4 · 2−i + k/4 · 2−i = k · 2−i−1

Hence after Expti(bi, vi) we can extract at least vi/2 of the ciphertexts. In the last
round we have vlog2(k)

≤ 2 and must prove that after Exptlog2(k)(blog2(k)
, vlog2(k)

),
no unextracted preimages are left. Therefore consider the following two cases:

vlog2(k)
= 1 In this case, for the experiment to fail the remaining unextracted

preimage must be in the bad sum for all 8k instances. For each such instance,
there are 4 buckets out of which at most 1 can be bad. The extraction will
hence only fail with probability 2−16k.

vlog2(k)
= 2 To be able to extract, we want both unextracted preimages to be in

different buckets and none of them in a bad bucket. The chance that the first

How to Prove Knowledge of Small Secrets 493

preimage ends up in a bad bucket is 1/4, and the second preimage can either
fall into the bucket with the first preimage (with probability 1/4) or in the
bad bucket, so in total with probability at most 3/4 one of the 8k iterations
will fail, and all will be bad with probability at most (3/4)8k < 2−2k.

By a union bound, the last experiment will fail with probability at most plog2(k) =
2−k.

For rounds i = 0, ..., log2(k) − 1, the extractor will only extract from the
experiment i if k · 2−i−1 ≤ vi ≤ k · 2−i and otherwise safely continue with round
i + 1. By Lemma 2, extraction will fail in this round with probability at most

pi ≤ max
ṽi∈[k·2−i−1,k·2−i]

{3/4ṽi · εti·ṽi}

< 3/4k · 2−i · ε2
i+3·k·2−i−1

= 3k · 22−i · ε4k

because the actual value of vi is unknown. The extraction process can fail if it
fails in one of the experiments. By a union bound, we obtain

p0 + ... + plog2(n)
< 3k · 22 · ε4k + ... + 3k · 22−log2(k)+1 · ε4k + 2−k

= 3k · ε4k ·
log2(k)−1∑

j=0

22−j + 2−k

< 24k · ε4k + 2−k

which is in 2−O(k) because ε < 1 and constant. Since soundness for Theorem1
fails with probability 2−O(k) as well, this proves the claim.

Extraction Bound. Let τ = 100r be the slackness chosen for the instances of
innerProof. Consider a value x ′

i extracted in round 0, i.e. there exists a good
δj , i ∈ Ij such that x ′

i = δj − ∑
o∈Ij\{x ′

i} x
′
o where all such x ′

o were already
extracted from PImperfectProof in step (1). Then

||x ′
i|| ≤ ||δj −

∑
o∈Ij\{i}

x ′
o||

≤ ||δj || + ||
∑

o∈Ij\{i}
x ′

o||

≤ 2 · τ · n · β + (n − 1) · 2 · τ · β

< 4 · n · τ · β

:= β0

In round 1 each preimage that we extract will be a sum of preimage known from
the cut-and-choose phase and those from round 0, where from the last round at
most k/2 can be part of the sum. Calling this upper bound β1 we obtain

β1 = 2 · τ · n · β +
k

2
β0

494 C. Baum et al.

The above argument easily generalizes to an arbitrary round i > 0 where it
then holds that

βi = 2 · τ · n · β +
i−1∑
j=1

k

2j
βj−1

because in round 0 we extracted at most k/2 preimages, in round 1 k/4 and so
on. In particular, the above can be rewritten as

βi = 2 · τ · n · β +
i∑

j=1

k

2j
βj−1

= 2 · τ · n · β +
i−1∑
j=1

k

2j
βj−1 +

k

2i
βi−1

≤ βi−1 +
k

2i
βi−1

=
(

k

2i
+ 1

)
βi−1

In particular, for the bound on the last preimages that are extracted in round
log2(k) one obtains

βlog2(k)
=

log2(k)−1∏
i=1

(
k

2i
+ 1

)
β0

To compute a bound on the leading product, we consider the square of the
above bound and reorder the terms as

log2(k)−1∏
i=1

(
k

2i
+ 1

)2

=
log2(k)−1∏

i=1

(
k

2i
+ 1

) (
k

2log2(k)−i
+ 1

)

=
log2(k)−1∏

i=1

(
k +

k

2i
+

k

2log2(k)−i
+ 1

)

< (2k + 1)log2(k)

and we can conclude that

βlog2(k)
< (2k + 1)log2(k)/2 · 4 · n · τ · β

Zero-Knowledge. The simulation algorithm chooses the randomness for all
the experiments like an honest V would do and then uses the simulator from
Theorem 1 to simulate the calls to PImperfectProof. The computational HVZK
property then follows directly from Theorem1. �

How to Prove Knowledge of Small Secrets 495

4 Applications

As a first general remark, we note that even though our protocol is only honest
verifier zero-knowlegde and proved sound using extraction by rewinding, we can
nevertheless use it as a tool in a bigger protocol that is intended to be UC
secure against malicious adversaries. Such a construction is already known from
[DPSZ12]. The idea is first to generate the verifier’s challenge using a secure
coin-flip protocol. Then honest verifier zero-knowledge suffices, and the cost of
generating the challenge can be amortised over several proofs. Second, if the
function f is an encryption function, the UC simulator can be given the secret
key and can hence extract straight-line. Rewinding then only takes place in the
reduction to show that the UC simulator works.

In the rest of this section we will first show how to rephrase lattice-based
encryption as ivOWFs and then show how to generalize the result from the
previous section such that it applies in this setting.

4.1 Encryption as ivOWFs

As an example, let us consider a variant of the homomorphic encryption scheme
due to Brakerski et al. [BGV12]. Let n,N, λ ∈ N

+, p, q ∈ P and q � p. Moreover,
let χ be a distribution over Z such that, with overwhelming probability in k,
e ← χ ⇒ |e| ≤ q/2. We consider λ to be the computational security parameter.

KG(1λ): Sample t
$←− χn, e

$←− χN and B ← Z
N×n
q . Let u1 = (1, 0, ..., 0) ∈

Z
n+1
q be the unit vector for the first coordinate. Then compute

b ← Bt + p · e
A ←

(
uT

1

∥∥∥
(

bT

−BT

) ∥∥∥ p · I n+1

)

where I n+1 is the identity matrix with n + 1 rows and columns. Output
pk ← A, sk ← t .

Encpk(
(

m
r

)
): Check that m ∈ Zp, r ∈ Z

N+n+1
q and output

c ← A ×
(

m
r

)

Decsk(s): Compute

m′ ←
(〈

c,

(
1
t

)〉
mod q

)
mod p

and output m′ ∈ Zp.

For appropriately chosen parameters, the function Encpk is an ivOWF (by
the natural embedding of Zq into the integers) assuming that the LWE problem
is hard. It therefore seems natural to apply our proof framework in the above
setting.

Unfortunately we have to show different bounds for different indices of the
preimage, which is impossible for the existing proof.

496 C. Baum et al.

Fig. 3. A protocol to prove the relation RKSP,f,β

4.2 Refining the Proof Technique

To gain more flexibility, we start out by defining a predicate InfNormβ, which
we define as follows

InfNormβ(x) =

{
� if β ∈ N

+ ∧ ∀i ∈ [r] : |x [i]| ≤ β[i]
⊥ else

where β is supposed to be a coordinatewise upper bound on x .
We call a vector x ∈ Z

r to be β-bounded iff InfNormβ(x) = �. For a function
f : Zr → G and the set {c1, ..., ct} one then tries to prove the following relation

RKSP,f,β =
{

(v ,w) | v = (c1, ..., ct) ∧ w = (x 1, ...,x t) ∧
[
ci = f(x i) ∧ InfNormβ(x i)]i∈[t]

}

That is, a proof of plaintext knowledge for our defined cryptosystem would then
set β ∈ N

N+n+2, f = Encpk with β[1] = βP ,β[2] = ... = β[N + n + 2] = βR

where βP is the bound on the plaintext and βR on the randomness. One then
uses a modified version of the proof PImperfectProof, namely the protocol from
Fig. 4 and moreover replaces PCompleteProof with Fig. 3.

Theorems 1 and 2 directly generalize to the above setting due to the linearity
of all operations (if the simulators for the rejection sampling just sample from
the appropriate bound for each coordinate). This is possible because none of the
success probabilities changes since these are independent of the bound β in the

How to Prove Knowledge of Small Secrets 497

Fig. 4. Imperfect proof for the relation RKSP,f,β

first place. The above could be generalized to other predicates which e.g. enforce

2-norms. We leave this as future work.

References

[BCK+14] Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.:
Better zero-knowledge proofs for lattice encryption and their application to
group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 551–572. Springer, Heidelberg (2014)

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
encryption and multiparty computation. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

[BDTZ16] Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing
for secure multiparty computation. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 327–345. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-39555-5 18

http://dx.doi.org/10.1007/978-3-319-39555-5_18

498 C. Baum et al.

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer,
Heidelberg (1993)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS 2012, pp. 309–325. ACM,
New York (2012)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

[CD09] Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-knowledge
protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–
191. Springer, Heidelberg (2009)

[DF02] Damg̊ard, I.B., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)

[DKL+13] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure MPC for dishonest majority – or: breaking the
SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

[GGH96] Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lat-
tice problems. In: Electronic Colloquium on Computational Complexity
(ECCC), vol. 3, pp. 236–241 (1996)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 75–92. Springer, Heidelberg (2013)

[KL14] Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press,
Boca Raton (2014)

[LMPR08] Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a mod-
est proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 54–72. Springer, Heidelberg (2008)

[LNSW13] Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs
of knowledge for the ISIS problem, and applications. In: Hanaoka, G.,
Kurosawa, K. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer,
Heidelberg (2013)

[Lub02] Luby, M.: Lt codes. In: Proceedings of the 43rd Symposium on Foundations
of Computer Science, p. 271. IEEE Computer Society (2002)

[Lyu08] Lyubashevsky, V.: Lattice-based identification schemes secure under active
attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179.
Springer, Heidelberg (2008)

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

[NO09] Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer,
Heidelberg (2009)

Efficient Zero-Knowledge Proof of Algebraic
and Non-Algebraic Statements with Applications

to Privacy Preserving Credentials

Melissa Chase1, Chaya Ganesh2(B), and Payman Mohassel3

1 Microsoft Research, Redmond, USA
2 Department of Computer Science, New York University, New York, USA

chaya.ganesh@gmail.com
3 Visa Research, Foster City, USA

Abstract. Practical anonymous credential systems are generally built
around sigma-protocol ZK proofs. This requires that credentials be based
on specially formed signatures. Here we ask whether we can instead use
a standard (say, RSA, or (EC)DSA) signature that includes formatting
and hashing messages, as a credential, and still provide privacy. Exist-
ing techniques do not provide efficient solutions for proving knowledge
of such a signature: On the one hand, ZK proofs based on garbled cir-
cuits (Jawurek et al. 2013) give efficient proofs for checking formatting
of messages and evaluating hash functions. On the other hand they are
expensive for checking algebraic relations such as RSA or discrete-log,
which can be done efficiently with sigma protocols.

We design new constructions obtaining the best of both worlds: com-
bining the efficiency of the garbled circuit approach for non-algebraic
statements and that of sigma protocols for algebraic ones. We then dis-
cuss how to use these as building-blocks to construct privacy-preserving
credential systems based on standard RSA and (EC)DSA signatures.

Other applications of our techniques include anonymous credentials
with more complex policies, the ability to efficiently switch between com-
mitments (and signatures) in different groups, and secure two-party com-
putation on committed/signed inputs.

1 Introduction

Efficient Proofs. Zero knowledge proofs [GMR85] provide an extremely powerful
tool, which allows a prover to convince a verifier that a statement is true without
revealing any further information. Moreover, it has been shown that every NP
language has a zero knowledge proof system [GMW87], opening up the possi-
bility for a vast range of privacy preserving applications. However, while this
is true in theory, designing proof systems that are efficient enough to be used
is significantly more challenging. In reality, we only have a few techniques for
efficient proofs, and those only apply to a restricted set of languages.

Almost exclusively, these proof systems focus on proving algebraic state-
ments, i.e. statements about discrete logarithms, roots, or polynomial relation-
ships between values [Sch90,GQ88,CS97b,GS08]. The most common and most
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 499–530, 2016.
DOI: 10.1007/978-3-662-53015-3 18

500 M. Chase et al.

efficient of these systems fall into a class known as sigma protocols. Of course
we could express any NP relation as a combination of algebraic statements, for
example by expressing the relation as a circuit, and expressing each gate as
an algebraic relation between input and output wires. But if we were to take
this approach to prove a statement using sigma protocols we would need several
exponentiations per gate in the circuit. This becomes prohibitively expensive for
large circuits (for example a circuit computing a cryptographic hash function or
block cipher).1

Recently, [JKO13] introduced a new approach for proving statements phrased
as boolean circuits, based on garbled circuits. Their construction has the advan-
tage that it only requires a few symmetric key operations per gate, making it dra-
matically more efficient than a sigma-protocol-based solution for non-algebraic
statements. This means that it is finally practical to prove statements about
complex operations such as hash functions or block ciphers. For instance, zero
knowledge proofs for an AES circuit or a SHA256 circuit can be done in milisec-
onds on standard PCs using state of the art implementations for garbled circuits.
On the other hand, expressing many public key operations as a circuit is still
extremely expensive. (Consider for example a circuit computing modular expo-
nentiation on a cryptographic group - the result would be much larger than the
circuit computing a hash function, and computing a garbled circuit for such a
computation would be too expensive to be practical.)

Now we have two very different techniques for achieving zero knowledge
proofs for algebraic and non-algebraic statements. But in some applications,
one is interested in proving statements that combine the two. For example, what
if we want an efficient protocol for proving knowledge of a DSA or RSA sig-
nature, whose verification requires computing both a hash function and several
exponentiations?

The state of the art fails to take advantage of the best of both worlds and
has to forgo the efficiency of one approach to obtain the other’s. One might
consider directly combining both protocols, but a naive solution would allow a
cheating prover to use a different witness for the algebraic and non-algebraic
components of the computation and produce a convincing proof for a statement
for which there is no single valid witness. Thus, one of the basic challenges is to
bind the values committed to in the sigma protocols to the prover’s inputs in
the GC-based zero knowledge proof, without having to perform expensive group
operations (e.g. exponentiation) inside the garbled circuit, and without proving
large-circuit statements using sigma protocols.

Anonymous Credentials. Here, we primarily focus on the case of anonymous
credentials, introduced by Chaum [Cha86], although we believe our results will
be applicable to many other privacy protocols. A credential system allows a
user to obtain credentials from an organization and at some later point prove

1 SNARKs [Gro10,GGPR13] allow for very efficient verification and short proofs, but
have similar shortcomings in prover efficiency as the prover performs public-key oper-
ations proportional to the size of the arithmetic circuit representing the statement.

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 501

to a verifier (either the same organization or some other party) that she has
been given appropriate credentials. More specifically, the user’s credentials will
contain a set of attributes, and the verifier will require that the user prove
that the attributes in his credential satisfy some policy. We say the system is
anonymous if this proof does not reveal anything beyond this fact.

There have been several proposals for constructions of anonymous credential
systems [CL01,CL04,BCKL08,Bra99,BL13]. In general, they all follow a simi-
lar approach: the credential is a signature from the organization on the user’s
attributes. To prove possession of valid credentials, the user will first commit
to her attributes, then prove, in zero knowledge, knowledge of a signature on
the committed attributes, and finally prove, again in zero knowledge, that the
committed attributes satisfy the policy. To make these zero knowledge proofs
efficient, most of the proposed credential systems are based on sigma protocols,
which as described above give efficient proofs of knowledge for certain alge-
braic statements. This in turn means that the signatures used must be specially
designed so that a sigma protocol can be used to prove knowledge of a signature
on a committed message.2

But what if we want to base our credentials on a standard signature such
as FDH-RSA or DSA which includes hashing the message? Or what if we want
the user to be able to prove a statement about his attributes that is not easily
expressible as an algebraic relation?

Our Results. We study the problem of combining proof systems for algebraic
and non-algebraic statements, and obtain the following results.

– Given an algebraic commitment C, we propose two protocols for proving that
C is a commitment to x such that f(x) = 1 where f is expressed as a boolean
circuit. Both constructions have the desired property that the GC-based com-
ponent is dominated by the cost of garbling f (i.e. not garbling expensive
group operations), and the total number of public-key operations is indepen-
dent of the size of f .
More specifically, our first solution has public key operations proportional to
the maximum bit length of the input (|x|), and symmetric-key operations pro-
portional to the number of gates in f . The second has public-key operations
proportional to the statistical security parameter s and symmetric-key oper-
ations proportional to the number of gates in f + |x|s.
Existing solutions either require public-key operations proportional to the size
of f , or need to garble circuits for expensive group operations such as expo-
nentiations in large groups.

2 Technically, [Bra99,BL13] work slightly differently in that the user and organization
jointly compute the proof of knowledge of a signature as part of the credential
issuance. However they still use a customized issuing protocol which would not be
compatible with standardized signatures, and they use sigma protocols exactly as
described here to prove that the committed attributes satisfy the policy.

502 M. Chase et al.

– Building directly on these protocols, we show how to implement a proof that
one committed message is the hash of another, and a proof that two commit-
ments in different groups commit to the same value.

– Finally, we show how we can combine all of these protocols to obtain an
efficient proof of knowledge of a signature on a committed message for RSA-
FDH3, DSA, and EC-DSA signatures.

Applications.

– Anonymous Credentials Based on RSA, DSA, EC-DSA Signatures.
The most direct application in the context of anonymous credentials would be
to use RSA, DSA, or EC-DSA signatures directly as credentials but still allow
for privacy preserving presentation protocols. This would be slower than exist-
ing credential systems, but it would have the advantage that the issuer would
not have to perform a complex protocol, but would only have to issue stan-
dardized signatures. It further enables interoperability with existing libraries
and non-private credential applications. 4

Alternatively, we could construct a service which allows users to convert their
non-private credentials (based on RSA/DSA/EC-DSA signatures) into tradi-
tional anonymous credentials (e.g. Idemix [ide10] or UProve [PZ13] tokens, or
keyed-verification credentials [CMZ14]). Using our new protocol, the service
could perform that conversion without knowing the user’s attributes: the user
would commit to his attributes, prove using our protocol that they have been
signed, and then obtain from the service an anonymous credential encoding the
same attributes. (All of these anonymous credential systems allow for issuing
credentials on committed attributes.)

– Anonymous Credentials with more General Policies. Even if we con-
sider a system based on traditional anonymous credentials, we might use the
ΠCom,f protocol (which we will describe in Sect. 3) to allow the user to prove
that his attributes satisfy a more complicated policy. For example, he might
want to release the hash of one of his attributes and prove that that has been
done correctly, or prove that an attribute has been encrypted using a standard
encryption scheme like RSA-OAEP.
Our protocols could also be used to prove that a user’s attributes fall in a
given range, or to prove statements about comparisons between attributes. If
the range of values possible for each attribute is small, we already have reason-
ably efficient solutions - the user can just commit to each bit of the value, and
do a straightforward proof. However this becomes expensive when the range
gets larger, in which case the most efficient known approach is based on integer

3 This easily extends to standardized variants of RSA like RSA-PSS.
4 Delignat-Lavaud et al. [DLFKP16] achieve a similar result using SNARKs, but

with very different tradeoffs: their approach results in much shorter, non-interactive
proofs, but much more expensive proof generation. They also explore several appli-
cations in more detail; in some of these applications, those which allow for interactive
proofs, our protocols could be used to achieve these different tradeoffs.

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 503

commitments [FO97] and requires several exponentiations with an RSA mod-
ulus where the exponent is larger than the group order (e.g. a roughly 2000 bit
exponentiation with a 2000 bit modulus for reasonable security parameters).
Alternatively we can use our second scheme, which only requires a number
of public-key operations linear in the security parameter (e.g. 60), and allows
those operations to use much more efficient elliptic curve groups.
We note that the independent and concurrent work of [KKL+16] provides
an alternative solution to the problem of anonymous credentials for general
policies, using different techniques.

– Converting Between Different Commitment Schemes. There are many
protocols based around commitments, and ideally we would be able to com-
bine these protocols arbitrarily. For example, if we have an efficient protocol
for proving that a committed tag matches one of the attributes in a user’s cre-
dential, and another protocol for proving that a committed tag is not on a list
of revoked values, then we would be able to combine the two protocols to prove
that the user’s credential has not been revoked. However, often the protocols
will be based on different commitment schemes, or even worse, on schemes
that operate in different sized groups. (For example UProve credentials can
be instantiated in standardized elliptic curve groups like those used for EC-
DSA, while revocation systems like that in [Ngu05] require pairing groups; to
combine the two we would need to find a pairing group whose group order
matches one of the standardized curves. Finding a pairing group to match a
specific group order often incurs a significant cost in efficiency.) With our pro-
tocol for converting between commitment schemes we could choose the most
efficient groups for each, and then the user would merely prove that he has
used the same attributes in each. Before our work, the only known approach
to convert between groups of different sizes was to use integer commitments,
which as described above can be quite expensive.

– Other Privacy-Preserving Protocols. We note that while anonymous
credentials make a good motivating application, these problems (converting
between commitments schemes, comparing committed values, or proving other
non-algebraic statements) come up in many other privacy/anonymity scenar-
ios.

– 2PC with Authenticated Input. As input to a secure computation pro-
tocol, sometimes it is desirable to use previously committed [JS07] or signed
[CZ09] inputs. In our constructions, we show how to commit to an input x
and prove knowledge of x (or prove knowledge of a signature on x) and a
non-algebraic statement f(x) = 1 using garbled circuits. As we discuss in
Sect. 3.4, it is relatively easy to extend our construction to also allow secure
two-party computation of g(x, y) where x is the prover’s input and y the ver-
ifier’s, hence obtaining secure two-party computation on signed/committed
inputs. The benefit of this approach is that checking the signature takes place
outside the secure two-party computation and can be significantly more effi-
cient.

504 M. Chase et al.

2 Preliminaries

2.1 Simulation-Based Security

We use a simulation-based definition of security in the ideal/real world paradigm,
which is formulated by specifying an ideal functionality. A protocol is secure
if it “emulates”this ideal functionality in the presence of any adversary. Our
definitions are in the stand-alone setting (as opposed to the UC framework).
We formulate the simulation-based definitions by defining a functionality F in
the ideal world. In the ideal world, all parties and the adversary A interact via
F . Let IDEALF,A(x1, x2) denote the output vector of the adversary and the
honest party from the execution in the ideal world. In the real world, a protocol
π is executed among the parties, and let REALπ,A(x1, x2) denote the output
of the adversary and the honest party from the execution of π. A two party
protocol π securely realizes the functionality F if for any PPT adversary A in
the real world, there exists a PPT adversary S in the ideal-world, such that

{IDEALF,S(x1, x2)}x1,x2s.t|x1|=|x2|
c≡ {REALπ,A(x1, x2)}x1,x2s.t|x1|=|x2|

that is, the two distributions are computationally indistinguishable.

2.2 Commitment Scheme

A commitment protocol involves two parties: the committer and the receiver. At
a high level, it consists of two stages, a commitment phase and a de-commitment
phase. In the commitment stage, the committer with a secret input m engages in
a protocol with the receiver. At the end of this protocol, receiver does not know
what m is (hiding property), and at the same time, the committer, can subse-
quently in the de-commitment phase, open only one possible value of m (binding
property). Throughout the paper, we use algebraic commitment schemes that
allow proving linear relationships among committed values. An example of such
a scheme with computational binding and unconditional hiding properties based
on the discrete logarithm problem is the one due to Pedersen [Ped91]. It works
in a group G of prime order q. Given two random generators g and h such that
logg h is unknown, a value x ∈ Zq is committed to by choosing r randomly from
Zq, and computing Cx = gxhr. Protocols are known in literature to prove knowl-
edge of a committed value, equality of two committed values, and so on, and the
protocols can be combined in natural ways. In particular, Pedersen commitments
allows proving linear relationships among committed values: Given Cx and Cy,
prove that y = ax + b for some public values a and b.

2.3 Committing OT

Similar to [JKO13] we need to need an OT protocol with a sender verifiability
property- i.e. that at the end of the OTs, the sender is committed to its messages,
and can be asked to reveal all its input messages to the receiver. This is closely

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 505

related to the notion of committing OT [KS06], but can be achieved even more
generally since we do not require individual commitments to sender’s messages.
In particular, as discussed in [JKO13] it can be satisfied by a protocol where
the sender commits to a seed in the beginning of the protocol, and then runs
any secure OT protocol using the output of a pseudorandom generator on the
seed as its random tape. Then the open phase can be realized by letting the
sender reveal the seed and all the input messages. The ideal functionality FCOT

is defined in Fig. 1.

– The receiver inputs (choose, b), b ∈ {0, 1}, and the sender inputs (m0, m1).
– Output mb to the receiver.
– On input open from the sender, send (m0, m1) to the receiver.

Fig. 1. The ideal functionality FCOT

2.4 Garbled Circuits

We assume some familiarity with standard constructions of garbled circuits. We
employ the abstraction of garbling schemes [BHR12] introduced by Bellare et al.,
but similar to [JKO13] we add a verification algorithm that can check correctness
of the garbled circuit given all input labels to the circuit.

A garbling scheme is defined by a tuple of algorithms G =
(Gb,En,De,Eval,Ve) such that:

– Gb is a randomized garbled circuit generation function that takes a security
parameter, and the description of a boolean circuit f and outputs a garbled
circuit GC and the encoding and decoding information e and d, respectively.

– The En algorithm takes the encoding information e output by Gb, and an
input x to f , and outputs the garbled input corresponding to x.

– The Eval algorithm takes the garbled circuit GC and the garbled input, and
outputs an encoded output.

– The De algorithm gets the encoded output and the decoding information d as
input and returns a decoded output.

– The Ve algorithm gets as input a garbled circuit GC, the encoding information
e, and a boolean function f , and outputs d or ⊥.

In our constructions, we assume that the encoding information e is a vector
of pairs of input labels, where the pair (K0

i ,K1
i) denotes the input labels for

0 and 1 for input wire i in the circuit. Similarly, we assume that the decoding
information d is a vector of pairs of output labels.

A garbling scheme may satisfy several properties such as correctness, authen-
ticity and privacy. We review these notions next.

506 M. Chase et al.

Definition 1. A garbling scheme satisfies correctness if:

– for all boolean circuits f and all input x,

De(d,Eval(GC,En(e, x))) = f(x) whenever (GC, e, d) ← Gb(f, 1κ)

– for all boolean circuits f and all (possibly malicious) garbled circuits GC and
encoding information e, decoding information d, and all input x,

if d ← Ve(GC, e, f) and d �= ⊥ then De(d,Eval(GC,En(e, x))) = f(x)

Definition 2. A garbling scheme has authenticity if for every circuit f , input
x, and PPT algorithm A, the following probability

Pr[∃y �= f(x), y = De(d, d′) : (GC, e, d) ← Gb(f, 1κ), d′ ← A(GC,En(e, x))]

is negligible in κ.

Definition 3. A garbling scheme has privacy if there exists a PPT simulator
S such that the following two distributions are indistinguishable:

– Real(f, x) : run (GC, e, d) ← Gb(f, 1κ), and output (GC,En(e, x), d).
– IdealS(f, f(x)): output S(f, f(x))

2.5 Zero-Knowledge Proofs

A Zero-knowledge (ZK) proof allows a prover to convince a verifier of the validity
of a statement, without revealing any other information. Let L be the language
associated with an NP relation R: L = {x | ∃w : R(x,w) = 1}. A zero-knowledge
proof for L lets the prover convince a verifier that x ∈ L for a common input x.
A proof of knowledge captures not only the truth of a statement x ∈ L, but also
that the prover “possesses” a witness w to this fact. A proof of knowledge for a
relation R(·, ·) is an interactive protocol where a prover P convinces a verifier V
that P knows a w such that R(x, y) = 1, where x is a common input to P and V .
The prover can always successfully convince the verifier if indeed P knows such
a w. Conversely, if P can convince the verifier with reasonably high probability,
then it “knows”such a w, that is, such a w can be efficiently computed given
x and the code of P . The formal definition follows. In the following, viewV is
the “view” of the verifier in the interaction, consisting of its input x, its random
coins, and the sequence of the prover’s messages.

Definition 4 (ZK Proof of Knowledge). An interactive protocol 〈P, V 〉 is a
zero-knowledge proof of knowledge for an NP relation R if the following properties
are satisfied.

1. Completeness: ∀x, y such that R(x, y) = 1,

Pr[〈P (x,w), V (x)〉 = 1] = 1

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 507

2. Proof of Knowledge: For every polynomial time prover strategy P ∗,∃ an oracle
PPT machine K called the extractor such that KP ∗

(x) outputs w′ and

Pr[〈P ∗(x,w), V (x)〉 = 1 ∧ R(x,w′) = 0]

is negligible in κ.
3. Zero-knowledge: For every polynomial time verifier V ∗, there is a PPT algo-

rithm S called the simulator such that for every x ∈ L, the following two
distributions are indistinguishable:
– viewV ∗(〈P (x,w), V ∗(x)〉)
– S(x)

Honest-verifier zero-knowledge: An interactive proof system (P, V) for a language
L is said to be honest-verifier zero knowledge if there exists a PPT algorithm S
called the simulator such that for all x ∈ L, viewV (〈P (x,w), V (x)〉) and S(x)
are indistinguishable. This definition says that the verifier gains no knowledge
from the interaction, as long as it runs the prescribed algorithm V . If the verifier
tries to gain some knowledge from its interaction with the prover by deviat-
ing from the prescribed protocol, we should consider an arbitrary (but efficient)
cheating verifier V ∗ as in the property 3 of the above definition which is full
zero-knowledge. Efficient zero knowledge proofs are known which are based on
sigma protocols. Sigma protocols are three round public-coin protocols and are
honest-verifier zero-knowledge proof systems. There exist sigma protocols for
various tasks like proving knowledge of discrete logarithm of a value, that a
tuple is of the Diffie-Hellman type etc., and it is also possible to efficiently com-
bine sigma protocols to prove compound statements. It is possible to efficiently
compile a sigma protocol (which is honest-verifier ZK) into a zero-knowledge
proof of knowledge. The Fiat-Shamir transform [FS86] converts any public-coin
zero-knowledge proof into a zero-knowledge proof of knowledge and removes
interaction, and is secure in the random oracle model [PS96]. Transformations
in the common reference string model [Dam00,Lin15] are also known. The trans-
formation of [Dam00] gives a 3-round concurrent zero-knowledge protocol in the
CRS model, whereas [Lin15] is non-interactive.

In our constructions and protocols, we make use of interactive zero knowl-
edge proofs of knowledge of discrete logarithms and relations between discrete
logarithms. We use the following notation:

PK{(x, y, · · ·) : statements about x, y, · · · }
In the above, x, y, · · · are secrets (discrete logarithms), the prover asserts knowl-
edge of x, y, · · · , and that they satisfy statements. The other values in the pro-
tocol are public.

2.6 ZK Proof Based on Garbled Circuits

Here, we review an important building block for our construction, i.e., the
garbled-circuit-based ZK protocol of [JKO13]. To prove a statement ∃w :
R(x,w) = 1 (for public R and x), the protocol proceeds as follows:

508 M. Chase et al.

1. The verifier generates a garbled circuit computing R(x, ·). Using a committing
oblivious transfer, the prover obtains the wire labels corresponding to his
private input w. Then the verifier sends the garbled circuit to the prover.

2. The prover evaluates the garbled circuit, obtaining a single garbled output
(wire label). He commits to this garbled output.

3. The verifier opens his inputs to the committing oblivious transfer, giving the
prover all garbled inputs. From this, the prover can check whether the garbled
circuit was generated correctly. If so, the prover opens his commitment to the
garbled output; if not, the prover aborts.

4. The verifier accepts the proof if the prover’s commitment holds the output
wire label corresponding to true.

Security against a cheating prover follows from the properties of the circuit
garbling scheme. Namely, the prover commits to the output wire label before
the circuit is opened, so the authenticity property of the garbling scheme ensures
that he cannot predict the true output wire label unless he knows a w with
R(x,w) = true. Security against a cheating verifier follows from correctness of
the garbling scheme. The garbled output of a correctly generated garbled circuit
reveals only the output of the (plain) circuit, and this garbled output is not
revealed until the garbled circuit was shown to be correctly generated.

Note that in this protocol, the prover evaluates the garbled circuit on an
input which is completely known to him. This is the main reason that the garbled
circuit used for evaluation can also be later opened and checked for correctness,
unlike in the setting of cut-and-choose for general 2PC. Along the same lines, it
was further pointed out in [FNO15] that the circuit garbling scheme need not
satisfy the privacy requirement of [BHR12], only the authenticity requirement.
Removing the privacy requirement from the garbling scheme leads to a non-
trivial reduction in garbled circuit size.

In one of our constructions (Sect. 3.2), the verifier does have a private input,
but its input only needs to be kept private until the circuit is evaluated and the
prover has committed to the output. In that scenario, we also invoke the privacy
property of the garbling scheme as defined above.

Efficiency of Garbling Schemes. The state of the art garbling scheme uses the
free-XOR technique [KS08] to garble XOR gates and the half-gate technique
to garble AND gates [ZRE15]. For a circuit with g non-XOR gates, the total
number of ciphertexts is 2g, and the number of hash invocations is 4g for the
garbler and 2g for the evaluator.

For privacy-free garbling, the costs are reduced by factor of two (see [FNO15,
ZRE15]). In particular, for a circuit with g non-XOR gates, the total number of
ciphertexts is g, and the number of hash invocations is 2g for the garbler and g
for the evaluator.

We need to garble a few common building-block circuits in our constructions.
It is helpful to review the size of these circuits based on the concrete constructions
given in [KSS09]. The circuit for comparing � bit integers requires 4� non-XOR
gates. The circuit for testing equality of � bit integers also requires 4� non-XOR

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 509

gates. The circuit for adding two � bit integers requires 4� non-XOR gates, while
the circuit for multiplying two � bit integers requires 8�2 − 4� non-XOR gates.

3 Proving Non-algebraic Statements on Algebraic
Commitments

An important sub-protocol used in our constructions, is to commit to an input
x using an algebraic commitment Com(x) (e.g. pedersen commitment), and per-
form a zero-knowledge proof of a non-algebraic statement about x, i.e. that
f(x) = 1 for a boolean circuit f .

Such a protocol allows one to efficiently switch between proving algebraic
statements on a committed input (e.g. proof of knowledge of a signature on a
committed input) and non-algebraic statement (e.g. hashing, comparison, equal-
ity testing and more).

All our protocols are defined in terms of an ideal functionality, and are proven
secure in the ideal/real world paradigm. We start by defining this task in terms
of an ideal functionality in Fig. 2. We provide two instantiations for this func-
tionality that provide different efficiency trade-offs depending on the input size
and the algebraic commitment scheme used.

– The verifier inputs Com(x) and prover inputs the opening information x and the ran-
domness.

– If f(x) = 1 and the opening to the commitment verifies, output accept to the verifier.

Fig. 2. The ideal functionality FCom,f

The starting point for both instantiations is the ZK-proof of non-algebraic
statements based on garbled circuits [JKO13] (see Sect. 2.6). As the naive solu-
tion we could garble a circuit that takes x and the opening of Com(x) as
prover’s input and outputs 1 if f(x) = 1 and Com(x) correctly opens to x.
The main drawback of this solution is that checking correctness of opening for
an algebraic commitment requires performing expensive group operations (e.g.
exponentiation) inside the garbled circuit which would dominate the computa-
tion/communication cost. Our two instantiations show how to avoid these costs
and perform all algebraic operations outside the garbled circuit.

3.1 First Instantiation

In our first construction, we have the prover commit to each bit of x, i.e. Com(xi)
for all i ∈ [n], and prove that when combined they yield x.

Then, following the GC-based approach, the verifier constructs a garbled
circuit that computes f(x), parties go through the steps of the GC-based ZK
proof for the prover to prove knowledge of a value x′ such that f(x′) = 1. The
main issue is that a malicious prover may use a different input x′ �= x in the
circuit than what he committed to.

510 M. Chase et al.

But we observe that the input keys associated with x′ in the GC (which
are obtained through the COT), can function as one-time MACs on each bit of
x′ and can be used to enforce that x′ = x using efficient algebraic ZK proofs
that take place outside the garbled circuit. In particular, immediately after the
COTs, the prover commits to its input keys i.e. K

x′
i

i for the ith bit of x′. When
the GC is opened and both input keys K0

i ,K1
i are opened, the prover can provide

ZK proofs that K
x′

i
i = xiK

1
i + (1 − xi)K0

i if the commitment scheme provides
efficient proofs of linear relations.

The complete protocol description in the COT-hybrid model is given in Fig. 3.
We point out that steps 1, 6 and 13 are additions compared to the protocol
of [JKO13].

Theorem 1. Let G be a garbling scheme satisfying correctness and authenticity
properties as defined in 2.4. Let Com be a secure commitment scheme, and let the
proofs PK be implemented with a zero knowledge proof of knowledge. Then, the
protocol ΠCom,f in Fig. 3 securely implements FCom,f in the presence of malicious
adversaries in the FCOT -hybrid model.

Proof. Corrupt Prover.
The simulator works as follows: It uses the OT simulator to extract the

prover’s input x′ to the OT. It then plays the role of the honest verifier in the
rest of the simulation - it constructs the garbled circuit honestly and uses its
input keys as verifier’s inputs to the COT functionality. The simulator then
extracts the value Z ′ committed to by the prover from the proofs of knowledge
of opening in step 8. It also extracts prover’s committed input x and the values
K ′

i that prover committed to in the protocol, using the extractor for the ZK
proof of knowledge in step 13. The simulator finally outputs x and the opening
extracted from the ZK proofs, iff all the following hold: x = x′, f(x) = 1, Z is
the one-key of the output wire, K ′

i = Kxi
i for all i, the commitment in step 8

is opened to Z, and the ZK proofs of step 13 verifies. Note that in the ideal
model the functionality will always output accept when the simulator sends this
witness.

We now prove that a corrupt prover’s view in the real protocol is indistin-
guishable from his view with the simulator via a series of intermediate games.

– Game Ideal: This is the interaction of the corrupt prover with the simulator
and functionality as described above.

– Game G0: This is the interaction of the corrupt prover with the simulator
as described above, with the exception that instead of the simulator sending
x and the opening to F , which outputs accept iff f(x) = 1, the game will
output accept iff f(x′) = 1 for the x′ extracted from the OT (and all the
other conditions listed hold). Since one of the conditions checks x = x′, this
is identical.

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 511

Let G = (Gb,En,De,Eval,Ve) be a verifiable garbling scheme. Let F be the following
functionality: it takes as input x, and outputs v such that v = 1 if f(x) = 1 and 0 otherwise.
The prover has input x, the verifier is in possession of Cx = Com(x) and both parties have
as input the security parameter κ.

1. The prover commits to the bits of x by sending bit-wise commitment to x: Ci =
Com(xi), ∀1 ≤ i ≤ n.

2. The verifier constructs a garbled circuit for F .

(GC, e, d) ← Gb(1κ, F)

3. The prover inputs his choice bits by sending (i, xi) for all i ∈ [n] to FCOT .
4. The verifier inputs the wire labels corresponding to the prover’s input by sending

(i, K0
i , K1

i) for all i ∈ [n] to FCOT .
5. FCOT outputs Ki for all i ∈ [n] to the prover where Ki = Kxi

i .
6. The prover commits to the received input wire labels by sending CKi = Com(Ki) for

all i.
7. The prover evaluates the garbled circuit

Z ← Eval(GC, {Ki}i∈[n])

8. Prover commits to the garbled output Z by sending Com(Z) to the verifier and proves
knowledge of opening.

9. Verifier sends open to FCOT .
10. FCOT sends (K0

i , K1
i) to the prover for all i ∈ [n].

11. Prover verifies that the correct circuit was garbled by runningVe(GC, {K0
i , K1

i }i∈[n]).
If the output is not accept, the prover terminates. Otherwise if Ve outputs accept, he
opens the commitment to the output Z by sending Z and the randomness used in
Com(Z).

12. Verifier checks that the opening is correct and that De(d, Z) = 1. If the opening is not
correct or if De(d, Z) = 1, the verifier outputs reject and terminates.

13. If the verifier did not terminate, the prover and the verifier engage in a Zero-knowledge
protocol to prove the following:
– PK{(xi, Ki, r, R) : Ci = Com(xi) ∧ CKi = Com(Ki) ∧ Ki = xiK

1
i + (1 −

xi)K
0
i }, ∀1 ≤ i ≤ n.

– PK{(x, x1, · · · , xn, r, r1, · · · rn) : Cx = Com(x) ∧ Ci = Com(xi) ∧ x =
2ixi}

14. If the zero-knowledge proof verifies, the verifier outputs accept.

Fig. 3. The protocol ΠCom,f

– Game G1: This game, behaves exactly as in G0 except for a slight change in
the accept condition. It outputs accept if f(x′) = 1 and K ′

i = Kxi
i for all i and

Z is the one-key of the output wire and the commitment in step 8 is correctly
opened to Z, and all the ZK proofs verify (i.e. no x = x′ check).
Indistinguishability:
Define the event Bad as the event that x �= x′, f(x′) = 1, Z is the one-key of
the output wire, K ′

i = Kxi
i for all i, and the opening to Z is correct and the

ZK proofs of step 13 verify.

512 M. Chase et al.

Observe that G0 is identical to G1 conditioned on Bad. We now argue that
Pr[Bad] is negligible, by observing that an adversary who makes us reject G0

but accept in G1, can only succeed with probability 1/2s where s is a statistical
security parameter, given the COT hybrid model. Without loss of generality
lets assume the ith bit of x is 0 and ith bit of x′ is 1. Then, the probability of
the adversary guessing K0

i given only K1
i is less than 1/2|K0

i |. Note that |K0
i |

is the computational security parameter, which is 128 bits for an AES key. But
without loss of security we can used a truncated K0

i (to its least significant s
bits) in the ZK proofs of step 13.
Hence Games G0 and G1 are indistinguishable except with negligible proba-
bility in s.

– Game G2: This game behaves as in G1 except for another change in the accept
condition. We accept if f(x′) = 1 and ZK proofs of step 13 verifies and Z
is the one-key of the output wire, and the commitment in step 8 is correctly
opened to Z (i.e. no K ′

i = Kxi
i check).

If an adversary can distinguish between Games G1 and G2, we can break the
soundness of the ZK proof of step 13. Therefore,G1 andG2 are indistinguishable.

– Game G3: This game behaves as in G2 except for a small change in accept
condition. We accept if ZK proofs of step 13 verifies and Z is the one-key of
the output wire, and the commitment in step 8 is correctly opened to Z (i.e.
no f(x′) = 1 check).
Games G2 and G3 are identical, except when the following event occurs:
f(x′) �= 1 and ZK proof of step 13 passes, and Z is the one-key of the output
wire. When this event occurs, we accept in G3 and rejects in G2. We now argue
that the probability of this event is negligible. For the sake of contradiction,
assume the prover’s input to OT is x′ such that f(x′) �= 1, but the value
committed to is the correct one-key Z for the output wire. We can use such a
prover to break the authenticity of the garbling scheme (See Definition 2).

– Game G4: This game behaves as in G3 except for the accept condition. We
accept if the ZK proofs of step 13 verifies and the commitment in step 8 opens
correctly (i.e. no check that it is the same as extracted Z).
An adversary who can distinguish between G3 and G4 can be used to violate
the binding property of the commitment scheme.
G4 is identical to the real world game with an honest verifier.

Corrupt Verifier. The simulator commits to bits of a random value. It also uses
a random value as prover’s inputs to the COT, and receives the verifier’s inputs
to the COT functionality (K0

i ,K1
i) for all i, i.e. the input keys to the verifier

GC. The simulator then commits to the keys corresponding to the random input
it used in the OTs.

It then runs Ve(GC, (K0
i ,K1

i), f) to either obtain reject, or the decoding
information d. If the output is reject it commits to a dummy value, else it commits
to the one-key for the output wire, denoted by Z.

It then receives the “open” message from the verifier. If Ve had not output
reject earlier, the simulator opens the commitment to Z and uses the simulator
for the ZK proof to simulate the proofs of step 13. Otherwise, the simulator
aborts.

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 513

– Game G0: This is the interaction of the corrupt verifier with the simulator as
described above.

– Game G1: Is similar to game G0 except that the real input x of prover is commi-
tted to.
The two games are indistinguishable due to the hiding property of the com-
mitment scheme.

– Game G2: Is similar to G1 except that instead of computing Z by running Ve,
we run Eval(GC,Kxi

i) to compute and commit to Z.
The two games are indistinguishable due to the second condition in the correct-
ness property of the garbling scheme. Note that we are also implicitly using the
committing OT property (the protocol described in the COT hybrid model) as
the keys extracted in the OTs and what the functionality sends to the honest
prover are the same.

– Game G3: Is similar to G2 except that the honest input x of the prover is used in
the OTs.
The two games are identical in the OT hybrid model.

– Game G4: Is similar to G3 except that the simulator commits to inputs keys
associated with the real input x.
The two games are identical due to the hiding property of the commitment
scheme.

– Game G5: Is similar to G4 except that in step 13, the simulator performs the
proofs, honestly.
The two games are indistinguishable due to zero-knowledge property of the
ZK proof.
Note that G5 is the real game with the honest prover.

3.2 Second Instantiation

We now give an alternative construction that implements the functionality in
Fig. 2. In particular, we avoid the bit-wise commitments to each bit of xi, and
the associated bit-wise ZK proofs, and hence require fewer public-key operations
(exponentiations) in the construction. On the other hand, the garbled circuit is
augmented and hence a larger number of symmetric-key operations are needed.

The idea is as follows. In order to ensure that the prover uses the same input
x in the GC, we have the circuit not only compute f(x) but also a one-time MAC
of x, i.e. t = ax+ b for random a and b of the verifier’s choice. a and b are initially
unknown to the prover, but are opened along with the GC after the prover has
committed to t. Given a and b, the prover then provides a ZK proof that Com(t)
is indeed the one-time MAC of x (using efficient proofs of linear relations). We
note that the t = ax + b operation performed in the circuit is on integers.

We note that our construction deviates from the standard construction of
GC-based ZK where the verifier has no input, and privacy-free garbling is suf-
ficient. In particular, we do invoke the privacy property of the garbling scheme
in our construction to ensure that the prover does not learn a and b, until the
opening stage.

The complete protocol description in the COT-hybrid model is given in Fig. 4.

514 M. Chase et al.

Let G = (Gb,En,De,Eval,Ve) be a garbling scheme. Let F be the following functionality:
it takes as inputs x, a, b and outputs v, t such that v = 1 if f(x) = 1 and 0 otherwise, and
t = ax + b. The prover has input x, the verifier is in possession of Cx = Com(x). Both
parties have as input the security parameter κ.

1. The verifier generates uniformly random integers a and b of length s and n + s re-
spectively. It commits to them by sending Ca = Com(a), Cb = Com(b) and proves
knowledge of their opening.

2. The verifier constructs a garbled circuit for F .

(GC, e, d) ← Gb(1κ, F (x, a, b) = (f(x), ax + b))

3. The prover inputs his choice bits by sending (i, xi) for all i ∈ [n] to FCOT .
4. The verifier inputs the wire keys corresponding to the prover’s input by sending

(i, K0
i , K1

i) for all i ∈ [n] to FCOT .
5. FCOT outputs Ki for all i ∈ [n] to the prover where Ki = Kxi

i .
6. The verifier sends the garbled circuit GC to the prover. Note that in what follows, for

simplicity, we consider the input keys for a and b to be part of the GC itself, and hence
not sent separately.

7. The prover evaluates the garbled circuit

(t , Z) ← Eval(GC, {Ki}i∈[n])

8. Prover commits to the garbled output Z by sending Com(Z) to the verifier and proves
knowledge of opening.

9. Verifier sends the decoding information dt for t.
10. Prover decodes

t = De(dt, t)

and commits to the decoded output by sending Ct = Com(t), and proves knowledge
of opening.

11. Verifier sends open to FCOT .
12. FCOT sends (K0

i , K1
i) to the prover for all i ∈ [n].

13. Verifier opens Com(a) and Com(b). Prover checks the openings and aborts if they fail.
14. Prover verifies that the correct circuit was garbled by running

Ve(GC, {K0
i , K1

i }i∈[n], F). It also checks that garbled inputs for x, a, b are the
correct one. If any of checks fail, the prover terminates. Otherwise, it receives the
decoding vector d, and he opens the commitment to the output Z by sending Z and
randomness.

15. Verifier checks that the opening is correct and that De(d, Z) = 1. If the opening is not
correct or if De(d, Z) = 1, the verifier outputs reject and terminates.

16. If the verifier did not terminate, the prover and the verifier engage in a Zero-knowledge
protocol to prove the following:

PK{(x, t, r,R) : Cx = Com(x) ∧ Ct = Com(t) ∧ t = ax + b}
17. If the zero-knowledge proof verifies, the verifier outputs accept.

Fig. 4. The Protocol ΠMAC,f

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 515

Theorem 2. Let G be a garbling scheme satisfying correctness, authenticity,
and privacy properties as defined in Sect. 2.4. Let Com be a secure commitment
scheme, and let the proofs PK be implemented with a zero knowledge proof of
knowledge. Then, the protocol ΠMAC,f in Fig. 4 securely implements FCom,f in
the presence of malicious adversaries in the FCOT -hybrid model.

Proof. Corrupt Prover.
The simulator works as follows: It uses the OT simulator to extract the

prover’s input x′ to the OT. It then plays the role of the honest verifier in
the rest of the simulation - it chooses a, b randomly as the honest verifier would,
constructs the garbled circuit honestly and uses its input keys as verifier’s inputs
to the COT functionality. The simulator then extracts the value Z ′ committed
to by the prover from the proofs of knowledge of opening in step 8. It also
extracts prover’s committed input x and the tag t′ that the prover committed
to in the protocol, using the extractor for the ZK proof of knowledge in step 16.
The simulator finally outputs x and the opening extracted from the ZK proofs,
iff all the following hold: x = x′, f(x) = 1, Z is the one-key of the output wire,
t′ = ax+b, the commitment in step 8 is opened to Z, and the ZK proof of step 16
verifies. Note that in the ideal model the functionality will always output accept
when the simulator sends this witness.

We now prove that a corrupt prover’s view in the real protocol is indistin-
guishable from his view with the simulator by a series of intermediate games.

– Game Ideal: This is the interaction of the corrupt prover with the simulator
and functionality as described above.

– Game G0: This is the interaction of the corrupt prover with the simulator as
described above, with the exception that instead of the simulator sending x and
the opening to F, which outputs accept iff f(x)=1, the game will output accept
iff f(x′) = 1 for the x′ extracted from the OT (and all the other conditions
listed hold). Since one of the conditions checks x = x′, this is identical.

– Game G1: In this game, the simulator behaves exactly as in G0 except that it
does not check the x = x′ condition.
Define the event Bad as the event that x �= x′ but t = ax + b. Observe that
G0 is identical to G1 conditioned on Bad. We argue that Pr[Bad] is negligible
due to the unforgeability property of the one-time MAC, the hiding property
of the commitment scheme, and the privacy of the garbled circuit.
Consider a game where we run as in G1 but stop after step 10, and look at the
probability that in this gane t′ = ax+b but x �= x′; if Pr[Bad] is nonnegligible,
this will be nonnegligible as well. Now, by the privacy of the garbled circuit,
this is indistinguishable from a game where the verifier computes a tag t on x′,
and then constructs (GC, e, d) using the privacy simulator: S(F, (t, 1)). Sim-
ilarly, by the hiding of the commitment scheme this is still indistinguishable
from a game where the verifier commits to random values instead of a, b. But
if in this final game we get t′ = ax + b and x �= x′ with non-negligible prob-
ability, then we can break the unforgeability of the MAC. The probability of
forgery is bounded by 1/2|a|, and hence exponentially small in the statistical
security parameter s = |a|.

516 M. Chase et al.

– Game G2: In this game, the simulator behaves as in G1 except that it does not
check the condition t = ax + b.
If an adversary can distinguish between Games G2 and G1, we can break the
soundness of the ZK proof of step 16.

– Game G3: In this game, the simulator behaves as in G2 except that we do not
check the condition f(x′) = 1.
Games G2 and G3 are identical, except when the following event occurs:
f(x′) �= 1 and ZK proof of tag verifies and Z is the one-key of the output wire.
We now argue that the probability of this event is negligible. For the sake
of contradiction, assume the prover’s input to OT is x′ such that f(x′) �= 1,
but the value committed to is the correct one-key Z for the output wire. We
can use such a prover to break the authenticity of the garbling scheme (See
definition 2).

– Game G4: In this game, the simulator behaves as in G3 except for the accept
condition. The simulator accepts if the ZK proofs of step 16 verifies and the
commitment in step 8 opens correctly (i.e. no check that it is the same as
extracted Z).
An adversary who can distinguish between G4 and G3 can be used to violate
the binding property of the commitment scheme.
G4 is identical to the real world game with an honest verifier.

Corrupt Verifier. The simulator extracts a and b from the proofs of knowledge
of their openings by verifier. It uses a random value as prover’s inputs to the
COT, and receives the verifier’s inputs to the COT functionality (K0

i ,K1
i) for

all i, i.e. the input keys to the verifier GC.
It then runs Ve(GC, (K0

i ,K1
i), F) (and checks against the extracted a, b) to

either obtain reject, or the decoding information d. If the output is reject it
commits to dummy values for Z and t, else it commits to the one-key for the
output wire denoted by Z, and dummy t.

The simulator receives the openings of Com(a) and Com(b). If the openings
are not what it extracted earlier, or if Ve had output reject earlier, it aborts.
Else, the simulator opens the commitment to Z and uses the simulator for the
ZK proof to simulate the proofs of step 16.

– Game G0: This is the interaction of the corrupt verifier with the simulator as
described above.

– Game G1: Is similar to game G0 except that t = ax + b for the real input x of
prover is committed to.
The two games are indistinguishable due to the hiding property of the com-
mitment scheme.

– Game G2: Is similar to G1 except that instead of computing Z and t by running
Ve, we run Eval(GC,Kxi

i) to compute and commit to Z and t.
The two games are indistinguishable due to the second condition in the correct-
ness property of the garbling scheme, and binding property of commitments
Com(a) and Com(b). Note that we are also implicitly using the committing

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 517

OT property (the protocol described in the COT hybrid model) as the keys
extracted in the OTs and what the functionality sends to the honest prover
are the same.

– Game G3: Is similar to G2 except that the honest input x of the prover is used
in the OTs.
The two games are identical in the OT hybrid model.

– Game G4: Is similar to G3 except that in step 13, the simulator performs the
proofs honestly.
The two games are indistinguishable due to zero-knowledge property of the
ZK proof.
Note that G4 is the real game with the honest prover.

3.3 Efficiency Comparison and Optimizations

Efficiency Comparison. In our first instantiation, in addition to the cost asso-
ciated with the GC-based ZK, i.e. the oblivious transfer for x and the cost of
garbling f , O(n) exponentiations are necessary to commit to each bit of input
x and to perform the bitwise ZK proofs associated with them in the last step.

In our second instantiation, the bitwise commitments/proofs are eliminated
(i.e. only a constant number of exponentiations) but instead the circuit for ax+b
needs to be garbled which requires O(ns + s2) additional symmetric-key oper-
ations when using textbook multiplication (we discuss range of values for s
shortly). Using Karatsuba’s multiplication algorithm [Knu69], this can poten-
tially be further reduced.

The round complexity of both protocols is essentially the same as the GC-
based ZK proof of [JKO13] (5 rounds), as the extra messages can be sent within
the same rounds. (To simplify presentation, we used a separate step for each
operation in our protocol description, but many of these can be combined.) A
more round-efficient GC-based ZK proof would make our constructions more
round efficient as well.

The first instantiation requires more exponentiations which are signifi-
cantly costlier than their symmetric-key counterpart, but the total number of
symmetric-key operations in the second instantiation is higher. Hence, when n
is small, the first instantiation is likely more efficient, while when n is larger,
the second instantiation will be the better option. Furthermore, if bit-wise com-
mitment to the input is already necessary as part of the bigger protocol (as is
the case in some of our constructions), the first instantiation may be the bet-
ter choice. In the case where a comparison circuit x < q is also computed, an
additional O(n) symmetric-key operations suffices.

Optimizations. Next we review a few other optimizations that improve efficiency
of our instantiations.

– Reducing exponentiations. We consider the following optimization for the pro-
tocol ΠCom,f in Fig. 3 which reduces the number of exponentiations necessary

518 M. Chase et al.

for the ZK proofs significantly. In step 6, the prover commits to the sum of
the keys received instead of individually to each wire key. The prover sends
Com(S) = Com (

∑n
i=1 K ′

i) in step 6. We assume that the bit commitment
scheme Com is homomorphic, and each wire key Ki is truncated to s bits and
interpreted as a group element. Now, in the zero knowledge proofs of step 13,
the prover proves the following statements which can be performed with fewer
exponentiations:

• PK{(xi, S, r, R) : Com(xi) = gxihr ∧ Com(S) = gShR ∧ S =∑n
i=1

(
xiK

1
i + (1 − xi)K0

i

)}
• PK{(x, x1, · · · , xn, r, r1, · · · rn) : Com(x) = gxhr ∧Com(xi) = gxihri ∧x =

g
∑

2ixihr}
We can show that if the sum extracted by the simulator from the commitment
in step 6 is not equal to the sum of keys corresponding to the input x′ extracted
from COT, but the ZK proofs verify, then for some i, the prover must have
correctly guessed Kb

i such that b �= x′
i. The probability of this is negligible by

the security of the COT protocol.
– Privacy-free garbling. As discussed earlier, in [FNO15] it is observed that

privacy-free garbling is sufficient for GC-based ZK proofs of non-algebraic
statements. This improves the communication/computation cost of garbled
circuits in our first instantiation by a factor of two. But as mentioned ear-
lier, the same cannot be said about our second construction since the privacy
property of garbling is required to hide a and b in the earlier stage of the
construction.
But we can think of bigger circuit as consisting of two smaller circuits: one
computing the function f and the other computing ax+b. If we split the com-
putation into two garbled circuits with shared OT, then we can use the privacy
free garbling scheme of [FNO15,ZRE15] for the first circuit as the verifier has
no input, and use a standard garbling scheme for the ax + b circuit.

– Smaller multiplication circuit. For the one-time MAC in the second protocol,
a small a is sufficient for security - if the security (unforgeability) desired is
2−s, it suffices for a to be s bits long. Hence, for a 512-bit input, a 40–80-bit
a is sufficient to compute ax + b which reduces the size of the multiplication
circuit significantly.

3.4 Secure Computation on Committed/Signed Inputs

In the protocols described above, we have shown how to commit to a value
Com(x) and then use a GC-based ZK proof to prove non-algebraic statements
about x.

It is not hard to show that one can extend this approach, to a full-fledged
secure two-party computation (2PC) of any function g(x, y) where x is the com-
mitted input of the prover. In particular, note that in the ZK proof, the prover
feeds its input x into the COTs in order to obtain its inputs keys to the GC of
the ZK proof. In order to extend this to a secure 2PC based on garbled circuits,
we let the prover play the role of the evaluator in a cut-and-choose 2PC based
on garbled circuits, and use the same COT as above for the prover to obtain the

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 519

garbled inputs for x in the 2PC. This would ensure that the same x that was
used in the ZK proof is also used in the 2PC, and the ZK proof already ensures
that this is the same input committed to in Com(x).

A subtle point here is that we need to open the sender’s input to the COTs
for the GC for the ZK but not for the GCs for the 2PC. This is supported by
the committing OT of [S+11] (also see the discussion on COTs in [MR13]). It is
interesting to explore the use of OT extension in such COTs where some sender
inputs are opened while others are not.

We emphasize that the GCs for the 2PC only garble the desired function g,
and hence the GC for the ZK proof is not part of any cut-and-choose. However,
we note that the above technique is currently limited to the evaluator’s input
since the OTs for evaluator’s input enable an almost-free check of equality of
inputs in the 2PC and the ZK. Extending the ideas to both party’s inputs is an
interesting future direction.

This approach can be easily extended to prove other statements about x,
such as proof of knowledge of a signature on x (hence signed-input 2PC) either
using the techniques we give below in the case of RSA/DSA signatures, or using
previous techniques to give a proof of knowledge of a CL signature [CL01].

4 Building Blocks for Privacy-Preserving Signature
Verification

We introduce three important building blocks for our privacy-preserving signa-
ture verification protocols. Two of them can be directly instantiated using our
FCom,f functionality introduced in Sect. 3, while for the third one we provide a
customized construction.

4.1 Proving that a Committed Value Is the Hash of Another
Committed Value

Here, the goal is to commit to a message m and its hash H(m) and prove in
zero-knowledge that one committed value is the hash of the other. We define the
task in terms of an ideal functionality in Fig. 5.

– The verifier inputs Com(m),Com(M) and the prover inputs the opening information
(m, M) and the randomness.

– If H(m) = M and the openings to the commitments verify, output accept to the
verifier.

Fig. 5. The ideal functionality FHash

We now use the abstract functionality FCom,f from Fig. 2 with a commitment
scheme Comh to instantiate a protocol that implements FHash. Here, the input

520 M. Chase et al.

is x = (m,M = H(m)) and the Comh is defined as Comh(x = (m,M)) =
(Com(m),Com(M)). To commit to bits of x, one can commit to bits of m and
M individually. Comh inherits efficient proofs of linear relations from Com as
long as the proofs on m and M are performed separately. Given these, we show
in Fig. 6 how to implement FHash by defining the right function f for the ideal
functionality FCom,f .

1. The prover commits to x = (m,M) by sending Comh(x) = Com(m),Com(M) to
the verifier.

2. The prover and the verifier run ΠCom,f where f is the following functionality: f takes
m and M as inputs and outputs v such that v = 1 if H(m) = M and 0 otherwise.

Fig. 6. The protocol ΠHash

Theorem 3. The protocol ΠHash in Fig. 6 securely implements FHash, given
the ideal functionality FCom,f , in the presence of malicious adversaries.

4.2 Proof of Equality of Committed Values in Different Groups

The goal is to prove that the value committed to in different prime groups of
size p and q are the same. We define the task in terms of an ideal functionality,
defined in Fig. 7. This can be achieved using standard techniques which involve
using the integer commitment scheme by Damgard and Fujisaki [DF02] to prove
properties about the discrete logarithms in Z (instead of modulo the order of
the group). This requires that the verifier choose an RSA modulus Ñ such that
the factorization is unknown to the prover, and prove that it is chosen correctly
in an initial set-up phase. The prover also has to compute exponentiations in an
RSA group where the exponents are |Ñ | + κ bits long. Since the group order is
hidden, chinese remaindering cannot be used to speed up the exponentiations,
and therefore the approach is fairly expensive. We give a protocol that avoids
the integer commitment technique.

– The verifier inputs Comp(x),Comq(y) and the prover inputs (x, y) and the opening
information. p and q are public primes and q < p.

– If 0 ≤ x < p, 0 ≤ y < p, x ≡ y mod q, and the openings to the commitments verify,
output accept to the verifier.

Fig. 7. The ideal functionality FEq

In Fig. 8, we use the ideal functionality FCom,f from Fig. 2 with a commitment
scheme Compq to instantiate a protocol that implements FEq. The scheme is
defined as Compq(x) = (Comp(x),Comq(x)), where it is assumed that Comp and
Comq allow for proving linear relationships among committed values.

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 521

1. The prover commits to x and y by sending Comp(x),Comq(y) to the verifier.
2. The prover and the verifier run ΠCom,f where f is the following functionality: f takes

x and checks that it is upper bounded by p and outputs v such that v = 1 if x ≤ p and
0 otherwise.

Fig. 8. The protocol ΠEq

4.3 Proof of Equality of Discrete Logarithm of a Committed Value
and Another Committed Value

Let G1 = 〈G1〉 and G2 = 〈G2〉 be two groups of order p and q respectively with
q|p − 1 and let g ∈ G2 be an element of order q . Given y1 = Ggx

1 HR1
1 and

y2 = Gx
2H

R2
2 , we want to prove that the discrete logarithm w.r.t to base g of

the value committed to in y1 is equal to the value committed to in y2. Let k be
a security parameter. Following standard notation, we denote the protocol by
PK{(x,R1, R2) : y1 = Ggx

1 HR1
1 ∧ y2 = Gx

2HR2
2 }. The technique of our protocol

is similar to [Sta96,CS97a], and is a variant of [MGGR13]. Our protocol is only
honest verifier zero-knowledge. This HVZK protocol can be compiled into a
full zero-knowledge proof of knowledge in the auxiliary string model using the
technique of [Dam00].

Given y1 = Ggx

1 HR1
1 and y2 = Gx

2HR2
2

1. The prover computes the following 2k values: ui = Ggαi

1 Hβi
1 and vi = Gαi

2 Hγi
2 for

1 ≤ i ≤ k, for randomly chosen αi, γi ∈ Zq and βi ∈ Zp, and sends ui, vi to the
verifier.

2. The verifier chooses a random string c of length k as the challenge, and sends it to the
prover.

3. For a challenge string c = c1 . . . ck, compute and send the tuple (ri, si, ti)
If ci = 0,

ri = αi, si = βi, ti = γi

If ci = 1,

ri = αi − x (mod q), si = βi − R1g
ri (mod p), ti = γi − R2 (mod q)

4. Verification:
If ci = 0, check whether ui = Ggri

1 Hsi
1 and vi = Gri

2 Hti
2

If ci = 1, check if ui = ygri

1 Hsi
1 and vi = y2G

ri
2 Hti

2 . The verifier accepts if Verifica-
tion succeeds for all i.

Fig. 9. PK{(x, R1, R2) : y1 = Ggx

1 HR1
1 ∧ y2 = Gx

2HR2
2 }

We will show that the protocol in Fig. 9 is correct, has a soundness error of
1/2k, and is honest verifier zero knowledge.

522 M. Chase et al.

Proof.

– Completeness: If the prover and the verifier behave honestly, it is easy to
see that verification conditions hold.
If ci = 0:

G
gr

i
1 Hsi

1 = Ggαi

1 Hβi

1 = ui and Gri
2 Hti

2 = Gαi
2 Hγi

2 = vi

If ci = 1:

ygri

1 Hsi
1 = (Ggx

1)gri (HR1
1)gri

Hsi
1 = Ggαi

1 Hβi

1 = ui and

y2G
ri
2 Hti

2 = Gx
2HR2

2 Gri
2 Hti

2 = vi

– Soundness: We show an extractor that computes x,R1, R2 given two different
accepting views with same commitments but different challenge strings. Say,
we have two accepting views for challenges c and ĉ �= c. Without loss of
generality, let us assume that they differ in the jth position, and cj = 0. We
have,

uj = Ggrj

1 H
sj

1 = ygr̂j

1 H
ŝj

1

Ggrj

1 H
sj

1 = Ggxgr̂j

1 H
Rgr̂j+ŝj

1

gx = grj−r̂j

We can compute (in Zq),
x = rj − r̂j

We have,
sj = R1g

r̂j + ŝj

and thus,

R1 =
sj − ŝj

gr̂j

We also have
vj = G

rj

2 H
tj

2 = y2G
r̂j

2 H
t̂j

2

G
rj

2 H
tj

2 = G
x+r̂j

2 H
t̂j+R2
2

and thus,
R2 = tj − t̂j

– Honest Verifier Zero Knowledge: We show a simulator such that the
output of the simulator is statistically indistinguishable from the transcript
of the protocol with a prover. The simulator on input c, randomly chooses
αi = ri ∈ Zq, βi = si ∈ Zp, γi = ti ∈ Zq and computes for 1 ≤ i ≤ k:
If ci = 0,

ui = Ggri

1 Hsi
1 and vi = Gri

2 Hti
2

if ci = 1,
ui = ygri

1 Hsi
1 and vi = y2G

ri
2 Hti

2

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 523

5 Privacy-Preserving FDH-RSA Signature Verification

The FDH-RSA Scheme. The Full Domain Hash RSA signature scheme FDH =
(KeyGen,Sign,Verify) is defined as follows [BR93]. The KeyGen algorithm on
input the security parameter k, selects two k/2-bit primes p and q and computes
the modulus N = pq. It then chooses an exponent e ∈ Z

∗
φ(N), and computes

d such that ed = 1 mod φ(N). Return (pk, sk), where pk = (N, e) and sk =
(N, d). The signature generation and verification are as follows and use a hash
function H : {0, 1} → Z

∗
N .

SignN,d(M)
x = H(M)
σ = xd mod N
return σ

VerifyN,e(M,σ)
y = σe mod N
y′ = H(M)
if (y = y′) then return 1;
else return 0;

5.1 Proof of Knowledge of RSA Signatures

Given ComN (m), a commitment to m in a group of order N , the following
protocol is a zero knowledge proof of knowledge of a valid RSA signature on m.

1. The prover has input (m,σ) and the verifier is in possession of ComN (m) =
C1 = gmhr1

2. The prover commits to M = H(m), that is, M ∈ ZN , compute ComN (M) =
C2 = gMhr2 , for randomly chosen r2 ∈ Z∗

N . Send C2 to the verifier and prove
knowledge of opening.

3. The prover and verifier engage in the protocol ΠHash with inputs (m,M) and
(C1, C2) respectively.

4. The prover proves knowledge of e-th root of a committed value [CS97a]. Given
y = C2 = gMhr, prover proves knowledge of σ, such that, y = gσe

hr.
(a) The prover computes the following tuple:

(y1, · · · , ye−1) where yi = gσi

hri

for randomly chosen ri ∈ ZN , for i = 1 to e − 1.
(b) The prover and the verifier run the following proof of knowledge:

PK{(α, (β1, · · · , βe)) : y1 = gαhβ1 ∧ y2 = yα
1 hβ2 ∧ · · · ∧ y = yα

e−1h
βe}

When e is one greater than a power of 2, we can employ optimizations like
repeated squaring to prove knowledge of e-th root. Given y = gσe

hr, for e =
2k + 1, step 4 in the verification protocol can be now be realized as follows:

1. The prover computes the following tuple:

(y0, y1, · · · , yk) where yi = gσ2i

hri

for randomly chosen ri ∈ ZN , for i = 1 to k.

524 M. Chase et al.

2. The prover and the verifier run the following proof of knowledge:

PK{(α, α1, · · · , αk, β, β0, · · · , βk, R0, · · · , Rk) :

y0 = gαhβ ∧ y1 = yα
0 hβ0 ∧ y1 = gα1hR0 ∧ y2 = yα1

1 hβ1

∧ y2 = gα2hR1 · · · ∧ yk = y
αk−1
k−1 hβk−1 ∧ yk = gαkhRk−1 ∧ y = yα

k hβk}

It might be possible to improve the efficiency for some e’s by using addition
chains for the integer e. An addition chain for integer e is an ascending sequence
1 = e0 < e1 < · · · er = e such that for 1 ≤ i ≤ r, we have ei = ej + ek. The
prover, now, would have to provide only the yi’s for which i is an element of the
addition chain for e. The relations among the yi’s will be sightly different, but
can be proved in a similar way.

The above verification protocol can also be adapted to support vari-
ants of RSA-based signatures, like the probabilistic signature scheme (PSS)
from [BR96]. PSS is a probabilistic generalization of FDH which uses two hash
functions and more complicated padding. We can instantiate protocol ΠCom,f

with an f that verifies the additional checks of PSS to achieve privacy preserv-
ing verification of a PSS signature.

5.2 Proof of Security

We sketch a proof that the above protocol is a zero-knowledge proof of knowledge
of an RSA signature on a committed message. The completeness follows easily
from the security of protocol ΠHash, and from the observation that

y =
(
yα

e−1

)
hβe =

((
· · · (gαhβ1

)α
hβ2 · · ·

)α

hβe−1

)α

hβe

= gαe

hβe+αβe−1+···+αe−1β1

in step 4.

– Soundness: We show an extractor, that, given access to the prover, extracts
(m,σ) such that VerifyN,e(m,σ) = 1. The extractor invokes the simulator for
the corrupt prover of protocol ΠHash to extract m and M . It then runs the
extractor corresponding to the proof in step 4b to extract α. By the security
of ΠHash and the binding property of Com, it follows that αe mod N = M =
H(m).

– Zero-knowledge: We sketch a simulator that simulates the verifier’s view in the
protocol. The simulator commits to a random value on behalf of the prover
in step 2 by computing C ′

2 = Com(M ′). It sends C ′
2 to the verifier, proves

knowledge of opening and invokes the simulator for the corrupt verifier of
protocol ΠHash. It then chooses y1, · · · , ye−1 ∈ ZN at random, and runs the
simulator corresponding to the proof in step 4b. We can show that the view
of the verifier in the protocol is indistinguishable from the view with the
simulator.

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 525

6 Privacy-Preserving (EC)DSA Signature Verification

The DSA Scheme. The Digital Signature Algorithm (DSA) is a variant of the
Elgamal signature scheme. The key generation, signature generation and verifi-
cation algorithms are given next. The KeyGen algorithm chooses two primes p
and q such that q | p− 1. Let g be an element of order q in Z

∗
p. It then chooses x

randomly from {1, · · · , q − 1}. The private key is set to be x and the public key
is (g, p, q, y), y = gx mod p.

Sign(m)
M ← H(m)
Pick a random k, 1 ≤ k < q
r = (gk mod p) mod q
s = k−1(M + rx) mod q
return (r, s)

Verify(m, (r, s))
M ← H(m)
w = s−1 mod q
u1 = Mw mod q
u2 = rw mod q
if r = (gu1yu2 mod p) mod q
then return ;
1 else return 0;

The ECDSA Scheme. ECDSA is the elliptic curve analogue of DSA. It works
in an elliptic curve group E(Zp). The ECDSA Key generation, signature and
verification algorithms are given below. The KeyGen algorithm chooses an elliptic
curve E defined over Zp such that the number of points in E(Zp) is divisible
by a large prime n. Pick a point P ∈ E(Zp) of order n. Let d ∈ [1, n − 1] be
a randomly chosen integer. Set Q = dP . The public key is (E,P,Q, n) and the
private key is d.

Sign(m)
M ← H(m)
Pick a random k ∈ [1, n − 1]
kP = (x0, y0)
r = x0 mod n
s = k−1(M + rd) mod n
return (r, s)

Verify(m, (r, s))
M ← H(m)
if r, s �∈ [1, n − 1] then return ;
0
w = s−1 mod n
u1 = Mw mod n
u2 = rw mod n
(x1, y1) = u1P + u2Q
v = x1 mod n
if r = v then return 1;
else return 0;

6.1 Proof of Knowledge of DSA Signatures

Let (r, s) be the DSA signature on m. Let G1 = 〈G1〉 and G2 = 〈G2〉 be two
distinct groups of order p and q respectively where p and q are the parameters
of the DSA signature algorithm. One technical difficulty is that we have to
show r in G1 and G2 is equal modulo q. For that purpose, we use our protocol
ΠEq from Fig. 8 to prove equality across groups. We also employ our protocol
from Fig. 9 to prove equality of discrete logarithm of a committed value and
another committed value. We now describe the DSA verification protocol in

526 M. Chase et al.

detail. Given a commitment to m, the following protocol is a zero-knowledge
proof of knowledge of a valid DSA signature on m.

1. The verifier is in possession of C1 = Comq(m), and the prover has as input
message (m, (r, s)) and the opening information of C1 to m.

2. The prover commits to M = H(m), that is, M ∈ Zq, compute C2 = Comq(M)
Send C2 to the verifier and prove knowledge of opening.

3. Now the prover and verifier engage in the protocol ΠHash to prove that
M = H(m).

4. The prover commits to the signature (r, s) by sending Compq(r) =
(Comp(r),Comq(r)) and Comq(s). The prover also commits to the following
values: u1 = H(m)s−1, u2 = rs−1, α = gu1 , β = yu2 , where g is the generator
of a cyclic group of order q in Z

∗
p used in DSA signing, and y is the DSA

public key. Prover sends Comq(u1),Comq(u2),Comp(α),Comp(β).
5. The prover and the verifier carry out the following Σ-protocol zero-knowledge

proofs of knowledge:
(a) PK{(u1, R1, R2) : Comp(α) = Ggu1

1 HR1
1 ∧ Comq(u1) = Gu1

2 HR2
1 }

(b) PK{(u2, R1, R2) : Comp(β) = Gyu2

1 HR1
1 ∧ Comq(u2) = Gu2

2 HR2
1 }

(c) PK{(r, α, β,R1, R2, R3) : Comp(β) = Gβ
1HR1

1 ∧ Comp(α) = Gα
1 HR2

1 ∧
Comp(r) = Gr

1H
R3
1 ∧ r = αβ}

(d) PK{(M,u1, s, R1, R2, R3) : Comq(M) = GM
2 HR1

2 ∧Comq(u1) = Gu1
2 HR2

2 ∧
Comq(s) = Gs

2H
R3
2 ∧ M = u1s}

(e) PK{(r, u2, s, R1, R2, R3) : Comq(r) = Gr
2H

R1
2 ∧ Comq(u2) = Gu2

2 HR2
2 ∧

Comq(s) = Gs
2H

R3
2 ∧ r = u2s}

6. The prover and verifier engage in ΠEq with input Compq(r).

6.2 Proof of Security

We sketch a proof of the soundness and zero-knowledge properties of the above
protocol. The completeness follows from security of ΠHash and completeness of
the proofs of knowledge in step 5.

– Proof of Knowledge: We show an extractor, that, given access to the prover,
extracts (m, (r, s)) such that Verify(m, (r, s)) = 1. The extractor invokes the
simulator for the corrupt prover of protocol ΠHash to extract m and M and
the opening information for C1.
It then runs the extractor guaranteed by the proof of knowledge property of
the proofs in step 5 to extract u1, u2, α, β, s, r. Finally it returns (m, (r, s))
and the opening information. By security of ΠHash, ΠEq and the binding
property of the commitment scheme Com, it follows that r = gMs−1

yrs−1
and

M = H(m).
– Zero-knowledge: We sketch a simulator that simulates the verifier’s view in the

protocol. The simulator commits to a random value on behalf of the prover
in step 2 by computing C ′

2 = Com(M ′). It sends C ′
2 to the verifier, proves

knowledge of the opening and invokes the simulator for the corrupt verifier
of protocol ΠHash. It then commits to random values in step 4, and runs the

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 527

simulator corresponding to the proofs of knowledge in step 5. Finally in step 6,
the simulator invokes the simulator for protocol ΠEq. We can show that the
view of the verifier in the protocol is indistinguishable from the view with the
simulator.

6.3 Proof of Knowledge of ECDSA Signatures

Let (r, s) be the ECDSA signature on m. Let G1 = 〈G1〉 and G2 = 〈G2〉 be
two distinct groups of order p and n respectively where p is the order of the
field of the curve and n is the order of point P . Addition of elliptic curve points
which is the group operation requires arithmetic operations in the underlying
finite field Zp of the curve E. We use a straight forward variant of the protocol
in Fig. 9 to prove statements about multiples of an elliptic curve point (elliptic
curve analogue of exponentiation) inside commitments.

1. The verifier is in possession of C1 = Comp(m) and the prover has as input
(m,σ) and the opening of C1 to m.

2. The prover commits to M = H(m), by computing C2 = Comp(M). Send C2

to the verifier and prove knowledge of opening.
3. The prover and verifier engage in the protocol ΠHash with inputs (m,M) and

(C1, C2) respectively.
4. The prover commits to the signature (r, s) and proves knowledge of an open-

ing. The prover sends Compn(r) = (Comp(r),Comn(r)) and Comn(s). The
prover also commits to the following values: u1 = H(m)s−1, u2 = rs−1, and
the co-ordinates of the points u1P = (αx, αy), u2Q = (βx, βy), where P is the
point of order n in E(Zp) used in ECDSA signing, and Q is the ECDSA public
key. The prover sends Comn(u1), Comn(u2), Comp(αx),Comp(αy), Comp(βx),
Comp(βy).

5. The prover and the verifier carry out the following Σ-protocol zero-knowledge
proofs of knowledge:
(a) PK{(u1, αx, αy, R1, R2, R3) : Comp(αx) = Gαx

1 HR1
1 ∧ Comp(αy) =

G
αy

1 HR2
1 ∧ Comn(u1) = Gu1

2 HR3
1 ∧ (αx, αy) = u1P}

(b) PK{(u2, βx, βy, R1, R2, R3) : Comp(βx) = Gβx

1 HR1
1 ∧ Comp(βy) =

G
βy

1 HR2
1 ∧ Comn(u2) = Gu2

2 HR3
1 ∧ (βx, βy) = u2Q}

(c) PK{(r, αx, αy, βx, βy, R1, R2, R3, R4, R5) : Comp(βx) = Gβx

1 HR1
1 ∧

Comp(βy) = G
βy

1 HR2
1 ∧ Comp(αx) = Gαx

1 HR3
1 ∧ Comp(αy) = G

αy

1 HR4
1 ∧

Comp(r) = Gr
1H

R5
1 ∧ r = ((αx, αy) + (βx, βy))x}

(d) PK{(M,u1, s, R1, R2, R3) : Comn(M) = GM
2 HR1

2 ∧Comn(u1) = Gu1
2 HR2

2 ∧
Comn(s) = Gs

2H
R3
2 ∧ M = u1s}

(e) PK{(r, u2, s, R1, R2, R3) : Comn(r) = Gr
2H

R1
2 ∧ Comn(u2) = Gu2

2 HR2
2 ∧

Comn(s) = Gs
2H

R3
2 ∧ r = u2s}

6 The prover and verifier engage in ΠEq with input Compn(r).

The above protocol can be proven to be a zero knowledge proof of knowledge
of ECDSA signature. The proofs for correctness, soundness and zero-knowledge
are similar to the proofs of the protocol for the DSA signature.

528 M. Chase et al.

References

[BCKL08] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures
and noninteractive anonymous credentials. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (2008)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, pp. 784–796. ACM (2012)

[BL13] Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In:
Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–
1098. ACM Press, November 2013

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, pp. 62–73. ACM (1993)

[BR96] Bellare, M., Rogaway, P.: The exact security of digital signatures - how to
sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

[Bra99] Brands, S.: Rethinking public key infrastructure and digital certificates–
building in privacy. Ph.D. thesis, Eindhoven Institute of Technology,
Eindhoven, The Netherlands (1999)

[Cha86] Chaum, D.: Showing credentials without identification. In: Pichler, F.
(ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Hei-
delberg (1986)

[CL01] Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–
118. Springer, Heidelberg (2001)

[CL04] Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous
credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

[CMZ14] Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-
verification anonymous credentials. In: Ahn, G.-J., Yung, M., Li, N. (eds.)
ACM CCS 2014, pp. 1205–1216. ACM Press, November 2014

[CS97a] Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for
large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

[CS97b] Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for
large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

[CZ09] Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127.
Springer, Heidelberg (2009)

[Dam00] Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary
string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 418–430. Springer, Heidelberg (2000)

[DF02] Damg̊ard, I.B., Fujisaki, E.: A statistically-hiding integer commitment
scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg
(2002)

Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements 529

[DLFKP16] Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella:
turning shabby X.509 certificates into elegant anonymous credentials
with the magic of verifiable computation. In: IEEE Symposium on Secu-
rity & Privacy 2016 (Oakland 2016). IEEE (2016)

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer,
Heidelberg (2015)

[FO97] Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove
modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof-systems (extended abstract). In: Proceedings of the
17th Annual ACM Symposium on Theory of Computing, 6–8 May 1985,
Providence, Rhode Island, USA, pp. 291–304 (1985)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP-statements
in zero-knowledge and a methodology of cryptographic protocol design.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987)

[GQ88] Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fit-
ted to security microprocessor minimizing both transmission and mem-
ory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp.
123–128. Springer, Heidelberg (1988)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge argu-
ments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–
340. Springer, Heidelberg (2010)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[ide10] Specification of the identity mixer cryptographic library (revised version
2.3.0). Technical report RZ 3730, IBM Research, April 2010

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi,
A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM
Press, November 2013

[JS07] Jarecki, S.: Efficient two-party secure computation on committed
inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
97–114. Springer, Heidelberg (2007)

[KKL+16] Kolesnikov, V., Krawczyk, H., Lindell, Y., Malozemoff, A.J., Rabin, T.:
Attribute-based key exchange with general policies. Cryptology ePrint
Archive, Report 2016/518 (2016). http://eprint.iacr.org/

[Knu69] Knuth, D.E.: The Art of Computer Programming Vol. 2: Seminumerical
Algorithms, pp. 229–279. Addison Wesley, Reading (1969)

http://eprint.iacr.org/

530 M. Chase et al.

[KS06] Kiraz, M., Schoenmakers, B.: A protocol issue for the malicious case of
yaos garbled circuit construction. In: 27th Symposium on Information
Theory in the Benelux, pp. 283–290 (2006)

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR
gates and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)

[KSS09] Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit
building blocks and applications to auctions and computing minima. In:
Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 1–20. Springer, Heidelberg (2009)

[Lin15] Lindell, Y.: An efficient transform from sigma protocols to NIZK with
a CRS and non-programmable random oracle. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 93–109. Springer,
Heidelberg (2015)

[MGGR13] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: Anonymous
distributed e-cash from bitcoin. In: IEEE Symposium on Security and
Privacy (SP), pp. 397–411. IEEE (2013)

[MR13] Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more
efficient and secure two-party computation. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 36–53. Springer,
Heidelberg (2013)

[Ngu05] Nguyen, L.: Accumulators from bilinear pairings and applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005)

[Ped91] Pedersen, T.P.: Non-interactive and information-theoretic secure verifi-
able secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 129–140. Springer, Heidelberg (1992)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398.
Springer, Heidelberg (1996)

[PZ13] Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1
(revision 2) (2013). www.microsoft.com/uprove

[S+11] shelat, A., Shen, C.: Two-output secure computation with malicious
adversaries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol.
6632, pp. 386–405. Springer, Heidelberg (2011)

[Sch90] Schnorr, C.-P.: Efficient identification and signatures for smart cards.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252.
Springer, Heidelberg (1990)

[Sta96] Stadler, M.A.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg
(1996)

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–
250. Springer, Heidelberg (2015)

www.microsoft.com/uprove

Theory

Fine-Grained Cryptography

Akshay Degwekar(B), Vinod Vaikuntanathan, and Prashant Nalini Vasudevan

MIT, CSAIL, Cambridge, USA
{akshayd,vinodv,prashvas}@mit.edu

Abstract. Fine-grained cryptographic primitives are ones that are
secure against adversaries with an a-priori bounded polynomial amount
of resources (time, space or parallel-time), where the honest algorithms
use less resources than the adversaries they are designed to fool. Such
primitives were previously studied in the context of time-bounded adver-
saries (Merkle, CACM 1978), space-bounded adversaries (Cachin and
Maurer, CRYPTO 1997) and parallel-time-bounded adversaries (H̊astad,
IPL 1987). Our goal is come up with fine-grained primitives (in the set-
ting of parallel-time-bounded adversaries) and to show unconditional
security of these constructions when possible, or base security on widely
believed separation of worst-case complexity classes. We show:

1. NC1-cryptography: Under the assumption that NC1 �= ⊕L/poly, we
construct one-way functions, pseudo-random generators (with sub-
linear stretch), collision-resistant hash functions and most impor-
tantly, public-key encryption schemes, all computable in NC1 and
secure against all NC1 circuits. Our results rely heavily on the
notion of randomized encodings pioneered by Applebaum, Ishai and
Kushilevitz, and crucially, make non-black-box use of randomized
encodings for logspace classes.

2. AC0-cryptography: We construct (unconditionally secure) pseudo-
random generators with arbitrary polynomial stretch, weak pseudo-
random functions, secret-key encryption and perhaps most inter-
estingly, collision-resistant hash functions, computable in AC0 and
secure against all AC0 circuits. Previously, one-way permutations
and pseudo-random generators (with linear stretch) computable in
AC0 and secure against AC0 circuits were known from the works of
H̊astad and Braverman.

1 Introduction

The last four decades of research in the theory of cryptography has produced
a host of fantastic notions, from public-key encryption [DH76,RSA78,GM82]

Research supported in part by NSF Grants CNS-1350619 and CNS-1414119, Alfred
P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation,
a Steven and Renee Finn Career Development Chair from MIT. This work was also
sponsored in part by the Defense Advanced Research Projects Agency (DARPA)
and the U.S. Army Research Office under contracts W911NF-15-C-0226.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 533–562, 2016.
DOI: 10.1007/978-3-662-53015-3 19

534 A. Degwekar et al.

and zero-knowledge proofs [GMR85] in the 1980s, to fully homomorphic encryp-
tion [RAD78,Gen09,BV11] and program obfuscation [BGI+01,GGH+13,SW14]
in the modern day. Complexity theory is at the heart of these developments,
playing a key role in coming up with precise mathematical definitions as well as
constructions whose security can be reduced to precisely stated computational
hardness assumptions.

However, the uncomfortable fact remains that a vast majority of crypto-
graphic constructions rely on unproven assumptions. At the very least, one
requires that NP � BPP [IL89], but that is hardly ever enough — when design-
ing advanced cryptographic objects, cryptographers assume the existence of one-
way functions as a given, move up a notch to assuming the hardness of specific
problems such as factoring, discrete logarithms and the approximate shortest
vector problem for lattices, and, more recently, even more exotic assumptions.
While there are some generic transformations between primitives, such as from
one-way functions to pseudo-random generators and symmetric encryption (e.g.,
[HILL99]), there are large gaps in our understanding of relationships between
most others. In particular, it is a wide open question whether NP � BPP suf-
fices to construct even the most basic cryptographic objects such as one-way
functions, or whether it is possible to construct public-key encryption assum-
ing only the existence of one-way functions (for some partial negative results,
see [BT03,AGGM06,BB15,IR88]).

In this work, we ask if a weaker version of these cryptographic primitives can
be constructed, with security against a bounded class of adversaries, based on
either mild complexity-theoretic assumptions or no assumptions at all. Indeed,
this question has been asked by several researchers in the past.

1. Merkle [Mer78] constructed a non-interactive key exchange protocol (and
thus, a public-key encryption scheme) where the honest parties run in lin-
ear time O(n) and security is shown against adversaries that run in time
o(n2). His assumption was the existence of a random function that both the
honest parties and the adversary can access (essentially, the random oracle
model [BR93]). Later, the assumption was improved to exponentially strong
one-way functions [BGI08]. This work is timeless, not only because it jump-
started public-key cryptography, but also because it showed how to obtain a
primitive with much structure (trapdoors) from one that apparently has none
(namely, random oracles and exponentially strong one-way functions).

2. Maurer [Mau92] introduced the bounded storage model, which considers
adversaries that have an a-priori bounded amount of space but unbounded
computation time. Cachin and Maurer constructed symmetric-key encryp-
tion and key-exchange protocols that are unconditionally secure in this model
[CM97] assuming that the honest parties have storage O(s) and the adversary
has storage o(s2) for some parameter s. There has been a rich line of work
on this model [CM97,AR99,DM04] following [Mau92].

3. Implicit in the work of H̊astad [Has87] is a beautiful construction of a one-
way permutation that can be computed in NC0 (constant-depth circuits with

Fine-Grained Cryptography 535

AND and OR gates of unbounded fan-in and NOT gates), but inverting which
is hard for any AC0 circuit. Here is the function:

f(x1, x2, . . . , xn) =
(
x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn

)
Clearly, each output bit of this function depends on at most two input bits.
Inverting the function implies in particular the ability to compute xn, which
is the parity of all the output bits. This is hard for AC0 circuits as per [FSS84,
Ajt83,H̊as86].

All these works share two common features. First, security is achieved against
a class of adversaries with bounded resources (time, space and parallel time,
respectively, in the three works above). Secondly, the honest algorithms use less
resources than the class of adversaries they are trying to fool. We propose to
call the broad study of such cryptographic constructions fine-grained cryptogra-
phy, and construct several fine-grained cryptographic primitives secure against
parallel-time-bounded adversaries.

We study two classes of low-depth circuits (as adversaries). The first is AC0,
which is the class of functions computable by constant-depth polynomial-sized
circuits consisting of AND, OR, and NOT gates of unbounded fan-in, and the sec-
ond is NC1, the class of functions computable by logarithmic-depth polynomial-
sized circuits consisting of AND, OR, and NOT gates of fan-in 2. In both cases,
we mean the non-uniform versions of these classes. Note that this also covers the
case of adversaries that are randomized circuits with these respective restrictions.
This is because for any such randomized adversary A there is a non-uniform
adversary A′ that performs as well as A – A′ is simply A hard-coded with the
randomness that worked best for it.

Early developments in circuit lower bounds [FSS84,Ajt83,H̊as86] showed pro-
gressively better and average-case and exponential lower bounds for the PARITY
function against AC0 circuits. This has recently been sharpened to an average-
case depth hierarchy theorem [RST15]. We already saw how these lower bounds
translate to meaningful cryptography, namely one-way permutations against AC0

adversaries. Extending this a little further, a reader familiar with Braverman’s
breakthrough result [Bra10] (regarding the pseudorandomness of nε-wise inde-
pendent distributions against AC0) will notice that his result can be used to
construct large-stretch pseudo-random generators that are computable by fixed-
depth AC0 circuits and are pseudo-random against arbitrary constant-depth AC0

circuits. Can we do more? Can we construct secret-key encryption, collision-
resistant hash functions, and even trapdoor functions, starting from known lower
bounds againstAC0 circuits? Our first contribution is a positive answer to some
of these questions.

Our second contribution is to study adversaries that live in NC1. In this set-
ting, as we do not know any lower bounds against NC1, we are forced to rely on
an unproven complexity-theoretic assumption; however, we aim to limit this to a
worst-case, widely believed, separation of complexity classes. Here, we construct
several cryptographic primitives from the worst-case hardness assumption that
⊕L/poly �⊆ NC1, the most notable being an additively-homomorphic public-key

536 A. Degwekar et al.

encryption scheme where the key generation, encryption and decryption algo-
rithms are all computable in AC0[2] (constant-depth circuits with MOD2 gates;
note that AC0[2] � AC0 [Raz87,Smo87]), and the scheme is semantically secure
against NC1 adversaries. (⊕L/poly can be thought of as the class of languages
with polynomial-sized branching programs. Note that by Barrington’s Theorem
[Bar86], all languages in NC1 have polynomial-sized branching programs of con-
stant width.)

Apart from theoretical interest stemming from the fact that these are rather
natural objects, one possible application of such constructions (that was sug-
gested to us independently by Ron Rothblum and Yuval Ishai) is in using them
in conjunction with other constructions that are secure against polynomial-time
adversaries under stronger assumptions. This could be done to get hybrids that
are secure against polynomial-time adversaries under these stronger assumptions
while also being secure against bounded adversaries unconditionally (or under
minimal assumptions). For instance, consider an encryption scheme where the
message is first encrypted using the AC0-encryption scheme from Sect. 5.3, and
the resultant ciphertext is then encrypted using a scheme that works in AC0

and is secure against polynomial-time adversaries under some standard assump-
tions (see [AIK04] for such schemes). This resultant scheme can be shown to be
secure against polynomial-time adversaries under the same assumptions while
being unconditionally secure against AC0 adversaries.

We now briefly describe the relation between our results and the related work
on randomized encodings [IK00,AIK04], and move on to describing the results
in detail.

Relation to Randomized Encodings and Cryptography in NC0. Randomized
encodings of Ishai and Kushilevitz [IK00,AIK04] are a key tool in our results
against NC1 adversaries. Using randomized encodings, Applebaum, Ishai and
Kushilevitz [AIK04] showed how to convert several cryptographic primitives
computable in logspace classes into ones that are computable in NC0. The
difference between their work and ours is two-fold: (1) Their starting points
are cryptographic schemes secure against arbitrary polynomial-time adversaries,
which rely on average-case hardness assumptions, whereas in our work, the focus
is on achieving security either with no unproven assumptions or only worst-
case assumptions; of course, our schemes are not secure against polynomial-time
adversaries, but rather, limited adversarial classes; (2) In the case of public-key
encryption, they manage to construct key generation and encryption algorithms
that run in NC0, but the decryption algorithm retains its high complexity. In
contrast, in this work, we can construct public key encryption (against NC1

adversaries) where the encryption algorithm can be computed in NC0 and the
key generation and decryption in AC0[2].

A Remark on Cryptographic vs. Non-cryptographic Constructions. An important
desideratum for us is that the (honest) algorithms in our constructions can be
implemented with fewer resources than the adversary that they are trying to
fool. We call such constructions cryptographic in contrast to non-cryptographic

Fine-Grained Cryptography 537

constructions where this is not necessarily the case. Perhaps the clearest and
the most well-known example of this distinction is the case of pseudo-random
generators (PRGs) [BM84,Yao82,NW94]. Cryptographic PRGs, pioneered in the
works of Blum, Micali and Yao [BM84,Yao82] are functions computable in a fixed
polynomial time that produce outputs that are indistinguishable from random
against any polynomial-time machine. The designer of the PRG does not know
the precise power of the adversary: he knows that the adversary is polynomial-
time, but not which polynomial. On the other hand, non-cryptographic (“Nisan-
Wigderson type”) PRGs [NW94] take more time to compute than the adversaries
they are designed to fool.

Our constructions will be exclusively in the cryptographic regime. For exam-
ple, our one-way functions, pseudo-random generators and collision-resistant
hash functions against AC0 are computable by circuits of fixed polynomial size
q(λ) and fixed (constant) depth d, and maintain security (in the appropriate
sense) against adversarial circuits of size p′(λ) and depth d′ for any polynomial
function p′ and any constant d′.

1.1 Our Results and Techniques

Our results are grouped into two classes — primitives secure against NC1 circuits
based on minimal worst-case assumptions, and those that are unconditionally
secure against AC0 circuits. In the description below and throughout the rest of
the paper, all algebra is over F2.

Constructions Against NC1 Adversaries. We construct one-way functions
(OWFs), pseudo-random generators (PRGs), additively homomorphic public-key
encryption (PKE), and collision-resistant hash functions (CRHFs) that are com-
putable in NC1 and are secure against NC1 adversaries, based on the worst-case
assumption that ⊕L/poly �⊆ NC1. An important tool we use for these construc-
tions is the notion of randomized encodings of functions introduced in [IK00].

A randomized encoding of a function f is a randomized function f̂ that is
such that for any input x, the distribution of f̂(x) reveals f(x), but nothing
more about x. We know through the work of [IK00,AIK04] that there are ran-
domized encodings for the class ⊕L/poly that can be computed in (randomized,
uniform) NC0. Randomized encodings naturally offer a flavor of worst-to-average
case reductions as they reduce the problem of evaluating a function on a given
input to deciding some property of the distribution of its encoding. Our start-
ing point is the observation, implicit in [AIK04,AR15], that they can be used
to generically construct infinitely-often one-way functions and pseudo-random
generators with additive stretch, computable in NC0 and secure against NC1

adversaries (assuming, again, that ⊕L/poly �⊆ NC1). We start with the following
general theorem.

Theorem 1.1 (Informal). Let C1 and C2 be two classes such that C2 �⊆ C1 and
C2 has perfect randomized encodings computable in C1. Then, there are OWFs
and PRGs that are computable in C1 and are secure against arbitrary adversarial
functions in C1.

538 A. Degwekar et al.

Informally, the argument for Theorem1.1 is the following: Let L be the language
in C2 but not C1. The PRG is a function that takes an input r and outputs the
randomized encoding of the indicator function for membership in L on the input
0λ, using r as the randomness (where λ is a security parameter). Any adversary
that can distinguish the output of this function from random can be used to
decide if a given x is in the language L by computing the randomized encoding
of x and feeding it to the adversary. This gives us a PRG with a non-zero additive
stretch (and also a OWF) if the randomized encoding has certain properties (they
need to be perfect) — see Sect. 3 for details.

While we have one way functions and pseudorandom generators, a black-
box construction of public key cryptosystems from randomized encodings seems
elusive. Our first contribution in this work is to use the algebraic structure
of the randomized encodings for ⊕L/poly to construct an additively homomor-
phic public key encryption scheme secure against NC1 circuits (assuming that
⊕L/poly �⊆ NC1).

Additively Homomorphic Public-Key Encryption. The key attribute of the ran-
domized encodings of [IK00,AIK04] for ⊕L/poly is that the encoding is not
a structureless string. Rather, the randomized encodings of computations are
matrices whose rank corresponds to the result of the computation. Our public-
key encryption construction uses two observations:

– Under the assumption ⊕L/poly �⊆ NC1, there exist, for an infinite number of
values of n, distributions Dn

0 and Dn
1 over n × n matrices of rank (n − 1) and

n, respectively, that are indistinguishable to NC1 circuits.
– It is possible to sample a matrix M from Dn

0 along with the non-zero vector
k in its kernel. The sampling can be accomplished in NC1 or even AC0[2].

The public key in our scheme is such a matrix M, and the secret key is
the corresponding k. Encryption of a bit b is a vector rTM + btT , where r is a
random vector1 and t is a vector such that 〈t,k〉 = 1. In effect, the encryption of
0 is a random vector in the row-span of M while the encryption of 1 is a random
vector outside. Decryption of a ciphertext c is simply the inner product 〈c,k〉.
Semantic security against NC1 adversaries follows from the fact that Dn

0 and Dn
1

are indistinguishable to NC1 circuits. In particular, (1) We can indistinguishably
replace the public key by a random full rank matrix M′ chosen from D1

n; and
(2) with M′ as the public key, encryptions of 0 are identically distributed to the
encryptions of 1. The following is an informal restatement of Theorem4.1.

Theorem 1.2 (Informal). If ⊕L/poly �= NC1, there is a public-key encryption
scheme secure against NC1 adversaries where key generation, encryption and
decryption are all computable in (randomized) AC0[2].

The scheme above is additively homomorphic, and thus, collision-resistant
hash functions (CRHF) against NC1 follow immediately from the known generic
transformations [IKO05] which work in NC1.
1 We maintain the convention that all vectors are by default column vectors. For a

vector r, the notation rT denotes the row vector that is the transpose of r.

Fine-Grained Cryptography 539

Theorem 1.3 (Informal). If ⊕L/poly �= NC1, there is a family of collision-
resistant hash functions that is secure against NC1 adversaries where both sam-
pling hash functions and evaluating them can be performed in (randomized)
AC0[2].

We remark that in a recent work, Applebaum and Raykov [AR15] construct
CRHFs against polynomial-time adversaries under the assumption that there are
average-case hard functions with perfect randomized encodings. Their techniques
also carry over to our setting and imply, for instance, the existence of CRHFs
against NC1 under the assumption that there is a language that is average-case
hard for NC1 that has perfect randomized encodings that can be computed in
NC1. This does not require any additional structure on the encodings apart from
perfectness, but does require average-case hardness in place of our worst-case
assumptions.

Constructions Against AC0 Adversaries. We construct one-way functions
(OWFs), pseudo-random generators (PRGs), weak pseudo-random functions
(weak PRFs), symmetric-key encryption (SKE) and collision-resistant hash func-
tions (CRHFs) that are computable in AC0 and are unconditionally secure
against arbitrary AC0 circuits. While some constructions for OWFs and PRGs
against AC0 were already known [H̊as86,Bra10], and the existence of weak PRFs
and SKE, being minicrypt primitives, is not that surprising, the possibility of
unconditionally secure CRHFs against AC0 is somewhat surprising, and we con-
sider this to be our primary contribution in this section. We also present a
candidate construction for public-key encryption, but we are unable to prove its
unconditional security against AC0 circuits.

As we saw earlier, H̊astad [Has87] constructed one-way permutations secure
against AC0 circuits based on the hardness of computing PARITY. When allowed
polynomial running time, we have black-box constructions of pseudorandom gen-
erators [HILL99] and pseudorandom functions [GGM86] from one-way functions.
But because these reductions are not implementable in AC0, getting primitives
computable in AC0 requires more effort.

Our constructions against AC0 adversaries are primarily based on the theorem
of Braverman [Bra10] (and its recent sharpening by Tal [Tal14]) regarding the
pseudo-randomness of polylog-wise independent distributions against constant
depth circuits. We use this to show that AC0 circuits cannot distinguish between
the distribution (A,Ak), where A is a random “sparse” matrix of dimension
poly(n) × n and k is a uniformly random secret vector, from the distribution
(A, r), where r is a uniformly random vector. Sparse here means that each row
of A has at most polylog(n) many ones.

(This is shown as follows. It turns out that with high probability, a matrix
chosen in this manner is such that any set of polylog(n) rows is linearly inde-
pendent (Lemma 2.5). Note that when a set of rows of A is linearly indepen-
dent, the corresponding set of bits in Ak are uniformly distributed. This implies
that if all polylog(n)-sized sets of rows of A are linearly independent, then Ak
is polylog(n)-wise independent. This fact, along with the theorems regarding
pseudo-randomness mentioned above prove the indistinguishability by AC0.)

540 A. Degwekar et al.

We also crucially use the fact, from [AB84], that the inner product of an
arbitrary vector with a sparse vector can be computed in constant depth.

OWFs and PRGs. This enables us to construct PRGs in NC0 with constant
multiplicative stretch and in AC0 with polynomial multiplicative stretch. The
construction is to fix a sparse matrix A with the linear independence properties
mentioned above, and the PRG output on seed k is Ak. Pseudo-randomness
follows from the indistinguishability arguments above. This is stated in the fol-
lowing informal restatement of Theorem 5.1. We need to show that there exist
such matrices A in which any polylog-sized set of rows are linearly independent,
and yet are sparse. As we show in Sect. 2.3, there are indeed matrices that have
these properties.

Theorem 1.4 (Informal). For any constant c, there is a family of circuits{
Cn : {0, 1}n → {0, 1}nc

}
such that for any n, each output bit of Cn depends

on at most O(c) input bits. Further, for large enough n, AC0 circuits cannot
distinguish the output distribution Cn(Un) from Unc .

We note that similar techniques have been used in the past to construct PRGs
that fool circuit families of a fixed constant depth - see, for instance, [Vio12].

Weak PRFs Against AC0. A Pseudo-Random Function family (PRF) is a collec-
tion of functions such that a function chosen at random from this collection is
indistinguishable from a function chosen at random from the set of all functions
(with the appropriate domain and range), based on just a polynomial number
of evaluations of the respective functions. In a Strong PRF, the distinguisher
is allowed to specify (even adaptively) the input points at which it wants the
function to be evaluated. In a Weak PRF, the distinguisher is given function
evaluations at input points chosen uniformly at random.

We construct Weak PRFs against AC0 that are unconditionally secure. In
our construction, each function in the family is described by a vector k. The
computation of the pseudo-random function proceeds by mapping its input x
to a sparse vector a and computing the inner product 〈a,k〉 over F2. Given
polynomially many samples of the form (a, 〈a,k〉), one can write this as (A,Ak),
where A is a matrix with random sparse rows. Our mapping of x’s to a’s is such
that (A,Ak) is in some sense the only useful information contained in a set of
random function evaluations. This is now indistinguishable from (A, r) where r
is uniformly random, via the arguments mentioned earlier in this section. The
following is an informal restatement of Theorem5.2.

Theorem 1.5 (Informal). There is a Weak Pseudo-Random Function family
secure against AC0 adversaries and is such that both sampling a function at
random and evaluating it can be performed in AC0.

We note that while our construction only gives us quasi-polynomial secu-
rity (that is, an adversary might be able to achieve an inverse quasi-polynomial

Fine-Grained Cryptography 541

advantage in telling our functions from random) as opposed to exponential secu-
rity, we show that this is an inherent limitation of weak PRFs computable in
AC0. Roughly speaking, due to the work of [LMN93], we know that a constant
fraction of the Fourier mass of any function on n inputs computable in AC0 is
concentrated on Fourier coefficients upto some polylog(n). So there is at least one
coefficient in the case of such a function that is at least Ω

(
1

2polylog(n)

)
in absolute

value, whereas in a random function any coefficient would be exponentially small.
So, by guessing and estimating a Fourier coefficient of degree at most polylog(n)
(which can be done in AC0), one can distinguish functions computed in AC0 from
a random function with some Ω

(
1

2polylog(n)

)
advantage.

Symmetric Key Encryption Against AC0. In the case of polynomial-time adver-
saries and constructions, weak PRFs generically yield symmetric key encryp-
tion schemes, and this continues to hold in our setting. However, we present an
alternative construction that has certain properties that make it useful in the
construction of collision-resistant hash functions later on. The key in our scheme
is again a random vector k. The encryption of a bit b is a random sparse vector c
such that 〈c,k〉 = b over F2. (Similar schemes, albeit without the sparsity, have
been employed in the past in the leakage-resilience literature — see [GR12] and
references therein.)

Encryption is performed by rejection sampling to find such a c, and decryp-
tion is performed by computing 〈c,k〉, which can be done in constant depth
owing to the sparsity of c. We reduce the semantic security of this construction
to the indistinguishability of the distributions (A,Ak) and (A, r) mentioned
earlier. Note that this scheme is additively homomorphic, a property that will
be useful later. The following is an informal restatement of Theorem5.3.

Theorem 1.6 (Informal). There is a Symmetric Key Encryption scheme that
is secure against AC0 adversaries and is such that key generation, encryption and
decryption are all computable in (randomized) AC0.

Collision Resistance Against AC0. Our most important construction against AC0,
which is what our encryption scheme was designed for, is that of Collision Resis-
tant Hash Functions. Note that while there are generic transformations from addi-
tively homomorphic encryption schemes to CRHFs [IKO05], these transforma-
tions do not work in AC0 and hence do not yield the construction we desire.

Our hash functions are described by matrices where each column is the
encryption of a random bit under the above symmetric encryption scheme. Given
such a matrix M that consists of encryptions of the bits of a string m, the eval-
uation of the function on input x is Mx. Note that we wish to perform this
computation in constant depth, and this turns out to be possible to do correctly
for most keys because of the sparsity of our ciphertexts.

Finding a collision for a given key M is equivalent to finding a vector u such
that Mu = 0. By the additive homomorphism of the encryption scheme, and the
fact that 0 is a valid encryption of 0, this implies that 〈m,u〉 = 0. But this is non-
trivial information about m, and so should violate semantic security. However
showing that this is indeed the case turns out to be somewhat non-trivial.

542 A. Degwekar et al.

In order to do so, given an AC0 adversary A that finds collisions for the hash
function with some non-negligible probability, we will need to construct another
AC0 adversary, B, that breaks semantic security of the encryption scheme. The
most straightforward attempt at this would be as follows. B selects messages m0

and m1 at random and sends them to the challenger who responds with M =
Enc(mb). B then forwards this to A who would then return, with non-negligible
probability, a vector u such that 〈u,mb〉 = 0. If B could compute 〈u,m0〉 and
〈u,m1〉, B would then be able to guess b correctly with non-negligible advantage.
The problem with this approach is that u, m0 and m1 might all be of high
Hamming weight, and this being the case, B would not be able to compute the
above inner products.

The solution to this is to choose m0 to be a sparse vector and m1 to be a
random vector and repeat the same procedure. This way, B can compute 〈u,m0〉,
and while it still cannot check whether 〈u,m1〉 = 0, it can instead check whether
Mu = 0 and use this information. If it turns out that Mu = 0 and 〈u,m0〉 �= 0,
then B knows that b = 1, due to the additive homomorphism of the encryption
scheme. Also, when b = 1, since m0 is independent of m1, the probability that A
outputs u such that 〈u,m0〉 �= 0 is non-negligible. Hence, by guessing b = 1 when
this happens and by guessing b at random otherwise, B can gain non-negligible
advantage against semantic security. This achieves the desired contradiction and
demonstrates the collision resistance of our construction. The following is an
informal restatement of Theorem 5.4.

Theorem 1.7 (Informal). There is a family of Collision Resistant Hash
Functions that is secure against AC0 adversaries and is such that both sampling
a hash function at random and evaluating it can be performed in (randomized)
AC0.

Candidate Public Key Encryption Against AC0. We also propose a candidate
Public Key Encryption scheme whose security we cannot show. It is similar to
the LPN-based cryptosystem in [Ale03]. The public key is a matrix of the form
M = (A,Ak) where A is a random n × n matrix and k, which is also the secret
key, is a random sparse vector of length n. To encrypt 0, we choose a random
sparse vector r and output cT = rTM, and to encrypt 1 we just output a random
vector cT of length (n + 1). Decryption is simply the inner product of c and the
vector (k 1)T , and can be done in AC0 because k is sparse.

1.2 Other Related Work: Cryptography Against Bounded
Adversaries

The big bang of public-key cryptography was the result of Merkle [Mer78] who
constructed a key exchange protocol where the honest parties run in linear time
O(n) and security is obtained against adversaries that run in time o(n2). His
assumption was the existence of a random function that both the honest parties
and the adversary can access. Later, the assumption was improved to strong one-
way functions [BGI08]. This is, indeed, a fine-grained cryptographic protocol in
our sense.

Fine-Grained Cryptography 543

The study of ε-biased generators [AGHP93,MST06] is related to this work.
In particular, ε-biased generators with exponentially small ε give us almost k-
wise independent generators for large k, which in turn fool AC0 circuits by a
result of Braverman [Bra10]. This and other techniques have been used in the
past to construct PRGs that fool circuits of a fixed constant depth, with the
focus generally being on optimising the seed length [Vio12,TX13].

The notion of precise cryptography introduced by Micali and Pass [MP06]
studies reductions between cryptographic primitives that can be computed in
linear time. That is, they show constructions of primitive B from primitive A
such that if there is a TIME(f(n)) algorithm that breaks primitive B, there is a
TIME(O(f(n))) algorithm that breaks A.

Maurer [Mau92] introduced the bounded storage model, which considers
adversaries that have a bounded amount of space and unbounded computa-
tion time. There are many results known here [DM04,Vad04,AR99,CM97] and
in particular, it is possible to construct Symmetric Key Encryption and Key
Agreement protocols unconditionally in this model [CM97].

2 Preliminaries

In this section we establish notation that shall be used throughout the rest of
the presentation and recall the notion of randomized encodings of functions. We
state and prove some results about certain kinds of random matrices that turn
out to be useful in Sect. 5. In Sects. 2.4 and 2.5, we present formal definitions of
a general notion of adversaries with restricted computational power and also of
several standard cryptographic primitives against such restricted adversaries (as
opposed to the usual definitions, which are specific to probabilistic polynomial
time adversaries).

2.1 Notation

For a distribution D, by x ← D we denote x being sampled according to D.
Abusing notation, we denote by D(x) the probability mass of D on the element
x. For a set S, by x ← S, we denote x being sampled uniformly from S. We
also denote the uniform distribution over S by US , and the uniform distribution
over {0, 1}λ by Uλ. We use the notion of total variational distance between
distributions, given by:

Δ(D1,D2) =
1
2

∑
x

|D1(x) − D2(x)|

For distributions D1 and D2 over the same domain, by D1 ≡ D2 we mean
that the distributions are the same, and by D1 ≈ D2, we mean that Δ(D1,D2)
is a negligible function of some parameter that will be clear from the context.
Abusing notation, we also sometimes use random variables instead of their dis-
tributions in the above expressions.

544 A. Degwekar et al.

For any n ∈ N, we denote by �n2 the greatest power of 2 that is not more
than n. For any n, k, and d ≤ k, we denote by SpRk,d the uniform distribution
over the set of vectors in {0, 1}k with exactly d non-zero entries, and by SpMn,k,d

the distribution over the set of matrices in {0, 1}n×k where each row is distributed
independently according to SpRk,d.

We identify strings in {0, 1}n with vectors in F
n
2 in the natural manner. For

a string (vector) x, ‖x‖ denotes its Hamming weight. Finally, we note that all
arithmetic computations (such as inner products, matrix products, etc.) in this
work will be over F2, unless specified otherwise.

2.2 Constant-Depth Circuits

Here we state a few known results on the computational power of constant depth
circuits that shall be useful in our constructions against AC0 adversaries.

Theorem 2.1 (Hardness of Parity, [H̊as14]). For any circuit C with n
inputs, size s and depth d,

Pr
x←{0,1}n

[C(x) = PARITY(x)] ≤ 1
2

+ 2−Ω(n/(log s)d−1)

Theorem 2.2 (Partial Independence, [Bra10,Tal14]). Let D be a k-wise
independent distribution over {0, 1}n. For any circuit C with n inputs, size s
and depth d,

∣∣∣∣ Pr
x←D

C(x) = 1 − Pr
x←{0,1}n

C(x) = 1
∣∣∣∣ ≤ s

2Ω(k1/(3d+3))

The following lemma is implied by theorems proven in [AB84,RW91] regard-
ing the computability of polylog thresholds by constant-depth circuits.

Lemma 2.3 (Polylog Inner Products). For any constant c and for any
function t : N → N such that t(λ) = O(logc λ), there is an AC0 family It = {ipt

λ}
such that for any λ,

– ipt
λ takes inputs from {0, 1}λ × {0, 1}λ.

– For any x, y ∈ {0, 1}λ such that min(‖x‖ , ‖y‖) ≤ t(λ), ipt
λ(x, y) = 〈x, y〉.

2.3 Sparse Matrices and Linear Codes

In this section we describe and prove some properties of a sampling procedure
for random matrices. In interest of space, we will defer the proofs of the lemmas
stated in this section to the full version.

We describe the following two sampling procedures that we shall use later.
SRSamp and SMSamp abbreviate Sparse Row Sampler and Sparse Matrix Sam-
pler, respectively. SRSamp(k, d, r) samples unformly at random a vector from
{0, 1}k with exactly d non-zero entries, using r for randomness – it chooses a

Fine-Grained Cryptography 545

set of d distinct indices between 0 to k − 1 (via rejection sampling) and outputs
the vector in which the entries at those indices are 1 and the rest are 0. When
we don’t specifically need to argue about the randomness, we drop the explicitly
written r. SMSamp(n, k, d) samples an n × k matrix whose rows are samples
from SRSamp(k, d, r) using randomly and independently chosen r’s.

Construction 2.1. Sparse row and matrix sampling.
SRSamp(k, d, r): Samples a vector with exactly d non-zero entries.

1. If r is not specified or |r| < d2 �log(k)�, sample r ← {0, 1}d2�log(k)� anew.
2. For l ∈ [d] and j ∈ [d], set ul

j = r((l−1)d+j−1)�log(k)�+1 . . . r((l−1)d+j)�log(k)�.
3. If there is no l such that for all distinct j1, j2 ∈ [d], ul

j1 �= ul
j2 , output 0k.

4. Else, let l0 be the least such l.
5. For i ∈ [k], set vi = 1 if there is a j ∈ [d] such that ul0

j = i (when interpreted in
binary), or vi = 0 otherwise.

6. Output v = (v1, . . . , vk).

SMSamp(n, k, d): Samples a matrix where each row has d non-zero entries.

1. For i ∈ [n], sample ri ← {0, 1}d2�log(k)� and ai ← SRSamp(k, d, ri).
2. Output the n × k matrix whose i-th row is ai.

For any fixed k and d < k, note that the function Sk,d : {0, 1}d2�log(k)� →
{0, 1}k given by Sk,d(x) = SRSamp(k, d, x) can be easily seen to be computed by
a circuit of size O((d3+kd2) log(k)) and depth 8. And so the family S =

{
Sλ,d(λ)

}
is in AC0. When, in our constructions, we require computing SRSamp(k, d, x),
this is to be understood as being performed by the circuit for Sk,d that is given
as input the prefix of x of length d2 �log(k)�. So if the rest of the construction is
computed by polynomial-sized constant depth circuits, the calls to SRSamp do
not break this property.

Recall that we denote by SpRk,d the uniform distribution over the set of vec-
tors in {0, 1}k with exactly d non-zero entries, and by SpMn,k,d the distribution
over the set of matrices in {0, 1}n×k where each row is sampled independently
according to SpRk,d. The following lemma states that the above sampling pro-
cedures produce something close to these distributions.

Lemma 2.4 (Uniform Sparse Sampling). For any n, and d = log2(k),
there is a negligible function ν such that for any k that is a power of two, when
r ← {0, 1}log5(k),

1. Δ(SRSamp(k, d, r), SpRk,d) ≤ ν(k)
2. Δ(SMSamp(n, k, d), SpMn,k,d) ≤ nν(k)

The following property of the sampling procedures above is easiest proven
in terms of expansion properties of bipartite graphs represented by the matrices
sampled. The analysis closely follows that of Gallager [Gal62] from his early
work on Low-Density Parity Check codes.

546 A. Degwekar et al.

Lemma 2.5 (Sampling Codes). For any constant c > 0, set n = kc, and
d = log2(k). For a matrix H, let δ(H) denote the minimum distance of the code
whose parity check matrix is H. Then, there is a negligible function ν such that
for any k that is a power of two,

Pr
H←SMSamp(n,k,d)

δ(H) ≥ k

log3(k)
≥ 1 − ν(k)

Recall that a δ-wise independent distribution over n bits is a distribution
whose marginal distribution on any set of δ bits is the uniform distribution.

Lemma 2.6 (Distance and Independence). Let H (of dimension n×k) be
the parity check matrix of an [n, (n−k)]2 linear code of minimum distance more
than δ. Then, the distribution of Hx is δ-wise independent when x is chosen
uniformly at random from {0, 1}k.

The following is immediately implied by Lemmas 2.5, 2.6 and Theorem 2.2. It
effectively says that AC0 circuits cannot distinguish between (A,As) and (A, r)
when A is sampled using SRSamp and s and r are chosen uniformly at random.

Lemma 2.7. For any polynomial n, there is a negligible function ν such that
for any Boolean family G = {gλ} ∈ AC0, and for any k that is a power of 2,
when A ← SMSamp(n(k), k, log2(k)), s ← {0, 1}k and r ← {0, 1}n(k),

|Pr [gλ(A,As) = 1] − Pr [gλ(A, r) = 1]| ≤ ν(λ)

2.4 Adversaries

Definition 2.8 (Function Family). A function family is a family of (possibly
randomized) functions F = {fλ}λ∈N, where for each λ, fλ has domain Df

λ and
co-domain Rf

λ.

In most of our considerations, Df
λ and Rf

λ will be {0, 1}df
λ and {0, 1}rf

λ for
some sequences {df

λ}λ∈N and {rf
λ}λ∈N. Wherever function families are seen to act

as adversaries to cryptographic objects, we shall use the terms adversary and
function family interchangeably. The following are some examples of natural
classes of function families.

Definition 2.9 (AC0). The class of (non-uniform) AC0 function families is the
set of all function families F = {fλ} for which there is a polynomial p and
constant d such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth d and unbounded fan-in using AND, OR and NOT gates.

Definition 2.10 (NC1). The class of (non-uniform) NC1 function families is
the set of all function families F = {fλ} for which there is a polynomial p and
constant c such that for each λ, fλ can be computed by a (randomized) circuit
of size p(λ), depth c log(λ) and fan-in 2 using AND, OR and NOT gates.

Fine-Grained Cryptography 547

2.5 Primitives Against Bounded Adversaries

In this section, we generalize the standard definitions of several standard crypto-
graphic primitives to talk about security against different classes of adversaries.
In the following definitions, C1 and C2 are two function classes, and l, s : N → N

are some functions. Due to space constraints, we do not define all the primitives
we talk about in the paper here, but the samples below illustrate how our def-
initions relate to the standard ones, and the rest are analogous. All definitions
are present in the full version of the paper.

Implicit (and hence left unmentioned) in each definition are the following
conditions:

– Computability, which says that the function families that are part of the prim-
itive are in the class C1. Additional restrictions are specified when they apply.

– Non-triviality, which says that the security condition in each definition is not
vacuously satisfied – that there is at least one function family in C2 whose input
space corresponds to the output space of the appropriate function family in
the primitive.

Definition 2.11 (One-Way Function). Let F =
{

fλ : {0, 1}λ → {0, 1}l(λ)
}

be a function family. F is a C1-One-Way Function (OWF) against C2 if:

– Computability: For each λ, fλ is deterministic.
– One-wayness: For any G =

{
gλ : {0, 1}l(λ) → {0, 1}λ

}
∈ C2, there is a neg-

ligible function ν such that for any λ ∈ N:

Pr
x←Uλ

fλ(gλ(y)) = y | y ← fλ(x) ≤ ν(λ)

For a function class C, we sometimes refer to a C-OWF or an OWF against
C. In both these cases, both C1 and C2 from the above definition are to be taken
to be C. To be clear, this implies that there is a family F ∈ C that realizes the
primitive and is secure against all G ∈ C. We shall adopt this abbreviation also
for other primitives defined in the above manner.

Definition 2.12 (Symmetric Key Encryption). Consider function fami-
lies KeyGen = {KeyGenλ : ∅ → Kλ}, Enc = {Encλ : Kλ × {0, 1} → Cλ}, and
Dec = {Decλ : Kλ × Cλ → {0, 1}}. (KeyGen, Enc,Dec) is a C1-Symmetric Key
Encryption Scheme against C2 if:

– Correctness: There is a negligible function ν such that for any λ ∈ N and
any b ∈ {0, 1}:

Pr
[
Decλ (k, c) = b

∣∣∣∣ k ← KeyGenλ

c ← Encλ(k, b)

]
≥ 1 − ν(λ)

548 A. Degwekar et al.

– Semantic Security: For any polynomials n0, n1 : N → N, and any family
G =

{
gλ : C

n0(λ)+n1(λ)+1
λ → {0, 1}

}
∈ C2, there is a negligible function ν′ such

that for any λ ∈ N:

Pr

⎡
⎢⎢⎣gλ

({
c0i

}
,
{
c1i

}
, c

)
= b

∣∣∣∣∣∣∣∣

k ← KeyGenλ, b ← U1

c01, . . . , c
0
n0(λ)

← Encλ(k, 0)
c11, . . . , c

1
n1(λ)

← Encλ(k, 1)
c ← Encλ(k, b)

⎤
⎥⎥⎦ ≤ 1

2
+ ν′(λ)

2.6 Randomized Encodings

The notion of randomized encodings of functions was introduced by Ishai and
Kushilevitz [IK00] in the context of secure multi-party computation. Roughly,
a randomized encoding of a deterministic function f is another deterministic
function f̂ that is easier to compute by some measure, and is such that for
any input x, the distribution of f̂(x, r) (when r is chosen uniformly at random)
reveals the value of f(x) and nothing more. This reduces the computation of f(x)
to determining some property of the distribution of f̂(x, r). Hence, randomized
encodings offer a flavor of worst-to-average case reduction — from computing
f(x) from x to that of computing f(x) from random samples of f̂(x, r).

We work with the following definition of Perfect Randomized Encodings from
[App14]. We note that constructions of such encodings for ⊕L/poly which are
computable in NC0 were presented in [IK00].

Definition 2.13 (Perfect Randomized Encodings). Consider a determin-
istic function f : {0, 1}n → {0, 1}t. We say that the deterministic function
f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a Perfect Randomized Encoding (PRE) of f
if the following conditions are satisfied.

– Input independence: For every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the
random variables f̂(x,Um) and f̂(x′, Um) are identically distributed.

– Output disjointness: For every x, x′ ∈ {0, 1}n such that f(x) �= f(x′),
Supp(f̂(x,Um)) ∩ Supp(f̂(x′, Um)) = φ.

– Uniformity: For every x, f̂(x,Um) is uniform on its support.
– Balance: For every x, x′ ∈ {0, 1}n,

∣∣∣Supp(f̂(x,Um))
∣∣∣ =

∣∣∣Supp(f̂(x′, Um))
∣∣∣

– Stretch preservation: s − (n + m) = t − n

Additionally, the PRE is said to be surjective if it also has the following property.

– Surjectivity: For every y ∈ {0, 1}s, there exist x and r such that f̂(x, r) = y.

We naturally extend the definition of PREs to function families – a family
F̂ =

{
f̂λ

}
is a PRE of another family F = {fλ} if for all large enough λ, f̂λ is a

PRE of fλ. Note that this notion only makes sense for deterministic functions,
and the functions and families we assume or claim to have PREs are to be taken
to be deterministic.

Fine-Grained Cryptography 549

3 OWFs from Worst-Case Assumptions

In this section and in Sect. 4, we describe some constructions of crypto-
graphic primitives against bounded adversaries starting from worst-case hardness
assumptions. The existence of Perfect Randomized Encodings (PREs) can be
leveraged to construct one-way functions and pseudo-random generators against
bounded adversaries starting from a function that is hard in the worst-case for
these adversaries. We describe this construction below.

Remark 3.1 (Infinitely Often Primitives). For a class C, the statement F =
{fλ} �∈ C implies that for any family G = {gλ} in C, there are an infinite number
of values of λ such that fλ �≡ gλ. Using such a worst case assumption, we only
know how to obtain primitives whose security holds for an infinite number of
values of λ, as opposed to holding for all large enough λ. Such primitives are
called infinitely-often, and all primitives constructed in this section and Sect. 4
are infinitely-often primitives.

On the other hand, if we assume that for every G ∈ C, there exists λ0 such
that for all λ > λ0, fλ �≡ gλ we can achieve the regular stronger notion of security
(that holds for all large enough security parameters) in each case by the same
techniques.

Theorem 3.2 (OWFs, PRGs from PREs). Let C1 and C2 be two function
classes satisfying the following conditions:

1. Any function family in C2 has a surjective PRE computable in C1.
2. C2 �⊆ C1.
3. C1 is closed under a constant number of compositions.
4. C1 is non-uniform or randomized.
5. C1 can compute arbitrary thresholds.

Then:

1. There is a C1-OWF against C1.
2. There is a C1-PRG against C1 with non-zero additive stretch.

Theorem 3.2 in effect shows that the existence of a language with PREs out-
side C1 implies the existence of one way functions and pseudorandom generators
computable in C1 secure against C1. Instances of classes that satisfy its hypoth-
esis (apart from C2 �⊆ C1) include NC1 and BPP. Note that this theorem does
not provide constructions against AC0 because AC0 cannot compute arbitrary
thresholds.

Proof Sketch. We start with a language in C2 \ C1 described by a function family
F = {fλ}. Let F̂ =

{
f̂λ

}
be its randomized encoding. Say fλ takes inputs from

{0, 1}λ. Then the PRG/OWF for parameter λ is the function gλ(r) = f̂λ(0λ, r).
Without loss of generality, say fλ(0λ) = 0 and fλ(z1) = 1 for some z1.

To show pseudorandomness, we first observe that, by the perfectness of the
randomized encoding, the uniform distribution can be generated as an equal

550 A. Degwekar et al.

convex combination of f̂λ(0λ, r) and f̂λ(z1, r). The advantage in distinguishing
gλ(r) = f̂λ(0λ, r) from uniform can hence be used to decide if a given input x is
in the language because an equal convex combination of f̂λ(0λ, r) and f̂λ(x, r)
will be identical to f̂λ(0λ, r) if fλ(x) = fλ(0) = 0, and otherwise will be identical
to uniform.

We require the class to be closed under composition and to be able to compute
thresholds in order to be able to amplify the success probability. The non-zero
additive stretch comes from the fact that the PRE is stretch-preserving.

4 PKE Against NC1 from Worst-Case Assumptions

In Theorem 3.2 we saw that we can construct one way functions and PRGs with
a small stretch generically from Perfect Randomized Encodings (PREs) starting
from worst-case hardness assumptions. We do not know how to construct Public
Key Encryption (PKE) in a similar black-box fashion. In this section, we use
certain algebraic properties of a specific construction of PREs for functions in
⊕L/poly due to Ishai-Kushilevitz [IK00] to construct Public Key Encryption and
Collision Resistant Hash Functions against NC1 that are computable in AC0[2]
under the assumption that ⊕L/poly �⊆ NC1. We state the necessary implications
of their work here. We start by describing sampling procedures for some relevant
distributions in Construction 4.1.

In the randomized encodings of [IK00], the output of the encoding of a
function f on input x is a matrix M sampled identically to R1Mλ

0R2 when
f(x) = 0 and identically to R1Mλ

1R2 when f(x) = 1, where R1 ← LSamp(λ)
and R2 ← RSamp(λ). Notice that R1Mλ

1R2 is full rank, while R1Mλ
0R2 has

rank (λ − 1). The public key in our encryption scheme is a sample M from
R1Mλ

0R2, and the secret key is a vector k in the kernel of M. An encryption of
0 is a random vector in the row-span of M (whose inner product with k is hence
0), and an encryption of 1 is a random vector that is not in the row-span of M
(whose inner product with k is non-zero). Decryption is simply inner product
with k. (This is very similar to the cryptosystem in [ABW10] albeit without the
noise that is added there.)

Security follows from the fact that under our hardness assumption M is indis-
tinguishable from R1Mλ

1R2 (see Theorem 4.2), which has an empty kernel, and
so when used as the public key results in identical distributions of encryptions
of 0 and 1.

Theorem 4.1 (Public Key Encryption Against NC1). Assume ⊕L/poly �⊆
NC1. Then, the tuple of families (KeyGen, Enc,Dec) defined in Construction 4.2
is an AC0[2]-Public Key Encryption Scheme against NC1.

Before beginning with the proof, we describe some properties of the construction.
We first begin with two sampling procedures that correspond to sampling from
f̂(x, ·) when f(x) = 0 or f(x) = 1 as described earlier. We describe these again
in Construction 4.3.

Fine-Grained Cryptography 551

Construction 4.1. Sampling distributions from [IK00]
Let Mn

0 and Mn
1 be the following n × n matrices:

M0 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0 · · · 0 0
1 0 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

,M1 =

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎝

0 · · · 0 1
1 0 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1 0

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎠

LSamp(n):

1. Output an n × n upper triangular matrix where all entries in the diagonal are 1
and all other entries in the upper triangular part are chosen at random.

RSamp(n):

1. Sample at random r ← {0, 1}n−1.
2. Output the following n × n matrix:

⎛

⎜⎜
⎜
⎜
⎜⎜
⎝

1 0 · · · 0

0 1
. . .

... r
...

. . .
. . . 0

0 · · · 0 1
0 · · · 0 0 1

⎞

⎟⎟
⎟
⎟
⎟⎟
⎠

Theorem 4.2 [IK00,AIK04]. For any boolean function family F = {fλ} in
⊕L/poly, there is a polynomial n such that for any λ, fλ has a PRE f̂λ such that
the distribution of f̂λ(x) is identical to ZeroSamp(n(λ)) when fλ(x) = 0 and is
identical to OneSamp(n(λ)) when fλ(x) = 1.

This implies that if some function in ⊕L/poly is hard to compute on the worst-
case then it is hard to distinguish between samples from ZeroSamp and OneSamp.
In particular, the following lemma follows immediately from the observation that
ZeroSamp and OneSamp can be computed in NC1.

Lemma 4.3. If ⊕L/poly �⊆ NC1, then there is a polynomial n and a negligible
function ν such that for any family F = {fλ} in NC1, for an infinite number of
values of λ,

∣∣∣∣ Pr
M←ZeroSamp(n(λ))

[fλ(M) = 1] − Pr
M←OneSamp(n(λ))

[fλ(M) = 1]
∣∣∣∣ ≤ ν(λ)

Lemma 4.3 can now be used to prove Theorem 4.1 as described in Sect. 1.1.
We defer the details to the full version.

552 A. Degwekar et al.

Construction 4.2. Public Key Encryption
Let λ be the security parameter. Let Mλ

0 be the λ×λ matrix described in Construction
4.1. Define the families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ} as
follows.
KeyGenλ:

1. Sample R1 ← LSamp(λ) and R2 ← RSamp(λ).
2. Let k = (r 1)T be the last column of R2.
3. Compute M = R1M

λ
0R2.

4. Output (pk = M, sk = k).

Encλ(pk = M, b):

1. Sample r ∈ {0, 1}λ.
2. Let tT = (0 . . . 0 1), of length λ.
3. Output cT = rTM + btT .

Decλ(sk = k, c):

1. Output 〈c,k〉.

Construction 4.3. Sampling procedures
ZeroSamp(n): f̂(x, r) where f(x) = 0

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1M0R2.

OneSamp(n): f̂(x, r) where f(x) = 1

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Output R1M1R2.

Remark 4.4. The computation of the PRE from [IK00] can be moved to NC0 by
techniques noted in [IK00] itself. Using similar techniques with Construction 4.2
gives us a Public Key Encryption scheme with encryption in NC0 and decryption
and key generation in AC0[2]. The impossibility of decryption in NC0, as noted
in [AIK04], continues to hold in our setting.

Remark 4.5. (This was pointed out to us by Abhishek Jain.) The above PKE
scheme has what are called, in the terminology of [PVW08], “message-lossy”
public keys – in this case, this is simply M when sampled from OneSamp, as
in the proof above. Such schemes may be used, again by results from [PVW08],
to construct protocols for Oblivious Transfer where the honest parties are com-
putable in NC1 and which are secure against semi-honest NC1 adversaries under
the same assumptions (that ⊕L/poly �⊆NC1).

4.1 Collision Resistant Hashing

Note that again, due to the linearity of decryption, Construction 4.2 is additively
homomorphic – if c1 and c2 are valid encryptions of m1 and m2, (c1⊕c2) is a valid
encryption of (m1 ⊕ m2). Furthermore, the size of ciphertexts does not increase

Fine-Grained Cryptography 553

when this operation is performed. Given these properties, we can use the generic
transformation from additively homomorphic encryption to collision resistance
due to [IKO05], along with the observation that all operations involved in the
transformation can still be performed in AC0[2], to get the following.

Theorem 4.6. Assume ⊕L/poly �⊆NC1. Then, for any constant c < 1 and func-
tion s such that s(n) = O(nc), there exists an AC0[2]-CRHF against NC1 with
compression s.

5 Cryptography Without Assumptions

In this section, we present some constructions of primitives unconditionally
secure against AC0 adversaries that are computable in AC0. This is almost the
largest complexity class (after AC0 with MOD gates) for which we can hope to
get such unconditional results owing to a lack of better lower bounds. In this
section, we present constructions of PRGs with arbitrary polynomial stretch,
Weak PRFs, Symmetric Key Encryption, and Collision Resistant Hash Func-
tions. We end with a candidate for Public Key Encryption against AC0 that we
are unable to prove secure, but also do not have an attack against.

5.1 High-Stretch Pseudo-Random Generators

We present here a construction of Pseudo-Random Generators against AC0 with
arbitrary polynomial stretch that can be computed in AC0. In fact, the same
techniques can be used to obtain constant stretch generators computable in NC0

The key idea behind the construction is the following: [Bra10] implies that
for any constant ε, an nε-wise independent distribution will fool AC0 circuits
of arbitrary constant depth. So, being able to sample such distributions in AC0

suffices to construct good PRGs. As shown in Sect. 2.3, if H is the parity-check
matrix of a code with large distance d, then the distribution Hx is d-wise inde-
pendent for x being a uniformly random vector (by Lemma2.6). Further, as was
also shown in Sect. 2.3, even for rather large d there are such matrices H that
are sparse, allowing us to compute the product Hx in AC0.

Theorem 5.1 (PRGs Against AC0). For any polynomial l, the family F l

from Construction 5.1 is an AC0-PRG with multiplicative stretch
(

l(λ)
λ

)
.

Construction 5.1. AC0-PRG against AC0

For any polynomial l, we define the family F l =
{

f l
λ : {0, 1}λ → {0, 1}l(λ)

}
as follows.

Lemma 2.5 implies for large λ, there is an [l(λ), (l(λ) − λ)]2 linear code with minimum
distance at least λ

log3(λ)
whose parity check matrix has log2(λ) non-zero entries in each

row. Denote this parity check matrix by Hl,λ. The dimensions of Hl,λ are l(λ) × λ.

f l
λ(x) = Hl,λx

554 A. Degwekar et al.

Proof. For any l, the most that needs to be done to compute f l
λ(x) is computing

the product Hl,λx. We know that each row of Hl,λ contains at most log2(λ)
non-zero entries. Hence, by Lemma 2.3, F l is in AC0. The multiplicative stretch
being

(
l(λ)
λ

)
is also easily verified.

For pseudo-randomness, we observe that the product Hl,λx is Ω
(

λ
log3(λ)

)
-

wise independent, by Lemma 2.6. And hence, Theorem 2.2 implies that this dis-
tribution is pseudo-random to adversaries in AC0.

5.2 Weak Pseudo-Random Functions

In this section, we describe our construction of Weak Pseudo-Random Functions
against AC0 computable in AC0 (Construction 5.2). Roughly, we know that for
a random sparse matrix H, (H,Hk) is indistinguishable from (H, r) where r
and k are chosen uniformly at random. We choose the key of the PRF to be a
random vector k. On an input x, the strategy is to use the input x to generate
a sparse vector y and then take the inner product 〈y,k〉.

Construction 5.2. AC0-PRF against AC0

Let It =
{
ipt

λ

}
be the inner product family with threshold promise t described in

Lemma 2.3. Define families KeyGen = {KeyGenλ} and Eval = {Evalλ} as follows.
KeyGenλ:

1. Output a random vector k ← {0, 1}�λ�2 .

Evalλ(k, r):

1. Compute y ← SRSamp(�λ�2 , log2(�λ�2), r).
2. Output ip

log2(λ)

�λ�2 (k,y).

Theorem 5.2 (PRFs Against AC0). The pair of families (KeyGen, Eval)
defined in Construction 5.2 is a Weak AC0-PRF against AC0.

The intuitive reason one would think Construction 5.2 might be pseudo-random
is that a collection of random function values from a randomly sampled key seems
to contain the same information as (H,Hk) where k is sampled uniformly at
random and H is sampled using SMSamp: a matrix with sparse rows. We know
from Lemma 2.5 that except with negligible probability, H is going to be the
parity check matrix of a code with large distance, and when it is, the arguments
from Sect. 5.1 show that (H,Hk) is indistinguishable from (H, r), where r is
sampled uniformly at random.

The only fact that prevents this from functioning as a proof is that what
the adversary gets is not (y, 〈y,k〉) where y is an output of SRSamp, but rather

Fine-Grained Cryptography 555

(r, 〈y,k〉), where r is randomness that when used in SRSamp gives y. One way
to show that this is still pseudo-random is to reduce the case where the input
is (y, 〈y,x〉) to the case where the input is (r, 〈y,x〉) using an AC0-reduction.
To do this, one would need an AC0 circuit that would, given y, sample from
a distribution close to the uniform distribution over r’s that cause SRSamp to
output y when used as randomness. We implement this proof strategy in the
full version.

Construction 5.2 of Weak PRFs achieves only quasi-polynomial security —
that is, there is no guarantee that some AC0 adversary may not have an inverse
quasi-polynomial advantage in distinguishing between the PRF and a random
function. Due to the seminal work of Linial-Mansour-Nisan [LMN93] and sub-
sequent improvements in [Tal14], we know that this barrier is inherent and we
cannot hope for exponential security

5.3 Symmetric Key Encryption

In this section, we present a Symmetric Key Encryption scheme against AC0

computable in AC0, which is also additively homomorphic – a property that
shall be useful in constructing Collision Resistant Hash Functions later on.

In Sect. 5.2, we saw a construction of Weak PRFs. And Weak PRFs give us
Symmetric Key Encryption generically (where Enc(k, b) = (r,PRF(k, r)⊕b)). For
the Weak PRF construction from Sect. 5.2, this implied scheme also happens
to be additively homomorphic. But it has the issue that the last bit of the
ciphertext is an almost unbiased bit and hence it is not feasible to do more
than polylog(λ) homomorphic evaluations on collections of ciphertexts in AC0.
So, we construct a different Symmetric Key Encryption scheme that does not
suffer from this drawback and is still additively homomorphic. Then we will
use this scheme to construct Collision Resistant Hash Functions. This scheme
is described in Construction 5.3. In this scheme we choose the ciphertext by
performing rejection sampling in parallel. For encrypting a bit b, we sample a
ciphertext c such that c is sparse and 〈c,k〉 = b. This ensures that the we have
an additively homomorphic scheme where all the bits are sparse.

Theorem 5.3 (Symmetric Encryption Against AC0). The tuple of fami-
lies (KeyGen, Enc,Dec) defined in Construction 5.3 is an AC0-Symmetric-Key
Encryption Scheme against AC0.

The key idea behind the proof is showing that for most keys k, the distribu-
tion of a uniformly random bit along with its encryption, that is,

D1 = {(b,Encλ(k, b)) | b ← {0, 1}}

is statistically close to the distribution of a random sparse vector along with its
inner product with k, that is,

D2 =
{
(〈r,k〉, r) | r ← SRSamp(λ, log2 λ)

}

556 A. Degwekar et al.

Construction 5.3. AC0-Symmetric Key Encryption against AC0

Let It =
{
ipt

λ

}
be the inner product family with threshold promise t described in

Lemma 2.3. Define families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ}
as below.
KeyGenλ:

1. Output k ← {0, 1}�λ�2 .

Encλ(k, b):

1. For i ∈ [λ], sample ci ← SRSamp(�λ�2 , log2(�λ�2)).
2. Choose the first i such that 〈ci,k〉 = b.
3. If such an i exists, output ci, else output 0�λ�2 .

Decλ(k, c):

1. Output ip
log2(λ)

�λ�2 (k, c).

The second distribution is similar to the one that came up in the security proof
of the weak PRF construction earlier, where we effectively showed that we can
replace 〈r,k〉 with an independent random bit without being caught by AC0

adversaries. We defer the complete proof to the full version.

5.4 Collision Resistant Hash Functions

To construct Collision Resistant Hash Functions (CRHFs), we use the addi-
tive homomorphism of the Symmetric Key Encryption scheme constructed in
Sect. 5.3. Each function in the family of hash functions is given by a matrix
whose columns are ciphertexts from the encryption scheme, and evaluation is
done by treating the input as a column vector and computing its product with
this matrix (effectively computing a linear combination of ciphertexts). To find
collisions, the adversary needs to come up with a vector in the kernel of this
matrix. We show that constant depth circuits of polynomial size cannot do this
for most such matrices. This is because the all-zero vector is a valid encryption
of 0 in our encryption scheme, and as this scheme is additively homomorphic,
finding a subset of ciphertexts that sum to zero is roughly the same as finding
a subset of the corresponding messages that sum to 0, and this is a violation of
semantic security.

Theorem 5.4 (CRHFs Against AC0). For any polylogarithmic function s,
the pair of families (KeyGens, Evals), from Construction 5.4 is an AC0-CRHF
with compression s.

We refer the reader to the sketch of the proof of Theorem 1.7 (an informal
version of Theorem 5.4) towards the end of Sect. 1.1 and leave the proof of The-
orem 5.4 to the full version.

Fine-Grained Cryptography 557

Construction 5.4. AC0-CRHFs against AC0

Let It =
{
ipt

λ

}
be the inner product family with threshold promise t described in

Lemma 2.3. Let (KeyGenEnc, EncEnc) be the SKE scheme from Construction 5.4. Let

l(λ) =
⌊

λ
s(λ)

⌋

2
.

For any s : N → N such that s(λ) = O(logc(λ)) for some constant c, we define the
families KeyGens = {KeyGens

λ} and Evals = {Evalsλ} as follows.

KeyGens
λ:

1. Sample k ← KeyGenEnc
l(λ) , and b1, . . . , bλ ← {0, 1}.

2. Output M = (m1, . . . ,mλ), where mi ← EncEnc
l(λ) (k, bi).

Evalsλ(M,x):

1. Note that M = (m1, . . . ,mλ), where each mi is of length l(λ).
2. For j ∈ [l(λ)], let rj = (m1j , . . . ,mλj) (the jth bit of each mi).

3. Output (h1, . . . , hl(λ)) , where hj = ip
4s(λ) log2(λ)
λ (rj ,x).

5.5 Candidate Public Key Encryption Scheme

In Lemma 2.7 we showed that the distribution (A,Ak) where A was sampled
as a sparse matrix and k was a random vector is indistinguishable from (A, r)
where r is also a random vector, for a wide range of parameters. We need at least
one of the two A or k to be sparse to enable the computation of Ak in AC0. If we
make the analogous indistinguishability assumption with the key being sparse
– that is, that (A,Ak) is indistinguishable from (A, r) where A ← {0, 1}λ×λ,
k ← SRSamp(λ, log2 λ) and r ← {0, 1}λ – this allows us to construct a Public
Key Encryption scheme against AC0 computable in AC0.

This is presented in Construction 5.5, and is easily seen to be secure under
Assumption 5.5. This candidate is very similar to the LPN based cryptosystem
due to Alekhnovich [Ale03]. Note that while the correctness of decryption in
Construction 5.5 is not very good, this may be easily amplified by repetition
without losing security, as the error is one-sided.

Assumption 5.5. Distributions D1 = (A,Ak) where A ← {0, 1}λ×λ, k ←
SRSamp(λ, log2 λ) and D2 = (A, r) where r ← {0, 1}λ are indistinguishable by
AC0 adversaries with non-negligible advantage.

The most commonly used proof technique in this paper – showing k-wise
independence for a large k – cannot be used to prove the security of this scheme
because due to the sparsity of the key, the distribution (A,Ak) is not k-wise
independent.

Conclusions and Open Questions. We construct various cryptographic primitives
secure against parallel-time-bounded adversaries. Our constructions against AC0

are unconditional whereas our constructions against NC1 require the assumption

558 A. Degwekar et al.

Construction 5.5. Public key encryption
Let It =

{
ipt

λ

}
be the inner product family with threshold promise t described in

Lemma 2.3. Define families KeyGen = {KeyGenλ}, Enc = {Encλ}, and Dec = {Decλ}
as below.
KeyGenλ:

1. Sample A ← {0, 1}λ×λ−1, k ← SRSamp(λ − 1, log2 λ)
2. Output (pk, sk) = ((A,Ak) ,k ◦ 1).

Encλ(pk, b):

1. If b = 0, sample t ← SRSamp(λ, log2 λ) and output tT pk
2. Else if b = 1, output t ← {0, 1}λ

Decλ(sk, c):

1. Output ip
log2(λ)

�λ�2 (sk, c).

that NC1 �= ⊕L/poly. Our constructions make use of circuit lower bounds [Bra10]
and non-black-box use of randomized encodings for logspace classes [IK00].

There are several open questions that arise out of this work. Perhaps the
most immediate are:

1. Unconditional lower-bounds are known for slightly larger classes like AC0[p]
when p is a prime power. Can we get cryptographic primitives from those
lower-bounds?

2. Construct a public key encryption scheme secure against AC0, either by prov-
ing the security of our candidate proposal (see Sect. 5.5) or by completely
different means.

Natural ways of doing this lead us to a fascinating question about the com-
plexity of AC0 circuits. Braverman [Bra10] shows that any nε-wise indepen-
dent distribution fools all AC0 circuits. Our candidate encryption, however,
produces ciphertexts that come from a logc(n)-wise distribution for some
constant c. This raises the following question: Can we show some fixed poly-
log-wise independent distribution (that is not nε-wise independent) that fools
AC0 circuits of arbitrary depth? (This question came up during discussions
with Li-Yang Tan.)

3. We relied on the assumption that ⊕L/poly �⊆NC1 to construct primitives
secure against NC1. It would be desirable to relax the assumption to P �⊆NC1.

A related extension of Merkle’s work is to construct a public-key encryption
scheme resistant against O(nc) time adversaries (for some c > 2) under worst-
case hardness assumptions.

Acknowledgements. We thank Prabhanjan Ananth for several useful discussions
towards the beginning of the project. We would also like to thank the anonymous
reviewers for their careful comments.

Fine-Grained Cryptography 559

References

[AB84] Ajtai, M., Ben-Or, M.: A theorem on probabilistic constant depth compu-
tations. In: Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, April 30–May 2 1984, Washington, DC, USA, pp. 471–474
(1984)

[ABW10] Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from
different assumptions. In: Proceedings of the Forty-Second ACM Sympo-
sium on Theory of Computing, pp. 171–180. ACM (2010)

[AGGM06] Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing
one-way functions on NP-hardness. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21–
23 2006, pp. 701–710 (2006)

[AGHP93] Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Addendum to “simple
construction of almost k-wise independent random variables”. Random
Struct. Algorithms 4(1), 119–120 (1993)

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2004, 17–19 October 2004, Rome, Italy, p. 166. IEEE
Computer Society Press (2004)

[Ajt83] Ajtai, M.: 11-formulae on finite structures. Ann. Pure Appl. Logic 24(1),
1–48 (1983)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science, pp. 298–307. IEEE (2003)

[App14] Applebaum, B.: Cryptography in NC0. In: Applebaum, B. (ed.) Cryptog-
raphy in Constant Parallel Time, pp. 33–78. Springer, Heidelberg (2014)

[AR99] Aumann, Y., Rabin, M.O.: Information theoretically secure communica-
tion in the limited storage space model. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 65–79. Springer, Heidelberg (1999)

[AR15] Applebaum, B., Raykov, P.: On the relationship between statistical zero-
knowledge and statistical randomized encodings. Electron. Colloq. Com-
put. Complex. (ECCC) 22, 186 (2015)

[Bar86] Mix Barrington, D.A.: Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. In: Proceedings of the
18th Annual ACM Symposium on Theory of Computing, 28–30 May 1986,
Berkeley, California, USA, pp. 1–5 (1986)

[BB15] Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions
on NP-hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I.
LNCS, vol. 9014, pp. 1–6. Springer, Heidelberg (2015)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001)

[BGI08] Biham, E., Goren, Y.J., Ishai, Y.: Basing weak public-key cryptography
on strong one-way functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 55–72. Springer, Heidelberg (2008)

[BM84] Blum, M., Micali, S.: How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

560 A. Degwekar et al.

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S., Ashby, V. (eds.) Proceedings of the 1st ACM Conference
on Computer and Communications Security, CCS 1993, Fairfax, Virginia,
USA, 3–5 November 1993, pp. 62–73. ACM (1993)

[Bra10] Braverman, M.: Polylogarithmic independence fools AC0 circuits. J. ACM
57(5), 28:1–28:10 (2010)

[BT03] Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for
NP problems. In: Proceedings of the 44th Symposium on Foundations of
Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA,
USA, pp. 308–317. IEEE Computer Society (2003)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106.
IEEE (2011). Invited to SIAM Journal on Computing

[CM97] Cachin, C., Maurer, U.M.: Unconditional security against memory-
bounded adversaries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol.
1294, pp. 292–306. Springer, Heidelberg (1997)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theor. 22(6), 644–654 (1976)

[DM04] Dziembowski, S., Maurer, U.M.: On generating the initial key in the
bounded-storage model. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004)

[FSS84] Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-
time hierarchy. Math. Syst. Theor. 17(1), 13–27 (1984)

[Gal62] Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theor.
8(1), 21–28 (1962)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS 2013, pp. 40–49 (2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM (JACM) 33(4), 792–807 (1986)

[GM82] Goldwasser, S., Micali, S.: Probabilistic encryption and how to play men-
tal poker keeping secret all partial information. In: STOC 1982, pp. 365–
377 (1982)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, 6–8 May 1985, Prov-
idence, Rhode Island, USA, pp. 291–304 (1985)

[GR12] Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leak-
age. In: 53rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012, pp.
31–40 (2012)

[H̊as86] H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: Pro-
ceedings of the 18th Annual ACM Symposium on Theory of Computing,
28–30 May 1986, Berkeley, California, USA, pp. 6–20 (1986)

[Has87] Hastad, J.: One-way permutations in NC0. Inf. Process. Lett. 26(3), 153–
155 (1987)

[H̊as14] H̊astad, J.: On the correlation of parity and small-depth circuits. SIAM
J. Comput. 43(5), 1699–1708 (2014)

Fine-Grained Cryptography 561

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pp.
294–304. IEEE (2000)

[IKO05] Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-
resistant hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp.
445–456. Springer, Heidelberg (2005)

[IL89] Impagliazzo, R., Luby, M.: One-way functions are essential for complexity
based cryptography (extended abstract). In: 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Car-
olina, USA, 30 October–1 November 1989, pp. 230–235. IEEE Computer
Society (1989)

[IR88] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 8–26. Springer, Heidelberg (1990)

[LMN93] Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier trans-
form, and learnability. J. ACM (JACM) 40(3), 607–620 (1993)

[Mau92] Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. J. Cryptol. 5(1), 53–66 (1992)

[Mer78] Merkle, R.C.: Secure communications over insecure channels. Commun.
ACM 21(4), 294–299 (1978)

[MP06] Micali, S., Pass, R.: Local zero knowledge. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, Seattle, WA, USA,
21–23 May 2006, pp. 306–315 (2006)

[MST06] Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in NC0.
Random Struct. Algorithms 29(1), 56–81 (2006)

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci.
49(2), 149–167 (1994)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

[RAD78] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy
homomorphisms. In: Foundations of Secure Computation, pp. 169–177.
Academic Press (1978)

[Raz87] Razborov, A.A.: Lower bounds on the size of bounded depth circuits over
a complete basis with logical addition. Math. Notes Acad. Sci. USSR
41(4), 333–338 (1987)

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126
(1978)

[RST15] Rossman, B., Servedio, R.A., Tan, L.-Y.: An average-case depth hierar-
chy theorem for boolean circuits. Electron. Colloq. Comput. Complex.
(ECCC) 22, 65 (2015)

[RW91] Ragde, P., Wigderson, A.: Linear-size constant-depth polylog-treshold cir-
cuits. Inf. Process. Lett. 39(3), 143–146 (1991)

562 A. Degwekar et al.

[Smo87] Smolensky, R.: Algebraic methods in the theory of lower bounds for
boolean circuit complexity. In: Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, New York, New York, USA, pp.
77–82 (1987)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Shmoys, D.B. (ed.) Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31–June 03 2014,
pp. 475–484. ACM (2014)

[Tal14] Tal, A.: Tight bounds on the fourier spectrum of AC0. Electron. Colloq.
Comput. Complex. (ECCC) 21, 174 (2014)

[TX13] Trevisan, L., Xue, T.: A derandomized switching lemma and an improved
derandomization of AC0. In: Proceedings of the 28th Conference on Com-
putational Complexity, CCC 2013, K.lo Alto, California, USA, 5–7 June
2013, pp. 242–247 (2013)

[Vad04] Vadhan, S.P.: Constructing locally computable extractors and cryptosys-
tems in the bounded-storage model. J. Cryptol. 17(1), 43–77 (2004)

[Vio12] Viola, E.: The complexity of distributions. SIAM J. Comput. 41(1), 191–
218 (2012)

[Yao82] Yao, A.C.: Theory and applications of trapdoor functions (extended
abstract). In: 23rd Annual Symposium on Foundations of Computer Sci-
ence, Chicago, Illinois, USA, 3–5 November 1982, pp. 80–91. IEEE Com-
puter Society (1982)

TWORAM: Efficient Oblivious RAM in Two
Rounds with Applications to Searchable

Encryption

Sanjam Garg1, Payman Mohassel2, and Charalampos Papamanthou3(B)

1 University of California, Berkeley, USA
2 Visa Research, Foster City, USA

3 University of Maryland, College Park, USA
cpap@umd.edu

Abstract. We present TWORAM, an asymptotically efficient oblivious
RAM (ORAM) protocol providing oblivious access (read and write) of a
memory index y in exactly two rounds: The client prepares an encrypted
query encapsulating y and sends it to the server. The server accesses
memory M obliviously and returns encrypted information containing the
desired value M[y]. The cost of TWORAM is only a multiplicative factor
of security parameter higher than the tree-based ORAM schemes such
as the path ORAM scheme of Stefanov et al. [34].

TWORAM gives rise to interesting applications, and in particular to
a 4-round symmetric searchable encryption scheme where search is sub-
linear in the worst case and the search pattern is not leaked—the access
pattern can also be concealed assuming the documents are stored in the
obliviously accessed memory M.

1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive for accessing a remote
memory M of n entries in a way that memory accesses do not reveal anything
about the accessed index y ∈ {1, . . . , n}. Goldreich and Ostrovsky [16] were the
first to show that ORAM can be built with poly(log n) bandwidth overhead1, and
since then, there has been a fruitful line of research on substantially reducing
this overhead [9,29,34,36], in part motivated by the tree ORAM framework
proposed by Shi et al. [31]. However, most existing practical ORAM protocols
are interactive, requiring the client to perform a “download-decrypt-compute-
encrypt-upload” operation several times (typically O(log n) rounds are involved).
This can be a bottleneck for applications where low latency is important.

In this paper, we consider the problem of building an efficient round-optimal
ORAM scheme. In particular, we propose TWORAM, an ORAM scheme enabling
a client to obliviously access a memory location M[y] in two rounds, where the
client sends an encrypted message to the server that encapsulates y, the server

1 We define bandwidth overhead as the number of bits transferred between the client
and the server during a single memory access, including the data block.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 563–592, 2016.
DOI: 10.1007/978-3-662-53015-3 20

564 S. Garg et al.

performs the oblivious computation, and sends a message back to the client,
from which the client can retrieve the desired value M[y].

TWORAM’s worst-case bandwidth overhead is O(κ · p) where p is the band-
width overhead of a tree-based ORAM scheme and κ is the security parameter.
For instance, in Path-ORAM [34], it is p = log3 n for a block of size O(log n)
bits. In other words, in order to obliviously read a data block of O(log n) bits
using TWORAM, one needs to exchange, in the worst case, a O(κ · log3 n) bits
with the server, just in two rounds.

1.1 Existing Round-Optimal ORAM Protocols

Williams and Sion [37] devised a round-optimal ORAM scheme based on a cus-
tomized garbling scheme and Bloom filters. Lu and Ostrovsky also include an
optimized construction for single-round oblivious RAM in their seminal garbled
RAM paper [28]. Subsequent to our work, Fletcher et al. [10] also provide single-
round ORAM by generalizing the approach of [37] to use a garbling scheme
for branching programs. All aforementioned approaches are symmetric-key and
are built on top of the hierarchical ORAM framework as introduced by Gol-
dreich and Ostrovsky [16]. Our approach however is based on the tree-based
ORAM framework as introduced by Shi et al. [31], yielding worst-case logarith-
mic costs by construction, thus avoiding involved deamortization procedures.
Burst ORAM [21] is also round-optimal, yet it requires linear storage at the
client side.

Other less efficient approaches to construct round-optimal ORAM schemes
are generic constructions based on garbled RAM [11,12,14]. However, such
generic approaches are prohibitively inefficient. For instance, for the non-black-
box Garbled RAM approaches [12,14], the bandwidth overhead grows with
poly(log n, κ, |f |), where |f | is the size of the circuit for computing the one-way
function f and κ is the security parameter. This leads to inefficient construc-
tions, that are only of theoretical interest. Also, for the black-box Garbled RAM
approach [11] the bandwidth overhead grows with poly(log n, κ), and is indepen-
dent of |f |. However, the construction itself is asymptotically very inefficient.
Specifically in [11] the authors do not provide details on how large the involved
polynomials are, which will depend on the choice of various parameters. Accord-
ing to our back-of-the-envelope calculation, however, the polynomial is at least
κ5 · log7 n. A key reason for this inefficiency is that they require certain expensive
ORAM operations, specifically “eviction,” to be performed inside a garbled cir-
cuit. We eliminate this source of inefficiency by moving these expensive ORAM
operations outside of the garbled circuits.

1.2 TWORAM’s Technical Highlights

Our construction is inspired by the ideas from the recent, black-box garbled
RAM work by Garg et al. [11]. We specifically use those ideas on top of the tree
ORAM algorithms [31]. Our new ideas help avoid certain inefficiencies involved
in the original construction of [11], yielding an asymptotically better protocol.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 565

Our first step is to abstract away certain details of eviction-based tree ORAM
algorithms, such as Path-ORAM [34], circuit ORAM [36] and Onion ORAM [9].
These algorithms work as follows: The memory M that must be accessed obliv-
iously is stored as a sequence of L trees T1, T2, . . . , TL. The actual data of M is
stored encrypted in the tree TL, while the other trees store position map infor-
mation (also encrypted). Only T1 is stored on the client side. Roughly speaking,
to access an index y in M, the client accesses T1 and sends a path index p2 to the
server. The server then, successively accesses paths p2, p3, . . . , pL in T2, T3, . . . , TL.
However the paths are accessed adaptively: in order to learn pi, one needs to first
access pi−1 in Ti−1, and have all the information (also known as buckets) stored
in its nodes decrypted. This is where existing approaches require O(L) rounds of
interaction: decryption can only take place at the client side, which means all the
information on the paths must be communicated back to the client.

TWORAM’s Core Idea. In order to avoid the roundtrips described above, we do
not use standard encryption. Instead, we hardcode the content of each bucket
inside a garbled circuit [38]. In other words, after the trees T2, T3, . . . , TL are
produced, the client generates one garbled circuit per each internal node in each
tree. The function of this garbled circuit is very simple: Informally, it takes as
input an index x; loops through the blocks bucket[i] contained in the current
bucket until it finds bucket[x], and returns the index π = bucket[x] of the next
path to be followed. Note that the index π is returned in form of a garbled input
for the next garbled circuit, so that the execution can proceed by the server until
TL is reached, and the final desired value can be returned to the client (see Fig. 3
for a more formal description).

This simplified description ignores some technical hurdles. Firstly, security
of the underlying ORAM scheme requires that the location where bucket[x] is
found remains hidden. In particular, the garbled circuit which has the value
bucket[x] inside should not be identifiable by the server. We resolve this issue
as follows. For every bucket that the underlying ORAM needs to touch, all the
corresponding garbled circuits are executed in a specific order and the value of
interest is carried along the way and output only by the final evaluated circuit
in that tree.

Secondly, the above approach only works well for a single memory access,
since the garbled circuits can only be used once. Fortunately, as we show in the
paper, only a logarithmic number of garbled circuits are touched for each access.
These circuits can be downloaded by the client who decodes the hardcoded
values, performs the eviction strategy locally (on plaintext data), and sends
fresh garbled circuits back to the server. This step does not increase the number
of rounds (from two to three), since sending the fresh garbled circuits to the
server can be “piggybacked” onto the message the client prepares for the next
memory access.

Finally, in order to ensure the desired efficiency, and to avoid a blowup of
polynomial multiplicative factor in security parameter, we develop optimizations
that help ensure that the sizes of the circuits garbled in our construction remain
small and proportional to the underlying ORAM.

566 S. Garg et al.

1.3 Application: 4-Round Searchable Encryption with No Search
Pattern Leakage

An SSE scheme allows a client to outsource a database (defined as a set of
document/keyword set pairs DB = (di,Wi)N

i=1) to a server in an encrypted
format, where a search query for w returns di where w ∈ Wi.

Several recent works [3,20,26,39] demonstrate attacks against property-
preserving encryption schemes (which also enable search on encrypted data),
by taking advantage of the leakage associated with these schemes. Thought
these attacks do not lead to concrete attacks against existing SSE schemes, they
underline the importance of examining the feasibility of solutions that avoid
leakage. A natural building block for doing so is ORAM. We use TWORAM to
obtain the first constant-round, and asymptotically efficient SSE that can hide
search/access patterns.

Our construction combines TWORAM and a non-recursive Path-ORAM
(whose position map of the first level is not outsourced) such that searching
for w requires (i) a single access on TWORAM; (ii) |DB(w)| parallel accesses to
the non-recursive Path-ORAM (note that an access to a non-recursive ORAM
requires only two rounds).

In particular, we use TWORAM to store pairs of the form (w, (countw,
accessw)), where w is a keyword, countw is the number of documents containing
w and accessw is the number of times w has been accessed so far. The key-
word/document pairs (w||i, di) (where di is the i-th document containing w) are
then stored in the non-recursive Path-ORAM where their position in the Path-
ORAM tree (namely the random path they are mapped to) is determined on the
fly by using a PRF F as Fk(w||i, accessw) (therefore there is no need to store
the position map locally). To search for keyword w, we first access TWORAM to
obtain (countw, accessw) (and increment accessw), and then generate all posi-
tions to look up in the Path-ORAM using the PRF F . These lookups can be
parallelized and updating the paths can be piggybacked to the next search.

The above yields a construction with 4 rounds of interaction. Note that
naively using ORAM for SSE would incur |DB(w)| ORAM accesses which imply
at least |DB(w)| roundtrips (depending on the number of rounds of the underly-
ing ORAM). As we said before, our construction does not leak the search pattern,
by providing randomly generated tokens every time a search is performed. If we
choose to store all documents in the obliviously-accessed memory, the access
pattern can also be concealed.

1.4 Other Related Work

Oblivious RAM. ORAM protocols with a non-constant number of roundtrips
can be categorized into hierarchical [17,18,24,27], motivated by the seminal work
of Goldreich and Ostrovsky [16], and tree-based [9,29,34,36], motivated by the
seminal work of Shi et al. [31]. We note however, that, by picking the data block
size to be big (e.g.,

√
n bits), the number of rounds in tree-based ORAMs can

be made constant, yet bandwidth increases beyond polylogarithmic, so such a
parameter selection is not interesting.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 567

Searchable Encryption. Song et al. [32] were the first to explore feasibility
of searchable encryption. Since then, many follow-up works have designed new
schemes for both static data [4,6,8] and dynamic data [5,15,22,23,33,35]. The
security definitions also evolved over time and were eventually established in
the work of [6,8]. Unlike our construction, all these approaches use deterministic
tokens, an therefore leak the search patterns. The only proposed approaches
that are constant-round and have randomized tokens (apart from constructing
SSE through Garbled RAM) are the ones based on functional encryption [30].
However, such approaches incur a linear search overhead. We also note that one
can obtain SSE with no search pattern leakage by using interactive ORAMs such
as Path-ORAM [34], or other variants optimized for binary search [13].
Secure Computation for RAM Programs. A recent line of work stud-
ies efficient secure two-party computation of RAM programs based on garbled
circuits [1,19]. These constructions can also be used to design SSE that hide
the search pattern—yet these approaches do not lead to constant-round SSE
schemes, requiring the client to perform computation proportional to the size of
the search result.

2 Definitions for Garbled Circuits and Oblivious RAM

In this section, we recall definitions and describe building blocks we use in this
paper. We use the notation 〈C ′, S′〉 ↔ Π〈C,S〉 to indicate that a protocol Π
is executed between a client with input C and a server with input S. After the
execution of the protocol the client receives C ′ and the server receives S′. For
non-interactive protocols, we just use the left arrow notation (←) instead.

2.1 Garbled Circuits

Garbled circuits were first constructed by Yao [38] (see Lindell and Pinkas [25]
and Bellare et al. [2] for a detailed proof and further discussion). A circuit
garbling scheme is a tuple of PPT algorithms (GCircuit,Eval), where GCircuit is
the circuit garbling procedure and Eval the corresponding evaluation procedure.
More formally:

– (C̃, lab) ← GCircuit (1κ, C): GCircuit takes as input a security parameter κ,
and a Boolean circuit C. This procedure outputs a garbled circuit C̃ and
input labels lab, which is a set of pairs of random strings. Each pair in lab
corresponds to every input wire of C (and in particular each element in the
pair represents either 0 or 1).

– y ← Eval(C̃, labx): Given a garbled circuit C̃ and garbled input labx, Eval
outputs y = C(x).

Input Labels and Garbled Inputs. For a specific input x, we denote with labx

the garbled inputs, a “projection” of x on the input labels. E.g., for a Boolean
circuit of two input bits z and w, it is lab = {(z0, z1), (w0, w1)}, lab00 = {z0, w0},
lab01 = {z0, w1}, etc.

568 S. Garg et al.

Correctness. Let (GCircuit,Eval) be a circuit garbling scheme. For correctness,
we require that for any circuit C and an input x for C, we have that that
C(x) = Eval(C̃, labx), where (C̃, lab) ← GCircuit (1κ, C).

Security. Let (GCircuit,Eval) be a circuit garbling scheme. For security, we
require that for any PPT adversary A, there is a PPT simulator Sim such that
the following distributions are computationally indistinguishable:

– RealA(κ): A chooses a circuit C. Experiment runs (C̃, lab) ← GCircuit (1κ, C)
and sends C̃ to A. A then chooses an input x. The experiment uses lab and x to
derive labx and sends labx to A. Then it outputs the output of the adversary.

– IdealA,Sim(κ): A chooses a circuit C. Experiment runs (C̃, σ) ← Sim(1κ, |C|)
and sends C̃ to A. A then chooses an input x. The experiment runs labx ←
Sim(1κ, σ) and sends labx to A. Then it outputs the output of the adversary.

The above definition guarantees adaptive security, since the adversary gets
to choose input x after seeing the garbled circuit C̃. We only know how to
instantiate garbling schemes with adaptive security in the random oracle model.
In the standard model, existing garbling schemes achieve a weaker static variant
of the above definition where the adversary chooses both C and input x at the
same time and before receiving C̃.

Concerning complexity, we note that if the cleartext circuit C has |C| gates,
the respective garbled circuit has size O(|C|κ). This is because every gate in the
circuit is typically replaced with a table of four rows, each row storing encryptions
of labels (each encryption has κ bits).

2.2 Oblivious RAM

We recall Oblivious RAM (ORAM), a notion introduced and first studied by
Goldreich and Ostrovsky [16]. ORAM can be thought of as a compiler that
encodes the memory into a special format such that accesses on the compiled
memory do not reveal the underlying access patterns on the original memory.
An ORAM scheme consists of protocols (Setup,ObliviousAccess).

– 〈σ,EM〉 ↔ Setup〈(1κ,M),⊥〉: Setup takes as input the security parameter κ
and a memory array M and outputs a secret state σ (for the client), and an
encrypted memory EM (for the server).

– 〈(M[y], σ′),EM′〉 ↔ ObliviousAccess〈(σ, y, v),EM〉: ObliviousAccess is a
protocol between the client and the server, where the client’s input is the
secret state σ, an index y and a value v which is set to null in case the access
is a read operation (and not a write). Server’s input is the encrypted memory
EM. Client’s output is M[y] and an updated secret state σ′ and the server’s
output is an updated encrypted memory EM′ where M[y] = v, if v 	= null.

Correctness. Consider the following correctness experiment. Adversary
A chooses memory M0. Consider EM0 generated with 〈σ0,EM0〉 ↔
Setup〈(1κ,M0),⊥〉). The adversary then adaptively chooses memory locations

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 569

to read and write. Denote the adversary’s read/write queries by (y1, v1), . . . ,
(yq, vq) where vi = null for read operations. A wins in the correct-
ness game if 〈(Mi−1[yi], σi),EMi〉 are not the final outputs of the protocol
ObliviousAccess〈(σi−1, yi, vi),EMi−1〉 for any 1 ≤ i ≤ q, where Mi, EMi, σi

are the memory array, the encrypted memory array and the secret state, respec-
tively, after the i-th access operation, and ObliviousAccess is run between an
honest client and server. The ORAM scheme is correct if the probability of A in
winning the game is negligible in κ.

Security. An ORAM scheme is secure in the semi-honest model if for any PPT
adversary A, there exists a PPT simulator Sim such that the following two dis-
tributions are computationally indistinguishable.

– RealA(κ): A chooses M0. Experiment then runs 〈σ0,EM0〉 ↔ Setup
〈(1κ,M0),⊥〉. For i = 1, . . . , q, A makes adaptive read/write queries (yi, vi)
where vi = null on reads, for which the experiment runs the protocol

〈(Mi−1[yi], σi),EMi〉 ↔ ObliviousAccess〈(σi−1, yi, vi),EMi−1〉.

Denote the full transcript of the above protocol by ti. Eventually, the exper-
iment outputs (EMq, t1, . . . , tq) where q is the total number of read/write
queries.

– IdealA,Sim(κ): The experiment outputs (EMq, t
′
1, . . . , t

′
q) ↔ Sim(q, |M0|, 1κ).

3 TWORAM Construction

Our TWORAM construction uses an abstraction of tree-based ORAM schemes,
e.g., Path-ORAM [34]. We start by describing this abstraction informally. Then
we show how to turn the interactive Path-ORAM protocol (e.g., the one by
Stefanov et al. [34]) into a two-round ORAM protocol, using the abstraction
that we present below. We now give some necessary notation that we need for
understanding our abstraction.

3.1 Notation

Let n = 2L be the size of the initial memory that we wish to access obliviously.
This memory is denoted by AL[1], AL[2], . . . , AL[n] where AL[i] is the i-th block
of the memory. Given location y that we wish to access, let yL, yL−1, . . . , y1 be
defined recursively as yL = y and yi = ceil(yi+1/2), for all i = L−1, L−2, . . . , 1.
For example, for L = 4 and y = 13, we have

– y1 = ceil(ceil(ceil(y/2)/2)/2) = 2.
– y2 = ceil(ceil(y/2)/2) = 4.
– y3 = ceil(y/2) = 7.
– y4 = 13.

570 S. Garg et al.

Also define bi = 1 − yi%2 to be a bit (namely bi indicates if yi is even or
not). Finally, on input a value x of 2 · L bits, select(x, 0) selects the first L bits
of x, while select(x, 1) selects the last L bits of x. We note here that both yi and
bi are functions of y, but we do not indicate this explicitly so that not to clutter
notation.

3.2 Path-ORAM Abstraction

We start by describing our abstraction of Path-ORAM construction. In Appen-
dix A we describe formally how this abstraction can be used to implement the
interactive Path-ORAM algorithm [34] (with log n rounds of interaction). We
note that the details in Appendix A are provided only for helping better under-
standing. Our construction can be understood based on just the abstraction
defined below.

Roughly speaking, Path-ORAM algorithms encode the original memory AL

in the form of L memories

AL, AL−1, . . . , A1,

where AL stores the original data and the remaining memories Ai store infor-
mation required for accessing data in AL obliviously. Each Ai has 2i entries,
each one storing blocks of 2 · L bits (for ease of presentation we assume the
block size is Θ(log n) but our results apply with other block parameterizations
as well). Memories AL, AL−1, . . . , A2 are stored in trees TL, TL−1, . . . , T2 respec-
tively. The smallest memory A1 is kept locally by the client. The invariant that
is maintained is that any block Ai[x] will reside in some leaf-to-root path of tree
Ti, and specifically on the path that starts from leaf xi in Ti. The value xi itself
can be retrieved by accessing Ai−1, as we detail in the following.
Reading a Value AL[y]. To read a value AL[y], one first reads A1[y1] from
local storage and computes x2 ← select(A1[y1], b1) (recall definitions of y1 and
b1 from Sect. 3.1). Then one traverses the path starting from leaf x2 in T2. This
path is denoted with T2(x2). Block A2[y2] is guaranteed to be on T2(x2). Then
one computes x3 ← select(A2[y2], b2), and continues in this way. In the end, one
will traverse path TL(xL) and will eventually retrieve block AL[y]. See Fig. 1.
Updating the Paths. Once the above process finishes, we need to make sure
that we do not access the same leaf-to-root paths in case we access AL[y] again in
the future—this would violate obliviousness. Thus, for i = 2, . . . , L, we perform
the following tasks:

1. We remove all blocks from Ti(xi) and copy them into a data structure Ci

called stash. In our abstraction, stash Ci is viewed as an extension of the root
of tree Ti;

2. In the stash Ci−1, we set select(Ai−1[yi−1], bi−1) ← ri, where ri is a fresh
random number in [1, 2i] that replaces xi from above. This effectively means
that block Ai[yi] should be reinserted on path Ti(ri), when eviction from
stash Ci takes place;

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 571

T2

T3

x2x3xL

TL

…

AL[yL]
A3[y3]

A2[y2]

A1[y1]

val

y
y

y y

Fig. 1. Our Path-ORAM abstraction for reading a value val = AL[y]. A1[y1] is read
from local storage and defines x2. x2 defines a path p2 in T2. By traversing p2 the
algorithm will retrieve A2[y2], which will yield x3, which defines a path p3 in T3.
Repeating this process yields a path pL in TL, traversing which yields the final value
AL[yL] = AL[y]. Note that y is passed from tree Ti−1 to tree Ti so that the index yi

(and the bit bi) can be computed for searching for the right block on path pi.

3. We evict blocks from stash Ci back to tree Ti(xi), respecting the new assign-
ments made above.

Syntax. A Path-ORAM consists of three procedures (Initialize,Extract,
Update) with syntax:

– T ← Initialize(1κ, AL): Given a security parameter κ and memory AL as
input, Setup outputs a set of L − 1 trees T = {T2, T3, . . . , TL} and an array
of two entries A1. A1 is stored locally with the client and T2, . . . , TL are stored
with the server.

– xi+1 ← Extract(i, y, Ti(xi)) for i = 2, . . . , L. Given the tree number i,
the final memory location of interest y and a leaf-to-root path Ti(xi) (that
starts from leaf xi) in tree Ti, Extract outputs an index xi+1 to be
read in the next tree Ti+1. The client can obtain x2 from local storage as
x2 ← select(A1[y1], b1). The obtained value x2 is sent to the server in order
for the server to continue execution. Finally, the server outputs xL+1, which
is the desired value AL[y].
ExtractBucket Algorithm. In Path-ORAM [34], internal nodes of the
trees store more than one block (z,Ai[z]), in the form of buckets. We note
that Extract can be broken to work on individual buckets along a root-
to-leaf path in a tree Ti. In particular, we can define the algorithm π ←
ExtractBucket(i, y, b) where i is the tree of interest, y is the memory loca-
tion that needs to be accessed, and b is a bucket corresponding to a particular

572 S. Garg et al.

node on the leaf-to-root path. π will be found at one of the nodes on the
leaf-to-root path. Note that the algorithm Extract can be implemented by
repeatedly calling ExtractBucket for every b on Ti(xi).

– {A1, T2(x2), . . . , TL(xL)} ← Update(y, op, val, A1, T2(x2), . . . , TL(xL). Pro-
cedure Update takes as input the leaf-to-root paths (and local storage A1)
that were traversed during the access and accordingly updates these paths
(and local storage A1). Additionally, Update ensures the new value val is
written to AL[y], if operation op is a “write” operation.

An implementation of the above abstractions, for Path-ORAM [34], is given in
Algorithms 1, 2 and 3 in AppendixA.1. Note that the description of the Update
procedure [34] abstracts away the details of the eviction strategy. The Setup
and ObliviousAccess protocols of the interactive Path-ORAM using these
abstractions are given in Figs. 6 and 7 respectively in the Appendix A.2. It is
easy to see that the ObliviousAccess protocol has log n rounds of interactions.
By the proof of Stefanov et al. [34], we get the following:

Corollary 1. The protocols Setup and ObliviousAccess from Figs. 6 and 7
respectively in Appendix A.2 comprise a secure ORAM scheme (as defined in
Sect. 2.2) with O(log n) rounds, assuming the encryption scheme used is CPA-
secure.

We recall that the bandwidth overhead for Path-ORAM [34] is O(log3 n) bits
and the client storage is O(log2 n) · ω(1) bits, for a block size of 2 · L = 2 · log n
bits.

3.3 From logn Rounds to Two Rounds

Existing Path-ORAM protocols implementing our abstraction require log n
rounds (see ObliviousAccess protocol in Fig. 7). The main reason for that is
the following: In order for the server to determine the index of leaf xi from which
the next path traversal begins, the server needs to access Ai−1[yi−1], which is
stored encrypted at some node on the path starting from leaf xi−1 in tree Ti−1—
see Fig. 1. Therefore the server has to return all encrypted nodes on Ti−1(xi−1)
to the client, who performs the decryption locally, searches for Ai−1[yi−1] (via
the ExtractBucket procedure) and returns the value xi to the server (see
Line 10 of the ObliviousAccess protocol in Fig. 7).
Our Approach. To overcome this difficulty, we do not encrypt the blocks in the
buckets. Instead, for each bucket stored at a tree node u, we prepare a garbled
circuit that hardcodes, among other things, the blocks that are contained in
the bucket. Subsequently, this garbled circuit executes the ExtractBucket
algorithm on the hardcoded blocks and outputs either ⊥ or the next leaf index π,
depending on whether the search performed by ExtractBucket was successful
or not. The output, whatever that is, is fed as a garbled input to either the left
child bucket or the right child bucket (depending on the currently traversed
path) or the next root bucket (in case u is a leaf) of u. In this way, by the time
the server has executed all the garbled circuits along the currently traversed

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 573

Fig. 2. Formal description of the naive bucket circuit. Notation: Given lab, the set of
input labels for a garbled circuit, we let laba denote the garbled input labels (i.e., the
labels taken from lab) corresponding to the input value a.

path, he will be able to pass the index π to the next tree as a garbled input,
and continue the execution in the same way without having to interact with the
client. Therefore the client can obliviously retrieve his value AL[y] in only two
rounds of communication.

Unfortunately, once these garbled circuits have been consumed, they cannot
be used again since this would violate security of garbled circuits. To avoid this
problem, the client downloads all the data that was accessed before, decrypts
them, runs the Update procedure locally, recomputes the garbled circuits that
were consumed before, and stores the new garbled circuits locally. In the next
access, these garbled circuits will be sent along with the query. Therefore the
total number of communication rounds is equal to two (note that this approach
requires permanent client storage—for transient storage, the client will have to
send the garbled circuits immediately which would increase the rounds to three).
We now continue with describing the bucket circuit that needs to be garbled for
our construction.
Naive Bucket Circuit. To help the reader, in Fig. 2 we describe a naive version
of our bucket circuit that leads to an inefficient construction. Then we give the
full-fledged description of our bucket circuit in Fig. 3. The naive bucket circuit
has inputs, outputs and hardcoded parameters, which we detail in the following.
Inputs. The input of the circuit is a triplet consisting of the following informa-
tion:

1. The index of the leaf p from which the currently explored path begins;
2. The final location to be accessed y;
3. The output from previous bucket π (can be the actual value of the next index

to be explored or ⊥).

Outputs. The outputs of the circuit are the next node to be executed, along with
its garbled inputs. For example, if the current node u is not a leaf (see Lines 4 and 5

574 S. Garg et al.

in Fig. 2), the circuit outputs the garbled inputs of either the left or the right child,
whereas if the current node is a leaf (see Lines 6–8 in Fig. 2), the circuit outputs the
garbled inputs of the next root to be executed. Note that outputting the garbled
inputs is easy, since the bucket circuit hardcodes the input labels of the required
circuits. Finally we note that the ExtractBucket(i, y, bucket) algorithm used
in Fig. 2 can be found in Appendix A.1—see Algorithm 2.
Hardcoded Parameters. The circuit for node u hardcodes:

1. The node identifier u that consists of a triplet (i, j, k) where
– i ∈ {2, . . . , L} is the tree number where node u belongs to;
– j ∈ {0, . . . , 2i−1} is the depth of node u;
– k ∈ {0, . . . , 2j − 1} is the oder of node u in the specific level.

For example, the root of tree T3 will be denoted (3, 0, 0), while its right child
will be (3, 1, 1).

2. The bucket information bucket (i.e., blocks (x,Ai[x], r) contained in node
u—recall r is the path index in Ti assigned to Ai[x]);

3. The input labels leftLabels, rightLabels and nextRootLabels that are used to
compute the garbled inputs for the next circuit to be executed. Note that
leftLabels and rightLabels are used to prepare the next garbled inputs when
node u is an internal node (to go either to the left or the right child), while
nextRootLabels are used when node u is a leaf (to go to the next root).

Final Bucket Circuit. In the naive circuit presented before, we hardcode the
input labels of the root node root of every tree Ti into all the nodes/circuits
of tree Ti−1. Unfortunately, in every oblivious access, the garbled circuits of all
roots are consumed (and therefore root’s circuit as well), hence all the garbled
circuits of tree Ti−1 will have to be recomputed from scratch. This cost is O(n),
thus very inefficient. We would like to mimimize the number of circuits in Ti−1

that need to be recomputed and ideally make this cost proportional to O(log n).
To achieve that, we observe that, instead of hardcoding input labels

nextRootLabels in the garbled circuit of every node of tree Ti−1 , we can just
pass them as garbled inputs to the garbled circuit of every node of tree Ti−1. The
final circuit is given in Fig. 3. Note that the only difference of the new circuit
from the naive circuit is in the computation of the garbled inputs

leftNewLabels(p,y,π,nextRootLabels)

and
rightNewLabels(p,y,π,nextRootLabels),

where nextRootLabels is added in the subscript (see Line 5 of both Figs. 3 and 2),
to account for the new input of the new circuit. Note also that we indicate the
change in the input format by using “leftNewLabels” instead of just “leftLabels”
and “rightNewLabels” instead of just “rightLabels”. nextRootLabels have the same
meaning in both circuits.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 575

Fig. 3. Formal description of the final bucket circuit.

3.4 Protocols SETUP and OBLIVIOUSACCESS of our construction

We now describe in detail the Setup and ObliviousAccess protocols of
TWORAM.
SETUP. The Setup protocol is described in Fig. 4. Just like the setup for the
interactive ORAM protocol (see Fig. 6 in Appendix A.2), in TWORAM, the client
does some computation locally in the beginning (using his secret key) and then
outputs some “garbled information” that is being sent to the server. In particular:

1. After producing the trees T2, T3, . . . , TL using algorithm Initialize, the client
prepares the garbled circuit of Fig. 3 for all the nodes u ∈ Ti, for all trees Ti.
It is important this computation takes place from the leaves towards the root
(that is why we write j ∈ {i − 1, . . . , 0} in Line 2 of Fig. 4), since a garbled
circuit of a node u hardcodes the input labels of the garbled circuits of its
children—so these need to be readily available by the time u’s garbled circuit
is computed.

2. Apart from the garbled circuits, the client needs to prepare garbled inputs for
the nextRootLabels inputs of all the roots of the trees Ti. These are essentially
the βi’s computed in Line 4 of Fig. 4.

OBLIVIOUSACCESS. The ObliviousAccess protocol of TWORAM is
described in Fig. 5. The first step of the protocol is similar to that of the inter-
active scheme (see Fig. 7 in Appendix), where the client accesses local storage
A1 to compute the path index x2 that must be traversed in T2. However, the
main difference is that, instead of sending x2 directly, the client sends the garbled
input that corresponds to x2 for the root circuit of tree T2, denoted with α in
Fig. 5.

We note here that α is not enough for the first garbled circuit to start execut-
ing, and therefore the server complements this garbled input with β2 (see Server
Line 1), the other half that was sent by the client before and that represents
the garbled inputs for the input labels of the next root. Subsequently, the server

576 S. Garg et al.

Fig. 4. Setup protocol for TWORAM.

starts executing the garbled circuits one-by-one, using the outputs of the first
circuit, as garbled inputs to the second one, and so on. Eventually, the clients
reads and decrypts all paths Ti(xi), retrieving the desired value (see Client Line
2). Finally, the client runs the Update, re-garbles the circuits that got consumed
and waits until the next query to send them back. We can now state the main
result of our paper.

Theorem 1. The protocols Setup and ObliviousAccess from Figs. 4 and 5
respectively comprise a two-round secure ORAM scheme (as defined in Sect. 2.2),
assuming the garbling scheme used is secure (as defined in Sect. 2.1) and the
encryption scheme used is CPA-secure.

The proof of the above theorem can be found in Appendix A.3. Concern-
ing complexity, it is clear that the only overhead that we are adding on Path-
ORAM [34] is a garbled circuit per bucket—this adds a multiplicative security
parameter factor on all the complexity measures of Path-ORAM. E.g., the band-
width overhead of our construction is O(κ · log3 n) bits (for blocks of 2 log n bits).

3.5 Optimizations

Recall that in the garbling procedure of a circuit C, one has the following choices:
(i) either to garble C in a way that during evaluation of the garbled circuit on x
the output is the cleartext value C(x); (ii) or to garble C in a way that during
evaluation of the garbled circuit on x the output is the garbled labels correspond-
ing to the value C(x). We now describe an optimization for a specific circuit C
that we will be using in our construction that uses the above observation.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 577

Fig. 5. ObliviousAccess protocol for TWORAM.

General Optimization. Consider a circuit that performs the following task: It
hardcodes two k-bit strings s0 and s1, takes an input a bit b and outputs sb. This
cleartext circuit has size O(k), so the garbled circuit for that will have size O(k2).
To improve upon that we consider a circuit C ′ that takes as input bit b and outputs
the same bit b! This cleartext circuit has size O(1). However, to make sure that
the output of the garbled version of C ′ is always sb, we garble C ′ by outputting
the garbled label corresponding to b, namely sb (i.e., using (ii) from above). In
particular, during the garbling procedure we use s0 as the garbled label output
for output b = 0 and we use s1 as the garbled label output for the output b = 1.
Note that the size of the new garbled circuit has size O(k), yet it has exactly the
same I/O behavior with the garbling of C, which has size O(k2).

578 S. Garg et al.

– Improving cState—Not Hard-Coding Input Labels Inside the Bucket
Circuit. In the construction we described, we include the input labels
leftLabels, rightLabels in the circuit C[u, bucket, leftLabels, rightLabels]. Conse-
quently, the size of the ungarbled version of this circuit grows with the size of
leftLabels and rightLabels which is κ · |cState|. We can easily use the general
optimization described above, for each bit of |cState|, to make the size of the
ungarbled version of our circuit only grow with |cState|.

– Improving nState —Input Labels Passing. In the construction described
previously, for each tree, an input value nState is passed from the root to a
leaf node in the tree. However this value is used only at the leaf node. Recall
that the nState value passed from the root to a leaf garbled circuits in the
tree Ti is exactly the value cStatei+1,0,0, the input labels of the root garbled
circuit of the tree Ti+1. Since each ungarbled circuit gets this value as input,
therefore each of one of them needs to grow with κ · |cState|.2 We will now
describe an optimization such that the size of the garbled version, rather than
the clear version, grows linearly in κ · |cState|.

Note that in our construction the value cStatei+1,0,0 is not used at all in the
intermediate circuits as it gets passed along the garbled circuits for tree Ti.
In order to avoid this wastefulness, for all nodes i ∈ {1, . . . , L}, j ∈ [i], k ∈
[2j] we sample a value r(i,j,k) of length κ · |cState| and hardcode the values
r(i,j,k) ⊕ r(i,j+1,2k) and r(i,j,k) ⊕ r(i,j+1,2k+1) inside the garbed circuit C̃i,j,k

which output the first of two values if the execution goes left and the second if
the execution goes right. Note that a garbled circuits grows only additively in
κ · |cState| because of this change. This follows by using the first optimization.
Additionally, we include the value cStatei+1,0,0 ⊕ r(i,0,0) with the root node of
the tree Ti. The leaf garbled circuit (i, i − 1, k) in tree Ti is constructed assum-
ing r(i,i−1,k) is the sequence of input labels for the root garbled circuit of the
tree Ti+1.3 Let α0, . . . αi−1 be the strings output during the root to a leaf tra-
versal in tree Ti. Now observe that cStatei+1,0,0 ⊕ r(i,0,0) ⊕j∈[i] αj is precisely
cStatei+1,0,0 ⊕ r(i,i−1,k) where k is the leaf node in the traversed path. At this
point it is easy to see that given the output of the leaf grabled circuit for tree
Ti one can compute the required input labels for the root of tree Ti+1.

The update mechanism in our construction can be easily adapted to
work with this change. Here note that we would now include the values
r(i,j,k), r(i,j+1,2k) and r(i,j+1,2k+1) in the ciphertext X(i,j,k). Also note that
we will use fresh r(·,·,·) values whenever a fresh garbled circuit for a node
is generated. The security argument now additionally uses the fact that the
outputs generated by garbled circuits in two separate root to leaf traversals
depend on completely independent r(·,·,·) values.

Note that the above modification leaks what value is passed by the executed
leaf garbled circuit in tree Ti to the root garbled circuit in tree Ti+1. This can
be deduced based on what bit values of cStatei+1,0,0 ⊕ r(i,0,0) are revealed.

2 This efficiency is achieved when the first optimization is used.
3 Note that here the first optimization allows us to ensure that the size of the garbled

leaf circuit, rather than the clear leaf circuit, grows with the length of r(i,i−1,k) as
these hard-codings are performed.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 579

This can be tackled by randomly permuting the labels in cStatei+1,0,0 and
passing the information on this permutations along with in the tree to leaf
garbled circuits. Note that the size of this information is small.

Taken together these two optimizations reduce the size of each garbled circuit
to O(κ · (|bucket| + |cState|)). Since |bucket| > |cState| this expression reduces
to O(κ · |bucket|). This implies that the overhead of our construction is just κ
times the overhead of the underlying Path ORAM scheme.

4 Searchable Encryption Construction Using TWORAM

The natural way of designing an SSE scheme that does not leak the search
and access patterns using an ORAM scheme is to first use a data structure
for storing keyword-document pairs, setup the data structure in memory using
an ORAM setup and then read/write from it using ORAM operations. Since
ORAM hides the read/write access patterns, but it does not hide the number
of memory accesses, one needs to ensure that the number of memory accesses
for each operation is also data-independent. Fortunately, this can be achieved
by not letting the key used for the hash table be the output of a pseudorandom
function applied to the keyword w, and not the keyword w itself.

We start by giving some definitions and then describe constructions that
can be instantiated using any ORAM scheme. We then show how to obtain a
significantly more efficient instantiation using a combination of TWORAM and
a non-recursive Path-ORAM scheme.

4.1 Hash Table Definition

A hash table is a data structure commonly used for mapping keys to values [7].
It often uses a hash function h that maps a key to an index (or a set of indices)
in a memory array M where the value associated with the key may be found. In
particular, h takes as input a keyword key and outputs a set of indices i1, . . . , ic
where c is a parameter. The value associated with key is in one of the locations
M[i1], . . .M[ic]. The keyword is not in the table if it is not in one of those loca-
tions. Similarly, to write a new (key, value) pair into the table, (key, value) is
written into the first empty location among i1, . . . , ic. More formally, we define
a hash table H = (hsetup, hlookup, hwrite) using a tuple of algorithms and a
parameter c denoting an upper bound on the number of locations to search.

– (h,M) ← hsetup(S, size): hsetup takes as input an initial set S of keyword-
value pairs and a maximum table size size and outputs a hash function h and
a memory array M.

– value ← hlookup(key): hlookup computes {i1, . . . , ic} ← h(key), looks for a
key-value pair (key, ·) in M[i1], . . . ,M[ic]. If such a pair is found it returns the
second component of the pair (i.e., the value), else it returns ⊥.

– M ← hwrite(key, value): hwrite computes i1, . . . , ic ↔ h(key), if (key, value)
already exists in one of those indices in M it does nothing, else it stores
(key, value) in the first empty index.

580 S. Garg et al.

4.2 Searchable Encryption Definition

A database D is a set of document/keyword-set pair

DB = (di,Wi)N
i=1.

Let W = ∪N
i=1Wi be the universe of keywords. A keyword search query for w

should return all di where w ∈ Wi. We denote this subset of DB by DB(w).
A searchable symmetric encryption scheme consists of protocols SSESetup,
SSESearch and SSEAdd. The following formalization first appeared in [6,8].

– 〈σ,EDB〉 ↔ SSESetup〈(1κ,DB),⊥〉: SSESetup takes as client’s input data-
base DB and outputs a secret state σ (for the client), and an encrypted data-
base EDB which is outsourced to the server.

– 〈(DB(w), σ′),EDB′〉 ↔ SSESearch〈(σ,w),EDB〉: SSESearch is a protocol
between the client and the server, where client’s input is the secret state σ and
the keyword w he is searching for. Server’s input is the encrypted database
EDB. Client’s output is the set of documents containing w, i.e. DB(w) as
well an updated secret state σ′ and the server obtains an updated encrypted
database EDB′.

– 〈σ′,EDB′〉 ↔ SSEAdd〈(σ, d),EDB〉: SSEAdd is a protocol between the client
and the server, where client’s input is the secret state σ and a document d to
be inserted into the database. Server’s input is the encrypted database EDB.
Client’s output is an updated secret state σ′ and the server’s output is an
updated encrypted database EDB′ which now contains the new document d.

Correctness. Consider the following correctness experiment. An adversary A
chooses a database DB0. Consider the encrypted database EDB0 generated using
SSESetup (i.e., 〈σ0,EDB0〉 ↔ SSESetup〈(1κ,DB0),⊥〉). The adversary then
adaptively chooses keywords to search and documents to add to the database,
and the respective protocols SSESearch and SSEAdd are run between an
honest client and server, outputting the updated EDB, DB and σ. Denote the
operations chosen by the adversary with w1, . . . , wq. A wins in the correctness
game if for some search query wi it is

〈(DBi(wi), σi),EDBi〉 	= SSESearch〈(σi−1, wi),EDBi−1〉,

where DBi,EDBi are the database and encrypted database, respectively, after
the i-th search. The SSE scheme is correct if the probability of A winning the
game is negligible in κ.

Security. We discuss security in the semi-honest model. It is parametrized by a
leakage function L, which explains what the adversary (the server) learns about
the database and the search and update queries, while interacting with a secure
SSE scheme. A SSE scheme is L-secure if for any PPT adversary A, there exist
a simulator Sim such that the following two distributions are computationally
indistinguishable.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 581

– RealA(κ): A chooses DB0. The experiment then runs

〈σ0,EDB0〉 ↔ SSESetup〈(1κ,DB0),⊥〉.
A then adaptively makes search queries wi, which the experiment answers
by running the protocol 〈DBi−1(wi), σi〉 ↔ SSESearch〈(σi−1, wi),EDBi−1〉.
Denote the full transcripts of the protocol by ti and with EDB′ the final
encrypted database. Add queries are handled in a similar way. Eventually, the
experiment outputs

(EDB, t1, . . . , tq),

where q is the total number of search/add queries made by A.
– IdealA,Sim,L(κ): A chooses DB0. The experiment runs

(st0,EDB0) ↔ Sim(L(DB0)),

where st0 is the initial state of the simulator. On input any search query wi from
A, the experiment adds (wi, search) to the history H, and on an add query di

it adds (di, add) to H. It then runs (ti, sti) ↔ Sim(sti−1,L(DBi−1,H)). Even-
tually, the experiment outputs (EDB′, t1, . . . , tq) where q is the total number of
search/add queries made by A.

Leakage. The level of security one obtains from a SSE scheme depends
on the leakage function L. Ideally L should only output the total number∑

w∈W |DB(w)| of (w, d) pairs, the total number of unique keywords |W | and
|DB(w)| for any searched keyword w. Achieving this level of security is only
possible if the SSESearch operation outputs the documents themselves to the
client. If instead (as is common for applications with large document sizes), it
returns document identifiers which the client then uses to retrieve the actual
documents, any SSE protocol would also leak the access pattern.

4.3 SSE from any ORAM

First Approach. The common way of storing a database of documents in a hash
table is to insert a key-value pair (w, d) into the table for any keyword w in a
document d. Searching for a document with keyword w then reduces to looking
up w in the table. If there is more than one document containing a keyword w, a
natural solution is to create a bucket Bw storing all the documents containing w
and storing the bucket in position ptw of an array A. One then inserts (w, ptw) in
a hash table. Now, to search for a keyword w, we first look up (w, ptw), and then
access A[ptw] to obtain the bucket Bw of all the desired documents. A subtle
issue is that the distribution of bucket sizes would leak information about the
database even before any keyword is searched. As a result, for this approach to
be fully-secure, one needs to pad each bucket to an upperbound on the number
of searchable documents per keyword.

Next we describe the SSE scheme more formally. Given a hash table
H = (hsetup, hlookup, hwrite), and an ORAM scheme ORAM = (Setup,
ObliviousAccess), we construct an SSE scheme (SSESetup,SSESearch,
SSEAdd) as follows.

582 S. Garg et al.

1. 〈σ,EDB〉 ↔ SSESetup〈(1κ,max,DB),⊥〉: Given an initial set of documents
DB, client lets S be the set of key-value pairs (w, ptw) where ptw is an index
to an array of buckets A such that A[ptw] stores the bucket of all documents
in DB containing w. Each bucket is padded to the maximum size max with
dummy documents.

Client first runs hsetup(S, size) to obtain (h,M). size is the maximum size
of hash table H. Then client and server run 〈σ1,EM〉 ↔ Setup〈(1κ,M),⊥〉.
Cleint and server also run 〈σ2,EA〉 ↔ Setup〈(1κ,A),⊥〉

Note that server’s output is EDB = (EM,EA) and client’s output is σ =
(σ1, h, σ2).

2. SSESearch〈(σ,w),EDB〉: Client computes i1, . . . , ic ← h(w). Then, client
and server run ObliviousAccess〈((σ1, ij , null),EM〉 for j ∈ {1, . . . , c} for
client to obtain M[ij]. If client does not find (w, ptw) in one of the retrieved
locations it lets ptw = 0, corresponding to a dummy access to the index 0 in A.

Client and server then run ObliviousAccess〈(σ2, ptw, null),EA〉) for client
to obtain the bucket Bw stored in A[ptw]. Client outputs all the non-dummy
documents in Bw.

3. SSEAdd〈(σ, d),EDB〉: For every w in d, client computes i1, . . . , ic ← h(w)
and client and server run ObliviousAccess〈(σ1, ij , null),EM〉 for j ∈
{1, . . . , c} for client to obtain M[ij]. If (w, ptw) is in the retrieved locations let
i∗j be the location it was found at. If not, let ptw be the first empty location
in A, and let i∗j be the first empty location from the retrieved ones in M.
Client and server run ObliviousAccess〈(σ1, i

∗
j , (w, ptw)),EM〉.

Client and server run ObliviousAccess〈(σ2, ptw, null),EA〉 to retrieve
A[ptw]. Let Bw be the retrieved bucket. Client inserts d in the first dummy
entry of Bw, denoting the new bucket by B′

w. Client and server run

ObliviousAccess〈(σ2, ptw, B′
w),EA〉.

The main disadvantage of the above construction is that we need to anticipate
an upper bound on the bucket sizes, and pad all buckets to that size. Given that
in practice there are often keywords that appear in a large number of documents,
and keywords that only appear in a few, the padding will lead to inefficiency.
Our next solution addresses this issue but instead has a higher round complexity.

Second Approach. Instead of storing all documents matching a keyword w in
one bucket, we store each of them separately in the hash table, using a different
keyword. In particular, we can store the key-value pair (w||i, d) in the hash table
for the ith document d containing w. This works fine except that it requires
looking up w||count for an incremental counter count until the keyword is no
longer found in the table.

To make this approach cleaner and the write operations more efficient, we
maintain two hash tables, one for storing the counter representing the number
of documents containing the keyword, and one storing the incremental key-value
pairs as described above. To lookup a keyword w, one first looks up the counter
count in the first table and then makes count lookup queries to the second table.

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 583

We now describe the above SSE scheme in more detail. Given a hash
table H = (hsetup, hlookup, hwrite) and a scheme ORAM = (Setup,
ObliviousAccess), we construct an SSE scheme (SSESetup,SSESearch,
SSEAdd) as follows:

1. 〈σ,EDB〉 ↔ SSESetup〈(1κ,DB),⊥〉: Given an initial set of documents DB.
Let S1 be the set of (w, countw) pairs and S2 be the set of key-value pairs
(w||i, di) for 1 ≤ i ≤ countw where countw is the number of documents con-
taining w, and di denotes the ith document in DB containing w.

Cleint runs hsetup(Si, sizei) to obtain (hi,Mi). sizei is the maximum
size of the hash table Hi. Then client and server run 〈σi,EMi〉 ↔
Setup〈(1κ,Mi),⊥〉. Note that server’s output is EDB = (EM1,EM2) and
client’s output is σ = (σ1, σ2, h1, h2).

2. SSESearch〈(σ,w),EDB〉: Client computes i1, . . . , ic ← h1(w) and client and
server run ObliviousAccess〈(σ1, ij , null),EM1〉) for j ∈ {1, . . . , c} for client
to obtain (w, countw) among the retrieved locations. If such a pair is not
found, client lets countw = 0.

For 1 ≤ k ≤ countw, client computes ik1 , . . . , i
k
c ← h2(w||k) and client and

server run ObliviousAccess〈(σ2, i
k
j , null),EM2〉) for j ∈ {1, . . . , c} for client

to obtain M2[ikj]. Client outputs d for all d where (w||k, d) is in the retrieved
locations from M2.

3. SSEAdd〈(σ, d),EDB〉: For every w in d, client computes i1, . . . , ic ← h1(w)
and client and server run ObliviousAccess〈(σ1, ij , null),EM1〉 for j ∈
{1, . . . , c} for client to obtain M1[ij]. If (w, countw) is in the retrieved loca-
tions let i∗j be the location it was found at. If not, let countw = 0 and let
i∗j be the first empty location from the retrieved ones. Client and server run
ObliviousAccess〈(σ1, i

∗
j , (w, countw + 1)),EM1〉 to increase the counter by

one.
Client then computes i′1, . . . , i

′
c ← h2(w||countw + 1) and client and server

run ObliviousAccess〈(σ2, i
′
j , null),EM2〉 to retrieve M2[i′j] for j ∈ {1, . . . , c}.

Let i′k be the first empty location among them. Client and server run

ObliviousAccess〈(σ2, i
′
k, (w||count + 1)),EM2〉.

The main disadvantage of our second approach is that for each search,
it requires countw ORAM accesses to retrieve all matching documents. This
means that the bandwidth/computation overhead of ORAM scheme is multi-
plied by countw which can be large for some keywords. More importantly, it
would require O(countw) rounds since the ORAM accesses cannot be paral-
lelized in our constant-round ORAM construction. In particular, note that each
memory garbled circuit in the construction can only be used once and needs to
be replaced before the next memory access. Finally, the constant-round ORAM
needs to store a memory array that is proportional to the number of (w, d) tuples
associated with the database, which is significantly larger than the number of
unique keywords, increasing the storage overhead of the resulting SSE scheme.

Next, we address all these efficiency concerns, showing a construction that
only requires a single ORAM access using our constant-round construction.

584 S. Garg et al.

4.4 SSE from Path-ORAM

The idea is to not only store a per-keyword counter countw as before, but also
to store a accessw that represents the number of search/add queries performed
on w so far. Similar to the previous approach, the tuple (w, (countw, accessw))
is stored in a hash table that is implemented using our constant-round ORAM
scheme TWORAM. The countw is incremented whenever a new document con-
taining w is added and the accessw is incremented after each search/add query
for w.

The tuples (w||i, di) for all di containing w are then stored in a one-level
(non-recursive) Path-ORAM. In order to avoid storing a large client-side posi-
tion map for this non-recursive Path-ORAM, we generate/update the positions
pseudorandomly using a PRF FK(w||i||accessw). Since each document di has
a different index and each search/add query for w will increment accessw, the
pseudorandomness property of F ensures that this way of generating the posi-
tion maps is indistinguishable from generating them at random. Now the client
only needs to keep the secret key K. Note that since we are using a one-level
Path-ORAM to store the documents, we can handle multiple parallel accesses
without any problems, hence obtaining a constant-round search/add complex-
ity. Furthermore, we only access TWORAM(which uses garbled circuits) once
per keyword search to retrieve the tuple (w, (countw, accessw)), so TWORAM’s
overhead is not multiplied by countw for each search/add query. Similarly, the
storage overhead of TWORAMis only for a memory array of size |W | (number of
unique keywords in documents) which is significantly smaller than the number
of keyword-document pairs needed in the general approach.

We need to make a few small modifications to the syntax of the abstraction
for Path-ORAM here. First, since we generate the position map on the fly using a
PRF, it is convenient to modify the syntax of the Update procedure to take the
new random position as input, instead of internally generating it in our original
syntax. Also, since we are not extracting an index y from the Path-ORAM and
instead are extracting a tuple of the form (w||i, di), we will pass w||i as input in
place of y in the Extract and Update operations.

We now describe the SSE scheme. Given a hash table H = (hsetup,
hlookup, hwrite), our constant-round ORAM scheme TWORAM = (Setup,
ObliviousAccess), a single level Path-ORAM scheme with procedures
(Initialize,Extract,Update), and a PRF function F , we build an SSE
scheme (SSESetup,SSESearch,SSEAdd) as follows:

1. 〈σ,EDB〉 ↔ SSESetup〈(1κ,DB),⊥〉: Given an initial set of documents DB,
let S be the set of (w, (countw, accessw = 0)) where countw is the number
of documents containing w, and accessw denotes the number of times the
keyword w has been searched/added.

Client runs hsetup(S, size) to obtain (h,M). size is the anticipated max-
imum size of the hash table H. Then client and server run 〈σs,EM〉 ↔
Setup〈(1κ,M),⊥〉.

Let AL be an initially empty memory array with a size that estimates
an upper bound on total number of (w, d) pairs ind DB. Client runs T ←

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 585

Initialize(1κ, AL), and only sends the tree TL for the last level to server,
and discards the rest.

Client generates a PRF key K ← {0, 1}κ.
For every item (w, (countw, accessw)) in S, and for 1 ≤ i ≤ countw (in

parallel):
(a) Client lets valw,i = (w||i, di) where di denotes the ith document in DB

containing w.
(b) Client lets xw,i = FK(w||i||accessw) and sends xw,i to server who returns

the encrypted buckets on path TL(xw,i) which client decrypts itself.
(c) Client runs {TL(xw,i)} ← Update(w||i, write, valw,i, TL(xw,i), x′

w,i),
where x′

w,i = FK(w||i||accessw + 1), to insert valw,i into the path along
its new path TL(x′

w,i). Client then encrypts the updated path TL(xw,i)
and sends it to server who updates TL.

Note that server’s output is EDB = (EM, TL) and client’s output is σ =
(σs, h,K).

2. SSESearch〈(σ,w),EDB〉: Client computes i1, . . . , ic ← h(w) and client and
server run ObliviousAccess〈(σs, ij , null),EM〉) for j ∈ {1, . . . , c}. If client
finds (w, (countw, accessw)) in one of the retrieved locations, let i∗j be the
location it was found at. If such a pair is not found the search ends here. Client
and server run ObliviousAccess〈(σs, i

∗
j , (w, countw, accessw + 1)),EM〉 to

increase the accessw by one.
For 1 ≤ i ≤ countw (in parallel):
(a) Client lets xw,i = FK(w||i||accessw) and sends xw,i to server who returns

TL(xw,i) which client decrypts.
(b) Client runs (w||i, di) ← Extract(L,w||i, TL(xw,i)), and outputs di.

Client runs {TL(xw,i)} ← Update(w||i, read, (w||i, di), TL(xw,i), x′
w,i =

FK(w||i||accessw + 1)) to update the location of (w||i, di) to x′
w,i. Client

then encrypts the updated path and sends it to server to update TL.
3. SSEAdd〈(σ, d),EDB〉:

For every w in d:
(a) Client computes i1, . . . , ic ← h(w) and client and server run

ObliviousAccess〈(σs, ij , null),EM〉),

for j ∈ {1, . . . , c}. If client finds (w, (countw, accessw)) in one of the
retrieved locations, let i∗j be the location it was found at. Else, it lets i∗j
be the first empty location among the retrieved ones.

(b) Client and server run ObliviousAccess〈(σs, i
∗
j , (w, (countw + 1,

accessw + 1))),EM〉 to increase countw and accessw by one.
(c) Client lets xw,countw = FK(w||countw||acessw) and sends xw,countw to

server who returns encrypted TL(xw,countw) back. Client decrypts the
path.

(d) Client lets x′ = FK(w||countw +1||accessw +1) and runs {TL(xw,countw)}
← Update(w||i, write, (w||countw + 1, d), TL(xw,countw), x′) to update
the path. Client then encrypts the updated path and sends it to server to
update TL.

586 S. Garg et al.

Before stating the security theorem for the above SSE scheme, we first need to
make the leakage function associated with the scheme more precise. The leakage
function L(DB,H) for our scheme outputs the following (DB is the database and
H is the search/add history): |W |, number unique keywords in all documents;
|DB(w)| for every w searched;

∑
w∈W |DB(w)| i.e. the number of (w, d) pairs

where w is in d. See Appendix A.4 for the proof.

Theorem 2. The above SSE scheme is L-secure (cf. Definition of Sect. 4), if
TWORAM is secure (cf. Definition in Sect. 2.2), F is a PRF, and the encryption
used in the one-level Path-ORAM is CPA-secure.

Efficiency. The setup cost for our SSE scheme is the sum of the setup cost for
TWORAM for a memory of size |W |, and the setup for a one-level Path-ORAM
of size n =

∑
w∈W |DB(w)| which is O(n log n loglog n).

The bandwidth cost for each search/add query w is the cost of one ORAM
read in TWORAMplus O(|DB(w)| ∗ (log n loglog n)) for n =

∑
w∈W |DB(w)|.

Acknowledgments. This work was done in part while the authors were visiting the
Simons Institute for the Theory of Computing, supported by the Simons Founda-
tion and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-1523467. Sanjam Garg was supported in part from a DARPA/ARL SAFE-
WARE award, AFOSR Award FA9550-15-1-0274, and NSF CRII Award 1464397.
Charalampos Papamanthou was supported in part by NSF grants #1514261 and
#1526950, by a NIST award, by a Google Faculty Research Award and by Yahoo! Labs
through the Faculty Research Engagement Program (FREP). The views expressed are
those of the authors and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.

A More Details on Path ORAM

A.1 Path ORAM Abstraction Algorithms

Algorithm 1. Setting up path ORAM data structures.
1: procedure T ← Initialize(1κ, AL)
2: Let πL be a random permutation from [n] to [n];
3: Store (x, AL[x], πL(x)) at leaf πL(x) of tree TL;
4: for i = L down to 3 do
5: Set Ai−1[x] = πi(2x − 1)||πi(2x) for x = 1, . . . , 2i−1;
6: Let πi−1 be a random permutation from [2i−1] to [2i−1];
7: Store (x, Ai−1[x], πi−1(x)) at leaf πi−1(x) of tree Ti−1;
8: end for
9: Let A1 be an array of 2 entries such that A1[x] = π2(2x−1)||π2(2x) for x = 1, 2;

10: return {A1, T2, . . . , TL};
11: end procedure

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 587

Algorithm 2. Extraction algorithm for buckets.
1: procedure π ←ExtractBucket(i, y, b)
2: Search bucket b to retrieve block (yi, Ai[yi], p);
3: if found then
4: return π ← select(Ai[yi], bi); � π is the index of the path to be explored

in Ti+1.
5: else
6: return ⊥;
7: end if
8: end procedure

Algorithm 3. Update algorithm. It takes as input L−1 paths and local storage
A1 and outputs new paths, based on the new assignments of positions.
1: procedure {A1, T2(x2), . . . , TL(xL)} ←Update(y, val, A1, T2(x2), . . . , TL(xL))
2: select(A1[y1], b1) ← r2; � ri is random in [1, 2i+1].
3: for i = 2 to L do
4: Ti.root ← Ti.root ∪ readPath(Ti(xi)); � Ti.root serves as the stash Ci.
5: Update block (yi, Ai[yi], xi) to (yi, Ai[yi], ri) in Ti.root;
6: select(Ai[yi], bi) ← ri+1; � if i = L do if val �= null, AL[y] ← val, else

NOOP.
7: [Ti.root, Ti(xi)] ← evictPath(Ti.root);
8: end for
9: return A1, T2(x2), T3(x3), . . . , TL(xL);

10: end procedure

Fig. 6. Formal description of the Setup protocol for the interactive ORAM [34].

A.2 Path ORAM Protocols with logn Rounds of Interaction Using
the Abstraction

A.3 Proof of Security for TWORAM

Now we prove TWORAM is a secure realization of an oblivious RAM scheme as
described in Sect. 2.2. We start by arguing correctness. Note that the garbled
circuits implement the exact same procedures as are required in our abstraction.
Therefore the correctness of our scheme follows directly from the correctness of
the underlying Path ORAM scheme and garbled circuits construction. Next we
argue security. In other words we need to argue that for any adversary A, there

588 S. Garg et al.

exists a simulator Sim for which the following two distributions are computa-
tionally indistinguishable.

– RealΠA (κ): A chooses M. The experiment then runs 〈σ,EM〉 ↔
Setup〈(1κ,M),⊥〉. A then provides read/write queries (yi, v) where v = null
on reads, for which the experiment runs the protocol

〈(M[yi], σi),EMi〉 ↔ ObliviousAccess〈(σi−1, yi, v),EMi−1〉.
Denote the full transcript of the protocol by ti. Eventually, the experiment
outputs (EM, t1, . . . , tq) where q is the total number of read/write queries.

– IdealΠSim(κ): The experiment outputs (EM, t′1, . . . , t
′
q) ← Sim(q, |M|, 1κ).

Our Simulator. Note that the simulator needs to provide to the server, for
all u C̃u,Xu and for all i ∈ {2, . . . , L} βi := nState

(i,0,0)

cState(i+1,0,0) . Furthermore
replacement circuits need to be provided as read/write queries are implemented.
Our simulator Sim generates these as follows:

– For each u = (i, j, k), let (C̃u, labu ← GCircuit(1κ,P[u, bu, lab
(i,j+1,2k+b)
0]),

where bu is random bit and P is a circuit that, if j = i outputs
(nextRoot, lab(i+1,0,0

0), else if b = 0 then it outputs (left, lab(i,j+1,2k+b)
0) and

(right, lab(i,j+1,2k+b)
0) otherwise.

– Each Xu is generated as as encryption of a zero-string, namely Encs(0). Simi-
larly for all i ∈ {2, . . . , L} βi := nState

(i,0,0)
0 .

Note that as the provided garbled circuits are executed, replacements circuits
need to be given and they are generated in the same manner as above.

Proof of Indistinguishability. The proof follows by a hybrid argument.

– H0: This hybrid corresponds to the honest execution RealΠA (κ) as done hon-
estly.

– H1: This hybrid is same as H0 except that we now generate all the Xu values
as encryptions of zero-strings of appropriate length. Specifically, for each u we
set Xu ← Encs(0).
The indistinguishability between H0 and H1 follows from the security of the
encryption scheme (Enc,Dec).

– H2: In this hybrid the simulator maintains the entire Path ORAM tree inter-
nally but does not include it in the provided garbled circuits. In other words
garbled circuits are generated as follows:

• For each u = (i, j, k), let (C̃u, labu ← GCircuit(1κ,P[u, bu, lab
(i,j+1,2k+b)
0]),

where bu is 0 or 1 depending on whether the execution as per ORAM
would go left or right and P is a circuit that, if j = i outputs
(nextRoot, lab(i+1,0,0

0), else if b = 0 then it outputs (left, lab(i,j+1,2k+b)
0)

and (right, lab(i,j+1,2k+b)
0) otherwise.

• Each Xu is generated as as encryption of a zero-string, namely Encs(0).
Similarly for all i ∈ {2, . . . , L} βi := nState

(i,0,0)
0 .

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 589

Fig. 7. Formal description of the OblviousAccess protocol for the interactive
ORAM [34].

The indistinguishability between H1 and H2 follows by a sequence of hybrids
where each garbled circuit is replaced by a simulated garbled circuit. Here
these hybrids must be performed in sequence in which garbled circuits are
consumed. Note that for the unconsumed garbled circuits the input labels
aren’t provided (or hardcoded inside any other circuit) and hence they can
also be simulated.

– H3: Same as H2, except that each bu is now chosen uniformly random, inde-
pendent of the Path ORAM execution. Note that this is same as the simulator.
The indistinguishability between H2 and H3 from the security of the Path
ORAM scheme.

This concludes the proof. ��

A.4 Proof of Security for the SSE scheme

We prove Theorem 2 on security of the SSE scheme next, Following the definition
of Sect. 4, we first describe a simulator Sim who generates the transcripts for the
ideal distribution IdealΠA,Sim,L(κ). Sim takes as input L(DB,H), and does the
following: To generate full transcripts of the constant round ORAM scheme
for the adversary A, Sim runs Sim′, the simulator that exists for that scheme

590 S. Garg et al.

due its security (see definition of Sect. 2.2). That is, he runs (EM, t1, . . . , tq) ←
Sim′(q, |M|, 1κ), where he drives |M| from |W |. To simulate the transcripts of
the path-ORAM component, it generates a one-level path ORAM tree TL for a
memory array of size

∑
w∈W |DB(w)| filled with all 0 values. For each read/add

query, it replaces the PRF-genenerated paths by uniformly random paths, and
generates freshly generated ciphertexts of 0 for updated paths. Sim knows the
number of paths to retrieve/update for each query from the leakage function
which outputs |DB(w)| for every query w. This completes the description of the
simulator. We now need to show that IdealΠA,Sim,L(κ) is indinstinguishable from
RealΠA (κ), which constitutes the first in the sequence of our Hybrids:

Proof of Indistinguishability. The proof follows by a hybrid argument.

– H0: This hybrid corresponds to the honest execution RealΠA (κ) for the SSE
scheme which we repeat here for completeness. A chooses DB. The experi-
ment then runs 〈EDB, σ〉 ↔ SSESetup〈(1κ,DB),⊥〉. A then adaptively makes
search queries wi, which the experiment answers by running the protocol
〈DBi−1(wi), σi〉 ↔ SSESearch〈(σi−1, wi),EDBi−1〉. Denote the full tran-
scripts of the protocol by ti. Add queries are handled in a similar way. Even-
tually, the experiment outputs (EDB, t1, . . . , tq) where q is the total number
of search/add queries made by A.

– H1:Similar to H0, except that the portions of ti’s corresponding to the
constant-round ORAM are instead generated by Sim′(q, |M|, 1κ) where Sim′ is
the simulator in the proof of the ORAM scheme.
The indistinguishability of H0 and H1 follows from security of the ORAM
scheme.

– H2: Similar to H1 except that all ciphertexts in the path ORAM tree are
replaced by encryptions of 0, and all updated ciphertexts will be fresh encryp-
tion of 0.
The indistinguishability of H2 and H1 follows from the semantic security of
the encryption scheme used in the path ORAM.

– H3: Similar to H2 except that all PRF-generated positions are replaced by
uniformly random positions. Note that H3 is essentially IdealΠA,Sim,L(κ).
The indistinguishability of H3 and H2 follows from the pseudorandomness of
the the PRF.

This concludes the proof. ��

References

1. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015)

2. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS,
pp. 784–796 (2012)

3. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: CCS, pp. 668–679 (2015)

TWORAM: Efficient Oblivious RAM in Two Rounds with Applications 591

4. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

5. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

6. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer,
Heidelberg (2010)

7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

8. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS, pp. 79–88 (2006)

9. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. In: TCC, pp. 145–174
(2016)

10. Fletcher, C., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: single
online roundtrip, constant bandwidth oblivious RAM. Cryptology ePrint Archive,
Report 2015/1065 (2015). http://eprint.iacr.org/

11. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM. In: FOCS, pp. 210–229
(2015)

12. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: STOC, pp. 449–458 (2015)

13. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimiz-
ing ORAM and using it efficiently for secure computation. In: De Cristofaro, E.,
Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013)

14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014)

15. Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003).
http://eprint.iacr.org/2003/216/

16. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

17. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

18. Goodrich, M.T., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-
preserving group data access via stateless oblivious RAM simulation. In: SODA,
pp. 157–167 (2012)

19. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS, pp.
513–524 (2012)

20. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption ramification, attack and mitigation. In: NDSS (2012)

21. Dautrich Jr., J.L., Stefanov, E., Shi, E.: Burst ORAM: minimizing ORAM response
times for bursty access patterns. In: Usenix Security, pp. 749–764 (2014)

22. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: FC, pp. 258–274 (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/2003/216/

592 S. Garg et al.

23. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: CCS, pp. 965–976 (2012)

24. Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA, pp. 143–156 (2012)

25. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

26. Liu, C., Zhu, L., Wang, M., Tan, Y.-A.: Search pattern leakage in searchable
encryption: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

27. Lu, S., Ostrovsky, R.: Distributed oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

28. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer,
Heidelberg (2013)

29. Moataz, T., Mayberry, T., Blass, E.-O.: Constant communication ORAM with
small blocksize. In: CCS, pp. 862–873 (2015)

30. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg
(2009)

31. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011)

32. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

33. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS (2014)

34. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Xiangyao, Y.,
Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In: CCS,
pp. 299–310 (2013)

35. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally
efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM
2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)

36. Wang, X.S., Hubert Chan, T.-H., Shi, E., Circuit, O.: On tightness of the Goldreich-
Ostrovsky lower bound. In: CCS, pp. 191–202 (2015)

37. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: CCS,
pp. 293–304 (2012)

38. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS (1982)
39. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power

of file-injection attacks on searchable encryption. In: Usenix Security (2016)

Bounded Indistinguishability
and the Complexity of Recovering Secrets

Andrej Bogdanov1(B), Yuval Ishai2,3, Emanuele Viola4,
and Christopher Williamson1

1 Chinese University of Hong Kong, Hong Kong, China
{andrejb,chris}@cse.cuhk.edu.hk

2 Technion, Haifa, Israel
yuvali@cs.technion.ac.il
3 UCLA, Los Angeles, USA

4 Northeastern University, Boston, USA
viola@ccs.neu.edu

Abstract. Motivated by cryptographic applications, we study the
notion of bounded indistinguishability, a natural relaxation of the well
studied notion of bounded independence.

We say that two distributions μ and ν over Σn are k-wise indistin-
guishable if their projections to any k symbols are identical. We say that
a function f :Σn → {0, 1} is ε-fooled by k-wise indistinguishability if f
cannot distinguish with advantage ε between any two k-wise indistin-
guishable distributions μ and ν over Σn.

We are interested in characterizing the class of functions that are
fooled by k-wise indistinguishability. While the case of k-wise indepen-
dence (corresponding to one of the distributions being uniform) is fairly
well understood, the more general case remained unexplored.

When Σ = {0, 1}, we observe that whether f is fooled is closely
related to its approximate degree. For larger alphabets Σ, we obtain
several positive and negative results. Our results imply the first efficient
secret sharing schemes with a high secrecy threshold in which the secret
can be reconstructed in AC0. More concretely, we show that for every
0 < σ < ρ ≤ 1 it is possible to share a secret among n parties so that
any set of fewer than σn parties can learn nothing about the secret, any
set of at least ρn parties can reconstruct the secret, and where both the
sharing and the reconstruction are done by constant-depth circuits of size
poly(n). We present additional cryptographic applications of our results
to low-complexity secret sharing, visual secret sharing, leakage-resilient
cryptography, and eliminating “selective failure” attacks.

1 Introduction

For a finite alphabet Σ, a distribution μ over Σn is k-wise independent if its
projection to every k coordinates is uniform. There is a large body of work

A full version of this paper appears in [8].

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 593–618, 2016.
DOI: 10.1007/978-3-662-53015-3 21

594 A. Bogdanov et al.

studying bounded independence, namely, the conditions under which a given
function f :Σn → {0, 1} cannot distinguish between any distribution on n bits
that is k-wise independent and the uniform distribution with advantage ε, for
various choices of ε and k. Classes of functions that are fooled by bounded
independence include combinatorial rectangles [23], small-depth circuits [7,9,32,
40,45], and sign polynomials [19,20], to name a few.

In this work we consider a relaxation of bounded independence that we call
bounded indistinguishability. Two distributions μ and ν over Σn are k-wise indis-
tinguishable if for all subsets S ⊆ [n] of size k, the projections μ|S and ν|S of μ
and ν to the coordinates in S are identical. For instance, if μ (resp., ν) is uniform
over n-bit strings whose parity is 0 (resp., 1), then μ and ν are both (n−1)-wise
independent and hence are also (n − 1)-wise indistinguishable. However, if we
let μ′ = μ ◦ μ (i.e., a concatenation of two identical copies of μ) and similarly
ν′ = ν ◦ν, then μ′ and ν′ are still (n−1)-wise indistinguishable but are not even
2-independent.

Bounded indistinguishability arises naturally in cryptographic applications
that involve secret sharing or secure multiparty computation. We will be inter-
ested in the complexity of distinguishing between two k-wise indistinguishable
distributions.

Definition 1. For ε ∈ (0, 1), we say that a function f :Σn → {0, 1} is ε-fooled by
k-wise indistinguishability if for any two k-wise indistinguishable distributions
μ and ν over Σn, |Pr[f(μ) = 1] − Pr[f(ν) = 1]| ≤ ε.

Our goal is to understand which functions f are fooled by k-wise indistin-
guishability. For instance, polylogarithmic independence fools all AC0 circuits
[9]. Is this also the case for polylogarithmic indistinguishability?

We start by observing that over the binary alphabet Σ = {0, 1}, whether f is
fooled by k-wise indistinguishability is closely related to the approximate degree
of f , a notion introduced in the seminal work of Nisan and Szegedy [35]. This
connection is central to our work so we formalize it next. The ε-approximate
degree of a function f :{0, 1}n → {0, 1} is defined to be the smallest degree of
a real-valued polynomial p:{0, 1}n → R such that |f(x) − p(x)| ≤ ε for every
x ∈ {0, 1}n.

Theorem 1. For every n, k, ε ∈ (0, 1), and f :{0, 1}n → {0, 1}, the following
are equivalent:

1. f is not ε-fooled by k-wise indistinguishability.
2. The ε/2-approximate degree of f is bigger than k.

Proof. It follows from linear programming duality (see for example Sect. 3 in [42]
or Theorem 1 in [11]) that 2. is equivalent to the following statement:

3. There exists a function g:{0, 1}n → R such that (i)
∑

x ∈ {0,1}n g(x)f(x) >

ε/2, (ii)
∑

x |g(x)| = 1, and (iii)
∑

x g(x)
∏

i ∈ S xi = 0 for every set S ⊆ [n]
of size at most k (including the empty set).

Bounded Indistinguishability and the Complexity of Recovering Secrets 595

We now show that 1. and 3. are equivalent. To see that 1. implies 3., we
assume without loss of generality that Pr[f(μ) = 1] − Pr[f(ν) = 1] > ε and set
g(x) = 1

2C (μ(x) − ν(x)), where C is the statistical distance between μ and ν.
The first two requirements for g are immediate. The third requirement follows
from k-wise indistinguishability of μ and ν.

To see that 3. implies 1., set μ(x) = 2max{g(x), 0} and ν(x) =
2max{−g(x), 0}. Since

∑
g(x) = 0 and

∑ |g(x)| = 1, we have
∑

μ(x) =∑
ν(x) = 1 and so μ and ν are probability distributions. Condition (i) implies

that Pr[f(μ) = 1]−Pr[f(ν) = 1] > ε. Finally, by linearity we have that condition
(iii) implies that μ and ν are indistinguishable by k-juntas so they are k-wise
indistinguishable. ��

As a corollary, we get a similar connection between being non-trivially fooled
by bounded indistinguishability and threshold degree, a notion introduced in the
classical work of Minsky and Papert [33]. Recall that the threshold degree of a
function f :{0, 1}n → {0, 1} is the smallest degree of a real-valued polynomial
pz{0, 1}n → R such that the sign of p(x) corresponds to f(x) for every x ∈
{0, 1}n.

Corollary 1. For every n, k and f :{0, 1}n → {0, 1}, the following are equiva-
lent:

1. There is a pair of k-wise indistinguishable distributions μ, ν that are perfectly
distinguished by f , namely |Pr[f(μ) = 1] − Pr[f(ν) = 1]| = 1.

2. The threshold degree of f is bigger than k.

Combining the above with known results on approximate degree, we conclude
that bounded indistinguishability over Σ = {0, 1} behaves very differently from
bounded independence. For example, O(1)-wise independence suffices to 1/3-
fool the OR function on n bits, but Ω(

√
n)-wise indistinguishability is required,

due to the corresponding lower bound on the approximate degree of OR [35].
This answers the aforementioned question of whether polylogarithmic indistin-
guishability fools AC0 in the negative. A separation of Ω(n) is achieved by the
Majority function: O(1)-wise independence suffices to 1/3-fool this function [19],
but Ω(n)-wise indistinguishability is required by Paturi’s lower bound [38].

We turn to study the case of larger alphabets Σ. Here the equivalence with
previously studied notions seems to break down. We restrict the attention to
alphabets of the form Σ = {0, 1}s, viewing the function f as being computed by
a circuit with sn input bits. This setting comes up naturally in cryptographic
applications, as explained below. But first we remark that, over such larger alpha-
bets, we construct “simple” functions f that are not fooled by k-wise indistin-
guishability for much larger values of k than what is known for Σ = {0, 1}. For
example, over Σ = {0, 1}poly(n) we show that (n − n/poly log n)-wise indistin-
guishability does not (1−2−n)-fool AC0 (Theorem 2), and that 0.99n-wise indis-
tinguishability does not 0.99-fool DNF (Corollary 10). In contrast, over alphabet
Σ = {0, 1} it is only known that Ω̃

(
n2/3

)
-wise indistinguishability does not fool

AC0 (by work of Aaronson and Shi [2] and Theorem 1).

596 A. Bogdanov et al.

1.1 Secret Sharing Schemes

A secret sharing scheme allows a dealer to share a secret between n parties, so
that any k parties learn nothing about the secret from their shares whereas any r
parties can reconstruct the secret from their shares. Unlike the case of threshold
secret sharing, where r = k + 1, we allow a bigger gap between r and k. Such
secret sharing schemes are often referred to as ramp schemes.

We are interested in the computational complexity of sharing and (especially)
reconstructing secrets. A simple secret sharing scheme for k = n − 1 and r = n
shares a bit s into n bits s1, . . . , sn that are random subject to the restriction
that their parity is s. This scheme cannot be implemented by constant depth
circuits (in the class AC0) as reconstruction requires computing the parity of n
bits. Other secret sharing schemes, such as Shamir’s [41], employ linear functions
over finite fields and suffer from the same limitation.

A pair of k-wise indistinguishable distributions (μ, ν), together with a func-
tion f that can tell the two distributions apart, can be viewed as a secret sharing
scheme for a one-bit secret: Shares of 0 and 1 are samples of μ and ν, respec-
tively, and f is the reconstruction algorithm. Applying this connection together
with techniques for sampling by constant-depth circuits, we obtain the following
secret sharing scheme in the class AC0.

Theorem 2 (Secret sharing in AC0). Let d be a constant. For every n and
δ there exist:

– Sharing in AC0: circuits S0, S1 of constant depth and size poly(n, log 1/δ)
that sample (n−n/(log n)d)-wise indistinguishable distributions μ, ν over Σn,
Σ = {0, 1}poly(n),

– Reconstruction in AC0: a circuit R of size poly(n) and depth d + O(1) such
that Pr[R(μ) = 0] ≥ 1 − δ and Pr[R(ν) = 1] ≥ 1 − δ.

Moreover, the circuits S0, S1, and R can be constructed deterministically in time
polynomial in n and log 1/δ.

Theorem 2 gives an explicit construction, but requires that all n parties par-
ticipate in reconstruction. If one does not insist on a fully explicit construction
and settles for a probabilistic construction that fails with negligible probability,
the secrecy-recovery gap can be moved to an arbitrary location: In Theorem13
we obtain an AC0 secret sharing scheme that provides secrecy against any σn
parties and allows reconstruction by any ρn parties for any pair of constants
0 ≤ σ < ρ ≤ 1 and sufficiently large n.

We obtain several other schemes with incomparable features. If we do not
insist on sharing in AC0 and only require that reconstruction be done in AC0,
then we can achieve similar results with perfect reconstruction (δ = 0). This vari-
ant builds on Corollary 1 and known results on the threshold degree of DNF [33].
Alternatively, we can strengthen Theorem2 by allowing an AC0 sharing algo-
rithm that indicates failure with probability δ, but otherwise supports perfect

Bounded Indistinguishability and the Complexity of Recovering Secrets 597

reconstruction. In Corollary 10, we improve the reconstruction function complex-
ity to a polynomial-size DNF formula (with terms of size O(log n)), at the cost
of a small constant reconstruction error and a slightly worse secrecy threshold.

Finally, we complement the above positive results with some negative results,
showing limitations of secret reconstruction by disjunctions of juntas (Theo-
rem 17) or small decision trees (Theorem 19). In particular, the negative results
imply that the positive result of Corollary 10 for DNF reconstruction does not
hold if the secrecy threshold is much closer to n or if the DNF is restricted to
have a polynomial-size decision tree.

Techniques. In Sect. 2 we rephrase known results on approximate degree in the
language of secret sharing using the connection in Theorem1. The resulting
schemes have AC0 reconstruction, but achieve somewhat poor secrecy (k ≤ n2/3)
and do not come with algorithms for sampling the shares. In Sect. 2.1 we show
that the distributions of the shares can be sampled in AC0. Then, in Sect. 2.2 we
give a reduction that trades alphabet size for secrecy, allowing us to derive our
main positive results. This reduction makes use of unbalanced disperser graphs.
Our negative results, presented in Sect. 2.4, are obtained by reducing the large
alphabet to a binary alphabet using a suitable set system, and then using Fourier
analysis for obtaining the negative result in the binary case.

Related work. The randomized encoding technique of Applebaum et al. [6] can
transform any secret sharing scheme into one where the shares are sampled
by circuits in which each output depends on a fixed number of random bits
(i.e., in the class NC0), but at the cost of further increasing the complexity of
reconstruction. Druk and Ishai [21] and Cramer et al. [16] consider the question
of minimizing the circuit size of secret sharing. They construct near-threshold
schemes (i.e., with r = (1 + ε) · k) in which sharing and reconstruction can be
performed by circuits of size O(n); however, the depth of these circuits is loga-
rithmic in n. The above results left open the existence of nontrivial secret sharing
schemes in which reconstruction can be done by constant depth circuits or by
other “simple” nonlinear functions, even when the computational complexity of
sharing the secret is unbounded.

1.2 Visual Cryptography

Naor and Shamir [34] initiated the study of “visual cryptography” — a method
for sharing secrets which allows for a physical implementation using transparen-
cies. It can be phrased as a secret sharing scheme with 	-bit shares, where
reconstruction proceeds by first applying bitwise-OR to the shares and then
applying an approximate threshold function (with constant fractional threshold
gap). The bitwise-OR is implemented by physically stacking transparencies, and
the approximate threshold function is implemented by visually distinguishing
between 	-tuples of bits (pixels) that have a low Hamming weight and those
that have a high Hamming weight. The ratio between the threshold gap and 	
is referred to as the contrast.

598 A. Bogdanov et al.

It is known that the optimal contrast of such visual schemes vanishes expo-
nentially with the secrecy parameter k [30,34], assuming that one requires sharp
threshold reconstruction by any subset of r = k + 1 parties. The latter assump-
tion has been made in all works on visual cryptography we are aware of.

In Sect. 2.3 we give a visual “ramp scheme” that allows a quadratic gap
between the secrecy and reconstruction thresholds:

Theorem 3 (Visual Secret Sharing). For every n and r there exists a pair
of distributions μ, ν over {0, 1}n that are Ω(

√
r)-wise indistinguishable so that

for every subset S ⊆ [n] of size r,

|Pr[OR(μ|S) = 1] − Pr[OR(ν|S) = 1]| ≥ 0.2.

Moreover, μ and ν are samplable by explicit circuits S0, S1 of constant depth and
size polynomial in n.

The benefits are a dramatic improvement in contrast, making it independent
of k and visually noticeable even for large k, as well as shorter (1-bit) shares
and simpler reconstruction. The latter two properties are also achieved by other
probabilistic visual schemes from the literature [15,31]. However, this is the first
visual scheme whose (probabilistic) contrast does not vanish exponentially with
k. To give a better sense of the achievable parameters, in AppendixA we give
some specific parameter choices along with an image demonstrating the level of
contrast we achieve.

1.3 Additional Cryptographic Applications

The above positive results for secret sharing rely on functions f that are not
fooled by bounded indistinguishability. Such functions can be used to recover
a secret from its shares. We observe that when f is fooled by bounded indis-
tinguishability, this has positive consequences for leakage-resilient cryptography.
Concretely, in every implementation of a cryptographic primitive that guaran-
tees local secrecy, in the sense that different values of the underlying secrets
induce k-wise indistinguishable distributions of the internal state, leaking the
output of f on the internal state does not compromise the secrets.

Therefore all secret sharing schemes with a sufficiently high secrecy parameter
k protect the secret against global leakage functions that output few bits, where
each output bit has a low approximate degree (significantly smaller than k).
More concretely:

Theorem 4. There exists a universal constant C such that the following holds.
Let μ, ν be k-wise indistinguishable distributions over {0, 1}n. Let L:{0, 1}n →
{0, 1}t be a leakage function such that the 1/3-approximate degree of each of its
t outputs is at most d. Then the statistical distance between L(μ) and L(ν) is
bounded by δ, provided that k ≥ Cdt(t + log 1

δ).

Bounded Indistinguishability and the Complexity of Recovering Secrets 599

This theorem can be applied to leakage functions whose outputs are com-
puted by small decision trees or disjunctions of small juntas. It can also be
applied to establish leakage resilience of protocols for secure multiparty compu-
tation and the related object of “private circuits.” See Sects. 3.1 and 3.2 for more
details and concrete applications.

Eliminating Selective Failure Attacks. The above applications can be rel-
evant to any f :Σn → {0, 1} that is fooled by bounded indistinguishability. We
show that the special case where f = OR can be useful for eliminating so-called
“selective failure” attacks. A selective failure attack is an attack that makes a
computation fail only if the input satisfies some predicate. Such attacks enable
an adversary to tamper with the computation and learn a bit of information
about the secret input even when the tampering is detected and the output is
replaced by an indication of failure. Selective failure attacks arise in different
areas of cryptography and are often difficult to protect against.

We propose the following natural methodology for protecting against such
attacks. Suppose that the computation of g(w) can be reduced to n sub-
computations g1(w1), . . . , gn(wn), where each k of the wi jointly hide w. The
computation of g via this reduction fails if at least one of the sub-computations
fails. Assume further that an adversary tampers with each sub-computation gi

by choosing an arbitrary function of Fi(wi) that determines whether this sub-
computation fails. Then, a corollary of Theorem4 (with t = 1 and L = OR)
is that if k � √

n (the approximate degree of OR), then no tampering strat-
egy can significantly correlate the event of failure with w. In the full version
[8] we describe a simple concrete application of this methodology to eliminating
selective failure attacks in error-detecting coding schemes.

Organization. In Sect. 2 we present our results on secret sharing. In Sect. 2.4
we prove our negative results and in Sect. 3 we give the details of some of the
additional cryptographic applications described above. In AppendixD we discuss
an approximate notion of bounded indistinguishability.

2 Secret Sharing

In this section we prove our results on secret sharing. Our starting observation
is that bounded indistinguishability is closely related to the complexity of secret
sharing. Specifically, the distributions μ and ν over Σn capture the joint dis-
tributions of shares obtained by sharing the secrets 0 and 1, respectively. The
k-wise indistinguishability of the distributions corresponds to the parties gaining
no information from any k shares. However, if bounded indistinguishability does
not fool some function f :Σn → {0, 1} we can think of f as the reconstruction
function that maps the shares back to the secret.

In this setting it is natural to think of the distinguishing advantage as being
close to (and ideally equal to) one. We will be interested in the complexity of
the function f as well as the complexity of sampling μ and ν.

600 A. Bogdanov et al.

A different connection between secret sharing and approximation theory is
obtained in the visual cryptography literature [34] (see also [30] and the citations
therein). However, it was confined to analyzing the so-called contrast of visual
cryptography schemes.

We give next a formal definition of secret sharing for a one-bit secret.1

Definition 2. An (n, k, r) bit secret sharing scheme with alphabet Σ, recon-
struction function f :Σr → {0, 1} and reconstruction advantage α is a pair
of k-wise indistinguishable distributions μ and ν over Σn such that μ and ν
are k-wise indistinguishable but for every set S of size r we have Pr[f(μ|S) =
1]−Pr[f(ν|S) = 1] ≥ α. Here μ|S is the projection of μ to the symbols in S, and
similarly for ν. The secret sharing scheme has perfect reconstruction if α = 1.
The scheme is explicit if f is explicit and there are explicit algorithms to sample
μ and ν.

As mentioned earlier, the distributions μ and ν are the joint distributions of
shares obtained by sharing the secret 0 and 1, respectively. We sometimes omit
reference to the alphabet when Σ = {0, 1} and omit r from the notation when
r = n.

We note that Item 1. in Theorem 1 is equivalent to the assertion that there
exists an (n, k) bit secret sharing scheme (with r = n and one-bit shares) with
reconstruction function f having reconstruction advantage ε. Item 1. in Corol-
lary 1 is equivalent to the assertion that there exists a similar scheme with perfect
reconstruction.

Theorem 1, combined with the body of works on approximate and threshold
degree immediately gives the following consequences.

Corollary 2. The following secret sharing schemes over Σ = {0, 1} exist:

1. An (n,Ω(
√

δn)) bit secret sharing scheme with reconstruction by OR with
advantage 1 − δ, for any δ.

2. An (n,Ω(n)) bit secret sharing scheme with reconstruction by majority with
constant advantage.

3. An (n,Ω((n/ log n)2/3) bit secret sharing scheme with reconstruction by the
element distinctness DNF and constant reconstruction advantage.

4. An (n,Ω(n1/3)) bit secret sharing scheme with perfect reconstruction by the
DNF ANDn1/3 ◦ ORn2/3 .

5. An (n,Ω(
√

n)) bit secret sharing scheme with perfect reconstruction by some
AC0 function.

Proof. The schemes follows by Theorem 1 and the following works: 1. by Nisan
and Szegedy [35] and refinements by Bun and Thaler [11] (Proposition 14); 2.
by Paturi [38]; 3. by Aaronson and Shi [2]; 4. by Minsky and Papert [33]; and 5.
by Sherstov [43].

1 Restricting the attention to a one-bit secret is without loss of generality; an �-bit
secret can be shared by invoking a scheme for a one-bit secret � times in parallel.

Bounded Indistinguishability and the Complexity of Recovering Secrets 601

These results show that for an interesting range of parameters, the recon-
struction procedure of a secret sharing scheme can be implemented by simple
functions, and in particular by constant depth circuits.

Bounded Independence Versus Bounded Indistinguishability. In many secret
sharing schemes (e.g., Shamir’s scheme [41] over a field of characteristic 2), the
distributions μ and ν are not only k-wise indistinguishable but also k-wise inde-
pendent. Such distributions cannot be distinguished by AC0 functions and sign
polynomials of degree 2 unless k is at most polylogarithmic in n. In contrast,
the above examples give examples of k-wise indistinguishable distributions that
are distinguishable by such function even when k grows polynomially with n.

Remark 5. Aaronson [1] considers a different relaxation of bounded indepen-
dence that has a dramatic effect on distinguishability by AC0 functions. He con-
siders distributions where for any k bits the probability that those bits take any
fixed value is within ε2−k of 2−k and gives a family of depth 3 polynomial-size
circuit that distinguishes such a distribution from a uniform one with constant
advantage for any k and ε = k · poly log(n)/n.

2.1 Sampling the Shares in AC0

In this section we show the existence of secret sharing schemes in which sharing
the secret can be performed by constant-depth circuits, i.e., in the class AC0,
and reconstructing the secret can be done by a “simple” function. (As discussed
in Sect. 1.1, the problem of minimizing the complexity of sharing alone is much
simpler and can be solved via the techniques of [6].)

We start by showing how to sample distributions that are exponentially close
to the k-wise indistinguishable distributions corresponding to the schemes we
described. In AppendixC we give a refinement that gives distributions that are
(exactly) k-wise indistinguishable, i.e., we achieve perfect secrecy.

Theorem 6. For schemes 1. to 4. in Corollary 2 there exist pairs of circuit
families of constant depth and size polynomial in n and log(1/ε) that sample
distributions within statistical distance ε of μ and ν, respectively.

We leave the existence of efficient samplers for scheme 5. as an open question.
Note that we can achieve statistical distance ε = 2−nc

for any constant c
with circuits of size poly(n). The reason for this loss in statistical distance is
that our distributions over the shares have probability masses that may not be
powers of two, and so if we want to sample them using random bits we have to
incur some slight error.

We now give the proof of this theorem. Our analysis relies on known explicit
constructions of “dual polynomials,” i.e., of the function g in Item 3. in Theo-
rem 1. This area of research has been quite active since Špalek [44] gave the first
explicit dual polynomial for OR.

Let Γ be a group of permutations acting on [n]. Then Γ also acts on {0, 1}n

by permuting the coordinates. The next claim is immediate.

602 A. Bogdanov et al.

Claim 7. Let Γ be a group of permutations on [n]. Assume f(x) = f(σx) for
all x ∈ {0, 1}n and all σ ∈ Γ . If (μ, ν) is an (n, k, r) bit secret sharing scheme
with reconstruction function f and advantage α, then so is (μ, ν) where

μ(x) = Eσ∼Γ [μ(σx)] and ν(x) = Eσ∼Γ [ν(σx)].

In particular, if f is symmetric under permutation of its input coordinates,
then the distributions μ and ν can be assumed to assign the same probability to
all strings of the same Hamming weight. These n + 1 probabilities can be found
in polynomial time by solving a linear program.

Moreover, we argue that in such a case μ is AC0-samplable; the same argu-
ment applies to ν. Let μ′ be the distribution on Hamming weights induced by
μ. To sample from μ, we first sample a weight w ∈ {0, . . . , n} from μ′, then
output a random permutation of the string 1w0n−w. Both of these steps can be
implemented in AC0; cf. [47].

Therefore secret sharing with reconstruction by OR and majority can both
be implemented in AC0.

A description of the bit sharing scheme for element distinctness can be
extracted from the work of Bun and Thaler [12]. They first construct a bit
secret sharing scheme for a partial function f whose inputs are strings of length
N over an alphabet Σ of size O(N). In the yes inputs of f all symbols are dis-
tinct, while in the no inputs all symbols occur exactly twice. Their distributions
μ and ν are supported on strings where m/a symbols occur exactly a times and
(N − m)/b symbols occur exactly b times for various choices of m,a, b.

We can represent the input to f as a binary string x1 . . . xN ∈ ({0, 1}Σ)N ,
where xi is an indicator vector for the i-th input symbol of f . Under this repre-
sentation, f is a partial boolean function from {0, 1}|Σ|·N to {0, 1}. By Claim 7
we may assume μ and ν are invariant over both permutations of the alphabet and
permutations of the input positions. Now μ and ν can be sampled by first sam-
pling (m,a, b) from the marginal distribution, then writing down an arbitrary
string with the correct counts, and applying random permutations to both the
alphabet and the input positions. All of these steps can be implemented in AC0.
The bit secret sharing scheme for OR is obtained by projecting the entries of μ
and ν on random subsets of size n, which can also be implemented by sampling
a random permutation.

An explicit description of the bit sharing scheme for the Minsky-Papert func-
tion can be extracted from the work of O’Donnell and Servedio [37] (Appendix
A). They first sample an integer t of magnitude at most n1/3 (even for μ, odd
for ν) then choose an independent random string of Hamming weight (t − i)2 in
the i-th block. Both steps can be implemented in AC0.

2.2 Trading Alphabet Size for Secrecy

We now give a general method of composing secret sharing schemes. We will
apply this method to improve the secrecy of the above schemes at the cost of
an increase in alphabet size and a slight increase in depth of the reconstruction.
Our construction makes use of disperser graphs.

Bounded Indistinguishability and the Complexity of Recovering Secrets 603

Definition 3. A n × m bipartite graph G with left degree d is a (k, ε) disperser
if any subset of [n] of size k has at least (1 − ε)n neighbors in [m].

The loss in reconstruction efficiency is related to the degree d of the disperser.
So we obtain the best results with Zuckerman’s construction of dispersers with
degree linear in log n/ε.

Theorem 8 (Theorem 1.9 of [48] with α = 1/2). For every constant δ, and
for every n and ε there is an explicit (nδ, ε) disperser G with d = O(log n/ε) and
m = δn/2.

We now show how to turn an (n, k) secret sharing scheme L over alphabet
{0, 1} into a (m,m − εm) secret sharing scheme R over alphabet {0, 1}n. The
alphabet is actually {0, 1}d′

where d′ is the maximum right-hand side degree of
the disperser graph. It is possible to obtain d′ close to the average degree nd/m,
but in our settings this will always be nΩ(1) and so for simplicity we do not
optimize this parameter.

The parties of L and R are associated to the left and right vertices of the
bipartite graph respectively. To share a bit in R, first sample shares for L and
label each left vertex v ∈ [n] by its corresponding share s(r) ∈ {0, 1}. Now
for each of the d edges e1, . . . , ed incident to r, choose a bit s(ei) at random
conditioned on s(e1) ⊕ · · · ⊕ s(ed) = s(r). The share s(w) of each right vertex
w ∈ [m] is the concatenation of the edge-shares s(e) over all its ≤ n incident
edges e.

To reconstruct, apply the process in reverse: First distribute s(w) for w ∈ [m]
to its incident edges, then calculate s(v), v ∈ [n] as s(e1)⊕· · ·⊕s(ed) and output
f(s(1), . . . , s(n)), where f is the reconstruction function of L.

Lemma 1. If G is a (k, ε) disperser graph and L is a (n, k) secret sharing
scheme then R is a (m,m − εm) secret sharing scheme with the same recon-
struction advantage.

Proof. It is easy to see that the reconstruction advantage is preserved. Next we
argue secrecy.

For contradiction, assume that L is k-secret but R is not (n − εn)-secret.
Then there exists a subset S ⊆ [m] of size ≤ m − εm such that the parties in
S can distinguish shares of 0 from shares of 1. Consider the joint distribution
of the shares assigned to all the edges incident to S. If any vertex v ∈ [n] has
a neighbor outside S, then the edge-shares associated to v’s neighbors inside
S are uniformly random and independent of all the other edge-shares incident
to S (even conditioned on all the values s(v)). Therefore, the two distributions
must be distinguishable even when restricted to those edges whose right vertices
have all their neighbors in S. Let T be the set of all such right vertices. Then
the shares of S in L are determined by the shares of T in R. By the disperser
property of G, T has size at most k, so the shares in T are indistinguishable,
contradicting our assumption.

604 A. Bogdanov et al.

We note that Alon et al. [4] applied a similar construction to amplify the
distance of linear error-correcting codes, while Damg̊ard et al. [18] used it (in
more general form) for improving the tolerance of multiparty computations.
Both these applications make use of dispersers (in fact, expanders) G that are
balanced (with m = n) and of constant degree d. In contrast, we apply it to
unbalanced graphs whose left degree is logarithmic in the number of vertices.

If we set k = nα for some constant α > 0, we obtain the following conse-
quence. Here f ◦ XORd denotes a function that can be computed by composing
f by XORs over d inputs.

Theorem 9. Let α > 0 be a constant. Suppose that there exists a (n, nα) secret
sharing scheme with reconstruction function f :{0, 1}n → {0, 1} over alphabet
{0, 1}. Then there exists a (m, (1 − ε)m) secret sharing scheme over alphabet
{0, 1}n with reconstruction function of the type f ◦ XORd with d = O((log n)/ε)
and m = Ω(nα).

We now have all the pieces to prove Theorem 2.

Proof (of Theorem 2). Instantiate Theorem 9 with Item 4 in Corollary 2. The
reconstruction function involves computing parities on poly log n bits which can
be done in AC0. To sample the shares efficiently use Theorem 24.

Several other schemes are possible. We highlight the following one in which
reconstruction is done by a DNF, although it is not perfect.

Corollary 10. For every constant ε > 0, there is an explicit (n, (1− ε)n)-secret
sharing scheme with reconstruction error ε over the alphabet {0, 1}poly(n) with
reconstruction by a poly(n)-size DNF with terms of size O(log n).

Proof. Instantiate Theorem 9 with Item 1 in Corollary 2. The reconstruction
function is an OR of O((n/ log n)2) XORs of size O((log n)/ε), which can be
computed by a polynomial-size DNF. The shares can be sampled in AC0 by
Theorem 6.

2.3 Reconstruction by a Subset of the Parties

In this section we give several secret sharing schemes that allow for reconstruction
by a subset of the parties. Our starting point is the secret sharing scheme with
reconstruction by the OR function.

Claim 11. For every r, δ, and n there is an explicit (n,Ω(
√

δn), r) bit secret
sharing scheme with reconstruction by OR with advantage at least r/n − δ.

Here, by OR we mean the class of OR functions on subsets of r input bits.
We will need the following fact which is implicit in the proof of Theorem1.

Remark 12. Without loss of generality, the distributions μ and ν can be
assumed to have disjoint support.

Bounded Indistinguishability and the Complexity of Recovering Secrets 605

Proof (of Claim 11). Let (μ, ν) be any (n, k) bit sharing scheme for OR with
reconstruction advantage 1−δ. By Remark 12 and Claim 7 we may assume μ and
ν are disjoint and symmetric, so ν(0n) = 1−δ and all strings in the support of μ
have nonzero Hamming weight. For any subset of r parties, the probability that
they jointly observe a nonzero entry under ν is then at most δ. By symmetry
of μ, the probability that they observe nonzero entry under μ is at least r/n.
Therefore Pr[f(μ) = 1] − Pr[f(ν) = 1] ≥ r/n − δ.

If we set δ = r/2n we obtain an (n,Ω(
√

r), r) bit secret sharing scheme with
reconstruction by OR with advantage δ = r/2n. In the next result we make this
advantage constant.

We now prove Theorem 3, namely the existence of a (n,Ω(
√

r), r) bit secret
sharing scheme with reconstruction by OR with constant advantage.

Proof (of Theorem 3). First we construct a scheme over alphabet {0, 1}1/δ for
δ = 2n/r which we assume to be an integer. To share a zero and a one respec-
tively, sample 1/δ independent shares using the scheme in Claim 11 and give the
i-th party the i-th bit from each copy. By the proof of Claim 11 for any Ω(

√
r)

parties the OR of their i-th copies of their shares of one and zero evaluate to
1 with probability at least 1 − (1 − 2δ)1/δ and at most 1 − (1 − δ)1/δ, respec-
tively. The difference between these two numbers is always positive and tends to
1/e − 1/e2 as 1/δ increases.

To reduce the alphabet to binary, we replace each party’s share by the OR
of its constituent bits.

If we allow for more complexity in reconstruction and larger shares, the gap
between the secrecy and reconstruction parameters can be improved and the
reconstruction error can be made negligible.

Theorem 13. For every pair of constants 0 ≤ σ < ρ ≤ 1 and sufficiently large
m there exists a (m,σm, ρm) bit secret sharing scheme with reconstruction by
circuits of size polynomial in m and depth 4 and advantage 1 − 2−mc

for any
constant c over alphabet Σ = {0, 1}poly(m).

To prove Theorem 13, we apply the composition method from Sect. 2.2 using
a bipartite graph with the following dispersion properties.

Claim 14. For all constants δ > 0 and 0 ≤ σ < ρ ≤ 1, and every sufficiently
large n there exist numbers m = nΩ(1), r ≤ n, and d = O(log n) and an n × m
bipartite graph G with left degree d such that

1. For every subset S ⊆ [m] of size at most σm, the set of vertices in [n] all of
whose neighbors are in S has size at most rδ (i.e., G is a (rδ, 1−σ)-disperser),
and

2. For every subset R ⊆ [m] of size at least ρm, the set of vertices in [n] all of
whose neighbors are in R has size at least r.

We then amplify the reconstruction error in Theorem3 using the following
claim.

606 A. Bogdanov et al.

Claim 15. For every integer t, if there exists a (m, k, r) bit secret sharing
scheme with reconstruction by size s and depth d circuits and constant advantage
over alphabet Σ then there exists a (m, k, r) bit secret scheme with reconstruction
by circuits of size st + poly(t) and depth d + 2 and advantage 1 − 2−Ω(t) over
alphabet Σt.

Proof (of Theorem 13). We apply the construction described in Sect. 2.2 to the
(n,Ω(

√
r), r) scheme from Theorem 3 and the graph from Claim14 with δ = 0.49.

Secrecy follows from Theorem 9. Reconstruction proceeds as in Sect. 2.2, except
that only those parties in [n] that have received all of their shares participate
in the process. By property 2 of Claim 14, if at least ρm parties on the right
participate in the reconstruction then at least r parties on the left receive all
their share and the secret is reconstructed with constant advantage. By Claim15
with t = mc, the advantage can be amplified to 1 − 2−mc

as desired.

Proof (of Claim 14). We show that a random graph has both properties with
nonzero probability. Choose each of the d neighbors of each left vertex indepen-
dently and uniformly at random. For a fixed set S ⊆ [m] of size σm, the expected
number of left vertices all of whose neighbors are in S equals nσd. By the mul-
tiplicative Chernoff-Hoeffding bound and a union bound, the probability that
there exists a set S and a set of left vertices of size 2nσd all of whose neighbors
are in S is at most 2m exp(−nσd/8). By a similar argument, the probability that
there exists a set R ⊆ [m] of size ρm such that fewer than nρd/2 vertices have
all their neighbors in R is at most 2m exp(−nρd/3).

We set d = logρδ/σ(21+δn1−δ), r = (ρ/σ)d/(1−δ), and m = rδ/2�. This choice
of parameters ensures that nρd/2 = r, 2nσd = rδ, and r,m = nΩ(1). Moreover,
both probabilities of interest tend to zero at the rate exp(−Ω(rδ)) = exp(−nΩ(1))
so a graph with the desired properties exists for sufficiently large n.

Proof (of Claim 15). For every pair of constants 0 ≤ 	 < h ≤ 1, Ajtai [3] shows
the existence of a Boolean function family ApxMaj of depth 3 and size poly-
nomial in its input such that ApxMaj accepts all strings of relative Hamming
weight at least h and rejects all strings of relative Hamming weight at most 	.
These circuits are made explicit in [46].

Let S be the assumed secret sharing scheme. Choose h and 	 so that the
success probability of reconstructing a one from its shares in S bounds h strictly
from above and the failure probability of reconstructing a zero in S bounds 	
strictly from below. To share a bit, sample k independent copies of shares of S
and give the i-th party the i-th bit of each copy. To perform the reconstruction,
first apply the reconstruction algorithm for S for each copy, then apply ApxMaj
to all k reconstructed bits.

The secrecy of S is inherited by construction. We now analyze the probability
of correct reconstruction by r parties. By the multiplicative Chernoff bound, the
probability that fewer than hk copies of S reconstruct a one correctly, or that
more than 	k copies of S reconstruct a zero incorrectly, is 2−Ω(k). If this does
not happen, ApxMaj correctly recovers the secret bit.

Bounded Indistinguishability and the Complexity of Recovering Secrets 607

2.4 Limitations

In this section we prove negative results on the existence of secret sharing
schemes, or equivalently positive results on functions being fooled by bounded
indistinguishability. Our main technical contribution consists of proving negative
results that hold even over large alphabets Σ. However, we first start with the
case Σ = {0, 1} because this provides motivation and is useful for larger Σ.

In the case Σ = {0, 1} we note an upper bound of n(1 − 1/poly log n) on
the approximate-degree of AC0. While it follows from standard Fourier-analytic
techniques, we are not aware that it has been observed before. In terms of secret
sharing schemes it shows that the secrecy is at most n(1−1/poly log n) if recon-
struction is to be done in AC0.

Claim 16. Every function f :{0, 1}n → {0, 1} that has a size s depth d circuit
has n−h/2-approximate degree n − h for h = Ωd(n/(log s)d−1(log n)).

Proof. We will work with the function F :{−1, 1}n → {−1, 1} given by F (X) =
1−2f((1+X)/2). We construct a polynomial P :{−1, 1}n → R that approximates
F pointwise within 2n−h/2. Let

P (X) =
∑

S⊆[n],|S|≤n−h
F̂ (S)

∏
i∈S

Xi,

where F̂ (S) = E[F (X)
∏

i∈S Xi] are the Fourier coefficients of F , see e.g.
O’Donnell’s book [36] for background.

H̊astad [24] shows that |F̂ (S)| ≤ 2−c|S|/(log s)d−1
, where c is some constant

that depends only on d. For every X ∈ {−1, 1}n,

|F (X) − P (X)| =
∣∣∣∑

S:|S|>n−h
f̂(S)

∏
i∈S

Xi

∣∣∣
≤

∑
S:|S|>n−h

|f̂(S)| ≤ nh · 2−c(n−h+1)/(log s)d−1
,

which is at most 2n−h/2 for h = min{n/2, cn/4(log s)d−1(log n)}.

The following upper bound on the approximate degree of the OR function
was obtained by Kahn et al. [29]. The special case δ = 1/3 was first established
by Nisan and Szegedy [35].

Lemma 2. For every n and δ, the δ-approximate degree of OR on n bits is
O(

√
n log(1/δ)).

It follows from Theorem 1 that there does not exist a (n, ω(
√

n log(1/δ))
secret sharing scheme over the alphabet {0, 1} with reconstruction by OR and
advantage δ.

We now derive two negative consequences for secret sharing schemes with
more complex reconstruction functions and over alphabets of arbitrary size.

608 A. Bogdanov et al.

Theorem 17. For every Σ of the form {0, 1}s and all n,m, d, h such that h ≤
n/(3 ln n · exp(6

√
ln(2m) · ln d)) if f :Σn → {0, 1} is an OR of m functions each

of which depends on at most d inputs then there is no (n, n − h) secret sharing
scheme with reconstruction function f and advantage 1/3.

In particular, Theorem17 shows that if reconstruction is done by a DNF of
size m = poly(n) and with terms of size d = no(1) then the secrecy must be at
most n − h = n − n1−o(1).

The proof of the theorem relies on the following combinatorial claim.

Claim 18. For every N , M , n, m, d, and h such that h ln n,M ln N + 1 ≤
n/(3dM (2m)M/N) and every collection S of m subsets of [n], each of size d,
there exists a collection T of N subsets of [n] such that

1. for every set S ∈ S there is at least one set T ∈ T such that S is a subset of
T , and

2. for every M sets T1, . . . , TM ∈ T , |T1 ∪ · · · ∪ TM | < n − h.

Proof (of Theorem 17). Suppose for contradiction that such a secret sharing
scheme S exists. Let Si ⊆ [n] be the set of variables in the i-th term of f and
S = {S1, . . . , Sn}. For N = logd(2m), M = 2

√
N , and sufficiently large n the

set system T = {T1, . . . , TN} given by Claim 18 exists. Assign to each term t of
f a single set T (t) ∈ T that covers it as guaranteed by Property 1 of the Claim.

Consider the following N -party secret sharing scheme T for OR. To share,
first run the secret sharing for S and evaluate each term t of f using the shares
as inputs. Then assign each party i in T the OR of all the terms t such that
T (t) = Ti. To reconstruct take the OR of all the shares of T . By construction,
this equals f evaluated on the shares of S, so T has the same reconstruction
advantage as S.

By Property 2 of Claim 18, each collection of M parties of T observes fewer
than n − h shares of S, so T is an (N,M) secret sharing scheme. By Lemma 2
T cannot have reconstruction advantage 1/3, so neither can S.

Proof (of Claim 18). We choose the M sets of T at random such that each
element in [n] is included in each set in T independently with probability 1 − q
for q = (1/d)(1/2m)1/N . On the one hand, by a union bound, the probability
that some set S ∈ S fails to be covered by any set of T is at most m(qd)N ,
which is at most 1/2 by our choice of q. On the other hand, by a union bound,
the probability that property 2 is violated is at most

(
N

M

)
·
(

n

n − h

)
· (

1 − qM
)n−h ≤ exp

(
M ln N + h ln n − (n − h)qM

)

≤ exp
(
M ln N + h ln n − (2n/3)qM

)
≤ 1/e

by the assumed inequality. By a union bound, both desired properties are satis-
fied with probability at least 1 − 1/2 − 1/e > 0.

Bounded Indistinguishability and the Complexity of Recovering Secrets 609

Next we obtain a stronger negative result in the case in which the recon-
struction is done by a decision tree.

Theorem 19. Let Σ = {0, 1}s. If f :Σn → {0, 1} has a binary decision tree with
at most S leaves then there is no (n, ω(

√
n log(S/ε)))-bit secret sharing scheme

with reconstruction function f and advantage ε.

In particular, a secret sharing scheme with constant advantage and whose
reconstruction function is a polynomial-size decision tree can only be secure
against coalitions of O(

√
n log n) parties.

Proof. First assume f is an OR of a subset of literals. If a secret sharing scheme
with reconstrcution function f , secrecy parameter ω(

√
n(log 1/δ)), and advan-

tage δ existed, then a scheme with the same parameters would exist for a binary
alphabet as each party’s shares can be replaced by the respective OR of the rel-
evant literals, contradicting Lemma 2. By symmetry the same conclusion holds
for ANDs of subsets of literals.

If f has a decision tree with ≤ S leaves, then we can write f as a sum of
at most S ANDs of literals, one for each path in the decision tree that leads
to a 1-leaf. This sum is over the reals yet it will always take a boolean value
because at most one AND will evaluate to one. If there existed a secret sharing
scheme with reconstruction function f , advantage ε and the desired properties,
by a hybrid argument one of the constituent ANDs would have advantage ε/S
in the same scheme. Setting δ = ε/S yields the desired conclusion.

3 Additional Cryptographic Applications

In this section we present additional applications of our results on bounded
indistinguishability in cryptography. These applications can be viewed as differ-
ent instances of leakage-resilient cryptography.

The broad goal of leakage-resilient cryptography is to maintain the security of
cryptographic primitives even if partial information about their secrets is leaked
to an adversary. The type of information being leaked is typically captured by
a leakage function L:{0, 1}n → {0, 1}t taken from a leakage class L, where the
input for L represents the internal (secret) state of the primitive and its output
represents the partial information available to the adversary. For simplicity we
will start by considering the case of single-bit leakage (i.e., t = 1) and later
extend the results to the more general case.

Our motivating observation is that if two possible distributions of secret
states are k-wise indistinguishable, and moreover k-wise indistinguishability
implies L-indistinguishability, then obtaining leakage-resilience against L reduces
to obtaining resilience against k-local leakage, namely the class of all projec-
tion functions P :{0, 1}n → {0, 1}k. Obtaining provable security against k-local
leakage is typically much easier than obtaining provable security against bigger
leakage classes, and can be achieved via standard techniques for secret sharing
and secure multiparty computation (MPC).

610 A. Bogdanov et al.

The above observation may be relevant to any cryptographic scheme that
maintains a sufficient level of local secrecy. We illustrate its usefulness by pre-
senting applications in the contexts of secret sharing, error detecting codes, and
private circuits.

3.1 Leakage-Resilience of Secret Sharing Schemes

The implication 1. =⇒ 2. in Theorem 1 can be reformulated in the following
equivalent way.

Claim 20. Let μ, ν be k-wise indistinguishable distributions over {0, 1}n. Let
L:{0, 1}n → {0, 1} be a leakage function whose ε-approximate degree is at most
k. Then

|Pr[L(μ) = 1] − Pr[L(ν) = 1]| ≤ ε.

Claim 20 implies that every (m, k) bit secret sharing scheme over Σ = {0, 1}	 is
resilient against leakage functions L:{0, 1}m	 → {0, 1} whose approximate degree
is at most k. The same holds for secret sharing schemes with bigger secrets.

Many secret sharing schemes from the literature are in fact k-wise indepen-
dent for a large value of k, in the sense that any k bits in μ and ν are uniformly
distributed. This is the case, for instance, for Shamir’s scheme [41] over fields of
characteristic 2. In such a case one can appeal to stronger results about bounded
independence. For instance, Braverman’s theorem [9] implies resilience to every
AC0 leakage function L even when k is polylogarithmic in n, whereas the approx-
imate degree of some AC0 functions is known to be as big as Ω(n2/3). One could
also apply similar results in the case of biased k-wise independence, namely μ
and ν are k-wise indistinguishable and moreover every k bits are independently
distributed (but may each have a different bias). See, e.g., Lemma 5.2 in [14] for
the case of OR distinguishers.

However, there are cases in which it is undesirable or even impossible to
guarantee a high level of independence. For instance, when considering secret
sharing schemes with special properties, such as ones supporting multiplication,
bounded independence may come at a significant price [13,39]. Alternatively, the
shares of a k-wise independent secret sharing scheme may be subject to local
encoding or to adversarial tampering, after which they are no longer k-wise
independent but are still k-wise indistinguishable.

Finally, we extend Claim 20 to the case of a leakage function L with t output
bits. For convenience, we restate Theorem 4 from the Introduction.

Theorem 21. There exists a universal constant C such that the following holds.
Let μ, ν be k-wise indistinguishable distributions over {0, 1}n. Let L:{0, 1}n →
{0, 1}t be a leakage function such that the 1/3-approximate degree of each of its
t outputs is at most d. Then the statistical distance between L(μ) and L(ν) is
bounded by δ, provided that k ≥ Cdt(t + log 1

δ).

Bounded Indistinguishability and the Complexity of Recovering Secrets 611

Proof. Using an indistinguishability variant of Vazirani’s statistical XOR lemma
(cf. [27, Lemma 1]), it suffices to prove that every L′:{0, 1}n → {0, 1}
obtained by taking the parity of a subset of the outputs of L, we have
|Pr[L′(μ) = 1] − Pr[L′(ν] = 1]| ≤ δ′ where δ′ = δ · 2−t/2. Using Lemma 4, the
1/3-approximate degree of each such L′ is O(dt) and by Lemma 3 its approxi-
mate degree is O(dt log 1

δ′). Applying Claim 20, k = Ω(dt(t + log 1
δ)) suffices to

guarantee that the distinguishing advantage of L′ is bounded by δ′ as required.

3.2 Private Circuits

We now describe an application of Claim 20 to private circuits, a computational
model for leakage-resilient cryptography. We consider the simpler stateless vari-
ant of private circuits with encoded inputs and outputs (see, e.g., [28, Sect. 3] and
[25, Sect. 4.1]) and privacy with respect to a general leakage class L. Informally,
such a private circuit is a (possibly randomized) boolean circuit that transforms
a randomly encoded input into a randomly encoded output while providing the
guarantee that the output of any L-leakage on the n circuit wires reveals essen-
tially nothing about the input. More formally:

Definition 4 ((L, ε)-Private Circuit). A private circuit for g:{0, 1}ni →
{0, 1}no is defined by a triple (I, C,O), where

– I:{0, 1}ni → {0, 1}n̂i is a randomized input encoder;
– C is a deterministic or randomized boolean circuit with input ŵ ∈ {0, 1}n̂i ,

output ŷ ∈ {0, 1}n̂o , and n wires;
– O:{0, 1}n̂o → {0, 1}no is a deterministic output decoder.

For a leakage function L:{0, 1}n → {0, 1}t and ε > 0, we say that (I, C,O) is an
(L, ε)-private implementation of g if the following requirements hold.

– Correctness: For any input w ∈ {0, 1}ni we have Pr[O(C(I(w))) = g(w)] = 1],
where the probability is over the randomness of I and (possibly) C.

– Privacy: For any w,w′ ∈ {0, 1}ni , the statistical distance between L(C[I(w)])
and L(C[I(w′)]) is at most ε, where C[x] denotes the (randomized) values of
the n wires of C on input x.

For a class L of leakage functions, we say that (I, C,O) is an (L, ε)-private imple-
mentation of g if it is an (L, ε)-private implementation of g for every L ∈ L, and
that it is a k-private implementation of g if it is an (L, 0)-private implementation
of g for the class L of projection functions that output k bits of the input.

Without any requirements on I and O, the above definition can be satisfied
by having I compute a leakage-resilient secret sharing of the input which is
passed by C directly to the decoder. To rule out such a solution we require the
encoder and the decoder to be universal (i.e., depend only on ni, no and the
circuit size of g and not on g itself). Furthermore, we would like the decoder

612 A. Bogdanov et al.

size to be considerably smaller than the circuit size of g. These requirements
effectively force C to perform the bulk of the computation in a leakage-resilient
manner.

While there are asymptotically efficient constructions of k-private circuits
obtained via MPC techniques [17,25,28], much less is known about defending
against larger leakage classes. We use the connection between approximate degree
and bounded indistinguishability to bootstrap from k-private circuits to (L, ε)-
private circuits for larger classes L. More accurately, we show that in many
cases k-privacy automatically implies (L, ε)-privacy for a large L and negligible ε.
A similar result for a special type of leakage called “noisy leakage” was obtained
in [22]. The parameters of the leakage-resilient circuits we obtain via bounded
indistinguishability are quite limited, since our approach requires the privacy
threshold k to be rather close to the circuit size. An interesting research direction
is to obtain better parameters by exploiting additional structural properties of
the distributions induced by private circuit constructions.

Combining MPC-based constructions of k-private circuits with known
bounds on approximate degree, we obtain the following corollary (see [8] for
proof):

Corollary 22. Any NC-function g:{0, 1}ni → {0, 1}no of circuit size s admits
an (L, 2−σ)-private implementation (I, C,O), where |I| = Õ(s), |C| = Õ(s), and
|O| = Õ(no + k), for the following choices of L, σ, and k:

1. L is the class of decision trees of size S, k = σ
√

s log(S), and σ ≤ √
s/ log(S).

2. L is the class of read-once DNF (or CNF) formulas, k = σs1/2, and σ ≤ s1/2.
3. L is the entire class AC0, k = σsc, and σ ≤ s1−c, assuming that all AC0

functions on n-bit inputs have a 1/3-approximate degree of O(nc) for some
constant c < 1.

Extension to Multi-bit Leakage. The above corollary can be extended to leakage
functions L with t bits of output by relying on Theorem4 instead of Claim 20.
The general form of the corollary can be obtained by replacing each occurrence
of σ with σt2.

The Case of Disjunctive Leakage. Private circuits that resist disjunctive leak-
age, namely an OR of an arbitrary subset of wires or their negations, have
found applications to constant-round secure two-party computation [26]. While
it was shown in [26] that every k-private circuit can be transformed into such
a disjunction-resilient circuit with a constant multiplicative overhead to the cir-
cuit size, this transformation is nontrivial and has a significant concrete cost.
We note that for the purpose of this application it is essential that the encoder
be small, and thus Corollary 22 is not useful even for the case of NC circuits.

Instead, we rely on the following corollary of Claim20 to show that the same
k-private circuits to which the transformation from [26] was applied are in fact
already resilient against disjunctive leakage.

Bounded Indistinguishability and the Complexity of Recovering Secrets 613

Claim 23. Let μ, ν be k-wise indistinguishable distributions over Σn for Σ =
{0, 1}	. Let L:{0, 1}	n → {0, 1} be a disjunctive leakage function. Then

|Pr[L(μ) = 1] − Pr[L(ν) = 1]| ≤ 2−Ω(k/
√

n).

Proof. By decomposing L into n disjunctive functions that operate separately
on each 	-bit symbol, L(μ) and L(ν) can be written as OR(μ′) and OR(ν′)
(respectively), where μ′ and ν′ are k-wise indistinguishable distributions over
{0, 1}n. The claim then follows from Claim 20 and the approximate degree of
OR.

The k-private circuits employed in [26] are based on MPC protocols that
resist a constant fraction of corrupted parties. As such, they have the property
that their N wires can be partitioned into n “symbols” in Σ = {0, 1}N/n, such
that the wire distributions on different inputs are k-wise indistinguishable over
Σ for k = Ω(n). Thus, Claim 23 implies that these k-private circuits achieve a
good level of disjunctive resilience without any modification.

Acknowledgements. We thank Daniel Wichs for helpful discussions. Andrej and
Emanuele thank Chin Ho Lee for putting them in touch. Emanuele thanks Daniel
Wichs for asking whether bounded indistinguishability fools AND, and Mark Bun and
Justin Thaler for many discussions about the approximate degree literature.

The first and fourth authors were supported by RGC GRF grants CUHK410113 and
CUHK14208215. The second author was supported by ERC starting grant 259426, ISF
grant 1709/14, and BSF grant 2012378. Research done in part while visiting the Simons
Institute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467.
Research also supported from a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276. This mater-
ial is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the author and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government. The third author
was supported by NSF grant CCF-1319206. Work done in part while a visiting scholar
at Harvard University, with support from Salil Vadhan’s Simons Investigator grant, and
in part while visiting the Simons Institute for the Theory of Computing, supported by
the Simons Foundation.

A Parameters for Visual Scheme

We demonstrate some specific parameter choices for our visual secret sharing
scheme. For given k and α, the corresponding entry in the next table gives the
minimum value of n for which an (n, k) bit secret sharing scheme for OR with
distinguishing advantage (i.e., contrast) α exists. To compute these exact para-
meters we formulated the problem as a linear program and used the CVXOPT
linear programming solver to perform the calculation. The images were recov-
ered from instantiations of the scheme with parameter settings k = 8, n = 21
and k = 8, n = 46, respectively.

614 A. Bogdanov et al.

B Useful Properties of Approximate Degree

We rely on the following two lemmas on approximate degree. The first lemma
(cf. [19, Claim 3.8]) shows that approximation quality can be traded for degree.

Lemma 3. Let 0 < ε′ < ε ≤ 1/3. Suppose that the ε-approximate degree of f is
k. Then the ε′-approximate degree of f is O(k · log ε

ε′).

The second lemma relates the approximate degree of the parity of t functions
to a bound on their approximate degree. It follows by composing the functions
using a “robust” polynomial for parity of degree O(t) [10]. A simpler bound,
obtained by applying Lemma3 and multiplying the t approximations, adds an
additional log t-factor to the degree.

Lemma 4. Let f1, f2, . . . , ft be boolean functions whose 1/3-approximate degree
is at most k. Then the 1/3-approximate degree of f = f1 ⊕f2 ⊕· · ·⊕ft is O(kt).

C Sharing in AC0 with Perfect Secrecy

In this section we describe ways to maintain perfect secrecy while still generating
the shares in AC0. Let p be a distribution over {0, 1}n. We say that a distribution
q over {0, 1}n ∪ {⊥} is ε-near p if Pr[q =⊥] ≤ ε and p equals q|q �=⊥, i.e., q
conditioned on the event q �=⊥. We think of ‘⊥’ as failure and we generally use
the word ‘near’ to indicate sampling with failure.

Theorem 24. For schemes 1. to 4. in Corollary 2 the following holds. Let μ
and ν be the distributions on {0, 1}n of the shares of 0 and 1 respectively. Let
c be an integer. There exists explicit AC0 circuits of size polynomial in n that
sample distributions μ⊥ and ν⊥ such that:

1. (Secrecy) If μ and ν are k-wise indistinguishable then so are μ⊥ and ν⊥.
2. (Reconstruction) μ⊥ and ν⊥ are ε-near μ and ν, respectively, for ε = 2−nc

.

By Item 1. we achieve perfect secrecy, and Item 2. guarantees that recon-
struction works up to a small error.

Bounded Indistinguishability and the Complexity of Recovering Secrets 615

Proof (of Theorem 24). For simplicity let us consider the scheme for OR. As
mentioned earlier, in this case μ and ν are symmetric. Let μ′ and ν′ be the cor-
responding distributions on Hamming weights. By inspection of the dual poly-
nomial for OR, see [44], the probability mass functions of μ′ and ν′ is at any
point a multiple of 1/m, where m is an integer with poly(n) bits.

We now describe the near sampler for μ. First, pick a uniform number in
{0, 1}n′

where n′ ≥ m. If the number is bigger than m then output ⊥. Otherwise,
use that to compute a sample i of μ′. This involves computing ‘≤’, which can be
done in AC0. Then the task is to output a uniform string of Hamming weight i.
Because AC0 can nearly sample the uniform distribution of permutations of [n],
cf. [47], this uniform string can indeed be sampled. The same process is applied
to ν.

Conditioned on not failing, the process is sampling μ and ν as desired. What
remains to be seen is that the probability of outputting ⊥ does not depend on
whether we are nearly sampling μ or ν. This holds by inspection. Indeed, in the
first step we fail in either case if we obtain a number that is larger than m. In the
second the failure probability is that of the sampler of a uniform permutation,
which is independent of which distribution we are sampling.

D Exact vs. Almost Bounded Indistinguishability

In this Appendix we show that k-wise indistinguishability is “robust to noise” in
the following sense: Any pair of distributions that are “almost” k-wise indistin-
guishable is close to a pair of truly k-wise indistinguishable distributions. Alon,
Goldreich, and Mansour proved an analogous statement for k-wise independence
(Theorem 2.1 in [5]).

Theorem 25. Let μ and ν be two distributions on {−1, 1}n. Suppose that no
test T :{−1, 1}k → {0, 1} on k bits can distinguish μ and ν with advantage bigger
than ε. Then there exist two distributions μ∗ and ν∗ such that μ∗ has statistical
distance ≤ 2εnk from μ, ν∗ has statistical distance ≤ 2εnk from ν, and μ∗ and
ν∗ are k-wise indistinguishable.

Proof. For a subset I of [n] let χI :{−1, 1}n → {−1, 1} be χI(x) =
∏

i∈I xi. It
suffices to prove the conclusion for the tests χI where |I| ≤ k. This is because
if

∑
x(μ′(x) − ν′(x))T (x) ≥ α, then writing T in Fourier expansion we have∑

I T̂I

∑
x(μ′(x)−ν′(x))χI(x) ≥ α, and so there exists a test χI giving advantage

at least α/2k.
For a function f :{−1, 1}n → R we write [f, I] for

∑
x f(x)χI(x), and call

it the I coefficient of f . We “adjust” the coefficients of μ and ν by repeating
the following step. Let I ⊆ [n] be a non-empty subset of size at most k. By
hypothesis, |[μ − ν, I]| = α ≤ ε. Without loss of generality let [μ, I] ≤ [ν, I]. Set
μ′:=μ + α(χI + 1)/2n, and ν′:=ν + α/2n. Now we have [μ′ − ν′, I] = 0, while
[μ′−ν′, J] = [μ−ν, J] for J �= I. Moreover, note that

∑
x |μ′(x)| =

∑
x |μ(x)|+α,∑

x |μ(x) − μ′(x)| = α, and that the same holds for ν.

616 A. Bogdanov et al.

Repeating the adjustment ≤ nk times, we get two non-negative functions μ′

and ν′ such that [μ′ − ν′, I] = 0 for every I of size at most k, and
∑

x |μ(x) −
μ′(x)| ≤ εnk, and the same for ν′, and also

∑
x |μ′(x)| =

∑
x |ν′(x)| = 1 + σ, for

some 0 ≤ σ ≤ εnk.
Finally, let μ∗ = μ/(1 + σ) and ν∗ = ν/(1 + σ). We have [μ∗ − ν∗, I] = 0 for

every I of size at most k. The distance of μ∗ from μ is ≤ (1 + σ)−1(
∑

x |μ(x) −
μ∗(x)| + σ

∑
x μ(x)) ≤ 2εnk, and the same for ν. ��

References

1. Aaronson, S.: A counterexample to the generalized Linial-Nisan conjecture. Elec-
tronic Colloquium on Computational Complexity, Technical report 109 (2010)

2. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

3. Ajtai, M.: Approximate counting with uniform constant-depth circuits. In:
Advances in Computational Complexity Theory, pp. 1–20 (1993)

4. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptotically
good low-rate error-correcting codes through pseudo-random graphs. IEEE Trans.
Inf. Theor. 38(2), 509–516 (1992)

5. Alon, N., Goldreich, O., Mansour, Y.: Almost k-wise independence versus k-wise
independence. Inf. Process. Lett. 88(3), 107–110 (2003)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM J. Comput.
36(4), 845–888 (2006)

7. Bazzi, L.M.J.: Polylogarithmic independence can fool DNF formulas. SIAM J.
Comput. 38(6), 2220–2272 (2009)

8. Bogdanov, A., Ishai, Y., Viola, E., Williamson, C.: Bounded indistinguishabil-
ity, the complexity of recovering secrets. Electronic Colloquium on Computational
Complexity (ECCC), vol. 22, p. 182 (2015)

9. Braverman, M.: Polylogarithmic independence fools AC0 circuits. J. ACM 57(5),
1–6 (2010)

10. Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust polynomials and quan-
tum algorithms. Theor. Comput. Syst. 40(4), 379–395 (2007)

11. Bun, M., Thaler, J.: Dual lower bounds for approximate degree and Markov-
Bernstein inequalities. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 303–314. Springer, Heidelberg
(2013)

12. Bun, M., Thaler, J.: Dual polynomials for collision and element distinctness (2015).
www.eccc.uni-trier.de/

13. Cascudo, I., Chen, H., Cramer, R., Xing, C.: Asymptotically good ideal linear
secret sharing with strong multiplication over any fixed finite field. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 466–486. Springer, Heidelberg (2009)

14. Chari, S., Rohatgi, P., Srinivasan, A.: Improved algorithms via approximations of
probability distributions. J. Comput. Syst. Sci. 61(1), 81–107 (2000)

15. Cimato, S., Prisco, R.D., Santis, A.D.: Probabilistic visual cryptography schemes.
Comput. J. 49, 97–107 (2006)

16. Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret sharing
schemes from error correcting codes and universal hash functions. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 313–336. Springer,
Heidelberg (2015)

www.eccc.uni-trier.de/

Bounded Indistinguishability and the Complexity of Recovering Secrets 617

17. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

18. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multi-
party computation with nearly optimal work and resilience. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

19. Diakonikolas, I., Gopalan, P., Jaiswal, R., Servedio, R.A., Viola, E.: Bounded inde-
pendence fools halfspaces. SIAM J. Comput. 39(8), 3441–3462 (2010)

20. Diakonikolas, I., Kane, D., Nelson, J.: Bounded independence fools degree-2 thresh-
old functions. In: Proceedings of 51st FOCS (2010)

21. Druk, E., Ishai, Y.: Linear-time encodable codes meeting the Gilbert-Varshamov
bound and their cryptographic applications. In: Proceedings of ITCS 2014, pp.
169–182 (2014)

22. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

23. Even, G., Goldreich, O., Luby, M., Nisan, N., Velickovic, B.: Efficient approxima-
tion of product distributions. Random Struct. Algorithms 13(1), 1–16 (1998)

24. H̊astad, J.: On the correlation of parity and small-depth circuits. SIAM J. Comput.
43(5), 1699–1708 (2014)

25. Ishai, Y., Kushilevitz, E., Li, X., Ostrovsky, R., Prabhakaran, M., Sahai, A.,
Zuckerman, D.: Robust pseudorandom generators. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 576–
588. Springer, Heidelberg (2013)

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011)

27. Ishai, Y., Sahai, A., Viderman, M., Weiss, M.: Zero knowledge LTCs and their
applications. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P.
(eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 607–622. Springer,
Heidelberg (2013)

28. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

29. Kahn, J., Linial, N., Samorodnitsky, A.: Inclusion-exclusion: exact and approxi-
mate. Combinatorica 16(4), 465–477 (1996)

30. Krause, M., Simon, H.: Determining the optimal contrast for secret sharing schemes
in visual cryptography. Comb. Probab. Comput. 12(3), 285–299 (2003)

31. Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 82(10), 2172–2177 (1999)

32. Linial, N., Nisan, N.: Approximate inclusion-exclusion. Combinatorica 10(4), 349–
365 (1990)

33. Minsky, M., Papert, S.: Perceptrons. MIT Press, Cambridge (1969)
34. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT

1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)
35. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials.

Comput. Complex. 4, 301–313 (1994)
36. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press,

Cambridge (2014)
37. O’Donnell, R., Servedio, R.A.: New degree bounds for polynomial threshold func-

tions. Combinatorica 30(3), 327–358 (2010)

618 A. Bogdanov et al.

38. Paturi, R.: On the degree of polynomials that approximate symmetric boolean
functions (preliminary version). In: Proceedings of STOC 1992, pp. 468–474 (1992)

39. Randriambololona, H.: Asymptotically good binary linear codes with asymptoti-
cally good self-intersection spans. IEEE Trans. Inf. Theor. 59(5), 3038–3045 (2013)

40. Razborov, A.A.: A simple proof of Bazzi’s theorem. ACM Trans. Comput. Theor.
(TOCT) 1(1), 1–4 (2009)

41. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
42. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000

(2011)
43. Sherstov, A.A.: The power of asymmetry in constant-depth circuits. In: Proceed-

ings of FOCS 2015 (2015)
44. Spalek, R.: A dual polynomial for OR (2008). CoRR, abs/0803.4516
45. Tal, A.: Tight bounds on The Fourier Spectrum of AC0. Electronic Colloquium

on Computational Complexity, Technical report TR14-174 (2014). www.eccc.
uni-trier.de/

46. Viola, E.: On approximate majority and probabilistic time. Comput. Complex.
18(3), 337–375 (2009)

47. Viola, E.: The complexity of distributions. SIAM J. Comput. 41(1), 191–218 (2012)
48. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique

and chromatic number. Theor. Comput. 3(1), 103–128 (2007)

www.eccc.uni-trier.de/
www.eccc.uni-trier.de/

Two-Message, Oblivious Evaluation
of Cryptographic Functionalities

Nico Döttling1, Nils Fleischhacker2(B), Johannes Krupp2,
and Dominique Schröder2,3

1 University of California, Berkeley, USA
2 CISPA, Saarland University, Saarbrücken, Germany

fleischhacker@cs.uni-saarland.de
3 Friedrich-Alexander-University, Nuremberg, Germany

Abstract. We study the problem of two round oblivious evaluation of
cryptographic functionalities. In this setting, one party P1 holds a private
key sk for a provably secure instance of a cryptographic functionality F
and the second party P2 wishes to evaluate Fsk on a value x. Although
it has been known for 22 years that general functionalities cannot be
computed securely in the presence of malicious adversaries with only two
rounds of communication, we show the existence of a round optimal proto-
col that obliviously evaluates cryptographic functionalities. Our protocol
is provably secure against malicious receivers under standard assumptions
and does not rely on heuristic (setup) assumptions. Our main technical
contribution is a novel nonblack-box technique, which makes nonblack-
box use of the security reduction of Fsk. Specifically, our proof of mali-
cious receiver security uses the code of the reduction, which reduces the
security of Fsk to some hard problem, in order to break that problem
directly. Instantiating our framework, we obtain the first two-round obliv-
ious pseudorandom function that is secure in the standard model. This
question was left open since the invention of OPRFs in 1997.

1 Introduction

An oblivious evaluation protocol of a cryptographic functionality F , is a two-
party protocol in which one party P1, called the sender, holds a function Fsk ∈ F
and the second party P2, called the receiver, wishes to evaluate Fsk on x. Sender
security says that P1 remains oblivious of x while receiver security guarantees
that the security of Fsk is preserved, i.e., evaluating Fsk obliviously should be as
secure as having direct access to F , even if a malicious party deviates from the
protocol arbitrarily. Although it has been known for 22 years that general func-
tionalities cannot be computed securely in the presence of malicious adversaries
with only two rounds (messages) of communication [29], we show the existence of
a two message protocol that obliviously evaluates cryptographic functionalities.
The functionalities covered by our framework have the following properties:

– There is a security experiment Exp that characterizes the security of F .
– The experiment Exp gives the adversary access to an oracle O.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part III, LNCS 9816, pp. 619–648, 2016.
DOI: 10.1007/978-3-662-53015-3 22

620 N. Döttling et al.

– There is a black-box reduction B with certain properties that reduces the
security of Fsk to a hard problem π.

Our framework subsumes popular two-party protocols, such as blind signatures
and oblivious pseudorandom functions (OPRF). In fact, our framework yields
the first OPRF with only two rounds of communication in the standard model
— a problem that has been open since their invention in 1997 [49].

Technical Contribution. Our main technical contribution is a nonblack-box
proof technique, which is nonblack-box in the reduction. To explain what being
nonblack-box means, consider an instance P of a cryptographic functionality F .
Assume further that this instance is provably secure, i.e., there is a reduction
B that turns any adversary A breaking the security of P into an algorithm
solving the underlying hard problem π. Our protocol then shows that P can be
evaluated securely. The corresponding proof of malicious receiver security makes
nonblack-box use of the underlying code of the reduction B. This proof does not
reduce the security to P but to the underlying hard problem exploiting the code
of B. To best of our knowledge, this is the first result that shows how to make
nonblack-box use of the code of a given security reduction. We call this class of
reductions oblivious reductions.

1.1 Impossibility of Malicious Security and Induced Game-Based
Security

Ideally one would like to achieve the standard notion of simulation based security
against malicious adversaries. This notion says that the malicious receiver and
sender learn only f(x) (except what can trivially be learned from f(x)) and that
the private input of the other party remains hidden. Unfortunately, it is well
known that standard simulation based security notions cannot be achieved for
two-round secure function evaluation (SFE) [29]. In fact, if one uses black-box
techniques only, then at least five rounds of communication are necessary [36].

Since there is no hope in achieving malicious simulation-based security, we
propose an alternative definition of malicious security for the setting of secure
evaluation of cryptographic primitives: On a high-level, our security notions
for malicious receiver says that the security properties of the underlying crypto-
graphic primitive is preserved even against malicious adversaries. More precisely,
we consider the secure evaluation of cryptographic functionalities, which are
equipped with a game-based security notion. In our formalization the adversary
in the corresponding security experiment has black-box access to the primitive.
Then, we define an induced security notion by replacing black-box calls to the
primitive in the security game with instances of the two-round SFE protocol.
I.e., instead of giving the adversary black-box access to the primitive, it acts as
a malicious receiver in an SFE session with the sender. Achieving this notion
and showing that the underlying security guarantees are preserved is non-trivial,
because the adversary is not semi-honest and may not follow the protocol.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 621

Regarding security against corrupted senders, we show that malicious sender
security and induced game-based security against malicious receivers cannot
be achieved under (standard) non-interactive assumptions. In fact, our result
is more general as it rules out protocols with three moves. Our impossibility
is constructive and shows that our notion captures the standard definition of
blind signatures. But for blind signatures it is well known that a large class
of three-move blind signture schemes cannot be proven secure in the standard
model under non-interactive assumptions [16]. Since our blind signature scheme
belongs to this class, it follows that achieving both notions of malicious security
is impossible. Thus, we also need to weakening the security against malicious
senders and we stick to the standard notion of semi-honest security.

1.2 Oblivious Reductions: A Nonblack-Box Proof Technique

We give a high-level overview of our protocol and proof strategy. Our start-
ing point is an instance Fsk of some cryptographic functionality F (such as
the pseudorandom function functionality). The corresponding security proof is a
black-box reduction B to some underlying hard problem π. Our goal is to obliv-
iously compute Fsk in a secure two-party protocol Π with only two rounds of
communication. Our protocol is simple and uses a certain type of homomor-
phic encryption and works as follows: The receiver encrypts its input x using
the homomorphic encryption scheme, it sends the ciphertext c ← Enc(x) to the
sender. The sender evaluates the function Fsk on c computing c′ ← Eval(c,Fsk)
and returns c′ to the receiver, who obtains Fsk(x) by simply decrypting c′. Using
fully homomorphic encryption as the underlying encryption scheme, it is well
known that this protocol is secure against semi-honest adversaries [23].

However, we are interested in achieving malicious security and we achieve
our goal using a specific type of homomorphic encryption scheme in combination
with our novel nonblack-box proof technique. We provide an efficient reduction
from the security of the homomorphically evaluated primitive to the underly-
ing problem π directly using the code of the reduction B. Our proof technique
works for a large and natural class of black-box reductions that we call oblivi-
ous. Loosely speaking, a reduction is oblivious, if it only knows an upper bound
on the number of the oracle queries, but does neither learn the query nor the
answer. We give several examples of known oblivious reductions in Sect. 2.2 and
we sketch the basic ideas of this technique in the following.

In the first step of our proof (see Fig. 1), we run a security experiment where
the malicious receiver A has oracle access to a homomorphically evaluated func-
tionality Eval(c,Fsk). In the second step, the experiment is transformed in the fol-
lowing way. First, the adversary’s oracle inputs are extracted via an unbounded
extractor, the functionality is evaluated on the extracted input, and finally the
output is encrypted (with the right distribution). Assuming that the homomor-
phic encryption is (statistically) circuit private, we show that this modification
does not change the success probability of the adversary. While extracting an
input x from a ciphertext c is not possible in polynomial-time, it does not change
the success probability of A.

622 N. Döttling et al.

Fig. 1. Oblivious reduction part 1 of 2.

In the third step (see right picture of Fig. 1), we move the extraction and
simulation procedures from the security experiment into the adversary itself,
obtaining an unbounded adversary A′. That is, the modified attacker A′ runs
A as a black-box. Whenever A sends c to its oracle, then A′ extract x from c,
invokes its own oracle obtaining y ← F (x), and returns the encryption of y to
A. Obviously, the adversary A′ does not run in polynomial-time, but this does
not change its success probability, as we have only re-arranged the algorithms
from one machine into another, but the overall composed algorithm remained
the same.

Fig. 2. Oblivious reduction part 2 of 2.

Consider the three steps shown in Fig. 2. In the first part, the unbounded
adversary is plugged into the oblivious black-box reduction B, which reduces
the security of F to some hard problem π. This step is legitimate because the
reduction only makes black-box use of the adversary. Observe that a black-box
reduction cannot tell the difference between a polynomial-time adversary and
an unbounded adversary, but only depends on the adversary’s advantage in the
security experiment. Thus, BA′

is an inefficient adversary against the problem π.
In our next modification we move the extraction and simulation algorithms from
the adversary A′ into the oracle-circuit. While this is just a bridging step, the
inefficient algorithms for extraction and simulation are now part of the reduction.
That is, whenever A queries c to its oracle, then the reduction B∗ first extracts x
from c and runs the simulation of B afterwards in order to compute the simulated
answer y ← Fsk(x). Subsequently, B∗ encrypts y as c′ and sends this answer to
A. As a result, we obtain an inefficient reduction B∗ that uses the code of the
underlying reduction.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 623

In the last step of our proof, we turn B∗ into an efficient reduction B′ against
the underlying hard problem π (last picture in Fig. 2). Here, we again exploit
the statistical circuit privacy of the homomorphic encryption scheme and replace
the inefficient computation by the homomorphic evaluation of F .

Running-Time of the Reduction. One may have the impression that we
cheated in our proof by building a reduction that is not efficiently computable.
This is not the case. A closer look at the formal proof reveals that the compu-
tationally inefficient steps are happening “inside” of the parts where we exploit
the statistical circuit privacy. Thus, in some sense one may view this step as a
game “in the head” while running an efficient reduction.

1.3 Our Contribution

The main contributions of this work are the following:

– We put forward the study of two-message secure evaluation of cryptographic
functionalities.

– We propose a novel security model which says that the underlying security
properties of the cryptographic functionality must be preserved, even if the
malicious receiver does not follow the protocol.

– We show that security against malicious receivers with respect to our notion of
induced game-based security and malicious senders cannot be achieved simul-
taneously in the standard model. In fact, our impossibility result is more
general as it covers protocols with three moves.

– We suggest a protocol that is provably secure in this model under standard
assumptions. The corresponding security proof relies on a novel nonblack-box
technique that is nonblack -box in the reduction. We believe that this technique
might be of independent interest.

– As an instance of our protocol, we present the first two-move oblivious pseudo-
random function and solve a problem that was open since their invention in
1997.

1.4 Related Work

In this section, we discuss related works in the areas of secure two-party com-
putation, round optimal oblivious PRFs and blind signatures.

Secure Two-Party Computation. The seminal works of Yao [58] and
Goldreich et al. [28] show that any polynomial-time function can be securely
computed in various settings. Recent works have shown protocols for secure two-
and multi-party computation with practical complexity such as [7,13,44,51].
A central measure of efficiency for interactive protocols is the round complexity.
It was shown that secure two-party computation of arbitrary functionalities can-
not be realized with only two rounds [29,42,43], and if the security proof uses

624 N. Döttling et al.

black-box techniques only, then 5 rounds are needed [36]. On the other hand,
several meaningful functionalities can be realized with only two (resp. less than
five) rounds. Research in this area has gained much attention in the past and
upper and lower bounds for many cryptographic protocols were discovered, such
as for (concurrent) zero-knowledge proofs and arguments [5,15,26,27,29,56] and
[10,39,54], blind signatures [16,19,20], as well as two- and multi-party compu-
tation [3,4,21,32,41,58] and [12,22,37].

Round Optimal Oblivious PRFs. Oblivious pseudorandom functions are
in essence pseudorandom functions (PRFs) that are obliviously evaluated in a
two-party protocol. This means that the sender S holds a key k of a PRF F
and the receiver R a value x and wishes to learn F (k, x). OPRFs have many
applications, such as private key-word search [17], or secure computation of set
intersection [34]. However, besides the popularity of this primitive, no scheme
in the standard model is known with only two-rounds of communication. The
first OPRF scheme was proposed by Naor and Reingold and it requires O(λ)
rounds [49]. Freedman et al. [17] used previous work of Naor and Pinkas [46,47] to
extend this to a constant round protocol assuming the hardness of DDH. Note
that this protocol realizes a “weak PRF”, which allows the receiver to learn
information about the key k as long as this information does not change the
pseudorandomness of future queries. Jarecki and Liu suggested the first round
optimal OPRFs in the random oracle model [34].

Round Optimal Blind Signatures. A blind signature scheme [11] allows a
signer to interactively issue signatures for a user such that the signer learns noth-
ing about the message being signed (blindness) while the user cannot compute
any additional signature without the help of the signer (unforgeability). Con-
structing round-optimal blind signature schemes in the standard model has been
a long standing open question. Fischlin and Schröder showed that all previously
known schemes having at most three rounds of communication, cannot be proven
secure under non-interactive assumptions in the standard model via black-box
reductions [16]. Subsequently, several works used a technique called “complexity
leveraging” to circumvent this impossibility result [19,20] and recently, Fuchs-
bauer, Hanser, and Slamanig suggested a round optimal blind signature scheme
that is secure in the generic group model [18]. In fact, it is still unknown if round
optimal blind signatures, based on standard assumptions, exist in the standard
model.

1.5 Outlook

Our work also shows that the “quality” of the proof has implication on the
usability of the primitive in other contexts. In particular, having an oblivious
black-box reduction, in contrast to a non-oblivious one, implies that the primi-
tive can be securely evaluated in our framework while the underlying security is
preserved. In fact, our results show a certain degree of composability of crypto-
graphic functionalities and round optimal secure function evaluation.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 625

Outline. We define our security model in Sect. 2. Our protocol is then given
in Sect. 3. Section 4 shows how our result can be applied to achieve oblivious
pseudorandom functions. The impossibility result is given in Sect. 4.

Notations. The security parameter is λ. By y ← A(x; r) we refer to a (PPT)
algorithm A that gets as input some value x and some randomness r and returns
an output y. If X is a set, then x

$← X means that x is chosen uniformly at
random from X. The statistical distance Δ(A,B) of two probability distributions
A and B is defined as Δ(A,B) = 1

2

∑
v |Pr(A = v) − Pr(B = v)|.

2 Secure Computation of Cryptographic Functionalities

In the following section, we formalize experiments, the corresponding notion of
security of an experiment, oblivious black-box reduction, and our notion of secure
computation of cryptographic primitives. Our formalization of experiments is
similar to the one by Bellare and Rogaway [6], but our goal is to formalize
oblivious reduction, i.e., reduction that only knows an upper number on the
number of oracle queries made by an adversary and which does not see the
actual queries to the oracle.

Please note that in the literature the term “round” has been used both to
refer to a single message (either from A to B or from B to A) and to refer to two
messages (one from A to B and one from B to A). Since none of the two seems
to be favoured over the other, in this work we will stick to the former usage, i.e.,
a “round” refers a single message despite its direction.

2.1 Cryptographic Security Experiment

In this section, we formalize security experiments for cryptographic primitives
P, where we view P as a collection of efficient algorithms. The basic idea of our
notion is to define a framework, similar to the one of Bellare and Rogaway [6], for
cryptographic experiments. Our framework provides some basic algorithm, such
as initialization, an update mechanism, and a method to test if the adversary
succeeds in the experiment. Moreover, it also define oracles that may be queried
by the attacker. The most important aspect of our formalization is that the
experiment is oblivious about the adversary’s queries to its oracle. This means
that the experiment may know an upper bound on the total number of queries,
but does not learn the queries, or the corresponding answers.

Formally, the experiment consists of four algorithm. The first algorithm, Init,
initializes the environment of the security experiment and computes publicly
available informations pp and private informations st that may be hardcoded
into the oracle that will be used by the attacker in the corresponding security
notion. The algorithm Init receives a upper bound q on number of oracle queries
as input. This is necessary because several security experiments, such as the one
of blind signatures, require a concrete bound on the number of queries. This

626 N. Döttling et al.

oracle, denoted by OA, obtains (pp, st) and some query x, and it either returns
an answer y, or ⊥ to indicate failure. The update algorithm Update allows to
re-program the oracle. The test algorithm Test checks the validity of some value
out with respect to public and private informations pp and st, respectively.

Definition 1 (Security Experiment). A security experiment for a crypto-
graphic primitive P is a tuple of four algorithms defined as follows:

Initialization. The initialization algorithm Init(1λ, q) gets as input the security
parameter 1λ and an upper bound q on the number queries. It outputs some
public information pp together with some private information st.

Oracle. The oracle algorithm OA(pp, st, x) gets as input a string pp, state infor-
mation st, and a query x. It answers with special symbol ⊥ if the query is
invalid, and otherwise with a value y.

Update. The stateful algorithm Update(st, resp) takes as input some state infor-
mation st and a string resp. It outputs some updated information st.

Testing. The Test(pp, st, out) algorithm gets as input the input of the attacker
pp, state information st, the output of the attacker out, and outputs a bit b
signifying whether the attacker was successful.

In almost all cases, the oracle OA embeds an algorithm from the primitive P,
such as the signing algorithm in case of signature, or the encryption algorithm in
case of the CPA (resp. CCA) security game. Given the formalization of a secu-
rity experiment, we are ready to formalize the corresponding notion of security.
Loosely speaking, a cryptographic primitive is secure, if the success probability
of the adversary in this experiment is only negligible bigger than the guessing
probability. Since our notions covers both computational and decisional crypto-
graphic experiments, we follow the standard way of introducing a function ν that
serves as a security threshold and which corresponds to the guessing probability.
In our formalization, the adversary A is a stateful algorithm that runs r rounds
of the security experiment. This algorithm is initially intitialized with an empty
state stA := ∅. Our formalization could also handle non-uniform adversaries by
setting this initial state to some string.

Definition 2 (Security of a Cryptographic Primitive). Let Exp = (Init,
O,Update,Test) be a security experiment for a cryptographic primitive P, and
let A be an adversary having a state stA querying the oracle exactly once per
invocation. Further let ν : N → [0, 1] be a function. In abuse of notation, we
denote by ExpP(A) the following cryptographic security experiment:

Game ExpP(A)
(pp, st) ← Init(1λ, q)
stA := ∅
for i = 1 to q do

(respi, stA) ← AO(pp,st,·)(pp, stA)
(pp, st) ← Update(st, respi)

out := respq

b ← Test(pp, st, out)
Return b

Oracle O(pp, st, x)
y ← OA(pp, st, x)
Return y

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 627

We define the advantage of the adversary A as

AdvP (A) :=
∣∣∣Prob

[
ExpP(A) = 1

]
− ν(λ)

∣∣∣ .

A cryptographic primitive is secure with respect to ExpP(A) if the advantage
AdvP (A) is negligible (in λ).

Remark 1. Observe that in our formalization of a cryptographic security exper-
iment, all algorithms, except for the adversary, are oblivious of the queries to
the oracle. The reason is that the output of the oracle is returned to the adver-
sary only and no other algorithm obtains this value. In particular, the update
algorithm does not receive the output as an input and also the test algorithm,
which determines if the attacker is successful, only receives pp, st, and out as an
input and no input or output from OA.

The CCA Secure Encryption Experiment. Our formalization of crypto-
graphic experiments covers standard security notions, such as CCA security for
public-key encryption schemes (obviously, the adaption to CCA secure private-
key encryption is trivial). Recall that a public-key encryption scheme HE = (Kg,
Enc,Dec) consists of a key generation algorithm (ek , dk) ← Kg(1λ), an encryp-
tion algorithm c ← Enc(ek ,m), and a decryption algorithm m ← Dec(dk , c) and
the corresponding security experiment of CCA is a two stage game. In the first
stage, the attacker has access to a decryption oracle and may query this oracle
on arbitrary values. Subsequently, the attacker outputs two messages of equal
length and receives a challenge ciphertext that encrypts one of the messages
depending on a randomly chosen bit b. In the second stage of the experiment,
the attacker gets access to a modified decryption oracle that answers all queries,
except for the challenge ciphertext. Eventually, the attacker outputs a bit b′ try-
ing to predict b and it wins the security experiment if its success probability is
non-negligibly bigger than 1/2.

In our formalization, the game of CCA security is a 2-round experiment. The
initialization algorithm Init generates a key-pair (ek , dk) of a public-key encryp-
tion scheme, it chooses a random bit b, and sets i = 1, r = 2 and cb = ∅. The
public parameters pp contain (ek , i, r, cb) and the private state is (dk , b). The
input of the oracle OA is (pp, x), it parses pp as (ek , i, r, cb) and behaves as fol-
lows: If i = 1, then it returns the decryption of x, i.e., it outputs y = Dec(dk , x).
If i = 2, then OA outputs Dec(dk , x) if x �= cb, and ⊥ otherwise. At some
point, the adversary A outputs as its response resp = (m0,m1, stA) two chal-
lenges messages m0,m1 and some state information stA. The update algorithm
Update(st, resp, cnt) extracts b from st and updates the public parameters pp by
replacing cb with cb ← Enc(ek ,mb) and by setting i = 2. Moreover, it stores the
messages m0 and m1 in st. In the next stage of the experiment, the oracle OA
returns ⊥ when queried with cb. Eventually, A outputs a bit b′ as its response
resp. The test algorithm Test extracts m0,m1, and b from st and b′ from resp. It
returns 0 if |m0| �= |m1| or if b′ �= b. Otherwise, it outputs 1.

628 N. Döttling et al.

The Unforgeability Experiment. The classical security experiment of exis-
tential unforgeability under chosen messages attacks for signature schemes is not
covered by our formalization. The reason is that the testing algorithm outputs 1
if the forged message m∗ is different from all queries m1, . . . ,mi the attacker A
queried to OA. Thus, the testing algorithm is clearly not oblivious of A’s queries
to OA. However, one can easily define a modified experiment that is implied by
the classical experiment. Similar to the unforgeability notion of blind signatures,
we let the attacker query the signing oracle q times and the attacker succeeds
if it outputs q + 1 messages-signature pairs such that all messages are distinct
and all signatures are valid. Clearly, giving a successful adversary against this
modified game, one can easily break the classical notion by guessing which of
the q + 1 pairs is the forgery.

2.2 Oblivious Black-Box Reductions

Hard Computational Problem. We recall the definition of hard computational
problems due to Naor [45].

Definition 3 (Hard Problem). A computational problem π = (Ch, t) is
defined by a machine Ch (the challenger) and a threshold function t = t(λ).
We say that an adversary A breaks the problem π with advantage ε, if

Pr[〈Ch,A〉 = 1] ≥ t(λ) + ε(λ),

over the randomness of Ch and A. If π is non-interactive, then the interaction
between A consists of Ch providing an input instance to A and A providing an out-
put to Ch. The problem π is hard if ε is negligible for all efficient adversaries A.

All standard hardness assumptions used in cryptography can be modeled in this
way, for instance the DDH assumption. The goal of a reduction is to show that
the security of a cryptographic primitive P can be reduced to some underlying
hard assumption. This is shown by contraposition assuming that the crypto-
graphic primitive is insecure with respect to some security experiment. Then,
the reduction gets as input an instance of the underlying hard problem, it runs
a black-box simulation of the attacker and shows, via simulation of the security
experiment, that it can use the adversary to solve the underlying hard prob-
lem. Since the problem is assumed to be hard, such an attacker cannot exist.
A reduction is black-box if it treats the adversary as a black-box and does not
look at the code of the attacker. A comprehensive discussion about the different
types of black-box reductions and techniques is given in [55]. For our purposes
we need a specific class of black-box reductions that we call oblivious. Loosely
speaking, a black-box reduction is oblivious if it only knowns an upper bound on
the number of oracle queries made by the attacker, but does neither know the
query nor the answer. Intuitively, this motion allows the reduction to program
the oracle once for each round of the security game.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 629

Definition 4 (Oblivious Black-Box Reductions). Let P be a cryptographic
primitive with an associated security experiment Exp. Moreover, let π be a hard
problem. Let B be an oracle algorithm with the following syntax.

– B is an adversary against the problem π
– B has restricted black-box access to a machine A, which is an adversary for

the security experiment Exp
– B gets as auxiliary input an upper bound q on the number of oracle queries A

makes in each invocation.

By restricted black-box access to A we mean that B is allowed to program an
oracle OB, choose inputs pp, stA and get the output (resp, stA) ← AOB(·)(pp, stA).
As before, we assume that A queries its oracle exactly once per invocation (We
stress that B does not see A’s oracle queries).

We say that B is an oblivious black-box reduction from the security of Exp
to π if it holds for every (possibly inefficient) adversary A against Exp that if
AdvExp

A (λ) is non-negligible, then Advπ
BA(λ) is also non-negligible.

2.3 Secure Function Evaluation for Cryptographic Primitives

In this section, we propose our security notions for two-round secure function
evaluation of cryptographic primitives P. A two-round SFE protocol is a proto-
col between two parties, a sender S and a receiver R. The sender provides as
input a function f from a family F and the receiver an input x to the function.
At the end of the protocol, the sender gets no output (except for a signal that
the protocol is over), whereas the receiver’s output is f(x). The function that
is realized by our SFE protocols is a function of the primitive P. Since we view
P as a collection of algorithms, our SFE protocol evaluates the underlying func-
tionality. For example, in the case of signature schemes this collection consists
of a key generation, a signing, and a verification algorithm. Securely evaluating
this primitive means to securely evaluate the signing algorithm.

In the following, we introduce our security definitions. Roughly speaking,
receiver security says that the security of the underling cryptographic primitive
is preserved. This property must hold even against malicious receivers. Moreover,
our security notion for the sender holds with respect to semi-honest senders.

Induced Game-Based Malicious Receiver Security. Regarding security,
ideally we would like to achieve that the receiver learns nothing but f(x), which
is usually modeled via standard simulation based security notions. However, it is
well known that standard simulation based security notions fail in the regime of
two-round secure function evaluation [29]. Thus, our goal is to achieve a weaker
notion of security, which roughly says that the security of the underlying crypto-
graphic primitive is preserved. More precisely, we consider the secure evaluation
of cryptographic primitives, which are equipped with a game based security
notion. In our formalization the adversary in the corresponding security experi-
ment has black-box access to the primitive. Then, we define an induced security

630 N. Döttling et al.

notion by replacing black-box calls to the primitive in the security game with
instances of the two round SFE protocol. I.e., instead of giving the adversary
black access to the primitive, it acts as a malicious receiver in an SFE session
with the sender. Achieving this notion and showing that the underlying security
guarantees are preserved is non-trivial, because the adversary is not semi-honest
and may not follow the protocol.

Definition 5 (Induced Game-Based Malicious Receiver Security). Let
Exp = (Init,O,Update,Test) be a cryptographic security experiment for a primi-
tive P. Let Π = (S,R) be a two-round SFE protocol for a function F of P. The
induced security experiment Exp′ is defined by replacing O with instances of Π,
where the adversary is allowed to act as a malicious receiver.

In the following, we study the implications of our security notion with respect
to the security of the underlying cryptographic primitive. It is not very difficult
to see, that if a protocol is perfectly correct and securely realizes our notion
of induced game-based security, then it immediately implies the security of the
underlying cryptographic primitive. Second, one can also show that the converse
is not true, by giving a counterexample. The basic idea of the counterexample is
to build a two-round SFE protocol that completely leaks the circuit and thus the
entire private input of the sender. The main result of our paper is a two-round
SFE protocol that preserves the underlying security guarantees.

Semi-honest Sender Security. We define security against semi-honest senders
via the standard simulation based definition [24].

Definition 6 (Semi-honest Sender Security). Let Π = (S,R) be a two-
party protocol for a functionality F . We say that Π is semi-honest sender secure,
if there exists a PPT simulator Sim such that it holds for all receiver inputs x
and all sender inputs f that

(x, f, view(S), 〈S,R(x)〉) comp.≈ (x, f,Sim(f), f(x))

3 2-Round SFE via 1-Hop Homomorphic Encryption

In this section, we present our protocol and prove that it is induced game-
based malicious receiver secure (Definitions 5) and semi-honest sender secure
(Definition 6).

3.1 1-Hop Homomorphic Encryption

1-hop homomorphic encryption schemes are a special kind of homomorphic
encryption schemes that allow a server to compute on encrypted data. Given
a ciphertext c produced by the encryption algorithm Enc, the evaluation algo-
rithm Eval can evaluate a circuit C from C on c. After this no further compu-
tation on the output ciphertext is supported. We recall the definition of 1-hop
homomorphic encryption schemes and the corresponding notions of security [23].

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 631

Definition 7 (1-Hop Homomorphic Encryption). Let C : {0, 1}n → {0, 1}o

be a family of circuits. A 1-hop homomorphic encryption scheme HE = (Kg,Enc,
Dec,Eval, C1, C2) for C consists of the following efficient algorithms:

Key Generation. The input of the key generation algorithm Kg(1λ) is the
security parameter λ and it returns an encryption key ek and a decryption
key dk.

Encryption. The encryption algorithm Enc(ek ,m) takes as input an encryption
key ek and a message m ∈ {0, 1}n and returns a ciphertext c ∈ C1.

Evaluation. The evaluation algorithm Eval(ek , c, C) takes as input a public
encryption key ek, a ciphertext c generated by Enc and a circuit C ∈ C and
returns a ciphertext c′ ∈ C2.

Decryption. The decryption algorithm Dec(dk , c) takes as input a private
decryption key dk and a ciphertext c′ generated by Eval and returns a message
y ∈ {0, 1}o.

We recall that the standard notions of completeness and compactness [23]. A
homomorphic encryption scheme is complete if the probability of a decryption
error is 0. It is compact if the size of the output ciphertext c′ of the evaluation
algorithm Eval is independent of the size of the circuit C. Moreover, we recall
the standard notion of IND-CPA-security for homomorphic encryption schemes:
Given a public key ek for the scheme, no PPT adversary succeeds to distinguish
encryptions of two adversarially chosen messages m0 and m1.

For our purposes we need a homomorphic encryption scheme with malicious
circuit privacy. This property says that even if both maliciously formed public
key and ciphertext are used, encrypted outputs only reveal the evaluation of the
circuit on some well-formed input x∗. We recall the definition in the following.

Definition 8 (Malicious Circuit Privacy). A 1-hop homomorphic encryp-
tion scheme HE = (Kg,Enc,Dec,Eval, C1, C2) for a family C of circuits is (mali-
ciously) circuit private if there exist unbounded algorithms SimHE(ek , c, y), and
deterministic ExtHE(ek , c) such that for all λ, and all ek, all c ∈ C1 and all
circuits C ∈ C it holds that

SimHE(ek , c, C(x))
stat.≈ Eval(ek , C, c),

where x = ExtHE(ek , c).

Instantiations. We consider instantiations of maliciously circuit private 1-
hop homomorphic encryption. Maliciously circuit private homomorphic encryp-
tion for logarithmic depth circuits can be achieved by combining information-
theoretic garbled circuits (aka randomized encodings) [2,33,38] with two-
message oblivious transfer [1,30,48].

Theorem 1 [1,2,30,33,38,48]. Under numerous number-theoretic assump-
tions, there exist a non-compact maliciously circuit private homomorphic encryp-
tion scheme that support circuits of logarithmic depth.

632 N. Döttling et al.

Ostrovsky et al. [52] provide a construction that bootstraps a maliciously
circuit privacy scheme that supports only evaluation of logarithmic depth circuits
into a scheme that supports all circuits (i.e., it is fully homomorphic).

Theorem 2 (Theorem 1 in [52]). Assume there exists a compact semi-
honest circuit private fully homomorphic encryption scheme FHE with decryp-
tion circuits of logarithmic depth and perfect completeness. Assume further that
there exists a (non-compact) maliciously circuit private homomorphic encryption
scheme for logarithmic depth circuits. Then there exists a maliciously circuit pri-
vate fully homomorphic encryption scheme with perfect completeness.

3.2 Construction

We can now state the two message SFE protocol. If f is a cryptographic function-
ality that takes input s from the sender, input x from the receiver and random
coins r, we augment the functionality such that both parties contribute to the
random coins. I.e., both parties also input random string rS and rR and the
random coins for the functionality is set to rS ⊕ rR.

Construction 1. Let HE be a 1-hop homomorphic encryption scheme. The
interactive protocol that realizes F : (s, rS , x, rR) → (⊥, f(s, rS ;x, rR)) is shown
in Fig. 3.

Fig. 3. Oblivious two-party protocol

The following theorem shows that security against malicious receivers with
respect to our definition of induced game-based security.

Theorem 3. Let P be a cryptographic primitive and Exp be the corresponding
security experiment. If there exists an efficient oblivious black-box reduction B
that reduces security of P to a hard problem π, then the protocol Π is secure with
respect to Exp′. Formally, there exists an efficient reduction B′ that reduces the
security of Π to π.

Proof. Assume there exists a PPT adversary A that has non-negligible advantage
ε1 in the security experiment Exp′.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 633

Step 1. In the first step, we change the security experiment Exp′ to an indistin-
guishable experiment Exp∗. In particular, we implement A’s oracles differently.
In Exp′, the oracle gets a sender-input (s, rS) and a receiver-message (ek , c),
computes c′ ← Eval(ek , f(s, rS ; ·, ·), c) and outputs c′ to A. In Exp∗, the oracle
is implemented as follows. Given sender-input (s, rS) and a receiver-message
(ek , c), the oracle first computes (x, rR) ← ExtHE(ek , c). Then it computes
y ← f(s, rS ;x, rR) and then c′ ← SimHE(ek , c, y) and finally outputs c′ to A

OA1(ek , c)
c′ ← Eval(ek , f(s, rS ; ·, ·)
Return c′

OA2(ek , c)
(x, rR) ← ExtHE(ek , c)
y ← f(s, rS ;x, rR)
c′ ← SimHE(ek , c, y)
Return c′

We claim that ε2 = AdvExp∗(A) ≥ AdvExp′(A) − negl(λ). We establish this
via a hybrid argument. Assume that A makes at most � = poly(λ) oracle queries.
Define �+1 hybrid experiments H0, . . . ,H�. H0 simulates the oracle as in exper-
iment Exp′(A), whereas H� simulates it as in Exp∗(A). In Hi the first i oracle
queries to A are answered as in Exp′(A), whereas the last � − i oracle queries of
A are answered as in Exp∗(A). It follows by the statistical circuit privacy of HE
that the statistical distance between each Hi and Hi+1 is at most ν for a negli-
gible ν. Thus, by the triangle inequality the statistical distance between Exp′(A)
and Exp∗(A) is at most � · ν, which is negligible. Note that the experiment Exp∗

is not efficient anymore.

Step 2. The second step is a bridging step: We move both the extractor ExtHE
and the simulator SimHE into a new adversary A2, which internally simulates
A. The adversary A2 is an unbounded adversary against the experiment Exp
with advantage ε2. Adversary A2 works as follows. When adversary A sends an
oracle query (ek , c), A2 computes (x, rR) ← ExtHE(ek , c) and sends x to its own
oracle (in the Exp experiment). Once it receives an oracle output y, it computes
c′ ← SimHE(ek , c, y) and forwards c′ to A.

Adversary A2(pp, stA)
Has access to oracle OA

(resp, stA) ← AOA′(·)(pp, stA)
Return (resp, stA)

Oracle OA′(ek , c)
(x, rR) ← ExtHE(ek , c)
y ← OA(x)
c′ ← SimHE(ek , c, y)
Return c′

We claim that Exp(A2) is identically distributed to Exp∗(A). To see this,
note that we’ve just regrouped the algorithms ExtHE and SimHE into A2 and
removed the dependency of y from rR. However, since f(s, rS ;x, rR) computes
the function F (s, x, rS ⊕ rR), the distribution of y does not depend on rR (as
rS is chosen uniformly at random).

Step 3. In the third step, we combine the adversary A2 with the oblivious black-
box reduction B, which yields an (unbounded) adversary BA2 with non-negligible
advantage ε3 against the hard problem π (as ε2 = ε1 −negl(λ) is non-negligible).

634 N. Döttling et al.

Note at this stage that while the reduction B is efficient, the π-adversary BA2 is
not efficient as A2 is not efficient.

Step 4. The fourth step is again a bridging step: We move the extractor ExtHE
and the simulator SimHE into the oracle simulated by B, thus obtaining a new
reduction B∗. More precisely, B∗ simulates B, but when B invokes the adversary
with input (pp, stA) and oracle circuit OA, B∗ constructs the following new ora-
cle OA∗. On input (ek , c), OA∗ computes (x, rR) ← ExtHE(ek , c), y ← OA(x),
c′ ← SimHE(ek , c, y) and outputs c′. We claim that 〈Ch,BA2〉 and 〈Ch,B∗A〉
are identically distributed (where Ch is the challenger for the hard problem π).
In fact, we have merely rearranged the algorithms ExtHE and SimHE from the
adversary A2 into the oracle OA∗. Note that now the reduction B∗ is inefficient,
whereas the adversary A is efficient.

Step 5. In the fifth and final step, we change the way the reduction B∗ imple-
ments its oracles, obtaining an efficient reduction B′. We will use the circuit
privacy of HE a second time to implement the oracles efficiently. Whereas B∗

constructs oracle circuit OA∗ from oracle circuit OA provided by B, B′ proceeds
as follows. On input (ek , c), the oracle OA′ computes c′ ← Eval(ek ,OA(·), c) and
outputs c′. Define the circuit OA to compute the function OA(x, r) = OA(x),
i.e., it just drops its second input. Using the malicious circuit privacy of HE, we
can establish that 〈Ch,B∗A〉 and 〈Ch,B′A〉 are statistically close in the same
fashion as in step 1. Finally, note that both B′ and A are efficient, therefore B′A

is efficient. �
The following theorem shows that our protocol is secure against semi-honest
senders. Note that achieving security against malicious senders is not possible
(under standard assumptions). The corresponding impossibility results is given
in Sect. 5.

Theorem 4. If HE is an IND-CPA secure 1-hop homomorphic encryption
scheme, then Π is secure against semi-honest senders.

Proof. We will first provide the simulator Sim. The main idea of Sim is to run
the protocol Π between a simulated sender S and a simulated receiver R, where
the receivers input is 0n. After the protocol terminates, Sim outputs the view of
the sender S.

Now assume there exists a PPT distinguisher D that distinguishes the dis-
tributions (x, s, view(S), 〈S,R(x)〉) and (x, f,Sim(s), f(x)) with non-negligible
advantage ε for some inputs s and x. We will construct an adversary A that
breaks the IND-CPA security of HE with advantage ε. Given a public key ek ,
A chooses a random rR and r′

R, sets m0 = (x, rR) and m1 = (0n, r′
R) and

sends (m0,m1) to the IND-CPA experiment. Let c be the challenger cipher-
text. A chooses random coins rS , and runs S with input s, rS and receiver
message c. Let view(S) be the simulated view of the sender. Next, A computes
y = f(s, rS ;x, rR). Finally, A runs D on input (x, s, view(S), y) and outputs
whatever D outputs.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 635

We claim that A breaks the IND-CPA security of HE with advantage ε. First
assume the IND-CPA challenge bit is 0. In this case the IND-CPA returns to A
an encryption of m0 = (x, rR). Thus, the view that A simulates is identically
distributed to S’s view in the real experiment, but also the output y has the
same distribution as in the real experiment. On the other hand, if the IND-CPA
choice bit is 1, then view(S) is identically distributed to Sim(s) and the output
y = f(s, rS ;x, rR) is independently distributed of view(S) (as rR is independent
of view(S)). Thus we conclude

AdvIND-CPA(A) = |Pr[IND-CPA0(A) = 1] − Pr[Pr[IND-CPA1(A) = 1]|
= |Pr[D(x, s, view(S), 〈S(s),R(x)〉) = 1]

− Pr[D(x, s,Sim(s), f(s;x)) = 1]| = ε,

which concludes the proof. �

4 Round-Optimal Oblivious Pseudorandom Functions

Our technique yields the first two message oblivious pseudorandom function in
the standard model. Oblivious pseudorandom functions are in essence pseudo-
random functions that are obliviously evaluated in a two-party protocol. This
means that the sender S holds a key k of a PRF F and the receiver R a value
x and wishes to learn F (k, x). As already discussed in the introduction, OPRFs
have many applications, such as private key-word search [17], or secure compu-
tation of set intersection [34]. However, despite the popularity of this primitive,
no scheme in the standard model is known with only two rounds of communi-
cation. Regarding the security of OPRFs, we wish to express that the sender S
does not learn anything about the value x, and the receiver R learns only the
pseudorandom value F (k, x). First recall the standard definition of pseudoran-
dom functions.

Definition 9 (Pseudorandom Functions). An efficiently computable two-
argument function PRF is called pseudorandom function, if it holds for every
PPT distinguisher D that

Adv(D) = |Pr[DPRF (k,·) = 1] − Pr[DH(·) = 1]| ≤ negl(λ),

where k is a randomly chosen key F and H is a random function with the same
domain and range as F .

We will now turn to the standard definition of oblivious pseudorandom func-
tions. This notion require for an OPRF protocol Π two properties to be satis-
fied. First, we require that Π is a secure two-party protocol realizing a function
F (k, x), where k is the sender input and x is the receiver input. Second, we
require that F (k, ·) is a pseudorandom function. The first part of this definition
captures the idea that the π allows the receiver to learn one function value of
F (k, ·) per invocation only. The second requirement ensures that such function
values are pseudorandom.

636 N. Döttling et al.

While this definition is appealing due to its modularity, it is impossible in
the two message setting, even if we only consider semi-honest senders1. To cir-
cumvent this impossibility, we propose a security notion which captures both
intuitive requirements in a single definition. In this definition, a PPT distin-
guisher is given access to an oracle, which implements either an OPRF sender
or an unbounded simulator Sim with access to a truly random function H. Since
we are considering two-message OPRF protocols, the distinguisher’s queries to
its oracle are simply the first message of a malicious receiver. Since we are in the
two-message setting, the simulator has a very simple structure: It extracts the
receiver’s queries by brute force, forwards them to the random function H, and
then simulates a response by the sender using the random function’s output. This
definition contains a minor loophole: It does not rule out trivial simulators, i.e.,
it does not require the simulator to use the random function it is given access
to at all. The simulator could do anything, even simulating the real protocol
(which would give perfect indistinguishability between the two distributions),
which would defeat the purpose of the definition. To fix this, we will give the
distinguisher direct access to the random function H. In the real execution, this
is mirrored by giving the distinguisher access to an oracle that implements an
honest receiver interacting with the sender. Now, the distinguisher can actu-
ally cross check the answers of the simulator. This definition has some flavor
of the universal composability framework [9] and Nielsen’s definition of non-
programmable random oracles [50]. Think of a complex scenario where multiple
receivers interact with one OPRF sender (e.g. a server). We may think of the
distinguisher in our definition as an environment in control of several malicious
receivers over which it has full control, but it can also choose inputs and observe
outputs of honest receivers. Then this definition requires that from the environ-
ments view the OPRF server looks like it actually implements a truly random
function.

Definition 10 (Security Against Malicious Receiver for Oblivious
Pseudorandom Functions). Let Π = (S,R) be a two-message protocol. We
say that π is a two-message oblivious pseudorandom function, if for every PPT
distinguisher D there exists a (possibly unbounded) simulator Sim, such that

Adv(D) = |Pr[D〈S(k),·〉,〈S(k),R(·)〉 = 1] − Pr[DSimH(·),H(·) = 1]| ≤ negl(λ),

where k is a randomly chosen input for S and H is a random function (with
appropriate domain and range). Here, 〈S(k), ·〉 is a session of π where D can
choose the first message of the receiver and receives the second message by the
sender. In 〈S(k),R(·)〉, D chooses the input for R and obtains the output of R.

The security guarantee for the receiver is the standard simulation based secu-
rity against semi-honest senders (Definition 6).
1 The impossibility is analogous to the impossibility of simulation based two message

oblivious transfer. Consider a malicious receiver that gets auxiliary input z, which
the malicious receiver sends as its first message. An efficient simulator Sim for this
malicious receiver must extract in input x given only z.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 637

Remark 2. We remark several points. First, if a simulator Sim is non-trivial
by construction, we can omit the second oracle of the distinguisher. Basically,
the only property we need to ensure non-triviality is that if the simulator gets
messages from an honest receiver, then this composed system actually imple-
ments in the random function H. Formally, this requirement can be written as
〈SimH ,R(·)〉 ≡ H(·), i.e., if an honest receiver interacts with a simulator Sim
with access to H, then this protocol implements H. If this is guaranteed, then
the oracles 〈S(k), ·〉 and SimH(·) are sufficient: Given such an oracle OA (which
is either of the two), the distinguisher D can simulate the honest oracle by
〈OA,R(·)〉. In our construction the simulator Sim will be canonical: It extracts
the first message, sends the extracted input to the random function H, and uses
the output to simulate the senders message. This simulator is non-trivial by
construction, and thus giving the distinguisher access to a single oracle will be
sufficient. Moreover, while Definition 10 allows the simulator Sim to depend on
the distinguisher D, our canonic simulator will be universal in the sense that it
works for any PPT distinguisher D.

Pseudorandom Functions with Oblivious Black-Box Reductions. To
apply the technique developed in Sect. 3, we require a pseudorandom function
with an oblivious black-box reduction. Most constructions of PRFs in the lit-
erature do not possess such a reduction. In particular, most reductions need to
program the distinguishers oracle adaptively depending on prior oracle inputs
of the distinguisher. For example, the security reduction of the construction of
Goldreich, Goldwasser and Micali [25], which reduces the security of the PRF
on that of the underlying pseudorandom generator is based on a hybrid argu-
ment and needs to keep a list of the distinguisher’s distinct oracle queries to be
able to answer oracle queries consistently. This however contradicts our notion
of obliviousness.

Fortunately, there are constructions of pseudorandom functions with oblivi-
ous black-box reductions to their underlying hard problems. One example of such
a PRF is the Naor Reingold PRF [49]. While the security reduction provided
in [49] is not oblivious, there is simple way of converting this reduction into an
oblivious black-box reduction using q-wise independent functions (Appendix A).
More generally, there is a recent line of work that aims at constructing large-
domain pseudorandom functions from small-domain pseudorandom functions via
oblivious black-box reductions [8,14]. The baseline of these results is that large
domain PRFs can be constructed by combining several small-domain (i.e., poly-
sized domain) PRFs in a suitable way. The pseudorandomness of large domain
PRFs is established by replacing one of the small-domain PRFs (depending on
the query bound of the adversary) with a random function in a single shot. Since
the small-domain PRF has a domain of just polynomial size, the reduction can
(non-adptively) query its oracle on all inputs and retrieve the entire function
table. Thus, there is no need of adaptively programming the distinguishers ora-
cle based on previous queries. In order to use the framework we developed in
Sect. 3, it will be convenient to use an alternative definition of pseudorandom

638 N. Döttling et al.

functions. In Definition 9, the distinguishers goal is to distinguish the PRF from
a truly random function. However, if we do not know any bound on the dis-
tinguisher’s number of queries in advance, the only (known) way to simulate a
random function is by evaluating the random function lazily: Every time the dis-
tinguisher queries the random function on a new input, the simulation samples
a random image and adds it into a table of input and output values. If a certain
input has been queried before, it’s image is retrieved from the table. However,
such a simulation is necessarily stateful. To overcome this, we use an equivalent
definition of pseudorandom functions which takes into account that a every PPT
distinguisher has a polynomial upper bound on the number of its oracle queries.
Once such a bound q is known, we can simulate a random function statelessly
with an efficient q-wise independent function.

Definition 11 (q-Wise Independent Function). Let F be an efficiently
computable two argument function that takes a seed s and an input x. We say that
F is a q-wise independent functions, if it holds for all pairwise distinct x1, . . . , xq

that F (s, x1), . . . , F (s, xq) are distributed independently and uniformly random
over the choice of the seed s.

There are various constructions of efficient q-wise independent functions, such as
the classical construction of Wegman and Carter [57] which is based on random
degree q polynomials in large finite fields.

Definition 12 (Pseudorandom Functions, Equivalent Definition). An
efficiently computable two-argument function PRF is called pseudorandom func-
tion, if there exists a family {Fq}q of functions, where Fq is q-wise independent,
such that the following holds. For every q = poly(λ) and every PPT distinguisher
D that queries its oracle at most q times it holds that

Adv(D) = |Pr[DPRF (k,·) = 1] − Pr[DFq(s,·) = 1]| ≤ negl(λ),

where k is a randomly chosen key for PRF and s is a randomly chosen seed
for Fq.

Theorem 5 [8,14,49]. Under various standard hardness assumptions (pseudo-
random generators, DDH, LWE) there exist pseudorandom functions with obliv-
ious black-box reduction to their underlying hardness assumption.

Construction. The construction is expectably simple. We combine Construc-
tion 1 with a pseudorandom function that possesses an oblivious black-box reduc-
tion to some hard problem π, which is provided by Theorem5. For this instan-
tiation, we need to instantiate Construction 1 with a maliciously circuit private
fully homomorphic encryption scheme (such as provided by Theorem2), as there
is no a priori upper bound on the size of the circuits that implement q-wise inde-
pendent functions. For convenience, we write down the protocol as follows. Let
PRF be a pseudorandom function and HE be a fully homomorphic encryption
scheme. The OPRF protocol Π is given as follows.

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 639

Protocol ΠOPRF

Setup
S0(1λ): Choose a random key k for PRF

Query
R1(x)

(ek , sk) ← Kg(1λ)
c ← Enc(ek , x)
Send (ek , c) to S

S(k, (ek , c)):
c′ ← Eval(ek , PRF (k, ·), x)
Send c′ to R

R2(c′):
y ← Dec(sk, c′)
Output y

We can now prove the main theorem of this section.

Theorem 6. Let HE be an IND-CPA secure maliciously circuit private fully
homomorphic encryption scheme with perfect completeness (as provided by The-
orem 2) and PRF be a pseudorandom function with an oblivious black-box reduc-
tion to hard problem π. Then the protocol ΠOPRF is an OPRF protocol with
security against semi-honest senders and malicious receivers.

Proof. We begin with the proof of security against malicious receivers defining
the universal simulator Sim. Let ExtHE and SimHE be the extractor and simulator
for the statistical circuit privacy of HE. Simulator Sim is given as follows.

Simulator SimH(ek , c)
Has oracle access to a function H
x ← ExtHE(ek , c)
y ← H(x)
c′ ← SimHE(ek , y, c)
return c′

Now, let D be a PPT distinguisher that makes at most q = poly(λ) oracle
queries and has non-negligible advantage ε against the malicious receiver security
experiment of ΠOPRF, i.e.,

|Pr[D〈S(k),·〉,〈S(k),R(·)〉 = 1] − Pr[DSimH(·),H(·) = 1]| ≥ ε.

First of all, notice that since D makes at most q queries to its oracles, we can
efficiently (and statelessly) simulate the random function H by an efficiently
computable q-wise independent function Fq, i.e., we get

|Pr[D〈S(k),·〉,〈S(k),R(·)〉 = 1] − Pr[DSimFq(s,·)(·),Fq(s,·) = 1]| ≥ ε.

Our proof strategy will now be as follows. We will use D to construct a
distinguisher D′ with advantage ε′ = ε − negl(λ) against the induced security

640 N. Döttling et al.

experiment for PRF under the homomorphic encryption HE (c.f. Definition 5).
Recall that the pseudorandom function PRF possesses an oblivious black-box
reduction B to some hard problem π. Thus, Theorem 3 yields an efficient reduc-
tion B′ such that B′D′

has non-negligible advantage against π, contradicting its
hardness.

We will now consider the induced security experiment for PRF . Therefore, we
will first define a sender algorithm S ′. Basically, S ′ homomorphically evaluates
the q-wise independent function Fq.

S ′(s, (ek , c))
c′ ← Eval(ek , Fq(s, ·), c)
return c′

Thus, while S homomorphically evaluates the pseudorandom function PRF ,
S ′ homomorphically evaluates the q-wise independent function Fq. Thus, the
induced security experiment of the experiment given in Definition 12 asks to
distinguish the oracles 〈S(k), ·〉 and 〈S ′(s), ·〉.

We will now construct a distinguisher D′ against the induced security exper-
iment of PRF using the distinguisher D. D′ is given as follows.

Distinguisher D′(1λ)
Has access to oracle OA1

out ← DOA1(·),OA2(·)(1λ)
Return out

Oracle OA2(x)
y ← 〈OA1,R(x)〉
Return y

We claim that

|Pr[D′〈S(k),·〉 = 1] − Pr[D〈S′(s),·〉 = 1]| ≥ ε − negl(λ), (1)

i.e., D′ has non-negligible advantage ε − negl(λ) against the induced security
experiment of PRF .

We claim that if OA1 = 〈S(k), ·〉, then the output of D′〈S(k),·〉(1λ) is identi-
cally distributed to the output D〈S(k),·〉,〈S(k),R(·)〉(1λ). To see this, note that the
oracle OA2 implemented by D′ is precisely 〈S(k),R(·)〉 in this case.

On the other hand, if OA1 = 〈S ′(s), ·〉, then we claim that the output of
D′〈S′(s),·〉 is distributed statistically close to the output of DSimFq (·),Fq(·)(1λ). To
see this, note first that in this case the oracle OA2 provided by D′ to D can be
expressed as follows.

OA2(x)
(ek , sk) ← Kg(1λ)
c ← Enc(ek , x)
c′ ← Eval(ek , Fq(s, ·), c)
y ← Dec(sk, c′)
return y

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 641

It follows immediately from the perfect completeness of HE that OA2 implements
exactly Fq(s, ·). It remains to show that the oracles 〈S ′(s), ·〉 and SimFq (·) are sta-
tistically close. However, as S ′(s) homomorphically evaluates Fq, it follows from
the malicious circuit privacy of HE that both oracles produce distributions that
are statistically close, even given Fq. Thus, we can use a standard q-step hybrid
argument over the queries of D to establish that D′〈S′(s),·〉 and DSimFq (·),Fq(·)(1λ)
are statistically close. Thus, (1) follows and we can apply Theorem3 to arrive
at a contradiction. Security against semi-honest senders follows directly from
Theorem 4, which concludes the proof. �

5 Impossibility of Malicious Sender Security

In this section, we show that malicious receiver security (w.r.t. our notion of
induced game-based security) and malicious sender security cannot be achieved
simultaneously. Our impossibility result is constructive in the sense that we
show that our framework covers the standard security notion of blind signatures.
However, Fischlin and Schröder showed that a large class of three-move blind
signature schemes cannot be proven secure under standard assumptions [16].
Since our framework falls into this class, the impossibility result follows.

Blind Signatures. Blind signatures [11] implement a carbon copy envelope allow-
ing a signer to issue signatures for messages such that the signer’s signature
on the envelope is imprinted onto the message in the sealed envelope. In par-
ticular, the signer remains oblivious about the message (blindness), but at
the same time no additional signatures without the help of the signer can be
created (unforgeability). Constructing round-optimal blind signature schemes
in the standard model has been a long standing open question. Fischlin and
Schröder showed that all previously known schemes having at most three rounds
of communication, cannot be proven secure under non-interactive assumptions
in the standard model via black-box reductions [16]. Subsequently, several works
used a technique called “complexity leveraging” to circumvent this impossibil-
ity result [19,20] and recently, Fuchsbauer, Hanser, Slamanig suggested a round
optimal blind signature scheme that is secure in the generic group model [18].
In fact, it is still unknown if round optimal blind signatures, based on standard
assumptions, exist in the standard model.

By applying our technique to the oblivious computation of signatures, we
obtain a round optimal blind signature scheme without complexity leveraging
and whose security can be based on standard cryptographic assumptions. Since
our scheme belongs to the class characterized by Fischlin and Schröder it is not
possible to prove blindness w.r.t. malicious adversaries.

Security Definition for Blind Signatures. We recall the unforgeability defi-
nition of blind signatures [35,53] that can be expressed within our formalization
of a cryptographic experiment.

642 N. Döttling et al.

Definition 13 (Unforgeability). An interactive signature scheme BS = (KG,
〈S,U〉 ,Vf) is called unforgeable if for any efficient algorithm A (the malicious
user) the probability that experiment ForgeBSA (λ) evaluates to 1 is negligible (as
a function of λ) where

Experiment ForgeBSA (λ)
(sk, pk) ← KG(1λ)
((m∗

1, σ
∗
1), . . . , (m

∗
k+1, σ

∗
k+1)) ← A〈S(sk),·〉∞

(pk)
Return 1 iff

m∗
i �= m∗

j for all i, j with i �= j, and
Vf(pk,m∗

i , σ
∗
i) = 1 for all i, and

S has returned ok in at most k interactions.

The corresponding definition of blindness says that it should be infeasible for a
malicious signer S∗ to decide which of two messages m0 and m1 has been signed
first in two executions with an honest user U . If one of these executions has
returned ⊥ then the signer is not informed about the other signature (Otherwise
the signer could trivially identify one session by making the other abort.). If
one restricts this definition the semi-honest adversaries, then this definition is
immediately implied by Definition 6.

Construction. Our construction instantiates our general framework as defined
in Construction 1 with a signature scheme DS = (KgSig,Sig,Vf) that has an obliv-
ious black-box reduction to some underlying hard problem π. For this instantia-
tion, we need maliciously circuit private homomorphic encryption for logarithmic
depth circuits that can be achieved by combining information-theoretic garbled
circuits (aka randomized encodings) [2,33,38] with two-message oblivious trans-
fer [1,30,48] as provided by Theorem1. Moreover, we need a digital signature
scheme that can computed via a logarithmic depth circuit. Such a signature
scheme can be obtained by using the non-apaptively secure signature scheme by
Applebaum et al. [2]. However, this scheme is only non-adaptively secure, which
means the adversary has to commit to all messages before learning the public-key
and the signature. Using the standard transformation based on chameleon hash
functions [31,40] one can convert any non-adaptively secure signature scheme
into one that is adaptively secure. Here we actually deal with two reductions.
One that deals with adversaries that find collisions of the chameleon hash func-
tion and one that deals with adversaries that do not find hash collisions, but still
manage to forge signatures. The first reduction is easily seen to be obliviously
black-box, as the reduction possesses the signing key for the signature scheme
an hash collisions can be easily recovered from the adversary’s output. Here the
signing circuit is the same as in the real experiment. The second reduction has
the following structure. If q is the query bound of the adversary, the reduction
computes chameleon hashes on q random values and has them (non-adaptively)
signed by the signing oracle. Each time the adversary queries its signing ora-
cle, the reduction uses up one of the precomputed signatures of the chameleon
hashes by computing a hash collision with the adversary’s query and returning

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 643

the corresponding signature to the adversary. Note that since the reduction is
allowed to reprogram the signing circuit after each query, we only need to hard-
wire a single hash value and trapdoor at a time into the signing oracle circuit.
Since chameleon hash functions can easily be obtained from the discrete loga-
rithm assumption involving only two modular exponentiations and a multiplica-
tion [40], this transformation can also be computed by a circuit of logarithmic
depth. Thus we obtain an oblivious black-box reduction to the non-adaptive
unforgeability of the signature scheme where every circuit used by the reduc-
tion has a most an a priori known logarithmic depth. We obtain the following
theorem.

Theorem 7. Let HE be an IND-CPA secure maliciously circuit private homo-
morphic encryption scheme with perfect completeness for circuits of logarithmic
depth and let DS be a signature scheme compute by a circuit of logarithmic depth
and with an oblivious black-box reduction to hard problem π. Then the protocol
ΠBS defined above is a blind signature protocol with security against semi-honest
senders and malicious receivers.

Given this theorem, we obtain our impossibility result in the following corollary.

Corollary 1 (Impossibility of Malicious Sender Security, Informal).
There exists no two-move secure evaluation protocol for cryptographic function-
alities that is secure against malicious receivers and senders based on standard
assumptions.

Acknowledgement. Nico Döttling gratefully acknowledges support by the DAAD
(German Academic Exchange Service) under the postdoctoral program (57243032).
This work was in part supported by European Research Council Starting Grant 279447.
Research supported in part from a DARPA/ARL SAFEWARE award, AFOSR Award
FA9550-15-1-0274, and NSF CRII Award 1464397. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government. Nils Fleischhacker, Johannes
Krupp and Dominique Schröder were supported by the German Federal Ministry of
Education and Research (BMBF) through funding for the Center for IT-Security, Pri-
vacy and Accountability (CISPA – www.cispa-security.org) and the project PROMISE.
Moreover, it was supported by the Initiative for Excellence of the German federal and
state governments through funding for the Saarbrücken Graduate School of Computer
Science and the DFG MMCI Cluster of Excellence. Part of this work was also sup-
ported by the German research foundation (DFG) through funding for the collabora-
tive research center 1223 and by the DAAD PPP USA program (57129666). We would
like to thank the anonymous reviewers of CRYPTO 2016 for their helpful comments.

A An Oblivious Black-Box Reduction for Naor-Reingold
PRF

Lemma 1. The Naor-Reingold PRF is secure under the DDH assumption and
the reduction is oblivious.

www.cispa-security.org

644 N. Döttling et al.

Proof. Given an adversary A who can distinguish the Naor-Reingold PRF with
non-negligible probability ε(λ) from a truly random function making at most q
queries to its oracle, consider the following oblivious reduction B against DDH:

B gets as input a DDH instance (g, ga, gb, gc̃), where either c̃ = a · b or not.
We restrict the reduction to the case where a, b, c̃ �= 0 (otherwise it is trivial
to tell whether c̃ = a · b). B will choose a random j

$← {1, . . . , λ} and pick
a random q-wise independent function F

$← Fq. It will then sample values
(aj+1, . . . , aλ) $← Zp and program the oracle OA for A as follows:

OA(x):
x xj . . . xλ = x, where x is the (j − 1)-bit prefix of x
α = F (x)
If xj = 0:

Return
((

gb
)α)∏λ

k=j+1 a
xk
k

else

Return
((

gc̃
)α)∏λ

k=j+1 a
xk
k

The reduction B will invoke AOA and output 1 exactly whenever AOA does.
If c̃ = a · b, then for j = 1 the oracle perfectly simulates the Naor-Reingold

PRF PRF�a with key �a = (bα, a, a2, . . . , aλ) (since x will be the empty string, α
will be constant). Furthermore, if c̃ �= a · b, then for j = λ the oracle perfectly
simulates a q-wise independent function f (observed as truly random by A):

Prob
[BA(g, ga, gb, gc̃) = 1

∣∣c̃ = a · b∧ j = 1
]

= Prob
[APRF�a(1λ) = 1

]
Prob

[BA(g, ga, gb, gc̃) = 1
∣∣c̃ �= a · b∧ j = λ

]
= Prob

[Af (1λ) = 1
]

Since gc̃ is independent of gb in case of c̃ �= a · b it holds that

Prob
[BA(g, ga, gb, gc̃) = 1

∣∣c̃ �= a · b∧ j = i
]

= Prob
[BA(g, ga, gb, gc̃) = 1

∣∣c̃ = a · b∧ j = i + 1
]

And therefore∣∣Prob
[BA(g, ga, gb, gc̃) = 1

∣∣ c̃ = a · b
]

−Prob
[BA(g, ga, gb, gc̃) = 1

∣∣ c̃ �= a · b
]∣∣

=

∣∣∣∣∣
1
λ

·
λ∑

i=1

Prob
[BA(g, ga, gb, gc̃) = 1

∣∣ c̃ = a · b ∧ j = i
]

− 1
λ

·
λ∑

i=1

Prob
[BA(g, ga, gb, gc̃) = 1

∣∣ c̃ �= a · b ∧ j = i
]∣∣∣∣∣

=
1
λ

∣∣Prob
[BA(g, ga, gb, gc̃) = 1

∣∣ c̃ = a · b ∧ j = 1
]

−Prob
[BA(g, ga, gb, gc̃) = 1

∣∣ c̃ �= a · b ∧ j = λ
]∣∣

=
1
λ

∣∣Prob
[APRF�a(1λ) = 1

] − Prob
[Af (1λ) = 1

]∣∣ ≥ 1
λ

ε(λ)

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 645

Thus this reduction will break the DDH assumption with non-negligible prob-
ability. As the reduction does not see the queries A makes to the oracle OA, it
is oblivious according to Definition 4. This concludes the proof.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digi-
tal goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 119.
Springer, Heidelberg (2001). 3.1, 1, 5

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th Annual
Symposium on Foundations of Computer Science, pp. 166–175. IEEE Computer
Society Press, October 2004. 3.1, 1, 5

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 201–209. ACM (1989). 1.4

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd Annual ACM Symposium on Theory of Computing,
pp. 503–513. ACM Press, May 1990. 1.4

5. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997). 1.4

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006). 2, 2.1

7. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). 1.4

8. Berman, I., Haitner, I.: From non-adaptive to adaptive pseudorandom functions.
In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 357–368. Springer, Heidelberg
(2012). 4, 5

9. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, October 2001. 4

10. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-
knowledge requires omega (log n) rounds. In: 33rd Annual ACM Symposium on
Theory of Computing, pp. 570–579. ACM Press, July 2001. 1.4

11. Chaum, D.: Blind signature system. In: Advances in Cryptology - CRYPTO 1983,
p. 153. Plenum Press, New York (1983). 1.4, 5

12. Cramer, R., Damg̊ard, I.B.: Secure distributed linear algebra in a constant number
of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 119. Springer,
Heidelberg (2001). 1.4

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). 1.4

14. Döttling, N., Schröder, D.: Efficient pseudorandom functions via on-the-fly adap-
tation. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 329–350. Springer, Heidelberg (2015). 4, 5

15. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer,
Heidelberg (1990). 1.4

646 N. Döttling et al.

16. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (2010). 1.1, 1.4, 5, 5

17. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious
pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005). 1.4, 4

18. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). 1.4, 5

19. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (2014). 1.4, 5

20. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind sig-
natures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648.
Springer, Heidelberg (2011). 1.4, 5

21. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of ver-
ifiable secret sharing and secure multicast. In: 33rd Annual ACM Symposium on
Theory of Computing, pp. 580–589. ACM Press, July 2001. 1.4

22. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty
computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 178. Springer,
Heidelberg (2002). 1.4

23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M., (ed.) 41st Annual ACM Symposium on Theory of Computing, pp. 169–178.
ACM Press, May/June 2009. 1.2, 3.1, 3.1

24. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York (2004). 2.3

25. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th Annual Symposium on Foundations of Computer
Science, pp. 464–479. IEEE Computer Society Press, October 1984. 4

26. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology 9(3), 167–190 (1996). 1.4

27. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25(1), 169–192 (1996). 1.4

28. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, May 1987.
1.4

29. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). 1, 1.1, 1.4, 2.3

30. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. J. Cryptol 25(1), 158–193 (2012). 3.1, 1, 5

31. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). 5

32. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, pp. 294–304. IEEE Computer Society Press,
November 2000. 1.4

33. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007). 3.1, 1, 5

Two-Message, Oblivious Evaluation of Cryptographic Functionalities 647

34. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). 1.4, 4

35. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997). 5

36. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). 1.1, 1.4

37. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation
with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 578–595. Springer, Heidelberg (2003). 1.4

38. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th Annual ACM
Symposium on Theory of Computing, pp. 20–31. ACM Press, May 1988. 3.1, 1, 5

39. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-
loalgorithm rounds. In: 33rd Annual ACM Symposium on Theory of Computing,
pp. 560–569. ACM Press, July 2001. 1.4

40. Krawczyk, H., Rabin, T.: Chameleon signatures. In: ISOC Network and Distributed
System Security Symposium - NDSS 2000. The Internet Society, February 2000. 5

41. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 171. Springer, Heidelberg
(2001). 1.4

42. Lindell, Y.: Bounded-concurrent secure two-party computation without setup
assumptions. In: 35th Annual ACM Symposium on Theory of Computing, pp.
683–692. ACM Press, June 2003. 1.4

43. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004). 1.4

44. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptology 25(4), 680–722 (2012). 1.4

45. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). 2.2

46. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st Annual
ACM Symposium on Theory of Computing, pp. 245–254. ACM Press, May 1999.
1.4

47. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 573. Springer, Heidelberg (1999). 1.4

48. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457. ACM-
SIAM, January 2001. 3.1, 1, 5

49. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th Annual Symposium on Foundations of Computer Science, pp.
458–467. IEEE Computer Society Press, October 1997. 1, 1.4, 4, 5

50. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, p. 111. Springer, Heidelberg (2002). 4

51. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). 1.4

52. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously
circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). 3.1, 2

648 N. Döttling et al.

53. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000). 5

54. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: 43rd Annual Symposium on Foundations of Computer
Science, pp. 366–375. IEEE Computer Society Press, November 2002. 1.4

55. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20.
Springer, Heidelberg (2004). 2.2

56. Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge
proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 415. Springer,
Heidelberg (1999). 1.4

57. Wegman, M.N., Carter, L.: New classes and applications of hash functions. In: 20th
Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
29–31 October 1979, pp. 175–182 (1979). 4

58. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE Com-
puter Society Press, November 1982. 1.4

Author Index

Abe, Masayuki III-387
Agrawal, Shweta III-333
Alamati, Navid II-659
Albrecht, Martin I-153
Alwen, Joël II-241
Ananth, Prabhanjan II-491
Applebaum, Benny III-449

Bai, Shi I-153
Barbulescu, Razvan I-543
Bar-On, Achiya I-435
Baum, Carsten III-478
Beierle, Christof I-625, II-123
Bellare, Mihir I-247, I-373
Ben-Zvi, Adi I-179
Bin-Noon, Hod II-521
Biryukov, Alex II-93
Blackburn, Simon R. I-179
Blocki, Jeremiah II-241
Bogdanov, Andrej III-593
Boura, Christina I-654
Bourse, Florian II-62
Boyle, Elette I-509
Brakerski, Zvika I-190, II-551, III-363
Brzuska, Christina II-551

Camenisch, Jan III-208
Canteaut, Anne I-654
Carmer, Brent III-416
Cascudo, Ignacio III-179
Chase, Melissa III-499
Chen, Yu III-303
Ciampi, Michele III-270
Cogliati, Benoît I-121
Cohen, Ran III-240
Coretti, Sandro III-240
Coron, Jean-Sébastien II-607
Costello, Craig I-572
Couteau, Geoffroy I-308

Dai, Yuanxi I-95
Damgård, Ivan II-459, III-179, III-478
David, Bernardo III-179
Degabriele, Jean Paul I-403

Degwekar, Akshay III-533
Del Pino, Rafaël II-62
Derbez, Patrick II-157
Dinur, Itai II-185
Dodis, Yevgeniy I-341, III-93
Döttling, Nico III-179, III-619
Dubovitskaya, Maria III-208
Ducas, Léo I-153
Dulek, Yfke III-3
Dunkelman, Orr II-185
Dupuis, Frédéric III-33
Duval, Sébastien I-457
Dwork, Cynthia III-123
Dziembowski, Stefan II-272

Faust, Sebastian II-272
Fehr, Serge III-33
Fischlin, Marc II-521
Fleischhacker, Nils II-551, III-619
Fouque, Pierre-Alain II-157

Gagliardoni, Tommaso III-60
Ganesh, Chaya III-499
Garay, Juan III-240
Garg, Sanjam II-579, III-563
Gilboa, Niv I-509
Güneysu, Tim II-302
Guo, Jian I-605

Halevi, Shai III-93
Hanaoka, Goichiro II-3
Hazay, Carmit II-397
Hemenway, Brett III-149
Herold, Gottfried II-272
Herzberg, Amir II-521
Hirt, Martin II-335
Hoang, Viet Tung I-3
Hoshino, Fumitaka III-387
Hülsing, Andreas III-60

Ishai, Yuval I-509, II-430, III-593

Jafargholi, Zahra III-149
Jain, Aayush II-491

Jean, Jérémy II-123
Journault, Anthony II-272

Kane, Daniel I-373
Kaplan, Marc II-207
Keller, Nathan I-435, II-185
Kiltz, Eike II-33
Kim, Taechan I-543
Kölbl, Stefan II-123
Koppula, Venkata II-681
Kranz, Thorsten I-625
Krupp, Johannes III-619
Kumaresan, Ranjit II-366
Kunihiro, Noboru II-3
Kushilevitz, Eyal II-430

Lallemand, Virginie I-457
Lamontagne, Philippe III-33
Larsen, Kasper Green III-478
Leander, Gregor I-625, II-123
Lee, Moon Sung II-607
Lepoint, Tancrède II-607
Leurent, Gaëtan II-207
Leverrier, Anthony II-207
Libert, Benoît III-333
Liu, Meicheng I-605
Longa, Patrick I-572

Masny, Daniel II-33, II-272
Maurer, Ueli II-335
Mennink, Bart I-64
Miles, Eric II-629
Minelli, Michele II-62
Mironov, Ilya I-341
Mohassel, Payman III-499, III-563
Moradi, Amir II-123, II-302

Naehrig, Michael I-572
Naor, Moni II-491, III-123
Naya-Plasencia, María II-207
Nielsen, Jesper Buus II-459, III-179
Nielsen, Michael III-478

Ohkubo, Miyako III-387
Ostrovsky, Rafail III-149, III-270

Pan, Jiaxin II-33
Pandey, Omkant II-579
Papamanthou, Charalampos III-563

Paterson, Kenneth G. I-403
Peikert, Chris II-659
Perlman, Renen I-190
Perrin, Léo II-93
Peters, Thomas I-308
Peyrin, Thomas I-33, II-123
Pointcheval, David I-308
Polychroniadou, Antigoni II-459
Prabhakaran, Manoj II-430

Qu, Longjiang I-605

Raghuraman, Srinivasan II-366
Raskin, Michael II-459
Raykov, Pavel III-449
Rial, Alfredo III-208
Rijmen, Vincent I-605
Rogaway, Phillip I-373
Rosulek, Mike III-416
Rotella, Yann I-457
Rothblum, Guy N. III-123
Rothblum, Ron D. III-93

Sahai, Amit II-430, II-491, II-629
Salvail, Louis III-33
Sasaki, Yu II-123
Sasdrich, Pascal II-123
Scafuro, Alessandra III-149
Schaffner, Christian III-3, III-60
Schneider, Tobias II-302
Schröder, Dominique III-619
Schuldt, Jacob C.N. I-403
Sealfon, Adam II-366
Seurin, Yannick I-33, I-121
Shamir, Adi II-185
Shrimpton, Thomas I-277
Shulman, Haya II-521
Sim, Siang Meng II-123
Siniscalchi, Luisa III-270
Speelman, Florian III-3
Srinivasan, Akshayaram II-579
Stam, Martijn I-277
Standaert, François-Xavier II-272
Stehlé, Damien III-333
Steinberger, John I-95
Stephens-Davidowitz, Noah I-341
Sun, Bing I-605

Tackmann, Björn I-247
Tessaro, Stefano I-3

650 Author Index

Tibouchi, Mehdi II-607
Tsaban, Boaz I-179
Tschudi, Daniel II-335

Udovenko, Aleksei II-93

Vaikuntanathan, Vinod III-363, III-533
Vasudevan, Prashant Nalini III-533
Venkitasubramaniam, Muthuramakrishnan

II-397
Viola, Emanuele III-593
Visconti, Ivan III-270

Warinschi, Bogdan I-277
Waters, Brent II-681

Wee, Hoeteck II-62
Wichs, Daniel III-93, III-149
Williamson, Christopher III-593
Woodage, Joanne I-403

Yamada, Shota II-3
Yamakawa, Takashi II-3
Yogev, Eylon II-491
Yu, Ching-Hua II-430
Yu, Yu I-214

Zhandry, Mark I-479, II-629
Zhang, Jiang I-214, III-303
Zhang, Zhenfeng III-303
Zikas, Vassilis II-335, III-240

Author Index 651

	Preface
	Crypto 2016 The 36th IACR International Cryptology Conference
	Contents -- Part III
	Quantum Techniques
	Quantum Homomorphic Encryption for Polynomial-Sized Circuits
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Structure of the Paper

	2 Preliminaries
	2.1 Quantum Computation
	2.2 Homomorphic Encryption
	2.3 Garden-Hose Complexity

	3 The TP Scheme
	3.1 Gadget
	3.2 Key Generation
	3.3 Encryption
	3.4 Circuit Evaluation
	3.5 Decryption

	4 Security of TP
	4.1 Circuit Privacy

	5 Constructing the Gadgets
	5.1 For Log-Depth Decryption Circuits
	5.2 For Log-Space Computable Decryption Functions
	5.3 Constructing Gadgets Using Limited Quantum Resources

	6 Conclusion
	6.1 Future Work

	References

	Adaptive Versus Non-Adaptive Strategies in the Quantum Setting with Applications
	1 Introduction
	2 Preliminaries
	2.1 Basic Notation
	2.2 Quantum States and More
	2.3 Entropy and Privacy Amplification
	3 Main Result
	4 Application 1: 1CC Is Universal
	4.1 Background
	4.2 The Protocol
	4.3 Security Proofs
	4.4 Universality of 1CC

	5 Application 2: On the Security of BCJL Commitment Scheme
	5.1 Setting up the Stage
	5.2 The General Reduction
	5.3 Special Case: The BCJL Bit-Commitment Scheme

	A Additional proofs
	B UC-Completeness of 1CC
	B.1 The UC Model
	B.2 UC Security of OT from 1CC
	References

	Semantic Security and Indistinguishability in the Quantum World
	1 Introduction
	2 Preliminaries
	2.1 Classical Security Notions: IND-CPA and SEM-CPA
	2.2 Previous Notions of Security in the Quantum World

	3 New Notions of Quantum Indistinguishability
	3.1 The `Security Tree'
	3.2 Analysis of the Models
	3.3 qIND

	4 New Notions of Quantum Semantic Security
	4.1 Classical Semantic Security Under Quantum CPA
	4.2 Quantum Semantic Security

	5 Relations
	6 Impossibility and Achievability Results
	6.1 Impossibility Result
	6.2 Secure Construction
	6.3 Length Extension

	7 Conclusions and Further Directions
	References

	Spooky Encryption
	Spooky Encryption and Its Applications
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Definitions
	2.1 Local, No-Signaling, and Spooky Relations
	2.2 Spooky Encryption
	2.3 Additive-Function-Sharing Spooky Encryption

	3 LWE-Based Spooky Encryption
	3.1 Learning with Errors (LWE) and Multi-key FHE
	3.2 LWE-Based AFS Spooky Encryption
	3.3 Beyond AFS-2-Spooky Encryption

	4 piO Based Spooky Encryption
	4.1 Tools
	4.2 Two-Key Spooky Encryption from piO
	4.3 piO Based Multi-key Spooky Encryption

	5 From 2-Input to n-Input AFS-Spooky
	6 Applications of Spooky Encryption
	6.1 Counter Example for the [ABOR00] Heuristic
	6.2 2-Round MPC from AFS-Spooky Encryption
	6.3 Function Secret Sharing

	7 Spooky-Free Encryption
	References

	Spooky Interaction and Its Discontents: Compilers for Succinct Two-Message Argument Systems
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Definitions and Basic Properties
	2.1 Interactive Protocols
	2.2 FHE
	2.3 PIR

	3 Detailed Description of the Compiler
	3.1 The Compiler: FHE Variant
	3.2 The Compiler: PIR Variant

	4 The Negative Result: A Protocol that Does Not Compile Well
	4.1 The Protocol (PIP,VIP)
	4.2 The Compiled Protocol

	5 Positive Results
	5.1 Security of the Compiler
	5.2 Succinct Two-Message Arguments
	5.3 Application to Exhaustive Search

	References

	Secure Computation and Protocols II
	Adaptively Secure Garbled Circuits from One-Way Functions
	1 Introduction
	1.1 Prior Approaches to Adaptive Security
	1.2 Our Results
	1.3 Applications of Our Results
	1.4 Our Techniques

	2 Preliminaries
	3 Garbling Scheme
	4 Somewhere Equivocal Symmetric-Key Encryption
	5 Adaptively Secure Garbling Scheme and Simulator
	5.1 Construction
	5.2 Adaptive Simulator

	6 Hybrid Games
	6.1 Template for Defining Hybrid Games
	6.2 Rules for Indistinguishable Hybrids

	7 Pebbling and Sequences of Hybrid Games
	7.1 Pebbling Strategies

	8 Conclusions
	References

	Rate-1, Linear Time and Additively Homomorphic UC Commitments
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Coding Theory
	2.3 Universal Composability

	3 Interactive Proximity Testing
	4 Linear Time Primitives
	4.1 Linear Time Almost Universal Hashing with Short Seeds
	4.2 Linear Time Rate-1 Codes

	5 Linear Time and Rate 1 Additive Commitments
	5.1 Computational Complexity and Rate

	A Universal Composability
	B Implementing FROT
	C Committing to Arbitrary Messages
	References

	UC Commitments for Modular Protocol Design and Applications to Revocation and Attribute Tokens
	1 Introduction
	1.1 UC Non-interactive Commitments for Hybrid Protocols
	1.2 Modular Protocol Design in FNIC-Hybrid Model
	1.3 Example: Flexible Revocation for Attribute-Based Credentials
	1.4 Paper Organization

	2 Universally Composable Security
	2.1 Notation
	2.2 Conventions

	3 UC Non-interactive Commitments
	3.1 Ideal Functionalities FNIC and FENIC for Non-interactive Commitments
	3.2 Binding and Hiding Properties of FNIC and FENIC
	3.3 Using FNIC in Conjunction with Other Functionalities
	3.4 Construction of UC Non-interactive Commitments

	4 The Ideal Functionalities FREV and FAT
	4.1 Ideal Functionality for Revocation FREV
	4.2 Ideal Functionality for Anonymous Attribute Tokens FAT

	5 Anonymous Attribute Tokens with Revocation
	5.1 Ideal Functionality FTR of Anonymous Attribute Tokens with Revocation
	5.2 Construction of Anonymous Attribute Tokens with Revocation

	6 Conclusion and Future Work
	References

	Probabilistic Termination and Composability of Cryptographic Protocols
	1 Introduction
	2 Model
	3 Secure Computation with Probabilistic Termination
	3.1 Canonical Synchronous Functionalities
	3.2 Probabilistic Termination in UC

	4 (Fast) Composition of PT Protocols
	4.1 Composition with Deterministic Termination
	4.2 Composition with Probabilistic Termination
	4.3 Wrapping Secure Channels

	5 Applications of Our Fast Composition Theorem
	5.1 Fast and Perfectly Secure Byzantine Agreement
	5.2 Fast and Perfectly Secure Parallel Broadcast
	5.3 Fast and Perfectly Secure SFE

	References

	Concurrent Non-Malleable Commitments (and More) in 3 Rounds
	1 Introduction
	1.1 Towards 3-Round (Concurrent) NM Commitments
	1.2 Results of This Work

	2 Notation, Definitions and Tools
	2.1 Commitment Schemes
	2.2 Non-Malleable Commitment Schemes
	2.3 3-Round One-One NM Commitment Scheme
	2.4 The LS Proof of Knowledge and NMWI Argument Systems

	3 3-Round Concurrent Non-Malleable Commitments
	4 More Protocols Against Concurrent MiM Attacks
	4.1 Non-Malleable WI Arguments of Knowledge
	4.2 Identification Schemes

	5 Concurrent Malleability of
	References

	IBE, ABE, and Functional Encryption
	Programmable Hash Functions from Lattices: Short Signatures and IBEs with Small Key Sizes
	1 Introduction
	1.1 Our Contributions
	1.2 Techniques
	1.3 Short Signatures
	1.4 Identity-Based Encryptions
	1.5 Other Related Work
	1.6 Roadmap

	2 Preliminaries
	2.1 Notation
	2.2 Lattices and Gaussian Distributions
	2.3 Learning with Errors (LWE) and Small Integer Solutions (SIS)

	3 Programmable Hash Functions from Lattices
	3.1 Type-I Construction
	3.2 Type-II Construction
	3.3 Collision-Resistance and High Min-Entropy
	3.4 Programmable Hash Function from Ideal Lattices

	4 Short Signature Schemes from Lattice-Based PHFs
	4.1 A Short Signature Scheme with Short Verification Key
	4.2 An Improved Short Signature Scheme from Weaker Assumption

	5 Identity-Based Encryptions from Lattice-Based PHFs
	5.1 An Identity-Based Encryption with Short Master Public Key
	5.2 Extensions

	References

	Fully Secure Functional Encryption for Inner Products, from Standard Assumptions
	1 Introduction
	1.1 Overview of Techniques

	2 Background
	3 Fully Secure Functional Encryption for Inner Products from DDH
	4 Full Security Under the LWE Assumption
	4.1 Integer Inner Products of Short Integer Vectors
	4.2 Inner Products Modulo a Prime p
	4.3 Hardness of Multi-hint Extended-LWE

	5 Constructions Based on Paillier
	5.1 Computing Inner Products over Z
	5.2 A Construction for Inner Products over ZN

	6 Bootstrapping Linear FE to Efficient Bounded FE for All Circuits
	A Definitions for Functional Encryption
	References

	Circuit-ABE from LWE: Unbounded Attributes and Semi-adaptive Security
	1 Introduction
	1.1 Overview of Our Techniques

	2 Preliminaries
	2.1 Bounded Distributions and Swallowing
	2.2 Pseudorandom Functions
	2.3 KP-ABE with Unbounded Attribute Length

	3 LWE, Trapdoors, Homomorphism
	4 Our Scheme
	4.1 Correctness
	4.2 Security
	4.3 Conclusion

	References

	Automated Tools and Synthesis
	Design in Type-I, Run in Type-III: Fast and Scalable Bilinear-Type Conversion Using Integer Programming
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Works

	2 Conversion Based on Dependency Graphs
	2.1 Overview
	2.2 Dependency Graph
	2.3 Valid Split

	3 Finding Optimal Valid Split with IP
	3.1 Users' Preferences
	3.2 IPConv Procedure
	3.3 Optimality of the Output

	4 Performance
	4.1 Processing Time for Real Schemes
	4.2 Scalability

	5 Using Conversion in Cryptographic Design
	5.1 Fine-Tuned GS Proof of Correct Commitment via Conversion
	5.2 AHO Signature + GSZK
	5.3 Automorphic Blind Signature Scheme

	6 Conclusion
	A Converted GSZK for AHO Signature
	B Converted Automorphic Blind Signature Scheme
	References

	Linicrypt: A Model for Practical Cryptography
	1 Introduction
	1.1 Overview of Our Results
	1.2 Related Work and Inspiration

	2 Linicrypt
	2.1 Basic Model
	2.2 Mixed Linicrypt Programs and Modelling Real-World Primitives
	2.3 Algebraic Representation
	2.4 Linear Transformations, Basis Changes and Composition
	2.5 Indistinguishability vs. Unpredictability
	2.6 Normalization
	2.7 Main Characterization

	3 Synthesizing Linicrypt Garbled Circuits
	3.1 Gate-Garbling
	3.2 Synthesis Approach
	3.3 Implementation Results

	References

	Zero Knowledge
	On the Relationship Between Statistical Zero-Knowledge and Statistical Randomized Encodings
	1 Introduction
	1.1 Our Results

	2 Our Techniques
	2.1 A Broader Perspective

	3 Preliminaries
	4 NISZK and SRE
	5 NISZKpub = 1RE
	5.1 Equivalence of 1RE and D1RE
	5.2 From NISZKpub to 1RE
	5.3 From 1RE to NISZK pub

	6 If SRE Is Non-trivial Then One-Way Functions Exist
	7 If PRE Is Hard on the Average Then CRH Exist
	A Omitted Proofs
	A.1 Proof of Item 5 of Fact1

	References

	How to Prove Knowledge of Small Secrets
	1 Introduction
	1.1 Contributions and Techniques
	1.2 Related Work

	2 Homomorphic OWFs and Zero-Knowledge Proofs
	2.1 Proving Knowledge of Preimage

	3 Proofs of Preimage
	3.1 The Imperfect Proof of Knowledge
	3.2 The Full Proof of Knowledge

	4 Applications
	4.1 Encryption as ivOWFs
	4.2 Refining the Proof Technique

	References

	Efficient Zero-Knowledge Proof of Algebraic and Non-Algebraic Statements with Applications to Privacy Preserving Credentials
	1 Introduction
	2 Preliminaries
	2.1 Simulation-Based Security
	2.2 Commitment Scheme
	2.3 Committing OT
	2.4 Garbled Circuits
	2.5 Zero-Knowledge Proofs
	2.6 ZK Proof Based on Garbled Circuits

	3 Proving Non-algebraic Statements on Algebraic Commitments
	3.1 First Instantiation
	3.2 Second Instantiation
	3.3 Efficiency Comparison and Optimizations
	3.4 Secure Computation on Committed/Signed Inputs

	4 Building Blocks for Privacy-Preserving Signature Verification
	4.1 Proving that a Committed Value Is the Hash of Another Committed Value
	4.2 Proof of Equality of Committed Values in Different Groups
	4.3 Proof of Equality of Discrete Logarithm of a Committed Value and Another Committed Value

	5 Privacy-Preserving FDH-RSA Signature Verification
	5.1 Proof of Knowledge of RSA Signatures
	5.2 Proof of Security

	6 Privacy-Preserving (EC)DSA Signature Verification
	6.1 Proof of Knowledge of DSA Signatures
	6.2 Proof of Security
	6.3 Proof of Knowledge of ECDSA Signatures

	References

	Theory
	Fine-Grained Cryptography
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Other Related Work: Cryptography Against Bounded Adversaries

	2 Preliminaries
	2.1 Notation
	2.2 Constant-Depth Circuits
	2.3 Sparse Matrices and Linear Codes
	2.4 Adversaries
	2.5 Primitives Against Bounded Adversaries
	2.6 Randomized Encodings

	3 OWFs from Worst-Case Assumptions
	4 PKE Against NC1 from Worst-Case Assumptions
	4.1 Collision Resistant Hashing

	5 Cryptography Without Assumptions
	5.1 High-Stretch Pseudo-Random Generators
	5.2 Weak Pseudo-Random Functions
	5.3 Symmetric Key Encryption
	5.4 Collision Resistant Hash Functions
	5.5 Candidate Public Key Encryption Scheme

	References

	TWORAM: Efficient Oblivious RAM in Two Rounds with Applications to Searchable Encryption
	1 Introduction
	1.1 Existing Round-Optimal ORAM Protocols
	1.2 TWORAM's Technical Highlights
	1.3 Application: 4-Round Searchable Encryption with No Search Pattern Leakage
	1.4 Other Related Work

	2 Definitions for Garbled Circuits and Oblivious RAM
	2.1 Garbled Circuits
	2.2 Oblivious RAM

	3 TWORAM Construction
	3.1 Notation
	3.2 Path-ORAM Abstraction
	3.3 From logn Rounds to Two Rounds
	3.4 Protocols SETUP and OBLIVIOUSACCESS of our construction
	3.5 Optimizations

	4 Searchable Encryption Construction Using TWORAM
	4.1 Hash Table Definition
	4.2 Searchable Encryption Definition
	4.3 SSE from any ORAM
	4.4 SSE from Path-ORAM

	A More Details on Path ORAM
	A.1 Path ORAM Abstraction Algorithms
	A.2 Path ORAM Protocols with logn Rounds of Interaction Using the Abstraction
	A.3 Proof of Security for TWORAM
	A.4 Proof of Security for the SSE scheme

	References

	Bounded Indistinguishability and the Complexity of Recovering Secrets
	1 Introduction
	1.1 Secret Sharing Schemes
	1.2 Visual Cryptography
	1.3 Additional Cryptographic Applications

	2 Secret Sharing
	2.1 Sampling the Shares in AC0
	2.2 Trading Alphabet Size for Secrecy
	2.3 Reconstruction by a Subset of the Parties
	2.4 Limitations

	3 Additional Cryptographic Applications
	3.1 Leakage-Resilience of Secret Sharing Schemes
	3.2 Private Circuits

	A Parameters for Visual Scheme
	B Useful Properties of Approximate Degree
	C Sharing in AC0 with Perfect Secrecy
	D Exact vs. Almost Bounded Indistinguishability
	References

	Two-Message, Oblivious Evaluation of Cryptographic Functionalities
	1 Introduction
	1.1 Impossibility of Malicious Security and Induced Game-Based Security
	1.2 Oblivious Reductions: A Nonblack-Box Proof Technique
	1.3 Our Contribution
	1.4 Related Work
	1.5 Outlook

	2 Secure Computation of Cryptographic Functionalities
	2.1 Cryptographic Security Experiment
	2.2 Oblivious Black-Box Reductions
	2.3 Secure Function Evaluation for Cryptographic Primitives

	3 2-Round SFE via 1-Hop Homomorphic Encryption
	3.1 1-Hop Homomorphic Encryption
	3.2 Construction

	4 Round-Optimal Oblivious Pseudorandom Functions
	5 Impossibility of Malicious Sender Security
	A An Oblivious Black-Box Reduction for Naor-Reingold PRF
	References

	Author Index

