
Cryptanalysis of a Theorem: Decomposing
the Only Known Solution to the Big

APN Problem

Léo Perrin1(B), Aleksei Udovenko1(B), and Alex Biryukov1,2(B)

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
{leo.perrin,aleksei.udovenko}@uni.lu

2 CSC, University of Luxembourg, Luxembourg City, Luxembourg
alex.biryukov@uni.lu

Abstract. The existence of Almost Perfect Non-linear (APN) permuta-
tions operating on an even number of bits has been a long standing open
question until Dillon et al., who work for the NSA, provided an example
on 6 bits in 2009.

In this paper, we apply methods intended to reverse-engineer S-Boxes
with unknown structure to this permutation and find a simple decompo-
sition relying on the cube function over GF (23). More precisely, we show
that it is a particular case of a permutation structure we introduce, the
butterfly. Such butterflies are 2n-bit mappings with two CCZ-equivalent
representations: one is a quadratic non-bijective function and one is a
degree n + 1 permutation. We show that these structures always have
differential uniformity at most 4 when n is odd. A particular case of
this structure is actually a 3-round Feistel Network with similar dif-
ferential and linear properties. These functions also share an excellent
non-linearity for n = 3, 5, 7.

Furthermore, we deduce a bitsliced implementation and significantly
reduce the hardware cost of a 6-bit APN permutation using this decom-
position, thus simplifying the use of such a permutation as building block
for a cryptographic primitive.

Keywords: Boolean functions · APN · Butterfly structure · S-Box
decomposition · CCZ-equivalence · Feistel Network · Bitsliced imple-
mentation

1 Introduction

When designing a symmetric primitive, it is common to use functions operating
on a small part of the internal state to provide non-linearity. These are called

The work of Léo Perrin is supported by the CORE ACRYPT project (ID C12-15-
4009992) funded by the Fonds National de la Recherche (Luxembourg). The work of
Aleksei Udovenko is supported by the Fonds National de la Recherche, Luxembourg
(project reference 9037104).

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 93–122, 2016.
DOI: 10.1007/978-3-662-53008-5 4

94 L. Perrin et al.

S-Boxes and their properties can be leveraged to justify security against differ-
ential [1] and linear [2] attacks using for example a wide-trail argument, as was
done for the AES [3].

A popular strategy for choosing S-Boxes with desirable cryptographic prop-
erties is to use mathematical construction based for example on the inverse in a
finite field [4]. A function with optimal differential property (in a sense that we
will define later) is called Almost Perfect Non-linear or APN. While it is easy
to find functions with this property, permutations are more rare. Many mono-
mials are known to be APN permutations in finite fields of size 2n for n odd (for
example the cube function), but whether there even exists APN permutations
operating on an even number of bits is still an important research area.

In this context, the 6-bit APN permutation described by a team of mathe-
maticians from the NSA (Dillon et al.) in [5] is of great theoretical importance:
it is the only known APN permutation for even n so far. Furthermore, it has
already been used to design an authenticated cipher: Fides [6]. However, the
method used by the Dillon et al. to find it relies on sophisticated considerations
related to error correcting codes and no generalization of their results has been
published to the best of our knowledge. In their paper, the authors state the
“big APN problem” and it is, 6 years later, still as much of an open question:

(STILL) The Big APN Problem: Does there exist an APN permuta-
tion on GF (2m) if m is EVEN and GREATER THAN 6?

Our Contribution. By applying methods designed by Biryukov et al. to reverse-
engineer the S-Box of the last Russian cryptographic standards [7], we show the
existence of a much simpler expression of the 6-bit APN permutation. This is
stated in Theorem 3 which we reproduce here.

Main Theorem (A Family of 6-bit APN Permutations). The 6-bit per-
mutation described by Dillon et al. in [5] is affine equivalent to any involution
built using the structure described in Fig. 1, where � denotes multiplication in
the finite field GF (23), α �= 0 is such that Tr(α) = 0 and A denotes any 3-bit
APN permutation.

A
A−1

�α

⊕

⊕
3 bits

A
A

�
α

⊕

⊕

Fig. 1. Some S-Boxes affine-equivalent to the Dillon APN permutation.

Cryptanalysis of a Theorem 95

We study extensively this structure, both experimentally and mathemati-
cally, and derive in particular new families of differentially 4-uniform permuta-
tions of 2n bits for n odd.

Outline. This paper is devoted to first deriving this theorem and then exploring
its consequences. Section 2 describes how the cryptanalysis strategy described
in [7] can be successfully applied to the 6-bit APN permutation to identify a
highly structured decomposition. We then study this structure in Sect. 3. Next,
we show in Sect. 4 that the same structure can be used to build differentially 4-
uniform permutations with algebraic degree at least n in fields of size 2n for odd
n. Finally, we use our results on the decomposition of 6-bit APN permutations
to describe efficient bit-sliced and hardware implementation of some of them in
Sect. 5.

Notations and Definitions

We use common definitions and notations throughout this paper. For the sake of
clarity, we list them here. First, we describe the notations related to finite field:

– F2n is a finite field of size 2n,
– for any x in F2n , the trace of x is Tr(x) =

∑n−1
i=0 x2i ,

The differential properties of an S-Box f : Fn
2 → F

m
2 are studied using its Differ-

ence Distribution Table (DDT), the 2n × 2m matrix D(f) such that D(f)[δ,Δ] =
#{x ∈ F2n , f(x + δ) + f(x) = Δ}. The maximum coefficient1 in D(f) is the
differential uniformity of f and, if it is equal to u, then we say that f is differen-
tially u-uniform. A differentially 2-uniform function is called Almost Perfect Non-
linear (APN).

Similarly, security against linear attacks can be justified using the Linear
Approximation Table (LAT)2 of f . It is the 2n × 2m matrix L(f) such that
L(f)[a, b] = #{x ∈ F2n , a·x = b·y}−2n−1 (where “·” denotes the scalar product).
The non-linearity of a f : Fn

2 → F
m
2 is NL(f) = 2n−1 − max (|L(f)[a, b]|) where

the maximum is taken over all non-zero line and column indices a and b.
Finally, we also consider algebraic decompositions of the functions we study

using the following tools:

– if x and u are vectors of Fn
2 , then xu =

∏n−1
i=0 xui

i so that xu = 1 if and only
if xi = 1 for all i such that ui = 1,

– the Algebraic Normal Form (ANF) of a Boolean function f is its unique expres-
sion f(x) =

⊕
u∈F

n
2

auxu where all au are in {0, 1},
– the algebraic degree of a Boolean function f is denoted deg(f) and is equal to

the maximum Hamming weight of u such that au = 1 in the ANF of f ,

1 The maximum is taken over all non-zero line indices.
2 This object is also sometimes referred to as the “correlation matrix”. Up to a mul-

tiplication by a constant factor, the coefficients in the LAT of a function also form
its Walsh Spectrum.

96 L. Perrin et al.

– the field polynomial representation of f mapping F2n to itself is its unique
expression as a univariate polynomial of F2n , so that f(x) =

∑2n−1
i=0 cix

i with
ci in F2n . It can be obtained using Lagrange interpolation.

Note that the algebraic degree of a polynomial of F2n is equal to the maximum
Hamming weight of the binary expansions of the exponents in its field polynomial
representation. For example, the algebraic degree of the cube function x �→ x3

in F2n is equal to 2.
Two functions f and g are affine equivalent if there exist affine permutations

A and B such that g = B ◦ f ◦ A. If we also add an affine function C to the
output, that is, g = B ◦ f ◦ A + C, then f and g are extended affine-equivalent
(EA-equivalent).

Finally, we denote the concatenation of two binary variables using the symbol
“||”. In particular, we will often interpret bit-strings of length 2n as x||y, where
x and y are in F

n
2 .

2 A Decomposition of the 6-Bit APN Permutation

In this section, we identify a decomposition of the Dillon APN permutation. We
denote this permutation S0 : F6

2 → F
6
2 and give its look-up table in Table 1. As we

are interested only in its being an APN permutation, we allow ourselves to com-
pose it with affine permutations as such transformations preserve this property.
We will omit the respective inverse permutations to simplify our description.

Table 1. The Dillon permutation S0 in hexadecimal (e.g. S0(0x10) = 0x3b).

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0 00 36 30 0d 0f 12 35 23 19 3f 2d 34 03 14 29 21

1 3b 24 02 22 0a 08 39 25 3c 13 2a 0e 32 1a 3a 18

2 27 1b 15 11 10 1d 01 3e 2f 28 33 38 07 2b 2c 26

3 1f 0b 04 1c 3d 2e 05 31 09 06 17 20 1e 0c 37 16

Our strategy is identical to the one used to recover the structure of the S-Box
of the last Russian cryptographic standards described in [7]. First, we obtain a
high level decomposition of the permutation relying on two distinct but closely
related 3-bit keyed permutations (the “TU-decomposition”) in Sect. 2.1. Then,
we decompose these keyed permutations in Sects. 2.2. Finally, we provide the
complete decomposition of an S-Box affine-equivalent to S0 in Sect. 2.3.

2.1 High-Level TU-Decomposition

As suggested in [7,8], we looked at the “Jackson Pollock” representation of the
absolute value of the LAT of the S-Box (see Fig. 2a). We can see some patterns,

Cryptanalysis of a Theorem 97

namely columns and aligned short vertical segments of black and white colors
within a grey rectangle (white is 0, grey is 4 and black is 8). The black-and-
white columns also have the 8 topmost coefficients equal to zero. Moreover,
their horizontal coordinates form a linear subspace of F6

2.
Therefore, as was done in [7], we compose the S-Box with a particular linear

permutation chosen so that these particular columns are clustered to the left
of the picture, i.e. their abscissa become [0, 7]. The black-and-white columns
have coordinates {0, 4, 10, 14, 16, 20, 26, 30} and the binary expansion of these
numbers form a linear subspace of F

6
2 spanned by the binary expansions of

{4, 10, 16}. We thus construct a permutation η, linear over GF (2), such that
η : 1 �→ 4, 2 �→ 10, 4 �→ 16 and then we complete it by setting η : 8 �→ 1, 16 �→
2, 32 �→ 32 so that η is a permutation. By Theorem 1 from [7], the composition
ηt ◦ S0 of such mapping with the S-Box will group the black-and-white columns
in the LAT. The Jackson Pollock representation of ηt ◦ S0 is given in Fig. 2b.

(a) LAT of S0. (b) LAT of ηt ◦ S0.

Fig. 2. The Jackson Pollock representation of the LAT of two permutations (absolute
value). Row/column indices correspond to input/output linear approximation masks
respectively. White pixels correspond to 0, grey to 4 and black to 8.

As we can see the columns are now aligned, as was our goal, and the short
segments became grouped into small squares, thus making the whole picture
more structured. Doing this also caused the appearance of a “white-square” in
the top-left square [0, 7] × [0, 7]. This last pattern is a known side effect of the
existence of specific integral properties (see Lemma 2 of [7] which is itself derived
from [9]). Hence, we checked for integral/multiset properties as defined in [10]
and identified the following property: fixing the last 3 bits of the input and
letting the first 3 take all possible values leads to the last 3 bits of the output
taking all possible values.

We keep following the blueprint laid out in [7] and investigate the conse-
quences of this integral distinguisher. In fact we generalize their next step, which
consists in providing a high level decomposition of the S-Box, by describing the
TU-decomposition.

98 L. Perrin et al.

Lemma 1. Let f be a function mapping F
n
2 × F

n
2 to itself such that fixing the

right input to any value and letting the left one take all 2n possible values leads
to the left output taking all 2n possible values. Then f can be decomposed using
a keyed n-bit permutation T and a keyed n-bit function U (see Fig. 3a):

f(x, y) =
(
Ty(x), UTy(x)(y)

)
,

Besides, if f is a permutation then U is a keyed permutation.

T

U

(a) Basic TU-decomposition.

T

U

(b) TU-decomposition composed with a swap.

Fig. 3. Principle of the TU-decomposition.

Proof. We simply define Ty(x) to be the left side of f(x, y). Because of the
multiset property, Ty is a permutation for all y. We then define U to be such
that Uk(y) is the right side of f

(
T−1

y (k), y
)
.

If f is a permutation then (x, y) �→ f
(
T−1

y (x), y)
)

is a permutation equal to
(x, y) �→ (x,Ux(y)). In particular, it holds that Ux is a permutation for all x,
making it a keyed permutation. �	

We apply Lemma 1 to ηt ◦ S0 and deduce its TU-decomposition. We actu-
ally have the output halves swapped so we may draw the structure in a more
symmetric fashion (see Fig. 3b). The corresponding keyed permutations T and
U are given in Table 2.

Table 2. The keyed permutations T and U . Tk and Uk denote the permutations
corresponding to the key k.

0 1 2 3 4 5 6 7
T0 0 6 4 7 3 1 5 2
T1 7 5 1 6 4 2 0 3
T2 4 3 2 0 5 6 1 7
T3 3 5 2 1 4 6 7 0
T4 1 2 0 6 4 3 7 5
T5 6 5 2 4 7 0 1 3
T6 5 2 6 4 0 3 1 7
T7 2 0 1 6 5 3 4 7

(a) T .

0 1 2 3 4 5 6 7
U0 0 3 6 4 2 7 1 5
U1 7 4 0 2 3 6 1 5
U2 1 4 2 6 3 0 5 7
U3 7 2 5 1 3 0 4 6
U4 7 3 4 1 0 2 6 5
U5 3 7 1 4 2 0 5 6
U6 1 3 7 4 6 2 5 0
U7 4 6 3 0 5 1 7 2

(b) U .

Cryptanalysis of a Theorem 99

The degree of T as a 6-bit permutation is equal to 3 and that of U is equal to
2. However the degree of T−1 is equal to 2 as well. One may think that T−1 and U
are somehow related and we indeed found that T−1 and U are linearly equivalent
using the algorithm by Biryukov et al. from [11]. The linear equivalence of T−1

and U is given by:
U(x) = M ′

U ◦ T−1 ◦ MU (x),

where T and U are considered as 6-bit permutations and the linear permutations
MU and M ′

U are given as the following binary matrices:

MU =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 1 0
1 0 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,M ′
U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0
0 1 0 0 1 0
1 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

2.2 Decomposing T

As we applied a linear mapping on the output of the S-Box, we might have
scrambled the initial structure of U . Hence, we choose the decomposition of T−1

as our main target. We start by composing it with a Feistel round to ensure
that 0 is mapped to itself for all keys. Again, this simplification was performed
while reverse-engineering the GOST S-Box. If we apply such an appropriate
Feistel round before or after T−1, the corresponding Feistel function is always a
permutation. Moreover, in the case when the Feistel function is used between T
and U , the Feistel function is linear3 so we choose this side. We define t(k) =
Tk(0) and T ′

k(x) = Tk(x) ⊕ t(k) so that T ′
k(0) = T ′−1

k (0) = 0 for all k (see
Fig. 4a). The linear permutation t is given by t(x) = (0, 7, 4, 3, 1, 6, 5, 2).

T ′−1

t⊕

(a) Detaching a linear
Feistel round.

L

t

N

⊕

⊕

(b) Splitting T ′−1 into N
and L.

L

t

I

p

⊕

⊕

(c) Simplifying N into I
and linear functions.

Fig. 4. Simplifying the keyed permutation T ′−1.

3 If we had attacked U instead of T −1, then detaching a Feistel function in this way
leads only to a nonlinear Feistel function (regardless of the side), which supports our
choice of T ′−1 as an easier target.

100 L. Perrin et al.

We then check the existence of particular algebraic structure in T ′. We choose
the irreducible polynomial X3 + X + 1 to represent elements of F23 as binary
strings and, furthermore, we represent these binary strings as integers. In equa-
tions we represent such constants in italic. Note that this representation was
motivated by convenience reasons for working in Sage [12] and we are using it
only in this section for describing the decomposition process.

Now we use Lagrange interpolation to represent each T ′−1
k as a polynomial

over F23 . The result is given in Table 3. Interestingly, the coefficients of the non-
linear terms x6, x5, x3 are key-independent. We therefore decompose T ′−1 as
a sum of its non-linear part N and its key-dependent linear part Lk so that
T ′−1

k (x) = N(x) + Lk(x), where N(x) = 3x6 + 2x5 + 5x3 and Lk(x) is linear for
any k (see Fig. 4b).

Table 3. The values and polynomial interpolation of each T ′−1
k .

0 1 2 3 4 5 6 7 Interpolation polynomial

T ′−1
0 0 5 7 4 2 6 1 3 3x6 + 2x5 + 3x4 + 5x3 + 2x2 + 0x

T ′−1
1 0 3 1 4 7 5 2 6 3x6 + 2x5 + 1x4 + 5x3 + 4x2 + 2x

T ′−1
2 0 4 5 7 3 6 2 1 3x6 + 2x5 + 0x4 + 5x3 + 0x2 + 0x

T ′−1
3 0 2 3 7 6 5 1 4 3x6 + 2x5 + 2x4 + 5x3 + 6x2 + 2x

T ′−1
4 0 2 5 1 7 4 6 3 3x6 + 2x5 + 3x4 + 5x3 + 0x2 + 5x

T ′−1
5 0 4 3 1 2 7 5 6 3x6 + 2x5 + 1x4 + 5x3 + 6x2 + 7x

T ′−1
6 0 3 7 2 6 4 5 1 3x6 + 2x5 + 0x4 + 5x3 + 2x2 + 5x

T ′−1
7 0 5 1 2 3 7 6 4 3x6 + 2x5 + 2x4 + 5x3 + 4x2 + 7x

We now simplify N by applying a linear function of our choice after T ′−1

(see Fig. 4c). We allow ourselves to do this because this side corresponds to the
input of the S-Box on which, as we said before, we may apply any affine layer
as those would preserve the differential uniformity of the whole permutation.
Choosing this side also prevents the need for a corresponding modification of U .
We choose p(x) = 4x4 + x2 + x because (p ◦ N)(x) = x6 is the inverse function
in F23 , denoted I.

We further remark that p ◦ Lk is simpler than Lk too: there are nonzero
coefficients only at x2 and x4 (see Table 4). Note also that p ◦ L2 = 0 so we add
2 to k to obtain these linear layers:

(p ◦ Lk)(x) = l2(k + 2)x2 + l4(k + 2)x4,

where l2(x) = 2x4 + 4x2 + x and l4(x) = x4 + 6x2 + 2x are obtained from the
Lagrange interpolations of p ◦ Lk given in Table 4.

In our effort to simplify the structure, we search for a linear permutation
q such that both l2 ◦ q and l4 ◦ q have a simpler form and find that q(x) =
3x4 + 7x2 + 3x is such that (l2 ◦ q)(x) = x4 and (l4 ◦ q)(x) = x2. Therefore,

Cryptanalysis of a Theorem 101

Table 4. The interpolation polynomials of each p ◦ Lk.

Function Polynomial

p ◦ L0 7x4 + 3x2

p ◦ L1 2x4 + 4x2

p ◦ L2 0x4 + 0x2

p ◦ L3 5x4 + 7x2

Function Polynomial

p ◦ L4 4x4 + 6x2

p ◦ L5 1x4 + 1x2

p ◦ L6 3x4 + 5x2

p ◦ L7 6x4 + 2x2

L

t

I

p

⊕

⊕
2

q1 q−1 ⊕
2

⊕

(a) Using k′ = q(k) ⊕ 2.

t

I

I⊕

q−1 ⊕
2

⊕
⊕

(b) Using Equation (1).

Fig. 5. Simplifying p◦L and thus T ′−1. The dashed area corresponds to the equivalence
given by Eq. 1.

we can write (p ◦ Lk)(x) = k′4x2 + k′2x4, where k′ = q−1(k + 2). We deduce
a representation of the whole structure of p ◦ T ′−1 depending only on linear
functions and the inverse function which we describe in Eq. (1) and Fig. 5.

(p ◦ T ′−1
k)(x) = x6 + x2k′4 + x4k′2 = (x + k′)6 + k′6, with k′ = q−1(k + 2). (1)

Then, we replace the application of x �→ q−1(x+2) on the horizontal branch in
Fig. 5b by its application on the right vertical branch followed by its inverse (see
Fig. 6a; note that q−1(2) = 5). By then discarding the affine permutation applied
on the top of the right branch (we omit the affine layers applied to the outside of
the complete permutation), we obtain the equivalent structure shown in Fig. 6b.
Finally, we merge the two linear Feistel functions into z(x) = t(q(x)) ⊕ x to
obtain our final decomposition of T −1:

T −1(�||r) = I
(
� + z

(
q−1(r)

)
+ 5

)
+ I

(
q−1(r) + 5

)
|| (q−1(r) + 5),

which is also is described in Fig. 6c. Now that we have found a decomposition of
T , we shall use it to express a whole permutation affine-equivalent to S0.

2.3 Joining the Decompositions of T and U

Let us now join the decomposition of T and U together, that of U being obtained
using that U(x) = M ′

U ◦ T −1 ◦ MU (x). The affine transformations applied on

102 L. Perrin et al.

t

q−1

5

I
I

5

q

(a)

q−1

I

qt⊕
⊕
⊕5 ⊕5

I⊕

(b)

q−1

I

z⊕
⊕5 ⊕5

I⊕

(c)

Fig. 6. Finishing the decomposition of T −1: moving q, q−1 and x �→ x + 2 around,
removing the outer affine layer and merging the Feistel linear rounds.

the top of T ′−1 make the relation between T−1 and U affine instead of linear
on one side. This side corresponds to the output of the S-Box and we omit this
transformation. The other linear mapping MU connecting T−1 and U merges
with the linear part of T−1 and its symmetric copy from U into the linear
mapping M (see Fig. 7a and b). The linear permutation M is given by the
following matrix over F2:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 1 1 1
1 1 0 0 1 0
0 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0
1 0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In order to further improve our decomposition, we studied how each compo-
nent of this structure could be modified so as to preserve the APN property of
the permutation. We investigated both the replacement of the linear and non-
linear permutations used and describe our findings in Sect. 3.3. In particular,
we found that we could modify the central affine layer in the following fashions
while still keeping the APN property of the permutation (see Theorem 2):

– changing the xor constants to any value, in particular 0;
– inserting two arbitrary 3-bit linear permutations a and b as shown in Fig. 7c.

Thus, we remove the xors from the structure and exhaustively check all linear
permutations a, b such that the resulting linear layer from Fig. 7c has the simplest
form. We found that for a(x) = 2x4 + 2x2 + 4x and b(x) = 2x4 + 3x2 + 2x the
resulting matrix can be represented as the following matrix M ′ over F23 :

M ′ =
[
2 5
1 2

]

.

Interestingly, M ′ is an involution which, because of the symmetry of our
decomposition, makes the whole S-Box involutive too! The matrix M ′ can more-

Cryptanalysis of a Theorem 103

I
I

5 5
z

q1

MU

q−1

z

5 5

I
I

T
U

(a) Joining the decompo-
sitions of T and U .

I

I
5 5

M

5 5

I
I

(b) Merging linear layers.

I
I
a a

M

b b

I
I

(c) Allowed transforma-
tions.

Fig. 7. Simplifying the middle affine layer. The linear mappings in the dotted area in
Fig. 7a form the linear layer M .

over be decomposed into a 2-round Feistel Network with finite field multiplica-
tions by 2 as Feistel functions. We deduce the final decomposition from this final
observation and describe it in the following theorem.

Theorem 1. There exist linear bijections A and B such that the Dillon 6-bit
permutation is equal to

S0(x) = B(SI(A(x) ⊕ 9) ⊕ 4,

where the output of SI(�||r) is the concatenation of two bivariate polynomials of
F2[X]/(X3 + X + 1), namely SL

I (�, r) and SR
I (�, r). These are equal to

{
SR

I (�||r) = (r6 + �)6 + 2r,

SL
I (�||r) =

(
r + 2SR

I (�||r)
)6 + SR

I (�||r)6.

A picture representing a circuit computing SI is given Fig. 8.

For the sake of completeness, we give the matrices of the linear permutations
A and B:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 1
1 1 1 1 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 0 1
0 0 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 1 0 1 0
1 0 1 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

104 L. Perrin et al.

I
I

�2

⊕

⊕

I
I

�
2

⊕

⊕

Fig. 8. The APN involution SI , where I denotes the inverse in the finite field F23 with
the irreducible polynomial X3 + X + 1, i.e. the monomial x �→ x6.

3 Analysing Our Decomposition

In this section, we study the structure of the 6-bit APN permutation we derived
from the Dillon S-Box in Sect. 2. We start with a description of its cryptographic
properties in Sect. 3.1. Then, we generalize this structure into the Butterfly
structure (see Sect. 3.2). We investigate how 3-bit affine permutations propagate
through the different components of our decomposition in Sect. 3.3 and then we
use this information to deduce how much freedom we have when choosing the
different components of the permutation (see Sect. 3.4).

We discover some new relations between the APN permutation, the Kim
function and the cube mapping over F26 in Sect. 3.5. Furthermore, we describe
some simple univariate representations of the structure in Sect. 3.6. We have also
noticed that SI is CCZ-equivalent to the concatenation of two bent functions.
However, because it could not produce any new 6-bit APN permutations, we
discuss this in the full version of this paper [13].

3.1 Cryptographic Properties

The first consequence of our decomposition is the surprising observation that
the 6-bit APN permutation is affine-equivalent to an involution. To the best of
our knowledge, this was not known.

The permutation SI is obviously APN due to how it was obtained, so that
the highest differential probability is equal to 2/64 = 2−5. The Jackson Pollock
representation of the DDT of Swap ◦ SI ◦ Swap, where Swap is a simple branch
swap, is provided in Fig. 9a. The LAT of SI contains4, in absolute value, only 3
different coefficients: 945 occurrences of 0, 2688 occurrences of 4 and 336 occur-
rences of 8 (see Fig. 9b). Its maximum linear bias is thus 8/32 = 2−2. The left
half of its output bits have algebraic degree 4 and those on the right half have
algebraic degree 3.

4 As SI is a permutation, we ignore the first line and the first column of its LAT.

Cryptanalysis of a Theorem 105

(a) DDT of Swap ◦SI ◦Swap (white: 0,
black: 2).

(b) LAT of SI (white: 0, grey: 4, black: 8).

Fig. 9. The Jackson Pollock representation of the DDT and LAT of SI .

3.2 The Butterfly Structure

As described above, the output of our 6-bit APN permutation SI is the concate-
nation of two bivariate polynomials of F23 . We define the keyed permutation Rk

of F23 with a key in F23 as

Rk(x) = (x + 2k)6 + k6,

where Rk is indeed a permutation affine equivalent to the inverse function x �→
x6. In fact, its inverse R−1

k such that R−1
k (Rk(x)) = x is equal to R−1

k = (x +
k6)6 + 2k. Using this keyed permutation and its inverse, it is easy to express SI
(see also Fig. 10a):

SI(�||r) = RR−1
r (�)(r) || R−1

r (�).

Using this representation, we show that SI is CCZ-equivalent to a quadratic
function with a very similar structure. First, we recall the definition of CCZ-
equivalence (where CCZ stands for Carlet-Charpin-Zinoviev [14]) as it is defined
e.g. in [15].

Definition 1 (CCZ-equivalence). Let f and g be two functions mapping F2n

to itself. They are said to be CCZ-equivalent if the sets {(x, f(x)) | x ∈ F2n}
and {(x, g(x)) | x ∈ F2n} are affine equivalent. In other words, they are CCZ-
equivalent if and only if there exists a linear permutation L of (F2n)2 such that

{
(x, f(x)),∀x ∈ F2n

}
=

{
L (x, g(x)) ,∀x ∈ F2n

}
.

For example, a permutation is CCZ-equivalent to its inverse. As is shown in
Proposition 2 of [16], CCZ-equivalence preserves both the differential uniformity
and the Walsh spectrum (i.e. the distribution of the coefficients in the LAT).

Lemma 2. The permutation SI is CCZ-equivalent to the quadratic function
QI : F6

2 → F
6
2 obtained by concatenating two bivariate polynomials of F23 :

QI(�||r) = Rr(�)||R�(r).

A representation of QI is given Fig. 10b.

106 L. Perrin et al.

R−1

R

(a) The permutation SI .

R R

(b) The function QI .

Fig. 10. Two CCZ-equivalent APN functions of F6
2.

Proof. The functional graph of the function QI is the following set:

{
(
x||y, Ry(x)||Rx(y)), ∀x||y ∈ F

6
2},

in which we can replace the variable x by z = Ry(x) so that x = R−1
y (z) as Rk

is invertible for all k. We obtain a new description of the same set:

{
(
R−1

y (z)||y, z||RR−1
y (z)(y)), ∀z||y ∈ F

6
2}.

As the function μ : (F6
2)

2 → (F6
2)

2 with μ(x||y, a||b) = (a||y, b||x) is linear, this
graph is linearly equivalent to the following one:

{
(
z||y, RR−1

y (z)(y))||R−1
y (z), ∀z||y ∈ F

6
2},

which is the functional graph of SI : the two functions are CCZ-equivalent. �	

Definition 2 (Butterfly Structure). Let α be in F2n , e be an integer such
that x �→ xe is a permutation of F2n and Rk[e, α] be the keyed permutation

Rk[e, α](x) = (x + αk)e + ke.

We call Butterfly Structures the functions of (F2n)2 defined as follows:

– the Open Butterfly with branch size n, exponent e and coefficient α is the
permutation denoted Hα

e defined by:

Hα
e (x, y) =

(
R−1

Ry[e,α](x)(y), Ry[e, α](x)
)
,

– the Closed Butterfly with branch size n, exponent e and coefficient α is the
function denoted Vα

e defined by:

Vα
e (x, y) =

(
Ry[e, α](x), Rx[e, α](y)

)
.

Furthermore, the permutation Hα
e and the function Vα

e are CCZ-equivalent.

Pictures representing such functions are given in Fig. 11. Our decomposition
of the 6-bit APN permutation and its CCZ-equivalent function have butterfly
structures: SI = H2

6 and QI = V2
6 . In fact, the proof of the CCZ-equivalence

of open and closed butterfly is identical to that of Lemma 2. The properties of
such structures for n > 3 are studied in Sect. 4.1, in particular in Theorem 4. In
this section, we focus on the case n = 3.

Cryptanalysis of a Theorem 107

xe

x1/e

�α

⊕

⊕

xe

xe

�
α

⊕

⊕

(a) Open (bijective) butterfly Hα
e .

�
α

⊕
xe

xe ⊕

�
α

⊕
xe

xe ⊕

(b) Closed (non-bijective) butterfly Vα
e .

Fig. 11. The two types of butterfly structure with coefficient α and exponent e.

3.3 Propagation of Affine Mappings Through the Components

As we have seen, affine-equivalence and CCZ-equivalence are key concepts in
our analysis of SI . In this context, it is natural to extend our analysis not only
to outer affine layers applied before and after the permutation but also to the
inner affine permutation itself: what modifications can we make to this function
while preserving the APN property of the structure? In this section, we study
the “propagation” of affine layers in the sense defined below. Our study will show
some interesting properties of the structure and why changing some components
can lead to an affine equivalent structure.

Definition 3 (Propagation of Affine Layers). We say that an affine trans-
formation A propagates through a component C if there exists an affine trans-
formation A′ such that C ◦ A = A′ ◦ C.

Note that this definition is another way of looking at self-equivalence: indeed,
C ◦ A = A′ ◦ C is equivalent to C = A′−1 ◦ C ◦ A.

Theorem 2. Consider the two permutations of F
6
2 with structures shown in

Fig. 12, where A,B : F3
2 → F

3
2 are some linear bijections,

M =
[
p q
r s

]

is an invertible matrix operating on column-vectors, p, q, r, s are 3 × 3 sub-
matrices over F2 and a, b, c, d are constants of F23 . Assume also that q is invert-
ible. Then both structures are affine-equivalent for any choice of M (with q
invertible) and constants. As a consequence, all such structures are in the same
affine-equivalence class.

Proof. We start by proving that adding constants a, b, c, d as described in Fig. 12
leads to affine-equivalent permutations. For now, we assume that A and B are
the identity. First, we modify the constants without modifying the function to
move them to the right branches only. To do this, we move a through the linear

108 L. Perrin et al.

I
I

M

I
I

I
I

a b

A A

M

B B
c d

I
I

Fig. 12. Affine equivalent structures.

layer M and modify b in such a way that c cancels out. The difference required,
x = b′ ⊕b, is a solution to the equation p(a)⊕q(x) = c, so that x = q−1(p(a)⊕c)
and x always exists since q is invertible. Thus, for

b′ = b ⊕ x = b ⊕ q−1(p(a) ⊕ c),

d′ = d ⊕ r(a) ⊕ s(x) = d ⊕ r(a) ⊕ s(q−1(p(a) ⊕ c)),

constructions with the structure described in Fig. 13a and b are functionally
equivalent.

a b

M
c d

(a)

b′

M

d′

(b)

d′
I
(c)

I
id′

d′

(d)

Fig. 13. How the xors around the central linear layer are affine equivalent to outer
linear layers.

The xors remaining on the right branches propagate through the Feistel func-
tion I and are equivalent to particular outer affine transformations. Note that
in F23 we have5

I(x + d′) = (x + d′)6 = x6 + d′2x4 + d′4x2 + d′6 = I(x) + id′(x),

where id′(x) = d′2x4 + d′4x2 + d′6 is an affine function and can be seen as an
additional Feistel round. The propagation of the xor with d′ is illustrated on
5 For larger fields the inverse function does not satisfy the property and therefore such

propagation is impossible. An anonymous reviewer pointed out that this works in
F23 because the inverse function there has boolean algebraic degree 2 and therefore
its derivative is linear.

Cryptanalysis of a Theorem 109

Fig. 13c and d: the functions described on both figures are functionally equiva-
lent. The case with b′ is symmetrical.

We have now showed that the xors a, b, c, d can be removed and the resulting
S-Box stays in the same affine equivalence class. Since the equivalence relation is
symmetric, we can also modify the constants to arbitrary values. We now move
on to studying the impact of branch-wise affine permutations.

It is sufficient to show how the two applications of B propagate through the
bottom field inverses, the case of A being symmetric. We start by analyzing
propagation through a single inverse function (see Fig. 14).

In the case when the input transformation is linear (when c = 0), it is easy to
see that if the equivalent output transformation is affine, then it is actually linear,
since B(0) = I(0) = 0. By exhaustively checking all linear 3-bit permutations B
we found that the only functions which propagate in such way are 21 functions
of the form x �→ λx2e , where e ∈ {0, 1, 2}, λ ∈ F23 , λ �= 0. This propagation is
quite obvious since (λx2e)6 = λ6(x6)2

e

.
The more interesting case is when the input transformation is affine. By

exhaustive search we found that any linear bijection B propagates through the
field inverse in F23 , but only together with a particular B-dependent xor con-
stant. That is, for any linear bijection B there exists a constant c such that
I(B(x)+ c) = B′(I(x))+ c′ for some linear bijection B′ and constant c′, i.e. the
affine function B(x) + c propagates through the inverse function in the affine
way (see Fig. 14b).

b

I
≈ I

b′

(a) Linear.

b
c

I
≈

I
b′

c′

(b) Affine.

Fig. 14. Propagation of linear/affine permutation through the field inverse.

Note that after applying the linear bijections A and B the top right submatrix
of M becomes B × q × A and is still invertible, therefore the part of theorem
about constant addition, which we already proved, is still applicable. Hence for
any linear mappings A,B we can add the xor constants required for propagation
of A,B. Let x, y be the values on the left and right branches respectively after
applying the linear layer M . Then the left half of the output is equal to

x′ = I(B(x)+c)+I(B(y)+c) = B′(I(x))+c′ +B′(I(y))+c′ = B′(I(x)+I(y)),

and the right half is simply y′ = B(x) + c. The procedure is shown in Fig. 15. �	

Theorem 2 shows an interesting property of the field inverse in F23 : all lin-
ear bijections propagate through it together with some xor constant. We have
checked all nonlinear exponent functions in F2n for n = 4, 5, 6, 7 and none of

110 L. Perrin et al.

M

B B

I
I

M
x y

B B
c c

I
I

x′ y′

M
x y

I
I

B′ B
c

x′ y′

Fig. 15. Propagation of affine mappings through the inverses. The dashed area contains
the outer affine parts.

them has this property. By using self-equivalence algorithm from [11] we found
that in these fields the only affine transformations which propagate through such
nonlinear monomial functions are the linear mappings of the form x �→ λx2e ,
where e ∈ [0, n − 1], λ ∈ F2n , λ �= 0.

In our decomposition the central linear layer is a 2-round Feistel Network
where the round function σ is multiplication by 2 in the finite field defined by a
particular polynomial (see Fig. 16a). By applying linear transformations around
as in Theorem 2 we obtain an affine equivalent S-Box. We can move the linear
functions a through the linear Feistel network, such that the round functions
are modified and the linear functions a merge with the linear functions b as
shown in Figs. 16b and c. Since by Theorem 2 the outer linear function b ◦ a
can be omitted, we conclude that σ may be replaced by a−1 ◦ σ ◦ a for arbitrary
linear permutation a. By exhaustively checking a−1 ◦ σ ◦ a for all a we found
that there are 24 unique variants of σ. In particular, in the field defined by the
irreducible polynomial X3 + X + 1 the allowed multiplications by a constant α
are when α ∈ {2, 4, 6}, where the latter two are obtained from σ(x) = 2x by
setting a(x) = x2 and a(x) = x4. In the field defined by the other irreducible
polynomial X3 + X2 + 1 such constants become α ∈ {3, 5, 6}. We note that all
these elements can be unambiguously defined by the conditions Tr(α) = 0, α �= 0
in both fields.

3.4 Replacing Components

It is natural to ask how unique are the components of the decomposition; can
we get a different APN permutation by changing the central linear layer or the
inverse functions?

We made an exhaustive6 search for an invertible matrix such that when it
is used as the middle linear layer in our decomposition, the resulting S-Box is
an APN permutation. All the APN permutations we found are CCZ-equivalent
to the original S-Box. However not all of them are affine-equivalent to it. By
studying the new matrices we found that all of them can be obtained by using
6 Actually we optimized the search by utilizing the equivalence classes given by

Theorem 2.

Cryptanalysis of a Theorem 111

σ

σ

(a) The linear layer
from the decomposi-
tion

a a

σ

σ

b b

(b) Applying arbitrary
linear bijections a and b.

aσa−1

aσa−1

a a

b b

(c) Moving the linear func-
tions a down.

Fig. 16. Propagation of the linear function a through the middle linear layer.

transformations from Theorem 2 together with swaps applied before and/or
after the linear layer. All four different combinations of swaps result in four
S-Boxes from distinct affine-equivalence classes (see Fig. 17). However they form
two pairs of EA-equivalent S-Boxes: Fig. 17a and c, Fig. 17b and d. The proof
for EA-equivalence is given in the full version of this paper [13]. Note that the
function shown in Fig. 17c is the inverse of the function from Fig. 17b and both
functions from Figs. 17a and d are involutions. Whether all four functions are
EA-equivalent remains an open question.

I
I

α

αI
I

(a) No swaps.

I
I

α

αI
I

(b) Swap after.

I
I

α

αI
I

(c) Swap before.

I
I

α

αI
I

(d) Both swaps.

Fig. 17. Four APN permutations from different affine-equivalence classes, obtained by
adding swaps before and/or after the central linear layer.

We also made an exhaustive search of all 3-bit permutations and tried to use
them instead of the field inverses. A non-involutive function has to be inverted
in one of the places, as in the butterfly construction we introduced in Sect. 3.2. It
turns out that the set of all 3-bit permutations for which the respective S-Box is
an APN permutation is exactly the set of all 3-bit APN permutations. It is not
surprising because all 3-bit APN permutations are in the same affine equivalence
class. By using Theorem 2 and by applying some outer affine transformations
we can easily replace the field inverses with arbitrary affine-equivalent functions

112 L. Perrin et al.

and therefore with arbitrary 3-bit APN permutation. It follows that the two
APN permutations at the top and the two APN permutations at the bottom
may be different and the resulting S-Box will still be an APN permutation. We
also note that one of the 3-bit APN permutations is such that its DDT and LAT
are identical up to the signs in the LAT. It is the S-Box used in the block cipher
3-way [17].

As a summary of our observations we give the following theorem:

Theorem 3 (A Family of 6-bit APN Permutations). The 6-bit permuta-
tion described by Dillon et al. in [5] is affine equivalent to the involution built
using the structure described in Fig. 1, where � denotes multiplication in the
finite field GF (23), α �= 0 is such that Tr(α) = 0 and A denotes any 3-bit APN
permutation.

3.5 Relations with the Kim and the Cube Functions

It is suggested in [11] to count the number of pairs of affine permutations A,B
such that SI = B◦SI ◦A as a measure of the symmetries inside SI . An algorithm
performing this task is also provided. Using it, we have found that there are only
7 such pairs (including the pair of identity mappings). This property is preserved
by affine transformations and the number could therefore be obtained without
our decomposition. However, for the S-Box SI , these 7 pairs of transformations
have a simple description:

SI(λx, λ−1y) = (λ, λ−1) ⊗ SI(x, y) for all λ ∈ F
∗
23 , (2)

where “⊗” is such that (a, b) ⊗ (c, d) = (ac, bd). In other words, multiplying the
inputs by λ and λ−1 is equivalent to multiplying the outputs by the same values.
As we have shown in Sect. 3.3, there are more symmetries inside the structure.

An anonymous reviewer pointed out that the observed property is quite sim-
ilar to that of “Kim mapping”, a non-bijective quadratic APN function from
which Dillon et al. [5] obtained the APN permutation by applying transfor-
mations preserving CCZ-equivalence. The Kim function is defined over F26 as
k(x) = x3 + x10 + ux24, where u is some primitive element of F26 . It is pointed
in [5] that the following holds:

k(λx) = λ3k(x) for all λ ∈ F23 . (3)

We found experimentally that the Kim mapping is actually affine-equivalent
to all Closed Butterflies Vα

e with n = 3, e ∈ {3, 5, 6}, T r(α) = 0 and α �= 0. In
particular, it is affine-equivalent to the function QI = V2

6 described before.
The property that k(λx) = λ3k(x) for all λ ∈ F23 can be nicely translated to

Vα
e structure (when α �= 0). Indeed, it is easy to see that the following holds:

Vα
e (λx, λy) = (λe, λe) ⊗ Vα

e (x, y) for all λ ∈ F23 . (4)

In particular, setting e = 3 and α such that Vα
e is affine-equivalent to the Kim

mapping leads to a branch-wise variant of the property from Eq. 3.

Cryptanalysis of a Theorem 113

Similarly, the Open Butterflies Hα
e exhibit the following property:

Hα
e (λex, λy) = (λe, λ) ⊗ Hα

e (x, y) for all λ ∈ F23 . (5)

While Vα
e is an interesting decomposition of the Kim function (when Tr(α) =

0, α �= 0), we also found a very similar decomposition for the cube function over
F26 , which is also a quadratic APN function. Recall that the closed butterfly Vα

3

maps (x, y) to Rkim(x, y)||Rkim(y, x), where Rkim(x, y) = (x + αy)3 + y3. We
have found that changing Rkim to Rcube(x, y) = (x + αy)3 + x3 + αy3 leads to
a function affine-equivalent to the cube function over F26 . We describe the way
we found this decomposition in the full version of this paper [13].

3.6 Univariate Polynomial Representations

In this section we describe several univariate polynomial representations of
APN permutations from the affine-equivalence classes described in Sect. 3.4. We
obtained them by interpolating the structures from previous sections in various
bases relying on the field decomposition F26
 (F23)2. All polynomials described
in this section are specified over F26 and w is a primitive element such that
w = X in F2 [X]/(X6 + X4 + X3 + X + 1).

In [5], Dillon et al. represented the APN permutation as a univariate polyno-
mial over F26 with 52 nonzero coefficients. Using our decomposition, we managed
to find an APN permutation whose univariate polynomial has only 25 terms. Due
to lack of space we give the polynomial in the full version of this paper [13].

Originally, the APN permutation was obtained as a composition g = f2◦f−1
1 ,

where f1(x) and f2(x) contain 18 monomials each (as given in [5]). We have
found a variant with much simpler polynomials. The function g is still an APN
permutation if f1 and f2 as defined in [5] are replaced by the following two
functions:

f1(x) = w11x34 + w53x20 + x8 + x,

f2(x) = w28x48 + w61x34 + w12x20 + w16x8 + x6 + w2x.

Additionally, we found a few other simple representations relying on a com-
position of simple polynomials. Let g(x) = i ◦ m ◦ i−1(x), then g is an APN
permutation when

i(x) = w21x34 + x20 + x8 + x, m(x) = w52x8 + w36x

or when

i(x) = w37x48 + x34 + w49x20 + w21x8 + w30x6 + x, m(x) = x8.

In these representations, i corresponds to the sum of the two inverse functions
I so that i and i−1 are the non-linear parts of the open butterfly. The function
m corresponds to the central linear layer (including possible branch swaps).

114 L. Perrin et al.

4 Differentially 4-Uniform Permutations of Larger Blocks

An up to date overview of known APN functions can be found in [15]. As APN
functions operating on an even number of bits are still to be found for even
block sizes larger than 6, differentially 4-uniform permutations have received a
lot of attention from researchers. An obvious example is the inverse function
x �→ x2n−2 of F2n studied in the seminal work of Nyberg [4].

However, security against differential cryptanalysis is not sufficient and linear
attack need to be taken into account too. The search can thus be focused on
differentially 4-uniform permutations of 2n bits with non-linearity 22n−1 − 2n

which is, as far as we know, the best that can be achieved. Whether there
exists functions improving this bound is an open problem (Open Problem 2
in [18]). The same paper also states Open Problem 1: we must find other highly
non-linear differentially 4-uniform functions operating on fields of even degree.
Several papers have then presented constructions for such permutations, for
example using binomials [19] or an APN permutation on F2n+1 for even n [20].

In this section, we study the butterfly structure. In Sect. 4.1, we study butter-
flies with α �= 0, 1 and, in Sect. 4.2, the case α = 1 in which the open butterfly is
functionally equivalent to a 3-round Feistel Network. We show that these struc-
tures are always differentially 4-uniform for block sizes 2n (n odd) and have
algebraic degree n + 1 (when α �= 1) and n (when α = 1) in the bijective case,
2 otherwise. While we could not prove it in the general case, we conjecture that
they both have non-linearity 22n−1 − 2n.

4.1 Butterfly with Non-Trivial α

Theorem 4 (Properties of the Butterfly Structure). Let Vα
e and Hα

e

respectively be the closed and open 2n-bit butterflies with exponent e = 3× 2t for
some t, coefficient α not in {0, 1} and n odd. Then:

– the differential uniformity of both Hα
e and Vα

e is at most 4,
– Vα

e is quadratic, and
– half of the coordinates of Hα

e have algebraic degree n, the other half have
algebraic degree n + 1.

Proof. In this proof, we rely a lot on the univariate degree of a polynomial of
F

n
2 . It is different from the algebraic degree: the cube function has univariate

degree 3 and algebraic degree 2.
Differential Properties. As Vα

e and Hα
e are CCZ-equivalent, they have the

same differential uniformity. It is thus sufficient to prove that the one of Vα
e

is at most 4. First, note that the functions Vα
e with exponent 3 × 2t is affine

equivalent to Vα
3 which uses the exponent 3 as Vα

3 can be obtained simply by
applying the linear permutation x �→ x2n−t

on each half of the output of Vα
e .

Thus, it is sufficient to study the case where the exponent is equal to 3.
Let Tα be the linear permutation of Fn

2 × F
n
2 defined by the matrix

Tα =
[

1 α
α 1

]

.

Cryptanalysis of a Theorem 115

As affine equivalence preserves differential uniformity, we will prove that the
differential uniformity of P = Tα ◦Vα

3 is at most equal to 4 and deduce that Vα
3

has the same property. The left side of the output of P is equal to

PL(x, y) = R(x, y) + αR(y, x)

= (x + αy)3 + y3 + α
(
(y + αx)3 + x3

)

= x3(1 + α + α4) + y3(1 + α + α3) + x2y(α + α3)

and the right side to

PR(x, y) = R(y, x) + αR(x, y)

= y3(1 + α + α4) + x3(1 + α + α3) + xy2(α + α3).

To simplify expressions, we use the notation β = α3+α. Note that for the values
of α we are interested in, namely α �= 0, 1, it holds that β �= 0.

By definition of differential uniformity, the differential uniformity of P is at
most 4 if and only if the following system has at most 4 solutions for any a, b, c, d
(unless a = b = 0):

{
PL(x, y) + PL(x + a, y + b) = c

PR(x, y) + PR(x + a, y + b) = d,

which is equivalent to
{

(ax2 + a2x)(1 + α + α4) + (by2 + b2y)(1 + β) + (bx2 + a2y)β = c + PL(a, b)
(by2 + b2y)(1 + α + α4) + (ax2 + a2x)(1 + β) + (b2x + ay2)β = d + PR(a, b).

If a = 0 then the second line of the system yields the sum of a univariate degree
2 polynomial in y with b2βx. As b �= 0 (recall that a = b = 0 is impossible), we
deduce that x is equal to a univariate degree 2 polynomial in y and replace it
by this expression in the first equation. We obtain an equation with univariate
degree 4 only in y with at most 4 solutions, for each of which we deduce a unique
value x. Hence, the system has at most 4 solutions. The case b = 0 is treated
similarly.

We now suppose a �= 0 and b �= 0. We replace the left side of the first line �1
by a linear combination of the left sides of the two equations: �1 := ab2�1+a2b�2.
This quantity is a degree one bivariate polynomial with variables X = ax2 +a2x
and Y = by2 + b2y so that we can write �1 = γ0X +γ1Y = ε, where ε is obtained
by computing the same linear combination on the right side of the equations.
If γ0 = 0 then �1 actually is a degree 2 equation in y. For each of its at most
2 solutions, we obtain a degree 2 equation in x in �2 with at most 2 solutions.
Hence, the total number of solutions is at most equal to 4. The case γ1 = 0 is
identical.

We now suppose γ0 �= 0 and γ1 �= 0. Using that γ0X + γ1Y = ε, we deduce
that (ax2 + a2x) =

(
ε + (by2 + b2y)γ1

)
/γ0. We can therefore replace (ax2 + a2x)

by this quantity in the second equation which becomes the sum of a degree 2

116 L. Perrin et al.

equation in y with a degree 1 term in x. As before, we deduce an expression of
x as a degree 2 polynomial in y and replace it by this polynomial in the other
equation. Hence, the initial system has as many solutions as an equation with
univariate degree 4, i.e. at most 4.

Therefore, P (x, y)+P (x+a, y + b) = (c, d) has at most 4 solutions, meaning
that the differential uniformity of P is at most 4.

Algebraic Degrees. As the left and right side of Vα
e (x, y) are equal to, respec-

tively, (x + αy)3 + y3 and (y + αx)3 + x3, it is obvious that it is quadratic
(recall that the algebraic degree of the univariate polynomial x �→ xe of Fn

2 is
the Hamming weight of the binary expansion of e).

Consider now the open butterfly Hα
e . For the sake of simplicity, we treat the

case e = 3; other cases yield identical proofs. The right side of the output of
such an open butterfly is equal to (x+αy3)1/3 +αy, where x||y is the input. We
deduce from Theorem 1 of [21] (or equivalently from Proposition 5 of [4]) that
the inverse of 3 modulo 2n − 1 for odd n is

1/3 ≡
(n−1)/2∑

i=0

22i mod 2n − 1,

which implies in particular why the algebraic degree of x �→ x1/3 is equal to (n+
1)/2. We deduce from this expression that (x+αy3)1/3 is equal to

∏(n−1)/2
i=0 (x+

αy3)2
2k

. This sum can be developed as follows:

(x + αy3)1/3 =
∑

J⊆[0,(n−1)/2]

∏

j∈J

α22jy322j

︸ ︷︷ ︸
deg<2|J|

∏

j∈J

x22j

︸ ︷︷ ︸
deg=(n+1)/2−|J|

,

where J is the complement of J in [0, (n − 1)/2], i.e. J ∩ J = ∅ and J ∪ J =
[0, (n − 1)/2]. The algebraic degree of each term in this sum is at most equal to
|J | + (n + 1)/2. If J = ∅ then x is absent from the term so that the maximum
algebraic degree is n. If J = {j} for some j, then the term is equal to (xy−1)2

2j

(we omit the constant factor) which has algebraic degree 1 + (n − 1) = n. If
|J | < (n − 1)/2, then the whole degree is smaller than n. Thus, the right side of
the output has an algebraic degree equal to n.

The left side is equal to

(
y + α

(
(x + αy3)1/3 + αy

))3

+
(
(x + αy3)1/3 + αy

)3
.

The terms of highest algebraic degree in this equation are of the shape y2(x +
αy3)1/3 and y(x + αy3)2×1/3. Because of what we established above, we have:

y2(x + αy3)1/3 =
∑

J⊆[0,(n−1)/2]

y2 ×
∏

j∈J

α22jy3×22j

︸ ︷︷ ︸
deg<2|J|+1

∏

j∈J

x22j

︸ ︷︷ ︸
deg=(n+1)/2−|J|

,

Cryptanalysis of a Theorem 117

so that the algebraic degree of this term is at most equal to |J |+(n+1)/2+1 ≤
n + 1. If J = [0, (n − 1)/2] \ {j} for some j, then the algebraic degree of the
expression is (1 + (n − 1)/2) + (n + 1)/2 = n + 1, meaning that this bound is
reached. The terms y(x + αy3)2/3 are treated similarly. Hence, the left side of
the output has algebraic degree n + 1. �	

This proof lead us to some interesting observations.

Remark 1. The proof relies on the study of Tα ◦ Vα
e which, for n = 3, has as

its output the concatenation of b(x, y) and b(y, x) for a bent function b with a
Maiorana-MacFarland structure. We provide further analysis for this observation
in the full version of this paper [13]. We also note that the idea of building APN
or differentially 4-uniform functions by concatenating two functions, at least one
of which is bent, was discussed by Carlet in [22].

We have also studied the butterfly structure experimentally. While we could
not find a pair (e, α) for which a butterfly is APN for n > 3, we did notice a
variation in the distribution of 0, 2 and 4 in their DDT. It is therefore possible
that APN butterflies exist but not for n = 5, 7. Moreover, butterflies are never
differentially 4-uniform for n = 4, 8, 10. However, the case n = 6 yields the
following proposition.

Proposition 1. If n = 6, then there exists α such that Hα
5 is a 12-bit permu-

tation that is differentially 4-uniform. In fact, all of the coefficients in its DDT
are in {0, 4}. Its non-linearity is 1920 = 22n−1 − 2n+1.

A natural generalization would be to have the same result for e = 5 whenever
x �→ x5 is a permutation. However, we found experimentally that this result
does not hold for n = 10, although x �→ x5 is a permutation of F210 . We note
also that, unlike in Theorem 4, Proposition 1 does not hold for all values of α
but only for few of those.

We also found experimentally that the maximum LAT coefficient of a but-
terfly structure operating on 2n bits is equal to 2n for n = 3, 5, 7. This implies
that the non-linearity of the butterfly structure is “optimal” in the sense that
no known permutations of a field of size 2n have a non-linearity higher than
22n−1 −2n. It is however not known if this bound holds for all permutations (see
Open Problem 2 in [18]).

Proposition 2. The non-linearity of a butterfly structure operating on 2n bits
is equal to 22n−1 − 2n for n = 3, 5, 7.

We conjecture that this proposition is true for every odd n.

4.2 Feistel Network (α = 1)

If we set α = 1 in an open butterfly structure, the resulting permutation is
functionally equivalent to a 3-round Feistel Network with round functions x �→
xe, x �→ x1/e and x �→ xe, as described in Fig. 18. We denote such a Feistel

118 L. Perrin et al.

xe

x1/e

⊕

⊕

xe

xe

⊕

⊕

(a) Open butterfly H1
e .

xe⊕

x1/e ⊕

xe⊕

(b) Fe (note Fe = H1
e).

xe xe xe

⊕

⊕⊕

(c) Closed butterfly V1
e .

Fig. 18. The equivalence between H1
e and Fe.

Network Fe. We note that the closed butterfly V1
e has a structure reminiscent of

a Lai-Massey round (see Fig. 18c).
In [23], Li and Wang proved that the 2n-bit Feistel Networks Fe with e =

2k+1 and odd n such that gcd(n, k) = 1 have very good cryptographic properties:

1. the differential spectrum of Fe is equal to {0, 4};
2. the non-linearity of Fe is the best known and is equal to 22n−1 − 2n;
3. the algebraic degree of Fe is equal to n.

Note that the butterfly structures from Theorem 4 have degree n + 1 on half
of the coordinates. We have proved that F3 has degree n on all coordinates. The
proof is given in the full version of this paper [13].

Remark 2. The proof for the algebraic degree of the left side of F3 relies on
particular cancellation occurring in the sum y2(x + y3)1/3 + y(x + y3)2/3. Such
cancellations do not occur when α �= 1 as the terms in the corresponding sum are
preceded by different coefficients which are both functions of α. This explains
why the algebraic degree of F3 and the open butterfly structure with α �= 1 are
different.

We also note that the monomial x �→ x5 in F22n shares the same differential
and linear properties. In [23] it is mentioned that for n = 3 the Feistel Network
F3 is CCZ-equivalent to the monomial x �→ x5. We observe that the closed
butterfly V1

5 , which is CCZ-equivalent to F5, is actually linear-equivalent to the
monomial x �→ x5 over F22n for all odd n ≥ 3. We state the generalized result in
the following theorem.

Theorem 5. Let n ≥ 3 be an odd integer and e = 22k + 1 for some positive
integer k. Then the closed 2n-bit butterfly V1

e is linear-equivalent to the monomial
x �→ xe of F22n .

Corollary 1. Let n ≥ 3 be an odd integer and e = 22k + 1 for some positive
integer k, such that the monomial x �→ xe defines a permutation of F22n . Then
the 2n-bit Feistel Network Fe is CCZ-equivalent to this permutation.

The proof is based on the field decomposition F22n
 (F2n)2 and is given it
in the full version of this paper [13].

Cryptanalysis of a Theorem 119

5 Implementing 6-Bit APN Permutations

We can use the open butterfly structure to efficiently implement 6-bit APN
permutations in both a bit-sliced fashion for use in software and in hardware.
In this section, we explore this idea and provide an S-Box Ao which is affine
equivalent to H2

3 and for which there exists such efficient implementation.

5.1 Efficient Bit-Sliced Implementations

Starting from the algebraic normal forms of the operations used to compute H2
3,

it is easy to write a first naive bitsliced implementation (see full version [13]).
This implementation can be optimized by using Boolean algebra and remov-

ing the linear component of x �→ x3 in the first and last steps. Doing this is equiv-
alent to applying an affine permutation before and after the H2

3 to obtain a new
permutation Ao. This operation preserves the differential and linear property of
the permutation while also keeping the property that A−1

o = Swap6 ◦Ao ◦Swap6,
where Swap6 simply swaps the two 3-bit branches. The bitsliced implementation
of this simplified S-Box is given in Algorithm 1 and its look-up table in Table 5.

Table 5. The look-up table of Ao in hexadecimal, e.g. Ao(0x32) = 0x21.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 0 1d 6 3f 3c 3b 31 12 22 35 17 2c 16 33 30 39

1. 2d a 38 2b 1 4 2f 1e 3 34 2e 25 27 1a 29 28

2. 2a 7 14 3d 36 19 b 20 3e d 37 8 1b 2 9 1c

3. 10 1f 21 3a 26 13 24 5 c f 11 e 23 32 15 18

5.2 Hardware Implementation

Our decompositions also eases the hardware implementation of these S-Boxes.
To illustrate this, we simulated the circuit computing these functions in three
different ways. First, we simply gave the look-up table to the software7 and let
it find the best implementation it could (no decomposition case). Then, we fed
it our decomposition of the different structures (decomposed case).

The optimization performed by the software is done for two competing crite-
ria. The first is the area which simply corresponds to the physical space needed
to implement the circuit using the logical gates available. The second is the prop-
agation time, i.e. the delay necessary for the electronic signal to go through the
circuit implementing the S-Box and to stabilize itself to the output value.8

7 We used the digital cell library SAED90n-1P9M in the “normal Vt, high temperature,
nominal voltage” corner.

8 We also considered implementing the cube function using finite field arithmetic but
could not easily improve our results.

120 L. Perrin et al.

Algorithm 1. An optimised bitsliced implementation of an S-Box affine-
equivalent to the open butterfly with α = 2, e = 3.

function Ao(X0, ..., X5)
1 . t = (X5 ∧ X3)
2 . X0 ⊕= t ⊕ (X5 ∧ X4)
3 . X1 ⊕= t
4 . X2 ⊕= (X4 ∨ X3)
5 . t = (X1 ∨ X0)
6 . X0 ⊕= (X2 ∧ X1) ⊕ X4

7 . X1 ⊕= (X2 ∧ X0) ⊕ X5 ⊕ X3

8 . X2 ⊕= t ⊕ X3

9 . X3 ⊕= X1

10 . X4 ⊕= X2 ⊕ X0

11 . X5 ⊕= X0

12 . u = X3

13 . t = X4

14 . X3 ⊕= t
15 . X3 = X3 ∧ X5 ⊕ t
16 . X4 ⊕= ((¬X5) ∧ u)
17 . X5 ⊕= (t ∨ u)
18 . t = (X2 ∧ X0)
19 . X3 ⊕= t ⊕ (X2 ∧ X1)
20 . X4 ⊕= t
21 . X5 ⊕= (X1 ∨ X0)

end function

For each function, we repeated the experience several times using different
periods for the clock cycles: when the period is maximum, priority is given to
optimizing the area and, as the period decreases, the priority shifts toward the
propagation time. The results are given in Table 6.

Table 6. Results on the hardware implementation of our S-Boxes. The area a is in
(μm)2, the delay d is in ns and a × d is their product.

Base Decomposed

S-Box Period (ns) a d a × d a d a × d

H2
3 100 799 56.42 45079.58 414 39.31 16274.34

20 827 19.75 16333.25 404 18.7 7554.8

10 928 9.81 9103.68 431 9.76 4206.56

5 1062 4.81 5108.22 569 4.81 2736.89

Ao 100 774 53.13 41122.62 384 42.01 16131.84

20 812 19.3 15671.6 384 15.43 5925.12

10 869 9.63 8368.47 382 9.77 3732.14

6 1041 5.8 6037.8 464 5.8 2691.2

As we can see, the knowledge of the decompositions always allows a more
efficient implementation: regardless of what the main optimisation criteria is,
both the area and the delay are decreased.

6 Conclusion

We have identified a decomposition of the 6-bit APN permutation published
by Dillon et al. [5] and found it to be affine equivalent to an involution. We

Cryptanalysis of a Theorem 121

generalized the structure found to larger block sizes, although we could only
prove its being differentially 4-uniform in those cases. We also deduced efficient
implementation of 6-bit APN permutations in both a bit-sliced fashion and in
hardware.

Our work also raised the following open questions.

Open Problems (On the properties of Butterfly Structures).

1. Is there a tuple n, e, α where n > 3 and e are integers, and α is a finite field
element such that Hα

e operating on (F2n)2 is APN?
2. Is it true that the non-linearity of a butterfly structure on 2n bits with α �= 0, 1

and n odd is always 22n−1 − 2n?

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
We also thank Yann Le Corre for studying the hardware implementation of the per-
mutation. The work of Léo Perrin is supported by the CORE ACRYPT project
(ID C12-15-4009992) funded by the Fonds National de la Recherche (Luxembourg).
The work of Aleksei Udovenko is supported by the Fonds National de la Recherche,
Luxembourg (project reference 9037104).

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

4. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

5. Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An APN permutation in
dimension six. Finite Fields Theory Appl. 518, 33–42 (2010)

6. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: light-
weight authenticated cipher with side-channel resistance for constrained hardware.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

7. Biryukov, A., Perrin, L., Udovenko, A.: Reverse-engineering the S-box of Streebog,
Kuznyechik and STRIBOBr1. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 372–402. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 15

8. Biryukov, A., Perrin, L.: On reverse-engineering S-Boxes with hidden design crite-
ria or structure. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 116–140. Springer, Berlin Heidelberg (2015)

9. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

10. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

http://dx.doi.org/10.1007/978-3-662-49890-3_15
http://dx.doi.org/10.1007/978-3-662-49890-3_15

122 L. Perrin et al.

11. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanaly-
sis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

12. Developers, T.S.: SageMath, the Sage Mathematics Software System (Version 7.1)
(2016). http://www.sagemath.org

13. Perrin, L., Udovenko, A., Biryukov, A.: Cryptanalysis of a Theorem: Decomposing
the Only Known Solution to the Big APN Problem (Full Version). Cryptology
ePrint Archive, Report 2016/539 (2016). http://eprint.iacr.org/

14. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Des. Codes Crypt. 15(2), 125–156 (1998)

15. Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite
Fields Appl. 32, 120–147 (2015). Special Issue: Second Decade of FFA

16. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006)

17. Daemen, J., Govaerts, R., Vandewalle, J.: A new approach to block cipher design.
In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 18–32. Springer, Heidelberg
(1994)

18. Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power map-
ping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010)

19. Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4 uniform permutations
with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012)

20. Li, Y., Wang, M.: Constructing differentially 4-uniform permutations over GF(22m)
from quadratic APN permutations over GF(22m+1). Des. Codes Crypt. 72(2), 249–
264 (2014)

21. Kyureghyan, G.M., Suder, V.: On inverses of APN exponents. In: 2012 IEEE Inter-
national Symposium on Information Theory Proceedings (ISIT), pp. 1207–1211.
IEEE (2012)

22. Carlet, C.: Relating three nonlinearity parameters of vectorial functions and build-
ing APN functions from bent functions. Des. Codes Crypt. 59(1), 89–109 (2011)

23. Li, Y., Wang, M.: Constructing S-Boxes for lightweight cryptography with Feistel
structure. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
127–146. Springer, Heidelberg (2014)

http://www.sagemath.org
http://eprint.iacr.org/

	Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem
	1 Introduction
	2 A Decomposition of the 6-Bit APN Permutation
	2.1 High-Level TU-Decomposition
	2.2 Decomposing T
	2.3 Joining the Decompositions of T and U

	3 Analysing Our Decomposition
	3.1 Cryptographic Properties
	3.2 The Butterfly Structure
	3.3 Propagation of Affine Mappings Through the Components
	3.4 Replacing Components
	3.5 Relations with the Kim and the Cube Functions
	3.6 Univariate Polynomial Representations

	4 Differentially 4-Uniform Permutations of Larger Blocks
	4.1 Butterfly with Non-Trivial
	4.2 Feistel Network (= 1)

	5 Implementing 6-Bit APN Permutations
	5.1 Efficient Bit-Sliced Implementations
	5.2 Hardware Implementation

	6 Conclusion
	References

