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Abstract. Circuit privacy is an important property for many
applications of fully homomorphic encryption. Prior approaches for
achieving circuit privacy rely on superpolynomial noise flooding or on
bootstrapping. In this work, we present a conceptually different app-
roach to circuit privacy based on a novel characterization of the noise
growth amidst homomorphic evaluation. In particular, we show that a
variant of the GSW FHE for branching programs already achieves circuit
privacy; this immediately yields a circuit-private FHE for NC1 circuits
under the standard LWE assumption with polynomial modulus-to-noise
ratio. Our analysis relies on a variant of the discrete Gaussian leftover
hash lemma which states that eᵀG−1(v)+ small noise does not depend
on v. We believe that this result is of independent interest.

Keywords: Homomorphic encryption · Circuit privacy · Branching
program · Noise flooding · Learning with errors · Rerandomization

1 Introduction

A fully homomorphic encryption (FHE) scheme is an encryption scheme which
supports computation on encrypted data: given a ciphertext that encrypts some
data μ, one can compute a ciphertext that encrypts f(μ) for any efficiently
computable function f , without ever needing to decrypt the data or know the
decryption key. FHE has numerous theoretical and practical applications, the
canonical one being to the problem of outsourcing computation to a remote
server without compromising one’s privacy. In 2009, Gentry put forth the first
candidate construction of FHE based on ideal lattices [Gen09]. Since then, sub-
stantial progress has been made [vDGHV10,SS10,SV10,BV11a,BV11b,BGV12,
GHS12,GSW13,BV14,AP14], offering various improvements in conceptual and
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technical simplicity, efficiency, security guarantees, assumptions, etc.; in partic-
ular, Gentry, Sahai and Waters presented a very simple FHE (hereafter called
the GSW cryptosystem) based on the standard learning with errors (LWE)
assumption.

Circuit Privacy. An additional requirement in many FHE applications is that
the evaluated ciphertext should also hide the function f , apart from what is
inevitably leaked through the outcome of the computation f(μ); we refer to
this requirement as circuit privacy [SYY99,IP07]. In the context of outsourcing
computation, a server may wish to hide its proprietary algorithm from the client.
Circuit privacy is also a requirement when we use FHE for low-communication
secure two-party computation. In all existing FHE schemes, there is a “noise”
term in the ciphertext, which is necessary for security. The noise grows and
changes as a result of performing homomorphic operations and, in particular,
could leak information about the function f . The main challenge for achieving
FHE circuit privacy lies precisely in avoiding the leakage from the noise term in
the evaluated ciphertext.

Prior Works. Prior works achieve circuit privacy by essentially canceling out
the noise term in the evaluated ciphertext. There are two main approaches for
achieving this. The first is “noise flooding” introduced in Gentry’s thesis, where
we add a much larger noise at the end of the computation; in particular, the noise
that is added needs to be super-polynomially larger than the noise that accumu-
lates amidst homomorphic operations, which in turn requires that we start with
a super-polynomial modulus-to-noise ratio.1 This is a fairly mild assumption
for the early constructions of FHE schemes, which required a quasi-polynomial
modulus-to-noise ratio just to support homomorphic operations for circuits in
NC1 (i.e., circuits of logarithmic depth). The second is to decrypt and re-encrypt
the evaluated ciphertext, also known as bootstrapping in the FHE literature.
This can be achieved securely without having to know the secret key in the clear
in one of two ways: (i) with the use of garbled circuits [OPP14,GHV10], and
(ii) via homomorphic evaluation of the decryption circuit given an encryption of
the secret key under itself [DS16], which requires the additional assumption of
circular security.

Both of the prior approaches have some theoretical and practical draw-backs,
if we consider FHE for NC1 circuits (the rest of the discussion also applies to
leveled FHE for general circuits). First, recall that we now have FHE for NC1

circuits under the LWE assumption with a polynomial modulus-to-noise ratio
[BV14,AP14], and we would ideally like to achieve circuit privacy under the
same assumption. Relying on noise flooding for circuit privacy would require
quantitatively stronger assumptions with a super-polynomial modulus-to-noise
ratio, which in turn impacts practical efficiency due to the use of larger parame-
ters. Similarly, the use of bootstrapping for circuit privacy can also be compu-
tationally expensive (indeed, the bootstrapping operation is the computational

1 Recall that LWE hardness depends on the modulus-to-noise ratio: the smaller the
ratio, the harder the problem.
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bottleneck in existing FHE schemes, cf. [DM15,HS15]). Moreover, realizing boot-
strapping via an encryption of the secret key requires an additional circular secu-
rity assumption, which could in turn also entail the use of larger parameters in
order to account for potential weaknesses introduced by circular security. Real-
izing bootstrapping via garbled circuits avoids the additional assumption, but
is theoretically and practically unsatisfying as it requires encoding the algebraic
structure in existing FHEs as boolean computation, and sacrifices the multi-hop
property in that we can no longer perform further homomorphic computation
on the evaluated ciphertexts.

1.1 Our Results

Our main result is a circuit-private FHE for NC1 circuits – and a circuit-private
leveled FHE for general circuits – under the LWE assumption with a polynomial
modulus-to-noise ratio, and whose efficiency essentially matches that of existing
variants of the GSW cryptosystem in [BV14,AP14]; in other words, we avoid
noise flooding or bootstrapping and obtain circuit privacy almost for free!

We obtain our main result via a conceptually different approach from prior
works: instead of canceling out the noise term in the evaluated ciphertext, we
directly analyze the distribution of the noise term (prior works on FHE merely
gave a bound on the noise term). Concretely, we show that adding a small noise
in each step of homomorphic evaluation in the GSW cryptosystem already hides
the computation itself which yields circuit privacy. Along the way, we gain better
insights into the algebraic structure and the noise distribution in GSW scheme
and provide new tools for analyzing noise randomization which we believe could
be of independent interest.

As an immediate corollary, we obtain a two-party protocol for secure function
evaluation where Alice holds x, Bob holds a branching program f , and we want
Alice to learn f(x) while protecting the privacy of x and f to the largest extent
possible, that is, Bob learns nothing about x and Alice learns nothing about f
(apart from a bound on the size of f). Our protocol achieves semi-honest security
under the standard LWE assumption with polynomial hardness, and where the
total communication complexity and Alice’s computation are poly-logarithmic
in the size of f .

The core of our analysis is a variant of the Gaussian leftover hash lemma
[AGHS13,AR13]: given a “small” vector e and any vector v, we have

eᵀ · G−1
rand (v) + y ≈s e′

where

– G−1
rand (v) outputs a random short vector x satisfying Gx = v mod q accord-

ing to a discrete Gaussian with parameter r = Õ(1);
– both y and e′ are drawn from discrete Gaussians with parameter O(r · ‖e‖)

(the norm of e′ will be slightly larger than that of y).
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We stress that the distribution of e′ is independent of v and that the norm of y, e′

are polynomially related to that of ‖e‖. Indeed, a similar statement is true via
noise flooding, where we pick y, e′ to have norm super-polynomially larger than
that of ‖e‖. Using this leftover hash lemma to hide the argument of G−1

rand (·)
is new to this work and will be crucial in proving circuit privacy. In Table 1 we
show a comparison with previous works on how to perform a step of computation
for branching program evaluation.

1.2 Technical Overview

We proceed with a technical overview of our construction. We build up to our
main construction in three steps.

Generating Fresh LWE Samples. How do we generate a fresh LWE sample
from a large but bounded number of samples? That is, we need to random-
ize (A, sᵀA + eᵀ). The first idea, going back to [Reg05,GPV08,ACPS09] is to
choose x according to a discrete Gaussian with parameter r = Õ(1) and a small
“smoothing” noise y from a discrete Gaussian with parameter O(r · ‖e‖) and
output

Ax, (sᵀA + eᵀ)x + y

The vector Ax is statistically close to uniform (by leftover hash lemma), and the
error eᵀx+ y in the resulting sample is statistically close to a discrete Gaussian
with parameter O(r · ‖e‖). We stress that the norm of y is polynomially related
to that of e, which is better than naive noise flooding. One draw-back compared
to noise flooding is that the error in the new sample leaks ‖e‖. In the case of
generating fresh LWE samples, we just need to repeat the process to generate
many more samples than what we started out with.

Randomizing GSW Ciphertexts. Next, we note that the above idea can
also be used to randomize GSW ciphertexts. Recall that a GSW encryption of
a message μ is of the form

C =
(

A
sᵀA + eᵀ

)
+ μG ∈ Z

n×(n log q)
q

where s ∈ Z
n
q is the secret key and G is the “powers of 2” gadget matrix. We

can randomize C to be a fresh encryption of μ by computing

C · G−1
rand (G) +

(
0
yᵀ

)

where G−1
rand (G) is chosen according to a discrete Gaussian of parameter r sat-

isfying G · G−1
rand (G) = G and y is again a small smoothing noise vector. Here,

we need an extension of the previous lemma showing that each coordinate in
eᵀ · G−1

rand (G) + yᵀ is statistically close to a discrete Gaussian; this in turn fol-
lows from an extension of the previous lemma where the vector x is drawn from
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Table 1. The first row of the table shows the plaintext computation that happens
at each step of the computation for evaluating a branching program (cf. Sect. 5.1).
The next three rows describe how this computation is carried out homomorphically
on ciphertexts V0,V1,C corresponding to encryptions of the input bits v0, v1, x. In
the [GSW13,BV14] FHE schemes, homomorphic evaluation is deterministic, whereas
in [AP14] and this work, homomorphic evaluation is randomized. In particular, our
construction introduces an additional small Gaussian shift on top of [AP14].

Plaintext vout = vx = xv1 + (1 − x)v0

[GSW13,BV14] Vout = C · G−1
det(V1) + (G − C) · G−1

det(V0)

[AP14] Vout = C · G−1
rand (V1) + (G − C) · G−1

rand (V0)

[This work] Vout = C · G−1
rand (V1) + (G − C) · G−1

rand (V0) +

(
0

yᵀ

)

discrete Gaussian over the coset of a lattice (cf. Lemma 3.6). And again, the
norm of y is polynomially related to that in e, which is better than naive noise
flooding.

Scaling GSW Ciphertexts. More interesting, given a constant a ∈ {0, 1},
we can scale a GSW encryption of μ to obtain a fresh encryption of a · μ while
revealing no information about a beyond what is leaked in a · μ. In particular, if
μ = 0, then the resulting ciphertext should completely hide a. To achieve this, we
simply proceed as before, except we use G−1

rand (a · G) so that G ·G−1
rand (a · G) =

a ·G. Here, we crucially rely on the fact that the error eᵀ ·G−1
rand (a · G) +yᵀ in

the resulting ciphertext is independent of a.

Circuit-Private Homomorphic Evaluation. The preceding construction
extends to the setting where we are given a GSW encryption C′ of a instead of
a itself, so that we output

C · G−1
rand (C′) +

(
0
yᵀ

)

We can handle homomorphic encryption as in GSW; this then readily extends
to a circuit-private homomorphic evaluation for branching programs, following
[BV14,AP14].

Branching programs are a relatively powerful representation model. In partic-
ular, any logarithmic space or NC1 computation can be carried out by a family
of polynomial-size branching programs. Branching programs can also directly
capture several representation models often used in practice such as decision
trees, OBDDs, and deterministic finite automaton.

The key insight from Brakerski and Vaikuntanathan [BV14] is that when
homomorphically evaluating a branching program, we will only need to perform
homomorphic additions along with homomorphic multiplications of ciphertexts
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Vj ,Ci where Vj is the encryption of an intermediate computation and Ci is
an encryption of the input variable xi. To obtain decryption correctness with
polynomial noise growth, they computed the product as

Ci · G−1
det(Vj),

where G−1
det (·) denotes the deterministic binary decomposition, cleverly exploit-

ing the asymmetric noise growth in GSW ciphertexts and the fact that the noise
in Ci is smaller than that in Vj . To obtain circuit privacy, we will compute the
product as

Ci · G−1
rand (Vj) +

(
0
yᵀ

j

)
.

Note that we made two modifications:

– First, we switched to a randomized G−1
rand (·). The use of a randomized G−1

rand (·)
for homomorphic evaluation was first introduced in [AP14], but for the very
different purpose of a mild improvement in the noise growth (i.e. efficiency);
here, we crucially exploit randomization for privacy.

– Next, we introduced an additional Gaussian shift yᵀ
j .

Interestingly, it turns out that computing the product as Ci ·G−1
rand (Vj) instead

of Vj ·G−1
rand (Ci) is useful not only for polynomial noise growth, but also useful

for circuit privacy. Roughly speaking, the former hides which Vj is used, which
corresponds to hiding the intermediate states that lead to the final output state,
which in turn hides the branching program.

We highlight a subtlety in the analysis: Vj could in principle encode informa-
tion about Ci, if the variable xi has been read prior to reaching the intermediate
state encoded in Vj , whereas to apply our randomization lemma, we crucially
rely on independence between Ci and Vj . The analysis proceeds by a careful
induction argument showing that Vj looks like a fresh GSW ciphertext inde-
pendent of input ciphertexts C1, . . . ,C� apart from some dependencies on the
norm of the noise terms in the input ciphertexts (see Lemma 5.4 for a precise
statement). These dependencies mean that homomorphic evaluation leaks the
number of times each variable appears in the branching program, but that can
be easily fixed by padding the branching program.

1.3 Discussions

One draw-back of our approach is that it is specific to the GSW cryptosystem
and variants there-of, whereas previous approaches based on noise flooding and
bootstrapping are fairly generic; another is that we need to pad the branching
program so that each variable appears the same number of times. Nonetheless,
we stress that the GSW cryptosystem turns out to be ubiquitous in many appli-
cations outside of FHE, including attribute-based encryption and fully homo-
morphic signatures [BGG+14,GVW15]. We are optimistic that the additional
insights we gained into the noise distributions of GSW ciphertexts in this work
will find applications outside of FHE.
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We conclude with several open problems pertaining to FHE circuit privacy.
The first is to achieve circuit privacy against malicious adversaries [OPP14]:
namely, the result of a homomorphic evaluation should leak no information about
the circuit f , even if the input ciphertexts are maliciously generated. Our analysis
breaks down in this setting as it crucially uses fresh uniform randomness in the
input ciphertexts for left-over hash lemma, and the fact that the noise in the
input ciphertexts are small (but does not need to be discrete Gaussian). Another
is to achieve circuit-private CCA1-secure FHE [LMSV12]; here, the technique
that [DS16] uses to achieve circuit privacy cannot obtain such a result since
giving out an encryption of the secret key violates CCA1-security. A third open
problem is to extend the techniques in this work to other FHE schemes, such as
those in [BV11a,DM15,HS15].

2 Preliminaries

In this section we clarify our notation and recall some definitions, problems and
lemmas that we are going to use throughout the paper.

Notation. We denote the real numbers by R, the integers by Z, the integers
modulo some q by Zq, and let [N ] indicate the integer numbers {1, . . . , N}.
Throughout the paper we use λ to denote the security parameter. We say that a
function is negligible in λ, and we denote it by negl (λ), if it is a f (λ) = o (λ−c)
for every fixed constant c. We also say that a probability is overwhelming if it
is 1 − negl (λ).

Vectors are denoted by lower-case bold letters (e.g., v) and are always in
column form (vᵀ is a row vector), while matrices are indicated by upper-case
bold letters. We let (a,b) denote the vector obtained by concatenating the two

vectors, i.e.
(
a
b

)
. We also write (v1 | v2 | . . . | vk) to denote the matrix whose

columns are the vectors vi. Unless otherwise stated, the norm ‖ · ‖ considered in
this paper is the �2 norm and log denotes the base-2 logarithm, while ln denotes
the natural logarithm.

Given two distributions X,Y over a finite or countable domain D, their
statistical distance is defined as Δ (X,Y ) = 1

2

∑
v∈D |X (v) − Y (v)|. We say

that two distributions are statistically close (denoted by ≈s) if their statistical

distance is negl (λ). Given a set A, we will write a
$← A to indicate that a is

sampled from A uniformly at random. If D is a probability distribution, we will
write d ← D to indicate that d is sampled according to the distribution D.
Following [MP12], we denote by G the gadget matrix, i.e. G = gᵀ ⊗ In, where
g is the vector

(
1, 2, 4, . . . , 2�log q�−1

)
, for given parameters n, q.

Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For
an integer k < m and a rank k matrix B ∈ R

m×k, Λ (B) =
{
Bx ∈ R

m | x ∈ Z
k
}

is the lattice generated by the columns of B. We will let Λ⊥
q (B) denote

{v ∈ Z
m | Bᵀv = 0 mod q}.
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Gaussian Function. For any α > 0, the spherical Gaussian function with
parameter α (omitted if 1) is defined as ρα (x) = exp

(−π‖x‖2/α2
)
, for any

x ∈ R
m. Given a lattice Λ ⊆ R

m, a parameter r ∈ R and a vector c ∈ R
m the

spherical Gaussian distribution with parameter r and support Λ+c is defined as

DΛ+c,r (x) =
ρr (x)

ρr (Λ + c)
, ∀x ∈ Λ + c

where ρr (Λ + c) denotes
∑

x∈Λ+c ρr (x). Note that ρr (x) = ρ
(
r−1x

)
.

We now give an algorithm for the randomized bit decomposition G−1
rand (·).

Definition 2.1 (The G−1
rand (·) algorithm, adapted from [MP12], [AP14,

Claim 3.1]). There is a randomized, efficiently computable function G−1
rand (·) :

Z
n
q → Z

m, where m = n
log q� such that x ← G−1
rand (v) is drawn from a dis-

tribution close to a Gaussian with parameter r = Õ(1) conditioned on Gx = v
mod q, i.e. G−1

rand (v) outputs a sample from the distribution DΛ⊥
q (Gᵀ)+G−1

det (v),r

where G−1
det (·) denotes (deterministic) bit decomposition. We will also write

X ← G−1
rand (M) to denote that the columns of the matrix X ∈ Z

m×p are obtained
by applying the algorithm separately to each column of a matrix M ∈ Z

n×p
q .

In particular, using the exact sampler in [BLP+13, Sect. 5] (which is a variant
of the algorithm presented in [GPV08]), G−1

rand (v) outputs a sample from the
discrete Gaussian

DΛ⊥
q (Gᵀ)+G−1

det(v),r

Next, we recall the definition of the smoothing parameter of a lattice from
[MR04]. Intuitively, this parameter provides the width beyond which the discrete
Gaussian measure on a lattice behaves like a continuous one.

Definition 2.2 (Smoothing parameter). For a lattice Λ ⊆ Z
m and positive

real ε > 0, the smoothing parameter ηε (Λ) is the smallest real r > 0 such that
ρ1/r (Λ∗ \ {0}) ≤ ε, where Λ∗ := {x ∈ R

m | xᵀΛ ⊆ Z}.
We will also need the following probability results.

Lemma 2.3 (Simplified version of [Pei10, Theorem 3.1]). Let ε > 0, r1, r2 >
0 be two Gaussian parameters, and Λ ⊆ Z

m be a lattice. If r1r2√
r2
1+r2

2

≥ ηε (Λ),

then
Δ (y1 + y2,y′) ≤ 8ε

where y1 ← DΛ,r1 , y2 ← DΛ,r2 , and y′ ← D
Λ,

√
r2
1+r2

2
.

Lemma 2.4 [AP14, Lemma 2.1]. There exists a universal constant C > 0, such
that

Pr
[‖x‖ > Cr

√
m
] ≤ 2−Ω(m)

where x ← DZm,r.

Next, we recall the LWE problem and its hardness assumption.
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The LWE Problem and Assumption. The learning with errors (LWE) prob-
lem was introduced by Regev in [Reg05] as a generalization of “learning parity
with noise”. Let q ≥ 2, n and m = poly(n) be positive integers, and let χ be a
probability distribution over Zq. We define the following advantage function for
an adversary A:

Adv
LWEn,q,χ

A := |Pr [A (A, sᵀA + eᵀ) = 1] − Pr [A (A,u) = 1]|

where A $← Z
n×m
q , s $← Z

n
q , e ← χ and u $← Z

m
q . The LWE assumption asserts

that for any PPT adversary A, the advantage Adv
LWEn,q,χ

A is negl (n).
Finally, we recall the definition of a homomorphic encryption scheme, evalu-

ation correctness and semantic security.

Homomorphic Encryption Scheme. A homomorphic (secret-key) encryp-
tion scheme E = (E .Setup, E .Encrypt, E .Decrypt, E .Eval) is a quadruple of PPT
algorithms as follows:

– E .Setup
(
1λ
)
: given the security parameter λ, outputs a secret key sk and an

evaluation key evk
– E .Encrypt (sk, μ): using the secret key sk, encrypts a message μ ∈ {0, 1} into

a ciphertext c and outputs c
– E .Decrypt (sk, c): using the secret key sk, decrypts a ciphertext c to recover a

message μ ∈ {0, 1}
– E .Eval (evk, f, c1, . . . , c�): using the evaluation key evk, applies a function

f : {0, 1}� → {0, 1} to ciphertexts c1, . . . , c� and outputs a ciphertext cf

Evaluation Correctness. We say that the E .Eval algorithm correctly evaluates
all functions in F if, for any function f ∈ F : {0, 1}� → {0, 1} and respective
inputs x1, . . . , x� ∈ {0, 1} it holds that

Pr [E .Decrypt (sk, E .Eval (evk, f, c1, . . . , c�)) = f (x1, . . . , x�)] = 1 − negl (λ)

where sk ← E .Setup
(
1λ
)

and ci ← E .Encrypt (sk, xi).

Semantic Security. A secret key encryption scheme E is said to be semantically
secure (or IND-CPA secure) if any PPT adversary A cannot distinguish between
encryptions of two known plaintexts. More formally, let sk ← E .Setup(1λ) and
Ob (μ0, μ1) = E .Encrypt (sk, μb) for b ∈ {0, 1}. Then E is IND-CPA secure if∣∣Pr

[AO0
(
1λ
)

= 1
]− Pr

[AO1
(
1λ
)

= 1
]∣∣ = negl (λ)

where the probability is taken over the internal coins of E .Setup, E .Encrypt and A.

3 Core Randomization Lemma

Note that throughout the rest of the paper we set q to be a power of 2, and
m = n log q. We discuss the use of a modulus q that is not a power of 2 in
Sect. 5.4.

The goal of this Section is to establish the following lemma:
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Lemma 3.1 (Core randomization lemma). Let ε, ε′ > 0, r > ηε(Λ⊥
q (Gᵀ))

be a Gaussian parameter. For any e ∈ Z
m
q , v ∈ Z

n
q , if r ≥

max
(

4
(
(1 − ε) (2ε′)2

)− 1
m

,
√

5(1 + ‖e‖)
√

ln(2m(1+1/ε))
π

)
, then

Δ ((A,Ax, eᵀx + y) , (A,u, e′)) < ε′ + 2ε

where x ← G−1
rand (v), A $← Z

(n−1)×m
q , u $← Z

n−1
q , y ← DZ,r and e′ ←

D
Z,r

√
1+‖e‖2 .

Asymptotically, r = Θ̃(‖e‖√λ) is enough to obtain negligible statistical dis-
tance.

Remark 1 (on the necessity of randomization). We note here that the use of
randomization in G−1

rand (·) and the shift are both necessary.

First, the shift is necessary for both distributions to have the same support.
For example, eᵀG−1

rand ((1, 0, . . . , 0)) and eᵀG−1
rand (0) might lie in two different

cosets of the lattice eᵀΛ⊥
q (Gᵀ), depending on the value of e: if the first coordinate

of e is odd and all the others are even, then eᵀG−1
rand ((1, 0, . . . , 0)) will be odd,

while eᵀG−1
rand (0) will be even, for a q even. The shift by a Gaussian over Z

ensures that the support of the two distributions is Z. Proving that eᵀΛ⊥
q (Gᵀ) =

Z with overwhelming probability over the choice of e is still an open question
that would remove the necessity of the shift, thus proving circuit privacy for
standard GSW only using randomized G−1

rand (·).
Finally, the randomization of G−1

rand (·) is necessary for both distributions to
have the same center. Using the same example, eᵀG−1

det ((1, 0, . . . , 0)) + y and
eᵀG−1

det (0) + y would be two Gaussians, centered respectively on e1 (the first
coordinate of e) and on 0. Instead, using the randomized algorithm G−1

rand (·),
the center of both distributions will be 0.

3.1 Additional Preliminaries

Before proving Lemma 3.1, we need to recall some additional results.

Lemma 3.2 [MR07, Lemma 3.3]. Let Λ be any rank-m lattice and ε be any
positive real. Then

ηε (Λ) ≤ λm (Λ) ·
√

ln (2m (1 + 1/ε))
π

where λm (Λ) is the smallest R such that the ball BR centered in the origin and
with radius R contains m linearly independent vectors of Λ.

Lemma 3.3 [GPV08, Corollary 2.8]. Let Λ ⊆ Z
m be a lattice, 0 < ε < 1, r > 0.

For any vector c ∈ R
m, if r ≥ ηε (Λ), then we have

ρr (Λ + c) ∈
[
1 − ε

1 + ε
, 1
]

· ρr (Λ) .
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Lemma 3.4 [Reg05, Claim 3.8]. Let Λ ⊆ Z
m be any lattice, c ∈ R

m, ε > 0 and
r ≥ ηε(Λ). Then

ρr (Λ + c) ∈ rm

det (Λ)
(1 ± ε) .

Generalized Leftover Hash Lemma. We state here a simplified version of the
generalized leftover hash lemma which is sufficient for our use. The min-entropy
of a random variable X is defined as

H∞ (X) = − log
(
max

x
Pr [X = x]

)
.

Lemma 3.5 (Generalized leftover hash lemma [DRS04]). Let e be any
random variable over Z

m
q and f : Zm

q → Z
k
q . Then

Δ((Xe,X, f(e)), (r,X, f(e))) ≤ 1
2

√
qn+k · 2−H∞(e) .

where X $← Z
n×m
q and r $← Z

n
q .

3.2 Proof of Lemma 3.1

We first prove that given e, the new error term eᵀx + y is indeed a Gaussian
with parameter r

√
1 + ‖e‖2. This proof is inspired by [AR13], which in turn is

an improvement of [AGHS13], but it is different in two aspects: on one hand, in
[AR13] the proof is done for the specific case where x is drawn from a Gaussian
over a coset of Zm; on the other hand, they consider the more general case of an
ellipsoidal Gaussian distribution.

Lemma 3.6 (adapted from [AR13, Lemma 3.3]). Let ε, r > 0. For any e ∈
Z

m, c ∈ R
m, if r ≥ √

5(1 + ‖e‖) ·
√

ln(2m(1+1/ε))
π , then

Δ (eᵀx + y, e′) < 2ε

where x ← DΛ⊥
q (Gᵀ)+c,r, y ← DZ,r, and e′ ← D

Z,r
√

1+‖e‖2 .

Asymptotically, r = Θ̃(‖e‖√λ) is enough to obtain negligible statistical dis-
tance. We stress that the distribution of e′ does not depend on the coset c.

Proof. Let ê = (e, 1) ∈ Z
m+1, ĉ = (c, 0) ∈ Z

m+1 and Λ̂ = Λ⊥
q (Gᵀ)×Z, we want

to show that
Δ
(
êᵀD

̂Λ+ĉ,r,DZ,‖ê‖r

)
≤ 2ε

The support of êᵀD
̂Λ+ĉ,r is êᵀΛ̂ + êᵀĉ = eᵀΛ⊥

q (Gᵀ) + Z + eᵀc = Z. Fix some
z ∈ Z. The probability mass assigned to z by êᵀD

̂Λ+ĉ,r is proportional to ρr(Lz),
where

Lz =
{
v ∈ Λ̂ + ĉ : êᵀv = z

}
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We define the lattice L =
{
v ∈ Λ̂ : êᵀv = 0

}
; note that Lz = L+wz for any

wz ∈ Lz. Let uz = z
‖ê‖2r ê, then uz is clearly proportional to ê. Observe that uz

is orthogonal to r−1Lz − uz, indeed for any t ∈ r−1Lz we have êᵀ (t − uz) = 0.
From this we have ρ(t) = ρ(uz) · ρ(t − uz), and by summing for t ∈ r−1Lz:

ρ(r−1Lz) = ρ(uz) · ρ(r−1Lz − uz)

Observe that we have r−1Lz − uz = r−1(L − c′) for some c′ in the vector span
of the lattice L (because Lz − ruz = L+wz − ruz and êᵀ(wz − ruz) = 0). Thus

using Lemmas 3.3 and 3.7 with r ≥ √
5(1 + ‖e‖) ·

√
ln(2m(1+1/ε))

π ≥ ηε(L), we
obtain

ρ(r−1Lz) = ρ(uz) · ρr(L − c′)

∈
[
1 − ε

1 + ε
, 1
]

· ρr(L) · ρ(uz)

=
[
1 − ε

1 + ε
, 1
]

· ρr(L) · ρ

(
z

‖ê‖2r ê
)

=
[
1 − ε

1 + ε
, 1
]

· ρr(L) · ρ‖ê‖r(z)

This implies that the statistical distance between êᵀD
̂Λ+ĉ,r and DZ,‖ê‖r is at

most 1 − 1−ε
1+ε ≤ 2ε. ��

In order to conclude the previous proof, we now give a bound on the smooth-
ing parameter of the lattice L.

Lemma 3.7. Let ε > 0. For any e ∈ Z
m, let L be as defined in Lemma 3.6.

Then we have:

ηε(L) ≤
√

5(1 + ‖e‖) ·
√

ln (2m (1 + 1/ε))
π

.

Proof. We use Lemma 3.2 to bound the smoothing parameter of L. Since Λ̂ =
Λ⊥

q (Gᵀ) × Z is of dimension m + 1 and L is the sublattice of Λ̂ made of the
vectors that are orthogonal to e, we have that L is of dimension m. We thus
exhibit m independent short vectors of L to obtain an upper bound on λm (L).
We first define the matrix

B =

⎛
⎜⎜⎜⎜⎝

2

−1
. . .
. . . . . .

−1 2

⎞
⎟⎟⎟⎟⎠ ∈ Z

(log q)×(log q)

and remark that it is a basis for the lattice Λ⊥
q (gᵀ). The lattice Λ̂ is then

generated by the columns of the matrix:

B = (b1 | . . . | bm+1) =
(
In ⊗ B 0
0ᵀ 1

)
∈ Z

(m+1)×(m+1)
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For k ≤ m let uk = bk − bm+1 · êᵀbk, since êᵀbm+1 = 1 we directly have
êᵀuk = 0 and thus uk ∈ L. The vectors u1, . . . ,um are linearly independent
since span (u1, . . . ,um,bm+1) = span (b1, . . . ,bm,bm+1) = R

m+1 (which comes
from the fact that B is a basis of an (m+1)-dimensional lattice). We now bound
the norm of uk:

‖uk‖ ≤ ‖bk‖ + ‖bm+1‖‖e‖‖bk‖
=

√
5(1 + ‖e‖)

Note that |êᵀbk| ≤ ‖e‖‖bk‖ since the last coefficient of bk is 0. Finally we obtain
λm(L) ≤ maxk≤m ‖uk‖ ≤ √

5(1 + ‖e‖) and the result. ��
The final proof of Lemma3.1 will necessitate a call to the leftover hash lemma,

so before continuing we analyze the min-entropy of x ← DΛ⊥
q (Gᵀ)+c,r.

Lemma 3.8. Let ε > 0, r ≥ ηε

(
Λ⊥

q (Gᵀ)
)
. For any c ∈ R

m, we have

H∞
(
DΛ⊥

q (Gᵀ)+c,r

)
≥ log (1 − ε) + m log (r) − m.

Proof. For any v ∈ Λ⊥
q (Gᵀ) + c

DΛ⊥
q (Gᵀ)+c,r(v) ≤ DΛ⊥

q (Gᵀ)+c,r(v0) , forv0 the point of Λ⊥
q (Gᵀ) + c closest to0

=
ρr(v0)

ρr(Λ⊥
q (Gᵀ) + c)

≤ 1

ρr(Λ⊥
q (Gᵀ) + c)

, since ρr(v0) < 1

≤ (1 − ε)
rm

det
(
Λ⊥

q (Gᵀ)
) , by Lemma 3.4 since r ≥ ηε

(
Λ⊥

q (Gᵀ)
)

The lattice Λ⊥
q (Gᵀ) is generated by the basis In ⊗ B, with B defined as above,

which has determinant
(
2log q

)n = 2m. The result follows:

H∞
(
DΛ⊥

q (Gᵀ)+c,r

)
≥ log (1 − ε) + m log (r) − m ��

We are now ready to prove Lemma 3.1.

Proof. The proof is done in two steps. First, by Lemma3.8, we know that x has
min entropy at least log(1 − ε) + m log(r) − m ≥ (n + 1) log(q) − 2 log(ε′) − 2.
Moreover, eᵀx + y is in Zq. Applying the leftover hash lemma 3.5, we obtain

Δ ((A,Ax, eᵀx + y) , (A,u, eᵀx + y)) < ε′

where u $← Z
n−1
q . Now, using Lemma 3.6, we know that

Δ (eᵀx + y, e′) < 2ε

Summing the two statistical distances concludes the proof. ��
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3.3 Rerandomizing LWE samples

We finally describe a simple application of Lemma 3.1. Generating fresh LWE
samples for a fixed secret s from a bounded number of samples is very useful, for
example to build a public key encryption scheme from a symmetric one. It has
already been shown in the succession of papers [Reg05,GPV08,ACPS09] that
multiplying a matrix of m LWE samples (A, sᵀA + eᵀ) by a discrete Gaussian
x ← DZm,r and adding another Gaussian term y ← DZ,r to the error part yields
a fresh LWE sample (a′, sᵀa′ + e′) with a somewhat larger Gaussian noise e′.
Here we have shown that picking x according to a discrete Gaussian distribution
over a coset c of Λ⊥

q (Gᵀ) is enough for this rerandomization process. Moreover,
we show that the distribution of the final error is independent of the coset c,
which will come in handy for hiding homomorphic evaluations. We note that
this could be extended to any other lattice with a small public basis (see the last
paragraph of Sect. 5), but we mainly focus on Λ⊥

q (Gᵀ) because this is sufficient
for our use.

4 Basic GSW Cryptosystem

In this section, we present the Homomorphic Encryption scheme introduced by
[GSW13], with notation inspired by [AP14]. We defer setting the parameters to
Sect. 5.3. The scheme is composed of the following algorithms:

– Setup
(
1λ
)
: samples s̄ $← Z

n−1
q and returns the secret key s =

(−s̄, 1
) ∈ Z

n
q .

– Encrypt(s, μ): given the secret key s =
(−s̄, 1

)
and a message μ ∈ {0, 1},

samples a matrix A $← Z
(n−1)×m
q and e ← DZm,α. The algorithm then returns

C =
(

A
s̄ᵀA + eᵀ

)
+ μG ∈ Z

n×m
q as the ciphertext. Notice that sᵀC = eᵀ +

μsᵀG, the last column of which is close to μ q
2 .

– Decrypt(s,C): given a ciphertext C and the secret key s, computes the inner
product of sᵀ and the last column of C, and finally returns 0 if the norm of
the result is smaller than q

4 , otherwise it returns 1.

We omit the original Eval algorithm since our modified version, which guarantees
circuit privacy, is presented in Sect. 5.1.

The IND-CPA security of this scheme comes directly from [GSW13] and the
LWE assumption.

In order to shorten several formulas in the rest of the paper, we slightly
abuse the notation and define a modified version of the encryption algorithm
Encryptγ(s, μ), which is exactly the same as the previously defined Encrypt(s, μ),
except that e ← DZm,γ . We implicitly use Encrypt(s, μ) to denote Encryptα(s, μ).

Extension to Public Key Setting. This scheme can be easily adapted to
the public key setting. We now describe Setuppub and Encryptpub, as the other
algorithms are identical to the private key setting.
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– Setuppub
(
1λ
)
: given the security parameter λ, samples s̄ $← Z

n−1
q , A $←

Z
(n−1)×m
q , e ← DZm,α. The algorithm returns the secret key s =

(−s̄, 1
) ∈ Z

n
q

and the public key Â =
(

A
s̄ᵀA + eᵀ

)
.

– Encryptpub
(
Â, μ

)
: given the public key Â and a message μ ∈ {0, 1}, samples

a matrix R $← {−1, 0, 1}m×m. The algorithm then sets C = ÂR + μG and
returns C ∈ Z

n×m
q as the ciphertext. Notice that sᵀC = eᵀR+ μsᵀG the last

column of which is close to μ q
2 .

Basic Homomorphic Operations. The homomorphic operations are done as
follows:

– Homomorphic addition: C1 � C2 = C1 + C2

– Homomorphic multiplication: C1 � C2 ← C1 · G−1
rand (C2)

where the G−1
rand (·) algorithm is the randomized bit decomposition described in

Definition 2.1.
From now on and for readability, we will assume a correct choice of parame-

ters has been made. This setting is discussed in Sect. 5.3.

4.1 Rerandomizing and Scaling GSW Ciphertexts

Here we describe our new technique to rerandomize GSW ciphertexts. This
method allows the scaling of GSW ciphertexts, which will be used in our circuit
evaluation procedure.

We recall the form of a GSW ciphertext

C =
(

A
s̄ᵀA + eᵀ

)
+ μG

Using the rerandomization of LWE samples presented in Sect. 3, it is possible
to generate a fresh encryption of 0 by computing C · G−1

rand (V), where C is an
encryption of 0 and V is any matrix in Z

n×m
q .

Lemma 4.1. Let r > 0. For any V ∈ Z
n×m
q , if r = Ω

(
α
√

λm log m
)
, with α

being the Gaussian parameter of fresh encryptions, then
(
C · G−1

rand (V) +
(

0
yᵀ

)
,C
)

≈s (C′,C)

where C =
(

A
s̄ᵀA + eᵀ

)
← Encrypt (s, 0), C′ ← Encryptγ (s, 0), with γ =

r
√

1 + ‖e‖2.
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Proof. Fix v ∈ Z
m
q and e such that ‖e‖ ≤ Cα

√
m, where C is as in Lemma 2.4.

Then by applying Lemma 3.1 with r = Ω
(
α
√

λm log m
)

and ε′ = ε = 2−λ we
have

Δ ((A,Ax, eᵀx + y) , (A,u, e′)) < 3 · 2−λ

where A $← Z
(n−1)×m
q , x ← G−1

rand (v) and y ← DZ,r. From this we obtain that
for e ← DZm,α:

Δ ((A, e,Ax, eᵀx + y) , (A, e,u, e′))

=
∑

w∈Zm

Δ ((A,Ax,wᵀx + y) , (A,u, w′)) · Pr [e = w]

≤
∑

‖w‖<Cα
√

m

3 · 2−λ Pr [e = w] +
∑

‖w‖≥Cα
√

m

Pr [e = w]

≤ 3 · 2−λ + Pr
[‖e‖ ≥ Cα

√
m
]

≤ 3 · 2−λ + 2−Ω(λ)

In the left operand of the third equation we bound the statistical distance by
3 · 2−λ and in the right operand we bound it by 1. To obtain the last inequality
we use Lemma 2.4 and have Pr [‖e‖ > Cα

√
m] ≤ 2−Ω(m) ≤ 2−Ω(λ) since m ≥ λ.

By rewriting this distance we have for any v ∈ Z
m
q

(
C · G−1

rand (v) +
(
0
y

)
,C
)

≈s

((
u

s̄ᵀu + e′

)
,C
)

By writing V = (v1 | . . . | vm) and y = (y1, . . . , ym), we have

C·G−1
rand (V)+

(
0
yᵀ

)
=
(
C · G−1

rand (v1) +
(
0
y1

)
| . . . | C · G−1

rand (vm) +
(

0
ym

))

We define the distributions (Di)0≤i≤m in which the first i columns of C ·
G−1

rand (V)+
(

0
yᵀ

)
are replaced with “fresh”

(
u

s̄ᵀu + e′

)
and we obtain through

a hybrid argument that

Δ

((
C · G−1

rand (V) +

(
0
yᵀ

)
,C

)
,

((
A′

s̄ᵀA′ + e′ᵀ

)
,C

))
≤ m(3 · 2−λ + 2−Ω(λ)) ��

As a direct corollary we remark that the scaling of a GSW encryption C of

μ by a bit a, defined as C · G−1
rand (a · G) +

(
0
yᵀ

)
, where y ← DZm,r, does not

depend on a, but only on aμ.
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5 Our Scheme: Circuit-Private Homomorphic Evaluation
for GSW

In this section, we prove that a slight modification of the GSW encryption scheme
is enough to guarantee circuit privacy, i.e. that an evaluation of any branching
program does not reveal anything more than the result of the computation and
the length of the branching program, as long as the secret key holder is honest.

First, we state our definition of circuit privacy, similar to [IP07, Definition 7],
which is stronger than the one given in [Gen09, Definition 2.1.6] in the sense that
it is simulation based, but weaker in the sense that we leak information about
the length of the branching program.

Definition 5.1 (Simulation-based circuit privacy). We say that a homo-
morphic encryption scheme E is circuit private if there exists a PPT algorithm
Sim such that for any branching program Π of length L = poly (λ) on � variables,
any x1, . . . , x� ∈ {0, 1}, the following holds:

(E .Eval (evk,Π, (C1, . . . ,C�)) ,C1, . . . ,C�, 1λ, s
)

≈s

(
Sim

(
1λ,Π (x1, . . . , x�) , 1L, (C1, . . . ,C�)

)
,C1, . . . ,C�, 1λ, s

)

where s ← E .Setup
(
1λ
)
, Ci ← E .Encrypt(s, xi) for i ∈ [�].

We can now state our main theorem:

Theorem 5.2 (Main theorem). There exists a fully homomorphic encryption
scheme for branching programs that is circuit private and whose security is based
on the LWE assumption with polynomial noise-to-modulus ratio.

Remark 2. The aforementioned scheme is also multi-hop (see definition in
[GHV10]) for branching programs, as long as the noise does not grow beyond
q/4. This means that the output of an evaluation can be used as input for fur-
ther computation, while the property of circuit privacy is maintained for every
hop. More in detail, the evaluation can be carried out by multiple parties and
any subset of these parties is not able to gain information about the branching
program applied by an evaluator which is not in the subset, beside its length,
input and output, even given access to the secret key.

5.1 Homomorphic Evaluation for Branching Programs

We first recall the branching program evaluation algorithm given in [BV14] and
describe our modified version.

Permutation Branching Programs. A permutation branching program Π
of length L and width W with input space {0, 1}� is a sequence of L tuples of
the form

(
var (t) , πt,0, πt,1

)
where

– var : [L] → [�] is a function that associates the t-th tuple with an input bit
xvar(t)
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– πt,0, πt,1 : [W ] → [W ] are permutations that dictate the t-th step of the
computation.

On input (x1, . . . , x�), Π outputs 1 iff

πL,xvar(L)(· · · (π1,xvar(1)(1)) · · · ) = 1.

Following [BV14,IP07], we will evaluate Π recursively as follows. We asso-
ciate each t ∈ [L] with the characteristic vector vt ∈ {0, 1}W of the current
“state”, starting with v0 = (1, 0, . . . , 0). We can then compute the w-th entry of
vt (denoted by vt [w]) as follows: for all t ∈ [L], w ∈ [W ],

vt [w] = vt−1

[
π−1

t,xvar(t)
(w)
]

= xvar(t) · vt−1

[
π−1

t,1 (w)
]
+
(
1 − xvar(t)

) · vt−1

[
π−1

t,0 (w)
]
. (5.1)

Our Branching Program Evaluation. Here we present our
Eval (Π, (C1, . . . ,C�)) algorithm (note that it does not require any evaluation
key), which homomorphically evaluates a branching program Π over cipher-
texts C1, . . . ,C�. The first state vector is encrypted without noise: the initial
encrypted state vector is V0 = (G,0, . . . ,0), i.e. V0[1] = G and V0[w] = 0, for
2 ≤ w ≤ W . Note that G and 0 are noiseless encryptions of 1 and 0, respectively.
The encrypted state vector is then computed at each step by homomorphically
applying (5.1) and adding a noise term: for t ∈ [L] and w ∈ [W ]

Vt [w] ←Cvar(t) · G−1
rand

(
Vt−1

[
π−1

t,1 (w)
])

+
(
G − Cvar(t)

) · G−1
rand

(
Vt−1

[
π−1

t,0 (w)
])

+
(

0
yᵀ

t,w

) (5.2)

where yt,w ← D
Zm,r

√
2. The output of the evaluation algorithm is VL[0] ∈ Z

n×m
q .

Remark 3 (Comparison with [BV14,AP14]. Cf. also Table 1). The differences
between our homomorphic evaluation procedure and the previous ones are as
follows:

– We added an additional Gaussian noise to the computation, as captured in
the boxed term;

– [BV14] uses the deterministic G−1
det (·) whereas [AP14] introduced the random-

ized G−1
rand (·) for efficiency. Here, we crucially exploit the randomized G−1

rand (·)
for privacy.

Simulator. Towards proving circuit privacy, we need to specify a simulator Sim.
We first describe a simulator that is given access to the number of times each
variable is used and prove that its output distribution is statistically close to the
result of Eval (Lemma 5.5). We can then pad the branching program so that each



80 F. Bourse et al.

variable is used the same number of times. Given the security parameter λ, the
length L of the branching program Π, the number of times τi that Π uses the
i-th variable, the final value xf of the evaluation of Π on input (x1, . . . , x�), the
ciphertexts Ci encrypting xi for i ∈ [�], Sim mimics the way error grows in the
states of Eval by doing τi dummy steps of computation with the i-th variable.
This gives a new encryption Âf of 0 with the same noise distribution as the
ciphertext output by the Eval procedure. Sim then adds the message part xf to
this ciphertext and outputs Cf = Âf + xfG.

In other words,

Sim
(
1λ, xf , (1τ1 , . . . , 1τ�) , (C1, . . . ,C�)

)

←
�∑

i=1

τi∑
t=1

(
Ci · (G−1

rand (0) − G−1
rand (0)

)
+
(

0
yᵀ

t

))
+ xfG

where yt ← D
Zm,r

√
2 for t ∈ [L].

We note that the sum of 2τi samples G−1
rand (0) can be sampled at once using

the G−1
rand (·) algorithm with a larger parameter r

√
2τi, and the sum of τi samples

from D
Zm,r

√
2 is close to a sample from D

Zm,r
√
2τi

.

5.2 Proof of Circuit Privacy

We proceed to establish circuit privacy in two steps. We first analyze how the
ciphertext distribution changes in a single transition, and then proceed by induc-
tion to reason about homomorphic evaluation of the entire branching program.

Step 1. We begin with the following lemma, which is useful for analyzing the
output of (5.2). Roughly speaking, this lemma says that if at step t, the state
vector consists of fresh GSW encryptions with some noise parameter ζ, then at
step t + 1, the state vector is statistically close to fresh GSW encryptions with
a somewhat larger noise which depends on the error in the input ciphertext and
on ζ.

Lemma 5.3 For any x, v0, v1 ∈ {0, 1} and s =
(−s̄, 1

) ← Setup
(
1λ
)
, the fol-

lowing holds:
(
C · G−1

rand (V1) + (G − C) · G−1
rand (V0) +

(
0
yᵀ

)
,C
)

≈s (V′
x,C)

where Vb ← Encryptγ (s, vb) for b ∈ {0, 1}, C =
(

A
s̄ᵀA + eᵀ

)
+ xG ←

Encrypt (s, x), y ← D
Zm,r

√
2 and V′

x ← Encryptζ (s, vx), with ζ =√
γ2 + 2r2(1 + ‖e‖2).

Proof. We begin with a simple identity which is useful in the remainder of the
proof:

C · G−1
rand (V1) + (G − C) · G−1

rand (V0) = Â · (G−1
rand (V1) − G−1

rand (V0)
)

+ Vx



FHE Circuit Privacy Almost for Free 81

where Â =
(

A
s̄ᵀA + eᵀ

)
and V0,V1,C are as defined in the statement of the

Lemma. Showing this identity is correct just requires performing the calculations:

C · G−1
rand (V1) + (G − C) · G−1

rand (V0)

=
(
Â + xG

)
· G−1

rand (V1) +
(
(1 − x)G − Â

)
· G−1

rand (V0)

= Â · (G−1
rand (V1) − G−1

rand (V0)
)

+ xV1 + (1 − x)V0

= Â · (G−1
rand (V1) − G−1

rand (V0)
)

+ Vx

Then we observe that by applying Lemma2.3 we have
(

0
yᵀ

)
≈s

(
0
yᵀ
1

)
−
(

0
yᵀ
0

)

where yb ← DZm,r, b ∈ {0, 1}. Lemma 4.1 also gives
(
Â · G−1

rand (Vb) +
(

0
yᵀ

b

)
,C
)

≈s (Cb,C)

where Cb ← Encryptζ′(s, 0), for b ∈ {0, 1}, with ζ ′ = r
√

1 + ‖e‖2. We now have
(
C · G−1

rand (V1) + (G − C) · G−1
rand (V0) +

(
0
yᵀ

)
,C
)

≈s (C1 − C0 + Vx,C)

By additivity of variance on independent variables, we obtain that C1 −
C0 + Vx = V′

x looks like a fresh encryption of 0 − 0 + vx = vx with parameter√
γ2 + 2r2(1 + ‖e‖2). ��

Step 2. We now prove that, at each step of the evaluation, each entry of the
encrypted state Vt looks like a fresh GSW encryption of the corresponding entry
of the state vt, even given the GSW encryptions of the input bits, except for a
small correlation in the noise.

Lemma 5.4 (Distribution of the result of Eval). For any branching program
Π of length L on � variables, we define τt,i to be the number of times the i-th
variable has been used after t steps of the evaluation, i.e. τt,i =

∣∣var−1 (i) ∩ [t]
∣∣,

for i in [�] and t ∈ [L].
For any x1, . . . , x� ∈ {0, 1}, any s =

(−s̄, 1
) ← Setup

(
1λ
)
, at each step

t ∈ [L], for all indexes w ∈ [W ], the following holds:
(
Vt [w] , (Ci)i∈[�]

) ≈s

(
C′

t,w, (Ci)i∈[�]

)

where Ci =
(

Ai

s̄ᵀAi + eᵀ
i

)
+ xiG ← Encrypt (s, xi) for i ∈ [�], C′

t,w ←

Encryptrt
(s,vt [w]) for (t, w) ∈ [L] × [W ] and rt = r

√
2
∑�

i=1 τt,i (1 + ‖ei‖2).
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Proof. We prove this lemma by induction on t ∈ [L]. At step t > 1, for
index w ∈ [W ] we use a series of hybrid distributions Ht,w,k for 0 ≤ k ≤ 2
to prove that

(
Vt [w] , (Ci)i∈[�]

) ≈s

(
C′

t,w, (Ci)i∈[�]

)
. In particular Ht,w,0 =(

Vt [w] , (Ci)i∈[�]

)
, and Ht,w,2 =

(
C′

t,w, (Ci)i∈[�]

)
.

Hybrid Ht,w,0. Let wb = π−1
t,b (w) for b ∈ {0, 1}. We write wβ to denote wxvar(t) ,

i.e. w0 or w1, depending on the value of the variable which is used at time t.

Ht,w,0 =
(
Vt [w] , (Ci)i∈[�]

)

=

(
Cvar(t) · G−1

rand (Vt−1 [w1]) +
(
G − Cvar(t)

) · G−1
rand (Vt−1 [w0])

+
(

0
yᵀ

t,w

)
, (Ci)i∈[�]

)

where Ci ← Encrypt (s, xi) and yt,w ← D
Zm,r

√
2.

Hybrid Ht,w,1. We set

Ht,w,1 =

(
Cvar(t) · G−1

rand

(
C′

t−1,w1

)
+
(
G − Cvar(t)

) · G−1
rand

(
C′

t−1,w0

)

+
(

0
yᵀ

t,w

)
, (Ci)i∈[�]

)

where Ci ← Encrypt (s, xi), yt,w ← D
Zm,r

√
2 and C′

t−1,wb
←

Encryptrt−1
(s,vt−1[wb]) for b ∈ {0, 1}.

By induction hypothesis we have Ht−1,wb,0 ≈s Ht−1,wb,2 for b ∈ {0, 1}, i.e.(
Vt−1 [wb] , (Ci)i∈[�]

) ≈s

(
C′

t−1,wb
, (Ci)i∈[�]

)
where Ci ← Encrypt (s, xi) and C′

t−1,wb
← Encryptrt−1

(s,vt−1[wb]) for b ∈ {0, 1}.
We use the fact that applying a function to two distributions does not increase
their statistical distance to obtain Ht,w,0 ≈s Ht,w,1.

Hybrid Ht,w,2. Let
Ht,w,2 =

(
C′, (Ci)i∈[�]

)
with Ci ← Encrypt (s, xi), C′ ← Encryptζ(s,vt−1[wβ ]) and ζ =√

r2t−1 + 2r2
(
1 + ‖evar(t)‖2

)
.

By Lemma 5.3 we have:(
Cvar(t) · G−1

rand

(
C′

t−1,w1

)
+
(
G − Cvar(t)

) · G−1
rand

(
C′

t−1,w0

)

+
(

0
yᵀ

t,w

)
, (Ci)i∈[�]

)
≈s

(
C′, (Ci)i∈[�]

)
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where Ci ← Encrypt (s, xi), yt,w ← D
Zm,r

√
2, C

′
t−1,wb

← Encryptrt−1
(s,vt−1[wb])

for b ∈ {0, 1} and C′ ← Encryptζ(s,vt−1[wβ ]). Note that vt−1[wβ ] = vt[w] and

rt =
√

r2t−1 + 2r2
(
1 + ‖evar(t)‖2

)
= ζ from which we have that C′ and C′

t,w are
identically distributed, and directly Ht,w,1 ≈s Ht,w,2.

We note that this recursive formula does not apply to step t = 0, we thus
use t = 1, w ∈ [W ] as the base case. We only describe the steps that differ from
the case t > 1.

Hybrid H1,w,1. We have G−1
rand (V0 [wb]) = G−1

rand (v0 [wb] · G) for b ∈ {0, 1}.
Notice that we now have exactly H1,w,1 = H1,w,0.

Hybrids H1,w,2. The proof for H1,w,1 ≈s H1,w,2 is identical to the one of
Lemma 5.3 except for the fact that the ciphertext Vx from the proof is now of the
form v0[wβ ]G. The resulting ciphertext C′

1,w is now only the sum of two encryp-

tions of 0 and v0[wβ ] and has a Gaussian parameter r
√

2
(
1 + ‖evar(1)‖2

)
= r1.

This implies H1,w,1 ≈s H1,w,2. ��
We now proceed to prove circuit privacy. We will first prove the following

lemma, which states that the Eval algorithm presented in Sect. 5.1 only leaks the
final result of the evaluation and the number of times each variable is used.

Lemma 5.5. Let E be the scheme defined in Sect. 4 with evaluation defined as
in this section, and Sim be the corresponding simulator. Then for any branching
program Π of length L = poly(λ) on � variables, such that the i-th variable is
used τi times, and any x1, . . . , x� ∈ {0, 1}, the following holds:

(E .Eval (Π, (C1, . . . ,C�)) ,C1, . . . ,C�, 1λ, s
)

≈s

(
Sim

(
1λ,Π (x1, . . . , x�) , (1τ1 , . . . , 1τ�), (C1, . . . ,C�)

)
,C1, . . . ,C�, 1λ, s

)

where s ← E .Setup
(
1λ
)
, Ci ← E .Encrypt (s, xi) for i in [�].

Proof. As shown in Lemma 5.4, the final result of the homomorphic evaluation
of the branching program Π is of the form

VL [0] ≈s

(
A

s̄ᵀA + fᵀ

)
+ xfG

where A $← Z
(n−1)×m
q , f ← DZm,rL

and rL = r
√

2
∑�

i=1 (1 + ‖ei‖2) τi.
Now we prove that the output of Sim is statistically close to the same distribu-

tion. This proof follows from the fact that scaling GSW ciphertexts yields a result
which is independent of the argument of G−1

rand (·). Let Ai,t,A′
i,t

$← Z
(n−1)×m
q ,

fi,f , f ′
i,t ← D

Zm,r
√

1+‖ei‖, then the joint distribution of the output of Sim and

ciphertexts (Ci)i∈[�] is
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(S, (Ci)i∈[�]

)
=

(
∑�

i=1 Ci
∑τi

t=1

(
G−1

rand (0) − G−1
rand (0)

)
+

(
0
yᵀ

t

)
+ xfG, (Ci)i∈[�]

)

≈s

(
∑�

i=1

∑τi
t=1

(
Ai,t

s̄ᵀAi,t + fi,t

)
+

(
A′

i,t

s̄ᵀA′
i,t + f ′

i,t

)

, (Ci)i∈[�]

)

by Lemma3.1

≈s

((
A

s̄ᵀA+ fᵀ

)
, (Ci)i∈[�]

)

by Lemma2.3 and summing uniform variables.

The result is the same as the joint distribution of the output of Eval and
ciphertexts (Ci)i∈[�], thus concluding the proof. ��

We are now ready to prove Theorem 5.2.

Proof (Main theorem). Theorem 5.2 follows from Lemma 5.5 by tweaking the
Eval algorithm of E : it is sufficient that this algorithm pads the branching pro-
gram Π so that each variable is used L times. This padding is done by using
the identity permutation for all steps after the L-th. After this proof, we dis-
cuss more efficient ways to pad branching program evaluations. It is easy to see
that this step is enough to reach the desired circuit privacy property: the only
information leaked besides the final result is τi = L. ��

Padding Branching Program Evaluations. In order to pad a branching
program Π that uses the i-th variable τi times to one that uses the i-th variable
L times, we add L−τi steps, using the identity permutation at each one of these.
Given VL [0] the final result of the computation, this padding corresponds to
steps t ∈ [L + 1, 2L − τi] defined as follows:

Vt [0] ← Vt−1 [0] + Ci

(
G−1

rand (Vt−1 [0]) − G−1
rand (Vt−1 [0])

)
+
(

0
yᵀ

t,0

)

Using the same proof as Lemma 5.5 the final output will be

V2L−τi
[0] ← VL [0] + Ci

2L−τi−1∑
t=L

(
G−1

rand (Vt [0]) − G−1
rand (Vt [0])

)
+
(

0
yᵀ

t,0

)

≈s VL [0] + Ci

2L−τi−1∑
t=L

(
G−1

rand (0) − G−1
rand (0)

)
+
(

0
yᵀ

t,0

)

Observe that by using Lemma 2.3 we have that

2L−τi−1∑
t=L

(
G−1

rand (0) − G−1
rand (0)

) ≈s DΛ⊥
q (Gᵀ),rf

2L−τi−1∑
t=L

(
0

yᵀ
t,0

)
≈s DZm,rf
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where rf = r
√

2 (L − τi). We can thus do all the steps at once by outputting

VL [0]+Ci ·X+
(

0
yᵀ

f

)
, where X ← Dm

Λ⊥
q (Gᵀ),rf

and yf ← DZm,rf
. We note that

X can be sampled using the G−1
rand (·) algorithm with parameter rf instead of r.

5.3 Setting the Parameters

In this section we show that, for appropriate values of the parameters, the out-
put of the homomorphic evaluation VL[0] decrypts to Π (x1, . . . , x�) with over-
whelming probability and guarantees circuit privacy.

We first recall the bounds on the parameters needed for both correctness and
privacy. Let n = Θ (λ), q = poly(n), m = n log q, α be the Gaussian parameter of
fresh encryptions, r be the parameter of G−1

rand (·). Let B = Θ(α
√

m) be a bound
on the norm of the error in fresh encryptions (using a tail cutting argument we
can show that B = Cα

√
m is sufficient to have a bound with overwhelming

probability), Lmax = poly(n) be a bound on the size of the branching programs
we consider and �max = poly(n) an upper bound on their number of variables.
Let ε = O(2−λ) and ε′ = O(2−λ).

We have the following constraints:

– α = Ω (
√

m) for the hardness of LWEn−1,q,DZ,α

– r ≥
√

5 ln(2m(1+1/ε))
π for the correctness of G−1

rand (·) sampling

– r ≥ 4
(
(1 − ε) (2ε′)2

)− 1
m

for the leftover hash lemma

– r ≥ √
5 (1 + B)

√
ln(2m(1+1/ε))

π for Lemma 3.7

– q = Ω
(√

mrα (mLmax �max)
1/2
)

for the correctness of decryption

We can thus set the parameters as follows:

– n = Θ(λ),
– Lmax = poly(n),
– �max = poly(n),
– α = Θ(

√
n),

– r = Θ̃ (n),
– q = Θ̃

(
n5/2 · Lmax · �max

)
, a power of 2.

Note that the ciphertext size grows with log Lmax. Correctness follows
directly.

Lemma 5.6 (Correctness). For any branching program Π of length L on �
variables, any x1, . . . , x� ∈ {0, 1}, the result of the homomorphic evaluation Cf =
Eval (Π, (C1, . . . ,C�)) decrypts to Π (x1, . . . , x�) with overwhelming probability,
where Ci ← Encrypt (s, xi) for i ∈ [�] and s ← Setup

(
1λ
)
.
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Proof. Lemma 5.4 shows that the noise distribution of the output Cf of Eval

has parameter rf = r
√

2
∑�

i=1 τi (1 + ‖ei‖2), that is r
√

2L
∑�

i=1 (1 + ‖ei‖2)
because of the padding we applied to Π. We have rf ≤ r

√
2L� (1 + C2α2m)

with C the universal constant defined in Lemma2.4, Using the bounds Lmax

and �max we have rL = Õ
(
rα(mLmax �max)1/2

)
. Finally, by a tail cutting argu-

ment, q = Θ̃ (rL
√

n) = Θ̃
(
n5/2Lmax�max

)
is enough for decryption to be correct

with overwhelming probability. ��

5.4 Arbitrary Modulus and Random Trapdoor Matrix

In this paragraph we show how to instantiate our proofs in a more generic setting.
Our GSW ciphertext rerandomization can be straightforwardly adapted to

any matrix H and modulus q, as long as the lattice Λ⊥
q (Hᵀ) has a small public

basis, i.e. a small public trapdoor. Observe that the conditions needed to apply
GSW ciphertext rerandomization are given in Lemma 3.7, which bounds the
smoothing parameter of the lattice

L =
{
v ∈ Λ⊥

q (Hᵀ) × Z : êᵀv = 0
}

and in Lemma 3.8 which gives the min-entropy of a Gaussian over Λ⊥
q (Hᵀ).

Let β ≥ ‖ti‖, where T = {t1, ..., tm} is the public trapdoor of H (i.e. T is a
small basis of Λ⊥

q (Hᵀ)), we show that the previous two lemmas can be proven
for H and the parameter r only grows by a factor β.

First, observe that Lemma 3.7 aims to find m small independent vectors in
L. By noticing that

L =
{
(v,−vᵀe) : v ∈ Λ⊥

q (Hᵀ)
}

we can exhibit m small vectors ui = (ti,−tᵀ
i e) , i ∈ [m] which are of norm

‖ui‖ ≤ ‖ti‖(1 + ‖e‖) ≤ β(1 + ‖e‖)

This bound is the one we obtain in Lemma3.7 for Λ⊥
q (Gᵀ) where ‖T‖ =

√
5.

Second, we show that the bound on the min-entropy of Lemma3.8 can be
expressed as a function of β, simply by using the fact that det(T) ≤ ‖T‖m = βm.
From this we have the following bound on the min-entropy:

H∞
(
DΛ⊥

q (Hᵀ)+c,r

)
≥ log (1 − ε) + m log (r) − m log (β)

This bound is slightly worse that the one we obtain in Lemma3.8 for G (where
we had 2 instead of β). However this is not a problem as it is a weaker bound
than the one obtained in Lemma3.7.

By using these two lemmas we can rerandomize GSW ciphertexts and ensure
circuit privacy for arbitrary modulus q, and any matrix H with public trapdoor
by setting the Gaussian parameter of H−1 (·) to r = Θ̃ (βn).
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5.5 Extension to General Circuits

We can realize circuit-private FHE for general circuits via bootstrapping using
the technique of [OPP14] by combining a compact FHE for general circuits with
decryption in NC1 with our circuit-private FHE for NC1circuits as follows: the
server receives a ciphertext under the first FHE scheme, evaluates its circuit
and bootstraps to the second (circuit hiding) FHE scheme. The ensuing scheme
however will not satisfy the multi-hop requirement. Nevertheless, by using the
construction given in [GHV10] it is possible to reach i-hop circuit private FHE
for any a priori chosen i by giving out i pairs of switching keys to bootstrap
from one scheme to the other and vice versa.

Acknowledgements. We thank Vinod Vaikuntanathan for insightful discussions, as
well as Damien Stehlé and the organizers of the HEAT summer school where this
research started.
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