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Abstract. The exact hardness of computing a Nash equilibrium is a
fundamental open question in algorithmic game theory. This problem
is complete for the complexity class PPAD. It is well known that prob-
lems in PPAD cannot be NP-complete unless NP = coNP. Therefore, a
natural direction is to reduce the hardness of PPAD to the hardness of
problems used in cryptography.

Bitansky, Paneth, and Rosen [FOCS 2015] prove the hardness of PPAD
assuming the existence of quasi-polynomially hard indistinguishability
obfuscation and sub-exponentially hard one-way functions. This leaves
open the possibility of basing PPAD hardness on simpler, polynomially
hard, computational assumptions.

We make further progress in this direction and reduce PPAD hard-
ness directly to polynomially hard assumptions. Our first result proves
hardness of PPAD assuming the existence of polynomially hard indis-
tinguishability obfuscation (iO) and one-way permutations. While this
improves upon Bitansky et al.’s work, it does not give us a reduction to
simpler, polynomially hard computational assumption because construc-
tions of iO inherently seems to require assumptions with sub-exponential
hardness. In contrast, public key functional encryption is a much simpler
primitive and does not suffer from this drawback. Our second result
shows that PPAD hardness can be based on polynomially hard compact
public key functional encryption and one-way permutations. Our results
further demonstrate the power of polynomially hard compact public key
functional encryption which is believed to be weaker than indistinguisha-
bility obfuscation. Our techniques are general and we expect them to
have various applications.

1 Introduction

The problem of computing a Nash equilibrium is fundamental to algorithmic
game theory. The hardness of this problem has attracted significant attention.
Since a mixed Nash equilibrium is guaranteed to exist for every game [Nas51],
the problem belongs to the complexity class TFNP [MP91]. In a series of works,
originating from Papadimitriou [Pap94], the problem was established to be
complete for the complexity class PPAD [DGP09,CDT09]. PPAD is a subclass of
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TFNP containing problems that reduce (in polynomial time) to a special prob-
lem called as end-of-line (or EOL in short). Informally, EOL instance includes
a “succinct” description of an exponential sized directed graph where each node
has in-degree and out-degree at most 1 and a source node having in-degree 0
and out-degree 1. The goal is to find another source or a sink (having in-degree
1 and out-degree 0). It is easy to observe that such a node is guaranteed to exist
by a simple parity argument.

The exact hardness of this problem, however, is still not fully understood.
Since the class PPAD is total, it is unlikely to contain NP-complete problems
unless polynomial hierarchy collapses to the first level [MP91,Pap94]. This is
similar to the status of hardness assumptions in cryptography which are not
believed to be NP-complete, but nevertheless, hard. Due to this similarity, cryp-
tographic problems were suggested as natural candidates in [Pap94] for study-
ing the hardness of PPAD. Indeed, the hardness of some total super-classes of
PPAD, such as PPA and PPP, can already be reduced to “standard” crypto-
graphic problems like factoring and collision-resistant hashing [Jer12]. However,
such a reduction is not known for PPAD.

A natural extension of this idea is to consider cryptographic problems with
a richer and more powerful structure. One of the richest cryptographic structure
is program obfuscation as formulated by Barak et al. [BGI+12]. It is a compiler
to transform any computer program into an “unintelligible one” while preserv-
ing its functionality. Ideally, the obfuscation of a program should be a “virtual
black-box” (VBB), i.e., access to the obfuscated program should be no better
than access to a black-box implementing the program [BGI+12]. Abbot et al.
[AKV04] show that PPAD-hardness can be based on VBB obfuscation of a nat-
ural pseudo random function. Unfortunately, VBB obfuscation is impossible in
general [BGI+12], and there are strong limitations to obfuscating pseudorandom
functions [GK05,BCC+14], including the one in [AKV04].

A natural relaxation of VBB obfuscation is indistinguishability obfuscation
(iO) [BGI+12]. Informally, iO guarantees that the obfuscation of a circuit
looks indistinguishable from the obfuscation of any other, functionally equiv-
alent, circuit of same size. Starting from the work of Garg et al. [GGH+13b],
several candidate constructions [BR14,BGK+14,PST14,GLSW15,Zim15,AB15,
GMS16] for iO have been suggested based on various assumptions on multilinear
maps [GGH13a] and public key functional encryption [AJ15,BV15a,AJS15].

Motivated by the progress on obfuscation, Bitansky et al. [BPR15] revisit the
hardness of PPAD and provide an elegant reduction to the hardness of iO. This
is the first reduction of its kind which reduces PPAD-hardness to the security of a
concrete and plausible cryptographic primitive. This, together with the progress
on iO, gives hope to the possibility of basing PPAD-hardness on simpler, more
standard cryptographic primitives.
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1.1 Our Contribution

In this work, we revisit the problem of reducing PPAD-hardness to rich and
expressive cryptographic systems. We build upon the work of [BPR15] with two
specific goals:

– Rely on polynomial-hardness of iO: One drawback of the BPR reduction
is that it requires iO schemes with at least quasi-polynomial security. It is
not clear if such a large loss in the reduction is necessary. Our first goal is to
obtain an improved, polynomial time reduction.

– Rely on simpler, polynomially hard, assumptions: While tremendous
progress has been made on justifying the security of current iO schemes, ulti-
mately the security of the resulting constructions still either relies on an expo-
nential number of assumptions (basically, one per pair of circuits), or a poly-
nomial set of assumptions with exponential loss in the reduction. Our second
goal is thus to completely get rid of iO or any other component with non-
polynomial time flavor, and reduce PPAD-hardness to simpler, polynomially
hard, assumptions.

With respect to our first goal, we prove the following theorem:

Theorem 1. Assuming the existence of polynomially hard one-way permuta-
tions and indistinguishability obfuscation for P/poly, the end-of-line problem
is hard for polynomial-time algorithms.

This polynomially reduces the hardness of PPAD to iO since PPAD is the
class of problems that are reducible to the end-of-line problem.
With respect to our second goal, we show that PPAD-hardness can be reduced
to the security of compact public-key functional encryption (FE) in polynomial
time. We note that polynomially hard public key functional encryption is a
polynomially falsifiable assumption [Nao03].

A public key functional encryption (FE) scheme for general circuits [BSW11,
O’N10] is similar to an ordinary (public-key) encryption scheme with the crucial
difference that there are many decryption keys, each of which has an associated
function f ; when an encryption of a message m is decrypted with a key for
function f , it decrypts to the value f(m). The intuitive security guarantee is
that given the secret key corresponding to f and a ciphertext encrypting m, an
adversary would not be able to get any information about m except f(m). Our
second result proves the following theorem:

Theorem 2. Assuming the existence of polynomially-hard one-way permuta-
tions and compact public key functional encryption for general circuits, the
end-of-line problem is hard for polynomial-time algorithms.

Compact functional encryption, as demonstrated by the recent results of
Bitansky and Vaikuntanathan [BV15b] and Ananth et al. [AJS15], can be generi-
cally constructed from the so called “collusion-resistant function encryption with
collusion-succinct ciphertexts”, which in turn can be constructed from simpler
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polynomial hardness assumptions over multi-linear maps, as shown by Garg et al.
[GGHZ16]. This is in sharp contrast to iO where all constructions still inherently
seem to require exponential loss in the security reduction1. Combined with the
results of [GGHZ16,BV15b,AJS15], Theorem 2 bases PPAD-hardness on simpler
polynomial hardness assumptions. It is interesting to note that compact public
key functional encryption implies indistinguishability obfuscators [AJ15,BV15a]
but with sub-exponential security loss.

1.2 Our Techniques

We now present a technical overview of our approach. Building upon the work
of [BPR15], it suffices to show a sampling procedure that samples hard instances
of sink-of-verifiable-line problem. We will first show how to generate such
instances using polynomially-hard iO and then discuss how to do the same using
polynomially-hard FE .

PPAD Hardness from Indistinguishability Obfuscation. Let us start by
recalling the definition of PPAD. The class PPAD is defined to be the set of all
total search problems that are polynomial time reducible to the end-of-line
(EOL) problem. Intuitively, an EOL instance includes a succinct description of
an exponential sized directed graph with each node having in-degree and out-
degree at most 1. Given a source node (which has in-degree 0 and out-degree 1),
the goal is to find another source or a sink (which has in-degree 1 and out-degree
0). By a simple parity argument one can observe that such a node is guaranteed
to exist.

The hardness of PPAD was proven in [BPR15] by considering a different
problem, proposed in [AKV04], called sink-of-verifiable-line problem (SVL)
in [BPR15]. It was shown that SVL reduces to the EOL problem [AKV04,BPR15],
and therefore hardness of SVL implies hardness of EOL and PPAD.

An instance of the SVL problem is specified by a tuple (xs,Succ,Ver, T )
where xs is called the source node, Succ and Ver are called successor and veri-
fication circuits respectively, and T is a target index. Succ succinctly defines an
(exponential sized) directed line graph starting from the source node xs. That
is, a node x is connected to a node y in the graph through an outgoing edge
if and only if y = Succ(x). Ver is used to verify whether a given node is the
ith node (starting from the source node xs) on the path defined by Succ. To be
more precise, Ver(x, i) = 1 if and only if x = Succi−1(xs). The goal, given the
instance, is to find the T -th node (Target) on the path. We want to construct an
efficiently samplable distribution over instances of SVL for which no polynomial
time algorithm can find the T -th node with non-negligible probability.

BPR Approach. Bitansky et al., building upon [AKV04], consider a line graph
where the i-th node is defined by the output of pseudorandom function (PRF)
on i, i.e., the i-th node is (i, σ) such that σ = PRFS(i) for a randomly chosen
1 An informal explanation of this observation appears in [GLSW15].
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key S. Intuitively, σ is a signature on i. The successor circuit of the hard SVL
instance, Succ, is then defined by obfuscating a “verify and sign” circuit, VSS ,
using general purpose iO; VSS simply outputs the next point (i+1,PRFS(i+1))
if the input is a valid point (i, σ) and rejects otherwise. The verification circuit
Ver simply tests that a given input will not be rejected by the successor circuit.
The source node is given by (1,PRFS(1)) and the target index T is set to a
super-polynomial value in the security parameter.

Intuitively, the hardness of the above instance relies on the fact that it is
impossible to obtain a signature on a node before obtaining the signature on the
previous node in the path. Since T is super-polynomial in the security parameter,
it follows that no polynomial time algorithm can obtain a signature on T . While
the underlying idea of this reduction is intuitive, reducing its hardness to iO is
more involved. This is shown by first changing the obfuscated circuit Succ so that
it does not behave correctly on a randomly chosen point u, and simply outputs ⊥.
One can think of the Succ circuit being “punctured” at point u. This would also
imply that the “punctured” circuit does not output a signature on u + 1 unlike
the original circuit. The next step uses this fact to “puncture” the circuit at the
point u+1. This step is realized through the “punctured” programming approach
of Sahai and Waters [SW14]. At a high level, this process is then repeated for
the next point u + 2, and then for u + 3, and so on, until the circuit does not
have the ability to sign on any point in the interval [u, T ]. Once the circuit is
“punctured” at T , it can be observed that no algorithm can find the T th node
with non-zero probability. Performing these changes however, requires more care
since the number of points in [u, T ] is not polynomial. In hindsight, the primary
reason for sub-exponential loss in this approach is because it is not possible to
“puncture” a larger interval in a “single shot.” In particular, to be able to use
the security of iO, this approach must increase the “punctured” interval by one
point at a time.

Our Approach: Many Chains of Varying Length. Our main idea is to introduce
a richer structure to the nodes in the graph, that avoids the need to increase the
“punctured” interval by one point at a time. Instead, we want to make longer
“jumps”, sometimes of exponential length, in the proof strategy. Specifically, we
aim to make only polynomially many jumps in total to travel from u to T .

In particular, instead of considering one signature per node, we consider κ
signatures for every node where 2κ is the total number of nodes on the line. That
is, a node in our graph is of the form (i, σ1, . . . , σκ) where σj is a signature on
the first j bits of i computed using a key Sj (different for each index) for every
j ∈ [κ]. The successor circuit is obfuscation of a program which simply checks
each signature on appropriate prefixes of i, and if so, it signs all κ prefixes of i+1
using appropriate keys. The verification circuit is as before, the source node is
simply the signatures on the first node, i.e., (0κ,PRFS1(0), . . . ,PRFSκ

(0κ)), and
T = 2κ − 1. Observe that the BPR reduction is equivalent to having only σκ.

We now explain how this structure on the nodes helps us in achieving a
polynomial loss in the reduction. As before, we start by “puncturing” the suc-
cessor circuit on a random point u. To illustrate the main idea, let us assume
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that the binary representation of u has k trailing 1s, i.e., u is of the form:
u1 · · · uκ−k−1‖01k where 1 ≤ k ≤ κ. Then, u + 1 = u1 · · · uκ−k−1‖10k, i.e., it has
k trailing 0s. Observe that:

1. The first κ − k prefix bits of u + 1 are identical to the first κ − k prefix bits
of all points in the interval [u + 1, u + 2k].

2. Signature σκ−k (corresponding to the prefix of length κ − k) for the node
u+1 is not needed (for checking and signing) anywhere else on the line graph
except for nodes in the interval [u + 1, u + 2k].

As before, suppose that we have punctured the successor circuit at a random
node u. Then, the fact that the punctured circuit does not output any signature
on u+1 means that it does not output the signature σκ−k on the first κ−k bits
of u+1; consequently, and most importantly, this means that it does not output
this signature on the first κ − k bits of any point in the interval [u + 1, u + 2k].
This allows us to increase the interval from [u + 1, u + 2k] by considering only a
constant number of hybrids. We then repeat this process by considering u + 2k

as our next point and iterate until we reach T .
Metaphorically, the signatures can be thought of as “virtual chains” emanat-

ing from each node and connecting to other nodes. The first chain coming out of
a node i is connected to i’s immediate neighbor which is i+1. The second chain
is connected to a node two hops away from i and the j-th chain is connected to
a node 2j hops away from i and so on. The number of chains coming out from
a node i is one more than the number of trailing ones in the binary represen-
tation of i. Equivalently, the number of chains coming out of i is the number
of bits that change from i to i + 1. Puncturing the circuit is viewed as cutting
chains of appropriate lengths between points. While BPR strategy always cuts
a chain of length 1, our proof strategy cuts the longest possible chain it can and
then iterates the process again until it reaches the target T . See Fig. 1 for an
illustration.

Fig. 1. Illustration of cutting a chain for u = 0111

While implementing the above idea we face the difficulty that for a random
u the number of chains coming out of u could be very small (as small as 1). We
get over this difficulty by initially cutting “smaller” length chains until we have
the ability to cut “larger” length chains. Intuitively, this is made possible since
the number of trailing 1 s in u + 2k is strictly larger than the number of trailing
1s (given by k) in u. We show that we need to cut no more than a linear (in
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the security parameter κ) number of chains to reach T and hence our reduction
suffers only a polynomial (in fact linear) loss in the security parameter.

PPAD Hardness from Functional Encryption. We now give a technical
overview of our hardness result for PPAD from compact functional encryption
with polynomial loss. As noted earlier, although iO can be reduced to compact
FE [AJ15,BV15a], we cannot directly rely on this reduction since it suffers sub-
exponential security loss. Instead, we try to directly reduce PPAD-hardness to
compact FE .

To directly reduce PPAD-hardness to FE , we follow the same approach as
before, and generate hard on average instances of SVL using functional encryp-
tion. To demonstrate the technical challenges while proving the result from FE
we will be considering a single PRF key, as in BPR [BPR15], instead of our idea
of using κ keys to implement “multiple chains of varying length”. The scenario
with a single PRF key already captures the main technical challenges while keep-
ing the exposition simple. Later, we will explain how to combine the two ideas
together to obtain a direct polynomial reduction to FE .

The line graph implicitly defined by this successor circuit will be similar to
the BPR reduction as before. The successor circuit encodes a pseudo random
function PRFS : {0, 1}κ → {0, 1}κ in its description. The source node is given
by (0κ,PRFS(0κ)). A node (x, σ) is present on the line graph if and only if
σ = PRFS(x). The successor circuit takes as input (x, σ), checks the validity of
the node and if the node is valid outputs (x + 1,PRFS(x + 1)). The target index
is given by 2κ − 1.

Our goal is to produce an “obfuscated” (or encrypted) version of this suc-
cessor circuit using FE . To do this, we will rely on the “binary tree construc-
tion” idea of [AJ15,BV15a] for constructing iO from FE . Note that though this
reduction suffers from sub-exponential loss and we tailor the construction of our
successor circuit so that it suffers only from a polynomial loss.

Binary Tree Based Evaluation [AJ15,BV15a]. Let us first recall the main ideas
of [AJ15,BV15a] for constructing iO from FE . We present an “over-simplified”
version of their construction which is actually sufficient for our purposes but is
not sufficient for achieving iO security.

An “obfuscation” for a circuit C : {0, 1}κ → {0, 1}∗ is a sequence of κ + 1
functional keys FSK1, · · · ,FSKκ+1 generated using independently sampled mas-
ter secret keys MSK1, · · · ,MSKκ+1 along with a ciphertext cφ encrypting the
empty string under public-key PK1 (corresponding to MSK1). The first κ func-
tion keys implement the “bit-extension” functionality. That is, the ith function
key corresponds to a function that takes in an (i − 1)-bit string y ∈ {0, 1}i−1

and outputs functional encryptions of y‖0 and y‖1 under PKi+1
2. The function

key FSKκ+1 corresponds to the circuit C.
To evaluate the obfuscated circuit on an input x ∈ {0, 1}κ, one does the

following: decrypt cφ under FSK1 to obtain encryptions of 0 and 1. Depending

2 The randomness needed for generating the encryptions is obtained using a PRF.
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on the bit x1, choose either the left or right encryption and decrypt it using
FSK2 and so on. Thus, in κ steps one can obtain an encryption of x under
PKκ+1 which can be used to compute C(x) using FSKκ+1. One can think of the
construction as having a binary tree structure where evaluating the circuit on
an input x corresponds to traversing along the path labeled x.

Sub-exponential Loss. An intuitive reason for why this construction requires
sub-exponential loss to achieve iO is that the behavior of the obfuscated circuit
should be changed on all κ-bit inputs which are 2κ in number. The key insight
in our reduction is that we can achieve our goals by changing the behavior of
the obfuscated circuit at only polynomial many inputs and thus incurring only
a polynomial security loss.

Our Construction. We will motivate our construction through a series of
attempts and fixes.

First Attempt. Our first attempt was to mimic the construction of [AJ15,BV15a].
We generate 2κ + 1 functional keys FSK1, · · · ,FSK2κ+1 where the first 2κ of them
correspond to the bit-extension function used for encrypting (x, σ) under PK2κ+1

and FSK2κ+1 corresponds to the circuit Next that checks the validity of the node
(x, σ) and outputs the next node in the graph if (x, σ) is valid. The main question
with this approach is: How does the circuitNext check the validity of the input node
and output the next node in the path? The circuitNext must somehow have access
to the PRF key S but this access should not be “visible” to the outside world.

We definitely cannot hardwire the PRF key S in the circuit as the current
constructions of public key functional encryption schemes do not provide any
meaningful notions of “function-privacy”. One possible approach is to “propa-
gate” the key S along the entire tree. That is, encrypt the key S in the cipher-
text cφ and the bit extension functions output encryptions that also includes S.
Though this approach sounds promising, we are unable to use the “punctured”
programming techniques of Sahai and Waters that were crucial in the reduction
of PPAD hardness to iO. In particular, to puncture the key S at a point x we
need to puncture the key along every path thus incurring a sub-exponential loss
that we wanted to avoid. To fix this issue, we develop “fine-grained” puncturing
techniques.

Second Attempt: “Prefix Puncturing.” To solve the problem explained earlier,
we develop techniques to “surgically” puncture the PRF key S along a path
x without affecting the distribution on rest of the paths. We now explain the
details.

Every string y ∈ {0, 1}≤κ has a natural association with a node in the binary
tree where the root is associated with the empty string φ. At a high level, we
want the set of keys Ky appearing in node y to have the following properties:

– The keys derived from Ky can be used for checking the validity of every node
in the subtree rooted at y. This translates to be able to compute the PRF
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value at x for every (x, σ) that appears in the subtree rooted at y. We denote
this property as prefix puncturability.

– The keys derived from Ky can be used for computing the next node for every
node in the subtree rooted at y. This would translate to the ability to compute
the PRF value at x + 1 for every (x, σ) appearing at the subtree rooted at y.

A pseudorandom function that has a natural binary tree structure and has the
prefix-puncturable property is the construction due to Goldreich et al. [GGM86].
We exploit this property in the GGM construction to propagate the “prefix-
punctured” keys along the binary tree.

At every node y ∈ {0, 1}≤κ, we propagate two keys Sy, Sy+1 where Sy denotes
the key S prefix-punctured at string y. Intuitively, Sy is the key used for checking
the input node is valid and Sy+1 is used for generating the next node on the
path3. The bit extension function generates Sy‖0, Sy‖0+1 and Sy‖1, Sy‖1+1 from
Sy, Sy+1 and propagates these values along with y‖0 and y‖1 respectively. The
circuit Next receives Sx, Sx+1 where x ∈ {0, 1}κ and checks the validity of the
input signature using Sx and generates the next node in the path if the input is
valid using Sx+1.

Note that the puncturing of the keys does not happen after the level κ as by
this time we have parsed the x which completely determines the key Sx, Sx+1.
Therefore, we need to propagate Sx, Sx+1 along the entire subtree rooted at x
where we parse σ. This creates the following problem: consider a scenario where
the successor circuit already outputs ⊥ on the point x and we are trying to
extend the interval to include x + 1. Recall that the crucial idea behind the
ability to increase the interval is that Sx+1 does not occur anywhere else in the
computation of the circuit. We observe that Sx+1 gets propagated along the
entire subtree (of exponential size) rooted at x where the input σ is parsed.
Hence, to “remove all traces” of Sx+1 along the subtree rooted at x, we need to
incur a sub-exponential loss.

Final Construction: “Encrypt the Next Signature.” We solve the above problem
by “implicitly” checking whether the given node is valid. This implicit checking
is facilitated by encrypting the signature on the next node by using the signature
on the current node. Intuitively, an evaluator can obtain the signature on the
next node if and only if he holds a valid signature on the current node.

Instead of propagating the keys Sx, Sx+1 in clear in the subtree parsing σ,
we “cut-short” the tree at level where x is parsed. Once x is parsed (and hence
we have the values Sx and Sx+1), we apply a length doubling injective pseudo
random generator PRG on the signature Sx to obtain two halves PRG0(Sx) and
PRG1(Sx). We encrypt Sx+1 under PRG1(Sx) and output the encryption along
with PRG0(Sx). The Next circuit takes σ,PRG0(Sx) and the encrypted version

3 Note that instead of Sy+1 it is enough to propagate Sy+1‖0κ−|y| . It is in fact crucial
for our reduction that we propagate Sy+1‖0κ−|y| instead of Sy+1. But we will use
Sy+1 for ease of notation and exposition.
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of Sx+1 and checks whether PRG0(σ) = PRG0(Sx)4 and if yes it decrypts using
PRG1(σ) to obtain Sx+1. Notice that now we don’t run into the same problem
while trying to increase the interval to include Sx+1. This is because we can
first change Sx to a random string by relying on pseudo randomness at punc-
tured point property of GGM PRF and then relying on semantic security of
secret key encryption we can change the encryption under PRG1(Sx) to some
junk value. Implementing these two steps is non-trivial and we rely on “hidden
trapdoor” technique of Ananth et al. [ABSV15] while generating the function
keys to achieve this.

Note that we still haven’t explained how the successor circuit is “punctured”
at a random point in the first place. To this end, we “artificially” change the
honest execution of the circuit to have a hardwired random value v and the circuit
checks if PRG(x) = v and if so outputs ⊥. The honest execution does not output
⊥ for any input x with overwhelming probability since PRG has sparse images.
We then change this random v to PRG(u) for a random u relying on the security
of the PRG. A consequence of this fix is that even our honest evaluation of the
successor circuit looks somewhat “artificial”. This seems necessary to circumvent
the sub-exponential loss incurred while constructing obfuscation from functional
encryption.

Putting it All Together. To show hardness of PPAD from FE by incurring polyno-
mial loss in the security reduction we need to combine the above ideas with that
of “multiple-chains of varying length”. As explained in the chain-cutting tech-
nique we generate κ GGM keys S1, · · · , Sκ. We propagate the “prefix-punctured”
keys corresponding to every index i ∈ [κ] along every node in the binary tree.
A careful reader might have noticed that though it is necessary to check the
validity of the input signatures for every prefix, it is actually sufficient to gen-
erate signatures on the next node on the path only for those bit positions that
change when incrementing by 1. This is because for the rest of the bit positions
that share the same prefix with the input node and we can just output those
input signatures along with those newly computed ones, provided the input is
valid. This observation is in fact crucial to prove the security of our construc-
tion. We need to ensure that the Next circuit must have the ability to check the
validity of every signature but it has access only to those prefix punctured keys
corresponding to the bit positions that change when incrementing by 1.

We satisfy these two “conflicting” properties by decoupling the process of
checking the input signatures and the process of generating the next node on
the path. In order to check the input signatures we propagate PRG0(Si,x) for
every i ∈ [κ] and to generate the signatures on the next node on the path we
propagate an encrypted version of Sj,x+1 under PRG1(Sj,x) only for those bits j
that change when incrementing x.

4 We need this explicit check for the verification circuit to decide if a particular node
is an ith node or not. Also, we need a stronger property on pseudo random generator
called as left half injectivity for this check to be correct always.
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1.3 Subsequent Work

Garg et al. in [GPSZ16] extended our techniques to base Trapdoor Permuta-
tions on polynomial hardness of compact Functional Encryption. In the same
work, they also showed how to base Non-Interactive Key Exchange (NIKE)
for unbounded parties from polynomially hard compact Functional Encryption.
Recently, Garg and Srinivasan [GS16] extended our techniques to construct adap-
tively secure Functional Encryption against unbounded collusions from single-
key, selectively secure Functional encryption with weakly compact ciphertexts.

Rosen et al. [RSS16] investigated the possibility of basing average-case PPAD
hardness on standard cryptographic assumptions. They showed that average-case
PPAD hardness does not imply one-way functions in a black-box manner and
average-case SVL hardness cannot be based on injective trapdoor functions in a
black-box manner. An implication of this work is that it might be possible to
base PPAD hardness on one-way functions but such a result has to use techniques
that significantly deviate from Bitansky et al. [BPR15] and our work.

Hubác̆ek and Yogev [HY16] extended our result to base hardness of a com-
plexity class CLS on compact Functional Encryption. CLS is a sub-class of
PPAD and captures Continuous Local Search problems. They showed a reduction
between the SVL problem and a problem called as end-of-metered-line which
is contained in CLS. This allowed them to base hardness of CLS on polynomially
hard compact Functional Encryption.

2 PPAD

A large part of this section is taken verbatim from [BPR15]. A search problem
is given by a tuple (I,R). I defines the set of instances and R is an NP relation.
Given x ∈ I, the goal is to find a witness w (if it exists) such that R(x,w) =
1. We say that a search problem (I1, R1) polynomial time reduces to another
search problem (I2, R2) if there exists polynomial time algorithms P,Q such
that for every x1 ∈ I1, P (x1) ∈ I2 and given w2 such that (P (x1), w2) ∈ R2,
R1(x1, Q(w2)) = 1.

A search problem is said to be total if for any x ∈ {0, 1}∗, there exists a
polynomial time procedure to test whether x ∈ I and for all x ∈ I, the set
of witnesses w such that R(x,w) = 1 is non-empty. The class of total search
problems is denoted by TFNP. PPAD [Pap94] is a subset of TFNP and is defined
by its complete problem called as end-of-line (abbreviated as EOL).

Definition 1 [Pap94]. EOL = {IEOL, REOL} where IEOL = {(xs,Succ,Pred) :
Succ(xs) �= xs = Pred(xs)} and REOL((xs,Succ,Pred), w) = 1 iff(
Pred(Succ(w)) �= w

) ∨ (
Succ(Pred(w)) �= w ∧ w �= xs).

Definition 2 [Pap94]. The complexity class PPAD is the set of all search prob-
lems (I,R) such that (I,R) ∈ TFNP and (I,R) polynomial time reduces to EOL.

A related problem to EOL is the sink-of-verifiable-line (abbreviated as
SVL) which is defined as follows:
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Definition 3 [AKV04,BPR15]. SVL = {ISVL, RSVL} where ISVL = {(xs,Succ,
Ver, T )} and RSVL((xs,Succ,Ver, T ), w) = 1 iff

(
Ver(w, T ) = 1

)
.

SVL instance defines a single directed path with the source being xs. Succ is
the successor circuit and there is a directed edge between u and v if and only if
Succ(u) = v. Ver is the verification circuit and is used to test whether a given
node is the ith node from xs. That is, Ver(x, i) = 1 iff x = Succi−1(xs). The goal
is to find the T th node in the path. It is easy to observe that for every valid SVL
instance the set of witness w is not empty. But SVL may not be total since there
is no known efficient procedure to test whether the instance is valid or not. But
it was shown in [AKV04,BPR15] that SVL polynomial time reduces to EOL.

Lemma 1 [AKV04,BPR15]. SVL polynomial time reduces to EOL.

3 Preliminaries

κ denotes the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for all polynomials poly(·), μ(κ) < 1
poly(κ) for large enough κ. For

a probabilistic algorithm A, we denote by A(x; r) the output of A on input x
with the content of the random tape being r. We will omit r when it is implicit
from the context. We denote y ← A(x) as the process of sampling y from the
output distribution of A(x) with a uniform random tape. For a finite set S,

we denote x
$← S as the process of sampling x uniformly from the set S. We

model non-uniform adversaries A = {Aκ} as circuits such that for all κ, Aκ is
of size p(κ) where p(·) is a polynomial. We will drop the subscript κ from the
adversary’s description when it is clear from the context. We will also assume
that all algorithms are given the unary representation of security parameter 1κ

as input and will not mention this explicitly when it is clear from the context. We
will use PPT to denote Probabilistic Polynomial Time algorithm. We denote [κ]
to be the set {1, · · · , k}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial.

A binary string x ∈ {0, 1}κ is represented as x1 · · · xκ. x1 is the most sig-
nificant (or the highest order bit) and xκ is the least significant (or the lowest
order bit). The i-bit prefix x1 · · · xi of the binary string x is denoted by x[i]. We
use x‖y to denote concatenation of binary strings x and y. We say that a binary
string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such that
x = y‖z.

Injective Pseudo Random Generator. We give the definition of an injective
Pseudo Random Generator PRG.

Definition 4. An injective pseudo random generator PRG is a deterministic
polynomial time algorithm with the following properties:

– Expansion: There exists a polynomial �(·) (called as the expansion factor)
such that for all κ and x ∈ {0, 1}κ, |PRG(x)| = �(κ).
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– Pseudo randomness: For all κ and for all poly sized adversaries A,

|Pr[A(PRG(Uκ)) = 1] − Pr[A(U�(κ)) = 1]| ≤ negl(κ)

where Ui denotes the uniform distribution on {0, 1}i.
– Injectivity: For every κ and for all x, x′ ∈ {0, 1}κ such that x �= x′, PRG(x) �=

PRG(x′).

We in fact need an additional property from an injective PRG. Let us consider
PRG where the expansion factor (or the output length) is given by 2 · �(·). Let
us denote the first �(·) bits of the output of the PRG by the function PRG0 and
the next �(·) bits of the output of the PRG by PRG1.

Definition 5. A pseudo random generator PRG is said to be left half injective
if for every κ and for all x, x′ ∈ {0, 1}κ such that x �= x′. PRG0(x) �= PRG0(x′).

Note that left half injective PRG is also an injective PRG. We note that
the standard construction of pseudo random generator for arbitrary polynomial
stretch from one-way permutations is left half injective. For completeness, we
state the construction:

Lemma 2. Assuming the existence of one-way permutations, there exists a
pseudo random generator that is left half injective.

Proof. Let f : {0, 1}κ → {0, 1}κ be a one-way permutation with hardcore
predicate B : {0, 1}κ → {0, 1} [GL89]. Let G be an algorithm defined as fol-
lows: On input x ∈ {0, 1}κ, G(x) = fn(x)‖B(x)‖B(f(x)) · · · B(fn−1(x)) where
n = 2�(κ) − κ. Clearly, |G(x)| = 2�(κ). The pseudo randomness property of
G(·) follows from the security of hardcore bit. The left half injectivity property
follows from the observation that fn is a permutation.

Puncturable Pseudo Random Function. We recall the notion of puncturable
pseudo random function from [SW14]. The construction of pseudo random func-
tion given in [GGM86] satisfies the following definition [BW13,KPTZ13,BGI14].

Definition 6. A puncturable pseudo random function PRF is a tuple of PPT
algorithms (KeyGenPRF ,PRF,Punc) with the following properties:

– Efficiently Computable: For all κ and for all S ← KeyGenPRF (1κ), PRFS :
{0, 1}poly(κ) → {0, 1}κ is polynomial time computable.

– Functionality is preserved under puncturing: For all κ, for all y ∈
{0, 1}κ and ∀x �= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF (1κ) and S{y} ← Punc(S, y).
– Pseudo randomness at punctured points: For all κ, for all y ∈ {0, 1}κ,

and for all poly sized adversaries A
|Pr[A(PRFS(y), S{y}) = 1] − Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ), S{y} ← Punc(S, y) and Uκ denotes the uniform
distribution over {0, 1}κ.
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Indistinguishability Obfuscator. We now define Indistinguishability obfuscator
from [BGI+12,GGH+13b].

Definition 7. A PPT algorithm iO is an indistinguishability obfuscator for a
family of circuits {Cκ}κ that satisfies the following properties:

– Correctness: For all κ and for all C ∈ Cκ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.
– Security: For all C0, C1 ∈ Cκ such that for all x, C0(x) = C1(x) and for all

poly sized adversaries A,

|Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Functional Encryption. We recall the notion of functional encryption with selec-
tive indistinguishability based security [BSW11,O’N10].

A functional encryption FE is a tuple of PPT algorithms (FE.Setup,FE.Enc,
FE.KeyGen,FE.Dec) with the message space {0, 1}∗ having the following syntax:

– FE.Setup(1κ) : Takes as input the unary encoding of the security parameter κ
and outputs a public key PK and a master secret key MSK.

– FE.EncPK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryp-
tion C of m under the public key PK.

– FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a
function f (given as a circuit) as input and outputs the function key FSKf .

– FE.Dec(FSKf , C): Takes as input the function key FSKf and the ciphertext C
and outputs a string y.

Definition 8 (Correctness). The functional encryption scheme FE is correct
if for all κ and for all messages m ∈ {0, 1}∗,

Pr

⎡

⎢
⎣y = f(m)

∣
∣
∣
∣
∣
∣
∣

(PK,MSK) ← FE.Setup(1κ)
C ← FE.EncPK(m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , C)

⎤

⎥
⎦ = 1 (1)

Definition 9 (Selective Security). For all κ and for all poly sized adver-
saries A, ∣

∣Pr[Expt1κ,0,A = 1] − Pr[Expt1κ,1,A = 1]
∣
∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0,
m1 such that |m0| = |m1| to the challenger.

– The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the chal-
lenge ciphertext C ← FE.EncPK(mb). It then sends (PK,C) to A.
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– Function Queries: A submits function queries f to the challenger. The chal-
lenger responds with FSKf ← FE.KeyGen(MSK, f).

– If A makes a query f to functional key generation oracle such that f(m0) �=
f(m1), output of the experiment is ⊥. Otherwise, the output is b′ which is the
output of A.

Remark 1. We say that the functional encryption scheme FE is single-key,
selectively secure if the adversary A in Expt1κ,b,A is allowed to query the
functional key generation oracle FE.KeyGen(MSK, ·) on a single function f .

Definition 10. (Compactness, [AJS15,BV15a,AJ15]). The functional
encryption scheme FE is said to be compact if for all κ ∈ N and for all
m ∈ {0, 1}∗ the running time of the encryption algorithm FE.Enc is poly(κ, |m|).

Prefix Puncturable Pseudo Random Functions. We now define the notion of
prefix puncturable pseudo random function PPRF which is satisfied by the con-
struction of the pseudo random function in [GGM86].

Definition 11. A prefix puncturable pseudo random function PPRF is a tuple
of PPT algorithms (KeyGenPPRF ,PrefixPunc) satisfying the following properties:

– Functionality is preserved under repeated puncturing: For all κ, for all
y ∈ ∪poly(κ)

k=0 {0, 1}k and for all x ∈ {0, 1}poly(κ) such that there exists a z ∈
{0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF (1κ).
– Pseudorandomness at punctured prefix: For all κ, for all x ∈

{0, 1}poly(κ), and for all poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1] − Pr[A(Uκ,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ) and Keys = {PrefixPunc(S, x[i−1]‖(1 −
xi))}i∈[poly(κ)].

4 Hardness from Indistinguishability Obfuscation

In this section, we prove that SVL is hard on average assuming polynomial hard-
ness of indistinguishability obfuscation, injective PRGs and puncturable pseudo
random functions. Coupled with the fact that SVL reduces to EOL (Lemma 1)
we have the following theorem.

Theorem 3. Assume the existence of one-way permutations and indistin-
guishability obfuscation against polynomial time adversaries then we have that
EOL problem is hard for polynomial time algorithms.
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4.1 Hard on Average SVL Instances

In this section, we describe an efficient sampler that provides hard on average
instances (xs,Succ,Ver, 1κ) of SVL. Here xs is the source node and Succ is the
successor circuit. We define a directed edge between u and v if and only if
Succ(u) = v. Ver is the verification circuit and is used to test whether a given
node is the kth node from xs. That is, Ver(x, k) = 1 iff x = Succk−1(xs). For the
generated instances, we argue that it is hard to find the 1κ node in the path.

The formal description of hard on average SVL instance sampler is provided
in Fig. 3. Internally this sampler generates an obfuscation of the Next circuit pro-
vided in Fig. 2. Next we describe the SVL instances which we consider informally.

The instance we generate defines a line graph. The nodes in the graph are of
the form: (x, σ1, · · · , σκ) where x ∈ {0, 1}κ. The nodes satisfy the following rela-
tion: for all i ∈ [κ], PRFSi

(x[i]) = σi and in that case we say that (x, σ1, · · · , σκ)
is valid. The node (x, σ1, · · · , σκ) is connected to (x + 1, σ′

1, · · · , σ′
κ) through an

outgoing edge and is connected to (x − 1, σ′′
1 , · · · , σ′′

κ) through an incoming edge
where σ′

1, · · · , σ′
κ and σ′′

1 , · · · , σ′′
κ satisfy the above described PRF relationship.

The source node is given by (0κ,PRFS1(0), · · · ,PRFSκ
(0κ)).

At a very high level successor circuit of our SVL instances provides a method
for moving forward from one node to the next. The successor circuit in our
instances corresponds to an obfuscation of the Next circuit. This circuit on input
a node of the form (x, σ1, · · · , σκ) checks for the validity of the input. If it is
valid, it outputs the next node (x + 1, σ′

1 · · · σ′
κ) where σ′

i = PRFSi
((x + 1)[i]) in

the path. On an invalid input, it outputs ⊥.

Input: (x, σ1, · · · , σκ)
Hardcoded Parameters: S1, · · · , Sκ

1. For any i ∈ [κ], if σi = PRFSi(x[i]) then output ⊥.
2. If x = 1κ, then output SOLVED.
3. Else output (x + 1, σ1, · · · , σκ), where for all i ∈ [κ] compute σi =

PRFSj ((x + 1)[i]).

Padding: This circuit is padded so that total size of the circuit is p(κ), for some
polynomial p(·) specified later.

Fig. 2. NextS1,··· ,Sκ

For the hard SVL instances we additionally need to provide a verification
circuit. The verification circuit just uses the successor circuit in a very natural
manner. The verification circuit on input (x, σ1, · · · , σκ, j) outputs 1 if and only
if x = j − 1 and NextS1,··· ,Sκ

(x, σ1, · · · , σκ) �= ⊥.
Due to space constraints we defer the proof of hardness to full version of this

paper [GPS15].
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– Sampled Ingredients: Sample {Si}i∈[κ] ← KeyGenPRF(1κ). For all i ∈ [κ],
Si is a seed for a PRF mapping i bits to κ bits. That is, PRFSi : {0, 1}i →
{0, 1}κ.

– Source Node: The source node xs = (0κ,PRFS1(0), · · · ,PRFSκ(0κ)).
– Successor Circuit: The successor circuit is given by iO(NextS1,··· ,Sκ) where

the circuit NextS1,··· ,Sκ is described in Figure 2.
– Verification Circuit: The verification circuit, given by Ver, on input

((x, σ1 · · · σκ), j) checks if x = j − 1 and iO(NextS1,··· ,Sκ)((x, σ1 · · · σκ)) = ⊥.

Fig. 3. Sampler for hard on average instances of SVL based on hardness of iO

5 Hardness Result Based on Functional Encryption

In this section we show that SVL is hard on average assuming polynomially hard
functional encryption and one-way permutations. Coupled with the fact that
SVL reduces to EOL (Lemma 1) we have the following theorem.

Theorem 4. Assume the existence of one-way permutations and functional
encryption against polynomial time adversaries then we have that EOL problem
is hard for polynomial time algorithms.

Recall that hard SVL instance based on iO (Sect. 4), required κ puncturable
PRF keys. Basing hardness on polynomially hard functional encryption requires
us to still maintain κ keys. However, now we need to use prefix-puncturing
(see Definition 11) which is more delicate and needs to be handled carefully.
Consequently the construction ends up being complicated. However, the spe-
cial mechanism of prefix-puncturing that we use is crucial to understanding our
construction. So towards simplifying exposition, we start by abstracting out the
details of this puncturing and present a special tree structure and some proper-
ties about it next.

5.1 Special Tree Key Structure

Let x[i] denote the first i (higher order) bits of x i.e. x1 · · · xi. Now note that
any y ∈ {0, 1}i can be identified with a node in a binary tree for which nodes at
depth i correspond to strings {0, 1}i. Note that the root of the tree corresponds
to the empty string φ. As previously mentioned our construction needs κ PPRF
keys, namely S1, . . . Sκ. The key Si works on inputs of length i. We use Si,x to
denote the key Si prefix punctured at a string x ∈ {0, 1}≤i.

Looking ahead, in our hard-on-average instances of SVL each x ∈ {0, 1}κ will
be attached with associated signature values σ1, . . . , σκ where for each i ∈ [κ]
we have that σi = PrefixPunc(Si, x[i]). Furthermore in our construction given
x and the associated signature values, we will need to verify these values and
provide the associated signature values for x + 1, but this has to be done in
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a circuitous manner because of several security reasons. We do not delve into
the security arguments right away, but focus on describing the prefix-puncturing
that we need to perform.

We next describe the set Vi
x where x ∈ {0, 1}≤i, which contains suitable

prefix-puncturings of the key Si. Intuitively, we want this set to contain all
keys that will allow us to perform the task of checking the validity of the ith

associated signature on any input of the form x‖y where y ∈ {0, 1}κ−|x| as well
as computing the ith associated signature for (x‖y) + 1. Furthermore, it should
suffice to generate Vi

x‖y for all y. For any node x ∈ {0, 1}≤i, this very naturally
translates to the keys Si,x and Si,x+1. A careful reader might have noticed that
instead of Si,x+1, it in fact suffices to just have Si,(x+1)‖0i−|x| . As it turns out
we must only include Si,(x+1)‖0i−|x| . Including Si,x+1 prevents the Derivability
Lemma (Lemma 4) from going through.

Recall that the key Si corresponds to a PPRF key for inputs of length i.
Therefore, for x‖y such that |x| = i, the key Si can be prefix-punctured only
for the prefix x = (x‖y)[i]. This raises the following question. Should we include
Si,x and Si,x+1 in all Vi

x‖y? As we will see later, in our construction, we carefully
decouple the checking of associated signatures from the generation of new asso-
ciated signatures. An important consequence, relevant here is that, even though
the checks need to be performed for all x‖y, a new ith associated signature needs
to be generated for only one choice of y, namely 1κ−|x| (the all 1 string of length
κ − |x|). This design choice (which is crucial for polynomial security loss) also
allows us to set Vi

x‖y for all other choices of y to be ∅. In terms of the binary tree
structure one can think of this as Vi

x getting passed only along the rightmost
path in the subtree rooted at x. At a very high level, this allows us to argue that
the key Si (proved formally in Lemma 4) can be punctured at a special point by
removing keys fron Vi

x for only a polynomial number of choices of x and i. This
is crucial for ensuring that our proof of security has only a polynomial number
of hybrids.

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

V2
0 = {S2,0, S2,10}

V2
01 = {S2,01, S2,10}

V2
010 = ∅

W2
0 = ∅

W2
01 = {PRG0(S2,01)}

W2
010 = {PRG0(S2,01)}

Fig. 4. Example of values contained in V 2
x for x ∈ {0, 1}≤3.
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Next note that dropping keys from V i
x‖y (such that |x| = i) hinders the

checking of associated signatures provided along with inputs x‖y where y �= 1κ−i.
We tackle this issue by introducing a vestigial set Wi

x‖y corresponding to each
Vi

x‖y. This vestigial set contains remnants of the keys that were dropped from
Vi

x. We craft these remnants to be such that they suffice for performing the
necessary checks. In particular, we set these remnants to be the left half of an
left half injective PRG evaluation on the dropped key.

More formally, Vi
x and Vx are defined as follows. In the following, for any

i ∈ [κ] we treat 1i + 1 as 1i, and φ + 1 as φ. Here 1i is a string of i 1s and φ is
the empty string.

Vx =
⋃

i∈[κ]

Vi
x Vi

x =

⎧
⎪⎨

⎪⎩

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i

∅ otherwise

Wx =
⋃

i∈[κ]

Wi
x Wi

x =

{
{PRG0(Si,x[i])} if |x| ≥ i

∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Vφ =
⋃

i∈[κ]

Vi
φ Vi

φ = {Si}

Wφ =
⋃

i∈[κ]

Wi
φ Wi

φ = ∅

Illustration with an Example. Finally we explain what sets V2
x,W2

x contain when
x is a prefix of 010 in Fig. 4. At the root node we have V2

φ = {S2} and Wφ = ∅.
The set V2

0 contains S2,0 and S2,10 and the set W2
0 is still empty. Next note that

V2
01 contains S2,01, S2,10 and W2

01 contains PRG0(S2,01). Finally set V2
010 = ∅ and

W2
010 continues to contain PRG0(S2,01).

Properties of the Special Tree Key Structure. We now prove several properties
about the special tree key structure. Intuitively speaking the crux of the lemmas
is the claim V-set for can a node can be used to derive its children. Furthermore
each element in V-set for any node can only be derived from the V-set of nodes
in exactly two different paths.

Lemma 3 (Computability Lemma). There exists an explicit efficient pro-
cedure that given Vx,Wx computes Vx‖0,Wx‖0 and Vx‖1,Wx‖1.

Proof. We start by noting that it suffices to show that for each i, given Vi
x,Wi

x

one can compute Vi
x‖0,W

i
x‖0 and Vi

x‖1,W
i
x‖1. We argue this next. Observe that

two cases arise either |x| < i or |x| ≥ i. We deal with the two cases:
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– |x| < i: In this case Vi
x is {Si,x, Si,(x+1)‖0i−|x|} and these values can be

used to compute Si,x‖0, Si,x‖1, Si,(x‖0)+1 = Si,x‖1 and Si,((x‖1)+1)‖0i−|x|−1 =
Si,(x+1)‖0‖0i−|x|−1 = Si,(x+1)‖0i−|x| . Observe by case by case inspection that
these values are sufficient for computing Vi

x‖0,W
i
x‖0 and Vi

x‖1,W
i
x‖1 in all

cases.
– |x| ≥ i: Note that according to the constraints placed on x by the definition,

if Vi
x = ∅ then both Vi

x‖0 and Vi
x‖1 must be ∅ as well. On the other hand if

V i
x �= ∅ then Vi

x‖0 is still ∅ while Vi
x‖1 = Vi

x. Additionally, W i
x‖0 = W i

x‖1 = W i
x.

This concludes the proof.

Lemma 4 (Derivability Lemma). For every i ∈ [κ], x ∈ {0, 1}i and x �= 1i

we have that, Si,x+1 can be derived from keys in Vi
y if and only if y is a prefix

of x‖1κ−i or (x + 1)‖1κ−i. Additionally, Si,0i can be derived from keys in Vy if
and only if y is a prefix of 0i‖1κ−i (Fig. 5).

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 5. Black nodes represent the choices of x ∈ {0, 1}≤3 such that V 2
x can be used to

derive S2,10.

Proof. We start by noting that for any y ∈ {0, 1}>i ∩ {0, 1}≤κ, by definition of
V-sets we have that Vi

y = Vi
y[i]

or Vi
y = ∅. Hence it suffices to prove the above

lemma for y ∈ {0, 1}≤i.
We first prove that if y is a prefix of x or (x + 1) then we can derive Si,x+1

from V i
y . Two cases arise:

– Observe that if y is a prefix of x then we must have that either y is a prefix
of x + 1 or x + 1 = (y + 1)‖0i−|y|. Next note that by definition of V-sets we
have that Vi

y = {Si,y, Si,(y+1)‖0i−|y|}, and one of these values can be used to
compute Si,x+1.

– On the other hand if y is a prefix of x+1 then again by definition of V-sets we
have that Vi

y = {Si,y, Si,(y+1)‖0i−|y|}, and Si,y can be used to compute Si,x+1.
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Next we show that no other y ∈ {0, 1}≤i allows for such a derivation. Note
that by definition of V-sets we have that V i

y = {Si,y, Si,(y+1)‖0i−|y|}. We will
argue that neither Si,y nor Si,(y+1)‖0i−|y| can be used to derive Si,x+1.

– We are given that y is not a prefix of x + 1. This implies that Si,y cannot be
used to derive Si,x+1.

– Now we need to argue that Si,(y+1)‖0i−|y| cannot be used to compute Si,x+1.
For this, it suffices to argue that x+1 �= (y+1)‖0i−|y|. If x+1 = (y+1)‖0i−|y|

then y must be prefix of x. However, we are given that this is not the case.
This proves our claim.

The argument for the value Si,0i follows analogously. This concludes the proof.

5.2 Hard on Average SVL Instances

In this section, we describe our construction for hard on average instance of SVL.
In particular, we describe our sampler that samples hard on average instances
(xs,Succ,Ver, 1κ). Here xs is the source node and Succ is the successor circuit.
We define a directed edge between u and v if and only if Succ(u) = v. Ver is the
verification circuit and is used to test whether a given node is the kth node from
xs. That is, Ver(x, k) = 1 iff x = Succk−1(xs). For the generated instances, we
argue that it is hard to find the 1κ node in the path.

In our construction we use a selectively secure functional encryp-
tion scheme (FE.Setup,FE.KeyGen, FE.Enc,FE.Dec), a prefix-puncturable
PRF (Definition 11), a semantically secure symmetric key encryption
(SK.KeyGen,SK.Enc,SK.Dec) and injective PRGs having the left half injectiv-
ity property Definition 5. PRG0 and PRG1 denote the left and the right part of
the output of this PRG.

The formal description of hard on average SVL instance sampler is provided in
Fig. 6. Internally this sampler generates the successor circuit to include functional
encryption secret keys for circuits provided in Fig. 7. Next we informally describe
the SVL instances considered.

A sampled instance implicitly defines a line graph where each node in the
graph is of the form (x, σ1, · · · , σκ) where σi = PrefixPunc(Si, x[i]) for all i ∈ [κ].
We say a node is valid if the above condition holds. The node (x, σ1, · · · , σκ) is
connected to (x + 1, σ′

1, · · · , σ′
κ) by an outgoing edge and to (x − 1, σ′′

1 , · · · , σ′′
κ)

by an incoming edge. The successor circuit on input (x, σ1, · · · , σκ) checks for
the validity of the node and if the node is valid it outputs (x + 1, σ′

1, · · · , σ′
κ).

The verification circuit on input (x, σ1, · · · , σκ, j) outputs if and only if x = j−1
and (x, σ1, · · · , σκ) is valid.

We now explain how the successor circuit works. The successor circuit is
described by a sequence of κ + 1 secret keys FSK1, · · · ,FSKκ+1 for appropriate
functions. There keys are generated corresponding to independent instances of
functional encryption. Along with the keys the successor circuit also contains a
ciphertext cφ that encrypts the empty string, φ, under PK1 along with the key
values Vφ and Wφ. Intuitively, the function key FSKi corresponds to a function
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- Sampled Ingredients:
1. Sample {Si}i∈[κ] and Kφ from KeyGenPPRF (1κ). Here Si’s is a key that

works for i bit inputs, namely PPRFSi : {0, 1}i → {0, 1}κ for all i ∈ [κ].
Similarly, Kφ works on inputs of length rand(κ) where rand(·) would be
specified later. Initialize Vi

φ = Si, Vφ = i∈[κ] V
i
φ and Wφ = ∅.

2. Sample (PKi, MSKi) ← FE.Setup(1κ) for all 1 ≤ i ≤ κ + 1.
3. Sample sk ← SK.KeyGen(1κ) and let Π ← SK.Encsk(π) and Λ ←

SK.Encsk(λ) where π = 0 (κ) and λ = 0 (κ). Here (·) and (·) are ap-
propriate length functions specified later.

4. Sample v ← {0, 1}2κ.
- Functional encryption ciphertext and keys to simulate obfuscation:

1. For each i ∈ [κ] generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Π) and
FSKκ+1 ← FE.KeyGen(MSKκ+1, Gv,Λ), where Fi,PKi+1,Π and Gv,Λ are
circuits described in Figure 7.

2. Let cφ = FE.EncPK1(φ,Vφ,Wφ, 0κ, 0)
- Source node: The source node xs is given by (0κ, σ1, · · · , σκ) where σi =
PPRFSi(0

i) for all i ∈ [κ].
- Successor Circuit: The successor circuit Succ in our setting takes as in-

put x, σ1, . . . , σκ and outputs x + 1, σ1, . . . , σκ if the associated signatures
σ1, · · · , σκ are valid. It proceeds as follows:
1. For i ∈ [κ] compute cx[i−1] 0, cx[i−1] 1 := FE.Dec(FSKi, cx[i−1]).

2. Obtain dx = ((α1, . . . , ακ), (βj , . . . , βκ)) as output of FE.Dec(FSKκ+1, cx).
Here j = f(x) where f(x) is the smallest j such that x = x[j] 1κ−j .

3. Output ⊥ if PRG0(σi) = αi for any i ∈ [κ] or if dx = ⊥.
4. If x = 1κ, output SOLVED.
5. For each i ∈ [j − 1] set σi = σi.
6. For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and σi as SK.Decγj ,··· ,γκ(βi),

decrypting βi encrypted under γj , . . . γκ.
7. Output (x + 1, σ1, · · · , σκ).

- Verification Circuit: The verification circuit Ver on input x, σ1, . . . , σκ, j
outputs 1 if Succ on input x, σ1, . . . , σκ doesn’t output ⊥ and x = j − 1 and
0 otherwise.

Fig. 6. Hard on average instance for SVL based on hardness of FE.

Fi that takes as input a binary string x of length i and outputs an encryption
of x‖0 and x‖1 under PKi+1. Additionally these ciphertexts, in addition to x‖0
and x‖1, also contain key values Vx‖0,Wx‖0 and Vx‖1,Wx‖1 respectively. Recall
from Sect. 5.1 that the keys in these sets are used to test validity of signatures
provides as input and to generate the new ones.

The successor circuit on an input of the form (x, σ1, · · · , σκ) does the fol-
lowing. It first obtains an encryption of x along with key values Vx and Wx

under the public key PKκ+1. This is done as follows. Start with cφ and decrypt
it using key FSK1 to obtain encryptions of 0 and 1. Choose one of them based
on which one is a prefix of x and continue the process. Repeating this process



Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 601

Fi,PKi+1,Π

Hardcoded Values: i, PKi+1, Π .
Input: (x ∈ {0, 1}i−1, Vx,Wx, Kx, sk, mode)

1. If (mode = 0) then output FE.EncPKi+1(x 0,Vx 0,Wx 0, Kx 0, sk,mode; Kx 0)
and FE.EncPKi+1(x 1,Vx 1,Wx 1, Kx 1, sk,mode; Kx 1), where for b ∈ {0, 1},
Kx b = PrefixPunc(Kx, b 0) and Kx b = PrefixPunc(Kx, b 1) and
(Vx 0,Wx 0), (Vx 1,Wx 1) are computed using the efficient procedure
from the Computability Lemma (Lemma 3).

2. Else recover (x||0, cx 0) and (x 1, cx 1) from SK.Decsk(Π) and output cx 0

and cx 1.

Gv,Λ

Hardcoded Values: v, Λ
Input: x ∈ {0, 1}κ,Vx,Wx, Kx, sk,mode

1. If (PRG(x) = v) then output ⊥.
2. If mode = 0, (Below j = f(x) where f(x) is the largest j such that x =

x[j] 1κ−j .)
(a) For each i ∈ [κ], set αi = PRG0(σi) (obtained from Wi

x for i ≤ j and from
Vi

x for i > j).
(b) For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and βi =

SK.Encγj ,··· ,γκ (Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γκ. (Using ran-
domness obtained by expanding Kx sufficiently.)

(c) Output ((α1, . . . , ακ), (βj , . . . , βκ))
3. Else recover (x, dx) from SK.Decsk(Λ) and output dx.

Fig. 7. Circuits for which functional encryption secret keys are given out.

κ times results in the desired ciphertext. Next decrypt the obtained ciphertext
using FSKκ+1 and it provides some information essential for checking validity of
provided input signatures and additional information to generate the signatures
for the next node. More details are provided in Figs. 6 and 7.
Setting rand(·) We set rand(κ) = 2κ + r(κ) where r(κ) is the maximum number
of random bits used for generating encryptions of Si,x[i]+1 under γj , · · · , γκ for
every i ∈ [j, κ].

Due to space constraints, we defer the proof of hardness of the sampled SVL
instance to the full version of the paper [GPS15].
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