
Matthew Robshaw
Jonathan Katz (Eds.)

 123

LN
CS

 9
81

5

36th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 14–18, 2016
Proceedings, Part II

Advances in Cryptology –
CRYPTO 2016

Lecture Notes in Computer Science 9815

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Matthew Robshaw • Jonathan Katz (Eds.)

Advances in Cryptology –

CRYPTO 2016
36th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 14–18, 2016
Proceedings, Part II

123

Editors
Matthew Robshaw
Impinj, Inc.
Seattle, WA
USA

Jonathan Katz
University of Maryland
College Park, MD
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53007-8 ISBN 978-3-662-53008-5 (eBook)
DOI 10.1007/978-3-662-53008-5

Library of Congress Control Number: 2016945783

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The 36th International Cryptology Conference (Crypto 2016) was held at UCSB, Santa
Barbara, CA, USA, during August 14–18, 2016. The workshop was sponsored by the
International Association for Cryptologic Research.

Crypto continues to grow. This year the Program Committee evaluated a record 274
submissions out of which 70 were chosen for inclusion in the program. Each paper was
reviewed by at least three independent reviewers, with papers from Program Com-
mittee members receiving at least five reviews. Reviewers with potential conflicts of
interest for specific papers were excluded from all discussions about those papers, and
this policy was extended to the program chairs as well.

The 44 members of the Program Committee were aided in this complex and
time-consuming task by many external reviewers. We would like to thank them all for
their service, their expert opinions, and their spirited contributions to the review pro-
cess. It was a tremendously difficult task to choose the program for this conference, as
the quality of the submissions was very high. It was even harder to identify a single
best paper, but our congratulations go to Elette Boyle, Niv Gilboa, and Yuval Ishai
from IDC Herzliya, Ben Gurion University, and the Technion, respectively, whose
paper “Breaking the Circuit Size Barrier for Secure Computation Under DDH” was
awarded Best Paper. Our congratulations also go to Mark Zhandry of MIT and
Princeton University who won the award for the Best Student Paper “The Magic of
ELFs.”

The invited speakers at Crypto 2016 were Brian Sniffen, Chief Security Architect at
Akamai Technologies, Inc., and Paul Kocher, founder of Cryptography Research.
Brian’s presentation cast a fascinating light on the issues of real-world cryptographic
deployment while Paul’s presentation, a joint invitation from the program co-chairs of
both Crypto 2016 and CHES 2016, marked 20 years since his publication of the first
paper on side-channel attacks at Crypto 1996.

We are, of course, indebted to Brian LaMacchia, the general chair, as well as the
local Organizing Committee, who together proved ideal liaisons for establishing the
layout of the program and for supporting the speakers. Our job as program co-chairs
was made much easier by the excellent tools developed by Shai Halevi; both Shai and
Brian were always available at short notice to answer our queries. Finally, we would
like to thank all the authors who submitted their work to Crypto 2016. Without you the
conference would not exist.

August 2016 Matthew Robshaw
Jonathan Katz

Crypto 2016

The 36th IACR International Cryptology Conference

University of California, Santa Barbara, CA, USA
August 14–18, 2016

Sponsored by the International Association for Cryptologic Research

General Chair

Brian LaMacchia Microsoft

Program Chairs

Matthew Robshaw Impinj, USA
Jonathan Katz University of Maryland, USA

Program Committee

Alex Biryukov University of Luxembourg, Luxembourg
Anne Canteaut Inria, France
Dario Catalano Università di Catania, Italy
Nishanth Chandran Microsoft Research, India
Melissa Chase Microsoft Research, USA
Joan Daemen STMicroelectronics, Belgium and Radboud University,

The Netherlands
Martin Van Dijk University of Connecticut, USA
Itai Dinur Ben-Gurion University, Israel
Pierre-Alain Fouque Université Rennes 1, France
Steven Galbraith Auckland University, New Zealand
Sanjam Garg University of California, Berkeley, USA
S. Dov Gordon George Mason University, USA
Jens Groth University College London, UK
Sorina Ionica Université de Picardie, France
Tetsu Iwata Nagoya University, Japan
Aggelos Kiayias National and Kapodistrian University of Athens,

Greece
Gregor Leander Ruhr Universität Bochum, Germany
Shengli Liu Shanghai Jiao Tong University, China
Alexander May Ruhr Universität Bochum, Germany
Willi Meier FHNW, Switzerland
Payman Mohassel Visa Research, USA

Elke De Mulder Cryptographic Research, France
Steven Myers Indiana University, USA
Phong Nguyen Inria, France and CNRS/JFLI and University of Tokyo,

Japan
Kaisa Nyberg Aalto University, Finland
Kenny Paterson Royal Holloway University of London, UK
Thomas Peyrin Nanyang Technological University, Singapore
Benny Pinkas Bar-Ilan University, Israel
David Pointcheval École Normale Supérieure, France
Manoj Prabhakaran University of Illinois, USA
Bart Preneel KU Leuven, Belgium
Mariana Raykova Yale University, USA
Christian Rechberger TU-Graz, Austria and DTU, Denmark
Mike Rosulek Oregon State University, USA
Rei Safavi-Naini University of Calgary, Canada
Alessandra Scafuro Boston University and Northeastern University, USA
Patrick Schaumont Virginia Tech, USA
Dominique Schröder Saarland University, Germany
Jae Hong Seo Myongji University, Korea
Yannick Seurin ANSSI, France
Abhi Shelat University of Virginia, USA
Nigel Smart University of Bristol, UK
Ron Steinfeld Monash University, Australia
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan

Additional Reviewers

Michel Abdalla
Masayuki Abe
Arash Afshar
Shashank Agrawal
Shweta Agrawal
Ayo Akinyele
Martin Albrecht
Gergely Alpar
Jacob Alperin-Sheriff
Elena Andreeva
Daniel Apon
Gilad Asharov
Gilles Van Assche
Nuttapong Attrapadung
Saikrishna

Badrinarayanan
Josep Balasch

Foteini Baldimtsi
Paulo Barreto
Gilles Barthe
Lejla Batina
Christof Beierle
Mihir Bellare
Fabrice Benhamouda
Sanjay Bhattacherjee
Jean-Francois Biasse
Begul Bilgin
Gaetan Bisson
Nir Bitansky
Simon Blackburn
Olivier Blazy
Matthieu Bloch
Céline Blondeau
Andrej Bogdanov

Dan Boneh
Jonathan Bootle
Raphael Bost
Christina Boura
Florian Bourse
Cyril Bouvier
Elette Boyle
Zvika Brakerski
Lus Brandão
Anne Broadbent
Christina Brzuska
Christian Cachin
Ran Canetti
Angelo De Caro
Guilhem Castagnos
Andrea Cerulli
Pyrros Chaidos

VIII Crypto 2016

André Chailloux
Jie Chen
Céline Chevalier
Chongwon Cho
Seung Geol Choi
Ashish Choudhury
Sherman Chow
Kai-Min Chung
Michele Ciampi
Michael Clear
Ran Cohen
Geoffroy Couteau
Dana Dachman-Soled
Deepesh Data
Jean Paul Degabriele
David Derler
Daniel Dinu
Christoph Dobraunig
Yevgeniy Dodis
Nico Döttling
Natnatee Dokmai
Leo Ducas
Tuyet Duong
Keita Emura
Frederic Ezerman
Pooya Farshim
Sebastian Faust
Dario Fiore
Marc Fischlin
Joe Fitzsimons
Nils Fleischhacker
Emmanuel Fouotsa
Georg Fuchsbauer
Eiichiro Fujisaki
Martin Gagne
François Le Gall
Chaya Ganesh
Juan Garay
Christina Garman
Romain Gay
Essam Ghadafi
Benedikt Gierlichs
Niv Gilboa
Vipul Goyal
Frédéric Grosshans
Aurore Guillevic

Divya Gupta
Felix Günther
Shai Halevi
Mike Hamburg
Shuai Han
Helena Handschuh
Christian Hanser
Carmit Hazay
Ethan Heilman
Ryan Henry
Gottfried Herold
Felix Heuer
Viet Tung Hoang
Dennis Hofheinz
Ziyuan Hu
Yan Huang
Michael Hutter
Malika Izabachene
Håkon Jacobsen
Mahavir Jhawar
Dingding Jia
Keting Jia
Thomas Johansson
Aaron Johnson
Kimmo Järvinen
Yael Tauman Kalai
Bhavana Kanukurthi
Petteri Kaski
Marcel Keller
Nathan Keller
Carmen Kempka
Iordanis Kerenidis
Dmitry Khovratovich
Dakshita Khurana
Eike Kiltz
Jinsu Kim
Taechan Kim
Paul Kirchner
Elena Kirshanova
Susumu Kiyoshima
Simon Knellwolf
Stefan Koelbl
Vlad Kolesnikov
Takeshi Koshiba
Luke Kowalczyk
Thorsten Kranz

Daniel Kraschewski
Anna Krasnova
Hugo Krawczyk
Fernando Krell
Stephan Krenn
Ranjit Kumaresan
Alptekin Kupcu
Fabien Laguillaumie
Virginie Lallemand
Enrique Larraia
Changmin Lee
Hyung Tae Lee
Kwangsu Lee
Nikos Leonardos
Tancrède Lepoint
Anthony Leverrier
Benoit Libert
Fuchun Lin
Rachel Lin
Yehuda Lindell
Feng-Hao Liu
Yi-Kai Liu
Patrick Longa
Steve Lu
Stefan Lucks
Atul Luykx
Anna Lysyanskaya
Lin Lyu
Vadim Lyubashevsky
Mohammad Mahmoody
Hemanta Maji
Giulio Malavolta
Tal Malkin
Alex Malozemoff
Mark Marson
Daniel Masny
Takahiro Matsuda
Florian Mendel
Bart Mennink
Thyla van der Merwe
Peihan Miao
Christof Michel
Ian Miers
Andrew Miller
Brice Minaud
Kazuhiko Minematsu

Crypto 2016 IX

Ilya Mironov
Ameer Mohammad
Amir Moradi
Tal Moran
Nicky Mouha
Pratyay Mukherjee
Jörn Müller-Quade
Valérie Nachef
Michael Naehrig
Maria Naya-Plasencia
Soheil Nemati
Khoa Nguyen
Ivica Nikolic
Ventzi Nikov
Ryo Nishimaki
Anca Nitulescu
Adam O’Neill
Miyako Ohkubo
Go Ohtake
Tatsuaki Okamoto
Ozgur Oksuz
Cristina Onete
Claudio Orlandi
Elisabeth Oswald
Léo Paul Perrin
Jiaxin Pan
Giorgos Panagiotakos
Omkant Pandey
Kostas

Pappagiannopoulos
Anat Paskin-Cherniavsky
Rafael Pass
Valerio Pastro
Arpita Patra
Souradyuti Paul
Christopher Peikert
Rene Peralta
Trevor Perrin
Giuseppe Persiano
Christophe Petit
Rafael Del Pino
Oxana Poburinnaya
Antigoni Polychroniadou
Orazio Puglisi
Baodong Qin
Max Rabkin

Carla Rafols
Srinivasan Raghuraman
Vanishree Rao
Manuel Reinert
Oscar Reparaz
Silas Richelson
Thomas Ristenpart
Damien Robert
Alon Rosen
Adeline Roux-Langlois
Arnab Roy
Tim Ruffing
Hansol Ryu
Sondre Rønjom
Akshayaram Srinivasan
Amin Sakzad
Katerina Samari
Ruediger Schack
Christian Schaffner
John Schanck
Thomas Schneider
Peter Scholl
Peter Schwabe
Sven Schäge
Adam Sealfon
Setareh Sharifian
Tom Shrimpton
Sandeep Shukla
Siang Meng Sim
Luisa Siniscalchi
Daniel Slamanig
Yongsoo Song
Kannan Srinathan
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé
John Steinberger
Marc Stevens
Valentin Suder
Willy Susilo
Björn Tackmann
Katsuyuki Takashima
Qiang Tang
Stefano Tessaro
Aishwarya

Thiruvengadam

Jean-Pierre Tillich
Yosuke Todo
Yiannis Tselekounis
Michael Tunstall
Himanshu Tyagi
Aleksei Udovenko
Jon Ullman
Dominique Unruh
Prashant Vasudevan
Vesselin Velichkov
Muthu

Venkitasubramaniam
Frederik Vercauteren
Damien Vergnaud
Jorge Villar
Dhinakaran

Vinayagamurthy
Ivan Visconti
Michael Walter
Pengwei Wang
Qingju Wang
Xiao Wang
Hoeteck Wee
Mor Weiss
Yunhua Wen
Carolyn Whitnall
Daniel Wichs
Xiaodi Wu
Keita Xagawa
Sophia Yakoubov
Shota Yamada
Kan Yasuda
Arkady Yerukhimovich
Ouyang Yingkai
Thomas Zacharias
Mark Zhandry
Bingsheng Zhang
Liang Feng Zhang
Xiao Zhang
Yupeng Zhang
Hong-Sheng Zhou
Vassilis Zikas
Dionysis Zindros

X Crypto 2016

Contents – Part II

Asymmetric Cryptography

Adversary-Dependent Lossy Trapdoor Function from Hardness
of Factoring Semi-smooth RSA Subgroup Moduli . 3

Takashi Yamakawa, Shota Yamada, Goichiro Hanaoka,
and Noboru Kunihiro

Optimal Security Proofs for Signatures from Identification Schemes 33
Eike Kiltz, Daniel Masny, and Jiaxin Pan

FHE Circuit Privacy Almost for Free. 62
Florian Bourse, Rafaël Del Pino, Michele Minelli, and Hoeteck Wee

Symmetric Cryptography

Cryptanalysis of a Theorem: Decomposing the Only Known Solution
to the Big APN Problem . 93

Léo Perrin, Aleksei Udovenko, and Alex Biryukov

The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS . 123

Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander,
Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich,
and Siang Meng Sim

Cryptanalytic Tools

Automatic Search of Meet-in-the-Middle and Impossible
Differential Attacks . 157

Patrick Derbez and Pierre-Alain Fouque

Memory-Efficient Algorithms for Finding Needles in Haystacks 185
Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir

Breaking Symmetric Cryptosystems Using Quantum Period Finding 207
Marc Kaplan, Gaëtan Leurent, Anthony Leverrier,
and María Naya-Plasencia

Hardware-Oriented Cryptography

Efficiently Computing Data-Independent Memory-Hard Functions. 241
Joël Alwen and Jeremiah Blocki

http://dx.doi.org/10.1007/978-3-662-53008-5_1
http://dx.doi.org/10.1007/978-3-662-53008-5_1
http://dx.doi.org/10.1007/978-3-662-53008-5_2
http://dx.doi.org/10.1007/978-3-662-53008-5_3
http://dx.doi.org/10.1007/978-3-662-53008-5_4
http://dx.doi.org/10.1007/978-3-662-53008-5_4
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-662-53008-5_6
http://dx.doi.org/10.1007/978-3-662-53008-5_6
http://dx.doi.org/10.1007/978-3-662-53008-5_7
http://dx.doi.org/10.1007/978-3-662-53008-5_8
http://dx.doi.org/10.1007/978-3-662-53008-5_9

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems . . . 272
Stefan Dziembowski, Sebastian Faust, Gottfried Herold,
Anthony Journault, Daniel Masny, and François-Xavier Standaert

ParTI – Towards Combined Hardware Countermeasures Against
Side-Channel and Fault-Injection Attacks . 302

Tobias Schneider, Amir Moradi, and Tim Güneysu

Secure Computation and Protocols I

Network-Hiding Communication and Applications to Multi-party Protocols . . . 335
Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas

Network Oblivious Transfer . 366
Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon

On the Power of Secure Two-Party Computation . 397
Carmit Hazay and Muthuramakrishnan Venkitasubramaniam

Secure Protocol Transformations . 430
Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai,
and Ching-Hua Yu

On the Communication Required for Unconditionally Secure Multiplication . . . 459
Ivan Damgård, Jesper Buus Nielsen, Antigoni Polychroniadou,
and Michael Raskin

Obfuscation

Universal Constructions and Robust Combiners for Indistinguishability
Obfuscation and Witness Encryption . 491

Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai,
and Eylon Yogev

Obfuscation Combiners . 521
Marc Fischlin, Amir Herzberg, Hod Bin-Noon, and Haya Shulman

On Statistically Secure Obfuscation with Approximate Correctness 551
Zvika Brakerski, Christina Brzuska, and Nils Fleischhacker

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium. 579
Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan

Asymmetric Cryptography and Cryptanalysis II

Cryptanalysis of GGH15 Multilinear Maps. 607
Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint,
and Mehdi Tibouchi

XII Contents – Part II

http://dx.doi.org/10.1007/978-3-662-53008-5_10
http://dx.doi.org/10.1007/978-3-662-53008-5_11
http://dx.doi.org/10.1007/978-3-662-53008-5_11
http://dx.doi.org/10.1007/978-3-662-53008-5_12
http://dx.doi.org/10.1007/978-3-662-53008-5_13
http://dx.doi.org/10.1007/978-3-662-53008-5_14
http://dx.doi.org/10.1007/978-3-662-53008-5_15
http://dx.doi.org/10.1007/978-3-662-53008-5_16
http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://dx.doi.org/10.1007/978-3-662-53008-5_18
http://dx.doi.org/10.1007/978-3-662-53008-5_19
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-662-53008-5_21

Annihilation Attacks for Multilinear Maps: Cryptanalysis
of Indistinguishability Obfuscation over GGH13 . 629

Eric Miles, Amit Sahai, and Mark Zhandry

Three’s Compromised Too: Circular Insecurity for Any Cycle Length
from (Ring-)LWE . 659

Navid Alamati and Chris Peikert

Circular Security Separations for Arbitrary Length Cycles from LWE 681
Venkata Koppula and Brent Waters

Author Index . 701

Contents – Part II XIII

http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-662-53008-5_23
http://dx.doi.org/10.1007/978-3-662-53008-5_23
http://dx.doi.org/10.1007/978-3-662-53008-5_24

Asymmetric Cryptography

Adversary-Dependent Lossy Trapdoor Function
from Hardness of Factoring Semi-smooth RSA

Subgroup Moduli

Takashi Yamakawa1,2(B), Shota Yamada2, Goichiro Hanaoka2,
and Noboru Kunihiro1

1 The University of Tokyo, Chiba, Japan
yamakawa@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{yamada-shota,hanaoka-goichiro}@aist.go.jp

Abstract. Lossy trapdoor functions (LTDFs), proposed by Peikert and
Waters (STOC’08), are known to have a number of applications in cryp-
tography. They have been constructed based on various assumptions,
which include the quadratic residuosity (QR) and decisional compos-
ite residuosity (DCR) assumptions, which are factoring-based decision
assumptions. However, there is no known construction of an LTDF based
on the factoring assumption or other factoring-related search assump-
tions. In this paper, we first define a notion of adversary-dependent lossy
trapdoor functions (ad-LTDFs) that is a weaker variant of LTDFs. Then
we construct an ad-LTDF based on the hardness of factorizing RSA mod-
uli of a special form called semi-smooth RSA subgroup (SS) moduli pro-
posed by Groth (TCC’05). Moreover, we show that ad-LTDFs can replace
LTDFs in many applications. Especially, we obtain the first factoring-
based deterministic encryption scheme that satisfies the security notion
defined by Boldyreva et al. (CRYPTO’08) without relying on a deci-
sion assumption. Besides direct applications of ad-LTDFs, by a similar
technique, we construct a chosen ciphertext secure public key encryp-
tion scheme whose ciphertext overhead is the shortest among existing
schemes based on the factoring assumption w.r.t. SS moduli.

1 Introduction

1.1 Background

In modern cryptography, constructing provably secure cryptographic primitives
is an important research topic. In this line of researches, Peikert and Waters [27]
proposed lossy trapdoor functions (LTDFs) and constructed a number of cryp-
tographic primitives such as a collision resistant hash function, a chosen plain-
text (CPA) and chosen ciphertext (CCA) secure public key encryption (PKE)
schemes and an oblivious transfer scheme based on LTDFs. Following the work,

The first author is supported by a JSPS Fellowship for Young Scientists.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 3–32, 2016.
DOI: 10.1007/978-3-662-53008-5 1

4 T. Yamakawa et al.

it is also shown that LTDFs can be used for constructing a deterministic encryp-
tion (DE) scheme [5] and a selective opening attack (SOA) secure PKE scheme
[3]. As seen above, LTDFs have many applications, and therefore it is important
to research concrete constructions of LTDFs.

As concrete constructions of LTDFs, Peikert and Waters [27] constructed
schemes based on the decisional Diffie-Hellman (DDH) and learning with errors
(LWE) assumptions. After that, many constructions of LTDFs have been pro-
posed thus far. Among them, LTDFs related to the factoring are based on the
quadratic residuosity (QR) [11], decisional composite residuosity (DCR) [11], Φ-
hiding [20], or general class of subgroup decision assumptions [36], all of which are
decision assumptions. On the other hand, there is no known construction of an
LTDF based on the factoring assumption or a factoring-related search assump-
tion. In general, search assumptions are rather weaker than decision assumptions.
Thus it is important to research the possibility of constructing LTDFs based on
a search assumption.

1.2 Our Result

In this paper, though we do not construct LTDFs based on the factoring assump-
tion, we construct an adversary dependent lossy trapdoor function (ad-LTDF),
which is a new notion we introduce, based on the factoring assumption w.r.t.
semi-smooth RSA subgroup (SS) moduli, which are RSA moduli of a special form
[13]. Then we show that ad-LTDFs can replace LTDFs in many applications. As
a result, we immediately obtain factoring-based cryptographic primitives includ-
ing a hash function, PKE scheme and DE scheme. Besides direct applications of
ad-LTDFs, by using similar technique, we construct CCA secure PKE scheme
with compact ciphertext based on the factoring assumption w.r.t. SS moduli.
More details are given in the following.

Adversary-Dependent Lossy Trapdoor Function. We first reconsider the
definition of LTDFs, and introduce a notion of an ad-LTDF, which is a weaker
variant of an LTDF. Intuitively, an LTDF is a computationally indistinguishable
pair of an injective and lossy functions. Here, the description of lossy functions
should be fixed by the scheme. On the other hand, for ad-LTDFs, we allow a
description of lossy function to depend on an adversary. That is, we only require
that for any efficient adversary A there exists a lossy function that A cannot
distinguish from an injective function. We observe that this significant relaxation
does not harm the security of many LTDF-based cryptographic constructions.
This is because in many LTDF-based schemes, lossy functions are used only in
security proofs and they do not appear in the real scheme. This means that even
if lossy functions depend on an adversary, we can still prove the security of the
scheme. By this observation, we can see that ad-LTDFs can replace LTDFs in
many applications.

Moreover, we construct an ad-LTDF based on the factoring assumption w.r.t.
SS moduli, which is introduced by Groth [13]. As a result, we can instantiate
many LTDF-based constructions based on the factoring assumption w.r.t. SS
moduli. The intuition of the construction of the ad-LTDF is given in Sect. 1.3.

Adversary-Dependent Lossy Trapdoor Function 5

Applications of ad-LTDFs. As stated above, ad-LTDFs can replace LTDFs in
many applications, and we give a construction of an ad-LTDF under the factoring
assumption w.r.t. SS moduli. Thus we immediately obtain new factoring-based
constructions of many cryptographic primitives such as a collision resistant hash
function, CPA secure PKE scheme and a DE scheme. Among them, the DE
scheme obtained by this way is the first factoring-based scheme that satisfies the
PRIV security for block-sources, which is defined in [5], without relying on any
decision assumption.

Table 1. Comparison among CCA secure PKE schemes based on the factoring assump-
tion: �N is the bit-length of an underlying composite number N , �MAC denotes the bit-
length of a message authentication code, Factoring SS denotes the factoring assumption
w.r.t. SS moduli, and we assume that an exponentiation with an exponent of length �
can be computed by 1.5� multiplications.

Schemes Ciphertext
overhead
(bit)

Public key size
(bit)

Computational cost for Assumption

encryption decryption

(mult) (mult)

HK09 [18] 2�N 3�N 3�N + 3.5λ 1.5�N + 10.5λ Factoring

MLLJ11 [25] 2�N 3�N 18.5λ 18λ Factoring SS

Ours �N + �MAC O(λ2�N/ log λ) O(λ�2N/ log λ) O(λ�2N/ log λ) Factoring SS

CCA Secure PKE with Short Ciphertext. Besides direct applications of
ad-LTDFs, we construct a CCA secure PKE scheme whose ciphertext overhead is
the shortest among schemes based on the factoring assumption w.r.t. SS moduli.
Table 1 shows the efficiency of CCA secure PKE schemes based on the factoring
assumption. Among existing schemes, the scheme proposed by Hofheinz and
Kiltz [18] is one of the best in regard to the ciphertext overhead, which consists
of 2 elements of Z

∗
N . Mei et al. [25] improved the efficiency of the Hofheinz-

Kiltz scheme [18] in regard to encryption and decryption costs by using SS
moduli. However, they did not improve the ciphertext overhead. In contrast,
the ciphertext overhead of our scheme consists of only 1 element of Z

∗
N and

a message authentication code (MAC), whose bit-length can be much smaller
than that of N . By giving a concrete parameter, the ciphertext overhead of
our scheme is 1360-bit for 80-bit security whereas that of [18] is 2048-bit. On
the other hand, the public key size of our scheme is much larger than that of
[18], and an encryption and decryption are much less efficient than those in
[18]. We note that the reduction from the CCA security of our scheme to the
factoring assumption w.r.t. SS moduli is quite loose, but all known CCA secure
PKE scheme based on the factoring assumption (including [18,25]) also require
loose reductions because they require Blum-Blum-Shub pseudo-random number
generator [4].

6 T. Yamakawa et al.

We note that there is a strong negative result for a CCA secure PKE scheme
whose ciphertext overhead is less than 2 group elements in a prime order setting
[14]. Even in a composite order setting, there are only a few CCA secure PKE
schemes whose ciphetext overhead is less than 2 group elements, all of which rely
on a subgroup decision assumption [16,17,21] or an interactive assumption [19]
stronger than the factoring assumption. Ours is the first scheme to overcome this
bound based solely on the factoring assumption (though our assumption is the
factoring assumption w.r.t. SS moduli, which may not be considered standard).

1.3 Our Technique

Difficulty of Constructiing LTDFs Based on a Search Assumption.
Before explaining our technique, we first explain why it is difficult to construct
LTDFs based on a search assumption. Recall that an LTDF is a computationally
indistinguishable pair of injective and lossy functions. Apparently, the definition
of LTDFs itself requires the hardness of a decision problem. Thus for construct-
ing LTDFs based on a search assumption, we have to rely on some “search-to-
decision” reduction. As a general technique for such a reduction, there is the
Goldreich-Levin hardcore theorem [12], which enables us to extract “pseudoran-
domness” from hardness of any search problem. However, the Goldreich-Levin
hardcore bit destroys algebraic structures of original problems. On the other
hand, considering existing constructions of LTDFs, algebraic structures of under-
lying problems are crucial for constructing LTDFs. Thus, for constructing LTDFs
based on search assumptions, we have to establish another “search-to-decision”
reduction technique that does not hurt underlying algebraic structures. In the
context of lattice problems, this has been already done. Namely, it is shown that
search-LWE and decision-LWE assumptions are equivalent [33]. Thus LTDFs
can be constructed based on the search-LWE assumption. However, there is no
known such a reduction in the context of the factoring problem. Namely, we
have no reduction from decision assumptions such as QR, DCR, or more general
subgroup decision assumptions to the factoring assumption.

New Search-to-Decision Reduction Technique. The core of this work is
to give a new search-to-decision reduction technique in the context of factoring
w.r.t. SS moduli. Namely, we introduce a new decision assumption that we call
the adversary-dependent decisional RSA subgroup (ad-DRSA) assumption, and
reduce the ad-DRSA assumption to the factoring assumption w.r.t. SS moduli.
In the following, we explain the technique in more detail.

We say that a composite number N is an SS modulus if it can be written as
N = PQ = (2pp′ +1)(2qq′ +1), where P and Q are primes with the same length,
p and q are “smooth” numbers (i.e., products of distinct small primes) and p′

and q′ are relatively large primes. Then the group of quadratic residues QRN

is a cyclic group of order pqp′q′, and has many subgroups since pq is smooth.
With respect to SS moduli, Groth [13] proposed the decisional RSA subgroup
(DRSA) assumption, which claims that any PPT adversary cannot distinguish
a random element of G from that of QRN where G is the unique subgroup of
QRN of order p′q′.

Adversary-Dependent Lossy Trapdoor Function 7

Our first observation is that if there exists an algorithm that breaks the DRSA
assumption, then one can find at least one small prime that divides Φ(N). This
can be seen by the following argument: Assume that all prime factors of pq are of
�B-bit length. (Since pq is smooth, �B is relatively small. Especially, we set �B =
O(log λ).) Recall that the DRSA assumption claims that any PPT algorithm
cannot distinguish a random element of G from that of QRN . This is equivalent
to that the distributions of gp1...pM and g are indistinguishable where g

$← QRN

and p1, . . . , pM are the all �B-bit primes (and thus M is the number of the all
�B-bit primes). If there exists an algorithm A that breaks the DRSA assumption,
then it distinguishes these two distributions. Thus, by the hybrid argument, there
exists j ∈ [M] such that A distinguish the distribution of gp1...pj−1 from gp1,...pj .
By using A, one can find this pj by the exhaustive search since M is polynomial
in the security parameter in our parameter setting. (See Sect. 2.4 for more detail.)
For this pj , we have pj |Φ(N) (with overwhelming probability) since otherwise
pj-th power on QRN is a permutation on the group and thus distributions of
gp1...pj−1 and gp1,...pj are completely identical. The above argument proves that
if there exists an algorithm that breaks the DRSA assumption, then one can find
at least one small prime that divides Φ(N). However, this fact states nothing
about the reduction from the DRSA assumption to the factoring assumption
since even if one can find one small prime p that divides Φ(N), we do not know
how to factorize N .

Here, we relax the DRSA assumption to define the adversary-dependent deci-
sional RSA subgroup (ad-DRSA) assumption. Intuitively, the ad-DRSA assump-
tion claims that for any PPT adversary A, there exists a subgroup SA of QRN

such that A does not distinguish a random element of SA from that of QRN .
More precisely, the ad-DRSA assumption is parametrized by an integer m ≤ M ,
and m-ad-DRSA assumption claims that for any PPT algorithm A, there exists
at least one choice of p1, . . . pm out of all �B-bit primes such that A cannot
distinguish gp1...pm from g where g

$← QRN . By this definition, if there exists a
PPT algorithm A that breaks the m-ad-DRSA assumption, then A distinguishes
gp1...pm from g for all choices of p1, . . . , pm. If m is sufficiently smaller than M ,
then there exists “many” choices of p1, . . . , pm and thus one can find “many”
primes that divides Φ(N): One can find at least one such prime for each choice
of p1, . . . , pm by the similar method as in the case of the DRSA assumption.
Then the product of these primes is a large divisor of Φ(N) and thus one can
factorize N by using the Coppersmith theorem [6], which claims that if one is
given a “large” divisor of Φ(N), then one can factorize N efficiently. Thus, the
m-ad-DRSA assumption is reduced to the factoring assumption.

Remark 1. We remark that if m is so small that there exists a choice of
p1, . . . , pm, all of which are coprime to Φ(N), then the m-ad-DRSA assump-
tion is trivial since in that case g and gp1...pm are distributed identically. We
show that there exists a parameter choice such that m-ad-DRSA assumption is
non-trivial and it can be reduced to the factoring assumption simultaneously.

How to Use the ad-DRSA Assumption. As explained above, we show a
reduction from the ad-DRSA assumption, which is a certain type of a subgroup

8 T. Yamakawa et al.

assumption, to the factoring assumption. However, the ad-DRSA assumption is
not an ordinary subgroup decision assumption: Roughly speaking, it only claims
that for any PPT adversary A, there exists a subgroup SA ∈ QRN such that
A cannot distinguish random elements of SA from QRN . Therefore, it cannot
be used for constructions where elements of a subgroup are used in the real
descriptions of the scheme. On the other hand, if elements of a subgroup are
used only in the security proof, the ad-DRSA assumption suffices. We give two
examples of such cases.

One is ad-LTDFs. As explained in Sect. 1.2, ad-LTDFs is a relaxation of
LTDFs such that descriptions of lossy functions can depend on an adversary.
For constructing ad-LTDFs based on the ad-DRSA assumption, we simply imi-
tate the construction by Xu et al. [36], who constructed LTDFs based on the
(standard) DRSA assumption. We observe that in their construction, the descrip-
tions of injective functions consist only of elements of QRN , and elements of its
subgroup are used only in the descriptions of lossy functions. Therefore even
if we replace the DRSA assumption with the ad-DRSA assumption, only lossy
functions depend on an adversary. This meets the definition of the ad-LTDFs.

The other is the hash-proof system-based CCA secure public key encryption.
Hofheniz and Kiltz [16] introduced the concept of constraind CCA (CCCA)
security, and showed efficient constructions of CCA secure public key encryption
schemes based on a hash proof system, which can be constructed from any
subgroup decision assumption [8]. Though elements of a subgroup are used in
the real protocol of their original construction, it is easy to see that even if
elements of a subgroup are replaced with those of a larger group, the scheme
is still secure because they are indistinguishable by the assumption. Thus that
scheme can be instantiated based on the ad-DRSA assumption.

1.4 Discussion

Plausibility of the Factoring Assumption w.r.t. SS Moduli. Here, we
discuss the plausibility of the assumption we used. SS moduli was first introduced
by Groth [13] in 2005 and they have been used in some works [25,36,37]. All of
these works assume the factoring assumption w.r.t. SS moduli (or more stronger
assumptions). On the other hand, in 2011, Coron et al. [7] gave a cryptanalysis
against the Groth’s work [13]. However, they did not improve attacks against
SS moduli. Thus, we can say that SS moduli has attracted a certain amount
of attention in the sense of both constructions and cryptanalysis, but no fatal
attack is found thus far. Therefore we believe that the hardness of factoring SS
moduli is rather reliable.

Interpretation of Our Result. In this paper, we constructed a weaker variant
of LTDF (ad-LTDF) based on the factoring assumption w.r.t. SS moduli. One
may wonder how meaningful our result is since an SS modulus is not an RSA
modulus of a standard form. We believe that our result is meaningful in terms
of that we constructed an “LTDF-like primitive” (ad-LTDF), which can replace
LTDFs in many applications, based on a search assumption (factoring w.r.t. SS

Adversary-Dependent Lossy Trapdoor Function 9

moduli) rather than a decision assumption. Although the application given in
this paper is limited to the case of SS moduli, we hope that our new search-to-
decision reduction technique can be extended to other general settings.

Limitation of ad-LTDFs. Though ad-LTDFs can replace LTDFs in many
cases, there exist some LTDF-based primitives that cannot be obtained from ad-
LTDFs. A typical example is the oblivious transfer protocol proposed by Peikert
and Waters [27]. The reason why we cannot construct the scheme based on ad-
LTDFs is that in the scheme, a lossy function is explicitly required. Specifically,
a receiver sends a pair of injective and lossy functions to a sender. Since we
cannot specify a lossy function before fixing an adversary, we cannot instantiate
this scheme based on ad-LTDFs.

1.5 Related Work

Deterministic Encryption. Bellare et al. [1] initiated the study of DE, defined
the security notion of DE called the PRIV security, and gave constructions
of PRIV secure DE schemes in the random oracle model. Boldyreva et al. [5]
slightly weakened the PRIV security to what they call the PRIV security for
block-sources, and constructed DE schemes with this security in the standard
model based on LTDFs. Bellare et al. [2] showed that DE scheme with a weaker
security notion (where messages are uniformly random) can be constructed from
any one-way trapdoor permutation. In this paper, we only consider the PRIV
security for block-sources as defined in [5].

Factoring Based CCA Secure PKE Schemes. In 2009, Hofheinz and Kiltz
[18] proposed the first practical CCA secure PKE scheme under the factoring
assumption in the standard model. After that, many variants of the scheme are
proposed thus far [23–25,37]. However, none of them improve the ciphertext
overhead of the scheme. On the other hand, the ciphretext overhead of our
proposed scheme is shorter than those of them.

2 Preliminaries

Here we review some basic notations and definitions.

2.1 Notations

We use N to denote the set of all natural numbers and [n] to denote the set
{1, . . . n} for n ∈ N. If S is a finite set, then we use x

$← S to denote that x is
chosen uniformly at random from S. If A is an algorithm, we use x ← A(y) to
denote that x is output by A whose input is y. For a finite set S, |S| denotes the
cardinality of S. For a real number x, �x� denotes the smallest integer not smaller
than x and �x� denotes the largest integer not larger than x. For a bit string a, �a

denotes the length of a. For a function f in λ, we often denote f to mean f(λ) for

10 T. Yamakawa et al.

notational simplicity. We say that a function f(·) : N → [0, 1] is negligible if for
all polynomials p(·) and all sufficiently large λ ∈ N, we have f(λ) < |1/p(λ)|. We
say f is overwhelming if 1−f is negligible. We say that a function f(·) : N → [0, 1]
is noticeable if there exists a polynomial p such that for all sufficiently large λ,
we have f(λ) > |1/p(λ)|. We say that an algorithm A is probabilistic polynomial
time (PPT) if there exists a polynomial p such that running time of A with input
length λ is less than p(λ). We use a|b to mean that a is a divisor of b. For a natural
number N , Φ(N) denote the number of natural numbers smaller than N that
are coprime to N . For random variables X and Y , Δ(X,Y) denote the statistical
distance between them. We use the fact that for any (probabilistic) function f ,
Δ(f(X), f(Y)) ≤ Δ(X,Y) holds, and that Δ((X1, Z), (Y1, Z)) = EZ [Δ(X1, Y1)]
where E denotes the expected value. For random variables X and Y , we define
min-entropy of X as H∞(X) := − log(maxx Pr[X = x]) and average min-entropy
of X given Y as H̃∞(X|Y) := − log(Σy Pr[Y = y]maxx Pr[X = x|Y = y]). We
use λ to denote the security parameter.

2.2 Syntax and Security Notions

Here, we review definitions of cryptographic primitives. We omit the definitions
of a collision resistant hash function and a CPA/CCA secure PKE scheme due
to the page limitation. They are standard and can be found in the full version.

Key Encapsulation Mechanism. Here, we review the definition of key encap-
sulation mechanism (KEM) and its security. It is shown that a CCA secure PKE
scheme is obtained by combining a constrained CCA (CCCA) secure KEM and
a CCA secure authenticated symmetric key encryption scheme [16]. In the fol-
lowing, we recall the definitions of KEM and its CCCA security.

A KEM consists of three algorithms (Gen,Enc,Dec). Gen takes a security
parameter 1λ as input and outputs (PK,SK), where PK is a public key and
SK is a secret key. Enc takes a public key PK as input and outputs (C,K),
where C is a ciphertext and K is a symmetric key. Dec takes a secret key SK
and a ciphertext C as input and outputs a key K with length �K or ⊥. We
require that for all (PK,SK) output by Gen and all (C,K) output by Enc(PK),
we have Dec(SK,C) = K.

To define the CCCA security of KEM = (Gen,Enc,Dec), we consider the
following game between an adversary A and a challenger C. First, C gener-
ates (PK,SK) ← Gen(1λ) and (C∗,K) ← Enc(PK), chooses a random bit
b

$← {0, 1}, and sets K∗ := K if b = 1 and otherwise K∗ $← {0, 1}�K . Then
(PK,C∗,K∗) is given to the adversary A. In the game, A can query pairs of
ciphertexts and predicates any number of times. When A queries (C, pred), C
computes K ← Dec(SK,C) and returns K to A if C �= C∗ and pred(K) = 1,
and otherwise ⊥. Finally, A outputs a bit b′. We define the CCCA advantage
of A as AdvCCCAA,KEM(λ) := |Pr[b = b′] − 1/2|. We say that KEM is CCCA secure
if AdvCCCAA,KEM(λ) is negligible for any PPT valid adversary A, where “valid” is
defined below.

Adversary-Dependent Lossy Trapdoor Function 11

Before defining “valid”, we prepare two definitions. We say that a predicate
pred is non-trivial if Pr[pred(K) = 1 : K

$← {0, 1}�K] is negligible. We say that
an algorithm C′ is an alternative challenger if it has the same syntax as the real
challenger C. We say that an adversary A is valid if for any PPT alternative
challenger C′, all predicates pred queried by A in the game between A and C′

are non-trivial.
Though the above definition of the CCCA security slightly differs from the

original definition given in [16], we can easily prove that our definition still
yields the “hybrid encryption theorem” that a CCA secure PKE scheme can be
obtained by a CCCA secure KEM and authenticated symmetric key encryption.

Deterministic Encryption. A deterministic encryption scheme consists of
three algorithms (Gen,Enc,Dec). Gen takes a security parameter 1λ as input
and outputs (PK,SK), where PK is a public key and SK is a secret key. Enc
is a deterministic algorithm that takes a public key PK and a message msg as
input and outputs a ciphertext C. Dec takes a secret key SK and a ciphertext C
as input and outputs a message msg or ⊥. We require that for all msg, (PK,SK)
output by Gen and C output by Enc(PK,msg), we have Dec(SK,C) = msg.

We recall security notions for deterministic encryption following [5]. In [5],
the authors considered three security notions called PRIV, PRIV1 and PRIV1-
IND, and proved all of them are equivalent. Therefore we consider only the
simplest security definition PRIV1-IND in this paper. A random variable X
over {0, 1}n is called a (u, n)-source if H∞(X) ≥ u. For ATK∈ {CPA, CCA},
a deterministic encryption scheme DE = (Gen,Enc,Dec) for �-bit message is
PRIV1-IND-ATK secure for (t, n)-sources if for any (t, n)-sources M0 and M1

and all PPT adversaries A, AdvPRIV1−IND−ATK
A,M0,M1,DE (λ) := |Pr[b = b′ : (PK,SK) ←

Gen(1λ); b $← {0, 1};msg∗ $← Mb;C∗ ← Enc(PK,msg∗); b′ ← AO(PK,C∗)] −
1/2| is negligible where if ATK = CPA, then O is an oracle that always returns
⊥, and if ATK = CCA, then O is an decryption oracle that is given a ciphertext
C and returns Dec(SK,C) if C �= C∗ and otherwise ⊥.

2.3 Known Lemmas

Here, we review three known lemmas used in this paper. First, we review a
simple variant of the Hoeffding inequality [15].

Lemma 1 (Hoeffding inequality). Let D1 and D2 be probability distributions
over {0, 1}. Let X1, . . . , XK be K independent random variables with the distri-
bution D1 and Y1, . . . , YK be K independent random variables with the distrib-
ution D2. If we define ε := |Pr[X = 1 : X

$← D1] − Pr[Y = 1 : Y
$← D2]|, then

Pr[| |ΣK
k=1Xk−ΣK

i=kYk|
K − ε| ≥ δ] ≤ 4e−δ2K/2 holds.

The following is the generalized leftover hash lemma [10].

Lemma 2 (Generalized leftover hash lemma). Let X ∈ {0, 1}n1 and Y be
random variables. Let H be a family of pairwise independent hash function
from {0, 1}n1 to {0, 1}n2 . Then we have Δ((H(X),H, Y), (U,H, Y)) ≤ δ where
H

$← H as long as H̃∞(X|Y) ≥ n2 + 2 log(1/δ).

12 T. Yamakawa et al.

The following is the “crooked version” of the above lemma proven by
Boldyreva et al. [5].

Lemma 3 (Generalized crooked leftover hash lemma [5, Lemma 7.1]). Let X ∈
{0, 1}n and Y be random variables. Let H be a family of pairwise independent
hash function from {0, 1}n to R and f be a function from R to S. Then for
H

$← H, we have Δ((f(H(X)),H, Y), (f(U),H, Y)) ≤ δ as long as H̃∞(X|Y) ≥
log |S| + 2 log(1/δ) − 2.

Finally, we review the Coppersmith theorem about bivariate integer equations.
The following lemma is a special case of [6, Theorem 3].

Lemma 4. Let p(x, y) = a+bx+cy be a polynomial over Z. For positive integers
X,Y and W = max{a, bX, cY }, if XY < W holds, then one can find all solutions
(x0, y0) such that p(x0, y0) = 0, |x0| < X and |y0| < Y in time polynomial in
log2 W .

2.4 Semi-smooth RSA Subgroup Modulus

For integers �B , tp and tq, We say that N = PQ = (2pp′ + 1)(2qq′ + 1) is an
(�B , tp, tq)-semi-smooth RSA subgroup ((�B , tp, tq)-SS) modulus if the following
conditions hold.

– P and Q are distinct prime numbers with the same length that satisfy gcd(P −
1, Q − 1) = 2.

– p′ and q′ are distinct primes larger than 2�B .
– p and q are products of tp and tq distinct �B-bit primes. Here, an �B-bit

prime means a prime number between 2�B−1 and 2�B . We note that we have
gcd(p, q) = 1 since we have gcd(P − 1, Q − 1) = 2.

We define t := tp + tq. Let P�B
be the set of all �B-bit primes, and M�B

:=
|P�B

|. We define the group of quadratic residues as QRN := {u2 : u ∈ Z
∗
N}. This

is a subgroup of Z∗
N , and a cyclic group of order pqp′q′. Then there exists unique

subgroups of order p′q′ and pq, and we denote them by G and G⊥ respectively.
Then we have QRN = G × G⊥. That is, for any element g ∈ QRN , we can
uniquely represent g = g(G)g(G⊥) by using g(G) ∈ G and g(G⊥) ∈ G⊥. More-
over, if the factorization of N is given, then we can compute g(G) and g(G⊥)
from g efficiently.

When N is an SS modulus, we cannot say that a random element g of QRN

is a generator (i.e., ord(g) = pqp′q′) with overwhelming probability. However,
we can prove that g has an order larger than a certain value with overwhelming
probability.

Lemma 5 ([13, Lemma 2]). Let N be an (�B , tp, tq)-SS modulus. For any integer
d < t if (t21−�B)d+1

(1−t21−�B)(d+1)!
is negligible, then Pr[ord(g) ≥ p′q′2(t−d)(�B−1) : g

$←
QRN] is overwhelming. Especially, Pr[ord(g(G⊥)) ≥ 2(t−d)(�B−1) : g

$← QRN] is
overwhelming.

Adversary-Dependent Lossy Trapdoor Function 13

When �B is small, ord(G⊥) is smooth, and therefore the discrete logarithm
on the group can be solved efficiently by the Pohlig-Hellman algorithm [28].

Lemma 6 ([13]). If �B = O(log λ), then the discrete logarithm problem on G⊥

can be solved efficiently. More precisely, there exists a PPT algorithm that, given
an (�B , tp, tq)-SS modulus N , g ∈ G⊥ and gx, outputs x mod ord(g).

By combining the above lemmas, we obtain the following lemma.

Lemma 7. Let N be an (�B , tp, tq)-SS modulus and we assume �B = O(log(λ)).
If (t21−�B)d+1

(1−t21−�B)(d+1)!
is negligible and x ≤ 2(t−d)(�B−1) holds, then there exists a

PPT algorithm PLog that, given P ,Q, g, gx, outputs x with overwhelming prob-
ability where g

$← QRN .

Hardness Assumptions. Here, we give definitions of two hardness assump-
tions. Let IGen be an algorithm that is given the security parameter 1λ and
outputs an (�B , tp, tq)-SS modulus with its factorization. We first define the fac-
toring assumption.

Definition 1. We say that the factoring assumption holds with respect to IGen
if for any PPT algorithm A, Pr[A(N) ∈ {P,Q} : (N,P,Q) ← IGen(1λ)] is
negligible.

Next, we define the decisional RSA subgroup (DRSA) assumption proposed
by Groth [13]. This assumption claims that any PPT algorithm cannot distin-
guish a random element of G from that of QRN . We note that actually we do
not use this assumption in this paper. We include this only for the information
of the reader.

Definition 2. We say that the decisional RSA subgroup (DRSA) assumption
holds with respect to IGen if for any PPT algorithm A, |Pr[1 ← A(N, g) :
(N,P,Q) ← IGen(1λ); g $← QRN] − Pr[1 ← A(N, g) : (N,P,Q) ← IGen(1λ); g $←
G]| is negligible.

Attacks. We review factoring attacks against SS moduli as discussed in [13]. As
shown in [13], by using Pollard’s ρ-method [30], we can factorize an SS modulus in
time Õ(min(

√
p′,

√
q′)). As another method, by using Naccache et al.’s algorithm

[26], if a divisor of P − 1 or Q − 1 larger than N1/4 is given, then N can be
factorized efficiently. Thus �B should be large enough so that it is difficult to guess
a significant portion of factors of p or q. In 2011, Coron et al. [7] proposed a new
factoring algorithm for a certain class of RSA moduli that includes SS moduli.
For the case of SS moduli, their algorithm work in time Õ(min(

√
p′,

√
q′)), which

matches the time complexity of Pollard’s ρ-method. As observed in [13], other
methods such as the baby-step giant-step algorithm [34], Pollard’s λ-method [31]
or Pollard’s p − 1 method [29] require O(min(p′, q′)) time.

The above attacks use the structure of SS moduli. On the other hand, there
are algorithms such as the elliptic curve method [22] or the general number field
sieve [9], which can be applied to general RSA moduli. Among these algorithms,

14 T. Yamakawa et al.

general number field sieve is asymptotically the most efficient and its heuristic
running time is exp((1.92 + o(1)) ln(N)1/3 ln ln(N)2/3).

Parameter Settings. Here, we discuss parameter settings of SS moduli. We
have to set parameters to avoid the above attacks. We first give an asymptotic
parameter setting. We set �p′ = �q′ = O(λ), �B = �4 log λ� and tp = tq =
O(λ3/ log λ) (then we have �N ≈ �p′ + �q′ + t�B = O(λ3)). In this setting, we
have M�B

= O(λ4/ log λ) by the prime number theorem and thus there exists
exponentially many choices of p and q. If we set d := �t/4�, then (t21−�B)d+1

(1−t21−�B)(d+1)!

is negligible1. We use the fact that in this parameter setting, given N , g ∈ QRN

and p1, . . . , pm for m ≤ M�B
, gp1...pm can be computed in polynomial time in λ.

This is because we have m ≤ M�B
= O(λ4/ log(λ)) and p1 . . . pm ≤ 2�BM�B =

2O(λ4), and thus p1 . . . pm-th power can be computed by O(λ4) multiplications.
We use this asymptotic parameter setting throughout the paper. As a concrete
parameter, Groth [13] proposed to set �′

p = �′
q = 160, �B = 15, tp = tq = 32 and

d = 7 for 80-bit security (then we have �N = 160 · 2 + 15 · 2 · 32 = 1280). We use
this parameter for the construction of CCA secure PKE scheme with compact
ciphertext (Sect. 6). However, this parameter does not give us enough lossiness
in the construction of ad-LTDFs. Thus we propose to set �′

p = �′
q = 160, �B = 15,

tp = tq = 70 and d = 8 (then we have �N = 160 · 2 + 15 · 2 · 70 = 2420) for
80-bit security for other applications (Sects. 4 and 5). We note that the number
of �B = 15-bit primes is 1612. Therefore the possible choice of t = 64 or 140
primes out of them is much larger than 280 and thus it is hard to guess the
significant portion of their factors.

3 Adversary-Dependent Decisional RSA Subgroup
Assumption

In this section, we generalize the DRSA assumption. Specifically, we define the
m-adversary-dependent decisional RSA subgroup (m-ad-DRSA) assumption for
any integer m ≤ M�B

with respect to (�B , tp, tq)-SS moduli. Intuitively, this
assumption claims that for any PPT algorithm A, there exist distinct �B-bit
primes p1, . . . , pm such that A does not distinguish g from gp1...pm where g is a
random element of QRN . We prove that under a certain condition, the m-ad-
DRSA assumption holds under the factoring assumption.

First we give the precise definition of the m-ad-DRSA assumption.

Definition 3. Let IGen be a PPT algorithm that generates an (�B , tp, tq)-SS
RSA modulus. We say that for any integer m ≤ M�B

, the m-adversary-dependent
decisional RSA subgroup (m-ad-DRSA) assumption holds with respect to IGen if
for any noticeable function ε and PPT algorithm A, there exists a PPT algorithm
SA,ε that is given (�B , tp, tq)-SS RSA modulus N and outputs distinct �B-bit
primes p1, . . . , pm, such that the following is satisfied. If we let

1 In fact, d can be set as d := �ct� for any small enough constant c.

Adversary-Dependent Lossy Trapdoor Function 15

P0 := Pr
[
1 ← A(N, g) :

(N,P,Q) ← IGen(1λ)
g

$← QRN

]

P1 := Pr

⎡
⎣1 ← A(N, gp1...pm) :

(N,P,Q) ← IGen(1λ)
g

$← QRN

{p1, . . . , pm} ← SA,ε(N)

⎤
⎦

then we have |P0 − P1| ≤ ε(λ) for sufficiently large λ.

Remark 2. One may think that the above defined assumption cannot be used for
proving security of any cryptographic scheme since ε is noticeable. However, an
important remark here is that ε can be an arbitrary noticeable function. Thus, in
security proofs, we can set ε depending on an adversary A’s advantage against the
scheme that we want to prove secure, such that ε is smaller than the advantage
of A (for infinitely many security parameters). This can be done if A breaks
the security of the scheme since in these cases, the advantage of A should be
non-negligible. See security proofs in Sects. 5 and 6 to see this argument indeed
works.

Remark 3. In the above definition, if m is so small that there exists a choice
of p1, . . . , pm, all of which are coprime to Φ(N), then gp1...pm is distributed uni-
formly on QRN . In this case, m-ad-DRSA assumption is trivial. This occurs if
and only if we have M�B

− m ≥ t. In this paper, we set m to be relatively large
so that m-ad-DRSA assumption is non-trivial. (See Remark 4.)

The following theorem claims that the m-ad-DRSA assumption holds under
the factoring assumption if m is small enough.

Theorem 1. Let IGen be a PPT algorithm that generates an (�B , tp, tq)-SS RSA
modulus where �B = O(log λ). If the factoring assumption holds with respect to
IGen and there exists a constant c such that (M�B

−m+1)(�B −1) ≥ (1/2+c)�N

holds, then the m-ad-DRSA assumption holds with respect to IGen.

Remark 4. If we set m := �M�B
+ 1 − (1/2 + c)�N/(�B − 1)� for sufficiently

small c, then by the above theorem, the m-ad-DRSA assumption holds under the
factoring assumption. Moreover, by setting the parameter as given in Sect. 2.4,
we have M�B

−m ≈ (1/2+ c)�N/(�B − 1) ≈ (1/2+ c)(�p′ + �q′ + t�B)/�B ≤ t for
sufficiently large λ if c < 1/2 since t = O(λ3/ log λ) and �p′ = �q′ = O(λ). Thus
the m-ad-DRSA assumption is non-trivial.

Before proving the theorem, we prepare a lemma related to the Coppersmith
attack. Though a heuristic proof appeared in [26], to the best of our knowledge,
this has not been proven rigorously in the literature.

Lemma 8. Let P and Q be primes with the same length and N = PQ. Let e be
a divisor of Φ(N) = (P −1)(Q−1). If there exists a positive constant c such that
e > N1/2+c holds, then there exists a polynomial time algorithm that is given N
and e, and factorizes N .

16 T. Yamakawa et al.

Proof. We define e1 and e2 such that e = e1e2, e1|P −1 and e2|Q−1. (Note that
we cannot always compute e1 and e2 from e.) Then we can write P = e1k1 + 1
and Q = e2k2 + 1 by using integers k1 and k2. Then we have N = PQ =
(e1k1 + 1)(e2k2 + 1) = ek1k2 + e1k1 + e2k2 + 1. Therefore if we define p(x, y) =
N +ex+y, then p(x, y) = 0 has a solution (x0, y0) = (−k1k2,−(e1k1+e2k2+1)).
Let X := N1/2−c, Y := 3N1/2 and W := max(N, eX, Y). One can see that
|x0| < X, |y0| < Y and XY = 3N1−c < N ≤ W hold (for sufficiently large N).
Therefore one can compute the solution (x0, y0) = (−k1k2,−(e1k1 + e2k2 + 1))
in polynomial time in log N by Lemma 4. Then one can compute P + Q =
e1k1 + e2k2 + 2 = −y + 1 and factorize N . ��

Intuition for the Proof of Theorem 1. Here, we give an intuition for the
proof of Theorem 1. We remark that the following argument is not a rigorous
one. What we have to do is to construct a PPT algorithm SA,ε that is given N
and outputs {p1, . . . , pm} such that A’s advantage to distinguish g from gp1...pm

is smaller than ε where g
$← QRN . Let list L := P�B

, which is the set of all �B-bit
primes. First, SA,ε randomly chooses m distinct primes {p1, . . . , pm} from L and
test whether A’s advantage to distinguish g from gp1...pm is smaller than ε or not.
More precisely, SA,ε approximates A’s advantage by iterating the execution of
A(g) and A(gp1...pm) for independently random g

$← QRN a number of times and
counting the number that each of them outputs 1. We denote the approximated
advantage by ε′. Due to the Hoeffding inequality [15], the approximation error
can be made smaller than ε/4 by polynomial times iterations since ε is noticeable.
If ε′ < ε/2, then A’s real advantage is smaller than 3ε/4 < ε and thus SA,ε

outputs {p1, . . . , pm} and halts. Otherwise, A’s advantage to distinguish g from
gp1...pm is larger than ε/4. Then there exists pj such that A’s advantage to
distinguish gp1...pj−1 from gp1...pj is larger than ε/(4m) by the hybrid argument.
SA,ε can find this pj in polynomial time since ε/(4m) is noticeable. We remark
that we have pj |Φ(N). This is because, otherwise A’s advantage to distinguish
gp1...pj−1 from gp1...pj is 0 since their distributions are completely identical and
thus ε′ should be smaller than ε/2. Then SA,ε removes pj from L. Then it
randomly chooses m distinct primes {p1, . . . , pm} from L again, and do the
same as the above. Then it outputs {p1, . . . , pm} and halts if approximated
A’s advantage to distinguish g from gp1...pm is smaller than ε/2, or otherwise
removes some pj′ |Φ(N) from L. SA,ε repeat this procedure many times. Assume
that SA,ε does not halts by the time it cannot choose m distinct primes from
L. By that time, M�B

− m + 1 distinct �B-bit primes that divide Φ(N) are
removed from L. Let e be the product of them. Then we have e|Φ(N) and
e ≥ 2(�B−1)(M�B

−m+1) ≥ N1/2+c. Therefore if e is given, then we can factorize
N efficiently by Lemma 8. Thus under the factoring assumption, SA,ε must
output some {p1, . . . , pm} before |L| becomes smaller than m with overwhelming
probability, and A’s advantage to distinguish g from gp1...pm is smaller than
3ε/4 < ε.

Now we give the full proof of Theorem 1.

Proof (of Theorem 1). First, we prove the following two claims.

Adversary-Dependent Lossy Trapdoor Function 17

Claim 1. For any PPT algorithm A and a noticeable function δ, there exists
a PPT algorithm ApproxA,δ that satisfies the following. Let D1 and D2 be
descriptions of distributions that are samplable in polynomial time in λ, and
ε := |Pr[1 ← A(X) : X

$← D1] − Pr[1 ← A(X) : X
$← D2]|. Then

ApproxA,δ(1λ,D1,D2) outputs ε′ such that |ε′ − ε| ≤ δ(λ) with overwhelming
probability. (We say that ApproxA,δ succeeds if it outputs such ε′.)

Proof. The construction of ApproxA,δ is as follows.

ApproxA,δ(1λ,D1,D2) : For i = 1 to K where K := λ/δ(λ)2, choose Xi and
Yi according to D1 and D2, respectively, and run A(Xi) and A(Yi) for each
i. Let k1 be the number of the event that A(Xi) outputs 1 and k2 be the
number of the event that A(Yi) outputs 1. Output |k1 − k2|/K.

Since δ is noticeable, K is polynomial in λ and therefore ApproxA,δ is a PPT
algorithm. It can be seen by Lemma 1 that ApproxA,δ satisfies the desired prop-
erty. ��

Claim 2. For any PPT algorithm A and a noticeable function ε, there exists a
PPT algorithm FindA,ε that satisfies the following. For any (�B , tp, tq)-SS RSA
modulus N and a set I = {p1, . . . , pm} of distinct �B-bit primes, if |Pr[1 ←
A(N, g) : g

$← QRN] − Pr[1 ← A(N, gp1...pm) : g
$← QRN]| > ε(λ) holds, then

FindA,ε(N, I) outputs pj ∈ I that divides Φ(N) with overwhelming probability.
(We say that FindA,ε succeeds if it outputs such pj or the inequality assumed is
false.)

Proof. The construction of FindA,ε is as follows.

FindA,ε(N, I = {p1, . . . , pm}): Define distributions D0 := {(N, g) : g
$← QRN}

and Dj := {(N, gp1...pj) : g
$← QRN} (j = 1, . . . ,m). For j := 1 to m, repeat

the following.

Compute ε′ ← ApproxA,ε/(2m)(1λ,Dj−1,Dj).

If ε′ > ε/(2m), then output pj and halt.

If it does not halt by the time the above loop is finished, then output ⊥.

First, we show FindA,ε is a PPT algorithm. Since m ≤ M�B
is polynomial in λ and

thus ε/(2m) is noticeable, ApproxA,ε/(2m) is a PPT algorithm. Therefore FindA,ε

is a PPT algorithm. We prove that FindA,ε satisfies the desired property. First,
we assume that all executions of ApproxA,ε/(2m) called by FindA,ε succeed. The
probability that this assumption is satisfied is overwhelming since the number
of executions of ApproxA,ε/(2m) is polynomial in λ and each execution succeeds
with overwhelming probability. First, we prove that FindA,ε outputs any prime
pj ∈ I if we have |Pr[1 ← A(N, g) : g

$← QRN] − Pr[1 ← A(N, gp1...pm) : g
$←

QRN]| > ε. By the hybrid argument, there exists j ∈ [m] such that |Pr[1 ←

18 T. Yamakawa et al.

A(X) : X
$← Dj−1] − Pr[1 ← A(X) : X

$← Dj]| > ε/m holds. For such j, if we
let ε′ := ApproxA,ε/(2m)(Dj−1,Dj), then we have ε′ > ε/m − ε/(2m) = ε/(2m)
and thus pj is output. Then we prove that if pj is output by FindA,ε, then
pj |Φ(N) holds. If pj does not divide Φ(N), then pj is coprime to ord(QRN), and
especially pj-th power is a permutation on the group {gp1...pj−1 : g ∈ QRN}.
Therefore Dj−1 and Dj are completely the identical distributions. Therefore we
have |Pr[1 ← A(X) : X

$← Dj−1] − Pr[1 ← A(X) : X
$← Dj]| = 0. Thus if we

let ε′ := ApproxA,ε/(2m)(Dj−1,Dj), then we have ε′ < ε/(2m), and thus such pj

cannot be output. ��
Then we go back to the proof of Theorem 1. For any PPT algorithm A

and a noticeable function ε, we construct a PPT algorithm SA,ε such that
Pr[1 ← A(N, g) : (N,P,Q) ← IGen(1λ); g $← QRN] − Pr[1 ← A(N, gp1...pm) :
(N,P,Q) ← IGen(1λ); g $← QRN ; {p1, . . . , pm} ← SA,ε(N)] ≤ ε(λ) holds for
sufficiently large λ. The construction of SA,ε is as follows.

SA,ε(N): Let L := P�B
. (Recall that P�B

is the set of all �B-bit primes.)
While |L| ≥ m, repeat the following.

Choose distinct �B-bit primes p1, . . . , pm from L randomly, and let I :=
{p1, p2, . . . , pm}, D0 := {(N, g) : g

$← QRN} and Dm := {(N, gp1...pm) :
g

$← QRN}. Compute ε′ ← ApproxA,ε/4(1λ,D0,Dm). If ε′ < ε/2, then
output I and halts. Otherwise run p̃ ← FindA,ε/4(N, I). If p̃ ∈ L then
remove p̃ from L, otherwise remove a random element from L.

If it does not halt by the time the above loop finishes, then it outputs ⊥.

First, we prove that SA,ε(N) is a PPT algorithm. Since ε is noticeable,
ApproxA,ε/4 and FindA,ε/4 are PPT algorithms. Moreover the number of repeat
is at most M�B

− m + 1 ≤ M�B
, which is polynomial in λ. Therefore SA,ε(N) is

a PPT algorithm.
Then we prove that SA,ε(N) satisfies the desired property. In the following,

we assume that all executions of ApproxA,ε/4 and FindA,ε/4 called by SA,ε(N)
succeed. The probability that the above assumption holds is overwhelming
since the number of executions is polynomial and each execution succeeds with
overwhelming probability. If SA,ε outputs some I = {p1, . . . , pm}, then we
have Pr[1 ← A(N, g) : g

$← QRN] − Pr[1 ← A(N, gp1...pm) : g
$← QRN]|

< ε′ + ε/4 < ε/2 + ε/4 = 3ε/4. Next, we prove that for overwhelming fraction
of N generated by IGen, the probability that SA,ε(N) outputs ⊥ is negligible.
First, we prove that in each repeat, p̃ that is removed from L divides Φ(N). We
let ε′ ← ApproxA,ε/4(1λ,D0,Dm). If ε′ ≥ ε/2, then we have |Pr[1 ← A(N, g) :
g

$← QRN] − Pr[1 ← A(N, gp1...pm) : g
$← QRN]| > ε′ − ε/4 ≥ ε/2 − ε/4 = ε/4.

Therefore FindA,ε/4(N, I) outputs pj ∈ I that divides Φ(N) since it succeeds.
Thus if SA,ε(N) outputs ⊥, then one �B-bit prime factor of Φ(N) is removed
from L in each repeat, and the repeat is done M�B

− m + 1 times. Therefore
throughout the execution of SA,ε(N), M�B

−m+1 distinct �B-bit prime factors
of Φ(N) are removed from L. If we let e be the product of these primes, then
we have e > (2�B−1)M�B

−m+1 ≥ 2(1/2+c)�N > N1/2+c and e|Φ(N). By Lemma 8,

Adversary-Dependent Lossy Trapdoor Function 19

we can factorize N efficiently by using e. Therefore for overwhelming fraction
of N generated by IGen, the probability that SA,ε(N) outputs ⊥ is negligible
under the factoring assumption. Therefore for overwhelming fraction of N gen-
erated by IGen, we have Pr[1 ← A(N, g) : g

$← QRN] − Pr[1 ← A(N, gp1...pm) :
{p1, . . . , pm} ← SA,ε(N); g $← QRN]| < 3ε/4 with overwhelming probability
over the randomness of SA,ε. Since ε is noticeable, by the averaging argument,
Pr[1 ← A(N, g) : (N,P,Q) ← IGen(1λ); g $← QRN] − Pr[1 ← A(N, gp1...pm) :
(N,P,Q) ← IGen(1λ); g $← QRN ; {p1, . . . , pm} ← SA,ε(N)] ≤ ε(λ) holds for
sufficiently large λ.

4 Adversary-Dependent Lossy Trapdoor Function

In this section, we define ad-LTDFs. Then we give a construction of an ad-LTDF
based on the m-ad-DRSA assumption, which can be reduced to the factoring
assumption by Theorem 1.

4.1 Definition

Here we define ad-LTDFs. Intuitively, ad-LTDFs are defined by weakening
LTDFs so that descriptions of lossy functions that cannot be distinguished from
those of injective functions may depend on a specific distinguisher. Namely, the
algorithm that generates lossy functions takes a “lossy function index” I as well
as a public parameter as input, and we require that for any PPT algorithm A,
there exists at least one I such that A does not distinguish lossy functions gen-
erated with index I from injective functions. Moreover, we require that such I
can be efficiently computed given A. The precise definition is as follows. For
integers n and k such that 0 < k < n, an (n, k)-sd LTDF consists of 5 algo-
rithms (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) with a family
{I(λ)}λ∈N of lossy function index sets.

ParamsGen(1λ) → (PP, SP) : It takes a security parameter 1λ as input, and
outputs a public parameter PP and a secret parameter SP .

SampleInj(PP) → σ : It takes a public parameter PP as input, and outputs
a function description σ, which specifies an injective function fσ over the
domain {0, 1}n.

SampleLossy(PP, I) → σ: It takes a public parameter PP and a lossy function
index I ∈ I(λ) as input, and outputs a function index σ, which specifies a
“lossy” function fσ over the domain {0, 1}n.

Evaluation(PP, σ, x) → fσ(x): It takes a public parameter PP , function descrip-
tion σ and x ∈ {0, 1}n as input, and outputs fσ(x)

Inversion(SP, σ, y) → f−1
σ (y): It takes a secret parameter SP , a function descrip-

tion σ and y and outputs f−1
σ (y).

We require ad-LTDFs to satisfy the following three properties.

20 T. Yamakawa et al.

Correctness: For all x ∈ {0, 1}n, we have Inversion(SP, σ,Evaluation(PP, σ,
x)) = x with overwhelming probability where (PP, SP) ← ParamsGen(1λ) and
σ ← SampleInj(PP).

Lossiness: For all λ ∈ N, (PP, SP) ← ParamsGen(1λ), I ∈ I(λ) and σ ←
SampleLossy(PP, I), the image of fσ has size at most 2n−k.

Indistinguishability Between Injective and Lossy Functions. Intuitively,
we require that for any PPT adversary A, there exists at least one lossy function
index I ∈ I(λ) such that A cannot distinguish an injective function from a lossy
function with the lossy function index I.

The more precise definition is as follows. For any PPT adversary A and
noticeable function ε(λ), there exists a PPT algorithm SA,ε that takes a public
parameter PP as input and outputs I ∈ I(λ) such that the following is satisfied.
If we let

Pinj := Pr
[
1 ← A(PP, σ) : (PP, SP) ← ParamsGen(1λ)

σ ← SampleInj(PP)

]

Plossy := Pr

⎡
⎣1 ← A(PP, σ) :

(PP, SP) ← ParamsGen(1λ)
I ← SA,ε(PP)

σ ← SampleLossy(PP, I)

⎤
⎦

then we have |Pinj − Plossy| ≤ ε(λ) for sufficiently large λ.
As mentioned in Remark 2, though ε must be noticeable in the above defini-

tion, ad-LTDFs can be used for many cryptographic applications. This is because
ε can be set depending on the advantage of an adversary in security reductions.

Remark 5. Besides what is explained above, there is a minor difference between
the definition of ad-LTDFs and that of LTDFs. In the definition of ad-LTDFs,
ParamsGen is explicitly separated from SampleInj or SampleLossy, whereas there
is no separation between them in the definition of LTDFs [27]. This is only for
simplifying the presentation, and there is no significant difference here.

4.2 Construction

We construct an ad-LTDF based on the m-ad-DRSA assumption. Let IGen be
an algorithm that generates an �N -bit (�B , tp, tq)-SS RSA modulus with the
parameter given in Sect. 2.4 and n := (t − d)(�B − 1).

Definition of I(λ): I(λ) is defined as the set of all m-tuple of dis-
tinct primes of length �B . That is, we define I(λ) := {{p1, . . . , pm} :
p1, . . . , pm are distinct �B bit primes}.

ParamsGen(1λ) → (PP, SP): Generate (N,P,Q) ← IGen(1λ), set PP := N and
SP := (P,Q), and output (PP, SP).

SampleInj(PP = N) → σ: Choose g
$← QRN and output σ := g.

SampleLossy(PP = N, I = {p1, . . . , pm}) → σ: Choose g
$← QRN and output

σ := gp1...pm .

Adversary-Dependent Lossy Trapdoor Function 21

Evaluation(PP = N,σ = g, x ∈ {0, 1}n) → fσ(x): Interpret x as an element of
[2n] and output gx.

Inversion(SP = (P,Q), σ = g, y) → f−1
σ (y): Compute x = PLog(P,Q, g, y) and

output x where PLog is the algorithm given in Lemma 7.

Theorem 2. If the m-ad-DRSA assumption holds with respect to IGen, then the
above scheme is an (n, n − (�p′ + �q′ + (M�B

− m)�B))-ad-LTDF.

Then the following corollary follows by combining the above theorem and
Theorem 1.

Corollary 1. If the factoring assumption holds with respect to IGen for the para-
meter setting given in Sect. 2.4, then there exists an ad-LTDF.

Proof. Recall that we set �p′ = �q′ = O(λ), �B = �4 log λ�, tp = tq = O(λ3/ log λ)
(then we have �N ≈ �p′ + �q′ + t�B = O(λ3)) and d := t/4. We let m := �M�B

+
1−(1/2+c) �N

(�B−1)� for a constant c < 1/4. Then we have (M�B
−m+1)(�B−1) ≥

(1/2+c)�N and therefore the m-ad-DRSA assumption holds under the factoring
assumption by Theorem 1. Then we prove that the above ad-LTDF for this
m is non-trivial, i.e., we have n − (�p′ + �q′ + (M�B

− m)�B) > 0. Since we
have m ≈ M�B

− (1/2 + c) �N

(�B−1) , we have n − (�p′ + �q′ + (M�B
− m)�B) ≈

(t − d)�B − (�p′ + �q′ + (1/2 + c) �N �B

(�B−1)) ≈ (1/4 − c)t�B − (3/2 + c)(�p′ + �q′) > 0
for sufficiently large λ since t�B = O(λ3) and �p′ +�q′ = O(λ). Thus the obtained
ad-LTDF for this m is non-trivial.

Remark 6. If we set �p′ = �q′ = 160, �B = 15, t = 64, d = 7 and �N = 2420 as
given in Sect. 2.4, and c = 1/10 then by setting m := �M�B

+1−(1/2+c) �N

(�B−1)�,
the obtained scheme is a (1848, 103)-ad-LTDF. If better lossiness is required, then
one may set t larger (as long as factorizing N is hard).

Then we prove Theorem 2.

Proof (of Theorem 2).

Correctness. If g is generated by SampleInj, then it is a random element of
QRN . Thus Inversion((P,Q), g,Evaluation(N,σ, x)) = Inversion((P,Q), g, gx) = x
holds by the correctness of PLog given in Lemma 7.

Lossiness. Next, we prove that the above construction satisfies (n, n − (�p′ +
�q′ + (M�B

− m)�B))-lossiness. Let σ be a function description generated by
SampleLossy(N, I = {p1, . . . , pm}). What we should prove is that the image size
of fσ is at most 2�p′+�q′+(M�B

−m)�B . There exists g ∈ QRN such that σ =
gp1...pm , and thus any output of fσ is an element of the group S := {hp1...pm :
h ∈ QRN}. We consider the order of S. S is a subgroup of QRN = G × G⊥

and p1 . . . pm is coprime to ord(G) = p′q′. Therefore there exists a subgroup
S⊥ of G⊥ such that S = G × S⊥. We can see that ord(S⊥) is the product of
some distinct �B-bit primes and coprime to p1 . . . pm by the definition. Therefore
that is the product of at most M�B

− m such primes, and can be bounded by
2(M�B

−m)�B . Therefore the order of S is at most 2�p′+�q′+(M�B
−m)�B .

22 T. Yamakawa et al.

Indistinguishability Between Injective and Lossy Functions. This imme-
diately follows from the m-ad-DRSA assumption. Indeed, clearly we have Pinj =
P0 and Plossy = P1 where P0 and P1 are defined in Definition 3, and the m-ad-
DRSA assumption requires |P0 − P1| < ε(λ) for sufficiently large λ.

As an analogue of all-but-one lossy trapdoor function defined in [27], we can
define adversary-dependent all-but-one lossy trapdoor functions (ad-ABO). The
definition and constructions are given in the full version.

5 Applications

Here we discuss applications of ad-LTDFs. As mentioned before, ad-LTDFs can
replace LTDFs in many applications. Informally, ad-LTDFs can replace LTDFs
if a lossy function is used only in the security proof and not used in the real
protocol. In such cases, a lossy function may depend on an adversary that tries
to distinguish it from an injective function since an adversary is firstly fixed in
security proofs. As a result, we can immediately obtain a collision resistant hash
function [27], a CPA secure PKE scheme [27] and a DE scheme [5] based on
ad-LTDFs by simply replacing LTDFs by ad-LTDFs. Among them, by using our
ad-LTDF based on the factoring assumption given in Sect. 4, we obtain the first
DE scheme that satisfies the PRIV security for block-sources defined in [5] under
the factoring assumption.

5.1 Collision Resistant Hash Function

Here, we give an analogue of the collision resistant hash function in [27] based
on ad-LTDFs. In fact, our scheme is obtained by simply replacing LTDFs in
the scheme in [27] by ad-LTDFs. The concrete construction is as follows. Let
(ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-ad-LTDF
and H be a family of pairwise independent hash functions from {0, 1}k to {0, 1}κn

where κ := 2ρ + δ, ρ < 1/2 is a constant that satisfies n − k ≤ ρn and δ is some
constant in (0, 1 − 2ρ),

Gencrh(1λ): Run (PP, SP) ← ParamsGen(1λ) and σ ← SampleInj(PP), and choose
H

$← H. Output a function description h := (H,PP, σ).
Evaluationcrh((H,PP, σ), x): Compute H(Evaluation(PP, σ, x)) and output it.

Theorem 3. The above hash function is collision resistant.

We omit the proof since this can be proven by modifying the proof in [27] in a
similar way as in Sect. 5.3.

Adversary-Dependent Lossy Trapdoor Function 23

5.2 CPA Secure Public Key Encryption

Here, we give an analogue of the CPA secure PKE scheme in [27] based on
ad-LTDFs. In fact, our scheme is obtained by simply replacing LTDFs in the
scheme in [27] by LTDFs. The concrete construction is as follows.

Let (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion) be an (n, k)-
ad-LTDF and H be a family of pairwise independent hash functions from {0, 1}n

to {0, 1}�, where � ≤ k − 2 log(1/δ) for some negligible δ. The construction of
our scheme PKE = (Gen,Enc,Dec) is as follows.

Key Generation: Gen(1λ) generates (PP, SP) ← ParamsGen(1λ) and σ ←
SampleInj(PP). It also chooses a hash function H

$← H. It outputs a public
key PK = (PP, σ,H) and a secret key SK = (SP,H).

Encryption: Enc takes as input a public key PK = (PP, σ,H) and a message
msg ∈ {0, 1}�. It chooses x

$← {0, 1}n, sets C1 := Evaluation(PP, σ, x) and
C2 := msg ⊕ H(x) and outputs C = (C1, C2)

Decryption: Dec takes as input a secret key SK = (SP,H) and a ciphertext
C = (C1, C2), computes x := Inversion(SP, σ,C1) and msg := C2 ⊕ H(x),
and outputs msg.

Theorem 4. The above scheme is CPA secure.

This can be proven by modifying the proof in [27] in a similar way as in Sect. 5.3.
The proof is given in the full version.

Remark 7. If we use ad-ABO given in the full version, we can construct CCA
secure PKE scheme similarly as in [27].

5.3 Deterministic Encryption

Here, we construct a DE scheme based on ad-LTDFs. The construction is a sim-
ple analogue of the scheme in [5] based on LTDFs. Indeed, our scheme is obtained
by simply replacing LTDFs by ad-LTDFs in their scheme. The concrete construc-
tion is as follows. Let (ParamsGen,SampleInj,SampleLossy,Evaluation, Inversion)
be an (n, k)-ad-LTDF and H be a family of pairwise independent permutations
on {0, 1}n, where u ≥ n − k + 2 log(1/δ) − 2 holds for some negligible δ. The
construction of our scheme DE = (Gen,Enc,Dec) is as follows.

Gen(1λ): Generate (PP, SP) ← ParamsGen(1λ) and σ ← SampleInj(PP) and
choose H

$← H. Output a public key PK = (PP, σ,H) and a secret key
SK = (SP, σ).

Enc(PK = (PP, σ,H),msg): Compute C ← Evaluation(PP, σ,H(msg)) and
output C.

Dec(SK,C): Compute msg′ ← Inversion(SP, σ,C) and msg := H−1(msg′) and
output msg.

Theorem 5. The above scheme is PRIV1-IND-CPA secure deterministic
encryption for (u, n)-sources.

24 T. Yamakawa et al.

Proof. Assume that the above scheme is not PRIV1-IND-CPA secure. There exists
(u, n)-sources M0,M1 and a PPT adversary A such that AdvPRIV−IND−CPA

A,DE (λ) is
non-negligible. Then there exist a polynomial poly such that for infinitely many
λ, AdvPRIV−IND−CPA

A,DE (λ) > 1/poly(λ) holds. We consider the following sequence of
games.

Game 1: This game is the original PRIV1-IND-CPA game with respect to M0,
M1 and A. That is, a challenger computes (PP, SP) ← ParamsGen(1λ) and
σ ← SampleInj(PP), chooses H ← H, sets PK := (PP, σ,H), chooses b

$←
{0, 1}, msg∗ $← Mb and computes C∗ ← Evaluation(PP, σ,H(msg∗)). A is
given (PK,C∗) and outputs b′.

Game 2: This game is the same as the previous game except that σ is generated by
SampleLossy(PP, I), where intuitively, I is an index such that “it is difficult
to distinguish an injective function from a lossy function with index I for
A”. To describe this precisely, we consider the following PPT algorithm B.
B(PP, σ): Choose H

$← H, b
$← {0, 1}, msg∗ $← Mb, set PK := (PP, σ,H),

compute C∗ ← Evaluation(PP, σ,H(msg∗)), run b′ ← A(PK,C∗) and
output 1 if b = b′, and otherwise 0.

Let SB,1/(2poly) be the algorithm that is assumed to exists in the definition of
ad-LTDFs. (Note that B is a PPT algorithm and 1/(2poly) is noticeable.) In
this game, we let I ← SB,1/(2poly)(PP) and σ ← SampleLossy(PP, I).

Game 3: This game is the same as the previous game except that a challenge
ciphertext is set as C∗ ← Evaluation(PP, σ,H(U)) where U ∈ {0, 1}n is a
uniformly random string.

Let Ti be the event that b = b′ in Game i. Clearly we have |Pr[T1] − 1/2| =
AdvPRIV−IND−CPA

A,DE (λ). Then we prove the following lemmas.

Lemma 9. For sufficiently large any λ, we have |Pr[T2]−Pr[T1]| ≤ 1/(2poly(λ)).

Proof. By the definition of an adversary-dependent lossy trapdoor function, if
we let

Pinj := Pr
[
1 ← B(PP, σ) : (PP, SP) ← ParamsGen(1λ)

σ ← SampleInj(PP)

]

Plossy := Pr

⎡
⎣1 ← B(PP, σ) :

(PP, SP) ← ParamsGen(1λ)
I ← SB,1/(2poly)(PP)
σ ← SampleLossy(PP, I)

⎤
⎦

then we have |Pinj − Plossy| ≤ 1/(2poly) for sufficiently large λ. It is clear that
Pinj = Pr[T1] and Plossy = Pr[T2] holds. Therefore the lemma follows.

Lemma 10. We have |Pr[T3] − Pr[T2]| ≤ δ.

In Lemma 3, we let f := Evaluation(PP, σ, ·), X := msg∗ and Y := (PP, σ). Then
by the lossiness, |S| ≤ 2n−k holds where S is the range of f . By the definition
of (u, n)-sources, we have H̃∞(X|Y) ≥ u and u ≥ n − k + 2 log(1/δ) − 2 ≥
|S|+2 log(1/δ)−2. By Lemma 3, the statistical distance between (C∗,H, (PP, σ))
in Game 2 and that in Game 3 is at most δ. Thus the lemma follows.

Adversary-Dependent Lossy Trapdoor Function 25

Lemma 11. We have Pr[T3] = 1/2.

Proof. In Game 3, A is given no information about b. Therefore the probability
that A can correctly guess b is 1/2.

By combining these lemmas, for all sufficiently large λ, we have |Pr[T1]−1/2| ≤
1/(2poly(λ)) + δ, equivalently, AdvPRIV−IND−CPA

A,DE (λ) ≤ 1/(2poly(λ)) + δ. On the
other hand, we assumed, AdvPRIV−IND−CPA

A,DE (λ) > 1/poly(λ) for infinitely many λ.
Combining these two inequalities, we have 1/(2poly(λ)) < δ for infinitely many
λ, which contradicts to that δ is negligible. Therefore there does not exist a PPT
adversary that breaks the scheme.

Remark 8. If we use ad-ABO given in the full version, we can construct
PRIV1-IND-CCA secure DE scheme similarly as in [5].

6 CCA Secure PKE with Short Ciphertext

In this section, we construct a CCCA secure KEM under the m-ad-DRSA
assumption. By Theorem 1, under certain condition, this scheme is CCCA secure
under the factoring assumption w.r.t. SS moduli. By setting a parameter appro-
priately, we obtain a PKE scheme whose ciphertext overhead is minimum among
schemes that are CCA secure under the factoring assumption by combining our
KEM and an authenticated symmetric key encryption scheme.

6.1 Construction

Idea of Our Construction. Since the m-ad-DRSA assumption is a type of sub-
group decision assumptions, we can consider an “adversary-dependent version”
of hash proof systems as in [8], where it is shown that a hash proof system can
be constructed based on any subgroup decision assumption. Then we construct
a KEM similarly as in [16], where the authors constructed a CCCA secure KEM
based on a hash proof system. Though our construction is based on the above
idea, for clarity, we give a direct construction of our KEM rather than defining
the “adversary-dependent version” of hash proof systems.

The construction of our scheme KEMCCCA is as follows. Let IGen be a PPT
algorithm that generates (�B , tp, tq)-SS RSA modulus, H be a family of pairwise
independent hash functions from (Z∗

N)n to {0, 1}λ where n := � (2�N+1)λ
�B−1 �, and

h : G → {0, 1}λ be a target collision resistant hash function. For simplicity, we
assume that the KEM key length is equal to the security parameter λ.

Gen(1λ): Generate (N,P,Q) ← IGen(1λ). Choose H
$← H, g

$← QRN and

x
(k)
i,j

$← [(N − 1)/4] and set X
(k)
i,j := gx

(k)
i,j for i = 1, . . . , λ, j = 1, . . . , n

and k = 0, 1. Output PK := (N,h,H, {X
(k)
i,j }i∈[λ],j∈[n],k∈{0,1}) and SK :=

({x
(k)
i,j }i∈[λ],j∈[n],k∈{0,1}, PK).

26 T. Yamakawa et al.

Enc(PK): Choose r
$← [(N − 1)/4], compute C := gr, t := h(C) and K :=

H((
∏λ

i=1 X
(ti)
i,1)r, . . . , (

∏λ
i=1 X

(ti)
i,n)r) where ti denotes the i-th bit of t. Output

(C,K).

Dec(SK,C): Compute t := h(C) and K := H(C
∑λ

i=1 x
(ti)
i,1 , . . . , C

∑λ
i=1 x

(ti)
i,n) where

ti denotes the i-th bit of t, and output K.

6.2 Security

Theorem 6. If m-ad-DRSA assumption holds with respect to IGen and
(�B − 1)(tp + tq + m − M�B

) ≥ λ holds, then KEMCCCA is CCCA secure.

Corollary 2. If the factoring assumption holds with respect to IGen for the
parameter setting given in Sect. 2.4, then KEMCCCA is CCCA secure for n =
O(λ4/ log(λ)).

Proof (of Corollary 2). Let m := �M�B
+ 1 − (1/2 + c) �N

(�B−1)� for a constant
c < 1/4. Then we have (M�B

− m + 1)(�B − 1) ≥ (1/2 + c)�N and therefore the
m-ad-DRSA assumption holds under the factoring assumption by Theorem 1.
Moreover, we have (�B − 1)(tp + tq +m−M�B

) = O(λ3) if we use the parameter
setting given in Sect. 2.4. Thus the obtained scheme is CCCA secure under the
factoring assumption. ��

Theorem 6 can be proven almost similarly as the security of the CCCA
secure KEM based on a hash proof system in [16]. However, for a technical
reason, we need the following variant of the leftover hash lemma unlike in [16].
Specifically, in the leftover hash lemma (Lemma 2), a random variable X should
be independent from H. On the other hand, in our proof, we need a variant in
which a random variable X may depend on H. The following lemma states that
this is possible with the loss of the number of possible random variables X. We
note that this idea is already used in some existing works [32,35].

Lemma 12. Let X be a set of random variables X on {0, 1}n1 such that
H∞(X) ≥ n2 + 2 log(1/δ), and H be a family of pairwise independent hash
functions from {0, 1}n1 to {0, 1}n2 . Then for any computationally unbounded
algorithm F , which is given H ∈ H and outputs a description of a distribution
X ∈ X , we have Δ((H(X),H), (U,H)) ≤ |X |δ where H

$← H and X ← F(H).

The proof is given in the full version.
Then we give the proof of Theorem 6.

Proof (of Theorem 6). Assume that there exists a valid PPT adversary A that
breaks the CCCA security of the above scheme. Then there exists a polynomial
poly such that AdvCCCAA,KEMCCCA

(λ) > 1/poly(λ) for infinitely many λ. We consider
the following sequence of games.

Game 1: This game is the original CCCA game of KEMCCCA for A. That is, a
challenger C generates (N,P,Q) ← IGen(1λ), chooses H

$← H, g
$← QRN and

Adversary-Dependent Lossy Trapdoor Function 27

x
(k)
i,j

$← [(N − 1)/4] and sets X
(k)
i,j := gx

(k)
i,j for i = 1, . . . , λ, j = 1, . . . , n and

k = 0, 1 and sets PK := (N,h,H, {X
(k)
i,j }i∈[λ],j∈[n],k∈{0,1}). Then it chooses

b
$← {0, 1} and r∗ $← [(N − 1)/4], and computes C∗ := gr∗

, t∗ := h(C∗) and
K∗ := H((

∏λ
i=1 X

(t∗
i)

i,1)r∗
, . . . , (

∏λ
i=1 X

(t∗
i)

i,n)r∗
) where t∗i denotes the i-th bit of

t∗ if b = 1 and K∗ $← {0, 1}λ otherwise. Then it gives (PK,C∗,K∗) to A. In
the game, A can query pairs of ciphertexts and predicates to an oracle ODec.
When A queries (C, pred), ODec computes K ← Dec(SK,C) and returns K to
A if C �= C∗ and pred(K) = 1, and otherwise ⊥. Finally, A outputs a bit b′.

Game 2: This game is the same as the previous game except that K∗ is set differ-

ently if b = 1. Specifically, it is set as K∗ := H(C∗∑λ
i=1 x

(t∗
i)

i,1 , . . . , C∗∑λ
i=1 x

(t∗
i)

i,n)
if b = 1.

Game 3: This game is the same as the previous game except that C∗ is set
differently. Specifically, it is uniformly chosen from QRN .

Game 4: This game is the same as the previous game except that g is uniformly
chosen from a subgroup S of QRN , which is defined as follows. First, we
define a PPT algorithm B as follows.
B(N, g): Choose H

$← H, x
(k)
i,j

$← [(N − 1)/4] and set X
(k)
i,j := gx

(k)
i,j for

i ∈ [λ], j ∈ [n] and k = 0, 1 and PK := (N,h,H, {X
(k)
i,j }i∈[λ],j∈[n],k∈{0,1}),

choose C∗ $← QRN and b
$← {0, 1}, and set K∗ := H(C∗∑λ

i=1 x
(t∗

i)
i,1 ,

. . . , C∗∑λ
i=1 x

(t∗
i)

i,n) where t∗ := h(C∗) and t∗i is the i-th bit of t∗ if
b = 1, and K∗ $← {0, 1}� otherwise. Run b′ ← AODec(PK,C∗,K∗)
and output b′. We note that B can simulate ODec for A since it knows
SK = ({x

(k)
i,j }i∈[λ],j∈[n],k∈{0,1}, PK).

Let SB,poly/2 be the algorithm that is assumed to exist in the definition of
m-ad-DRSA assumption. Note that this algorithm actually exists since B is
a PPT algorithm and poly/2 is noticeable. Then we define the subgroup S
as follows: We run {p1, . . . , pm} ← SB,poly/2 and define S := {hp1,...,pm : h ∈
QRN}.

Game 5: This game is the same as the previous game except that the decryption
oracle ODec is replaced with an alternative decryption oracle ODec′ that works
as follows: ODec′ , given C and pred, computes t := h(C) and returns ⊥
if t = t∗. Otherwise it computes K := H(C

∑λ
i=1 x

(ti)
i,1 , . . . , C

∑λ
i=1 x

(ti)
i,n) and

outputs K if pred(K) = 1, and otherwise ⊥.
Game 6: This game is the same as the previous game except that x

(k)
i,j is set

differently. Specifically, it is uniformly chosen from ord(QRN) instead of from
[(N − 1)/4] for i = 1, . . . , λ, j = 1, . . . , n and k = 0, 1.

Game 7: This game is the same as the previous game except that the decryption
oracle ODec′ is replaced with an alternative decryption oracle ODec′′ that
works as follows: ODec′′ , given C and pred, computes t := h(C) and returns
⊥ if t = t∗ or C /∈ S, where S is the group defined in Game 4. Otherwise it
computes K := H(C

∑λ
i=1 x

(ti)
i,1 , . . . , C

∑λ
i=1 x

(ti)
i,n)and outputs K if pred(K) = 1,

and otherwise ⊥.

28 T. Yamakawa et al.

Game 8: This game is the same as the previous game except that K∗ is always
an independently random string.

Let Ti be the event that b = b∗ holds in Game i. Then clearly we have
AdvCCCAA,PKECCCA

= |Pr[T1]−1/2|. First, we prove that the group S defined in Game 4
is a proper subgroup of QRN . Moreover, we prove that ord(S)/ord(QRN) ≤ 2−λ

holds. By the definition of SS moduli, ord(QRN) has tp+tq distinct prime factors
p′
1, . . . , p

′
tp+tq

of �B-bit. Since the number of the all �B-bit primes is M�B
, there

exist at least tp +tq +m−M�B
distinct primes contained in both {p′

1, . . . , p
′
tp+tq

}
and {p1, . . . , pm}. We denote those primes by p′′

1 , . . . p′′
tp+tq+m−M�B

. Those primes
cannot be a factor of ord(S) since S = {hp1...pm : h ∈ QRN} by the def-
inition whereas they are a factor of ord(QRN). Thus ord(S)/ord(QRN) ≤

1
p′′
1 ...p′′

tp+tq+m−M�B

≤ 2−(tp+tq+m−M�B
)(�B−1) ≤ 2−λ. Then we prove the following

lemmas.

Lemma 13. Pr[T2] = Pr[T1] holds. ��
Proof. The modification between Game 1 and 2 is only conceptual. ��
Lemma 14. |Pr[T3] − Pr[T2]| is negligible.

Proof. This follows from the fact that the statistical distance between the uni-
form distributions on [(N − 1/4)] and [ord(QRN)] are negligible. ��
Lemma 15. We have |Pr[T4] − Pr[T3]| ≤ 1/(2poly) for sufficiently large λ.

Proof. This follows immediately from the definition of m-ad-DRSA assump-
tion. ��
Lemma 16. If h is collision resistant, then |Pr[T5] − Pr[T4]| is negligible.

Proof. From the view of A, Game 4 and 5 may differ only if A makes a query
(C, pred) such that h(C) = t∗. If A makes such a query, then this means that it
finds a collision of h. ��
Lemma 17. |Pr[T6] − Pr[T5]| is negligible.

Proof. This follows from the fact that the statistical distance between the uni-
form distributions on [(N − 1/4)] and [ord(QRN)] are negligible. ��
Lemma 18. |Pr[T7] − Pr[T6]| is negligible.

Proof. Let q be an upper bound of the number of decryption queries A makes. We
consider hybrids H0, . . . ,Hq that are defined as follows. A hybrid H� is the same
as Game 6 except that the oracle to which A accesses works similarly as ODec′′

for the first � queries, and similarly as ODec′ for the rest of queries. Let T6,� be
the event that b = b′ holds in the hybrid H�. Clearly, We have Pr[T6,0] = Pr[T6]
and Pr[T6,�] = Pr[T7]. Let F� be the event that ODec′′ returns ⊥ for A’s �-th
query (C�, pred�) but ODec′ does not return ⊥ for it. That is, F� is the event

Adversary-Dependent Lossy Trapdoor Function 29

that C� ∈ QRN \ S, t �= t∗ and pred(K�) = 1 hold where K� := H(C
∑λ

i=1 x
(ti)
i,1

� ,

. . . , C
∑λ

i=1 x
(ti)
i,n

�), t := h(C�) and ti denotes the i-th bit of t. Unless F� occurs,
hybrids H� and H�−1 are exactly the same from the view of A. Therefore we have
|Pr[T6,�] − Pr[T6,�−1]| ≤ Pr[F�]. Let view� be the view from A before it is given
the response for its �-th query. That is, view� consists of PK, C∗, K∗, C� and
decryption queries and responses for them before the �-th query. We prove the
following claim.

Claim 3. If C� ∈ QRN \ S and t �= t∗, then K� is distributed almost uniformly
on {0, 1}λ from the view of A in the hybrids H�−1 and H�. More precisely, we
have Δ((K�, view�), (U, view�)) ≤ 2−λ where U

$← {0, 1}λ.

Assume this claim is true. Then we prove that Pr[F�] is negligible for any
� ∈ [q]. Since A is valid, pred is non-trivial. That is, for independently uniform
U , Pr[predi(U) = 1] is negligible. By Claim 3, if C� ∈ QRN \ S and t �= t∗,
then we have Δ((K�, view), (U, view)) ≤ 2−λ where U

$← {0, 1}λ. Therefore
Pr[pred(K�) = 1] is negligible and thus Pr[F�] is negligible. Thus |Pr[T7]−Pr[T6]|
is negligible by the hybrid argument. What is left is to prove Claim 3.

Proof (of Claim 3). Since we assumed t �= t∗, there exists i ∈ [λ] such that ti �= t∗i .
We denote minimum such i by i∗. Since C ∈ QRN \S and S is a proper subgroup
of QRN , there exists an �B-bit prime p̄ that divides ord(C) but does not divide
ord(S). Here, we claim that the decryption oracle before �-th query can be simu-
lated by using {x

(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1} and PK. This can be seen by

that the oracle immediately returns ⊥ for a query (C, pred) such that C /∈ S. If
we define view′

� := (PK,C∗,K∗, C�, {x
(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1}) where

PK denotes a public key except H, then we have Δ((K�, view�), (U, view�)) ≤
Δ((K�,H, view′

�), (U,H, view′
�)). Thus it suffices to show that conditioned on any

fixed value of view′
�, Δ((K�,H), (U�,H)) ≤ 2−λ holds. One can see that view′

�

does not depend on (x(ti∗)
i∗,j mod p̄) at all for j ∈ [n]: PK does not depend on

(x(ti∗)
i∗,j mod p̄) since g ∈ S by the modification from Game 3 to 4. (C∗,K∗) does

not depend on (x(ti∗)
i∗,j mod p̄) since we assumed ti∗ �= t∗i∗ and thus x

(ti∗)
i∗,j is not

used for generating K∗. {x
(k)
i,j mod ord(S)}i∈[λ],j∈[n],k∈{0,1} does not depend on

(x(ti∗)
i∗,j mod p̄) since ord(S) is coprime to p̄. Thus conditioned on any value of

view′
�, (x(ti∗)

i∗,j mod p̄) is distributed uniformly for all j ∈ [n]. Therefore we have

H∞(C
∑λ

i=1 x
(ti)
i,1

� , . . . , C
∑λ

i=1 x
(ti)
i,n

� |view′
�) ≥ n log p̄ ≥ n(�B − 1) ≥ λ + 2�Nλ. Here,

we use Lemma 12: We set X := {XC}C∈QRN \S where XC denotes a random

variable that is distributed as (C
∑λ

i=1 x
(ti)
i,1 , . . . , C

∑λ
i=1 x

(ti)
i,n) conditioned on view′

�,
δ := 2−�N λ, and F as an algorithm that simulates the game between A and the
challenger and outputs XC�

where C� is A’s �-th decryption query. Then we have
Δ((K�,H), (U,H)) ≤ |QRN \ S|2−�N λ ≤ 2−λ where U

$← {0, 1}λ, conditioned
on any fixed value of view′

�. Thus the proof of Claim 3 is completed. ��
This concludes the proof of Lemma 18. ��

30 T. Yamakawa et al.

Lemma 19. |Pr[T8] − Pr[T7]| is negligible.

Proof. Since we have Pr[C∗ ∈ S : C∗ $← QRN] ≤ 2−λ, in the following, we assume
C∗ /∈ S. Then there exists p̄ that divides ord(C∗) but does not divide ord(S).
Let view be the view from A in Game 8 except K∗, and view′ := {PK,C∗, {x

(k)
i,j

mod ord(S)}i∈[λ],j∈[n],k∈{0,1}}. By a similar argument as in the proof of
Claim 3, we have Δ((K∗, view), (U, view)) ≤ Δ((K∗,H, view′), (U,H, view′)) and

H̃∞(C∗∑λ
i=1 x

(ti)
i,1 , . . . , C∗∑λ

i=1 x
(ti)
i,n |view′) ≥ n log p̄ ≥ n(�B − 1) ≥ (2�N + 1)λ.

If we let X := (C∗∑λ
i=1 x

(ti)
i,1 , . . . , C∗∑λ

i=1 x
(ti)
i,n), Y := view and δ := 2−�N λ in

Lemma 2, then we have Δ((K∗,H, view′), (U,H, view′)) ≤ 2−�N λ where K∗ =
H(C∗x1+t∗y1 , . . . , C∗xn+t∗yn) and U

$← {0, 1}k. Thus the lemma follows. ��
By the above lemmas, we have AdvCCCAA,KEMCCCA

(λ) = |Pr[T1] − Pr[T8]| ≤ negl
(λ) + 1/(2poly(λ)) for sufficiently large λ where negl is some negligible func-
tion. On the other hand, we assumed that there are infinitely many λ such
that AdvCCCAA,KEMCCCA

(λ) > 1/poly(λ). Therefore for infinitely many λ, we have
1/(2poly(λ)) < negl(λ), which contradicts to that negl(λ) is negligible. Thus
there does not exist a valid PPT adversary that breaks the CCCA security of
the scheme. ��
Discussion. Here, we discuss the efficiency of the CCA secure PKE scheme
that is obtained by combining the above KEM and an authenticated symmetric
key encryption scheme. Table 1 shows the efficiency and hardness assumption of
CCA secure PKE schemes based on the factoring in the standard model. Among
existing schemes, the scheme proposed by Hofheinz and Kiltz [18] is one of the
best in regard to the ciphertext overhead, which consists of 2 elements of Z∗

N .
In contrast, the ciphertext overhead of our scheme consists of only 1 element
of Z∗

N plus a MAC. By giving a concrete parameter (�′
p = �′

q = 160, �B = 15,
tp = tq = 32 and �N = 1280), the ciphertext overhead of our scheme is 1360-bit
for 80-bit security whereas that of [18] is 2048-bit. On the other hand, the public
key size of our scheme is much larger than that of [18], and an encryption and
decryption are much less efficient than those in [18].

Acknowledgment. We would like to thank the anonymous reviewers and members of
the study group “Shin-Akarui-Angou-Benkyou-Kai” for their helpful comments. Espe-
cially, we would like to thank the reviewer of EUROCRYPT 2016 who suggested to
use the term “adversary-dependent” instead of “generalized”, and Atsushi Takayasu
for giving us useful comments on the Coppersmith theorem. This work was supported
by CREST, JST and JSPS KAKENHI Grant Number 14J03467.

References

1. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

Adversary-Dependent Lossy Trapdoor Function 31

2. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

4. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

5. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178–189. Springer, Heidelberg (1996)

7. Coron, J.-S., Joux, A., Mandal, A., Naccache, D., Tibouchi, M.: Cryptanalysis
of the RSA subgroup assumption from TCC 2005. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 147–155. Springer,
Heidelberg (2011)

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

9. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, 2nd
edn. Springer, New York (2005)

10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

11. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)

12. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
STOC, pp. 25–32 (1989)

13. Groth, J.: Cryptography in subgroups of Z∗
n. In: Kilian, J. (ed.) TCC 2005. LNCS,

vol. 3378, pp. 50–65. Springer, Heidelberg (2005)
14. Hanaoka, G., Matsuda, T., Schuldt, J.C.N.: On the impossibility of constructing

efficient key encapsulation and programmable hash functions in prime order groups.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 812–
831. Springer, Heidelberg (2012)

15. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

17. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009)

18. Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factor-
ing. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer,
Heidelberg (2009)

19. Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-
ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 673–692. Springer, Heidelberg (2010)

32 T. Yamakawa et al.

20. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010)

21. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction par-
adigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol.
5479, pp. 590–609. Springer, Heidelberg (2009)

22. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3),
649–673 (1987)

23. Lu, X., Li, B., Liu, Y.: How to remove the exponent GCD in HK09. In: Susilo, W.,
Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 239–248. Springer,
Heidelberg (2013)

24. Lu, X., Li, B., Mei, Q., Liu, Y.: Improved efficiency of chosen ciphertext secure
encryption from factoring. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC
2012. LNCS, vol. 7232, pp. 34–45. Springer, Heidelberg (2012)

25. Mei, Q., Li, B., Lu, X., Jia, D.: Chosen ciphertext secure encryption under factoring
assumption revisited. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 210–227. Springer, Heidelberg (2011)

26. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: ACM Conference on Computer and Communications Security, pp. 59–66 (1998)

27. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

28. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theor.
24(1), 106–110 (1978)

29. Pollard, J.M.: Theorems of factorization and primality testing. In: Proceedings of
the cambridge philosophical society, vol. 76, pp. 521–528 (1974)

30. Pollard, J.M.: A monte carlo method for factorization. BIT 15, 331–334 (1975)
31. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-

put. 32, 918–924 (1978)
32. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for

adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93 (2005)

34. Shanks, D.: Class number, a theory of factorization, and genera. In: 1969 Number
Theory Institute (Proceedings of the Symposium Pure Mathematics, vol. XX, State
University New York, Stony Brook, N.Y., 1969), pp. 415–440, Providence, R.I
(1971)

35. Trevisan, L., Vadhan, S.P.: Extracting randomness from samplable distributions.
In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
12–14 November 2000, Redondo Beach, California, USA, pp. 32–42 (2000)

36. Xue, H., Li, B., Lu, X., Jia, D., Liu, Y.: Efficient lossy trapdoor functions based
on subgroup membership assumptions. In: Abdalla, M., Nita-Rotaru, C., Dahab,
R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 235–250. Springer, Heidelberg (2013)

37. Yamakawa, T., Yamada, S., Nuida, K., Hanaoka, G., Kunihiro, N.: Chosen cipher-
text security on hard membership decision groups: the case of semi-smooth sub-
groups of quadratic residues. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014.
LNCS, vol. 8642, pp. 558–577. Springer, Heidelberg (2014)

Optimal Security Proofs for Signatures
from Identification Schemes

Eike Kiltz1, Daniel Masny1, and Jiaxin Pan1,2(B)

1 Ruhr-Universität Bochum, Bochum, Germany
{eike.kiltz,daniel.masny,jiaxin.pan}@rub.de

2 Karlsruher Institut Für Technologie, Karlsruhe, Germany

Abstract. We perform a concrete security treatment of digital signa-
ture schemes obtained from canonical identification schemes via the Fiat-
Shamir transform. If the identification scheme is random self-reducible
and satisfies the weakest possible security notion (hardness of key-
recoverability), then the signature scheme obtained via Fiat-Shamir is
unforgeable against chosen-message attacks in the multi-user setting.
Our security reduction is in the random oracle model and loses a factor
of roughly Qh, the number of hash queries. Previous reductions incor-
porated an additional multiplicative loss of N , the number of users in
the system. Our analysis is done in small steps via intermediate security
notions, and all our implications have relatively simple proofs. Further-
more, for each step, we show the optimality of the given reduction in
terms of model assumptions and tightness.

As an important application of our framework, we obtain a concrete
security treatment for Schnorr signatures in the multi-user setting.

Keywords: Signatures · Identification · Schnorr · Tightness

1 Introduction

Canonical Identification Schemes and the Fiat-Shamir Transform.

A canonical identification scheme ID as formalized by Abdalla et al. [1] is a
three-move public-key authentication protocol of a specific form. The prover
(holding the secret-key) sends a commitment R to the verifier. The verifier (hold-
ing the public-key) returns a random challenge h, uniformly chosen from a set
ChSet (of exponential size). The prover sends a response s. Finally, using the
verification algorithm, the verifier publicly checks correctness of the transcript
(R, h, s). There is a large number of canonical identification schemes known
(e.g. [13,15,20,28,29,31,34,36,38,39,42], the most popular among them being
the scheme by Schnorr [42]. The Fiat-Shamir method [20] transforms any such

E. Kiltz—Supported in part by ERC Project ERCC (FP7/615074).
D. Masny—Supported by the DFG Research Training Group GRK 1817/1.
J. Pan—Supported by the DFG Research Training Group GRK 1817/1 and by the
DFG grant HO 4534/4-1.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 33–61, 2016.
DOI: 10.1007/978-3-662-53008-5 2

34 E. Kiltz et al.

canonical identification scheme into a digital signature scheme SIG[ID] using a
hash function.

Digital Signatures in the Multi-User Setting. When it comes to secu-
rity of digital signature schemes, in the literature almost exclusively the standard
security notion of unforgeability against chosen message attacks (UF-CMA) [30]
is considered. This is a single-user setting, where an adversary obtains one sin-
gle public-key and it is said to break the scheme’s security if he can produce
(after obtaining Qs many signatures on messages of his choice) a valid forgery,
i.e. a message-signature pair that verifies on the given public-key. However, in
the real world the attacker is usually confronted with many public-keys and
presumably he is happy if he can produce a valid forgery under any of the
given public-keys. This scenario is captured in the multi-user setting for signa-
tures schemes. Concretely, in multi-user unforgeability against chosen message
attacks (MU-UF-CMA) the attacker obtains N independent public-keys and is
said to break the scheme’s security if he can produce (after obtaining Qs many
signatures on public-keys of his choice) a valid forgery that verifies under any of
the public-keys.

There are essentially two reasons why one typically only analyzes signatures
in the single-user setting. First, the single-user security notion and consequently
their analysis are simpler. Second, there exists a simple generic security reduc-
tion [25] between multi-user security and standard single-user security. Namely,
for any signature system, attacking the scheme in the multi-user setting with
N public-keys cannot increase the attacker’s success ratio (i.e., the quotient of
its success probability and its running time) by a factor more than N compared
to attacking the scheme in the single-user setting. As the number of public-keys
N is bounded by a polynomial, asymptotically, the single-user and the multi-
user setting are equivalent. However, the security reduction is not tight: it has
a loss of a non-constant factor N . This is clearly not satisfactory as in complex
environments one can easily assume the existence of at least N = 230 (≈ 1 bil-
lion) public-keys, thereby increasing the upper bound on the attacker’s success
ratio by a factor of 230. For example, if we assume the best algorithm break-
ing the single-user security having success ratio ρ = 2−80, then it can only be
argued that the best algorithm breaking the multi-user security has success ratio
ρ′ = 2−80 · 230 = 2−50, which is not a safe security margin that defends against
today’s attackers.

Tightness. Generally, we call a security implication between two problems
tight [9], if the success ratio ρ of any adversary attacking the first problem
cannot decease by more than a small constant factor compared to the success
ratio ρ′ of any adversary attacking the second problem [7,26]. Here the success
ratio ρ is defined as the quotient between the adversary’s success probability
and its running time. We note that this notion of tightness is slightly weaker
than requiring that both, success probability and running time, cannot decrease
by more than a small constant factor (called strong tightness in [26]). However,
the main goal of a concrete security analysis is to derive parameters provably
guaranteeing k-bit security. As the term k-bit security is commonly defined as

Optimal Security Proofs for Signatures from Identification Schemes 35

the non-existence of any adversary that breaks the scheme with a success ratio
better than 2−k (see, e.g., [7,18]), our definition of tightness is sufficient for this
purpose.

1.1 Our Contributions

This work contains a concrete and modular security analysis of signatures SIG[ID]
obtained via the Fiat-Shamir transform. Throughout this paper we assume that
our identification schemes ID are Σ-protocols, i.e. they are honest-verifier zero-
knowledge (HVZK), have special soundness (SS), and commitments R are sam-
pled at random from a sufficiently large set. For some of our tight implications
we furthermore require ID to be random self-reducible (RSR), a property we for-
mally define in Definition 5. Most known canonical identification schemes satisfy
the above properties.

Security Notions. For identification schemes we consider XXX-YYY secu-
rity, where XXX ∈ {KR, IMP,PIMP} denotes the attacker’s goal and YYY ∈
{KOA,PA} the attacker’s capabilities. If the attacker’s goals defined as follows:
in key-recovery (KR), it tries to compute a valid secret-key; in impersonation
(IMP), it tries to impersonate a prover by convincing an honest verifier; par-
allel impersonation (PIMP) is a parallel version of IMP, where the adversary
tries to convince a verifier in one of QCh many parallel sessions. The attacker’s
capabilities are defined as follows: in a key-only attack (KOA), the adversary is
only given the public-key; in a passive attack (PA), the adversary is provided
with valid transcripts between an honest prover and verifier. In total, we obtain
3 × 2 = 6 different security notions that were all previously considered in the
literature [1,37,41], except PIMP-YYY security.

Overview. We show via a chain of implications that KR-KOA-security (the
weakest possible security notion for ID where the adversary has to compute a
secret-key from a given public-key without any further oracle access) implies
multi-user unforgeability against chosen message attacks (MU-UF-CMA) of
SIG[ID]. The diagram in Fig. 1 summarizes our results. All implications are opti-
mal in terms of tightness and model requirements in the following sense. If one
implication makes use of a special model requirement, we prove its impossibility
without this requirement. For example, our implication PIMP-KOA −→ UF-KOA
requires the random oracle model [8] (with its well-known deficiencies [17]) and
we show that the non-programmable random oracle model [22] is not suffi-
cient to prove the same implication. Exactly one of our implications, namely
IMP-KOA −→ PIMP-KOA is non-tight, and we prove the impossibility of such a
tight implication. We now discuss the implications from Fig. 1 in more detail.

From Identification to Single User Security for Signatures. Our
first main theorem can be informally stated as follows.

Theorem 1. If the identification scheme is KR-KOA-secure against any adver-
sary having success ratio ρ, then SIG[ID] is UF-CMA-secure in the random oracle
model against any adversary having success ratio ρ′ ≈ ρ/Qh, where Qh is the
maximal number of the adversary’s random oracle queries.

36 E. Kiltz et al.

Fig. 1. Overview of our notions and results for canonical identification schemes ID

and their implied signature schemes SIG[ID]. X
Z−→ Y means that X-security implies

Y-security under condition Z. Trivial implications are denoted with dashed arrows.
All implications are tight except the one marked with “loss Q”. The conditions are:
rew. (reduction rewinds), loss Q (reduction loses a factor of Q), PRO (reduction is in
the programmable random oracle model), SS (reduction uses special soundness), and
RSR (reduction uses random self-reducibility for tightness). All implications from top

to bottom require HVZK. X � Z−→ Y means that X-security does not imply Y-security if
only condition Z is fulfilled. The conditions are: non-rew. (reduction does not rewind),
loss < Q (reduction loses a factor smaller than Q), and NPRO (reduction is in the
non-programmable random oracle model).

The proof of this theorem is obtained by combining four independent Lemmas 3,
4, 5, and 6 via intermediate security notions IMP-KOA, PIMP-KOA, and UF-KOA1

security, see Fig. 1. We certainly do not claim any novelty of the above lem-
mas, nor a new proof technique. For example, the implication IMP-KOA →
UF-CMA is already explicitly contained in [37] (and implicitly in the seminal
paper by Pointcheval and Stern [41]). However, by our specific choice of the inter-
mediate security notions, all four proofs are simple and intuitive. In particular,
unlike previous proofs, none of our proofs requires the full power of the Fork-
ing Lemma [5,41]. At the core of Lemma 3 (KR-KOA → IMP-KOA) we use a
new Multi-Instance Reset Lemma (Lemma 1) which is a generalization of Bel-
lare and Palacio’s (Single-Instance) Reset Lemma [6] and may be of independent
interest. The key to simplicity is the fact that IMP-KOA security only deals with
one single impersonation session, which greatly simplifies the probability analysis.
Even though the reduction uses rewinding, the RSR property makes the implica-
tion KR-KOA → IMP-KOA tight. We view identifying the intermediate security
notions that allow for simple proofs as a conceptual contribution. Our result show
that IMP-KOA and PIMP-KOA security can be seen as the tightness barrier for
identification schemes in the sense that PIMP-KOA is the weakest of our notions
for ID that is tightly equivalent to (multi-user) UF-CMA security of SIG[ID] in the
random oracle model, whereas IMP-KOA is tightly equivalent to KR-KOA.

One particular advantage of our modular approach is that we are able to
prove optimality of all four implications via meta-reductions (Lemmas 9, 10,
11, and 12). Lemma 10 proving the impossibility of a tight reduction between
1 Unforgeability against key-only attack (UF-KOA security) is the same as standard
UF-CMA security, but the adversary is not allowed to ask any signing query.

Optimal Security Proofs for Signatures from Identification Schemes 37

PIMP-KOA and IMP-KOA security is a generalization of Seurin’s impossibil-
ity result to canonical identification schemes [43]; Lemmas 11 and 12 proving
the impossibility of a reduction in the non-programmable random oracle model
between PIMP-KOA, UF-KOA, and UF-CMA can be considered as a fine-grained
version of a general impossibility result by Fukumitsu and Hasegawa [24] who
only consider the implication IMP-PA → UF-CMA; All our impossibility results
assume the reductions to be key-preserving [40] and are conditional in the sense
that the existence of a reduction would imply that ID does not satisfy some other
natural security property (that is believed to hold).

From Single-User to Multi-User Security for Signatures. Our second
main theorem can be informally stated as follows.

Theorem 2. If ID is UF-KOA-secure against any adversary having success ratio
ρ, then it is MU-UF-CMA-secure in the random oracle model against any adver-
sary having success ratio ρ′ ≈ ρ/4, independent of the number of users N in the
multi-user scenario.

This theorem improves the bound implied by previous generic reductions [25]
by a factor of N . Following our modular approach, the theorem is proved in
two steps via Lemmas 7 and 8. Lemma 7 proves that UF-KOA tightly implies
MU-UF-KOA. Tightness stems from the RSR property, meaning that from a
given public key pk we can derive properly distributed pk1, . . . , pkN such that
any signature σ which is valid under pk can be transformed into a signature σi

which is valid under pki and vice-versa.
Lemma 8 is our main technical contribution and proves MU-UF-KOA →

MU-UF-CMA in the programmable random oracle model, again with a tight
reduction. One is tempted to believe that it can be proved the same way as in
the single user setting (i.e., the same way as UF-KOA → UF-CMA). In the single
user setting, the reduction simulates signatures on mj using the HVZK prop-
erty to obtain a valid transcript (Rj , hj , sj) and programs the random oracle as
H(Rj ,mj) := hj . However, in the MU-UF-KOA experiment an adversary can ask
for a signature under pk1 on message m which makes the reduction program the
random oracle H(R1,m) := h1. Now, if the adversary submits a forgery (R1, s2)
under pk2 on the same message m, the reduction cannot use this forgery to break
the MU-UF-KOA experiment because the random oracle H(R1,m) was externally
defined by the reduction. Hence, for the MU-UF-KOA experiment, m, (R1, s2)
does not constitute a valid forgery. In order to circumvent the above problem
we make a simple probabilistic argument. In our reduction, about one half of
the multi-user public-keys are coming from the MU-UF-KOA experiment, for the
other half the reduction knows the corresponding secret-keys. Which secret-keys
are known is hidden from the adversary’s view. Now, if the multi-user adversary
first obtains a signature on message m under pk1 and then submits a forgery on
the same message m under pk2, the reduction hopes for the good case that one
of the public-keys comes from the MU-UF-KOA experiment and the other one is
known. This happens with probability 1/4 which is precisely the loss of our new
reduction.

38 E. Kiltz et al.

1.2 Example Instantiations

Schnorr Signatures. One of the most important and signature schemes in the
discrete logarithm setting is the Schnorr signature scheme [42]. It is obtained via
the Fiat-Shamir transform applied to the Schnorr identification protocol. The
recent expiry of the patent in 2008 has triggered a number of initiatives to obtain
standardized versions of it.

Theorems 1 and 2 can be used to derive a concrete security bound for strong
multi-user MU-UF-CMA-security of Schnorr signatures in the random oracle
model from the DLOG problem.2 Our reduction loses a factor of roughly Qh,
the number of random oracle queries. This improves previous bounds by a fac-
tor of N , the number of users in the system. We derive concrete example para-
meters for a provably secure instantiation. Figure 1 shows that DLOG is tightly
equivalent to IMP-KOA-security and PIMP-KOA-security is tightly equivalent to
MU-UF-CMA-security, meaning the tightness barrier for Schnorr lies precisely
between IMP-KOA and PIMP-KOA security.

Katz-Wang Signatures. The Chaum-Pedersen identification scheme [19] is
a double-generator version of Schnorr. It is at least as secure as Schnorr which
means one cannot hope for a tight proof under the DLOG assumption. However,
we can use a simple argument from [29,34] for a tight security proof of its
PIMP-KOA security under the (stronger) Decision Diffie-Hellman Assumption.
The resulting signature scheme is known as the Katz-Wang signature scheme
[34] and our framework yields a tight proof of its strong MU-UF-CMA-security.
Again, this improves previous bounds by a factor of N , the number of users in
the system.

Guillou-Quisquater Signatures. Another canonical identification scheme
of interest with the required properties is the one by Guillou-Quisquater [31].
Similar to Katz-Wang, for the Guillou-Quisquater scheme, we can use an argu-
ment from [2] for a tight proof of PIMP-KOA security under the Phi-hiding
assumption. Alternatively, we can give a proof with loss Qh under the Factoring
assumption. Our framework also shows that this loss is unavoidable. Details are
shown in the full version [35].

1.3 Related Work

Single-User Security. There have been many different works addressing the
single-user security of Fiat-Shamir based signature schemes SIG[ID]. In pioneer-
ing work, Pointcheval and Stern [41] introduced the Forking Lemma as a tool to
prove UF-CMA security of SIG[ID] from HVZK, SS and KR-KOA-security. Ohta
and Okamoto [37] gave an alternative proof from IMP-KOA security and HVZK.
Abdalla et al. [1] prove the equivalence of IMP-PA-security of ID and UF-CMA
security of SIG[ID] in the random oracle model. All above results incorporate a
2 We can even prove strong MU-UF-CMA security of Schnorr signatures in the sense

that a new signature on a previously signed message already counts as a valid forgery.

Optimal Security Proofs for Signatures from Identification Schemes 39

security loss of at least Qh and can be seen as a special case of our framework.
Furthermore, [6] consider stronger security notions (e.g., IMP-AA and man-in-the
middle security) for the Schnorr and GQ identification schemes. Abdalla et al. [3]
show that lossy identification schemes tightly imply UF-CMA-secure signatures
in the random oracle model from decisional assumptions. Our Multi-Instance
Reset Lemma (Lemma 1) is a generalization to the Reset Lemma of Bellare and
Palacio [6].

Multi-user security. To mitigate the generic security loss problem in the
multi-user setting for the special case of Schnorr’s signature scheme, Galbraith,
Malone-Lee, and Smart (GMLS) proved [25] a tight reduction, namely that
attacking the Schnorr signatures in the multi-user setting with N public-keys
provably cannot decrease (by more than a small constant factor) the attacker’s
success ratio compared to attacking the scheme in the single-user setting. Unfor-
tunately, Bernstein [11] recently pointed out an error in the GMLS proof leaving
a tight security reduction for Schnorr signatures as an open problem. Even worse,
Bernstein identifies an “apparently insurmountable obstacle to the claimed
[GMLS] theorem”. Section 4.3 of [11] further expands on the insurmountable
obstacle. Our Theorem 2 shows there is such a tight security reduction for
Schnorr signatures if one is willing to rely on the random oracle model. Addi-
tionally, in [35] we also prove an alternative tight reduction in the standard
model which assumes strong UF-CMA security. (Schnorr is generally believed to
be strongly UF-CMA secure and this is provably equivalent to UF-CMA security
in the random oracle model.) Proving the original GMLS theorem (i.e., without
random oracles and from standard UF-CMA security) remains an open problem.

Impossibility Results. In terms of impossibility results, Seurin [43], build-
ing on earlier work of [27,40], proves that there is no tight reduction from the
(one-more) discrete logarithm assumption to UF-KOA-security of Schnorr sig-
natures. A more recent result by [23] even excludes a reduction from any non-
interactive assumption.3 Fukumitsu and Hasegawa [24], generalizing earlier work
on Schnorr signatures [21,40], prove that SIG[ID] cannot be proved secure in the
non-programmable random oracle model only assuming IMP-PA security of ID.

Schnorr signatures vs. Key-Prefixed Schnorr signatures. After iden-
tifying the error in the GMLS proof, Bernstein [11] uses the lack of a tight
security reduction for Schnorr’s signature scheme as a motivation to promote a
“key-prefixed” modification to Schnorr’s signature scheme which includes the
verifier’s public-key in the hash function. The EdDSA signature scheme by
Bernstein et al. [12] is essentially a key-prefixing variant of Schnorr’s signature
scheme. (In the context of security in a multi-user setting, key-prefixing was con-
sidered before, e.g., in [14].) In [12] key-prefixing is advertized as “an inexpensive
way to alleviate concerns that several public keys could be attacked simultane-
ously.” Indeed, Bernstein [11] proves that single-user security of the original

3 The main result of the published paper [23] even excludes reduction from any inter-
active assumption (with special algebraic properties), but the proof turned out to
be flawed.

40 E. Kiltz et al.

Schnorr signatures scheme tightly implies multi-user security of the key-prefixed
variant of the scheme. That is, the key-prefixed variant has the advantage of
a standard model proof of its tight multi-user security, whereas for standard
Schnorr signatures one has to assume strong security or rely on the random
oracle model.

The TLS standard used to secure HTTPS connections is maintained by the
Internet Engineering Task Force (IETF) which delegates research questions to
the Internet Research Task Force (IRTF). Cryptographic research questions are
usually discussed in the Crypto Forum Research Group (CFRG) mailing list. In
the last months the CFRG discussed the issue of key-prefixing.

Key-prefixing comes with the disadvantage that the entire public-key has to
be available at the time of signing. Specifically, in a CFRG message from Sep-
tember 2015 Hamburg [32] argues “having to hold the public key along with
the private key can be annoying” and “can matter for constrained devices”.
Independent of efficiency, we believe that a cryptographic protocol should be
as light as possible and prefixing (just as any other component) should only
be included if its presence is justified. Naturally, in light of the GMLS proof,
Hamburg [32] and Struik [44] (among others) recommended against key prefixing
for Schnorr. Shortly after, Bernstein [10] identifies the error in the GMLS theo-
rem and posts a tight security proof for the key-prefixed variant of Schnorr signa-
tures. In what happens next, the participant of the CFRG mailing list switched
their minds and mutually agree that key-prefixing should be preferred, despite of
its previously discussed disadvantages. Specifically, Brown writes about Schnorr
signatures that “this justifies a MUST for inclusion of the public key in the mes-
sage of the classic signature” [16]. As a consequence, key-prefixing is contained in
the current draft for EdDSA [33]. In the light of our new results, we recommend
to reconsider this decision.

2 Definitions

2.1 Preliminaries

For an integer p, define [p] := {1, . . . , p} and Zp as the residual ring Z/pZ. If
A is a set, then a A denotes picking a from A according to the uniform
distribution. All our algorithms are probabilistic polynomial time unless stated
otherwise. If A is an algorithm, then a A denotes the random variable which
is defined as the output of A on input b. To make the randomness explicit, we
use the notation a := (A)(b; ρ) meaning that the algorithm is executed on input
b and randomness ρ. Note that A’s execution is now deterministic.

2.2 Canonical Identification Schemes

A canonical identification scheme ID is a three-move protocol of the form
depicted in Fig. 2. The prover’s first message R is called commitment, the verifier
selects a uniform challenge h from set ChSet, and, upon receiving a response s
from the prover, makes a deterministic decision.

Optimal Security Proofs for Signatures from Identification Schemes 41

Definition 1 (Canonical Identification Scheme). A canonical identifica-
tion scheme ID is defined as a tuple of algorithms ID := (IGen,P,ChSet,V).

– The key generation algorithm IGen takes system parameters par as input and
returns public and secret key (pk, sk). We assume that pk defines ChSet, the
set of challenges.

– The prover algorithm P = (P1,P2) is split into two algorithms. P1 takes as
input the secret key sk and returns a commitment R and a state St; P2 takes
as input the secret key sk, a commitment R, a challenge h, and a state St and
returns a response s.

– The verifier algorithm V takes the public key pk and the conversation transcript
as input and outputs a deterministic decision, 1 (acceptance) or 0 (rejection).

We require that for all (pk, sk) ∈ IGen(par), all (R,St) ∈ P1(sk), all h ∈ ChSet
and all s ∈ P2(sk,R, h,St), we have V(pk,R, h, s) = 1.

We make a couple of useful definitions. An identification scheme ID is called
unique if for all (pk, sk) ∈ IGen(par), (R,St) ∈ P1(sk), h ∈ ChSet, there exists at
most one response s ∈ {0, 1}∗ such that V(pk,R, h, s) = 1. A transcript is a three-
tuple (R, h, s). It is called valid (with respect to public-key pk) if V(pk,R, h, s) =
1. Furthermore, it is called real, if it is the output of a real interaction between
prover and verifier as depicted in Fig. 2. A canonical identification schemes ID has
α bits of min-entropy, if for all (pk, sk) ∈ IGen(par), the commitment generated
by the prover algorithm is chosen from a distribution with at least α bits of min-
entropy. That is, for all strings R′ we have Pr[R = R′] ≤ 2−α, if (R,St) P1(sk)

was honestly generated by the prover.

Fig. 2. A canonical identification scheme and its transcript (R, h, s).

We now define (parallel) impersonation against key-only attack (KOA), pas-
sive attack (PA), and active attack (AA).

Definition 2 ((Parallel) Impersonation). Let YYY ∈ {KOA,PA,AA}. A
canonical identification ID is said to be (t, ε,QCh, QO)-PIMP-YYY secure (paral-
lel impersonation against YYY attacks) if for all adversaries A running in time
at most t and making at most QCh queries to the challenge oracle Ch and QO

queries to oracle O,

42 E. Kiltz et al.

where on the i-th query Ch(Ri) (i ∈ [QCh]), the challenge oracle returns
4 Depending on YYY, oracle O is defined as follows.

– If YYY = KOA (key-only attack), then O always returns ⊥.
– If YYY = PA (passive attack), then O := Tran, where on the j-th empty query

Tran(ε) (j ∈ QO), the transcript oracle returns a real transcript (R′
j , h

′
j , s

′
j)

to A, where .
– If YYY = AA (active attack), then O := Prover = (Prover1,Prover2),

where on the j-th query Prover1(ε) (j ∈ QO), the prover oracle returns

to A; on query Prover2(j, h′
j), the oracle returns

, if R′
j is already defined (and ⊥ otherwise).

If YYY = KOA, then the parameter QO is not used and we simply speak of
(t, ε,QCh)-PIMP-KOA. Moreover, (t, ε,QO)-IMP-YYY (impersonation against
YYY attack) security is defined as (t, ε, 1, QO)-PIMP-YYY security, i.e., the
adversary is only allowed QCh = 1 query to the Ch oracle.

Definition 3 (Key-recovery). Let YYY ∈ {KOA,PA,AA}. A canonical iden-
tification ID is said to be (t, ε)-KR-YYY secure (key recovery under YYY attack)
if for all adversaries A running in time at most t,

where depending on YYY oracle O is defined as in Definition 2. The winning
condition (sk∗, pk) ∈ IGen(par) means that the tuple (sk∗, pk) is in the support
of IGen(par), i.e., that A outputs a valid secret-key sk∗ with respect to pk.

Definition 4 (Special Soundness). Acanonical identification ID is said tobeSS
(special sound) if there exists an extractor algorithm Ext such that, for all (pk, sk) ∈
IGen(par),givenanytwoacceptingtranscripts(R, h, s)and(R, h′, s′)(whereh �= h′),
we have .

Definition 5 (Random Self-reducibility). A canonical identification ID is
said to be RSR (random self-reducible) if there is an algorithm Rerand and two
deterministic algorithms Tran and Derand such that, for all (pk, sk) ∈ IGen(par):

– pk′ and pk′′ have the same distribution, where is the
rerandomized key-pair and is a freshly generated key-pair.

4 On two queries Ch(Ri) and Ch(Ri′) with the same input Ri = Ri′ the oracle returns

two independent random challenges and .

Optimal Security Proofs for Signatures from Identification Schemes 43

– For all (pk′, τ ′) ∈ Rerand(pk), all (pk′, sk′) ∈ IGen(par), and sk∗ = Derand(pk,
pk′, sk′, τ ′), we have (pk, sk∗) ∈ IGen(par), i.e., Derand returns a valid secret-
key sk∗ with respect to pk, given any valid sk′ for pk′.

– For all (pk′, τ ′) ∈ Rerand(pk), all transcripts (R′, h′, s′) that are valid with
respect to pk′, the transcript (R′, h′, s := Tran(pk, pk′, τ ′, (R′, h′, s′))) is valid
with respect to pk.

Definition 6 (Honest-verifier Zero-knowledge). A canonical identification
ID is said to be (perfect) HVZK (honest-verifier zero-knowledge) if there exists
an algorithm Sim that, given public key pk, outputs (R, h, s) such that (R, h, s)
is a real (i.e., properly distributed) transcript with respect to pk.

2.3 Digital Signatures

We now define syntax and security of a digital signature scheme. Let par be
common system parameters shared among all participants.

Definition 7 (Digital Signature). A digital signature scheme SIG is defined
as a triple of algorithms SIG = (Gen,Sign,Ver).

– The key generation algorithm Gen(par) returns the public and secret keys
(pk, sk).

– The signing algorithm Sign(sk,m) returns a signature σ.
– The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0

(reject).

We require that for all (pk, sk) ∈ Gen(par), all messages m ∈ {0, 1}∗, we have
Ver(pk,m,Sign(sk,m)) = 1.

Definition 8 (Multi-user Security). A signature scheme SIG is said to be
(t, ε,N,Qs)-MU-SUF-CMA secure (multi-user strongly unforgeable against cho-
sen message attacks) if for all adversaries A running in time at most t and
making at most Qs queries to the signing oracle,

where on the j-th query (ij ,mj) ∈ [N] × {0, 1}∗ (j ∈ [Qs]) the signing oracle
Sign returns to A, i.e., a signature on message mj under
public-key pkij .

We stress that an adversary in particular breaks multi-user security if he asks
for a signature on message m under pk1 and submits a valid forgery on the same
message m under pk2.

The first condition in the probability statement of Definition 8 is called
the correctness condition, the second condition is called the freshness condi-
tion. Definition 8 covers strong security in the sense that a new signature

44 E. Kiltz et al.

on a previously queried message is considered as a fresh forgery. For stan-
dard (non-strong) MU-UF-CMA security (multi-user unforgeablility against cho-
sen message attack) we modify the freshness condition in the experiment to
(i∗,m∗) /∈ {(ij ,mj ,) | j ∈ [Qs]}, i.e., to break the scheme the adversary has
to come up with a signature on a message-key pair which has not been queried
to the signing oracle. We also define (t, ε,N)-MU-UF-KOA security (multi-user
unforgeability against key only attack) as (t, ε,N, 0)-MU-UF-CMA security, i.e.
Qs = 0, the adversary is not allowed to make any signing query.

Definition 9 (Single-user Security). In the single-user setting, i.e. N = 1
users, (t, ε,Qs)-SUF-CMA security (strong unforgeablility against chosen mes-
sage attacks) is defined as (t, ε, 1, Qs)-MU-SUF-CMA security. Similarly, stan-
dard (non-strong) (t, ε,Qs)-UF-CMA security (unforgeablility against chosen
message attack) is defined as (t, ε, 1, Qs)-MU-UF-CMA security. Further, (t, ε)-
UF-KOA security (unforgeablility against key-only attack) is defined as (t, ε, 1, 0)-
MU-SUF-CMA security, i.e., N = 1 users and Qs = 0 signing queries.

Security in the random oracle model. The security of identification and
signature schemes containing a hash function can be analyzed in the random
oracle model [8]. In this model hash values can only be accessed by an adversary
through queries to an oracle H. On input x this oracle returns a uniformly ran-
dom output H(x) which is consistent with previous queries for input x. Using the
random oracle model, the maximal number of queries to H becomes a parameter
in the concrete security notions. For example, for (t, ε,N,Qs, Qh)-MU-SUF-CMA
security we consider all adversaries making at most Qh queries to the random
oracle. We make the convention that each query to the random oracle made dur-
ing a signing query is counted as the adversary’s random oracle query, meaning
Qh ≥ Qs.

2.4 Signatures from Identification Schemes

Let ID := (IGen,P,ChSet,V) be a canonical identification scheme. By the general-
ized Fiat-Shamir transformation [6], the signature scheme SIG[ID] := (Gen,Sign,
Ver) from ID is defined as follows. par contains the system parameters of ID and
a hash function H : {0, 1}∗ → ChSet.

In some variants of the Fiat-Shamir transform, the hash additionally inputs
some public parameters, for example h = H(pk,R,m).

We call ID commitment-recoverable, if V(pk,R, h, s) first recomputes R′ =
V′(pk, h, s) and then outputs 1 iff R′ = R. For commitment-recoverable

Optimal Security Proofs for Signatures from Identification Schemes 45

ID, we can define an alternative Fiat-Shamir transformation SIG′[ID] :=
(Gen,Sign′,Ver′), where Gen is as in SIG[ID]. Algorithm Sign′(sk,m) is defined
as Sign(sk,m) with the modified output σ′ = (h, s). Algorithm Ver′(pk,m, σ′)
first parses σ′ = (h, s), then recomputes the commitment as R′ := V′(pk, h, s),
and finally returns 1 iff H(R′,m) = h.

Since σ = (R, s) can be publicly transformed into σ′ = (h, s) and vice-cersa,
SIG[ID] and SIG′[ID] are equivalent in terms of security. On the one hand, the
alternative Fiat-Shamir transform yields shorter signatures if h ∈ ChSet has a
smaller representation size than response s. On the other hand, signatures of the
Fiat-Shamir transform maintain their algebraic structure which in some cases
enables useful properties such as batch verification.

3 Security Implications

In this section we will prove the following two main results.

Theorem 3 (Main Theorem 1). Suppose ID is SS, HVZK, RSR and has α
bit min-entropy. If ID is (t, ε)-KR-KOA secure then SIG[ID] is (t′, ε′, Qs, Qh)-
UF-CMA-secure and (t′′, ε′′, N,Qs, Qh)-MU-UF-CMA-secure in the programmable
random oracle model, where

ε′

t′
≤ 6(Qh + 1) · ε

t
+

Qs

2α
+

1
|ChSet| ,

ε′′

t′′
≤ 24(Qh + 1) · ε

t
+

Qs

2α
+

1
|ChSet| .

The proof of Theorem 3 is obtained by combining Lemmas 3–8 below and using
Qh ≤ t′ − 1.

Theorem 4 (Main Theorem 2). Suppose SIG[ID] is HVZK, RSR and has α
bit min-entropy. If SIG[ID] is (t, ε,Qh + Qs)-UF-KOA secure then SIG[ID] is
(t′, ε′, N,Qs, Qh)-MU-UF-CMA secure in the programmable random oracle model,
where

ε′ ≤ 4ε +
QhQs

2α
, t′ ≈ t

and Qs, Qh are upper bounds on the number of signing and hash queries in the
MU-UF-CMA experiment, respectively.

The proof of Theorem 4 is obtained by combining Lemmas 7 and 8 below.
Here we present the proofs of Lemmas 1 and 3 (a new Multi-Instance

Reset Lemma and an application of it), Lemmas 7 and 8 (the implication of
“UF-KOA −→ MU-UF-CMA”), which are the main contributions of this paper. All
remaining proofs are deferred to [35].

46 E. Kiltz et al.

3.1 Multi-Instance Reset Lemma

We first state a new reset lemma that we will later use in the proof of Theorem 3.
It is presented in the style of Bellare and Neven’s General Forking Lemma [5] and
does not talk about signatures or identification protocols. It is a generalization
to many parallel instances of the Reset Lemma [6], which is obtained by setting
N = 1.

Lemma 1 (Multi-Instance Reset Lemma). Fix an integer N ≥ 1 and a
non-empty set H. Let C be a randomized algorithm that on input (I, h) returns a
pair (b, σ), where b is a bit and σ is called the side output. Let IG be a randomized
algorithm that we call the input generator. The accepting probability of C is
defined as

The (multi-instance) reset algorithm RC associated to C is the randomized algo-
rithm that takes input I1, . . . , IN and proceeds as follows.

Let . Then

res ≥
(

1 −
(

1 − acc +
1

|H|
)N

)2

.

Proof. For fixed instance I and coins ρ, we define the probabilities

Optimal Security Proofs for Signatures from Identification Schemes 47

As for fixed I, ρ, the two events b = 1 and b′ = 1 are independent and we
obtain

res(I, ρ) ≥ acc(I, ρ) ·
(
acc(I, ρ) − 1

|H|
)

, (1)

where the additive factor 1
|H| accounts for the fact that Pr[h′ = h] = 1/|H|.

With the expectation taken over and random coins ρ, we bound

EI,ρ [res(I, ρ)] ≥ EI,ρ

[
acc(I, ρ) ·

(
acc(I, ρ) − 1

|H|
)]

≥ EI,ρ[acc(I, ρ)] ·
(
EI,ρ[acc(I, ρ)] − 1

|H|
)

= acc

(
acc − 1

|H|
)

.

Above, we used (1), Jensen’s inequality5 applied to the convex function ϕ(X) :=
X · (X − 1/|H|), and the fact that acc = EI,ρ[acc(I, ρ)].

Next, consider the random variables bi∗ and b′
j (j ∈ [N]) as defined during in

the execution of RA(I1, . . . , IN). Using acc = Pr[bi∗ = 1] and Pr[b′
j = 1 ∧ bi∗ =

1] = EIi∗ ,ρi∗ [res(Ii∗ , ρi∗)], we obtain

Pr[b′
j = 1 | bi∗ = 1] =

Pr[b′
j = 1 ∧ bi∗ = 1]
Pr[bi∗ = 1]

≥ acc − 1
|H| .

Finally, we bound

Pr[no abort in phase 2 | no abort in phase 1] = 1 −
N∏

j=1

(1 − Pr[b′
j = 1 | bi∗ = 1])

≥ 1 −
(

1 − acc +
1

|H|
)N

,

and

Pr[no abort in phase 1] = 1 −
N∏

i=1

(1 − Pr[bi = 1]) = 1 − (1 − acc)N

to establish

res = Pr[no abort in phase 1 ∧ no abort in phase 2] ≥ (1 − (1 − acc +
1

|H|)
N)2.

This completes the proof.
�

5 Jensen’s inequality states that if ϕ is a convex function and X is a random variable,
then E[ϕ(X)] ≥ ϕ(E[X]).

48 E. Kiltz et al.

3.2 Proof of the Main Theorems

Lemma 2 (XXX-KOA −→ XXX-PA). Let XXX ∈ {KR, IMP,PIMP}. If ID is
(t, ε,QCh)-XXX-KOA secure and HVZK, then ID is (≈ t, ε,QCh, QO)-XXX-PA
secure.

The proof is given in the full version [35].
Lemma 3 below proving that KR-KOA tightly implies IMP-KOA uses the

Multi-Instance Reset Lemma and that takes advantage of ID’s random self-
reducibility (RSR).

Lemma 3 (KR-KOA
rewinding−−−−−−−→ IMP-KOA). If ID is (t, ε)-KR-KOA secure, SS

and RSR, then ID is (t′, ε′)-IMP-KOA secure, where for any N ≥ 1,

ε ≥ (1 − (1 − ε′ +
1

|ChSet|)
N)2, t ≈ 2Nt′. (2)

In particular, the two success ratios are related as

ε′

t′
− 1

t′|ChSet| ≤ 6 · ε

t
. (3)

We remark that without RSR, we can still obtain the weaker bounds ε ≥ ε′(ε′ −
1

|ChSet|), t ≈ 2t′.

Proof. We first show how to derive (3) from (2). If ε′ ≤ 1/|ChSet|, then (3)
holds trivially. Assuming ε′ > 1/|ChSet|, we set N := (ε′ − 1/|ChSet|)−1 to
obtain t ≈ 2t′/(ε′ − 1/|ChSet|) and ε ≥ (1 − 1

e)2 ≥ 1
3 . Dividing ε by t yields (3).

To prove (2), let A be an adversary against the (t′, ε′)-IMP-KOA-security of
ID. We now build an adversary B against the (t, ε)-KR-KOA security of ID, with
(t, ε) as claimed in (2).

We use the Multi-Instance Reset Lemma (Lemma 1), where H := ChSet and
IG runs and returns pk as instance I. We first define adver-
sary C(pk, h; ρ) that executes A(pk; ρ), answers A’s single query R with h,
and finally receives s from A. If transcript (R, h, s) is valid with respect to pk
(i.e., V(pk,R, h, s) = 1)), C returns (b = 1, σ = (R, h, s)); otherwise, it returns
(b = 0, ε). By construction, C returns b = 1 iff A is successful: acc = ε′.

Adversary B is defined as follows. For each i ∈ [N], it uses the RSR prop-
erty of ID to generate a fresh public key/trapdoor pair
Next, it runs with C defined above. If i∗ ≥
1, then both transcripts σ = (R, h, s) and σ′ = (R, h′, s′) are valid with
respect to pki∗ and h �= h′. B uses the SS property of ID and computes
ski∗ ← Ext(pki∗ , R, h, s, h′, s′). Finally, using the RSR property of ID, it returns
sk = Derand(pki∗ , ski∗ , τi∗) and terminates. By construction, B is successful iff
RC is. By Lemma 1 we can bound B’s success probability as

ε = res ≥ (1 − (1 − ε′ +
1

|ChSet|)
N)2.

Optimal Security Proofs for Signatures from Identification Schemes 49

The running time t of B is that of RC , meaning 2Nt′ plus the N times the
time to run the Rerand and Derand algorithms of RSR plus the time to run the
Ext algorithm of SS. We write t ≈ 2Nt′ to indicate that this is the dominating
running time of B.
�

Lemma 4 (IMP-KOA
lossQ−−−−→ PIMP-KOA). If ID is (t, ε)-IMP-KOA secure, then

ID is (t′, ε′, QCh)-PIMP-KOA secure, where

ε′ ≤ QCh · ε, t′ ≈ t.

The proof is given in the full version [35].

Lemma 5 (PIMP-KOA PRO−−−→ UF-KOA). If ID is (t, ε,QCh)-PIMP-KOA secure,
then SIG[ID] is (t′, ε′, Qh)-UF-KOA secure in the programmable random oracle
model, where

ε′ = ε, t′ ≈ t, Qh = QCh − 1.

The proof is given in the full version [35].
The following lemma is a special case of Lemma 8 (with a slightly improved

bound).

Lemma 6 (UF-KOA PRO−−−→ UF-CMA). Suppose ID is HVZK and has α bit min-
entropy. If SIG[ID] is (t, ε,Qh)-UF-KOA secure, then SIG[ID] is (t′, ε′, Qs, Qh)-
UF-CMA secure in the programmable random oracle model, where

ε′ ≤ ε +
QhQs

2α
, t′ ≈ t,

and Qs, Qh are upper bounds on the number of signing and hash queries in the
UF-CMA experiment, respectively.

Lemma 7 (UF-KOA RSR−−−→ MU-UF-KOA). Suppose ID is RSR. If SIG[ID] is
(t, ε)-UF-KOA secure, then SIG[ID] is (t′, ε′, N)-MU-UF-KOA secure, where

ε′ = ε, t′ ≈ t.

Note that without the RSR property one can use the generic bounds from [25]
to obtain a non-tight bound with a loss of N .

Proof. Let A be an algorithm that breaks (t′, ε′, N)-MU-UF-KOA security of
SIG[ID]. We will describe an adversary B invoking A that breaks (t, ε)-UF-KOA
security of SIG[ID] with (t, ε) as stated in the lemma. Adversary B is executed
in the UF-KOA experiment and obtains a public-key pk.

Simulation of public-keys input to A. For each i ∈ [N], B generates
by using the RSR property of ID. Then B runs A on

input (pk1, . . . , pkN).

Forgery. Eventually, A will submit its forgery (i∗,m∗, σ∗ := (R∗, s∗))
in the MU-UF-KOA experiment. B computes h∗ = H(m∗, R∗) and runs

50 E. Kiltz et al.

. By the RSR property of ID, the random vari-
ables (pk,R∗, h∗, s) and (pki∗ , R∗, h∗, s∗) are identically distributed. If σ∗ is a
valid signature on message m∗ under pki∗ , then (R∗, s) is also a valid signature
on m∗ under pk. Thus, we have ε = ε′. The running time t of B is t′ plus the N
times the time to run the Rerand and Tran algorithms of RSR. We again write
t ≈ t′.
�
Lemma 8 (MU-UF-KOA PRO−−−→ MU-UF-CMA). Suppose ID is HVZK and has
α bit min-entropy. If SIG[ID] is (t, ε,N,Qh)-MU-UF-KOA secure, then SIG[ID] is
(t′, ε′, N,Qs, Qh)-MU-UF-CMA secure in the programmable random oracle model,
where

ε′ ≤ 4ε +
QhQs

2α
, t′ ≈ t,

and N is the number of users and Qs and Qh are upper bounds on the number
of signing and hash queries in the MU-UF-CMA experiment, respectively.

Proof. Let A be an algorithm that breaks (t′, ε′, N,Qs, Qh)-MU-UF-CMA secu-
rity of SIG[ID]. We will describe an adversary B invoking A that breaks
(t, ε,N,Qh)-MU-UF-KOA security of SIG[ID] with (t, ε) as stated in the lemma.
Adversary B is executed in the MU-UF-KOA experiment and obtains public-keys
(pk1, . . . , pkN), and has access to a random oracle H.

Preparation of public-keys. For each i ∈ [N], adversary B picks a secret
bit . If bi = 1 then B defines pk′

i := pki, else B generates the key-pair
itself. We note that all simulated public-keys are correctly

distributed.
Adversary B runs A on input (pk′

1, . . . , pk′
N) answering hash queries to ran-

dom oracle H ′ and signing queries as follows.

Simulation of hash queries. A hash query H ′(R,m) is answered by B by
querying its own hash oracle H(R,m) and returning its answer.

Simulation of signing queries. On A’s j-th signature query (ij ,mj), B
returns a signature σj on message mj under pkij according to the following
case distinction.

– Case A: bij = 0. In that case sk′
ij

is known to B and the signature is computed

as . Note that this involves B making a hash
query and defining H ′(Rj ,mj) := H(Rj ,mj).

– Case B: bij = 1. In that case sk′
ij

is unknown to B and the signa-
ture is computed using the HVZK property of ID. Concretely, B runs

. If hash value H ′(Rj ,mj) was already defined (via one
of A’s hash/signing queries) and H ′(Rj ,mj) �= hj , B aborts. Otherwise, it
defines the random oracle

H ′(Rj ,mj) := hj (4)

and returns σj := (Rj , sj), which is a correctly distributed valid signatures
on mj under pkij . Note that by (4), B makes H and H ′ inconsistent, i.e., we

Optimal Security Proofs for Signatures from Identification Schemes 51

have H(Rj ,mj) �= H ′(Rj ,mj) with high probability. Also note that for each
signing query, B aborts with probability at most Qh/2α because Rj has min-
entropy α. Since the number of signing queries is bounded by Qs, B aborts
overall with probability at most QhQs/2α.

Forgery. Eventually, A will submit its forgery (i∗,m∗, σ∗ := (R∗, s∗)). We
assume that it is a valid forgery in the MU-UF-CMA experiment, i.e., for
h∗ = H ′(R∗,m∗) we have V(pk′

i∗ , R∗, h∗, s∗) = 1. Furthermore, it satisfies the
freshness condition, i.e.,

(i∗,m∗) �∈ {(ij ,mj) : j ∈ [Qs]}. (5)

After receiving A’s forgery, B computes a forgery for the MU-UF-KOA experiment
according to the following case distinction.

– Case 1: There exists a j ∈ [Qs] such that (m∗, R∗) = (mj , Rj). (If there is
more than one j, fix any of them.) In that case we have and h∗ = hj and
furthermore i∗ �= ij by the freshness condition (5).
• Case 1a: (bi∗ = 1) and (bij = 0). Then the hash value h∗ = H ′(R∗,m∗) was

not programmed by B in (4). That means h∗ = H ′(R∗,m∗) = H(R∗,m∗)
and B returns (i∗,m∗, (R∗, s∗)) as a valid forgery to its MU-UF-KOA exper-
iment.

• Case 1b: (bi∗ = bij) or (bi∗ = 0 ∧ bij = 1). Then B aborts.
Note that in case 1 we always have i∗ �= ij and therefore B does not abort
with probability 1/4 in which case it outputs a valid forgery.

– Case 2: For all j ∈ [Qs] we have: (m∗, R∗) �= (mj , Rj).
• Case 2a: bi∗ = 1. Then the hash value h∗ = H ′(R∗,m∗) was not pro-

grammed by B in (4). That means h∗ = H ′(R∗,m∗) = H(R∗,m∗) and B
returns (i∗,m∗, (R∗, s∗)) as a valid forgery to its MU-UF-KOA experiment.

• Case 2b: bi∗ = 0. Then B aborts.
Note that in case 2, B does not abort with probability 1/2 in which case it
outputs a valid forgery.

Overall, B returns a valid forgery of MU-UF-KOA experiment with probability

ε ≥ min
{

1
4
,
1
2

}
·
(

ε′ − QhQs

2α

)
=

1
4

(
ε′ − QhQs

2α

)
.

The running time of B is that of A plus the Qs executions of Sim. We write
t′ ≈ t. This completes the proof.
�
If s in ID is uniquely defined by (pk,R, h) (e.g., as in the Schnorr identifica-
tion scheme), then one can show the above proof even implies MU-SUF-CMA
security of SIG[ID]. The simulation of hash and signing queries is the same as
in the above proof. Let (i∗,m∗, R∗, s∗) be A’s forgery. The freshness condition
of the MU-SUF-CMA experiment says that (i∗,m∗, R∗, s∗) /∈ {(ij ,mj , Rj , sj) :
j ∈ [Qs]}. Together with the uniqueness of ID, this implies (i∗,m∗, R∗) /∈
{(ij ,mj , Rj) : j ∈ [Qs]}. If (i∗,m∗) �∈ {(ij ,mj) : j ∈ [Qs]}, then B can break
MU-UF-KOA security by the same case distinction as in the proof above. Other-
wise, we have R∗ /∈ {Rj : j ∈ [Qs]}, in which case we can argue as in case 2.

52 E. Kiltz et al.

4 Impossibility Results

In this section, we show that Theorems 3 and 4 from the previous section are
optimal in the sense that the security reduction requires: rewinding (Lemma
9), security loss of at least O(Q) (Lemma 10) and programmability of random
oracles (Lemmas 11 and 12).

Let X and Y be some hard cryptographic problems, defined through a (possi-
bly) interactive experiment. A black-box reduction R from X to Y is an algorithm
that, given black-box access to an adversary A breaking problem Y, breaks prob-
lem X. If X and Y are security notions for identification or signatures schemes,
then a reduction R is called key-preserving, if R only makes calls to A with the
same pk that it obtained by its own problem X. All our reductions considered in
this section are key-preserving. All proofs from this section are given in the full
version [35].

Lemma 9 (KR-KOA �non-rewind.−−−−−−−−−→ IMP-KOA). If there is a key-preserving
reduction R that (tR, εR)-breaks KR-KOA security of ID with one-time black-
box access to an adversary A that (tA, εA)-breaks IMP-KOA security of ID, then
there exists an algorithm M that (tM, εM, QO)-breaks IMP-AA security of ID,
where

εM ≥ εR − 1
|ChSet| , tM ≈ tR, QO = 1.

For our next impossibility result, we will require the following definition for
identification schemes.

Definition 10 (Concurrent (Weak) Impersonation against Man-in-
the-Middle Attacks). A canonical identification ID is said to be (t, ε,QCh, QO)-
IMP-MIM secure (impersonation against man-in-the-middle attacks) if for all
adversaries A running in time at most t and adaptively making at most QO queries
to the prover oracle Prover and QCh queries to the challenge oracle Ch,

where oracles Prover and Ch are defined as in Definition 2. We define
weak impersonation against man-in-the-middle attack (wIMP-MIM) by restrict-
ing Ri∗ ∈ {R′

1, . . . , R
′
QO

}.
We remark that wIMP-MIM is a non-standard definition without any practical

relevance, but it will only be used for showing negative results. The following
generalizes a result by Seurin [43] to canonical identification schemes.

Lemma 10 (IMP-KOA
loss<Q

�−−−−−→ PIMP-KOA). Suppose that ID has α bit min-
entropy and there is a key-preserving reduction R that (tR, εR)-breaks IMP-KOA

Optimal Security Proofs for Signatures from Identification Schemes 53

security of ID with n-time black-box access to an adversary A that (tA, εA, QCh)-
breaks PIMP-KOA security of ID. Then there exists an algorithm M that
(tM, εM, 1, QO = nQCh)-breaks IMP-MIM security of ID, where

εM ≥ εR − n ln
(
(1 − εA)−1

)
QCh

− n

|ChSet| − n

2α
, tM ≈ tR.

For a precise analysis of the function ln
(
(1 − εA)−1

)
, we refer to [43]. For

our purpose, it is sufficient that for a concrete choice of εA, there is a constant
c such that c · εA = ln

(
(1 − εA)−1

)
. Hence Lemma 10 gives roughly εM ≥

εR − (c · n/QCh) · εA for a suitable choice of εA. Therefore εR can be at most
(c ·n/QCh) ·εA. Otherwise M would break IMP-MIM security of ID with εM > 0.

In the proof of Lemma 10 (cf. [35]), the meta-reduction just forwards all Rj,i

received during the Man-in-the-Middle attack and R sent by R. So if R is fur-
thermore randomness-preserving, i.e., it chooses R ∈ {R1,1, . . . , Rn,QCh

}, then
M attacks wIMP-MIM-security of ID. This observation (formalized in the follow-
ing corollary) is important since the Schnorr identification scheme is wIMP-MIM
but not IMP-MIM-secure.

Corollary 1. If ID has α bit min-entropy and there exists a key- and
randomness-preserving reduction R that (tR, εR)-breaks IMP-KOA security
of ID with n-time black-box access to an adversary A that (tA, εA, QCh)-
breaks PIMP-KOA security of ID, then there exists an algorithm M that
(tM, εM, 1, QO = nQCh)-breaks wIMP-MIM security of ID, where

εM ≥ εR − n ln
(
(1 − εA)−1

)
QCh

− n

|ChSet| − n

2α
, tM ≈ tR.

Lemma 11 (IMP-KOA �NPRO−−−−−→ UF-KOA). If there exists a key-preserving
reduction R in the non-programmable random oracle (NPRO) model that
(tR, εR)-breaks IMP-KOA security of ID with n-time black-box access to an adver-
sary A that (tA, εA, Qh)-breaks UF-KOA security of SIG[ID], then there exists an
algorithm M that (tM, εM, 1)-breaks IMP-AA-security of ID, where

εM ≥ εR − 1
|ChSet| , tM ≈ tR.

By Lemmas 4 and 11 implies that there is no reduction from PIMP-KOA to
UF-KOA in the non-programmable random oracle model.

The following simple lemma actually holds for any signature scheme SIG.

Lemma 12 (UF-KOA �NPRO−−−−−−→ UF-CMA). Suppose that there is a key-
preserving reduction R in the non-programmable random oracle (NPRO) model
that (tR, εR, Qh)-breaks UF-KOA security of SIG with n-time black-box access to
an adversary A that (tA, εA, Qs, Qh)-breaks UF-CMA security of SIG. Then there
exists an algorithm M that (tM, εM)-breaks UF-KOA security of SIG, where

εM ≥ εR, tM ≈ tR.

54 E. Kiltz et al.

Remark 1. All the reductions considered in this section are key-preserving which
is the main restriction of our results. If pk and R are elements from some multi-
plicative group G of prime order p, then we can extend our previous techniques
to exclude the larger class of algebraic reductions. A reduction is algebraic, if for
all group elements h output by the reduction, their respective representation is
known. That is, if at some point of its execution the reduction holds group ele-
ments g1, . . . , gn ∈ G and outputs a new group element h, then it also knows it
representation meaning it also outputs (α1, . . . , αn) ∈ Z

n
p satisfying h =

∏
gαi

i .
Note that key-preserving and randomness-preserving reductions are a special
case of algebraic reductions.

5 Instantiations

In this section we consider two important identification schemes, namely the ones
by Schnorr [42] and by Katz-Wang [19,34]. We use our framework to derive tight
security bounds and concrete parameters for the corresponding Schnorr/Katz-
Wang signature schemes. In the full version [35] we discuss one more identifica-
tion scheme, namely the one by Guillou-Quisquater [31].

5.1 Schnorr Identification/Signature Scheme

Schnorr’s Identification Scheme. The well-known Schnorr’s identification
scheme is one of the most important instantiations of our framework. For com-
pleteness we show that Schnorr’s identification has large min-entropy, special
soundness (SS), honest-verifier zero-knowledge (HVZK), random-self reducibil-
ity (RSR) and key-recovery security (KR-KOA) based on the discrete logarithm
problem (DLOG). Moreover, based on the one-more discrete logarithm problem
(OMDL), Schnorr’s identification is actively secure (IMP-AA) and weakly secure
against man-in-the-middle attack (wIMP-MIM).

Let par := (p, g,G) be a set of system parameters, where G = 〈g〉 is a
cyclic group of prime order p with a hard discrete logarithm problem. Examples
of groups G include appropriate subgroups of certain elliptic curve groups, or
subgroups of Z∗

q . The Schnorr identification scheme IDS := (IGen,P,ChSet,V) is
defined as follows.

We recall the DLOG assumption.

Optimal Security Proofs for Signatures from Identification Schemes 55

Definition 11 (Discrete Logarithm Assumption). The discrete logarithm
problem DLOG is (t, ε)-hard in par = (p, g,G) if for all adversaries A running

in time at most t,

Lemma 13. IDS is a canonical identification with α = log p bit min-entropy and
it is unique, has special soundness (SS), honest-verifier zero-knowledge (HVZK)
and is random-self reducible (RSR). Moreover, if DLOG is (t, ε)-hard in par =
(p, g,G) then IDS is (t, ε)-KR-KOA secure.

Proof. The correctness of IDS is straightforward to verify. We note that R in
is uniformly random over G. Hence, IDS has log |G| = log p bit

min-entropy. We show the other properties as follows.

Uniqueness. For all (X,x) ∈ IGen(par), (R := gr,St := r) ∈ P1(sk) and h ∈
{0, 1}n, the value s ∈ Zp satisfying gs = XhR ⇔ s = xh + r is uniquely defined.

Special Soundness (SS). Given two accepting transcripts (R, h, s) and
(R, h′, s′) with h �= h′, we define an extractor algorithm Ext(X,R, h, s, h′, s′) :=
x∗ := (s − s′)/(h − h′) such that, for all (X := gx, x) ∈ IGen(par), we have
Pr[gx∗

= X] = 1, since we have R = gsX−h = gs′
X−h′

and then X =
g(s−s′)/(h−h′).

Honest-verifier Zero-knowledge (HVZK). Given public key X, we let
Sim(X) first sample and then output (R := gsX−h, h, s).
Clearly, (R, h, s) is a real transcript, since s is uniformly random over Zp and R
is the unique value satisfying R = gsX−h.

Random-self Reducibility (RSR). Algorithm Rerand and two deterministic
algorithm Derand and Tran are defined as follows:

– Rerand(X) chooses and outputs (X ′ := X · gτ ′
, τ ′). We have that, for

all (X,x) ∈ IGen(par), X ′ is uniform and has the same distribution as X ′′,
where .

– Derand(X,X ′, x′, τ ′) outputs x∗ = x′ − τ ′. We have, for all
and (X ′, x′) ∈ IGen(par), X ′ = gx′

and x′ = x+τ ′

and thus x∗ = x.
– Tran(X,X ′, τ ′, (R′, h′, s′)) outputs s = s′ − τ ′ · h′. We have, for all (X ′, τ ′) ∈

Rerand(X := gx), if (R′, h′, s′) is valid with respect to X ′ := gx+τ ′
then

s = s′ − τ ′ · h′ = (x + τ ′)h′ + r − τ ′ · h′ = xh′ + r and (R′, h′, s) is valid with
respect to X.

Key-recovery against Key-only Attack (KR-KOA). KR-KOA-security for
ID is exactly the DLOG assumption.
�

Under the one-more discrete logarithm assumption [4], IDS is IMP-AA secure
[6] and in the full version [35] we show that IDS is weakly IMP-MIM secure.

We now define the Q-interactive discrete-logarithm problem which precisely
models PIMP-KOA-security for IDS, where Q = QO is the number of parallel
impersonation rounds.

56 E. Kiltz et al.

Definition 12 (Q-IDLOG). The interactive discrete-logarithm assumption Q-
IDLOG is said to be (t, ε)-hard in par = (p, g,G) if for all adversaries A running
in time at most t and making at most Q queries to the challenge oracle Ch,

where on the i-th query Ch(gri) (i ∈ [Q]), the challenge oracle returns
to A.

In [35] we prove that in the generic group model, the Q-IDLOG problem in groups
of prime-order p is at least (t, 2t2/p)-hard. Note that the bound is independent
of Q.

Schnorr’s Signature Scheme. Let H : {0, 1}∗ → {0, 1}n be a hash function
with n < log2(p). As IDS is commitment-recoverable we can use the alternative
Fiat-Shamir transformation to obtain the Schnorr signature scheme Schnorr :=
(Gen,Sign,Ver).

The DLOG problem is tightly equivalent to the 1-IDLOG problem by Lemma
3. Assuming the OMDL problem is hard, Schnorr is wIMP-MIM-secure and by
Corollary 1 there cannot exist a tight implication 1-IDLOG → Q-IDLOG meaning
the bound from Lemma 4 is optimal. By Lemmas 5 and 6, the Q-IDLOG problem
is tightly equivalent to SUF-CMA-security of Schnorr in the programmable ROM.
The latter is only tightly equivalent to MU-SUF-CMA-security in the program-
mable ROM (via Lemmas 7 and 8). In the full version [35] we improve this by
proving that SUF-CMA security is tightly equivalent to MU-SUF-CMA-security
in the standard model. Figure 3 summarizes the modular security implications
for Schnorr.

We derive the following concrete security implications.

Lemma 14. If DLOG is (t, ε)-hard in par = (p, g,G) then Schnorr is
(t′, ε′, Qs, Qh)-SUF-CMA secure and (t′′, ε′′, N,Qs, Qh)-MU-SUF-CMA secure in
the programmable random oracle model, where

ε′

t′
≤ 6(Qh + 1) · ε

t
+

Qs

p
+

1
2n

,

ε′′

t′′
≤ 12(Qh + 1) · ε

t
+

Qs

p
+

1
2n

.

Optimal Security Proofs for Signatures from Identification Schemes 57

Lemma 15. If Qh-IDLOG is (t, ε)-hard in par then Schnorr is (t′, ε′, N,Qs, Qh)-
MU-SUF-CMA secure in the programmable random oracle model, where

ε′ ≤ 2ε +
QhQs

p
, t′ ≈ t.

We leave it an open problem to come up with a more natural hard problem over
par that tightly implies Q-IDLOG (and hence MU-SUF-CMA-security of Schnorr).
Note that according to [23], the hard problem has to have at least one round of
interaction.

Fig. 3. Security relations for the Schnorr signature scheme. All implications except
“1-IDLOG −→ Q-IDLOG” are tight.

The interpretation for the multi-user security of Schnorr over elliptic-curve
groups is as follows. It is well-known that a group of order p providing k-bits
security against the DLOG problem requires log p ≥ 2k. If one requires provable
security guarantees for Schnorr under DLOG, then one has to increase the group
size by ≈ log(Qh) bits. Reasonable upper bounds for log Qh are between 40
and 80. However, the generic lower bound for the Q-IDLOG problem indicates
that the only way to attack Schnorr in the sense of UF-KOA (and hence to
attack Q-IDLOG) is to break the DLOG problem. In that case using groups with
log p ≈ 2k already gives provable security guarantees for Schnorr.

5.2 Chaum-Pedersen Identification/Katz-Wang Signature Scheme

Chaum-Pedersen Identification Scheme. Let par := (p, g1, g2,G) be a set
of system parameters, where G = 〈g1〉 = 〈g2〉 is a cyclic group of prime order p.
The Chaum-Pedersen identification scheme IDCP := (IGen,P,ChSet,V) is defined
as follows.

We recall the DDH assumption.

58 E. Kiltz et al.

Definition 13 (Decision Diffie-Hellman Assumption). The Decision
Diffie-Hellman problem DDH is (t, ε)-hard in par = (p, g1, g2,G) if for all adver-
saries A running in time at most t,

Clearly, all security results of Schnorr carry over to the Chaum-Pedersen
identification scheme, i.e., IDCP is at least as secure as IDS. That also means
that we cannot hope for tight PIMP-KOA security from the DLOG assumption.
Instead, for the Chaum-Pedersen identification scheme, we give a direct tight
proof of PIMP-KOA security under the DDH assumption which we extracted
from [34].

Lemma 16. IDCP is a canonical identification scheme with α = log p bit
min-entropy and it is unique, has special soundness (SS), honest-verifier zero-
knowledge (HVZK) and is random-self reducible (RSR). Moreover, if DDH is
(t, ε)-hard in par = (p, g1, g2,G) then IDCP is (t′, ε′, QCh)-PIMP-KOA secure,
where t ≈ t′ and ε ≥ ε′ − QCh/2n.

Proof. The proof of SS, HVZK, uniqueness, and RSR is the same as in IDS.
To prove PIMP-KOA-security under DDH, let A be an adversary that

(t′, ε′, QCh)-breaks PIMP-KOA security. We build an adversary B against the
(t, ε)-hardness of DDH as follows. Adversary B inputs (X1,X2) and defines
pk := (X1,X2). On the i-th challenge query Ch(Ri,1, Ri,2), it returns .
Eventually, A returns i∗ ∈ [QCh] and si∗ and terminates. Finally, B outputs
d := V(pk,Ri∗ , hi∗ , si∗).

Analysis of B. If (X1,X2) = (gx
1 , gx

2), then B perfectly simulates the PIMP-KOA
game and hence Pr[d = 1 | (X1,X2) = (gx

1 , gx
2)] = ε′. If (X1,X2) = (gx1

1 , gx2
2)

with x1 �= x2, then we claim that even a computationally unbounded A can only
win with probability QCh/2n, i.e., Pr[d = 1 | (X1,X2) = (gx1

1 , gx2
2)] ≤ QCh/2n.

It remains to prove the claim. For each index i ∈ [QCh], A first commits to
Ri,1 = g

ri,1
1 and Ri,2 = g

ri,2
2 (for arbitrary ri,1, ri,2 ∈ Zp) and can only win if

there exists an si ∈ Zp such that

ri,1 + hix1 = si = ri,2 + hix2

⇔ hi =
ri,2 − ri,1

x1 − x2

where is chosen independently of ri,1, ri,2. This happens with prob-
ability at most 1/2n, so by the union bound we obtain the bound QCh/2n, as
claimed.
�

Katz-Wang Signature Scheme. Let H : {0, 1}∗ → {0, 1}n be a hash function
with n < log2(p). As IDCP is commitment-recoverable we can use the alternative
Fiat-Shamir transformation to obtain a signature scheme which is known as the
Katz-Wang signature scheme KW := (Gen,Sign,Ver).

Optimal Security Proofs for Signatures from Identification Schemes 59

By our results we obtain the following concrete security statements, where
the first bound matches [34, Theorem1].

Lemma 17. If DDH is (t, ε)-hard in par = (p, g1, g2,G) then KW is
(t′, ε′, Qs, Qh)-SUF-CMA secure and (t′′, ε′′, N,Qs, Qh)-MU-SUF-CMA secure in
the programmable random oracle model, where

ε′

t′
≤ ε

t
+

Qs

p
+

1
2n

,

ε′′

t′′
≤ 4 · ε

t
+

Qs

p
+

1
2n

.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002)

2. Abdalla, M., Ben Hamouda, F., Pointcheval, D.: Tighter reductions for forward-
secure signature schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 292–311. Springer, Heidelberg (2013)

3. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryp-
tology 16(3), 185–215 (2003)

5. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006,
pp. 390–399. ACM Press, October/November 2006

6. Bellare, M., Palacio, A.: GQ and schnorr identification schemes: proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

7. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, pp. 62–73. ACM Press,
November 1993

9. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

60 E. Kiltz et al.

10. Bernstein, D.: [Cfrg] key as message prefix => multi-key security. https://
mailarchive.ietf.org/arch/msg/cfrg/44gJyZlZ7-myJqWkChhpEF1KE9M, 2015

11. Bernstein, D.J.: Multi-user Schnorr security, revisited. Cryptology ePrint Archive,
Report 2015/996, 2015. http://eprint.iacr.org/

12. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

13. Beth, T.: Efficient zero-knowledged identification scheme for smart cards. In:
Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–84. Springer,
Heidelberg (1988)

14. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

15. Brickell, E.F., McCurley, K.S.: An interactive identification scheme based on dis-
crete logarithms and factoring. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 63–71. Springer, Heidelberg (1991)

16. Brown, D.: [Cfrg] key as message prefix => multi-key security. http://www.ietf.
org/mail-archive/web/cfrg/current/msg07336.html, 2015

17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998

18. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness
II: practical issues in cryptography. Cryptology ePrint Archive, Report 2016/360
(2016). http://eprint.iacr.org/

19. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

21. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013)

22. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:
Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010)

23. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 512–531. Springer, Heidelberg (2014)

24. Fukumitsu, M., Hasegawa, S.: Black-box separations on Fiat-shamir-type signa-
tures in the non-programmable random oracle model. In: López, J., Mitchell, C.J.
(eds.) ISC 2015. LNCS, vol. 9290, pp. 3–20. Springer, Heidelberg (2015)

25. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-
user setting. Inf. Process. Lett. 83(5), 263–266 (2002)

26. Galindo, D.: The exact security of pairing based encryption and signature schemes.
Based on a talk at Workshop on Provable Security, INRIA, Paris (2004). http://
www.dgalindo.es/galindoEcrypt.pdf

27. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 93–107. Springer, Heidelberg (2008)

28. Girault, M.: An identity-based identification scheme based on discrete logarithms
modulo a composite number. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 481–486. Springer, Heidelberg (1991)

https://mailarchive.ietf.org/arch/msg/cfrg/44gJyZlZ7-myJqWkChhpEF1KE9M
https://mailarchive.ietf.org/arch/msg/cfrg/44gJyZlZ7-myJqWkChhpEF1KE9M
http://eprint.iacr.org/
http://www.ietf.org/mail-archive/web/cfrg/current/msg07336.html
http://www.ietf.org/mail-archive/web/cfrg/current/msg07336.html
http://eprint.iacr.org/
http://www.dgalindo.es/galindoEcrypt.pdf
http://www.dgalindo.es/galindoEcrypt.pdf

Optimal Security Proofs for Signatures from Identification Schemes 61

29. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. J. Cryptology 20(4), 493–514 (2007)

30. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

31. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol.
403, pp. 216–231. Springer, Heidelberg (1990)

32. Hamburg, M.: Re: [Cfrg] EC signature: next steps (2015). https://mailarchive.ietf.
org/arch/msg/cfrg/af170b6OrLyNZUHBMOPWxcDrVRI

33. Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA),
7 October 2015. https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-00

34. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp.
155–164. ACM Press, October 2003

35. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from iden-
tification schemes. Cryptology ePrint Archive, Report 2016/191 (2016). http://
eprint.iacr.org/

36. Micali, S., Shamir, A.: An improvement of the Fiat-Shamir identification and signa-
ture scheme. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 244–247.
Springer, Heidelberg (1990)

37. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998)

38. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

39. Ong, H., Schnorr, C.-P.: Fast signature generation with a Fiat-Shamir-like scheme.
In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 432–440.
Springer, Heidelberg (1991)

40. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

41. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptology 13(3), 361–396 (2000)

42. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

43. Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle
model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 554–571. Springer, Heidelberg (2012)

44. Struik, R.: Re: [Cfrg] EC signature: next steps (2015). https://mailarchive.ietf.org/
arch/msg/cfrg/TOWH1DSzB-PfDGK8qEXtF3iC6Vc

https://mailarchive.ietf.org/arch/msg/cfrg/af170b6OrLyNZUHBMOPWxcDrVRI
https://mailarchive.ietf.org/arch/msg/cfrg/af170b6OrLyNZUHBMOPWxcDrVRI
https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-00
http://eprint.iacr.org/
http://eprint.iacr.org/
https://mailarchive.ietf.org/arch/msg/cfrg/TOWH1DSzB-PfDGK8qEXtF3iC6Vc
https://mailarchive.ietf.org/arch/msg/cfrg/TOWH1DSzB-PfDGK8qEXtF3iC6Vc

FHE Circuit Privacy Almost for Free

Florian Bourse(B), Rafaël Del Pino, Michele Minelli, and Hoeteck Wee

ENS, CNRS, INRIA and PSL Research University, Paris, France
{fbourse,delpino,minelli,wee}@di.ens.fr

Abstract. Circuit privacy is an important property for many
applications of fully homomorphic encryption. Prior approaches for
achieving circuit privacy rely on superpolynomial noise flooding or on
bootstrapping. In this work, we present a conceptually different app-
roach to circuit privacy based on a novel characterization of the noise
growth amidst homomorphic evaluation. In particular, we show that a
variant of the GSW FHE for branching programs already achieves circuit
privacy; this immediately yields a circuit-private FHE for NC1 circuits
under the standard LWE assumption with polynomial modulus-to-noise
ratio. Our analysis relies on a variant of the discrete Gaussian leftover
hash lemma which states that eᵀG−1(v)+ small noise does not depend
on v. We believe that this result is of independent interest.

Keywords: Homomorphic encryption · Circuit privacy · Branching
program · Noise flooding · Learning with errors · Rerandomization

1 Introduction

A fully homomorphic encryption (FHE) scheme is an encryption scheme which
supports computation on encrypted data: given a ciphertext that encrypts some
data μ, one can compute a ciphertext that encrypts f(μ) for any efficiently
computable function f , without ever needing to decrypt the data or know the
decryption key. FHE has numerous theoretical and practical applications, the
canonical one being to the problem of outsourcing computation to a remote
server without compromising one’s privacy. In 2009, Gentry put forth the first
candidate construction of FHE based on ideal lattices [Gen09]. Since then, sub-
stantial progress has been made [vDGHV10,SS10,SV10,BV11a,BV11b,BGV12,
GHS12,GSW13,BV14,AP14], offering various improvements in conceptual and

F. Bourse—Supported by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no.
339563 CryptoCloud)
R. Del Pino—Supported by SAFEcrypto (H2020 ICT-644729)
M. Minelli was supported by European Union’s Horizon 2020 research and innovation
programme under grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-
NET.
H. Wee—Columbia University and CQT, NUS. Supported in part by the ERC
Project aSCEND (H2020 639554) and NSF Award CNS-1445424.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 62–89, 2016.
DOI: 10.1007/978-3-662-53008-5 3

FHE Circuit Privacy Almost for Free 63

technical simplicity, efficiency, security guarantees, assumptions, etc.; in partic-
ular, Gentry, Sahai and Waters presented a very simple FHE (hereafter called
the GSW cryptosystem) based on the standard learning with errors (LWE)
assumption.

Circuit Privacy. An additional requirement in many FHE applications is that
the evaluated ciphertext should also hide the function f , apart from what is
inevitably leaked through the outcome of the computation f(μ); we refer to
this requirement as circuit privacy [SYY99,IP07]. In the context of outsourcing
computation, a server may wish to hide its proprietary algorithm from the client.
Circuit privacy is also a requirement when we use FHE for low-communication
secure two-party computation. In all existing FHE schemes, there is a “noise”
term in the ciphertext, which is necessary for security. The noise grows and
changes as a result of performing homomorphic operations and, in particular,
could leak information about the function f . The main challenge for achieving
FHE circuit privacy lies precisely in avoiding the leakage from the noise term in
the evaluated ciphertext.

Prior Works. Prior works achieve circuit privacy by essentially canceling out
the noise term in the evaluated ciphertext. There are two main approaches for
achieving this. The first is “noise flooding” introduced in Gentry’s thesis, where
we add a much larger noise at the end of the computation; in particular, the noise
that is added needs to be super-polynomially larger than the noise that accumu-
lates amidst homomorphic operations, which in turn requires that we start with
a super-polynomial modulus-to-noise ratio.1 This is a fairly mild assumption
for the early constructions of FHE schemes, which required a quasi-polynomial
modulus-to-noise ratio just to support homomorphic operations for circuits in
NC1 (i.e., circuits of logarithmic depth). The second is to decrypt and re-encrypt
the evaluated ciphertext, also known as bootstrapping in the FHE literature.
This can be achieved securely without having to know the secret key in the clear
in one of two ways: (i) with the use of garbled circuits [OPP14,GHV10], and
(ii) via homomorphic evaluation of the decryption circuit given an encryption of
the secret key under itself [DS16], which requires the additional assumption of
circular security.

Both of the prior approaches have some theoretical and practical draw-backs,
if we consider FHE for NC1 circuits (the rest of the discussion also applies to
leveled FHE for general circuits). First, recall that we now have FHE for NC1

circuits under the LWE assumption with a polynomial modulus-to-noise ratio
[BV14,AP14], and we would ideally like to achieve circuit privacy under the
same assumption. Relying on noise flooding for circuit privacy would require
quantitatively stronger assumptions with a super-polynomial modulus-to-noise
ratio, which in turn impacts practical efficiency due to the use of larger parame-
ters. Similarly, the use of bootstrapping for circuit privacy can also be compu-
tationally expensive (indeed, the bootstrapping operation is the computational

1 Recall that LWE hardness depends on the modulus-to-noise ratio: the smaller the
ratio, the harder the problem.

64 F. Bourse et al.

bottleneck in existing FHE schemes, cf. [DM15,HS15]). Moreover, realizing boot-
strapping via an encryption of the secret key requires an additional circular secu-
rity assumption, which could in turn also entail the use of larger parameters in
order to account for potential weaknesses introduced by circular security. Real-
izing bootstrapping via garbled circuits avoids the additional assumption, but
is theoretically and practically unsatisfying as it requires encoding the algebraic
structure in existing FHEs as boolean computation, and sacrifices the multi-hop
property in that we can no longer perform further homomorphic computation
on the evaluated ciphertexts.

1.1 Our Results

Our main result is a circuit-private FHE for NC1 circuits – and a circuit-private
leveled FHE for general circuits – under the LWE assumption with a polynomial
modulus-to-noise ratio, and whose efficiency essentially matches that of existing
variants of the GSW cryptosystem in [BV14,AP14]; in other words, we avoid
noise flooding or bootstrapping and obtain circuit privacy almost for free!

We obtain our main result via a conceptually different approach from prior
works: instead of canceling out the noise term in the evaluated ciphertext, we
directly analyze the distribution of the noise term (prior works on FHE merely
gave a bound on the noise term). Concretely, we show that adding a small noise
in each step of homomorphic evaluation in the GSW cryptosystem already hides
the computation itself which yields circuit privacy. Along the way, we gain better
insights into the algebraic structure and the noise distribution in GSW scheme
and provide new tools for analyzing noise randomization which we believe could
be of independent interest.

As an immediate corollary, we obtain a two-party protocol for secure function
evaluation where Alice holds x, Bob holds a branching program f , and we want
Alice to learn f(x) while protecting the privacy of x and f to the largest extent
possible, that is, Bob learns nothing about x and Alice learns nothing about f
(apart from a bound on the size of f). Our protocol achieves semi-honest security
under the standard LWE assumption with polynomial hardness, and where the
total communication complexity and Alice’s computation are poly-logarithmic
in the size of f .

The core of our analysis is a variant of the Gaussian leftover hash lemma
[AGHS13,AR13]: given a “small” vector e and any vector v, we have

eᵀ · G−1
rand (v) + y ≈s e′

where

– G−1
rand (v) outputs a random short vector x satisfying Gx = v mod q accord-

ing to a discrete Gaussian with parameter r = Õ(1);
– both y and e′ are drawn from discrete Gaussians with parameter O(r · ‖e‖)

(the norm of e′ will be slightly larger than that of y).

FHE Circuit Privacy Almost for Free 65

We stress that the distribution of e′ is independent of v and that the norm of y, e′

are polynomially related to that of ‖e‖. Indeed, a similar statement is true via
noise flooding, where we pick y, e′ to have norm super-polynomially larger than
that of ‖e‖. Using this leftover hash lemma to hide the argument of G−1

rand (·)
is new to this work and will be crucial in proving circuit privacy. In Table 1 we
show a comparison with previous works on how to perform a step of computation
for branching program evaluation.

1.2 Technical Overview

We proceed with a technical overview of our construction. We build up to our
main construction in three steps.

Generating Fresh LWE Samples. How do we generate a fresh LWE sample
from a large but bounded number of samples? That is, we need to random-
ize (A, sᵀA + eᵀ). The first idea, going back to [Reg05,GPV08,ACPS09] is to
choose x according to a discrete Gaussian with parameter r = Õ(1) and a small
“smoothing” noise y from a discrete Gaussian with parameter O(r · ‖e‖) and
output

Ax, (sᵀA + eᵀ)x + y

The vector Ax is statistically close to uniform (by leftover hash lemma), and the
error eᵀx+ y in the resulting sample is statistically close to a discrete Gaussian
with parameter O(r · ‖e‖). We stress that the norm of y is polynomially related
to that of e, which is better than naive noise flooding. One draw-back compared
to noise flooding is that the error in the new sample leaks ‖e‖. In the case of
generating fresh LWE samples, we just need to repeat the process to generate
many more samples than what we started out with.

Randomizing GSW Ciphertexts. Next, we note that the above idea can
also be used to randomize GSW ciphertexts. Recall that a GSW encryption of
a message μ is of the form

C =
(

A
sᵀA + eᵀ

)
+ μG ∈ Z

n×(n log q)
q

where s ∈ Z
n
q is the secret key and G is the “powers of 2” gadget matrix. We

can randomize C to be a fresh encryption of μ by computing

C · G−1
rand (G) +

(
0
yᵀ

)

where G−1
rand (G) is chosen according to a discrete Gaussian of parameter r sat-

isfying G · G−1
rand (G) = G and y is again a small smoothing noise vector. Here,

we need an extension of the previous lemma showing that each coordinate in
eᵀ · G−1

rand (G) + yᵀ is statistically close to a discrete Gaussian; this in turn fol-
lows from an extension of the previous lemma where the vector x is drawn from

66 F. Bourse et al.

Table 1. The first row of the table shows the plaintext computation that happens
at each step of the computation for evaluating a branching program (cf. Sect. 5.1).
The next three rows describe how this computation is carried out homomorphically
on ciphertexts V0,V1,C corresponding to encryptions of the input bits v0, v1, x. In
the [GSW13,BV14] FHE schemes, homomorphic evaluation is deterministic, whereas
in [AP14] and this work, homomorphic evaluation is randomized. In particular, our
construction introduces an additional small Gaussian shift on top of [AP14].

Plaintext vout = vx = xv1 + (1 − x)v0

[GSW13,BV14] Vout = C · G−1
det(V1) + (G − C) · G−1

det(V0)

[AP14] Vout = C · G−1
rand (V1) + (G − C) · G−1

rand (V0)

[This work] Vout = C · G−1
rand (V1) + (G − C) · G−1

rand (V0) +

(
0

yᵀ

)

discrete Gaussian over the coset of a lattice (cf. Lemma 3.6). And again, the
norm of y is polynomially related to that in e, which is better than naive noise
flooding.

Scaling GSW Ciphertexts. More interesting, given a constant a ∈ {0, 1},
we can scale a GSW encryption of μ to obtain a fresh encryption of a · μ while
revealing no information about a beyond what is leaked in a · μ. In particular, if
μ = 0, then the resulting ciphertext should completely hide a. To achieve this, we
simply proceed as before, except we use G−1

rand (a · G) so that G ·G−1
rand (a · G) =

a ·G. Here, we crucially rely on the fact that the error eᵀ ·G−1
rand (a · G) +yᵀ in

the resulting ciphertext is independent of a.

Circuit-Private Homomorphic Evaluation. The preceding construction
extends to the setting where we are given a GSW encryption C′ of a instead of
a itself, so that we output

C · G−1
rand (C′) +

(
0
yᵀ

)

We can handle homomorphic encryption as in GSW; this then readily extends
to a circuit-private homomorphic evaluation for branching programs, following
[BV14,AP14].

Branching programs are a relatively powerful representation model. In partic-
ular, any logarithmic space or NC1 computation can be carried out by a family
of polynomial-size branching programs. Branching programs can also directly
capture several representation models often used in practice such as decision
trees, OBDDs, and deterministic finite automaton.

The key insight from Brakerski and Vaikuntanathan [BV14] is that when
homomorphically evaluating a branching program, we will only need to perform
homomorphic additions along with homomorphic multiplications of ciphertexts

FHE Circuit Privacy Almost for Free 67

Vj ,Ci where Vj is the encryption of an intermediate computation and Ci is
an encryption of the input variable xi. To obtain decryption correctness with
polynomial noise growth, they computed the product as

Ci · G−1
det(Vj),

where G−1
det (·) denotes the deterministic binary decomposition, cleverly exploit-

ing the asymmetric noise growth in GSW ciphertexts and the fact that the noise
in Ci is smaller than that in Vj . To obtain circuit privacy, we will compute the
product as

Ci · G−1
rand (Vj) +

(
0
yᵀ

j

)
.

Note that we made two modifications:

– First, we switched to a randomized G−1
rand (·). The use of a randomized G−1

rand (·)
for homomorphic evaluation was first introduced in [AP14], but for the very
different purpose of a mild improvement in the noise growth (i.e. efficiency);
here, we crucially exploit randomization for privacy.

– Next, we introduced an additional Gaussian shift yᵀ
j .

Interestingly, it turns out that computing the product as Ci ·G−1
rand (Vj) instead

of Vj ·G−1
rand (Ci) is useful not only for polynomial noise growth, but also useful

for circuit privacy. Roughly speaking, the former hides which Vj is used, which
corresponds to hiding the intermediate states that lead to the final output state,
which in turn hides the branching program.

We highlight a subtlety in the analysis: Vj could in principle encode informa-
tion about Ci, if the variable xi has been read prior to reaching the intermediate
state encoded in Vj , whereas to apply our randomization lemma, we crucially
rely on independence between Ci and Vj . The analysis proceeds by a careful
induction argument showing that Vj looks like a fresh GSW ciphertext inde-
pendent of input ciphertexts C1, . . . ,C� apart from some dependencies on the
norm of the noise terms in the input ciphertexts (see Lemma 5.4 for a precise
statement). These dependencies mean that homomorphic evaluation leaks the
number of times each variable appears in the branching program, but that can
be easily fixed by padding the branching program.

1.3 Discussions

One draw-back of our approach is that it is specific to the GSW cryptosystem
and variants there-of, whereas previous approaches based on noise flooding and
bootstrapping are fairly generic; another is that we need to pad the branching
program so that each variable appears the same number of times. Nonetheless,
we stress that the GSW cryptosystem turns out to be ubiquitous in many appli-
cations outside of FHE, including attribute-based encryption and fully homo-
morphic signatures [BGG+14,GVW15]. We are optimistic that the additional
insights we gained into the noise distributions of GSW ciphertexts in this work
will find applications outside of FHE.

68 F. Bourse et al.

We conclude with several open problems pertaining to FHE circuit privacy.
The first is to achieve circuit privacy against malicious adversaries [OPP14]:
namely, the result of a homomorphic evaluation should leak no information about
the circuit f , even if the input ciphertexts are maliciously generated. Our analysis
breaks down in this setting as it crucially uses fresh uniform randomness in the
input ciphertexts for left-over hash lemma, and the fact that the noise in the
input ciphertexts are small (but does not need to be discrete Gaussian). Another
is to achieve circuit-private CCA1-secure FHE [LMSV12]; here, the technique
that [DS16] uses to achieve circuit privacy cannot obtain such a result since
giving out an encryption of the secret key violates CCA1-security. A third open
problem is to extend the techniques in this work to other FHE schemes, such as
those in [BV11a,DM15,HS15].

2 Preliminaries

In this section we clarify our notation and recall some definitions, problems and
lemmas that we are going to use throughout the paper.

Notation. We denote the real numbers by R, the integers by Z, the integers
modulo some q by Zq, and let [N] indicate the integer numbers {1, . . . , N}.
Throughout the paper we use λ to denote the security parameter. We say that a
function is negligible in λ, and we denote it by negl (λ), if it is a f (λ) = o (λ−c)
for every fixed constant c. We also say that a probability is overwhelming if it
is 1 − negl (λ).

Vectors are denoted by lower-case bold letters (e.g., v) and are always in
column form (vᵀ is a row vector), while matrices are indicated by upper-case
bold letters. We let (a,b) denote the vector obtained by concatenating the two

vectors, i.e.
(
a
b

)
. We also write (v1 | v2 | . . . | vk) to denote the matrix whose

columns are the vectors vi. Unless otherwise stated, the norm ‖ · ‖ considered in
this paper is the �2 norm and log denotes the base-2 logarithm, while ln denotes
the natural logarithm.

Given two distributions X,Y over a finite or countable domain D, their
statistical distance is defined as Δ (X,Y) = 1

2

∑
v∈D |X (v) − Y (v)|. We say

that two distributions are statistically close (denoted by ≈s) if their statistical

distance is negl (λ). Given a set A, we will write a
$← A to indicate that a is

sampled from A uniformly at random. If D is a probability distribution, we will
write d ← D to indicate that d is sampled according to the distribution D.
Following [MP12], we denote by G the gadget matrix, i.e. G = gᵀ ⊗ In, where
g is the vector

(
1, 2, 4, . . . , 2�log q�−1

)
, for given parameters n, q.

Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For
an integer k < m and a rank k matrix B ∈ R

m×k, Λ (B) =
{
Bx ∈ R

m | x ∈ Z
k
}

is the lattice generated by the columns of B. We will let Λ⊥
q (B) denote

{v ∈ Z
m | Bᵀv = 0 mod q}.

FHE Circuit Privacy Almost for Free 69

Gaussian Function. For any α > 0, the spherical Gaussian function with
parameter α (omitted if 1) is defined as ρα (x) = exp

(−π‖x‖2/α2
)
, for any

x ∈ R
m. Given a lattice Λ ⊆ R

m, a parameter r ∈ R and a vector c ∈ R
m the

spherical Gaussian distribution with parameter r and support Λ+c is defined as

DΛ+c,r (x) =
ρr (x)

ρr (Λ + c)
, ∀x ∈ Λ + c

where ρr (Λ + c) denotes
∑

x∈Λ+c ρr (x). Note that ρr (x) = ρ
(
r−1x

)
.

We now give an algorithm for the randomized bit decomposition G−1
rand (·).

Definition 2.1 (The G−1
rand (·) algorithm, adapted from [MP12], [AP14,

Claim 3.1]). There is a randomized, efficiently computable function G−1
rand (·) :

Z
n
q → Z

m, where m = n
log q� such that x ← G−1
rand (v) is drawn from a dis-

tribution close to a Gaussian with parameter r = Õ(1) conditioned on Gx = v
mod q, i.e. G−1

rand (v) outputs a sample from the distribution DΛ⊥
q (Gᵀ)+G−1

det (v),r

where G−1
det (·) denotes (deterministic) bit decomposition. We will also write

X ← G−1
rand (M) to denote that the columns of the matrix X ∈ Z

m×p are obtained
by applying the algorithm separately to each column of a matrix M ∈ Z

n×p
q .

In particular, using the exact sampler in [BLP+13, Sect. 5] (which is a variant
of the algorithm presented in [GPV08]), G−1

rand (v) outputs a sample from the
discrete Gaussian

DΛ⊥
q (Gᵀ)+G−1

det(v),r

Next, we recall the definition of the smoothing parameter of a lattice from
[MR04]. Intuitively, this parameter provides the width beyond which the discrete
Gaussian measure on a lattice behaves like a continuous one.

Definition 2.2 (Smoothing parameter). For a lattice Λ ⊆ Z
m and positive

real ε > 0, the smoothing parameter ηε (Λ) is the smallest real r > 0 such that
ρ1/r (Λ∗ \ {0}) ≤ ε, where Λ∗ := {x ∈ R

m | xᵀΛ ⊆ Z}.
We will also need the following probability results.

Lemma 2.3 (Simplified version of [Pei10, Theorem 3.1]). Let ε > 0, r1, r2 >
0 be two Gaussian parameters, and Λ ⊆ Z

m be a lattice. If r1r2√
r2
1+r2

2

≥ ηε (Λ),

then
Δ (y1 + y2,y′) ≤ 8ε

where y1 ← DΛ,r1 , y2 ← DΛ,r2 , and y′ ← D
Λ,

√
r2
1+r2

2
.

Lemma 2.4 [AP14, Lemma 2.1]. There exists a universal constant C > 0, such
that

Pr
[‖x‖ > Cr

√
m
] ≤ 2−Ω(m)

where x ← DZm,r.

Next, we recall the LWE problem and its hardness assumption.

70 F. Bourse et al.

The LWE Problem and Assumption. The learning with errors (LWE) prob-
lem was introduced by Regev in [Reg05] as a generalization of “learning parity
with noise”. Let q ≥ 2, n and m = poly(n) be positive integers, and let χ be a
probability distribution over Zq. We define the following advantage function for
an adversary A:

Adv
LWEn,q,χ

A := |Pr [A (A, sᵀA + eᵀ) = 1] − Pr [A (A,u) = 1]|

where A $← Z
n×m
q , s $← Z

n
q , e ← χ and u $← Z

m
q . The LWE assumption asserts

that for any PPT adversary A, the advantage Adv
LWEn,q,χ

A is negl (n).
Finally, we recall the definition of a homomorphic encryption scheme, evalu-

ation correctness and semantic security.

Homomorphic Encryption Scheme. A homomorphic (secret-key) encryp-
tion scheme E = (E .Setup, E .Encrypt, E .Decrypt, E .Eval) is a quadruple of PPT
algorithms as follows:

– E .Setup
(
1λ
)
: given the security parameter λ, outputs a secret key sk and an

evaluation key evk
– E .Encrypt (sk, μ): using the secret key sk, encrypts a message μ ∈ {0, 1} into

a ciphertext c and outputs c
– E .Decrypt (sk, c): using the secret key sk, decrypts a ciphertext c to recover a

message μ ∈ {0, 1}
– E .Eval (evk, f, c1, . . . , c�): using the evaluation key evk, applies a function

f : {0, 1}� → {0, 1} to ciphertexts c1, . . . , c� and outputs a ciphertext cf

Evaluation Correctness. We say that the E .Eval algorithm correctly evaluates
all functions in F if, for any function f ∈ F : {0, 1}� → {0, 1} and respective
inputs x1, . . . , x� ∈ {0, 1} it holds that

Pr [E .Decrypt (sk, E .Eval (evk, f, c1, . . . , c�)) = f (x1, . . . , x�)] = 1 − negl (λ)

where sk ← E .Setup
(
1λ
)

and ci ← E .Encrypt (sk, xi).

Semantic Security. A secret key encryption scheme E is said to be semantically
secure (or IND-CPA secure) if any PPT adversary A cannot distinguish between
encryptions of two known plaintexts. More formally, let sk ← E .Setup(1λ) and
Ob (μ0, μ1) = E .Encrypt (sk, μb) for b ∈ {0, 1}. Then E is IND-CPA secure if∣∣Pr

[AO0
(
1λ
)

= 1
]− Pr

[AO1
(
1λ
)

= 1
]∣∣ = negl (λ)

where the probability is taken over the internal coins of E .Setup, E .Encrypt and A.

3 Core Randomization Lemma

Note that throughout the rest of the paper we set q to be a power of 2, and
m = n log q. We discuss the use of a modulus q that is not a power of 2 in
Sect. 5.4.

The goal of this Section is to establish the following lemma:

FHE Circuit Privacy Almost for Free 71

Lemma 3.1 (Core randomization lemma). Let ε, ε′ > 0, r > ηε(Λ⊥
q (Gᵀ))

be a Gaussian parameter. For any e ∈ Z
m
q , v ∈ Z

n
q , if r ≥

max
(

4
(
(1 − ε) (2ε′)2

)− 1
m

,
√

5(1 + ‖e‖)
√

ln(2m(1+1/ε))
π

)
, then

Δ ((A,Ax, eᵀx + y) , (A,u, e′)) < ε′ + 2ε

where x ← G−1
rand (v), A $← Z

(n−1)×m
q , u $← Z

n−1
q , y ← DZ,r and e′ ←

D
Z,r

√
1+‖e‖2 .

Asymptotically, r = Θ̃(‖e‖√λ) is enough to obtain negligible statistical dis-
tance.

Remark 1 (on the necessity of randomization). We note here that the use of
randomization in G−1

rand (·) and the shift are both necessary.

First, the shift is necessary for both distributions to have the same support.
For example, eᵀG−1

rand ((1, 0, . . . , 0)) and eᵀG−1
rand (0) might lie in two different

cosets of the lattice eᵀΛ⊥
q (Gᵀ), depending on the value of e: if the first coordinate

of e is odd and all the others are even, then eᵀG−1
rand ((1, 0, . . . , 0)) will be odd,

while eᵀG−1
rand (0) will be even, for a q even. The shift by a Gaussian over Z

ensures that the support of the two distributions is Z. Proving that eᵀΛ⊥
q (Gᵀ) =

Z with overwhelming probability over the choice of e is still an open question
that would remove the necessity of the shift, thus proving circuit privacy for
standard GSW only using randomized G−1

rand (·).
Finally, the randomization of G−1

rand (·) is necessary for both distributions to
have the same center. Using the same example, eᵀG−1

det ((1, 0, . . . , 0)) + y and
eᵀG−1

det (0) + y would be two Gaussians, centered respectively on e1 (the first
coordinate of e) and on 0. Instead, using the randomized algorithm G−1

rand (·),
the center of both distributions will be 0.

3.1 Additional Preliminaries

Before proving Lemma 3.1, we need to recall some additional results.

Lemma 3.2 [MR07, Lemma 3.3]. Let Λ be any rank-m lattice and ε be any
positive real. Then

ηε (Λ) ≤ λm (Λ) ·
√

ln (2m (1 + 1/ε))
π

where λm (Λ) is the smallest R such that the ball BR centered in the origin and
with radius R contains m linearly independent vectors of Λ.

Lemma 3.3 [GPV08, Corollary 2.8]. Let Λ ⊆ Z
m be a lattice, 0 < ε < 1, r > 0.

For any vector c ∈ R
m, if r ≥ ηε (Λ), then we have

ρr (Λ + c) ∈
[
1 − ε

1 + ε
, 1
]

· ρr (Λ) .

72 F. Bourse et al.

Lemma 3.4 [Reg05, Claim 3.8]. Let Λ ⊆ Z
m be any lattice, c ∈ R

m, ε > 0 and
r ≥ ηε(Λ). Then

ρr (Λ + c) ∈ rm

det (Λ)
(1 ± ε) .

Generalized Leftover Hash Lemma. We state here a simplified version of the
generalized leftover hash lemma which is sufficient for our use. The min-entropy
of a random variable X is defined as

H∞ (X) = − log
(
max

x
Pr [X = x]

)
.

Lemma 3.5 (Generalized leftover hash lemma [DRS04]). Let e be any
random variable over Z

m
q and f : Zm

q → Z
k
q . Then

Δ((Xe,X, f(e)), (r,X, f(e))) ≤ 1
2

√
qn+k · 2−H∞(e) .

where X $← Z
n×m
q and r $← Z

n
q .

3.2 Proof of Lemma 3.1

We first prove that given e, the new error term eᵀx + y is indeed a Gaussian
with parameter r

√
1 + ‖e‖2. This proof is inspired by [AR13], which in turn is

an improvement of [AGHS13], but it is different in two aspects: on one hand, in
[AR13] the proof is done for the specific case where x is drawn from a Gaussian
over a coset of Zm; on the other hand, they consider the more general case of an
ellipsoidal Gaussian distribution.

Lemma 3.6 (adapted from [AR13, Lemma 3.3]). Let ε, r > 0. For any e ∈
Z

m, c ∈ R
m, if r ≥ √

5(1 + ‖e‖) ·
√

ln(2m(1+1/ε))
π , then

Δ (eᵀx + y, e′) < 2ε

where x ← DΛ⊥
q (Gᵀ)+c,r, y ← DZ,r, and e′ ← D

Z,r
√

1+‖e‖2 .

Asymptotically, r = Θ̃(‖e‖√λ) is enough to obtain negligible statistical dis-
tance. We stress that the distribution of e′ does not depend on the coset c.

Proof. Let ê = (e, 1) ∈ Z
m+1, ĉ = (c, 0) ∈ Z

m+1 and Λ̂ = Λ⊥
q (Gᵀ)×Z, we want

to show that
Δ
(
êᵀDΛ̂+ĉ,r,DZ,‖ê‖r

)
≤ 2ε

The support of êᵀDΛ̂+ĉ,r is êᵀΛ̂ + êᵀĉ = eᵀΛ⊥
q (Gᵀ) + Z + eᵀc = Z. Fix some

z ∈ Z. The probability mass assigned to z by êᵀDΛ̂+ĉ,r is proportional to ρr(Lz),
where

Lz =
{
v ∈ Λ̂ + ĉ : êᵀv = z

}

FHE Circuit Privacy Almost for Free 73

We define the lattice L =
{
v ∈ Λ̂ : êᵀv = 0

}
; note that Lz = L+wz for any

wz ∈ Lz. Let uz = z
‖ê‖2r ê, then uz is clearly proportional to ê. Observe that uz

is orthogonal to r−1Lz − uz, indeed for any t ∈ r−1Lz we have êᵀ (t − uz) = 0.
From this we have ρ(t) = ρ(uz) · ρ(t − uz), and by summing for t ∈ r−1Lz:

ρ(r−1Lz) = ρ(uz) · ρ(r−1Lz − uz)

Observe that we have r−1Lz − uz = r−1(L − c′) for some c′ in the vector span
of the lattice L (because Lz − ruz = L+wz − ruz and êᵀ(wz − ruz) = 0). Thus

using Lemmas 3.3 and 3.7 with r ≥ √
5(1 + ‖e‖) ·

√
ln(2m(1+1/ε))

π ≥ ηε(L), we
obtain

ρ(r−1Lz) = ρ(uz) · ρr(L − c′)

∈
[
1 − ε

1 + ε
, 1
]

· ρr(L) · ρ(uz)

=
[
1 − ε

1 + ε
, 1
]

· ρr(L) · ρ

(
z

‖ê‖2r ê
)

=
[
1 − ε

1 + ε
, 1
]

· ρr(L) · ρ‖ê‖r(z)

This implies that the statistical distance between êᵀDΛ̂+ĉ,r and DZ,‖ê‖r is at
most 1 − 1−ε

1+ε ≤ 2ε. ��
In order to conclude the previous proof, we now give a bound on the smooth-

ing parameter of the lattice L.

Lemma 3.7. Let ε > 0. For any e ∈ Z
m, let L be as defined in Lemma 3.6.

Then we have:

ηε(L) ≤
√

5(1 + ‖e‖) ·
√

ln (2m (1 + 1/ε))
π

.

Proof. We use Lemma 3.2 to bound the smoothing parameter of L. Since Λ̂ =
Λ⊥

q (Gᵀ) × Z is of dimension m + 1 and L is the sublattice of Λ̂ made of the
vectors that are orthogonal to e, we have that L is of dimension m. We thus
exhibit m independent short vectors of L to obtain an upper bound on λm (L).
We first define the matrix

B =

⎛
⎜⎜⎜⎜⎝

2

−1
. . .
.

−1 2

⎞
⎟⎟⎟⎟⎠ ∈ Z

(log q)×(log q)

and remark that it is a basis for the lattice Λ⊥
q (gᵀ). The lattice Λ̂ is then

generated by the columns of the matrix:

B = (b1 | . . . | bm+1) =
(
In ⊗ B 0
0ᵀ 1

)
∈ Z

(m+1)×(m+1)

74 F. Bourse et al.

For k ≤ m let uk = bk − bm+1 · êᵀbk, since êᵀbm+1 = 1 we directly have
êᵀuk = 0 and thus uk ∈ L. The vectors u1, . . . ,um are linearly independent
since span (u1, . . . ,um,bm+1) = span (b1, . . . ,bm,bm+1) = R

m+1 (which comes
from the fact that B is a basis of an (m+1)-dimensional lattice). We now bound
the norm of uk:

‖uk‖ ≤ ‖bk‖ + ‖bm+1‖‖e‖‖bk‖
=

√
5(1 + ‖e‖)

Note that |êᵀbk| ≤ ‖e‖‖bk‖ since the last coefficient of bk is 0. Finally we obtain
λm(L) ≤ maxk≤m ‖uk‖ ≤ √

5(1 + ‖e‖) and the result. ��
The final proof of Lemma3.1 will necessitate a call to the leftover hash lemma,

so before continuing we analyze the min-entropy of x ← DΛ⊥
q (Gᵀ)+c,r.

Lemma 3.8. Let ε > 0, r ≥ ηε

(
Λ⊥

q (Gᵀ)
)
. For any c ∈ R

m, we have

H∞
(
DΛ⊥

q (Gᵀ)+c,r

)
≥ log (1 − ε) + m log (r) − m.

Proof. For any v ∈ Λ⊥
q (Gᵀ) + c

DΛ⊥
q (Gᵀ)+c,r(v) ≤ DΛ⊥

q (Gᵀ)+c,r(v0) , forv0 the point of Λ⊥
q (Gᵀ) + c closest to0

=
ρr(v0)

ρr(Λ⊥
q (Gᵀ) + c)

≤ 1

ρr(Λ⊥
q (Gᵀ) + c)

, since ρr(v0) < 1

≤ (1 − ε)
rm

det
(
Λ⊥

q (Gᵀ)
) , by Lemma 3.4 since r ≥ ηε

(
Λ⊥

q (Gᵀ)
)

The lattice Λ⊥
q (Gᵀ) is generated by the basis In ⊗ B, with B defined as above,

which has determinant
(
2log q

)n = 2m. The result follows:

H∞
(
DΛ⊥

q (Gᵀ)+c,r

)
≥ log (1 − ε) + m log (r) − m ��

We are now ready to prove Lemma 3.1.

Proof. The proof is done in two steps. First, by Lemma3.8, we know that x has
min entropy at least log(1 − ε) + m log(r) − m ≥ (n + 1) log(q) − 2 log(ε′) − 2.
Moreover, eᵀx + y is in Zq. Applying the leftover hash lemma 3.5, we obtain

Δ ((A,Ax, eᵀx + y) , (A,u, eᵀx + y)) < ε′

where u $← Z
n−1
q . Now, using Lemma 3.6, we know that

Δ (eᵀx + y, e′) < 2ε

Summing the two statistical distances concludes the proof. ��

FHE Circuit Privacy Almost for Free 75

3.3 Rerandomizing LWE samples

We finally describe a simple application of Lemma 3.1. Generating fresh LWE
samples for a fixed secret s from a bounded number of samples is very useful, for
example to build a public key encryption scheme from a symmetric one. It has
already been shown in the succession of papers [Reg05,GPV08,ACPS09] that
multiplying a matrix of m LWE samples (A, sᵀA + eᵀ) by a discrete Gaussian
x ← DZm,r and adding another Gaussian term y ← DZ,r to the error part yields
a fresh LWE sample (a′, sᵀa′ + e′) with a somewhat larger Gaussian noise e′.
Here we have shown that picking x according to a discrete Gaussian distribution
over a coset c of Λ⊥

q (Gᵀ) is enough for this rerandomization process. Moreover,
we show that the distribution of the final error is independent of the coset c,
which will come in handy for hiding homomorphic evaluations. We note that
this could be extended to any other lattice with a small public basis (see the last
paragraph of Sect. 5), but we mainly focus on Λ⊥

q (Gᵀ) because this is sufficient
for our use.

4 Basic GSW Cryptosystem

In this section, we present the Homomorphic Encryption scheme introduced by
[GSW13], with notation inspired by [AP14]. We defer setting the parameters to
Sect. 5.3. The scheme is composed of the following algorithms:

– Setup
(
1λ
)
: samples s̄ $← Z

n−1
q and returns the secret key s =

(−s̄, 1
) ∈ Z

n
q .

– Encrypt(s, μ): given the secret key s =
(−s̄, 1

)
and a message μ ∈ {0, 1},

samples a matrix A $← Z
(n−1)×m
q and e ← DZm,α. The algorithm then returns

C =
(

A
s̄ᵀA + eᵀ

)
+ μG ∈ Z

n×m
q as the ciphertext. Notice that sᵀC = eᵀ +

μsᵀG, the last column of which is close to μ q
2 .

– Decrypt(s,C): given a ciphertext C and the secret key s, computes the inner
product of sᵀ and the last column of C, and finally returns 0 if the norm of
the result is smaller than q

4 , otherwise it returns 1.

We omit the original Eval algorithm since our modified version, which guarantees
circuit privacy, is presented in Sect. 5.1.

The IND-CPA security of this scheme comes directly from [GSW13] and the
LWE assumption.

In order to shorten several formulas in the rest of the paper, we slightly
abuse the notation and define a modified version of the encryption algorithm
Encryptγ(s, μ), which is exactly the same as the previously defined Encrypt(s, μ),
except that e ← DZm,γ . We implicitly use Encrypt(s, μ) to denote Encryptα(s, μ).

Extension to Public Key Setting. This scheme can be easily adapted to
the public key setting. We now describe Setuppub and Encryptpub, as the other
algorithms are identical to the private key setting.

76 F. Bourse et al.

– Setuppub
(
1λ
)
: given the security parameter λ, samples s̄ $← Z

n−1
q , A $←

Z
(n−1)×m
q , e ← DZm,α. The algorithm returns the secret key s =

(−s̄, 1
) ∈ Z

n
q

and the public key Â =
(

A
s̄ᵀA + eᵀ

)
.

– Encryptpub
(
Â, μ

)
: given the public key Â and a message μ ∈ {0, 1}, samples

a matrix R $← {−1, 0, 1}m×m. The algorithm then sets C = ÂR + μG and
returns C ∈ Z

n×m
q as the ciphertext. Notice that sᵀC = eᵀR+ μsᵀG the last

column of which is close to μ q
2 .

Basic Homomorphic Operations. The homomorphic operations are done as
follows:

– Homomorphic addition: C1 � C2 = C1 + C2

– Homomorphic multiplication: C1 � C2 ← C1 · G−1
rand (C2)

where the G−1
rand (·) algorithm is the randomized bit decomposition described in

Definition 2.1.
From now on and for readability, we will assume a correct choice of parame-

ters has been made. This setting is discussed in Sect. 5.3.

4.1 Rerandomizing and Scaling GSW Ciphertexts

Here we describe our new technique to rerandomize GSW ciphertexts. This
method allows the scaling of GSW ciphertexts, which will be used in our circuit
evaluation procedure.

We recall the form of a GSW ciphertext

C =
(

A
s̄ᵀA + eᵀ

)
+ μG

Using the rerandomization of LWE samples presented in Sect. 3, it is possible
to generate a fresh encryption of 0 by computing C · G−1

rand (V), where C is an
encryption of 0 and V is any matrix in Z

n×m
q .

Lemma 4.1. Let r > 0. For any V ∈ Z
n×m
q , if r = Ω

(
α
√

λm log m
)
, with α

being the Gaussian parameter of fresh encryptions, then
(
C · G−1

rand (V) +
(

0
yᵀ

)
,C
)

≈s (C′,C)

where C =
(

A
s̄ᵀA + eᵀ

)
← Encrypt (s, 0), C′ ← Encryptγ (s, 0), with γ =

r
√

1 + ‖e‖2.

FHE Circuit Privacy Almost for Free 77

Proof. Fix v ∈ Z
m
q and e such that ‖e‖ ≤ Cα

√
m, where C is as in Lemma 2.4.

Then by applying Lemma 3.1 with r = Ω
(
α
√

λm log m
)

and ε′ = ε = 2−λ we
have

Δ ((A,Ax, eᵀx + y) , (A,u, e′)) < 3 · 2−λ

where A $← Z
(n−1)×m
q , x ← G−1

rand (v) and y ← DZ,r. From this we obtain that
for e ← DZm,α:

Δ ((A, e,Ax, eᵀx + y) , (A, e,u, e′))

=
∑

w∈Zm

Δ ((A,Ax,wᵀx + y) , (A,u, w′)) · Pr [e = w]

≤
∑

‖w‖<Cα
√

m

3 · 2−λ Pr [e = w] +
∑

‖w‖≥Cα
√

m

Pr [e = w]

≤ 3 · 2−λ + Pr
[‖e‖ ≥ Cα

√
m
]

≤ 3 · 2−λ + 2−Ω(λ)

In the left operand of the third equation we bound the statistical distance by
3 · 2−λ and in the right operand we bound it by 1. To obtain the last inequality
we use Lemma 2.4 and have Pr [‖e‖ > Cα

√
m] ≤ 2−Ω(m) ≤ 2−Ω(λ) since m ≥ λ.

By rewriting this distance we have for any v ∈ Z
m
q

(
C · G−1

rand (v) +
(
0
y

)
,C
)

≈s

((
u

s̄ᵀu + e′

)
,C
)

By writing V = (v1 | . . . | vm) and y = (y1, . . . , ym), we have

C·G−1
rand (V)+

(
0
yᵀ

)
=
(
C · G−1

rand (v1) +
(
0
y1

)
| . . . | C · G−1

rand (vm) +
(

0
ym

))

We define the distributions (Di)0≤i≤m in which the first i columns of C ·
G−1

rand (V)+
(

0
yᵀ

)
are replaced with “fresh”

(
u

s̄ᵀu + e′

)
and we obtain through

a hybrid argument that

Δ

((
C · G−1

rand (V) +

(
0
yᵀ

)
,C

)
,

((
A′

s̄ᵀA′ + e′ᵀ

)
,C

))
≤ m(3 · 2−λ + 2−Ω(λ)) ��

As a direct corollary we remark that the scaling of a GSW encryption C of

μ by a bit a, defined as C · G−1
rand (a · G) +

(
0
yᵀ

)
, where y ← DZm,r, does not

depend on a, but only on aμ.

78 F. Bourse et al.

5 Our Scheme: Circuit-Private Homomorphic Evaluation
for GSW

In this section, we prove that a slight modification of the GSW encryption scheme
is enough to guarantee circuit privacy, i.e. that an evaluation of any branching
program does not reveal anything more than the result of the computation and
the length of the branching program, as long as the secret key holder is honest.

First, we state our definition of circuit privacy, similar to [IP07, Definition 7],
which is stronger than the one given in [Gen09, Definition 2.1.6] in the sense that
it is simulation based, but weaker in the sense that we leak information about
the length of the branching program.

Definition 5.1 (Simulation-based circuit privacy). We say that a homo-
morphic encryption scheme E is circuit private if there exists a PPT algorithm
Sim such that for any branching program Π of length L = poly (λ) on � variables,
any x1, . . . , x� ∈ {0, 1}, the following holds:

(E .Eval (evk,Π, (C1, . . . ,C�)) ,C1, . . . ,C�, 1λ, s
)

≈s

(
Sim

(
1λ,Π (x1, . . . , x�) , 1L, (C1, . . . ,C�)

)
,C1, . . . ,C�, 1λ, s

)

where s ← E .Setup
(
1λ
)
, Ci ← E .Encrypt(s, xi) for i ∈ [�].

We can now state our main theorem:

Theorem 5.2 (Main theorem). There exists a fully homomorphic encryption
scheme for branching programs that is circuit private and whose security is based
on the LWE assumption with polynomial noise-to-modulus ratio.

Remark 2. The aforementioned scheme is also multi-hop (see definition in
[GHV10]) for branching programs, as long as the noise does not grow beyond
q/4. This means that the output of an evaluation can be used as input for fur-
ther computation, while the property of circuit privacy is maintained for every
hop. More in detail, the evaluation can be carried out by multiple parties and
any subset of these parties is not able to gain information about the branching
program applied by an evaluator which is not in the subset, beside its length,
input and output, even given access to the secret key.

5.1 Homomorphic Evaluation for Branching Programs

We first recall the branching program evaluation algorithm given in [BV14] and
describe our modified version.

Permutation Branching Programs. A permutation branching program Π
of length L and width W with input space {0, 1}� is a sequence of L tuples of
the form

(
var (t) , πt,0, πt,1

)
where

– var : [L] → [�] is a function that associates the t-th tuple with an input bit
xvar(t)

FHE Circuit Privacy Almost for Free 79

– πt,0, πt,1 : [W] → [W] are permutations that dictate the t-th step of the
computation.

On input (x1, . . . , x�), Π outputs 1 iff

πL,xvar(L)(· · · (π1,xvar(1)(1)) · · ·) = 1.

Following [BV14,IP07], we will evaluate Π recursively as follows. We asso-
ciate each t ∈ [L] with the characteristic vector vt ∈ {0, 1}W of the current
“state”, starting with v0 = (1, 0, . . . , 0). We can then compute the w-th entry of
vt (denoted by vt [w]) as follows: for all t ∈ [L], w ∈ [W],

vt [w] = vt−1

[
π−1

t,xvar(t)
(w)
]

= xvar(t) · vt−1

[
π−1

t,1 (w)
]
+
(
1 − xvar(t)

) · vt−1

[
π−1

t,0 (w)
]
. (5.1)

Our Branching Program Evaluation. Here we present our
Eval (Π, (C1, . . . ,C�)) algorithm (note that it does not require any evaluation
key), which homomorphically evaluates a branching program Π over cipher-
texts C1, . . . ,C�. The first state vector is encrypted without noise: the initial
encrypted state vector is V0 = (G,0, . . . ,0), i.e. V0[1] = G and V0[w] = 0, for
2 ≤ w ≤ W . Note that G and 0 are noiseless encryptions of 1 and 0, respectively.
The encrypted state vector is then computed at each step by homomorphically
applying (5.1) and adding a noise term: for t ∈ [L] and w ∈ [W]

Vt [w] ←Cvar(t) · G−1
rand

(
Vt−1

[
π−1

t,1 (w)
])

+
(
G − Cvar(t)

) · G−1
rand

(
Vt−1

[
π−1

t,0 (w)
])

+
(

0
yᵀ

t,w

) (5.2)

where yt,w ← D
Zm,r

√
2. The output of the evaluation algorithm is VL[0] ∈ Z

n×m
q .

Remark 3 (Comparison with [BV14,AP14]. Cf. also Table 1). The differences
between our homomorphic evaluation procedure and the previous ones are as
follows:

– We added an additional Gaussian noise to the computation, as captured in
the boxed term;

– [BV14] uses the deterministic G−1
det (·) whereas [AP14] introduced the random-

ized G−1
rand (·) for efficiency. Here, we crucially exploit the randomized G−1

rand (·)
for privacy.

Simulator. Towards proving circuit privacy, we need to specify a simulator Sim.
We first describe a simulator that is given access to the number of times each
variable is used and prove that its output distribution is statistically close to the
result of Eval (Lemma 5.5). We can then pad the branching program so that each

80 F. Bourse et al.

variable is used the same number of times. Given the security parameter λ, the
length L of the branching program Π, the number of times τi that Π uses the
i-th variable, the final value xf of the evaluation of Π on input (x1, . . . , x�), the
ciphertexts Ci encrypting xi for i ∈ [�], Sim mimics the way error grows in the
states of Eval by doing τi dummy steps of computation with the i-th variable.
This gives a new encryption Âf of 0 with the same noise distribution as the
ciphertext output by the Eval procedure. Sim then adds the message part xf to
this ciphertext and outputs Cf = Âf + xfG.

In other words,

Sim
(
1λ, xf , (1τ1 , . . . , 1τ�) , (C1, . . . ,C�)

)

←
�∑

i=1

τi∑
t=1

(
Ci · (G−1

rand (0) − G−1
rand (0)

)
+
(

0
yᵀ

t

))
+ xfG

where yt ← D
Zm,r

√
2 for t ∈ [L].

We note that the sum of 2τi samples G−1
rand (0) can be sampled at once using

the G−1
rand (·) algorithm with a larger parameter r

√
2τi, and the sum of τi samples

from D
Zm,r

√
2 is close to a sample from D

Zm,r
√
2τi

.

5.2 Proof of Circuit Privacy

We proceed to establish circuit privacy in two steps. We first analyze how the
ciphertext distribution changes in a single transition, and then proceed by induc-
tion to reason about homomorphic evaluation of the entire branching program.

Step 1. We begin with the following lemma, which is useful for analyzing the
output of (5.2). Roughly speaking, this lemma says that if at step t, the state
vector consists of fresh GSW encryptions with some noise parameter ζ, then at
step t + 1, the state vector is statistically close to fresh GSW encryptions with
a somewhat larger noise which depends on the error in the input ciphertext and
on ζ.

Lemma 5.3 For any x, v0, v1 ∈ {0, 1} and s =
(−s̄, 1

) ← Setup
(
1λ
)
, the fol-

lowing holds:
(
C · G−1

rand (V1) + (G − C) · G−1
rand (V0) +

(
0
yᵀ

)
,C
)

≈s (V′
x,C)

where Vb ← Encryptγ (s, vb) for b ∈ {0, 1}, C =
(

A
s̄ᵀA + eᵀ

)
+ xG ←

Encrypt (s, x), y ← D
Zm,r

√
2 and V′

x ← Encryptζ (s, vx), with ζ =√
γ2 + 2r2(1 + ‖e‖2).

Proof. We begin with a simple identity which is useful in the remainder of the
proof:

C · G−1
rand (V1) + (G − C) · G−1

rand (V0) = Â · (G−1
rand (V1) − G−1

rand (V0)
)

+ Vx

FHE Circuit Privacy Almost for Free 81

where Â =
(

A
s̄ᵀA + eᵀ

)
and V0,V1,C are as defined in the statement of the

Lemma. Showing this identity is correct just requires performing the calculations:

C · G−1
rand (V1) + (G − C) · G−1

rand (V0)

=
(
Â + xG

)
· G−1

rand (V1) +
(
(1 − x)G − Â

)
· G−1

rand (V0)

= Â · (G−1
rand (V1) − G−1

rand (V0)
)

+ xV1 + (1 − x)V0

= Â · (G−1
rand (V1) − G−1

rand (V0)
)

+ Vx

Then we observe that by applying Lemma2.3 we have
(

0
yᵀ

)
≈s

(
0
yᵀ
1

)
−
(

0
yᵀ
0

)

where yb ← DZm,r, b ∈ {0, 1}. Lemma 4.1 also gives
(
Â · G−1

rand (Vb) +
(

0
yᵀ

b

)
,C
)

≈s (Cb,C)

where Cb ← Encryptζ′(s, 0), for b ∈ {0, 1}, with ζ ′ = r
√

1 + ‖e‖2. We now have
(
C · G−1

rand (V1) + (G − C) · G−1
rand (V0) +

(
0
yᵀ

)
,C
)

≈s (C1 − C0 + Vx,C)

By additivity of variance on independent variables, we obtain that C1 −
C0 + Vx = V′

x looks like a fresh encryption of 0 − 0 + vx = vx with parameter√
γ2 + 2r2(1 + ‖e‖2). ��

Step 2. We now prove that, at each step of the evaluation, each entry of the
encrypted state Vt looks like a fresh GSW encryption of the corresponding entry
of the state vt, even given the GSW encryptions of the input bits, except for a
small correlation in the noise.

Lemma 5.4 (Distribution of the result of Eval). For any branching program
Π of length L on � variables, we define τt,i to be the number of times the i-th
variable has been used after t steps of the evaluation, i.e. τt,i =

∣∣var−1 (i) ∩ [t]
∣∣,

for i in [�] and t ∈ [L].
For any x1, . . . , x� ∈ {0, 1}, any s =

(−s̄, 1
) ← Setup

(
1λ
)
, at each step

t ∈ [L], for all indexes w ∈ [W], the following holds:
(
Vt [w] , (Ci)i∈[�]

) ≈s

(
C′

t,w, (Ci)i∈[�]

)

where Ci =
(

Ai

s̄ᵀAi + eᵀ
i

)
+ xiG ← Encrypt (s, xi) for i ∈ [�], C′

t,w ←

Encryptrt
(s,vt [w]) for (t, w) ∈ [L] × [W] and rt = r

√
2
∑�

i=1 τt,i (1 + ‖ei‖2).

82 F. Bourse et al.

Proof. We prove this lemma by induction on t ∈ [L]. At step t > 1, for
index w ∈ [W] we use a series of hybrid distributions Ht,w,k for 0 ≤ k ≤ 2
to prove that

(
Vt [w] , (Ci)i∈[�]

) ≈s

(
C′

t,w, (Ci)i∈[�]

)
. In particular Ht,w,0 =(

Vt [w] , (Ci)i∈[�]

)
, and Ht,w,2 =

(
C′

t,w, (Ci)i∈[�]

)
.

Hybrid Ht,w,0. Let wb = π−1
t,b (w) for b ∈ {0, 1}. We write wβ to denote wxvar(t) ,

i.e. w0 or w1, depending on the value of the variable which is used at time t.

Ht,w,0 =
(
Vt [w] , (Ci)i∈[�]

)

=

(
Cvar(t) · G−1

rand (Vt−1 [w1]) +
(
G − Cvar(t)

) · G−1
rand (Vt−1 [w0])

+
(

0
yᵀ

t,w

)
, (Ci)i∈[�]

)

where Ci ← Encrypt (s, xi) and yt,w ← D
Zm,r

√
2.

Hybrid Ht,w,1. We set

Ht,w,1 =

(
Cvar(t) · G−1

rand

(
C′

t−1,w1

)
+
(
G − Cvar(t)

) · G−1
rand

(
C′

t−1,w0

)

+
(

0
yᵀ

t,w

)
, (Ci)i∈[�]

)

where Ci ← Encrypt (s, xi), yt,w ← D
Zm,r

√
2 and C′

t−1,wb
←

Encryptrt−1
(s,vt−1[wb]) for b ∈ {0, 1}.

By induction hypothesis we have Ht−1,wb,0 ≈s Ht−1,wb,2 for b ∈ {0, 1}, i.e.(
Vt−1 [wb] , (Ci)i∈[�]

) ≈s

(
C′

t−1,wb
, (Ci)i∈[�]

)
where Ci ← Encrypt (s, xi) and C′

t−1,wb
← Encryptrt−1

(s,vt−1[wb]) for b ∈ {0, 1}.
We use the fact that applying a function to two distributions does not increase
their statistical distance to obtain Ht,w,0 ≈s Ht,w,1.

Hybrid Ht,w,2. Let
Ht,w,2 =

(
C′, (Ci)i∈[�]

)
with Ci ← Encrypt (s, xi), C′ ← Encryptζ(s,vt−1[wβ]) and ζ =√

r2t−1 + 2r2
(
1 + ‖evar(t)‖2

)
.

By Lemma 5.3 we have:(
Cvar(t) · G−1

rand

(
C′

t−1,w1

)
+
(
G − Cvar(t)

) · G−1
rand

(
C′

t−1,w0

)

+
(

0
yᵀ

t,w

)
, (Ci)i∈[�]

)
≈s

(
C′, (Ci)i∈[�]

)

FHE Circuit Privacy Almost for Free 83

where Ci ← Encrypt (s, xi), yt,w ← D
Zm,r

√
2, C

′
t−1,wb

← Encryptrt−1
(s,vt−1[wb])

for b ∈ {0, 1} and C′ ← Encryptζ(s,vt−1[wβ]). Note that vt−1[wβ] = vt[w] and

rt =
√

r2t−1 + 2r2
(
1 + ‖evar(t)‖2

)
= ζ from which we have that C′ and C′

t,w are
identically distributed, and directly Ht,w,1 ≈s Ht,w,2.

We note that this recursive formula does not apply to step t = 0, we thus
use t = 1, w ∈ [W] as the base case. We only describe the steps that differ from
the case t > 1.

Hybrid H1,w,1. We have G−1
rand (V0 [wb]) = G−1

rand (v0 [wb] · G) for b ∈ {0, 1}.
Notice that we now have exactly H1,w,1 = H1,w,0.

Hybrids H1,w,2. The proof for H1,w,1 ≈s H1,w,2 is identical to the one of
Lemma 5.3 except for the fact that the ciphertext Vx from the proof is now of the
form v0[wβ]G. The resulting ciphertext C′

1,w is now only the sum of two encryp-

tions of 0 and v0[wβ] and has a Gaussian parameter r
√

2
(
1 + ‖evar(1)‖2

)
= r1.

This implies H1,w,1 ≈s H1,w,2. ��
We now proceed to prove circuit privacy. We will first prove the following

lemma, which states that the Eval algorithm presented in Sect. 5.1 only leaks the
final result of the evaluation and the number of times each variable is used.

Lemma 5.5. Let E be the scheme defined in Sect. 4 with evaluation defined as
in this section, and Sim be the corresponding simulator. Then for any branching
program Π of length L = poly(λ) on � variables, such that the i-th variable is
used τi times, and any x1, . . . , x� ∈ {0, 1}, the following holds:

(E .Eval (Π, (C1, . . . ,C�)) ,C1, . . . ,C�, 1λ, s
)

≈s

(
Sim

(
1λ,Π (x1, . . . , x�) , (1τ1 , . . . , 1τ�), (C1, . . . ,C�)

)
,C1, . . . ,C�, 1λ, s

)

where s ← E .Setup
(
1λ
)
, Ci ← E .Encrypt (s, xi) for i in [�].

Proof. As shown in Lemma 5.4, the final result of the homomorphic evaluation
of the branching program Π is of the form

VL [0] ≈s

(
A

s̄ᵀA + fᵀ

)
+ xfG

where A $← Z
(n−1)×m
q , f ← DZm,rL

and rL = r
√

2
∑�

i=1 (1 + ‖ei‖2) τi.
Now we prove that the output of Sim is statistically close to the same distribu-

tion. This proof follows from the fact that scaling GSW ciphertexts yields a result
which is independent of the argument of G−1

rand (·). Let Ai,t,A′
i,t

$← Z
(n−1)×m
q ,

fi,f , f ′
i,t ← D

Zm,r
√

1+‖ei‖, then the joint distribution of the output of Sim and

ciphertexts (Ci)i∈[�] is

84 F. Bourse et al.

(S, (Ci)i∈[�]

)
=

(
∑�

i=1 Ci
∑τi

t=1

(
G−1

rand (0) − G−1
rand (0)

)
+

(
0
yᵀ

t

)
+ xfG, (Ci)i∈[�]

)

≈s

(
∑�

i=1

∑τi
t=1

(
Ai,t

s̄ᵀAi,t + fi,t

)
+

(
A′

i,t

s̄ᵀA′
i,t + f ′

i,t

)

, (Ci)i∈[�]

)

by Lemma3.1

≈s

((
A

s̄ᵀA+ fᵀ

)
, (Ci)i∈[�]

)

by Lemma2.3 and summing uniform variables.

The result is the same as the joint distribution of the output of Eval and
ciphertexts (Ci)i∈[�], thus concluding the proof. ��

We are now ready to prove Theorem 5.2.

Proof (Main theorem). Theorem 5.2 follows from Lemma 5.5 by tweaking the
Eval algorithm of E : it is sufficient that this algorithm pads the branching pro-
gram Π so that each variable is used L times. This padding is done by using
the identity permutation for all steps after the L-th. After this proof, we dis-
cuss more efficient ways to pad branching program evaluations. It is easy to see
that this step is enough to reach the desired circuit privacy property: the only
information leaked besides the final result is τi = L. ��

Padding Branching Program Evaluations. In order to pad a branching
program Π that uses the i-th variable τi times to one that uses the i-th variable
L times, we add L−τi steps, using the identity permutation at each one of these.
Given VL [0] the final result of the computation, this padding corresponds to
steps t ∈ [L + 1, 2L − τi] defined as follows:

Vt [0] ← Vt−1 [0] + Ci

(
G−1

rand (Vt−1 [0]) − G−1
rand (Vt−1 [0])

)
+
(

0
yᵀ

t,0

)

Using the same proof as Lemma 5.5 the final output will be

V2L−τi
[0] ← VL [0] + Ci

2L−τi−1∑
t=L

(
G−1

rand (Vt [0]) − G−1
rand (Vt [0])

)
+
(

0
yᵀ

t,0

)

≈s VL [0] + Ci

2L−τi−1∑
t=L

(
G−1

rand (0) − G−1
rand (0)

)
+
(

0
yᵀ

t,0

)

Observe that by using Lemma 2.3 we have that

2L−τi−1∑
t=L

(
G−1

rand (0) − G−1
rand (0)

) ≈s DΛ⊥
q (Gᵀ),rf

2L−τi−1∑
t=L

(
0

yᵀ
t,0

)
≈s DZm,rf

FHE Circuit Privacy Almost for Free 85

where rf = r
√

2 (L − τi). We can thus do all the steps at once by outputting

VL [0]+Ci ·X+
(

0
yᵀ

f

)
, where X ← Dm

Λ⊥
q (Gᵀ),rf

and yf ← DZm,rf
. We note that

X can be sampled using the G−1
rand (·) algorithm with parameter rf instead of r.

5.3 Setting the Parameters

In this section we show that, for appropriate values of the parameters, the out-
put of the homomorphic evaluation VL[0] decrypts to Π (x1, . . . , x�) with over-
whelming probability and guarantees circuit privacy.

We first recall the bounds on the parameters needed for both correctness and
privacy. Let n = Θ (λ), q = poly(n), m = n log q, α be the Gaussian parameter of
fresh encryptions, r be the parameter of G−1

rand (·). Let B = Θ(α
√

m) be a bound
on the norm of the error in fresh encryptions (using a tail cutting argument we
can show that B = Cα

√
m is sufficient to have a bound with overwhelming

probability), Lmax = poly(n) be a bound on the size of the branching programs
we consider and �max = poly(n) an upper bound on their number of variables.
Let ε = O(2−λ) and ε′ = O(2−λ).

We have the following constraints:

– α = Ω (
√

m) for the hardness of LWEn−1,q,DZ,α

– r ≥
√

5 ln(2m(1+1/ε))
π for the correctness of G−1

rand (·) sampling

– r ≥ 4
(
(1 − ε) (2ε′)2

)− 1
m

for the leftover hash lemma

– r ≥ √
5 (1 + B)

√
ln(2m(1+1/ε))

π for Lemma 3.7

– q = Ω
(√

mrα (mLmax �max)
1/2
)

for the correctness of decryption

We can thus set the parameters as follows:

– n = Θ(λ),
– Lmax = poly(n),
– �max = poly(n),
– α = Θ(

√
n),

– r = Θ̃ (n),
– q = Θ̃

(
n5/2 · Lmax · �max

)
, a power of 2.

Note that the ciphertext size grows with log Lmax. Correctness follows
directly.

Lemma 5.6 (Correctness). For any branching program Π of length L on �
variables, any x1, . . . , x� ∈ {0, 1}, the result of the homomorphic evaluation Cf =
Eval (Π, (C1, . . . ,C�)) decrypts to Π (x1, . . . , x�) with overwhelming probability,
where Ci ← Encrypt (s, xi) for i ∈ [�] and s ← Setup

(
1λ
)
.

86 F. Bourse et al.

Proof. Lemma 5.4 shows that the noise distribution of the output Cf of Eval

has parameter rf = r
√

2
∑�

i=1 τi (1 + ‖ei‖2), that is r
√

2L
∑�

i=1 (1 + ‖ei‖2)
because of the padding we applied to Π. We have rf ≤ r

√
2L� (1 + C2α2m)

with C the universal constant defined in Lemma2.4, Using the bounds Lmax

and �max we have rL = Õ
(
rα(mLmax �max)1/2

)
. Finally, by a tail cutting argu-

ment, q = Θ̃ (rL
√

n) = Θ̃
(
n5/2Lmax�max

)
is enough for decryption to be correct

with overwhelming probability. ��

5.4 Arbitrary Modulus and Random Trapdoor Matrix

In this paragraph we show how to instantiate our proofs in a more generic setting.
Our GSW ciphertext rerandomization can be straightforwardly adapted to

any matrix H and modulus q, as long as the lattice Λ⊥
q (Hᵀ) has a small public

basis, i.e. a small public trapdoor. Observe that the conditions needed to apply
GSW ciphertext rerandomization are given in Lemma 3.7, which bounds the
smoothing parameter of the lattice

L =
{
v ∈ Λ⊥

q (Hᵀ) × Z : êᵀv = 0
}

and in Lemma 3.8 which gives the min-entropy of a Gaussian over Λ⊥
q (Hᵀ).

Let β ≥ ‖ti‖, where T = {t1, ..., tm} is the public trapdoor of H (i.e. T is a
small basis of Λ⊥

q (Hᵀ)), we show that the previous two lemmas can be proven
for H and the parameter r only grows by a factor β.

First, observe that Lemma 3.7 aims to find m small independent vectors in
L. By noticing that

L =
{
(v,−vᵀe) : v ∈ Λ⊥

q (Hᵀ)
}

we can exhibit m small vectors ui = (ti,−tᵀ
i e) , i ∈ [m] which are of norm

‖ui‖ ≤ ‖ti‖(1 + ‖e‖) ≤ β(1 + ‖e‖)

This bound is the one we obtain in Lemma3.7 for Λ⊥
q (Gᵀ) where ‖T‖ =

√
5.

Second, we show that the bound on the min-entropy of Lemma3.8 can be
expressed as a function of β, simply by using the fact that det(T) ≤ ‖T‖m = βm.
From this we have the following bound on the min-entropy:

H∞
(
DΛ⊥

q (Hᵀ)+c,r

)
≥ log (1 − ε) + m log (r) − m log (β)

This bound is slightly worse that the one we obtain in Lemma3.8 for G (where
we had 2 instead of β). However this is not a problem as it is a weaker bound
than the one obtained in Lemma3.7.

By using these two lemmas we can rerandomize GSW ciphertexts and ensure
circuit privacy for arbitrary modulus q, and any matrix H with public trapdoor
by setting the Gaussian parameter of H−1 (·) to r = Θ̃ (βn).

FHE Circuit Privacy Almost for Free 87

5.5 Extension to General Circuits

We can realize circuit-private FHE for general circuits via bootstrapping using
the technique of [OPP14] by combining a compact FHE for general circuits with
decryption in NC1 with our circuit-private FHE for NC1circuits as follows: the
server receives a ciphertext under the first FHE scheme, evaluates its circuit
and bootstraps to the second (circuit hiding) FHE scheme. The ensuing scheme
however will not satisfy the multi-hop requirement. Nevertheless, by using the
construction given in [GHV10] it is possible to reach i-hop circuit private FHE
for any a priori chosen i by giving out i pairs of switching keys to bootstrap
from one scheme to the other and vice versa.

Acknowledgements. We thank Vinod Vaikuntanathan for insightful discussions, as
well as Damien Stehlé and the organizers of the HEAT summer school where this
research started.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009)

[AGHS13] Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover
hash lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part I. LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg
(2013)

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial
error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 297–314. Springer, Heidelberg (2014)

[AR13] Aggarwal, D., Regev, O.: A note on discrete gaussian combinations of
lattice vectors. CoRR, abs/1308.2405 (2013)

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev,
G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 533–556. Springer, Heidelberg (2014)

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS
2012, pp. 309–325. ACM, January 2012

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classi-
cal hardness of learning with errors. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, June
2013

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106.
IEEE Computer Society Press, October 2011

88 F. Bourse et al.

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
Ring-LWE and security for key dependent messages. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg
(2011)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: Naor, M. (ed.) ITCS 2014, pp. 1–12. ACM, January 2014

[DM15] Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryp-
tion in less than a second. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015)

[DRS04] Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong
keys from biometrics and other noisy data. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer,
Heidelberg (2004)

[DS16] Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 12

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis,
Stanford University (2009). http://crypto.stanford.edu/craig

[GHS12] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 850–867. Springer, Heidelberg (2012)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryp-
tion and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th ACM STOC, pp. 197–206. ACM Press, May 2008

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.)
47th ACM STOC, pp. 469–477. ACM Press, June 2015

[HS15] Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer,
Heidelberg (2015)

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007)

[LMSV12] Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure some-
what homomorphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC
2011. LNCS, vol. 7118, pp. 55–72. Springer, Heidelberg (2012)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society
Press, October 2004

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

http://dx.doi.org/10.1007/978-3-662-49890-3_12
http://crypto.stanford.edu/craig

FHE Circuit Privacy Almost for Free 89

[OPP14] Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Mali-
ciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014)

[Pei10] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp.
84–93. ACM Press, May 2005

[SS10] Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer,
Heidelberg (2010)

[SV10] Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with rela-
tively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D.
(eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg
(2010)

[SYY99] Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for
NC1. In: 40th FOCS, pp. 554–567. IEEE Computer Society Press, October
1999

[vDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homo-
morphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

Symmetric Cryptography

Cryptanalysis of a Theorem: Decomposing
the Only Known Solution to the Big

APN Problem

Léo Perrin1(B), Aleksei Udovenko1(B), and Alex Biryukov1,2(B)

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
{leo.perrin,aleksei.udovenko}@uni.lu

2 CSC, University of Luxembourg, Luxembourg City, Luxembourg
alex.biryukov@uni.lu

Abstract. The existence of Almost Perfect Non-linear (APN) permuta-
tions operating on an even number of bits has been a long standing open
question until Dillon et al., who work for the NSA, provided an example
on 6 bits in 2009.

In this paper, we apply methods intended to reverse-engineer S-Boxes
with unknown structure to this permutation and find a simple decompo-
sition relying on the cube function over GF (23). More precisely, we show
that it is a particular case of a permutation structure we introduce, the
butterfly. Such butterflies are 2n-bit mappings with two CCZ-equivalent
representations: one is a quadratic non-bijective function and one is a
degree n + 1 permutation. We show that these structures always have
differential uniformity at most 4 when n is odd. A particular case of
this structure is actually a 3-round Feistel Network with similar dif-
ferential and linear properties. These functions also share an excellent
non-linearity for n = 3, 5, 7.

Furthermore, we deduce a bitsliced implementation and significantly
reduce the hardware cost of a 6-bit APN permutation using this decom-
position, thus simplifying the use of such a permutation as building block
for a cryptographic primitive.

Keywords: Boolean functions · APN · Butterfly structure · S-Box
decomposition · CCZ-equivalence · Feistel Network · Bitsliced imple-
mentation

1 Introduction

When designing a symmetric primitive, it is common to use functions operating
on a small part of the internal state to provide non-linearity. These are called

The work of Léo Perrin is supported by the CORE ACRYPT project (ID C12-15-
4009992) funded by the Fonds National de la Recherche (Luxembourg). The work of
Aleksei Udovenko is supported by the Fonds National de la Recherche, Luxembourg
(project reference 9037104).

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 93–122, 2016.
DOI: 10.1007/978-3-662-53008-5 4

94 L. Perrin et al.

S-Boxes and their properties can be leveraged to justify security against differ-
ential [1] and linear [2] attacks using for example a wide-trail argument, as was
done for the AES [3].

A popular strategy for choosing S-Boxes with desirable cryptographic prop-
erties is to use mathematical construction based for example on the inverse in a
finite field [4]. A function with optimal differential property (in a sense that we
will define later) is called Almost Perfect Non-linear or APN. While it is easy
to find functions with this property, permutations are more rare. Many mono-
mials are known to be APN permutations in finite fields of size 2n for n odd (for
example the cube function), but whether there even exists APN permutations
operating on an even number of bits is still an important research area.

In this context, the 6-bit APN permutation described by a team of mathe-
maticians from the NSA (Dillon et al.) in [5] is of great theoretical importance:
it is the only known APN permutation for even n so far. Furthermore, it has
already been used to design an authenticated cipher: Fides [6]. However, the
method used by the Dillon et al. to find it relies on sophisticated considerations
related to error correcting codes and no generalization of their results has been
published to the best of our knowledge. In their paper, the authors state the
“big APN problem” and it is, 6 years later, still as much of an open question:

(STILL) The Big APN Problem: Does there exist an APN permuta-
tion on GF (2m) if m is EVEN and GREATER THAN 6?

Our Contribution. By applying methods designed by Biryukov et al. to reverse-
engineer the S-Box of the last Russian cryptographic standards [7], we show the
existence of a much simpler expression of the 6-bit APN permutation. This is
stated in Theorem 3 which we reproduce here.

Main Theorem (A Family of 6-bit APN Permutations). The 6-bit per-
mutation described by Dillon et al. in [5] is affine equivalent to any involution
built using the structure described in Fig. 1, where � denotes multiplication in
the finite field GF (23), α �= 0 is such that Tr(α) = 0 and A denotes any 3-bit
APN permutation.

A
A−1

�α

⊕

⊕
3 bits

A
A

�
α

⊕

⊕

Fig. 1. Some S-Boxes affine-equivalent to the Dillon APN permutation.

Cryptanalysis of a Theorem 95

We study extensively this structure, both experimentally and mathemati-
cally, and derive in particular new families of differentially 4-uniform permuta-
tions of 2n bits for n odd.

Outline. This paper is devoted to first deriving this theorem and then exploring
its consequences. Section 2 describes how the cryptanalysis strategy described
in [7] can be successfully applied to the 6-bit APN permutation to identify a
highly structured decomposition. We then study this structure in Sect. 3. Next,
we show in Sect. 4 that the same structure can be used to build differentially 4-
uniform permutations with algebraic degree at least n in fields of size 2n for odd
n. Finally, we use our results on the decomposition of 6-bit APN permutations
to describe efficient bit-sliced and hardware implementation of some of them in
Sect. 5.

Notations and Definitions

We use common definitions and notations throughout this paper. For the sake of
clarity, we list them here. First, we describe the notations related to finite field:

– F2n is a finite field of size 2n,
– for any x in F2n , the trace of x is Tr(x) =

∑n−1
i=0 x2i ,

The differential properties of an S-Box f : Fn
2 → F

m
2 are studied using its Differ-

ence Distribution Table (DDT), the 2n × 2m matrix D(f) such that D(f)[δ,Δ] =
#{x ∈ F2n , f(x + δ) + f(x) = Δ}. The maximum coefficient1 in D(f) is the
differential uniformity of f and, if it is equal to u, then we say that f is differen-
tially u-uniform. A differentially 2-uniform function is called Almost Perfect Non-
linear (APN).

Similarly, security against linear attacks can be justified using the Linear
Approximation Table (LAT)2 of f . It is the 2n × 2m matrix L(f) such that
L(f)[a, b] = #{x ∈ F2n , a·x = b·y}−2n−1 (where “·” denotes the scalar product).
The non-linearity of a f : Fn

2 → F
m
2 is NL(f) = 2n−1 − max (|L(f)[a, b]|) where

the maximum is taken over all non-zero line and column indices a and b.
Finally, we also consider algebraic decompositions of the functions we study

using the following tools:

– if x and u are vectors of Fn
2 , then xu =

∏n−1
i=0 xui

i so that xu = 1 if and only
if xi = 1 for all i such that ui = 1,

– the Algebraic Normal Form (ANF) of a Boolean function f is its unique expres-
sion f(x) =

⊕
u∈Fn

2
auxu where all au are in {0, 1},

– the algebraic degree of a Boolean function f is denoted deg(f) and is equal to
the maximum Hamming weight of u such that au = 1 in the ANF of f ,

1 The maximum is taken over all non-zero line indices.
2 This object is also sometimes referred to as the “correlation matrix”. Up to a mul-

tiplication by a constant factor, the coefficients in the LAT of a function also form
its Walsh Spectrum.

96 L. Perrin et al.

– the field polynomial representation of f mapping F2n to itself is its unique
expression as a univariate polynomial of F2n , so that f(x) =

∑2n−1
i=0 cix

i with
ci in F2n . It can be obtained using Lagrange interpolation.

Note that the algebraic degree of a polynomial of F2n is equal to the maximum
Hamming weight of the binary expansions of the exponents in its field polynomial
representation. For example, the algebraic degree of the cube function x �→ x3

in F2n is equal to 2.
Two functions f and g are affine equivalent if there exist affine permutations

A and B such that g = B ◦ f ◦ A. If we also add an affine function C to the
output, that is, g = B ◦ f ◦ A + C, then f and g are extended affine-equivalent
(EA-equivalent).

Finally, we denote the concatenation of two binary variables using the symbol
“||”. In particular, we will often interpret bit-strings of length 2n as x||y, where
x and y are in F

n
2 .

2 A Decomposition of the 6-Bit APN Permutation

In this section, we identify a decomposition of the Dillon APN permutation. We
denote this permutation S0 : F6

2 → F
6
2 and give its look-up table in Table 1. As we

are interested only in its being an APN permutation, we allow ourselves to com-
pose it with affine permutations as such transformations preserve this property.
We will omit the respective inverse permutations to simplify our description.

Table 1. The Dillon permutation S0 in hexadecimal (e.g. S0(0x10) = 0x3b).

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0 00 36 30 0d 0f 12 35 23 19 3f 2d 34 03 14 29 21

1 3b 24 02 22 0a 08 39 25 3c 13 2a 0e 32 1a 3a 18

2 27 1b 15 11 10 1d 01 3e 2f 28 33 38 07 2b 2c 26

3 1f 0b 04 1c 3d 2e 05 31 09 06 17 20 1e 0c 37 16

Our strategy is identical to the one used to recover the structure of the S-Box
of the last Russian cryptographic standards described in [7]. First, we obtain a
high level decomposition of the permutation relying on two distinct but closely
related 3-bit keyed permutations (the “TU-decomposition”) in Sect. 2.1. Then,
we decompose these keyed permutations in Sects. 2.2. Finally, we provide the
complete decomposition of an S-Box affine-equivalent to S0 in Sect. 2.3.

2.1 High-Level TU-Decomposition

As suggested in [7,8], we looked at the “Jackson Pollock” representation of the
absolute value of the LAT of the S-Box (see Fig. 2a). We can see some patterns,

Cryptanalysis of a Theorem 97

namely columns and aligned short vertical segments of black and white colors
within a grey rectangle (white is 0, grey is 4 and black is 8). The black-and-
white columns also have the 8 topmost coefficients equal to zero. Moreover,
their horizontal coordinates form a linear subspace of F6

2.
Therefore, as was done in [7], we compose the S-Box with a particular linear

permutation chosen so that these particular columns are clustered to the left
of the picture, i.e. their abscissa become [0, 7]. The black-and-white columns
have coordinates {0, 4, 10, 14, 16, 20, 26, 30} and the binary expansion of these
numbers form a linear subspace of F

6
2 spanned by the binary expansions of

{4, 10, 16}. We thus construct a permutation η, linear over GF (2), such that
η : 1 �→ 4, 2 �→ 10, 4 �→ 16 and then we complete it by setting η : 8 �→ 1, 16 �→
2, 32 �→ 32 so that η is a permutation. By Theorem 1 from [7], the composition
ηt ◦ S0 of such mapping with the S-Box will group the black-and-white columns
in the LAT. The Jackson Pollock representation of ηt ◦ S0 is given in Fig. 2b.

(a) LAT of S0. (b) LAT of ηt ◦ S0.

Fig. 2. The Jackson Pollock representation of the LAT of two permutations (absolute
value). Row/column indices correspond to input/output linear approximation masks
respectively. White pixels correspond to 0, grey to 4 and black to 8.

As we can see the columns are now aligned, as was our goal, and the short
segments became grouped into small squares, thus making the whole picture
more structured. Doing this also caused the appearance of a “white-square” in
the top-left square [0, 7] × [0, 7]. This last pattern is a known side effect of the
existence of specific integral properties (see Lemma 2 of [7] which is itself derived
from [9]). Hence, we checked for integral/multiset properties as defined in [10]
and identified the following property: fixing the last 3 bits of the input and
letting the first 3 take all possible values leads to the last 3 bits of the output
taking all possible values.

We keep following the blueprint laid out in [7] and investigate the conse-
quences of this integral distinguisher. In fact we generalize their next step, which
consists in providing a high level decomposition of the S-Box, by describing the
TU-decomposition.

98 L. Perrin et al.

Lemma 1. Let f be a function mapping F
n
2 × F

n
2 to itself such that fixing the

right input to any value and letting the left one take all 2n possible values leads
to the left output taking all 2n possible values. Then f can be decomposed using
a keyed n-bit permutation T and a keyed n-bit function U (see Fig. 3a):

f(x, y) =
(
Ty(x), UTy(x)(y)

)
,

Besides, if f is a permutation then U is a keyed permutation.

T

U

(a) Basic TU-decomposition.

T

U

(b) TU-decomposition composed with a swap.

Fig. 3. Principle of the TU-decomposition.

Proof. We simply define Ty(x) to be the left side of f(x, y). Because of the
multiset property, Ty is a permutation for all y. We then define U to be such
that Uk(y) is the right side of f

(
T−1

y (k), y
)
.

If f is a permutation then (x, y) �→ f
(
T−1

y (x), y)
)

is a permutation equal to
(x, y) �→ (x,Ux(y)). In particular, it holds that Ux is a permutation for all x,
making it a keyed permutation. �	

We apply Lemma 1 to ηt ◦ S0 and deduce its TU-decomposition. We actu-
ally have the output halves swapped so we may draw the structure in a more
symmetric fashion (see Fig. 3b). The corresponding keyed permutations T and
U are given in Table 2.

Table 2. The keyed permutations T and U . Tk and Uk denote the permutations
corresponding to the key k.

0 1 2 3 4 5 6 7
T0 0 6 4 7 3 1 5 2
T1 7 5 1 6 4 2 0 3
T2 4 3 2 0 5 6 1 7
T3 3 5 2 1 4 6 7 0
T4 1 2 0 6 4 3 7 5
T5 6 5 2 4 7 0 1 3
T6 5 2 6 4 0 3 1 7
T7 2 0 1 6 5 3 4 7

(a) T .

0 1 2 3 4 5 6 7
U0 0 3 6 4 2 7 1 5
U1 7 4 0 2 3 6 1 5
U2 1 4 2 6 3 0 5 7
U3 7 2 5 1 3 0 4 6
U4 7 3 4 1 0 2 6 5
U5 3 7 1 4 2 0 5 6
U6 1 3 7 4 6 2 5 0
U7 4 6 3 0 5 1 7 2

(b) U .

Cryptanalysis of a Theorem 99

The degree of T as a 6-bit permutation is equal to 3 and that of U is equal to
2. However the degree of T−1 is equal to 2 as well. One may think that T−1 and U
are somehow related and we indeed found that T−1 and U are linearly equivalent
using the algorithm by Biryukov et al. from [11]. The linear equivalence of T−1

and U is given by:
U(x) = M ′

U ◦ T−1 ◦ MU (x),

where T and U are considered as 6-bit permutations and the linear permutations
MU and M ′

U are given as the following binary matrices:

MU =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0
1 0 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

,M ′
U =

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
0 1 0 0 1 0
1 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

.

2.2 Decomposing T

As we applied a linear mapping on the output of the S-Box, we might have
scrambled the initial structure of U . Hence, we choose the decomposition of T−1

as our main target. We start by composing it with a Feistel round to ensure
that 0 is mapped to itself for all keys. Again, this simplification was performed
while reverse-engineering the GOST S-Box. If we apply such an appropriate
Feistel round before or after T−1, the corresponding Feistel function is always a
permutation. Moreover, in the case when the Feistel function is used between T
and U , the Feistel function is linear3 so we choose this side. We define t(k) =
Tk(0) and T ′

k(x) = Tk(x) ⊕ t(k) so that T ′
k(0) = T ′−1

k (0) = 0 for all k (see
Fig. 4a). The linear permutation t is given by t(x) = (0, 7, 4, 3, 1, 6, 5, 2).

T ′−1

t⊕

(a) Detaching a linear
Feistel round.

L

t

N

⊕

⊕

(b) Splitting T ′−1 into N
and L.

L

t

I

p

⊕

⊕

(c) Simplifying N into I
and linear functions.

Fig. 4. Simplifying the keyed permutation T ′−1.

3 If we had attacked U instead of T −1, then detaching a Feistel function in this way
leads only to a nonlinear Feistel function (regardless of the side), which supports our
choice of T ′−1 as an easier target.

100 L. Perrin et al.

We then check the existence of particular algebraic structure in T ′. We choose
the irreducible polynomial X3 + X + 1 to represent elements of F23 as binary
strings and, furthermore, we represent these binary strings as integers. In equa-
tions we represent such constants in italic. Note that this representation was
motivated by convenience reasons for working in Sage [12] and we are using it
only in this section for describing the decomposition process.

Now we use Lagrange interpolation to represent each T ′−1
k as a polynomial

over F23 . The result is given in Table 3. Interestingly, the coefficients of the non-
linear terms x6, x5, x3 are key-independent. We therefore decompose T ′−1 as
a sum of its non-linear part N and its key-dependent linear part Lk so that
T ′−1

k (x) = N(x) + Lk(x), where N(x) = 3x6 + 2x5 + 5x3 and Lk(x) is linear for
any k (see Fig. 4b).

Table 3. The values and polynomial interpolation of each T ′−1
k .

0 1 2 3 4 5 6 7 Interpolation polynomial

T ′−1
0 0 5 7 4 2 6 1 3 3x6 + 2x5 + 3x4 + 5x3 + 2x2 + 0x

T ′−1
1 0 3 1 4 7 5 2 6 3x6 + 2x5 + 1x4 + 5x3 + 4x2 + 2x

T ′−1
2 0 4 5 7 3 6 2 1 3x6 + 2x5 + 0x4 + 5x3 + 0x2 + 0x

T ′−1
3 0 2 3 7 6 5 1 4 3x6 + 2x5 + 2x4 + 5x3 + 6x2 + 2x

T ′−1
4 0 2 5 1 7 4 6 3 3x6 + 2x5 + 3x4 + 5x3 + 0x2 + 5x

T ′−1
5 0 4 3 1 2 7 5 6 3x6 + 2x5 + 1x4 + 5x3 + 6x2 + 7x

T ′−1
6 0 3 7 2 6 4 5 1 3x6 + 2x5 + 0x4 + 5x3 + 2x2 + 5x

T ′−1
7 0 5 1 2 3 7 6 4 3x6 + 2x5 + 2x4 + 5x3 + 4x2 + 7x

We now simplify N by applying a linear function of our choice after T ′−1

(see Fig. 4c). We allow ourselves to do this because this side corresponds to the
input of the S-Box on which, as we said before, we may apply any affine layer
as those would preserve the differential uniformity of the whole permutation.
Choosing this side also prevents the need for a corresponding modification of U .
We choose p(x) = 4x4 + x2 + x because (p ◦ N)(x) = x6 is the inverse function
in F23 , denoted I.

We further remark that p ◦ Lk is simpler than Lk too: there are nonzero
coefficients only at x2 and x4 (see Table 4). Note also that p ◦ L2 = 0 so we add
2 to k to obtain these linear layers:

(p ◦ Lk)(x) = l2(k + 2)x2 + l4(k + 2)x4,

where l2(x) = 2x4 + 4x2 + x and l4(x) = x4 + 6x2 + 2x are obtained from the
Lagrange interpolations of p ◦ Lk given in Table 4.

In our effort to simplify the structure, we search for a linear permutation
q such that both l2 ◦ q and l4 ◦ q have a simpler form and find that q(x) =
3x4 + 7x2 + 3x is such that (l2 ◦ q)(x) = x4 and (l4 ◦ q)(x) = x2. Therefore,

Cryptanalysis of a Theorem 101

Table 4. The interpolation polynomials of each p ◦ Lk.

Function Polynomial

p ◦ L0 7x4 + 3x2

p ◦ L1 2x4 + 4x2

p ◦ L2 0x4 + 0x2

p ◦ L3 5x4 + 7x2

Function Polynomial

p ◦ L4 4x4 + 6x2

p ◦ L5 1x4 + 1x2

p ◦ L6 3x4 + 5x2

p ◦ L7 6x4 + 2x2

L

t

I

p

⊕

⊕
2

q1 q−1 ⊕
2

⊕

(a) Using k′ = q(k) ⊕ 2.

t

I

I⊕

q−1 ⊕
2

⊕
⊕

(b) Using Equation (1).

Fig. 5. Simplifying p◦L and thus T ′−1. The dashed area corresponds to the equivalence
given by Eq. 1.

we can write (p ◦ Lk)(x) = k′4x2 + k′2x4, where k′ = q−1(k + 2). We deduce
a representation of the whole structure of p ◦ T ′−1 depending only on linear
functions and the inverse function which we describe in Eq. (1) and Fig. 5.

(p ◦ T ′−1
k)(x) = x6 + x2k′4 + x4k′2 = (x + k′)6 + k′6, with k′ = q−1(k + 2). (1)

Then, we replace the application of x �→ q−1(x+2) on the horizontal branch in
Fig. 5b by its application on the right vertical branch followed by its inverse (see
Fig. 6a; note that q−1(2) = 5). By then discarding the affine permutation applied
on the top of the right branch (we omit the affine layers applied to the outside of
the complete permutation), we obtain the equivalent structure shown in Fig. 6b.
Finally, we merge the two linear Feistel functions into z(x) = t(q(x)) ⊕ x to
obtain our final decomposition of T −1:

T −1(�||r) = I(
� + z

(
q−1(r)

)
+ 5

)
+ I(

q−1(r) + 5
) || (q−1(r) + 5),

which is also is described in Fig. 6c. Now that we have found a decomposition of
T , we shall use it to express a whole permutation affine-equivalent to S0.

2.3 Joining the Decompositions of T and U

Let us now join the decomposition of T and U together, that of U being obtained
using that U(x) = M ′

U ◦ T −1 ◦ MU (x). The affine transformations applied on

102 L. Perrin et al.

t

q−1

5

I
I

5

q

(a)

q−1

I

qt⊕
⊕
⊕5 ⊕5

I⊕

(b)

q−1

I

z⊕
⊕5 ⊕5

I⊕

(c)

Fig. 6. Finishing the decomposition of T −1: moving q, q−1 and x �→ x + 2 around,
removing the outer affine layer and merging the Feistel linear rounds.

the top of T ′−1 make the relation between T−1 and U affine instead of linear
on one side. This side corresponds to the output of the S-Box and we omit this
transformation. The other linear mapping MU connecting T−1 and U merges
with the linear part of T−1 and its symmetric copy from U into the linear
mapping M (see Fig. 7a and b). The linear permutation M is given by the
following matrix over F2:

M =

⎡
⎢⎢⎢⎢⎢⎣

1 0 1 1 1 1
1 1 0 0 1 0
0 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0
1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

In order to further improve our decomposition, we studied how each compo-
nent of this structure could be modified so as to preserve the APN property of
the permutation. We investigated both the replacement of the linear and non-
linear permutations used and describe our findings in Sect. 3.3. In particular,
we found that we could modify the central affine layer in the following fashions
while still keeping the APN property of the permutation (see Theorem 2):

– changing the xor constants to any value, in particular 0;
– inserting two arbitrary 3-bit linear permutations a and b as shown in Fig. 7c.

Thus, we remove the xors from the structure and exhaustively check all linear
permutations a, b such that the resulting linear layer from Fig. 7c has the simplest
form. We found that for a(x) = 2x4 + 2x2 + 4x and b(x) = 2x4 + 3x2 + 2x the
resulting matrix can be represented as the following matrix M ′ over F23 :

M ′ =
[
2 5
1 2

]
.

Interestingly, M ′ is an involution which, because of the symmetry of our
decomposition, makes the whole S-Box involutive too! The matrix M ′ can more-

Cryptanalysis of a Theorem 103

I
I

5 5
z

q1

MU

q−1

z

5 5

I
I

T
U

(a) Joining the decompo-
sitions of T and U .

I

I
5 5

M

5 5

I
I

(b) Merging linear layers.

I
I
a a

M

b b

I
I

(c) Allowed transforma-
tions.

Fig. 7. Simplifying the middle affine layer. The linear mappings in the dotted area in
Fig. 7a form the linear layer M .

over be decomposed into a 2-round Feistel Network with finite field multiplica-
tions by 2 as Feistel functions. We deduce the final decomposition from this final
observation and describe it in the following theorem.

Theorem 1. There exist linear bijections A and B such that the Dillon 6-bit
permutation is equal to

S0(x) = B(SI(A(x) ⊕ 9) ⊕ 4,

where the output of SI(�||r) is the concatenation of two bivariate polynomials of
F2[X]/(X3 + X + 1), namely SL

I (�, r) and SR
I (�, r). These are equal to

{
SR

I (�||r) = (r6 + �)6 + 2r,

SL
I (�||r) =

(
r + 2SR

I (�||r))6 + SR
I (�||r)6.

A picture representing a circuit computing SI is given Fig. 8.

For the sake of completeness, we give the matrices of the linear permutations
A and B:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 1
1 1 1 1 0 0
1 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 1
0 0 0 0 0 1
0 0 1 1 1 0
0 0 0 1 1 1
0 0 1 0 1 0
1 0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

104 L. Perrin et al.

I
I

�2

⊕

⊕

I
I

�
2

⊕

⊕

Fig. 8. The APN involution SI , where I denotes the inverse in the finite field F23 with
the irreducible polynomial X3 + X + 1, i.e. the monomial x �→ x6.

3 Analysing Our Decomposition

In this section, we study the structure of the 6-bit APN permutation we derived
from the Dillon S-Box in Sect. 2. We start with a description of its cryptographic
properties in Sect. 3.1. Then, we generalize this structure into the Butterfly
structure (see Sect. 3.2). We investigate how 3-bit affine permutations propagate
through the different components of our decomposition in Sect. 3.3 and then we
use this information to deduce how much freedom we have when choosing the
different components of the permutation (see Sect. 3.4).

We discover some new relations between the APN permutation, the Kim
function and the cube mapping over F26 in Sect. 3.5. Furthermore, we describe
some simple univariate representations of the structure in Sect. 3.6. We have also
noticed that SI is CCZ-equivalent to the concatenation of two bent functions.
However, because it could not produce any new 6-bit APN permutations, we
discuss this in the full version of this paper [13].

3.1 Cryptographic Properties

The first consequence of our decomposition is the surprising observation that
the 6-bit APN permutation is affine-equivalent to an involution. To the best of
our knowledge, this was not known.

The permutation SI is obviously APN due to how it was obtained, so that
the highest differential probability is equal to 2/64 = 2−5. The Jackson Pollock
representation of the DDT of Swap ◦ SI ◦ Swap, where Swap is a simple branch
swap, is provided in Fig. 9a. The LAT of SI contains4, in absolute value, only 3
different coefficients: 945 occurrences of 0, 2688 occurrences of 4 and 336 occur-
rences of 8 (see Fig. 9b). Its maximum linear bias is thus 8/32 = 2−2. The left
half of its output bits have algebraic degree 4 and those on the right half have
algebraic degree 3.

4 As SI is a permutation, we ignore the first line and the first column of its LAT.

Cryptanalysis of a Theorem 105

(a) DDT of Swap ◦SI ◦Swap (white: 0,
black: 2).

(b) LAT of SI (white: 0, grey: 4, black: 8).

Fig. 9. The Jackson Pollock representation of the DDT and LAT of SI .

3.2 The Butterfly Structure

As described above, the output of our 6-bit APN permutation SI is the concate-
nation of two bivariate polynomials of F23 . We define the keyed permutation Rk

of F23 with a key in F23 as

Rk(x) = (x + 2k)6 + k6,

where Rk is indeed a permutation affine equivalent to the inverse function x �→
x6. In fact, its inverse R−1

k such that R−1
k (Rk(x)) = x is equal to R−1

k = (x +
k6)6 + 2k. Using this keyed permutation and its inverse, it is easy to express SI
(see also Fig. 10a):

SI(�||r) = RR−1
r (�)(r) || R−1

r (�).

Using this representation, we show that SI is CCZ-equivalent to a quadratic
function with a very similar structure. First, we recall the definition of CCZ-
equivalence (where CCZ stands for Carlet-Charpin-Zinoviev [14]) as it is defined
e.g. in [15].

Definition 1 (CCZ-equivalence). Let f and g be two functions mapping F2n

to itself. They are said to be CCZ-equivalent if the sets {(x, f(x)) | x ∈ F2n}
and {(x, g(x)) | x ∈ F2n} are affine equivalent. In other words, they are CCZ-
equivalent if and only if there exists a linear permutation L of (F2n)2 such that{

(x, f(x)),∀x ∈ F2n
}

=
{
L (x, g(x)) ,∀x ∈ F2n

}
.

For example, a permutation is CCZ-equivalent to its inverse. As is shown in
Proposition 2 of [16], CCZ-equivalence preserves both the differential uniformity
and the Walsh spectrum (i.e. the distribution of the coefficients in the LAT).

Lemma 2. The permutation SI is CCZ-equivalent to the quadratic function
QI : F6

2 → F
6
2 obtained by concatenating two bivariate polynomials of F23 :

QI(�||r) = Rr(�)||R�(r).

A representation of QI is given Fig. 10b.

106 L. Perrin et al.

R−1

R

(a) The permutation SI .

R R

(b) The function QI .

Fig. 10. Two CCZ-equivalent APN functions of F6
2.

Proof. The functional graph of the function QI is the following set:

{(
x||y, Ry(x)||Rx(y)), ∀x||y ∈ F

6
2},

in which we can replace the variable x by z = Ry(x) so that x = R−1
y (z) as Rk

is invertible for all k. We obtain a new description of the same set:

{(
R−1

y (z)||y, z||RR−1
y (z)(y)), ∀z||y ∈ F

6
2}.

As the function μ : (F6
2)

2 → (F6
2)

2 with μ(x||y, a||b) = (a||y, b||x) is linear, this
graph is linearly equivalent to the following one:

{(
z||y, RR−1

y (z)(y))||R−1
y (z), ∀z||y ∈ F

6
2},

which is the functional graph of SI : the two functions are CCZ-equivalent. �	
Definition 2 (Butterfly Structure). Let α be in F2n , e be an integer such
that x �→ xe is a permutation of F2n and Rk[e, α] be the keyed permutation

Rk[e, α](x) = (x + αk)e + ke.

We call Butterfly Structures the functions of (F2n)2 defined as follows:

– the Open Butterfly with branch size n, exponent e and coefficient α is the
permutation denoted Hα

e defined by:

Hα
e (x, y) =

(
R−1

Ry[e,α](x)(y), Ry[e, α](x)
)
,

– the Closed Butterfly with branch size n, exponent e and coefficient α is the
function denoted Vα

e defined by:

Vα
e (x, y) =

(
Ry[e, α](x), Rx[e, α](y)

)
.

Furthermore, the permutation Hα
e and the function Vα

e are CCZ-equivalent.

Pictures representing such functions are given in Fig. 11. Our decomposition
of the 6-bit APN permutation and its CCZ-equivalent function have butterfly
structures: SI = H2

6 and QI = V2
6 . In fact, the proof of the CCZ-equivalence

of open and closed butterfly is identical to that of Lemma 2. The properties of
such structures for n > 3 are studied in Sect. 4.1, in particular in Theorem 4. In
this section, we focus on the case n = 3.

Cryptanalysis of a Theorem 107

xe

x1/e

�α

⊕

⊕

xe

xe

�
α

⊕

⊕

(a) Open (bijective) butterfly Hα
e .

�
α

⊕
xe

xe ⊕

�
α

⊕
xe

xe ⊕

(b) Closed (non-bijective) butterfly Vα
e .

Fig. 11. The two types of butterfly structure with coefficient α and exponent e.

3.3 Propagation of Affine Mappings Through the Components

As we have seen, affine-equivalence and CCZ-equivalence are key concepts in
our analysis of SI . In this context, it is natural to extend our analysis not only
to outer affine layers applied before and after the permutation but also to the
inner affine permutation itself: what modifications can we make to this function
while preserving the APN property of the structure? In this section, we study
the “propagation” of affine layers in the sense defined below. Our study will show
some interesting properties of the structure and why changing some components
can lead to an affine equivalent structure.

Definition 3 (Propagation of Affine Layers). We say that an affine trans-
formation A propagates through a component C if there exists an affine trans-
formation A′ such that C ◦ A = A′ ◦ C.

Note that this definition is another way of looking at self-equivalence: indeed,
C ◦ A = A′ ◦ C is equivalent to C = A′−1 ◦ C ◦ A.

Theorem 2. Consider the two permutations of F
6
2 with structures shown in

Fig. 12, where A,B : F3
2 → F

3
2 are some linear bijections,

M =
[
p q
r s

]

is an invertible matrix operating on column-vectors, p, q, r, s are 3 × 3 sub-
matrices over F2 and a, b, c, d are constants of F23 . Assume also that q is invert-
ible. Then both structures are affine-equivalent for any choice of M (with q
invertible) and constants. As a consequence, all such structures are in the same
affine-equivalence class.

Proof. We start by proving that adding constants a, b, c, d as described in Fig. 12
leads to affine-equivalent permutations. For now, we assume that A and B are
the identity. First, we modify the constants without modifying the function to
move them to the right branches only. To do this, we move a through the linear

108 L. Perrin et al.

I
I

M

I
I

I
I

a b

A A

M

B B
c d

I
I

Fig. 12. Affine equivalent structures.

layer M and modify b in such a way that c cancels out. The difference required,
x = b′ ⊕b, is a solution to the equation p(a)⊕q(x) = c, so that x = q−1(p(a)⊕c)
and x always exists since q is invertible. Thus, for

b′ = b ⊕ x = b ⊕ q−1(p(a) ⊕ c),

d′ = d ⊕ r(a) ⊕ s(x) = d ⊕ r(a) ⊕ s(q−1(p(a) ⊕ c)),

constructions with the structure described in Fig. 13a and b are functionally
equivalent.

a b

M
c d

(a)

b′

M

d′

(b)

d′
I
(c)

I
id′

d′

(d)

Fig. 13. How the xors around the central linear layer are affine equivalent to outer
linear layers.

The xors remaining on the right branches propagate through the Feistel func-
tion I and are equivalent to particular outer affine transformations. Note that
in F23 we have5

I(x + d′) = (x + d′)6 = x6 + d′2x4 + d′4x2 + d′6 = I(x) + id′(x),

where id′(x) = d′2x4 + d′4x2 + d′6 is an affine function and can be seen as an
additional Feistel round. The propagation of the xor with d′ is illustrated on
5 For larger fields the inverse function does not satisfy the property and therefore such

propagation is impossible. An anonymous reviewer pointed out that this works in
F23 because the inverse function there has boolean algebraic degree 2 and therefore
its derivative is linear.

Cryptanalysis of a Theorem 109

Fig. 13c and d: the functions described on both figures are functionally equiva-
lent. The case with b′ is symmetrical.

We have now showed that the xors a, b, c, d can be removed and the resulting
S-Box stays in the same affine equivalence class. Since the equivalence relation is
symmetric, we can also modify the constants to arbitrary values. We now move
on to studying the impact of branch-wise affine permutations.

It is sufficient to show how the two applications of B propagate through the
bottom field inverses, the case of A being symmetric. We start by analyzing
propagation through a single inverse function (see Fig. 14).

In the case when the input transformation is linear (when c = 0), it is easy to
see that if the equivalent output transformation is affine, then it is actually linear,
since B(0) = I(0) = 0. By exhaustively checking all linear 3-bit permutations B
we found that the only functions which propagate in such way are 21 functions
of the form x �→ λx2e , where e ∈ {0, 1, 2}, λ ∈ F23 , λ �= 0. This propagation is
quite obvious since (λx2e)6 = λ6(x6)2

e

.
The more interesting case is when the input transformation is affine. By

exhaustive search we found that any linear bijection B propagates through the
field inverse in F23 , but only together with a particular B-dependent xor con-
stant. That is, for any linear bijection B there exists a constant c such that
I(B(x)+ c) = B′(I(x))+ c′ for some linear bijection B′ and constant c′, i.e. the
affine function B(x) + c propagates through the inverse function in the affine
way (see Fig. 14b).

b

I
≈ I

b′

(a) Linear.

b
c

I
≈

I
b′

c′

(b) Affine.

Fig. 14. Propagation of linear/affine permutation through the field inverse.

Note that after applying the linear bijections A and B the top right submatrix
of M becomes B × q × A and is still invertible, therefore the part of theorem
about constant addition, which we already proved, is still applicable. Hence for
any linear mappings A,B we can add the xor constants required for propagation
of A,B. Let x, y be the values on the left and right branches respectively after
applying the linear layer M . Then the left half of the output is equal to

x′ = I(B(x)+c)+I(B(y)+c) = B′(I(x))+c′ +B′(I(y))+c′ = B′(I(x)+I(y)),

and the right half is simply y′ = B(x) + c. The procedure is shown in Fig. 15. �	
Theorem 2 shows an interesting property of the field inverse in F23 : all lin-

ear bijections propagate through it together with some xor constant. We have
checked all nonlinear exponent functions in F2n for n = 4, 5, 6, 7 and none of

110 L. Perrin et al.

M

B B

I
I

M
x y

B B
c c

I
I

x′ y′

M
x y

I
I

B′ B
c

x′ y′

Fig. 15. Propagation of affine mappings through the inverses. The dashed area contains
the outer affine parts.

them has this property. By using self-equivalence algorithm from [11] we found
that in these fields the only affine transformations which propagate through such
nonlinear monomial functions are the linear mappings of the form x �→ λx2e ,
where e ∈ [0, n − 1], λ ∈ F2n , λ �= 0.

In our decomposition the central linear layer is a 2-round Feistel Network
where the round function σ is multiplication by 2 in the finite field defined by a
particular polynomial (see Fig. 16a). By applying linear transformations around
as in Theorem 2 we obtain an affine equivalent S-Box. We can move the linear
functions a through the linear Feistel network, such that the round functions
are modified and the linear functions a merge with the linear functions b as
shown in Figs. 16b and c. Since by Theorem 2 the outer linear function b ◦ a
can be omitted, we conclude that σ may be replaced by a−1 ◦ σ ◦ a for arbitrary
linear permutation a. By exhaustively checking a−1 ◦ σ ◦ a for all a we found
that there are 24 unique variants of σ. In particular, in the field defined by the
irreducible polynomial X3 + X + 1 the allowed multiplications by a constant α
are when α ∈ {2, 4, 6}, where the latter two are obtained from σ(x) = 2x by
setting a(x) = x2 and a(x) = x4. In the field defined by the other irreducible
polynomial X3 + X2 + 1 such constants become α ∈ {3, 5, 6}. We note that all
these elements can be unambiguously defined by the conditions Tr(α) = 0, α �= 0
in both fields.

3.4 Replacing Components

It is natural to ask how unique are the components of the decomposition; can
we get a different APN permutation by changing the central linear layer or the
inverse functions?

We made an exhaustive6 search for an invertible matrix such that when it
is used as the middle linear layer in our decomposition, the resulting S-Box is
an APN permutation. All the APN permutations we found are CCZ-equivalent
to the original S-Box. However not all of them are affine-equivalent to it. By
studying the new matrices we found that all of them can be obtained by using
6 Actually we optimized the search by utilizing the equivalence classes given by

Theorem 2.

Cryptanalysis of a Theorem 111

σ

σ

(a) The linear layer
from the decomposi-
tion

a a

σ

σ

b b

(b) Applying arbitrary
linear bijections a and b.

aσa−1

aσa−1

a a

b b

(c) Moving the linear func-
tions a down.

Fig. 16. Propagation of the linear function a through the middle linear layer.

transformations from Theorem 2 together with swaps applied before and/or
after the linear layer. All four different combinations of swaps result in four
S-Boxes from distinct affine-equivalence classes (see Fig. 17). However they form
two pairs of EA-equivalent S-Boxes: Fig. 17a and c, Fig. 17b and d. The proof
for EA-equivalence is given in the full version of this paper [13]. Note that the
function shown in Fig. 17c is the inverse of the function from Fig. 17b and both
functions from Figs. 17a and d are involutions. Whether all four functions are
EA-equivalent remains an open question.

I
I

α

αI
I

(a) No swaps.

I
I

α

αI
I

(b) Swap after.

I
I

α

αI
I

(c) Swap before.

I
I

α

αI
I

(d) Both swaps.

Fig. 17. Four APN permutations from different affine-equivalence classes, obtained by
adding swaps before and/or after the central linear layer.

We also made an exhaustive search of all 3-bit permutations and tried to use
them instead of the field inverses. A non-involutive function has to be inverted
in one of the places, as in the butterfly construction we introduced in Sect. 3.2. It
turns out that the set of all 3-bit permutations for which the respective S-Box is
an APN permutation is exactly the set of all 3-bit APN permutations. It is not
surprising because all 3-bit APN permutations are in the same affine equivalence
class. By using Theorem 2 and by applying some outer affine transformations
we can easily replace the field inverses with arbitrary affine-equivalent functions

112 L. Perrin et al.

and therefore with arbitrary 3-bit APN permutation. It follows that the two
APN permutations at the top and the two APN permutations at the bottom
may be different and the resulting S-Box will still be an APN permutation. We
also note that one of the 3-bit APN permutations is such that its DDT and LAT
are identical up to the signs in the LAT. It is the S-Box used in the block cipher
3-way [17].

As a summary of our observations we give the following theorem:

Theorem 3 (A Family of 6-bit APN Permutations). The 6-bit permuta-
tion described by Dillon et al. in [5] is affine equivalent to the involution built
using the structure described in Fig. 1, where � denotes multiplication in the
finite field GF (23), α �= 0 is such that Tr(α) = 0 and A denotes any 3-bit APN
permutation.

3.5 Relations with the Kim and the Cube Functions

It is suggested in [11] to count the number of pairs of affine permutations A,B
such that SI = B◦SI ◦A as a measure of the symmetries inside SI . An algorithm
performing this task is also provided. Using it, we have found that there are only
7 such pairs (including the pair of identity mappings). This property is preserved
by affine transformations and the number could therefore be obtained without
our decomposition. However, for the S-Box SI , these 7 pairs of transformations
have a simple description:

SI(λx, λ−1y) = (λ, λ−1) ⊗ SI(x, y) for all λ ∈ F
∗
23 , (2)

where “⊗” is such that (a, b) ⊗ (c, d) = (ac, bd). In other words, multiplying the
inputs by λ and λ−1 is equivalent to multiplying the outputs by the same values.
As we have shown in Sect. 3.3, there are more symmetries inside the structure.

An anonymous reviewer pointed out that the observed property is quite sim-
ilar to that of “Kim mapping”, a non-bijective quadratic APN function from
which Dillon et al. [5] obtained the APN permutation by applying transfor-
mations preserving CCZ-equivalence. The Kim function is defined over F26 as
k(x) = x3 + x10 + ux24, where u is some primitive element of F26 . It is pointed
in [5] that the following holds:

k(λx) = λ3k(x) for all λ ∈ F23 . (3)

We found experimentally that the Kim mapping is actually affine-equivalent
to all Closed Butterflies Vα

e with n = 3, e ∈ {3, 5, 6}, T r(α) = 0 and α �= 0. In
particular, it is affine-equivalent to the function QI = V2

6 described before.
The property that k(λx) = λ3k(x) for all λ ∈ F23 can be nicely translated to

Vα
e structure (when α �= 0). Indeed, it is easy to see that the following holds:

Vα
e (λx, λy) = (λe, λe) ⊗ Vα

e (x, y) for all λ ∈ F23 . (4)

In particular, setting e = 3 and α such that Vα
e is affine-equivalent to the Kim

mapping leads to a branch-wise variant of the property from Eq. 3.

Cryptanalysis of a Theorem 113

Similarly, the Open Butterflies Hα
e exhibit the following property:

Hα
e (λex, λy) = (λe, λ) ⊗ Hα

e (x, y) for all λ ∈ F23 . (5)

While Vα
e is an interesting decomposition of the Kim function (when Tr(α) =

0, α �= 0), we also found a very similar decomposition for the cube function over
F26 , which is also a quadratic APN function. Recall that the closed butterfly Vα

3

maps (x, y) to Rkim(x, y)||Rkim(y, x), where Rkim(x, y) = (x + αy)3 + y3. We
have found that changing Rkim to Rcube(x, y) = (x + αy)3 + x3 + αy3 leads to
a function affine-equivalent to the cube function over F26 . We describe the way
we found this decomposition in the full version of this paper [13].

3.6 Univariate Polynomial Representations

In this section we describe several univariate polynomial representations of
APN permutations from the affine-equivalence classes described in Sect. 3.4. We
obtained them by interpolating the structures from previous sections in various
bases relying on the field decomposition F26 (F23)2. All polynomials described
in this section are specified over F26 and w is a primitive element such that
w = X in F2 [X]/(X6 + X4 + X3 + X + 1).

In [5], Dillon et al. represented the APN permutation as a univariate polyno-
mial over F26 with 52 nonzero coefficients. Using our decomposition, we managed
to find an APN permutation whose univariate polynomial has only 25 terms. Due
to lack of space we give the polynomial in the full version of this paper [13].

Originally, the APN permutation was obtained as a composition g = f2◦f−1
1 ,

where f1(x) and f2(x) contain 18 monomials each (as given in [5]). We have
found a variant with much simpler polynomials. The function g is still an APN
permutation if f1 and f2 as defined in [5] are replaced by the following two
functions:

f1(x) = w11x34 + w53x20 + x8 + x,

f2(x) = w28x48 + w61x34 + w12x20 + w16x8 + x6 + w2x.

Additionally, we found a few other simple representations relying on a com-
position of simple polynomials. Let g(x) = i ◦ m ◦ i−1(x), then g is an APN
permutation when

i(x) = w21x34 + x20 + x8 + x, m(x) = w52x8 + w36x

or when

i(x) = w37x48 + x34 + w49x20 + w21x8 + w30x6 + x, m(x) = x8.

In these representations, i corresponds to the sum of the two inverse functions
I so that i and i−1 are the non-linear parts of the open butterfly. The function
m corresponds to the central linear layer (including possible branch swaps).

114 L. Perrin et al.

4 Differentially 4-Uniform Permutations of Larger Blocks

An up to date overview of known APN functions can be found in [15]. As APN
functions operating on an even number of bits are still to be found for even
block sizes larger than 6, differentially 4-uniform permutations have received a
lot of attention from researchers. An obvious example is the inverse function
x �→ x2n−2 of F2n studied in the seminal work of Nyberg [4].

However, security against differential cryptanalysis is not sufficient and linear
attack need to be taken into account too. The search can thus be focused on
differentially 4-uniform permutations of 2n bits with non-linearity 22n−1 − 2n

which is, as far as we know, the best that can be achieved. Whether there
exists functions improving this bound is an open problem (Open Problem 2
in [18]). The same paper also states Open Problem 1: we must find other highly
non-linear differentially 4-uniform functions operating on fields of even degree.
Several papers have then presented constructions for such permutations, for
example using binomials [19] or an APN permutation on F2n+1 for even n [20].

In this section, we study the butterfly structure. In Sect. 4.1, we study butter-
flies with α �= 0, 1 and, in Sect. 4.2, the case α = 1 in which the open butterfly is
functionally equivalent to a 3-round Feistel Network. We show that these struc-
tures are always differentially 4-uniform for block sizes 2n (n odd) and have
algebraic degree n + 1 (when α �= 1) and n (when α = 1) in the bijective case,
2 otherwise. While we could not prove it in the general case, we conjecture that
they both have non-linearity 22n−1 − 2n.

4.1 Butterfly with Non-Trivial α

Theorem 4 (Properties of the Butterfly Structure). Let Vα
e and Hα

e

respectively be the closed and open 2n-bit butterflies with exponent e = 3× 2t for
some t, coefficient α not in {0, 1} and n odd. Then:

– the differential uniformity of both Hα
e and Vα

e is at most 4,
– Vα

e is quadratic, and
– half of the coordinates of Hα

e have algebraic degree n, the other half have
algebraic degree n + 1.

Proof. In this proof, we rely a lot on the univariate degree of a polynomial of
F

n
2 . It is different from the algebraic degree: the cube function has univariate

degree 3 and algebraic degree 2.
Differential Properties. As Vα

e and Hα
e are CCZ-equivalent, they have the

same differential uniformity. It is thus sufficient to prove that the one of Vα
e

is at most 4. First, note that the functions Vα
e with exponent 3 × 2t is affine

equivalent to Vα
3 which uses the exponent 3 as Vα

3 can be obtained simply by
applying the linear permutation x �→ x2n−t

on each half of the output of Vα
e .

Thus, it is sufficient to study the case where the exponent is equal to 3.
Let Tα be the linear permutation of Fn

2 × F
n
2 defined by the matrix

Tα =
[

1 α
α 1

]
.

Cryptanalysis of a Theorem 115

As affine equivalence preserves differential uniformity, we will prove that the
differential uniformity of P = Tα ◦Vα

3 is at most equal to 4 and deduce that Vα
3

has the same property. The left side of the output of P is equal to

PL(x, y) = R(x, y) + αR(y, x)

= (x + αy)3 + y3 + α
(
(y + αx)3 + x3

)
= x3(1 + α + α4) + y3(1 + α + α3) + x2y(α + α3)

and the right side to

PR(x, y) = R(y, x) + αR(x, y)

= y3(1 + α + α4) + x3(1 + α + α3) + xy2(α + α3).

To simplify expressions, we use the notation β = α3+α. Note that for the values
of α we are interested in, namely α �= 0, 1, it holds that β �= 0.

By definition of differential uniformity, the differential uniformity of P is at
most 4 if and only if the following system has at most 4 solutions for any a, b, c, d
(unless a = b = 0):

{
PL(x, y) + PL(x + a, y + b) = c

PR(x, y) + PR(x + a, y + b) = d,

which is equivalent to
{

(ax2 + a2x)(1 + α + α4) + (by2 + b2y)(1 + β) + (bx2 + a2y)β = c + PL(a, b)
(by2 + b2y)(1 + α + α4) + (ax2 + a2x)(1 + β) + (b2x + ay2)β = d + PR(a, b).

If a = 0 then the second line of the system yields the sum of a univariate degree
2 polynomial in y with b2βx. As b �= 0 (recall that a = b = 0 is impossible), we
deduce that x is equal to a univariate degree 2 polynomial in y and replace it
by this expression in the first equation. We obtain an equation with univariate
degree 4 only in y with at most 4 solutions, for each of which we deduce a unique
value x. Hence, the system has at most 4 solutions. The case b = 0 is treated
similarly.

We now suppose a �= 0 and b �= 0. We replace the left side of the first line �1
by a linear combination of the left sides of the two equations: �1 := ab2�1+a2b�2.
This quantity is a degree one bivariate polynomial with variables X = ax2 +a2x
and Y = by2 + b2y so that we can write �1 = γ0X +γ1Y = ε, where ε is obtained
by computing the same linear combination on the right side of the equations.
If γ0 = 0 then �1 actually is a degree 2 equation in y. For each of its at most
2 solutions, we obtain a degree 2 equation in x in �2 with at most 2 solutions.
Hence, the total number of solutions is at most equal to 4. The case γ1 = 0 is
identical.

We now suppose γ0 �= 0 and γ1 �= 0. Using that γ0X + γ1Y = ε, we deduce
that (ax2 + a2x) =

(
ε + (by2 + b2y)γ1

)
/γ0. We can therefore replace (ax2 + a2x)

by this quantity in the second equation which becomes the sum of a degree 2

116 L. Perrin et al.

equation in y with a degree 1 term in x. As before, we deduce an expression of
x as a degree 2 polynomial in y and replace it by this polynomial in the other
equation. Hence, the initial system has as many solutions as an equation with
univariate degree 4, i.e. at most 4.

Therefore, P (x, y)+P (x+a, y + b) = (c, d) has at most 4 solutions, meaning
that the differential uniformity of P is at most 4.

Algebraic Degrees. As the left and right side of Vα
e (x, y) are equal to, respec-

tively, (x + αy)3 + y3 and (y + αx)3 + x3, it is obvious that it is quadratic
(recall that the algebraic degree of the univariate polynomial x �→ xe of Fn

2 is
the Hamming weight of the binary expansion of e).

Consider now the open butterfly Hα
e . For the sake of simplicity, we treat the

case e = 3; other cases yield identical proofs. The right side of the output of
such an open butterfly is equal to (x+αy3)1/3 +αy, where x||y is the input. We
deduce from Theorem 1 of [21] (or equivalently from Proposition 5 of [4]) that
the inverse of 3 modulo 2n − 1 for odd n is

1/3 ≡
(n−1)/2∑

i=0

22i mod 2n − 1,

which implies in particular why the algebraic degree of x �→ x1/3 is equal to (n+
1)/2. We deduce from this expression that (x+αy3)1/3 is equal to

∏(n−1)/2
i=0 (x+

αy3)2
2k

. This sum can be developed as follows:

(x + αy3)1/3 =
∑

J⊆[0,(n−1)/2]

∏
j∈J

α22jy322j

︸ ︷︷ ︸
deg<2|J|

∏
j∈J

x22j

︸ ︷︷ ︸
deg=(n+1)/2−|J|

,

where J is the complement of J in [0, (n − 1)/2], i.e. J ∩ J = ∅ and J ∪ J =
[0, (n − 1)/2]. The algebraic degree of each term in this sum is at most equal to
|J | + (n + 1)/2. If J = ∅ then x is absent from the term so that the maximum
algebraic degree is n. If J = {j} for some j, then the term is equal to (xy−1)2

2j

(we omit the constant factor) which has algebraic degree 1 + (n − 1) = n. If
|J | < (n − 1)/2, then the whole degree is smaller than n. Thus, the right side of
the output has an algebraic degree equal to n.

The left side is equal to

(
y + α

(
(x + αy3)1/3 + αy

))3

+
(
(x + αy3)1/3 + αy

)3
.

The terms of highest algebraic degree in this equation are of the shape y2(x +
αy3)1/3 and y(x + αy3)2×1/3. Because of what we established above, we have:

y2(x + αy3)1/3 =
∑

J⊆[0,(n−1)/2]

y2 ×
∏
j∈J

α22jy3×22j

︸ ︷︷ ︸
deg<2|J|+1

∏
j∈J

x22j

︸ ︷︷ ︸
deg=(n+1)/2−|J|

,

Cryptanalysis of a Theorem 117

so that the algebraic degree of this term is at most equal to |J |+(n+1)/2+1 ≤
n + 1. If J = [0, (n − 1)/2] \ {j} for some j, then the algebraic degree of the
expression is (1 + (n − 1)/2) + (n + 1)/2 = n + 1, meaning that this bound is
reached. The terms y(x + αy3)2/3 are treated similarly. Hence, the left side of
the output has algebraic degree n + 1. �	

This proof lead us to some interesting observations.

Remark 1. The proof relies on the study of Tα ◦ Vα
e which, for n = 3, has as

its output the concatenation of b(x, y) and b(y, x) for a bent function b with a
Maiorana-MacFarland structure. We provide further analysis for this observation
in the full version of this paper [13]. We also note that the idea of building APN
or differentially 4-uniform functions by concatenating two functions, at least one
of which is bent, was discussed by Carlet in [22].

We have also studied the butterfly structure experimentally. While we could
not find a pair (e, α) for which a butterfly is APN for n > 3, we did notice a
variation in the distribution of 0, 2 and 4 in their DDT. It is therefore possible
that APN butterflies exist but not for n = 5, 7. Moreover, butterflies are never
differentially 4-uniform for n = 4, 8, 10. However, the case n = 6 yields the
following proposition.

Proposition 1. If n = 6, then there exists α such that Hα
5 is a 12-bit permu-

tation that is differentially 4-uniform. In fact, all of the coefficients in its DDT
are in {0, 4}. Its non-linearity is 1920 = 22n−1 − 2n+1.

A natural generalization would be to have the same result for e = 5 whenever
x �→ x5 is a permutation. However, we found experimentally that this result
does not hold for n = 10, although x �→ x5 is a permutation of F210 . We note
also that, unlike in Theorem 4, Proposition 1 does not hold for all values of α
but only for few of those.

We also found experimentally that the maximum LAT coefficient of a but-
terfly structure operating on 2n bits is equal to 2n for n = 3, 5, 7. This implies
that the non-linearity of the butterfly structure is “optimal” in the sense that
no known permutations of a field of size 2n have a non-linearity higher than
22n−1 −2n. It is however not known if this bound holds for all permutations (see
Open Problem 2 in [18]).

Proposition 2. The non-linearity of a butterfly structure operating on 2n bits
is equal to 22n−1 − 2n for n = 3, 5, 7.

We conjecture that this proposition is true for every odd n.

4.2 Feistel Network (α = 1)

If we set α = 1 in an open butterfly structure, the resulting permutation is
functionally equivalent to a 3-round Feistel Network with round functions x �→
xe, x �→ x1/e and x �→ xe, as described in Fig. 18. We denote such a Feistel

118 L. Perrin et al.

xe

x1/e

⊕

⊕

xe

xe

⊕

⊕

(a) Open butterfly H1
e .

xe⊕

x1/e ⊕

xe⊕

(b) Fe (note Fe = H1
e).

xe xe xe

⊕

⊕⊕

(c) Closed butterfly V1
e .

Fig. 18. The equivalence between H1
e and Fe.

Network Fe. We note that the closed butterfly V1
e has a structure reminiscent of

a Lai-Massey round (see Fig. 18c).
In [23], Li and Wang proved that the 2n-bit Feistel Networks Fe with e =

2k+1 and odd n such that gcd(n, k) = 1 have very good cryptographic properties:

1. the differential spectrum of Fe is equal to {0, 4};
2. the non-linearity of Fe is the best known and is equal to 22n−1 − 2n;
3. the algebraic degree of Fe is equal to n.

Note that the butterfly structures from Theorem 4 have degree n + 1 on half
of the coordinates. We have proved that F3 has degree n on all coordinates. The
proof is given in the full version of this paper [13].

Remark 2. The proof for the algebraic degree of the left side of F3 relies on
particular cancellation occurring in the sum y2(x + y3)1/3 + y(x + y3)2/3. Such
cancellations do not occur when α �= 1 as the terms in the corresponding sum are
preceded by different coefficients which are both functions of α. This explains
why the algebraic degree of F3 and the open butterfly structure with α �= 1 are
different.

We also note that the monomial x �→ x5 in F22n shares the same differential
and linear properties. In [23] it is mentioned that for n = 3 the Feistel Network
F3 is CCZ-equivalent to the monomial x �→ x5. We observe that the closed
butterfly V1

5 , which is CCZ-equivalent to F5, is actually linear-equivalent to the
monomial x �→ x5 over F22n for all odd n ≥ 3. We state the generalized result in
the following theorem.

Theorem 5. Let n ≥ 3 be an odd integer and e = 22k + 1 for some positive
integer k. Then the closed 2n-bit butterfly V1

e is linear-equivalent to the monomial
x �→ xe of F22n .

Corollary 1. Let n ≥ 3 be an odd integer and e = 22k + 1 for some positive
integer k, such that the monomial x �→ xe defines a permutation of F22n . Then
the 2n-bit Feistel Network Fe is CCZ-equivalent to this permutation.

The proof is based on the field decomposition F22n (F2n)2 and is given it
in the full version of this paper [13].

Cryptanalysis of a Theorem 119

5 Implementing 6-Bit APN Permutations

We can use the open butterfly structure to efficiently implement 6-bit APN
permutations in both a bit-sliced fashion for use in software and in hardware.
In this section, we explore this idea and provide an S-Box Ao which is affine
equivalent to H2

3 and for which there exists such efficient implementation.

5.1 Efficient Bit-Sliced Implementations

Starting from the algebraic normal forms of the operations used to compute H2
3,

it is easy to write a first naive bitsliced implementation (see full version [13]).
This implementation can be optimized by using Boolean algebra and remov-

ing the linear component of x �→ x3 in the first and last steps. Doing this is equiv-
alent to applying an affine permutation before and after the H2

3 to obtain a new
permutation Ao. This operation preserves the differential and linear property of
the permutation while also keeping the property that A−1

o = Swap6 ◦Ao ◦Swap6,
where Swap6 simply swaps the two 3-bit branches. The bitsliced implementation
of this simplified S-Box is given in Algorithm 1 and its look-up table in Table 5.

Table 5. The look-up table of Ao in hexadecimal, e.g. Ao(0x32) = 0x21.

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 0 1d 6 3f 3c 3b 31 12 22 35 17 2c 16 33 30 39

1. 2d a 38 2b 1 4 2f 1e 3 34 2e 25 27 1a 29 28

2. 2a 7 14 3d 36 19 b 20 3e d 37 8 1b 2 9 1c

3. 10 1f 21 3a 26 13 24 5 c f 11 e 23 32 15 18

5.2 Hardware Implementation

Our decompositions also eases the hardware implementation of these S-Boxes.
To illustrate this, we simulated the circuit computing these functions in three
different ways. First, we simply gave the look-up table to the software7 and let
it find the best implementation it could (no decomposition case). Then, we fed
it our decomposition of the different structures (decomposed case).

The optimization performed by the software is done for two competing crite-
ria. The first is the area which simply corresponds to the physical space needed
to implement the circuit using the logical gates available. The second is the prop-
agation time, i.e. the delay necessary for the electronic signal to go through the
circuit implementing the S-Box and to stabilize itself to the output value.8

7 We used the digital cell library SAED90n-1P9M in the “normal Vt, high temperature,
nominal voltage” corner.

8 We also considered implementing the cube function using finite field arithmetic but
could not easily improve our results.

120 L. Perrin et al.

Algorithm 1. An optimised bitsliced implementation of an S-Box affine-
equivalent to the open butterfly with α = 2, e = 3.

function Ao(X0, ..., X5)
1 . t = (X5 ∧ X3)
2 . X0 ⊕= t ⊕ (X5 ∧ X4)
3 . X1 ⊕= t
4 . X2 ⊕= (X4 ∨ X3)
5 . t = (X1 ∨ X0)
6 . X0 ⊕= (X2 ∧ X1) ⊕ X4

7 . X1 ⊕= (X2 ∧ X0) ⊕ X5 ⊕ X3

8 . X2 ⊕= t ⊕ X3

9 . X3 ⊕= X1

10 . X4 ⊕= X2 ⊕ X0

11 . X5 ⊕= X0

12 . u = X3

13 . t = X4

14 . X3 ⊕= t
15 . X3 = X3 ∧ X5 ⊕ t
16 . X4 ⊕= ((¬X5) ∧ u)
17 . X5 ⊕= (t ∨ u)
18 . t = (X2 ∧ X0)
19 . X3 ⊕= t ⊕ (X2 ∧ X1)
20 . X4 ⊕= t
21 . X5 ⊕= (X1 ∨ X0)

end function

For each function, we repeated the experience several times using different
periods for the clock cycles: when the period is maximum, priority is given to
optimizing the area and, as the period decreases, the priority shifts toward the
propagation time. The results are given in Table 6.

Table 6. Results on the hardware implementation of our S-Boxes. The area a is in
(μm)2, the delay d is in ns and a × d is their product.

Base Decomposed

S-Box Period (ns) a d a × d a d a × d

H2
3 100 799 56.42 45079.58 414 39.31 16274.34

20 827 19.75 16333.25 404 18.7 7554.8

10 928 9.81 9103.68 431 9.76 4206.56

5 1062 4.81 5108.22 569 4.81 2736.89

Ao 100 774 53.13 41122.62 384 42.01 16131.84

20 812 19.3 15671.6 384 15.43 5925.12

10 869 9.63 8368.47 382 9.77 3732.14

6 1041 5.8 6037.8 464 5.8 2691.2

As we can see, the knowledge of the decompositions always allows a more
efficient implementation: regardless of what the main optimisation criteria is,
both the area and the delay are decreased.

6 Conclusion

We have identified a decomposition of the 6-bit APN permutation published
by Dillon et al. [5] and found it to be affine equivalent to an involution. We

Cryptanalysis of a Theorem 121

generalized the structure found to larger block sizes, although we could only
prove its being differentially 4-uniform in those cases. We also deduced efficient
implementation of 6-bit APN permutations in both a bit-sliced fashion and in
hardware.

Our work also raised the following open questions.

Open Problems (On the properties of Butterfly Structures).

1. Is there a tuple n, e, α where n > 3 and e are integers, and α is a finite field
element such that Hα

e operating on (F2n)2 is APN?
2. Is it true that the non-linearity of a butterfly structure on 2n bits with α �= 0, 1

and n odd is always 22n−1 − 2n?

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
We also thank Yann Le Corre for studying the hardware implementation of the per-
mutation. The work of Léo Perrin is supported by the CORE ACRYPT project
(ID C12-15-4009992) funded by the Fonds National de la Recherche (Luxembourg).
The work of Aleksei Udovenko is supported by the Fonds National de la Recherche,
Luxembourg (project reference 9037104).

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

4. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

5. Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An APN permutation in
dimension six. Finite Fields Theory Appl. 518, 33–42 (2010)

6. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: light-
weight authenticated cipher with side-channel resistance for constrained hardware.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

7. Biryukov, A., Perrin, L., Udovenko, A.: Reverse-engineering the S-box of Streebog,
Kuznyechik and STRIBOBr1. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 372–402. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49890-3 15

8. Biryukov, A., Perrin, L.: On reverse-engineering S-Boxes with hidden design crite-
ria or structure. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 116–140. Springer, Berlin Heidelberg (2015)

9. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

10. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

http://dx.doi.org/10.1007/978-3-662-49890-3_15
http://dx.doi.org/10.1007/978-3-662-49890-3_15

122 L. Perrin et al.

11. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanaly-
sis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

12. Developers, T.S.: SageMath, the Sage Mathematics Software System (Version 7.1)
(2016). http://www.sagemath.org

13. Perrin, L., Udovenko, A., Biryukov, A.: Cryptanalysis of a Theorem: Decomposing
the Only Known Solution to the Big APN Problem (Full Version). Cryptology
ePrint Archive, Report 2016/539 (2016). http://eprint.iacr.org/

14. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Des. Codes Crypt. 15(2), 125–156 (1998)

15. Blondeau, C., Nyberg, K.: Perfect nonlinear functions and cryptography. Finite
Fields Appl. 32, 120–147 (2015). Special Issue: Second Decade of FFA

16. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006)

17. Daemen, J., Govaerts, R., Vandewalle, J.: A new approach to block cipher design.
In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 18–32. Springer, Heidelberg
(1994)

18. Bracken, C., Leander, G.: A highly nonlinear differentially 4 uniform power map-
ping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010)

19. Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4 uniform permutations
with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012)

20. Li, Y., Wang, M.: Constructing differentially 4-uniform permutations over GF(22m)
from quadratic APN permutations over GF(22m+1). Des. Codes Crypt. 72(2), 249–
264 (2014)

21. Kyureghyan, G.M., Suder, V.: On inverses of APN exponents. In: 2012 IEEE Inter-
national Symposium on Information Theory Proceedings (ISIT), pp. 1207–1211.
IEEE (2012)

22. Carlet, C.: Relating three nonlinearity parameters of vectorial functions and build-
ing APN functions from bent functions. Des. Codes Crypt. 59(1), 89–109 (2011)

23. Li, Y., Wang, M.: Constructing S-Boxes for lightweight cryptography with Feistel
structure. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
127–146. Springer, Heidelberg (2014)

http://www.sagemath.org
http://eprint.iacr.org/

The SKINNY Family of Block Ciphers
and Its Low-Latency Variant MANTIS

Christof Beierle1, Jérémy Jean2, Stefan Kölbl3, Gregor Leander1,
Amir Moradi1(B), Thomas Peyrin2, Yu Sasaki4, Pascal Sasdrich1,

and Siang Meng Sim2

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum,
Bochum, Germany

{Christof.Beierle,Gregor.Leander,Amir.Moradi,Pascal.Sasdrich}@rub.de
2 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
Jean.Jeremy@gmail.com, Thomas.Peyrin@ntu.edu.sg, SSIM011@e.ntu.edu.sg
3 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

stek@dtu.dk
4 NTT Secure Platform Laboratories, Tokyo, Japan

Sasaki.Yu@lab.ntt.co.jp

Abstract. We present a new tweakable block cipher family SKINNY,
whose goal is to compete with NSA recent design SIMON in terms of hard-
ware/software performances, while proving in addition much stronger
security guarantees with regards to differential/linear attacks. In par-
ticular, unlike SIMON, we are able to provide strong bounds for all ver-
sions, and not only in the single-key model, but also in the related-key
or related-tweak model. SKINNY has flexible block/key/tweak sizes and
can also benefit from very efficient threshold implementations for side-
channel protection. Regarding performances, it outperforms all known
ciphers for ASIC round-based implementations, while still reaching an
extremely small area for serial implementations and a very good effi-
ciency for software and micro-controllers implementations (SKINNY has
the smallest total number of AND/OR/XOR gates used for encryption
process).

Secondly, we present MANTIS, a dedicated variant of SKINNY for low-
latency implementations, that constitutes a very efficient solution to the
problem of designing a tweakable block cipher for memory encryption.
MANTIS basically reuses well understood, previously studied, known com-
ponents. Yet, by putting those components together in a new fashion, we
obtain a competitive cipher to PRINCE in latency and area, while being
enhanced with a tweak input.

Keywords: Lightweight encryption · Low-latency · Tweakable block
cipher · MILP

Updated information on SKINNY will be made available via https://sites.google.com/
site/skinnycipher/.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 123–153, 2016.
DOI: 10.1007/978-3-662-53008-5 5

https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/

124 C. Beierle et al.

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptog-
raphy is currently a very active research domain in the symmetric-key cryptog-
raphy community. In particular, we have recently seen the apparition of many
(some might say too many) lightweight block ciphers, hash functions and stream
ciphers. While the term lightweight is not strictly defined, it most often refers
to a primitive that allows compact implementations, i.e. minimizing the area
required by the implementation. While the focus on area is certainly valid with
many applications, most of them require additional performance criteria to be
taken into account. In particular, the throughput of the primitive represents an
important dimension for many applications. Besides that, power (in particular
for passive RFID tags) and energy (for battery-driven device) may be major
aspects.

Moreover, the efficiency on different hardware technologies (ASIC, FPGA)
needs to be taken into account, and even micro-controllers become a scenario
of importance. Finally, as remarked in [3], software implementations should not
be completely ignored for these lightweight primitives, as in many applications
the tiny devices will communicate with servers handling thousands or millions of
them. Thus, even so research started by focusing on chip area only, lightweight
cryptography is indeed an inherent multidimensional problem.

Investigating the recent proposals in more detail, a major distinction is eye-
catching and one can roughly split the proposals in two classes. The first class
of ciphers uses very strong, but less efficient components (like the Sbox used in
PRESENT [5] or LED [15], or the MDS diffusion matrix in LED or PICCOLO [31]).
The second class of designs uses very efficient, but rather weak components (like
the very small KATAN [9] or SIMON [2] round function)1.

From a security viewpoint, the analysis of the members of the first class can
be conducted much easily and it is usually possible to derive strong arguments
for their security. However, while the second class strategy usually gives very
competitive performance figures, it is much harder with state-of-the-art analysis
techniques to obtain security guarantees even with regards to basic linear or
differential cryptanalysis. In particular, when using very light round functions,
bounds on the probabilities of linear or differential characteristics are usually
both hard to obtain and not very strong. As a considerable fraction of the light-
weight primitives proposed got quickly broken within a few months or years from
their publication date, being able to give convincing security arguments turns
out to be of major importance.

Of special interest, in this context, is the recent publication of the SIMON
and SPECK family of block ciphers by the NSA [2]. Those ciphers brought a huge
leap in terms of performances. As of today, these two primitives have an impor-
tant efficiency advantage against all its competitors, in almost all implementa-
tion scenarios and platforms. However, even though SIMON or SPECK are quite

1 Actually, this separation is not only valid for lightweight designs. It can well be
extended to more classical ciphers or hash functions as well.

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 125

elegant and seemingly well-crafted designs, these efficiency improvements came
at an essential price. Echoing the above, since the ciphers have a very light round
function, their security bounds regarding classical linear or differential crypt-
analysis are not so impressive, quite difficult to obtain or even non-existent. For
example, in [22] the authors provide differential/linear bounds for SIMON, but,
as we will see, one needs a big proportion of the total number of rounds to guar-
antee its security according to its block size. Even worse, no bound is currently
known in the related-key model for any version of SIMON and thus there is a
risk that good related-key differential characteristics might exist for this family
of ciphers (while some lightweight proposals such as LED [15], PICCOLO [31] or
some versions of TWINE [33] do provide such a security guarantee). One should be
further cautious as these designs come from a governmental agency which does
not provide specific details on how the primitives were built. No cryptanalysis
was ever provided by the designers. Instead, the important analysis work was
been carried out by the research community in the last few years and one should
note that so far SIMON or SPECK remain unbroken.

It is therefore a major challenge for academic research to design a cipher that
can compete with SIMON’s performances and additionally provides the essential
strong security guarantees that SIMON is clearly lacking. We emphasize that this
is both a research challenge and, in view of NSA’s efforts to propose SIMON into
an ISO standard, a challenge that has likely a practical impact.

Lightweight Tweakable Block Ciphers and Side-Channel Protected
Implementations. We note that tiny devices are more prone to be deployed
into insecure environments and thus side-channel protected implementations of
lightweight encryption primitives is a very important aspect that should be
taken care of. One might even argue that instead of comparing performances of
unprotected implementations of these lightweight primitives, one should instead
compare protected variants (this is the recent trend followed by ciphers like
ZORRO [14] or PICARO [28] and has actually already been taken into account long
before by the cipher NOEKEON [13]). One extra protection against side-channel
attacks can be the use of leakage resilient designs and notably through an extra
tweak input of the cipher. Such tweakable block ciphers are rather rare, the only
such candidate being Joltik-BC [18] or the internal cipher from SCREAM [34].
Coming up with a tweakable block cipher is indeed not an easy task as one must
be extremely careful how to include this extra input that can be fully controlled
by the attacker.

Low-Latency Implementations for Memory Encryption. One very inter-
esting field in the area of lightweight cryptography is memory encryption (see
e.g. [16] for an extensive survey of memory encryption techniques). Memory
encryption has been used in the literature to protect the memory used by a
process domain against several types of attackers, including attackers capable
of monitoring and even manipulating bus transactions. Examples of commercial
uses do not abound, but there are at least two: IBM’s SecureBlue++ [36] and

126 C. Beierle et al.

Intel’s SGX whose encryption and integrity mechanisms have been presented
by Gueron at RWC 20162. No documentation seems to be publicly available
regarding the encryption used in IBM’s solution, while Intel’s encryption method
requires additional data to be stored with each cache line. It is optimal in the
context of encryption with memory overhead, but if the use case does not allow
memory overhead then an entirely different approach is necessary.

With a focus on data confidentiality, a tweakable block cipher in ECB mode
would then be the natural, straightforward solution. However, all generic meth-
ods to construct a tweakable block cipher from a block cipher suffer from an
increased latency. Therefore, there is a clear need for lightweight tweakable block
ciphers which do not require whitening value derivation, have a latency similar
to the best non-tweakable block ciphers, and that can also be used in modes
of operation that do not require memory expansion and offer beyond-birthday-
bound security.

While being of great practical impact and need, it is actually very challenging
to come up with such a block cipher. It should have three main characteristics.
First, it must be executed within a single clock cycle and with a very low latency.
Second, a tweak input is required, which in the case of memory encryption will
be the memory address. Third, as one necessarily has to implement encryption
and decryption, it is desirable to have a very low overhead when implement-
ing decryption on top of encryption. The first and the third characteristics are
already studied in the block cipher PRINCE [7]. However, the second point, i.e.
having a tweak input, is not provided by PRINCE. It is not trivial to turn PRINCE
into a tweakable block cipher, especially without increasing the number of rounds
(and thereby latency) significantly.

Our Contributions. Our contributions are twofold. First, we introduce a new
lightweight family of block ciphers: SKINNY. Our goal here is to provide a com-
petitor to SIMON in terms of hardware/software performances, while proving
in addition much stronger security guarantees with regard to differential/linear
attacks. Second, we present MANTIS, a dedicated variant of SKINNY that con-
stitutes a very efficient solution to the aforementioned problem of designing a
tweakable block cipher for memory encryption.

Regarding SKINNY, we have pushed further the recent trend of having a SPN
cipher with locally non-optimal internal components: SKINNY is an SPN cipher
that uses a compact Sbox, a new very sparse diffusion layer, and a new very light
key schedule. Yet, by carefully choosing our components and how they interact,
our construction manages to retain very strong security guarantees. For all the
SKINNY versions, we are able to prove using mixed integer linear programming
(MILP) very strong bounds with respect to differential/linear attacks, not only
in the single-key model, but also in the much more involved related-key model.
Some versions of SKINNY have a very large key size compared to its block size and
this theoretically renders the bounds search space huge. Therefore, the MILP

2 The slides can be found here.

https://drive.google.com/file/d/0Bzm_4XrWnl5zOXdTcUlEMmdZem8/view

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 127

methods we have devised to compute these bounds for a SKINNY-like construc-
tion can actually be considered a contribution by itself. As we will see later,
compared to SIMON, in the single-key model SKINNY needs a much lower pro-
portion of its total number of rounds to provide a sufficient bound on the best
differential/linear characteristic. In the related-key model, the situation is even
more at SKINNY’s advantage as no such bound is known for any version of SIMON
as of today.

With regard to performance, SKINNY reaches very small area with serial ASIC
implementations, yet it is actually the very first block cipher that leads to better
performances than SIMON for round-based ASIC implementations, arguably the
most important type of implementation since it provides a very good throughput
for a reasonably low area cost, in contrary to serial implementations that only
minimizes area. We also exhibit ASIC threshold implementations of our SKINNY
variants that compare for example very favourably to AES-128 threshold imple-
mentations. As explained above, this is an integral part of modern lightweight
primitives.

Regarding software, our implementations outperform all lightweight ciphers,
except SIMON which performs slightly faster in the situation where the key sched-
ule is performed only once. However, as remarked in [3], it is more likely in
practice that the key schedule has to be performed everytime, and since SKINNY
has a very lightweight key schedule we expect the efficiency of SKINNY software
implementations to be equivalent to that of SIMON. This shows that SKINNY
would perfectly fit a scenario where a server communicate with many light-
weight devices. These performances are not surprising, in particular for bit-sliced
implementations, as we show that SKINNY uses a much smaller total number of
AND/NOR/XOR gates compared to all known lightweight block ciphers. This
indicates that SKINNY will be competitive for most platforms and scenarios.
Micro-controllers are no exception, and we show that SKINNY performs extremely
well on these architectures.

We further remark that the decryption process of SKINNY has almost exactly
the same description as the encryption counterpart, thus minimizing the decryp-
tion overhead.

We finally note that similarly to SIMON, SKINNY very naturally encompasses
64- or 128-bit block versions and a wide range of key sizes. However, in addition,
SKINNY provides a tweakable capability, which can be very useful not only for
leakage resilient implementations, but also to be directly plugged into higher-
level operating modes, such as SCT [27]. In order to provide this tweak feature,
we have generalized the STK construction [17] to enable more compact imple-
mentations while maintaining a high provable security level.

The SKINNY specifications are given in Sect. 2. The rationale of our design
as well as various theoretical security and efficiency comparisons are provided
in Sect. 3. Finally, we conducted a complete security analysis in Sect. 4 and we
exhibit our implementation results in Sect. 5 (all the details are provided in the
full version of the paper).

128 C. Beierle et al.

Regarding MANTIS, we propose in Sect. 6 a low-latency tweakable block cipher
that reuses some design principles of SKINNY3. It represents a very efficient solu-
tion to the aforementioned problem of designing a tweakable block cipher tailored
for memory encryption.

The main challenge when designing such a cipher is that its latency is directly
related to the number of rounds. Thus, it is crucial to find a design, i.e. a round
function and a tweak-scheduling, that ensures security already with a minimal
number of rounds. Here, components of the recently proposed block ciphers
PRINCE and MIDORI [1] turn out to be very beneficial.

The crucial step in the design of MANTIS was to find a suitable tweak-
scheduling that would ensure a high number of active Sboxes not only in the
single-key setting, but also in the setting where the attacker can control the differ-
ence in the tweak. Using, again, the MILP approach, we are able to demonstrate
that a rather small number of rounds is already sufficient to ensure the resistance
of MANTIS to differential (and linear) attacks in the related-tweak setting.

Besides the tweak-scheduling, we emphasize that MANTIS basically reuses
well understood, previously studied, known components. It is mainly putting
those components together in a new fashion, that allows MANTIS to be very
competitive to PRINCE in latency and area, while being enhanced with a tweak.
Thus, compared to the performance figures of PRINCE, we get the tweak almost
for free, which is the key to solve the pressing problem of memory encryption.

2 Specification of SKINNY

Notations and SKINNY Versions. The lightweight block ciphers of the SKINNY
family have 64-bit and 128-bit block versions and we denote n the block size. In
both n = 64 and n = 128 versions, the internal state is viewed as a 4 × 4 square
array of cells, where each cell is a nibble (in the n = 64 case) or a byte (in the
n = 128 case). We denote ISi,j the cell of the internal state located at Row i
and Column j (counting starting from 0). One can also view this 4 × 4 square
array of cells as a vector of cells by concatenating the rows. Thus, we denote
with a single subscript ISi the cell of the internal state located at Position i in
this vector (counting starting from 0) and we have that ISi,j = IS4·i+j .

SKINNY follows the TWEAKEY framework from [17] and thus takes a tweakey
input instead of a key or a pair key/tweak. The user can then choose what part
of this tweakey input will be key material and/or tweak material (classical block
cipher view is to use the entire tweakey input as key material only). The family
of lightweight block ciphers SKINNY have three main tweakey size versions: for a
block size n, we propose versions with tweakey size t = n, t = 2n and t = 3n
(versions with other tweakey sizes between n and 3n are naturally obtained from
these main versions) and we denote z = t/n the tweakey size to block size ratio.
The tweakey state is also viewed as a collection of z 4 × 4 square arrays of cells
of s bits each. We denote these arrays TK1 when z = 1, TK1 and TK2 when
3 For the genesis of the cipher MANTIS, we acknowledge the contribution of Roberto

Avanzi, as specified in Sect. 6.

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 129

z = 2, and finally TK1, TK2 and TK3 when z = 3. Moreover, we denote TKzi,j

the cell of the tweakey state located at Row i and Column j of the z-th cell array.
As for the internal state, we extend this notation to a vector view with a single
subscript: TK1i, TK2i and TK3i. Moreover, we define the adversarial model
SK (resp. TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce
differences in the tweakey state.

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15,
where the mi are s-bit cells, with s = n/16 (we have s = 4 for the 64-bit
block SKINNY versions and s = 8 for the 128-bit block SKINNY versions). The
initialization of the cipher’s internal state is performed by simply setting ISi =
mi for 0 ≤ i ≤ 15:

IS =

⎡
⎢⎢⎣

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

⎤
⎥⎥⎦

This is the initial value of the cipher internal state and note that the state is
loaded row-wise rather than in the column-wise fashion we have come to expect
from the AES; this is a more hardware-friendly choice, as pointed out in [24].

The cipher receives a tweakey input tk = tk0‖tk1‖ · · · ‖tk30‖tk16z−1, where
the tki are s-bit cells. The initialization of the cipher’s tweakey state is performed
by simply setting for 0 ≤ i ≤ 15: TK1i = tki when z = 1, TK1i = tki and
TK2i = tk16+i when z = 2, and finally TK1i = tki, TK2i = tk16+i and
TK3i = tk32+i when z = 3. We note that the tweakey states are loaded row-wise.

The Round Function. One encryption round of SKINNY is composed of five
operations in the following order: SubCells, AddConstants, AddRoundTweakey,
ShiftRows and MixColumns (see illustration in Fig. 1). The number r of rounds
to perform during encryption depends on the block and tweakey sizes. The actual
values are summarized in Table 1. Note that no whitening key is used in SKINNY.
Thus, a part of the first and last round do not add any security. We motivate
this choice in Sect. 3.

SubCells. A s-bit Sbox is applied to every cell of the cipher internal state. For
s = 4, SKINNY cipher uses a Sbox S4 very close to the PICCOLO Sbox [31]. The
action of this Sbox in hexadecimal notation is given by the following Table 2.

Table 1. Number of rounds for SKINNY-n-t, with n-bit internal state and t-bit tweakey
state.

Block size n Tweakey size t

n 2n 3n

64 32 36 40

128 40 48 56

130 C. Beierle et al.

Table 2. 4-bit Sbox S4 used in SKINNY when s = 4.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S4[x] c 6 9 0 1 a 2 b 3 8 5 d 4 e 7 f

S−1
4 [x] 3 4 6 8 c a 1 e 9 2 5 7 0 b d f

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 1. The SKINNY round function applies five different transformations: SubCells

(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns

(MC).

Note that S4 can also be described with four NOR and four XOR operations,
as depicted in Fig. 2. If x0, x1, x2 and x3 represent the four inputs bits of
the Sbox (x0 being the least significant bit), one simply applies the following
transformation:

(x3, x2, x1, x0) → (x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by a left shift bit rotation. This process is repeated four times, except
for the last iteration where the bit rotation is omitted.
For the case s = 8, SKINNY uses an 8-bit Sbox S8 that is built in a similar
manner as for the 4-bit Sbox S4 described above. The construction is simple
and is depicted in Fig. 3. If x0, . . ., x7 represent the eight inputs bits of

MSB LSB

MSB LSB

Fig. 2. Construction of the Sbox S4.

MSB LSB

MSB LSB

Fig. 3. Construction of the Sbox S8.

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 131

the Sbox (x0 being the least significant bit), it basically applies the below
transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0) → (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation:

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where there is
just a bit swap between x1 and x2.

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2,
rc1, rc0) (with rc0 being the least significant bit), is used to generate round
constants. Its update function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0) → (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1).

The six bits are initialized to zero, and updated before use in a given round.
The bits from the LFSR are arranged into a 4×4 array (only the first column
of the state is affected by the LFSR bits), depending on the size of internal
state: ⎡

⎢⎢⎣
c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

with c2 = 0x2 and

(c0, c1) = (rc3‖rc2‖rc1‖rc0, 0‖0‖rc5‖rc4) when s = 4
(c0, c1) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4) when s = 8.

The round constants are combined with the state, respecting array position-
ing, using bitwise exclusive-or.

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted
and bitwise exclusive-ored to the cipher internal state, respecting the array
positioning. More formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:

• ISi,j = ISi,j ⊕ TK1i,j when z = 1,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j when z = 2,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j when z = 3.

Then, the tweakey arrays are updated as follows (this tweakey schedule is
illustrated in Fig. 4). First, a permutation PT is applied on the cells positions
of all tweakey arrays: for all 0 ≤ i ≤ 15, we set TK1i ← TK1PT [i] with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

and similarly for TK2 when z = 2, and for TK2 and TK3 when z = 3. This
corresponds to the following reordering of the matrix cells: (0, . . . , 15) PT�−→
(9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7), indices being taken row-wise.

132 C. Beierle et al.

Table 3. The LFSRs used in SKINNY to generate the round constants. The TK para-
meter gives the number of tweakey words in the cipher, and the s parameter gives the
size of cell in bits.

TK s LFSR

TK2 4 (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2)

8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3 4 (x3||x2||x1||x0) → (x0 ⊕ x3||x3||x2||x1)

8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Fig. 4. The tweakey schedule in SKINNY. Each tweakey word TK1, TK2 and TK3 (if
any) follows a similar transformation update, except that no LFSR is applied to TK1.

Finally, every cell of the first and second rows of TK2 and TK3 (for the
SKINNY versions where TK2 and TK3 are used) are individually updated
with an LFSR. The LFSRs used are given in Table 3 (x0 stands for the LSB
of the cell).

ShiftRows. As in AES, in this layer the rows of the cipher state cell array are
rotated, but they are to the right. More precisely, the second, third, and
fourth cell rows are rotated by 1, 2 and 3 positions to the right, respectively.
In other words, a permutation P is applied on the cells positions of the cipher
internal state cell array: for all 0 ≤ i ≤ 15, we set ISi ← ISP [i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

MixColumns. Each column of the cipher internal state array is multiplied by the
following binary matrix M:

M =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ .

The final value of the internal state array provides the ciphertext with cells
being unpacked in the same way as the packing during initialization. Note that
decryption is very similar to encryption as all cipher components have very
simple inverse (SubCells and MixColumns are based on a generalized Feistel
structure, so their respective inverse is straightforward to deduce and can be
implemented with the exact same number of operations).

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 133

Extending to Other Tweakey Sizes. The three main versions of SKINNY
have tweakey sizes t = n, t = 2n and t = 3n, but one can easily extend this to
any size4 of tweakey n ≤ t ≤ 3n:

• for any tweakey size n < t < 2n, one simply uses exactly the t = 2n version
but the last 2n − t bits of the tweakey state are fixed to the zero value.
Moreover, the corresponding cells in the tweakey state TK2 will not be
updated throughout the rounds with the LFSR.

• for any tweakey size 2n < t < 3n, one simply uses exactly the t = 3n
version but the last 3n − t bits of the tweakey state are fixed to the zero
value. Moreover, the corresponding cells in the tweakey state TK3 will not
be updated throughout the rounds with the LFSR.

We note that some of our 64-bit block SKINNY versions allow small key sizes
(down to 64-bit). We emphasize that we propose these versions mainly for sim-
plicity in the description of the SKINNY family of ciphers. Yet, as advised by the
NIST [26], one should not to use key sizes that are smaller than 112 bits.

Instantiating the Tweakey State with Key and Tweak Material. Fol-
lowing the TWEAKEY framework [17], SKINNY takes as inputs a plaintext or a
ciphertext and a tweakey value, which can be used in a flexible way by filling it
with key and tweak material. Whatever the situation, the user must ensure that
the key size is always at least as big as the block size.

In the classical setting where only key material is input, we use exactly the
specifications of SKINNY described previously. However, when some tweak mater-
ial is to be used in the tweakey state, we dedicate TK1 for this purpose and XOR
a bit set to “1” every round to the second bit of the top cell of the third column
(i.e. the second bit of IS0,2). In other words, when there is some tweak mater-
ial, we add an extra “1” in the constant matrix from AddConstants). Besides,
in situations where the user might use different tweak sizes, we recommend to
dedicate some cells of TK1 to encode the size of the tweak material, in order to
ensure proper separation. Note that these are only recommendations, thus not
strictly part of the specifications of SKINNY.

3 Rationale of SKINNY

Several design choices of SKINNY have been borrowed from existing ciphers, but
most of our components are new, optimized for our goal: a cipher well suited for
most lightweight applications. When designing SKINNY, one of our main criteria
was to only add components which are vital for the security of the primitive,
removing any unnecessary operation (hence the name of our proposal). We end

4 For simplicity we do not include here tweakey sizes that are not a multiple of s bits.
However, such cases can be trivially handled by generalizing the tweakey schedule
description to the bit level.

134 C. Beierle et al.

up with the sound property that removing any component or using weaker ver-
sion of a component from SKINNY would lead to a much weaker (or actually
insecure) cipher. Therefore, the construction of SKINNY has been done through
several iterations, trying to reach the exact spot where good performance meets
strong security arguments. We detail in this section how we tried to follow this
direction for each layer of the cipher.

We note that one could have chosen a slightly smaller Sbox or a slightly
sparser diffusion layer, but our preliminary implementations showed that these
options represent worse tradeoff overall. For example, one could imagine a very
simple cipher iterating thousands of rounds composed of only a single non-linear
boolean operation, an XOR and some bit wiring. However, such a cipher will lead
to terrible performance regarding throughput, latency or energy consumption.

When designing a lightweight encryption scheme, several use cases must be
taken in account. While area optimized implementations are important for some
very constrained applications, throughput or throughput-over-area optimized
implementations are also very relevant. Actually, looking at recently introduced
efficiency measurements [19], one can see that our designs choices are good for
many types of implementations, which is exactly what makes a good general-
purpose lightweight encryption scheme.

3.1 Estimating Area and Performances

In order to discuss the rationale of our design, we first quickly describe an esti-
mation in Gate Equivalent (GE) of the ASIC area cost of several simple bit
operations (for UMC 180 nm 1.8 V [35]): a NOR/NAND gate costs 1 GE, a
OR/AND gate costs 1.33 GE, a XOR/XNOR gate costs 2.67 GE and a NOT
gate costs 0.67 GE. Finally, one memory bit can be estimated to 6 GE (scan
flip-flop). Of course, these numbers depend on the library used, but it will give
us at least some rough and easy evaluation of the design choices we will make.

Besides, even though many tradeoffs exist, we distinguish between a serial
implementation, a round-based implementation and a low-latency implementa-
tion. In the latter, the entire ciphering process is performed in a single clock
cycle, but the area cost is then quite important as all rounds need to be directly
implemented. For a round-based implementation, an entire round of the cipher
is performed in a single clock cycle, thus ending with the entire ciphering process
being done in r cycles and with a moderate area cost (this tradeoff is usually
a good candidate for energy efficiency). Finally, in a serial implementation, one
reduces the datapath and thus the area to the minimum (usually a few bits, like
the Sbox bit size), but the throughput is greatly reduced. The ultimate goal of a
good lightweight encryption primitive is to use lightweight components, but also
to ensure that these components are compact and efficient for all these trade-
offs. This is what SIMON designers have managed to produce, but sacrificing a few
security guarantees. SKINNY offers similar (sometimes even better) performances
than SIMON, while providing much stronger security arguments with regard to
classical differential or linear cryptanalysis.

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 135

3.2 General Design and Components Rationale

A first and important decision was to choose between a Substitution-Permutation
Network (SPN), or a Feistel network. We started from a SPN construction as it
is generally easier to provide stronger bounds on the number of active Sboxes.
However, we note that there is a dual bit-sliced view of SKINNY that resembles
some generalized Feistel network. Somehow, one can view the cipher as a prim-
itive in between an SPN and an “AND-rotation-XOR” function like SIMON. We
try to get the best of both worlds by benefiting the nice implementation tradeoffs
of the latter, while organizing the state in an SPN view so that bounds on the
number of active Sboxes can be easily obtained.

The absence of whitening key is justified by the reduction of the control logic:
by always keeping the exact same round during the entire encryption process we
avoid the control logic induced by having a last non-repeating layer at the end
of the cipher. Besides, this simplifies the general description and implementation
of the primitive. Obviously, having no whitening key means that a few operations
of the cipher have no impact on the security. This is actually the case for both the
beginning and the end of the ciphering process in SKINNY since the key addition
is done in the middle of the round, with only half of the state being involved
with this key addition every round.

A crucial feature of SKINNY is the easy generation of several block size or
tweakey size versions, while keeping the general structure and most of the secu-
rity analysis untouched. Going from the 64-bit block size versions to the 128-
bit block size versions is simply done by using a 8-bit Sbox instead of a 4-bit
Sbox, therefore keeping all the structural analysis identical. Using bigger tweakey
material is done by following the STK construction [17], which allows automated
analysis tools to still work even though the input space become very big (in
short, the superposition trick makes the TK2 and TK3 analysis almost as time
consuming as the normal and easy TK1 case). Besides, unlike previous light-
weight block ciphers, this complete analysis of the TK2 and TK3 cases allows us
to dedicate a part of this tweakey material to be potentially some tweak input,
therefore making SKINNY a flexible tweakable block cipher. Also, we directly
obtain related-key security proofs using this general structure.

SubCells. The choice of the Sbox is obviously a crucial decision in an SPN
cipher and we have spent a lot of efforts on looking for the best possible can-
didate. For the 4-bit case, we have designed a tool that searches for the most
compact candidate that provides some minimal security guarantees. Namely,
with the bit operations cost estimations given previously, for all possible com-
binations of operations (NAND/NOR/XOR/XNOR) up to a certain limit cost,
our tool checks if certain security criterion of the tested Sbox are fulfilled. More
precisely, we have forced the maximal differential transition probability of the
Sbox to be 2−2 and the maximal absolute linear bias to be 2−2. When both
criteria are satisfied, we have filtered our search for Sbox with high algebraic
degree.

136 C. Beierle et al.

Our results is that the Sbox used in the PICCOLO block cipher [31] is close to
be the best one: our 4-bit Sbox candidate S4 is essentially the PICCOLO Sbox with
the last NOT gate at the end being removed (see Fig. 2). We believe this extra
NOT gate was added by the PICCOLO designers to avoid fixed points (actually, if
fixed points were to be removed at the Sbox level, the PICCOLO candidate would
be the best choice), but in SKINNY the fixed points are handled with the use
of constants to save some extra GE. Yet, omitting the last bit rotation layer
removes already a lot of fixed points (the efficiency cost of this omission being
null).

The Sbox S4 can therefore be implemented with only 4 NOR gates and 4 XOR
gates, the rest being only bit wiring (basically free in hardware). According to
our previously explained estimations, this should cost 14.68 GE, but as remarked
in [31], some libraries provide special gates that further save area. Namely, in
our library the 4-input AND-NOR and 4-input OR-NAND gates with two inputs
inverted cost 2 GE and they can be used to directly compute a XOR or an
XNOR. Thus, S4 can be implemented with only 12 GE. In comparison, the
PRESENT Sbox [5] requires 3 AND, 1 OR and 11 XOR gates, which amounts to
27.32 GE (or 34.69 GE without the special 4-input gates).

All in all, our 4-bit Sbox S4 has the following security properties: maximal
differential transition probability of 2−2, maximal absolute linear bias of 2−2,
branching number 2, algebraic degree 3 and one fixed point S4(0xF) = 0xF.

Regarding the 8-bit Sbox, the search space was too wide for our automated
tool. Therefore, we instead considered a subclass of the entire search space: by
reusing the general structure of S4, we have tested all possible Sboxes built by
iterating several times a NOR/XOR combination and a bit permutation. Our
search found that the maximal differential transition probability and maximal
absolute linear bias of the Sboxes are larger than 2−2 when we have less than
8 iterations of the NOR/XOR combination and bit permutation. With 8 itera-
tions of the NOR/XOR combination and bit permutation, we found Sboxes with
desired maximal differential transition probability of 2−2 and maximal absolute
linear bias of 2−2 with algebraic degree 6. However, the algebraic degree of the
inverse Sboxes of all these candidates is 5 rather than 6. In addition, having 8
iterations may result in higher latency when we consider a serial hardware imple-
mentation. Therefore, we considered having 2 NOR/XOR combinations in every
iteration and reduce the number of iteration from 8 to 4. As a result, we found
several Sboxes with the desired maximal differential probability and absolute
linear bias, while reaching algebraic degree 6 for both the Sbox and its inverse
(thus better than the 8 iterations case). Although such Sbox candidates have
3 fixed points when we omit the last bit permutation layer like the 4-bit case,
we can easily reduce the number of fixed points by introducing a different bit
permutation from the intermediate bit permutations to the last layer without
any additional cost.

With 2 NOR/XOR combinations and a bit permutation iterated 4 times, S8

can be implemented with only 8 NOR gates and 8 XOR gates (see Fig. 3), the
rest being only bit wiring (basically free in hardware). The total area cost should

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 137

be 24 GE according to our previously explained estimations and using special 4-
input AND-NOR and 4-input OR-NAND gates. In comparison, while ensuring a
maximal differential transition probability (resp. maximum absolute linear bias)
of 2−6 (resp. 2−4), the AES Sbox requires 32 AND/OR gates and 83 XOR gates to
be implemented, which amounts to 198 GE. Even recent lightweight 8-bit Sbox
proposal [10] requires 12 AND/OR gates and 26 XOR gates, which amounts to
64 GE, for a maximal differential transition probability (resp. maximum linear
bias) of 2−5 (resp. 2−2), but their optimization goal was different from ours.

All in all, we believe our 8-bit Sbox candidate S8 provides a good tradeoff
between security and area cost. It has maximal differential transition probability
of 2−2, maximal absolute linear bias of 2−2, branching number 2, algebraic degree
6 and a single fixed point S8(0xFF) = 0xFF (for the Sbox we have chosen,
swapping two bits in the last bit permutation was probably the simplest method
to achieve only a single fixed point).

Note that both our Sboxes S4 and S8 have the interesting feature that their
inverse is computed almost identically to the forward direction (as they are based
on a generalized Feistel structure) and with exactly the same number of oper-
ations. Thus, our design reasoning also holds when considering the decryption
process.

AddConstants. The constants in SKINNY have several goals: differentiate the
rounds (see Sect. 4.2), differentiate the columns and avoid symmetries, compli-
cate subspace cryptanalysis (see Sect. 4.2) and attacks exploiting fixed points
from the Sbox. In order to differentiate the rounds, we simply need a counter,
and since the number of rounds of all SKINNY versions is smaller than 64, the
most hardware friendly solution is to use a very cheap 6-bit affine LFSR (like
in LED [15]) that requires only a single XNOR gate per update. The 6 bits are
then dispatched to the two first rows of the first column (this will maximize
the constants spread after the ShiftRows and MixColumns), which will already
break the columns symmetry.

In order to avoid symmetries, fixed points and more generally subspaces to
spread, we need to introduce different constants in several cells of the internal
state. The round counter will already naturally have this goal, yet, in order
to increase that effect, we have added a “1” bit to the third row, which is
almost free in terms of implementation cost. This will ensure that symmetries
and subspaces are broken even more quickly, and in particular independently of
the round counter.

AddRoundTweakey. The tweakey schedule of SKINNY follows closely the STK con-
struction from [17] (that allows to easily get bounds on the number of active
Sboxes in the related-tweakey model). Yet, we have changed a few parts. Firstly,
instead of using multiplications by 2 and 3 in a finite field, we have instead
replaced these tweakey cells updates by cheap 4-bit or 8-bit LFSRs (depending
on the size of the cell) to minimize the hardware cost. All our LFSRs require
only a single XOR for the update, and we have checked that the differential

138 C. Beierle et al.

cancellation behavior of these interconnected LFSRs is as required by the STK
construction: for a given position, a single cancellation can only happen every
15 rounds for TK2, and same with two cancellations for TK3.

Another important generalization of the STK construction is the fact that
every round we XOR only half of the internal cipher state with some subtweakey.
The goal was clearly to optimize hardware performances of SKINNY, and it actu-
ally saves an important amount of XORs in a round-based implementation. The
potential danger is that the bounds we obtain would dramatically drop because
of this change. Yet, surprisingly, the bounds remained actually good and this
was a good security/performance tradeoff to make. Another advantage is that
we can now update the tweakey cells only before they are incorporated to the
cipher internal state. Thus, half of tweakey cells only will be updated every
round and the period of the cancellations naturally doubles: for a certain cell
position, a single cancellation can only happen every 30 rounds for TK2 and
two cancellations can only happen every 30 rounds for TK3.

The tweakey permutation PT has been chosen to maximize the bounds on the
number of active Sboxes that we could obtain in the related-tweakey model (note
that it has no impact in the single-key model). Besides, we have enforced for PT

the special property that all cells located in third and fourth rows are sent to the
first and second rows, and vice-versa. Since only the first and second rows of the
tweakey states are XORed to the internal state of the cipher, this ensures that
both halves of the tweakey states will be equally mixed to the cipher internal
state (otherwise, some tweakey bytes might be more involved in the ciphering
process than others). Finally, the cells that will not be directly XORed to the
cipher internal state can be left at the same relative position. On top of that,
we only considered those variants of PT that consist of a singe cycle.

We note that since the cells of the first tweakey word TK1 are never updated,
they can be directly hardwired to save some area if the situation allows.

ShiftRows and MixColumns. Competing with SIMON’s impressive hardware
performance required choosing an extremely sparse diffusion layer for SKINNY,
which was in direct contradiction with our original goal of obtaining good secu-
rity bounds for our primitive. Note that since our Sboxes S4 and S8 have a
branching number of two, we cannot use only a bit permutation layer as in the
PRESENT block cipher: differential characteristics with only a single active Sbox
per round would exist. After several design iterations, we came to the conclu-
sion that binary matrices were the best choice. More surprisingly, while most
block cipher designs are using very strong diffusion layers (like an MDS matrix),
and even though a 4 × 4 binary matrices with branching number four exist,
we preferred a much sparser candidate which we believe offers the best securi-
ty/performance tradeoff (this can be measured in terms of Figure Of Adversarial
Merit [19]).

Due to its strong sparseness, SKINNY binary diffusion matrix M has only a
differential or linear branching number of two. This seems to be worrisome as it
would again mean that differential characteristics with only a single active Sbox

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 139

per round would exist (it would be the same for PRESENT block cipher if its Sbox
did not have branching number three, which is the reason of the relatively high
cost of the PRESENT Sbox). However, we designed M such that when a branching
two differential transition occurs, the next round will likely lead to a much higher
branching number. Looking at M, the only way to meet branching two is to have
an input difference in either the second or the fourth input only. This leads to
an input difference in the first or third element for the next round, which then
diffuses to many output elements. The differential characteristic with a single
active Sbox per round is therefore impossible, and actually we will be able to
prove at least 96 active Sboxes for 20 rounds. Thus, for the very cheap price
of a differential branching two binary diffusion matrix, we are in fact getting a
better security than expected when looking at the iteration of several rounds.
The effect is the same with linear branching (for which we only need to look at
the transpose of the inverse of M, i.e. (M−1)�).

We have considered all possibilites for M that can be implemented with at
most three XOR operations and eventually kept the MixColumns matrices that,
in combination with ShiftRows, guaranteed high diffusion and led to strong
bounds on the minimal number of active Sboxes in the single-key model.

Note that another important criterion came into play regarding the choice
of the diffusion layer of SKINNY: it is important that the key material impacts
as fast as possible the cipher internal state. This is in particular a crucial point
for SKINNY as only half of the state is mixed with some key material every
round, and since there is no whitening keys. Besides, having a fast key diffusion
will reduce the impact of meet-in-the-middle attacks. Once the two first rows
of the state were arbitrarily chosen to receive the key material, given a certain
subtweakey, we could check how many rounds were required (in both encryption
and decryption directions) to ensure that the entire cipher state depends on this
subtweakey. Our final choice of MixColumns is optimal: only a single round is
required in both forward and backward directions to ensure this diffusion.

3.3 Comparing Differential Bounds

Our entire design has been crafted to allow good provable bounds on the minimal
number of differential or linear active Sboxes, not only for the single-key model,
but also in the related-key model (or more precisely the related-tweakey model
in our case). We provide in Table 4 a comparison of our bounds with the best
known proven bounds for other lightweight block ciphers at the same security
level (all the ciphers in the table use 4-bit Sboxes with a maximal differential
probability of 2−2). We give in Sect. 4 more details on how the bounds of SKINNY
were obtained.

First, we emphasize that most of the bounds we obtained for SKINNY are not
tight, and we can hope for even higher minimal numbers of active Sboxes. This
is not the case of LED or PRESENT for which the bounds are tight.

From the table, we can see that LED obtains better bounds for SK. Yet,
the situation is inverted for TK2: due to a strong plateau effect in the TK2
bounds of LED, it stays at 50 active Sboxes until Round 24, while SKINNY already

140 C. Beierle et al.

Table 4. Proved bounds on the minimal number of differential active Sboxes for
SKINNY-64-128 and various lightweight 64-bit block 128-bit key ciphers. Model SK
denotes the single-key scenario and model TK2 denotes the related-tweakey scenario
where differences can be inserted in both states TK1 and TK2.

Cipher Model Rounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SKINNY SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66 75

(36 rounds) TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35 40

LED SK 1 5 9 25 26 30 34 50 51 55 59 75 76 80 84 100

(48 rounds) TK2 0 0 0 0 0 0 0 0 1 5 9 25 26 30 34 50

PICCOLO SK 0 5 9 14 18 27 32 36 41 45 50 54 59 63 68 72

(31 rounds) TK2 0 0 0 0 0 0 0 5 9 14 18 18 23 27 27 32

MIDORI SK 1 3 7 16 23 30 35 38 41 50 57 62 67 72 75 84

(16 rounds) TK2 - - - - - - - - - - - - - - - -

PRESENT SK - - - - 10 - - - - 20 - - - - 30 -

(31 rounds) TK2 - - - - - - - - - - - - - - - -

TWINE SK 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 -

(36 rounds) TK2 - - - - - - - - - - - - - - - -

reaches 72 active Sboxes at Round 24. Besides, LED performance will be quite
bad compared to SKINNY, due to its strong MDS diffusion layer and strong Sbox.

Regarding PICCOLO, the bounds5 are really similar to SKINNY for SK but
worse for TK2. Yet, our round function is lighter (no use of a MDS layer), see
Sect. 3.4.

No related-key bounds are known for MIDORI, PRESENT or TWINE. Besides,
our SK bounds are better than PRESENT. Regarding MIDORI or TWINE in SK,
while our bounds are slightly worse, we emphasize again that our round function
is much lighter and thus will lead to much better performances.

Comparing differential bounds with SIMON is not as simple as with SPN
ciphers. Yet, bounds on the best differential/linear characteristics for SIMON have
been provided recently by [22]6.

Assuming (very) pessimistically for SKINNY that a maximum differential tran-
sition probability of 2−2 is always possible for each active Sbox in the differential
paths with the smallest number of active Sboxes, we can directly obtain easy
bounds on the best differential/linear characteristics for SKINNY. We provide in
Table 5 a comparison between SIMON and SKINNY versions for the proportion of
total number of rounds needed to provide a sufficiently good differential charac-
teristic probability bound according to the cipher block size. One can see that
5 We estimate the number of active Sboxes for PICCOLO to �4.5 ·Nf�, where Nf is the

number of active F -functions taken from [31].
6 Their article initially contained results only for the smallest versions of SIMON, but

the authors provided us updated results for all versions of SIMON.

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 141

SKINNY needs a much smaller proportion of its total number of rounds compared
to SIMON to ensure enough confidence with regards to simple differential/linear
attacks. Actually the related-key ratios of SKINNY are even smaller than single-
key ratios of SIMON (no related-key bounds are known as of today for SIMON).

Table 5. Comparison between AES-128 and SIMON/SKINNY versions for the proportion
of total number of rounds needed to provide a sufficiently good differential characteristic
probability bound according to the cipher block size (i.e. < 2−64 for 64-bit block
size and < 2−128 for 128-bit block size). Results for SIMON are updated results taken
from [22].

Cipher Model

Single-Key Related-Key

SKINNY-64-128 8/36 = 0.22 15/36 = 0.42

SIMON-64-128 19/44 = 0.43 ?

SKINNY-128-128 15/40 = 0.37 19/40 = 0.47

SIMON-128-128 41/72 = 0.57 ?

AES-128 4/10 = 0.40 6/10 = 0.60

Finally, in terms of diffusion, all versions of SKINNY achieve full diffusion
after only 6 rounds (forwards or backwards), while SIMON versions with 64-bit
block size requires 9 rounds, and even 13 rounds for SIMON versions with 128-bit
block size [22] (AES-128 reaches full diffusion after 2 of its 10 rounds). Again,
the diffusion comparison according to the total number of rounds is at SKINNY’s
advantage.

3.4 Comparing Theoretical Performance

After some minimal security guarantee, the second design goal of SKINNY was to
minimize the total number of operations. We provide in Table 6 a comparison of
the total number of operations per bit for SKINNY and for other lightweight block
ciphers, as well as some quality grade regarding its ASIC area in a round-based
implementation. We explain in the full version of this article how these numbers
have been computed.

One can see from the Table 6 that SIMON and SKINNY compare very favor-
ably to other candidates, both in terms of number of operations and theoretical
area grade for round-based implementations. This seems to confirm that when
it comes to lightweight block ciphers, SIMON is probably the strongest competi-
tor as of today. Besides, SKINNY has the best theoretical profile among all the
candidates presented here, even better than SIMON for area. For speed efficiency,
SKINNY outperforms SIMON when the key schedule is taken in account. This sce-
nario is arguably the most important in practice: as remarked in [3], it is likely
that lightweight devices will cipher very small messages and thus the back-end

142 C. Beierle et al.

servers communicating with millions of devices will probably have to recompute
the key schedule for every small message received.

In addition to its smaller key size, we note that KATAN-64-80 [9] theoretical
area grade is slightly biased here as one round of this cipher is extremely light
and such a round-based implementation would actually look more like a serial
implementation and will have a very low throughput (KATAN-64-80 has 254
rounds in total).

While Table 6 is only a rough indication of the efficiency of the various
designs, we observe that the ratio between the SIMON and SKINNY best software
implementations, or the ratio between the smallest SIMON and SKINNY round-
based hardware implementations actually match the results from the table (see
full version of the paper).

4 Security Analysis

In this section, we provide a short summary of the in-depth analysis we conducted
on the security of the SKINNY family of block ciphers. All details are provided in
the full version of this article. We emphasize that we do not claim any security

Table 6. Total number of operations and theoretical performance of SKINNY and various
lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate, X denotes a
XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key sch. w/key sch. impl. area

SKINNY 36 1 N 1 N 3.25 × 36 3.875 × 36 1 + 2.67 × 2.875

-64-128 2.25 X 0.625 X 2.875 X = 117 = 139.5 = 8.68

SIMON 44 0.5 A 0.5 A 2 × 44 3.5 × 44 0.67 + 2.67 × 3

-64/128 1.5 X 1.5 X 3.0 X = 88 = 154 = 8.68

PRESENT 31 1 A 0.125 A 1.125 A 4.75 × 31 5.22 × 31 1.5 + 2.67 × 4.094

-128 3.75 X 0.344 X 4.094 X = 147.2 = 161.8 = 12.43

PICCOLO 31 1 N 1 N 5.25 × 31 5.25 × 31 1 + 2.67 × 4.25

-128 4.25 X 4.25 X = 162.75 = 162.75 = 12.35

KATAN 254 0.047 N 0.047 N 0.141 × 254 3.141 × 254 0.19 + 2.67 × 3.094

-64-80 0.094 X 3 X 3.094 X = 35.81 = 797.8 = 8.45

SKINNY 40 1 N 1 N 3.25 × 40 3.25 × 40 1 + 2.67 × 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

SIMON 72 0.5 A 0.5 A 2 × 68 3 × 68 0.67 + 2.67 × 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

NOEKEON 16 0.5 (A + N) 0.5 (A + N) 1 (A + N) 6.25 × 16 12.5 × 16 2.33 + 2.67 × 10.5

-128 5.25 X 5.25 X 10.5 X = 100 = 200 = 30.36

AES 10 4.25 A 1.06 A 5.31 A 20.25 × 10 24.81 × 10 7.06 + 2.67 × 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

SKINNY 48 1 N 1 N 3.25 × 48 3.81 × 48 1 + 2.67 × 2.81

-128-256 2.25 X 0.56 X 2.81 X = 156 = 183 = 8.5

SIMON 72 0.5 A 0.5 A 2 × 72 3.5 × 72 0.67 + 2.67 × 3

-128/256 1.5 X 1.5 X 3.0 X = 144 = 252 = 8.68

AES 14 4.25 A 2.12 A 6.37 A 20.25 × 14 29.37 × 14 8.47 + 2.67 × 23

-256 16 X 7 X 23 X = 283.5 = 411.2 = 69.88

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 143

in the chosen-key or known-key model, but we do claim security in the related-
key model. Moreover, we chose not to use any constant to differentiate between
different block sizes or tweakey sizes versions of SKINNY, as we believe such a
separation should be done at the protocol level, for example by deriving different
keys (note that, if needed, this can easily be done by encoding these sizes and
use them as fixed extra constant material every round).

4.1 Differential/Linear Cryptanalysis

In order to argue for the resistance of SKINNY against differential and linear
attacks, we computed lower bounds on the minimal number of active Sboxes,
both in the single-key and related-tweakey model. We recall that, in a differential
(resp. linear) characteristic, an Sbox is called active if it contains a non-zero
input difference (resp. input mask). In contrast to the single-key model, where
the round tweakeys are constant and thus do not influence the activity pattern,
an attacker is allowed to introduce differences (resp. masks) within the tweakey
state in the related-tweakey model. For that, we considered the three cases of
choosing input differences in TK1 only, both TK1 and TK2, and in all of
the tweakey states TK1, TK2 and TK3, respectively. Table 7 presents lower
bounds on the number of differential active Sboxes for 16 up to 30 rounds. For
computing these bounds, we generated a Mixed-Integer Linear Programming
model following the approach explained in [25,32].

Table 7. Lowerbounds on the number of active Sboxes in SKINNY for large number of
rounds. Note that the bounds on the number of linear active Sboxes in the single-key
model are also valid in the related-tweakey model. In case the MILP optimization was
too long, we provide upper bounds between parentheses.

Model 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 (114) (116) (124) (132) (138) (136) (148) (158)

TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)

TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96

TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

SK Lin 70 76 80 85 90 96 102 107 (110) (118) (122) (128) (136) (141) (143)

For lower bounding the number of linear active Sboxes, we used the same
approach. For that, we considered the inverse of the transposed linear trans-
formation M�. However, for the linear case, we only considered the single-key
model. As it is described in [23], there is no cancellation of active Sboxes in
linear characteristics. Thus, the bounds for SK give valid bounds also for the
case where the attacker is allowed to not only control the message but also the
tweakey input.

The above bounds are for single characteristic, thus it will be interesting to
take a look at differentials and linear hulls. Being a rather complex task, we
leave this as future work.

144 C. Beierle et al.

4.2 Further Cryptanalysis

Meet-in-the-Middle Attacks. Meet-in-the-middle attacks have been applied
to block ciphers, e.g. [6,11]. From its application to the SPN structure [30],
the number of attacked rounds can be evaluated by considering the maximum
length of three features, partial-matching, initial structure and splice-and-cut.
We conclude that meet-in-the-middle attack may work up to at most 22 rounds,
so that 32+ rounds of SKINNY-64 provides a reasonable margin.

Remarks on Biclique Cryptanalysis. Biclique cryptanalysis improves the
complexity of exhaustive search by computing only a part of encryption algo-
rithm. The improved factor is often evaluated by the ratio of the number of
Sboxes involved in the partial computation to all Sboxes in the cipher. The
improved factor can be relatively big when the number of rounds in the cipher
is small, which is not the case in SKINNY. We do not think improving exhaustive
search by a small factor will turn into serious vulnerability in future. Therefore,
SKINNY is not designed to resist biclique cryptanalysis with small improvement.

Impossible Differential Attacks. Impossible differential attack [4] finds two
internal state differences Δ and Δ′ such that Δ is never propagated to Δ′. The
attacker then finds many plaintext/ciphertext pairs and tweakey values leading
to (Δ,Δ′). Those tweakey values are wrong values, thus tweakey space can be
reduced.

We found that the longest impossible differential characteristics reach 11
rounds and there are 16 such characteristics in total. While several rounds can
be appended to turn this into a key-recovery attack, the number of rounds for
SKINNY provide a sound security margin.

Integral Attacks. Integral attack [12,21] prepares a set of plaintexts so that
particular cells can contain all the values in the set and the other cells are fixed
to a constant value. Then properties of the multiset of internal state values
after encrypting several rounds are considered. The integral distinguisher in the
best attack we found covers 10 rounds that can be turned into a key-recovery
attack on 14 rounds. The division property could be used to slightly extend those
results. Again, given the number of rounds for SKINNY, integral attacks do not
seem to be a threat for the security of the cipher.

Slide Attacks. In SKINNY, the distinction between the rounds of the cipher
is ensured by the AddConstants operation and thus the straightforward slide
attacks cannot be applied. We consider possible variants (in the full version of
the paper), but we could not turn any of those into a valid attack.

Subspace Cryptanalysis. Invariant subspace cryptanalysis makes use of affine
subspaces that are invariant under the round function. Given that SKINNY has

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 145

a non-trivial key-scheduling, this technique does not seem well suited to launch
an attack.

Algebraic Attacks. We detail in the full version of our paper why, not sur-
prisingly, algebraic attacks do not threaten SKINNY.

5 Implementations, Performance and Comparison

We provide a complete study of SKINNY performance on various platforms (soft-
ware, ASIC, FPGA, micro-controllers, ...) in the full version of the paper. Yet,
we describe here our results regarding ASIC round-based implementations since
it represents our top performance criterion.

We used Synopsys DesignCompiler version A-2007.12-SP1 to synthesize the
designs considering UMCL18G212T3 [35] standard cell library, which is based
on the UMC L180 0.18μm 1P6M logic process with a typical voltage of 1.8 V.
For the synthesis, we advised the compiler to keep the hierarchy and use a clock
frequency of 100 KHz, which allows a fair comparison with the benchmark of
other block ciphers reported in literature.

In a first step, we designed round-based implementations for all SKINNY vari-
ants providing a good trade-off between performance and area. All implemen-
tations compute a single round of SKINNY within a clock cycle. Besides, our
designs take advantage of dedicated scan flip-flops rather than using simple flip-
flops and additional multiplexers placed in front in order to hold round states
and keys. Note that this approach leads to savings of 1 GE per bit to be stored.
In order to allow a better and fairer comparison, we provide both throughput at
a maximally achievable frequency and throughput at a frequency of 100 KHz.

Table 8 briefly summarizes the results of the round-based architectures of
all SKINNY variants and compares it to other round-based implementations of
lightweight ciphers taken from the literature. In particular, SKINNY-64-128 offers
the smallest area footprint compared to other lightweight ciphers providing the
same security level. Note, that even SIMON-64-128 implemented in a round-based
fashion cannot compete with our design in terms of both area and throughput.

6 The Low-Latency Tweakable Block Cipher MANTIS

In this section, we present a tweakable block cipher design which is optimized
for low-latency implementations.

The low-latency block cipher PRINCE already provides a very good start-
ing point for a low-latency design. Its round function basically follows the AES
structure, with the exception of using a MixColumns-like mapping with branch
number 4 instead of 5. The main difference between PRINCE and AES (and actu-
ally all other ciphers) is that the design is symmetric around a linear layer in
the middle. This allows to realize what was coined α-reflection: the decryption
for a key K corresponds (basically) to encryption with a key K ⊕α where α is a

146 C. Beierle et al.

Table 8. Round-based implementations of SKINNY-64 and SKINNY-128.

Area Delay Clock Throughput Ref.

Cycles @100 KHz @maximum

GE ns # KBit/s MBit/s

SKINNY-64-64 1223 1.77 32 200.00 1130.00 New

SKINNY-64-128 1696 1.87 36 177.78 951.11 New

SKINNY-64-192 2183 2.02 40 160.00 792.00 New

SKINNY-128-128 2391 2.89 40 320.00 1107.20 New

SKINNY-128-256 3312 2.89 48 266.67 922.67 New

SKINNY-128-384 4268 2.89 56 228.57 790.86 New

SIMON-64-128 1751 1.60 46 145.45 870.00 [2]

SIMON-128-128 2342 1.60 70 188.24 1145.00 [2]

SIMON-128-256 3419 1.60 74 177.78 1081.00 [2]

LED-64-64 2695 - 32 198.90 - [15]

LED-64-128 3036 - 48 133.00 - [15]

PRESENT-64-128 1884 - 32 200.00 - [5]

PICCOLO-64-128 1773a - 33 193.94 - [31]
aThis number includes 576 GE for key storage that is not considered
in the original work.

fixed constant. Turning PRINCE into a tweakable block cipher is (conceptually)
well understood when using e.g. the TWEAKEY framework [17]. First, define a
tweakey-schedule and than simply increase the number of rounds until one can
ensure that the cipher is secure against related-tweak attacks.

However, the problem is that the latency of a cipher is directly related to
the number of rounds. Thus, it is crucial to find a design, i.e. a round function
and a tweak-scheduling, that ensures security already with a minimal number
of rounds. Here, components of the recently proposed block ciphers MIDORI [1]
turn out to be very beneficial. In MIDORI, again an AES-like design, one of the
key observations was that changing ShiftRows into a more general permutation
allows to significantly improve upon the number of active Sboxes (in the single
key model) while keeping a MixColumns-like layer with branch number 4 only.
On top, the designers of MIDORI designed a 4-bit Sbox that was optimized with
respect to circuit-depth. This directly leads to an improved version of PRINCE
itself: replace the PRINCE round function by the MIDORI-round function while
keeping the entire design symmetric around the middle to keep the α-reflection
property. This simple change would result in a cipher with improved latency
and improved security (i.e. number of active Sboxes) compared to PRINCE. It
is actually exactly this PRINCE-like MIDORI that we use as a starting point for
designing the low-latency block cipher MANTIS. The final step in the design of
MANTIS was to find a suitable tweak-scheduling that would ensure a high number
of active Sboxes not only in the single-key setting, but also in the setting where

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 147

the attacker can control the difference in the tweak. Using, again, the MILP
approach, we are able to demonstrate that a slight increase in the number of
rounds (from 12 to 14) is already sufficient to ensure the resistance of MANTIS to
differential (and linear) attacks in the related-tweak setting. Note that MANTIS is
certainly not secure in the related-key model, as there always exist a probability
one distinguisher caused by the α-reflection property.

MANTISr has a 64-bit block length and works with a 128-bit key and 64-bit
tweak. The parameter r specifies the number of rounds of one half of the cipher.
The overall design is illustrated in Fig. 5.

R1 R2 R3 R4 R5 R6 S M S R−1
6 R−1

5 R−1
4 R−1

3 R−1
2 R−1

1

h h h h h h h−1 h−1 h−1 h−1 h−1 h−1

k1k1 k1 k1 k1 k1 k1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1 k̄1k0

m

T

c

k
′
0

Fig. 5. Illustration of MANTIS6.

We acknowledge the contribution of Roberto Avanzi to the design of MANTIS.
He first suggested us to combine PRINCE with the TWEAKEY framework, and
also to modify the latter by permuting the tweak independently from the key,
in order to save on the Galois multiplications of the tweak cells. He then brain-
stormed with us on early versions of the design.

6.1 Description of the Cipher

MANTISr is based on the FX-construction [20] and thus applies whitening keys
before and after applying its core components. The 128-bit key is first split into
k = k0 || k1 with 64-bit subkeys k0, k1. Then, (k0 || k1) is extended to the 192
bit key

(k0 || k
′
0 || k1) := (k0 || (k0 ≫ 1) ⊕ (k0 	 63) || k1),

and k0, k
′
0 are used as whitening keys in an FX-construction. The subkey k1 is

used as the round key for all of the 2r rounds of MANTISr. We decided to stick
with the FX construction for simplicity., even so other options as described in [8].

Initialization. The cipher receives a plaintext m = m0‖m1‖ · · · ‖m14‖m15,
where the mi are 4-bit cells. The initialization of the cipher’s internal state is
performed by setting ISi = mi for 0 ≤ i ≤ 15.

The cipher also receives a tweak input T = t0‖t1‖ · · · ‖t15, where the ti are
4-bit cells. The initialization of the cipher’s tweak state is performed by setting

148 C. Beierle et al.

Ti = ti for 0 ≤ i ≤ 15. Thus,

IS =

⎡
⎢⎢⎣

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

⎤
⎥⎥⎦ T =

⎡
⎢⎢⎣

t0 t1 t2 t3
t4 t5 t6 t7
t8 t9 t10 t11
t12 t13 t14 t15

⎤
⎥⎥⎦

The Round Function. One round Ri(·, tk) of MANTISr operates on the cipher
internal state depending on the round tweakey tk as

MixColumns ◦ PermuteCells ◦ AddTweakeytk ◦ AddConstanti ◦ SubCells.

In the following, we describe the components of the round function.

SubCells. The involutory MIDORI Sbox Sb0 is applied to every cell of the internal
state. Using the MIDORI Sbox is beneficial as this Sbox is especially optimized
for small area and low circuit depth.

AddConstant. In the i-th round, the round constant RCi is XORed to the
internal state. The round constants are generated in a similar way as for
PRINCE, that is we used the first digits of π to generate those constants
(actually the very first digits correspond to α defined below). The round
constants can be found in the full version of the paper. Note that, in contrast
to PRINCE, the constants are added row-wise instead of column-wise.

AddRoundTweakey. In round Ri, the (full) round tweakey state hi(T) ⊕ k1 is
XORed to the cipher internal state. In the i-th inverse round R−1

i , the
tweakey state hi(T)⊕ k̄1 := hi(T)⊕k1 ⊕α with α = 0x243f6a8885a308d3 is
XORed to the internal state. Note that this α, as the round constants, is
chosen as the first digits of π. Thereby, it is h(T) = th(0)‖th(1) · ‖th(15), where
the tweak permutation h is defined as

h = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11].

PermuteCells. The cells of the internal state are permuted according to the
MIDORI permutation

P = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2].

Note that the MIDORI permutation ensures a higher number of active Sboxes
compared to the choice made in PRINCE.

MixColumns. Each column of the cipher internal state array is multiplied by the
binary matrix used in MIDORI.

Encryption. In the following, we define Hr as the application of r rounds Ri

and one additional SubCells layer. Similarly, we define H−1
r as the application

on one inverse SubCells layer plus r inverse rounds. Thus,

Hr(·, T, k1) = SubCells ◦ Rr(·, hr(T) ⊕ k1) ◦ · · · ◦ R1(·, h(T) ⊕ k1)

H−1
r (·, T, k̄1) = R−1

1 (·, h(T) ⊕ k̄1) ◦ · · · ◦ R−1
r (·, hr(T) ⊕ k̄1) ◦ SubCells.

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 149

With this notation, it is

Enc(k0,k′
0,k1)(·, T) = AddTweakeyk′

0⊕k1⊕α⊕T ◦ H−1
r (·, T, k1 ⊕ α)

◦ MixColumns ◦ Hr(·, T, k1) ◦ AddTweakeyk0⊕k1⊕T

Decryption. It is Enc−1
(k0,k′

0,k1)
(·, T) = Enc(k′

0,k0,k1⊕α)(·, T) because of the α-
reflection property.

6.2 Design Rationale

The goal was to design a cipher which is competitive to PRINCE in terms of
latency with the advantage of being tweakable. In contrast to SKINNY, we dis-
tinguish between tweak and key input. In particular, we allow an attacker to
control the tweak but not the key. Thus, similar to PRINCE, we do not claim
related-key security. In order to reach this goal, again, several components are
borrowed from already existing ciphers. In the following, we present the reasons
for our design. Note that, as we aim for an efficient unrolled implementation,
one is not restricted to a classical round-iterated design.

α-Reflection Property. MANTISr is designed as a reflection cipher such that
encryption under a key k equals decryption under a related key. This significantly
reduces the implementation overhead for decryption. Therefore, the parameter
r denotes only half the number of rounds, as the second half of the cipher is
basically the inverse of the first half. It is advantageous that the diffusion matrix
M is involutory since we need the middle part of the cipher to be an involution.
Unlike in the description of PRINCE, we use the same round constant for the
inverse R−1

i of the i-th round and apply the addition of α to the round key k1.

The Choice of the Diffusion Layer. To achieve low latency in an unrolled
implementation, one is limited in the number rounds to be applied. Therefore,
one has to achieve very fast diffusion while guaranteeing a high number of active
Sboxes. To reach these requirements, we adopted the linear layer of MIDORI. It
provides full diffusion only after three rounds and guarantees a high number of
active Sboxes in the single-key setting. We refer to Table 4 for the bounds.

The Choice of the Sbox. For the Sbox in MANTIS we used the same Sbox as
in MIDORI. The MIDORI Sbox has a significantly smaller latency than the PRINCE
Sbox. The maximal linear bias is 2−2 and the best differential probability is 2−2

as well.

The Choice of the Tweakey Permutation h. Our aim was to choose a
tweak permutation h such that five rounds (plus one additional SubCells layer)
guarantee at least 16 active Sboxes in the related-tweak setting. This would
guarantee at least 32 active Sboxes for MANTIS5 which is enough to bound the

150 C. Beierle et al.

differential probability (resp. linear bias) below 2−2·32. Since there are 16! pos-
sibilities for h, which is too much for an exhaustive search, we restricted ourself
on a subclass of 8! tweak permutations. The restriction is that two complete
rows (without changing the position of the cells in those rows) are permuted to
different rows. In our case, the first and third row are permuted to the second
and fourth row, respectively. The bounds were derived using the MILP tool.
We tested several thousand choices for the permutation h and found out that
16 active Sboxes were the best possible to reach over H5. Out of these optimal
choices, we took the permutation that maximized the bound for MANTIS5, and
as a second step for MANTIS6. We refer to Table 9 for the actual bounds.

Table 9. Lower bounds on the number of linear (and differential) active Sboxes in the
single-key model and of differential active Sboxes in the related-tweak model.

MANTIS2 MANTIS3 MANTIS4 MANTIS5 MANTIS6 MANTIS7 MANTIS8

Linear 14 32 46 62 70 76 82

Rel. Tweak 6 12 20 34 44 50 56

Security Claim. For MANTIS7, we claim that any adversary who in possession of
2n chosen plain/ciphertext pairs which were obtained under chosen tweaks, but
with a fixed unknown key, needs at least 2126−n calls to the encryption function
in order to recover the secret key. Thus, our security claims are the same as for
PRINCE, except that we also claim related-tweak security. Moreover, already for
MANTIS5 we claim security against practical attacks, similar to what has been
considered in the PRINCE challenge. More precisely, we claim that no related-
tweak attack (better than the generic claim above) is possible against MANTIS5
with less than 230 chosen or 240 known plaintext/ciphertext pairs. Note that
because of the α-reflection, there exists a trivial related-key distinguisher with
probability one. We especially encourage further cryptanalysis on the aggressive
versions.

6.3 Security Analysis

As one round of MANTIS is almost identical to one round in MIDORI, most of the
security analysis can simply be copied from the latter. This holds in particular
for meet-in-the-middle attacks, integral attacks and slide attacks. We therefore
only focus on the attacks where the changes in round constants and by adding
the tweak actually result in different arguments.

Invariant Subspaces. The most successful attack against MIDORI-64 at the
moment is an invariant subspace attack with a density of 296 weak keys. The
main observation here is that the round constants in MIDORI are too sparse and

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 151

structured to avoid certain symmetries. More precisely, the round constants in
MIDORI-64 only affect a single bit in each of the 16 4-bit cells. Together with a
property of the Sbox this finally results in the mentioned attack. For MANTIS,
the situation is very different as the round constants (in each half) are basically
random values. This in particular ensures that the invariant subspace attack on
MIDORI does not translate into an attack on MANTIS.

Differential and Linear Related-Tweak Attacks. Using the MILP app-
roach, we are able to prove strong bounds against related-tweak linear and differ-
ential attacks. In particular, no related tweak linear or differential distinguisher
based on a characteristics is possible for MANTIS5, that is already for 12 layers
of Sboxes. As MANTIS7 has four more rounds, and additional key-whitening, we
believe that is provides a small but sufficient security margin.

The results of unrolled implementations for MANTIS are listed in the full
version of the paper.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. This work is partly supported by the Singapore National
Research Foundation Fellowship 2012 (NRF-NRFF2012-06), the DFG Research Train-
ing Group GRK 1817 Ubicrypt and the BMBF Project UNIKOPS (01BY1040).

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
Simon and speck: block ciphers for the internet of things. ePrint/2015/585 (2015)

3. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–352. Springer, Heidelberg (2014)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

6. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-662-48800-3_17

152 C. Beierle et al.

8. Boura, C., Canteaut, A., Knudsen, L.R., Leander, G.: Reflection ciphers. In:
Designs, Codes and Cryptography (2015)

9. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

10. Canteaut, A., Duval, S., Leurent, G.: Construction of lightweight S-Boxes using
Feistel and MISTY structures (Full Version). ePrint/2015/711 (2015)

11. Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a reduced number of rounds.
In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer,
Heidelberg (1986)

12. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

13. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: the block
cipher noekeon. Nessie submission (2000). http://gro.noekeon.org/

14. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. [29],
pp. 326–341

16. Henson, M., Taylor, S.: Memory encryption: a survey of existing techniques. ACM
Comput. Surv. 46(4), 1–53 (2013)

17. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014)

18. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3 Submission to the CAESAR compe-
tition (2015). http://www1.spms.ntu.edu.sg/∼syllab/Joltik

19. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer,
Heidelberg (2014)

20. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer,
Heidelberg (1996)

21. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

22. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher
family. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 161–185. Springer, Heidelberg (2015)

23. Kranz, T., Leander, G., Wiemer, F.: Linear cryptanalysis: on key schedules and
tweakable block ciphers. Preprint (2016)

24. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

25. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

26. National Institute of Standards and Technology: Recommendation for Key Man-
agement - NIST SP-800-57 Part 3 Revision 1. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-57Pt3r1.pdf

27. Peyrin, T., Seurin, Y.: Counter-in-Tweak: authenticated encryption modes for
tweakable block ciphers. ePrint/2015/1049 (2015)

http://gro.noekeon.org/
http://www1.spms.ntu.edu.sg/~syllab/Joltik
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS 153

28. Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

29. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

30. Sasaki, Y.: Meet-in-the-Middle preimage attacks on AES hashing modes
and an application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp.
378–396. Springer, Heidelberg (2011)

31. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. [29], pp. 342–357

32. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of
block ciphers with S-bP structures against related-key differential attacks. In: Lin,
D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 39–51. Springer,
Heidelberg (2014)

33. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Wu, H., Knudsen, L.R. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

34. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Journault, A., Durvaux,
F., Gaspar, L., Kerckhof, S.: SCREAM v3 Submission to the CAESAR competition
(2015)

35. Virtual Silicon Inc: 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18µm, July 2004

36. Williams, P., Boivie, R.: CPU support for secure executables. In: McCune, J.M.,
Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011.
LNCS, vol. 6740, pp. 172–187. Springer, Heidelberg (2011)

Cryptanalytic Tools

Automatic Search of Meet-in-the-Middle
and Impossible Differential Attacks

Patrick Derbez1(B) and Pierre-Alain Fouque1,2

1 Université Rennes 1 / IRISA, Rennes, France
{patrick.derbez,pierre-alain.fouque}@irisa.fr

2 Institut Universitaire de France, Paris, France

Abstract. Tracking bits through block ciphers and optimizing attacks
at hand is one of the tedious task symmetric cryptanalysts have to deal
with. It would be nice if a program will automatically handle them at
least for well-known attack techniques, so that cryptanalysts will only
focus on finding new attacks. However, current automatic tools cannot
be used as is, either because they are tailored for specific ciphers or
because they only recover a specific part of the attacks and cryptogra-
phers are still needed to finalize the analysis.

In this paper we describe a generic algorithm exhausting the best
meet-in-the-middle and impossible differential attacks on a very large
class of block ciphers from byte to bit-oriented, SPN, Feistel and Lai-
Massey block ciphers. Contrary to previous tools that target to find the
best differential / linear paths in the cipher and leave the cryptanalysts to
find the attack using these paths, we automatically find the best attacks
by considering the cipher and the key schedule algorithms. The building
blocks of our algorithm led to two algorithms designed to find the best
simple meet-in-the-middle attacks and the best impossible truncated dif-
ferential attacks respectively. We recover and improve many attacks on
AES, mCRYPTON, SIMON, IDEA, KTANTAN, PRINCE and ZORRO.
We show that this tool can be used by designers to improve their analysis.

Keywords: Automatic search · Meet-in-the-middle · Impossible trun-
cated differential · Cryptanalysis

1 Introduction

To explore the exponential space of differentials or linears characteristics, crypt-
analysts usually implement some algorithms. Many tools have been proposed
for ciphers or hash functions [BDF11,DF13,FJP13,Leu12] but most of the time
they are not publicly available. Moreover, they are not very convenient for block

Patrick Derbez was partially supported by the CORE ACRYPT project from the
Fond National de Recherche (Luxembourg).
c© IACR 2016. This article is the final version submitted by the author to the IACR
and to Springer-Verlag in June 2016, which appears in the proceedings of CRYPTO
2016.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 157–184, 2016.
DOI: 10.1007/978-3-662-53008-5 6

158 P. Derbez and P.-A. Fouque

cipher designers and are rarely used for many reasons. On the one hand, some
tools have been designed to explore precise ciphers and it is not easy to adapt
them for new designs. The main reason is that we hope that taking into account
some particularities of the cipher, would lead to more efficient attacks. Conse-
quently, some details of the analyzed ciphers are hard-coded into the tool and
it is not easy to make any changes. On the other hand, only cryptanalysts can
used such tools which are more computational-aid than real tools. Indeed, some
tools allow to find some differential paths, but more work has to be done by
cryptanalysts to find the best attack. However, this last part is usually not com-
pletely trivial and it is not always the best differential paths, that would lead
to the best attacks. For instance, the best differential attack on DES does not
use the best and longest differential path [BS93] on 15 rounds, but a 13 rounds
differential path is used with meet-in-the-middle technique to extend this path,
leading to the so-called 3R attack. The meet-in-the-middle step is rarely consid-
ered in tools while it is computationally difficult to exhaust the most efficient
combination of say a differential path with the number of guesses. Indeed, once
a differential path is found, attackers have to guess some key bits in order to be
able to check the differential part. Consequently, the overall complexity of the
attack depends on the number of guesses and the probability of the differential.
The best attack has a complexity that is the maximum of both stages. The last
step is a meet-in-the-middle technique and it is well-known that it allows to find
the most efficient attack since bad key guesses are quickly rejected. As a con-
clusion, if we want to automatically find the best attack, we need to be able to
automatically solve each stage: find many good differential paths and for each
of them evaluate the cost of the meet-in-the-middle part.

Automatic Tools. Automatic search of symmetric attacks boils down to solv-
ing a system of equations in many variables as Shannon described in his seminal
work in 1949 on Communication Theory of Secrecy Systems: Breaking a good
cipher should require as much work as solving a system of simultaneous equa-
tions in a large number of unknowns of a complex type. Algebraic cryptanalysis
can be traced back to him and some attacks on stream ciphers have been very
efficient [CM03]. However, solving these equations is not always easy and crypt-
analysts have to take into account the structure of such systems if they want to
efficiently solve them. Indeed, Gröbner basis algorithms have been used, but they
never endanger the security of real block ciphers [BPW06a,BPW06b]. Cryptog-
raphers have to closely analyze the involved systems depending on the number
of variables, their degree, some symmetries in the equations if they want to
find some attacks. The other well-known tool consists in writing boolean equa-
tions and feed them to a SAT solver such as CryptoMiniSAT [SNC09]. Black
box use of these two well-known solvers never lead to efficient attacks. They
can be used either on a very small number of rounds [MS13] or when attacks
are described in order to speed up the search [SKPI07,MZ06]. Since solving a
polynomial system of equations in many variables is a NP-hard problem [GJ79],
some cryptanalysts try to better take into account the structure of these systems.
Since block ciphers are built iteratively in many rounds and each of them use

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 159

a linear part (diffusion) and a non-linear part (Sbox essentially), one of the most
interesting research directions consists in writing linear equations by adding new
variables for each Sbox [BDF11,KBN09]. Consequently, we can write the sys-
tem as a linear system in variables x and S(x), where S is treated as an inert
function. Such systems are not easy to solve because there is a relation between
these two kinds of variables and classical gaussian technique does not work. In
order to consider the system of equations, Bouillaguet et al. in [BDF11] have
used well-known cryptographic techniques to solve such systems such as guess-
and-determine and meet-in-the-middle. The consequence is that the tool is very
versatile and solves any such systems by describing an algorithm to solve it with
its average time/memory complexity. For instance, they were able to find attacks
on MAC and stream-ciphers. However, it is not specific for block ciphers and
it is not easy to search attacks involving many messages. This tool is neverthe-
less interesting since it is generic and for instance, Derbez and Fouque use it
in [DF13] and Dinur and Jean in [DJ14].

Related Work. The original meet-in-the-middle attack [DS08] of Demirci and
Selçuk against AES has been improved and generalized by many researchers
and is nowadays well-understood. It relies on particular sets called δ-sets, which
were first introduced by Daemen et al. against the block cipher SQUARE. At
ASIACRYPT 2010, Dunkelman et al. [DKS10] presented several improvements
for the attack including the differential enumeration technique, a clever and
powerful memory/data trade-off that does not change the time. Then at EURO-
CRYPT 2013, Derbez et al. [DFJ13] mainly showed that this technique leads to
much better attacks than expected by Dunkelman et al., and reached the best
known attacks against 7-round AES-128 and 9-round AES-256 in the single-key
model. Next, at FSE 2013, Derbez and Fouque [DF13] generalized the attack of
Demirci and Selçuk by searching a match on some equation and not only on the
byte state, and showed that approximately 216 different attacks can be mounted
against the AES. In order to find the best ones among them, they used the tool
presented by Bouillaguet et al. [BDF11] at CRYPTO 2011 to take care of the
key schedule relations between the subkey bytes involved in the attacks.

This kind of attacks is very efficient againsts round-reduced versions of the
AES and actually it may also be efficient against non-SPN ciphers as showed
by Li and Jia in [LJ14] where they successfully applied the technique against
Camellia [AIK+00]. At ICISC 2013, Li et al. [LWWZ13] described an algorithm
to find the best distinguishers one can use to mount a Demirci-Selçuk attack
on a word-oriented block cipher. In particular, they showed that finding the
distinguishers which have the least number of active cells can be turned into
an integer linear program that they solved. As a result, they found new attacks
against both Crypton-128 and mCrypton-96.

Our Contribution. Our first contribution is a new tool that allows to auto-
matically find meet-in-the-middle and impossible differential attack. Contrary to
other tools, this new one is publicly available and allows to recover differential
paths and complete attacks by extending them using well-known meet-in-the-
middle technique. One major contribution is that we determine specific problems

160 P. Derbez and P.-A. Fouque

that allow us to design a modular approach for our tool. Indeed, we will describe
some building blocks that allow us to automatically find impossible differen-
tial attack, truncated differential path and meet-in-the-middle attacks when we
combine them in a specific manner. Finally, we apply it on many block ciphers.

We show that our tool allows to discover automatically in a few seconds many
of the best meet-in-the-middle and impossible differential attacks on some bit
and byte oriented ciphers: CRYPTON, mCRYPTON, AES, SIMON, IDEA and
XTEA. On SIMON, the tool allows to recover all the attacks found by hand by
Boura et al. in [BNS14] and even improve them by one more round. Essentially,
the tool was able to discover that we can save some guesses by guessing the
xor of two key bits instead of each of the two bits. For IDEA, our results are
noteworthy and we think it is a good example of bit-oriented cipher since it mixes
various operations which prevent to use any larger field as in AES. This cipher
has been unattacked during 10 years after its publications and in 2002, Biryukov
and Demirci discovered a particular relation that allows them to break 2 rounds
among the 8.5 rounds. About 10 years after, Biham, Dunkelman, Keller and
Shamir use this relation to mount efficient meet-in-the-middle attacks [BDKS15].
In a few seconds, our tool was able to automatically recover the Biryukov-Demirci
relation and to find all the attacks on 6 rounds [BDKS15]. On XTEA, the tool
was also able to recover the best impossible differential path of [MHL+02] on 12
rounds. If we only want to recover differential path and not the complete attack,
it is possible to ask it to the tool.

The main purpose of this tool is not only for cryptanalysis in order to find
attacks, but also for designers in order to test their new ciphers. The ZORRO
block cipher has been proposed by Gérard et al. at CHES 2013 [GGNS13] in
order to be secure and efficient to mask. The main idea consists in using an
easy to mask Sbox and to reduce the number of Sbox at each round since the
overhead of masking comes from these two factors. The overall design is close
to AES. However, many attacks have been discovered on this cipher including
on the full number of rounds. Here, we exhaust using symmetries properties all
the family of ZORRO ciphers and we show that some strategic positions of the
Sboxes lead to stronger ciphers.

We describe a generic algorithm exhausting the best meet-in-the-middle and
impossible differential attacks on a very large class of block ciphers. Unlike
Li et al.’s algorithm, our is not restricted to word-oriented block ciphers
and takes into account the key schedule relations to directly give as output
the best attacks and their complexities. Actually, it is based on the tool of
Bouillaguet et al. to estimate the complexity of the attacks. Thus our algorithm
only requires as input a system of equations describing the targeted cipher and
the type of each variable: plaintext, ciphertext, key or state. Incidentally, the
building blocks of our algorithm led to two others algorithms designed to find
the best simple meet-in-the-middle attacks and the best impossible truncated
differential attacks respectively. Impossible differential cryptanalysis, which was
simultaneously introduced by Knudsen [Knu98] and Biham et al. [BBS99], is
a powerful technique against a large variety of block ciphers. While there are

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 161

already algorithms designed to find impossible differential against various kind
of block ciphers (for instance [WW12]), our is the first one which outputs the
complexities of the best attacks. More precisely, our algorithm gives as output
all the parameters required to compute the complexity according to the general
formula given at ASIACRYPT 2014 by Boura et al. in [BNS14].

We implemented our algorithms in C++ and make them available at:

https://bitbucket.org/pderbez/crypto2016-tool/.

2 Preliminaries

First we present a generalization of the Demirci-Selçuk (GDS) meet-in-the-
middle technique for iterated block ciphers. Then, we recall some definitions
from Bouillaguet et al. [BDF11] about systems of AES-like equations.

The GDS attack is similar to the splice-and-cut technique [WRG+11] but
works with differences rather than state values. Demirci-Selçuk attacks have
been discovered for AES and first generalized by Derbez and Fouque in [DF13]
to match on a byte relation involving many bytes rather than on one state byte.
Here, we generalize it on iterated block ciphers.

2.1 Generalized Demirci-Selçuk (GDS) Attack

We illustrate GDS on an AES-like cipher and then we generalize it to other
ciphers. The basic idea is the following and assume that we have a relation
involving internal variables. It can be a linear relation between 5 active bytes
in an AES computation around the MixColumn operation. On the second line
of Fig. 1, we represent such a relation between two states. Once, the variables
of this relation have been identified, we propagate them to the plaintext and
ciphertext bits and we get, the bits that have to be guessed in the intermediate
states from the ciphertext and plaintext. The main problem is that the number
of bits that have to be guessed is very large as in the figure. The main trick
to reduce them is to force some constraints on the differential path. They are
described by the first line, where some conditions are proposed. We will search
for plaintexts satisfying the differential path. It is classical in AES cryptanalysis
to use the differential path with one transition from one byte to 4 active bytes
after the MixColumn operation with probability one and we let it propagate to
the plaintext and ciphertext part with probability one. Finally, we get a GDS
attack on the third line that use the bytes in the intersection of the two sets
used in each state.

More formally, the original attack of Demirci and Selçuk [DS08] mainly relies
on two subcomponents: one truncated differential characteristic and one basic
meet-in-the-middle attack. More precisely, let E = E3 ◦E2 ◦E1 be an encryption
function splitted into three parts. For the first step we pick a truncated difference
ΔX with bi active bits, propagate it through E−1

1 (resp. E3◦E2) with probability
1 and denote the set of active bits by IP (resp. IC). Then, for the second step,

https://bitbucket.org/pderbez/crypto2016-tool/

162 P. Derbez and P.-A. Fouque

1R 1R 1R 1R 1R
P C

1R 1R 1R 1R 1R
P C

1R 1R 1R 1R 1R
P C

+

=

Fig. 1. Example of GDS attack (on 6-round AES). IP is in blue, IC in green, OP in
red and OC in yellow. Hatched bytes play no roles and white bytes are constant. (Color
figure online)

we mount a basic meet-in-the-middle attack against E = E3 ◦ (E2 ◦ E1): let Y
be the output state of E2 ◦ E1, we pick bo bits of Y and denote by OP (resp.
OC) the bits required to compute their difference in Y from the difference in the
plaintexts (resp. ciphertexts).

To explain further the GDS attack we introduce the definition of a b-δ-set:

Definition 1 (b-δ-set). A b-δ-set is a set of 2b states such that b bits are active
and take all the possible value while the others bits are constant. We also assume
that the states of a b-δ-set are sorted according to differences (i.e. if {x0, x1, . . .}
is a valid order then the valid orders are {xi, xi+1, . . .} for 0 ≤ i < 2b).

The structure of the Generalized Demirci-Selçuk attack is the following:

– Offline phase:
1. Consider the encryption of a bi-δ-set {x0, x1, . . .} corresponding to the

truncated difference ΔX through E2.
2. Guess the value of IC ∩ OP for x0.
3. Deduce the differences in the bo chosen bits of Y for the bi-δ-set.
4. Store them as a sequence of 2bi − 1 bo-bit values in a hash table.

– Online phase:
1. Pick a plaintext P .
2. Guess the value of IP for P and identify a set {P, P 1, P 2, . . .} leading to a

bi-δ-set associated to ΔX .
3. Ask for the corresponding ciphertexts.
4. Guess the value of OC and partially decrypt the ciphertexts to compute

the differences in the bo chosen bits of Y .
5. Check whether the sequence belongs to the hash table. If not, discard the

guess.

The complexity of this procedure depends directly on how many values the sets
IP and IC ∩OP can assume, S(IC ∩OP), and on how fast all the possible values
of sets IP ∪ OC and IC ∩ OP can be enumerated, T (IP ∪ OC):

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 163

– Data: (2bi − 1) · S(IP) adaptively chosen plaintexts,
– Time (online): 2bi · T (IP ∪ OC) partial encryptions,
– Memory: bo · (2bi − 1) · S(IC ∩ OP) bits,
– Time (offline): 2bi · T (IC ∩ OP) partial encryptions.

At the end of this attack we expect min(1,S(IC ∩OP) · 2−bo(2
bi−1)) · S(IP ∪OC)

candidates to remain for IP ∪ OC . Thus bi and bo have to be chosen such that
they provide enough filtration, but expanding them also increases the size of the
sets IP , IC , OP and OC which then may rise the complexity of the resulting
attack.

Remarks:

– In the case where the truncated difference ΔX does not fully active ΔP , i.e.
differences in some plaintext bits are null, the attack can be turned into a
chosen-plaintext attack by starting by asking for a structure of plaintexts.
Actually this is (almost) always better to do so since, in general, (2bi −1)·S(IP)
is higher than 2|ΔP |.

– Some extra memory can be used to map each sequence to its corresponding
value of IC ∩ OP .

– Given two invertible matrices M1 and M2, we can rewrite the encryption
function E = (E3 ◦ M−1

2) ◦ (M2 ◦ E2 ◦ M−1
1) ◦ (M1 ◦ E1). Hence the sentences

“with bi active bits” or “pick bo bits of Y ” should be understood as “with
bi active linear combinations of bits” or “pick bo linear combinations of bits
of Y ”.

2.2 Systems of AES-like Equations

In the sequel we recall some definitions of Bouillaguet et al. we will use in our
algorithms. In particular, we detail the notion of linear variables that allows us
to reduce variables. Indeed, in our system of equations that are linear in the
variables x and S(x), when all the equations only depend on ax + bS(x) for
specific value a and b, then we can replace the variable x by a new one in X
that represents ax + bS(x), so that if we recover X, we will be able to find x.
Then, the second important notion is that for a system of equations describing
the computation of the block cipher, the system is triangular from the plaintext
and key variables to the ciphertext variables and so, from the ciphertext and key
variables to the plaintext variables.

Given a finite field Fq, where q is a power of a prime number, and a non-linear
function S : Fq −→ Fq, an AES-like equation is defined as follows.

Definition 2 (AES-like equation). An AES-like equation in variables X =
{x1, . . . , xn} is an equation of the form:

n∑
i=1

aixi +
n∑

i=1

biS(xi) + c = 0,

where a1, . . . , an, b1, . . . , bn, c ∈ Fq.

164 P. Derbez and P.-A. Fouque

AES-like equations enjoy some very interesting properties. First the set of all
the AES-like equations in variables X = {x1, . . . , xn} is a vector space over Fq.
Indeed, this set is stable by the multiplication by a scalar and the sum of two
AES-like equations is still an AES-like equation.

Definition 3 (AES-like system). We denote by V (X) the vector space
spanned by all the AES-like equations in variable X. A system of AES-like equa-
tions in variables X is a subspace of V (X).

Definition 4 (subsystem). Let E be a system of AES-like equations in vari-
ables X and let Y be a subset of X. We denote by E(Y) the subspace E∩V (Y).
This subspace is the biggest subsystem of E composed of AES-like equations in
variables Y.

Definition 5 (linear variable). Let E be a system of AES-like equations in
variables X and let be x ∈ X. The variable x is a linear variable if and only if
dim E − dim E(X − {x}) ≤ 1. The set of all the linear variables is denoted by
Lin (E).

This definition may seem abstract and the following proposition clarifies it:

Property 1. Let E be a system of AES-like equations in variables X and let
x ∈ Lin (E). Then it exists (a, b) ∈ F

2
q such that each equation of E involving the

variable x involves in fact a multiple of ax+ bS(x). In other words, if we replace
ax + bS(x) by X in the system of equations then x and S(x) do not appear any
more. In particular, Lin (E) ∩ Y ⊆ Lin (E(Y)) for any subset Y of X.

Linear variables are very important in the work of Bouillaguet et al., in par-
ticular when the following assumption about the number of solutions of system
of AES-like equations holds, we can estimate the complexity of our algorithms:

|Sol (E(Y)) | ≈ q|Y|−dimE(Y), for any subset Y of X.

Let us introduce a last definition related to linear variables:

Definition 6. Let E be a system of AES-like equations in variables X and let
Y be a subset of X. Consider the following sequences:

E0 := E, Ei+1 := Ei(X−Li), L0 := Lin (E)−Y, Li+1 := Li ∪(Lin (Ei+1)−Y).

The sequence (Ei) is decreasing and thus at some rank r it becomes constant.
We denote by Lin (E,Y) the set of all variables occurring in the system Er.

3 New Set of Tools

In this section, we will first describe our generic GDS attack. Therefore, we need
to explain how we can automatically find the useful relations (minimal equations)
and how we automatically split the variables involved in these relations in order

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 165

to perform an efficient meet-in-the-middle for instance in sets OP and OC . Then,
we have to explain how we automatically find the truncated differential path and
the sets IP and IC . Splitting variables in some sets appears to be quite obvious by
hand when we consider the cipher round by round. However, using the system
of equations, this task appears to be not easy. Moreover, we need to perform
this split efficiently and without any redundancy since the number of splitting
an equation involving n variables in two sets of k and n − k variables becomes
quickly very large. Finally, the intersections of the set of variables in some sets
(IP , IC , OP , OC) define our attack and we use Bouillaguet et al. algorithm in
order to find the best attack taking into account the key schedule equations.

It turns out that our tool is modular in the following sense. The algorithm
used to find the sets OP , OC from the minimal equation is very similar to the one
used to find the set IP , IC in the truncated differential path. Moreover, the algo-
rithm used to find the impossible differential path used in fact two executations
for the truncated differential path algorithms and by computing the intersection
of both sets, we can automatically discover impossible differentials.

3.1 Generic Attack on Simple Block Cipher

Our idea is to build a tool finding the best GDS attacks on a block cipher, but
where the block cipher is given as a system E of AES-like equations over Fq. The
only information assumed in our possession is the type of involved variables:
plaintext (P), ciphertext (C), key (K) or state (X). To be a valid block cipher
we impose three conditions on the system of equations:

|P| = |C|, Lin (E,P ∪ K) ∪ Lin (E,C ∪ K) ⊆ K and Lin (E(K), ∅) = ∅.

These conditions are natural as they translate the fact that all variables can be
computed step by step from P and K and also from C and K, that all the key
variables can be computed step by step from a master key and that the plaintext
has the same size than the ciphertext (i.e. the blocksize).

For each non-key variable y we define 4 particular sets:

– OP (y) := Lin (E,P ∪ K ∪ {y}) − K
– OC(y) := Lin (E,C ∪ K ∪ {y}) − K
– IP (y) := {x ∈ X ∪ P ∪ C | y ∈ OC(x)}
– IC(y) := {x ∈ X ∪ P ∪ C | y ∈ OP (x)}
The set OP (y) (resp. OC(y)) contains the state variables required to propagate
the differences from the plaintexts (resp. ciphertexts) to both y and S(y), i.e.
the state variables required to compute y that go through an Sbox. In another
hand, the set IP (y) (resp. IC(y)) contains the state variables that are required to
propagate a non-zero difference from y to the plaintext (resp. ciphertext). Those
sets give us all the information we need about a block cipher. Interestingly, we
distinguish two kinds of block ciphers: the SPNs for which OP (y) = IP (y) and
OC(y) = IC(y) for all non-key variables y, and the other ones (Fig. 2).

166 P. Derbez and P.-A. Fouque

P

S S

K K

S S

K K

S S

K K

�

P

S S

K K

S S

K K

S S

K K

�

Fig. 2. Toy example. Variables of IP (�) are in blue while variables of OP (�) are in red.
(Color figure online)

We can now give our algorithm finding the best GDS attacks which relies
on four sub-algorithms. The aim of the first algorithm is to find a minimal
equation involving a given variable. The two next ones are based on the guess-
and-determine technique and are designed to exhaust the best building blocks of
GDS attacks. Finally, the last sub-algorithm is just a merging procedure which
also computes the complexities of the GDS attacks and sorts them.

Finding a Minimal Equation. In next algorithms we need to be able to
find a minimal equation involving a particular variable y. Here minimal means
that there is no equation involving y and a smaller subset (for the inclusion) of
variables. For a system of AES-like equations it is rather simple as showed by
Algorithm 1.

Algorithm 1. MinimalEquation
Data: A variable y and a system of equations E in variables X ⊇ {y}
Result: A minimal equation involving y if any.

if y does not appear in E(X) then return {0};
forall the x ∈ X − {y} do

F ← E(X − {x});
if y appears in F then E ← F ;

end
return an equation of E involving y

Truncated Differential Search. Given a value b, our goal is to exhaust all the
minimal truncated differential characteristics that come from a truncated differ-
ential ΔX of dimension b (at least), propagated in both way with probability 1.
More precisely, we are interested by the corresponding couples (IP , IC) (defined
in Sect. 2.1) that are minimal for the following partial order relation:

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 167

Algorithm 2. TruncatedDiffSearch
Data: A system of equations E representing a block cipher
Result: A list L containing all possible couples (IP , IC)

L ← ∅;
S ← search state initialized such that each of the non-key variable can assume
the 3 possible states;
forall the x that may belong to IP sorted according to |OC(x)| do

S ′ ← S;

Update S ′ with x ∈ IG
P ;

if S ′ is consistent then TruncatedDiffSearchtmp(E, S ′, x, L);
Update S with x /∈ IP ;

end
forall the x that may belong to IC sorted according to |OP (x)| do

S ′ ← S;

Update S ′ with x ∈ IG
C ;

if S ′ is consistent then TruncatedDiffSearchtmp(E, S ′, x, L);
Set x to constant in S;

end
return L

(IP , IC) (I ′
P , I ′

C) if and only if IP ⊆ I ′
P and IC ⊆ I ′

C .

In other words, we would like to exhaust truncated differential characteristics
for which the set of active bits is minimal for the inclusion.

To solve this problem we decided to use a guess-and-determine procedure.
At the beginning each non-key variable has 3 possible states: it can belong to
IP , to IC or be constant. Those states are exclusive, i.e. a variable can only be
in one of them at the same time. Then the state search is easy to update thanks
to the following rules:

– x ∈ IP ⇒ IP (x) ⊆ IP and OP (x) ∩ IC = ∅.
– x ∈ IC ⇒ IC(x) ⊆ IC and OC(x) ∩ IP = ∅.
– x constant ⇒ OP (x) ∩ IC = ∅ and OC(x) ∩ IP = ∅.

One could perform an exhaustive search using only those rules but this is not
optimal. Instead we define two new subsets:

– IG
P := {x ∈ IP | ∀y ∈ IP − {x}, x /∈ IP (y)}.

– IG
C := {x ∈ IC | ∀y ∈ IC − {x}, x /∈ IC(y)}.

Those sets are somehow the generators of IP and IC respectively. Our idea is to
begin by guessing one variable of IG

P and then by flagging just enough variables
to a non-constant state to ensure that the guessed one is truly non-constant. This
is done by looking for minimal equations involving the guessed variable and only
unset variables. Finally if the dimension of the zero differences is small enough
then the couple (IP , IC) is stored. Otherwise, another variable of IG

P or IG
C is

guessed and the procedure is repeated. Furthermore, the variables can be sorted

168 P. Derbez and P.-A. Fouque

such that at each step only two cases are possible: either the variable belongs
to IG

P or it does not belong to IP . While being more generic, this is actually
quite close than picking a round r, saying that variables of IP belong to the first
r rounds and then first guessing the state of variables of the r-th round. The
whole procedure is described in an algorithmic manner in Algorithm2 and 3.

Algorithm 3. TruncatedDiffSearchtmp

Data: A system of equations E, a search state S, a variable y and a list L
Result: Fill the list L with all possible couples (IP , IC).

s ← set of variables that may be or are constant;
e ← MinimalEquation(y, E(s ∪ {y}));
if e �= {0} then

forall the x involved in e that may be constant do
S ′ ← S;
Update S ′ with x ∈ IP ;
if S ′ is consistent then TruncatedDiffSearchtmp(E, S ′, y, L);
S ′′ ← S;
Update S ′′ with x ∈ IC ;
if S ′′ is consistent then TruncatedDiffSearchtmp(E, S ′′, y, L);
Set x to constant in S;

end

else
d ← dimension of variables that may be or are constant;
if d > blocksize − b then

forall the x that may belong to IP sorted according to |OC(x)| do
S ′ ← S;

Update S ′ with x ∈ IG
P ;

if S ′ is consistent then TruncatedDiffSearchtmp(E, S ′, x, L);
Update S with x /∈ IP ;

end
forall the x that may belong to IC sorted according to |OP (x)| do

S ′ ← S;

Update S ′ with x ∈ IG
C ;

if S ′ is consistent then TruncatedDiffSearchtmp(E, S ′, x, L);
Set x to constant in S;

end

else
L ← L ∪ {(IP , IC)};

end

end

Basic Meet-in-the-middle Attack Search. Our algorithm to find the best
couples (OP , OC) is quite similar to the previous one. Each non-key variable also
has 3 possible states: it can belong to OP , to OC or be unused. The upgrade
rules become:

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 169

– x ∈ OP ⇒ OP (x) ⊆ OP and IP (x) ∩ OC = ∅.
– x ∈ OC ⇒ OC(x) ⊆ OC and IC(x) ∩ OP = ∅.
– x unused ⇒ IP (x) ∩ OC = ∅ and IC(x) ∩ OP = ∅.

We also define two generators sets:

– OG
P := {x ∈ OP | ∀y ∈ OP − {x}, x /∈ OP (y)}.

– OG
C := {x ∈ OC | ∀y ∈ OC − {x}, x /∈ OC(y)}.

The search procedure begins by guessing a variable of OG
P . Then we look for

a minimal equation involving it, at least one unset variable and no variables
flagged as unused. Next, two cases are possible: either we set to unused one of
the involved variables and go back to the previous step, or we set to OP or OC

all the involved variables. In the last case if (OP , OC) leads to enough equations
we store it, otherwise we guess another variable of OG

P or OG
C and restart the

procedure in order to increase the number of equations.

Merging Procedure. The merging procedure is quite simple and similar to the
one used by Derbez et al. in [DF13]. In order to perform it we need to compute
the number of values that the sets IP ∪ OC ∪ P ∪ C and IC ∩ OP can assume
and the time required to enumerate them. Under the heuristic assumption of
the number of solutions given in the previous section, the procedure described
in Algorithm 4 can be used. This procedure takes as input a system of equations
E and a set Y and gives as output a set Z containing Y such that the number of
solutions of E(Z) is minimal. Furthermore, as we only consider systems E such
that Lin (E, ∅) = ∅ (i.e. systems that are triangular) then the time required to
enumerate the solutions of a subsystem is equal to its number of solutions.

Algorithm 4. MinimalSolutions
Data: A system of equations E in variables X and Y a subset of X
Result: A set Z such that Y ⊆ Z ⊆ X and |Sol (E(Z)) | is minimal

if Lin (E,Y) − Y = ∅ then return Y;
Pick x ∈ Lin (E,Y) − Y;
Z1 ← MinimalSolution(E,X,Y ∪ {x});
Z2 ← MinimalSolution(E(X − {x}),X − {x},Y);
if |Sol (E(Z1)) | < |Sol (E(Z2)) | then

return Z1

else
return Z2

end

3.2 Extension to a Larger Class of Block Ciphers

While interesting the previous algorithm can only handle a limited amount of
block ciphers as many of them cannot be represented by a system of AES-like

170 P. Derbez and P.-A. Fouque

equations. So our idea is to make it work on systems of the following kind of
equations: ∑

αiSi,j(xσ(0), . . . , xσ(j)) +
∑

βjxj + c = 0.

Indeed a very large variety of block ciphers can be written as systems of such
equations and actually it is rather simple to extend our previous algorithms to
handle them. The main difference is that instead of considering single variables
we now have to consider set of variables. The notion of linear variable can be
easily extended to set of variable as follows:

Definition 7 (linear set of variables). Let E be a system of equations in
variables X and let be x1, . . . , xn ∈ X. The set {x1, . . . , xn} is a linear set of
variables if and only if dim E − dim E(X − {x1, . . . , xn}) ≤ n.

Obviously we do not consider all set of variables but only the ones which go
through an Sbox. Also, two sets of variables can share some variables which may
be a problem. To solve it we introduce new variables and equations as shown in
the following example:

{
S(x, y) + S(y, z) = 1 ⇒

{
S(x, y) + S(t, z) = 1

y − t = 0

Finally, handling multi-variables S-boxes naturally leads to the particular
case of AND and OR. While until now S-boxes were considered as black boxes,
both those functions have a special property that we want to be properly han-
dled. Indeed, the following equation holds for any variables x and y:

AND(x, y)⊕AND(x⊕Δx, y⊕Δy) = AND(x,Δy)⊕AND(Δx, y)⊕AND(Δx,Δy).

In particular, if Δy = 0 then AND(x, y) ⊕ AND(x ⊕ Δx, y) = AND(Δx, y),
meaning that computing the difference after the AND requires Δx and y but
not the actual value of x. This is also true for the OR operator since OR(x, y) =
AND(x, y) ⊕ x ⊕ y. As a consequence, in the previous algorithms, we have to
define new sets I ′

P , I ′
C , O′

P and O′
C containing the variables required to compute

the differences in each variable of IP , IC , OP and OC respectively, and use them
instead for the complexity computations.

3.3 Two Other Modes

The building blocks of the GDS search algorithm allow to make automatic search
for two others kind of attacks.

Basic Meet-in-the-Middle Attack. It is actually one of the building block
used in the GDS-attack search procedure and thus it can be used on itself to find
very low data complexity attacks. Its application is quite marginal but it was suc-
cessfully used during the PRINCE Challenge [Sem14] to win some of the contests
and it automatically rediscovered the best attack on full KTANTAN [CDK09].

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 171

Impossible Differential Attack. Recently, Boura et al. [BNS14] proposed
a generic vision of impossible differential attacks with the aim of simplifying
and helping the construction and verification of this type of cryptanalysis. In
particular, they provided a formula to compute the complexity of such an attack
according to its parameters. To understand the formula we first briefly remain
how an impossible differential attack is constructed. It starts by splitting the
cipher in three parts: E = E3 ◦ E2 ◦ E1 and by finding an impossible differential
(ΔX � ΔY) through E2. Then ΔX (resp. ΔY) is propagated through E−1

1

(resp. E3) with probability 1 to obtain Δin (resp. Δout). We denote by cin and
cout the log2 of the probability of the transitions Δin → ΔX and Δout → ΔY

respectively. Finally we denote by kin and kout the key materials involved in
those transitions. All in all the attack consists in discarding the keys k for which
at least one pair follows the characteristic through E1 and E3 and in exhausting
the remaining ones. The complexity of doing so is the following:

– data: CNα

– memory: Nα

– time: CNα
+

(
1 + 2|kin∪kout|−cin−cout

)
NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα < 2−α, CNα
is the number of chosen

plaintexts required to generate Nα pairs satisfying (Δin,Δout), |k| is the key size
and CE′ is the ratio of the cost of partial encryption to the full encryption.

As we already have an algorithm to find the kind of truncated differential
characteristics used in impossible differential attack, making an automatic search
for this kind of attacks is straightforward. The tool gives as output all the para-
meters used in the above formula.

3.4 Limitations and Usage

In this section we discuss the limitations of our tools and give some recommen-
dations.

Generic VS Ad-Hoc. As our algorithms are very generic they are probably
slower than an ad-hoc algorithm designed for a specific block cipher. In partic-
ular, we do not take into account the symmetries found in almost all modern
ciphers. This could be a nice improvement of our algorithms and we are already
thinking about such a feature.

ARX Ciphers. While in theory ARX ciphers are handled, in practice they are
not. More precisely, fully describing all the modular additions to fit the expected
representation leads to a lot of nested Sboxes and/or new variables which may
make the search too slow. In such case, we recommend to describe them only for
the 3-4 lower bits and to use black boxes for other ones as follows:

172 P. Derbez and P.-A. Fouque

{
z = x + y

[
232

] ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z0 = x0 ⊕ y0
r1 = AND(x0, y0)
z1 = x1 ⊕ y1 ⊕ r1
r2 = AND(x1, y1) ⊕ AND(x1, r1) ⊕ AND(y1, r1)
z2 = x2 ⊕ y2 ⊕ r2
r3 = AND(x2, y2) ⊕ AND(x2, r2) ⊕ AND(y2, r2)
z3 = x3 ⊕ y3 ⊕ r3
z4 = S4(x3, . . . , x31, y3, . . . , y31, r3)

. . .
z31 = S31(x3, . . . , x31, y3, . . . , y31, r3)

In our opinion the issue comes more from our implementation than from our
algorithms and we are currently working on it.

Complex Key Schedule. Too complex key schedules may also make the search
too slow. For instance, if it is very hard to retrieve a part of the master key
without almost all the subkeys like for CLEFIA [SSA+07] or Camellia [AIK+00]
then we recommend to remove the subkeys generation process from the system
of equations. Our tools should see a key size larger than expected but the user
can give bounds for data, time and memory complexities of attacks.

Exhaustive Search. Unfortunately, it is not always possible to fully perform
the algorithms described in Sect. 3.1 in a reasonable time (say less than a month).
In order to decrease the running time, one thing we considered was to slightly
modify the partial order relation into the following one:

(IP , IC) (I ′
P , I ′

C) if and only if |IP | ≤ |I ′
P | and |IC | ≤ |I ′

C |.
While in theory we may miss some of the best attacks, we never encounter a
block cipher for which the building blocks of best attacks were not minimal for
this order relation because the complexity of attacks is highly (but not fully)
related to the number of variables to enumerate.

Differential Enumeration Technique. In [DKS10], Dunkelman et al. intro-
duced a sophisticated trade-off for GDS attacks which reduces the memory with-
out increasing the time complexity. The main idea is to add restrictions on the
parameters used to build the table such that those restrictions can be checked
(at least partially) during the online phase. More precisely, they impose that
sequences stored come from a δ-set containing a message m which belongs to
a pair (m,m′) that follows a well-chosen differential path. Then the attacker
first focus on finding such pair before identifying a δ-set and finally building the
sequence. This technique is very powerful and was used to reach the best attacks
against the AES [DFJ13,DF13,LJW13]. We did not make an algorithm finding
the best GDS attacks under this trade-off mainly because it may be complicated
to compute the exact complexity of the resulting attack. However, we distinguish
two cases:

– SPN : for an SPN block cipher the sets IP (y) and OP (y) (resp. IC(y) and
OC(y)) are equal for all non-key variable y. Thus any GDS attack defined

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 173

by the four sets IP , IC , OP and OC leads to only one truncated differential
characteristic (say Δ) such that active variables are exactly the variables of
IP ∪ (IC ∩ OP) ∪ OC . This is the natural candidate to use the differential
enumeration technique. Then both the data and memory complexities are
modified according to the probability of Δ and are easy to compute. However
the time complexities of the online and the offline phases are more complicated
to compute since in both cases we have to find the best algorithm to enumerate
the solutions of a set of variables under the constraint of Δ (see [LJW13] for
instance).

– non-SPN : for non-SPN block ciphers there is no natural truncated differential
characteristic to use, making the search of best attacks much more compli-
cated. Furthermore, the technique is less powerful than against SPN but can
still provide efficient attacks as shown by Li and Jia in [LJ14].

4 Applications

Our tools handle a very large class of block ciphers and we applied them on
AES [NIS01], ARIA [KKP+03], CLEFIA [SSA+07], KLEIN [GNL11], KTAN-
TAN [CDK09], LBlock [WZ11], PICCOLO [SIH+11], PRINCE [BCG+12],
SIMON [BSS+13], TWINE [SMMK12], ZORRO [GGNS13] and more. In this
section we present many applications highlighting some of the possibilities offered
by our set of tools.

4.1 MCrypton

mCrypton is a 64-bit lightweight block cipher introduced in 2006 by Lim et al.,
which is a reduced version of Crypton. It is specifically designed for resource-
constrained devices like RFID tags and sensors in wireless sensor networks. Like
AES, mCrypton is also a SPN block cipher. According to key length, mCrypton
has three versions namely mCrypton-64/96/128, which is in high accordance
with AES-128/192/256. All the three versions have 12 rounds and each round
consists of 4 transformations as follows:

– Non-linear Substitution γ. This transformation consists of nibble-wise sub-
stitutions using four 4-bit S-boxes S0, S1, S2 and S3.

– Bit Permutation π. The bit permutation transformation π has the same
function than MixColumns transformation of AES: mixing each column of the
state matrix. Operation π restricted to the i-th column is defined as follows:

b = πi(a) ⇐⇒ b[j] =
3⊕

k=0

(a[k] &mi+j+k mod 4),

where m0 = 1110, m1 = 1101, m2 = 1011, m3 = 0111 and where &is the
bitwise operation AND.

– Column-To-Row Transposition τ . This is simply the ordinary matrix
transposition.

174 P. Derbez and P.-A. Fouque

– Key Addition σ. It is a simple bit-wise XOR operation and resembles the
AddRoundKey operation of AES.

mCrypton also adds a linear operation φ = τ ◦ π ◦ τ after the last round so that
the whole encryption process is:

c = φ ◦ σk12 ◦ τ ◦ π ◦ γ ◦ . . . ◦ σk1 ◦ τ ◦ π ◦ γ ◦ σk0(p).

All best known attacks against mCrypton are GDS attacks combined to the
differential enumeration technique. Hence it was a good target to check whether
our tool could find better attacks. As a result, we found attacks on more rounds
for the three standardized key lengths. We also found an attack against 11 rounds
of Crypton-256 while the full version is composed of 12 rounds. Complexities of
attacks are reported in Table 1.

Table 1. Complexities of GDS attacks against mCrypton and Crypton.

Version Rounds Data Time Memory Reference

64 7 257 257 244 [HBL14]

96 7 257 257 244 [HBL14]

8 248 265 281.6 [KJS+13]

9 257 283 283 ours

128 7 257 257 244 [HBL14]

8 248 265 281.6 [KJS+13]

8 257 296 244 [HBL14]

9 253 2116 2120 [HBL14]

10 255 2117 2103 ours

Attack against 10-round mCrypton-128. Let us describe our GDS attack
against 10 rounds of the 128-bit version of mCrypton, depicted on Fig. 3.

First we introduce some notations: xi for the state just before the i − 1-th
γ operation, yi for the state just after i − 1-th γ operation and zi for the state
just after the i − 1-th π operation. Given a state a, a[i] denotes the i-th nibble
of a and a[i]b the b-th bit of nibble a[i].

For this attack we consider δ-sets of 26 messages such that nibbles
y1[2, 3..7, 10, 12..15] and z1[2, 3..7, 10, 12..15] are constant, exploiting the fact
that the branch number of the π operation is 4. Then, the meet-in-the-middle
is performed on the 4 bit-equations between Δy6[1, 3, 9, 11] and Δz6[1, 3, 9, 11],
exploiting again the same property of the π operation.

Given a δ-set {p0, p1, . . . , p63}, the ordered sequence[
y1
6 [1, 3, 9, 11] ⊕ y0

6 [1, 3, 9, 11], . . . , y63
6 [1, 3, 9, 11] ⊕ y0

6 [1, 3, 9, 11]
]
,

is fully determined by 42 nibbles, which can assume only 2159 thanks to the
key schedule relations. Furthermore, if we restrict ourself to the case where the

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 175

P

x0 z0 x1 z1 x2 z2

x3 z3 x4 z4 x5 z5

x6 z6 x7 z7 x8 z8

x9 z9

C

Fig. 3. Attack on 10-rounds mCrypton. Bytes of offline phase are in black. Bytes of
online phase are in gray. Hatched bytes play no role. The differences are null in white
squares

pair (p0, p1) follows the differential characteristic depicted on Fig. 3, the number
of possible ordered sequences is reduced by a factor 256. Computing all these
ordered sequences can be done using the same approach Derbez et al. used
in [DFJ13]. On the other hand, the online phase requires to guess 42 state
nibbles which can assume only 2117 values thanks to 51 key schedule equations.

Given a pair which may follow the differential characteristic, the 42 nibbles
of the online phase can assume only 2117−32+6−64+4 = 231 values. Enumerating
those 231 values in roughly 231 is complicated but possible using a meet-in-the-
middle procedure: the main idea is to compute all the possible values for involved
nibbles of states x0 and x1 in one hand and all the possible values for involved
nibbles of states x7, x8 and x9 in an other hand, and then to match those sets
according to key schedule equations.

All in all, we need 223 structures of 232 messages to get one pair following
the differential characteristic. The probability for a wrong pair to pass the test
is 2103−63∗4 = 2−149 so we expect that only the right pair will pass it. Finally,
the remaining key bits can be exhausted.

4.2 IDEA

IDEA was introduced by Lai and Massey in 1991 and became widely deployed
due to its inclusion in the PGP package. It is a 64-bit, 8.5-round block cipher
with 128-bit keys and it uses a composition of XOR operations, additions modulo
216, and multiplications over GF (216 + 1).

176 P. Derbez and P.-A. Fouque

In order to apply our set of tools to IDEA, we chose to represent the mul-
tiplication by a black-box and to describe the modular addition only for the 4
least significant bits, other ones being handle by a black-box.

As a result, we automatically recovered the 6-round meet-in-the-middle
attack described by Biham et al. in [BDKS15]. In particular, we retrieved the
keyless Biryukov-Demirci relation, a linear equation involving the plaintext, the
ciphertext, and several intermediate values computed during the IDEA encryp-
tion process. This equation is central in best known attacks against IDEA and
was discovered only 15 years after IDEA was introduced.

4.3 XTEA

XTEA is an evolutionary improvement of TEA. XTEA makes essentially use
of arithmetic and logic operations like TEA. New features of XTEA are to use
two bits of δi and the shift of 11. This adjustments cause the indexes of round
keys to be irregular. We can describe the output (Yi+1, Zi+1) of the i-th cycle of
XTEA with the 64-bit input (Yi, Zi) as follows:

Yi+1 = Yi � F (Zi,K2i−1, δi−1)
Zi+1 = Zi � F (Yi,K2i, δi)

where δi’s are constants, Ki’s round keys and where round function F is
defined by:

F (X,K, δ) = (((X � 4) ⊕ (X � 5)) � X) ⊕ (K � δ).

Partially Described Modular Addition. In that case our tools can handle
a large number of rounds. Unfortunately, resulting attacks were far from best
known ones, in term of complexity and broken rounds, due to the information
lost in the representation of the modular addition.

Fully Described Modular Addition. In that case our tools were not able to
search for attacks on more than 10 rounds, in the sense that the search takes
too much time. The main issue comes from the huge number of sets of variables
for which the tools have to compute the number of possible values in order to
compute complexities of resulting attacks. However this does not make our set
of tools useless. Indeed, our idea was to run the tool searching for impossible
differential attacks but with a bound equals to 0 on the time complexity of
searched attacks. In that case, it becomes a simpler tool which only looks for
truncated impossible differentials. As a result, we were able to recover the longest
ones on XTEA in few minutes.

4.4 ZORRO

At CHES 2013, Gerard et al. presented the block cipher ZORRO [GGNS13].
It is an AES-like block cipher but with a partial non-linear layer. The 128-bit

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 177

plaintext initializes the internal state viewed as a 4× 4 matrix of bytes as values
in the finite field F28 . It has 24 rounds and the 128-bit master key is XORed with
the internal state every four rounds. A round of ZORRO consists of 4 simple
operations applied successively on the state matrix:

– SubBytes (SB∗) applies the same 8-bit to 8-bit invertible S-Box on each byte
of the first row in parallel,

– ShiftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by M ×C

where M is a constant 4 × 4 maximum distance separable matrix over F28 ,
– AddConstant (AC) adds a constant on the first row.

Both the MixColumns and ShiftRows operations are the same than those
used in the AES. The S-box however is different and was chosen in order to
be easier to mask but in return has worse differential properties which were
exploited by the differential attacks. In particular, ZORRO has been fully broken
[GNPW13,BDD+14,RASA14] because of the existence of a high probability 4-
round iterated differential (Fig. 4).

xi

∗

yi

C

X

S

X

X
X

AC
SB SR MC

X
X

X
X

← M × C

zi wi

Fig. 4. A ZORRO-round applies MC ◦ SR ◦ SB ◦ AC to the state.

While ZORRO has been already broken, we will study it as a toy example to
show how useful our tool can be to designers. Generalized Demirci-Selçuk attacks
combined to the differential enumeration technique led to the best attacks on
the three versions of the AES in the single-key setting and thus our idea was
to study the resistance of ZORRO and its variants against such attacks. If the
Sbox is applied on the same four bytes each round then there are 1820 variants
of ZORRO. In order to not decrease the (already very low) resistance against
differential cryptanalysis we considered only variants such that the S-box is
applied on one byte per column and on one byte per diagonal, leading to 24
variants including the original one. Finally, and because of the symmetry in the
structure of Zorro we focused on the 11 variants depicted on Fig. 5.

For each of those variants we wrote the corresponding system of equations
and gave it to our tool. Interestingly, we found that the complexity and the
number of rounds broken only depend on the number of rows having an S-box.
More precisely, for all the variants with only one Sbox-free row we found that
16 rounds are secure against GDS attacks and 20 are fully secure against GDS
attacks combined with the differential enumeration technique while 20 and 25

178 P. Derbez and P.-A. Fouque

Fig. 5. Studied variants of Zorro.

rounds are required to provide the same security for the variants with two or
three Sbox-free rows. As a consequence, the designers of ZORRO did not choose
the most secure variant and the number of rounds chosen was too low. Actually,
this enforces the results of Bar-On et al. [BDD+15], stating that the design
behind Zorro may lead to both secure and easy to mask block ciphers as long as
we take care of its specificities.

Note that here fully secure against GDS attacks combined with the differ-
ential enumeration technique means that there is no GDS attack with a time
complexity strictly smaller than 2k and a memory complexity strictly smaller
than 2k+n, where k is the keysize and n the blocksize, since, combined to the
differential enumeration technique, such attack may (but not always) be turned
into one with an overall complexity smaller than 2k.

4.5 SIMON

SIMON [BSS+13] is family of lightweight block ciphers designed by the
American National Security Agency (NSA) in 2013. It performs exceptionally
well in both hardware and software, although SIMON is supposed to be more
hardware-oriented. The SIMON family is based on a classical Feistel construc-
tion operating on two branches. The round function is composed of three simple
operations: AND, XOR and rotations. More precisely, at each round the left
branch is transformed using the following non-linear function:

F (L) := ((L ≪ 8)&(L ≪ 1)) ⊕ (L ≪ 2).

Then, the output of F is XORed with the round key and the right branch to form
the left branch of the next round. The SIMON family contains 10 ciphers and,
in the sequel, we refer to them by SIMONn/k where n and k are respectively
the blocksize and the keysize.

In [BNS14], Boura et al. described the best (in term of broken rounds) impos-
sible differential attacks against all the versions of SIMON. However, after run-
ning our tool against SIMON we found that actually more rounds can be broken
by using the exact same technique, highlighting how useful an automatic app-
roach is.

20-Round Attack on SIMON32/64. To mount an impossible differential
attack on 19-round SIMON32/64, Boura et al. used an impossible differential

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 179

characteristic covering 11 rounds extended by 4 rounds in both directions such
that 4 + 11 + 4 = 19 rounds of the cipher were attacked. In our case we also use
an 11-round impossible differential but our tool found one (see Table 2) that can
be extended by 3 + 6 rounds while still resulting in an attack faster than the
exhaustive search according to the formula given Sect. 3.3.

Table 2. Impossible differential characteristic over 11 rounds of SIMON32/64. 0
denotes a bit with no difference, 1 a bit with a difference and ∗ a bit which may
have a difference.

Round Left branch Lr Right branch Rr

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 0

5 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ 0 0 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 1 ∗
7 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 1 ∗ ∗ 0

8 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 1 ∗ ∗ ∗ ∗ ∗
9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ 0

9 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗
10 ∗ 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗
11 0 ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 ∗ 0 0 0 0 ∗ ∗ ∗ 0 ∗ 0 0 0 0 0 ∗
12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0

13 0 1 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 1 0

The attack is depicted in Fig. 6. It can be seen that the difference in the
plaintexts has to be zero in 16 bits and equals to 1 in 2 bits. Hence cin + cout =
13 + 31 = 44 and thus Nα ≈ α · 243.5. Given a structure of 214 plaintexts
such that bits L0[1..5, 8..11, 15] and R0[0..3, 7, 9] are constant and such that
L0[12] = R0[10], one can form 214+13−1 = 226 pairs lying in the right space
and thus CNα

= α · 231.5. Finally, 70 subkey bits are involved in the attack
(blue colored in Fig. 6) but they can assume only 262 values thanks to the key
schedule (see Appendix A). All in all, the complexity of our attack is D = α·231.5,
M = α ·243.5 and T = α ·231.5+(1+262−44) ·α ·243.5CE′ +264−α. As we estimate
the ratio CE′ to 70/(16 · 20), the value of α minimizing the overall complexity
is 4.17. However α has to be smaller than 20.5 because of the data complexity
and, for this particular value the complexity of our attack is:

D = 232, M = 243.5 and T = 262.8,

which is similar to the complexity Boura et al. reached on 19 rounds (D =
232, M = 244 and T = 262.5).

180 P. Derbez and P.-A. Fouque

≪ 8

≪ 1

≪ 2

K0

L0 R0

≪ 8

≪ 1

≪ 2

K1

L1 R1

≪ 8

≪ 1

≪ 2

K2

L2 R2

L3 R3

≪ 8

≪ 1

≪ 2

K14

L14 R14

≪ 8

≪ 1

≪ 2

K15

L15 R15

≪ 8

≪ 1

≪ 2

K16

L16 R16

≪ 8

≪ 1

≪ 2

K17

L17 R17

≪ 8

≪ 1

≪ 2

K18

L18 R18

≪ 8

≪ 1

≪ 2

K19

L19 R19

L20 R20

Fig. 6. Impossible differential attack against 20-round SIMON32/64. Difference equals
to 0 in white bits, to 1 in black bits and unknown in red bits. Subkey material involved
is in blue. (Color figure online)

Others Versions of SIMON. Running our tool against SIMON takes time
(up to many days for the largest versions) so we did not exhaust all the best
attacks yet. However, we found that SIMON32/64 is not the only version for
which results of Boura et al. are suboptimal as, for instance, one more round
can be broken for both SIMON48/64 and SIMON48/96.

5 Conclusion

In this paper we described powerful and versatile cryptanalysis tools handling
a very large class of block ciphers. They are designed to find the best gener-
alized Demirci-Selçk attacks, basic meet-in-the-middle attacks and impossible
truncated differential attacks for a given target. They are publicly released, easy
to use and their running time is reasonable (from few seconds for AES to many
days for SIMON). Thus we believe they will be of great help for both designers
and cryptanalysts. Furthermore, our approach is very generic and requires no a
priori information about the targeted block cipher.

Future work will be to think about better algorithms/implementations,
mainly in order to handle ARX ciphers faster. Including the last results con-
cerning the differential enumeration technique would also be nice as well as

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 181

handling systems from authenticated encryptions. Finally, currently we have to
write code in order to generate the system of equations. It would be nice if we
would be able to generate it from a C implementation.

A Key Schedule Equations Used in the 20-Round Attack
Against SIMON32/64

Actually, all the 70 key bits are not required to perform the impossible differential
attack described Sect. 4.5 since bits K1[7]⊕K0[9], K1[9]⊕K0[11], K15[0]⊕K16[2]
and K15[2]⊕K16[4] can be used instead of the 8 bits K0[9], K0[11], K1[7], K1[9],
K15[0], K15[2], K16[2], K16[4]. This already saves 4 bits.

Then, in SIMON32/64, the subkeys are related by the following equations:

Kr+4 = Kr ⊕ Kr+1 ⊕ (Kr+1 ≪ 1) ⊕ (Kr+3 ≪ 3) ⊕ (Kr+3 ≪ 4).

Switching Kr and Kr+4 we can use this equation to express K0 as a linear
combination of K16, K17, K18 and K19, and interestingly it has the following
shape:

K0 = K16 ⊕ f(K17,K18,K19),

where f is a linear function. Finally, thanks to this equation, we deduce bits 1,
8, 10 and 15 of K0 from the same bits of K16 and the full subkeys K17, K18

and K19.

References

[AIK+00] Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J.,
Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple plat-
forms - design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC
2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)

[BBS99] Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to
31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT
1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

[BCG+12] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.,
Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rom-
bouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – A low-latency block
cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg
(2012)

[BDD+14] Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Tsaban, B.:
Improved analysis of zorro-like ciphers. IACR Cryptology ePrint Archive
2014, 228 (2014)

[BDD+15] Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban,
B.: Cryptanalysis of SP networks with partial non-linear layers. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 315–342.
Springer, Heidelberg (2015)

182 P. Derbez and P.-A. Fouque

[BDF11] Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks
on round-reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 169–187. Springer, Heidelberg (2011)

[BDKS15] Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New attacks on IDEA
with at least 6 rounds. J. Cryptol. 28(2), 209–239 (2015)

[BNS14] Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving
impossible differential attacks: applications to CLEFIA, Camellia, LBlock
and Simon. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8873, pp. 179–199. Springer, Heidelberg (2014)

[BPW06a] Buchmann, J., Pyshkin, A., Weinmann, R.-P.: Block ciphers sensitive to
gröbner basis attacks. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol.
3860, pp. 313–331. Springer, Heidelberg (2006)

[BPW06b] Buchmann, J., Pyshkin, A., Weinmann, R.-P.: A zero-dimensional Gröbner
basis for AES-128. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp.
78–88. Springer, Heidelberg (2006)

[BS93] Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption
Standard. Springer, New York (1993)

[BSS+13] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers,
L.: The simon and speck families of lightweight block ciphers. Cryptology
ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/

[CDK09] De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN
— A family of small and efficient hardware-oriented block ciphers. In:
Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288.
Springer, Heidelberg (2009)

[CM03] Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear
feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
345–359. Springer, Heidelberg (2003)

[DF13] Derbez, P., Fouque, P.-A.: Exhausting Demirci-Selçuk meet-in-the-middle
attacks against reduced-round AES. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 541–560. Springer, Heidelberg (2014)

[DFJ13] Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on
reduced-round AES in the single-key setting. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer,
Heidelberg (2013)

[DJ14] Dinur, I., Jean, J.: Cryptanalysis of FIDES. In: Cid, C., Rechberger,
C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 224–240. Springer, Heidelberg
(2015)

[DKS10] Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on
8-Round AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 158–176. Springer, Heidelberg (2010)

[DS08] Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-Round AES.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer,
Heidelberg (2008)

[FJP13] Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and
chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer,
Heidelberg (2013)

[GGNS13] Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block
ciphers that are easier to mask: how far can we go? In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer,
Heidelberg (2013)

http://eprint.iacr.org/

Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks 183

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, New York (1979)

[GNL11] Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A new family of lightweight
block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol.
7055, pp. 1–18. Springer, Heidelberg (2012)

[GNPW13] Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of zorro. IACR
Cryptology ePrint Archive 2013:713 (2013)

[HBL14] Hao, Y., Bai, D., Li, L.: A meet-in-the-middle attack on round-reduced
mcrypton using the differential enumeration technique. In: Au, M.H.,
Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 166–
183. Springer, Heidelberg (2014)

[KBN09] Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up collision search for
byte-oriented hash functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS,
vol. 5473, pp. 164–181. Springer, Heidelberg (2009)

[KJS+13] Kang, J., Jeong, K., Sung, J., Hong, S., Lee, K.: Collision attacks on
AES-192/256, crypton-192/256, mCrypton-96/128, anubis. J. Appl. Math.
2013, 713673:1–713673:10 (2013). Observation of strains

[KKP+03] Kwon, D., et al.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.)
ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)

[Knu98] Knudsen, L.R.: Deal – a 128-bit block cipher. Technical Report Depart-
ment of Informatics (1998)

[Leu12] Leurent, G.: Analysis of differential attacks in ARX constructions. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–
243. Springer, Heidelberg (2012)

[LJ14] Li, L., Jia, K.: Improved meet-in-the-middle attacks on reduced-round
camellia-192/256. Cryptology ePrint Archive, Report 2014/292 (2014)

[LJW13] Li, L., Jia, K., Wang, X.: Improved meet-in-the-middle attacks on aes-192
and prince. Cryptology ePrint Archive, Report 2013/573 (2013)

[LWWZ13] Lin, L., Wu, W., Wang, Y., Zhang, L.: General model of the single-key
meet-in-the-middle distinguisher on the word-oriented block cipher. In:
Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 203–223.
Springer, Heidelberg (2014)

[MHL+02] Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible differential
cryptanalysis of reduced round XTEA and TEA. In: Daemen, J., Rijmen,
V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg
(2002)

[MS13] Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced
keccak hash functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)

[MZ06] Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of
hash functions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol.
4121, pp. 102–115. Springer, Heidelberg (2006)

[NIS01] NIST. Advanced Encryption Standard (AES), FIPS 197. Technical report,
NIST, November 2001

[RASA14] Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total break
of zorro using linear and differential attacks. IACR Cryptology ePrint
Archive 2014:220 (2014)

[Sem14] NXP Semiconductors. The PRINCE challenge (2014). https://www.emsec.
rub.de/research/research startseite/prince-challenge/

https://www.emsec.rub.de/research/research_startseite/prince-challenge/
https://www.emsec.rub.de/research/research_startseite/prince-challenge/

184 P. Derbez and P.-A. Fouque

[SIH+11] Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai,
T.: Piccolo: An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg
(2011)

[SKPI07] Sugita, M., Kawazoe, M., Perret, L., Imai, H.: Algebraic cryptanalysis of
58-Round SHA-1. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp.
349–365. Springer, Heidelberg (2007)

[SMMK12] Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A light-
weight block cipher for multiple platforms. In: Knudsen, L.R., Wu, H.
(eds.) SAC 2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg
(2013)

[SNC09] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to crypto-
graphic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp.
244–257. Springer, Heidelberg (2009)

[SSA+07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-
bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE
2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

[WRG+11] Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved
meet-in-the-middle cryptanalysis of KTANTAN (Poster). In: Parampalli,
U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer,
Heidelberg (2011)

[WW12] Wu, S., Wang, M.: Automatic search of truncated impossible differen-
tials for word-oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg
(2012)

[WZ11] Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J.,
Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer,
Heidelberg (2011)

Memory-Efficient Algorithms for Finding
Needles in Haystacks

Itai Dinur1(B), Orr Dunkelman2, Nathan Keller3, and Adi Shamir4

1 Computer Science Department, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

2 Computer Science Department, University of Haifa, Haifa, Israel
3 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel

4 Computer Science Department, The Weizmann Institute, Rehovot, Israel

Abstract. One of the most common tasks in cryptography and crypt-
analysis is to find some interesting event (a needle) in an exponentially
large collection (haystack) of N = 2n possible events, or to demonstrate
that no such event is likely to exist. In particular, we are interested in
finding needles which are defined as events that happen with an unusu-
ally high probability of p � 1/N in a haystack which is an almost uni-
form distribution on N possible events. When the search algorithm can
only sample values from this distribution, the best known time/memory
tradeoff for finding such an event requires O(1/Mp2) time given O(M)
memory.

In this paper we develop much faster needle searching algorithms in
the common cryptographic setting in which the distribution is defined
by applying some deterministic function f to random inputs. Such a dis-
tribution can be modelled by a random directed graph with N vertices
in which almost all the vertices have O(1) predecessors while the vertex
we are looking for has an unusually large number of O(pN) predeces-
sors. When we are given only a constant amount of memory, we propose
a new search methodology which we call NestedRho. As p increases,
such random graphs undergo several subtle phase transitions, and thus
the log-log dependence of the time complexity T on p becomes a piece-
wise linear curve which bends four times. Our new algorithm is faster
than the O(1/p2) time complexity of the best previous algorithm in the
full range of 1/N < p < 1, and in particular it improves the previous
time complexity by a significant factor of

√
N for any p in the range

N−0.75 < p < N−0.5. When we are given more memory, we show how
to combine the NestedRho technique with the parallel collision search
technique in order to further reduce its time complexity. Finally, we show
how to apply our new search technique to more complicated distributions

O. Dunkelman was supported in part by the Israeli Science Foundation through
grant No. 827/12 and by the Commission of the European Communities through
the Horizon 2020 program under project number 645622 PQCRYPTO.
N. Keller was supported by the Alon Fellowship.
A. Shamir—Part of the work was done while the fourth author was visiting the
Institute of Theoretical Studies. He would like to thank ITS, Dr. Max Rössler, the
Walter Haefner Foundation and the ETH Foundation.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 185–206, 2016.
DOI: 10.1007/978-3-662-53008-5 7

186 I. Dinur et al.

with multiple peaks when we want to find all the peaks whose probabil-
ities are higher than p.

Keywords: Cryptanalysis · Needles in haystacks · Mode detection ·
Rho algorithms · Parallel collision search

1 Introduction

Almost everything we do in the construction and analysis of cryptographic
schemes can be viewed as searching for needles in haystacks: identifying the
correct key among all the possible keys, finding preimages in hash functions,
looking for biases in the outputs of stream ciphers, determining the best differ-
ential and linear properties of a block cipher, hunting for smooth numbers in
factoring algorithms, etc. As cryptanalysts, our goal is to find such needles with
the most efficient algorithm, and as designers our goal is to make sure that such
needles either do not exist or are too difficult to find.

Needles can be defined in many different ways, depending on what distin-
guishes them from all the other elements in the haystack. One common theme
which characterizes many types of needles in cryptography is that they are prob-
abilistic events which have the highest probability p among all the N = 2n possi-
ble events in the haystack. Such an element is called the mode of the distribution,
and for the sake of simplicity we will first consider the case in which the distrib-
ution is almost flat: a single peak has a probability of p � 1/N and all the other
events have a probability of about 1/N (as depicted in Fig. 1). Later on we will
consider the more general case of distributions in which there are several peaks
of varying heights, and we want to find all of them.

Our goal in this paper is to analyze the complexity of this probabilistic needle
finding problem, assuming that the haystack distribution is given as a black box.
By abstracting away the details of the task and concentrating on its essence, we
make our techniques applicable to a wide variety of situations. On the other
hand, in this general form we can not use specific optimization tricks that can
make the search for particular types of needles more efficient.1

We will be interested in optimizing both the time complexity and the memory
complexity of the search algorithm. Since random-access memory is usually much
more expensive than time, we will concentrate primarily on memory-efficient
algorithms: We will start by analyzing the best possible time complexity of
algorithms which can use only a constant amount of memory, and then study
how the time complexity can be reduced by using some additional memory.

The paper is organized as follows: Sect. 2 formalizes our computational model.
Section 3 describes the best previously known folklore algorithms for solving the
problem. We then show how to use standard collision detection algorithms to
identify the mode when its probability p is sufficiently large in Sect. 4. We follow

1 We leave to future work specific applications of our techniques to the concrete prob-
lems mentioned at the beginning of this Section.

Memory-Efficient Algorithms for Finding Needles in Haystacks 187

1

p

1/N
y0 N

Fig. 1. An Example of the distributions that interest us

in Sect. 5 by introducing the new 2Rho algorithm which uses a collision detec-
tion algorithm on the amplified mode probability obtained by running another
collision detection algorithm on the original distribution. The algorithm is then
extended to a general iRho by using even deeper nesting of the collision detec-
tion algorithm in Sect. 6. We consider time-memory tradeoffs in Sect. 7, and
discuss the adaptations needed when the probability distribution has multiple
peaks and we want to find all of them in Sect. 8. Finally, Sect. 9 concludes the
paper.

2 Problem Statement and Model Description

The simplest conceptual model for our problem is one in which the sampling
black box has a button, and each time we press it we are charged a unit of
time and we get a freshly chosen event from the distribution. We can thus test
whether a particular y is the mode y0 by counting how many times this y was
sampled from the distribution in O(1/p) trials. Notice that when we have a single
available counter, we have to run this algorithm separately for each candidate y.
The simplest possible algorithm sequentially tries all the N possible candidates,
but we can use the given distribution in order to make a better choice of the
next candidate to test. Since the correct candidate is suggested with an enhanced
probability of 1/p, the time complexity is reduced from N/p to 1/p2. When we
have M available counters, we can get a linear speed up by testing M candidate
values simultaneously with the same number of samples, provided that 1/p ≥ M .
This trivial approach yields the best known algorithms for finding the mode of
a flat distribution with a single peak.

However, closer inspection of the problem shows that in most of our crypto-
graphic applications, the distribution we want to analyze is actually generated
by some deterministic function f whose input is randomly chosen from a uni-
form probability distribution. For example, when we look for biases in the first n

188 I. Dinur et al.

output bits of a stream cipher, we choose a random key, apply to it the determin-
istic bit generator, and define the (possibly non-uniform) output distribution by
saying that a particular bit string has a probability of i/N if it occurs as a prefix
of the output string for i out of the N possible keys. Similarly, when we look
for a high probability differential property, we choose random pairs of plaintexts
with a certain input difference, and deterministically encrypt them under some
fixed key. This process generates a distribution by counting how many times we
get each output difference, and the mode of this distribution suggests the best
differential on the block cipher which uses the selected input difference.

In such situations, we replace the button in the black box by an input which
can accept N possible values. The box itself becomes deterministic, and we
sample the distribution by providing to the box a randomly chosen input value.
The main difference between the two models is that when we repeatedly press
the button we get unrelated samples, but when we repeatedly provide the same
input value we always get the same output value. As we show in this paper, this
small difference leads to surprising new kinds of mode-finding algorithms which
have much better complexities than the trivial algorithm outlined above.

The mapping from inputs to outputs defined by the function f can be viewed
as a random directed bipartite graph such as the one presented in Fig. 2, in which
one of the vertices has a large in-degree. For the sake of simplicity, we assume
that the function f has the same number N of possible inputs and outputs2, and
then we can merge input and output vertices which have the same name to get
the standard model of a random single-successor graph on N vertices. When we
iterate the application of the function f in this graph, we follow a Rho-shaped
path which starts with a tail and then gets into a cycle. The graph consists of
a small number of disjoint cycles, and all the other vertices in the graph are
hanging in the form of trees around these cycles.

As we increase the probability p from 1/N to 1, one of the vertices y0 becomes
increasingly popular as a target, and the graph changes its properties. For exam-
ple, it is easy to show that when p crosses the threshold of O(1/

√
N), there is a

sudden phase transition in which y0 is expected to move from a tree into one of
the cycles (where it becomes much easier to locate), and the expected length of
its cycle starts to shrink (whereas earlier it was always the same). As we show
later in the paper, more subtle phase changes happen when p crosses several ear-
lier thresholds, and thus the log-log complexity of our mode-searching algorithm
becomes a piecewise linear function that bends several times at those thresholds,
as depicted by the solid line in Fig. 5. Compared to the dotted line which depicts
the best previous 1/p2 complexity, we get a significant improvement in the whole
range of possible p values.

2 If there is some discrepancy, we can use the same truncation trick that Hellman
used in his time/memory tradeoff to deal with cryptosystems in which the key and
ciphertext sizes are different.

Memory-Efficient Algorithms for Finding Needles in Haystacks 189

x

y = F (x)
Pr =

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0.1 0.2 0 0 0.4 0.1 0.1 0 0.1

Fig. 2. A graph representation of a biased function f

2.1 Notations and Conventions

Notation 1. The set {1, 2, . . . , N} is denoted by [N]. Throughout the paper, all
functions are from the set [N] to itself. The mode of a function is the value in
its range with the largest number of preimages.

Problem Setup: The basic problem we study is the following. We are given a
value 0 < p < 1 and a function f : [N] → [N] which is generated by the following
three-step process:

1. Choose y0 ∈ [N] uniformly at random.
2. Choose a subset S ⊂ [N] uniformly at random amongst all subsets of size

pN . Set f(x) = y0 for all x ∈ S.
3. For each x �∈ S, choose f(x) ∈ [N] \ {y0} uniformly at random.

By definition, the values of f on [N] \ S can be simulated by a truly random
oracle returning values in [N] \ {y0}. Our initial goal is to detect y0 with the
fastest possible algorithm that uses only O(1) memory cells. We can assume that
the attacker knows p, since otherwise he can run a simple search algorithm with
a geometrically decreasing sequence of probabilities (e.g., 1, 1/2, . . . , 1/2i, . . .) to
find the highest value of p for which his attack succeeds (or stop when the attack
becomes too expensive, which provides an upper bound on the probability of y0,
but does not identify it).

3 Trivial Memoryless Algorithms

In this section we formally present the simplest possible memoryless algorithms
for detecting the mode for various values of p. They are based on sampling
random points, and then checking whether they are indeed the required mode.

3.1 Memoryless Mode Verification Algorithm

We start the discussion by presenting a mode verification algorithm. The algo-
rithm accepts a candidate y, and checks whether it is the mode y0. The checking
is done by choosing O(1/p) random values, and verifying that sufficiently many

190 I. Dinur et al.

Algorithm 1. Mode Verification: Determining Whether a Given y is y0
Initialize a counter ctr ← 0.
for i = 1 to c/p do

Pick at random x ∈ [N], and compute y′ = f(x).
if y′ = y0 then

Increment ctr.
end if

end for
if ctr ≥ t then

print y is y0.
end if

of them are mapped to y under the function f . The algorithm is presented in
Algorithm 1.

It is easy to see that Algorithm 1 makes c/p queries to f(·). Its success
depends on the picked constants c and t. Assuming that indeed y is y0 we expect
that the number of times the chosen x leads to y is distributed according to a
Poisson distribution with a mean value of c (otherwise, the distribution follows
a Poisson distribution with a mean value of c/Np 	 c). Hence, for any desired
success rate, one can easily choose c and the threshold t. For example, setting
c = 4 and t = 2 offers a success rate of about 90.8 %.

3.2 Memoryless Sampling Algorithm

The sampling algorithm suggested in Algorithm2 is based on picking at random
a value x, computing a candidate y = f(x) for the verification algorithm, and
verifying whether y is indeed the correct y0. It is easy to see that the algorithm
is expected to probe O(p−1) values of y, until y0 is encountered, and that each
verification takes O(p−1), resulting in a running time of O(p−2).

Algorithm 2. Finding y0 by Sampling:
while y0 was not found do

Pick x ∈ [N] at random.
Compute y = f(x).
Call Algorithm 1 to check y.

end while

4 Using Rho-based Collision Detection Algorithms

We now present a different class of algorithms for detecting the mode, using
collision detection algorithms combined with the trivial mode verification algo-
rithm (Algorithm 1). These algorithms (such as Floyd’s [7] or its variants [2,8])

Memory-Efficient Algorithms for Finding Needles in Haystacks 191

start from some random point x, and iteratively apply f to it, i.e., produce
the sequence x, f(x), f2(x) = f(f(x)), f3(x), . . ., until a repetition is detected3.
In the sequel, we call such algorithms “Rho algorithms”. We denote the first
repeated value in the sequence x, f(x), f2(x), . . . by fμ(x) and its second appear-
ance by fμ+λ(x), and call this common value the cycle’s entry point.

Optimal Detection when p � N -1/2. First, we show that when p � N−1/2,
the mode y0 can be found in time O(1/p). This complexity is clearly the best pos-
sible: if the number of queries to f is o(1/p), then with overwhelming probability
no preimage of y0 is queried and so y0 cannot be detected.

The idea is simple: we run a Rho algorithm, with an arbitrary random
starting point x and an upper bound c/p on the length of the sequence for some
small constant c. For such a length, we expect the mode y0 to appear twice in
the sequence with high probability, whereas due to the fact that c/p <

√
N the

collision found by Rho is not expected to be one of the other random values.
We show the full analysis of the algorithm in AppendixA.

By using a memoryless Rho algorithm, we get a time complexity of O(1/p)
and a memory complexity of O(1). As usual, the probability that y0 is detected
can be enhanced even further by repeating the algorithm with other starting
points and checking each suggested point in time O(1/p) using the trivial mode
verification algorithm.

The RepeatedRho Algorithm: Detection in O(p-3N -1) for Arbitrary p.
The above approach can be used for any value of p. However, when p < 1/

√
N ,

the probability that the output of Rho (i.e., the cycle’s entry point) is indeed
y0 drops significantly. Specifically, we have the following lower bound, and one
can easily show that the actual value is not significantly larger.

Proposition 1. Assume that p < 1/
√

N and thus Rho encounters O(
√

N)
different output values until a collision is detected. Then the probability that
Rho outputs y0 is Ω(p2N).

Proof. Since the probability of obtaining y0 as the output is non-decreasing as
a function of p, there is no loss of generality in assuming p = cN−1/2 for a
small c. In such a case, a lower bound on the probability of Rho producing y0 is
the probability that in the first

√
N/2 steps of the sequence (x, f(x), f2(x), . . .),

each value y′ �= y0 appears at most once, while y0 appears twice. Formally, let
L′ = (x, f(x), . . . , f t(x)), where t = min(μ+λ,

√
N/2). Denote by Ey′ the event:

“Each y′ �= y0 appears at most once in L′”, and by Ey0 the event: “y0 appears
twice in L′”. Then

Pr[Output(Rho) = y0] ≥ Pr[Ey′ ∧ Ey0] = Pr[Ey′] Pr[Ey0 |Ey′].

As we show in Appendix A, we have Pr[Ey′] ≥ e−1/4 ≈ 0.78 and

Pr[Ey0 |Ey′] = Pr[X ≥ 2|X ∼ Poi(|L′|p)] ≥ Pr[X ≥ 2|X ∼ Poi(
√

Np/2)].

3 Such a repetition must occur due to the fact that f : [N] → [N].

192 I. Dinur et al.

Finally, for any small λ we have

Pr[X ≥ 2|X ∼ Poi(λ)] = 1 − e−λ(1 + λ) ≈ 1 − (1 − λ)(1 + λ) = λ2,

and thus, combination of the above inequalities yields

Pr[Output(Rho) = y0] ≥ 0.78(
√

Np/2)2 = 0.19p2N,

as asserted. �

This yields the RepeatedRho algorithm – an O(p−3N−1) algorithm for
detecting the mode: run the Rho algorithm O(1/p2N) times, and check each
output point in O(1/p) time using the mode verification algorithm. With a con-
stant probability, y0 is suggested by at least one of the Rho invocations and is
thus verified. As p−3N−1 < p−2 for all p > N−1, this algorithm outperforms the
sampling algorithm (Algorithm2) whose running time is O(p−2) for all p. See
Fig. 3 for comparison of the algorithms for different values of p.

The analysis above implicitly assumes that all the invocations of Rho are
independent. However, this is clearly not the case if we apply Rho to the same
function f , while changing only the starting point x in each invocation. Indeed,
since p < 1/

√
N , y0 is not expected to be on a cycle of f , and thus no matter how

many times we run the Rho algorithm using the same f but different starting
points, we will never encounter y0 as a cycle entry point.

In order to make the invocations of Rho essentially independent, we intro-
duce the notion of flavors of f , like the flavors used in Hellman’s classical time-
memory tradeoff attack [3]. More specifically, we define the v’s flavor of f as
the function fv(x) = f(x + v) where the addition is computed modulo N . The
different flavors of f share some local properties (e.g., they preserve the number
of preimages of each y, and thus y0 remains the mode of the function), but have
different global properties (e.g., when iterated, their graphs have a completely
different partition into trees and cycles). In particular, it is common to consider
the various flavors of f as unrelated functions, even though this is not formally
justified. We define the output of the v’s invocation of Rho as the entry point
into the cycle defined by fv when we start from point v, and run the Repeate-
dRho algorithm by calling Rho multiple times with different randomly chosen
flavors.

5 The 2Rho Algorithm

In this section we introduce the 2Rho algorithm, and show that running a Rho
algorithm over the results of a Rho algorithm outperforms all the previously
suggested algorithms.

The main idea behind the new algorithm is that a single application of Rho
can be viewed as a bootstrapping step that amplifies the probability of y0 to be
sampled. Indeed, by Proposition 1, The probability that Rho with a randomly
chosen flavor will output y0 is Ω(p2N), and as long as p � N−1, this is signifi-
cantly larger than the probability p that y0 will be sampled by a single invocation

Memory-Efficient Algorithms for Finding Needles in Haystacks 193

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sampling
(Alg. 2)

Rho

RepeatedRho

− logN (p)

lo
g N

(T
im

e)

Fig. 3. Comparing the random sampling, Rho, and RepeatedRho algorithms

of f . Note that by symmetry the probabilities of all the other values of y to be
returned by Rho with a random flavor remain uniformly low. We are thus fac-
ing exactly the same needle finding problem but with a magnified probability
peak at exactly the same location y0. In particular, if this new probability peak
exceeds N−0.5, we can find it by using a simple Rho algorithm. On the other
hand, a single evaluation of Rho is now more time consuming than a single
evaluation of f , and thus the bootstrapping yields a tradeoff between the total
number of operations and the cost of each operation, so the parameters should
be chosen properly in order to reduce the total complexity.

Our goal now is to formally define the new inner function g(x) which will be
used by the outer Rho algorithm. This g maps a flavor v to the cycle’s entry
point defined by running the Rho algorithm on the v’s flavor of f (i.e., on fv),
starting with the initial value v. When we iterate g, we jump from a flavor to a
cycle entry point, and then use the identity of the cycle’s entry point to define
the next flavor and starting point. This creates a large Rho structure over small
Rho structures, as depicted in Fig. 4 in which the different colors indicate the
different flavors of f we use in the algorithm. Each dotted line represents the
first step we take when we switch to a new flavor, and is used only to visually
separate the Rhos so that the figure will look more comprehensible. Note that
the collision in the big cycle happens when we encounter the same cycle entry
point a second time, but this does not imply that the two colliding small Rho’s
or their starting points are the same, since they typically use different flavors; it
is only in the second and third times we meet the same cycle entry point that
their corresponding Rho structures also becomes identical, and from then on we
go through the same Rhos over and over.

194 I. Dinur et al.

Different colors represent different flavors of f .

Fig. 4. The 2Rho algorithm (Color figure online)

We now turn our attention to a specific range of probabilities p for which
the 2Rho algorithm (that runs an outer Rho algorithm over an inner Rho
algorithm) offers a significant gain over the previously described algorithms.

5.1 Analysis of 2Rho in the Range N−3/4 � p ≤ N−1/2

Assume that N−3/4 	 p ≤ N−1/2, and construct the function g as described
above. Defining p′ = Pr[g(x) = y0], we have shown that p′ = Ω(p2N) � N−1/2,
and thus the mode of g can be found optimally in O(1/p′) evaluations of g using
the 2Rho algorithm.

In order to find the total complexity of 2Rho, we have to compute the
complexity of each evaluation of g, i.e., of an evaluation of Rho algorithm.

Note that for c > 1, the probability that all values x, f(x), f2(x), . . . , fc
√

N (x)
are different is at most

(N − 1)(N − 2) · . . . · (N − c
√

N)
(N − 1)c

√
N

≤ (N − 1)
√

N (N − √
N − 1)(c−1)

√
N

(N − 1)c
√

N

≤
(

N − √
N

N

)(c−1)
√

N

≈ e−(c−1).

Hence, with an overwhelming probability, Rho finds a cycle in O(
√

N) opera-
tions. In order to avoid the rare cases where such algorithms take more time,

Memory-Efficient Algorithms for Finding Needles in Haystacks 195

we can slightly modify any Rho algorithm by stopping it after a predetermined
number of f evaluations (e.g., 10

√
N), in which case g(x) = Rho(f, x + 1).4 In

any case, the expected time complexity of an evaluation of g is O(
√

N) evalua-
tions of f .

Therefore, the time complexity of 2Rho is O(1
p′ · √

N) = O(p−2N−1/2)
operations. This is significantly faster than the Sampling algorithm, and also
significantly faster than RepeatedRho, since p−2N−1/2 < p−3N−1 for all p <
N−1/2.

Just like the Rho algorithm, the nested 2Rho algorithm can be repeated
when p < N−3/4, to yield an algorithm for any p. Indeed, repeating 2Rho
until the mode is found (and verified by the verification algorithm), takes
O(p′−3N−1) = O((p2N)−3N−1) = O(p−6N−4) evaluations of g, or O(p−6N−3.5)
evaluations of f . Hence, Repeated2Rho is better than the RepeatedRho
algorithm for p > N−5/6 and is worse for p < N−5/6.

Table 1 describes our experimental verification of the 2Rho algorithm for
different values of p in the range N−0.79 ≤ p ≤ N−0.5. We used a relatively
small N = 228 (which makes the transition at p = N−0.75 more gradual than
we expect it to be for larger N), and repeated each experiment 100 times with
different random functions f .

Table 1. Success rate of 2Rho for N = 228 over 100 experiments

p = Pr[y0] Success

Value logN (p) Rate

2−14 −0.5 100 %

2−15 −0.54 100 %

2−16 −0.57 100 %

2−17 −0.61 97 %

2−18 −0.64 91 %

2−19 −0.68 71 %

2−20 −0.71 32 %

2−21 −0.75 8 %

2−22 −0.79 0 %

6 Deeper Nesting of the Rho Algorithm

We now show how one can nest iRho to obtain (i+1)Rho. We analyze the
resulting complexities, and show that while for a small i, it yields better results,

4 Of course, with a negligible probability, we may need to continue and define g(x) =
Rho(f, x + 2), and so forth.

196 I. Dinur et al.

as i becomes larger it loses to simpler algorithms. In particular, it is advanta-
geous to nest the NestedRho algorithm up to four times, but not a fifth time.

The 3Rho Algorithm for N -7/8 � p ≤ N -3/4. Assume that N−7/8 	
p ≤ N−3/4, and define a new function h(x) which maps an input flavor x into
the cycle’s entry point defined by the 2Rho algorithm. As in the analysis of
2Rho above, we define p′′ = Pr[h(x) = y0], and can show that p′′ = Ω(p′2N) =
Ω(p4N2N) � N−1/2. Hence, the mode of h can be found optimally in O(1/p′′)
evaluations of h using Rho. Since each evaluation of h requires O(

√
N) evalua-

tions of g, and since each evaluation of g requires O(
√

N) evaluations of f , the
overall complexity of the algorithm is O(p−4N−3N) = O(p−4N−2) evaluations
of f . We call this algorithm 3Rho, as it essentially performs yet another nesting
layer of 2Rho.

Algorithm 3. (i + 1)Rho Algorithm for the Function f(·) (Based on iRho)
Input: a random input x ∈ [N].
Set z ← iRho(fx, x). � Note that in the recursion, the flavors of f add up.
while Repeated value of z is not encountered do

Set z ← iRho(fz, z).
end while
Identify the repeated z value.a

return z.

aThe identification can be done using Floyd’s algorithm [7], or any of its variants.

The complexity of the 3Rho algorithm is always better than that of Repeat-
edRho and is better than the O(p−6N−3.5) complexity of Repeated2Rho for
all p < N−3/4.

As in the case of 2Rho, the 3Rho algorithm can also be repeated as
Repeated3Rho with mode verification to yield an algorithm for any p. The
resulting complexity is O(p′′−3N−1) = O((p4N3)−3N−1) = O(p−12N−10) eval-
uations of h, or O(p−12N−9) evaluations of f . This algorithm is better than the
RepeatedRho for p > N−8/9 and is worse for p < N−8/9. However, it turns out
that for N−9/10 	 p ≤ N−7/8, we can do better by nesting 3Rho yet another
time.

The 4Rho Algorithm for N−9/10 � p ≤ N−7/8. Assume that N−15/16 	
p ≤ N−7/8, and define a new mapping �(x) which maps a flavor x into the cycle’s
entry point found by the 3Rho algorithm. As in the above case of 3Rho, we
have p′′′ = Pr[�(x) = y0] = Ω(p′′2N) = Ω(p8N6N) � N−1/2. Hence, the mode
of � can be found optimally in O(1/p′′′) evaluations of � using Rho.

Since each evaluation of � requires O(N1.5) evaluations of f , the overall com-
plexity of the algorithm is O(p−8N−7N1.5) = O(p−8N−5.5) evaluations of f . We
call this algorithm 4Rho, as it performs a four-layer nesting of Rho.

Unlike the previous algorithms, 4Rho is not better than all previous algo-
rithms in the whole range N−15/16 	 p ≤ N−7/8. Indeed, as p → N−15/16, the

Memory-Efficient Algorithms for Finding Needles in Haystacks 197

Table 2. Summary of the best complexities of algorithms for detecting the mode

Probability range Complexity formula Complexity range Algorithm

p ≥ N−0.5 T = p−1 T ≤ N0.5 Rho

N−0.75 ≤ p ≤ N−0.5 T = p−2N−0.5 N0.5 ≤ T ≤ N 2Rho

N−0.875 ≤ p ≤ N−0.75 T = p−4N−2 N ≤ T ≤ N1.5 3Rho

N−0.9 ≤ p ≤ N−0.875 T = p−8N−5.5 N1.5 ≤ T ≤ N1.7 4Rho

N−1 ≤ p ≤ N−0.9 T = p−3N−1 N1.7 ≤ T ≤ N2 RepeatedRho

complexity of 4Rho approaches N2, which is higher than even the straightfor-
ward Sampling Algorithm. In particular, 4Rho is faster than RepeatedRho
only as long as p > N−0.9, which explains why the complexity curve reduces its
slope at the top right corner of Fig. 5.

We note that the natural extension to 5Rho is clearly inferior for any p since
the complexity of each step of the outer Rho requires N2 steps, which is already
higher than the overall complexity of the Sampling algorithm.

The complexities of the best algorithms we were able to achieve (as a function
of p) are presented in a mathematical form in Table 2 and in graphical form in
Fig. 5.

7 Time-Memory Tradeoffs

In this section, we revisit the basic problem of detecting the mode, but assume
that we have O(M) memory cells available. Our goal is to detect the mode as
efficiently as possible, where the complexity is formulated as a function of the
parameters N , p and M .

Before starting, we note that we only deal with the case of p < N−1/2, as we
already have an optimal5 memoryless algorithm for the case of p ≥ N−1/2 (as
shown in Sect. 4).

We begin by describing the basic parallel collision search algorithm of [10].
We then describe a sequence of algorithms that extend the iRho memoryless
algorithms using parallel collision search.

7.1 Parallel Collision Search

The parallel collision search (PCS) algorithm presented by van Oorschot and
Wiener [10] is a memory-efficient algorithm for finding multiple collisions at
low amortized cost per collision in a function f that maps [N] to [N]. Since
its introduction, the algorithm has been extensively used in cryptanalysis
(e.g., in [4–6,9]). Given M memory cells, the algorithm builds a structure of

5 Given additional memory and/or CPUs allows parallelizing Rho algorithms. At the
same time, the total computational complexity (which is the focus of this paper)
remains the same, or (in some cases) may become worse.

198 I. Dinur et al.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-logN (p)

lo
g N

(T
im

e)

Fig. 5. Complexities of our best memoryless algorithms as a function of p

M chains which is similar to the one built in Hellman’s time-memory tradeoff
algorithm [3].

A chain in the structure starts at an arbitrary point x, and is evaluated
by repeated applications of f (namely, f i(x) = f(f i−1(x))). The chains are
terminated after about

√
N/M evaluations of f , thus the structure contains a

total of about M · √
N/M =

√
NM points. Moreover, as

√
N/M · √

NM = N ,
according to the birthday paradox, each chain is expected to collide with another
chain in the structure, and hence the chain structure contains O(M) collisions. In
order to find the O(M) collisions efficiently, we define a set of distinguished points
and terminate each chain once it reaches such a point. In our case, we define a
set of

√
NM distinguished points (e.g., the points whose (log2(N)+ log2(M))/2

least significant bits are zero), and hence the expected chain size is N/
√

NM =√
N/M as required. The actual O(M) collision points are recovered by sorting

the M termination points of the chains (which are distinguished points), and
restarting the chain computation for each colliding pair of chains. For sake of
completeness we give in Appendix B the pseudo code for PCS (Algorithm 6). In
total, the algorithm finds O(M) collisions in

√
NM time using O(M) memory.

7.2 Mode Verification with Memory

The basic memoryless mode verification algorithm (Algorithm 1) can be
extended to exploit memory, by checking multiple targets simultaneously.
Namely, given M candidate yi’s, it is possible to check all of them at the same
time for the cost of O(1/p) queries to f , as suggested by Algorithm 4.

Using Algorithm 4, we can immediately improve the sampling algorithm
(Algorithm 2). Instead of checking only one value at each call to the verification
algorithm, we can now check M such values for the same complexity. Hence,
Algorithm 5 picks each time M random values of yi by random sampling, and
calls Algorithm 4 to test which of them (if at all) is indeed y0.

Memory-Efficient Algorithms for Finding Needles in Haystacks 199

Algorithm 4. Mode Verification: Determining Whether y0 is one of y1, y2, . . . yM

Initialize an array of counters ctr[i] ← 0 for 1 ≤ i ≤ M .
for j = 1 to c/p do

Pick at random x ∈ [N], and compute y′ = f(x).
if y′ = yi for 1 ≤ i ≤ M then

Increment ctr[i].
end if

end for
for i = 1 to N do

if ctr[i] ≥ t then
print yi is y0.

end if
end for

Algorithm 5. Finding y0 by Sampling (with Memory):
while y0 was not found do

for i = 1 to M do
Pick xi ∈ [N] at random.
Compute yi = f(xi).

end for
Call Algorithm 4 to check y1, y2, . . . , yM .

end while

The probability that a single call to Algorithm4 (testing M images) succeeds
is about Mp (assuming6 M ≤ p−1), and therefore we expect O(M−1p−1) calls
to Algorithm 4. Each such call takes O(p−1) evaluations of f , and hence the
total time complexity of the algorithm is O(M−1p−2). Note that for M = 1 this
algorithm reduces to Algorithm 2.

7.3 Mode Detection with Parallel Collision Search

This algorithm runs PCS with M chains and checks the O(M) collision points
found by running Algorithm4. This process is repeated until it finds y0, where
each repetition is performed with a different flavor of f .

Since the M chains cover about
√

NM distinct points, the probability that
two distinct preimages of the mode y0 (which are not expected to be distin-
guished points) are covered by the structure is about (

√
NM · p)2 = NM · p2

(assuming
√

NM · p < 1, i.e., p < (NM)−0.5). In this case, the algorithm will
successfully recover the mode y0 using the mode verification algorithm. There-
fore, the algorithm is expected to execute PCS (and mode verification) about
N−1M−1 · p−2 times, where each execution requires O(p−1) time (assuming
p < (NM)−1/2, mode verification dominates PCS in terms of time complexity).
In total, the time complexity of the algorithm is O(M−1N−1 · p−3). Note that
for M = 1 we obtain RepeatedRho.

6 We note that when M > p−1, it is sufficient to fill O(p−1) memory cells.

200 I. Dinur et al.

The formula above is only valid for p < (NM)−0.5 or M < p−2N−1. Oth-
erwise, we can utilize only M = p−2N−1 memory and obtain the essentially
optimal time complexity of O(p−1).

7.4 Mode Detection with Parallel Collision Search Over 2Rho

We now assume that M < p−2N−1 (otherwise, we use the previous PCS algo-
rithm to detect the mode with optimal complexity) and extend the 2Rho algo-
rithm using PCS. This is done by defining a chain structure, computed by
iterating the function g (as defined in Sect. 5) whose execution is computed by
iterating a particular flavor of f until a collision point is found. Each chain starts
with an arbitrary input to g (which defines a flavor of f) and is terminated at
a distinguished point of g. Namely, the distinguished points are defined on the
outputs of g (which are the collision points in f). Once again, we use Algorithm 4
to test the O(M) collisions of g.

As calculated in Sect. 5 the probability that the mode y0 will be the collision
point in a single run of Rho (an iteration of g) is p′ = p2N . Since the M chains of
g cover about

√
NM distinct collision points, the probability that two distinct

preimages of the mode y0 in g (which are not expected to be distinguished
points) will be covered by the structure is about (

√
NM · p′)2 = NM · p′2 =

NM ·p4N2 = M ·N3p4 (assuming
√

NM ·p′ < 1 or p2N · (NM)1/2 < 1, namely
p2N3/2M1/2 < 1). As a result, we repeat the PCS algorithm (and the mode
verification algorithm) M−1 · N−3p−4 times (using distinct flavors of g). The
PCS algorithm requires (NM)1/2 invocations of g, each requiring N1/2 time,
namely, N · M1/2 time in total which dominates the complexity of the mode
verification. Overall, the time complexity of the algorithm is M−1 ·N−3p−4 ·N ·
M1/2 = M−1/2 · N−2p−4.

The formula above is only valid given that p2N3/2M1/2 < 1 or M < p−4N−3.
Otherwise, we can utilize only M = p−4N−3 (assuming7 p−4N−3 ≥ 1) memory
and obtain time complexity of M−1/2 ·N−2p−4 = p2N3/2 ·N−2p−4 = p−2N−1/2.

We now notice that it is possible to obtain more generic formulas that can be
reused later. Essentially, the analysis of the algorithm depends on three parame-
ters, as follows. The probability that the mode y0 will be the collision point in a
single run of Rho (an iteration of g) is p′ = p2N , which we denote as px1Nx2 for
x1 = 2, x2 = 1 in our case. In addition, each invocation of g requires N1/2 time,
which we denote as Nx3 for x3 = 1/2 in this case. Based on these parameters, we
can redo the analysis above symbolically and obtain that the time complexity
of the algorithm is M−1/2 · N−2x2−1/2+x3p−2x1 .

This formula is only valid given that M < p−2x1N−2x2−1. Otherwise, we can
utilize only M = p−2x1N−2x2−1 (assuming p−2x1N−2x2−1 ≥ 1) memory and
obtain time complexity of p−x1N−x2+x3 .

7 When p−4N−3 < 1, the algorithm is not applicable in its current form.

Memory-Efficient Algorithms for Finding Needles in Haystacks 201

7.5 Mode Detection with Parallel Collision Search over 3Rho

We continue to analyze the sequence of algorithms that extend 3Rho using
PCS. The idea is essentially the same as in the extension of 2Rho, where the
difference is the function over which PCS is performed.

Here, PCS is executed over the function h (as defined in Sect. 6) while calling
Algorithm 4 to test the O(M) collisions points of h.

As calculated in Sect. 6 the probability that the mode y0 will be the collision
point in a single run of g is p′′ = p4N3, which we denote as px1Nx2 for x1 =
4, x2 = 3. In this case, each invocation of h requires N time, or Nx3 for x3 = 1.

We now reuse the formulas obtained in Sect. 7.4 and consider our specific
parameters x1 = 4, x2 = 3, x3 = 1 for the case M < p−2x1N−2x2−1, or M <
p−8N−7 assuming p−8N−7 ≥ 1 or p ≤ N−7/8. This gives time complexity of
M−1/2 · N−2x2−1/2+x3p−2x1 or M−1/2 · N−5.5p−8. Note that for M = 1 we
obtain Algorithm 4Rho.

For M > p−8N−7, we obtain time complexity of p−x1N−x2+x3 = p−4N−2.
See Fig. 6 for comparison of different algorithms given M = N1/4 memory.

Mode Detection with Parallel Collision Search over 2Rho. The exten-
sion of PCS over 4Rho does not make sense since the function � (defined in
Sect. 6) used for 4Rho is never iterated more than N0.5 times in our algorithms.
Hence, all its iterations can be covered by a single chain of 4Rho and there is
no benefit in using memory in this case.

7.6 Discussion

It is not intuitive to compare the algorithms described above, as their complex-
ities are functions of both p and M . In order to get some intuition regarding
their performance, we fix M = N1/4 and summarize the complexity of the best
algorithms for this case as a function of the single parameter p in Table 3. It
is evident from the table that there is a range of p values for which we do not
know how to efficiently exploit the memory. For example, consider p = N−3/4,
where our best algorithm is PCS over 2Rho. However, it is actually a degen-
erate variant of PCS with M = 1 that coincides with the 2Rho algorithm of
Sect. 6.

8 Finding Multiple Peaks

We consider a generalization of our basic problem to the case that f is uniformly
distributed except for k peaks. The peaks are denoted by y0, y1, . . . , yk−1, their
associated probabilities are denoted by p0, p1, . . . , pk−1, and our goal is to find
all of them.8
8 In [1] a related problem is studied: Let f be a hash function. Assume that its range is

smaller than its domain and that it is not balanced (i.e., not all outputs appear with
the same probability). This work studies the effect of this irregularity on the com-
plexity of the birthday collision search. In contrast, our work studies the algorithmic
aspects of finding the collision (in a memory-efficient manner).

202 I. Dinur et al.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-logN (p)

lo
g N

(T
im

e)

Fig. 6. Complexities of our best algorithms as a function of p given M = N1/4 memory

Table 3. Summary of the best complexities of algorithms for detecting the mode with
M = N1/4

Probability range Complexity formula Complexity range Algorithm

p ≥ N−0.5 T = p−1 T ≤ N0.5 Rho

N−5/8 ≤ p ≤ N−0.5 T = p−1 N0.5 ≤ T ≤ N5/8 PCS

N−3/4 ≤ p ≤ N−5/8 T = p−3N−5/4 N5/8 ≤ T ≤ N PCS

N−13/16 ≤ p ≤ N−3/4 T = p−2N−1/2 N ≤ T ≤ N9/8 PCS over 2Rho

N−7/8 ≤ p ≤ N−13/16 T = p−4N−17/8 N9/8 ≤ T ≤ N11/8 PCS over 2Rho

N−1 < p ≤ N−7/8 T = p−3N−5/4 N11/8 ≤ T ≤ N7/4 PCS

The simplest case is one in which there are two peaks of equal height p0 = p1.
By running the NestedRho algorithm several times with different flavors of f ,
we expect to find each one of y0 and y1 about half the time, and thus there is
no need to modify anything.

The next case to consider is one in which there are only two peaks but
p0 > p1. Due to the high power of p in our formulas, even moderate differences
in the peak probabilities are amplified by the NestedRho algorithm to huge
differences in the probability of finding the two peaks. For example, if p0 is a
thousand times bigger than p1, and we run the algorithm multiple times, then
we expect to find y1 only in one in a million runs when we use 1Rho, and only
in one in a trillion runs when we use 2Rho. Clearly, we have to reduce the
attractiveness of y0 before we have a realistic chance of noticing y1.

The simplest way to neutralize the first peak we find (which is likely to be y0),
is to scatter its preimages so that they will point to different targets. Consider
a modified function f ′ which is defined as f for any x for which f(x) �= y0, and
as f(x) + x for any x for which f(x) = y0. In f ′, y0 is no longer a peak, but y1

Memory-Efficient Algorithms for Finding Needles in Haystacks 203

remains at its original height. By applying NestedRho to f ′, we will find y1
with high probability.

This can be easily generalized to a sequence of k peaks, provided that we
have at least O(k) memory to store all the peaks. Our algorithm is likely to
discover them sequentially in decreasing order of probability, and we can decide
to stop at any point when we run out of space or time.

The most general case is one in which we have a non-uniform distribution
with no sharp peaks. In this case the output of the NestedRho algorithm has
a preference to pick y values with higher probabilities, but may pick a lower
probability y if there are many such values. In fact, the probability that our
algorithm will pick a particular y is proportional to some power of its original
probability, which depends on which nesting level we use (the detailed analysis
is left for future work).

9 Conclusions and Open Problems

In this paper we introduced the generic problem of finding needles in haystacks,
developed several novel techniques for its solution, and demonstrated the sur-
prising complexity of its complexity function. Many problems remain open, such
as:

1. Find non-trivial lower bounds on the time complexity of the problem.
2. Find better ways to exploit the available memory, beyond using PCS.
3. Extend the model to deal with other types of needles.
4. Find additional applications of the new NestedRho technique.

Acknowledgements. The authors thank Masha Gutman for her implementation of
the experiments reported in Table 1.

A Detailed Complexity Analysis of the Rho Approach
for p > 1/

√
N

Consider the sequence x, f(x), f2(x), If we limit the length of the sequence by
4/p “random” steps, then with high enough probability, we expect to encounter
y0 twice. On the other hand, the probability that a “random” value is encoun-
tered twice is low, since 4/p is significantly smaller than the “birthday bound”√

N . Hence, y0 is expected to be the first repeated point, and hence, the output.
Formally, let A be a “truncated” Rho algorithm:9

1. Choose x ∈ [N] uniformly at random.
2. Run Rho algorithm that computes the chain x, f(x), . . . , f4/p(x) (or shorter

chain if a collision is found before).

9 The reader may think of the algorithm as Floyd’s one, but the same analysis holds
for any “reasonable” memoryless detection algorithm.

204 I. Dinur et al.

(a) If a collision is detected, denote its value by y, and run the verification
algorithm on y.

(b) If no collision is detected, output “FAIL”.

Proposition 2. Assume that Algorithm A is run in the case p ≥ 16/
√

N . Then
Pr[Output(A) = y0] ≥ 0.69.

Proof. Throughout the proof we consider the sequence L = (x, f(x), . . . ,
fμ+λ(x)) of values encountered by the algorithm until the first repetition (inclu-
sive) or until the process terminates (if a repetition was not encountered). By
the definition of f , this sequence is distributed like an independent sampling of
μ + λ elements of the distribution of range(f). Note that if a meeting point is
detected at step t, this implies that the sequence x, f(x), . . . , f2t(x) contains a
repetition, and thus, |L| ≤ 8/p ≤ √

N/2.
First, we bound from above Pr[∃y′ �= y0 : Output(A) = y′], i.e., the prob-

ability that some y′ �= y0 appears twice in L. Consider all values non-equal to
y0 that appear in L. Since |L| ≤ √

N/2, the probability that they are mutually
different is at least

(N − 1)(N − 2) · · · (N − |L|)
(N − 1)|L| ≥

(
N − |L|

N

)|L|
≥

(
N − √

N/2
N

)√
N/2

≈ e−1/4.

Hence, Pr[∃y′ �= y0 : Output(A) = y′] ≤ 1 − e−1/4 ≈ 0.22.
Second, we bound from above Pr[Output(A) = FAIL], i.e., the probability

that neither y0 nor any other value appears twice in L. Note that in such a case,
|L| = 4/p since no repetition is encountered. By the definition of f , for any k,
Pr[fk(x) = y0] = p. Hence, the number of occurrences of y0 in L is distributed
like a Bin(|L|, p) = Bin(4/p, p) random variable, that can be approximated by
a Poi(|L|p) = Poi(4) random variable. Hence,

Pr[Output(A) = FAIL] ≤ Pr[Poi(4) ≤ 1] = e−4 + 4e−4 ≈ 0.09.

Combining the two bounds, we obtain

Pr[Output(A) = y0] = 1 − Pr[∃y′
= y0 : Output(A) = y′] − Pr[Output(A) = FAIL]

≥ 1 − 0.22 − 0.09 = 0.69,

as asserted. �

Memory-Efficient Algorithms for Finding Needles in Haystacks 205

B The Parallel Collision Search Algorithm

Algorithm 6. Parallel Collision Search
Initialize an empty table of M entries.
for i = 1 to M do

Pick at random a point xi ∈ [N].
Set tmp ← xi, len ← 0.
while f(tmp) is not a distinguished point do

tmp ← f(tmp).
Increment len.

end while
tmp ← f(tmp).
Increment len.
Store in the table the pair (tmp, xi, len).

end for
for All collisions ((pi, xi, leni), (pj , xj , lenj)) s.t. pi = pj do

Set tmp1 ← xi, tmp2 ← xj .
if len1 > len2 then

for i = 1 to len1 − len2 do
tmp1 ← f(tmp1)

end for
end if
if len2 > len1 then

for i = 1 to len2 − len1 do
tmp2 ← f(tmp2)

end for
end if
while f(tmp1)
= f(tmp2) do

tmp1 ← f(tmp1), tmp2 ← f(tmp2)
end while
print tmp1, tmp2.

end for

References

1. Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
401–418. Springer, Heidelberg (2004)

2. Richard, R.P.: An improved monte carlo factorization algorithm. BIT Numer.
Math. 20(2), 176–184 (1980). doi:10.1007/BF01933190

3. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

4. Joux, A., Lucks, S.: Improved generic algorithms for 3-collisions. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 347–363. Springer, Heidelberg
(2009)

http://dx.doi.org/10.1007/BF01933190

206 I. Dinur et al.

5. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

6. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

7. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
II. Addison-Wesley, Reading (1969)

8. Nivasch, G.: Cycle detection using a stack. Inf. Process. Lett. 90(3), 135–140 (2004)
9. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A.,

de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55–69.
Springer, Heidelberg (2009)

10. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999)

Breaking Symmetric Cryptosystems
Using Quantum Period Finding

Marc Kaplan1,2(B), Gaëtan Leurent3, Anthony Leverrier3,
and Maŕıa Naya-Plasencia3

1 LTCI, Télécom ParisTech, 23 avenue d’Italie, 75214 Paris CEDEX 13, France
kapmarc@gmail.com

2 School of Informatics, University of Edinburgh,
10 Crichton Street, Edinburgh EH8 9AB, UK

3 Inria Paris, Paris, France

Abstract. Due to Shor’s algorithm, quantum computers are a severe
threat for public key cryptography. This motivated the cryptographic
community to search for quantum-safe solutions. On the other hand, the
impact of quantum computing on secret key cryptography is much less
understood. In this paper, we consider attacks where an adversary can
query an oracle implementing a cryptographic primitive in a quantum
superposition of different states. This model gives a lot of power to the
adversary, but recent results show that it is nonetheless possible to build
secure cryptosystems in it.

We study applications of a quantum procedure called Simon’s algo-
rithm (the simplest quantum period finding algorithm) in order to attack
symmetric cryptosystems in this model. Following previous works in this
direction, we show that several classical attacks based on finding colli-
sions can be dramatically sped up using Simon’s algorithm: finding a
collision requires Ω(2n/2) queries in the classical setting, but when colli-
sions happen with some hidden periodicity, they can be found with only
O(n) queries in the quantum model.

We obtain attacks with very strong implications. First, we show that
the most widely used modes of operation for authentication and authenti-
cated encryption (e.g. CBC-MAC, PMAC, GMAC, GCM, and OCB) are
completely broken in this security model. Our attacks are also applica-
ble to many CAESAR candidates: CLOC, AEZ, COPA, OTR, POET,
OMD, and Minalpher. This is quite surprising compared to the situa-
tion with encryption modes: Anand et al. show that standard modes are
secure with a quantum-secure PRF.

Second, we show that Simon’s algorithm can also be applied to slide
attacks, leading to an exponential speed-up of a classical symmetric
cryptanalysis technique in the quantum model.

Keywords: Post-quantum cryptography · Symmetric cryptography ·
Quantum attacks · Block ciphers · Modes of operation · Slide attack

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 207–237, 2016.
DOI: 10.1007/978-3-662-53008-5 8

208 M. Kaplan et al.

1 Introduction

The goal of post-quantum cryptography is to prepare cryptographic primitives
to resist quantum adversaries, i.e. adversaries with access to a quantum com-
puter. Indeed, cryptography would be particularly affected by the development of
large-scale quantum computers. While currently used asymmetric cryptographic
primitives would suffer from devastating attacks due to Shor’s algorithm [43],
the status of symmetric ones is not so clear: generic attacks, which define the
security of ideal symmetric primitives, would get a quadratic speed-up thanks
to Grover’s algorithm [24], hinting that doubling the key length could restore an
equivalent ideal security in the post-quantum world. Even though the commu-
nity seems to consider the issue settled with this solution [6], only very little is
known about real world attacks, that determine the real security of used primi-
tives. Very recently, this direction has started to draw attention, and interesting
results have been obtained. New theoretical frameworks to take into account
quantum adversaries have been developed [2,11,12,15,20,23].

Simon’s algorithm [44] is central in quantum algorithm theory. Historically, it
was an important milestone in the discovery by Shor of his celebrated quantum
algorithm to solve integer factorization in polynomial time [43]. Interestingly,
Simon’s algorithm has also been applied in the context of symmetric cryptog-
raphy. It was first used to break the 3-round Feistel construction [31] and then
to prove that the Even-Mansour construction [32] is insecure with superposition
queries. While Simon’s problem (which is the problem solved with Simon’s algo-
rithm) might seem artificial at first sight, it appears in certain constructions in
symmetric cryptography, in which ciphers and modes typically involve a lot of
structure.

These first results, although quite striking, are not sufficient for evaluating the
security of actual ciphers. Indeed, the confidence we have on symmetric ciphers
depends on the amount of cryptanalysis that was performed on the primitive.
Only this effort allows researchers to define the security margin which measures
how far the construction is from being broken. Thanks to the large and always
updated cryptanalysis toolbox built over the years in the classical world, we
have solid evaluations of the security of the primitives against classical adver-
saries. This is, however, no longer the case in the post-quantum world, i.e. when
considering quantum adversaries.

We therefore need to build a complete cryptanalysis toolbox for quantum
adversaries, similar to what has been done for the classical world. This is a
fundamental step in order to correctly evaluate the post-quantum security of
current ciphers and to design new secure ciphers for the post-quantum world.

Our Results. We make progresses in this direction, and open new surpris-
ing and important ranges of applications for Simon’s algorithm in symmetric
cryptography:

1. The original formulation of Simon’s algorithm is for functions whose colli-
sions happen only at some hidden period. We extend it to functions that have

Breaking Symmetric Cryptosystems Using Quantum Period Finding 209

more collisions. This leads to a better analysis of previous applications of
Simon’s algorithm in symmetric cryptography.

2. We then show an attack against the LRW construction, used to turn a block-
cipher into a tweakable block cipher [33]. Like the results on 3-round Feistel
and Even-Mansour, this is an example of construction with provable security
in the classical setting that becomes insecure against a quantum adversary.

3. Next, we study block cipher modes of operation. We show that some of the
most common modes for message authentication and authenticated encryp-
tion are completely broken in this setting. We describe forgery attacks against
standardized modes (CBC-MAC, PMAC, GMAC, GCM, and OCB), and
against several CAESAR candidates, with complexity only O(n), where n
is the size of the block. In particular, this partially answers an open question
by Boneh and Zhandry [13]: “Do the CBC-MAC or NMAC constructions give
quantum-secure PRFs?”.

Those results are in stark contrast with a recent analysis of encryption
modes in the same setting: Anand et al. show that some classical encryp-
tion modes are secure against a quantum adversary when using a quantum-
secure PRF [3]. Our results imply that some authentication and authenticated
encryption schemes remain insecure with any block cipher.

4. The last application is a quantization of slide attacks, a popular family of
cryptanalysis that is independent of the number of rounds of the attacked
cipher. Our result is the first exponential speed-up obtained directly by a
quantization of a classical cryptanalysis technique, with complexity dropping
from O(2n/2) to O(n), where n is the size of the block.

These results imply that for the symmetric primitives we analyze, doubling the
key length is not sufficient to restore security against quantum adversaries. A sig-
nificant effort on quantum cryptanalysis of symmetric primitives is thus crucial
for our long-term trust in these cryptosystems.

The Attack Model. We consider attacks against classical cryptosystems
using quantum resources. This general setting broadly defines the field of post-
quantum cryptography. But attacking specific cryptosystems requires a more
precise definition of the operations the adversary is allowed to perform. The
simplest setting allows the adversary to perform local quantum computation.
For instance, this can be modeled by the quantum random oracle model, in
which the adversary can query the oracle in an arbitrary superposition of the
inputs [11,14,45,49]. A more practical setting allows quantum queries to the
hash function used to instantiate the oracle on a quantum computer.

We consider here a much stronger model in which, in addition to local quan-
tum operations, an adversary is granted an access to a possibly remote cryp-
tographic oracle in superposition of the inputs, and obtains the corresponding
superposition of outputs. In more detail, if the encryption oracle is described
by a classical function Ok : {0, 1}n → {0, 1}n, then the adversary can make
standard quantum queries |x〉|y〉 �→ |x〉|Ok(x) ⊕ y〉, where x and y are arbitrary

210 M. Kaplan et al.

n-bit strings and |x〉, |y〉 are the corresponding n-qubit states expressed in the
computational basis. A circuit representing the oracle is given in Fig. 1. More-
over, any superposition

∑
x,y λx,y|x〉|y〉 is a valid input to the quantum oracle,

who then returns
∑

x,y λx,y|x〉|y ⊕Ok(x)〉. In previous works, these attacks have
been called superposition attacks [20], quantum chosen message attacks [13] or
quantum security [48].

Simon’s algorithm requires the preparation of the uniform superposition of
all n-bit strings, 1√

2n

∑
x |x〉|0〉1. For this input, the quantum encryption oracle

returns 1√
2n

∑
x |x〉|Ok(x)〉, the superposition of all possible pairs of plaintext-

ciphertext. It might seem at first that this model gives an overwhelming power
to the adversary and is therefore uninteresting. Note, however, that the laws of
quantum mechanics imply that the measurement of such a 2n-qubit state can
only reveal 2n bits of information, making this model nontrivial.

|0〉

|x〉
Ok

|x〉

|Ok(x)〉

Fig. 1. The quantum cryptographic oracle.

The simplicity of this model, together with the fact that it encompasses any
reasonable model of quantum attacks makes it very interesting. For instance, [12]
gave constructions of message authenticated codes that remain secure against
superposition attacks. A similar approach was initiated by [20], who showed
how to construct secure multiparty protocols when an adversary can corrupt
the parties in superposition. A protocol that is proven secure in this model may
truthfully be used in a quantum world.

Our work shows that superposition attacks, although they are not trivial,
allow new powerful strategies for the adversary. Modes of operation that are
provably secure against classical attacks can then be broken. There exist a few
options to prevent the attacks that we present here. A possibility is to forbid all
kind of quantum access to a cryptographic oracle. In a world where quantum
resources become available, this restriction requires a careful attention. This can
be achieved for example by performing a quantum measurement of any incom-
ing quantum query to the oracle. But this task involves meticulous engineering
of quantum devices whose outcome remains uncertain. Even information theo-
retically secure quantum cryptography remains vulnerable to attacks on their
implementations, as shown by attacks on quantum key distribution [35,46,50].

A more realistic approach is to develop a set of protocols that remains secure
against superposition attacks. Another advantage of this approach is that it also
covers more advanced scenarios, for example when an encryption device is given

1 When there is no ambiguity, we write |0〉 for the state |0 . . . 0〉 of appropriate length.

Breaking Symmetric Cryptosystems Using Quantum Period Finding 211

to the adversary as an obfuscated algorithm. Our work shows how important it
is to develop protocols that remain secure against superposition attacks.

Regarding symmetric cryptanalysis, we have already mentioned the proto-
col of Boneh and Zhandry for MACs that remains secure against superposi-
tion attacks. In particular, we answer negatively to their question asking wether
CBC-MAC is secure in their model. Generic quantum attacks against symmetric
cryptosystems have also been considered. For instance, [28] studies the security
of iterated block ciphers, and Anand et al. investigated the security of various
modes of operations for encryption against superposition attacks [3]. They show
that OFB and CTR remain secure, while CBC and CFB are not secure in general
(with attacks involving Simon’s algorithm), but are secure if the underlying PRF
is quantum secure. Recently, [29] considers symmetric families of cryptanalysis,
describing quantum versions of differential and linear attacks.

Cryptographic notions like indistinguishability or semantic security are well
understood in a classical world. However, they become difficult to formalize when
considering quantum adversaries. The quantum chosen message model is a good
framework to study these [2,15,23].

In this paper, we consider forgery attacks: the goal of the attacker is to
forge a tag for some arbitrary message, without the knowledge of the secret key.
In a quantum setting, we follow the EUF-qCMA security definition that was
given by Boneh and Zhandry [12]. A message authentication code is broken by a
quantum existential forgery attack if after q queries to the cryptographic oracle,
the adversary can generate at least q+1 valid messages with corresponding tags.

Organization. The paper is organized as follows. First, Sect. 2 introduces
Simon’s algorithm and explains how to modify it in order to handle functions
that only approximately satisfy Simon’s promise. This variant seems more appro-
priate for symmetric cryptography and may be of independent interest. Section 3
summarizes known quantum attacks against various constructions in symmet-
ric cryptography. Section 4 presents the attack against the LRW constructions.
In Sect. 5, we show how Simon’s algorithm can be used to obtain devastating
attacks on several widely used modes of operations: CBC-MAC, PMAC, GMAC,
GCM, OCB, as well as several CAESAR candidates. Section 6 shows the appli-
cation of the algorithm to slide attacks, providing an exponential speed-up. The
paper ends in Sect. 7 with a conclusion, pointing out possible new directions and
applications.

2 Simon’s Algorithm and Attack Strategy

In this section, we present Simon’s problem [44] and the quantum algorithm for
efficiently solving it. The simplest version of our attacks directly exploits this
algorithm in order to recover some secret value of the encryption algorithm.
Previous works have already considered such attacks against 3-round Feistel
schemes and the Even-Mansour construction (see Sect. 3 for details).

212 M. Kaplan et al.

Unfortunately, it is not always possible to recast an attack in terms of Simon’s
problem. More precisely, Simon’s problem is a promise problem, and in many
cases, the relevant promise (that only a structured class of collisions can occur)
is not satisfied, far from it in fact. We show in Theorem 1 below that, however,
these additional collisions do not lead to a significant increase of the complexity
of our attacks.

2.1 Simon’s Problem and Algorithm

We first describe Simon’s problem, and then the quantum algorithm for solving
it. We refer the reader to the recent review by Montanaro and de Wolf on quan-
tum property testing for various applications of this algorithm [38]. We assume
here a basic knowledge of the quantum circuit model. We denote the addition
and multiplication in a field with 2n elements by “⊕” and “·”, respectively.

We consider that the access to the input of Simon’s problem, a function
f , is made by querying it. A classical query oracle is a function x �→ f(x).
To run Simon’s algorithm, it is required that the function f can be queried
quantum-mechanically. More precisely, it is supposed that the algorithm can
make arbitrary quantum superpositions of queries of the form |x〉|0〉 �→ |x〉|f(x)〉.

Simon’s problem is the following:

Simon’s Problem: Given a Boolean function f : {0, 1}n → {0, 1}n and
the promise that there exists s ∈ {0, 1}n such that for any (x, y) ∈ {0, 1}n,
[f(x) = f(y)] ⇔ [x ⊕ y ∈ {0n, s}], the goal is to find s.

This problem can be solved classically by searching for collisions. The opti-
mal time to solve it is therefore Θ(2n/2). On the other hand, Simon’s algorithm
solves this problem with quantum complexity O(n). Recall that the Hadamard
transform H⊗n applied on an n-qubit state |x〉 for some x ∈ {0, 1}n gives
H⊗n|x〉 = 1√

2n

∑
y∈{0,1}n(−1)x·y|y〉, where x · y := x1y1 ⊕ · · · ⊕ xnyn.

The algorithm repeats the following five quantum steps.

1. Starting with a 2n-qubit state |0〉|0〉, one applies a Hadamard transform H⊗n

to the first register to obtain the quantum superposition

1√
2n

∑
x∈{0,1}n

|x〉|0〉.

2. A quantum query to the function f maps this to the state

1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉.

3. Measuring the second register in the computational basis yields a value f(z)
and collapses the first register to the state:

1√
2
(|z〉 + |z ⊕ s〉).

Breaking Symmetric Cryptosystems Using Quantum Period Finding 213

4. Applying again the Hadamard transform H⊗n to the first register gives:

1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z (1 + (−1)y·s) |y〉.

5. The vectors y such that y · s = 1 have amplitude 0. Therefore, measuring the
state in the computational basis yields a random vector y such that y · s = 0.

By repeating this subroutine O(n) times, one obtains n − 1 independent vectors
orthogonal to s with high probability, and s can be recovered using basic linear
algebra. Theorem 1 gives the trade-off between the number of repetitions of the
subroutine and the success probability of the algorithm.

2.2 Dealing with Unwanted Collisions

In our cryptanalysis scenario, it is not always the case that the promise of Simon’s
problem is perfectly satisfied. More precisely, by construction, there will always
exist an s such that f(x) = f(x ⊕ s) for any input x, but there might be many
more collisions than those of this form. If the number of such unwanted collisions
is too large, one might not be able to obtain a full rank linear system of equations
from Simon’s subroutine after O(n) queries. Theorem 1 rules this out provided
that f does not have too many collisions of the form f(x) = f(x ⊕ t) for some
t 	∈ {0, s}.

For f : {0, 1}n → {0, 1}n such that f(x ⊕ s) = f(x) for all x, consider

ε(f, s) = max
t∈{0,1}n\{0,s}

Prx[f(x) = f(x ⊕ t)]. (1)

This parameter quantifies how far the function is from satisfying Simon’s
promise. For a random function, one expects ε(f, s) = Θ(n2−n), following the
analysis of [19]. On the other hand, for a constant function, ε(f, s) = 1 and it is
impossible to recover s.

The following theorem, whose proof can be found in Appendix A, shows the
effect of unwanted collisions on the success probability of Simon’s algorithm.

Theorem 1 (Simon’s algorithm with approximate promise). If ε(f, s) ≤
p0 < 1, then Simon’s algorithm returns s with cn queries, with probability at least
1 − (

2
(
1+p0

2

)c)n.

In particular, choosing c ≥ 3/(1 − p0) ensures that the error decreases expo-
nentially with n. To apply our results, it is therefore sufficient to prove that
ε(f, s) is bounded away from 1.

Finally, if we apply Simon’s algorithm without any bound on ε(f, s), we can
not always recover s unambiguously. Still if we select a random value t orthogonal
to all vectors ui returned by each step of the algorithm, t satisfy f(x⊕ t) = f(x)
with high probability.

Theorem 2 (Simon’s algorithm without promise). After cn steps of
Simon’s algorithm, if t is orthogonal to all vectors ui returned by each step of the
algorithm, then Prx[f(x⊕t) = f(t)] ≥ p0 with probability at least 1−(

2
(
1+p0

2

)c)n.

214 M. Kaplan et al.

In particular, choosing c ≥ 3/(1 − p0) ensures that the probability is expo-
nentially close to 1.

2.3 Attack Strategy

The general strategy behind our attacks exploiting Simon’s algorithm is to start
with the encryption oracle Ek : {0, 1}n → {0, 1}n and exhibit a new func-
tion f that satisfies Simon’s promise with two additional properties: the adver-
sary should be able to query f in superposition if he has quantum oracle access
to Ek, and the knowledge of the string s should be sufficient to break the cryp-
tographic scheme. In the following, this function is called Simon’s function.

In most cases, our attacks correspond to a classical collision attack. In partic-
ular, the value s will usually be the difference in the internal state after processing
a fixed pair of messages (α0, α1), i.e. s = E(α0) ⊕ E(α1). The input of f will be
inserted into the state with the difference s so that f(x) = f(x ⊕ s).

In our work, this function f is of the form:

f1 : x �→ P (Ẽ(x) + Ẽ(x ⊕ s)) or,

f2 : b, x �→
{

Ẽ(x) if b = 0,

Ẽ(x ⊕ s) if b = 1,

where Ẽ is a simple function obtained from Ek and P a permutation. It is
immediate to see that f1 and f2 have periods s for f1 or 1||s for f2.

In most applications, Simon’s function satisfies f(x) = f(y) for y ⊕ x ∈
{0, s}, but also for additional inputs x, y. Theorem 1 extends Simon’s algorithm
precisely to this case. In particular, if the additional collisions of f are random,
then Simon’s algorithm is successful. When considering explicit constructions,
we can not in general prove that the unwanted collisions are random, but rather
that they look random enough. In practice, if the function ε(f, s) is not bounded,
then some of the primitives used in the construction have are far from ideal. We
can show that this happens with low probability, and would imply an classical
attack against the system. Applying Theorem 1 is not trivial, but it stretches
the range of application of Simon’s algorithm far beyond its original version.

Construction of Simon’s Functions. To make our attacks as clear as possi-
ble, we provide the diagrams of circuits computing the function f . These circuits
use a little number of basic building blocks represented in Fig. 2.

In our attacks, we often use a pair of arbitrary constants α0 and α1. The
choice of the constant is indexed by a bit b. We denote by Uα the gate that maps
b to αb (See Fig. 2). For simplicity, we ignore here the additional qubits required
in practice to make the transform reversible through padding.

Although it is well known that arbitrary quantum states cannot be cloned,
we use the CNOT gate to copy classical information. More precisely, a CNOT
gate can copy states in the computational basis: CNOT : |x〉|0〉 → |x〉|x〉. This
transform is represented in Fig. 2.

Breaking Symmetric Cryptosystems Using Quantum Period Finding 215

Finally, any unitary transform U can be controlled by a bit b. This operation,
denoted U b maps x to U(x) if b = 1 and leaves x unchanged otherwise. In the
quantum setting, the qubit |b〉 can be in a superposition of 0 and 1, resulting in
a superposition of |x〉 and |U(x)〉. The attacks that we present in the following
sections only make use of this procedure when the attacker knows a classical
description of the unitary to be controlled. In particular, we do not apply it to
the cryptographic oracle.

When computing Simon’s function, i.e. the function f on which Simon’s algo-
rithm is applied, the registers containing the value of f must be unentangled with
any other working register. Otherwise, these registers, which might hinder the
periodicity of the function, have to be taken into account in Simon’s algorithm
and the whole procedure could fail.

|b〉 Uα |αb〉

2.1. One-to-one mapping.

|0〉

|x〉 |x〉

|x〉

2.2. CNOT gate.

|x〉

|b〉

U

|b〉

|Ub(x)〉

2.3. Controlled Unitary.

Fig. 2. Circuit representation of basic building blocks.

3 Previous Works

Previous works have used Simon’s algorithm to break the security of classical
constructions in symmetric cryptography: the Even-Mansour construction and
the 3-round Feistel scheme. We now explain how these attacks work with our
terminology and extend two of the results. First, we show that the attack on
the Feistel scheme can be extended to work with random functions, where the
original analysis held only for random permutations. Second, using our analysis
Simon’s algorithm with approximate promise, we make the number of queries
required to attack the Even-Mansour construction more precise. These obser-
vations have been independently made by Santoli and Schaffner [41]. They use
a slightly different approach, which consists in analyzing the run of Simon’s
algorithm for these specific cases.

3.1 Applications to a Three-Round Feistel Scheme

The Feistel scheme is a classical construction to build a random permutation
out of random functions or random permutations. In a seminal work, Luby and
Rackoff proved that a three-round Feistel scheme is a secure pseudo-random
permutation [34].

216 M. Kaplan et al.

A three-round Feistel scheme with input (xL, xR) and output (yL, yR) =
E(xL, xR) is built from three round functions R1, R2, R3 as (see Fig. 3):

(u0, v0) = (xL, xR), (ui, vi) = (vi−1 ⊕ Ri(ui−1), ui−1), (yL, yR) = (u3, v3).

xL xR

R1

R2

R3

yL yR

Fig. 3. Three-round Feis-
tel scheme.

|b〉

|x〉

|0〉

Uα

yR

U−1
α |b〉

|x〉

|f(b, x)〉

Fig. 4. Simon’s function for Feistel.

In order to distinguish a Feistel scheme from a random permutation in a
quantum setting, Kuwakado and Morii [31] consider the case were the Ri are
permutations, and define the following function, with two arbitrary constants
α0 and α1 such that α0 	= α1:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x �→ yR ⊕ αb, where (yR, yL) = E(αb, x)
f(b, x) = R2(x ⊕ R1(αb))

In particular, this f satisfies f(b, x) = f(b ⊕ 1, x ⊕ R1(α0) ⊕ R1(α1)). Moreover,

f(b′, x′) = f(b, x) ⇔ x′ ⊕ R1(αb′) = x ⊕ R1(αb)

⇔
{

x′ ⊕ x = 0 if b′ = b

x′ ⊕ x = R1(α0) ⊕ R1(α1) if b′ 	= b

Therefore, the function satisfies Simon’s promise with s = 1 ‖ R1(α0) ⊕ R1(α1),
and we can recover R1(α0) ⊕ R1(α1) using Simon’s algorithm. This gives a dis-
tinguisher, because Simon’s algorithm applied to a random permutation returns
zero with high probability. This can be seen from Theorem2, using the fact
that with overwhelming probability [19], there is no value t 	= 0 such that
Prx[f(x ⊕ t) = f(x)] > 1/2 for a random permutation f (Fig. 4).

We can also verify that the value R1(α0) ⊕ R1(α1) is correct with two addi-
tional classical queries (yL, yR) = E(α0, x) and (y′

L, y′
R) = E(α1, x ⊕ R1(α0) ⊕

R1(α1)) for a random x. If the value is correct, we have yR ⊕ y′
R = α0 ⊕ α1.

Breaking Symmetric Cryptosystems Using Quantum Period Finding 217

Note that in their attack, Kuwakado and Morii implicitly assume that the
adversary can query in superposition an oracle that returns solely the left part yL

of the encryption. If the adversary only has access to the complete encryption
oracle E, then a query in superposition would return two entangled registers
containing the left and right parts, respectively. In principle, Simon’s algorithm
requires the register containing the input value to be completely disentangled
from the others.

Feistel Scheme with Random Functions. Kuwakado and Morii [31] analyze
only the case where the round functions Ri are permutations. We now extend
this analysis to random functions Ri. The function f defined above still satisfies
f(b, x) = f(b ⊕ 1, x ⊕ R1(α0) ⊕ R1(α1)), but it doesn’t satisfy the exact promise
of Simon’s algorithm: there are additional collisions in f , between inputs with
random differences. However, the previous distinguisher is still valid: at the end
of Simon’s algorithm, there exist at least one non-zero value orthogonal to all
the values y measured at each step: s. This would not be the case with a random
permutation.

Moreover, we can show that ε(f, 1 ‖ s) < 1/2 with overwhelming probability,
so that Simon’s algorithm still recovers 1 ‖ s following Theorem 1. If ε(f, 1 ‖
s) > 1/2, there exists (τ, t) with (τ, t) 	∈ {(0, 0), (1, s)} such that: Pr[f(b, x) =
f(b ⊕ τ, x ⊕ t)] > 1/2. Assume first that τ = 0, this implies:

Pr[f(0, x) = f(0, x ⊕ t)] > 1/2 or Pr[f(1, x) = f(1, x ⊕ t)] > 1/2.

Therefore, for some b, Pr[R2(x ⊕ R1(αb)) = R2(x ⊕ t ⊕ R1(αb))] > 1/2, i.e.
Pr[R2(x) = R2(x ⊕ t)] > 1/2. Similarly, if τ = 1, Pr[R2(x ⊕ R1(α0)) = R2(x ⊕
t ⊕ R1(α1))] > 1/2, i.e. Pr[R2(x) = R2(x ⊕ t ⊕ R1(α0) ⊕ R1(α1))] > 1/2.

To summarize, if ε(f, 1 ‖ s) > 1/2, there exists u 	= 0 such that Pr[R2(x) =
R2(x ⊕ u)] > 1/2. This only happens with negligible probability for a random
choice of R2 as shown in [19].

3.2 Application to the Even-Mansour Construction

The Even-Mansour construction is a simple construction to build a block cipher
from a public permutation [22]. For some permutation P , the cipher is:

Ek1,k2(x) = P (x ⊕ k1) ⊕ k2.

Even and Mansour have shown that this construction is secure in the random
permutation model, up to 2n/2 queries, where n is the size of the input to P
(Figs. 5 and 6).

However, Kuwakado and Morii [32] have shown that the security of this
construction collapses if an adversary can query an encryption oracle with a
superposition of states. More precisely, they define the following function:

f : {0, 1}n → {0, 1}n

x �→ Ek1,k2(x) ⊕ P (x) = P (x ⊕ k1) ⊕ P (x) ⊕ k2.

218 M. Kaplan et al.

x

k1

P

k2

Ek1,k2(x)

Fig. 5. Even-Mansour scheme.

|0〉

|x〉

|Ek(x)〉

|x〉

|Ek(x) ⊕ P (x)〉

|x〉
Ek P

Fig. 6. Simon’s function for Even-Mansour.

In particular, f satisfies f(x ⊕ k1) = f(x) (interestingly, the slide with a twist
attack of Biryukov and Wagner [8] uses the same property). However, there
are additional collisions in f between inputs with random differences. As in the
attack against the Feistel scheme with random round functions, we use Theo-
rem 1, to show that Simon’s algorithm recovers k1

2.
We show that ε(f, k1) < 1/2 with overwhelming probability for a random

permutation P , and if ε(f, k1) > 1/2, then there exists a classical attack against
the Even-Mansour scheme. Assume that ε(f, k1) > 1/2, that is, there exists t
with t 	∈ {0, k1} such that Pr[f(x) = f(x ⊕ t)] > 1/2, i.e.,

p = Pr[P (x) ⊕ P (x ⊕ k1) ⊕ P (x ⊕ t) ⊕ P (x ⊕ t ⊕ k1) = 0] > 1/2.

This correspond to higher order differential for P with probability 1/2, which
only happens with negligible probability for a random choice of P . In addition,
this would imply the existence of a simple classical attack against the scheme:

1. Query y = Ek1,k2(x) and y′ = Ek1,k2(x ⊕ t)
2. Then y ⊕ y′ = P (x) ⊕ P (x ⊕ t) with probability at least one half

Therefore, for any instantiation of the Even-Mansour scheme with a fixed P ,
either there exist a classical distinguishing attack (this only happens with neg-
ligible probability with a random P), or Simon’s algorithm successfully recovers
k1. In the second case, the value of k2 can then be recovered from an additional
classical query: k2 = E(x) ⊕ P (x ⊕ k1).

In the next sections, we give new applications of Simon’s algorithm, to break
various symmetric cryptography schemes.

4 Application to the LRW Construction

We now show a new application of Simon’s algorithm to the LRW construction.
The LRW construction, introduced by Liskov, Rivest and Wagner [33], turns
2 Note that Kuwakado and Morii just assume that each step of Simon’s algorithm

gives a random vector orthogonal to k1. Our analysis is more formal and captures
the conditions on P required for the algorithm to be successful.

Breaking Symmetric Cryptosystems Using Quantum Period Finding 219

a block cipher into a tweakable block cipher, i.e. a family of unrelated block
ciphers. The tweakable block cipher is a very useful primitive to build modes for
encryption, authentication, or authenticated encryption. In particular, tweakable
block ciphers and the LRW construction were inspired by the first version of
OCB, and later versions of OCB use the tweakable block ciphers formalism. The
LRW construction uses a (almost) universal hash function h (which is part of
the key), and is defined as (see also Fig. 7):

Ẽt,k(x) = Ek(x ⊕ h(t)) ⊕ h(t).

Ek

p

c

t h

7.1. LRW construction.

Ek

p

c

2t · L

7.2. XEX construction.

Ek

p

c

2t · L

7.3. XE construction.

Fig. 7. The LRW construction, and efficient instantiations XEX (CCA secure) and XE
(only CPsecure).

We now show that the LRW construction is not secure in a quantum setting.
We fix two arbitrary tweaks t0, t1, with t0 	= t1, and we define the following
function:

f : {0, 1}n → {0, 1}n

x �→ Ẽt0,k(x) ⊕ Ẽt1,k(x)

f(x) = Ek

(
x ⊕ h(t0)

) ⊕ h(t0) ⊕ Ek

(
x ⊕ h(t1)

) ⊕ h(t1).

Given a superposition access to an oracle for an LRW tweakable block cipher, we
can build a circuit implementing this function, using the construction given in
Fig. 8. In the circuit, the cryptographic oracle Ẽt,k takes two inputs: the block x

to be encrypted and the tweak t. Since the tweak comes out of Ẽt,k unentangled
with the other register, we do not represent this output in the diagram. In
practice, the output is forgotten by the attacker.

It is easy to see that this function satisfies f(x) = f(x ⊕ s) with s = h(t0) ⊕
h(t1). Furthermore, the quantity ε(f, s) = maxt∈{0,1}n\{0,s} Pr[f(x) = f(x⊕t)] is
bounded with overwhelming probability, assuming that Ek behaves as a random

220 M. Kaplan et al.

permutation. Indeed if ε(f, s) > 1/2, there exists some t with t 	∈ {0, s} such
that Pr[f(x) = f(x ⊕ t)] > 1/2, i.e.,

Pr[Ek

(
x
) ⊕ Ek

(
x ⊕ s

) ⊕ Ek

(
x ⊕ t)

) ⊕ Ek

(
x ⊕ t ⊕ s

)
= 0] > 1/2

This correspond to higher order differential for Ek with probability 1/2, which
only happens with negligible probability for a random permutation. Therefore,
if E is a pseudo-random permutation family, ε(f, s) ≤ 1/2 with overwhelming
probability, and running Simon’s algorithm with the function f returns h(t0) ⊕
h(t1). The assumption that E behaves as a PRP family is required for the security
proof of LRW, so it is reasonable to make the same assumption in an attack.
More concretely, a block cipher with a higher order differential with probability
1/2 as seen above would probably be broken by classical attacks. The attack
is not immediate because the differential can depend on the key, but it would
seem to indicate a structural weakness. In the following sections, some attacks
can also be mounted using Theorem 2 without any assumptions on E.

In any case, there exist at least one non-zero value orthogonal to all the
values y measured during Simon’s algorithm: s. This would not be the case if f
is a random function, which gives a distinguisher between the LRW construction
and an ideal tweakable block cipher with O(n) quantum queries to Ẽ.

In practice, most instantiations of LRW use a finite field multiplication to
define the universal hash function h, with a secret offset L (usually computed as
L = Ek(0)). Two popular constructions are:

– h(t) = γ(t) · L, used in OCB1 [40], OCB3 [30] and PMAC [10], with a Gray
encoding γ of t,

– h(t) = 2t · L, the XEX construction, used in OCB2 [39].

In both cases, we can recover L from the value h(t0)⊕h(t1) given by the attack.
This attack is important, because many recent modes of operation are

inspired by the LRW construction, and the XE and XEX instantiations, such as
CAESAR candidates AEZ [25], COPA [4], OCB [30], OTR [37], Minalpher [42],
OMD [18], and POET [1]. We will see in the next section that variants of this
attack can be applied to each of these modes.

|0〉

|x〉

Ut

|0〉

˜Et0,k

|1〉 Ut

˜Et1,k

|f(x)〉

|x〉

Fig. 8. Simon’s function for LRW.

Breaking Symmetric Cryptosystems Using Quantum Period Finding 221

5 Application to Block Cipher Modes of Operations

We now give new applications of Simon’s algorithm to the security of block cipher
modes of operations. In particular, we show how to break the most popular and
widely used block-cipher based MACs, and message authentication schemes:
CBC-MAC (including variants such as XCBC [9], OMAC [26], and CMAC [21]),
GMAC [36], PMAC [10], GCM [36] and OCB [30]. We also show attacks against
several CAESAR candidates. In each case, the mode is proven secure up to 2n/2

in the classical setting, but we show how, by a reduction to Simon’s problem,
forgery attacks can be performed with superposition queries at a cost of O(n).

Notations and Preliminaries. We consider a block cipher Ek, acting on
blocks of length n, where the subscript k denotes the key. For simplicity, we
only describe the modes with full-block messages, the attacks can trivially be
extended to the more general modes with arbitrary inputs. In general, we con-
sider a message M divided into � n-bits block: M = m1 ‖ . . . ‖ m�. We also
assume that the MAC is not truncated, i.e. the output size is n bits. In most
cases, the attacks can be adapted to truncated MACS.

5.1 Deterministic MACs: CBC-MAC and PMAC

We start with deterministic Message Authentication Codes, or MACs. A MAC
is used to guarantee the authenticity of messages, and should be immune against
forgery attacks. The standard security model is that it should be hard to forge
a message with a valid tag, even given access to an oracle that computes the
MAC of any chosen message (of course the forged message must not have been
queried to the oracle).

To translate this security notion to the quantum setting, we assume that the
adversary is given an oracle that takes a quantum superposition of messages as
input, and computes the superposition of the corresponding MAC.

CBC-MAC. CBC-MAC is one of the first MAC constructions, inspired by
the CBC encryption mode. Since the basic CBC-MAC is only secure when the
queries are prefix-free, there are many variants of CBC-MAC to provide security
for arbitrary messages. In the following we describe the Encrypted-CBC-MAC
variant [5], using two keys k and k′, but the attack can be easily adapted to other
variants [9,21,26]. On a message M = m1 ‖ . . . ‖ m�, CBC-MAC is defined as
(see Fig. 9):

x0 = 0 xi = Ek(xi−1 ⊕ mi) CBC-MAC(M) = Ek′(x�)

CBC-MAC is standardized and widely used. It has been proved to be secure
up to the birthday bound [5], assuming that the block cipher is indistinguishable
from a random permutation.

222 M. Kaplan et al.

x0 = 0 xi = Ek(xi−1 ⊕ mi) CBC-MAC(M) = Ek′(x�)

0

m1

Ek

m2

Ek

m3

Ek Ek′ τ

Fig. 9. Encrypt-last-block CBC-MAC.

Attack. We can build a powerful forgery attack on CBC-MAC with very low
complexity using superposition queries. We fix two arbitrary message blocks
α0, α1, with α0 	= α1, and we define the following function:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x �→ CBC-MAC(αb ‖ x) = Ek′
(
Ek

(
x ⊕ Ek(αb)

))
.

The function f can be computed with a single call to the cryptographic oracle,
and we can build a quantum circuit for f given a black box quantum circuit
for CBC-MACk. Moreover, f satisfies the promise of Simon’s problem with s =
1 ‖ Ek(α0) ⊕ Ek(α1):

f(0, x) = Ek′(Ek(x ⊕ Ek(α1))),
f(1, x) = Ek′(Ek(x ⊕ Ek(α0))),
f(b, x) = f(b ⊕ 1, x ⊕ Ek(α0) ⊕ Ek(α1)).

More precisely:
f(b′, x′) = f(b, x) ⇔ x ⊕ Ek(αb) = x′ ⊕ Ek(αb′)

⇔
{

x′ ⊕ x = 0 if b′ = b

x′ ⊕ x = Ek(α0) ⊕ Ek(α1) if b′ 	= b

Therefore, an application of Simon’s algorithm returns Ek(α0) ⊕ Ek(α1). This
allows to forge messages easily:

1. Query the tag of α0 ‖ m1 for an arbitrary block m1;
2. The same tag is valid for α1 ‖ m1 ⊕ Ek(α0) ⊕ Ek(α1).

In order to break the formal notion of EUF-qCMA security, we must produce
q + 1 valid tags with only q queries to the oracle. Let q′ = O(n) denote the
number of of quantum queries made to learn Ek(α0)⊕Ek(α1). The attacker will
repeats the forgery step step q′ +1 times, in order to produce 2(q′ +1) messages
with valid tags, after a total of 2q′ + 1 classical and quantum queries to the
cryptographic oracle. Therefore, CBC-MAC is broken by a quantum existential
forgery attack.

Breaking Symmetric Cryptosystems Using Quantum Period Finding 223

After some exchange at early stages of the work, an extension of this forgery
attack has been found by Santoli and Schaffner [41]. Its main advantage is to
handle oracles that accept input of fixed length, while our attack works for
oracles accepting messages of variable length.

PMAC. PMAC is a parallelizable block-cipher based MAC designed by Rog-
way [39]. PMAC is based on the XE construction: the construction uses secret
offsets Δi derived from the secret key to turn the block cipher into a tweakable
block cipher. More precisely, the PMAC algorithm is defined as

ci = Ek(mi ⊕ Δi) PMAC(M) = E∗
k

(
m� ⊕

∑
ci

)

where E∗ is a tweaked variant of E. We omit the generation of the secret offsets
because they are irrelevant to our attack.

First Attack. When PMAC is used with two-block messages, it has the same
structure as CBC-MAC: PMAC(m1 ‖ m2) = E∗

k(m2 ⊕Ek(m1 ⊕Δ0)). Therefore
we can use the attack of the previous section to recover Ek(α0) ⊕ Ek(α1) for
arbitrary values of α0 and α1. Again, this leads to a simple forgery attack. First,
query the tag of α0 ‖ m1 ‖ m2 for arbitrary blocks m1, m2. The same tag is
valid for α1 ‖ m1 ‖ m2 ⊕ Ek(α0) ⊕ Ek(α1). As for CBC-MAC, these two steps
can be repeated t + 1 times, where t is the number of quantum queries issued.
The adversary then produces 2(t + 1) messages after only 2t + 1 queries to the
cryptographic oracle.

Second Attack. We can also build another forgery attack on PMAC where we
recover the difference between two offsets Δi, following the attack against LRW
given in Sect. 4. More precisely, we use the following function:

f : {0, 1}n → {0, 1}n

m �→ PMAC(m ‖ m ‖ 0n) = E∗
k (Ek(m ⊕ Δ0) ⊕ Ek(m ⊕ Δ1)) .

In particular, it satisfies f(m ⊕ s) = f(m) with s = Δ0 ⊕ Δ1. Furthermore, we
can show that ε(f, s) ≤ 1/2 when E is a good block cipher3, and we can apply
Simon’s algorithm to recover Δ0 ⊕Δ1. This allows to create forgeries as follows:

1. Query the tag of m1 ‖ m1 for an arbitrary block m1;
2. The same tag is valid for m1 ⊕ Δ0 ⊕ Δ1 ‖ m1 ⊕ Δ0 ⊕ Δ1.

As mentioned in Sect. 4, the offsets in PMAC are defined as Δi = γ(i) · L,
with L = Ek(0) and γ a Gray encoding. This allows to recover L from Δ0 ⊕ Δ1,
as L = (Δ0 ⊕Δ1) · (γ(0) ⊕ γ(1))−1. Then we can compute all the values Δi, and
forge arbitrary messages.
3 Since this attack is just a special case of the LRW attack of Sect. 4, we don’t repeat

the detailed proof.

224 M. Kaplan et al.

We can also mount an attack without any assumption on ε(f, s), using Theo-
rem 2. Indeed, with a proper choice of parameters, Simon’s algorithm will return
a value t 	= 0 that satisfies Prx[f(x ⊕ t) = f(x)] ≥ 1/2. This value is not nec-
essarily equal to s, but it can also be used to create forgeries in the same way,
with success probability at least 1/2.

|b〉 Uα

|x〉

|0〉

C
B

C
-M

A
C

U−1
α |b〉

|x〉

|f(b, x)〉

Fig. 10. Simon’s function
for CBC-MAC.

|m〉

|0〉

|0〉

|0〉

P
M

A
C

|m〉

|0〉

|0〉

|f(b, x)〉

Fig. 11. Simon’s function for the second
attack against PMAC.

5.2 Randomized MAC: GMAC

GMAC is the underlying MAC of the widely used GCM standard, designed by
McGrew and Viega [36], and standardized by NIST. GMAC follows the Carter-
Wegman construction [16]: it is built from a universal hash function, using polyno-
mial evaluation in a Galois field. As opposed to the constructions of the previous
sections, GMAC is a randomized MAC; it requires a second input N , which must
be non-repeating (a nonce). GMAC is essentially defined as (Figs. 10 and 11):

GMAC(N,M) = GHASH(M ‖ len(M)) ⊕ Ek(N ‖ 1)

GHASH(M) =
len(M)∑

i=1

mi · H len(M)−i+1 with H = Ek(0),

where len(M) is the length of M .

Attack. When the polynomial is evaluated with Horner’s rule, the structure of
GMAC is similar to that of CBC-MAC (see Fig. 12). For a two-block message,
we have GMAC(m1 ‖ m2) =

(
(m1 · H) ⊕ m2

) · H ⊕ Ek(N ‖ 1). Therefore, we
us the same f as in the CBC-MAC attack, with fixed blocks α0 and α1:

fN : {0, 1} × {0, 1}n → {0, 1}n

b, x �→ GMAC(N,αb ‖ x) = αb · H2 ⊕ x · H ⊕ Ek(N ‖ 1).

Breaking Symmetric Cryptosystems Using Quantum Period Finding 225

0

m1

�H

m2

�H

len(M)

�H

Ek

N ‖ 1

τ

Fig. 12. GMAC

In particular, we have:

f(b′, x′) = f(b, x) ⇔ αb · H2 ⊕ x · H = αb′ · H2 ⊕ x′ · H

⇔
{

x′ ⊕ x = 0 if b′ = b

x′ ⊕ x = (α0 ⊕ α1) · H if b′ 	= b

Therefore fN satisfies the promise of Simon’s algorithm with s = 1 ‖ (α0⊕α1)·H.

Role of the Nonce. There is an important caveat regarding the use of the
nonce. In a classical setting, the nonce is chosen by the adversary under the con-
straint that it is non-repeating, i.e. the oracle computes N,M �→ GMAC(N,M).
However, in the quantum setting, we don’t have a clear definition of non-
repeating if the nonce can be in superposition. To sidestep the issue, we use
a weaker security notion where the nonce is chosen at random by the oracle,
rather than by the adversary (following the IND-qCPA definition of [13]). The
oracle is then M �→ (r,GMAC(r,M)). If we can break the scheme in this model,
the attack will also be valid with any reasonable CPA security definition.

In this setting we can access the function fN only for a random value of N . In
particular, we cannot apply Simon’s algorithm as is, because this requires O(n)
queries to the same function fN . However, a single step of Simon’s algorithm
requires a single query to the fN function, and returns a vector orthogonal to
s, for any random choice of N . Therefore, we can recover (α0 ⊕ α1) · H after
O(n) steps, even if each step uses a different value of N . Then, we can recover
H easily, and it is easy to generate forgeries when H is known:

1. Query the tag of N,m1 ‖ m2 for arbitrary blocks m1, m2 (under a random
nonce N).

2. The same tag is valid for m1 ⊕ 1 ‖ m2 ⊕ H (with the same nonce N).

As for CBC-MAC, repeating these two steps leads to an existential forgery
attack.

5.3 Classical Authenticated Encryption Schemes: GCM and OCB

We now give applications of Simon’s algorithm to break the security of stan-
dardized authenticated encryption modes. The attacks are similar to the attacks

226 M. Kaplan et al.

against authentication modes, but these authenticated encryption modes are
nonce-based. Therefore we have to pay special attention to the nonce, as in the
attack against GMAC. In the following, we assume that the nonce is randomly
chosen by the MAC oracle, in order to avoid issues with the definition of non-
repeating nonce in a quantum setting.

Extending MAC Attacks to Authenticated Encryption Schemes. We
first present a generic way to apply MAC attacks in the context of an authenti-
cated encryption scheme. More precisely, we assume that the tag of the authen-
ticated encryption scheme is computed as f(g(A), h(M,N)), i.e. the authenti-
cation of the associated data A is independent of the nonce N . This is the case
in many practical schemes (e.g. GCM, OCB) for efficiency reasons.

In this setting, we can use a technique similar to our attack against GMAC:
we define a function M �→ fN (M) for a fixed nonce N , such that for any nonce
N , fN (M) = fN (M⊕Δ) for some secret value Δ. Next we use Simon’s algorithm
to recover Δ, where each step of Simon’s algorithm is run with a random nonce,
and returns a vector orthogonal to Δ. Finally, we can recover Δ, and if fN was
carefully built, the knowledge of Δ is sufficient for a forgery attack.

The CCM mode is a notable exception, where all the computations depend
on the nonce. In particular, there is no obvious way to apply our attacks to CCM.

Extending GMAC Attack to GCM. GCM is one of the most widely used
authenticated encryption modes, designed by McGrew and Viega [36]. GMAC
is the composition of the counter mode for encryption with GMAC (computed
over the associated data and the ciphertext) for authentication.

In particular, when the message is empty, GCM is just GMAC, and we can use
the attack of the previous section to recover the hash key H. This immediately
allows a forgery attack.

OCB. OCB is another popular authenticated encryption mode, with a very
high efficiency, designed by Rogaway et al. [30,39,40]. Indeed, OCB requires
only � block cipher calls to process an �-block message, while GCM requires �
block cipher calls, and � finite field operations. OCB is build from the LRW
construction discussed in Sect. 4. OCB takes as input a nonce N , a message
M = m1 ‖ . . . ‖ m�, and associated data A = a1 ‖ . . . a@ , and returns a
ciphertext C = c1 ‖ . . . ‖ c� and a tag τ :

ci = Ek(mi ⊕ ΔN
i) ⊕ ΔN

i , τ = Ek

(
Δ′N

� ⊕
∑

mi

)
⊕
∑

bi, bi = Ek(ai ⊕ Δi).

Extending PMAC Attack to OCB. In particular, when the message is
empty, OCB reduces to a randomized variant of PMAC:

OCBk(N, ε,A) = φk(N) ⊕
∑

bi, bi = Ek(ai ⊕ Δi).

Breaking Symmetric Cryptosystems Using Quantum Period Finding 227

Note that the Δi values used for the associated data are independent of the
nonce N . Therefore, we can apply the second PMAC attack previously given,
using the following function:

fN : {0, 1}n → {0, 1}n

x �→ OCBk(N, ε, x ‖ x)
fN (x) = Ek(x ⊕ Δ0) ⊕ Ek(x ⊕ Δ1) ⊕ φk(N)

Again, this is a special case of the LRW attack of Sect. 4. The family of functions
satisfies fN (a ⊕ Δ0 ⊕ Δ1) = fN (a), for any N , and ε(fN ,Δ0 ⊕ Δ1) ≤ 1/2 with
overwhelming probability if E is a PRP. Therefore we can use the variant of
Simon’s algorithm to recover Δ0 ⊕ Δ1. Two messages with valid tags can then
be generated by a single classical queries:

1. Query the authenticated encryption C, τ of M,a ‖ a for an arbitrary message
M , and an arbitrary block a (under a random nonce N).

2. C, τ is also a valid authenticated encryption of M,a⊕Δ0 ⊕Δ1 ‖ a⊕Δ0 ⊕Δ1,
with the same nonce N .

Repeating these steps lead again to an existential forgery attack.

Alternative Attack Against OCB. For some versions of OCB, we can also
mount a different attack targeting the encryption part rather than the authen-
tication part. The goal of this attack is also to recover the secret offsets, but we
target the ΔN

i used for the encryption of the message. More precisely, we use
the following function:

fi : {0, 1}n → {0, 1}n

m �→ c1 ⊕ c2,where (c1, c2, τ) = OCBk(N,m ‖ m, ε)

fi(m) = Ek(m ⊕ ΔN
1) ⊕ ΔN

1 ⊕ Ek(m ⊕ ΔN
2) ⊕ ΔN

2

This function satisfies fN (m⊕ΔN
1 ⊕ΔN

2) = fN (m) and ε(fN ,ΔN
0 ⊕ΔN

1) ≤ 1/2,
with the same arguments as previously. Moreover, in OCB1 and OCB3, the
offsets are derived as ΔN

i = Φk(N) ⊕ γ(i) · Ek(0) for some function Φ (based on
the block cipher Ek). In particular, ΔN

1 ⊕ ΔN
2 is independent of N :

ΔN
1 ⊕ ΔN

2 = (γ(1) ⊕ γ(2)) · Ek(0).

Therefore, we can apply Simon’s algorithm to recover ΔN
1 ⊕ ΔN

2 . Again, this
leads to a forgery attack, by repeating the following two steps:

1. Query the authenticated encryption c1 ‖ c2, τ of m ‖ m,A for an arbitrary
block m, and arbitrary associated data A (under a random nonce N).

2. c2 ⊕ ΔN
0 ⊕ ΔN

1 ‖ c1 ⊕ ΔN
0 ⊕ ΔN

1 , τ is also a valid authenticated encryption of
m ⊕ ΔN

0 ⊕ ΔN
1 ‖ m ⊕ ΔN

0 ⊕ ΔN
1 , A with the same nonce N .

The forgery is valid because we swap the inputs of the first and second block
ciphers. In addition, we have

∑
mi =

∑
m′

i, so that the tag is still valid.

228 M. Kaplan et al.

5.4 New Authenticated Encryption Schemes: CAESAR Candidates

In this section, we consider recent proposals for authenticated encryption, sub-
mitted to the ongoing CAESAR competition. Secret key cryptography has a long
tradition of competitions: AES and SHA-3 for example, were chosen after the
NIST competitions organized in 1997 and 2007, respectively. The CAESAR com-
petition4 aims at stimulating research on authenticated encryption schemes, and
to define a portfolio of new authenticated encryption schemes. The competition
is currently in the second round, with 29 remaining algorithms.

First, we point out that the attacks of the previous sections can be used to
break several CAESAR candidates:

– CLOC [27] uses CBC-MAC to authenticate the message, and the associ-
ated data is processed independently of the nonce. Therefore, the CBC-MAC
attack can be extended to CLOC5.

– AEZ [25], COPA [4], OTR [37] and POET [1] use a variant of PMAC to
authenticate the associated data. In both cases, the nonce is not used to
process the associated data, so that we can extend the PMAC attack as we
did against OCB6.

– The authentication of associated data in OMD [18] and Minalpher [42] are
also variants of PMAC (with a PRF that is not block cipher), and the attack
can be applied.

In the next section, we show how to adapt the PMAC attack to Minalpher
and OMD, since the primitives are different.

Minalpher. Minalpher [42] is a permutation-based CAESAR candidate, where
the permutation is used to build a tweakable block-cipher using the tweak-
able Even-Mansour construction. When the message is empty (or fixed), the
authentication part of Minalpher is very similar to PMAC. With associated
data A = a1 ‖ . . . a@ , the tag is computed as:

bi = P (ai ⊕ Δi) ⊕ Δi τ = φk

(
N,M, a@ ⊕

@−1∑
i=1

bi

)

Δi = yi · L′ L′ = P (k ‖ 0) ⊕ (k ‖ 0)

where φk is a permutation (we omit the description of φk because it is irrelevant
for our attack). Since the tag is a function of a@ ⊕∑@−1

i=1 bi, we can use the same
attacks as against PMAC. For instance, we define the following function:

fN : {0, 1} × {0, 1}n → {0, 1}n

b, x �→ Minalpher(N, ε, αb ‖ x) = φk(N, ε, P (αb ⊕ Δ1) ⊕ Δ1 ⊕ x).

4 http://competitions.cr.yp.to/.
5 This is not the case for the related mode SILC, because the nonce is processed before

the data in CBC-MAC.
6 Note that AEZ, COPA and POET also claim security when the nonce is misused,

but our attacks are nonce-respecting.

http://competitions.cr.yp.to/

Breaking Symmetric Cryptosystems Using Quantum Period Finding 229

In particular, we have:

fN (b′, x′) = fN (b, x) ⇔ P (αb′ ⊕ Δ1) ⊕ x′ = P (αb ⊕ Δ1) ⊕ x

⇔
{

x′ ⊕ x = 0 if b′ = b

x′ ⊕ x = P (α0 ⊕ Δ1) ⊕ P (α1 ⊕ Δ1) if b′ 	= b

Since s = P (α0 ⊕ Δ1) ⊕ P (α1 ⊕ Δ1) is independent of N , we can easily apply
Simon’s algorithm to recover s, and generate forgeries.

OMD. OMD [18] is a compression-function-based CAESAR candidate. The
internal primitive is a keyed compression function denoted Fk. Again, when the
message is empty the authentication is very similar to PMAC. With associated
data A = a1 ‖ . . . a@ , the tag is computed as:

bi = Fk(ai ⊕ Δi) τ = φk(N,M) ⊕
∑

bi

We note that the Δi used for the associated data do not depend on the nonce.
Therefore we can use the second PMAC attack with the following function:

fN : {0, 1}n → {0, 1}n

x �→ OMD(N, ε, x ‖ x)
fN (x) = φk(N, ε) ⊕ Fk(x ⊕ Δ1) ⊕ Fk(x ⊕ Δ2)

This is the same form as seen when extending the PMAC attack to OCB, there-
fore we can apply the same attack to recover s = Δ1⊕Δ2 and generate forgeries.

6 Simon’s Algorithm Applied to Slide Attacks

In this section we show how Simon’s algorithm can be applied to a cryptanalysis
family: slide attacks. In this case, the complexity of the attack drops again expo-
nentially, from O(2n/2) to O(n) and therefore becomes much more dangerous.
To the best of our knowledge this is the first symmetric cryptanalytic technique
that has an exponential speed-up in the post-quantum world.

The Principle of Slide Attacks. In 1999, Wagner and Biryukov introduced
the technique called slide attack [7]. It can be applied to block ciphers made
of r applications of an identical round function R, each one parametrized by
the same key K. The attack works independently of the number of rounds, r.
Intuitively, for the attack to work, R has to be vulnerable to known plaintext
attacks.

The attacker collects 2n/2 encryptions of plaintexts. Amongst these couples
of plaintext-ciphertext, with large probability, he gets a “slid” pair, that is, a
pair of couples (P0, C0) and (P1, C1) such that R(P0) = P1. This immediately
implies that R(C0) = C1. For the attack to work, the function R needs to allow

230 M. Kaplan et al.

for an efficient recognition of such pairs, which in turns makes the key extraction
from R easy. A trivial application of this attack is the key-alternate cipher with
blocks of n bits, identical subkeys and no round constants. The complexity is then
approximately 2n/2. The speed-up over exhaustive search given by this attack is
then quadratic, similar to the quantum attack based on Grover’s algorithm.

This attack is successful, for example, to break the TREYFER block
cipher [47], with a data complexity of 232 and a time complexity of 232+12 = 244

(where 212 is the cost of identifying the slid pair by performing some key guesses).
Comparatively, the cost for an exhaustive search of the key is 264.

Exponential Quantum Speed-Up of Slide Attacks. We consider the attack
represented in Fig. 13. The unkeyed round function is denoted P and the whole
encryption function Ek.

P0

K

P

B

K

P1

P . . .

K

P

K

C0

P1

K

P

K

P . . .

K

C0

P

A

K

C1

Fig. 13. Representation of a slid-pair used in a slide attack.

We define the following function:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x �→
{

P (Ek(x)) ⊕ x if b = 0,

Ek(P (x)) ⊕ x if b = 1.

The slide property shows that all x satisfy P (Ek(x)) ⊕ k = Ek(P (x ⊕ k)). This
implies that f satisfies the promise of Simon’s problem with s = 1 ‖ k:

f(0, x) = P (Ek(x)) ⊕ x = Ek(P (x ⊕ k)) ⊕ k ⊕ x = f(1, x ⊕ k).

In order to apply Theorem1, we bound ε(f, 1 ‖ k), assuming that both Ek◦P and
P ◦Ek are indistinguishable from random permutations. If ε(f, 1 ‖ k) > 1/2, there
exists (τ, t) with (τ, t) 	∈ {(0, 0), (1, k)} such that: Pr[f(b, x) = f(b ⊕ τ, x ⊕ t)] >
1/2. Let us assume τ = 0. This implies

Pr[f(0, x) = f(0, x ⊕ t)] > 1/2 or Pr[f(1, x) = f(1, x ⊕ t)] > 1/2,

Breaking Symmetric Cryptosystems Using Quantum Period Finding 231

which is equivalent to

Pr[P (Ek(x)) = P (Ek(x ⊕ t)) ⊕ t] > 1/2 or Pr[Ek(P (x)) = Ek(P (x ⊕ t)) ⊕ t] > 1/2.

In particular, there is a differential in P ◦ Ek or Ek ◦ P with probability 1/2.
Otherwise, τ = 1. This implies

Pr[P (Ek(x)) ⊕ x = Ek(P (x ⊕ t)) ⊕ x ⊕ t] > 1/2
i.e. Pr[Ek(P (x ⊕ k)) ⊕ k = Ek(P (x ⊕ t)) ⊕ t] > 1/2.

Again, it means there is a differential in Ek ◦ P with probability 1/2.
Finally we conclude that ε(f, 1 ‖ k) ≤ 1/2, unless Ek ◦ P or P ◦ Ek have

differentials with probability 1/2. If Ek behave as a random permutation, Ek ◦P
and P ◦ Ek also behave as random permutations, and these differential are only
found with negligible probability. Therefore, we can apply Simon’s algorithm,
following Theorem 1, and recover k (Fig. 14).

|b〉

|x〉

|0〉

P

Ek

X

P

X

(P −1)
b

|b〉

|x〉

|f(b, x)〉

Fig. 14. Simon’s function for slide attacks. The X gate is the quantum equivalent of
the NOT gate that flips the qubit |0〉 and |1〉.

7 Conclusion

We have been able to show that symmetric cryptography is far from ready for
the post quantum world. We have found exponential speed-ups on attacks on
symmetric cryptosystems. In consequence, some cryptosystems that are believed
to be safe in a classical world become vulnerable in a quantum world.

With the speed-up on slide attacks, we provided the first known exponential
quantum speed-up of a classical attack. This attack now becomes very power-
ful. An interesting follow-up would be to seek other such speed-ups of generic
techniques. For authenticated encryption, we have shown that many modes of
operations that are believed to be solid and secure in the classical world, become
completely broken in the post-quantum world. More constructions might be bro-
ken following the same ideas.

232 M. Kaplan et al.

Acknowledgements. We would like to thank Thomas Santoli and Christian Schaffner
for sharing an early stage manuscript of their work [41], Michele Mosca for discussions
and LTCI for hospitality. This work was supported by the Commission of the Euro-
pean Communities through the Horizon 2020 program under project number 645622
PQCRYPTO. MK acknowledges funding through grants ANR-12-PDOC-0022-01 and
ESPRC EP/N003829/1.

A Proof of Theorem1

The proof of Theorem 1 is based of the following lemma.

Lemma 1. For t ∈ {0, 1}n, consider the function g(x) := 2−n
∑

y∈t⊥(−1)x·y,
where t⊥ = {y ∈ {0, 1}n s.t. y · t = 0}. for any x, it satisfies

g(x) =
1
2
(δx,0 + δx,t). (2)

Proof. If t = 0 then g(x) =
∑

y∈{0,1}n(−1)x·y = δ(x, 0), which proves the claim.
From now on, assume that t 	= 0. It is straightforward to check that g(0) =
g(t) = 1

2 because all the terms of the sum are equal to 1 and there are 2n−1

vectors y orthogonal to t. Since
∑

x∈{0,1}n g(x) = 1, it is sufficient to prove that
g(x) ≥ 0 to establish the claim in the case t 	= 0. For this, decompose g(x) into
two terms:

g(x) =
∑

y∈E0

(−1)x·y −
∑

y∈E1

(−1)x·y = |E0| − |E1|,

where Ei := {y ∈ {0, 1}n s.t. y · x = i and y · y = 0} for i = 0, 1. Simple counting
shows that:

|E0| =

⎧⎨
⎩

2n−1 if x = 0,
2n−1 if x = t,
2n−2 otherwise.

In particular, |E0| ≥ |E1| which implies that g(x) ≥ 0.

We are now ready to prove Theorem 1. Each call to the main subroutine
of Simon’s algorithm will return a vector ui. If cn calls are made, one obtains
cn vectors u1, . . . , ucn. By construction, f is such that f(x) = f(x ⊕ s) and
consequently, the cn vectors u1, . . . , ucn are all orthogonal to s. The algorithm
is successful provided one can recover the value of s unambiguously, which is the
case if the cn vectors span the (n − 1)-dimensional space orthogonal to s. (Let
us note that if the space is (n − d)-dimensional for some constant d, one can
still recover s efficiently by testing all the vectors orthogonal to the subspace.)
In other words, the failure probability pfail is

Breaking Symmetric Cryptosystems Using Quantum Period Finding 233

pfail = Pr[dim
(
Span(u1, . . . , un)

) ≤ n − 2]

≤ Pr[∃t ∈ {0, 1}n \ {0, s} s.t. u1 · t = u2 · t = · · · = ucn · t = 0]

≤
∑

t∈{0,1}n\{0,s}
Pr[u1 · t = u2 · t = · · · = ucn · t = 0]

≤
∑

t∈{0,1}n\{0,s}

(
Pr[u1 · t = 0]

)cn

≤ max
t∈{0,1}n\{0,s}

(
2Pr[u1 · t = 0]c

)n

where the second inequality results from the union bound and the third inequal-
ity follows from the fact that the results of the cn subroutines are independent.

In order to establish the theorem, it is now sufficient to show that Pr[u ·t = 0]
is bounded away from 1 for all t, where u is the vector corresponding to the
output of Simon’s subroutine. We will prove that for all t ∈ {0, 1}n \ {0, s}, the
following inequality holds:

Pru[u · t = 0] =
1
2
(
1 + Prx[f(x) = f(x ⊕ t)]

) ≤ 1
2
(1 + ε(f, s)) ≤ 1

2
(1 + p0). (3)

In Simon’s algorithm, one can wait until the last step before measuring both
registers. The final state before measurement can be decomposed as:

2−n
∑

x∈{0,1}n

∑
y∈{0,1}n

(−1)x·y|y〉|f(x)〉 =2−n
∑

y∈{0,1}n

s.t. y·t=0

∑
x∈{0,1}n

(−1)x·y|y〉|f(x)〉

+ 2−n
∑

y∈{0,1}n

s.t. y·t=1

∑
x∈{0,1}n

(−1)x·y|y〉|f(x)〉.

The probability of obtaining u such that u · t = 0 is given by

Pru[u · t = 0] =
∥∥∥2−n

∑
y∈{0,1}n

s.t. y·t=0

|y〉
∑

x∈{0,1}n

(−1)x·y|f(x)〉
∥∥∥2

= 2−2n
∑

y∈{0,1}n

s.t. y·t=0

∑
x,x′∈{0,1}n

(−1)(x⊕x′)·y〈f(x′)|f(x)〉

= 2−2n
∑

x,x′∈{0,1}n

〈f(x′)|f(x)〉
∑

y∈{0,1}n

s.t. y·t=0

(−1)(x⊕x′)·y

= 2−2n
∑

x,x′∈{0,1}n

〈f(x′)|f(x)〉2n−1(δx,x′ + δx′,x⊕t) (4)

234 M. Kaplan et al.

= 2−(n+1)

⎡
⎣ ∑

x∈{0,1}n

〈f(x)|f(x)〉 +
∑

x∈{0,1}n

〈f(x ⊕ t)|f(x)〉
⎤
⎦ (5)

=
1
2

[1 + Prx[f(x) = f(x ⊕ t)] (6)

where we used Lemma 1 proven in the appendix in Eq. 4, and δx,x′ = 1 if x = x′

and 0 otherwise.

B Proof of Theorem 2

Let t be a fixed value and pt = Prx[f(x ⊕ t = f(t)]. Following the previous
analysis, the probability that the cn vectors ui are orthogonal to t can be written
as Pr[u1 · t = u2 · t = · · · = ucn · t = 0] =

(
1+pt

2

)cn
.

In particular, we can bound the probability that Simon’s algorithm returns
a value t with pt < p0:

Pr[pt < p0] =
∑

t: pt<p0

(
1 + pt

2

)cn

≤ 2n ×
(

1 + p0
2

)cn

.

References

1. Abed, F., Fluhrer, S.R., Forler, C., List, E., Lucks, S., McGrew, D.A., Wenzel, J.:
Pipelineable on-line encryption. In: Cid and Rechberger [17], pp. 205–223. http://
dx.doi.org/10.1007/978-3-662-46706-0 11

2. Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C., Jules,
M.S.: Computational security of quantum encryption. arXiv preprint (2016).
arXiv:1602.01441

3. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of
the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T., et al.
(eds.) PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Heidelberg (2016).
http://dx.doi.org/10.1007/978-3-319-29360-8 4

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg
(2013). http://dx.doi.org/10.1007/978-3-642-42033-7 22

5. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chain-
ing message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000).
http://dx.doi.org/10.1006/jcss.1999.1694

6. Bernstei, D.J.: Introduction to post-quantum cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 1–14. Springer,
Heidelberg (2009)

7. Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999). http://dx.doi.org/10.1007/
3-540-48519-8 18

8. Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000).
http://dx.doi.org/10.1007/3-540-45539-6 41

http://dx.doi.org/10.1007/978-3-662-46706-0_11
http://dx.doi.org/10.1007/978-3-662-46706-0_11
http://arxiv.org/abs/1602.01441
http://dx.doi.org/10.1007/978-3-319-29360-8_4
http://dx.doi.org/10.1007/978-3-642-42033-7_22
http://dx.doi.org/10.1006/jcss.1999.1694
http://dx.doi.org/10.1007/3-540-48519-8_18
http://dx.doi.org/10.1007/3-540-48519-8_18
http://dx.doi.org/10.1007/3-540-45539-6_41

Breaking Symmetric Cryptosystems Using Quantum Period Finding 235

9. Black, J.A., Rogaway, P.: CBC MACs for arbitrary-length messages: the three-key
constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000). http://dx.doi.org/10.1007/3-540-44598-6 12

10. Black, J.A., Rogaway, P.: A block-cipher mode of operation for par-
allelizable message authentication. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-46035-7 25

11. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-25385-0 3

12. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–
608. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-38348-9 35

13. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in
a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-40084-1 21

14. Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.: Merkle
puzzles in a quantum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 391–410. Springer, Heidelberg (2011)

15. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
t-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 609–629. Springer, Heidelberg (2015)

16. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract).
In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 9th
Annual ACM Symposium on Theory of Computing, Boulder, Colorado, USA, 4–6
May 1977, pp. 106–112. ACM (1977). http://doi.acm.org/10.1145/800105.803400

17. Cid, C., Rechberger, C. (eds.): FSE 2014. LNCS, vol. 8540. Springer, Heidelberg
(2015). http://dx.doi.org/10.1007/978-3-662-46706-0

18. Cogliani, S., Maimuţ, D., Naccache, D., do Canto, R.P., Reyhanitabar, R.,
Vaudenay, S., Vizár, D.: OMD: a compression function mode of operation for
authenticated encryption. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS,
vol. 8781, pp. 112–128. Springer, Heidelberg (2014). http://dx.doi.org/10.1007/
978-3-319-13051-4 7

19. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. J. Math. Crypt. 1(3), 221–242 (2007). http://dx.doi.org/10.1515/
JMC.2007.011

20. Damg̊ard, I., Funder, J., Nielsen, J.B., Salvail, L.: Superposition attacks on cryp-
tographic protocols. In: Padró, C. (ed.) ICITS 2013. LNCS, vol. 8317, pp. 142–161.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-04268-8 9

21. Dworkin, M.: Recommendation for block cipher modes of operation: the CMAC
mode for authentication. NIST Special Publication 800–38B, National Institute for
Standards and Technology, May 2005

22. Even, S., Mansour, Y.: A construction of a cipher from a single pseudoran-
dom permutation. J. Crypt. 10(3), 151–162 (1997). http://dx.doi.org/10.1007/
s001459900025

23. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguisha-
bility in the quantum world. arXiv preprint (2015). arXiv:1504.05255

http://dx.doi.org/10.1007/3-540-44598-6_12
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-38348-9_35
http://dx.doi.org/10.1007/978-3-642-40084-1_21
http://doi.acm.org/10.1145/800105.803400
http://dx.doi.org/10.1007/978-3-662-46706-0
http://dx.doi.org/10.1007/978-3-319-13051-4_7
http://dx.doi.org/10.1007/978-3-319-13051-4_7
http://dx.doi.org/10.1515/JMC.2007.011
http://dx.doi.org/10.1515/JMC.2007.011
http://dx.doi.org/10.1007/978-3-319-04268-8_9
http://dx.doi.org/10.1007/s001459900025
http://dx.doi.org/10.1007/s001459900025
http://arxiv.org/abs/1504.05255

236 M. Kaplan et al.

24. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp.
212–219. ACM (1996). http://doi.acm.org/10.1145/237814.237866

25. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46800-5 2

26. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003).
http://dx.doi.org/10.1007/978-3-540-39887-5 11

27. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: authenticated encryption
for short input. In: Cid and Rechberger [17] , pp. 149–167. http://dx.doi.org/10.
1007/978-3-662-46706-0 8

28. Kaplan, M.: Quantum attacks against iterated block ciphers. CoRR abs/1410.1434
(2014). http://arxiv.org/abs/1410.1434

29. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. CoRR abs/1510.05836 (2015). http://arxiv.org/abs/1510.
05836

30. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). http://dx.doi.org/10.1007/978-3-642-21702-9 18

31. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel
cipher and the random permutation. In: 2010 IEEE International Symposium on
Information Theory Proceedings (ISIT), June 2010, pp. 2682–2685 (2010)

32. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher.
In: 2012 International Symposium on Information Theory and Its Applications
(ISITA), October 2012, pp. 312–316 (2012)

33. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Crypt. 24(3),
588–613 (2011). http://dx.doi.org/10.1007/s00145-010-9073-y

34. Luby, M., Rackoff, C.: How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988).
http://dx.doi.org/10.1137/0217022

35. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hack-
ing commercial quantum cryptography systems by tailored bright illumination.
Nat. Photonics 4(10), 686–689 (2010)

36. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004).
http://dx.doi.org/10.1007/978-3-540-30556-9 27

37. Minematsu, K.: Parallelizable Rate-1 authenticated encryption from
pseudorandom functions. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 275–292. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-642-55220-5 16

38. Montanaro, A., de Wolf, R.: A survey of quantum property testing. arXiv preprint
(2013). arXiv:1310.2035

39. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol.
3329, pp. 16–31. Springer, Heidelberg (2004). http://dx.doi.org/10.1007/978-3-
540-30539-2 2

http://doi.acm.org/10.1145/237814.237866
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-662-46706-0_8
http://dx.doi.org/10.1007/978-3-662-46706-0_8
http://arxiv.org/abs/1410.1434
http://arxiv.org/abs/1510.05836
http://arxiv.org/abs/1510.05836
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/s00145-010-9073-y
http://dx.doi.org/10.1137/0217022
http://dx.doi.org/10.1007/978-3-540-30556-9_27
http://dx.doi.org/10.1007/978-3-642-55220-5_16
http://arxiv.org/abs/1310.2035
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-30539-2_2

Breaking Symmetric Cryptosystems Using Quantum Period Finding 237

40. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of oper-
ation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P. (eds.)
CCS 2001, Proceedings of the 8th ACM Conference on Computer and Communica-
tions Security, Philadelphia, Pennsylvania, USA, 6–8 November 2001, pp. 196–205.
ACM (2001). http://doi.acm.org/10.1145/501983.502011

41. Santoli, T., Schaffner, C.: Using simon’s algorithm to attack symmetric-key cryp-
tographic primitives. arXiv preprint (2016). arXiv:1603.07856

42. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M., Hirose, S.: Minalpher v1.1. CAESAR submission, August 2015

43. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
http://dx.doi.org/10.1137/S0097539795293172

44. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5),
1474–1483 (1997)

45. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 755–784. Springer, Heidelberg (2015). Preprint on IACR ePrint 2014/587

46. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in
a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

47. Yuval, G.: Reinventing the travois: Encryption/MAC in 30 ROM bytes. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 205–209. Springer, Heidelberg (1997).
http://dx.doi.org/10.1007/BFb0052347

48. Zhandry, M.: How to construct quantum random functions. In: 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, 20–23 October 2012, pp. 679–687. IEEE Computer Society (2012). http://
dx.doi.org/10.1109/FOCS.2012.37

49. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. Int. J. Quan. Inf. 13(04), 1550014 (2015)

50. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimen-
tal demonstration of time-shift attack against practical quantum-key-distribution
systems. Phys. Rev. A 78(4), 042333 (2008)

http://doi.acm.org/10.1145/501983.502011
http://arxiv.org/abs/1603.07856
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1007/BFb0052347
http://dx.doi.org/10.1109/FOCS.2012.37
http://dx.doi.org/10.1109/FOCS.2012.37

Hardware-Oriented Cryptography

Efficiently Computing Data-Independent
Memory-Hard Functions

Joël Alwen1 and Jeremiah Blocki2,3(B)

1 IST Austria, Klosterneuburg, Austria
2 Microsoft Research, Cambridge, USA

jblocki@microsoft.com
3 Purdue, West Lafayette, USA

Abstract. A memory-hard function (MHF) f is equipped with a space
cost σ and time cost τ parameter such that repeatedly computing fσ,τ

on an application specific integrated circuit (ASIC) is not economically
advantageous relative to a general purpose computer. Technically we
would like that any (generalized) circuit for evaluating an iMHF fσ,τ has
area × time (AT) complexity at Θ(σ2 ∗ τ). A data-independent MHF
(iMHF) has the added property that it can be computed with almost
optimal memory and time complexity by an algorithm which accesses
memory in a pattern independent of the input value. Such functions can
be specified by fixing a directed acyclic graph (DAG) G on n = Θ(σ ∗ τ)
nodes representing its computation graph.

In this work we develop new tools for analyzing iMHFs. First we
define and motivate a new complexity measure capturing the amount of
energy (i.e. electricity) required to compute a function. We argue that,
in practice, this measure is at least as important as the more traditional
AT-complexity. Next we describe an algorithm A for repeatedly evalu-
ating an iMHF based on an arbitrary DAG G. We upperbound both its
energy and AT complexities per instance evaluated in terms of a certain
combinatorial property of G.

Next we instantiate our attack for several general classes of DAGs
which include those underlying many of the most important iMHF can-
didates in the literature. In particular, we obtain the following results
which hold for all choices of parameters σ and τ (and thread-count) such
that n = σ ∗ τ .
– The Catena-Dragonfly function of [FLW13] has AT and energy com-

plexities O(n1.67).
– The Catena-Butterfly function of [FLW13] has complexities is

O(n1.67).
– The Double-Buffer and the Linear functions of [CGBS16] both have

complexities in O(n1.67).
– The Argon2i function of [BDK15] (winner of the Password Hashing

Competition [PHC]) has complexities O(n7/4 log(n)).
– The Single-Buffer function of [CGBS16] has complexities

O(n7/4 log(n)).
– Any iMHF can be computed by an algorithm with complexities

O(n2/ log1−ε(n)) for all ε > 0. In particular when τ = 1 this shows

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 241–271, 2016.
DOI: 10.1007/978-3-662-53008-5 9

242 J. Alwen and J. Blocki

that the goal of constructing an iMHF with AT-complexity Θ(σ2 ∗ τ)
is unachievable.

Along the way we prove a lemma upper-bounding the depth-robustness
of any DAG which may prove to be of independent interest.

1 Introduction

Moderately hard to compute functions have proven to be useful security prim-
itives. In this work we focus on “memory-hard functions” (MHF) introduced
in [Per09]. These aim to serve as password hashing algorithms for storing pass-
words in a login system, as Key Derivation Functions (also called “key stretch-
ing” functions) for password-based cryptography and for building Proof-of-Effort
protocols (in particular for use in cryptocurrencies such as Litecoin [Cha11,Bil13]
and others). In each case the main security property we would like to achieve for
the MHF is that brute-force attacks (i.e. evaluating the MHF on many inputs)
using an application-specific integrated circuit (ASIC) should not be economi-
cally viable.

1.1 Memory-Hard Functions and Their Complexity

We interpret this intuitive goal in two ways. Either the cost of building the ASIC
should be prohibitively expensive (in terms of say USD) or the cost of running
the ASIC should be prohibitively expensive. In fact, given that the former is
a one-time cost which can be amortized over the life-time of the device while
the later is a recurring cost, it may often be the case that the later is the most
interesting goal to achieve.

The cost of building a circuit is often approximated by its AT-complexity
[Tho79,BL13,BK15,AS15]; that is the product of the area of the chip and the
time it takes the chip to produce the output. In this work we consider MHFs
built as modes of operation over an underlying compression function H. Thus,
we measure time in units of tocks; namely the time it takes to evaluate one
instance of H from start to finish1. We measure area in units of “memory-area”
(MAr); namely the area required to store one output of H (called a block).
Finally we parametrize our AT-complexity notion ATR with the core-memory
area ratio [BK15] R > 0, a positive real denoting the number of MAr required
to implement one copy of H.2

To estimate the cost of running the chip we will use a new notion which
we call the “energy-complexity” or E-complexity of the circuit. Intuitively, it
approximates the energy (say in kilo-Watt-hours) used in an execution of the
chip. More precisely the unit of measure for E-complexity is a “memory-Watt-
tock” (MWt) – the number of kWh it takes to store one block for one tock. We
also parametrize the complexity notion ER̄ with the core-memory energy ratio,
1 I.e. without considering pipelining and other such amortized optimizations.
2 This allows our analysis to be applied regardless of the particular VLSI technology

employed and the particular implementation of H used when constructing the ASIC.

Efficiently Computing Data-Independent Memory-Hard Functions 243

a positive real R̄ > 0 which is the number of MWt required to evaluate one
instance of H.

To see why this is an interesting measure for achieving our stated security goal
consider the case of password hashing. (The case for KDFs follows essentially the
same reasoning.) Suppose an attacker manages to pilfer the credentials file from
a login-server and now executes an off-line brute-force attack A implemented
in an ASIC with core-memory energy ratio R̄ using ER̄(A) MWt per password
guess. We model the monetary income from such an attack as being proportional
to the number of password guesses made which we denote by #eval.3 Conversely,
we model the running cost as being proportional to the electricity consumed by
the ASIC while executing the attack, namely its ER̄-complexity times #eval.
The attacker can always increase income (i.e. increase #eval) simply by adding
more implementations of A to the ASIC or running the ASIC for more time.
Therefore, the attack is profitable (in this model) if and only if the USD cost c
of one MWt and the income i per password guess are such that i > c ∗ ER̄(A).
Thus we can use ER̄(A) as a key indicator for which ranges of (c, i) an attack is
economically viable.

Quality of an Attack. A candidate MHF F is specified via an algorithm which
evaluates it. (E.g. [Per09,FLW13,BDK15].) We refer to this algorithm as the
näıve algorithm N for F and it is understood to be the algorithm used by the
honest party. N is intended to be an algorithm that can be evaluated efficiently
on typical (i.e. general purpose) computer architectures — where we may not
be able to evaluate H multiple times in parallel. As usual, we are interested in
what advantage an adversarial evaluation algorithm can have over the honest
party. Therefore, one measure of the quality of a given algorithm A for evaluating
(multiple instances of) an MHF F is to compare its complexity to that of N .
In particular for given core-memory ratios R and R̄ the AT -quality and energy-
quality of A are given by

AT-qualityR(A) =
ATR(N)
ATR(A)

and E-qualityR̄(A) =
ER̄(N)
ER̄(A)

.

Here, ATR(A) (resp. ER̄(A)) measures the amortized AT complexity
(resp. amortized energy complexity).4 That is ATR(A) is smallest ATR complex-
ity of a chip implementing A divided by #inst(A) — the number of instances of
F computed in an execution of A. We consider A an “attack” if either one of these
qualitymeasures is greater than 1. (However we remark that all attacks in this work
have both qualities simultaneously tending towards infinity as #inst grows.)

Data-Independent and Ideal MHFs. An data-independent memory-hard func-
tion (iMHF) is a function f for which the associated näıve algorithm N , on

3 Intuitively, the more passwords guesses made the higher the expected number of
password (equivalents) recovered by the adversary which can then be monetized.

4 Generally, unless explicitly specified otherwise, we are only interested in the amortized
AT and energy complexities per instance of the MHF computed.

244 J. Alwen and J. Blocki

input x, computes f(x) using a memory access pattern that is independent of
x. These take on special importance in applications where the MHF is to be
evaluated on secret input in an (at least somewhat) hostile environment. This
is because (in contrast to their siblings data-dependent MHFs) it is much easier
to implement an iMHF in such a way that it avoids information leakage via cer-
tain side-channel attacks such as Timing attacks. In these attacks, the variation
in the time taken to perform certain operations is used to deduce information
about the inputs upon which the MHF is being evaluated. Similar attacks have
in the past been mounted by local adversarial processes [BM06], adversarial vir-
tual machines in a cloud environment [RTSS09] or even completely remotely
[Ber,ASK07]. Therefore, in the context of both KDFs and password hashing
data-independence is a desirable property. All MHFs considered in this work are
of this form.

In general, an iMHF f can be described via a fixed DAG G representing
its computation graph. Each node represents an intermediary value, which is
computed via some deterministic round function, using the values represented
by the parent nodes in G (e.g. via a single call to H). The source node of G
represents the input x while f(x), the output of the computation, is the value
represented by the sink node.

Let f be an iMHF given by some DAG G of size n with constant in-degree.
There exists a trivial algorithm triv which can always compute f with AT and
energy complexities Θ(n2).5 Given a constant c > 1 we consider f to be a c-ideal
iMHF if, when we take the näıve algorithm to be triv, there exist no attack A on
f with better quality than c (i.e. ∀A E-qualityR̄(A) ≤ c and AT-qualityR(A) ≤ c).
A primary goal of research in this field is to find an ideal iMHF.6

1.2 MHF Candidates

Due to the growing interest in MHFs there are a number of candidate functions.
For example in the recently completed Password Hashing Competition [PHC]
most entrants claimed some form of memory-hardness. The goal of the PHC was
to select a winning algorithm to act as a new standard for password hashing.

Catena. To the best of our knowledge the earliest candidate iMHF is the PHC
finalist Catena [FLW13]. It received special recognition for its agile framework
and its resistance to side-channel attacks. In [FLW13] the authors proposed two
different DAGs giving rise two separate functions. The first, called Catena Bit
Reversal, is based on an λ-layered graph BRGn

λ with n nodes. The second is called
Catena Double Butterfly and is based on a different O

(
λ log n

)
-layered graph

DBGn
λ. The Catena designers recommended choosing λ ∈ {1, 2, 3, 4} [FLW13].

5 Simply compute each intermediary value in topological order, one value at a time,
storing all results in memory until the computation is complete.

6 Hopefully one permuting as simple as possible an explicit description and näıve
implementation and as lightweight as possible round-function.

Efficiently Computing Data-Independent Memory-Hard Functions 245

Argon2. One of the most important MHF candidates is Argon2 [BDK15].
Notably, it is the winner of the Password Hashing Competition [PHC]. Argon2
is equipped with a data-dependent mode of operation and an independent mode
which is called Argon2i. Argon2i is recommended for password hashing.

Balloon Hashing. Most recently, three new candidate iMHFs are proposed
in [CGBS16]. These are called the Single-Buffer (SB), Double-Buffer and Lin-
ear constructions respectively and are jointly referred to as the Balloon Hashing
constructions. The authors provide strong evidence for the memory-hardness of
all three candidates albeit assuming the absence of parallelism.

In general iMHF candidates are equipped with a space-cost parameter σ
(in which the memory required per evaluation is intended to scale) and a time-
cost parameter τ (in which the time required for an evaluation is intended to
scale). Additionally, Argon2i, the Double-Buffer and the Linear functions are also
equipped with a parallelism parameter φ the property that the näıve algorithm
can make efficient use of (up to) φ concurrent threads. Viewing these functions
as DAGs gives rise to a graph on n = σ ∗ τ nodes with depth n/φ. The hope is
that for all settings of (σ, τ, φ) the AT and energy complexity lie in Θ(σ2 ∗ τ/φ).

1.3 Our Contributions

In this work we introduce and motivate the notion of (amortized) energy
complexity. Next we give a generic evaluation algorithm PGenPeb for data-
independent iMHFs based on arbitrary DAG G. We analyze PGenPeb’s energy
and AT complexities in terms of a combinatorial property of G. In particular, we
obtain an attack against any iMHF for which G is not depth-robust. Informally,
a DAG G is not depth-robust if there is a relatively small set S of nodes such
that after removing S from G the resulting graph (denoted G−S) has low depth
(i.e. contains only short paths).

We instantiate the attack for various classes of DAGs. In particular, we
exhibit a “depth-reducing” node set S for the Argon2i DAG, both types of
Catena DAGs and all three Balloon Hashing DAGs. For example, for any para-
meters (σ, τ, φ = 1) with n = σ ∗ τ we obtain an attack on both Catena, the
Double-Buffer and the Linear iMHFs with quality Ω

(
n1/3

)
. Similarly we demon-

strate an attack on Argon2i and the Single-Buffer iMHF with quality Ω
(

n1/4

lnn

)
.7

In fact we demonstrate that no DAG with constant indegree is sufficiently
depth-robust to completely resist the attack. More precisely, we show that any
iMHF is at best c-ideal for c = Ω

(
log1−ε n

)
and any ε > 0. In particular this

means that ideal iMHFs, as described above, do not exist.

7 For the cases when φ > 1 PGenPeb maintains the same complexities but the result-
ing quality decreases somewhat as the complexity of the näıve algorithm improves
for Argon2i, the Double-Buffer and the Linear functions. In other words quality
decreases not because memory-hardness increases but because the honest algorithm
becomes more efficient.

246 J. Alwen and J. Blocki

General Attack on Non-depth Robust DAGs. We first present in Sect. 3, a generic
evaluation algorithm GenPeb which takes as inputs a node subset S. Because G is
not depth-robust there exists a small set S of nodes such that d = depth(G−S) is
relatively small. The basic idea behind our attack is to divide computation steps
into two phases: balloon phases and light phases. Each light phase lasts roughly
g � d time steps. During light phases we discard most of the values that we
have computed from memory keeping only values corresponding to nodes in S,
the highest node i whose value has been computed and the parents of the nodes
whose values we plan to compute in the next g time steps. As the name suggests,
light phases are cheap. Our memory usage is low during these light phases and
we will compute one instance of the round function (e.g. call to H) during each
time step. During a Balloon Phase we quickly restore all of the discarded values
to memory so that we can complete the next light phase. Unlike light phases,
the balloon phases are more expensive because we are storing up to O(n) values
in memory and because we will often make multiple calls to the round function
in parallel. However, the key observation is that we will not incur these higher
cost in too many time steps. In particular, because the graph G − S has small
depth d � g and we never discard values for nodes in S the Balloon Phase can
be completed very quickly (i.e., in at most d � g times steps) by making parallel
calls to the round function.

While for any non-depth-robust graph the GenPeb algorithm has good energy
complexity, obtaining an evaluation algorithm with low AT-complexity requires a
bit more work. Notice that during a light phase most of the memory capacity and
round function implementations needed for a balloon phase are no longer being
used. Moreover light phases run for significantly more time than the balloon
phases. These observations give rise to the low AT-complexity parallel algorithm
PGenPeb which evaluates g/d instances of the iMHF concurrently such that
at any given time only a single instance is in a balloon phase while all other
instances are in light phases. Intuitively this results in more efficient use of
available hardware while technically we get that the energy complexity of the
algorithm is approximately equal to the AT complexity (Theorem3).

Stacked Sandwich Graphs. In Sect. 4 we focus on two classes of DAGs called
(strict) stacked sandwich graphs. Informally, a DAG G is a λ-stacked sandwich
DAG if the nodes can be partitioned into λ+1 layers such that, with the possible
exception of node i, all of the parents of node i + 1 are from previous layers.
These classes include the DAGs implicit to both Catena iMHFs as well as the
Double-Buffer and Linear iMHFs. We prove that no λ-stacked sandwich graph
is depth-robust (Lemma 1). For any t > 1 there is a set S of n/t nodes such that
depth(G − S) ≤ (λ + 1)t.

(n, δ, w)-Random Graphs. In Sect. 5 we turn to a class of random graphs called
(n, δ, w)-random DAGs. We remark that the graphs implicit to Argon2i and the
Single-Buffer iMHF (for a randomly chosen salt) fall into this category of random
DAGs. We show (in Lemma 4) that, with high probability, by removing just a
few nodes these graphs can be transformed into stacked sandwich graphs and
are thus not depth-robust.

Efficiently Computing Data-Independent Memory-Hard Functions 247

Attack on any iMHF. In Sect. 6 we prove that no DAG with constant indegree
is sufficiently depth-robust to resist at least some form of attack (Theorem 8).
In our proof, we rely on a result due to Valiant [Val77] which states that for
any DAG G with m edges and depth d there is a set S of m/ log d edges s.t.
by deleting them we obtain a graph of depth at most d/2 (see Lemma 6). Given
ε > 0 we can repeatedly apply this result obtain a set S of o

(
δn

log1−ε n

)
nodes

s.t depth(G − S) ≤ n
log2 n

. Thus if we let the näıve algorithm be (any algorithm
complexity comparable to) triv then we have a generic attack A with quality
AT-qualityR(A) = Ω

(
δ−1 log1−ε n

)
and ER̄(A) = Ω

(
δ−1 log1−ε n

)
.

Exact Security Analysis. Finally we present exact bounds for the energy and
AT complexities of all of our attacks. Our analysis demonstrate that our attacks
have high quality for practical values of n and R̄ — not just as n → ∞. For
example setting n = 218 we already have an attack A against Argon2i with
AT-qualityR(A), E-qualityR̄(A) > 1 — using a realistic value R̄ = 3, 000. In
general, E-qualityR̄(A) will increase as n increases or as R̄ decreases.

1.4 Related Work

The intuitive goal of constructing functions for which VLSI implementations are
prohibitively expensive was first laid out by Percival in [Per09]. This property was
formalized by asking that evaluating such a function on a PRAM requires large
ST-complexity. In particular evaluation algorithms with low amortized complex-
ity such as those in this work were not considered. Percival also introduced the
first, and currently most widely deployed, candidate MHF called scrypt. A
full proof of security under a strong security definition remains a central open
problem in the area. However recently significant progress has been made in this
direction in [ACK+16]. It is interesting to note though that despite scrypt being
data-dependent the (conditional) lower bound in [ACK+16] still does not exceed
the upper-bound of Sect. 6 on the best possible quality of an iMHF.

Catena. In [FLW13] the authors ofCatena restricted their analysis of its security to
a sequential setting.That is they restrict an adversary to only being able to evaluate
one instance of the underlying function H at a time. In this setting and for the case
when λ = 1 the results of [LT82] show that, in a simplified computational model,
BRGn

1 has ST-complexity Ω
(
n2

)
. Here ST-complexity denotes the product of the

space and time required by any algorithm which evaluates Catena Bit Reversal.
The intuition being that large ST-complexity implies large AT-complexity of any
implementation in a custom chip.

Argon2. Argon2 [BDK15] was the winner of the Password Hashing
Competition [PHC]. Argon2 is equipped with a data-dependent mode of oper-
ation and an independent mode which is called Argon2i. The authors rec-
ommend using Argon2i for password hashing due to its resistance to side
channel attacks [BDK15]. Our attacks only apply to Argon2i, the data inde-
pendent mode. Recently, Corrigan-Gibbs et al. [CGBS16] gave an attack

248 J. Alwen and J. Blocki

on Argon2i which reduces the cost of computing Argon2i by a factor
of 4.

Balloon Hashing. In [CGBS16] the authors also proposed three iMHFs which
resist their attack on Argon2i. These are called Single-Buffer (SB), Double-
Buffer and Linear and collectively referred to as the Balloon Hashing iMHFs.8

Our attacks reduce the cost of computing both Argon2i and SB by a factor of
Ω̃

(
n1/4

)
.

A Provably Secure MHF. Currently, the only candidate MHF equipped with a
full proof of security is the one in [AS15]. There, the authors show an iMHF F
for which the energy-complexity of the required storage alone (i.e. disregarding
the cost of evaluating the round function) is within a polylogarithmic factor in
n of the energy-complexity of the trivial algorithm triv. Moreover triv uses only
a single instance of H (i.e. it is sequential) which implies that, roughly speaking,
any evaluation algorithm for F can have E-quality = O(polylog(n)). The results
in Sect. 6 show that this is optimal for any iMHF up to the exponent in the
polylogarithmic factor.

Attacking MHFs. The Catena Dragonfly iMHF has been attacked previ-
ously [BK15,AS15]. In particular, [AS15] demonstrated an attack on Catena
Dragonfly BRGn

λ=1 which has energy quality E-quality = O
(√

n
)
. The attack

from [BK15] has slightly worse quality O
(
n1/5

)
, but it applies even for Dragon-

fly variants in which λ > 1. At a high level the ideas behind both of these attacks
is to divide memory into segments, store the leading block in each segment and
then recompute the remaining blocks as needed. These attacks only work because
the underlying Catena Dragonfly DAG BRGn

λ allows for quick re-computation
of the remaining blocks. In this work we observe that this key idea can be gen-
eralized to attack any non depth-robust iMHF. In particular, our techniques
can be used to attack other iMHFs like Catena Butterfly, Argon2i [BDK15] and
SB [CGBS16]. In fact, our attacks can be extended to any iMHF because no
DAG is sufficiently depth-robust to resist at least some form of attack.

Memory-Bound Functions. An important precursor to memory-hard functions
are memory-bound functions. First introduced in [ABMW05] here the complexity
measure of interest is the number of cache misses required to evaluate the func-
tion. On the highest level the motivation is the same as that of memory-hard
functions; namely to build moderately hard functions which are more equally
hard across different computational devices (compared to the rather unbalanced
notion of plain computational complexity). In particular it was observed that
while computational speeds may vary greatly between different devices the same
is not as true for memory latency speeds [DGN03]. In contrast memory-hard

8 Corrigan-Gibbs et al. [CGBS16] use “Balloon Hashing” as a title for their iMHF
however this similarity with the balloon phase in our evaluation algorithm is a slightly
unfortunate coincidence.

Efficiently Computing Data-Independent Memory-Hard Functions 249

functions aim to achieve egalitarian hardness by making the cost of custom
hardware prohibitively large [Per09]. The first provably secure memory-bound
function was (implicitly) given in [DGN03] where it was used to construct a pro-
tocol for fighting SPAM email. The construction was later improved in [DNW05]
which was also the first result in cryptography to make use of a version of the
pebbling model of computation; a technique later adapted in [AS15].

Password Storage. Recent high-profile security breaches (e.g., RockYou, Sony,
LinkedIN, Ashley Madison9) highlight the importance of proper password stor-
age practices like salting [Ale04] and key stretching [MT79]10. However, hash
iteration, the technique used by password hash functions like PBKDF2 [Kal00]
and bcrypt [PM], is typically an insufficient defense against an adversary who
could build customized hardware to evaluate the underlying hash function. In
particular, the cost of computing a hash function H like SHA256 or MD5 on
an ASIC is orders of magnitude smaller than the cost of computing H on
traditional hardware [DGN03,NB+15]. By contrast, memory costs tend to be
relatively stable across different architectures [DGN03], which motivates the use
of memory-hard functions for password hashing [Per09].

Several orthogonal lines of research have explored defenses such as: dis-
tributing the storage and/or computation of a password hash across multiple
servers (e.g., [BJKS03,CLN12]), storing fake password hashes on the server
(e.g., [JR13,BBBB10]), the inclusion of secret salt values (e.g., “pepper”) in
password hashes [Man96,BD16] and the inclusion of the solution(s) to hard AI
challenges in password hashes [CHS06,DC08,BBD13].

2 Preliminaries

We begin with some notation. Given a directed acyclic graph (DAG) G = (V,E)
of size |V | = n and a subset S ⊆ V we use G − S to denote the resulting
DAG after removing all nodes in S. We denote by depth(G) the length of the
longest (directed) path in G and we denote by indeg(G) the maximum number
of directed edges entering a single node. For integers a ≤ b we write [a, b] as
shorthand for the set {a, a + 1, . . . , b} and we write [a] for the set [1, a].

We use Hλ =
∑λ

i=1
1
i to denote the λ’th harmonic number. In particular Hλ

can be approximated by the natural logarithm Hλ ≈ ln λ.

9 See http://www.privacyrights.org/data-breach/ (Retrieved 9/1/2015).
10 Users routinely select lower entropy password [Bon12], which are especially vulnera-

ble to an offline attacker when the underling password hash function is inexpensive to
compute. Furthermore, stricter password restrictions (e.g., requiring a mix of num-
bers and upper/lower case letters) [SS09] have not been found to greatly improve
the entropy of the resulting passwords [KSK+11,BKPS13]. In fact, sometime these
policies reduced the entropy of user selected passwords [KSK+11]. These policies are
often associated with high usability costs [FH10].

http://www.privacyrights.org/data-breach/

250 J. Alwen and J. Blocki

2.1 Complexity and Quality of Attacks

We consider algorithms in the parallel random oracle model (pROM) [AS15] of
computation.11 That is an algorithm is repeatedly invoked. At invocation i ∈
{1, 2, . . .} the algorithm is given the state (bit-string) σi−1 it produced at the end
of the previous invocation. Next A can make a batch of calls qi = (q1,i, q2,i, . . .)
to the underlying round function H (modeled as a random oracle (RO)). Then
it receives the response from H and can perform arbitrary computation before
finally outputting an updated state σi. The initial state σ0 contains the input to
the computation which terminates once a special final state is produced by A.
Apart from the explicit states σ the algorithm may keep no other state between
invocations. For a input x and coins r we denote by A(x; r;H) the corresponding
(deterministic) execution of A.

We define the runtime time(A) to be the maximum running time of A in
any execution (over all choices of x, r and H). Then the cumulative memory
complexity (CMC) and cumulative RO complexity are defined as

cmc(A) = max
x,r,H

∑
i∈[T−1]

|σi| crc(A) = max
x,r,H

∑
i∈[T]

|qi|

where |σ| is the bit-length of state σ, |q| is the dimension of the vector q and
maxx,r,H denotes the maximum over all possible executions of A. Similarly the
absolute memory complexity (AMC) and absolute RO complexity are defined to
be (ARC)

amc(A) = max
x,r,H

max
i∈[T−1]

|σi| arc(A) = max
x,r,H

max
i∈[T]

|qi|.

We remark that these complexity measures are stricter then is common, espe-
cially with respect to maximizing over all random oracles H. However we use
them to upper-bound the complexity of our attacks so this strictness can only
serve to strengthen the results.

Using these tools we can now define the complexity of an algorithm as follows.

Definition 1 (AT and Energy Complexities). Let A be a pROM algorithm
which computes #inst(A) instances of an iMHF in parallel. Then for any core-
memory area ratio R > 0 and any core-memory energy ratio R̄ > 0 the (amor-
tized) AT-complexity and the (amortized) energy-complexity of A are defined
to be

ATR(A) = [amc(A)+R · arc(A)]× time(A)
#inst(A)

ER̄(A) =
cmc(A) + R̄ · crc(A)

#inst(A)
.

Finally we can define the quality of an attack in terms of how much (if at
all) it improves on the näıve algorithm

11 Alternatively the results in this work also apply to the random access machine model
of computation.

Efficiently Computing Data-Independent Memory-Hard Functions 251

Definition 2 (Attack Quality). Let f be an MHF with näıve algorithm N and
let A be a pROM algorithm for evaluating #inst(A) instance(s) of f . Then for
any core-memory area ratio R > 0 and any core-memory energy ratio R̄ > 0 the
AT-quality and energy-quality of A is defined to be

AT-qualityR(A) =
ATR(N)
ATR(A)

E-qualityR̄(A) =
ER̄(N)
ER̄(A)

.

In particular if either quantity is less than 1 then we call A an attack on f .

Let f be an iMHF based on some DAG G of size n with constant in-degree.
Observe f can always be evaluated by computing one intermediate value at a
time in topological order while never deleting a computed value. Clearly this
always results in correctly computing f and it corresponds to a well defined
pROM algorithm triv for evaluating f . Moreover ATR(triv) = Θ(n(n + R)) and
ER̄(triv) = Θ(n(n+ R̄)). Given a constant c > 0 we say that f is a c-ideal iMHF
if, when triv = N is the näıve, for any attack A we have AT-qualityR(A) ≥ c
and E-qualityR̄(A) ≥ c. This is motivated by the observation that for any iMHF
algorithm triv is always a possible way to evaluate it. An ideal iMHF captures
the property that triv is (approximately) the best evaluation strategy possible.

Unfortunately we will later show that c-ideal iMHFs do not exist for any con-
stant c > 0. As n → ∞ we will have AT-qualityR(A) = ω(1) and E-qualityR̄(A) =
ω(1).

2.2 Pebbling and Graph Theory

We provide some shorthand for describing algorithms and give some useful graph
theoretic definitions and lemmas.

Graph Pebbling. To simplify exposition, our attacks are often described in the
language of parallel graph pebbling [AS15]. However, unlike in [AS15], we merely
think of this as shorthand for describing an evaluation strategy of an iMHF rather
then describing an algorithm in a distinct model of computation.

In particular any iMHF f which we consider is based on some fixed underlying
DAG G with (a single source and sink node) which describes which values are
used as inputs to which calls to the round function. To compute f on some input
x each node of G is assigned a value (bit-string). The source receives the value x.
The value of any other node v is defined to be the output of the round function
applied to the values of the parent nodes of v. Finally f(x) is defined to be the
value of the sink node.12

With this in mind, each round of pebbling corresponds to one invocation
in an execution. Placing a pebble on a node v in some round is shorthand for
computing the value of v by computing the round function on the values of v’s

12 For concreteness, though not relevant to this work, in most cases the round func-
tion is simply the compression function H (with the exception of the Linear iMHF
of [CGBS16]).

252 J. Alwen and J. Blocki

parents. Clearly this can only be done if (x1, . . . , xz) are stored in memory and
so, if an algorithm places a pebble on a node whose parents do not all contain
a pebble then we call such a move illegal. Thus we will always show that our
pebbling strategies only produce legal pebblings in order to ensure that they
correspond to a feasible pROM algorithm for evaluating iMHF. Finally having a
pebble on a node at the end of a round corresponds to storing the value of that
node in the state σ for that invocation.

Graph Theory. The key insight behind our attacks is that if a graph is not
depth-robust enough then it can be efficiently pebbled.

Definition 3 (Depth Robust and Depth Reducible DAGs). For e, d ∈ N

a DAG G = (V,E) is called (e, d)-depth-robust if

∀S ⊆ V : |S| ≤ e ⇒ depth(G − S) ≥ d.

If G is not (e, d)-depth-robust then we say that G is (e, d)-reducible.

In order to prove the generic attack on any iMHF we rely on a lemma,
originally due to Valiant [Val77], to show that no graph is depth-robust enough
not to permit at least some sort of attack.

3 Generic Attack

In this section we describe a general pebbling attack GenPeb against any (e, d)-
reducible graph. GenPeb(G,S, g, d) takes as input a DAG G = (V,D) and a set
S ⊆ V of size e such that depth(G − S) ≤ d and a parameter g ≥ d which we
will define below. In every round GenPeb makes progress (i.e., places a pebble on
node i in the i’th round). Thus, time

(
GenPeb

)
= n as the algorithm will place a

pebble on the final node n in the n’th rounds. Intuitively, GenPeb is divided into
two types of phases: Balloon Phases and a Light Phases. During light phases we
throw out most of the pebbles on the graph keeping only pebbles on nodes in S,
the highest pebbled node i and the parents of the nodes [i, i + g] that we plan
to pebble in the next g rounds. Every g rounds we execute a balloon phase to
ensure that we will always have pebbles placed on the parents of the nodes that
we plan to pebble in the next g rounds. Because we never remove pebbles on
nodes in S and the DAG G − S has depth ≤d we will be able to accomplish this
goal in at most d rounds. During light phases we keep at most δg + e pebbles on
the graph and we place at most one new pebble on G in every round. Thus the
total cost during all light phases is at most n

(
δg + e + R̄

)
. While we may incur

higher costs during a balloon phase we are only in the balloon phase for at most
dn
g rounds.

We analyze the energy complexity of GenPeb in terms of the depth
reduction parameters e and d. These results are summarized in Theorem 2.
While GenPeb will lead to attacks with good energy-quality E-qualityR̄ the attack
may not necessarily have good AT-quality AT-qualityR. This is because GenPeb

Efficiently Computing Data-Independent Memory-Hard Functions 253

may still have high absolute memory and RO complexity due to the balloon
phase. However, we can easily circumvent this problem by pebbling multiple
copies of the DAG G in parallel, which corresponds to evaluating multiple inde-
pendent instances of the iMHF. In particular, PGenPeb pebbles �g/d� instances
of G in parallel. We stagger evaluation of the different iMHF instances so that
at most one of the �g/d� pebbling instances is in a balloon phase at any point in
time. To accomplish this PGenPeb simply waits (i − 1)d steps to begin pebbling
the i’th instance of G. Thus, PGenPeb takes at most n + �g/d�d ≤ 2n steps to
complete. The absolute memory and RO complexity of PGenPeb is essentially
just the cost of the balloon phase for a single iMHF instance. Thus, PGenPeb
leads to attacks with good AT-quality AT-qualityR because the cost of the balloon
phase can be amortizes among the �g/d� iMHF instances we compute. Theorem 3
states both the energy and AT complexity of PGenPeb. The energy complexity
of PGenPeb is roughly equivalent to the energy complexity of GenPeb, and the
AT-complexity of PGenPeb is roughly twice the energy complexity of PGenPeb.

In the rest of the paper we will consider several specific families of DAGs
like the underlying DAGs in the Catena and Argon2i iMHFs. For Catena, we
can find a set S ⊆ V of size e = n/t such that depth(G − S) = O(t) for every
t > 1. For Argon2i we can find a set S with expected size O (n/t + (n ln λ)/λ)
such that depth(G − S) ≤ t · λ. Combined with Theorem 3 we will obtain an
attack on Catena with quality Ω

(
n1/3

)
and an attack on Argon2i with quality

Ω
(
n1/4/ ln n

)
.

GenPeb makes use of two subroutines need and keep. In our complexity analy-
sis we omit the cost of computing these functions. However we stress that in all
our attacks they are either trivial (constant) or very easy to compute. By “easy
to compute” we mean that the sets returned by these subroutines will have a
short description size (e.g., “all nodes” or [i, j]) and that it will be trivial to
decide whether a given node v is in these sets.

We begin with some useful notation. Fix a DAG G of size n and number its
nodes in (arbitrary) topological order from 1 to n. For i ∈ [n] and j ≥ i we write
parents(i, j) for the set of nodes v with an edge (v, u) for some u ∈ [i,min{j, n}].
Next we fix the class of functions from which need and keep must be chosen in
order to prove that GenPeb produces a legal pebbling (and thus defines a pROM
evaluation algorithm).13

Definition 4 (Needed Pebbles). Fix a subset of target nodes T ⊆ V and a
pebbling configuration C ⊆ V of G.14 Then a node v ∈ V is needed for T within
d′ steps if there exists a completely unpebbled path P 15 of length ≥ d′ from v
to some node in T . We use NC,T,d′ to denote the set of all such nodes. We use
KC,T to denote the set of all nodes v ∈ C such that v ∈ T or v has a child v′

such that v′ ∈ ⋃n
i=0 NC,T,i.

13 Later on we instantiate need and keep in several ways but will always prove that
they are valid for the inputs we use them for.

14 That is fix a set C of nodes of V which currently have a pebble on them.
15 That is P ∩ C = ∅.

254 J. Alwen and J. Blocki

Algorithm 1. GenPeb (G, S, g, d)
Arguments : G = (V, E), S ⊆ V , g ∈ [depth(G − S), |V |], d ≥ depth(G − S)
Local Variables: n = |V |

1 for i = 1 to n do
2 Pebble node i.
3 l ← 	i/g
 ∗ g + d + 1
4 if i mod g ∈ [d] then // Balloon Phase

5 d′ ← d − (i mod g) + 1
6 N ← need(l, l + g, d′)
7 Pebble every v ∈ N which has all parents pebbled.
8 Remove pebble from any v �∈ K where K ← S ∪ keep(i, i + g) ∪ {n}.

9 else // Light Phase

10 K ← S ∪ parents(i, i + g) ∪ {n}
11 Remove pebbles from all v �∈ K.

12 end

13 end

Definition 5 (Valid need and keep). We say that the pair of functions
need and keep is valid for GenPeb(G,S, d, g) if we always have need(i, j, d′) ⊇
NC,[i,j],d′ and keep(i, j) ⊇ KC,[i,j] whenever GenPeb(G,S, depth(G − S), g)
queries need or keep.

In our generic iMHF attack we use the trivial functions need and keep which
always output V (e.g., during the balloon phase we pebble every node we can
during each round and we never discard any pebbles). The following fact is easy
to see:

Fact 1 (Generic Valid Subroutine). Fix a DAG G = (V,E) and let need
and keep be the constant function returning V . Then the pair need and keep is
valid for GenPeb(G,S, d, g) for any set S ⊆ V and any parameters g ≥ d ≥
depth(G − S).

While we would already obtain high quality attacks on Catena and Argon2i
by using the generic need and keep subroutines, we show how our attacks can be
optimized further by defining the subroutines need and keep more carefully.

We remark that by leaving need and keep undefined for now we leave some
flexibility in the implementation of the balloon phase in GenPeb(G,S, g, d). Dur-
ing each round of a balloon phase we may pebble any v ∈ V which has all
parents pebbled, but we are only required to add pebbles to these nodes once it
becomes absolutely necessary to finish the balloon phase in time (e.g., there are
only d′ rounds left in the balloon phase and the vertex v is part of an completely
unpebbled path to T of length ≥ d′. Similarly, we are allowed to remove pebbles
provided that they are no longer needed for the balloon phase (e.g., every path
to T from that node has an intermediate pebble).

The easiest way to satisfy these conditions is to simply pebble every v ∈ V
which has all parents pebbled, and to never remove pebbles during the balloon

Efficiently Computing Data-Independent Memory-Hard Functions 255

phase (Fact 1). Indeed this is exactly what we do in our general attack on iMHFs.
However, we demonstrate that further optimizations are possible against the
Catena and Argon2i iMHFs (e.g., each of the new pebbles we add during a
Catena balloon phase does not need to remain on the DAG very long). In each
case the subroutines need and keep will have very simple instantiations — we
will not need to perform complicated computations like breadth first search to
find these sets.

Fix any G, S, g and d and let M(G,S, g, d) be the largest number of pebbles
simultaneously on G − S − parents(i, i + g) during any round i which is in a
Balloon phase of GenPeb(G,S, g, d)16. Similarly let C(G,S, g, d) be the largest
number of pebbles placed on G during any single round in a Balloon Phase. In
the following we prove that GenPeb always produces a legal pebbling. Thus it
describes a well formed pROM algorithm A for evaluating an iMHF based on
G. We also show how to use M(G,S, g, d) and C(G,S, g, d) to upper-bound the
energy-complexity of A with hardcoded inputs (G,S, g, d).

Theorem 2 (Energy Complexity of GenPeb). Let G = (V,E) be a DAG,
with indeg(G) = δ. Further let S ⊆ V with |S| = e and d ≥ depth(G − S) and
let integer g ∈ [d, n]. Fix any valid pair of subroutines need and keep and let A
be the pROM algorithm described by GenPeb with hardcoded inputs (G,S, g, d).
Then A produces a valid pebbling and for any core-memory energy ratio R̄ and
M = M(G,S, g, d) and C = C(G,S, g, d) it holds that:

cmc(A) ≤ n

(
d · M

g
+ δg + e

)
crc(A) ≤ n

(
min{d · C, n}

g
+ 1

)

ER̄(A) ≤ n

(
d · M + min{dC, n} · R̄

g
+ δg + e + R̄

)
.

Proof. We first prove that GenPeb(G,S, g, d) produces a legal pebbling to ensure
that A is a well defined algorithm. Then we upper-bound its energy complexity.

Recall that pebbles can be removed at will and by definition, in Step 7,
GenPeb only places a pebble if it is legal to do so. Thus the only illegal move
could come due to Step 2. Assume no illegal pebble has been placed up to node
i. To show that i is then also pebbled legally it suffices to show that each of its
parents P ⊆ V are have a pebble at the beginning of round i. The most recent
Balloon Phase to have completed before round i (if any) consisted of rounds
B = [i′, i′+d] where i−(i′+d) ≤ g. Consider the partition P1 = P∩[i′+d+1, i−1],
P2 = P ∩ [i′, i′ + d] and P3 ∩ [1, i′ − 1] of the set of parents P . By assumption
all v ∈ P1 were pebbled (legally) in the previous g rounds using Step 2 and so
were not removed (by definition of K in Step 10). Moreover by assumption all
nodes in P2 where pebbled by Step 2 during B and so were not removed (by
definition of K in Step 8 and the validity of the subroutine keep the pebble is
not removed during the balloon phase B = [i′, i′ + d] and by definition of K in

16 Recall that there are n/g Balloon Phases and the jth Balloon Phase consists of
rounds {jg + 1, . . . , jg + d}.

256 J. Alwen and J. Blocki

Step 10 the pebble was not removed during rounds [i′ + d + 1, i − 1]). Thus it
suffices to prove that all v ∈ P3 contained a pebble at some point during B since
then by definition of K in Steps 2 and 10 they too will not be removed.

Let P4 be the subset of P3 which don’t contain a pebble at the start of B.
(If it is empty we are done.) Otherwise, for a given round j let pj be all paths
which end with a node in P4 and are unpebbled at the beginning of the round.
Let lj be the length of the longest path in pj . We argue that ∀j ∈ [i′, i′ + d − 1]
then lj ≤ d − (j − i′). If this is the case then we are done. Entering the final
round i′ + d − 1 the length of the longest unpebbled path is li′+d−1 ≤ 1 so by
the end of the final round of B all nodes P4 – the end points of paths pj – are
pebbled.

We argue that lj ≤ d − (j − i′) by induction. Clearly, this is true when
j = i′ as lj ≤ depth(G − S) ≤ d. Now assume that lj ≤ d − (j − i′) for some
j ∈ [i′, i′ + d − 1], let p ∈ pj denote a longest path and let v denote the starting
node of p. We first observe that either the starting node v of p has no parents or
they are all pebbled.17 Second, we observe that, because need is valid, in round
j we must either have v ∈ N or we must have lj < d − (j − i′). In the latter
case we have lj+1 ≤ lj ≤ d − (j + 1 − i′) — because keep is valid we are not
allowed to remove pebbles from any of the parents of v. In the former case we
have lj+1 ≤ lj −1 ≤ d−(j+1−i′) because v ∈ need

(
i′, i′ +g, d′ = d−(j+1−i′)

)
by the validity of need. Thus in Step 7 of round j node v is pebbled. Finally it
remains there till the end of the round since v ∈ keep(j, j + g) because there is a
completely unpebbled path from v’s children in p to [i′, i′+g+d]. This completes
the proof that GenPeb produces a legal pebbling.

Recall that the energy-complexity of A can be computed as ER̄(A) =
cmc(A) + R̄ · crc(A). To upper-bound cmc(A) we can sum upper-bounds on
the cmc of the Balloon phases and the cmc of the Light phases. To compute
the Balloon phase term notice that GenPeb is in a Balloon Phase for nd/g steps
and during each round i of a balloon phase there are, by definition, at most
M(G,S, g, d) extra pebbles on G−S −parents(i, i+ g). On the other hand, there
are clearly at most n Light phase steps and at the start of each round i of a
light phase there are no pebbles on G−S −parents(i, i+ g). Finally, during each
round i we pay cumulative memory cost at most e to keep pebbles on nodes in
S and at most δg to keep pebbles on nodes in the set parents(i, i+ g), which can
be of size at most δg. Adding these three terms and factoring out an n term we
get that cmc(A) ≤ n

(
d·M(G,S,g,d)

g + δg + e
)

.

Placing a pebbled on G corresponds to making a call to H. To upper-bound
crc(A) we observe that in any round of a Light phase only one pebble is ever
placed on G (namely in Step 2). During each balloon phase we place at most
C(G,S, g, d) pebbles on the graph in each rounds, and at most n pebbles on the
graph in total. Thus we can write crc(A) ≤ n

(
min{n,d·C(G,S,g,d)}

g + 1
)

. Combing
this with the bound on cmc and rearranging terms we obtain the theorem. �

17 As otherwise it wouldn’t be a longest path in pj.

Efficiently Computing Data-Independent Memory-Hard Functions 257

Algorithm 2. PGenPeb (G, S, g, d, k)
Arguments : G, S ⊆ V , g ∈ [depth(G − S), |V |] d ≥ depth(G − S), k ≤ 	 g

d

Local Variables: n = |V |, copies G1, . . . , Gk = G, S1, . . . , Sk = S

1 for t = 1 to n + kd do
2 Parallel for j = max{1, t−n

d
} to min

{
k, t−1

d

}
do

3 i ← t − jd
4 Pebble node i in Gj .
5 if i = n then
6 Remove pebbles from all v /∈ {n} in Gj

7 Break

8 end
9 l ← 	i/g
 ∗ g + d + 1

10 if i mod g ∈ [d] then // Balloon Phase

11 d′ ← d − (i mod g) + 1
12 Nj ← needj(l, l + g, d′)
13 Pebble any v ∈ Nj which has all parents pebbled.
14 Remove pebble from any v �∈ Kj where

Kj ← Sj ∪ keepj(i, i + g) ∪ {n}.

15 else // Light Phase

16 Kj ← Sj ∪ parentsj(i, i + g) ∪ {n}
17 Remove pebbles from all v �∈ Kj .

18 end

19 end

20 end

The following Theorem 3 upper-bounds the complexity of PGenPeb. The
proof in the full version [AB16] closely follows the analysis of GenPeb in
Theorem 2. The key difference is that we evaluate multiple instances, and at
that at most one of these instances is in a balloon phase at any point in time.
Thus, we get a much tighter bound on AT -complexity because the worst-case
memory usage M is approximately the same as the average memory usage of
PGenPeb.

Theorem 3 (Complexity of PGenPeb). Let G = (V,E) be a DAG, with
indeg(G) = δ. Further let S ⊆ V with |S| = e and d ≥ depth(G−S) and let inte-
ger g ∈ [d, n]. Fix any valid pair of subroutines need and keep and let A be the
pROM algorithm described by PGenPeb with hardcoded inputs

(
G,S, g, d, � g

d�).
Then for any core-memory area and energyratios R > 0 and R̄ > 0 and
M = M(G,S, g, d) and C = C(G,S, g, d) it holds that:

ATR(A) ≤ 2n

[
d(M + RC)

g
+ δg + e + R

]
and

ER̄(A) ≤ n

[
dM + min{dR̄C, nR̄})

g
+ δg + e + R̄ + 1

]
.

258 J. Alwen and J. Blocki

4 Sandwich Graph Attacks

In this section we focus on the two Catena hash functions [FLW13] as well as the
second two Balloon Hashing constructions of [CGBS16]. The first Catena iMHF
is given by the Catena Bit Reversal Graph (which we denote BRGn

λ); an n node
DAG which consists of a stack of λ ∈ N≥1 bit-reversal graphs [LT82]. Each node

in a layer is associated with a log2
(

n
λ+1

)
bit string and edges between layers

correspond to the bit reversal operation18. The Catena designers recommended
choosing λ ∈ {1, 2, 3, 4} [FLW13]. The second Catena hash function is an iMHF
based on the Catena Double Butterfly Graph, denoted DBGn

λ. It is an n node
DAG with O (λ log n) layers of nodes.

The “Double-Buffer” and “Linear” iMHFs of [CGBS16] consist of τ layers
of σ nodes for a total of n = τ ∗ σ nodes. Each layer is a path with its origin
connected to the final node in the path of the previous layer. Moreover all nodes
at layers τ ≥ i ≥ 1 have 20 incoming edges from nodes selected uniformly
and independently in the previous layer. In the “Double-Buffer” construction
the hash of a node is given by hashing the concatenation of all parent node
labels while in the “Linear” construction the parent node labels are first XORed
together before being hashed for greater throughput. However this difference will
not affect the results in this work.19

In this section we demonstrate that all of these DAGs can be computed with
lower then hoped for energy and AT complexities (simultaneously) regardless
of the random choices made when constructing the graphs. In particular, the
iMHF corresponding to both BRGn

λ and DBGn
λ can be evaluated with amortized

AT complexity ATR(A) = O
(
n5/3 + Rn4/3

)
and energy complexity ER̄(A) =

O
(
n5/3 + Rn4/3

)
for any value of λ. In fact, our attacks hold for a more general

class of graphs characterized by Definition 6 below. Thus, to understand our
attacks it is not critical to know the exact specification of these DAGs just that
both DAGs are strict sandwich graphs. We refer an interested reader to the full
version [AB16] of this paper for the actual definitions of the Catena DAGs BRGn

λ

and DBGn
λ.

Definition 6 ((Strict) λ-Stacked Sandwich Graphs). Let n, λ ∈ N≥1 be
a integers such that λ + 1 divides n and let k = n/(1 + λ) and let G be a DAG
with n nodes. We say that G is a λ-stacked sandwich DAG if G contains a
directed path of n nodes (v1, . . . , vn) with arbitrary additional edges connecting

18 The parameter λ in Catena is related to the parameter τ in Argon2i. The intended
space complexity of Catena is σ = 2n/(λ + 1) and the intended computation time is
n. Thus, the intended energy complexity is 2n2/(λ + 1).

19 We remark that we have assumed that the thread count parameter p = 1. However
we observe that for p > 1 the resulting DAG has an almost identical distribution
except that every s/pth edge along the path forming a layer is removed. This can
only make the job easier of an evaluation algorithm. In particular the complexity
of our attacks for the case p = 1 are an upper-bound on the complexities of these
constructions for p > 1.

Efficiently Computing Data-Independent Memory-Hard Functions 259

nodes from lower layers Lj
.= {vjk+1, . . . , vjk+k} with j ≤ i to the i + 1st layer

Li+1. If the DAG has no edges of the form (u, v) with u ∈ Lj and v ∈ Lj+2+i

for i ≥ 0 then we say it is a strict λ-stacked sandwich DAG.

In particular, the Catena bit reversal graph BRGn
λ is a strict λ-stacked sand-

wich DAG with n nodes and maximum indegree indeg = 2. The Catena double
butterfly graph DBGn

λ is a strict
(
λ(2x − 1) + 1

)
-stacked sandwich DAG with n

nodes, where x ≤ log n is the integer such that n = 2x ·(λ(2x−1)+1
)

— see the
full version [AB16] of this paper for additional details about the construction of
BRGn

λ and DBGn
λ. Finally, for any parameters t and s, a randomly chosen DAG

for the Double-Buffer and Linear iMHFs is a strict t-stacked sandwich graph on
n = ts nodes with probability 1.

Summary of the Results in this Section. Lemma 1 upper-bounds the depth-
robustness of any λ-stacked sandwich DAG G — any λ-stacked sandwich DAG
is (n/t, λt + t)-reducible. Thus we can apply the generic attack (Theorem3) to
get an upper-bound on the energy and AT complexities of such graphs (The-
orem 4) and so, in particular, also for the 4 constructions mentioned above.
Theorem 4 states that there is an attack A with ATR(A) and energy complexity
ER̄(A) = O

(
(λ + δ)n5/3 + R̄n4/3

)
, where δ denotes the maximum indegree of

the DAG.
While these results will also be useful in the next section focused on Argon2i

for the 4 constructions above the results can be improved somewhat by observing
that the constructions are actually based on strict stacked sandwich DAGs. In
particular, we can further decrease the resulting complexity if we first define more
targeted need and keep functions and prove that they are valid for PGenPeb when
G is a strict λ-stacked sandwich DAG (Lemma 2). Theorem 5 says that there is
an attack A with ATR(A) and energy complexity ER̄(A) = O

(
δn5/3 + R̄n4/3

)
.

The following Lemma upper-bounds the depth-robustness of any λ-stacked
sandwich DAG G. By combining this observation with the generic attack from
the previous section we can obtain strong attacks on any λ-stacked sandwich
DAG G.

Lemma 1 (Sandwich Graphs are Reducible). Let G be a λ-stacked sand-
wich DAG then for any integer t ≥ 1 G is (n/t, λt + t − λ − 1)-reducible.

Proof. Let S =
{
vit 1 ≤ i ≤ n/t

}
. We claim that depth(G−S) ≤ λt+ t−λ−1.

Consider any path P in G − S. For each layer Lj the path P can contain at
most t − 1 nodes from layer Lj because any sequence of t consecutive nodes
vi, vi+1 . . . , vi+1 must contain at least one node in S. Thus,

|P | ≤
λ∑

i=0

∣∣∣P ⋂
Lj

∣∣∣ ≤ (
λ + 1

)(
t − 1

)
. �

The next lemma states that keep and need from Algorithm 3 and Algorithm 4
are valid for strict sandwich DAGs.

260 J. Alwen and J. Blocki

Algorithm 3. Function: need(x, y, d′)
Arguments: x, y ≥ x, d′ ≥ 0
Constants : Pebbling round i, g, t.

1 j ← (i mod g) // Current Layer is L�j/t�
2 Return L�j/t� ∩ {it + j i ≤ n

t

}

Algorithm 4. Function: keep(x, y)
Arguments: x, y ≥ x
Constants : Pebbling round i, g, t.

1 j ← (i mod g)
2 � ← 	j/t
 // Current Layer

3 Return L≥�−1

Lemma 2 (Valid need and keep for Strict Sandwich Graphs). Let G be a
strict λ-stacked sandwich DAG on n nodes, let S =

{
it i ≤ n

λ+1

}
, d = (λ + 1)t

and g ≥ d then the functions need and keep from Algorithms 3 and 4 are valid
for GenPeb(G,S, g, d).

If we modify keep to simply return the entire vertex set then we obtain a
valid pair need and keep for general sandwich DAGs. The proofs of Lemmas 2
and 3 are in the full version [AB16].

Lemma 3 (Valid need and keep for Sandwich Graphs). Let G be a λ-
stacked sandwich DAG on n nodes, let S =

{
it i ≤ n

λ+1

}
, d = (λ + 1)t and

g ≥ d. Further, let keep be the constant function that returns V and let need
be the function from Algorithm3. Then the pair need and keep are valid for
GenPeb(G,S, g, d).

Theorem 4 follows easily from Theorem 3, Lemma 3 and Lemma 1 by setting
g = n2/3 and t = n1/3.

Theorem 4 (Complexity of Sandwich Graph). Let F be an iMHF based
on DAG G; a λ-stacked sandwich DAG on n nodes with λ < n1/3 and maximum
indegree indeg(G) = δ. Then for any core-memory area and energy ratios R and
R̄ there exists an evaluation algorithm A with

ATR(A) ≤ 2n5/3

[
(1 + δ) + (λ + 1) +

R

n1/3
+

2R + (λ + 1)R
n2/3

]
and

ER̄(A) ≤ n5/3

[
(λ + 1) + (δ + 1) +

3R̄ + 1
n2/3

+
R̄

n1/3

]

For strict λ-stacked sandwich DAGs Theorem 5 improves on the attack
Theorem 4 by instantiating the keep function with Algorithm4 instead of the
constant function keep(·) = V that returns all vertices (permissible by Lemma 2).

Efficiently Computing Data-Independent Memory-Hard Functions 261

A formal proof of Theorems 4 and 5 can be found in the full version of this
paper [AB16].

Theorem 5 (Complexity of Strict Sandwich Graph). Let G be a strict
λ-stacked sandwich DAG on n nodes with λ < n1/3 and maximum indegree
indeg(G) = δ then for any core-memory area and energy ratios R and R̄ there
exists an evaluation algorithm A for the corresponding iMHF with

ATR(A) ≤ 2n5/3 ×
[
3 + δ +

R

n1/3
+

3R

n2/3

]
and

ER̄(A) ≤ n5/3 ×
[
3 + δ +

R̄

n1/3
+

R̄ + 1
n2/3

]
.

Theorem 5 follows easily from Theorem 3, Lemma 2 and Lemma 1 by setting
t = n1/3 and g = n2/3. While Theorems 4 and 5 only hold for λ < n1/3 we note
there is an trivial pebbling algorithm for strict sandwich graphs with complexity
O(n2/λ), or O(n5/3) whenever λ > n1/3 — see [AB16].

We remark that for special cases (e.g., λ = 1) an alternative instantiation
of the functions need and keep in GenPeb allows us to immediately generalize a
result of [AS15]. For any λ = 1-sandwich DAG G with maximum indeg = 2 there
is an algorithm A with amc(A) = O(indeg

√
n) and cmc

(A)
= O(indeg×n1.5) —

our result is slightly more general in that we do not require that G has maximum
indeg = 2. Briefly, we can use need from Algorithm 3 and we can redefine keep
to simply return the exact same set as need in each round of GenPeb (so that
we don’t immediately throw out pebbles in step 14 of the same round). It is
easy to show that the pair keep and need is valid whenever G is a λ = 1-stacked
sandwich DAGs. We refer an interested reader to the full version [AB16] of this
paper for details.

5 (n, δ, w)-Random Graph Attacks

In this section we demonstrate how to extend our attacks to two recent iMHF
proposals. The first is the Argon2i iMHF — the variant of Argon2 in which
data access patterns are data independent [BDK15]. The authors recommended
using Argon2i for password hashing applications to avoid potential side-channel
leakage through data dependent memory access patterns [BDK15]. The basic
Argon2i DAG is a (pseudo) randomly generated DAG with maximum inde-
gree indeg = 2. Thus, we view the Argon2i DAG as a distribution over n node
DAGs — see Definition 7. The second iMHF considered is the Single-Buffer (SB)
construction of [CGBS16] (we considered the Double-Buffer and Linear iMHFs
from [CGBS16] in Sect. 4).

We begin with the following definition which fixes a class of random graphs
key to our analysis.

262 J. Alwen and J. Blocki

Definition 7 ((n, δ, σ)-random DAG). Let n ∈ N, 1 < δ < n, and 1 ≤ σ ≤ n
such that σ divides n. An (n, δ, w)-random DAG is a randomly generated directed
acyclic (multi)graph with n nodes v1, . . . , vn and with maximum in-degree δ for
each vertex. The graph has directed edges (vi, vi+1) for 1 ≤ i < n and random
forward edges (vr(i,1), vi), . . . , (vr(i,δ−1), vi) for each vertex vi. Here, r(i, j) is
independently chosen uniformly at random from the set [max{0, i − σ}, i − 1].

We observe that a τ -pass instance of Argon2i iMHF20 is an (n, 2, n/τ)-
random DAG21. Similarly the τ -pass “Single-Buffer” construction of [CGBS16]
is based on an (n, 21, n/τ)-random DAG. Here, σ = n/τ denotes the size of the
memory window used by the naive pebbling algorithm N (e.g., amc(N) = σ).
The hope is that such graphs will have complexity θ(σ2 × τ).

We cannot directly apply our results from the previous section because a
(n, δ, σ)-random DAG will not be λ-stacked sandwich DAG with high probability.
However, we can show that these graphs are ‘close’ to λ-stacked sandwich DAGs
in the sense that, with high probability, there is a ‘small’ set S such that we
can turn G into a λ-stacked sandwich DAGs just by removing edges incident to
vertices in S. Definition 8 formalizes this intuition.

Definition 8 ((m,λ)-Layered Graph). Let G be a DAG with n = kλ nodes
v1, . . . , vn with directed edges (vi, vi+1) for 1 ≤ i < n. Given a set S of nodes we
use GS to denote the resulting DAG if we removed all directed edges (v, v′) that
are incident to nodes in S (e.g., v ∈ S or v′ ∈ S) except for edges of the form
(vi, vi+1). We say that G is a (m,λ)-layered DAG if we can find a set S with at
most m nodes such that GS is a λ-stacked sandwich DAG.

Demonstrating that a graph is (m,λ)-layered is useful because Theorem 6
upper-bounds the AT and energy complexities of an iMHF based on such a graph.
In particular, Theorem 6 relies on Lemma 4 which states that any layered graph
is also depth reducible. In Lemma 5, for any given probability γ > 0 we upper-
bound the size m when viewing an Argon2i graph as an (m,λ)-layered graph.
Thus we get Theorem 7 which describes an evaluation algorithm for Argon2i and
the Balloon Hashing algorithms and bound their AT and energy complexities. In
particular it states both their expected values and upper-bounds holding with a
given probability γ.

Lemma 4 (Layered Graphs are Reducible). Let G be a (m,λ)-layered DAG
then for any integer t ≥ 1 G is (n/t + m,λt + t − λ − 1))-reducible.

20 In the notation of [BDK15] the case when τ = 1 corresponds to a single pass.
21 In response to our attack and the attack of Gibbs et al. [CGBS16] the Argon2i

team recently ‘tweaked’ their construction by adding additional edges of the form
(i, i + σ), where σ = n/τ is the size of the memory window. While this tweak does
seem to eliminate the attack of Gibbs et al. [CGBS16], it is ineffective against our
attack. In fact, as long as τ < n1/4 we can completely ignore these extra edges when
constructing our depth-reducing set S in Lemma 5.

Efficiently Computing Data-Independent Memory-Hard Functions 263

Proof By definition there is a set S1 of m nodes such that GS1 is a λ-stacked
sandwich DAG. Now by Lemma 1 we can find a set S2 ⊆ V (G) of size n/t such
that GS1 − S2 has depth at most depth

(
GS1 − S2

) ≤ λt + t − λ − 1. Now we
set S = S1

⋃
S2 we have |S| ≤ m + n/t and depth(G − S) ≤ depth(GS1 − S2) ≤

λt − λ − 1.

Theorem 6, which upper bounds the complexity of a layered graph, now
follows directly from Lemmas 3, 4 and Theorem 2. The proof is in the full ver-
sion [AB16] of the paper.

Theorem 6 (Complexity of Layered Graph). Let G be a (m,λ)-layered
DAG on n nodes with λ < n1/3 and maximum indegree indeg(G) = δ and fix
any t > 0, g ≥ t(λ + 1) then there exists an attack A on the corresponding
iMHF such that for any core-memory ratio R > 0 and R̄ > 0 the energy and AT
complexities of A are at most

ATR(A) ≤ 2n

[
n

t
+ m + δg + R +

(λ + 1)t · (n + 2R) + R · n

g

]
and

ER̄(A) ≤ n

[
(λ + 1)t

(
n + 2R̄

)
+ R̄ · n

g
+ δg +

n

t
+ m + R̄

]
.

Lemma 5 is the key technical result in this section. It states that, in particular,
for any m ≤ n and any constants τ and δ a (n, δ, σ = n/τ)-random DAG will be
a

(
O

(
m log n

)
, O

(
n
m

))
-layered DAG with high probability.

In a bit more detail we show how to construct a set S of (expected) size
O

(
m log n

)
. We note that our construction is computationally efficient. Intu-

itively, we partition the nodes of G into equal sized layers of consecutive nodes
L0, . . . , Lλ. We add a node v ∈ Li to our set S if any of v’s parents are also in layer
Li. In the single pass case (w = n) we will add a vertex v ∈ Li to S with proba-
bility at most (δ − 1)/i. Thus, in expectation we will add at most (δ − 1) |Li| /i

nodes from layer Li to S. In total we add at most n
λ+1

∑λ
i=1

1
i = nHλ

λ+1 nodes
from layers L≥ 1 in expectation. Recall that by Hλ we denote the λth harmonic
number.

Lemma 5 ((n, δ, σ)-random DAGs are Layered). Fix any λ ≥ 1 and let
q = � n

λ+1�. Then a (n, δ, σ = n/τ)-random DAG is a (m,λ)-layered DAG, where

the random variable m has expected value E [m] = τ(δ−1)q+q+ (δ−1)q·Hλ

2 . Fur-

thermore, for any γ > e
−3

(

E[m]−q

)

/4
we have m ≤ E [m]+

√
3
(
E [m] − q

)
ln γ−1

except with probability γ.

Proof of Lemma 5. Let G be a (n, δ, σ = n/τ)-random DAG with nodes
v1, . . . , vn. For simplicity assume that λ = n/q − 1 is an integer so that we
can divide G into λ layers L0, . . . , Lλ of equal size q (If λ is not an integer then

264 J. Alwen and J. Blocki

the first �λ� − 1 layers will contain q + 1 nodes each and the last layer will con-
tain ≤ q nodes.). Layer Li contains nodes Li = {viq+1, . . . , v(i+1)q}.We construct
S ⊆ V (G) as follows:

S =
⋃
i

{
vj ∈ Li ∃s ≤ d − 1.vr(j,s) ∈ Li

}
.

That is if any of v’s parents are in the same layer as v we add v to S.
Given vj ∈ Li we let xj denote the indicator random variable that is 1 if

and only if vr(j,t) ∈ Li for some index t ≤ δ − 1. We note that by linearity of
expectation we have

E [|S|] ≤
λ∑

t=0

q∑
j=1

E [xiq+j].

Let λ′ = �σ
q �−1. Suppose first that i ≤ λ′ and 0 < j ≤ q so that iq+j ≤ σ and

viq+j ∈ Li (i > 0) then the probability that we add viq+j to S because one of its
parents is also in layer Li is at most (δ−1)(j−1)/(iq). Thus, E [xiq+j] ≤ (δ−1)/i

for each vj ∈ Li. Now suppose that iq + j > σ then the probability that we
add vr(iq+j) to S because one of its parents is in the same layer is at most
(δ − 1)(j − 1)/σ = (δ − 1)(j − 1)τ/n. Thus, E [xiq+j] ≤ (δ − 1)(q − 1)τ/n. Thus,
in expectation we have

E [|S|] ≤ q + (δ − 1)
λ′∑

i=1

(q − 1)
2i

+ q(δ − 1)
λ∑

i=λ′+1

(q − 1)τ
n

≤ q + (δ − 1)
λ′∑

i=1

(q − 1)
2i

+ q(δ − 1) (λ − λ′)
(q − 1)τ

n

≤ q + (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)τ,

where Hλ ≈ ln λ denotes the λ’th harmonic number and the last inequality
follows because (q − 1)λ ≤ n. Observe that the DAG GS with all directed edges
originating in S deleted (i.e., delete edges of the form (v, v′) with v ∈ S) will
be a λ-stacked sandwich graph because there are no forward edges within each
layer apart from the chain (vi, vi+1). Let X =

∑n
j=q+1 xj . Because the random

variables xj ∈ {0, 1} are independent standard concentration bounds imply that

Pr
[
X ≥ E [X] + τ

]
≤ exp

(−τ2

2Var(X)+2τ/3

)
. In our case we have

Var(X) =
n∑

i=q+1

n∑
j=q+1

E [xixj] − E [xi]E [xj] =
n∑

i=q+1

E [xi] − E [xi]
2

≤ E [X] = (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)τ.

Efficiently Computing Data-Independent Memory-Hard Functions 265

Thus, for any γ > exp
(−3E [X]/4

)
we can set τ =

√
3E [X] ln γ−1 to obtain

Pr
[
X ≥ E [X] + τ

]
≤ exp

(
−τ2

E [X] + 2τ/3

)
≤ exp

(
3E [X] ln γ

3E [X]

)
≤ γ.

Where the second inequality follows from the observation that 2τ/3 < E [X]

whenever γ > exp
(−3E [X]/4

)
. As |S| = X + q we have

|S| ≤ q + (δ − 1)
(q − 1)Hλ′

2
+ q(δ − 1)τ +

√

3

(
(δ − 1)

(q − 1)Hλ′

2
+ q(δ − 1)τ

)
ln γ−1

except with probability γ22. �
As an immediate consequence of Lemma 5 we get an attack on the static mode

of operation of the Password Hashing Competition winner Argon2. Specifically
we can attack the Argon2i variant in which memory accesses patterns are not
input dependent — a desirable property to prevent side-channel attacks based
on cache timing. As another immediate consequence we also get an attack on
the Single-Buffer construction of [CGBS16].

Theorem 7. Let G be a (n, δ, n/τ)-random DAG on n nodes. There exists an
evaluation algorithm A for the corresponding iMHF such that for any core-
memory ratios R > 0 and R̄ > 0 the expected AT and energy complexities of
A are at most E [ATR(A)] ≤ UAT and E [ER̄(A)] ≤ UE, where

UAT = 2n7/4

[
1 + 2δ +

(δ − 1)Hn1/4/τ

2
+

1
τ

+
n1/4R +

√
n + R

n3/4

]
and

UE = n7/4

[
1 + 2δ +

(δ − 1)Hn1/4/τ

2
+

1
τ

+
n1/4R̄ +

√
n + R̄

n3/4

]
.

Furthermore, except with probability γ > e
−n3/4

(
δ−1

)(
1+H

n1/4/τ
/2

)
, we have

ATR(A) ≤ UAT + 2n7/4 ×
√

3(δ − 1)
(
Hn1/4/τ + 2

)
ln γ−1

2n3/4
and

ER̄(A) ≤ UE + n7/4 ×
√

3(δ − 1)
(
Hn1/4/τ + 2

)
ln γ−1

2n3/4
.

In the special case τ = 1 (single-pass variants) Theorem 7 follows by setting
q = n3/4 in Lemma 5 and λ = n1/4 −1, g = n3/4 and t = n1/4 in Theorem 6. For

22 If γ < exp
(− 3E [X]/4

)
then we can set τ =

√
3E [X] ln γ−1 to obtain a slightly

weaker concentration bound. However, the term exp
(−3E [X]/4

)
is already negligi-

bly small in all of our applications.

266 J. Alwen and J. Blocki

the general case (multi-pass variants) we can customize the function keep. The
basic idea is simple: during a balloon phase we only need to keep about σ extra
pebbles on the (n, δ, σ = n/τ)-random DAG because we can discard pebbles
outside of the current memory window. The proof is included in the full version
of this paper [AB16].

6 Ideal iMHFs Don’t Exist

In this section we show that ideal iMHFs do not exist. More specifically we show
that for every graph G there exists node set S and positive integer g ≥ depth
(G−S) such that the iMHF evaluation algorithm A = PGenPeb(G,S, g, d, �g/d�)
has AT and energy-complexity o(n2/ log1−ε n) for any constant ε > 0. In par-
ticular, if we take the näıve algorithm to be N = triv then A is an attack with
energy-quality ω(log1−ε n). We first prove (Lemma 7) that all DAGs are reducible
provided that the maximum indegree δ is sufficiently small (e.g., δ ≤ log0.999 n).
The proof of Lemma 7 follows from a result of Valiant [Val77]. Once we have
established that all DAGs are reducible we can use PGenPeb to obtain a high
quality attack on any iMHF.

Lemma 6 ([Val77] Extension). Given a DAG G with m edges and depth
depth(G) ≤ d = 2i there is a set of m/i edges s.t. by deleting them we obtain a
graph of depth at most d/2.

Lemma 7 (All DAGs are Reducible). Let G = (V,E) be an arbitrary DAG
of size |V | = n = 2k with indeg(G) = δ. Then for every integer t ≥ 1 there is a
set S ⊆ V of size |S| ≤ tδn

log(n)−t such that depth(G − S) ≤ 2k−t. Furthermore,
there is an efficient algorithm to find S.

In a nutshell, Lemma 7 follows by invoking Lemma6 t times. The detailed
proof is in the full version [AB16]. Theorem 8 now follows from Lemma 7 and
Theorem 3.

Theorem 8 (Complexities of any iMHF). Let F be an iMHF based on
arbitrary DAG G = (V,E) of size |V | = n with in-degree indeg(G) = δ. Then for
every constant ε > 0 and fixed ratios R > 0 and R̄ > 0 there exists an evaluation
algorithm A such that

ER̄(A) = o

(
n

(
δn

log1−ε + R̂

))
= ATR(A)

where R̂ = max{R, R̄}.
In particular if we let the näıve algorithm for F be N = triv then algorithm

A is an attack with qualities

E-quality(A) = Ω

(
R̂ + n

R̂ + δn/ log1−ε n

)
= AT-quality(A)

or, for constant R and R̄, simply Ω
(
δ−1 log1−ε n

)
.

Efficiently Computing Data-Independent Memory-Hard Functions 267

In a nutshell, in the proof we set t = O
(
log log n

)
in Lemma 7 to obtain a

set S s.t. |S| ≤ O
(
n log log(n)/ log(n)

)
and d = depth(G − S) ≤ n/ log2(n). We

then set g = n/ log1+ε(n) in Theorem 3. See the full version of this paper for a
detailed proof [AB16].

Remarks. We remark that for any constants δ and ε > 1 Theorem 8 yields an
attack with quality E-quality(A) = Ω

(
log1−ε n

)
= AT-quality(A). Furthermore,

provided that δ ≤ log1−ε′
n where ε′ > 1 Theorem 8 yields an attack with

quality E-quality(A) = ω
(
1
)

= AT-quality(A). If R̄ �= R then we can obtain
separate attacks A1 and A2 optimizing E-quality and AT-quality respectively.

Erdos et al. [EGS75] constructed a graph G of any size n with indeg(G) =
O(log(n)) which is (αn, βn)-depth robust for some constants 0 < β < α < 1.23

This would imply that our bounds in Theorem 8 and Lemma 7 are essentially
tight. Alwen and Serbinenko [AS15] used the depth robust DAGs from [MMV13]
as a building block to construct a family of DAGs with provably high pebbling
complexity Ω̃

(
n2

)
. Thus, our general attack in Theorem 8 is optimal up to

polylogarithmic factors.

7 Practical Considerations

In this section we demonstrate that our attacks have high quality for practical
values of n. For example, we obtain positive attack quality against Argon2i,
the winner of the Password Hashing Competition, when n is only 218. Figure 1a
plots attack quality vs n for Argon2i and the Single-Buffer (SB) construction
for various values of varies τ ∈ {1, 3, 5}, the number of passes through memory.
The full version [AB16] includes additional plots showing that we achieve an
even greater attack quality against Catena Dragonfly and Butterfly variants.
Figure 1b shows the results for our generic attack on any iMHF.

Parameter Optimization. We remark that we optimized the parameters of our
attack for each specific value of n in our plots. For example, we showed that
any λ-stacked sandwich DAG is

(
n/t, t(λ + 1)

)
-reducible for any t ≥ 1. For

each different value of n we ran a script to find the optimal values of t and
g ≥ t(λ + 1) which minimize the energy complexity (resp. AT-complexity) of
PGenPeb(G,S, g, d = t(λ + 1), k = g/d). In our general iMHF attack we used a
script to find the optimal value of t in Lemma 7 and the optimal value of g.

Näıve Algorithms. The näıve algorithm N for the Catena Butterfly iMHF
has absolute memory complexity amc(N) = n/(λ log n) and energy complexity
ER̄(N) = n

(
amc(N)+ R̄

)
. Similarly, the näıve algorithm N for Catena Dragon-

fly has absolute memory complexity amc(N) = n/(λ + 1) and the näıve k-pass
algorithm for Argon2i and SB has absolute memory complexity amc(N) = n/k.

23 In [MMV13] the authors give an explicit construction of a DAG which has indeg(G) =
log2 n which is (αn, βn)-depth robust for any α and β arbitrarily close to 1.

268 J. Alwen and J. Blocki

214 218 222 226 230 234

2

4

6

Memory Parameter n

A
tt

a
ck

Q
u
a
li
ty

Equality

ATquality

δ = 2 τ = 1

δ = 2 τ = 3

δ = 2 τ = 5

δ = 21 τ = 1

δ = 21 τ = 3

δ = 21 τ = 5

(a) Argon2i and SB

232 251 270 289 2108 2127

0.5

1

1.5

2

Memory Parameter n

A
tt

a
ck

Q
u
a
li
ty

Equality

ATquality

δ = 2

δ = 3

δ = 4

δ = 5

(b) Ideal iMHF

Fig. 1. Attack Quality (R = R̄ = 3000)

Thus, our attack quality decreases with λ or k. We stress that this is not because
our attacks becomes less efficient as λ and k increases, but because the N algo-
rithm requires less and less memory (thus, as λ, k increase the iMHFs become
increasingly less ideal). By contrast, the näıve algorithm N = triv for our general
iMHF (and for Argon2i) has ER̄(N) = n(n + R̄).

Customized Attack Architecture. We have outlined efficient attacks on Catena,
Argon2i and the Balloon Hashing iMHFs in the theoretical Parallel Random
Oracle Machine (pROM) model of computation. Because pROM is a theoretical
model of computation it is not obvious a priori that our attacks translate to
practically efficient attacks that could be implemented in real hardware because
it can be difficult to dynamically reallocate memory between processes in an
ASIC (the amount of memory used during each round of a balloon phase is sig-
nificantly greater than the amount of memory used during each round of a light
phase). In the full version we argue that this architecture challenge would not be
a fundamental barrier to an adversary. In particular, we outline an architecture
for our algorithm PGenPeb using Argon2i as an example.

Briefly, we execute n1/4 instances of the iMHF in parallel. Our architecture
includes n1/4 “light phase” chips and a single “Balloon Phase” chip which is
responsible for executing all of the balloon phases in a round robin fashion.
Each light phase chip only needs O(n3/4 ln n) memory and a single instance
of the compression function H. The central balloon phase chip needs to have
O(n ln n) memory and

√
n instances of the compression functions H.

8 Conclusions

The results in this work show that (at the very least asymptotically
speaking) most candidate iMHFs fall far short of their stated goals, and even

Efficiently Computing Data-Independent Memory-Hard Functions 269

of the weaker general upper-bound in Sect. 6. The notable exception is the con-
struction of [AS15]. However, currently it can be viewed mainly as a theoretical
result rather then a practical one due to the recursive nature of the construction
and the high degree of the polylog factor complexity lower-bound (though this
can partially be tightened with a slightly more fine grained security proof). Thus
we are left with the central open problem of finding a practical construction of
an iMHF which get as close as possible to the general upper-bound.

References

[AB16] Alwen, J., Blocki, J.: Efficiently computing data-independent memory-
hard functions. Cryptology ePrint Archive, Report 2016/115 (2016).
http://eprint.iacr.org/

[ABMW05] Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard,
memory-bound functions. ACM Trans. Internet Technol. 5(2), 299–327
(2005)

[ACK+16] Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro,
S.: On the complexity of scrypt and proofs of space in the parallel random
oracle model. Cryptology ePrint Archive, Report 2016/100 (2016). http://
eprint.iacr.org/

[Ale04] Alexander, S.: Password protection for modern operating systems. login,
June 2004

[AS15] Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-
hard functions. In: Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, STOC 2015 (2015). http://eprint.iacr.org/2014/
238

[ASK07] Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack
on the AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–
286. Springer, Heidelberg (2006)

[BBBB10] Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: loss-
resistant password management. In: Gritzalis, D., Preneel, B., Theohari-
dou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 286–302. Springer,
Heidelberg (2010)

[BBD13] Blocki, J., Blum, M., Datta, A.: Gotcha password hackers! In: Proceedings
of the 2013 ACM Workshop on Artificial Intelligence and Security, pp. 25–
34. ACM (2013)

[BD16] Blocki, J., Datta, A.: Cash: a cost asymmetric secure hash algorithm for
optimal password protection. In: 29th IEEE Computer Security Founda-
tions Symposium, CSF (2016, to appear)

[BDK15] Biryukov, A., Dinu, D., Khovratovich, D.: Fast and tradeoff-resilient
memory-hard functions for cryptocurrencies and password hashing. Cryp-
tology ePrint Archive, Report 2015/430 (2015). http://eprint.iacr.org/

[Ber] Bernstein, D.J.: Cache-Timing Attacks on AES
[Bil13] Markus, B.: Dogecoin (2013)

[BJKS03] Brainard, J.G., Juels, A., Kaliski, B., Szydlo, M.: A new two-server app-
roach for authentication with short secrets. In: USENIX Security, vol. 3,
pp. 201–214 (2003)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2014/238
http://eprint.iacr.org/

270 J. Alwen and J. Blocki

[BK15] Biryukov, A., Khovratovich, D.: Tradeoff cryptanalysis of memory-hard
functions. Cryptology ePrint Archive, Report 2015/227 (2015). http://
eprint.iacr.org/

[BKPS13] Blocki, J., Komanduri, S., Procaccia, A., Sheffet, O.: Optimizing password
composition policies. In: Proceedings of the Fourteenth ACM Conference
on Electronic Commerce, pp. 105–122. ACM (2013)

[BL13] Bernstein, D.J., Lange, T.: Non-uniform cracks in the concrete: the power
of free precomputation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part II. LNCS, vol. 8270, pp. 321–340. Springer, Heidelberg (2013)

[BM06] Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215.
Springer, Heidelberg (2006)

[Bon12] Bonneau, J.: The science of guessing: analyzing an anonymized corpus of
70 million passwords. In: 2012 IEEE Symposium on Security and Privacy
(SP), pp. 538–552. IEEE (2012)

[CGBS16] Corrigan-Gibbs, H., Boneh, D., Schechter, S.: Balloon hashing: provably
space-hard hash functions with data-independent access patterns. Cryp-
tology ePrint Archive, Report 2016/027 (2016). http://eprint.iacr.org/

[Cha11] Lee, C.: Litecoin (2011)
[CHS06] Canetti, R., Halevi, S., Steiner, M.: Mitigating dictionary attacks on

password-protected local storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 160–179. Springer, Heidelberg (2006)

[CLN12] Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet universally com-
posable two-server password-authenticated secret sharing. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security,
pp. 525–536. ACM (2012)

[DC08] Daher, W., Canetti, R.: Posh: a generalized captcha with security applica-
tions. In: Proceedings of the 1st ACM workshop on Workshop on AISec,
pp. 1–10. ACM (2008)

[DGN03] Dwork, C., Goldberg, A.V., Naor, M.: On memory-bound functions for
fighting spam. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
426–444. Springer, Heidelberg (2003)

[DNW05] Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg
(2005)

[EGS75] Erdoes, P., Graham, R.L., Szemeredi, E.: On sparse graphs with dense
long paths. Technical report, Stanford, CA, USA (1975)

[FH10] Florêncio, D., Herley, C.: Where do security policies come from? In: Pro-
ceedings of SOUPS, p. 10 (2010)

[FLW13] Forler, C., Lucks, S., Wenzel, J.: Catena: A memory-consuming password
scrambler. IACR Cryptology ePrint Archive 2013:525 (2013)

[JR13] Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable.
In: Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security. ACM (2013)

[Kal00] Kaliski, B.: Pkcs# 5: Password-based cryptography specification version
2.0 (2000)

[KSK+11] Komanduri, S., Shay, R., Kelley, P.G., Mazurek, M.L., Bauer, L., Christin,
N., Cranor, L.F., Egelman, S.: Of passwords and people: measuring the
effect of password-composition policies. In: Proceedings of the 2011 Annual
Conference on Human Factors in Computing Systems, pp. 2595–2604.
ACM (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Efficiently Computing Data-Independent Memory-Hard Functions 271

[LT82] Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space
trade-offs in a pebble game. J. ACM (JACM) 29(4), 1087–1130 (1982)

[Man96] Manber, U.: A simple scheme to make passwords based on one-way func-
tions much harder to crack. Comput. Secur. 15(2), 171–176 (1996)

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Kleinberg, R.D. (ed.) Innovations in Theoretical Com-
puter Science, ITCS 2013, Berkeley, CA, USA, 9–12 January 2013, pp.
373–388. ACM (2013)

[MT79] Morris, R., Thompson, K.: Password security: a case history. Commun.
ACM 22(11), 594–597 (1979)

[NB+15] Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bit-
coin and Cryptocurrency Technology (manuscript) (2015). Accessed 6 Aug
2015

[Per09] Percival, C.: Stronger key derivation via sequential memory-hard func-
tions. In: BSDCan 2009 (2009)

[PHC] Password hashing competition. https://password-hashing.net/
[PM] Provos, N., Mazieres, D.: Bcrypt algorithm

[RTSS09] Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of
my cloud: exploring information leakage in third-party compute clouds.
In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) Proceedings of the 2009
ACM Conference on Computer and Communications Security, CCS 2009,
pp. 199–212. ACM, New York (2009)

[SS09] Scarfone, K., Souppaya, M.: Nist special publication 800–118: Guide to
enterprise password management (draft), April 2009

[Tho79] Thompson, C.D.: Area-time complexity for VLSI. In: Fischer, M.J.,
DeMillo, R.A., Lynch, N.A., Burkhard, W.A., Aho, A.V. (eds.) Proceed-
ings of the 11h Annual ACM Symposium on Theory of Computing, 30
April - 2 May 1979, Atlanta, Georgia, USA, pp. 81–88. ACM, New York
(1979)

[Val77] Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In:
Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 162–176. Springer, Hei-
delberg (1977)

https://password-hashing.net/

Towards Sound Fresh Re-keying with Hard
(Physical) Learning Problems

Stefan Dziembowski1, Sebastian Faust2(B), Gottfried Herold2,
Anthony Journault3, Daniel Masny2, and François-Xavier Standaert3

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
2 Fakultät für Mathematik, University of Bochum, Bochum, Germany

sebastian.faust@gmail.com
3 ICTEAM – Crypto Group, Université catholique de Louvain,

Louvain-la-Neuve, Belgium

Abstract. Most leakage-resilient cryptographic constructions aim at
limiting the information adversaries can obtain about secret keys. In the
case of asymmetric algorithms, this is usually obtained by secret sharing
(aka masking) the key, which is made easy by their algebraic proper-
ties. In the case of symmetric algorithms, it is rather key evolution that
is exploited. While more efficient, the scope of this second solution is
limited to stateful primitives that easily allow for key evolution such as
stream ciphers. Unfortunately, it seems generally hard to avoid the need
of (at least one) execution of a stateless primitive, both for encryption
and authentication protocols. As a result, fresh re-keying has emerged as
an alternative solution, in which a block cipher that is hard to protect
against side-channel attacks is re-keyed with a stateless function that is
easy to mask. While previous proposals in this direction were all based on
heuristic arguments, we propose two new constructions that, for the first
time, allow a more formal treatment of fresh re-keying. More precisely,
we reduce the security of our re-keying schemes to two building blocks
that can be of independent interest. The first one is an assumption of
Learning Parity with Leakage, which leverages the noise that is available
in side-channel measurements. The second one is based on the Learning
With Rounding assumption, which can be seen as an alternative solution
for low-noise implementations. Both constructions are efficient and easy
to mask, since they are key homomorphic or almost key homomorphic.

1 Introduction

Side-channel attacks are an important concern for the security of cryptographic
implementations. Since their apparition in the late 1990s, a large body of work
has investigated solutions to prevent them efficiently, e.g. based on algorith-
mic and protocol ingredients. Masking (i.e., data randomization) and shuffling
(i.e., operation randomization) are well studied representatives of the first cate-
gory [41]. Leakage-resilient cryptography [29] is a popular representative of the
second one. Interestingly, it has been shown recently that these approaches are
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 272–301, 2016.
DOI: 10.1007/978-3-662-53008-5 10

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 273

complementary. Namely, leakage-resilient cryptography brings strong (concrete)
security guarantees for stateful primitives such as stream ciphers (where key
evolution prevents attacks taking advantage of multiple leakages per key). How-
ever, these stateful primitives generally require to be initialized with some fresh
data, for example new session keys [52]1. In practice, this initialization typically
involves a stateless primitive such as a Pseudo Random Function (PRF), for
which leakage-resilience is significantly less effective, since nothing prevents the
adversary to repeat measurements for the same plaintext and key in this case [10].
Hence, the state-of-the-art in leakage-resilient symmetric cryptography is torn
between two contradicting observations. On the one hand, leakage-resilient PRFs
(and encryption schemes) such as [1,24,57,58] cannot be used for this initializa-
tion2. On the other hand, it seems that the execution of at least one stateless
primitive (e.g., a PRF or a block cipher) is strictly needed for the deployment of
leakage-resilient (symmetric) encryption and MACs [51]. This leaves the efficient
protection of such stateless primitives with algorithmic countermeasures such as
masking and shuffling as an important research goal.

In particular, masking appears as a promising solutions for this purpose,
since it benefits from a good theoretical understanding [21,26,27,37,53]. Unfor-
tunately, the secure masking of a block cipher like the AES also comes with
significant drawbacks, especially when the number of shares increases (i.e., for
so called higher-order masking schemes). First, it implies implementation over-
heads that are quadratic in the number of shares [33] (although some optimiza-
tions are possible for low number of shares, especially in hardware, e.g. [12]).
Second, it has large randomness requirements (since the masked execution of
non-linear operations at high-orders requires frequent refreshings of the shares).
Third and probably most importantly, it assumes that the leakages of all these
shares are independent, a condition that is frequently contradicted both in soft-
ware (because of transition-based leakages [6,22]) and hardware implementa-
tions (because of so-called glitches [42,43]. Besides, standard algorithmic coun-
termeasures able to deal with such independence issues usually imply additional
implementation constraints, sometimes reflected by performance losses (e.g., the
threshold implementations in [13,50] prevent glitches by increasing the number
of shares).

Quite naturally, an extreme solution to this problem is to take advantage
of asymmetric cryptographic primitives, for which algebraic properties usually
make the masking countermeasure much easier to implement, as suggested for El
Gamal encryption [38] and pairing-based MACs [44]. While these solutions may
indeed lead to better efficiency vs. security tradeoffs than the direct protection
of a block cipher with masking in the long term, they still imply significant
performance overheads that may not be affordable for low-cost devices, and can
only be amortized for quite high-order masking schemes.

1 Note that using the key-evolution approach for the session key derivation (i.e. com-
puting session key Ki as an “evolved” session key Ki−1) is often impractical, since
it requires synchronization between the sender and the receiver.

2 Excepted if combined with additional heuristic assumptions such as in [47].

274 S. Dziembowski et al.

Fig. 1. Fresh re-keying and its leakage requirements.

Taking these challenges into account, an appealing intermediate path called
fresh re-keying has been initiated by industrial and academic research [30,46].
As illustrated in Fig. 1, its main idea is to exploit a good “separation of duties”
between a re-keying function GenSK and a block cipher or tweakable block
cipher [40]3. That is, the function GenSK , which is used to generate the fresh
session keys sk, needs to resist Differential Power Analysis attacks (DPA),
i.e. attacks exploiting multiple measurements per key. By contrast, the (pos-
sibly tweakable) block cipher only needs to resist Simple Power Analysis (SPA)
attacks, i.e. attacks exploiting a single measurement per key (or DPA attacks
with limited trace count if the key refreshing is amortized). Quite naturally, this
solution is useless in case GenSK is also a (tweakable) block cipher (since it
would then be equally difficult to protect with masking). So previous fresh re-
keying schemes additionally came with heuristic arguments justifying that this
function does not need to be cryptographically strong, and only has to fulfill a
limited set of properties (e.g., good diffusion). On top of this, they suggested
to exploit key homomorphic GenSK ’s, so that their masked implementation is
(much) simplified. Taking advantage of key homomorphism indeed reduces the
computational overheads and randomness requirements of masking to the min-
imum (i.e., the refreshing of the secret master key and the computation of the
key homomorphic for each share). Besides, it also allows avoiding issues related
to the independent leakage assumption, since we can then compute GenSK on
each share independently. A polynomial multiplication in (e.g., a ring) was finally
proposed as a possible instance for such functions [30,46].

Yet, and while conceptually elegant, Fig. 1 also suggests the important caveat
of existing fresh re-keying schemes. Namely, between the re-keying function
GenSK that can be well protected against DPA thanks to masking, and the
underlying (tweakable) block cipher that has to be secure against SPA (e.g.,
thanks to shuffling), one has to re-combine the shares to produce a fresh session

3 As discussed in [23], using a tweakable block cipher allows obtaining beyond birthday
security for this fresh re-keying scheme, while a standard block cipher only provides
birthday security. Whether one or the other option is chosen will be essentially
equivalent for the discussions in this paper.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 275

key sk: an operation of which the leakage was essentially left out of the analy-
sis so far. More precisely, the only (informal) guidelines were that it should be
difficult to precisely extract hard information (e.g., bits) about sk, in order to
avoid the algebraic attacks outlined in [45]. Recent results from Belaid et al. and
Guo and Johansson then made it clear that a small noise may not be sufficient
to secure GenSK against leakage on sk [9,11,35].

Our Contribution. Based on this state-of-the-art, we initiate the first for-
mal study of fresh re-keying functions that are at the same time easy to mask
(since key homomorphic or almost key homomorphic [18]) and cryptographi-
cally strong. To this end, we propose new security models using the ideal/real
world paradigm and show that our instantiations described below can be proven
secure under reasonable assumptions. Informally, our security guarantees state
that even given continuous leakage (for instance, probing leakage or noisy leak-
age), the adversary will not be able to attack the re-keying function any better
than an adversary that just obtains uniformly random session keys. We prove
the security of two different instantiations of a re-keying function in this model
(making different assumptions on the type of leakage as outlined below).

On the one hand, we start from the observation that in the context of re-
keying, the function GenSK ’s output is in fact never given to the adversary
completely. Instead, the adversary learns only some partial leakage information
about GenSK . Taking advantage of this observation, we first introduce a new
assumption of Learning Parity with Leakage (LPL), of which the main difference
with the standard Learning Parity with Noise (LPN) problem is that it relies
on additive Gaussian (rather than Bernoulli) noise [14,15,32]. Note that we use
the name Learning Parity with Leakage (and not with Gaussian noise) to reflect
the fact that the amount of noise can be much larger than in the standard LPN
assumption (since in a re-keying scheme, the authorized parties only deal with
noise-free information). Then, we show that our new LPL assumption can be
reduced to the standard LPN assumption. Finally, we instantiate a re-keying
scheme based on LPL that is trivial to mask (since key homomorphic) and pro-
vide the actual noise values required to reach different security levels against
adversaries targeting the re-combination step of the fresh key sk in Fig. 1. Con-
ceptually, the main advantage of this construction is that it exploits the noise
that is naturally available in side-channel leakages. However, our study also sug-
gests that this physical noise may have to be increased by design to reach high
security levels – see Sect. 6 for a discussion.

On the other hand, we consider the complementary context of small embed-
ded devices with too limited noise for the previous LPL problem to be hard. In
this case, we take advantage of the recently introduced Learning with Round-
ing (LWR) assumption [7], and describe a re-keying that is perfectly suitable
for a low-noise environment. In order to make it most efficient, we instantiate
it with computations in Zq with q = 2b, and a rounding function that can be
simply implemented by dropping bits. This allows us to directly take advantage
of standard arithmetic operators available in most computing platforms (e.g.,
recent ARM devices perform 32-bit multiplications in one cycle), without any

276 S. Dziembowski et al.

additional hassle due to complex reductions. We then show that this re-keying
function based on the LWR assumption can be efficiently masked thanks to an
additional error correction step, which makes it almost key homomorphic. We
finally provide parameters to instantiate it for various security levels, including
very aggressive choice of parameters for which the security is not proven (or
at least it is not based on the standard assumptions). Conceptually, the main
advantage of this construction is that it ensures stronger cryptographic proper-
ties (i.e., computational indistinguishability from uniform) and therefore may be
of interest beyond the re-keying scenario considered here.

As a result, we obtain two cryptographic constructions that can be used
for fresh re-keying in both low-noise and high-noise contexts, for which masked
implementations have minimum overheads and randomness requirements, and
can easily fulfill the independent leakage assumption.

Besides the formal modeling and the security proofs of our constructions,
we also present preliminary implementation results for our re-keying functions.
Concretely, we report in Sect. 6 on implementations of our re-keying function on
a 32-bit ARM and an 8-bit Atmel device. We give a comparison with masked
AES implementations and show that for certain choices of the parameters (and
under reasonable noise assumptions for the LPL-based construction), we can
achieve improved efficiency.

Related Works. Our two re-keying constructions are naturally connected to
previous cryptographic primitives based on LPN and LWR, such as LAPIN [36]
and SPRING [8]. Interestingly, when it comes to their resistance against side-
channel attacks, these new constructions also bring a neat solution to the main
drawbacks of LAPIN and SPRING. Namely, for LAPIN, it remained that the
generation and protection of the Bernoulli noise was challenging [31]. But when
relying on the LPL assumption, we gain the advantage that this noise does not
have to be generated (since it corresponds to the leakage noise that anyway has
to be available on chip for the masking of F to be effective – see again [21,26,27,
37,53]). As for SPRING, the main challenge was to deal with the masking of the
(non–linear) rounding operation [19]. But as described in Sect. 5, this masking
is made easier with our re-keying function based on LWR.

A similar technique to our reduction from LPL to LPN was used in [11], who
also analyze physical noise used as a countermeasure to leakage in the context
of finite field multiplication and attack this by deriving LPN instances.

2 Preliminaries

Notations. We denote scalars u, v by small italic single characters. Vectors u, r,k
are denoted by small bold letters. Matrices R,T are denote by capital bold
letters. We use capital letters R,U to denote scalars if we want to emphasize
that we treat them as random variables and argue about probabilities.

Standard Assumptions. Our constructions will be based on the Learning Par-
ity with Noise (LPN) assumption and the Offset Learning with Uniform Noise
assumption. To analyse these, we recall some relevant standard assumptions:

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 277

Definition 1 (LPN). Let 0 < τ < 1
2 be fixed and n ∈ N. For (unknown) k ∈ Z

n
2 ,

the LPNn,τ sample distribution is is given by

DLPN,n,τ := (r, �) for r ∈ Z
n
2 uniform, e ← Bτ , � := 〈r,k〉 + e mod 2,

where Bτ denotes a Bernoulli distribution with Pr[e = 1] = τ,Pr[e = 0] = 1 − τ .
Given query access to DLPN,n,τ for uniformly random k, the search LPNn,τ -

problem asks to find k. The decision LPNn,τ -problem asks to distinguish an oracle
for DLPN,τ for uniformly random k from an oracle that outputs uniformly ran-
dom values from Z

n
2 × Z2. The search/decision LPNn,τ -Assumption asserts that

these problems are infeasible for PPT algorithms. (n, τ are given functions of
the security parameter).

Definition 2 (LWE [54]). Let Φ be some efficiently sampleable noise distribution
on Z, n ∈ N and q > 0 (often, but not necessarily prime). For (unknown) k ∈ Z

n
q ,

the LWEn,Φ sample distribution is given by

DLWE,n,q,Φ := (r, �) for r ∈ Z
n
q uniform, e ← Φ, � := 〈r,k〉 + e mod q.

Given query access to DLWE,n,q,Φ for uniformly random k ∈ Z
n
q , the search

LWEn,q,Φ-problem asks to find k. The decision LWEn,q,Φ-problem asks to dis-
tinguish an oracle for DLWE,q,Φ for uniformly random k from an oracle that
outputs uniformly random values from Z

n
q × Zq. The search/decision LWEn,q,Φ-

Assumption asserts that these problems are infeasible for PPT algorithms.

Usually, Φ is taken to be a discrete Gaussian, i.e. a probability distribution
whose density PrE←Φ[E = x] is proportional to exp

(−x2

2s

)
. In this case, one

usually takes s as a parameter of the scheme rather than Φ. Note that LPN is
an important special case of LWE with q = 2 and Φ a Bernoulli distribution.

Definition 3 (LWU [25,48]). Another important special case is when the error
distribution Φ is uniform from some interval, say {0, . . . , B − 1}. In this paper,
we call it the Learning with Uniform Noise distribution/problem/assumption
LWUn,q,B. Note that only the length of the interval matters in this case, as the
adversary can add a constant shift itself.

Definition 4 (LWR [7]). The Learning with Rounding (LWR) distribu-
tion/problem/assumption is often seen as a deterministic variant of LWE, where
instead of adding some random noise e ← Φ to perturb 〈r,k〉, we round 〈r,k〉.

More precisely, for appropriately chosen integers p < q, the rounding function
�·�p : Zq → Zp is �x�p := �xp

q �, where x ∈ Zq is represented as x ∈ {0, . . . , q−1}.
When applying �·�p to a vector in Z

n
q , we apply it component-wise.

For (unknown) k ∈ Z
n
q , the LWRn,q,p sample distribution is given by

DLWR,n,q,p := (r, �) for r ∈ Z
n
q uniformand � = �〈r,k〉�p .

Again, given query access to DLWR,n,q,p for uniformly random k ∈ Z
n
q , the

search LWRn,q,p-problem asks to find k. The decision problem asks to distinguish

278 S. Dziembowski et al.

DLWR,n,q,p for uniformly random k from an oracle that outputs samples (r, �u�p)
for r ∈ Z

n
q , u ∈ Zq uniform. Note that �u�p is not uniform in Zp unless p | q.

The search/decision LWRn,q,p-Assumption asserts that the problem is infeasible
for PPT algorithms.

3 General Framework

3.1 Re-keying Schemes

A re-keying scheme RK is a cryptographic primitive which generates session keys
sk from a secret key msk and some public randomness R. More precisely, RK =
(Gen,GenSK ,CorSK ,D) consists of the following three PPT algorithms and an
efficiently samplable distribution D from which the randomness is sampled:

Gen(1λ): Outputs a secret key msk and d shares thereof that we denote with
(msk)d.

GenSK ((msk)d,R): Outputs a session key sk, new shares (msk′)d and potentially
correction information v.

CorSK (msk,R, v): Outputs a session key sk.

Concretely, GenSK will be run by the chip to protect while CorSK will be run
by the other party. RK is called correct iff for (msk, (msk)d) ← Gen(1λ), R ←
D, (sk, (msk′)d, v) ← GenSK ((msk)d,R), we have that CorSK (msk,R, v) = sk
holds with overwhelming probability. Further, we require that (msk′)d and (msk)d

follow the same distribution, conditioned on msk.
One may think of (msk′)d and (msk)d as some form of encoding that protects

against side-channel attacks4. The correction information v may be needed in
some constructions since the session key when computed from (msk)d by GenSK
may be different when computed from msk by CorSK .

For the security definition of a re-keying scheme, we define three interactive
PPT algorithms Real , Ideal and Sim. An adversary A will interact with them
during a polynomially bounded amount of sessions (see Fig. 2).

We denote this process with AReal((msk)d)(1λ) when A interacts with Real and
A(SimIdealc ,Idealc)(1λ) when A interacts with Sim and Ideal . In the latter case,
(SimIdealc , Idealc) is the concatenation of their outputs. During each session A
receives the following output from Real , Ideal and Sim:

Real((msk)d): Takes (msk)d from the input and sample R ← D. Then, run
(sk, (msk′)d, v) ← GenSK ((msk)d,R). It outputs (R, sk, v) to A. Further, it
has additional, model specific inputs/outputs, e.g. probes which are leaked.
It then overwrites (msk)d := (msk′)d to be used in the next session.

4 For the reader familiar with side-channel resistant implementations (msk)d denotes
a masking of msk and (msk′)d denotes a refreshing of the shares of the masking.
Indeed, in all our constructions, (msk)d will be d uniformly chosen values mski with∑

i mski = msk. While we call (msk)d “shares” in the definition to match our later
notation more closely, (msk)d could in principle be anything.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 279

A Real A Sim

≈c

IdealR, v, sk R, v, sk

R, v, sk

Fig. 2. An adversary A breaking the security of a re-keying scheme distinguishes the
following cases: A interacts with Real or he interacts with Sim and Ideal . The ses-
sion key is sk, the randomness for the session key generation R and some correction
information v. Additionally A sees some model specific leakage.

Idealc(1λ): outputs in each session (R, v, sk) for uniform random sk, independent
v and R ← D. Its random tape is c.

Sim(1λ) : simulates model specific outputs while accessing the outputs of Idealc.

A re-keying scheme is called secure iff for any PPT A:∣∣∣Pr
[
AReal((msk)d)(1λ) = 1

] − Pr
[
A(SimIdealc ,Idealc)(1λ) = 1

]∣∣∣ ≤ negl(λ),

where the probability is taken over the random tape of A, Real , Sim, c and
(msk, (msk)d) ← Gen(1λ). It is easy to see that session keys sk need to be
indistinguishable from uniform chosen keys to fulfill this security notion. This
needs to hold even given the model specific leakage. The next two sections will
describe two different leakage models that we consider in this work.

3.2 The Leakage Model for Re-Keying Schemes

For the two different instantiations that we present in Sect. 4 and Sect. 5 we pro-
pose two different leakage models. The leakage model specifies what additional
information the adversary can obtain in the real world. In the ideal world the
leakage then has to be simulated in a consistent way by the simulator Sim.

Re-keying Schemes in the t-probing Model. An important model to analyze the
security of side-channel countermeasures is a security proof in the t-probing
model [37]. In the t-probing model, the adversary is allowed to learn up to t-
intermediate values of the computation of GenSK , i.e. of the generation of the
session key. Notice that the definition of an intermediate value typically depends
on the underlying scheme and its implementation. Our schemes are naturally
described using group operations and internal values are group elements, notably
elements from Zp for p being a power of 2 (this includes the case of bits with
p = 2). This means that the adversary A specifies a set of t probes P, where
|P| ≤ t and the adversary obtains back from Real((msk)d) the intermediate val-
ues V = {vwi

}, where wi ∈ P and vwi
is the value carried on the intermediate

280 S. Dziembowski et al.

result labeled with wi. Hence, if the computation was carried out over Zp, then
the adversary obtains a set V with t elements, where each value in V corre-
sponds to one of the intermediate values produced during the computation of
GenSK . To show security of the re-keying function in the t-probing model, we
need to construct an efficient simulator Sim that can simulate the replies of the
adversary’s probes Vi without probing access (i.e. from the values Sim obtains
in the ideal world).

Re-keying Schemes in the t-noisy Probing Model. For our first re-keying scheme,
we will show security in a weaker model than the standard t-probing model.
We will assume that each of the t-probes is perturbed with additive Gaussian
noise. This is a common assumption in works on side-channel analysis and can
for instance be guaranteed using a physical noise generator [34]. For simplicity
we assume that all intermediate values are in Z2 and for a probe on a wire that
carries the bit b ∈ Z2 = {0, 1} the adversary learns b + e, where e corresponds
to noise from a continuous Gaussian distribution. It is important to note that
the addition of the noise is a normal addition in the reals. The above can be
generalized but for ease of exposition we stick to these simplifications in the rest
of the paper. Using this terminology, in the t-noisy probing model the adversary
A specifies a set of t probes P, but instead of obtaining the exact values of
the intermediate wires, he obtains a noisy version of them. That is, the set of
replies V is V = {vwi

+ ei}. Since the adversary only sees a noisy version of the
intermediate values, the t-noisy probing model offers a weaker security guarantee
than the t-probing model. Trivially, the leakage obtained in the t-noisy probing
model can be simulated by t-probing leakage.

Security Against Continuous (Noisy) Probes. In the above two section we consid-
ered an adversary that can specify a set of probes and obtains the corresponding
intermediate values. In the continuous probing model, this notion is extended by
letting the adversary specify for each execution adaptively a new set of probes
P. More precisely, during the execution in the real world at the beginning of the
i-th session, the adversary specifies adaptively a set of probes Pi, and obtains
the (noisy) intermediate values V i that correspond to the wires specified in Pi.
Notice that the choice of Pi can depend on all information that the adversary A
has seen previously, i.e. on {(V j , skj ,Rj , vj)}j∈[i−1]. Observe that the continuous
probing model is significantly stronger than the one-shot (noisy) probing model
as the adversary obtains significantly more information that he can exploit in
breaking the scheme.

3.3 Masking Schemes

Masking schemes are a method to achieve security in the t-probing model (and
hence also in the t-noisy-probing model since this model is weaker). In a mask-
ing scheme, each sensitive intermediate variable is split into d shares such that
knowing only (d−1) shares does not reveal information about the sensitive vari-
able. Consider for instance the Boolean maskings scheme [37] where a sensitive

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 281

variable k is represented by d random shares k1, . . . , kd such that k =
∑

i ki.
Clearly, knowing only d − 1 arbitrary shares does not allow to recover the secret
value k. The main difficulty in designing secure masking schemes is in computing
with shared variables in a secure way. To this end one needs to design masked
operations. In traditional masking schemes one typically designs masked algo-
rithms for the basic operations of the underlying group (e.g., for addition and
multiplication). While linear operations can be masked very efficiently, masking
the non-linear operations, e.g., the multiplication, is significantly more costly. For
instance, a masked multiplication in the Boolean masking scheme results into
an overhead of O(d2) for each masked multiplication used in the computation.

We will apply masking schemes to protect the re-keying function against t-
(noisy) probing attacks. To obtain better efficiency when executed in the masked
domain, we design in the next sections cryptographically strong re-keying func-
tions that are almost linear. Concretely, for our construction GenSK is divided
into d sub-computations where each sub-computation only takes as input one
share mski of (msk)d (this is the linear part of the re-keying function GenSK).
Only at the very end of the computation the outputs of this linear part are re-
combined to obtain the final session key. We emphasize that by following this
approach our construction also obtains strong glitch resistance – unlike normal
masked implementations. Glitches can occur in hardware implementations due to
synchronization problems. Since in our construction the sub-computations only
depend on individual shares, glitches are prevented as we do not use operations
that access multiple shares jointly.

Masking in the Continuous Leakage Model. To guarantee security of a masked
implementation in the continuous leakage model, the secret shares used in the
computation and in particular the shares of the key need to be refreshed fre-
quently. Such a refreshing is typically done by a probabilistic Refresh algorithm.
In our case, the refreshing is part of the GenSK algorithm and takes as input
the shared master secret key (msk)d and produces a refreshed master secret
key (msk′)d. The correctness requirement of the refreshing algorithm says that
both (msk)d and (msk′)d correspond to the same master secret key msk. If the
underlying masking scheme is the Boolean masking scheme then this means that∑

i mski =
∑

i msk′
i. Further, we require that the the distribution of (msk′) is

uniform among all possible such sharings of msk. Besides correctness, the refresh-
ing algorithm also shall guarantee that side-channel information (i.e., the (noisy)
probes) from different executions of the re-keying functions cannot be combined
in an exploitable way. Informally, the refreshing schemes Refresh is said to be
secure in the t-probing model against continuous attacks, if the leakage for probe
sets Pj can be simulated without knowledge of the master secret key. Typically,
the simulation is statistically indistinguishable from the continuous real execu-
tion of the Refresh algorithm.

To prove the security of our construction, we will need a secure instantiation
of a refreshing algorithm. Several variants have been proposed in the literature
with varying efficiency [4,26,37]. Since the focus of this work is not on designing

282 S. Dziembowski et al.

secure refreshing schemes, we mainly ignore them for the rest of this paper. The
following lemma can be proven about the Refresh from [26].

Lemma 1. For any set of probes P with cardinality t, there exists a PPT sim-
ulator S and a set I of cardinality t such that for any k ∈ K and k1, . . . , kd,
k′
1, . . . , k

′
d chosen uniformly at random subject to the constraint that k :=

∑
i ki =∑

i k′
i we have:

(P(k′ ← Refresh(k)),kI ,k′
I) ≡ (S(P,kI ,k′

I),kI ,k′
I) ,

where in the above “≡” denotes the statistical equivalence and for a vector k and
a set I ⊆ [d] the vector kI is the vector k restricted to the positions in I.

The refreshing algorithm from Lemma1 has complexity O(d2) (where the hid-
den constant in the O-notation are small). Recently, an improved refreshing
algorithm based on expander graphs was proposed which has complexity O(d)
[4]. We notice that while asymptotically better, the hidden constants in O(d) are
much larger and hence are of less practical relevance. In our applications, the
keys and all shares are vectors k, ki ∈ Z

n
p for some n and the sharing of each of

the n coordinates can be done independently. Consequently, we assume that if
we probe only a total of t individual coordinates of some ki’s, then there exists a
subset J ⊂ {1, . . . , n} of coordinates with |J | ≤ t, such that the above Lemma 1
holds when restricted to coordinates from J .

4 Fresh Re-keying with Physical Noise

In this section, we instantiate the abstract re-keying scheme described above
in an environment where sufficient physical noise is available. Our construction
exploits the physical noise available in side-channel measurements in a construc-
tive manner: the computation of the re-keying function is tailored in such a
way that if the adversary obtains t-noisy probing leakage, he will not be able
to break the re-keying scheme. While we believe that exploiting physical noise
in a constructive way (i.e., for designing new cryptographic primitives) is an
interesting conceptual contribution by itself, it also leads to potential efficiency
improvements as we show in the implementation section (cfr. Sect. 6).

To show security of our re-keying scheme, we introduce a new learning
assumption that we call the Learning Parity with Leakage (LPL) assumption.
The LPL assumption says that inner product with physical noise cannot be dis-
tinguished from uniform samples. The main technical step is to show that the
LPL assumption can be reduced to the classical LPN assumption (this is shown in
Sect. 4.1). Notice that the most important difference between these two assump-
tions is that in LPL we add additive Gaussian noise (and no modular reduction
is carried out), while in LPN the noise comes from the binomial distribution (and
a modular reduction is carried out).

Of course, the requirement that the physical noise follows a Gaussian dis-
tribution is a strong assumption, and may not be perfectly fulfilled in practice:

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 283

physical noise indeed originates from a variety of sources (transistor noise, mea-
surement noise, noise engines added by the cryptographic designers, . . .). Yet,
it has been observed in many practical settings that this assumption holds to
a good extent [41]. More importantly, it is the starting point of most of the
(e.g. template and regression-based) attacks that are usually considered in side-
channel security evaluations [20,56]. Besides, it has been shown recently how to
verify empirically that deviations from this Gaussian assumption do not signifi-
cantly impact the security level of an implementation [28], which can therefore
be done for our primitives as well5.

Our Re-keying Function. We present our proposed LPN-based re-keying
scheme Πnoisy = (Gen,GenSK ,CorSK ,D), which will be proven secure when
sufficient physical noise is available in the leakage measurements. Let n be the
length of the master secret key, m < n be the length of the session keys and
d the number of shares used for the masking scheme. The distribution D from
which the fresh randomness is sampled is defined as drawing uniformly at ran-
dom R ← Z

m×n
2 . Let H : Zm

2 → Z
m
2 be a hash function (modeled as a random

oracle, see discussion below) and assume we have some secure refresh algorithm
Refresh that satisfies the property of Lemma 1. Our re-keying function is then
defined as follows:

Gen(1λ): Samples msk ← Z
n
2 .

It creates d shares (msk)d = msk1, . . . ,mskd such that
∑

mski = msk.
GenSK ((msk)d,R): A probabilistic algorithm working as follows:

1. Compute ui = R · mski

2. Compute u =
∑

i ui iteratively as ((. . . (u1 + u2) + u3) + . . .) + ud.
Notice that other ways of computing this sum are possible, but will make
the analysis more involved.

3. The session key is computed as sk = H(u).
4. Finally refresh the shares (msk′)d ← Refresh((msk)d).
5. Output (R,u).

CorSK (msk,R): Output H(R · msk).

From the above description it is clear that the additional value v (the cor-
rection term) is not used in this construction. It will be used in our construction
from Sect. 5. Moreover, the reader may notice that the re-keying function is linear
(except for the application of H at the end). The security against side-channel
attacks comes from the fact that the adversary in the t-noisy probing model only
obtains noisy intermediate values.

5 Note that if significant deviations from the Gaussian assumptions were observed, it
would not imply that our following constructions are directly broken – just that the
parameters of our reductions below, and hence the parameters of our construction,
will have to be changed, cfr. Remark 1 below.

284 S. Dziembowski et al.

On the Use of the Random Oracle. Our construction outputs sk = H(u) as
the session key rather than u = R · msk. The use of the random oracle H is
only for simplifying and unifying the security analysis. In particular, in case the
preliminary session key u is used directly in an accompanied block cipher – as is
the typical application of a re-keying scheme – then the additional hash function
execution is not needed. We notice that in such a case the analysis would (at
least) require that the block-cipher is secure against related key attacks. One
way to enforce this (and obtain a security proof) is to model the block cipher as
an ideal cipher in the analysis. Finally, we want to mention that of course the
adversary can learn noisy probes of the preliminary session key u – however, in
any applications of the re-keying function one has to make sure that these values
are never seen directly by the adversary (i.e., without the noise).

Allowed Probes. In the t-(noisy) probing model, we allow the adversary to select
probes from the following intermediate values: individual bits of mski or msk′

i,
internal values of the computation of the ui = Rmski, internal wires of Refresh or
H (unless in the ROM) and individual bits of any

∑k
i=1 ui (as specified above).

The adversary is not allowed to obtain multiple noisy probes from the same
value during a single session. This assumption is the same as made in all works
on the noisy leakage model [21,26,53]. Finally, we assume that the adversary
never probes R and sk as these values he obtains for free anyway.

4.1 Security of Our Construction Based on Physical Noise

In this section, we prove the security of our construction under the LPL (Learn-
ing Parity with Leakage) assumption. To this end, we will first formally define
our new assumption, and show that it can be reduced to the classical LPN
assumption. We then generalize LPL to an assumption that also models leak-
age from intermediate values from the computation of the session key and show
that this change in the assumption does not affect the reduction by much. The
LPL assumption with noisy probes then allow us to prove the security of our
construction in the above specified model. So to summarize we show:

LPN is hard =⇒ LPL is hard =⇒ Πnoisy is secure.

Learning Parity with Leakage (LPL). We now give a formal definition of the
LPL assumption, in which we model the physical noise distribution with a con-
tinuous Gaussian distribution Φs with density function Φs(x) := 1√

2πs
exp(− x2

2s2)
and standard deviation s. First, the LPLn,s sample distribution for secret k ∈ Z

n
2

is defined as

DLPL := (r, � = 〈r,k〉 + e) for r ← Z
n
2 , e ← Φs,

where 〈r,k〉 ∈ {0, 1} is computed over Z2 and 〈r,k〉 + e is taken over the reals.
Similarly, we define a distribution DUniformL that outputs (r, �), where r ← Z

n
2

and � = u + e ∈ R with u ← {0, 1} is a uniform bit and e ← Φs.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 285

The LPLn,s-search problem asks to find the secret, uniform k, given query
access to DLPL

6. The decision problem asks to distinguish LPLn,s from DUniformL.
The search/decision LPL-Assumption is the assumption that these problems are
hard for PPT adversaries.

Security Proof for LPL. We now show that LPL is at least as hard as LPN
for appropriate choices of parameters. For this, we first show that LPL is actu-
ally equivalent to a variant of LPN, where the error probability τ is per-sample
random and known. Formally, for a (sampleable) distribution Ψ on [0, 1

2], the
LPNn,Ψ sample distribution for uniform secret k is given by

DLPN,Ψ := (r, 〈r,k〉 + e, τ) for r ← Z
n
2 , τ ← Ψ, e ← Bτ .

Given query access to the sample distributions for fixed, random k, the search
LPNn,Ψ -problem ask to find k and the decision LPNn,Ψ -problem asks to dis-
tinguish DLPN,Ψ from DUniform,Ψ , where DUniform,Ψ outputs samples (r, �, τ) with
τ ← Ψ and (r, �) ← Z

n+1
2 .

Lemma 2. The search resp. decision LPLn,s-problem is equivalent to the search
resp. decision LPNn,Ψ -problem via a tight, sample-preserving reduction.
Here, the distribution for Ψ is given by sampling Ũ ← {0, 1}, Ẽ ← Φs, L̃ = U+E,

R̃>1 := exp
(|L− 1

2 |
s2

)
and outputting τ̃ =

(
R̃>1 + 1

)−1.

A full proof is given in the extended (ePrint) version of this work. Here, we only
give an intuition and explain the distribution of Ψ .

The key idea is to set Ψ in such a way that the amount of information learned
about 〈r,k〉 from a single LPN sample is the same as the amount of information
learned about 〈r,k〉 from a single LPL sample. To this end, we consider a quantity
called RBayes, defined below, that measures exactly the amount of information
learned about 〈r,k〉. We then compute this value for both the LPN case and for
the LPL case. In the LPN case, RBayes is a function of τ . In the LPL-case, RBayes

is a function of �LPL, where (r, �LPL) is the output from LPL. Equating the values
of RBayes will give us the involved definition of Ψ given above.

In fact, the proof given in the extended version of this work uses this value
RBayes to transform LPL samples into LPN samples and vice versa via the cor-
respondence �LPL ↔ RBayes ↔ τ .

Intuitively, giving an LPN sample (r, �) = (r, u + e) for u := 〈r,k〉 , e ← Bτ

with r �= 0 is (information-theoretically) equivalent to giving out (r, P0, P1),
where Pi = PrΩ[u = i | � is observed]. Since P0 + P1 = 1, we consider the
fraction R = P0

P1
instead, which uniquely determines P0, P1. The probability

space Ω for the definition of Pi takes u ∈ Z2 uniform for simplicity. For a general
“prior” distribution Pr[u = 0] of u, Bayes’ rule gives

Pr[u = 0 | � is observed]
Pr[u = 1 | � is observed]

= RBayes · Pr[u = 0]
Pr[u = 1]

(1)

6 We assume that for any value in R, the adversary A receives an arbitrarily precise but
polynomial representation. In particular A chooses how values in R are represented.

286 S. Dziembowski et al.

for the random variable RBayes, defined as a function of � via

RBayes =
Q0

Q1
∈ [0,∞], Qi = Pr

E←Bτ ,L=E+u
[L = � | u = i].

We have R = RBayes and the definition of RBayes does not depend on how u is
chosen and completely captures what can be learned (in addition to any prior
knowledge) from a given LPN sample about u via Eq. (1). For LPN, we easily
compute RBayes = 1−τ

τ for � = 0 and RBayes = τ
1−τ for � = 1. In the case � = 0,

this means that τ = (RBayes + 1)−1. For � = 1 we have 1 − τ = (RBayes + 1)−1.
Similarly, an individual LPL sample (r, �LPL) = (r, u + eLPL) for continuous error
eLPL ← Φs provides statistical information about u and we can define RBayes

analogously. A simple computation yields RBayes = Φs(�LPL)
Φs(�LPL−1) = exp

(− �LPL− 1
2

s2

)
.

The distribution of Ψ is constructed such that RBayes follows the same distrib-
ution in both the LPNn,Ψ and the LPLn,s case. Indeed, in the definition of Ψ ,
we mimic the distribution of RBayes by sampling Ũ , Ẽ and defining R̃Bayes,>1

in a similar way to RBayes. Taking the absolute value in R̃Bayes corresponds to
normalizing τ into 1 − τ , if τ would otherwise be larger than 1

2 . The latter can
be done by replacing �LPN by 1 − �LPN in LPN.

Note that this information-theoretic argument does not show how to effi-
ciently transform LPNn,Ψ -samples into LPLn,s-samples and vice versa. This is
done in the full reductionist proof in the extended version of this work.

Next, we reduce standard LPN with fixed noise rate τ ′ to LPNn,Ψ with varying
noise rate τ ← Ψ . Clearly, if τ ≥ τ ′, this is very easy by just adding additional
noise. If τ < τ ′, the reduction fails, but any single sample with small noise rate
can reveal at most 1 bit of information about k. Hence, we need to bound the
number of such outliers. Consequently, we have the following theorem:

Theorem 1. Consider s > 0 and 0 < τ ′ < 1
2 . Then, provided s is sufficiently

large, the LPLn,s problem is at least as hard as the LPNn,τ ′ problem.
More precisely, if LPNn−X,τ ′ is (t, ε,Q)-secure, then LPLn,s is (t′, ε′, Q′) secure
with Q = Q′ − X, t ≈ t′, ε ≈ ε′7. Here, X is a random variable measuring the
loss of dimension. X follows a Bernoulli distribution on Q tries with success
probability p, where p = Prτ←Ψ [τ < τ ′] and where Ψ is defined as in Lemma 2.

Let 0 < Δn be a (small) real number measuring the acceptable loss of dimen-
sion. Then by setting s such that

s ln
(1 − τ ′

τ ′
)

> Fc−1
(Δn

2Q

)
+

1
2s

, (2)

where Fc(x) = 1 − 1√
2π

∫ x

−∞ exp(− t2

2)dt is the complementary cdf of the normal
distribution, we can ensure E[X] = pQ < Δn.

Proof. See the extended version of this work.
7 Note that here the (known) dimension of the LPN secret is random as well. If X > n,

the problem is considered trivial.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 287

To make the above theorem useful, we ask for Δn ≤ 1. In this case, X is
approximately Poisson distributed with parameter Δn. By making Δn negligibly
small, we can have X = 0 with overwhelming probability. For setting parameters,
we consider Δn = 1 acceptable, which gives s = O

(√
log Q/ log

(
1−τ

τ

))
.

Remark 1. We observe that in Lemma 2, we showed that LPLn,s-samples (r, �)
provide the more information about 〈r,k〉, the further away � is from 1

2 . This is
due to the superexponential decay of the Gaussian error function, which means
that very large values of � > 1 are extremely more likely to have come from
〈r,k〉 = 1 than to have come from 〈r,k〉 = 0. Since we see a usually very
large number Q of samples, it is the most extreme outliers for � that deter-
mine the noise level τ ′ (and hence security) of LPN via the correspondence of
Theorem 1. In particular, we care about outliers that appear with probability
Q−1. Note that this means that our reduction is sensitive to the behavior of
the distribution tail of the physical noise, for which the assumption that this
is Gaussian is much harder to verify. For example, a faster asymptotic decay
than quadratic-exponential would hurt our reduction in terms of parameters,
while a slower decay would lead to better parameters. Ideally, one would want a
single-exponential decay rate. Also, since an adversary might choose to ignore all
samples except for the outliers, there are actually attacks corresponding to the
parameter loss of our reduction, provided the attacks do not use many samples.

LPL with Leakage of Intermediate Values. To adequately model the fact
that the adversary may probe intermediate values, we consider a variant LPLn,s,d

of the LPL-problem, which is tailored to our particular application. Note that
this variant models a situation where the adversary is able to probe all 〈r,mski〉
and also all partial sums

∑k
i=1 〈r,mski〉 for k ≥ 2, without being restricted to t

probes. We do not model probes on mski’s, internal values of R ·mski or internal
wires of Refresh here. The latter will be justified in Lemma 4, which shows that
these probes do not help the adversary much, provided their number is restricted
(the restriction on the number of probes only appears there). We now define the
LPLn,s,d distribution:

For secret k ∈ Z
n
2 , d ≥ 2, the LPLn,s,d sample distribution is given as follows:

1. First, sample r ∈ Z
n
2 .

2. Set u = 〈r,k〉 mod 2 and share u into d uniform values ui ∈ Z2 conditioned
on u =

∑d
i=1 ui mod 2.

3. For any 2 ≤ k ≤ d, we define u′
k as the partial sum u′

k =
∑k

i=1 ui.
4. Sample independent noise ek for 1 ≤ k ≤ d and e′

k for 2 ≤ k ≤ d, where each
ek, e′

k independently follows Φs.
5. Output r and all u′

k + e′
k and all uk + ek.

Given query access to LPLn,s,d for unknown, uniform k ∈ Z
n
2 , the correspond-

ing LPLn,s,d search problem is to find k. The decision problem ask to distinguish
LPLn,s,d for secret, uniform k from a distribution where u is chosen uniformly
in the second step above. The decision/search LPLn,s,d-Assumption asserts that
these problems are intractable for PPT algorithms.

288 S. Dziembowski et al.

Note that in the definition above, we split u into shares rather than k as
in our scheme Πnoisy. Due due to linearity, this is equivalent, provided R ← D
selected in Πnoisy is full-rank.

Lemma 3. Let d ≥ 2. Then the LPLn,
√

2s,d-search problem is at least as hard
as the search-LPLn,s problem. More precisely, if search-LPLn,s is (t, ε)-hard with
q samples, then LPLn,

√
2s,d is (t′, ε′)-hard with q samples, where t ≈ t′, ε ≈ ε′.

Proof. Note that if the adversary knows all shares ui for 1 ≤ i < d (which
contain no information about k) except for the last, then the only useful data
are ud + ed and u′

d + e′
d. With the given data, ud can be computed from u′

d

and vice versa. Having two independent noisy samples for the same value ud is
equivalent to reducing the noise by a factor

√
2. See the extended version of this

work for details.

Remark 2. The above shows that we only lose at worst a factor of
√

2 in the
noise rate due to the probes for intermediate values. We remark that this is
an upper bound on the parameter loss and is not matched by real attacks: the
reduction assumes that the ui for 1 ≤ i < d are known in clear (without the
noise), which in reality is not the case. In fact, the more precise parameter loss
is determined by the tail distribution of the RBayes value for LPLn,s,d, defined as
in the proof of Lemma 2. Unfortunately, this distribution is difficult to compute.

We now give an intuition why the parameter loss of
√

2 is an exaggeration.
The security level of LPLn,s and LPLn,s,d is essentially determined by outliers in
those leakages (cfr. Remark 1). If we assume in favor of the adversary that we
know all ui but ud, ud−1, then we know all intermediate values except for u′

d−1

and u = u′
d. We are interested in what can be learned about the latter.

The leakages with noise rate s for ud−1 and u′
d−1 are as good a single leak-

age for u′
d−1 with noise rate s/

√
2 by an argument similar to Lemma 3. For the

leakage of ud, we get a noise rate of s, which gives us some information about
u′

d = ud + u′
d−1. However, by taking the sum, the amount of information (mea-

sured by some R′
d,Bayes defined as in the proof of Lemma 2) that we learn about

u′
d from the set of all leakages excluding that of u′

d is limited. Indeed, it can be
at most as large as what we can learn about (the worse of) ud and u′

d−1.
What we learn about u′

d from all leakages is then determined by R′
Bayes

and what we learn from the leakage of u′
d directly. Since it is extremely more

unlikely that the leakage of u′
d−1 and ud are both outliers than that the single

measurement for u′
d is an outlier, the tail distribution for the information learned

is mostly determined by the leakage of u′
d alone. Consequently, we expect to lose

almost no security at all by revealing intermediate values. For that reason, we
do not include the

√
2-factor in our concrete parameters.

The above definition only models probes on the computation of u =
∑

i ui

in our re-keying scheme. It does not include probes for bits of shares mski,msk′
i

of the master key, probes for internal values of Rmski’s or probes for interval
wires of Refresh. The following lemma shows that this is indeed adequate, as
these additional possibilities do not help the adversary anyway.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 289

Lemma 4. Consider our re-keying scheme Πnoisy with parameters n, d,m.
Assume n − m > λ + d, where λ is the security parameter. Let 2t < d. Model H
as a random oracle. Assume Πnoisy is secure in the continuous t-noisy probing
model with Gaussian noise s, where the adversary is only allowed to probe bits
of the inner products ui = R · mski or of partial sums u′

k =
∑k

i=1 ui thereof
for k ≥ 2. Then Πnoisy is secure in the continuous t-noisy probing model with
Gaussian noise

√
t + 1s, but without the latter restriction, i.e. when we also allow

probes on bits of master key shares mski, msk′
i, on bits of internal values of the

computation of ui = Rmski or probes on internal wires of Refresh.

Proof. By assumption, we are given some simulator Sim that simulates answers
to bits of ui = R · mski and to bits of partial sums

∑k
i=1 ui thereof. We need

to show that we can extend Sim to a simulator Sim ′ that also simulates probes
on bits of mski’s,msk′

i’s and on internal wires of Refresh and the computations
of ui = Rmski.

Our simulator Sim ′ will use Sim for the probes to ui or
∑k

i=0 ui. To simulate
other probes, Sim ′ will fix appropriate bits of some mski’s or msk′

j ’s and use these
to simulate the missing queries (conditioned on ui and

∑k
i=0 ui). Let Mi,j resp.

M ′
i,j be the jth bit of mski resp. msk′

i. For a query to the jth bit of mski or
msk′

i, we fix the value of Mi,j resp. M ′
i,j . For t′ probes on internal wires of

Refresh, we can fix some t′ × t′ submatrix of both M and M ′ by the properties
of Refresh guaranteed by Lemma 1, which allows us to perfectly simulate the
desired probes. Further, some bits of Mi,j might already be fixed from probes
(on the then-called M ′) from the previous session. Since the number of probes
per session is limited by t, all the fixed bits are contained in 2t × 2t submatrices
MI,J ,M ′

I,J for I ⊂ {1, . . . , d}, J ⊂ {1, . . . , n}. Since |I| < d, there exists a share
on which nothing is fixed. Consequently, the real value of the bits that we fixed
to uniform are uniform, and independent from msk. Since n − m > λ + d, we
have that the rows of R, together with the unit vectors corresponding to J are
linearly independent with overwhelming probability. Due to that, the fixed bits
are independent from both msk and the ui’s. It follows that the simulation of
the probes on M,M ′ and Refresh can be done perfectly, independent from Sim.

What remains is the probes on intermediate values of the computation of ui =
Rmski. Assume that the individual output bits are computed independently as
scalar products 〈Rj ,mski〉 where Rj is the j-th row of R. Then for a natural
implementation, intermediate values correspond to inner products 〈w,mski〉,
where w is obtained from some row of R by zeroing bits. Now, we fix the inner
products 〈w,mski〉 to a uniformly random value and use that to simulate the
probes. (They are completely analogous to coordinates of mski). The only thing
that may go wrong is that some w are linearly dependent to previously fixed
coordinates of mski, where individually fixed bits of Mi,j correspond to a unit
vector for w. In this case, we need to set the 〈w,mski〉 according to the linear
combination. If this linear combination involves w, we need to use ui, which we
do not know. Essentially, in this situation, the adversary is probing the same
unknown value c times with independent Gaussian noise, which is equivalent to
probing once with a noise width reduced by a factor

√
c.

290 S. Dziembowski et al.

Formally, we show in the extended version of this work that we can still
simulate the probe responses. ��
Theorem 2. Consider our re-keying scheme Πnoisy with parameters n, d,m.
Assume n − m − d > λ, 2t < d and n

m = Θ(1). Model H as a random oracle.
Then Πnoisy is secure in the continuous t-noisy probing model with Gaussian
noise Φ√

t+1s under the Search-LPLn,s,d-Assumption.

Clearly, using Lemma 3 together with Theorems 1 and 2 proves our re-keying
scheme Πnoisy secure under LPN.

Proof. See the extended version of this work.

4.2 Concrete Parameters

In the previous section we proved our proposed scheme Πnoisy secure under the
LPN assumption. We target our physical noise s such that the LPLn,s-assumption
holds. Note that, as we argued in Remark 1, we expect the reduction in Theorem 1
relating LPLn,s and LPNn,τ ′ to be matched by actual attacks, hence we really
need these parameters. By contrast, the loss in the reduction of Theorem 2 is
due to technical reasons and we do not expect there to be matching attacks.
We argued in Remark 2 why the

√
2 loss factor for intermediate values that we

obtained in Lemma3 is far from tight. For the
√

t + 1-factor from Lemma 4, one
can actually show that it is not there if one uses a binary tree to carry out the
computation of the sum in Πnoisy. Intuitively, it is better for the adversary to
probe values as late in the computation as possible, as the best the adversary
can hope is to learn some 〈r,msk〉, which is computed at the end. The

√
t + 1-

factor came from probes on internal values at the start of the computation.
Unfortunately, we cannot prove Lemma3 with our methods for a binary tree.
The argument from Remark 2 becomes more complicated, but essentially still
holds, which is why we ignore that

√
t + 1 factor as well.

Hence, we believe that setting parameters such that the LPLn,s-Problem
becomes hard is sufficient for our scheme to be secure.

We follow the proposal of Bogos et al. [17] of parameter choices (n, τ ′) for
ε := 2−80-hard LPN. We can then use the relationship between the number of
samples Q, the Gaussian width s and the Bernoulli noise τ ′ to determine s via.
Theorem 1. Concretely, for Q = 280 and Δn = 1, we have Fc−1

(
Δn
2Q

) ≈ 10.2846,
which allows us to relate s and τ ′.

Note that in the context of side-channel analysis, a further reduction of the
data complexity parameter could be considered. A choice of Q = 240 would
already imply the capture of ≈ 240 leakage traces, which corresponds to weeks of
measurements with current acquisition hardware [49]. Since Fc−1

(
Δn
2Q

) ≈ 7.1436,
this reduces the require noise level by a factor of approximately 10.28

7.14 ≈ 1.43.
Altogether, this approach leads to the choice of parameters given in Table 1.

Note also that the 80-bit security level of Table 1 corresponds to security
against side-channel attacks. Of course, it remains that if no leakage is provided
to the adversary, then the security of the re-keying scheme directly relates to the
key size of the underlying (tweakable) block cipher.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 291

Table 1. Standard deviations required for LPL with 80-bit hardness based on LPN with
parameter τ . We assume a bound Q on the number of LPL-samples the adversary may
see. To obtain these parameters, we numerically solved a (slightly) better Equation
given in the extended version of this work rather than Eq. (2) from Theorem 1 with
Δn = 1.

Dimension (n) 1280 640 512 448 384 256

LPN noise (τ ′) 0.05 0.125 0.25 0.325 0.4 0.45

LPL noise (s) for Q = 280 ≈ 3.52 ≈ 5.31 ≈ 9.37 ≈ 14.1 ≈ 25.4 ≈ 51.3

LPL noise (s) for Q = 240 ≈ 2.46 ≈ 3.70 ≈ 6.52 ≈ 9.79 ≈ 17.6 ≈ 35.6

5 Fresh Re-keying Without Physical Noise

For settings where no physical noise is given, or when it is not sufficient to achieve
the desired security level, we now give an alternative solution for a fresh re-keying
scheme, based on a variant of Learning with Rounding (LWR) assumption that
we call Offset Learning with Rounding (OLWR). We will show in Theorem 3
below that for an unbounded amount of samples (OLWR) is at least as hard
as Learning with uniform Errors (LWU). Before providing our OLWR-based re-
keying scheme ΠLWR, we recall our rounding function and the OLWR assumption.
For appropriately chosen integers p < q, the rounding function �·�p : Zq → Zp is
�x�p := �xp

q �, where x ∈ Zq is represented as x ∈ {0, . . . , q − 1}. When applying
�·�p to a vector in Z

n
q , we apply it component-wise. OLWR samples for dimension

n and secret k ← Z
n
q and an adversarialy chosen offset o ∈ Z

n
q , which is freshly

(and adaptively) chosen for each sample, follow the distribution

DOLWR,n,q,p(o) := (r, �〈r,k + o〉�p | r ← Z
n
q).

As usual, given query access to DOLWR,n,q,p for uniform k, the search OLWRn,q,p

problem asks to find k. The search problem asks to distinguish this distribution
from the uniform distribution DUniform. Note that the uniform distribution does
not depend on the input o. The search/decision OLWRn,q,p Assumption asserts
that this is infeasible for PPT algorithms.

We can define similar offset variants OLWU,OLWE etc. of LWU, LWE etc.
where the adversary is allowed to add an (adaptively chosen) offset to k.

For Learning with Errors (LWE) or Learning with Uniform Noise (LWU) it is
easy to see that their offset variants are still as hard as LWE, LWU respectively.
An adversary can simply compute samples with an arbitrary offset itself using
the linearity of LWE and LWU. Since LWR is not linear this does not work for
LWR. The reduction given in [7] from LWE to LWR also works from offset LWE to
OLWR. Unfortunately it does not work for the parameters proposed in this work.
Assuming the hardness of LWU for an unbounded amount of samples, OLWR will
be also hard, as we show in the following theorem. A similar statement for their
non-offset variants using similar techniques was shown by Bogdanov et al. [16].

292 S. Dziembowski et al.

Theorem 3 (Relationship Between LWU,OLWU and OLWR).

(a) For both the search and decision variants, LWUn,q,B and OLWUn,q,B are
equivalent via a tight, sample-preserving reduction.

(b) Assume p | q. Then hardness of search resp. decision LWUn,q,B implies hard-
ness of search resp. decision OLWRn,q,p, where B = q

p .
More precisely, if we can solve the search resp. decision OLWRn,q,p-problem
with advantage ε in time T , using Q samples, then we can solve the search
resp. decision LWUn,q,B problem with advantage ε′ = ε in expected time
T + O(QB) using an expected Q′ = QB samples.

Proof. (a) follows immediately by linearity, as the offset o just adds 〈R,o〉, which
is known. For (b), we show that we can transform OLWUn,q,B-samples for secret
k into OLWRn,q,p samples for the same unknown secret k. By (a), this implies
the claim.

To this end, suppose our reduction has to produce a (simulated) OLWRn,q,p

sample with offset o. Then we repeatedly query (r, �OLWU) ← OLWUn,q,B(o)
until �OLWU + 1 is divisble by B. We then output (r, ��OLWU�p).

To analyse the output distribution, recall that �OLWU = 〈r,k + o〉 + e for
0 ≤ e < B. It follows that 〈r,k + o〉 ∈ {�OLWU, �OLWU − 1, . . . , �OLWU − B + 1}.
The condition that �OLWU + 1 is divisble by B is equivalent that all possible
values for 〈r,k + o〉 map to the same value under �.�p.

Furthermore, note that the probability to reject an OLWUn,q,B sample is
always 1

B , independent from r,k,o, as it can be viewed as a condition on e ←
{0, . . . , B − 1} alone. It follows that we output the correct distribution. ��

Unfortunately Theorem3 does not work the ring version Ring-OLWR of
OLWR. In this paper we choose parameter for Ring-OLWR such that ring LWR
and ring LWU would be hard, even though there is no reduction to Ring-OLWR
known for a polynomial modulus and their decisional variant which we will use.

5.1 Offset LWR-based Re-Keying

Our proposed re-keying scheme ΠLWR based on OLWRn,q,p is defined as follows:
The session keys are in Z

m
p′ for p′ | p and the distribution D for R is the uniform

distribution over Z
m×n
q .

Gen(1λ): Samples msk ← Z
n
q . Create d shares (msk)d := msk1, . . . ,mskd such

that msk =
∑d

i=1 mski, uniformly among all possibilities. Output msk and
(msk)d.

GenSK ((msk)d,R): For each of the shares mski, compute ski := �R · mski�p.

Then set sk :=
⌊∑d

i=1 ski

⌋
p′ . Define the error correction information as

v :=
∑d

i=1 ski mod p/p′. Finally, use a secure refresh operation Refresh as in
Lemma 1 to refresh the shares (msk′)d ← Refresh((msk)d). Output sk, (msk′)d

and v.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 293

CorSK (msk,R, v): Computes y := �R · msk�p and z := y+(v−y mod p/p′) mod
p. Output �z�p′ .

Theorem 4. Let n, q, p, p′, d ∈ N such that q > p > p′, p/p′ > d and p′ | p,
p | q. Then the OLWRn,q,p-based re-keying scheme is correct.

Proof. First notice for p/p′ > d that the error term

e :=
t∑

i=1

�R · mski�p − �R · msk�p

is bounded in each component by: 0 ≤ |e| ≤ p/p′ − 1. This follows directly from
the fact that a value strictly smaller than 1 is rounded away per round operation,
and msk =

∑
i mski, which implies R ·msk =

∑
i R ·mski. Next, p′ | p guarantees

that any potential error component corresponds to a uniquely determined coset
mod p/p′. Hence, we further have:

v − y mod p/p′ : = (
∑
i

�R · mski�p mod p/p′) − (�R · msk�p mod p/p′) mod p/p′

= (�〈R · msk〉�p + e mod p/p′) − (�R · msk�p mod p/p′) mod p/p′

= e.

Therefore, we have:

z′ : = y + (v − y mod p/p′) mod p = R · msk + e mod p

=
∑

i

�R · mski�p mod p = sk. ��

Theorem 5. For moduli p, q ∈ N with p | q and dimension n ∈ N, the proposed
re-keying scheme ΠLWR is secure under the OLWRn,q,p assumption in the 2t < d
probing model.

Proof. We assume that GenSK just outputs
∑d

i=1 �R · mski�p which is equiv-

alent to outputting sk =
⌊∑d

i=1 �R · mski�p

⌋
p′

and v =
∑d

i=1 �R · mski�p

mod p/p′. Therefore Ideal will simply output R, sk′ where sk′ ← Z
m
p . Sim sim-

ulates t probes as follows:

– Let mski denote the shares at the beginning of the session for i ∈ [d]. Sim
receives t probe requests and forwards the probes which affect the refresh pro-
cedure to the simulator for the refresh procedure. This simulator will w.l.o.g.
respond with the d − 1 input shares mski of the refresh procedure and the
probes which were targeted within the refreshing procedure. The output shares
of the refresh procedure are not accessed by Sim during this session, but the
next session after the probes were made.

294 S. Dziembowski et al.

– Sim computes for the d − 1 shares ski := �R · mski�p. Let mskj be the share
that is missing and that has not been directly targeted by any probe request.
Sim defines skj = sk′ −∑

i�=j ski. Since all ski are known, Sim can answer any
probe request on any the intermediate values which arise when computing∑d

i=1 �R · mski�p.

Now we show the following statement using a reduction to OLWR: for the
given simulator Sim, for any PPT A with

|Pr[AReal(msk)(1λ) = 1] − Pr[A(SimIdealc ,Idealc)(1λ) = 1]| = ε,

there is an algorithm D distinguishing OLWR with probability ε from uniform.
During each session, A requests t probes to D . It calls the simulator of the

refresh scheme and receives d − 1 shares mski, but not mskj as it has been the
case for Sim. Note that A has already sent all probe requests for the shares
mski at the beginning of this and the previous session. Therefore D can identify
a index j of a share mskj which will never be requested by A. D requests a
sample (R, �) for offset −∑

i�=j mski and has to decide in the end whether all
of the samples (R, �) that D collects over the sessions are OLWR or uniformly
distributed. D defines skj = � and computes ski = �R · mski�p for all i �= j. Now
D can similar to Sim respond to all the probe requests using ski. D computes
the session key sk and v simply by computing

∑d
i=1 ski. Afterwards he outputs(

R,
∑d

i=1 ski

)
to finish the current session. After finishing all sessions D outputs

the output bit of A.
Let us assume that the samples R, � are OLWR distributed. The offset is

−∑
i�=j mski such that � :=

⌊
R(msk − ∑

i�=j mski)
⌋

p
=

⌊
R · mskj

⌋
p
. Hence D

successfully simulates Real .
If that (R, �) is uniform, then D simulates the output of Ideal by outputting(

R, �+
∑

i�=j ski

)
. This is clearly uniformly random for uniform �. Further skj := �

used by D is the same as Sim would have computed: skj = sk′ − ∑
i�=j ski =

�+
∑

i�=j ski−
∑

i�=j ski = �. All other ski are derived from the d−1 outputs of the
simulator of the key refreshing and hence have the same distribution. Therefore
D simulates Ideal and Sim perfectly. ��

We emphasize that the presented results directly translate to the ring setting
with Ring-OLWR. The reason for this is that the error correction of ΠLWR, the
rounding �·�p, and the addition in the ring are carried out component-wise which
is sufficient for both correctness and security.

5.2 Concrete Parameters

Historically, LWR has always been understood as a deterministic variant of
LWE where the noise is rounded away applying the rounding function �·�p to
a LWE sample. This technique was used by Banerjee, Peikert and Rosen to
reduce LWE to LWR [7]. Unfortunately their reduction only holds for a super-
polynomial modulus q. This was improved by Alwen et al. [3] by using lossy

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 295

pseudorandom samples. They achieve a reduction for a polynomial modulus q
but with the drawback of a polynomially bounded amount of samples.

Because of these issues, the previous PRF construction by Banerjee et al.
(called SPRING) [8] is based on parameters which are not obtained by choosing
parameters for a hard instance of LWE and using one of the known reductions
to LWR to get appropriate parameters for LWR. Interestingly, and despite their
choice of parameters is not based on LWE, it seems that the best way to solve
LWR for such a choice of parameters is still to exploit algorithms designed to solve
LWE. We follow a similar approach, but using a different choice of parameters.
Banerjee et al. propose two parameter choices for Ring-LWR, namely for n = 128
and p = 2 they choose either q = 257 or q = 514. For our application p = 2
is not sufficient, since we need p/p′ = �log(d)� to correct errors in our rekeying
scheme ΠLWR and p > p′. This means that for masking with up to 4 shares, we
need at least p ≥ 4.

Table 2 shows our choices of parameters for LWR, LWU and Ring-LWR,
Ring-LWU which we will also use to instantiate OLWR and Ring-OLWR. The
absolute noise level log q − log p is large compared with modulus q. Furthermore,
our secret msk is picked uniformly from Z

n
q . Together, this will rule out the BKW

algorithm and its variants [14,39]. The same holds for the algorithm of Arora
and Ge [5]. Besides, for comparably small dimensions n, good lattice reductions
exist, but since the noise is large, shortest vector sieving requires to find a vector
of very small norm which seems to be hard. The size of n is compensated by the
large noise to modulus ratio. Such a LWR or OLWR instance can also be seen as
a hidden number problem.

Table 2. 128-bit security parameters for our re-keying scheme ΠLWR. For the ring
version we use a irreducible polynomial f ∈ Zq[X]/f with deg = n. log q − log p
corresponds to the absolute noise level. The uniform noise for LWU is bounded by q/p.
All our moduli are powers of two, which will guarantee that the output of the rounding
function �·�p is uniform in Zp for a uniform input in Zq.

Assumption Dimension n Modulus log q Modulus log p

LWR,LWU 128 16 4

LWR,LWU 128 32 10

Ring-LWR, Ring-LWU 128 16 2

Ring-LWR, Ring-LWU 128 32 3

For other concrete parameters, Albrecht, Player and Scott survey how algo-
rithms for solving LWE perform and give estimated running times [2]. These
estimates on the running times affirm our choice of parameters. In the LWR set-
ting, the LWE standard deviation corresponds roughly to q

p . As for Ring-LWR, we
choose the parameters more conservatively, since for our ring over Z216 or Z232 ,
it is likely that the ring product R msk of secret msk and public sample vector

296 S. Dziembowski et al.

R lies within an ideal of the ring. This might leak some information about the
noise vector and the product might not depend on all the bits of msk.

Note finally that we chose a 128-bit security level which seem most rele-
vant for general purpose applications. Reducing the security level to 80 could
be acceptable for low-cost applications of ΠLWR. A simple (and conservative)
solution for this purpose would be to reduce n from 128 to 80. By contrast,
reducing the security parameters further (e.g., down to 40 bits) is not possible
as in Sect. 4.2. Indeed, there is no guarantee that the attacks against our con-
struction would require large data complexity (which is the only quantity that
can be reasonably reduced in the context of side-channel attacks).

6 Implementation Results

In order to confirm the efficiency of our constructions, we implemented them
on a 32-bit ARM7 device and on an 8-bit Atmel AVR device, for the standard
parameters that we would select for concrete applications. For the LPL-based re-
keying, we choose n = 512 and for the wPRF-based re-keying we choose n = 128,
q = 232, p = 210 and p′ ranging from 4 to 16 depending on the number of shares
considered for masking. We then compared our implementation results with the
ones obtained for the AES in [33], where higher-order masked implementations
are evaluated on an Atmel AVR device. For illustration, we further extrapolated
the cycle counts of the masked AES on the ARM7 device as 4 times lower than
for the Atmel ones (since moving from an 8-bit to a 32-bit architecture). Note
that in all cases, we refreshed the master key with a simple (linear) refreshing
algorithm based on the addition of a vector of shares summing to zero, and we
assumed a cost of 10 clock cycles to generate each byte of fresh randomness. This
is consistent with the approach used in earlier re-keying papers [30,46]. More
generally, and as for our selection of security parameters, such implementations
correspond to the best tradeoff between security against state-of-the-art attacks
and efficiency, that we suggest for further concrete investigation.

These performance evaluations are reported in Fig. 3 from which we can
extract a number of interesting observations. First, and as expected, the cycle
counts of our new constructions scale linearly in the number of shares, with
small discontinuities for the wPRF-based re-keying (corresponding to the addi-
tion of one bit for error correction, each time �log(d)� increases). Second, the
performances of the LPL-based re-keying and wPRF-based re-keying are similar
on a 32-bit ARM device (where the multiplication is easy both in Z2 and Zq).
They more significantly differ in the Atmel AVR case, because inner product
operations in Z2 only involve simple (AND and XOR) operations, and directly
lead to efficient implementations on this platform. By contrast, the wPRF-based
re-keying on the Atmel device implies additional overheads for the 32-bit multi-
plication based on 8-bit operations (which takes approximately 40 clock cycles).
Third, comparisons with the AES shows that (as expected as well), the interest
of our new constructions increases with the number of shares (hence security
level). In this respect, it is important to note that a masked software implemen-
tations of the AES protected with Boolean masking will generally suffer from

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 297

independence issues, e.g. the recombination of the shares due to transition-based
leakages [22]. Since our (almost) key homomorphic constructions do not suffer
from this risk (because we can manipulate the shares independently), compar-
isons with this curve are overly conservative. As a quite optimistic comparison
point, we can observe the cost of the “glitch-free” software implementations pro-
posed in [55] which is already higher than the one of our primitives for 2 shares8.
Alternatively, one can also use the simple reduction in [6] and double the number
of shares of the masking scheme to obtain similar security, which also makes our
masked re-keying schemes more efficient than the corresponding masked AES
with 3 shares. Quite naturally, these comparisons are only informal. Yet, they
illustrate the good implementation properties of fresh-rekeying. In this respect,
the simplicity of the implementations, and limited constraints regarding the need
of independent leakages, are certainly two important advantages.

.RVAlemtA)b(.MRA)a(

2 4 6 8 10 12

0

2

4

6

8

·106

number of shares

nu
m
be

r
of

cy
cl
es

2 4 6 8 10 12

0

10

20

30

40

50

·106

number of shares

Fig. 3. Performance comparisons on ARM and Atmel AVR devices assuming 10 clock
cycles per random byte. LPL-based re-keying , wPRF-based re-keying: , AES
Boolean masking: , AES glitch-free masking: . Dashed ARM curves are extrap-
olated by scaling down the corresponding Atmel AVR performances by 4. (Color figure
online)

Finally, a key difference between the LPL- and wPRF-based re-keying is
that the latter one offers significantly stronger guarantees (since it is secure
even in front of noise-free leakages), which explains its lower performances. By
contrast, the LPL-based re-keying implementations have to include noise in the
adversary’s measurements. Hence, we end this section with a brief discussion of
the noise levels required for secure LPL implementations, and how to generate
them. For this purpose, a conservative estimate is to assume that this noise will
be generated thanks to additive algorithmic noise. Typically, this could imply
implementing a parasitic Linear Feedback Shift Register (LFSR) in parallel to

8 Note that this curve is linear which corresponds to the amortized complexity of the
best “packed secret sharing” at each order.

298 S. Dziembowski et al.

the inner product computations to which we have to add noise. Since the noise
variance corresponding to 1 bit equals 0.25, we typically need an LFSR of size
N = �4 × σ2� to reach our estimated security levels9. For illustration, some
numbers are given in Table 3, where we can see a tradeoff between the cost of
computing the inner products and the cost of generating the noise. So already
for these estimates, we see that the n = 640 and n = 512 instances should
allow efficient implementations. Yet and importantly, in case more efficient noise
engines are embedded on chip (based on supply noise, clock jitter, shuffling, . . .),
these figures can only become more positive for our re-keying, and the same holds
if some parallelism is considered for the inner product computations (in which
case the cost of noise generation will be amortized).

Table 3. Concrete parameters for noise generation.

Dimension (n) 1280 640 512 448 384 256

Bits of additive noise (Q = 280) 49 112 361 807 2601 10744

Bits of additive noise (Q = 240) 24 55 177 384 1272 5269

So overall, LPL-based re-keying is conceptually interesting since it leverages
the intrinsic noise that is anyway present in side-channel measurements. But
the noise levels that we require to reach high security levels are admittedly
larger than these intrinsic noise levels. So it leads to interesting design chal-
lenges regarding the tradeoff between the cost of noise generation vs. the cost of
inner product computations. By contrast, wPRF-based re-keying is more con-
servative, since based on a stronger cryptographic primitive that requires less
assumptions, at the cost of reasonable performance overheads. The combination
of these solutions therefore brings an interesting toolbox to cryptographic engi-
neers, for secure and efficient cryptographic implementations in software and
hardware.

Acknowledgements. Stefan Dziembowski is supported by the Foundation for Polish
Science WELCOME/2010-4/2 grant founded within the framework of the EU Inno-
vative Economy Operational Programme. Sebastian Faust is funded by the Emmy
Noether Program FA 1320/1-1 of the German Research Foundation (DFG). Gottfried
Herold is funded by the ERC grant 307952 (acronym FSC). Anthony Journault is
funded by the INNOVIRIS project SCAUT. Daniel Masny is supported by the DFG
Research Training Group GRK 1817/1. François-Xavier Standaert is a research asso-
ciate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). His work was funded in
parts by the ERC project 280141 (acronym CRASH) and the ARC project NANOSEC.

9 This assumes that the computation of every bit requires a similar amount of energy,
which is usually observed in practice [56], and certainly holds to a good extent when
considering blocks of bits as we do. The proposed values should anyway only be
taken as an indication that generating the required amount of noise is feasible with
existing hardware. Besides, note that for such an “algorithmic” noise generated by
LFSR, the Gaussian distribution is ensured by design which avoids any risk related
to faster decreasing tails.

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 299

References

1. Abdalla, M., Beläıd, S., Fouque, P.-A.: Leakage-resilient symmetric encryption
via re-keying. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 471–488. Springer, Heidelberg (2013)

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited
- new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013)

4. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1 =
log(n)) leakage rate. In: EUROCRYPT (2016)

5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: ICALP
(2011)

6. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Heidelberg (2015)

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions, lattices. In: EURO-
CRYPT (2012)

8. Banerjee, A., Brenner, H., Leurent, G., Peikert, C., Rosen, A.: SPRING: fast
pseudorandom functions from rounded ring products. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 38–57. Springer, Heidelberg (2015)

9. Beläıd, S., Fouque, P., Gérard, B.: Side-channel analysis of multiplications in
GF(2128) - application to AES-GCM. In: ASIACRYPT (2014)

10. Beläıd, S., Grosso, V., Standaert, F.: Masking and leakage-resilientprimitives: one,
the other(s) or both? Crypt. Commun. 7(1), 163–184 (2015)

11. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff,
E.: Improved side-channel analysis of finite-field multiplication. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer,
Heidelberg (2015)

12. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES
threshold implementation. In: AFRICACRYPT (2014)

13. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

14. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: ACM STOC (2000)

15. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

16. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016-A. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49096-9 9

17. Bogos, S., Tramér, F., Vaudenay, S.: On solving LPN using BKW and variants. In:
IACR Cryptology ePrint Archive (2015)

18. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs, their applications. In: CRYPTO (2013)

19. Brenner, H., Gaspar, L., Leurent, G., Rosen, A., Standaert, F.-X.: FPGA imple-
mentations of SPRING. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 414–432. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-49096-9_9
http://dx.doi.org/10.1007/978-3-662-49096-9_9

300 S. Dziembowski et al.

20. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: CHES (2002)
21. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-

teract power-analysis attacks. In: CRYPTO (1999)
22. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-

sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012)

23. Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.: Towards fresh,
hybrid re-keying schemes with beyond birthday security. In: CARDIS (2015)

24. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: CRYPTO (2010)

25. Döttling, N., Müller-Quade, J.: Lossy codes, a new variant of the learning-with-
errors problem. In: EUROCRYPT (2013)

26. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

27. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015)

28. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014)

29. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE FOCS
(2008)

30. Gammel, B., Fischer, W., Mangard, S.: Generating a session key for authentication
and secure data transfer. US Patent App. 14/074,279, November 2013

31. Gaspar, L., Leurent, G., Standaert, F.: Hardware implementation and side-channel
analysis of Lapin. In: CT-RSA (2014)

32. Goldreich, O., Krawczyk, H., Luby, M.: On the existence of pseudorandom gener-
ators. SIAM J. Comput. 22(6), 1163–1175 (1993)

33. Grosso, V., Standaert, F., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? J. Crypt. Eng. 4(1), 47–57 (2014)

34. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable
devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48.
Springer, Heidelberg (2011)

35. Guo, Q., Johansson, T.: A new birthday-type algorithm for attacking the fresh
re-keying countermeasure. Cryptology ePrint Archive, Report 2016/225 (2016)

36. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an efficient
authentication protocol based on Ring-LPN. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012)

37. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

38. Kiltz, E., Pietrzak, K.: Leakage resilient ElGamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)

39. Kirchner, P., Fouque, P.: An improved BKW algorithm for LWE with applications
to cryptography and lattices. In: CRYPTO (2015)

40. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Crypt. 24(3),
588–613 (2011)

41. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems 301

42. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

43. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: CHES (2005)

44. Martin, D.P., Oswald, E., Stam, M., Wójcik, M.: A leakage resilient MAC. In:
Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp. 295–310. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-27239-9 18

45. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh re-
keying II: securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg
(2011)

46. Medwed, M., Standaert, F., Großschädl, J., Regazzoni, F.: Fresh rekeying: security
against side-channel and fault attacks for low-cost devices. In: AFRICACRYPT
(2010)

47. Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel
security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012)

48. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
CRYPTO (2013)

49. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: EUROCRYPT (2011)

50. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Crypt. 24(2), 292–321 (2011)

51. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryp-
tion from symmetric cryptographic primitives. In: ACM CCS (2015)

52. Petit, C., Standaert, F., Pereira, O., Malkin, T., Yung, M.: A block cipher based
pseudo random number generator secure against side-channel key recovery. In:
ASIACCS (2008)

53. Prouand, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: EUROCRYPT (2013)

54. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: ACM STOC (2005)

55. Roche, T., Prou, E.: Higher-order glitch free implementation of the AES using
secure multi-party computation protocols - extended version. J. Crypt. Eng. 2(2),
111–127 (2012)

56. Schindler, W., Lemke, K., Paar, C.: A stochastic model for dierential side channel
cryptanalysis. In: CHES (2005)

57. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leak-
age resilient cryptography in practice. In: Towards Hardware-Intrinsic Security -
Foundations and Practice (2010)

58. Yu, Y., Standaert, F.: Practical leakage-resilient pseudorandom objects with min-
imum public randomness. In: CT-RSA 2013 (2013)

http://dx.doi.org/10.1007/978-3-319-27239-9_18

ParTI – Towards Combined Hardware
Countermeasures Against Side-Channel

and Fault-Injection Attacks

Tobias Schneider1(B), Amir Moradi1, and Tim Güneysu2

1 Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Bochum, Germany

{tobias.schneider-a7a,amir.moradi}@rub.de
2 University of Bremen and DFKI, Bremen, Germany

tim.gueneysu@uni-bremen.de

Abstract. Side-channel analysis and fault-injection attacks are known
as major threats to any cryptographic implementation. Hardening cryp-
tographic implementations with appropriate countermeasures is thus
essential before they are deployed in the wild. However, countermeasures
for both threats are of completely different nature: Side-channel analysis
is mitigated by techniques that hide or mask key-dependent information
while resistance against fault-injection attacks can be achieved by redun-
dancy in the computation for immediate error detection. Since already
the integration of any single countermeasure in cryptographic hardware
comes with significant costs in terms of performance and area, a com-
bination of multiple countermeasures is expensive and often associated
with undesired side effects.

In this work, we introduce a countermeasure for cryptographic hard-
ware implementations that combines the concept of a provably-secure
masking scheme (i.e., threshold implementation) with an error detecting
approach against fault injection. As a case study, we apply our generic
construction to the lightweight LED cipher. Our LED instance achieves
first-order resistance against side-channel attacks combined with a fault
detection capability that is superior to that of simple duplication for
most error distributions at an increased area demand of 12 %.

1 Introduction

Over the last years, implementation attacks have seen a rise in popularity due to
their ability to break cryptographic implementations which were believed to be
cryptanalytically secure. Their power is based on vulnerabilities in the physical
implementation instead of flaws in the cryptographic algorithm. The two most
popular types of implementation attacks are side-channel analysis (SCA) and
fault injection (FI) attacks.

SCA are passive attacks which exploit the information leakage related to
cryptographic device internals through side channels, e.g., power consumption
of a device [24]. Usually they involve a considerable number of measurements
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 302–332, 2016.
DOI: 10.1007/978-3-662-53008-5 11

ParTI – Towards Combined Hardware Countermeasures 303

and statistical tools to extract the sensitive information from the device. Over
the years, various different types of attacks have been proposed with a large
variety in capabilities and complexity. As a consequence, a wide range of coun-
termeasures has been developed to thwart these attacks. Compared to other
types of countermeasures, masking (as a form of secret sharing) has attracted
the most interest inside the side-channel community. With its sound theoretical
foundation, masking can be applied at different levels of abstraction to secure
designs. Still the secure implementation of a masking scheme remains a major
challenge since effects such as glitches in hardware circuits can completely inval-
idate the security assumptions of the schemes [26,27]. In response, Threshold
Implementation (TI) [32], as a concept between Boolean masking and multi-
party computation, has been specifically developed for hardware platforms to
maintain security properties even in the presence of glitches. The TI concept
has been applied to many algorithms including PRESENT [36], AES [5,16,29],
KATAN [6,31], Keccak [4], arithmetic addition [43], Simon [44], PRINCE and
Midori [30], and all 4-bit Sboxes [8].

Active FI attacks pose a further serious threat to instantiated cryptographic
algorithms [3] by injecting a fault during its execution. The adversary then
derives sensitive information from the erroneous output of the device. For more
sophisticated attacks on symmetric schemes to work, multiple of these erroneous
outputs need to be combined. Like for SCA, there are a wealth of attacks and
possibilities to generate faults during the computation, e.g., by clock or power
glitches or positioned photon injection using lasers. In terms of countermeasures,
the majority of published concepts are based on the principle of concurrent error
detection (CED). The main idea is to utilize redundancy in time or area to enable
quasi-immediate detection of faults. Some CED schemes integrate the use of
error detecting codes to enhance their level of protection. Over the years, vari-
ous different codes have been studied to harden cryptographic implementations
against FI attacks. Due to its simplicity, parity check codes are commonly used
in this context [2,23]. Other schemes based on non-linear codes (e.g., [21,22])
were brought up to their beneficial fault coverage. Recently, the class of infective
countermeasures have been put forward which do not require an explicit final
check before returning the result. [17].

As previously discussed, it is mandatory for cryptographic devices to inte-
grate dedicated SCA and FI countermeasures if they are operated in untrusted
environments. Still the majority of proposed SCA and FI countermeasures have
been solely evaluated separately, though both classes need to be integrated in
a single device. For simple countermeasures (e.g., applying plain redundancy in
area and time), a separate evaluation is justified since multiple executions of the
same SCA-protected operation are admissible (with few exceptions). However,
more sophisticated FI countermeasures are likely to affect the SCA counter-
measure to a higher degree which can have a severe impact on the security
and efficiency of the combined scheme. For example, if parity bits used by FI
countermeasures are computed over unmasked intermediate values, it leads to
a side-channel leakage even if the rest of the design in perfectly masked. Thus,

304 T. Schneider et al.

a careless integration may easily lead to contradicting the assumptions of the
underlying masking scheme, and hence failure of the masked design.

Related Work. In response, a few countermeasures have been proposed pro-
viding resistance against both kind of attacks. At the gate level, we refer to
dual-rail logic styles (e.g., WDDL [46]) which – due to the additional presence
of dual counterparts of the circuit – inherently offer a fault detection feature.
However, the error detection rate is limited to the concept of simple duplication.

Furthermore, coding schemes have been used for combined countermeasures
as well. Wiretap codes that have been applied as an SCA countermeasure [12,28]
at algorithm level, can also provide a certain level of fault detection. Additionally,
there are further examples [11] that use coding techniques for enhanced resistance
against both types of attacks. However, most of the schemes are either designed
for software implementations or provide only limited security at the expense of
high overheads.

Besides combined countermeasures, there are also combined attacks which
use a combination of fault injection and side-channel analysis to extract a secret.
Several different attacks have been proposed against protected AES implemen-
tations where masking together with various fault countermeasures are inte-
grated [13,15,39]. Our analyses consider this powerful threat as well.

Our Contribution. We propose a new combined physical protection scheme
targeting hardware platforms. As mentioned before, the integration of CED
schemes by simple time or area redundancy into masked designs is straight-
forward (see [48] for definitions). However, such constructions are not able to
detect certain types of faults (e.g., identical faults which are injected in both
instances of the design) and rather costly. Therefore, our target in this work is
to merge more sophisticated information redundancy approaches (namely error
detecting codes) with provably secure masked hardware designs. More precisely,
we demonstrate how to integrate an error detecting code into first- (or higher-)
order TI designs, while preserving all security requirements and features of the
underlying TI concept. We formalize our methodology to allow various types of
codes which provide the most flexibility in terms of protection and area require-
ment. We include a thorough analysis on the resistance of the combined coun-
termeasure regarding the chosen order of TI and the parameters of the code.
Note that the straightforward hardware duplication can be regarded as subtype
of our combined countermeasure, but our generic concept enables to tweak the
protection of the resulting design by the choice of code.

For practical evaluation we present a case-study on the cipher LED [19] that
simplifies the explanation of the underlying concept due to its simple structure.
We provide practical evaluations of our design implemented on an FPGA with
respect to any detectable first-order leakage. Moreover, we evaluate the perfor-
mance, area overhead as well as the fault coverage of the integrated information
redundancy scheme. Note that the representations included in this work primar-
ily discuss the case of a first-order TI design of LED with fault detection facility

ParTI – Towards Combined Hardware Countermeasures 305

based on Hamming codes. But we like to emphasize that our generic construc-
tion can be similarly applied to any-order TI designs of other ciphers that are
using different error detecting codes.

2 Background

2.1 Threshold Implementation

We briefly review the concept of Threshold Implementations (TI). For detailed
information we refer the interested reader to the original articles [6,33].

For simplicity but without loss of generality, let us assume a 4-bit inter-
mediate value of an arbitrary cipher with 4-bit S-Box, e.g., PRESENT [10] or
LED [19]. We denote this corresponding 4-bit value as x = 〈x1, . . . , x4〉. In TI, x

is represented in n−1 order Boolean masked form (x 1, . . . ,xn), where x =
n⊕

i=1

x i

and each x i similarly denotes a 4-bit vector 〈xi
1, . . . , x

i
4〉.

The linear functions, such as MixColumns of AES or LED, can be simply

applied to the shares of x by L(x) =
n⊕

i=1

L(x i). However, the realization of the

S-Box over Boolean masking is not trivial. If the algebraic degree of the S-Box
is denoted by t, the minimum number of shares to realize an S-Box protected
against first-order attacks is n = t+1. To ensure correctness for the computation,
this S-Box needs to provide the output y = S(x) in shared form (y1, . . . ,ym)

with y =
m⊕
i=1

y i and m ≥ n for bijective S-Boxes. In case of bijective S-Boxes

(e.g., as for AES, PRESENT, and LED) the bit length of x and y (respectively
of their shared forms) are identical.

Each output share y j∈{1,...,m} is given by a component function fj(·) over
a subset of input shares. For first-order security, each component function
fj∈{1,...,m}(·) must be independent of at least one input share. This require-
ment on the independence from at least one share is defined as non-completeness
property.

Since the security of masking schemes is based on the uniform distribution
of the masks, the output of a TI S-Box must be also uniform since it is used
as input in further parts of the implementation (e.g., the S-Box output of one
cipher round which is given to the next S-Box after being processed by the
linear diffusion layers). This property of uniformity requires for a bijective S-
Box (n = m) each (x 1, . . . ,xn) to be mapped to a unique (y1, . . . ,yn). In other
words, it is sufficient in this case to check whether the TI S-Box forms a bijection
with a 4 · n input (and output) bit length.

As an example, take a function with an algebraic degree of t = 3. Hence, the
number of input and output shares n = m > 3 directly affects the complexity
of the circuit and its associated area overhead. Therefore, it is preferable to
decompose the S-Box S(·) into smaller bijections, e.g., g◦f(.), each with maximum
algebraic degree of 2. The authors of [36] presented a decomposition of the
PRESENT S-Box into two bijections g and f, each of which with an algebraic

306 T. Schneider et al.

degree of 2. These parameters keep the number of shares for input and output
at a minimum, i.e., n = m = 3.

2.2 Error Detecting Codes

Error detecting codes (EDC) are primarily used to transmit data over an unre-
liable communication channel. Those properties and notation of EDC that are
also relevant for remainder of this work will be highlighted in the following [25].

Definition 1. A linear code C of length n over Fq is a vector subspace over F
n
q .

We only consider binary codes (i.e., q = 2) in this work since they provide the
best performance for our projected use-case in symmetric cryptography. A linear
code C that maps messages of length k to codewords of length n is commonly
denoted as an [n, k]-code.

Definition 2. A generator matrix G of an [n, k]-code C comprises n basis vec-
tors of C with length k.

A generator matrix can be used to transform a given message m ∈ F
k
q to the

corresponding code word c ∈ C as c = m · G.

Definition 3. A matrix H ∈ F
(n−k)×n
q with the property

0 = H · cT , ∀c ∈ C (1)

is denoted as parity check matrix of the code C.

Such matrix can be used to easily check if a given c is a valid codeword of C.

Definition 4. The minimum distance d of a linear code C is defined as

d = min({wt (c1 ⊕ c2) |c1, c2 ∈ C, c1 	= c2}), (2)

where wt(x) returns the number of 1’s in the vector x (known as Hamming
weight). We denote a linear code C of length n, rank k and minimum distance
d as an [n, k, d]-code. The minimum distance of a code determines its error
detection and correction property.

Definition 5. A code C with minimum distance d can be used to either detect
u = d − 1 or correct v =

⌊
d−1
2

⌋
errors. If d is even, C can simultaneously detect

u = d
2 and correct v = d−2

2 errors.

Given an erroneous codeword c′ = c ⊕ e, where e is known as the error vector, a
u-error detecting code is able to detect that c′ is faulty as long as wt(e) ≤ u.

Definition 6. The generator matrix G of a systematic code C is of the form
G = [Ik|P] where Ik denotes the identity matrix of size k.

Each codeword c of a systematic code consist of the message itself which is
padded by check bits, i.e., c = [m|p]. The check bits p1 are generated by the
rearward part of the generator matrix G represented by P . Note that all linear
non-systematic codes can be transformed into a systematic code with the same
minimum distance [9].
1 Note that p can be also considered as a form of parity bits.

ParTI – Towards Combined Hardware Countermeasures 307

2.3 Concurrent Error Detection

Concurrent Error Detection (CED) systems are commonly used to detect arbi-
trary faults during the execution of an operation what makes them also an appro-
priate countermeasure against FI attacks [20]. Typically CED techniques rely on
different types of redundancy to detect faulty computations. The most straight-
forward approach implements redundancy by multiple executions which results
either in an increased area or in an increased time complexity. Certain intermedi-
ate values of different runs are compared with each other to detect errors.

As already indicated in the introduction, some CED schemes use error detect-
ing codes following a structure similar to Fig. 1 to achieve a better fault coverage.
In this basic example, CED is used to protect an Operation which is applied to
a given Input. Initially, the CheckBits of the Input are generated by means
of the Generator matrix of the code. A Predictor takes Input and Check-

Bits and returns the predicted check bits of the output of Operation. These
are compared with the actual CheckBits of the output. If a detectable error
(depending on the type of the code) occurred during the execution, these two
types of CheckBits will not be identical. Thus, a possible attack can be detected
and averted. It should be noted that, depending on the target algorithm and the
integrated code, the prediction functions can have an exalted level of complex-
ity. Thus, the overhead of some CED schemes using EDC can be similar to a
complete duplication of the operation.

Fig. 1. A common structure of CED schemes using EDC.

Traditionally, the effectiveness of these fault detection countermeasures was
examined in a uniform fault model. However, recent publications [20] have shown
that this model does not closely resemble real-world attacks and that some of
the presented countermeasures are in fact vulnerable to biased fault attacks [35].

3 Methodology

In this section, we introduce our methodology to develop a combined coun-
termeasure against side-channel and fault injection attacks that is specifically
tailored for hardware platforms. We first discuss the necessary considerations

308 T. Schneider et al.

and restrictions of a combined scheme. This is followed by a detailed descrip-
tion of the attacker model and how to design a scheme to support arbitrary
applications.

3.1 Design Considerations

First, our countermeasure is designed for hardware platforms. Thus, efficiency
in software is not a concern in the design process. As hardware circuits are
often used to achieve high performance, a primary design goal is to minimize
the impact of the countermeasure on the performance.

Second, in terms of SCA countermeasure we aim at providing provable secu-
rity (at least to a certain order). Therefore, hiding techniques are not applicable
and we have to rely on masking. Given the first design goal, this leaves us with TI
as it comes with a reasonable performance overhead compared to other masking
schemes in hardware circuits [37].

Third, our scheme aims to be more secure against (realistic) FI attacks than
simple duplication. Doubling the masked hardware circuit is a straightforward
way to combine masking with some form of redundancy. However as mentioned
before, simple duplication can be highly vulnerable to fault attacks if the fault
model follows a different distribution than uniform. Therefore, we aim at build-
ing a scheme that is more robust against adversaries exploiting the effect of
(reasonably) biased distributions. In this context, we choose EDC due to their
sound theoretical foundation providing solid bounds on the number of detectable
errors. Nevertheless, the balance between the error detection capability and run-
time performance is essential to not severely impact our first design goal.

3.2 Attacker Model

Since our scheme aims to provide resistance against both SCA and FI attacks,
we evaluate our methodology in a model that incorporates both types of threats.
In the following, we assume an adversary that can observe the physical charac-
teristics of the design during execution and further is able to inject faults in the
circuit.

We assume a computationally bounded adversary that can observe the power
consumption of our design during a finite number of executions. Note that secu-
rity guarantees of TI also hold with respect to other side channels, e.g., electro-
magnetic emanations. Due to the computational restriction of the adversary, we
can bound the number of possible observations. Given that the complexity of an
attack increases with its order, we bound the adversary by the highest order of
an attack he is able to mount. In other words, the adversary is able to observe a
limited number of executions that is just enough to perform attacks of order d
but not of order d+1. The actual order depends on the platform and the desired
level of security.

Furthermore, the adversary is able to inject faults in the hardware circuit.
In our model, we assume that injected faults only target the data path of the
implementation and exclude the control flow. This is a different aspect of fault

ParTI – Towards Combined Hardware Countermeasures 309

attacks which is not specific to our scheme. Given that the control flow usually
does not need to be protected by masking, it is not considered in our com-
bined countermeasure. Nevertheless, our combined countermeasure needs to be
implemented together with a protected control flow to ensure complete security.
There are various solutions to this problem. Even the EDC aspect from our
combined countermeasure can be used to harden the control flow as described
in [45]. Therefore, we model the injected faults as an error random variable E
following a specific distribution E . In our model, an error vector e ∈ F

n
q with

probability Pr[E = e] is sampled for each injected fault from the distribution
and added (XORed) to the current state of the execution as state′ = state ⊕ e.
The execution continues the computation with the altered state state′. In the
following, we consider two different types of the error distribution.

Since most existing works assume a uniform fault model, we also first examine
our combined countermeasures against an adversary with a uniform distribution
EU so that Pr[E = e1] = Pr[E = e2], ∀e1, e2 ∈ E.

Furthermore, we consider a biased distribution EB , where one specific set of
error vectors E1 ⊂ E is significantly more probable than the set of remaining
error vectors E2 ⊂ E with Pr[E = e1] � Pr[E = e2], ∀e1 ∈ E1, e2 ∈ E2. The
sets are determined by the type of faults that are considered in the model, e.g.,
E1 : ∀e, wt(e) ≤ u. In an extreme case, E1 only contains one specific error vector
e with wt(e) = 1. This scenario is akin to laser-based fault injections in which
single bits can be targeted.

3.3 Code Selection

Obviously, the choice of the code strongly affects the efficiency and fault coverage
of the resulting combined scheme. In this context, it is not possible to provide one
specific code that exhaustively fits to all possible application scenarios. Instead,
the code needs to be specifically chosen according to the target algorithm to
yield optimal results. A poorly chosen code can cause a significant overhead
while offering only little benefit in terms of fault coverage. In this subsection we
discuss about necessary considerations made in the code selection process and
give guidelines on the criteria how to pick a code.

Linear Codes. One important aspect in the design of a TI is the algebraic degree
of the targeted functions. As explained in Sect. 2.1, the algebraic degree deter-
mines the minimum number of necessary shares. Given that the prediction func-
tions are also part of the intended TI, it is crucial that they possess the same
algebraic degree as the original function. Otherwise, the requirement of an addi-
tional share negatively affects the area complexity of the resulting design. This
property is trivially fulfilled by linear codes. The encoding and decoding func-
tions of linear codes are linear. Therefore, adding a decoding function before
and an encoding function after the target function (cf. Fig. 3) to obtain the pre-
dictor guarantees that the emerging function has the same algebraic degree as
the target function. For non-linear codes this property is not always satisfied. In
addition, the encoding/decoding functions of linear codes can be implemented

310 T. Schneider et al.

extremely efficiently which makes the necessary error check also very efficient.
In the remainder of this work, we therefore only consider linear codes.

Systematic Codes. Systematic codes are advantageous to improve the efficiency.
Due to their specially structured generator matrix (cf. Definition 6), the output
of the targeted function does not need to be decoded to recover the correct
result since the message is part of the codeword. This helps to eliminate one
otherwise necessary step at the end of the design. Furthermore, the distinction
between target function and predictor – as depicted in Fig. 1 – is otherwise not
easily possible. Since one half of the design is nearly completely unaltered by
the inclusion of fault countermeasure, it also allows the reuse of existing TI
designs. This design decision does not limit the choice of codes since (as already
mentioned in Sect. 2.2) every linear non-systematic code can be transformed into
a systematic code with the same minimum distance.

Code Parameters. The choice of the three parameters of a linear code n, k, and d
depends on the target algorithm. A good practice is to derive the code dimension
k from the size of a single element that is used in most functions of the targeted
algorithm, e.g., for an algorithm that performs most of its operations in GF (28) it
is advisable to set k = 8. This way unnecessary overhead due to the split or merge
of check bits is avoided. Furthermore, the code length n also affects both the effi-
ciency and fault coverage of the design. To achieve a desired error detecting level of
u = d−1, a certain minimal size of n is required. However, if n is chosen too large,
the number of check bits increases resulting in a high area complexity. Therefore,
it is important to find a good tradeoff between the length of the code n and its
minimum distance d. In the following, we aim at a design in which the predictors
work solely on the check bits. To achieve this, it is necessary that the message m
can be fully recovered using the check bits p. Assuming that the message has full
entropy (which is usually the case in symmetric cryptographic applications), it is
advisable to set the rank to at least n ≥ 2k.

3.4 Threshold Implementations with Error Detecting Codes

To achieve the desired level of security against SCA adversaries, it is necessary to
implement all required functions according to the principles of TI. In particular,
this includes the prediction functions as well. As it was already thoroughly dis-
cussed in [7,8] we omit the detailed explanation how to construct TI-compliant
shared representations of arbitrary functions. Instead, we describe the specifics
of including EDC in a TI design and how to easily find the TI of the predictors.

Notation. In the following, we assume a systematic linear code, which allows
message recovery from the check bits. Further, we denote the input to the tar-
get algorithm by m i with nm = |m i| as its bit length and the corresponding
check bits as pi with np = |pi|. The output of the target algorithm and its cor-
responding check bits are indicated by mo and po respectively. Since the code
does not change during the execution, the outputs have the same size as their
corresponding inputs. Further, we assume that the TI of the target algorithm

ParTI – Towards Combined Hardware Countermeasures 311

Fig. 2. The basic structure of our combined scheme.

requires a minimum of s shares to be secure. To this end, the messages and their
corresponding check bits need to be masked accordingly as

m i =
s⊕

j=1

mj
i , pi =

s⊕
j=1

pj
i , mo =

s⊕
j=1

mj
o, po =

s⊕
j=1

pj
o.

Basic Structure. Due to the special characteristics of the chosen code, it is pos-
sible to split up the computations of the underlying target algorithm and the
predictors. The two output values mo and po are calculated completely indepen-
dent of each other. This leads to the basic structure as depicted in Fig. 2. There
is an additional element (Error Check) which receives intermediate states of
both circuits as input and checks if an error has occurred. The frequency for
these checks is a variable in the specific design process, but it affects both the
area and the fault coverage of the complete circuits. The higher the check fre-
quency, the higher is the fault coverage but also the area requirements. In the
most basic approach, only mo and po are checked after a cipher run is complete.

For some TI designs a mask refresh during the execution is necessary to retain
uniformity, e.g., for the AES S-Box [5]. Given that our proposed predictors are
identical to the target function with an initial and final affine transformation,
it is likely that they require a mask refresh depending on the shared function.
Obviously, this can lead to a non-negligible overhead depending on the target
algorithm. However, the separate computation paths (of the original and pre-
dictors) allow reusing the fresh randomness to some degree. Since both parts
are completely independent and their respective intermediate values are never
given to a joint function (except for the error check), it is possible to use the
same random bits to refresh both sides. In the other case, where the predictors
get inputs from both sides, this is not feasible without harming the uniformity
property which would violate the security proofs of TI. For the error check, it is
necessary to compute a function which takes inputs from both sides. However,
in our scheme (and many others) this check can be implemented in a way that

312 T. Schneider et al.

it only leaks the occurrence of a fault. For this to work, it is necessary that both
sides use the same random masks which enables a separate error check on every
share. This procedure would thwart most combined attacks. Alternatively with-
out reused masks, the countermeasure against combined attacks from [15,39],
which performs the check on masked values, could be easily modified to fit our
scheme.

We illustrate this problem with an example. Let us assume a function F with
two input bits a, b with F (a, b) = ab. The corresponding check bit is defined as
c = a+b with the predictor Fp(a, c) = a+ac. As noted in [8], there is no uniform
sharing of F . Instead, a virtual share is added to achieve uniformity. The shared
functions using one virtual share are

F1 = a2b2 + a2b3 + a3b2 + r (3)
F2 = a3b3 + a1b3 + a3b1 + a1r + b1r (4)
F3 = a1b1 + a1b2 + a2b1 + a1r + b1r + r, (5)

where r is randomly drawn from a uniform distribution. Analogously, the pre-
dictor can be shared as

Fp1 = a2 + a2c2 + a2c3 + a3c2 + r (6)
Fp2 = a3 + a3c3 + a1c3 + a3c1 + c1r (7)
Fp3 = a1 + a1c1 + a1c2 + a2c1 + c1r + r. (8)

If both (F1, F2, F3) and (Fp1, Fp2, Fp3) share the same r, the resulting six output
bits would not be jointly uniform. Meaning that, they cannot be used as input
to another joint function (i.e., another predictor) without violating the uniform
input property of TI. To fix this, double amount of fresh randomness (i.e., one
r bit for each part) is required.

Shared Predictors. Contrary to ordinary CED schemes, our predictors need to
comply with the requirements of TI. In other words, the prediction functions
work on masked check bits and fulfill the non-completeness, correctness, and
uniformity properties. Finding functions with all these characteristics can be
difficult for certain codes. However, in our presented scenario (i.e., a systematic
linear code with a sufficiently large rank) it can be significantly simplified.

The general approach is shown in Fig. 3 with the example of affine and
non-linear functions with three shares. π : F

nm
2 → F

np

2 denotes the genera-
tion of the check bits using P , the right part the generator matrix. Respectively,
π−1 : F

np

2 → F
nm
2 is defined as its inverse, i.e., recovery of the message from

the check bits. To derive the shared representation of the predictor from the
target functions, each input share is first transformed using π−1. Then the tar-
get function is applied and each resulting share is run through π to generate the
corresponding check bits again. Of course, the steps do not have to be performed
segregated. Instead, they are merged and subsequently optimized to achieve a
better performance. The resulting functions trivially comply with the correct-
ness property. Given that π and π−1 operate on single shares, non-completeness

ParTI – Towards Combined Hardware Countermeasures 313

(a) affine (b) non-linear

Fig. 3. Derivation of shared predictors for three shares.

is also maintained. Regarding the uniformity of the output shares, we need to
differentiate between two cases. For np = nm, the uniformity property is pre-
served from the target functions as noted in [41]. The encoding and decoding
operations are only affine transformations which do not influence the uniformity
in this setting. However, for np > nm this observation does not generally hold. If
the steps are performed in an isolated manner, the reduction of the input shares
to size nm will come with a reduction in entropy. In result, the enlarged output
shares are no longer uniform. A trivial solution would be the inclusion of a fresh
random value to restore uniformity. However, this reduces the performance of
the design and is therefore undesirable. A more efficient solution is to merge the
three steps (i.e., π−1, F , π) and eliminate the reduction of the input shares.

Depending on the operation, this optimization can be very effective. Especially
if π and π−1 are linear over the F they can be partially canceled out. As mentioned
before, functions with a high degree are often decomposed to reduce the number
of shares. Usually there are multiple possibilities for decomposition with different
efficiencies. Depending on the scenario, these decompositions do not need to be
the same for the predictors. In these cases, the final result is still the same but
not necessarily the intermediate values. This enables more efficient designs while
leading to some limitations in the error detection, as discussed later on.

Error Detection. As noted before, the rate of error detection inside the algorithm
affects the performance, area consumption and fault coverage of the design.
Frequent error checking thwarts potential optimizations of the predictors what
finally leads to larger circuits.

The error checking is performed similar to Fig. 1. However, in our basic sce-
nario (without reusing randomness) the intermediate values are split up into
multiple shares via Boolean masking. To still detect if an error has occurred,
a two-step approach denoted as Check-And-Combine is required. In the first
step Check, the parity check matrix is multiplied with each share of the code-
word. Thus, the resulting error check vectors v j

int are computed as

v j
int = H ·

(
cj
int

)T

= π(mj
int) ⊕ pj

int, 1 ≤ j ≤ s. (9)

If no error has occurred, these error vectors are a random sharing of the null
vector. To check this, the error vectors are combined via XOR in the second

314 T. Schneider et al.

Fig. 4. Computation and unmasking of the error check vector for three shares in a
first-order secure design.

step Combine. However, without any registers this procedure is equivalent to a
function which has all shares of both parts of the circuit as input. This certainly
violates the non-completeness property of TI. To this end, it is necessary to split
up the second step Combine into multiple parts and include registers in between.
In case of a first-order secure design, all but one of the shares are first combined.
The result and the last share are then stored in a register and combined as

v int =

⎛
⎝s−1⊕

j=1

v j
int

⎞
⎠ ⊕ vs

int. (10)

If v int is not the null vector, an error has been detected. The last XOR technically
violates the non-completeness property as it unmasks v int by merging all shares.
However, v int holds no information about the sensitive intermediate values of the
circuit. Therefore, the SCA resistance of the design is not jeopardized by this.

An exemplary error check procedure with three shares is depicted in Fig. 4.
It should be noted that the initial input values are indeed in compliance with
the uniformity property of TI. The input values v1,2

int and v3
int to the second

part (right of the registers) are not jointly uniform given that if no error has
occurred they are identical. Yet this does not affect the security of the resulting
design since (as argued before) v int does not hold any information related to
sensitive intermediate values. This security guarantee still holds if the same
randomness is used for masking both m int and pint. Even though the input
to the multiplication with H is not uniform, it does not pose a problem as it
is applied to each share separately and the resulting v int does not hold any
information related to sensitive intermediate values.

The Check-And-Combine procedure can be further simplified. To this end,
it is necessary that all randomness is reused and the check bits are carefully
generated and predicted during the cipher run. One possibility to generate the
check bits assuming np = nm is

pj
i =

⎧⎪⎨
⎪⎩

π (mi) ⊕ rj , for 1 ≤ j < s

π (mi) ⊕
(

s−1⊕
j=1

rj

)
, for j = s

(11)

ParTI – Towards Combined Hardware Countermeasures 315

where rj denotes uniformly distributed fresh random masks with rj ∈R F
k
2 , 1 ≤

j < s. Hence, the same masks are used for m i and pi. However, each share of
the codeword cj

i = [mj
i |pj

i] is for itself not a valid codeword. The Combine-step
is still necessary for error detection. To avoid this, the generation of the check
bits need to be adjusted to

pj
i = π(mj

i), 1 ≤ j ≤ s. (12)

Now each share of the codeword is valid and can be checked separately. In other
words, each pj

i can now be used to check its related mj
i which makes the Com-

bine-step unnecessary. Instead, if no error has occurred every v j
i will be the

null vector. To maintain this property, it is necessary that the predictors match
exactly the main functions with additional encoding. Therefore, the aforemen-
tioned optimization technique regarding the decompositions of functions cannot
be applied. Otherwise the pj

i would lose this characteristic and an additional
Combine-step becomes necessary. It should be noted that this only works given
that np = nm. Otherwise additional fresh randomness is required to achieve a
uniform sharing of pi making it impossible to check each share separately.

Overhead. The overhead of our scheme obviously depends on the chosen code and
the underlying algorithm. Simple duplication, for example, is just an extreme
case of our combined countermeasure in which P of the generator matrix is
set to the identity matrix. However, if randomness is reused and np ≤ n, the
amount of fresh randomness is independent of the chosen code. In this case,
our combined countermeasure uses the same amount of randomness as simple
duplication. For other metrics it is not possible to give such a definite rule. Both
area and performance can be worse or better than simple duplication, depending
on how good the predictors can be optimized.

Combined Attacks. As mentioned in the introduction, there are combined attacks
which can break AES implementations with certain combinations of counter-
measures. Our proposed countermeasure can be also vulnerable to these kind of
attacks depending on the underlying cipher and chosen code. However, most of
these attacks focus on the error check and exploit that usually a combination of
multiple shares is required. As described before our scheme can be instantiated
without the necessity of a Combine-step which helps to prevent these attacks
that rely on this as a point of attack. In this case, the leakage only contains
information if an error has occurred but not more.

3.5 Security Analysis

We now discuss about the security properties of our combined countermeasure
under the previously defined attacker model. Here, we distinguish between resis-
tance against SCA attacks and FI attacks. In the latter case, our combined
countermeasure is generally compared with a simple duplication of the TI.

SCA Resistance. As mentioned before, the security of a TI is derived from its
order. A first-order TI is provable secure against first-order attacks [32]. Given

316 T. Schneider et al.

that the adversary in our model can perform attacks up to order d, a TI of order
d is accordingly required to protect our design. By following our proposed app-
roach, the shared predictors are in compliance with the principle of a d-order TI.
Therefore, they provide the same level of security as the d-order TI of the main
circuit. Therefore, our proposed combined countermeasure has the exact level of
SCA-security as a plain d-order TI without FI countermeasures. Furthermore,
this level is independent of the chosen code meaning that simple duplication
does not provide better or worse SCA-protection than a more complex EDC.

FI Resistance. The level of security against FI attacks depends on the parame-
ters of the chosen code. In particular, the code distance d is important for the
detection of certain types of errors. In this context, we can model the simple
duplication countermeasure as a linear [2k, k, 2]-code D with d = 2. This is a
comparably low distance given that such a distance can be achieved by a (in
most cases) much shorter parity [k + 1, k, 2]-code.

The efficiency of a fault countermeasure can be assessed by its fault cover-
age rate which measures the proportion of undetectable faults. To simplify the
analysis, we first assume that the fault is injected into an intermediate state of
the execution which is used for error detection. That is, pint are valid check bits
for m int. As defined before, a fault is modeled as an error vector e 	= 0 that is
added to the state cint = [m int|pint]. For a fault to be undetectable, e needs to
be a valid codeword of the deployed code C. This is rooted in the characteristic
of linear codes in which every valid codeword can be written as the sum of two
valid codewords as

c3 = c1 + c2 = m1 · G + m2 · G = (m1 + m2) · G,

with c1, c2, c3 ∈ C. Therefore, if e is not a valid codeword of C the erroneous
result would also not be a valid codeword. Note that the aforementioned addition
property of linear codes still holds for shared codewords. Meaning that if a valid
codeword is added to one of the shares, it would result in a new shared codeword.
With this, we can formally define the fault coverage of a code C as

CoverageC[E ∼ E] = 1 − Pr[e ∈ C ∧ e 	= 0], (13)

where the error variable E follows an error distribution E .
Usually the rank of the code k is not chosen to be equal to the size of the

whole input of the algorithm for efficiency reasons. Therefore, the intermediate
state of the execution consists of multiple valid codewords. To further simplify
the analysis we first assume that the adversary only injects one fault in one share
of one codeword of the intermediate state. With |C| = 2k and |E| = 2n we can
derive Pr[e ∈ C∧ e 	= 0] = (2k − 1)/2n and define the fault coverage of the code
C as

CoverageC[E ∼ EU] = 1 − 2k − 1
2n

, (14)

in the uniform fault model. Notably, the fault coverage in this model is indepen-
dent of the code distance d. It means that it depends only on the rank k and

ParTI – Towards Combined Hardware Countermeasures 317

the length n. Consequently, simple duplication provides the same fault coverage
as any other code with the same k and n against this type of faults. For D the
length is derived from the rank as n = 2k. The coverage can then be simplified to

CoverageD[E ∼ EU] = 1 − 1
2k

+
1

22k
. (15)

As noted before, the uniform fault model is not a realistic assumption for all
scenarios. Therefore, it is closer to reality to assume that the error distribution
is biased to a certain degree [20]. For example, a clock glitch might cause similar
errors in identical circuits which are close together (i.e., simple duplication). In
this scenario, the fault coverage is severely reduced given that simple duplication
cannot detect identical errors in both circuits. In the following, we assume that
only a limited number of bits is affected by the fault. In the most extreme case,
only one bit is affected which is related to laser fault injection2. We consider a
biased distribution EBb

with the corresponding subsets

E1 = {e | e ∈ E ∧ wt(e) ≤ b} with Pr[e ∈ E1] = 1, (16)
E2 = {e | e ∈ E ∧ wt(e) > b} with Pr[e ∈ E2] = 0. (17)

We assume further that the error vectors in E1 have per se identical probabilities.
Depending on the method of fault injection, certain values of b are easier to
achieve than others. Following this definition, EBn

is equivalent to EU . In this
fault model, it is possible to give specific bounds in which a complete fault
coverage is achieved by our proposed countermeasure. It is trivial to see that an
[n, k, d]-code which can detect u = d − 1 errors still achieves a complete fault
coverage in the model following EBu

. However, it depends on the specific code
how the fault coverage evolves for higher values of b > u. For simple duplication
it can be easily calculated as

CoverageD[E ∼ EBb
] = 1 −

� b
2�∑

j=1

(
k

j

)
/

b∑
i=1

(
n

i

)
. (18)

It is notable that a simple duplication scheme achieves full fault coverage only
for b = 1.

Depending on the scenario, there are other possible biased distributions. For
example, if the attacker is only able to inject faults in one part of the design

2 Note that bit flips which we assume in our attacker model might not be realistic for
laser fault injection in certain scenarios [40]. However, we still use it in our model.
The ability to set and reset bits instead of flipping enables trivial attacks in which the
adversary tests each bit of the key to be zero or one. This attack cannot be directly
prevented by our method without additional logic (e.g., allow only a certain number
of faults). However, this is true for a majority of countermeasures and therefore not
an issue unique to our methodology. The designer needs to include further counter-
measures against this attack vector, e.g., splitting the key into multiple shares can
increase the complexity of the attack.

318 T. Schneider et al.

(target algorithm or check bits) the full fault coverage is achieved for all codes
with d > 1. Furthermore, the ability to inject symmetric errors in both parts
strongly reduces the security of simple duplication. In the most extreme case,
the adversary can pick bits to fault, e.g., by laser injection. In this case the error
detecting capability is directly proportional to the attack complexity assuming
that targeting more single bits by laser at different places increases the costs of
the attack.

In reality, it might not be possible to only target one specific codeword, e.g.,
with round-based architectures. This affects the fault coverage since the error
vector e needs to be valid codeword for every element of the state. Therefore,
the estimation of the coverage can be adapted to include the number of state
elements ns

CoverageC[E ∼ E] = 1 − (Pr[e ∈ C ∧ e 	= 0])ns . (19)

We assume an error check in which each share is not checked separately. There-
fore, the number of shares does not play any role in this estimation since it is
enough to check whether the sum of all shares is a valid codeword as

(c1 ⊕ e1) ⊕ (c2 ⊕ e2) ⊕ (c3 ⊕ e3) = c ⊕ e. (20)

If each share is checked separately, the fault coverage needs to include the number
of shares in the calculation similar to ns.

Up to now, we only considered faults that are injected at one point in time
into an encoded state which is checked for errors. Depending on the power of
the adversary, this scenario may be realistic. However, there are also other cases
in which an attacker is more powerful and can inject more sophisticated types
of errors.

One of these types are faults which are injected into a state between layers
that is not directly checked. Instead, multiple operations are first performed on
the erroneous state before it is checked. In this case, the fault coverage rate stays
the same based on the fact that none of the operations change the validity of
a codeword. In other words, if the error is detectable in one state, it should be
also detectable in every following state.

Another important aspect for fault coverage is multiple faults at different
points in time. Assume for example a linear transformation F of a codeword c
in which an error e is injected is applied. This results in

F (c ⊕ e) = F (c) ⊕ F (e) (21)

meaning that the output of F is combined with a transformed error F (e). Given
the structure of the functions and predictors, F (.) cannot make a valid codeword
F (e) if e is not a valid codeword. Therefore, the fault coverage is not impaired
for faults at a single point in time. However, F (.) can increase the Hamming
weight of e making it easier for an attacker to inject an additional error after
the transformation. In the most extreme case, an attacker injects only two errors
e1, e2 with wt(e1) = wt(e2) = 1 and can create an undetectable fault as

F (c ⊕ e1) ⊕ e2 = F (c) ⊕ F (e1) ⊕ e2, (22)

ParTI – Towards Combined Hardware Countermeasures 319

with wt(F (e1)) = d − 1. This approach works similarly for non-linear layers.
However, in this case the output of the function is not the sum of the two
transformed values. This attack vector can be prevented by introducing more
error checks in the design. If every encoded state before a transformation is
checked, this attack can be thwarted since the injection of the first error F (c⊕e1)
would be detected. Introducing more checks can obviously result in an increased
area complexity.

As of now, all of the errors are added to an encoded state between layers.
However, depending on the scenario it might be also possible to inject faults
inside the combinatorial logic between these states. Since the logic usually con-
sists of a cascade of multiple gates modeling, the fault as an addition of an
error vectors is not trivial. However, depending on the abilities of the attacker
this type of fault can be powerful. For example, an attacker can target one gate
which derives multiple output bits. In this case, we have the same scenario as in
the previous example that the injected fault e has wt(e) = 1 but it cannot be
detected when the check is performed on the output of the combinatorial circuit
where such e leads to e′ ∈ C. To completely avoid this type of attack it is nec-
essary to isolate the logic for all output lines from each other. This way a faulty
gate can only affect one of the output bits which prevents the aforementioned
attack.

As illustrated by the previous example, it is important to realistically esti-
mate the power of potential FI attackers. Choosing a code with a large dis-
tance and implementing the previously proposed countermeasures might lead to
a highly secure system. However, each of these aspects can negatively influence
the size of the design. As for many other systems, the balance between area and
the level of security is an important aspect in the design process.

4 Case Study: LED

Up to now, our combined countermeasure has been only discussed from the
theoretic perspective without targeting a specific algorithm. To better illustrate
the rationales and parameters of the design process, we implement a block cipher
according to our methodology. For the sake of comprehensibility, a relatively
straightforward example is picked to explain the design choices in detail.

The most obvious target for this would be AES as it is the most widely
deployed cipher. However, while the predictors for the linear layers of AES are
comparably easy to implement, the TI of its non-linear layer poses still a chal-
lenge even without FI resistance [5]. In particular, it requires a significant amount
of fresh randomness to achieve all the necessary TI properties. Another standard-
ized cipher, for which an efficient TI exists, is PRESENT [10]. Its 4-bit S-Box
can be efficiently implemented in various ways [7,41]. Contrary to AES, its per-
mutation layer is very efficient in hardware, but its predictors are comparably
inefficient.

A better example to demonstrate our combined countermeasure is LED.
It combined the best aspects of AES and PRESENT by incorporating the

320 T. Schneider et al.

PRESENT S-Box and AES-like linear layers. Thus, an efficient TI and predictors
can easily be achieved. In our case study, we present one way to implement LED
with our methodology. Note that depending on the targeted attacker model,
different choices are possible, e.g., higher-order TI or another code with a large
distance. The SCA security of the final design is practically evaluated using
an FPGA prototype, while the FI resistance is examined using the previously
introduced attacker models.

4.1 Cipher Description

LED is a lightweight block cipher introduced in 2011 [19]. It has a 64-bit state and
can be instantiated with different key sizes (primarily 64 or 128 bits). The basic
structure of the cipher consists of addition of the round keys (addRoundKey)
and so-called steps (step). In each step, four rounds of encryption are applied
to the state. One round is made up of four layers AddConstants, Sub-

Cells, ShiftRows and MixColumnsSerial. During AddConstants con-
stants which are derived from an LFSR are added to half of the state. The
following three layers are similar to the layers of AES [34] and consist of a
nibble-wise substitution and row/column-wise affine transformations. For 128-
bit key (resp. 64-bit keys) LED-128 (resp. LED-64) performs 12 steps in total
(resp. 8 steps) with key additions between them.

One important characteristic of LED is its very simple key schedule. Instead
of using different round keys derived by a schedule function applied on a main
key, the cipher directly uses 64 bits from the user-defined key for each round.
This means that for the 64-bit version all round keys are the same, while in the
128-bit instantiation the key halves are used alternately.

4.2 Design and Implementation

We implement a design that is secure against first-order attacks. We decompose
the S-Box that allows us to implement TI using three shares. In the following,
we explain the selection of the code and the predictors for each layer of LED in
detail.

Code Selection. Given that LED is a nibble-oriented cipher in which all oper-
ations work on either one or multiple nibbles of the state, we consider only codes
with a rank of k = 4. This way, expensive merge or split of codewords can be
minimized. Furthermore, we decided to set the length of the code to n = 8 = 2 ·k
to avoid additional fresh randomness. It would be beneficial to select a code over
GF (24), since most of the LED operations are in this field3. However, none of the
16 possible [8, 4]-codes has a distance larger than d = 3. Therefore, to achieve a
higher level of protection against FI attacks, we choose a different code outside
of GF (24) but with a better error detection property.

3 In this case, P is chosen in such a way that p = π (m) = m · x with x ∈ GF (24).

ParTI – Towards Combined Hardware Countermeasures 321

The extended Hamming code is a basic extension of the [7, 4, 3]-Hamming
code. By adding an extra parity bit the code is transformed to a [8, 4, 4]-code,
i.e., with d = 4. In our implementation we use the following generator and parity
check matrices:

G =

⎛
⎜⎜⎝

1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞
⎟⎟⎠ , H =

⎛
⎜⎜⎝

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

⎞
⎟⎟⎠ . (23)

Due to its simplicity, the code enables the use of efficient predictors while still
achieving a high error detection capability with respect to its length.

Linear Layers. As described before, LED consists of four different linear layers.
We discuss the application of the extended Hamming code to each layer without
specifically considering TI, since every linear layer and corresponding predictor
can be applied to each share separately as explained in Sect. 3.4. Note that
the key and constants are not shared, following the same design strategy as
in [5,29,36,41]. Therefore, in the two layers (AddRoundKey, AddConstants)
where a value is added to the state, it is applied only to one share (of three).

AddRoundKey. Since this layer only consists of a basic addition in GF (24) of
the round key to the state of the cipher, its predictor can be implemented very
efficiently. It can be optimized to

pint2 = π
(
π−1

(
pint1

) ⊕ key
)

= pint1 ⊕ π (key) , (24)

where pint1 (resp. pint2) denotes the input (resp. output) check bits to
AddRoundKey, and key a round key. Furthermore, LED does not include
a key schedule. Thus, by computing π (key) (of both key halves for LED-128)
once at the start of the cipher, the predictor for the key addition can be easily
realized without additional overhead.

AddConstants. Two types of round constants are added to the state. One is
derived from the key length and does not change over the course of the cipher.
The bit size of the key length is stored in eight bits (ks7ks6ks5ks4 ks3ks2ks1ks0).
The lower and upper four bits of the bitstring are each considered as one encoded
element. Since the key size does not change during the execution, this type of
constant does not need to be updated. For LED-128 the specific bits are

(ks7ks6ks5ks4 ks3ks2ks1ks0) = (1000 0000), (25)
(ksp7ksp6ksp5ksp4 ksp3ksp2ksp1ksp0) = (1110 0000)

where kspi denotes the corresponding check bits for this constant.
The other constant consists of six bits (rc5rc4 rc3rc2rc1rc0) which are

updated for every round by an LFSR. The update function can be represented

322 T. Schneider et al.

by a matrix multiplication in GF (2) as
⎛
⎜⎜⎜⎜⎜⎜⎝

rc′
0

rc′
1

rc′
2

rc′
3

rc′
4

rc′
5

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
U

·

⎛
⎜⎜⎜⎜⎜⎜⎝

rc0
rc1
rc2
rc3
rc4
rc5

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
c

, (26)

where U denotes the update matrix. The related check bits defined as

(rcp3rcp2rcp1rcp0) = π(rc3rc2rc1rc0) (27)
(rcp3rcp2rcp1rcp0) = π(00|rc5rc4) (28)

need to be updated accordingly. To this end, the update matrix is first enlarged
to incorporate the two padded zeros to

UL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

The update matrix for the check bits (ULcheck
) can be derived from by

π
(
UL

(
π−1 (·))). Therefore, we can write (note that P is self-inverse):

ULcheck
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· UL ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

The same procedure is applied to the constant factor of the update function
(denoted as c in Eq. (26)). Overall, the check bits of the round constant can be
updated as

ParTI – Towards Combined Hardware Countermeasures 323

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rcp′
0

rcp′
1

rcp′
2

rcp′
3

rcp′
4

rcp′
5

rcp′
6

rcp′
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1
0 1 1 0 0 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0
0 1 1 1 0 0 0 1
0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
ULcheck

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rcp0
rcp1
rcp2
rcp3
rcp4
rcp5
rcp5
rcp5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
cp

. (31)

It is obvious that the update of the check bits requires additional resources. Still
this overhead is negligible since the round constant update is only a small part
of the cipher and not split up into multiple shares.

ShiftRows. This layer manipulates the state in a nibble-wise fashion. Since
the codewords are not modified in any way, it is sufficient to apply the same
permutation on the check bits.

MixColumnSerial. Four nibbles of the state are combined using a matrix A
four consecutive times. The matrix multiplication is performed in GF (24). Since
addition is linear over GF (2), we do not need to change the values of A for the
check bits. Only the field multiplications with 2 and 4 need to be adapted to the
predictor. The two multiplications with the reduction polynomial X4 + X + 1
can be represented as a matrix multiplications in GF(2) as

2 ·

⎛
⎜⎜⎝

m0

m1

m2

m3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

m0

m1

m2

m3

⎞
⎟⎟⎠ , 4 ·

⎛
⎜⎜⎝

m0

m1

m2

m3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 1 0
0 0 1 1
1 0 0 1
0 1 0 0

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

m0

m1

m2

m3

⎞
⎟⎟⎠ . (32)

For the check bits, these matrices need to be adapted similar to Eq. (30) but
with 4 × 4 matrices. The resulting matrices for the check bits are

π

⎛
⎜⎜⎝2 · π−1

⎛
⎜⎜⎝

p0
p1
p2
p3

⎞
⎟⎟⎠

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0 0 1 1
0 1 0 1
0 0 0 1
1 1 1 1

⎞
⎟⎟⎠·

⎛
⎜⎜⎝

p0
p1
p2
p3

⎞
⎟⎟⎠, π

⎛
⎜⎜⎝4 · π−1

⎛
⎜⎜⎝

p0
p1
p2
p3

⎞
⎟⎟⎠

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 1 1 0
1 0 1 0
1 1 1 1
1 0 0 0

⎞
⎟⎟⎠·

⎛
⎜⎜⎝

p0
p1
p2
p3

⎞
⎟⎟⎠ . (33)

This layer is also slightly more costly for the check bits. However, the overhead
is not as significant as for PRESENT.

Non-linear Layer. Similar to [36], we decomposed the S-Box into two steps to
reduce the number of required shares to three. The functions for the state and
check bits are optimized independently of each other. As mentioned before, this
procedure results in a more efficient implementation in terms of area with the
penalty of not being able to check the correctness of each share individually. To
find an area-efficient representation, we applied the same idea as in [7]. In par-
ticular, different affine transformations with different combinations of quadratic

324 T. Schneider et al.

bijective classes (as defined in [8]) are tested and compared by their number of
XOR and AND operations [36]. For the non-encoded TI we tested combinations
of the form

S = A3 ◦ T2 ◦ A2 ◦ T1 ◦ A1, (34)

where A1, A2, A3 are affine transformations and T1, T2 are quadratic bijections.
We tested all possible valid combinations of Table 1 from [41] and decomposed
the S-Box as S(m) = F (G (x)) ,∀m with

F = A3 ◦ T2, G = A2 ◦ T1 ◦ A1.

For the check bits Eq. (34) is slightly adjusted to

Sp = π ◦ S ◦ π−1 = π ◦ A3 ◦ T2 ◦ π−1 ◦ π ◦ A2 ◦ T1 ◦ A1 ◦ π−1, (35)

and the S-Box for the check bits is split as Sp(p) = Q (R (p)) ,∀p with

Q = π ◦ A3 ◦ T2 ◦ π−1, R = π ◦ A2 ◦ T1 ◦ A1 ◦ π−1.

We found the most efficient decomposition for the classical TI using the quadratic
class Q12 for both T1, T2 (see [7]). For the check bits the most efficient decom-
position was obtained by the quadratic classes Q294 and Q299 for T1 and T2,
respectively.

As a side note, since R 	= π ◦ G ◦ π−1 (and likewise for Q and F), the error-
checking procedure cannot be performed in-between the S-Box computation.
Below we list the algebraic normal form (ANF) of the derived (and applied)
functions (a and e as least significant bits).

G(d, c, b, a) = (h, g, f, e) : e = a + c + d + cb f = a (36)
g = 1 + a + d + b + cb h = 1 + a + bc + bd + cd

F (d, c, b, a) = (h, g, f, e) : e = a f = c + d + bd (37)
g = 1 + a + b + c + cd h = c + bd

R(d, c, b, a) = (h, g, f, e) : e = a + b + db + dc f = b + c (38)
g = c + ba + ca h = d + b + cb

Q(d, c, b, a) = (h, g, f, e) :
e = 1 + a + b + c + db + dc f = 1 + a + b (39)
g = a + d + db + dc h = c + ab + ac + ad + bc + bd

The uniform shared representations of the component functions (G1, G2, G3),
(F1, F2, F3), (R1, R2, R3), (Q1, Q2, Q3) can be derived by direct sharing [8].

ParTI – Towards Combined Hardware Countermeasures 325

Basic Structure. We implemented the LED encryption with our countermea-
sure following a round-based architecture. The basic structure of our design is
depicted in Fig. 5 with the predictors in the left half. As stated above, the S-Box
and its corresponding function on check bits do not follow the same decompo-
sition. Therefore, we perform the error check only at the first registered state
State

i∈{1,2,3}
1 . The Error Check module has been implemented following the

concept of Check-And-Combine, illustrated in Sect. 3.4. Both AddRound-

Key and AddConstants are only applied to the first share since the key and
the constants are not shared. An additional register stage is necessary inside
SubCells (between G and F as well as between R and Q) to avoid the prop-
agation of glitches. The initial randomness is shared between both parts of the
circuit and none of the layers requires additional fresh randomness to achieve
uniformity. It should be noted that except for the initial loading (right half with
shared plaintext, and left half with shared corresponding check bits) the two
halves of the design do not interact with each other, and each one operates
independently. At every clock cycle, the Error Check module examines the
consistency of the state and its corresponding check bits.

Fig. 5. The basic structure of our proposed LED design. Multiplexers for the plaintext
and AddRoundKey are omitted.

The proposed design can be easily extended to provide security against
higher-order attacks by increasing the number of shares. As the linear func-
tions are applied on each share separately, their basic structure does not change,
while non-linear functions require further adjustment. A second-order TI of the
PRESENT S-Box is given in [31]. However, mask refreshing might be necessary
to ensure resistance against multivariate higher-order attacks as indicated in [38].
Note, however, that for higher-order TI the error check needs to be also adjusted
accordingly to comply with the TI properties. In other words, extra registers
should be integrated into Combine step of Check-And-Combine module (see
Fig. 4) and the Combine should be performed in several clock cycles to ensure
that the desired higher-order resistance is not violated.

326 T. Schneider et al.

4.3 Area Comparison

We synthesized our implementations with the Synopsys Design Compiler using
the UMCL18G212T3 [47] ASIC standard cell library (UMC 0.18µm). The
results are presented in Table 1.

As expected, the state registers constitute a significant portion of each circuit
part (in the following referred to as Original and Predictors). Furthermore, the
decomposed S-Box is in both cases the largest layer of the design. Since we
make use of Check-And-Combine, the error detection circuitry is relatively
large due to the required additional registers of the Combine step. Overall, the
predictors require around 27% more area than the original TI. With the same
error detection module, our design with the extended Hamming code is around
12 % bigger than simple duplication.

The synthesized circuit can operate at the maximum frequency of 148 MHz
and requires 96 clock cycles for one encryption. The design forms a pipeline,
where two plaintexts can be consecutively fed. This results in a maximum
throughput of 197.3 Mbit/s. In comparison, the unprotected round-based imple-
mentation requires 46 clock cycles for one encryption and can operate at a max-
imum frequency of 131 MHz. This results in a throughput of 174.7 Mbit/s since
the design does not allow a pipeline.

Table 1. Size of our design for an ASIC platform.

Module Area [GE]

Original Predictors Error detection Control

AddRoundKey 171 171 – –

AddConstants 32 32 – –

SubCells 1 1750 1584 – –

SubCells 2 1051 2795 – –

ShiftRows 0 0 – –

MixColumnSerial 1532 2048 – –

Total 7891 10028 2023 270

LED-ParTI 20212

4.4 Resistance Against SCA

Given that all functions are compliant to the principles of TI, our design is prov-
ably secure against first-order attacks. Nevertheless, we also evaluated the secu-
rity of our design experimentally using an FPGA and ported our design to the
FPGA-based side-channel evaluation platform SAKURA-G [1] populated with
a Xilinx Spartan-6 FPGA. The power traces obtained for our the design have

ParTI – Towards Combined Hardware Countermeasures 327

been collected by means of a digital oscilloscope at sampling rate of 500 MS/s
while the design was operating at a frequency of 3 MHz.

As an evaluation metric we used the non-specific t-test as proposed in [14,18]
which has become a popular generic evaluation method in recent years [42]. In
such a test, the leakages related to two sets of measurements are compared, one
with a fixed input (plaintext) and the other one with randomly selected input.
During the measurements, for both sets (which are also randomly interleaved)
the 128-bit masks (used for initial sharing of the plaintexts as well as the check
bits) are randomly selected with a uniform distribution.

While the test can examine the existence of detectable leakage at certain
orders, we omit the details here. For further information, the interested reader
is referred to the original articles [14,18,42]. Figure 6 depicts the results for
univariate tests at first, second and third orders using 100 million measurements.
The diagram show that our design is indeed first-order secure while – as expected
– leakages for higher orders can be observed.

0 10 20 30
Time [µs]

-40

-20

0

Vo
lta

ge
 [m

V]

(a) trace

0 10 20 30
−4.5

0

4.5

Time [µs]

t

(b) first order

0 10 20 30
−25

0

25

Time [µs]

t

(c) second order

0 10 20 30
−12

0

12

Time [µs]

t

(d) third order

Fig. 6. A sample trace and the result of non-specific t-tests at orders one to three.

4.5 Resistance Against FI

We further examined the fault coverage of our scheme considering the previously
introduced attacker model. Given that the extended Hamming [8, 4, 4]-code has
a distance of d = 4, it can detect errors up to wt(e) ≤ u = 3. The coverage
of this code is compared to the coverage that can be achieved with a simple
[8, 4, 2]-duplication code with u = 1. We compute the fault coverage of both
codes for the uniform distribution as well as for biased distributions EB1 to EB8 .
We consider both the best case (BC) and worst case (WC) for an attacker.

328 T. Schneider et al.

In the best case, the attacker is able to inject a fault into one share of a single
codeword. In the worst case, he can inject faults into all shares of all codewords
simultaneously. Given that the TI of LED operates on a 16-element state, the
fault coverage is significantly increased in this case. Since we do not check each
share separately, the number of shares does not influence the fault coverage rate
of the worst case.

Table 2 represents the fault coverage rates for the examined cases for both
codes. We already discussed how to compute the fault coverage for a duplica-
tion code in Sect. 3.5. In order to derive the corresponding fault coverage for the
[8, 4, 4]-code, we look at the distribution of the Hamming weight of the codewords.
Since k = 4, there exist 16 different codewords. 14 of them have Hamming weight
wt(c) = 4, while there are two codewords with wt(c) = 0 and wt(c) = 8 respec-
tively. Therefore, only some error vectors with Hamming weight of 4 or 8 (exclud-
ing the zero error vector) have the possibility to be undetectable by our scheme4.

Table 2. Fault coverage for different distributions and codes.

This observation is confirmed by the results in Table 2. The [8, 4, 4]-code pro-
vides full fault coverage in the biased model up to EB3 . Given that most of the valid
codewords have a Hamming weight of 4, and d = 4, the biased distribution EB4

leads to the lowest fault coverage. In short, EB4 and EB5 are the only distributions
with which the simple duplication scheme is better than the extended Hamming
code. For all other cases, the extended Hamming code outperforms (or is equal
to) the simple duplication scheme. As expected, the worst case leads to very high
fault coverage given that the probability to inject an error which results in a valid
codeword for every element of the state is very low.

5 Conclusions

We presented an advanced hardware countermeasure which offers resistance
both against SCA and FI attacks. In short, we proposed a construction to com-
bine error detecting codes with the concept of threshold implementations. We
have identified and discussed generic strategies to that additions for informa-
tion redundancy do not contradict to the assumptions and requirements of the
underlying masking scheme.

4 Since d = 4, errors which flip 4 or 8 bits can turn a valid codeword into another valid
codeword, and are hence undetectable.

ParTI – Towards Combined Hardware Countermeasures 329

From an general point of view, our combined countermeasure can be applied
to arbitrary ciphers and supports different level of protections, i.e., first- or
higher-order SCA resistance as well as various fault coverage settings. As an
example, we have illustrated how to apply our methodology on the LED block
cipher with the aim of maintaining first-order SCA protection while integrating
an extended Hamming code to detect faults. Supported by our experimental
validation, we have demonstrated how to realize an efficient design that satisfies
the requirement to provide protection against SCA and FI.

Acknowledgment. The authors want to thank Falk Schellenberg for his helpful
discussions and comments. The research in this work was supported in part by the
DFG Research Training Group GRK 1817/1.

References

1. Side-channel attack user reference architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Trans. Comput. 52(4), 492–505 (2003)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of keccak. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Heidel-
berg (2014)

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

7. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3×3 and 4×4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

8. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

9. Blahut, R.E.: Algebraic Codes for Data Transmission. Cambridge University Press,
Cambridge (2003)

10. Bogdanov, A.A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

11. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501,
pp. 40–56. Springer, Heidelberg (2014)

12. Bringer, J., Chabanne, H., Le, T.: Protecting AES against side-channel analysis
using wire-tap codes. J. Cryptographic Eng. 2(2), 129–141 (2012)

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

330 T. Schneider et al.

13. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and active combined
attacks on AES—combining fault attacks and side channel analysis. In: FDTC,
pp. 10–19. IEEE Computer Society (2010)

14. Cooper, J., Demulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
Vector Leakage Assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013)

15. Dassance, F., Venelli, A.: Combined fault and side-channel attacks on the AES key
schedule. In: FDTC, pp. 63–71. IEEE Computer Society (2012)

16. De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order thresh-
old implementation of the AES S-box. In: CARDIS 2015 (2015)

17. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,
A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012)

18. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. In: NIST Non-invasive Attack Testing Workshop (2011)

19. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

20. Guo, X., Mukhopadhyay, D., Jin, C., Karri, R.: Security analysis of concurrent
error detection against differential fault analysis. J. Cryptographic Eng. 5(3), 153–
169 (2015)

21. Karpovsky, M.G., Kulikowski, K.J., Taubin, A.: Differential fault analysis attack
resistant architectures for the advanced encryption standard. In: Quisquater, J.-J.,
Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS. IFIP, vol. 153, pp.
177–192. Kluwer/Springer, USA (2004)

22. Karpovsky, M.G., Kulikowski, K.J., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: DSN, pp. 93–101. IEEE Computer Society (2004)

23. Karri, R., Kuznetsov, G., Gössel, M.: Parity-based concurrent error detection of
substitution-permutation network block ciphers. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 113–124. Springer, Heidelberg (2003)

24. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

25. MacWilliams, F.J., Sloane, N.: The Theory of Error Correcting Codes. North-
Holland Mathematical Library. North-Holland Publishing Co., New York (1977).
Includes index

26. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

27. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

28. Moradi, A.: Wire-tap codes as side-channel countermeasure — an FPGA-based
experiment. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS,
vol. 8885, pp. 341–359. Springer, Switzerland (2014)

29. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

ParTI – Towards Combined Hardware Countermeasures 331

30. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in
action - case study of PRINCE and Midori. Cryptology ePrint Archive, Report
2016/481 (2016). http://eprint.iacr.org/

31. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474.
Springer, Heidelberg (2015)

32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

33. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

34. NIST: FIPS PUB 197: advanced encryption standard, 14 June 2016. http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf

35. Patranabis, S., Chakraborty, A., Nguyen, P.H., Mukhopadhyay, D.: A biased
fault attack on the time redundancy countermeasure for AES. In: Mangard, S.,
Poschmann, A.Y. (eds.) COSADE 2015. LNCS, vol. 9064, pp. 189–203. Springer,
Heidelberg (2015)

36. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. J. Cryptology 24(2), 322–345 (2011)

37. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

38. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015)

39. Roche, T., Lomné, V., Khalfallah, K.: Combined fault and side-channel attack on
protected implementations of AES. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol.
7079, pp. 65–83. Springer, Heidelberg (2011)

40. Roscian, C., Sarafianos, A., Dutertre, J., Tria, A.: Fault model analysis of laser-
induced faults in SRAM memory cells. In: FDTC, pp. 89–98. IEEE Computer
Society (2013)

41. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application
to tightening threshold implementations. In: Dunkelman, O., et al. (eds.) SAC
2015. LNCS, vol. 9566, pp. 263–276. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31301-6 16. http://eprint.iacr.org/2015/749

42. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015)

43. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic addition over boolean masking.
In: Malkin, T., et al. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 559–578. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-28166-7 27

44. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent simon: a threshold implementation
under 100 slices. In: HOST 2015, pp. 1–6. IEEE (2015)

45. Sunar, B., Gaubatz, G., Savas, E.: Sequential circuit design for embedded cryp-
tographic applications resilient to adversarial faults. IEEE Trans. Comput. 57(1),
126–138 (2008)

46. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE, pp. 246–251. IEEE Computer
Society (2004)

http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://dx.doi.org/10.1007/978-3-319-31301-6_16
http://dx.doi.org/10.1007/978-3-319-31301-6_16
http://eprint.iacr.org/2015/749
http://dx.doi.org/10.1007/978-3-319-28166-7_27

332 T. Schneider et al.

47. Virtual Silicon Inc.: 0.18µm VIP Standard cell library tape out ready, part number:
UMCL18G212T3, process: UMC logic 0.18µm Generic II technology: 0.18 µm,
July 2004

48. Xiaofei Guo, D.M., Karri, R.: Provably secure concurrent error detection against
differential fault analysis. Cryptology ePrint Archive, Report 2012/552 (2012).
http://eprint.iacr.org/

http://eprint.iacr.org/

Secure Computation and Protocols I

Network-Hiding Communication
and Applications to Multi-party Protocols

Martin Hirt1, Ueli Maurer1, Daniel Tschudi1(B), and Vassilis Zikas2

1 ETH Zurich, Zürich, Switzerland
{hirt,maurer,tschudid}@inf.ethz.ch

2 RPI, Troy, USA
vzikas@cs.rpi.edu

Abstract. As distributed networks are heavily used in modern applica-
tions, new security challenges emerge. In a multi-party computation (in
short, MPC) protocol over an incomplete network, such a challenge is to
hide, to the extent possible, the topology of the underlying communica-
tion network. Such a topology-hiding (aka network hiding) property is
in fact very relevant in applications where anonymity is needed.

To our knowledge, with the exception of two recent works by
Chandran et al. [ITCS 2015] and by Moran et al. [TCC 2015], existing
MPC protocols do not hide the topology of the underlying communica-
tion network. Moreover, the above two solutions are either not applicable
to arbitrary networks (as is [ITCS 2015]) or, as in [TCC 2015], they make
non-black-box and recursive use of cryptographic primitives resulting in
an unrealistic communication and computation complexity even for sim-
ple, i.e., low degree and diameter, networks.

Our work suggests the first topology-hiding communication proto-
col for incomplete networks which makes black-box use of the under-
lying cryptographic assumption—in particular, a public-key encryption
scheme—and tolerates any adversary who passively corrupts arbitrarily
many network nodes. Our solutions are based on a new, enhanced variant
of threshold homomorphic encryption, in short, TH-PKE, that requires
no a-priori setup and allows to circulate an encrypted message over any
(unknown) incomplete network and then decrypt it without revealing any
network information to intermediate nodes. We show how to realize this
enhanced TH-PKE from the DDH assumption. The black-box nature of
our scheme, along with some optimization tricks that we employ, makes
our communication protocol more efficient than existing solutions.

We then use our communication protocol to make any semi-honest
secure MPC protocol topology-hiding with a reasonable—i.e., for simple

D. Tschudi—Research was supported by the Swiss National Science Foundation
(SNF), project no. 200020-132794.
V. Zikas—Work done in part while the author was at ETH Zurich supported by the
Swiss NSF Ambizione grant PZ00P2 142549, and while the author was visiting the
Simons Institute for the Theory of Computing, supported by the Simons Foundation
and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 335–365, 2016.
DOI: 10.1007/978-3-662-53008-5 12

336 M. Hirt et al.

networks, polynomial with small constants—communication and compu-
tation overhead. We further show how to construct anonymous broadcast
without using expensive MPCs to setup the original pseudonyms.

1 Introduction

Secure communication is perhaps the central goal of cryptography. It allows a
sender, Alice, to securely transmit a message to a receiver, Bob so that even if
some eavesdropper, Eve, is intercepting their communication she can not figure
out anything about the transmitted message. When Alice and Bob share a phys-
ical (but potentially tappable) communication channel, this task can be easily
carried out by use of standard public-key cryptography techniques, e.g., Bob
sends Alice his public key who uses it to encrypt her message and send it over
the physical communication channel to Bob. But this idealized scenario occurs
rarely in modern networks, such as the Internet, where Alice and Bob would most
likely not share a physical channel and would, instead, have to communicate over
some (potentially incomplete) network of routers. Without further restrictions,
the above modification marginally complicates the problem as it can be directly
solved by means of a private flooding scheme. In such a scheme, Alice encrypts
her message, as before, and sends it to all her immediate neighbors, i.e., net-
work routers with which she shares physical links, who then forward it to their
immediate neighbors, and so on, until it reaches Bob. Clearly, if Alice has a path
to Bob and the forwarding step is repeated as many times as the length of this
path, the message will reach Bob. And the fact that the intermediate routers
only see encryptions of the transmitted message means that they do not learn
anything about the message.

But modern distributed protocols often require much more than just privacy
of the transmitted message. For example, ensuring anonymity in communication
is a major goal of security as it, for example, protects against censorship or coer-
cion. Similarly, as privacy awareness in social networks increases, users might not
be willing to reveal information about the structure of their peer graph (i.e., their
Facebook friends graph) to outsiders. Other applications might require to hide a
communicating agent’s location, as is the case in espionage or when using mobile
agents to propagate information through some ad-hoc network, e.g., in vehicle-
to-vehicle communication. All these applications require a routing scheme, that
hides the topology of the underlying communication network. Evidently, using
the simple private flooding strategy does not hide the topology of the underly-
ing communication network as, for example, an eavesdropping router can easily
determine its distance (and direction) to the sender by observing in which round
(and from whom) it receives the first encryption.

1.1 Related Literature

The problem of routing through an incomplete network has received a lot of
attention in communication networks with a vast amount of works aiming at

Network-Hiding Communication and Applications to Multi-party Protocols 337

optimizing communication complexity in various network types. In the following,
however, we focus on the cryptographic literature which is more relevant to our
goals—namely network hiding communication—and treatment.

Perhaps the main venue of work in which keeping the network hidden is a con-
cern is the literature on anonymous communication, e.g., [Cha03,RR98,SGR97].
These works aim to hide the identity of the sender and receiver in a message
transmission, in a way that protects these identities even against traffic analysis.
In a different line of work initiated by Chaum [Cha81], so called mix servers
are used as proxies which shuffle messages sent between various peers to dis-
able an eavesdropper from following a message’s path. This technique has been
extensively studied and is the basis of several practical anonymization tools. An
instance of the mix technique is the so called onion routing [SGR97,RR98], which
is perhaps the most wide-spread anonymization technique. Roughly, it consists
of the sender applying multiple encryptions in layers on his message, which are
then “peeled-off” as the cipher-text travels through a network of onion routers
towards its destination. An alternative anonymity technique by Chaum [Cha88]
and implemented in various instances (e.g., [Bd90,GJ04,GGOR14]) is known as
Dining Cryptographers networks, in short DC-nets. Here the parties themselves
are responsible for ensuring anonymity. The question of hiding the communica-
tion network was also recently addressed in the context of secure multi-party
computation by Chandran et al. [CCG+15]. This work aims to allow n parties
to compute an arbitrary given function in the presence of an adaptive adversary,
where each party communicates with a small (sublinear in the total number of
parties) number of its neighbors. Towards this goal, [CCG+15] assumes that
parties are secretly given a set of neighbors that they can communicate with.
Because the adversary is adaptive, it is crucial in their protocol that the commu-
nication does not reveal much information about the network topology, as such
information would allow the adversary to potentially discover the neighbors of
some honest party, corrupt them, and isolate this party, thereby breaking its
security1. Another work which considers such an adaptive corruption setting is
the work of King and Saia [KS10], which is tailored to the Byzantine agreement
problem. We note in passing that the result of [CCG+15,KS10] was preceded by
several works which considered the problem of MPC over incomplete networks.
However, these works do not aim to keep the network hidden as they either only
consider a static adversary2, e.g., [BGT13], and/or they only achieve so called
almost everywhere computation [GO08,KSSV06a,KSSV06b,CGO15] where the
adversary is allowed to isolate a small number of honest parties.

1 In fact, by a factor
√

n increase on the number of neighbors of each party, [CCG+15]
can avoid the assumption of a trusted setup privately distributing the neighborhoods
and achieve the same level of security while having the parties generate these neigh-
borhoods themselves.

2 A static adversary chooses all the parties to corrupt at the beginning of the protocol
execution and therefore learning the network topology through the communication
cannot help him isolate any honest party.

338 M. Hirt et al.

Most related to the goals of our work is the recent work of Moran
et al. [MOR15], which considers the problem of topology-hiding secure multi-
party computation over an incomplete network in the computational setting
(i.e., assuming secure public-key encryption) tolerating a semi-honest (passive)
and static adversary. At a very high level, [MOR15] uses public-key encryp-
tion and (semi-honest) multi-party computation to implement a proof-of-concept
network-hiding communication protocol, which emulates a complete network of
secure channels. This emulated network is then used to execute an arbitrary
multi-party protocol in which parties communicate over a complete communica-
tion network, e.g., [GMW87,Pas04]. In fact, as noted in [MOR15], relying on a
computational assumption seems inevitable, as in the information-theoretic set-
ting the work of Hinkelmann and Jakoby [HJ07] excludes fully topology-hiding
communication3. Due to the similarity to our goal we include a detailed com-
parison of our results with [MOR15] in Sect. 1.3.

1.2 Our Contributions

In this work we present the first network-hiding communication protocol which
makes black-box use of public-key encryption and, for networks with moderate
degree and diameter, has a moderate communication and computation complex-
ity. Our protocol allows the parties to communicate over an incomplete net-
work of point-to-point channels in a way which computationally hides both the
transmitted message and the neighborhood of honest parties from an adver-
sary passively corrupting arbitrary many parties. We remark that as pointed out
in [CCG+15], when the communication graph is to be kept hidden, the adversary
cannot be eavesdropping on communication channels, and in particular cannot
be informed when a message is transmitted over some channel. We resolve this
issue by assuming, along the lines of [MOR15], a special network functionality
(cf. Sect. 2).

A bit more concretely, the high-level idea of our construction is to enhance
the näıve private flooding-protocol by using homomorphic public-key encryp-
tion (in short, PKE). The starting point of our approach is the observation—
underlying also the construction from [MOR15]—that the flooding protocol
would be topology-hiding if the parties could not read intermediate messages.
But instead of using, as in [MOR15], expensive nested MPCs for ensuring this
fact (see below for a high-level description of [MOR15]) we use a version of
threshold PKE with additional network hiding properties. We also show how
to implement our enhanced threshold PKE definition assuming hardness of the
Decisional Diffie-Hellmann (DDH) problem.

To demonstrate our ideas, imagine there was a world in which parties (corre-
sponding to all intermediate routers) could encrypt with a homomorphic public-
key encryption scheme where the private (decryption) key is known to nobody,

3 To our understanding the result of [HJ07] does not apply to the case where a strong
information-theoretic setup, e.g., sufficiently long correlated randomness, is available
to the parties. Extending this results to that setting is an interesting open problem.

Network-Hiding Communication and Applications to Multi-party Protocols 339

but instead parties have access to a decryption oracle. Provided that the associ-
ated PKE-scheme is semantically secure, parties can enhance the flooding pro-
tocol as follows: Alice encrypts its message and starts the flooding; in each step
of the flooding protocol, the intermediate party—which, recall, is supposed to
forward the received ciphertext—first re-randomizes the ciphertext and then
forwards it. Once the message arrives to Bob, he invokes the decryption oracle
to open its final ciphertext. We observe that in this case the adversary does no
longer learn anything from intermediate messages, the protocol is thus topology-
hiding.

There are two major challenges with the above approach. First, if interme-
diate parties are silent until a message reaches them during the flooding, then
the adversary observing this fact can use it to deduce information about the
network. E.g., if a neighbor pi of a corrupted party has not sent anything by the
second round of the flooding protocol, then the adversary can deduce that pi is
not a neighbor of Alice. Secondly, we need a way to implement the decryption
oracle. Observe that using a off-the-shelf threshold decryption scheme and have
decryption shares exchanged by means of flooding would trivially destroy the
topology-hiding property; and the same is the case if we would use an MPC
protocol for this purpose, unless the MPC were itself topology-hiding. In the
following we discuss how we solve each of the protocols, separately.

The first issue—information leakage from silent parties—can be solved by
having every party send messages in every round. As simple as this idea might
seem, it has several difficulties. For starters, the messages that are injected by
intermediary parties should be indistinguishable from encryptions, as otherwise
adding this noise makes no difference. But now, there is a new issue that the
intermediate parties cannot tell which of the indistinguishable messages they
receive contains the initial message sent by Alice. The naive solution to this
would be to have parties re-randomize everything they receive and add their
own noise-message. But this would impose an exponential, in the graph diameter,
factor both in the message and communication complexity. Our solution, instead,
is to use the homomorphic properties of the encryption scheme and build an
efficient process which allows every party to compute an encryption of the OR
of the messages it receives from its neighbors. Thus, to transfer a bit b, Alice
encrypts b and starts flooding, whereas every party encrypts a zero-bit and
starts flooding simultaneously. In each following round of the flooding scheme,
every party homomorphically computes the OR of the messages it receives and
continues flooding with only this encryption. Bob keeps computing the OR of
the encryptions he receives, and once sufficiently many rounds have passed, the
decryption is invoked to have him obtain Alice’s bit. Note that we only treat
the case of semi-honest parties here, thus no party will input an encryption of a
one-bit into this smart flooding scheme which would destroy its correctness.

To solve the second issue—i.e., implement the decryption oracle in a topol-
ogy hiding manner—we introduce a new variant of threshold homomorphic
public-key encryption (TH-PKE) with enhanced functionality, which we call
multi-homomorphic threshold encryption with reversible randomization. Roughly

340 M. Hirt et al.

speaking, our new TH-PKE assumes a strongly correlated setup, in which secret
(sub)keys are nested in a way which is consistent with the network topology and
which allows parties to decrypt messages in a topology hiding manner. We pro-
vide a security definition for the new primitive and describe a topology-hiding
protocol for establishing the necessary setup using no setup-assumption what-
soever. And we also describe how to instantiate our schemes under the DDH
assumptions. We believe that both the general definition of this augmented TH-
PKE and the concrete instantiation could be of independent interest and can be
used for anonymizing communication.

Applications. Building on our topology hiding network and utilizing the func-
tionality of our topology hiding homomorphic OR protocol we present the fol-
lowing applications:

– Anonymous broadcast: We consider a variant of anonymous broadcast where
parties can broadcast messages under a pseudonym. The presented protocol
allows to realize anonymous broadcast directly from the topology hiding homo-
morphic OR protocol without using expensive MPC to setup the pseudonyms.

– Topology hiding MPC: Having a topology-hiding network, we can execute on
top of it any MPC protocol from the literature that is designed for point-to-
point channels which will render it topology hiding.

1.3 Comparison with [MOR15]

The work by Moran et al. [MOR15] provides the first, to the best of our knowl-
edge, work that solves this problem for general graphs in the computational
setting. Our goals are closely related to theirs. In fact, our security definition of
topology-hiding communication and, more general, computation is a refinement
of their simulation-based definition of topology-hiding MPC. But our techniques
are very different. In light of this similarity in goals, in the following we include
a more detailed comparison to our work.

More concretely, the solution of [MOR15] also follows the approach of enhanc-
ing the näıve flooding protocol to make it topology hiding. The key idea is to use
nested MPCs, recursively, to protect sensitive information during the execution
of the flooding protocol. Roughly, in the basic topology-hiding communication
protocol of [MOR15], each party Pi is replaced by a virtual-party P̂i, which
is emulated by its immediate neighbors by invoking locally (i.e., in the neigh-
borhood) an off-the-shelf MPC protocol. The complete network of point-to-point
channels required by the MPC protocol is emulated by use of a PKE-scheme over
the star network centered around Pi, i.e., by näıve flooding where Pi is used as
the routing node. The above ensures that Pi cannot analyze the messages that
are routed through him, as they are actually handled by its corresponding vir-
tual party P̂i. However, there is now a new problem to be solved, namely, how
do virtual parties use the underlying (incomplete) communication network to
flood messages in a topology hiding manner? This is solved as follows: To enable
secure communication between adjacent virtual-parties a PKE-scheme is used

Network-Hiding Communication and Applications to Multi-party Protocols 341

(once more). Here each virtual-party generates a key-pair and sends the encryp-
tion key to the adjacent virtual-parties using real parties as intermediates. This
basic protocol is topology-hidingly secure as long as the adversary does not cor-
rupt an entire neighborhood. But this is of course not enough for arbitrarily
many corruptions to be tolerated. Thus, to ensure that the overall flooding pro-
tocol is also topology hiding, each virtual party is replaced, again by means of
MPC, by a “doubly virtual” party ˆ̂

P . This will ensure that only adversaries cor-
rupting all the parties that emulate ˆ̂

P can break the topology hiding property.
To extend the set of tolerable adversaries, the doubly virtual parties are again
emulated, and this process is continued until we reach an emulated party that is
emulated by all parties in the network. This requires in the worst case a number
of nested MPCs in the order of the network diameter.

In the following we provide a comparison of the solution of [MOR15] with
ours demonstrating the advantages of our solution both in terms of simplicity
and efficiency. In all fairness, we should remark that the solution of [MOR15]
was explicitly proposed as a proof-of-concept solution. The major advantage of
our work over [MOR15] is that our communication protocol makes no use of
generic MPC, and makes black-box use of the underlying PKE. This not only
yields a substantial efficiency improvement, in terms of both communication and
computation, but it also yields a more intuitive solution to the problem, as it
uses the natural primitive to make communication private, namely encryption,
instead of MPC.

More concretely, the player-virtualization protocol from [MOR15] makes non-
black-box use of public-key encryption, i.e., the circuit which is computed via
MPC is a public-key encryption/decryption circuit. This is typically a huge cir-
cuit which imposes an unrealistic slowdown both on the computation complexity
and on the round and/or communication complexity4. And this is just at the first
level of recursion; the computation of the second level, computes a circuit, which
computes the circuit, which computes PK encryptions/decryptions, and so on.
Due to the lack of concrete suggestions of instantiation of the PKE and MPC
used in [MOR15] we were unable to compute exact estimates on the running
time and communication complexity of the suggested protocols. Notwithstand-
ing it should be clear that even for the simple case in which the network has
constant degree and logarithmic diameter—for which their communication pro-
tocol in [MOR15] achieves a polynomial complexity—and even for the best MPC
instantiation the actual constants are huge.

Instead, our solutions make black-box use of the underlying PKE scheme and
are, therefore, not only more communication and computation efficient, but also
easier to analyze. In fact, in our results we include concrete upper bounds on
the communication complexity5 of all our protocols. Indicatively, for a network
with diameter D and maximum degree d our network-hiding broadcast protocol

4 Of course the latter can be traded off by choosing to use either a communication
heavy or a round heavy protocol.

5 We note that the computation complexity of our protocols is similar to their com-
munication complexity.

342 M. Hirt et al.

communicates at most (d + 1)D · n · λ bits within just 5 · D rounds, where λ
is linear (with small constant, less than 5)6 in the security parameter κ of the
underlying PKE scheme. We note that many natural network graphs, such as
social networks or the internet have a small diameter7.

1.4 Preliminaries and Notation

We consider an MPC-like setting where n parties P = {P1, . . . , Pn} wish to
communicate in a synchronous manner over some incomplete network of secure
channels. When the communication is intended to be from Pi, the sender, to
Pj , the receiver, we will refer to the parties in P \ {Pi, Pj} as the intermediate
parties. We will assume a passive and non-adaptive (aka static) computation-
ally bounded adversary who corrupts an arbitrary subset H ⊆ P of parties.
Parties in H are called dishonest or corrupted while parties in H = P \ H are
called honest. We use simulation based security to prove our results. For sim-
plicity our proofs are in Canetti’s modular composition framework [Can98] but
all our results translate immediately to the universal composition UC frame-
work [Can00]. (Recall that we consider semi-honest static security.) In fact, to
make this transition smoother, we describe our hybrids in the form of UC func-
tionalities. For compactness, for any functionalities F and G, we will denote by
{F ,G} the composite functionality that gives parallel access to F and G.

Throughout this work, we assume an, at times implicit, security parame-
ter κ and write neg(κ) to refer to a negligible function of κ. (See [Gol01]
for a formal definition of negligible functions.) For an algorithm A we write
(y1, . . . , yk) ← A(x1, . . . , xk) to denote that (y1, . . . , yk) are outputs of A given
inputs (x1, . . . , xk). For a probabilistic algorithm B we write (y1, . . . , yk) ←
B(x1, . . . , xk; r) where r is the chosen randomness. If we write (y1, . . . , yk) �
B(x1, . . . , xk) instead, we assume that the randomness has been chosen uni-
formly.

1.5 Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 2 we give our def-
inition of topology-hiding security. In Sect. 3 we present a construction which
allows to realize topology-hiding communication. The construction is based on
multi-homomorphic threshold encryption with reversible randomization (RR-
MHT-PKE) which is introduced in Sect. 3.1. Next, in Sect. 3.2 we describe a
topology-hiding threshold encryption protocol based on RR-MHT-PKE. This
protocol is used in Sect. 3.3 to topology-hidingly realize the Boolean-OR func-
tionality. This allows to give a topology-hiding construction of broadcast and
secure channels in Sect. 3.4. Finally, in Sect. 4 we present topology-hiding MPC

6 This can be contrasted with the complexity O(d)D · n · λ obtained by [MOR15].
7 Backstrom et al. [UKBM11] showed that a sub-graph of the Facebook social network

consisting of 99.6 % of all users had a diameter of 6. In this particular case the
broadcast protocol would communicate at most n7 · λ bits within 30 rounds.

Network-Hiding Communication and Applications to Multi-party Protocols 343

and topology-hiding anonymous broadcast as applications of the protocols from
the previous section.

2 Topology Hiding Security Definition

In this section we provide the formal simulation-based definition of topology-
hiding computation. Our definition is an adaptation of the original simulation-
based definition of Moran et al. [MOR15]. More concretely, the topology-hiding
property requires that parties learn no information on the underlying communi-
cation network other than the description of their local neighborhood, i.e., the
identities of their neighbors. To capture this property, we assume that the parties
(in the real world) have access to a network functionality N which has knowl-
edge of every party Pi’s neighborhood (i.e., the set of point-to-point channels
connected to Pi) and allows Pi to communicate (only) to its neighbors.

Clearly, a protocol execution over such a network N allows an adversary
using it knowledge of the neighborhood of corrupted parties; thus the simulator
needs to also be able to provide this information to its environment. To give this
power to the simulator, [MOR15] augments the ideal functionality with an extra
component which allows the simulator access to this information. In this work
we use N itself in the ideal world to provide this information to the simulator.
Note that this does not affect the security statements, as the trivial N -dummy
protocol φN securely realizes N 8.

A conceptual point in which our model of topology-hiding computation devi-
ates from the formulation of Moran et al. has to do with respect to how the
communication graph is chosen. At first thought, one might think that parame-
terizing the network functionality with the communication graph does the trick.
This is, however, not the case because the parameters of hybrid-functionalities
are known to the protocol which invokes them and are therefore also known to
the adversary. The only information which is not known to the adversary are
inputs of corrupted parties and internal randomness of the functionality; thus,
as a second attempt, one might try to have the network functionality sample the
communication graph from a given distribution9. Unfortunately this also fails to
capture the topology-hiding property in full, as we would like to make sure that
the adversary (or simulator) gets no information on any given (hidden) graph.

Motivated by the above, [MOR15] defines topology-hiding computation using
the following trick: they assume an extra incorruptible party, whose only role
is to provide the network graph as input to the network functionality. Because
this network-choosing party is (by assumption) honest, the simulator cannot see
its input and needs to work having only the knowledge that N allows him to
obtain, i.e., the neighborhood of corrupted parties.

8 In any case, our protocol will not output anything other than the output of the
functionality, hence the simulator will only use N to learn the corrupted parties
neighborhood.

9 Intuitively, this would correspond to the hidden graph model of [CCG+15].

344 M. Hirt et al.

In this work we take a slightly different, but equivalent in its effect, approach
to avoid the above hack of including a special purpose honest party. We assume
that each party provides its desired neighborhood to N as (a special part of)
its input. Since the inputs are explicitly chosen by the environment, we are
effectively achieving the same topology-hiding property as [MOR15] but without
the extra special-purpose honest party.

In the remainder of this section we provide a formal specification of our net-
work functionality (also referred to as network resource) and our formal security
definition of topology-hiding computation.

The Network. The network topology is captured by means of an undirected graph
G = (V,E) with vertex-set V = P and edge-set E ⊆ P×P. An edge (Pv, Pu) ∈ E
indicates that Pu is in the neighborhood of Pv, which, intuitively, means that Pu

and Pv can communicate over a bilateral secure channel. For a party Pv denote
by NG(v) its neighborhood in G. We will refer to NG[v] = {Pv} ∪ NG(v) as
Pv’s closed neighborhood. Furthermore let NG[v]k be all nodes in G which have
distance k or less to Pv. (Clearly Pv ∈ NG[v]k.)

The network functionality allows two types of access: (1) any party Pv ∈ P
can submit its neighbors NG[v], and (2) every party can submit a vector �m of
messages, one for each of its neighbors, which are then delivered in a batch form
to their intended recipients. In order to be able to make statements for restricted
classes of graphs, e.g., expanders, we parameterize the network functionality by
a family G of setups and require that NG only allows (the environment on behalf
of) the honest parties to chose their neighborhood from this class. Note, that
the adversary is not bound to choose a neighborhood from a graph in G, i.e.,
any valid neighborhood is accepted for corrupted parties. This is not an issue
in the semi-honest setting considered in this work as a semi-honest adversary
will submit whatever input the environment hands it. Thus, for the semi-honest
case it suffices that the functionality becomes unavailable (halts) upon receiving
an invalid neighborhood from the adversary (or from some honest party)10. In
the full version of this paper [HMTZ16] we also describe a network functionality
that adequately captures the guarantees needed to prevent a malicious adversary
from using the check of whether or not the neighborhood he submits results in
an invalid-graph message from NG to obtain information on the neighborhood
of honest parties.

In the description of NG we use the following notation: For a graph G with
vertex set V , and for any V ′ ⊆ V , we denote by G|V ′ the restriction of G to
the vertices in V ′, i.e., the graph that results by removing from G all vertices in
V \ V ′ and their associated edges.

10 Note that the environment knows/chooses all the inputs and therefore knows whether
or not the submitted neighborhoods are allowed by the graph class.

Network-Hiding Communication and Applications to Multi-party Protocols 345

An important feature of the above functionality is that the communication
pattern (i.e., which parties send or receive messages) does not reveal to the adver-
sary any information other than the neighborhood of corrupted parties. Thus,
the simulator cannot use this functionality in the ideal world to extract informa-
tion about the network. However, when using this network-functionality (in the
real-world protocol) to emulate, e.g., a complete communication network, the
adversary might use the messages exchanged in the protocol to extract infor-
mation that the simulator cannot. In fact, the challenge of a topology-hiding
protocol is exactly to ensure that the exchanged messages cannot be used by the
adversary in such a way.

Definition 1. Let G be a family of graphs with vertex set P. Let also F be a
functionality and NG denote the network functionality (as specified above) and
π be a NG-hybrid protocol. We say that πNG securely realizes the functionality
F in a topology-hiding manner with respect to network class G if and only if π
securely realizes the composite functionality {F,NG}.

3 Topology-Hiding Communication

In this section we present a construction which allows to securely and topology-
hidingly realize different types of communication channels using black-box PKE.
The section consists of the following four steps, each treated in a separate sub-
section.

346 M. Hirt et al.

RR-MHT-PKE: In Sect. 3.1 we introduce multi-homomorphic threshold encryp-
tion with reversible randomization (RR-MHT-PKE), which is a special type
of threshold public-key encryption. In addition to the (common) homomor-
phic property of ciphertexts RR-MHT-PKE features homomorphic public-keys
and decryption-shares. This allows for a decentralized generation of shared keys
which enables parties to generate securely and topology-hidingly a public-key
setup where the private-key is shared among all parties. Its reversible randomiza-
tion property allows parties to transmit public-keys and/or ciphertexts through
the network such that the adversary can not track them. We give a practical
implementation of RR-MHT-PKE based on the DDH assumption in the full
version [HMTZ16].

Topology-Hiding Encryption: In Sect. 3.2, we present a topology-hiding threshold
encryption protocol based on black-box RR-MHT-PKE. More precisely, we pro-
vide (1) a distributed setup protocol, (2) an information-transmission protocol,
and (3) a distributed decryption protocol.

Topology-hiding Boolean-OR: In Sect. 3.3 we present a protocol which, for
networks with moderate degree and diameter, securely and topology-hidingly
realizes the multiparty Boolean-OR functionality using the topology-hiding
threshold encryption protocol from the previous section.

Topology-hiding Broadcast and Secure Channels: Finally, in Sect. 3.4 we use the
Boolean-OR functionality to securely and topology-hidingly realize secure chan-
nels and broadcast. The main result of this section is the following theorem.

Theorem 1. Given a network NG with diameter D and maximum degree d
where dD = poly(κ) there exists a protocol which securely and topology-hidingly
realizes broadcast using black-box RR-MHT-PKE. The protocol communicates at
most (d+1)D ·n·λ bits within 5·D rounds, where λ is linear (with small constant,
less than 5) in κ.

3.1 Multi-homomorphic Threshold Encryption with Reversible
Randomization

In this section we introduce multi-homomorphic threshold encryption with
reversible randomization, a special type of threshold public-key encryption,
which will allow us to securely and topology-hidingly realize a distributed encryp-
tion scheme. We first start by recalling some standard definitions. A public-key
encryption (PKE) scheme consists of three algorithms, Keygen for key genera-
tion, Enc for encryption and Dec for decryption. Since in this work we consider
semi-honest adversaries, we will only need encryption satisfying the standard
IND-CPA security definition. Threshold public-key encryption (T-PKE) is PKE
in which the private key SK is distributed among l parties p1, . . . , pl, such that
each party pi holds a share (aka sub-key) ski of SK with the property that any
l − 1 sub-keys have no information on SK. Importantly, such a scheme allows for

Network-Hiding Communication and Applications to Multi-party Protocols 347

distributed decryption of any given ciphertext: any party pi can locally compute,
using its own sub-key ski of the private key SK, a decryption share xi, so that if
someone gets a hold of decryption shares (for the same c) from all parties (i.e.,
with each of the shares of the private key) he can combine them and recover the
plaintext. Homomorphic (threshold) PKE allows to add up encrypted messages.
Here, the message space 〈M,+〉 and the ciphertext space 〈C, ·〉 are groups such
that m1 + m2 = Dec(SK, Enc(PK,m1; r1) · Enc(PK,m2; r2)). for any key pair
(PK,SK) ← KeyGen and any messages m1,m2 ∈ M.

Multi-homomorphic Threshold Encryption. We first present multi-
homomorphic threshold encryption which is in essence HT-PKE with two addi-
tional properties. The first property is a decentralized key-generation. The idea is
that parties locally generate public/private-key pairs. By combining those local
public keys they can then generate a public key with shared private-key where
the local private keys act as key shares. More formally, its required that the
public-key space 〈PK, ·〉 and the private-key space 〈SK,+〉 are groups. More-
over its is required (1) that there exists a key-generation algorithm KeyGen,
which outputs a public/private-key pair (pki, ski) ∈ PK × SK, and (2) that
for any key pairs (pk1, sk1), (pk2, sk2) ∈ PK × SK it holds that pk1 · pk2 is
the public key corresponding to private key sk1 + sk2. In other words a multi-
homomorphic threshold encryption scheme is homomorphic with respect to pub-
lic/private keys. We point out this is not a standard property of threshold PKE
schemes. For instance, the scheme of [Pai99], does not satisfy this property.
Secondly, a versatile homomorphic threshold encryption scheme is required to
be homomorphic with respect to decryption shares and private keys. That is,
for any key pairs (pk1, sk1), (pk2, sk2) and any ciphertext c it must hold that
ShareDecrypt(sk1, c) · ShareDecrypt(sk2, c) = ShareDecrypt(sk1 + sk2, c).

Definition 2. A multi-homomorphic threshold encryption (MHT − PKE)
scheme with security parameter κ consists of four spaces M, C, SK, and PK
and four algorithms KeyGen, Enc, ShareDecrypt, and Combine which are para-
metrized by κ where:

1. The message space 〈M; +〉, the public-key space 〈PK; ·〉, the private-key space
〈SK; +〉, the ciphertext space 〈C; ·〉, and the decryption-share space 〈DS; ·〉 are
cyclic groups of prime order.

2. The (probabilistic) key-generation algorithm KeyGen outputs a public key pk ∈
PK and a private key sk ∈ SK where for any key pairs (pk1, sk1), (pk2, sk2) ∈
PK × SK it holds that pk1 · pk2 is the public key corresponding to private key
sk1 + sk2.

3. The (probabilistic) encryption algorithm Enc takes a public key pk ∈ PK and
a message m ∈ M and outputs a ciphertext c ← Enc(PK,m; r).

4. The decryption share algorithm ShareDecrypt takes a private key ski ∈ SK
and a ciphertext c ∈ C as inputs and outputs a decryption share xi ←
ShareDecrypt(ski, c). For any ciphertext c ∈ C and private keys sk1, sk2 ∈ SK
where x1 ← ShareDecrypt(sk1, c) and x2 ← ShareDecrypt(sk2, c) it holds
that x1 · x2 = ShareDecrypt(sk1 + sk2, c).

348 M. Hirt et al.

5. The combining algorithm Combine takes a decryption share x ∈ DS and a
ciphertext c ∈ C and outputs a message m ← Combine(x, c).

A MHT-PKE scheme satisfies the following correctness property: For any key
pairs (pk1, sk1), . . . , (pkl, skl) ← KeyGen and any message m ∈ M it holds that
m = Combine(x1 · . . . · xl, c) where xi = ShareDecrypt(ski, c), c = Enc(pk,m; r)
and pk = pk1 · . . . · pkl. Moreover, given a message m and a ciphertext c
one can efficiently invert Combine, i.e., compute a decryption share x with m =
Combine(x, c).

We define the security of MHT-PKE with respect to a threshold variant of
the IND-CPA security definition.

Definition 3. A MHT-PKE scheme is IND-TCPA secure if the adversary’s
advantage in winning the following game is negligible in κ.

1. The game generates key pairs (pk1, sk1), . . . (pkl, skl) � KeyGen and chooses a
random bit b. Then the adversary gets pk = pk1 · . . . · pkl, pk1, . . . , pkl and
sk2, . . . , skl. This allows him to generate encryptions of arbitrary messages
and to generate decryption shares for all key pairs except (pk1, sk1).

2. The adversary specifies two messages m0 and m1 and the game returns c =
Enc(PK,mb).

3. The adversary specifies a bit b′. If b = b′ the adversary has won the game.

Furthermore for any chosen public-key pk ∈ PK, it should be hard to distin-
guish between (pk, pk·pk1) and (pk, pk2) where pk1, pk2 are distributed according
to KeyGen. More formally, we require that the scheme has the indistinguishability
under chosen public-key attack (IND-CKA) property.

Definition 4. A MHT-PKE scheme is IND-CKA secure if the adversary’s
advantage in winning the following game is negligible in κ.

1. The adversary specifies a public key pk ∈ PK.
2. The game generates a key pair (pk1, sk1) � KeyGen and chooses a uniform

random bit b. Then the adversary gets public key pk2 where

pk2 =

{
pk1 if b = 0
pk1 · pk if b = 1

3. The adversary specifies a bit b′. If b = b′ the adversary has won the game.

Reversible Randomization. Next, we introduce multi-homomorphic thresh-
old encryption with reversible randomization which is MHT-PKE with additional
randomization properties.

Network-Hiding Communication and Applications to Multi-party Protocols 349

Randomization of Public Keys. The first property required is the randomiza-
tion of public keys. More concretely, a MHT-PKE with reversible randomiza-
tion allows a party Pi with public key pki to “randomize” pki, i.e., compute a
new masked public-key p̃ki so that anyone seeing p̃ki is unable to tell whether
it is a freshly generated public-key or a randomized version of pki. Impor-
tantly, we require the randomization algorithm to be reversible in the follow-
ing sense. The randomization algorithm must provide Pi with information rki,
the de-randomizer, which allows it to map any encryption with p̃ki back to an
encryption with its original key pki. Looking ahead, the randomization of public-
keys property will ensure that the adversary can not trace public keys while
they travel the network. This allows us to build a topology-hiding information-
transmission protocol.

Randomization of Ciphertexts. The second property required is the random-
ization of ciphertexts. More concretely, a MHT-PKE with reversible random-
ization allows a party Pi with ciphertext ci to “randomize” ci, i.e., compute
a new masked ciphertext ĉi so that anyone seeing ĉi is unable to tell whether
it is a freshly generated ciphertext (using an arbitrary public-key) or an ran-
domized version of ci. Importantly, we require the randomization algorithm
to be reversible. This means it must provide Pi with information rki, the de-
randomizer, which allows it to map any decryption share of ĉi and decryption
key sk back to a decryption share of the original ciphertext ci and sk. Looking
ahead, the randomization of ciphertexts will ensure that the adversary can not
trace ciphertexts and decryption-shares while they travel the network. This will
allow us to build a topology-hiding decryption protocol. We remark that this
property differs from the usual ciphertext re-randomization in homomorphic
PKE schemes where one randomizes a ciphertext by adding up an encryption
of 0.

MHT-PKE with Reversible Randomization. We can now give the formal defini-
tion of a MHT-PKE with reversible-randomization scheme.

Definition 5. A MHT-PKE with reversible-randomization (RR-MHT-PKE)
scheme is a MHT-PKE scheme with extra algorithms RandKey, DerandCipher,
RandCipher, DerandShare where:

1. The (probabilistic) (key) randomization algorithm RandKey takes a public key
pk ∈ PK and outputs a new public key p̃k ∈ PK and a de-randomizer rk ∈
RKP .

2. The (ciphertext) de-randomization algorithm DerandCipher takes a de-
randomizer rk ∈ RKP and a ciphertext c̃ ∈ C and outputs a new
ciphertext c ∈ C such that the following property holds. For any key
pair (pk, sk), (p̃k, rk) ← RandKey(pk; r′), any message m ∈ M, and any
ciphertext c̃ ← Enc(p̃k,m; r̃) there exists an r such that Enc(pk,m; r) =
DerandCipher(rk, c̃). Moreover, given a ciphertext c and a de-randomizer rk
one can efficiently invert DerandCipher, i.e., compute a ciphertext c̃ such
that c = DerandCipher(rk, c̃).

350 M. Hirt et al.

3. The (probabilistic) (ciphertext) randomization algorithm RandCipher takes a
ciphertext c ∈ C and outputs a new ciphertext ĉ ∈ C and a de-randomizer
rk ∈ RKC .

4. The (share) de-randomization algorithm DerandShare takes a de-randomizer
rk ∈ RKC and a decryption share x̂ ∈ DS and outputs a decryption
share x ∈ DS such that the following property holds. For any key pair
(pk, sk), any ciphertext c ∈ C, (rk, ĉ) ← RandCipher(c; r), and x̂ ←
ShareDecrypt(ski, ĉ) we have DerandShare(rk, x̂) = ShareDecrypt(ski, c).
More over given a decryption share x and a de-randomizer rk one can effi-
ciently invert DerandShare, i.e., compute a decryption shares x̂ such that
x = DerandShare(rk, x̂).

For any public key pk it should be hard (for the adversary) to distinguish
between (pk, RandKey(pk)) and (pk, pk′) where pk′ is freshly generated using
KeyGen. Similar, for any ciphertext c it should be hard to distinguish between
(c, RandCipher(c)) and (c, c′) where c′ is a randomly chosen ciphertext. More
formally, the scheme should have the indistinguishability under chosen public-
key and chosen ciphertext attack (IND-CKCA) property.

Definition 6. A RR-MHT-PKE scheme is IND-CKCA secure if the adver-
sary’s advantage in winning the following game is negligible in κ.

1. The adversary specifies a public key pk ∈ PK and a ciphertext c ∈ C.
2. The game generates key pairs (pk1, sk1), (pk2, sk2) � KeyGen and a uniform

random message m ∈ M. The game then chooses uniform random bits b1 and
b2. The adversary gets public key p̃k and ciphertext ĉ where

p̃k =

{
RandKey(pk) if b1 = 0
pk1 if b1 = 1

and

ĉ =

{
RandCipher(c) if b2 = 0
Enc(pk2,m) if b2 = 1

.

3. The adversary specifies bits b′
1 and b′

2. If b1 = b′
1 or b2 = b′

2 the adversary has
won the game.

The security of a RR-MHT-PKE scheme is defined with respect to the above
security properties.

Definition 7. A RR-MHT-PKE scheme is secure if it is IND-TCPA, IND-
CKA, and IND-CKCA secure.

DDH Based RR-MHT-PKE. One can practically implement secure RR-
MHT-PKE using an extended variant of the ElGamal cryptosystem [ElG84]
over a group G of prime order q(κ) where the DDH assumption holds. We refer
to the full version [HMTZ16] for more details.

Lemma 1. Given a DDH group one can securely implement RR-MHT-PKE.

Network-Hiding Communication and Applications to Multi-party Protocols 351

3.2 Topology-Hiding Threshold Encryption

In this section we build a topology-hiding threshold encryption protocol using
a secure RR-MHT-PKE scheme. More precisely, we provide (1) a distributed
setup protocol, (2) an information-transmission protocol, and (3) a distributed
decryption protocol. Looking ahead, those protocols will allow us to topology-
hidingly realize the Boolean-OR functionality.

The RR-MHT-PKE Scheme: We assume that the parties have access to a secure
RR-MHT-PKE scheme with security parameter κ, where n = poly(κ). In partic-
ular, each party has local (black-box) access to the algorithms of the RR-MHT-
PKE scheme.

The Network Graph: A prerequisite for our protocols to work is that the network
graph G of NG is connected. Otherwise (global) information transmission is not
possible. The parties also need to know upper bounds on the maximum degree
and the diameter of the network graph. We therefore assume that the parties
have access to an initialized network N d,D

G where the graphs in the family G
are connected, have a maximum degree of d ≤ n, and a diameter of at most
D ≤ n where d and D are publicly known. For simplicity we restrict ourselves
to present protocols for d-regular network graphs. We point out that one can
extend the presented protocols to the general case where parties may have less
than d neighbors. The idea is that a party which lacks d neighbors pretends to
have d neighbors by emulating (messages from) virtual neighbors (cf. [MOR15]).

Setup Protocol. In this section we present a protocol which allows to topology-
hidingly generate a threshold-setup where each party Pi holds a public key PKi

such that the corresponding private-key is shared among all parties. The high-
level idea of our protocol is as follows. We first observe that the D-neighborhood
of Pi consists of all parties. The setup thus provides party Pi with a public
key where the corresponding private-key is shared among the parties in the
D-neighborhood NG[i]D of Pi. This implies that one can generate the setup
recursively. In order to generate a k-neighborhood public-key PK

(k)
i , Pi asks

each of its neighbors to generate a public key where the private key is shared in
the neighbors (k − 1)-neighborhood. It can then compute PK

(k)
i by combining

the received public-keys.

Definition 8. A setup for topology-hiding threshold encryption over a network
N d,D

G consists of the following parts.

Private-Key Shares: Each party Pi holds a vector (SK
(0)

i , . . . ,SK
(D)

i) of D + 1
private keys which we call its private-key shares. For any 0 ≤ k ≤ D we
denote by PK

(k)

i the public key corresponding to SK
(r)

i .

352 M. Hirt et al.

Public-Keys: Each party Pi holds a vector (PK(0)
i , . . . ,PK

(D)
i) of D + 1 public

keys where PK
(0)
i = PK

(0)

i and PK
(k)
i = PK

(k)

i · ∏
Pj∈NG(i) PK

(k−1)
j . We call

PK
(k)
i the level-k public-key of Pi and denote by SK

(r)
i the corresponding

(shared) private key. The public-key of Pi is PKi := PK
(D)
i and the shared

private-key is SKi := SK
(D)
i .

Local Pseudonyms: Each party Pi privately holds a injective random function
νi(·) : NG(i) → {1, . . . , d} which assigns each neighbor Pj ∈ NG(i) a unique
local identity νi(j) ∈ {1, . . . , d}. W.l.o.g. we will assume that νi(i) = 0.

We remark that the condition on the public-keys ensures that any 0 ≤ k ≤ D

(and for reasonably large PK) the private key SK
(k)
i is properly shared among the

k neighborhood of Pi, i.e., each party in the k-neighborhood holds a non-trivial
share.

Definition 9. A protocol is a secure (topology-hiding) setup protocol over a
network N d,D

G if it has the following properties.

Correctness: The protocol generates with overwhelming probability a setup for
topology-hiding threshold encryption over the network N d,D

G .
Topology-Hiding Simulation: The adversarial view in an actual protocol-

execution can be simulated with overwhelming probability given the neigh-
borhood of dishonest parties in N d,D

G and the output of dishonest parties, i.e.,
given the values

{
NG(i), νi(·),SK(0)

i , . . . ,SK
(D)

i ,PK
(0)
i , . . . ,PK

(D)
i

}
Pi∈H

The simulation property ensures in particular that (a) the adversary does
not learn more about the network topology and that (b) the adversary does not
learn the private key corresponding to the public key PKi of party Pi unless it
corrupts the entire k-neighborhood of Pi.

Lemma 2. Given a secure RR-MHT-PKE scheme the protocol GenerateSetup
is a secure setup protocol. The protocol communicates D · d · n · log |PK| bits
within D rounds.

Network-Hiding Communication and Applications to Multi-party Protocols 353

Proof. (sketch) Correctness: It follows directly from protocol inspection that
the setup generated by GenerateSetup is valid for N d,D

G . Topology-Hiding
Simulation: The view of the adversary during an actual protocol execution is
{
NG(i), νi(·),

{
PK

(k)
i ,PK

(k)

i ,SK
(k)

i

}
0≤r≤D

,
{
PK

(k)
j

}
Pj∈NG(i),0≤r≤D−1

}
Pi∈H

.

Now consider the view where the public keys
{
PK

(k)
j

}
Pj∈NG(i)∩H,0≤r≤D−1

are

replaced by freshly generated public keys using KeyGen, i.e.,

{
NG(i), νi(·),

{
PK

(k)
i ,PK

(k)

i ,SK
(k)

i

}
0≤r≤D

,

{
P̃K

(k)

j

}
Pj∈NG(i)∩H,0≤r≤D−1

}
Pi∈H

.

Note that the second view can be easily computed by a simulator given the
outputs of dishonest parties. It remains to show that those views are computa-
tionally indistinguishable. Note that for any Pj ∈ NG(H) ∩ H the public-key

PK
(k)
j has the form pk1 · pk where pk1 = PK

(k)

j and pk =
∏

Pi∈NG(j) PK
(k−1)
i .

The indistinguishability therefore follows from the IND-CKA security of the RR-
MHT-PKE scheme. Communication Complexity: The protocol runs for D
rounds and in each round n · d public-keys are sent.

Information-Transmission Protocol. In this section we present a topology-
hiding information-transmission protocol. Here, each party has a message mi

and a public-key pki
11 as input. The output of party Pi is a ciphertext ci under

the public key pki. If all parties input the 0-message, ci is an encryption of 0.
Otherwise, ci is an encryption of a random, non-zero message. The information-
transmission protocol has a recursive structure and is thus parametrized by a
level k. The protocol requires that parties have generated local pseudonyms.
We therefore assume that the parties have access to a setup for topology-hiding
threshold encryption over N d,D

G .

Definition 10. A protocol is a level-k (topology-hiding) secure information-
transmission protocol over a network N d,D

G if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for topology-
hiding threshold encryption over N d,D

G (cf. Definition 8). Each party holds as
input a message mi ∈ M and a public key pki ∈ PK (not necessarily part of
its setup).
The output of each party Pi is a ciphertext ci ∈ C.

Correctness: With overwhelming probability the output ci is the encryption of
message si under pki and randomness ρi (i.e. ci = Enc(pki, si; ρi)) with

si =
{

0 if mj = 0 for all Pj ∈ NG[i]k

xi ifmj �= 0 for at least one Pj ∈ NG[i]k

where xi ∈ M \ {0} uniform at random.
11 For notational simplicity we use uppercase letters for public-/private-keys which are

part of the setup for N d,D
G and lowercase letters for arbitrary public-/private-keys.

354 M. Hirt et al.

Topology-Hiding Simulation: The adversarial view in a real protocol-
execution can be simulated with overwhelming probability given the following
values {

NG(i),mi, pki, ci, νi(·)
}

Pi∈H
∪ {

si, ρi

}
NG[i]k⊆H

.

In other words the simulator gets the neighborhood of dishonest parties (in
N d,D

G), their protocol in- and outputs, and their local pseudonyms from the
setup. For any party Pi where the whole k-neighborhood is dishonest the sim-
ulator is additionally given the content si and the randomness ρi of output ci.

The simulation property ensures in particular that (a) the adversary does
not learn more about the network topology and that (b) the adversary does
not learn the content of ciphertext ci of party Pi unless it corrupts the entire
k-neighborhood of Pi.

Lemma 3. Given a secure RR-MHT-PKE scheme and for any parameter 0 ≤
k ≤ D with dk = poly(κ), InfoTransmisson

(
k, (m1, pk1), . . . , (mn, pkn)

)
is a

secure level-k information-transmission protocol. The protocol communicates at
most (d + 1)k · n · (log |PK| + log |C|) bits within 2k rounds.

Proof. (sketch) Correctness: For k = 0 each party locally computes ci as speci-
fied by the correctness property. The protocol thus achieves correctness perfectly.
For k > 0 assume that the protocol achieves correctness for (k − 1). More pre-
cisely, the output of a party Pj for parameter (k − 1) is computed perfectly
correct if all (k − 1)-neighbors have input 0. Otherwise, the output of Pj for
parameter (k − 1) is computed correctly except with error probability εk−1.

Network-Hiding Communication and Applications to Multi-party Protocols 355

First, we consider the case where all parties in the k-neighborhood of Pi have
input 0. The assumption for (k − 1) implies that all c̃i,νi(j) contain 0. The prop-
erties of the RR-MHT-PKE scheme imply that si = ri · 0 = 0. In the second
case at least one party in the k-neighborhood of Pi has a non-zero input. This
implies that at least one c̃i,νi(j) contains a uniform random, non-zero message
(with error probability of at most εk−1). The properties of the RR-MHT-PKE
thus ensure that ci contains a uniform random, non-zero message (except with
error probability εk := εk−1 + 1

|M|). This implies an overall success probability
of at least 1 − (k·n

|M|). Topology-Hiding Simulation: To simulate the view of
the adversary the simulator is given

{
NG(i),mi, pki, ci, νi(·)

}
Pi∈H

∪ {
si, ρi

}
NG[i]k⊆H

.

For k = 0 those values correspond exactly to the view of the adversary during
an actual protocol execution. Simulation is thus easy. For the case k > 0 assume
that the view of the adversary can be simulated for k′ < k. The view of the adver-
sary can now be simulated as follows. At the beginning, the simulator generates
all public keys and de-randomizers seen by the adversary. For each dishonest Pi

the simulator computes rki, p̃ki using RandKey. For each honest Pj in the neigh-
borhood of H the simulator sets p̃kj to a random public-key using KeyGen. Due
to the IND-CKCA property of the RR-MHT-PKE scheme these public keys are
indistinguishable from the corresponding public-keys seen by the adversary in an
actual protocol-execution. The above values also determine all keys pki,νi(j) for
Pi ∈ H and Pj ∈ NG(i). Now, we consider the ciphertexts seen by the adversary
in the second part of the protocol. In essence the simulator must generate all
c̃j,νj(i) where Pi and/or Pj are dishonest. If the whole (k − 1)-neighborhood of
Pj is dishonest the simulator must also provide the content and the random-
ness of c̃j,νj(i) which are required for the sub-simulation of the recursive proto-
col invocations. We recall that DerandCipher is efficiently invertible if the de-
randomizer is known. First, simulator generates a random ri ∈ {1, . . . , |M| − 1}
for each dishonest Pi. If the whole k-neighborhood of Pi is dishonest (i.e.,
NG[i]k ⊆ H) the simulator is additionally given si and ρi. This allows the
simulator to compute for each neighbor Pj ∈ NG[i] a valid sj,νj(i), random-
ness ρj,νj(i), and an encryption c̃j,νj(i) = Enc(p̃ki, sj,νj(i); ρj,νj(i)) such that ci =(∏

Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))
)ri . If there exists a honest party in the

k-neighborhood of Pi, the simulator is not given si and ρi. However, in this case
there is at least one Pj in NG[i] such that NG[j]k−1 �⊆ H. This allows the sim-
ulator to first generates all sj,νj(i), ρj,νj(i) and c̃j,νj(i) = Enc(p̃ki, sj,νj(i); ρj,νj(i))
where NG[j]k−1 ⊆ H. Then it chooses the remaining c̃j,νj(i) randomly under the
constraint that ci =

(∏
Pj∈NG[i] DerandCipher(rki, c̃j,νj(i))

)ri . In a final step
the adversary generates for any honest Pj ∈ NG[i] the values si,νi(j), ρi,νi(j)

and c̃i,νi(j) = Enc(p̃kj , si,νi(j); ρi,νi(j)). The IND − TCPA property of the RR-
MHT-PKE scheme and the correctness property of the protocol ensure that the
generated ciphertexts are indistinguishable from the ones seen by the adversary

356 M. Hirt et al.

in an actual protocol execution. Now all values required for the simulation of
the d + 1 invocations of InfoTransmisson with parameter (k − 1) are given.
The simulator can thus use the sub-simulator to generate the view of the adver-
sary in the middle part of the protocol. Communication Complexity: Let
f(k) be the communication complexity of InfoTransmisson

(
k, . . .

)
. Then we

have f(0) = 0 and f(k) = d · n · (log |PK| + log |C|) + (d + 1) · f(k − 1). This
results in a communication complexity of at most (d+1)k ·n · (log |PK|+log |C|)
bits. The round complexity follows from the observation that one can invoke the
subprotocols InfoTransmisson(k − 1, . . .) in parallel.

Decryption Protocol. In this section we describe a distributed decryption
protocol which allows each party Pi to decrypt a ciphertext ci under its shared
private-key SKi which has been generated by the setup protocol. The decryp-
tion protocol consists of two parts. First the parties jointly compute for each
ciphertext ci a decryption-share xi under the shared private-key of Pi. In a sec-
ond phase each party Pi can locally decrypt ci using the decryption share xi.
First, we present a subprotocol which allows to compute the required decryption
shares. The key-idea is to use the homomorphic property of decryption-shares
which allows a recursive computation. The subprotocol is therefore parametrized
by k.

Definition 11. A protocol is a secure level-k (topology-hiding) decryption-
share protocol over a network N d,D

G if it has the following properties.

Setup, Inputs, and Outputs: The parties initially hold a setup for topology-
hiding threshold encryption over N d,D

G (cf. Definition 8). Each party Pi inputs
a ciphertext ci ∈ C. The output of party Pi is a decryption share xi ∈ DS.

Correctness: With overwhelming probability xi = ShareDecrypt(SK(k)
i , ci) for

SK
(k)
i the level-k shared private-key of Pi from the setup.

Topology-Hiding Simulation: The adversarial view in a real protocol-
execution can be simulated with overwhelming probability given the following
values {

NG(i), ci, xi, νi(·),SK(0)

i , . . . ,SK
(k)

i

}
Pi∈H

In other words the simulator gets the neighborhood of dishonest parties (in
N d,D

G), their protocol in- and outputs, their local pseudonyms, and their
private-key shares (up to level-k) of the assumed setup.

The simulation property ensures in particular that the adversary does not
learn more about the network topology.

Network-Hiding Communication and Applications to Multi-party Protocols 357

Lemma 4. Given a secure RR-MHT-PKE scheme and for any parameter 0 ≤
k ≤ D with dk = poly(κ) the above protocol DecShares(k, c1, . . . , cn) is a secure
level-k decryption-share protocol. The protocol communicates dk · n · (log |DS| +
log |C|) bits within 2k rounds.

Proof. (sketch) Correctness: The correctness essentially follows from the struc-
ture of the assumed setup and from the properties of the RVHT-PKE scheme. In
the case k = 0 we have SK(0)

i = SK
0

i which implies xi = ShareDecrypt(SK(0)
i , ci).

For k > 0 we have SK
(k)
i = SK

(k)

i +
∑

Pj∈NG(i) SK
(k−1)
j . The properties of the

RVHT-PKE scheme thus imply that xi = ShareDecrypt(SK(k)
i , ci) (c.f. protocol

line 9). Simulation: In the case k = 0 the view of the adversary is directly
determined by values given to the simulator. Simulation is therefore easy to
achieve. In the case k > 0 the simulation of the adversarial view works sim-
ilar as for the information-transmission protocol (we recall that DerandShare
is efficiently invertible if the de-randomizer is known). The simulator essen-
tially emulates the protocol run. The IND-CKCA property of the RVHT-
PKE scheme allows the simulator to choose random ciphertexts for ci,νi(j) of
honest Pj . Moreover, the decryption shares xj,νj(i) for honest Pj can also be
chosen randomly (where the distribution is conditioned on the outputs of dis-
honest parties). The view during the executions of DecShares with parame-
ter k − 1 can be generated using the (k − 1)-subsimulator guaranteed by the
induction hypothesis. Communication Complexity: Denote by f(k) be the
communication complexity of DecShares(k, . . .). Then we have f(0) = 0 and
f(k) = n · d · (log |DS| + log |C|) + d · f(k − 1). This results in a communication
complexity of f(k) = dk · n · (log |DS| + log |C|). The round complexity follows

358 M. Hirt et al.

from the observation that one can invoke the subprotocols DecShares(k−1, . . .)
in parallel.

Definition 12. A protocol is a secure (topology-hiding) threshold decryption
protocol for network N d,D

G if it has the following properties.

Setup, Inputs and Outputs: The parties initially hold a setup for topology-
hiding threshold encryption over N d,D

G (cf. Definition 8). Each party Pi inputs
a ciphertext ci ∈ C. The output of party Pi is a message mi.

Correctness: With overwhelming probability it holds for each party Pi that mi =
Combine(ShareDecrypt(SKi, ci)) where SKi is the shared private-key of Pi.

Topology-Hiding Simulation: The adversarial view in a real-protocol execu-
tion can be simulated with overwhelming probability given the following values

{
NG(i), ci,mi, νi(·),SK(0)

i , . . . ,SK
(D)

i

}
Pi∈H

In other words the simulator gets the neighborhood of dishonest parties (in
N d,D

G), their protocol in- and outputs, their local pseudonyms, and their
private-key shares of the assumed setup.

Lemma 5. Given a secure RR-MHT-PKE scheme, Decryption(k, c1, . . . , cn)
is a secure threshold decryption protocol. The protocol communicates dD · n ·
(log |DS| + log |C|) bits within 2D rounds.

Proof. (sketch) The correctness follows directly from Lemma 4 and the proper-
ties of the RVHT-PKE scheme. The adversarial view in a real protocol execution
can be simulated as follows (recall that Combine is efficiently invertible). First
the simulator computes for each pair (ci,mi) a decryption share xi such that
mi = Combine(xi, ci). The rest of the view can then be generated using the
sub-simulator for DecShares(D, . . .). The communication complexity and the
number of rounds follows directly from the invocation of DecShares with para-
meter D.

3.3 Multi-party Boolean OR

In this section we present a protocol which securely and topology-hidingly real-
izes the multi-party Boolean-OR functionality FOR using the topology-hiding
threshold encryption protocol from the previous section. The functionality FOR

Network-Hiding Communication and Applications to Multi-party Protocols 359

takes from each party Pi an input bit bi and computes the OR of those bit, i.e.,
b = b1 ∨ · · · ∨ bn.

Assumptions. We assume in the following that the parties have access to a
secure RR-MHT-PKE scheme with security parameter κ, where n = poly(κ).
Moreover, parties are given the network N d,D

G where the graphs in the family
G are connected, have a maximum degree of d ≤ n, and a diameter of at most
D ≤ n where d and D are publicly known.

Lemma 6. Given a secure RR-MHT-PKE scheme and for d,D with dD =
poly(κ) the protocol Boolean − OR(b1, . . . , bn) securely and topology-hidingly real-
izes FOR (in the N d,D

G -hybrid model). In the initialization phase the protocol
Boolean − OR(b1, . . . , bn) communicates D·d·n·log |PK| bits within D rounds. In
the computation phase the protocol communicates at most (d+1)D ·n·(log |DS|+
log |PK| + 2 log |C|) bits within 4 · D rounds.

Proof. Correctness: We assume the condition dD = poly(κ). The correct-
ness thus follows directly from the properties of Lemmas 2, 3, and 5 as the
information-transmission protocol essentially allows to compute Boolean-ORs.

Topology-Hiding Simulation: Given the values
{
NG(i), bi, b

}
Pi∈H

. the view
of the adversary can be simulated as follows. First the simulator generates a
setup for N d,D

G . Next, for each dishonest Pi the simulator computes the mes-
sages mi and m′

i. It generates the corresponding ciphertext ci (including the

360 M. Hirt et al.

randomness). With those values the simulator now runs the the sub-simulators
for GenerateSetup, InfoTransmisson(D, . . .), and Decryption(. . .). The prop-
erties of Lemmas 2, 3, and 5 ensure that the generated view is indistinguishable
(for the adversary) from a real protocol execution.

Communication Complexity: The claimed communication complexity fol-
lows directly from the used subprotocols.

Remark 1. If the RR-MHT-PKE is instantiated using the DDH based construc-
tion, the computation complexity of the Boolean-OR protocol is similar to its
communication complexity.

3.4 Topology-Hiding Broadcast and Secure Channels

In this section we describe a protocol which securely realizes the (bit) broadcast
functionality Fs

BC, while making-black box use of the FOR functionality from the
previous section. The functionality Fs

BC allows sender Ps to input a bit bs which
is output to all parties. This result directly implies that one can securely and
topology-hidingly realize secure channels and broadcast using black-box RR-
MHT-PKE.

Lemma 7. The protocol Broadcast(Ps, bs) securely realizes the Fs
BC functional-

ity in the FOR-hybrid model.

Proof. We have that b = 0 ∨ · · · ∨ bs ∨ · · · ∨ 0 = bs which implies correctness.
The view of the adversary in an actual protocol execution consists of inputs and
outputs of dishonest parties and is therefore easy to simulate.

Corollary 1. For d,D with dD = poly(κ) one can securely and topology-hidingly
realize Fs

BC (in the N d,D
G -hybrid model) using black-box RR-MHT-PKE while

communicating at most (d+1)D ·n·(log |DS|+log |PK|+2 log |C|)+D·d·n·log |PK|
bits within 5 · D rounds per invocation.

Moreover, parties can simply realize secure channels given broadcast. First
the receiver generates a key pair and broadcasts the public-key. The sender then
broadcasts his message encrypted under this public-key.

Corollary 2. For d,D with dD = poly(κ) one can securely and topology-hidingly
realize secure channels (in the N d,D

G -hybrid model) using black-box RR-MHT-
PKE. The communication complexity is twice the one of the broadcast protocol.

Network-Hiding Communication and Applications to Multi-party Protocols 361

4 Applications

In this section we provide two applications of our network-hiding communication
protocols. Namely, one can securely and topology-hidingly realize MPC and
anonymous brodcast.

4.1 Topology-Hiding Secure Multi-Party Computation

The protocols from the previous section allow parties to topology-hidingly realize
a complete network of secure channels (including broadcast channels). They can
then use this network to execute a multi-party protocol of their choice, e.g.,
[GMW87,Pas04]. This easily proves the following result.

Theorem 2. For d,D with dD = poly(κ) one can securely and topology-hidingly
realize any given multiparty functionality (in the N d,D

G -hybrid model) using black-
box RR-MHT-PKE.

4.2 Anonymous Broadcast

Theorem 2 implies that one can topology-hidingly realize anonymous channels
given black-box access to a RR-MHT-PKE scheme. But using generic MPC to
achieve an anonymous channel is expensive in terms of communication com-
plexity. We therefore provide a protocol in the FOR-hybrid model which directly
realizes anonymous broadcast FABC.

The functionality FABC generates for each party a unique but random
pseudonym. In the subsequent communication rounds each party can publish
messages under its pseudonym. Message are linkable which means that parties
can relate messages to pseudonyms. Parties can prevent this by generating fresh
pseudonyms (e.g., after each communication round).

Anonymous Broadcast Protocol. The high-level idea of our construction is as
follows. In a scheduling phase each party gets a random (but unique) communi-
cation slot σ(i) assigned. In a communication round for each slot σ(i) the FOR

functionality is invoked which allows Pi to broadcast its bit.

362 M. Hirt et al.

The major challenge is to compute the slot assignment. We solve this issue
with a scheduling loop12. At the beginning each party selects a random slot.
Then over several scheduling rounds the parties resolve colliding selections by
computing a reservation matrix. The size of this matrix (parametrized by m)
determines the collision detection probability. A larger m means a faster expected
run time at the cost of increased communication costs per round.

Lemma 8. The protocol AssignSlots(m) for the FOR-hybrid model securely
computes a random permutation σ of n elements where each party Pi learns
σ(i). The expected number of rounds the protocol requires to compute the permu-
tation is bounded by m

m−1 · n where FOR is invoked n · m times per round.

Proof. The protocol terminates if each row of A contains exactly one non-zero
entry. Thus each slot in {1, . . . , n} has been chosen at least by one party. As
there are n parties this also means that no slot was chosen twice. The output
is therefore a valid permutation. Inspection of the protocol also reveals that the
permutation is chosen uniform at random (we consider semi-honest security).

Next, we show that the protocol eventually terminates. Each slot is in one
of three states. Either its empty, or its selected by multiple parties, or it is
assigned to a single party. We observe that the state transition function for slots
is monotone. A selected slot cannot become empty and an assigned slot stays
assigned to the same party. In each round where a collision is detected at least
one empty slot becomes assigned. After at most n such rounds there are no
empty slots left. But this also means that each slot is selected by at least one
party and the protocol terminates. This also leads to a crude upper bound on
the number of expected rounds. We observe that a collision between two parties
is detected with a probability of at least p = (1 − 1

m). The expected number of
rounds required to detect a collision is therefore at most 1

p = m
m−1 (geometric

distribution). The number of expected rounds is thus bounded by m
m−1 · n. It

remains to consider the simulation of the adversarial view. We observe that the
(current) slot selection of dishonest parties is enough to simulate the view of the
12 A similar idea was used recently in [KNS15].

Network-Hiding Communication and Applications to Multi-party Protocols 363

adversary in a scheduling round. The simulator can therefore essentially emulate
the protocol (conditioned on the final slots of dishonest parties).

Lemma 9. The protocol AnonymousBroadcast(m) securely realizes the func-
tionality FABC in the FOR-hybrid model.

Proof. The statement follows directly from Lemmas 7 and 8.

Corollary 3. For d,D with dD = poly(κ) one can securely and topology-hidingly
realize FABC (in the N d,D

G -hybrid model) using black-box RR-MHT-PKE.

References

[Bd90] Bos, J.N.E., den Boer, B.: Detection of disrupters in the DC protocol. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol.
434, pp. 320–327. Springer, Heidelberg (1990)

[BGT13] Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure
multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 356–376. Springer, Heidelberg (2013)

[Can98] Canetti, R.: Security and composition of multi-party cryptographic pro-
tocols. Cryptology ePrint Archive, Report 1998/018 (1998). http://eprint.
iacr.org/1998/018

[Can00] Canetti, R.: Universally composable security: a new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
http://eprint.iacr.org/2000/067

[CCG+15] Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky,
R., Zikas, V.: The hidden graph model: communication locality and optimal
resiliency with adaptive faults. In: Roughgarden, T. (ed.) ITCS 2015, pp.
153–162. ACM, January 2015

[CGO15] Chandran, N., Garay, J.A., Ostrovsky, R.: Almost-everywhere secure com-
putation with edge corruptions. J. Crypt. 28(4), 745–768 (2015)

[Cha81] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

http://eprint.iacr.org/1998/018
http://eprint.iacr.org/1998/018
http://eprint.iacr.org/2000/067

364 M. Hirt et al.

[Cha88] Chaum, D.: The dining cryptographers problem: unconditional sender and
recipient untraceability. J. Crypt. 1(1), 65–75 (1988)

[Cha03] Chaum, D.: Untraceable electronic mail, return addresses and digital
pseudonyms. In: Gritzalis, D. (ed.) Secure Electronic Voting. Advances
in Information Security, pp. 211–219. Springer, Heidelberg (2003)

[ElG84] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[GGOR14] Garay, J.A., Givens, C., Ostrovsky, R., Raykov, P.: Fast and uncondition-
ally secure anonymous channel. In: Halldórsson, M.M., Dolev, S. (ed.) 33rd
ACM PODC, pp. 313–321. ACM, July 2014

[GJ04] Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473.
Springer, Heidelberg (2004)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

[GO08] Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323.
Springer, Heidelberg (2008)

[Gol01] Goldreich, O.: The Foundations of Cryptography - Basic Techniques, vol.
1. Cambridge University Press, Cambridge (2001)

[HJ07] Hinkelmann, M., Jakoby, A.: Communications in unknown networks: pre-
serving the secret of topology. Theor. Comput. Sci. 384(2–3), 184–200
(2007)

[HMTZ16] Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communica-
tion and applications to multi-party protocols. Cryptology ePrint Archive,
Report 2016/556 (2016). http://eprint.iacr.org/

[KNS15] Krasnova, A., Neikes, M., Schwabe, P.: Footprint scheduling for dining-
cryptographer networks. Cryptology ePrint Archive, Report 2015/1213
(2015). http://eprint.iacr.org/

[KS10] King, V., Saia, J.: Breaking the o(n2) bit barrier: scalable byzantine agree-
ment with an adaptive adversary. In: Proceedings of the 29th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2010, Zurich,
Switzerland, pp. 420–429, 25–28 July 2010

[KSSV06a] King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In:
SODA, pp. 990–999 (2006)

[KSSV06b] King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable
computation in peer-to-peer networks. In: FOCS, pp. 87–98 (2006)

[MOR15] Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
159–181. Springer, Heidelberg (2015)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
223–238. Springer, Heidelberg (1999)

[Pas04] Pass, R.: Bounded-concurrent secure multi-party computation with a dis-
honest majority. In: Babai, L. (ed.) 36th ACM STOC, pp. 232–241. ACM
Press, June 2004

http://eprint.iacr.org/
http://eprint.iacr.org/

Network-Hiding Communication and Applications to Multi-party Protocols 365

[RR98] Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM
Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

[SGR97] Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections
and onion routing. In: 1997 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, pp. 44–54. IEEE Computer Society, 4–7 May 1997

[UKBM11] Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the
facebook social graph. CoRR, abs/1111.4503 (2011)

Network Oblivious Transfer

Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon(B)

MIT, Cambridge, USA
{ranjit,srirag,asealfon}@csail.mit.edu

Abstract. Motivated by the goal of improving the concrete efficiency of
secure multiparty computation (MPC), we study the possibility of imple-
menting an infrastructure for MPC. We propose an infrastructure based
on oblivious transfer (OT), which would consist of OT channels between
some pairs of parties in the network. We devise information-theoretically
secure protocols that allow additional pairs of parties to establish secure
OT correlations using the help of other parties in the network in the
presence of a dishonest majority. Our main technical contribution is
an upper bound that matches a lower bound of Harnik, Ishai, and
Kushilevitz (Crypto 2007), who studied the number of OT channels
necessary and sufficient for MPC. In particular, we characterize which
n-party OT graphs G allow t-secure computation of OT correlations
between all pairs of parties, showing that this is possible if and only
if the complement of G does not contain the complete bipartite graph
Kn−t,n−t as a subgraph.

1 Introduction

Protocols for secure multiparty computation [8,16,31,66] allow a set of mutu-
ally distrusting parties to carry out a distributed computation without com-
promising the privacy of inputs or the correctness of the end result. As a
research area, secure computation has witnessed several breakthroughs in the last
decade [40,41,43,47,52–54,57,59,67]. However, despite a wide array of potential
game-changing applications, there is nearly no practical adoption of secure com-
putation today (with the notable exceptions of [11,12]). Computations wrapped
in a secure computation protocol do not yet deliver results efficiently enough to
be acceptable in many cloud-computing applications. For instance, state-of-the-
art semihonest 2-party protocols incur a factor ≈100 slowdown even for simple
computations.

In the absence of practical real-world protocols for secure computation which
are secure in the presence of any number of dishonest parties, there is a need for

R. Kumaresan—Supported by Qatar Foundation, MIT Translational Fellowship Pro-
gram, ONR N00014-11-1-0486 and NSF CNS1413920.
S. Raghuraman—Supported by the Irwin Mark Jacobs and Joan Klein Jacobs Pres-
idential Fellowship, NSF CNS1413920, DARPA W911NF-15-C-0236 and the Simons
Foundation.
A. Sealfon—Supported by DOE CSGF fellowship, NSF CNS1413920, DARPA
W911NF-15-C-0236 and the Simons Foundation.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 366–396, 2016.
DOI: 10.1007/978-3-662-53008-5 13

Network Oblivious Transfer 367

relaxations that are meaningful and yet provide significant performance benefits.
As an example, classic protocols for secure computation [8,16,63] (with subse-
quent improvements e.g., [4,9,19–21,23]) offer vastly better efficiency at the cost
of tolerating only a small constant fraction of adversaries. The resilience offered
is certainly acceptable when the number of participating parties is large, e.g.,
the setting of large-scale secure computation [13,14,25,68]. Although large-scale
secure computation is well-suited for several interesting applications (such as
voting, census, surveys), we posit that typical settings involve computations
over data supplied by a few end users. In such cases, the overhead associated
with interaction among a large number of helper parties is likely to render these
protocols more expensive than a standard secure computation protocol among
the end users. If the number of helper parties is small, security against a small
fraction of corrupt parties may be a very weak guarantee, since a handful of
corrupt parties could render the protocol insecure.

An orthogonal approach for reducing the online cost of secure computation
protocols is the use of preprocessing [1,3,10,24]. This approach can dramatically
reduce the cost of secure computation: for instance, given preprocessing [3],
the ≈100 factor slowdown for simple computations no longer applies. Recent
theoretical research has shown that many primitives can even be made reusable
(e.g. [34]). Perhaps the most important drawback of this approach (other than
the fact that the preprocessing phase is typically very expensive) is that the
preprocessing is not transferable. Clearly, a pair of parties that want to perform
a secure computation cannot benefit from this approach without performing the
expensive preprocessing step. Moreover, this seems to hold even if each of the two
parties have set up the preprocessing with multiple others. Typically, the cost
of the preprocessing phase is quite high, presenting a barrier for the practical
use of preprocessed protocols. This is especially true in settings where parties
are unlikely to run many secure computations that would amortize the cost of
preprocessing.

Motivated by the discussion above, we conclude that some directions that
seem to offer efficiency benefits for secure computation are (1) highly resilient
protocols that use only a small number of helper parties, and (2) a preprocessing
procedure that allows a notion of transferability between users. Taken together,
these two ideas have the potential to provide an infrastructure for efficient secure
computation. Some sets of parties might run a preprocessing phase among them-
selves. These parties can then act as helper parties and “transfer” their pre-
processing to help users who want to run a secure computation protocol. We
informally describe some desiderata for such an infrastructure:

– Reusability/Amortization. Setting up an infrastructure component could be
expensive, but using it and maintaining it should be inexpensive relative to
setting up a new component.

– Transferability/Routing. It should be possible to combine different components
of the infrastructure to deliver benefits to the end users.

– Robustness/Fault-tolerance. Failure or unavailability of some components of
the infrastructure should not nullify the usefulness of the infrastructure.

368 R. Kumaresan et al.

It is not hard to see that the above criteria are fulfilled for infrastructures
that we use in daily life, for e.g., the infrastructure for online communication
(e-mail, instant messaging, etc.) consisting of transatlantic undersea cables,
routers, wireless access points, etc. What cryptographic primitives would be good
candidates for a secure computation infrastructure? In this work, we explore the
possibility of using oblivious transfer [27,62] for this purpose.

1.1 Our Model: Network Oblivious Transfer

Oblivious transfer (OT) is a fundamental building block of secure computa-
tion [45,46]. As discussed in [45], some of the benefits of basing secure compu-
tation on OT include:

– Preprocessing. OT enables precomputation in an offline stage before the inputs
or the function to be computed are known. The subsequent online phase is
extremely efficient [3].

– Amortization. The cost of computing OTs can be accelerated using efficient
OT extension techniques [2,43,45,59].

– Security. OTs can be realized under a wide variety of computational assump-
tions [18,27,58,60,62] or under physical assumptions.

In this work, we consider n parties connected by a synchronous network
with secure point-to-point private communication channels between every pair
of parties. In addition, some pairs of parties on the network have established OT
channels between them providing them with the ability to perform arbitrarily
many OT operations. We represent the OT channel network via an OT graph
G. The vertices of G represent the n parties, and pairs of parties that have
an established OT channel are connected by an edge in G. Since OT can be
reversed unconditionally [64], we make no distinction between the sender and
the receiver in an OT channel. This OT graph represents the infrastructure
we begin with. The OT channels could either represent poly(λ) 1-out-of-2 OT
correlations for a computational security parameter λ, or a physical channel (e.g.,
noisy channel) that realizes, say δ-Rabin OT [62].1 We are interested in obtaining
security against adaptive semihonest adversaries. We also discuss security against
adaptive malicious adversaries under computational assumptions.

Two parties that are connected by an edge can use the corresponding exist-
ing OT channel to run a secure computation protocol between themselves. What
about parties that are not connected by an edge? Clearly, they can establish an
OT channel between themselves via an OT protocol [18,60] or perhaps using
a physical channel. The latter option, if possible, is likely to be expensive and
the costs of setting up a physical channel may be infeasible unless the two par-
ties are likely to execute many secure computation protocols. The former option

1 Recall that λ 1-out-of-2 OT correlations can be extended to poly(λ) 1-out-of-2 OT
correlations via OT extension using just symmetric-key cryptography (e.g. one-way
functions [2] or correlation-robust hash functions [43]).

Network Oblivious Transfer 369

is also expensive as it involves use of public-key cryptography which is some-
what necessary in the light of [42].2 This motivates the question of whether
additional parties can use an existing OT infrastructure to establish an OT
channel between themselves unconditionally or relying only on the existence of
symmetric-key cryptography. A positive result to this question would show that
expensive cryptographic operations are not required to set up additional OT
channels which could be used for efficient secure computation. In this work we
construct OT protocols with information-theoretic security against a threshold
adversary.

The Generality of an OT Infrastructure. Consider the following candi-
date for an infrastructure. Suppose there is a channel between a pair of parties
that allows them to securely evaluate any function. Since OT is complete for
secure computation, one can apply the results of [45,46] to use the OT channel
to implement a secure evaluation channel. In the other direction, one can use
a secure evaluation channel to trivially implement OT channels. Consequently,
such a channel is equivalent to an OT channel. The same argument extends
to channels that implement any 2-party primitive that is complete for secure
computation [5,55]. Furthermore, the above argument also applies to the setting
where a set of parties have a secure evaluation channel. Such a channel is equiv-
alent to an OT graph where parties in the set have pairwise OT channels with
everyone in the set.

Assuming a Full Network of Secure Channels. Secure channels between
two parties can be implemented either via non-interactive key exchange and
hybrid encryption or via a physical assumption. We emphasize that the one-time
setup cost of emulating a secure channel (e.g. via Diffie-Hellman key exchange) is
much lower than the one-time setup cost of emulating an OT channel that allows
unbounded OT calls via an OT protocol even using OT extension. Furthermore,
our assumption of secure channels is identical to the setting of [33,45,46], who
show that secure computation reduces to OT under information-theoretic reduc-
tions.

1.2 Related Work and Our Contributions

Related Work. As mentioned previously, there is a large body of work on secure
computation in the offline/online model (cf. [10,24,50,51,59,61] and references
therein). These protocols exhibit an extremely fast online phase at the expense
of a slow preprocessing phase (sometimes using MPC [51] or more typically, OT
correlations [59] or a somewhat homomorphic encryption scheme [24]). To the
best of our knowledge, the question of transferability of preprocessing has not
been explicitly investigated in the literature with the notable exception of [36],
which we will discuss in greater detail below. There is a large body of work

2 As a rule of thumb, use of public-key cryptography is computationally around 4–6
orders of magnitude more expensive than using symmetric-key cryptography [7].

370 R. Kumaresan et al.

on secure computation against a threshold adversary (e.g. [8,16,31,63]). Popu-
lar regimes where secure computation against threshold adversaries have been
investigated are for t < n/3, t < n/2, or t = n−1. In this work we are interested
in threshold adversaries for a dishonest majority, that is, adversaries which can
corrupt t out of n parties for n/2 ≤ t < n.3 Such regimes were investigated
in other contexts such as authenticated broadcast [29] and fairness in secure
computation [6,39,44]. Infrastructures for perfectly secure message transmission
(PSMT) were investigated in the seminal work of [26] (see also [28] and refer-
ences therein). While the task of PSMT is similar to our question regarding OT
channels, there are inherent differences. For example, our protocols can imple-
ment OT even between two parties that are isolated in the OT graph (i.e., not
connected to any other party via an OT channel).4 In PSMT, on the other
hand, there is no hope of achieving secure communication with a node that is
not connected by any secure channel.

Most relevant to our results is the work of Harnik et al. [36]. The main ques-
tion in their work is an investigation of the number of OT channels sufficient
to implement a n-party secure computation protocol. In a nutshell, they show
against an adaptive t-threshold adversary for t = (1 − δ)n, an explicit construc-
tion of an OT graph consisting of (n + o(n))

(�1/δ�
2

)
OT channels that suffices

to implement secure computation among the n parties. They note further that
against a static adversary,

(�s/δ�
2

)
OT channels suffice, where s denotes a statis-

tical security parameter. On the negative side, they show that a complete OT
graph is necessary for secure computation when dealing with an adversary that
can corrupt t = n − 1 parties. They derive this result by showing that in a
3-party OT graph with two OT channels, it is not possible to obtain OT corre-
lations between the third pair of parties with security against two corruptions.
Moreover they generalize their 3-party negative result to any OT graph whose
complement contains the complete bipartite graph Kn−t,n−t as a subgraph. In
our paper we extend and generalize the results of [36], fully characterizing the
networks for which it is possible to obtain OT correlations between a designated
pair of parties. We now proceed to explain our contributions in more detail.

Our Contributions. We introduce our main result:

Theorem (informal). Let G = (V,E) be an OT graph on n parties P1, . . . Pn,
so that any pair of parties Pi, Pj which are connected by an edge may make an
unbounded number of calls to an OT oracle. Let A be the class of semihonest
t-threshold adversaries which may adaptively corrupt at most t parties.5 Then
two parties A and B in {P1, . . . , Pn} can information-theoretically emulate an
OT oracle while being secure against all adversaries A ∈ A if and only if

3 When t < n/2, there is no need to rely on an OT infrastructure [63].
4 Recall that the model considered in this work, we assume a full network of secure

private communication channels.
5 Combining our work with results from [32,35], we can also obtain computational

security against malicious adversaries in both the nonadaptive and adaptive settings.

Network Oblivious Transfer 371

1. (honest majority) it holds that t < n/2; or
2. (trivial) A and B are connected by an edge in G; or
3. (partition) there exists no partition V1, V2, V3 of G such that all of the fol-

lowing conditions are satisfied: (a) |V1| = |V2| = n − t and |V3| = 2t − n;
(b) A ∈ V1 and B ∈ V2; and (c) for every A′ ∈ V1 and B′ ∈ V2 it holds that
(A′, B′) �∈ E.

Our main theorem gives a complete characterization of networks for which
a pair of parties can utilize the OT network infrastructure to execute a secure
computation protocol. The first two conditions in our theorem are straightfor-
ward: (1) if t < n/2, then we are in the honest majority regime, and thus it is
possible to implement secure computation (or emulate an OT oracle) using the
honest majority information-theoretically secure protocols of [63]; (2) clearly if
A and B are connected by an OT edge then by definition they can emulate an
OT oracle.

Condition (3) applies when t ≥ n/2 and when A and B do not have an OT
edge between them. This condition is effectively the converse of the impossibil-
ity result of [36], which states that any n-party OT graph whose complement
contains Kn−t,n−t as a subgraph cannot allow a n-party secure computation
that tolerates t semihonest corruptions. Condition (3) implies that any n-party
OT graph whose complement does not contain Kn−t,n−t as a subgraph can run
n-party secure computations tolerating t semihonest corruptions.

Applying Our Main Theorem. We first compare our positive results to those
of [36]. They investigate how to construct an OT graph with the minimum num-
ber of edges allowing n parties to execute a secure computation protocol. They
show a construction for a graph with (n+ o(n))

(�1/δ�
2

)
edges which they prove is

sufficient for resilience against an adversary that corrupts (1 − δ)n parties. Our
result provides a complete, simple characterization of which OT graphs on n ver-
tices are sufficient to run a t-secure protocol generating OT correlations between
all pairs of vertices for any t ≥ n/2, which is sufficient to obtain a protocol for
secure computation among the n parties [45,46]. Our main theorem also implies
that determining the minimum number of OT edges needed to execute a secure
computation protocol for general n, t ≥ n/2 is equivalent to an open problem in
graph theory posed by Zarankiewicz in 1951 [48].

Our results immediately imply that for some values of t, extremely simple
sparse OT graphs suffice for achieving secure multiparty computation. For n
even and t = n/2, we have that the t-claw graph (cf. Fig. 4(a)) has t edges and
suffices to achieve t-secure multiparty computation. For n odd and t = (n+1)/2,
the (t + 1)-cycle has t + 1 edges and suffices to achieve t-secure multiparty
computation. We show in the full version that these examples are the sparsest
possible graphs which can achieve �(n + 1)/2�-secure multiparty computation.

Next, our results are also well-suited to make use of an OT infrastructure for
secure computation. Specifically, let GI denote the OT graph consisting of exist-
ing OT edges between parties that are part of the infrastructure. Now suppose
a pair of parties A,B not connected by an OT edge wish to execute a secure
computation protocol. Then they can find a subgraph G of GI with A,B ∈ G

372 R. Kumaresan et al.

and |G| = n such that they agree that at most t out of the n parties can be
corrupt and the partition condition in our main theorem holds for G. Since it is
possible to handle a dishonest majority, parties do not have to settle for a lower
threshold and can enjoy increased confidence in the security of their protocol by
making use of the infrastructure. Surprisingly, it turns out the OT subgraph G
need not even contain t OT edges to offer resilience against t corruptions (cf.
Fig. 2(c) with n = 4, t = 2).

A pair of parties may use the OT correlations generated as the base OTs
for an OT extension protocol and inexpensively generate many OT correlations
that can be saved for future use or to add to the OT infrastructure. In any case,
it should be clear that our protocols readily allow load-balancing across the OT
infrastructure and are also abort-tolerant in the sense that if some subgraph G
ends up not delivering the output, then one can readily use a different subgraph
G′. Thus we believe that our results can be used to build a scalable infrastructure
for secure computation that allows (1) amortization, (2) routing, and (3) is
robust.

An Important Caveat Regarding Efficiency. In the special cases t = n/2+
O(1) and t = n − O(1), determining whether a graph satisfies the partition
condition requires at most poly(n) time. However, in general the problem is
coNP-complete, since it can be restated in the graph complement as subgraph
isomorphism of a complete bipartite graph [30]. Our protocols are efficient in n
only for t = n/2 + O(1) and t = n − O(1).6 In particular, our protocol is quite
efficient for small values of n, a setting in which computing OT correlations in
the presence of a dishonest majority may be especially useful in practice.

2 Preliminaries

2.1 Notation and Definitions

Let X ,Y be two probability distributions over some set S. Their statistical dis-
tance is

SD (X ,Y) def= maxT⊆S{Pr [X ∈ T] − Pr [Y ∈ T]}
We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by
X ≈ε Y. We say that X and Y are identical if SD (X ,Y) = 0 and this is denoted
by X ≡ Y.

All graphs addressed in this work are undirected. We denote a graph as
G = (V,E) where V is a set of vertices and E is a set of edges. We denote an
edge e as e = {v1, v2}, where v1, v2 ∈ V .

6 For t = n/2+O(1), we achieve efficiency using computationally-secure OT extension
(e.g. [2,43]). Our protocol with information-theoretic security is quasipolynomial-
time for t = n/2 + O(1). We do, however, achieve information-theoretic security in
polynomial time for t = n − O(1).

Network Oblivious Transfer 373

For n ∈ N, let Kn denote the complete graph on n vertices. Let Λs
a

denote the graph G = (V,E) on 2a + s vertices with V = VA

⋃̇
VS

⋃̇
VB,

where |VA| = |VB | = a and |VS | = s, and

E = {{v1, v2} : v1 �∈ VA ∨ v2 �∈ VB}
We will sometimes consider subgraphs of Λs

a which preserve labels of vertices.
In this case we will always label the vertices so that vertex A ∈ VA and vertex
B ∈ VB .

For two graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex set V ,
we say that G1 and G2 are (v1, . . . , v�)-isomorphic, denoted by G1 �v1,...,v�

G2, if
the two graphs are isomorphic to one another while fixing the labelings of vertices
v1, . . . , v� ∈ V , that is, there exists an isomorphism σ such that σ(vi) = vi for
all i ∈ [�].

Similarly, given graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ⊆ V2

and v1, . . . , v� ∈ V1, we say that G1 is a (v1, . . . , v�)-subgraph of G2, denoted
G1 ⊆v1,...,v�

G2, if G1 is (v1, . . . , v�)-isomorphic to some subgraph of G2.
In particular, in the special case that graph G = (V,E) contains vertices

A,B ∈ V , we say that G is an (A,B)-subgraph of Λs
a (or that G ⊆A,B Λs

a)
if there is an isomorphism σ between G and a subgraph of Λs

a such that A is
mapped into set VA and B is mapped into set VB (that is, σ(A) ∈ VA and
σ(B) ∈ VB).

Call an n-vertex graph G = (V,E) k-unsplittable for k ≤ n/2 if any two dis-
joint sets of k vertices have some edge between them. That is, G is k-unsplittable
if for all partitions of the vertices V into three disjoint sets V1, V2, V3 of sizes
|V1| = |V2| = k and |V3| = n − 2k, there exists some edge (u, v) ∈ E with
u ∈ V1, v ∈ V2. It is immediate from this definition that G is k-unsplittable if
and only if G �⊆ Λn−2k

k .
Similarly, call G (k,A,B)-unsplittable for k ≤ n/2 and A,B ∈ V if any

two disjoint sets of k vertices containing A and B, respectively, have some edge
between them. That is, G is (k,A,B)-unsplittable if for all partitions of the
vertices of V into three disjoint sets V1, V2, V3 of sizes |V1| = |V2| = k and
|V3| = n − 2k such that A ∈ V1 and B ∈ V2, there exists some edge (u, v) ∈ E
with u ∈ V1, v ∈ V2. From this definition we have immediately that G is (k,A,B)-
unsplittable if and only if G �⊆A,B Λn−2k

k .

2.2 Secure Computation

Consider the scenario of n parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ D
computing a function f : Dn → Dn. Let Π be a protocol computing f . We
consider security against adaptive t-threshold adversaries, that is, adversaries
that adaptively corrupt a set of at most t parties, where 0 ≤ t < n.7 We assume
the adversary to be semihonest (i.e. honest-but-curious). That is, the corrupted
parties follow the prescribed protocol, but the adversary may try to infer addi-
tional information about the inputs of the honest parties. As noted in [36], in
7 Note that when t = n, there is nothing to prove.

374 R. Kumaresan et al.

the computational setting, using zero-knowledge proofs, it is possible to gener-
ically compile a protocol which is secure against semihonest adversaries into
another protocol which is secure against adaptive malicious adversaries [32].8

This justifies our focus on the semihonest setting here.
For a PPT adversary A, let random variable REALx1,...,xn

Π,A consist of the
views of the corrupted parties when the protocol Π is run on parties P1, . . . , Pn

with inputs x1, . . . , xn respectively. In the ideal world, the honest parties are
replaced with a simulator S that does not receive input values and knows only
the output value of each corrupted party in an honest execution of the protocol.
We define the random variable IDEALx1,...,xn

Π,A,S as the output of the adversary A
in the ideal game with the simulator when the inputs to parties P1, . . . , Pn are
x1, . . . , xn, respectively.

Definition 1. A protocol Π is said to t-securely compute the function f if

– For all x1, . . . , xn ∈ Dn, party Pi receives yi, where (y1, . . . , yn) =
f(x1, . . . , xn), at the end of the protocol.

– For all adaptive semihonest PPT t-threshold adversaries A, there exists a PPT
simulator S such that for all x1, . . . , xn ∈ Dn

{
REALx1,...,xn

Π,A
}

≡
{
IDEALx1,...,xn

Π,A,S
}

This definition is for secure computation with perfect information-theoretic
security and a nonadaptive adversary. By [15], in the semihonest setting with
information-theoretic security, any protocol which is nonadaptively secure is
also adaptively secure. Consequently, satisfying this definition suffices to achieve
adaptive security.

In the discussion below, we will sometimes relax security to statistical or com-
putational definitions. A protocol is statistically t-secure if the random variables
REALx1,...,xn

Π,A and IDEALx1,...,xn

Π,A,S are statistically close, and computationally
t-secure if they are computationally indistinguishable.

2.3 Oblivious Transfer

In this work OT refers to 1-out-of-2 oblivious transfer defined as follows.

Definition 2. We define 1-out-of-2 oblivious transfer fOT for a sender A = P1

with inputs x0, x1 ∈ {0, 1}m, a receiver B = P2 with input b ∈ {0, 1} and n − 2
parties P3, . . . , Pn with input ⊥ as

fOT((x0, x1), b,⊥, . . . ,⊥) = (⊥, xb,⊥, . . . ,⊥)

Note that while OT is typically defined as a 2-party functionality, the definition
above adapts it our setting and formulates OT as an n-party functionality where
only two parties supply non-⊥ inputs.
8 We note that in the computational setting, it is also possible to transform, in a
black-box way, a protocol which is secure against semihonest adversaries into another
protocol which is secure against static malicious adversaries [35].

Network Oblivious Transfer 375

Definition 3. Let G be a network consisting of n parties A = P1, B =
P2, P3, . . . , Pn. Then a t-secure OT protocol ΠG,t

A→B is a protocol that t-securely
computes the function fOT on the inputs of the parties with A as the sender and
B as the receiver.

We note that OT is symmetric, in the following sense.

Lemma 1 [64]. If there exists a t-secure OT protocol ΠG,t
A→B for an n-party

network G with n parties A = P1, B = P2, P3, . . . , Pn with A as the sender and
B as the receiver, then there exists a t-secure OT protocol Π̂G,t

B→A for the same
n parties with B as the sender and A as the receiver.

We represent parties as nodes of a graph G where an edge {A,B} indicates
that parties A and B may run a 1-secure OT protocol with A as the sender
and B as the receiver. By Lemma 1, the roles of the sender and receiver may be
reversed, so it makes sense to define G as an undirected graph.

We note the following result regarding the completeness of OT for achieving
arbitrary secure multiparty computation.

Lemma 2 [33,45,46]. Consider the complete network G � Kn on n vertices.
Then, for any function f : Dn → Rn, there exists a protocol Π which (n − 1)-
securely computes f , where party i receives the ith input xi ∈ D and produces
the ith output (f(x))i ∈ R.

3 Warm-Ups

Let G = (V,E) be an n-vertex graph representing a network with n parties,
where an edge {Pi, Pj} ∈ E indicates that parties Pi and Pj may run a 1-secure
2-party OT protocol with Pi as the sender and Pj as the receiver. Let t < n
be an upper bound on the number of corruptions made by the adversary. The
central question considered in this work is the following. For which graphs G and
which pairs of parties A,B ∈ V does there exist a t-secure OT protocol with A
as the sender and B as the receiver?

We begin by discussing some simple special cases of small networks. These
will provide useful intuition for our main results. For t < n/2, it is possible to
obtain a t-secure OT protocol for any n-vertex graph G = (V,E) between any
A,B ∈ V , since we can perform secure multiparty computation without any pre-
existing OT channels if there is an honest majority [63]. It remains to consider
the setting where t ≥ n/2.

A few small cases have been resolved in prior work. For n = 2, t = 1, a
1-secure OT protocol (with perfect security) between the vertices of the two-
vertex graph G does not exist unless the parties were already connected by an
OT channel [17,49]. This result is illustrated in Fig. 1(a).

For n = 3, t = 2, it is known that we can obtain a 2-secure OT protocol
between a pair of vertices A,B only if those vertices are already connected by
an OT channel, even if there are OT channels from both A and B to the third

376 R. Kumaresan et al.

A′ B′

(a) GCK

A′ B′

C′

(b) GHIK

Fig. 1. Known impossibility results. Securely computing fOT between A′ and B′ is
impossible for t = 1 in GCK and is impossible for t = 2 in GHIK.

vertex C as depicted in Fig. 1(b). More generally, for any n ≥ 2 and t = n − 1,
there exists a t-secure OT protocol with sender A and receiver B only if those
vertices are already connected by an OT channel, even if all other

(
n
2

) − 1 pairs
of vertices are connected by OT channels [36]. This also resolves the question
for n = 4, t = 3.

The remainder of this section is devoted to an exploration of the setting
n = 4, t = 2. This is the smallest case not resolved by prior techniques, and will
illustrate many of the tools used in subsequent sections to obtain our general
protocols. The key cases for n = 4, t = 2 are shown in Fig. 2. As discussed below,
these cases are sufficient to completely resolve the four-party setting.

A B

P3

P4

(a) G1

A B

P3

P4

(b) G2

A B

P3

P4

(c) G3

A B

P3

P4

(d) G4

Fig. 2. Cases for n = 4 parties with t = 2 corruptions.

3.1 Case 1: Fig. 2(a)

We first show that if G �A,B G1 then there does not exist a 2-secure OT protocol
for G with A as the sender and B as the receiver.9 This is a consequence of the
impossibility result of [17,49]. An outline of the argument is as follows.

Consider components C1 = {A,P3} and C2 = {B,P4} of G, and let Π be a 2-
secure protocol computing fOT in G with A as the sender and B as the receiver.
Then we can use Π to construct a 1-secure protocol Π ′ for the 2-party network
GCK in Fig. 1(a) with A′ as the sender and B′ as the receiver. In protocol Π ′,
party A′ runs Π for both parties of component C1 of G, and B′ runs Π for
both parties of component C2. OT channel invocations can be handled locally,
since all OT channels in G are between parties in the same component. Since
protocol Π is 2-secure, in particular it is secure against corruptions of parties in
9 Recall that H �A,B H ′ for two graphs H, H ′ if there exists an isomorphism between

H and H ′ preserving the labels of vertices A and B.

Network Oblivious Transfer 377

C1 or the parties in C2. Consequently Π ′ is a 1-secure OT protocol for a network
G′ �A′,B′ GCK with A′ as the sender and B′ as the receiver. However, from
[17,49], we know that no such protocol exists with perfect security. Consequently
there is no 2-secure protocol Π for a network G �A,B G1.

Note that this impossibility holds not only for G �A,B G1 but for any (A,B)-
subgraph of G1. In particular, if G = (V,E) is a four-vertex graph a single edge
that is incident to vertex A or vertex B, then G cannot have a 2-secure protocol
computing fOT between A and B except in the trivial case when there is already
an edge {A,B} ∈ E. This technique of reducing to the known impossiblity results
of [17,36,49] to obtain lower bounds is described formally in Sect. 4.

3.2 Case 2: Fig. 2(b)

In this example we obtain a positive result, showing that there exists a 2-secure
OT protocol with A as the sender and B as the receiver. Since B has degree 2
in G2, we have that either B or one of its neighbors must be honest, and so one
of the two OT channels must contain an honest party. This suggests the idea of
using secret-sharing to ensure security against 2 corruptions.

Consider the following OT protocol where sender A has inputs x0, x1 ∈
{0, 1}m and receiver B has input b ∈ {0, 1}. A computes 2-out-of-2 shares (x1

0, x
2
0)

and (x1
1, x

2
1) of its inputs x0, x1, respectively. A then sends shares x1

0 and x1
1 to

party P3 and x2
0 and x2

1 to party P4. Parties P3 and B invoke their secure OT
channel with inputs (x1

0, x
1
1) and b, and parties P4 and B invoke their secure

OT channel with inputs (x2
0, x

2
1) and b respectively. B uses the obtained shares

x1
b , x

2
b to reconstruct xb.

We informally argue the 2-security of this protocol assuming that exactly one
of A and B is corrupt.10 Consider the case where A is corrupt and B is honest.
The input of B is only used over secure OT channels, so by the 1-security of the
OT channels with P3 and P4, the corrupt parties can learn nothing about B’s
input bit b. Now consider the case where B is corrupt and A is honest. Either P3

or P4 must be honest. If P3 is honest then the security of OT channel {P3, B}
implies that B learns nothing about share x1

1−b, so the security of the secret
sharing scheme implies that the corrupt parties do not use x1−b. By symmetry,
the same argument applies if P4 is honest. This completes the argument.

Note that by Lemma 1, we can also obtain a 2-secure OT protocol from A to
B whenever A has degree 2 in OT network. Furthermore, we can extend this idea
to construct a t-secure OT protocol whenever either the sender or the receiver
has degree at least t. We call this protocol the t-claw protocol and describe it in
detail in Sect. 5.1.
10 An additional step is needed to address the case in which P3 and P4 are corrupt

and A and B are both honest. Then P3 and P4 can learn x0 and x1, the inputs
of A, in the protocol just described. This can be handled with the technique of
OT correction, using a one-time pad and the secure point-to-point channel between
A and B. Equivalently, we could run the protocol on random inputs, and then use
method of [3] to obtain 1-out-of-2 OT from random OT. If A and B are both corrupt
then there is nothing to prove.

378 R. Kumaresan et al.

3.3 Case 3: Fig. 2(c)

Somewhat surprisingly, we can also show a positive result for graphs G �A,B G3

even though the OT network has no edges involving either the sender A or the
receiver B. The protocol is as follows. Since parties P3 and P4 have an OT
channel between them, by Lemma 2, they can perform 1-secure MPC between
them. P3 and P4 use MPC to compute 2-out-of-2 shares of OT correlations with
uniformly random inputs and send corresponding shares to A and B, who can
then reconstruct the correlations. More concretely, the MPC protocol computes
2-out-of-2 shares (r10, r

2
0), (r11, r

2
1) of two randomly sampled m-bit strings r0, r1,

2-out-of-2 shares (c1, c2) of a random bit c ∈ {0, 1}, and independent 2-out-of-2
shares (s1, s2) of the string rc. Party P3 receives the first share of each secret,
and party P4 receives the second share. Party P3 then sends shares r10, r

1
1 to A

and s1, c1 to B, while P4 sends shares r20, r
2
1 to A and s2, c2 to B. A can then

reconstruct r0 and r1, and B can reconstruct c and rc. Parties A and B have
now established a random OT correlation, which they can use to perform OT
with their original inputs using OT correction [3].11

We now informally argue the 2-security of this protocol. If A and B are both
honest, then the corrupt parties receive no information about their inputs, while
if A and B are both corrupt then there is nothing to prove. Consequently we
can assume that exactly one of A and B is corrupt and that either P3 or P4 is
honest. If A is corrupt and P3 or P4 is honest, then the adversary learns nothing
about c and rc, since it only sees one of the two shares of each. The OT correc-
tion phase uses these strings as one-time pads for inputs which are unknown to
the adversary, and consequently are information-theoretically hidden from the
adversary. Consequently A learns nothing about B. The case where B is corrupt
and P3 or P4 is honest follows by the same argument.

This construction can be extended to obtain a t-secure OT protocol whenever
the OT graph contains a t-clique consisting of t parties which are not the OT
sender or receiver. We call this protocol the t-clique protocol and describe it in
detail in Sect. 5.2.

3.4 Case 4: Fig. 2(d)

We also obtain a positive result for graphs G �A,B G4. We introduce here a
technique we call cascading. The idea is as follows. Using the protocol described
in Sect. 3.2 for network G2 of Fig. 2(b), we have 2-secure OT protocol with P3

as the sender and P4 as the receiver. This effectively gives us an OT channel
between P3 and P4. Applying the protocol from Sect. 3.3 on the augmented
network, we obtain a 2-secure OT protocol with A as the sender and B as the
receiver. We describe this pictorially in Fig. 3.

The 2-security of the protocol follows from the 2-security of the underlying
protocols of Sects. 3.2 and 3.3. The technique of cascading for combining t-secure
protocols is described in detail in Sect. 5.3.
11 This OT correction step can be performed as follows. Party B sends b′ = b ⊕ c to A.

A responds with y0 = x0 ⊕rb′ and y1 = x1 ⊕r1−b′ . Finally, B computes yb ⊕rc = xb.

Network Oblivious Transfer 379

A B

P3

P4

(a)

A B

P3

P4

(b)

A B

P3

P4

(c)

Fig. 3. Illustrating the cascading protocol for Case 4: Fig. 2(d); (a) → (b) → (c)

3.5 Cases 1–4 are Exhaustive

Note that a t-secure OT protocol with sender A and receiver B in an OT network
G trivially yields a t-secure protocol for any network G′ such that G ⊆A,B G′.
From cases 1 and 3, we can securely compute fOT in a network G containing
at most a single edge if and only if the edge is {A,B} or {P3, P4}. From cases
1, 2, and 4, we can compute fOT in a network G containing two or more edges
including neither of {A,B} or {P3, P4} if and only if there is some vertex with
degree at least 2 in the OT graph. This completes the characterization of 4-party
networks with 2 corruptions.

4 Lower Bound

We now describe a family of impossibility results using a generic reduction to
the impossiblity result in [36], which we restate in our language below.

Lemma 3 [36]. Consider any three party network G with G �A′,B′ GHIK, the
graph in Fig. 1(b). Then any 2-secure OT protocol with A′ as the sender and B′

as the receiver can be used (as a black box) to obtain a 1-secure OT protocol for
a network G′ with G′ �A′,B′ GKus, the graph in Fig. 1(b), with A′ as the sender
and B′ as the receiver.

The theorem below describes an impossibility result over a family of networks.
We note that this result was observed in [36]; we restate it our language and defer
the formal proof to the full version.

Theorem 1. Let n ≥ 2 and n/2 ≤ t < n, and let G be an n party network
such that G ⊆ Λ2t−n

n−t , with P1 ∈ VA and P2 ∈ VB. Any t-secure OT protocol for
G with P1 as the sender and P2 as the receiver can be used (as a black box) to
obtain a 1-secure OT protocol for a network G′ with G′ �A,B GCK with A′ as
the sender and B′ as the receiver.

5 Building Blocks

In this section, we describe a few key protocols and techniques that we use in
the subsequent sections to prove our main theorem.

380 R. Kumaresan et al.

A B

P3

P4

.
.
.
.
.

Pt+1

Pt+2

(a) Gt
claw

A B

P3

.
.
.

.
.
.

P4 Pt+1

Pt+2

(b) Gt
clique

A B

P3

P4

(c) G2
2-path

Fig. 4. Building block networks. (a) t-claw graph (b) t-clique graph (c) 2-path graph

5.1 The t-claw Protocol

The first protocol we describe is the t-claw protocol, where the graph G describ-
ing the network is such that G �A,B Gt

claw. The protocol is described in Pro-
tocol 1. The protocol is a straightforward generalization of the one described in
Sect. 3.2. The idea is for A to compute t-out-of-t shares of its inputs and distrib-
ute them among the t parties connected to B. These t parties then perform OT
with B so that B receives the shares to reconstruct his output.

Protocol 1: t-claw Protocol

Preliminaries: Let A, B, P3, . . . , Pt+2 be the t + 2 parties in a network G �A,B

Gt
claw. A has inputs x0, x1 ∈ {0, 1}m and B has input b ∈ {0, 1}.

Protocol:

1. B chooses a random bit c ∈ {0, 1} and sends b′ = b ⊕ c to A.
2. A chooses two random one-time pads r0, r1 ∈ {0, 1}m and sends y0 = x0 ⊕ rb′

and y1 = x1 ⊕ r1−b′ to B.
3. A then computes t-out-of-t shares (r10, . . . , r

t
0) and (r11, . . . , r

t
1) of r0, r1, respec-

tively.
4. For each i ≥ 3, A sends shares ri0 and ri1 to party Pi.
5. For each i ≥ 3, parties Pi and B invoke the OT protocol ΠG,1

Pi→B with inputs

(ri0, r
i
1) and c respectively.

6. B uses the obtained shares r1c , . . . , r
t
c to reconstruct rc.

7. B finally computes yb ⊕ rc = xb.

Lemma 4. Protocol 1 is an efficient t-secure OT protocol for a network G �A,B

Gt
claw with A as the sender and B as the receiver.

Proof Intuition. The t-security of the protocol can be seen as follows. Steps 1,
2 and 7 perform OT correction, that is, they perform a transformation from

Network Oblivious Transfer 381

random OT to 1-out-of-2 OT. This transformation protects against the case
that the parties P3, . . . , Pt+2 (that is, all but A and B) are corrupt. Suppose A
were corrupt and B were honest. Clearly, A colluding with any of the parties
P3, . . . , Pt+2 provides A with no additional information since all they possess
are shares sent by A. Next, if A were honest and B corrupt, at least one of the
parties P3, . . . , Pt+2 must be honest. B has no information about those shares
and hence does not learn anything. Finally, if both A and B were corrupt, there
is nothing to prove.

5.2 The t-clique Protocol

The next protocol we describe is the t-clique protocol, where the graph G describ-
ing the network is such that G �A,B Gt

clique. The protocol is described in Pro-
tocol 2. The protocol is a straightforward generalization of the one described in
Sect. 3.3. The idea is for the parties P3, . . . , Pt+2 to compute t-out-of-t shares of
OT correlations and send them to A and B respectively. The parties have a com-
plete network of OT channels, so this can be done via multiparty computation
(Lemma 2). A and B then perform OT correction using their secure channel. We
state the lemma, give a proof outline and defer the full proof to the full version.

Lemma 5. Protocol 2 is an efficient t-secure OT protocol for a network G �A,B

Gt
clique with A as the sender and B as the receiver.

Proof Intuition. The t-security of the protocol can be seen as follows. Steps 4,
5 and 6 perform OT correction, that is, they perform a transformation from
random OT to 1-out-of-2 OT. This transformation protects against the case
that all of parties P3, . . . , Pt+2 (that is, all but A and B) are corrupt. If one of
A and B were corrupt, there exists at least one honest party among the parties
P3, . . . , Pt+2. Hence, even by colluding, A or B would have no information about
those shares and would not learn anything. Finally, if both A and B were corrupt,
there is nothing to prove.

5.3 Cascading

The following building block is a generalization of the technique described in
Sect. 3.4. The technique describes a general method of combining protocols iter-
atively. In our context, this can be thought of a tool for transforming a network
described by a graph G to one described by a graph G′, where G ⊆V G′ and G
and G′ are both graphs on the same vertex set V . In other words, it describes
protocols as adding new edges indicating the establishment of OT correlations
between new pairs of parties in the network. With this abstraction, it is easy
to view the technique of cascading as one which combines protocols iteratively
to transform the underlying network by adding new edges. This is described
formally below.

Definition 4. Let G = (V,E) and G′ = (V,E′) be two graphs on the same set
of vertices, V , with G ⊆V G′. We say that a protocol Π t-transforms a network

382 R. Kumaresan et al.

Protocol 2: t-clique Protocol

Preliminaries: Let A, B, P3, . . . , Pt+2 be the t + 2 parties in a network G �A,B

Gt
clique. A has inputs x0, x1 ∈ {0, 1}m and B has input b ∈ {0, 1}.

Protocol:

1. Parties P3, . . . , Pt+2 use their pairwise OT channels to run t-secure MPC for
the function f using the protocol from Lemma 2 for the function f described
ahead. The function f is to securely compute t-out-of-t shares (r10, . . . , r

t
0),

(r11, . . . , r
t
1) of two randomly sampled one-time pad keys r0, r1, (c1, . . . , ct) of

a random bit c ∈ {0, 1}, and independent shares (s1, . . . , st) of key rc, so that
party i + 2 receives only shares ri0, r

i
1, s

i, ci for each i.
2. Each party Pi+2 for i ≥ 1 sends shares ri0, r

i
1 to A and si, ci to B.

3. A uses shares (r10, . . . r
t
0) and (r11, . . . , r

t
1) to reconstruct r0 and r1.

4. B uses shares (c1, . . . , ct) and (s1, . . . , st) to reconstruct c and rc and sends
b′ = b ⊕ c to A.

5. A computes y0 = x0 ⊕ rb′ and y1 = x1 ⊕ r1−b′ and sends both to B.
6. B computes yb ⊕ rc = xb.

G into the network G′ if for each {Pi, Pj} ∈ E′ \E, Π is a t-secure OT protocol
for a network G with Pi as the sender and Pj as the receiver.12

Lemma 6. If Π1 is a protocol that runs in time T1 and t-transforms network G1

into G2, and Π2 is a protocol that runs in time T2 and t-transforms network G2

into G3, then there exists a protocol Π that runs in time T1T2 and t-transforms
G1 into G3.

Proof. The protocol Π simply runs Π2, running protocol Π1 to obtain the nec-
essary correlations whenever Π2 invokes OT on an edge of G2 \ G1. Let S1 and
S2 be the simulators associated with Π1 and Π2 respectively. The simulator for
Π simply runs S2, invoking S1 for OT calls made on edges in G2 \ G1. ��

Using OT extension [2,43], we can also obtain a computationally secure ver-
sion of cascading with improved efficiency.

Lemma 7. Let λ be a computational security parameter. Assuming one-way
functions or correlation-robust hash functions, if Π1 is a protocol that runs in
time T1 and t-transforms network G1 into G2, and Π2 is a protocol that runs in
time T2 and t-transforms network G2 into G3, then there exists a computationally
secure protocol Π that runs in time λ · T1 + T2 · poly(λ) and t-transforms G1

into G3.

12 Note that a single protocol Π may set up independent random OT correlations for
several pairs of parties {Pi, Pj} ∈ E′ \ E. These correlations can be used to run
1-out-of-2 OT using OT correction.

Network Oblivious Transfer 383

Proof. First, run protocol Π1 λ times on random inputs to obtain λ independent
OT correlations for each edge of G2 \ G1. Then run Protocol Π2, using OT
extension to obtain OT correlations for OT calls made on edges in G2 \ G1. ��

5.4 The 2-path Graph

The protocol described in this section is a commonly used subroutine in several of
the protocols which follow. It is a particular combination of the tools encountered
in Sects. 5.1, 5.2 and 5.3. The subroutine, which we call 2-path, is the same as
the one described in Sect. 3.4. It is used to obtain OT correlations between
parties who have a common neighbor in a four-party network with at most two
corruptions (see Fig. 4(c)). The following lemma is immediate from Lemma 6 and
the 2-security of Protocols 1 and 2 for t = 2 (Lemmata 4 and 5).

Lemma 8. Protocol 3 is an efficient 2-secure OT protocol for a network G �A,B

G2
2-path with A as the sender and B as the receiver.

Protocol 3: 2-path

Preliminaries: Let A, B, C, D be the parties, and let there exist OT channels
(A, C) and (B, C). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. Invoke Protocol 1 (2-claw) on parties (D, C, A, B) to obtain OT correlations
on edge (D, C).

2. By Lemma 6, we have an OT channel between D and C.
3. Invoke Protocol 2 (2-clique) on parties (A, B, C, D).

5.5 Combiners

OT combiners aim to combine several insecure candidate protocols for estab-
lishing OT correlations between two parties into a single secure protocol. For a
class of adversaries A, it is possible to achieve this when the candidate protocols
satisfy the property that a majority of them are secure against each adversary
A ∈ A. The following lemma is due to [37,56], relying on prior work by [38,65]
and based on a construction by [22].

Lemma 9 [37,56]. Let A be an adversary class. Suppose there exist m
protocols Π1, . . . , Πm for fOT (A,B, P1, . . . , Pn) such that for any adversary
A ∈ A a majority of the protocols are secure. Then, there exists a protocol
Π∗(Π1, . . . , Πm) for fOT (A,B, P1, . . . , Pn) which is secure against all adver-
saries A ∈ A. Moreover, if each protocol Πi is efficient and perfectly secure,
then so is Π∗.

384 R. Kumaresan et al.

6 The Case t = n/2

We now consider the specific case of t = n/2, that is, when at most half the
parties are corrupt. We note that this is the smallest value of t for which the
question is non-trivial. From the lower bounds proven in Theorem1, we already
have that for all n-party networks G containing A and B such that G ⊆A,B Λ0

n/2,
there exists no n/2-secure OT protocol with A as the sender and B as the
receiver. Surprisingly Theorem2 shows that these are the only networks for which
(n/2)-secure OT between A and B is impossible. Below, we provide an explicit
n/2-secure OT protocol between A and B whenever the network G is (n/2, A,B)-
unsplittable.

Theorem 2. Let G be an n-party network OT containing parties A and B.
Then Protocol 5 is an n/2-secure OT protocol between A and B if and only if G
is (n/2, A,B)-unsplittable.

We analyze the efficiency of the protocol in Theorem 3 below. The protocol
as stated runs in quasi-polynomial time. We can also obtain a computationally
secure protocol which runs in polynomial time. The protocol we describe pro-
ceeds in two stages. In the first stage, the protocol transforms every connected
component of the network into a clique. This transformation is very specific to
the case of t = n/2, and in particular, for t > n/2 a connected component cannot
in general function as a clique. This transformation is carried out by means of
repeatedly calling Protocol 4, which obtains OT correlations between a pair of
parties who have a common neighbour. This protocol uses the building block
Protocol 3 from Sect. 5.4 along with machinery of OT combiners described in
Sect. 5.5.

Lemma 10. Let G be an n-vertex OT network with edges {A,C} and {B,C}.
Protocol 4 is an n/2-secure OT protocol for the network G with A as the sender
and B as the receiver.

Proof. We consider cases depending on the number of corrupted parties in the
set T = {A,B,C}. If T contains at most one corrupted party, then each tuple
(A,B,C, Pi) for i ≥ 4 contains at most 2 corrupted parties, so each protocol
Πi in step 1 is secure. If T contains two corrupted parties, then there are at
most t − 2 = (n − 4)/2 corrupted parties among P4, . . . , Pn, so a majority of
these parties are honest. Consequently a majority of the protocols Πi which are
combined in step 1 are secure. Thus, in either case, by Lemma 9 the protocol is
secure. Finally, if all three parties of T are corrupted, then all uncorrupted parties
receive no input, so the simulator S can perfectly simulate the uncorrupted
parties by running the honest protocol. Therefore Protocol 4 is n/2-secure. ��

We now complete the proof of Theorem 2.

Proof Intuition (Theorem 2): It is easy to see that by invoking Protocol 4 repeat-
edly, one can obtain OT correlations between any pair of parties in the same con-
nected component. In other words, using cascading (Lemma 6), we can assume

Network Oblivious Transfer 385

Protocol 4: Completing Triangles

Preliminaries: Let A, B, C, P4, . . . , Pn be the n parties, and let there exist OT
channels (A, C) and (B, C). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. Run a combined protocol Π∗(Π4, . . . , Πn) on the n − 3 protocols Π4, . . . , Πn,
where
– For each i ≥ 4, Πi denotes an invocation of Protocol 3 (2-path) with the

four parties A, B, C, Pi with A as the sender and B as the receiver.

that we are given a network which consists of disjoint cliques. This is done in
step 1 of Protocol 5. Hence, if A and B were in the same connected component
in G, this process would end up with correlations between A and B and we can
terminate the protocol (step 2).

If A and B are in different components, then a natural next step is to run
the clique protocol described in Sect. 5.2 with each of the cliques and parties A
and B with the intent of setting up OT correlations between A and B. However,
the number of corruptions t may be greater than the size of any clique, and so
Protocol 2 may not be secure. However, for an invocation to be secure, we only
require that the clique contains at least one honest party. A majority of parties
must be in cliques containing at least one honest party, so if we invoke Protocol 2
for each of the parties on their respective cliques, for any adversary a majority of
the invocations is secure. By Lemma 9 we can combine these candidate protocols
to obtain a single secure protocol. This is performed in step 5 of Protocol 5.
Finally, we note that steps 3, 4 and 6 perform OT correction, that is, they
perform a transformation from random OT to 1-out-of-2 OT. This yields the
n/2-security of Protocol 5.

Proof (Theorem 2). The “only if” part of theorem has been proven by virtue of
the lower bound of Theorem1 with t = n/2. We now prove the “if” part. We
note that in the case where A and B are in the same connected component in
the network G, by the n/2-security of Protocol 4 and Lemma 6, we note that
Protocol 5 is an n/2-secure OT protocol with A as the sender and B as the
receiver, thus proving the theorem.

We now proceed to the case where A and B are not in the same connected
component in G. We must show that the protocol is secure against t-threshold
adversaries as long as the vertices cannot be partitioned into two sets VA, VB

each of size t = n/2 with A ∈ VA, B ∈ VB such that there are no edges between
VA and VB. Let A be a t-threshold adversary which corrupts parties T , |T | ≤ t.
We will construct a simulator S which plays the role of the uncorrupted parties.

386 R. Kumaresan et al.

Protocol 5: n/2 corruptions

Preliminaries: Let P1 = A, P2 = B, P3, . . . , Pn be the n parties in a network
G = (V, E). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. While there exist parties Pi, Pj , Pk ∈ V such that {Pi, Pj} ∈ E, {Pj , Pk} ∈ E,
but {Pi, Pk} /∈ E:
(a) Let S be the set of triples of distinct vertices (X, Y, Z) ∈ V 3 with {X, Y } ∈

E, {Y, Z} ∈ E, and {X, Z} /∈ E.
(b) For each triple (X, Y, Z) ∈ S, invoke Protocol 4 with independent random

inputs (ri,k
0 , ri,k

1) and bi,k, to obtain OT correlations along edge {X, Z}.
(c) Invoking cascading (Lemma 6), we can add {X, Z} to the edge set E for

all triples (X, Y, Z) ∈ S.
The OT network G now consists of disjoint cliques C1, . . . , C�.

2. If A and B are in the same clique, then halt.
3. B samples a random bit c and sends b′ = b ⊕ c to A.
4. A chooses random one-time pads r0, r1 and sends y0 = x0 ⊕ rb′ and y1 =

x1 ⊕ r1−b′ to B.
5. Let C1 be the clique containing A and C2 be the clique containing B. For

each party Pi, i ≥ 3, let C(i) denote the clique containing party i, and let
Pj1 , . . . , Pj|C(i)| denote the parties in clique C(i).
Run a combined protocol Π∗(Π1, . . . , Πn) on the n protocols Π1, . . . , Πn,
where
– For each i ∈ [n], Πi denotes an invocation of Protocol 2 on the |C(i)| + 2

parties A, B, Pj1 , . . . , Pj|C(i)| with inputs (r0, r1) and c.a

6. Finally, B computes xb = yb ⊕ rc.

a In the case C(i) = C1, A is both the OT sender and a member of the clique. A
similar condition holds for B in the case C(i) = C2.

If {A,B} ⊂ T then the uncorrupted parties receive no input, so the sim-
ulator can perfectly simulate the uncorrupted parties. If {A,B} ∩ T = ∅ then
S chooses arbitrary inputs x0, x1, b and runs the protocol. Since the only steps
which depend on the input at all are on point-to-point channels between A and
B, the view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that the corrupted parties T include exactly one of A,B.
If A ∈ T but B /∈ T , then S chooses an arbitrary bit b and runs the protocol,
invoking the OT simulator for each invocation of Protocol 4. It follows that
as long as the combined protocol Π∗ in step 5 is secure against A, Protocol
5 is secure against A. It remains to show that a majority of the n protocols
Π1, . . . , Πn are secure against A. Since party B is honest, by Lemma 5, protocol
Πi is secure against A as long as at least one of the parties in clique C(i) is
honest. In particular, if party Pi is honest then protocol Πi is secure against
A. At most t of the parties P1, . . . , Pn are corrupt, so the only protocols which

Network Oblivious Transfer 387

may be insecure against A are the t protocols Πi corresponding to the corrupted
parties Pi. Assume that all t of these protocols are insecure against A. Then the
corrupted parties lie in completely corrupted cliques who sizes sum to n/2. This
then gives a set VA = T of n/2 parties containing A but not B such that there
are no edges from VA to the remaining vertices VB = T . However, we know that
G possesses no such partition. Hence, at most t− 1 < n/2 of the n protocols are
insecure against A and hence by Lemma 9, the combined protocol Π∗ in step 5
is secure and hence Protocol 5 is secure against A.

The remaining case that B ∈ T but A /∈ T is similar. Here, the simulator S
is given the output value xb. S runs the protocol with (xb, xb) as the input to
A, again invoking the OT simulator for each invocation of Protocol 4. As above,
as long as the combined protocol Π∗ in step 5 is secure against A, Protocol 5
is secure against A. By the same argument, the only protocols Πi which may
be insecure against A are the t protocols corresponding to the corrupted parties
Pi. If all t of these protocols are insecure against A, we have a set VA = T of
n/2 parties containing A but not B such that there are no edges from VA to
the remaining vertices VB = T . However, we know that G possesses no such
partition, so at most t − 1 < n/2 of the n protocols are insecure against A. By
Lemma 9, the combined protocol Π∗ in step 5 is secure and so Protocol 5 is
secure against A. ��

We now analyze the efficiency of Protocol 5.

Theorem 3. Protocol 5 runs in quasi-polynomial time. Assuming one-way func-
tions, we can obtain a computationally secure protocol which runs in polynomial
time using computationally secure cascading (Lemma 7).

Proof. Each iteration of step 1 decreases the length of a path between any pair
of vertices from � to ��+ 1�/2. Consequently, after O(log n) iterations the graph
will consist of a collection of disjoint cliques, and the protocol will move on to
the next step. By Lemma 6 (Cascading), if each iteration can be performed in
time at most T assuming the augmented graph, then the full cascaded protocol
runs in time at most TO(log n). Since T = poly(n) and each other step of the
protocol is efficient, this implies that Protocol 5 runs in quasi-polynomial time.

Replacing the cascading of step 1 with the more efficient but computation-
ally secure cascading of Lemma 7, we have the cascaded protocol runs in time
O(T poly(λ) · log n). Since each other step of the protocol is efficient, this implies
that assuming one-way functions, we have a computationally-secure version of
Protocol 5 that runs in quasi-polynomial time. ��

7 The Case t = n − 2

On account of the lower bound proven in [36], we note that t = n − 2 is the
largest value of t for which the question is non-trivial. In this section we present
an improved computationally efficient OT protocol between A and B for the
special case t = n − 2 for all (2, A,B)-unsplittable networks G.

388 R. Kumaresan et al.

Protocol 6: n − 2 corruptions

Preliminaries: Let P1 = A, P2 = B, P3, . . . , Pn be the n parties, and let graph
G = (V, E) be the OT network among the parties. A has input (x0, x1), and B
has input b ∈ {0, 1}.

Protocol:

1. For all pairs of parties Pi, Pj ∈ V with i, j ≥ 3 such that {Pi, Pj} /∈ E:
(a) Invoke Protocol 5 (or any 2-secure protocol for n′ = 4) on the induced

OT subgraph Gi,j := G ∩ {Pi, Pj , A, B} with independent random inputs
(ri,j

0 , ri,j
1) and bi,j , to obtain OT correlations along edge {Pi, Pj}.

(b) By virtue of cascading (Lemma 6), we can add edge {Pi, Pj} to the graph
G.a

The OT network G now contains a (n − 2)-clique among vertices Pi, . . . , Pn.
2. Invoke Protocol 2 (t-clique) with input (x0, x1) and b.

a We will only have OT security over this edge when at least two of the parties
Pi, Pj , A, B are honest, but we obtain the functionality of the edge regardless.
We address security of the overall protocol in the proof.

Theorem 4. Let G be an n-party OT network containing parties A and B.
Then Protocol 6 is an efficient (n − 2)-secure OT protocol between A and B if
and only if G is (2, A,B)-unsplittable.

The protocol is built upon the following structural aspect of the network G
under consideration. Since G is (2, A,B)-unsplittable, for any two sets of vertices
VAA and VBB such that |VA| = |VB | = 2, there exists an edge from a vertex
of VA to a vertex of VB . In particular, this implies that for any two parties
Pi, Pj where i, j ≥ 3, the sub-network Gi,j induced by parties A, B, Pi and Pj

is (2, A,B)-unsplittable. Then for any i, j, we also have that the sub-network
Gi,j is (2, Pi, Pj)-unsplittable. Hence, we could try to obtain OT correlations
between every pair of vertices Pi, Pj by running Protocol 5 on every Gi,j for
n = 4 parties. Notice that if these invocations were secure, then we would obtain
an (n − 2)-clique in the network after which we can execute Protocol 2 in order
to obtain OT correlations between A and B. This is described in Protocol 6.
However, each of the execution of Protocol 5 is only guaranteed to be secure if
at most two of the corresponding parties are corrupt. This need not be true in
general, and so we cannot directly leverage the security of Protocol 5. Nonethe-
less, we will argue that Protocol 6 is secure against t = n − 2 corruptions.

Proof Intuition (Theorem 4): In order to analyze the (n−2)-security of Protocol
6, we consider each invocation of Protocol 5 on a sub-network Gi,j . If at most
two of the four parties in Gi,j are corrupt, then that invocation of Protocol 5 is
secure and yields secure OT correlations between parties Pi and Pj . Appealing
to Lemma 6, we can augment G to include edge {Pi, Pj}.

Network Oblivious Transfer 389

Each Gi,j must contain at least one honest party since either A or B must be
honest (otherwise, there is nothing to prove). It remains to consider sub-networks
Gi,j in which three of the parties are corrupt. Since at least one of A or B is
honest, this implies that both Pi and Pj are corrupt. Thus, there is nothing to
prove regarding the security of the invocation of Protocol 5 on Gi,j since we
are establishing OT correlations between a pair of corrupt parties Pi and Pj .
Combining these claims, we have that each of the invocations of Protocol 5 is
secure and yields secure OT correlations between the pairs of parties Pi, Pj for
all i, j ≥ 3. By virtue of Lemma 6, we obtain an (n − 2)-clique in the network
and the (n − 2)-security of Protocol 2 with t = n − 2 proves the (n − 2)-security
of Protocol 6.

The formal proof is deferred to the full version.

8 The General Case: t ≥ n/2

In this section, we resolve the network OT question for general t ≥ n/2. Note
that from the protocols in Sects. 6 and 7 we already have tight answers for the
special cases t = n/2 and t = n − 2. We address the general question from
both ends of the spectrum, namely for t larger than n/2 and t smaller than
n − 2. These analyses yield two distinct protocols which employ the protocols
from Sects. 6 and 7 as their respective base cases. The two protocols we describe
are efficient in different parameter regimes. Protocol 7 described in Sect. 8.1 is
quasi-polynomially efficient13 when t = n/2 + O(1), and Protocol 8 described
in Sect. 8.2 is (polynomially) efficient when t = n − O(1). Putting these proto-
cols together, we obtain a single protocol that is efficient under computational
security when either t = n/2 + O(1) or t = n − O(1). We note that the problem
of recognizing whether there exists a t-secure OT protocol is efficient in these
cases, while the recognition problem for general n, t is coNP-complete.

8.1 General Protocol (Quasi-polynomial for t = n/2 + O(1))

We now describe a t-secure OT protocol between A and B for all (n − t, A,B)-
unsplittable networks G. As a consequence of the lower bound described in
Sect. 4, this result is tight.

Theorem 5. Let G be an n-party OT network containing parties A and B, and
let t ≥ n/2. Then Protocol 7 is a t-secure OT protocol between A and B if and
only if G is (n − t, A,B)-unsplittable. The protocol achieves perfect security and
runs in quasi-polynomial time for t = n/2+O(1). Assuming one-way functions,
we can also obtain a protocol which achieves computational security and runs in
polynomial time for t = n/2 + O(1).

The protocol proceeds by recursion, reducing the problem of obtaining an
OT protocol on an n-vertex graph with t > n/2 corrupted parties to a number

13 Or polynomially efficient under computational security.

390 R. Kumaresan et al.

of instances of n′-vertex graphs, a majority of which have at most t′ corrupted
parties, for n′ = n − 1 and t′ = t − 1. As shown below, each n′-vertex subgraph
G′ has a structure similar to G in the sense that G′ is (n′ − t′, A,B)-unsplittable
whenever G is (n − t, A,B)-unsplittable. We can now recurse on these smaller
problem instances, invoking an OT combiner to obtain the full protocol.

More precisely, the protocol constructs n − 2 subgraphs on n − 1 vertices,
where each subgraph is obtained by deleting a single vertex other than A and B.
We can recursively run a (t − 1)-secure OT protocol on each of the subgraphs.
The final protocol invokes a combiner on these n − 2 candidate protocols. It
remains to be shown that a majority of the subgraphs G′ contain at most t − 1
corrupt parties.

Proof Intuition (Theorem 5): We may assume that at least one of A or B is
honest. As described above, we wish to argue that a majority of the subgraphs
G′ contain at most t − 1 corrupt parties. Combining this with the claim that
these subgraphs preserve an unsplittability property of G and invoking Lemma 9
completes the proof.

However, this claim follows from the following observation. Since t > n/2, if
exactly t parties are corrupt then a majority of the subgraphs contain at most
t − 1 corrupt parties since A and B are not both corrupt. If strictly fewer than
t parties are corrupt then all of the sub-graphs contain at most t − 1 corrupt
parties. In either case, for a majority of subgraphs, at most t − 1 of the parties
are corrupt.

We first present and prove a structure lemma.

Lemma 11. Given graph G = (V,E) and a vertex i, let Gi be the induced graph
on the n − 1 vertices V \ {i}. If G is (n − t, A,B)-unsplittable, then Gi is also
(n − t, A,B)-unsplittable.

Proof. We will prove the contrapositive. Suppose that Gi ⊆A,B Λ2t−n−1
n−t . This

means there exists a partition of the vertex set of Gi as V \{i} = VA

⋃̇
VS

⋃̇
VB

with no edges between VA and VB , where A ∈ VA, B ∈ VB , |VA| = |VB | = n − t
and |VS | = 2t − n − 1. But then we can partition the vertex set of G as V =
VA

⋃̇
V ′

S

⋃̇
VB, where V ′

S = VS ∪ {i}. We have that |VA| = |VB | = n − t and
|V ′

S | = 2t − n, and there are no edges between VA and VB, so G ⊆A,B Λ2t−n
n−t ,

which is a contradiction. ��
As an immediate consequence, the condition described in Theorem 5 is both

necessary and sufficient in order to obtain a complete network of OT channels
and perform secure multiparty computation among all parties in the network.

Corollary 1. Let G be an n-party network. For t ≥ n/2, we can t-securely
generate OT correlations between all pairs of parties (thus, completing the OT
network) if and only if the G is (n − t)-unsplittable.

The formal proofs of Theorem 5 and Corollary 1 are deferred to the full version.

Network Oblivious Transfer 391

Protocol 7: General Protocol I

Preliminaries: Let A, B, P3, . . . , Pn be the n parties in a network G and let
t ≥ n/2 be the maximum number of corruptions. A has input (x0, x1), and B has
input b ∈ {0, 1}.

Protocol:

1. If t = n/2, then invoke Protocol 5 and halt.
2. Otherwise, run a combined protocol Π∗(Π3, . . . , Πn), where

– For each i ≥ 3, Πi denotes the recursive invocation of this protocol on the
n − 1 parties excluding party Pi with the induced sub-network G \ {Pi}
and t′ = t − 1 corruptions.

8.2 General Protocol (Efficient for t = n − O(1))

We now describe another t-secure OT protocol for all networks G with A as the
sender and B as the receiver whenever the network G is (n−t, A,B)-unsplittable.
This protocol uses, in spirit, a reduction in the opposite sense than the one
described in Sect. 8.1. The protocol is efficient whenever t = n − O(1).

Theorem 6. Let G be an n-party OT network containing parties A and B, and
let t ≥ n/2. Protocol 8 is a t-secure OT protocol between A and B if and only if
G is (n − t, A,B)-unsplittable. The protocol is efficient for t = n − O(1).

The idea behind this protocol is the following. We increase the size of the net-
work in order to obtain a large number N of well-connected additional simulated
parties such that at least one them is guaranteed to be honest. We may assume
that at least one of A and B is honest, as otherwise there is nothing to prove.
Consequently there are at least two honest parties in the augmented network.
We will now apply the protocol from Sect. 7. It remains to describe the con-
struction of these simulated parties, to show that at least one of them is honest,
and to prove a structural lemma that if the original network G is (n − t, A,B)-
unsplittable then the augmented network G′ is (2, A,B)-unsplittable.

Proof Intuition (Theorem 6): We first describe the new network generated by
Protocol 8. The parties other than A and B in the newly constructed network
consist of all subsets of size n − t − 1 of the parties in G containing neither A
nor B. Lemma 12 below shows that this new network G′ is (2, A,B)-unsplittable
whenever G is (n − t, A,B)-unsplittable, where the edges of G′ are as described
in Protocol 8. A party X in G′ will be considered honest if all constituent parties
Pi ∈ X from G are honest. Since one of A and B is honest and at most t parties
are corrupt, at least n − t parties are honest and in particular, at least n − t − 1
of the parties other than A and B must be honest. This means that one of the
subsets is completely honest. Since A or B is also honest, G′ is guaranteed to
have at least two honest parties. Combining these facts and invoking Theorem4
completes the argument.

392 R. Kumaresan et al.

Protocol 8: General protocol II

Preliminaries: Let P1 = A, P2 = B, P3, . . . , Pn be the n parties in a network
G = (V, E). A has input (x0, x1), and B has input b ∈ {0, 1}. Let k = n − t.

Protocol:

1. Invoke Protocol 6 with t′ = n − 2 on the n′-node network G′ with inputs
(x0, x1) and b, where n′ =

(
n−2
k−1

)
+ 2, and

– Sk−1 is the set of subsets of {P3, . . . , Pn} of size k − 1.
– The n′ vertices of G′ correspond to A, B, and the

(
n−2
k−1

)
subsets of Sk−1.

– The edges of G′ are defined as follows. Two subsets X, Y ∈ Sk−1 will have
an edge if either X ∩ Y �= ∅ or there exists a pair of parties Pi ∈ X and
Pj ∈ Y with {Pi, Pj} ∈ E.

– Invocation of OT over an edge {X, Y } in G′ with inputs (z0, z1) and c is
performed as follows.

• If X ∩ Y �= ∅, then choose some party Pi ∈ X ∩ Y . Pi ∈ X and hence
knows (z0, z1); similarly, Pi ∈ Y and knows c. Consequently Pi knows
zc, and sends it to the other members of set Y .

• If X ∩ Y = ∅, there is a pair of parties Pi ∈ X, Pj ∈ Y such that
{Pi, Pj} ∈ E. Pi knows (z0, z1) and Pj knows c, so they can invoke
OT over the channel (Pi, Pj) in G, and Pj can then send the value zc
to the other members of set Y .

We will use the following structural lemma about the network G′ constructed
in Protocol 8. The formal proof of Theorem6 is deferred to the full version.

Lemma 12. If G is (n− t, A,B)-unsplittable, then G′ is a (2, A,B)-unsplittable
network on n′ =

(
n−2

n−t−1

)
+ 2 vertices, where G′ is the network from Protocol 8.

Proof. We prove the contrapositive. Assume that G′ ⊆A,B Λn′−2
2 . Let k = n− t,

and for i ∈ N, let Si denote the set of subsets of V \ {A,B} = {P3, . . . , Pn} of
size i. Then there exist vertices X,Y ∈ Sk−1 such that there are no edges in
G′ between any of the parties in {A,X} and any of the parties in {B, Y }. In
particular, X ∩ Y = ∅, since otherwise {X,Y } would be an edge of G′. This
implies that we have 2k = 2(n− t) parties {A,B}∪X ∪Y such that there are no
edges in G from the n − t parties {A} ∪ X to any of the n − t parties {B} ∪ Y .
By definition, this means that G ⊆A,B Λ2t−n

n−t , which is a contradiction. ��

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with
constant online rate or how to compress garbled circuits keys. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 166–184. Springer,
Heidelberg (2013)

2. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC, pp. 479–488 (1996)

Network Oblivious Transfer 393

3. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

5. Beimel, A., Malkin, T., Micali, S.: The all-or-nothing nature of two-party secure
computation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 80–97.
Springer, Heidelberg (1999)

6. Beimel, A., Omri, E., Orlov, I.: Protocols for multiparty coin toss with dishon-
est majority. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 538–557.
Springer, Heidelberg (2010)

7. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: IEEE Security and Privacy, pp. 478–492 (2013)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryp-
tographic fault-tolerant distributed computations. In: STOC, pp. 1–10 (1988)

9. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

10. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

11. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

12. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

13. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party
computation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015)

14. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-
party computation - how to run sublinear algorithms in a distributed setting. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg
(2013)

15. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001)

16. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19 (1988)

17. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy (extended abstract).
In: STOC, pp. 62–72 (1989)

18. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter,
K., Rodŕıguez-Henŕıquez, F. (eds.) LatinCrypt 2015. LNCS, vol. 9230, pp. 40–58.
Springer, Heidelberg (2015)

19. Damg̊ard, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

20. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

21. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multi-
party computation with nearly optimal work and resilience. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

394 R. Kumaresan et al.

22. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.)
EUROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

23. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

24. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

25. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: breaking the o(nm)
bit barrier, secure multiparty computation with a static adversary. In: PODC, pp.
227–228 (2012)

26. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
In: FOCS, pp. 36–45 (1990)

27. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp.
205–210. Springer, New York (1983)

28. Fitzi, M., Franklin, M.K., Garay, J.A., Vardhan, S.H.: Towards optimal and effi-
cient perfectly secure message transmission. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 311–322. Springer, Heidelberg (2007)

29. Garay, J.A., Katz, J., Koo, C.-Y., Ostrovsky, R.: Round complexity of authenti-
cated broadcast with a dishonest majority. In: FOCS, pp. 658–668 (2007)

30. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York (1979)

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

32. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729
(1991)

33. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency
improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–
86. Springer, Heidelberg (1988)

34. Goldwasser, S., Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: STOC, pp. 555–564 (2013)

35. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

36. Harnik, D., Ishai, Y., Kushilevitz, E.: How many oblivious transfers are needed for
secure multiparty computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 284–302. Springer, Heidelberg (2007)

37. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 393–411. Springer,
Heidelberg (2008)

38. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

39. Hirt, M., Lucas, C., Maurer, U.: A dynamic tradeoff between active and passive
corruptions in secure multi-party computation. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 203–219. Springer, Heidelberg (2013)

Network Oblivious Transfer 395

40. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013)

41. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS,
vol. 8617, pp. 458–475. Springer, Heidelberg (2014)

42. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: STOC, pp. 44–61 (1989)

43. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

44. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: On combining privacy with
guaranteed output delivery in secure multiparty computation. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 483–500. Springer, Heidelberg (2006)

45. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious trans-
fer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

46. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31
(1988)

47. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

48. Kovári, T., Sós, V., Turán, P.: On a problem of K. Zarankiewicz. Colloquium Math.
3(1), 50–57 (1954)

49. Kushilevitz, E.: Privacy and communication complexity. In: FOCS, pp. 416–421
(1989)

50. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II.
LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014)

51. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015)

52. Lindell, Y., Riva, B.: Cut-and-choose yao-based secure computation in the
online/offline and batch settings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part II. LNCS, vol. 8617, pp. 476–494. Springer, Heidelberg (2014)

53. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 1–17. Springer, Heidelberg (2013)

54. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

55. Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryptographic com-
plexity with respect to computational UC security. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)

56. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (2007)

57. Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient
and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013)

396 R. Kumaresan et al.

58. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

59. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

60. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

61. Prabhakaran, M., Prabhakaran, V.: On secure multiparty sampling for more than
two parties. In: Information Theory Workshop (ITW) (2012)

62. Rabin, M.: How to exchange secrets by oblivious transfer (1981)
63. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with

honest majority. In: STOC, pp. 73–85 (1989)
64. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)

EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)
65. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT

2007. LNCS, vol. 4515, pp. 555–572. Springer, Heidelberg (2007)
66. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS, pp. 162–167 (1986)
67. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015)

68. Zamani, M., Movahedi, M., Saia, J.: Millions of millionaires: Multiparty computa-
tion in large networks. In: ePrint 2014/149

On the Power of Secure Two-Party Computation

Carmit Hazay1(B) and Muthuramakrishnan Venkitasubramaniam2

1 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

2 University of Rochester, Rochester, NY 14611, USA
muthuv@cs.rochester.edu

Abstract. Ishai, Kushilevitz, Ostrovsky and Sahai (STOC 2007, SIAM
JoC 2009) introduced the powerful “MPC-in-the-head” technique that
provided a general transformation of information-theoretic MPC pro-
tocols secure against passive adversaries to a ZK proof in a “black-
box” way. In this work, we extend this technique and provide a generic
transformation of any semi-honest secure two-party computation (2PC)
protocol (with mild adaptive security guarantees) in the so called
oblivious-transfer hybrid model to an adaptive ZK proof for any NP-
language, in a “black-box” way assuming only one-way functions. Our
basic construction based on Goldreich-Micali-Wigderson’s 2PC protocol
yields an adaptive ZK proof with communication complexity proportional
to quadratic in the size of the circuit implementing the NP relation. Pre-
viously such proofs relied on an expensive Karp reduction of the NP lan-
guage to Graph Hamiltonicity (Lindell and Zarosim (TCC 2009, Journal
of Cryptology 2011)). We also improve our basic construction to obtain
the first linear-rate adaptive ZK proofs by relying on efficient maliciously
secure 2PC protocols. Core to this construction is a new way of trans-
forming 2PC protocols to efficient (adaptively secure) instance-dependent
commitment schemes.

As our second contribution, we provide a general transformation to
construct a randomized encoding of a function f from any 2PC proto-
col that securely computes a related functionality (in a black-box way).
We show that if the 2PC protocol has mild adaptive security guarantees
then the resulting randomized encoding (RE) can be decomposed to an
offline/online encoding.

As an application of our techniques, we show how to improve the con-
struction of Lapidot and Shamir (Crypto 1990) to obtain a four-round
ZK proof with an “input-delayed” property. Namely, the honest prover’s
algorithm does not require the actual statement to be proved until the
last round. We further generalize this to obtain a four-round “commit
and prove” zero-knowledge with the same property where the prover

C. Hazay—Research was partially supported by the European Research Council
under the ERC consolidators grant agreement n. 615172 (HIPS), and by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction
with the Israel National Cyber Bureau in the Prime Minister’s Office.
M. Venkitasubramaniam—Research supported by Google Faculty Research Grant
and NSF Award CNS-1526377.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 397–429, 2016.
DOI: 10.1007/978-3-662-53008-5 14

398 C. Hazay and M. Venkitasubramaniam

commits to a witness w in the second message and proves a statement x
regarding the witness w that is determined only in the fourth round.

Keywords: Adaptive zero-knowledge proofs · Secure two-party compu-
tation · Randomized encoding · Interactive hashing · Instance-dependent
commitments

1 Introduction

In this work we establish new general connections between three fundamental
tasks in cryptography: secure two-party computation, zero-knowledge proofs and
randomized encoding. We begin with some relevant background regarding each
of these tasks.

Secure Multiparty Computation. The problem of secure multiparty computation
(MPC) [Yao86,CCD87,GMW87,BGW88] considers a set of parties with private
inputs that wish to jointly compute some function of their inputs while preserving
certain security properties. Two of these properties are privacy, meaning that the
output is learned but nothing else, and correctness, meaning that no corrupted
party or parties can cause the output to deviate from the specified function.
Security is formalized using the simulation paradigm where for every adversary
A attacking a real protocol, we require the existence of a simulator S that can
cause the same damage in an ideal world, where an incorruptible trusted third
party computes the function for the parties and provides them their output.

Honest vs. Dishonest Majority. Generally speaking, there are two distinct cat-
egories for MPC protocols: (1) one for which security is guaranteed only when
a majority of the parties are honest, and (2) one for which security is guaran-
teed against an arbitrary number of corrupted parties. In the former category it
is possible to construct “information-theoretic” secure protocols where security
holds unconditionally,1 whereas in the latter only computational security can be
achieved while relying on cryptographic assumptions.2 The former setting nec-
essarily requires 3 or more parties while the latter can be constructed with just
two parties. In this work, we will focus on the latter setting, considering secure
two-party computation.

Semi-honest vs. Malicious Adversary. The adversary may be semi-honest, mean-
ing that it follows the protocol specification but tries to learn more than allowed,
or malicious, namely, arbitrarily deviating from the protocol specification in
order to compromise the security of the other players in the protocol. Con-
structing semi-honestly secure protocols is a much easier task than achieving
security against a malicious adversary.
1 Namely, against computationally unbounded adversaries.
2 If one is willing to provide ideal access to an oblivious-transfer functionality then

one can achieve information-theoretic security even in the honest minority setting
[GMW87,CvdGT95,IPS08].

On the Power of Secure Two-Party Computation 399

Static vs. Adaptive Corruption. The initial model considered for secure compu-
tation was one of a static adversary where the adversary controls a subset of the
parties (who are called corrupted) before the protocol begins, and this subset
cannot change. A stronger corruption model allows the adversary to choose which
parties to corrupt throughout the protocol execution, and as a function of its
view; such an adversary is called adaptive. Adaptive corruptions model “hacking”
attacks where an external attacker breaks into parties’ machines in the midst
of a protocol execution and are much harder to protect against. In particular,
protocols that achieve adaptivity are more complex and the computational hard-
ness assumptions needed seem stronger; see [CLOS02,KO04,CDD+04,IPS08].
Achieving efficiency seems also to be much harder.

Zero-Knowledge. Zero-knowledge (ZK) interactive protocols [GMR89] are para-
doxical constructs that allow one party (denoted the prover) to convince another
party (denoted the verifier) of the validity of a mathematical statement x ∈ L,
while providing zero additional knowledge to the verifier. Beyond being fasci-
nating in their own right, ZK proofs have numerous cryptographic applications
and are one of the most fundamental cryptographic building blocks. The zero-
knowledge property is formalized using the simulation paradigm. That is, for
every malicious verifier V∗, we require the existence of a simulator S that repro-
duces a view of V∗ that is indistinguishable from a view when interacting with the
honest prover, given only the input x. Zero-knowledge protocols can be viewed
as an instance of secure two-party computation where the function computed by
the third-party simply verifies the validity of a witness held by the prover.

Static vs. Adaptive. Just as with general secure computation, the adversary in a
zero-knowledge protocol can be either static or adaptive. Security in the presence
of a statically corrupted prover implies that the protocol is sound, namely, a cor-
rupted prover cannot convince a verifier of a false statement. Whereas security in
the presence of a statically corrupted verifier implies that the protocol preserves
zero-knowledge. Adaptive security on the other hand requires a simulator that
can simulate adaptive corruptions of both parties.

Much progress has been made in constructing highly efficient ZK proofs in the
static setting. In a recent breakthrough result, Ishai, Kushilevitz, Ostrovsky and
Sahai [IKOS09] provided general constructions of ZK proofs for any NP relation
R(x, ω) which make a “black-box” use of an MPC protocol for a related multi-
party functionality f , where by black-box we mean that f can be programmed
to make only black-box (oracle) access to the relation R. Leveraging the highly
efficient MPC protocols in the literature [DI06] they obtained the first “constant-
rate” ZK proof. More precisely, assuming one-way functions, they showed how to
design a ZK proof for an arbitrary circuit C of size s and bounded fan-in, with
communication complexity O(s) + poly(κ, log s) where κ is the security para-
meter. Besides this, the work of [IKOS07,IKOS09] introduced the very powerful
“MPC-in-the-head” technique that has found numerous applications in obtaining
“black-box” approaches, such as unconditional two-party computation [IPS08],
secure computation of arithmetic circuits [IPS09], non-malleable commitments

400 C. Hazay and M. Venkitasubramaniam

[GLOV12], zero-knowledge PCPs [IW14], resettably-sound ZK [OSV15] to name
a few, as well as efficient protocols, such as oblivious-transfer based cryptography
[HIKN08,IPS08,IPS09] and homomorphic UC commitments [CDD+15].

In contrast, in the adaptive setting, constructing adaptive zero-knowledge
proofs is significantly harder and considerably less efficient. Beaver [Bea96]
showed that unless the polynomial hierarchy collapses the ZK proof of [GMR89]
is not secure in the presence of adaptive adversaries. Quite remarkably, Lindell
and Zarosim showed in [LZ11] that adaptive zero-knowledge proofs for any NP
language can be constructed assuming only one-way functions. However, it is
based on reducing the statement that needs to be proved to an NP complete
problem, and is rather inefficient. In fact, the communication complexity of the
resulting zero knowledge is O(s4) where s is the size of the circuit. A first moti-
vation for our work is the goal of finding alternative approaches of constructing
(efficient) adaptive ZK proofs without relying on the expensive Karp-reduction
step.

Randomized Encoding (RE). The third fundamental primitive considered in
this work is randomized encoding (RE). Formalized in the works of [IK00,IK02,
AIK06], randomized encoding explores to what extent the task of securely com-
puting a function can be simplified by settling for computing an “encoding”
of the output. Loosely speaking, a function f̂(x, r) is said to be a randomized
encoding of a function f if the output distribution depends only on f(x). More
formally, the two properties required of a randomized encoding are: (1) given the
output of f̂ on (x, r), one can efficiently compute (decode) f(x), and (2) given
the value f(x) one can efficiently sample from the distribution induced by f̂(x, r)
where r is uniformly sampled. One of the earliest constructions of a randomized
encoding is that of “garbled circuits” and originates in the work of Yao [Yao86].
Additional variants have been considered in the literature in the early works of
[Kil88,FKN94]. Since its introduction, randomized encoding has found numerous
applications, especially in parallel cryptography where encodings with small par-
allel complexity yields highly efficient secure computation [IK00,IK02,AIK06].
(See also [GKR08,GGP10,AIK10,GIS+10,BHHI10,BHR12,App14] for other
applications).

Statistical vs. Computational. Randomized encodings can be statistical or com-
putational depending on how close the sampled distribution is to the real distrib-
ution of f̂ . While statistical randomized encodings exist for functions computable
by NC1 circuits, only computational REs are known for general polynomial-time
computable function. We refer the reader to [AIKP15] for a more detailed inves-
tigation on the class of languages that have statistical REs.

Online/Offline Complexity. In an online/offline setting [AIKW13], one considers
an encoding f̂(x, r) which can be split as an offline part f̂OFF(r) which only
depends on the function f , and an online part f̂ON(x, r) that additionally depends
on input x. This notion is useful in a scenario where a weak device is required to
perform some costly operation f on sensitive information x: In an offline phase

On the Power of Secure Two-Party Computation 401

f̂OFF(r) is published or transmitted to a cloud, and later in an online phase, the
weak device upon observing the sample x, transmits the encoding f̂ON(x, r). The
cloud then uses the offline and online parts to decode the value f(x) and nothing
else. The goal in such a setting is to minimize the online complexity, namely the
number of bits in f̂ON(x, r). In the classic garbled circuit construction, the online
complexity is proportional to |x|poly(κ) where κ is the security parameter. More
recently, Applebaum, Ishai, Kushilevitz and Waters showed in [AIKW13] how to
achieve constant online rate of (1 + o(1))|x| based on concrete number-theoretic
assumptions.

A notoriously hard question here is to construct an adaptively secure RE
where privacy is maintained even if the online input x is adaptively chosen
based on the offline part. In fact, the standard constructions of garbled cir-
cuits (with short keys) do not satisfy this stronger property unless some form of
“exponentially-hard” assumption is made [GKR08] or analyzed in the presence
of the so-called programmable random-oracle model [AIKW13]. In fact, it was
shown in [AIKW13] that any adaptively secure randomized encoding must have
an online complexity proportional to the output length of the function. The work
of Hemenway [HJO+15] provided the first constructions of adaptively-secure RE
based on the minimal assumption of one-way functions.

While the connection between RE and secure computation has been explored
only in one direction, where efficient RE yield efficient secure computation, we are
not aware of any implication in the reverse direction. A second motivation of our
work is to understand this direction while better understanding the complexity
of constructing secure protocols by relying on the lower bounds established for
the simpler RE primitive.

1.1 Our Contribution

In this work we present the following transformations:

1. A general construction of a static zero-knowledge proof system ΠR for any
NP relation R(x, ω) that makes a black-box use3 of a two-party protocol
ΠOT

f , carried out between parties P1 and P2, for a related functionality f in
the oblivious-transfer (OT) hybrid model,4 along with a (statically secure) bit
commitment protocol,5 that can be realized assuming only one-way functions.
The requirement on our protocol ΠOT

f is: Perfect (UC) security against static
corruptions by semi-honest adversaries. For example, the standard versions

3 The functionality f can be efficiently defined by making only a black-box (oracle)
access to the NP relation R.

4 Where all parties have access to an idealized primitive that implements the OT
functionality, namely, the functionality upon receiving input (s0, s1) from the sender
and a bit b from the receiver, returns sb to the receiver and nothing the sender.

5 We will be able to instantiate our commitment schemes using a statistically-binding
commitment scheme for commitments made by the prover in the ZK protocol, and
by a statistically-hiding commitment scheme for commitments made by the verifier.

402 C. Hazay and M. Venkitasubramaniam

of the known [GMW87] protocol (denoted by GMW) and [Yao86]’s protocol
satisfy these requirements.

2. A general construction of an adaptively secure zero-knowledge proof system
ΠR for any NP relation R(x, ω) that makes a black-box use of a two-party
protocol ΠOT

f , carried out between parties P1 and P2, for a related function-
ality f in the oblivious-transfer (OT) hybrid model, along with a (statically
secure) bit commitment protocol, that can be realized assuming only one-
way functions. The requirements on our protocol ΠOT

f are: (1) Perfect (UC)
security against semi-honest parties admitting a static corruption of P1 and
an adaptive corruption of P2, and (2) P1 is the sender in all OT invoca-
tions. We remark that the semi-honest version of the GMW protocol satisfies
these requirements. In fact, we will only require milder properties than per-
fect privacy (namely, robustness and invertible sampleability) and adaptive
corruption (namely, one-sided semi-adaptive [GWZ09]) which will be satisfied
by the standard Yao’s protocol [Yao86] based on garbled circuits.

3. A general construction of a randomized encoding for any function f that
makes a black-box use (a la [IKOS09]) of a two-party computation protocol
ΠOT

f , carried out between parties P1 and P2, for a related functionality g in
the OT-hybrid assuming only one-way functions. If we start with the same
requirements as our first transformation (namely, only security against static
adversaries) then we obtain a standard randomized encoding. However, if
we start with a protocol as required in our second transformation with the
additional requirement that it admits (full) adaptive corruption of P2, we
obtain an online/offline RE. Moreover, our construction makes a black-box
use of a randomized encoding for the functionality f . Finally, we also show
how to obtain an adaptive ZK proof for an NP relation R using a slightly
stronger version of RE (that our second instantiation above will satisfy).
An important corollary we obtain here is that starting from an RE that is
additionally secure against adaptive chosen inputs we obtain the—so called—
input-delayed ZK proof in the static setting.

A few remarks are in order.

Remark 1. In transformations 2 and 3 we require the underlying 2PC protocol
to be one-sided semi-adaptive (where the sender is statically corrupted, and the
receiver is adaptively corrupted). This security notion is a weak requirement
and almost all known protocols that are secure in the static setting are also
semi-adaptive secure. Namely, the 2PC protocols based on [Yao86,GMW87] are
one-sided semi-adaptive secure in our sense. In most cases, the semi-adaptive
simulation can be accomplished by honestly generating the simulation of one
party and then upon adaptive corruption of the other party, simulation can be
accomplished by relying on the semi-adaptive simulation of OT calls (which in
turn can be achieved using only one-way functions).

Remark 2. Our online/offline RE based on (semi-adaptive) 2PC protocols is
efficient only for certain protocols. Looking ahead, the offline complexity of the
resulting RE is proportional to the honest algorithm of party P1 and the online

On the Power of Secure Two-Party Computation 403

complexity is proportional to the semi-adaptive simulation of party P2. In the
case of [Yao86], applying our transformation yields the standard RE based on
garbled circuits. We note that while we do not obtain any new constructions
of RE, our transformation relates the semi-adaptive simulation complexity of a
protocol to the efficiency of a corresponding RE.

Comparison with [IKOS09]. We remark that the approach of [IKOS09] that
transforms general MPC protocols cannot be used “directly” to yield our first
result concerning static ZK. This is because all constructions presented in their
work require to instantiate the MPC protocol with at least three parties. In
work subsequent to this, Ishai et. al [IKPY16] show how to extend the [IKOS09]-
transformation to obtain our first result in a more communication efficient way.
Our second and third tranformations, allows a strengthening of our first result to
additionally achieves an input-delayed property. We obtain this stronger prop-
erty by crucially relying on the semi-adaptive simulation. We remark that, both
the approaches of [IKOS09,IKPY16] cannot yield such a protocol as the views
of all parties are committed to by the prover in the first round and there is
no mechanism to equivocate the views as required in the application. Another
important distinction is that we only commit to the transcript of the interac-
tion in the first round while [IKOS09] commits to each individual view. On the
other hand, our approach cannot be applied to information theoretic protocols
as the transcript of the interaction information theoretically binds the inputs
and outputs of all parties.

1.2 Applications

We list a few of the applications of our techniques and leave it as future work to
explore the other ramifications of our transformations.

Commit and prove input-delayed ZK proofs. In [LS90], a three-round
witness-indistinguishable (WI) proof had been shown for Graph Hamiltonicity
with a special “input-delayed” property: namely, the prover uses the statement
to be proved only in the last round. Recently, in [CPS+15] it was shown how
to obtain efficient input-delayed variants of the related “Sigma protocols” when
used in a restricted setting of an OR-composition. We show that starting from a
robust RE that is additionally secure against adaptive inputs, we can obtain gen-
eral constructions of input-delayed zero-knowledge proofs that yield an efficient
version of the protocol of [LS90] for arbitrary NP -relations. We remark that
our work is stronger than [CPS+15] in that it achieves the stronger adaptive
soundness property (which is satisfied by [LS90,FLS99]). The communication
complexity in our protocol depends only linearly on the size of the circuit imple-
menting the NP relation. As in our other transformation, this transformation will
only depend on the relation in a black-box way. Finally, we show how to realize
robust RE secure against adaptive inputs based on recent work of Hemenway
et al. [HJO+15].

The “commit-and-prove” paradigm considers a prover that first commits to
a witness w and then, in a second phase upon receiving a statement x asserts

404 C. Hazay and M. Venkitasubramaniam

whether a particular relation R(x,w) = 1 without revealing the committed
value,. This paradigm implicit in the work of [GMW87], later formalized in
[CLOS02], is a powerful mechanism to strengthen semi-honest secure protocols
to maliciously secure ones. The MPC-in-the-head approach of [IKOS09] shows
how to obtain a commit and prove protocol in the commitment-hybrid model
thereby providing a construction that relies on the underlying commitment (in
turn the one-way function) in a black-box way. This has been used extensively
in several works to close the gap between black-box and non-black-box con-
structions relying on one-way functions (cf. [GLOV12,GOSV14,OSV15] for a
few examples). We show that our input-delayed ZK proof further supports the
commit-and-prove paradigm. In fact, using our approach, we provide the first
constructions of commit-and-prove protocol with this property that relies on
the underlying commitment functionality in a black-box way. Instantiating the
underlying non-interactive commitment scheme with one-way permutation, we
obtain a black-box construction of a 4-round commit and prove protocol with
the input-delayed property.

Instance-dependent trapdoor commitment schemes. As a side result, we
show that our constructions imply instance-dependent trapdoor commitment
schemes, for which the witness ω serves as a trapdoor that allows to equivo-
cate the commitment into any value. Specifically, this notion implies the same
hiding/binding properties as any instance-dependent commitment scheme with
the additional property that the witness allows to decommit a commitment
into any message. To the best of our knowledge, our construction is the first
trapdoor commitment for all NP. Prior constructions were known only for Σ-
protocols [Dam10] and for Blum’s Graph-Hamiltonicity [FS89].

1.3 Our Techniques

In this section, we provide an overview of our transformations and the techniques.

Static ZK via (semi-honest) 2PC or “2PC-in-the-head”. We begin with a
perfectly-correct 2PC protocol Πf between parties P1 and P2 that securely
implements the following functionality f : f(x, ω1, ω2) outputs 1 if and only if
(x, ω1 ⊕ω2) ∈ R where ω1 and ω2 are the private inputs of P1 and P2 in the two
party protocol Πf . We require that the 2PC protocol admits semi-honest UC
security against static corruption of P1 and P2. Our first step in constructing a
ZK proof involves the prover P simulating an honest execution between P1 and
P2 by first sampling ω1 and ω2 at random such that ω1 ⊕ω2 = ω, where ω is the
witness to the statement x and then submitting the transcript of the interaction
to the verifier V . The verifier responds with a bit b chosen at random. The prover
then reveals the view of P1 if b = 0 and the view of P2 if b = 1, namely it just
provides the input and randomness of the respective parties. Soundness follows
from the perfect correctness of the protocol. Zero-knowledge, on the other hand,
is achieved by invoking the simulation of parties P1 and P2 depending on the
guess that the simulator makes for the verifier’s bit b.

On the Power of Secure Two-Party Computation 405

This general construction, however, will inherit the hardness assumptions
required for the 2PC, which in the case of [Yao86,GMW87] protocols will require
the existence of an oblivious-transfer protocol. We next show how to modify the
construction to rely only on one-way functions. The high-level idea is that we
encode the transcript of all oblivious-transfer invocations by using a “randomized
encoding” of the oblivious-transfer functionality based on one-way functions as
follows:

– For every OT call where P1’s input is (s0, s1) and P2’s input is t, we incorporate
it in the transcript τ by generating a transcript containing the commitments c0
and c1 of s0 and s1 using a statistically binding commitment scheme , (which
can be based on one-way functions), placing the decommitment information
of ct in P2’s random tape.6

This protocol results in an interactive commitment phase as we rely on a
statistically-binding commitment scheme and the first message corresponding
to all commitments needs to be provided by the receiver.

Compared to [IKOS09,IPS08], we remark that our ZK proof does not pro-
vide efficiency gains (using OT-preprocessing) as we require a commitment for
every oblivious-transfer and in the case of compiling [GMW87] results in O(s)
commitments where s is the size of the circuit. Nevertheless, we believe that this
compilation illustrates the simplicity of obtaining a ZK proof starting from a
2PC protocol.

Adaptive ZK via “2PC-in-the-head”. First, we recall the work of Lindell and
Zarosim [LZ11] that showed that constructing adaptively secure ZK proofs can
be reduced to constructing adaptive instance-dependent commitment schemes
[BMO90,IOS97,OV08,LZ11]. In fact, by simply instantiating the commitments
from the prover in the (static) ZK proofs of [IKOS09] with instance-dependent
commitments, we can obtain an adaptive ZK proof. Briefly, instance-dependent
commitment schemes are defined with respect to a language L ∈ NP such that
for any statement x the following holds. If x ∈ L then the commitment associ-
ated with x is computationally hiding, whereas if x /∈ L then the commitment
associated with x is perfectly binding. An adaptively secure instance-dependent
commitment scheme additionally requires that there be a “fake” commitment
algorithm which can be produced using only the statement x, but later, given a
witness ω such that (x, ω) ∈ R, be opened to both 0 and 1.

First, we describe an instance-dependent commitment scheme using a
(perfectly-correct) 2PC protocol Πf engaged between parties P1 and P2 that
securely implements the following functionality f : f(x, ω1, ω2) outputs 1 if and
only if (x, ω1 ⊕ ω2) ∈ R where ω1 and ω2 are the private inputs of P1 and P2

in the two party protocol Πf . We will require that only P2 receives an output
and that Πf is (UC) secure against the following adversaries: (1) A semi-honest
adversary A1 that statically corrupts P1, and (2) A semi-honest adversary A2

that statically corrupts P2.
6 Note that, in Naor’s statistically binding commitment scheme [Nao91] the decommit-

ment information is the inverse under a pseudorandom generator that is uniformly
sampled, and hence can be placed in the random tape.

406 C. Hazay and M. Venkitasubramaniam

Given such a 2PC Πf a commitment to the message 0 is obtained by com-
mitting to the view of party P1 in an interaction using Πf , using the simulator
S1 for adversary A1 as follows. The commitment algorithm runs S1 on input a
random string ω1 that serves as the input of P1. The output of the commitment
on input 0 is τ where τ is the transcript of the interaction between P1 and P2

obtained from the view of P1 generated by S1. A commitment to 1 is obtained by
running the simulator S2 corresponding to A2 where the input of P2 is set to a
random string ω2. The output of the commitment is transcript τ obtained from
the view of P2 output by S2. Decommitting to 0 simply requires producing input
and output (ω1, r1) for P1 such that the actions of P1 on input ω1 and random
tape r1 are consistent with the transcript τ . Decommitting to 1 requires pro-
ducing input and randomness (ω2, r2) for P2 consistent with τ and P2 outputs
1 as the output of the computation. The hiding property of the commitment
scheme follows from the fact that the transcript does not reveal any information
regarding the computation (i.e. transcript can be simulated indistinguishably).
The binding property for statements x �∈ L, on the other hand, relies on the
perfect correctness of the protocol. More precisely, if a commitment phase τ is
decommitted to both 0 and 1, then we can extract inputs and randomness for
P1 and P2 such that the resulting interaction with honest behavior yields τ as
the transcript of messages exchanged and P2 outputting 1. Note that this is
impossible since the protocol is perfectly correct and 1 is not in the image of f
for x �∈ L.

Next, to obtain an adaptively secure instance-dependent commitment scheme
we will additionally require that Πf be secure against a semi-honest adversary
A3 that first statically corrupts P1 and then adaptively corrupts P2 at the end
of the execution. This adversary is referred to as a semi-adaptive adversary in
the terminology of [GWZ09]. The fake commitment algorithm follows the same
strategy as committing to 0 with the exception that it relies on the simulator S3

of A3. S3 is a simulator that first produces a view for P1 and then post execution
produces a view for P2. More formally, the fake commitment algorithm sets P1’s
input to a random string ω1 and produces P1’s view using S3 and outputs τ
where, τ is the transcript of the interaction. Decommitting to 0 follows using
the same strategy as the honest decommitment. Decommitting to 1, on the other
hand, requires producing input and randomness for P2. This can be achieved by
continuing the simulation by S3 post execution. However, to run S3 it needs
to produce an input for party P2 such that it outputs 1. This is possible as
the decommitting algorithm additionally receives the real witness ω for x, using
which it sets P2’s input as ω2 = ω ⊕ ω1.

In fact, we will only require adversaries A2 and A3, as the honest commitment
to 0 can rely on S3. Indistinguishability of the simulation will then follow by
comparing the simulations by S2 and S3 with a real-world experiment with
adversaries A2,A3 where the parties inputs are chosen at random subject to
the condition that they add up to ω and using the fact that the adversaries are
semi-honest.

On the Power of Secure Two-Party Computation 407

We will follow an approach similar to our previous transformation to address
calls to the OT functionality. We will additionally require that P1 plays the
sender’s role in all OT invocations. We note that our encoding accommodates
an adaptive corruption of P2, as it enables us to equivocate the random tape of
P2 depending on its input t.

To instantiate our scheme, we can rely on [Yao86] or [GMW87] to obtain an
adaptive instance-dependent commitment scheme. Both commitments results in
a communication complexity of O(s · poly(κ)) where s is the size of the circuit
implementing the relation R and κ is the security parameter. Achieving adaptive
zero-knowledge is then carried out by plugging in our commitment scheme into
the prover’s commitments in the [IKOS09] zero-knowledge (ZK) construction,
where it commits to the views of the underlying MPC protocol. The resulting
protocol will have a complexity of O(s2 ·poly(κ)) and a negligible soundness error.
We remark that this construction already improves the previous construction
of Lindell and Zarosim that requires the expensive Karp reduction to Graph
Hamiltonicity. Our main technical contribution is showing how we can further
improve our basic construction to achieve a complexity of O(s · poly(κ)) and
therefore obtaining a “linear”-rate adaptive ZK proof.

RE from (semi-honest) 2PC. To construct a RE for a function f , we consider
an arbitrary 2PC protocol that securely realizes the related function g that is
specified as follows: g(a1, a2) = f(a1⊕a2) where a1 and a2 are the private inputs
of P1 and P2 in the two party protocol Πg. We will make the same requirements
on our 2PC as in the previous case, namely, security with respect to adversaries
A1 and A2. The offline part of our encoding function f̂OFF(r) is defined using
the simulator S3 for adversary A3 that proceeds as follows. Upon corrupting P1,
S3 is provided with a random input string a1, where the simulation is carried
out till the end of the execution and temporarily stalled. The output of f̂OFF(r)
is defined to be the simulated transcript of the interaction between parties P1

and P2. Next, upon receiving the input x, the online part f̂ON(x, r) continues the
simulation by S1 which corrupts P2 post execution (at the end of the protocol
execution), where P2’s input is set as a2 = x ⊕ a1 and its output is set as
f(x). Finally, the output of f̂ON(x, r) is defined by the input and random tape
of P2. In essence, f̂(x, r) = (f̂OFF(r), f̂ON(x, r)) constitutes the complete view
of P2 in an execution using Πg. The decoder simply follows P2’s computation
in the view and outputs P2’s output, which should be f(x) by the correctness
of the algorithm. The simulation for our randomized encoding S relies on the
simulator for the adversary A2, denoted by S2. Namely, upon receiving f(x), S
simply executes S2. Recalling that S2 corrupts P2, S simply provides a random
string a2 as its input and f(x) as the output. Finally, the offline and online parts
are simply extracted from P2’s view accordingly. Privacy will follow analogously
as in our previous case.

Note that the offline complexity of our construction is equal to the com-
munication complexity of the underlying 2PC protocol Πg, whereas the online
complexity amounts to the input plus the randomness complexity of P2. The effi-
ciency of our randomized encoding ties the offline part with the static simulation

408 C. Hazay and M. Venkitasubramaniam

of party P1 and the online part with the semi-adative simulation of P2. Moreover,
this protocol can be instantiated by the [Yao86,GMW87] protocols, where the
OT sub-protocols are implemented using one-way functions as specified before.
We remark that the protocol of [Yao86] does not, in general, admit adaptive
corruptions, yet it is secure in the presence of a semi-adaptive adversary that
adaptively corrupts P2 after statically corrupting P1. The [Yao86] based protocol
will result in an offline complexity of O(s · poly(κ)) and an online complexity of
O(n ·poly(κ)) where s is the size of the circuit implementing f and n is the input
length.7 Whereas the [GMW87] protocol will result in an offline and online com-
plexities of O(s · poly(κ)). While this might not be useful in the “delegation of
computation” application of randomized encoding as the online encoding is not
efficient, it can be used to construct an instance-dependent commitment scheme
where we are interested only in the total complexity of the encoding. Finally, we
remark that if we are not interested in an offline/online setting and just require
a standard randomized encoding we will requite Πf to be secure only against
a static corruption of P2 by A2 and the honest encoding can be carried out by
emulating the real world experiment (as opposed to relying on the simulation
by S3).

Next, we provide a construction of instance-dependent commitments based
on online/offline RE. Standard RE will not be sufficient for this and we intro-
duce a stronger notion of robustness for RE and show that the preceeding con-
struction already satisfies this. Then based on a robust RE we show how to
get an instant-dependent commitment scheme. In fact, we can get an adaptive
instance-dependent commitment scheme if the underlying RE has a correspond-
ing adaptive property. Since adaptive instance-dependent comitment schemes
are sufficient to realize adaptive ZK, this provides a transformation from RE to
adaptive ZK.

“Linear”-Rate Adaptive ZK Proof from Malicious 2PC. The main drawback in
our first construction of adaptive ZK proofs was in the equivocation parame-
ter of our instance-dependent commitment. Namely, to equivocate one bit, we
incurred a communication complexity of O(s · poly(κ)). To improve the com-
munication complexity one needs to directly construct an instance-dependent
commitment scheme for a larger message space {0, 1}�. We show how to con-
struct a scheme where the communication complexity depends only additively
on the equivocation parameter, implying O((s+�)poly(κ)) overhead. Combining
such a scheme with the [IKOS09] ZK proof results in a protocol with communi-
cation complexity of O(n · s · poly(κ) +

∑n
i=1 �i · poly(κ)) where �i is the length

of the ith commitment made by the prover. Setting n = ω(log k) results and
using

∑
i �i = s ·poly(κ) in an adaptive ZK proof with negligible soundness error

and complexity O(s · poly(κ)). We remark here that by linear rate, we mean
we obtain a protocol whose communication complexity that depends linearly on
the circuit size. This stands in contrast of the previous approach by Lindell and

7 We note that the online complexity can be improved by relying on the work of
[AIKW13].

On the Power of Secure Two-Party Computation 409

Zarosim [LZ11] that depends at least cubic in the circuit size. In comparison, for
the static case, [IKOS09] provide a “constant” rate Static ZK proof, i.e. a ZK
proof whose communication complexity is O(s + poly(k)).

Our approach to construct an instance-dependent commitment scheme for
larger message spaces is to rely on a maliciously secure two-party computation.
Specifically, suppose that for a polynomial-time computable Boolean function
f(x, y) we have a 2PC protocol Πf with parties P1 and P2, where P2 receives
the output of the computation and satisfies all the conditions required in our
original transformation. In addition we require it to satisfy statistical security
against a malicious P1 (in the OT-hybrid). In fact, it suffices for the protocol to
satisfy the following “soundness” condition: If there exists no pair of inputs x, y
such that f(x, y) = 1 then for any malicious P ∗

1 , the probability that an honest
P2 outputs 1 is at most 2−t, where the probability is taken over the randomness of
party P2. Then, using such a protocol, we can provide a framework to construct
an instance-dependent commitment scheme where the soundness translates to
the equivocation parameter, namely, it will be O(t) for soundness 2−t.

Concretely, given an input statement x we consider a protocol Πf that real-
izes function f defined by: f(ω1, ω2) = 1 iff (x, ω1 ⊕ ω2) ∈ R. We first describe
an (incorrect) algorithm as a stepping stone towards explaining the details of
the final construction. The commitment algorithm on input a message m, (just
as in our transformation to RE) invokes the simulator S2 that corresponds to
the adversary A2, which statically corrupts P2 with an input set to a random
string ω2 and output 1. Upon completing the simulation, the committer submits
to the receiver the transcript of the interaction and Ext(r2) ⊕ m where r2 is the
randomness of P2 output by the simulation and Ext(·) is a randomness extrac-
tor that extracts R − Ω(t) bits where R is the length of P2’s random tape. A
decommitment simply produces m along with P2’s input and randomness corre-
sponding to the transcript output in the commitment phase. Intuitively, binding
follows directly from the soundness condition as no adversarial committer can
produce two different random strings for P2, as the entropy of all “accessible”
random tapes for P2 is “extracted” out by Ext.8 The fake commitment, on the
other hand, relies as above on a simulator corresponding to A1 that statically
corrupts P1 and adaptively corrupts P2, where instead of Ext(r2) ⊕ m it simply
sends a random string. Equivocation, on the other hand, is achievable if the
simulation can additionally access the entire space of consistent random tapes
of P2 and invert Ext. Several problems arise when materializing this framework.

The first issue is that we cannot rely on an extractor as the adversary can
adaptively decide on r2 given the description of Ext. Now, since extractors are
only statistically secure, this implies that for certain (very small) set of values
for r2 there could be multiple pre-images with respect to Ext. Instead, we rely on
an interactive hashing protocol [NOVY98,DHRS04,HR07] that guarantees bind-
ing against computationally unbounded adversaries. More precisely, an interac-
tive hashing protocol ensures that if the set of random tapes accessible to the

8 This is not entirely accurate and is presented just for intuition. More details are
presented in next paragraph.

410 C. Hazay and M. Venkitasubramaniam

adversary is at most 2R−Ω(t) then except with negligible probability it cannot
obtain two random tapes that are consistent with the transcript of the hash-
ing protocol. This protocol will additionally require to satisfy an invertible sam-
pleability property where given an interaction it is possible to compute efficiently
a random input consistent with the transcript. We will not be able to rely on the
efficient 4-message protocol of [DHRS04] but will rely on the original protocol
of [NOVY98] that proceeds in a linear number of rounds (linear in the message
length) where inverting simply requires solving a system of linear equations in a
finite field.

Another major issue is that the space of consistent random tapes might not
be “nice” to be invertible. Namely, to adaptively decommit a fake commitment
to an arbitrary message we require that the space of consistent random tapes for
P2, i.e. consistent with the transcript τ of the protocol and the transcript of the
interactive-hashing protocol in the commitment phase, to be “uniform” over a
nice domain. We thus consider a variant of the protocol in [IPS08] so that the
space of consistent random tapes will be uniform over the bits of a specified length.
While this modification solves the problem of “nice” random tapes, it requires re-
establishing a certain “soundness” condition in the compilation of [IPS08].

As mentioned before we combine our adaptive instance-dependent commit-
ment scheme with the ZK protocol of [IKOS09]. We will rely on a variant where
the MPC protocol in their construction will be instantiated with the classic
[BGW88] protocol, as opposed to highly-efficient protocol of [DI06]. The reason
is that we will additionally require a reconstructability property9 of the MPC
protocol that can be shown to be satisfied by [BGW88]. Secondly, relying on this
efficient variant anyway does not improve the asymptotic complexity to beyond
a linear-rate. As an independent contribution we also provide a simple adaptive
ZK protocol based on garbled circuits that satisfies reconstructability but will
only achieve soundness error 1/2 (see Sect. 6).

1.4 Perspective

Our work is similar in spirit to the work of [IKOS09,IPS08] that demonstrated
the power information-theoretic MPC protocols in constructing statically-
secure protocols. Here, we show the power of (adaptively-secure) 2PC proto-
cols in the OT-hybrid helps in constructing adaptively-secure protocols and
randomized encodings. Instantiating our 2PC with the standard protocols of
[Yao86,GMW87] yields simple constructions of adaptive ZK proofs and ran-
domized encodings. While ZK can be viewed as a special instance of a two-party
computation protocol, the resulting instantiation requires stronger assumptions
(such as enhanced trapdoor permutations). On the other hand, our transforma-
tion requires only one-way functions. As mentioned earlier, we not only provide
adaptive ZK proofs, but we obtain two new simple static ZK proofs from our
instance-based commitments.
9 Informally, reconstructability requires that given the views of t out of n players in

an instance of the protocol, and the inputs of all parties, it is possible to reconstruct
the views of the remaining parties consistent with views of the t parties.

On the Power of Secure Two-Party Computation 411

A second contribution of our construction shows a useful class of applications
for which 2PC protocols can be used to reduce the round complexity of black-
box constructions. The well known and powerful “MPC-in-the-head” technique
has found extensive applications in obtaining black-box construction of proto-
cols that previously depended on generic Karp reductions. In many cases their
approach was used to close the gap between black-box and non-black-box con-
structions. In particular, their approach provided the first mechanism to obtain
a commit-and-prove protocol that depended on the underlying commitment in
a black-box way. We believe that our technique yields an analogous “2PC-in-
the-head” technique which in addition to admitting similar commit-and-prove
protocols can improve the round complexity as demonstrated for the case of
non-malleable commitments. This is because of the input-delayed property that
is achievable for our commit-and-prove protocols.

In addition, we believe it will be useful in applications that rely on certain
special properties of the Blum’s Graph-Hamiltonicity ZK proof (BH). Concretely,
we improve the [LZ11] adaptive ZK proof and the input-delayed protocol from
[LS90] both of which relied on BH ZK proof. More precisely, by relying on our
ZK proof based on our instance-dependent commitment schemes that, in turn,
depends on the NP relation in a black-box way, we save the cost of the expensive
Karp reduction to Graph Hamiltonicity. We leave it as future work to determine
if other applications that rely on the BH ZK proof can be improved (e.g., NIZK).

2 Preliminaries

We denote the security parameter by κ. We say that a function μ : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large κ’s it
holds that μ(κ) < 1

p(κ) . We use the abbreviation PPT to denote probabilistic
polynomial-time. For an NP relation R, we denote by Rx the set of witnesses
of x and by LR its associated language. That is, Rx = {ω | (x, ω) ∈ R} and
LR = {x | ∃ ω s.t. (x, ω) ∈ R}.

2.1 Adaptive Instance-Dependent Commitment Schemes [LZ11]

We extend the instance-dependent commitment scheme definition of [LZ11], orig-
inally introduced for the binary message space, to an arbitrary message space M.

Syntax. Let R be an NP relation and L be the language associated with R.
A (non-interactive) adaptive instance dependent commitment scheme (AIDCS)
for L is a tuple of probabilistic polynomial-time algorithms (Com,Com′,Adapt),
where:

– Com is the commitment algorithm: For a message m ∈ Mn, an instance
x ∈ {0, 1}∗, |x| = n and a random string r ∈ {0, 1}p(|x|) (where p(·) is a
polynomial), Com(x,m; r) returns a commitment value c.

– Com′ is a “fake” commitment algorithm: For an instance x ∈ {0, 1}∗ and a
random string r ∈ {0, 1}p(|x|), Com′(x; r) returns a commitment value c.

412 C. Hazay and M. Venkitasubramaniam

– Adapt is an adaptive opening algorithm: Let x ∈ L and ω ∈ Rx. For all
c and r ∈ {0, 1}p(|x|) such that Com′(x; r) = c, and for all m ∈ Mn,
Adapt(x, ω, c,m, r) returns a pair (m, r′) such that c = Com(x,m; r′). (In
other words, Adapt receives a “fake” commitment c and a message m, and
provides an explanation for c as a commitment to the message m.)

Security. We now define the notion of security for our commitment scheme.

Definition 21 (AIDCS). Let R be an NP relation and L = LR. We say that
(Com,Com′,Adapt) is a secure AIDCS for L if the following holds:

1. Computational hiding: The ensembles {Com(x,m)}x∈L,m{0,1}|x| , and
{Com′(x)}x∈L are computationally indistinguishable.

2. Adaptivity: The distributions {Com(x, m; Up(|x|)), m, Up(|x|)}x∈L,ω∈RL,m∈{0,1}|x|

and
{Com′(x;Up(|x|)),m,Adapt(x, ω,Com′(x;Up(|x|)),m)}x∈L,ω∈RL,m∈{0,1}|x| are
computationally indistinguishable (that is, the random coins that are gener-
ated by Adapt are indistinguishable from real random coins used by the com-
mitting algorithm Com).

3. Statistical binding: For all x /∈ L, m,m′ ∈ M|x|, and a commitment c,
the probability that there exist r, r′ for which c = Com(x,m; r) and c =
Com(x,m′; r′) is negligible in κ.

2.2 Zero-Knowledge Proofs

Definition 22 (Interactive proof system). A pair of PPT interactive
machines (P,V) is called an interactive proof system for a language L if there
exists a negligible function negl such that the following two conditions hold:

1. Completeness: For every x ∈ L,

Pr[〈P,V〉(x) = 1] ≥ 1 − negl(|x|).

2. Soundness: For every x /∈ L and every interactive PPT machine B,

Pr[〈B,V〉(x) = 1] ≤ negl(|x|).

Definition 23 (Zero-knowledge). Let (P,V) be an interactive proof system
for some language L. We say that (P,V) is computational zero-knowledge if for
every PPT interactive machine V∗ there exists a PPT algorithm S such that

{〈P,V∗〉(x)}x∈L
c≈ {〈S〉(x)}x∈L

where the left term denote the output of V∗ after it interacts with P on common
input x whereas, the right term denote the output of S on x.

On the Power of Secure Two-Party Computation 413

Input-Delayed Zero-Knowledge Proofs. We will construct zero-knowledge proofs
with an “input-delayed” property. Roughly speaking, this property allows an
honest prover to generate all messages except from the last one, without knowl-
edge of the statement. In such a situation, the soundness and zero-knowledge
properties can additionally be required to be adaptively secure. Namely, sound-
ness is required to hold even if the cheating prover adaptively chooses the state-
ment (before the last message). Zero-knowledge, in the other hand, is required
to hold even if the malicious verifier chooses a (true) statement before the last
round.

Adaptive Zero-Knowledge. This notion considers the case for which the prover is
adaptively corrupted. Loosely speaking, the simulator obtains a statement x ∈ L.
Moreover, at any point of the execution, the adaptive adversary is allowed to
corrupt the prover. It is then required that zero-knowledge holds even in the
presence of an adaptive adversary.

2.3 Garbled Circuits

Our notion of garbled circuits includes an additional algorithm of oblivious gen-
eration of a garbled circuit. Namely, given the randomness used to produce a
garbled circuit C̃ of some circuit C, the algorithm generates new randomness
that explains C̃ as the outcome of the simulated algorithm. We note that this
modified notion of garbled circuits can be realized based on one-way functions,
e.g., the construction from [LP09], for instance when the underlying symmetric
key encryption used for garbling has an additional property of oblivious cipher-
text generation (where a ciphertext can be sampled without the knowledge of
the plaintext). Then the simulated garbling of a gate produces a garbled table
using three obliviously generated ciphertexts and one ciphertext that encrypts
the output label. We note that the ability to switch from a standard garbled
circuit to a simulated one will be exploited in our constructions below in order
to equivocate a commitment to 0 into a commitment to 1. Towards introducing
our definition of garbled circuits we denote vectors by bold lower-case letters
and use the parameter n to denote the input and output length for the Boolean
circuit C.

Definition 24 (Garbling scheme). A garbling scheme Garb = (Grb,Enc,Eval,
Dec) consists of four polynomial-time algorithms that work as follows:

– (C̃,dk, sk) ← Grb(1κ,C; rGrb): is a probabilistic algorithm with randomness
rGrb that takes as input a circuit C with 2n input wires and n output wires and
returns a garbled circuit C̃, a set of decoding keys dk = (dk1, . . . ,dkn) and a
secret key sk.

– x̃ := Enc(sk,x) is a deterministic algorithm that takes an input a secret key sk,
an input x and returns an encoded input x̃. We denote this algorithm by x̃ :=
Enc(sk, x̃). In this work we consider decomposable garbled schemes. Namely,
the algorithm takes multiple input bits x = (x1, . . . , xn), runs Enc(sk, ·) on
each xi and returns the garbled inputs x̃1 through x̃n, denoted by input labels.

414 C. Hazay and M. Venkitasubramaniam

– ỹ := Eval(C̃, x̃): is a deterministic algorithm that takes as input a garbled
circuit C̃ and encoded inputs x̃ and returns encoded outputs ỹ.

– {⊥, yi} := Dec(dki, ỹi): is a deterministic algorithm that takes as input a
decoding key dki and an encoded output ỹi and returns either the failure symbol
⊥ or an output yi. We write {⊥,y} := Dec(dk, ỹ) to denote the algorithm that
takes multiple garbled outputs ỹ = (ỹ1 . . . ỹn), runs Dec(dki, ·) on each ỹi and
returns the outputs y1 through yn.

Correctness. We say that Garb is correct if for all n ∈ N, for any polynomial-
size circuit C, for all inputs x in the domain of C, for all (C̃,dk, sk) output by
Grb(1κ,C), for x̃ := Enc(sk,x) and ỹ := Eval(C̃, x̃) and for all i ∈ [n], yi :=
Dec(dki, ỹi), where (y1, . . . , yn) = C(x).

Security. We say that a garbling scheme Garb is secure if there exists a PPT

algorithm SimGC such that for any polynomial-size circuit C, for all inputs x in
the domain of C, for all (C̃,dk, sk) output by Grb(1κ,C) and x̃ := Enc(sk,x) it
holds that,

(C̃, x̃,dk)
c≈ SimGC (1κ,C,y) , where y = C(x).

Oblivious Sampling. There exists a PPT algorithm OGrb such that for any
polynomial-time circuit C and for all input/output pairs (x,y) such that
C(x) = y it holds that,

{r′
Grb,SimGC (1κ,C,y; r′

Grb)}r′
Grb←{0,1}∗

c≈ {r̂Grb, C̃, x̃,dk}(r̂Grb,x̃)←OGrb(1κ,C,x,rGrb)

where (C̃,dk, sk) ← Grb(1κ,C; rGrb).
Note that correctness is perfect by our definition, which implies that a garbled

circuit must be evaluated to the correct output. We further note that this notion
is achieved by employing the point-and-permute optimization [PSSW09] to the
garbling construction, as the evaluator of an honestly generated circuit always
decrypts a single ciphertext for each gate which leads to the correct output.
Furthermore, we assume that giving the secret key it is possible to verify that
the garbled circuit was honestly generated. Again, this holds with respect to
existing garbling schemes, as the secret key includes the encoding of all input
labels which allows to recompute the entire garbling and verifying the correctness
of each gate.

2.4 Randomized Encoding

We review the definition of randomized encoding from [IK00,AIK04].

Definition 25 (Randomized Encoding). Let f : {0, 1}n → {0, 1}� be a func-
tion. Then a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is said to be a randomized
encoding of f , if:

On the Power of Secure Two-Party Computation 415

Correctness: There exists a decoder algorithm B such that for any input x ∈
{0, 1}n, except with negligible probability over the randomness of the encoding
and the random coins of B, it holds that B(f̂(x,Um)) = f(x).

Computational (Statistical) Privacy: There exists a PPT simulator S, such
that for any input x ∈ {0, 1}n the following distributions are computationally
(statistically) indistinguishable over n ∈ N:
– {f̂(x,Um)}n∈N,x∈{0,1}n ,
– {S(f(x))}n∈N,x∈{0,1}n .

We require our randomized encoding to satisfy some additional properties:

1. Robustness: Applebaum et al. introduced in [AIKW13] the measures of
offline and online complexities of an encoding, where the offline complex-
ity refers to the number of bits in the output of f̂(x, r) that solely depend
on r and the online complexity refers to the number of bits that depend on
both x and r. The motivation in their work was to construct online efficient
randomized encoding, where the online complexity is close to the input size
of the function. In our construction, we are not concerned specifically with
the online complexity, but we require that there exists an offline part of the
randomized encoding that additionally satisfies a robustness property. We
present the definition of robustness for boolean functions f as it suffices for
our construction.

We say that f̂ is a robust encoding of f if there exist functions f̂OFF and
f̂ON such that f̂(x, r) = (f̂OFF(r), f̂ON(x, r)) and, in addition, it holds that: if
there exists no x such that f(x) = 1, then for any r, there exists no z such
that B(f̂OFF(r), z) outputs 1. Intuitively, robustness ensures that if the offline
part was honestly computed using f̂OFF then there cannot exist any online
part that can make the decoder output an element not in the range of the
function f . We remark that it is possible to rewrite any randomized encod-
ing as (f̂OFF(r), f̂ON(x, r)) for some functions f̂OFF and f̂ON (for instance, by
setting f̂OFF to be the function that outputs the empty string and f̂ON = f̂).
Nevertheless, in order for the encoding to be robust there must exist a way
to split the output bits of f̂(x, r) into an offline part f̂OFF(r) and online part
f̂ON(x, r) such that they additionally satisfy the robustness property. As men-
tioned before, it will not always be important for us to minimize the online com-
plexity, where instead we require that the encoding is robust while minimizing
the total (online+offline) complexity. We note that our definition is in the spirit
of the authenticity definition with respect to garbled schemes from [BHR12].

2. Oblivious sampling: We require an additional oblivious property, as for the
definition of garbling schemes, (that, looking ahead, will enable equivocation
in our instance-dependence commitment schemes where a randomized encod-
ing of function f can be explained as a simulated encoding). We denote this
algorithm by ORE and define this new security property as follows.

For any function f as above and for all input/output pairs (x, y)
such that f(x) = y it holds that, {r′,S (y; r′)}r′←{0,1}∗

c≈ {r′, f̂OFF(r),
f̂ON(x, r)}r′←ORE(x,r) where r is the randomness for generating f̂ .

416 C. Hazay and M. Venkitasubramaniam

In Sect. 5, we show how to realize a robust randomized encoding scheme
based on any two-party computation protocol (that meets certain requirements),
which, in particular is satisfied by the [Yao86,GMW87] protocols. While this
construction does not achieve any “non-trivial” online complexity, it will be
sufficient for our application, as the total complexity will be O(sκ). We note that
garbling schemes meet our definition of robust randomized encoding. Therefore,
we have the following theorem:

Theorem 26. Assuming the existence of one-way functions. Then, for any poly-
nomial time computable boolean function f : {0, 1}n → {0, 1}, there exists a
robust randomized encoding scheme (f̂OFF, f̂ON,S) such that the offline complex-
ity is O(s · poly(κ)) and online complexity is O(n · poly(κ)) where s is the size
of the circuit computing f , n is the size of the input to f and κ is the security
parameter.

3 Warmup: Static Zero-Knowledge Proofs from 2PC

Our technique also imply static ZK proofs from any two-party protocol that
provides perfect correctness. Intuitively speaking, consider a two-party protocol
that is secure in the presence of static adversaries with perfect correctness. Then,
the prover generates the transcript of an execution where the parties’ inputs
are secret shares of the witness ω. That is, the parties’ inputs are ω1 and ω2,
respectively, such that ω = ω1 ⊕ ω2. Upon receiving a challenge bit from the
verifier, the prover sends either the input and randomness of P1 or P2, for which
the verifier checks for consistency with respect to the transcript, and that P2

outputs 1. From the correctness of the underlying two-party protocol it holds that
a malicious prover will not be able to answer both challenges, as that requires
generating a complete accepting view. On the other hand, zero-knowledge is
implied by the privacy of the two-party protocol. We now proceed with the
formal description of our zero-knowledge proof. Let x denote a statement in an
NP language L, associated with relation R, let C be a circuit that outputs 1
on input (x, ω) only if (x, ω) ∈ R, and let ΠOT

g = 〈π1, π2〉 denote a two-party
protocol that privately realizes C with perfect correctness; see Sect. 5 for the
complete details of protocol ΠOT

g when embedded with our OT encoding. Our
protocol is specified in Fig. 1. We note that our protocol implies the first static
zero-knowledge proof based on (the two-party variant of) [GMW87,Yao86]. In
Sect. 5 we discuss how to rely solely on one-way functions. In [HV16] we prove
the following claim,

Theorem 31. Assume the existence of one-way functions. Then, the protocol
presented in Fig. 1 is a static honest verifier zero-knowledge proof for any lan-
guage in NP.

On the Power of Secure Two-Party Computation 417

Fig. 1. Static zero-knowledge proof for any language L ∈ NP

4 Instance-Dependent Commitments from Garbled
Schemes

As a warmup, we present our first adaptive instance-dependent commitment
scheme based on our garbled circuits notion as formally defined in Sect. 2.3
which, in turn, implies a construction for the binary message space {0, 1} based
on one-way functions (see more detailed discussion in Sect. 2.3). Let x denote
a statement in an NP language L, associated with relation R, and let C be a
circuit that outputs 1 on input (x, ω) only if (x, ω) ∈ R.10 Intuitively speaking,
our construction is described as follows.

A commitment to the bit 0 is defined by a garbling of circuit C , i.e., Grb(C),
and a commitment to the secret key whereas a commitment to the bit 1 is defined
by a simulated garbling of the circuit C with output set to 1, i.e., the garbled
circuit output by SimGC(C, 1), and a commitment the input encoding z̃ that is
output by SimGC(C, 1). The decommitment to the bit 0 requires revealing the
secret key (all input labels) with which the receiver checks that Grb(C) is indeed
a garbling of C. On the other hand, the decommitment to the bit 1 requires
decommitting to z̃ with which the receiver checks that the simulated garbled
circuit evaluates to 1. Importantly, if the committer knows a witness ω for the
validity of x in L, then it can always honestly commit to a garbling of circuit C
and later decommit to both 0 and 1. For statements x ∈ L, the hiding property
of the commitment scheme follows directly from the indistinguishability of the

10 More explicitly, we assume that the common statement x is embedded inside the
circuit and only ω is given as its input.

418 C. Hazay and M. Venkitasubramaniam

simulated garbled circuit and the hiding property of the underlying commitment
scheme. Whereas, for x �∈ L, the commitment is perfectly binding as even an
unbounded committer cannot provide a honestly generated garbled circuit, and
at the same time provide an encoding of some input that evaluates the garbled
circuit to 1 (as there exists no witness ω for x). Finally, considering garbling
constructions from the literature, such as the [LP09] scheme, we note that the
communication complexity of our construction for committing a single bit equals
O(s · poly(κ)) where s is the circuit’s size and κ is the security parameter. In
[HV16], a formal proof of the following theorem is provided.

Theorem 41. Assume the existence of one-way functions. Then, there exists a
secure adaptive instance-dependent commitment scheme for any language in NP.

5 Randomized Encoding from Two-Party Computation

In this section, we show how to construct a randomized encoding for any function
f , given a two-party computation in the oblivious transfer (OT)-hybrid. This
is opposed to prior works that have established the usefulness of randomized
encoding in constructing efficient multiparty computation [IK00,AIK04,DI06].

Let f : {0, 1}n → {0, 1} be an arbitrary polynomial-time computable func-
tion. We define g(a, b) = f(a ⊕ b) and view g as a two-party functionality. Then
let ΠOT

g = 〈π1, π2〉 be a two-party protocol which realizes g with the following
guarantees:

1. It guarantees UC security against semi-honest adversaries in the OT-hybrid
that can statically corrupt either P1 or P2 and adaptively corrupt P2. Looking
ahead, we consider two different adversaries: (1) adversary A1 that cor-
rupts P1 at the beginning of the execution and adaptively corrupts P2

post-execution (further denoted as a semi-adaptive adversary [GWZ09]) and
(2) adversary A2 that corrupts P2 at the beginning of the execution. We
denote the corresponding simulators by S1 and S2.

2. Finally, we require that P1 is the (designated) sender for all OT instances
and that the output of the computation is obtained only by P2.

We remark that both the classic Yao’s garbled circuit construction [Yao86] and
the [GMW87] protocol satisfy these conditions in the OT-hybrid. We further
stress that while garbled circuit constructions do not (in general) admit adap-
tive corruptions, we show that the specific corruption by adversary A1 can be
simulated in the OT-hybrid. In [HV16] we discuss these two realizations in more
details. We next demonstrate how to transform any two-party computation pro-
tocol that satisfies the properties listed above to a randomized encoding. Our first
construction will rely on trapdoor permutations to realize the OT functionality.
We then relax this requirement and show how to rely on one-way functions.

Given any protocol ΠOT
g we consider a protocol Π̃ that is obtained from ΠOT

g

by replacing every OT call with the enhanced trapdoor permutation based OT
protocol of [EGL85]. Let {fTDP : {0, 1}n → {0, 1}n} be a family of trapdoor
permutations and h be the corresponding hard-core predicate. More precisely,

On the Power of Secure Two-Party Computation 419

– For every OT call where P1’s input is (s0, s1) and P2’s input is t, we require
P1 to send the index of a trapdoor permutation fTDP to P2. Next, P2 samples
v1−t and ut uniformly at random from {0, 1}n and sets vt = fTDP(ut). P2 sends
(v0, v1) to P1, that is followed by the message (c0, c1) from P1 to P2 where
c0 = h(u0) ⊕ s0 and c1 = h(u1) ⊕ s1 and u0 = f−1

TDP(v0), u1 = f−1
TDP(v1).

We need to verify that Π̃ satisfies all the required properties.

1. It follows from the fact that if ΠOT
g implements g with UC security against

semi-honest adversaries A1 and A2, then Π̃ achieves the same against cor-
responding adversaries that corrupt the same parties and finally output the
view of P2. In more details, recall that A1 corrupts P1 at the beginning and
P2 post execution (adaptively). Now, since ΠOT

g admits simulation of A1 in
the OT-hybrid, for the same property to hold for Π̃, it suffices to achieve sim-
ulation of the OT protocol where the sender is corrupted at the beginning and
the receiver is corrupted post execution. It is easy to see that the [EGL85] pro-
tocol satisfies this requirement since the receiver is equivocable. Next, to see
that A2 can be simulated we rely on the fact that the OT protocol described
above admits (semi-honest) receiver’s simulation. Therefore, Π̃ satisfies all
the required properties.

2. This property directly holds as we rely on the same instructions to determine
the sender and receiver of the OT calls.

Our Randomized Encoding. We now proceed with the description of our robust
randomized encoding of f as formalized in Definition 25 by specifying the func-
tions f̂OFF, f̂ON and the simulation S. Towards describing our algorithms, we con-
sider a real world experiment carried out between parties P1 and P2 that engage
in an execution of Π̃ with environment Z. Let REALΠ̃,A,Z(κ, x, r) denote the
output of Z on input x, random tape rZ and a security parameter κ upon inter-
acting with A with random tape rA and parties P1, P2 with random tapes r1, r2,
respectively, that engage in protocol Π̃ where the inputs are determined by Z and
r = (rZ , rA, r1, r2). Let REALΠ̃,A,Z(κ, x) denote a random variable describing
REALΠ̃,A,Z(κ, x, r) where the random tapes are chosen uniformly. We denote
by IDEALg,S,Z(κ, x, r) the output of Z on input x, random tape rZ and secu-
rity parameter κ upon interacting with S and parties P1, P2, running an ideal
process with random tape rS , where r = (rZ , rS). Let IDEALg,S,Z(κ, x) denote
a random variable describing IDEALg,S,Z(κ, x, r) when the random tapes rZ
and rS are chosen uniformly.

Encoding: Consider a (semi-honest) adversary A1 that corrupts P1 at the begin-
ning of the execution. At the end of the execution, A1 first sends τ to Z where
τ is the transcript of messages exchanged between P1 and P2. Next it (adap-
tively) corrupts P2 and sends (a2, r2) to Z where a2 and r2 are the respective
input and randomness used by party P2. Let S1 be the corresponding simu-
lator as guaranteed by the properties of Π̃.

420 C. Hazay and M. Venkitasubramaniam

1. f̂OFF(r): The offline encoding is obtained by running S1 with randomness
rS1 until it sends the first message to the environment. Recall that S1

statically corrupts P1, where upon completing the execution, S1 sends
the transcript of the messages to the environment. We define the output
of f̂OFF(r) to be this output where the input a1 of party P1 is sampled
uniformly at random. Notice that the offline part of the encoding does
not depend on the input x as required.

2. f̂ON(x, r): To obtain the online part, we continue the execution of S1 in the
execution corresponding to the transcript τ generated by f̂OFF(r). Recall
that after sending τ , S1 adaptively corrupts P2 and sends the input and
random tape of P2 to the environment. f̂ON(x, r) continues the emulation
of S1, where upon corrupting party P2 it feeds S1 with the input of P2

as a2 = x ⊕ a1 and f(x) as the output. The simulation returns the view
of P2 and f̂ON(x, r) is set to (a2, r2) where r2 is the random tape of P2

output by S1.
Decoder: The decoder B on input (zOFF, zON) recomputes the view of P2 from

the messages sent by P1 to P2 in zOFF and the input and randomness of P2

in zON. It checks if the messages sent from P2 to P1 are consistent with what
is in zOFF and finally outputs what P2 outputs in the execution.

Simulation: Consider the (semi-honest) adversary A2 that statically corrupts
P2. At the end of the execution A2 sends (τ, (a2, r2)) to Z where τ is the
transcript of messages exchanged between P1 and P2 and a2 and r2 are the
respective input and randomness used by party P2. Let S2 be the correspond-
ing simulator. Then the simulation algorithm of the randomized encoding S
is defined as follows. Upon receiving y = f(x), S invokes S2 where P2’s input
is set to a uniformly chosen random string a2 and its output is set to y. Recall
that S2 outputs (τ, (a2, r2)) at the end of the execution. Then the output of
S is defined by (sOFF, sON) where sOFF = τ and sON = (a2, r2).

Theorem 51. Let (f̂(x, r),S, B) be as above. Then f̂(x, r) is a randomized
encoding of f with computational privacy. Assuming the existence of enhanced
trapdoor permutations, we obtain an encoding with offline complexity CΠ + ρΠκ
and online complexity |x|+rΠ +ρΠκ where CΠ is the communication complexity
of ΠOT

g in the OT-hybrid, ρΠ in the number of OT invocations made by P2, rΠ

is the randomness complexity of P2 in ΠOT
g and κ is the security parameter. If

we instead rely on one-way functions we achieve an encoding with offline and
online complexities CΠ + ρΠpoly(κ) and |x| + rΠ + ρΠpoly(κ), respectively.

In [HV16] we discuss the relaxation to one-way functions and the proof.

Complexity. Finally, we measure the complexity of our encoding. Note first that
for each OT call the offline encoding is a pair of image elements of the one-way
permutation incurring O(κ) overhead, while the online complexity is a preimage
of length κ. Then the offline encoding of the overall construction is the commu-
nication complexity of Π̃ which equals to the communication of ΠOT

g , denoted
by CΠ , together with the number of OT calls, denoted by ρΠ , which overall

On the Power of Secure Two-Party Computation 421

yields CΠ + ρΠO(κ). Moreover, the online encoding includes P2’s input a2 and
randomness r2 where the latter includes the randomness complexity of ΠOT

g and
the complexity of the receiver’s randomness for the OT invocations which is
|x| + rΠ + ρΠκ. If we rely on one-way functions then the OT calls are incorpo-
rated as commitments and incur poly(κ) per invocation for the commitment as
well as the decommitment algorithms.

5.1 Corollaries and Applications

Below, we demonstrate the power of the proceeding transformation by prov-
ing lower bounds and providing additional applications. We discuss instance-
dependent commitment schemes in [HV16] as well as realizations for our RE.

Input-Delayed Zero-Knowledge Proofs. In this section, we extend the basic
construction of instance-dependent commitment schemes from our previous con-
struction to additionally allow constructing input-delayed zero-knowledge proofs.
We show how randomized-encoding that is secure against adaptive chosen inputs
can be used to realize input-delayed zero-knowledge proofs. Then relying on
the recent construction of such a randomized encoding [HJO+15] we obtain a
constant-rate input-delayed zero-knowledge proof, namely whose communication
complexity is O(s) + poly(κ) where s is the size of the circuit realizing the NP-
relation and κ is the security parameter. We achieve this in two steps. First,
we extend our notion of instance-dependent commitment scheme to one where
the actual commitment scheme do not require the input statement. Then using
such an instance-dependent commitment scheme we will show how to realize an
input-delayed zero-knowledge proofs. We provide next definitions for the above
primitives.

Our first notion is that of input-delayed instant-dependent commitment
scheme. On a high-level, this primitive is a variant of the plain instant-dependent
commitment scheme where the real and fake commitment algorithms do not
require the knowledge of the input statement in the commit phase. The state-
ment can be adaptively chosen based on the commit phase and will be required
only in the decommit phase. Second, we will not require an Adapt algorithm
that can explain a fake commitment as an honest commitment of any message
by generating random coins for an honest committer that would have produced
the same commitment. Instead, we will only require the slightly weaker prop-
erty of the fake commitment being equivocable. Towards this, we will introduce
a decommitment algorithm for the honest commitment that additionally takes
as input the statement x and produces a decommitment to the corresponding
message m. The receiver then verifies the decommitment with respect to the
statement x. Corresponding to the fake commitment algorithm, we now require
an algorithm that, given the statement and the witness can reveal a commitment
(i.e. produce decommitments) to any message m.

422 C. Hazay and M. Venkitasubramaniam

Definition 52. (Input-delayed IDCS). Let R be an NP relation and L be
the language associated with R. A (non-interactive) instance dependent commit-
ment scheme (IDCS) for L is a tuple of probabilistic polynomial-time algorithms
(C̃om, D̃ecom, Ṽer, C̃om

′
,Equiv), where:

– C̃om is the commitment algorithm: For a message m ∈ Mn, and a random
string r ∈ {0, 1}p(n), C̃om(1n,m; r) returns a commitment value c where n is
the length of the input-instance and p(·) is a polynomial.

– D̃ecom is the decommitment algorithm that on input a statement x, commit-
ment c, mesage m and randomness r outputs a decommitment d.

– Ṽer is the verification algorithm that on input x,m, c, d outputs accept or reject.
– C̃om

′
is a “fake” commitment algorithm: For a random string r ∈ {0, 1}q(n),

C̃om
′
(1n, r) returns a commitment value c where n is the length of the input

instance and q(·) is a polynomial.
– Equiv is an equivocation algorithm: Let x ∈ L and ω ∈ Rx. For all c and

r ∈ {0, 1}q(|x|) such that Com′(r) = c, and for all m ∈ Mn, Equiv(x, ω, c,m, r)
outputs d such that Ṽer(x,m, c, d) outputs accept.

The hiding property now requires that for any message m, an honest commit-
ment and decommitment to m be indistinguishable from a fake commitment and
decommitment to m even when the input statement is adaptively chosen after
the commitment phase. The binding property on the other hand will require
that for any commitment c and a false statement x �∈ L, there exists no values
m, d and m′, d′ such that Ṽer(x,m, c, d) = Ṽer(x,m′, c, d′) = accept. Finally, in
Fig. 2 we describe our input-delayed zero-knowledge proof.

Theorem 53. Assume the existence of one-way functions. Then, the protocol
presented in Fig. 2 is an input-delayed zero-knowledge proof with soundness 1/2
for any language in NP.

See [HV16] for the proof. Finally, we need to show how our input-delayed
IDCS can be constructed from a robust randomized encoding that is secure
against an adaptive chosen input. We begin with a randomized encoding for the
following function f : f(x, ω) = (R(x, ω), x). Since the randomized encoding is
secure against adaptive choice of inputs, the simulation algorithm of the RE is
decomposed into two algorithms, namely the offline part sOFF and online part
sON. Now, we can define our commitment algorithm as follows: A commitment
to 0 returns the offline part of the encoding f̂OFF(r) whereas a commitment to
1 returns the offline part of the simulation sOFF(r′) where r and r′ are the ran-
domness used for the algorithms. A decommitment to 0 requires revealing ran-
domness showing that the commitment was generated honestly using f̂OFF(r)
and a decommitment to 1 requires providing the online part sON that along with
the commitment decodes to (1, x) where x is the statement. Finally, the fake
commitment algorithm is defined as a commitment to 0. Observe that both the
honest and fake commitment algorithms do not depend on the input statement.
This is enabled by the adaptive input security of the randomized encoding. The

On the Power of Secure Two-Party Computation 423

Fig. 2. Input-delayed zero-knowledge proof for any language L ∈ NP

hiding property of the commitment for bit 0 holds directly, whereas the hiding
property for the bit 1 follows from the simulation property of the randomized
encoding. Binding on the other hand follows directly from the robustness prop-
erty of the randomized encoding. The complete description is given in [HV16].
We note that the work of Hemenway et al. [HJO+15] shows how to obtain a ran-
domized encoding that is secure against adaptively chosen inputs. We show in
[HV16] how to extend it to achieve the stronger robustness property. Combining
their work with our construction, we have the following corollary.

Corollary 54. Assuming the existence of one-way functions. Then for any NP-
relation R, there exists an input-delayed ZK proof with communication complex-
ity O(s · poly(k)) where s is the size of the circuit computing the NP relation.

5.2 Commit-and-Prove Zero-Knowledge Proofs

In the “commit-and-prove” paradigm, the prover first commits to its witness and
then proves that the statement, along with the decommitment value maintains
the underlying NP relation. This paradigm has turned useful for constructing
maliciously secure protocols [GMW87,CLOS02]. In this section we show how to
design such an input-delayed proof, namely, where the statement is determined
only at the last round and the underlying commitment scheme (in turn the
one-way function) is used in a black-box way. Specifically, in this input-delaying
flavour the witness is known ahead of time but not the statement, and hence not
the NP relation.

424 C. Hazay and M. Venkitasubramaniam

As above, we employ a robust randomized encoding that is secure in the
presence of adaptive choice of inputs, where the simulation algorithm is split into
an offline and online phases, that computes the function fω0(x, ω1) = (R(x, ω0 ⊕
ω1), x, ω1) where ω0 is hardwired into the circuit that computes this functionality.
The reason we need to hardwire it is because the offline phase must be associated
with this share. Whereas the other share ω1 is output by the circuit in order to
enforce the usage of the right share.

Achieving Negligible Soundness. In order to improve the soundness parameter of
our ZK proof we need to repeat the basic proof sufficiently many times in parallel,
using fresh witness shares each time. This, however, does not immediately work
as the dishonest prover may use different shares for each proof instance. In
order to overcome this problem we use the [IKOS09] approach in order to add a
mechanism that verifies the consistency of the shares. Namely, suppose we wish
to repeat the basic construction in parallel N = O(t) times where t = O(κ) and
κ is the security parameter. Formally,

– The verifier picks a random t-subset I of [N]. It also picks t random challenge
bit {chi}i∈I and commits to them.

– The prover then continues as follows:
1. It first generates N independent XOR sharings of w, say

{(wi,0, wi,1)}i∈[N].
2. It generates the views of 2N parties Pi,0 and Pi,1 for i ∈ [N] executing a

t-robust t-private MPC protocol, where Pi,j has input wi,j , that realizes
the functionality that checks if wi,0 ⊕ wi,1 are equal for all i. Let Vi,j be
view of party Pi,j .

3. Next, it computes N offline encodings of the following set of functions:

fwi,0,Vi,0(x,wi,1, Vi,1) = (b, x, wi,1, Vi,1)

for i ∈ [N], where b = 1 if and only if R(x,wi,0 ⊕ wi,1) holds and the
views Vi,0 and Vi,1 are consistent with each other.

4. Finally, the prover sends:
{
fOFF

wi,0
(ri), , (ri), , (wi,0), , (wi,1), , (Vi,0), , (Vi,1)

}
i∈[N]

.

– The verifier decommits to all its challenges.
– For every index i in the t subset the prover replies as follows:

• If chi = 0 then it decommits to ri, wi,0 and Vi,0. The verifier then checks
if the offline part was constructed correctly (as in our basic proof).

• If chi = 1 then i sends fON
wi,0

(ri, x, wi,1) and decommits wi,1. The verifier
then runs the decoder and checks if it obtains (1, x, wi,0).

Furthermore, for every index i, the prover decommits the views Vi,chi
for which

the verifier checks if the MPC-in-the-head protocol was executed correctly.

Theorem 55. Assume the existence of one-way functions. Then, the above pro-
tocol is a commit-and-prove input-delayed zero-knowledge proof with negligible
soundness for any language in NP.

On the Power of Secure Two-Party Computation 425

6 Constructing Adaptive Zero-Knowledge Proofs

We describe next how to construct adaptive zero-knowledge proofs for all NP
languages based on our instance-dependent commitment schemes from Sects. 4
and 5.

Let x denote a statement to be proven by the prover relative to some lan-
guage L associated with relation R. Then the prover generates a garbled circuit
C that takes (x, ω) and outputs 1 only if (x, ω) ∈ R, and commits to this gar-
bling and the secret key sk using the commitment scheme from Sect. 4. Next,
upon receiving a challenge bit b from the verifier, the prover continues as follow.
If b = 0 then the prover decommits to the commitment of the secret key and the
garbled circuit for which the verifier verifies the correctness of garbling. Else, if
b = 1 then the prover decommits a “path” in the garbled circuit and provides
an encoding for ω that evaluates the path to 1. Namely, we consider the con-
crete garbling construction by [Yao86,LP09] for which each evaluation induces
a path of computation, where each gate evaluation requires the decryption of a
single ciphertext out of four ciphertexts, where this ciphertext can be part of
the decommitted information handed to the verifier when b = 1. The verifier
then evaluates the garbling on this path and checks that the outcome if 1. We
note that it is not clear how to generalize this property (where only part of the
garbled circuit is decommitted) nor the following reconstructability property for
the notion of randomized encodings.

Let Garb = (Grb,Enc,Eval,Dec) denote a garbling scheme as in Sect. 2.3.
Then, we will require one more property that Garb should satisfy:

Reconstructability: Given any path of computation in the garbled circuit it
is possible to reconstruct the rest of the garbled circuit as being honestly
generated by Grb.

We note that the [LP09] garbling scheme meets this notion. The description
of our protocol can be found in Fig. 3 and the proof of the following theorem in
[HV16].

Theorem 61. Assume the existence of one-way functions. Then, the protocol
presented in Fig. 3 is an adaptively secure honest verifier zero-knowledge proof
for any language in NP with soundness error 1/2.

We note that the communication complexity of our protocol is O(κs2) where κ
is the security parameter and s is the size of C. In the full version we extend this
construction to achieve a linear-rate adaptive ZK proof and obtain the following
theorem.

Theorem 62. Assume the existence of one-way functions. Then, for any NP
relation R that can be verified by a circuit of size s (using bounded fan-in gates),
there exists an adaptive zero-knowledge proof with communication complexity
O(s) · poly(κ, log s) where κ is the security parameter.

426 C. Hazay and M. Venkitasubramaniam

Fig. 3. Adaptive zero-knowledge proof for any language L ∈ NP

References

[AIK04] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In:
FOCS, pp. 166–175 (2004)

[AIK06] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM
J. Comput. 36(4), 845–888 (2006)

[AIK10] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness:
efficient verification via secure computation. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)

[AIKP15] Agrawal, S., Ishai, Y., Khurana, D., Paskin-Cherniavsky, A.: Statistical
randomized encodings: a complexity theoretic view. In: Halldórsson, M.M.,
Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol.
9134, pp. 1–13. Springer, Heidelberg (2015)

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions
with constant online rate or how to compress garbled circuits keys. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 166–184. Springer, Heidelberg (2013)

[App14] Applebaum, B.: Key-dependent message security: generic amplification
and completeness. J. Cryptol. 27(3), 429–451 (2014)

On the Power of Secure Two-Party Computation 427

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: STOC, pp. 479–488 (1996)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC, pp. 1–10 (1988)

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent
message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 423–444. Springer, Heidelberg (2010)

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: CCS, pp. 784–796 (2012)

[BMO90] Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant
rounds. In: STOC, pp. 482–493 (1990)

[CCD87] Chaum, D., Crépeau, C., Damg̊ard, I.B.: Multiparty unconditionally
secure protocols. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293,
pp. 462–462. Springer, Heidelberg (1988)

[CDD+04] Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive
versus non-adaptive security of multi-party protocols. J. Cryptol. 17(3),
153–207 (2004)

[CDD+15] Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti,
R.: Additively homomorphic UC commitments with optimal amortized
overhead. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515.
Springer, Heidelberg (2015)

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: STOC, pp. 494–503
(2002)

[CPS+15] Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.:
Improved OR composition of sigma-protocols. IACR Cryptology ePrint
Archive, 2015:810 (2015)

[CvdGT95] Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer
and private multi-party computation. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 110–123. Springer, Heidelberg (1995)

[Dam10] Damg̊ard, I.: On Σ-protocols (2010). http://www.cs.au.dk/ivan/Sigma.
pdf

[DHRS04] Ding, Y.Z., Harnik, D., Rosen, A., Shaltiel, R.: Constant-round oblivious
transfer in the bounded storage model. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 446–472. Springer, Heidelberg (2004)

[DI06] Damg̊ard, I.B., Ishai, Y.: Scalable secure multiparty computation. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer,
Heidelberg (2006)

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: STOC, pp. 554–563 (1994)

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[FS89] Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds.
In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544.
Springer, Heidelberg (1990)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

http://www.cs.au.dk/ivan/Sigma.pdf
http://www.cs.au.dk/ivan/Sigma.pdf

428 C. Hazay and M. Venkitasubramaniam

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008)

[GLOV12] Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-
malleable commitments: a black-box approach. In: FOCS, pp. 51–60
(2012)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229 (1987)

[GOSV14] Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-
box zero knowledge. In: Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, 31 May – 3 June 2014, pp. 515–524 (2014)

[GWZ09] Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryp-
tion and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009)

[HIKN08] Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-Combiners via
secure computation. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
393–411. Springer, Heidelberg (2008)

[HJO+15] Hemenway, B., Jafargholi, Z., Ostrovsky, R., Scafuro, A., Wichs, D.: Adap-
tively secure garbled circuits from one-way functions. IACR Cryptology
ePrint Archive, 2015: 1250 (2015)

[HR07] Haitner, I., Reingold, O.: A new interactive hashing theorem. In: CCC,
pp. 319–332 (2007)

[HV16] Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party
computation. IACR Cryptology ePrint Archive, 2016: 74 (2016)

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation
with applications to round-efficient secure computation. In: FOCS, pp.
294–304 (2000)

[IK02] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via
perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales,
R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS,
vol. 2380, pp. 244–256. Springer, Heidelberg (2002)

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Proceedings of the 39th Annual ACM
Symposium on Theory of Computing, San Diego, California, USA, 11–13
June 2007, pp. 21–30 (2007)

[IKOS09] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152
(2009)

[IKPY16] Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.H.: Secure
protocol transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 430–458. Springer, Heidelberg (2016)

[IOS97] Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic prim-
itive. J. Cryptol. 10(1), 37–50 (1997)

On the Power of Secure Two-Party Computation 429

[IPS08] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 572–591. Springer, Heidelberg (2008)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444,
pp. 294–314. Springer, Heidelberg (2009)

[IW14] Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with
zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–
145. Springer, Heidelberg (2014)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp.
20–31 (1988)

[KO04] Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004)

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[LS90] Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge
proofs. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol.
537, pp. 353–365. Springer, Heidelberg (1991)

[LZ11] Lindell, Y., Zarosim, H.: Adaptive zero-knowledge proofs and adaptively
secure oblivious transfer. J. Cryptol. 24(4), 761–799 (2011)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[NOVY98] Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge
arguments for NP using any one-way permutation. J. Cryptol. 11(2), 87–
108 (1998)

[OSV15] Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound
zero-knowledge arguments from OWFs - the (semi) black-box way. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
345–374. Springer, Heidelberg (2015)

[OV08] Ong, S.J., Vadhan, S.P.: An equivalence between zero knowledge and com-
mitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 482–500.
Springer, Heidelberg (2008)

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party
computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

[Yao86] Yao, A.C.C: How to generate and exchange secrets (extended abstract).
In: FOCS, pp. 162–167 (1986)

Secure Protocol Transformations

Yuval Ishai1,3, Eyal Kushilevitz1,3, Manoj Prabhakaran2(B), Amit Sahai3,
and Ching-Hua Yu2

1 Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.il

2 University of Illinois, Urbana-Champaign, USA
{mmp,cyu17}@cs.illinois.edu

3 University of California, Los Angeles, USA
sahai@cs.ucla.edu

Abstract. In the rich literature of secure multi-party computation
(MPC), several important results rely on “protocol transformations,”
whereby protocols from one model of MPC are transformed to protocols
from another model. Motivated by the goal of simplifying and unifying
results in the area of MPC, we formalize a general notion of black-box
protocol transformations that captures previous transformations from
the literature as special cases, and present several new transformations.
We motivate our study of protocol transformations by presenting the
following applications.
– Simplifying feasibility results:

• Easily rederive a result in Goldreich’s book (2004), on MPC with
full security in the presence of an honest majority, from an earlier
result in the book, on MPC that offers “security with abort.”

• Rederive the classical result of Rabin and Ben-Or (1989) by
applying a transformation to the simpler protocols of Ben-Or
et al. or Chaum et al. (1988).

– Efficiency improvements:
• The first “constant-rate” MPC protocol for a constant number of

parties that offers full information-theoretic security with an opti-
mal threshold, improving over the protocol of Rabin and Ben-Or;

• A fully secure MPC protocol with optimal threshold that
improves over a previous protocol of Ben-Sasson et al. (2012)
in the case of “deep and narrow” computations;

• A fully secure MPC protocol with near-optimal threshold that
improves over a previous protocol of Damg̊ard et al. (2010) by
improving the dependence on the security parameter from linear
to polylogarithmic;

• An efficient new transformation from passive-secure two-party
computation in the OT-hybrid and OLE-hybrid model to zero-
knowledge proofs, improving over a recent similar transformation
of Hazay and Venkitasubramaniam (2016) for the case of static
zero-knowledge, which is restricted to the OT-hybrid model and
requires a large number of commitments.

Finally, we prove the impossibility of two simple types of black-box pro-
tocol transformations, including an unconditional variant of a previous
negative result of Rosulek (2012) that relied on the existence of one-way
functions.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 430–458, 2016.
DOI: 10.1007/978-3-662-53008-5 15

Secure Protocol Transformations 431

1 Introduction

Secure multi-party computation (MPC) is one of the central topics around which
modern cryptography has been shaped. Research in MPC has led to major
innovations in cryptography, including effective definitional approaches (e.g.,
simulation-based security [16,17]), powerful and vastly applicable algorithmic
techniques (starting with secret-sharing [29] and garbling schemes [31]), sharp
impossibility results (e.g., [9]) and even several cryptographic concepts ahead of
their time (like fully-homomorphic encryption [30]). Significantly, in recent years,
some of these results have started moving from theory to practice, spurring sig-
nificant further theoretical and engineering effort to optimize their performance
and usability.

Over 35 years of active research, MPC has grown into a rich and complex
topic, with many incomparable flavors and numerous protocols and techniques.
Indeed, just cataloguing the state of the art results is a non-trivial research
project in itself, as exemplified by the recent work of Perry et al. [26], which
proposes classifying the existing protocols using 22 dimensions.

This diversity of models and questions forms a wide spectrum of possible
tradeoffs between functionality, security, and efficiency, which partially explains
the massive amount of research in the area. But this diversity also poses the risk
of misdirected research efforts. For instance, if a new technique is introduced
in order to obtain an efficiency improvement in one model, it is not clear a-
priori to which other models the same technique may apply; and even when the
same technique directly applies to other models, one typically needs to manually
modify protocols and their analysis to ensure it.

While developing and maintaining a systematic database like the one in [26] is
certainly helpful, we propose a complementary approach to taming the complex
landscape of MPC protocols. Our approach is to relate the various flavors of
MPC problems to each other by means of general protocol transformations. More
concretely, our work studies the following high level question:

To what extent can results in one MPC model be “automatically” trans-
formed to other models?

This question is motivated by the following goals.

– Simplicity. The current proofs of the main feasibility results in the area of
MPC are quite involved, and results for different models share few common
ingredients. We would like to obtain a simpler and more modular joint deriva-
tion of different feasibility results from the 1980s [3,7,16,25,27,32], which were
originally proved using very different techniques.

– Efficiency. Despite a lot of progress on the efficiency of MPC, there are still
significant gaps between the efficiency of the best known protocols in different
models. For instance, viewing the number of parties n as a constant, n-party
protocols that offer full-security (with guaranteed output delivery) against
t < n/2 malicious parties [10,27] are asymptotically less efficient compared to
similar protocols with security against t < n/3 parties [3], or even to protocols
that offer “security with abort” against t < n malicious parties [22].

432 Y. Ishai et al.

A classical example of a general protocol transformation is the well known
“GMW compiler,” [16], which transforms any MPC protocol that offers security
against passive corruptions into one that offers security against active corrup-
tions, with the help of zero-knowledge proofs. Considering that this transforma-
tion has been behind several subsequent feasibility results, one may legitimately
consider that the GMW transformation is as important as – if not more impor-
tant than – the GMW protocol itself is, as an object of study. More recent exam-
ples include the IKOS transformation using “MPC-in-the-head” [20] and the IPS
transformation that combines player-virtualization with “watchlists” [22]. Com-
mon to all these techniques is the idea that they generically transform any set
of protocols that are secure for some (“easier”) flavors of MPC into a protocol
that is secure for another (“harder”) flavor.

While these previous results demonstrate the plausibility of general MPC
protocol transformations in some interesting cases, they are still far from covering
the space of all desirable transformations between different MPC models and
leave open several natural questions.

In this work, we initiate a systematic study of such MPC protocol transfor-
mations. We define a framework to formalize these transformations, and present
a few positive and negative results. We are interested in obtaining conceptually
simpler alternative proofs for known feasibility results by means of new trans-
formations, as well as in obtaining new results. We now discuss the goals of this
research in more detail.

The main theoretical motivation for studying protocol transformations is that
they highlight the essential new challenges presented in a harder flavor of MPC
compared to an easier flavor. For instance, the GMW-transformation distilled
out verifying claims in zero-knowledge as the essential challenge in moving from
semi-honest security to security against active corruption. As another example,
in this work, we present a new transformation, that can recover the classical
feasibility result of Rabin and Ben-Or [27] regarding security with guaranteed
output delivery with an honest majority, from two simpler feasibility results
(both of which were solved in [3,7]): (i) security against passive corruption with
an honest majority and (ii) security with guaranteed output delivery but only
with an arbitrarily large fraction of honest parties. We identify achieving an
intermediate security notion – security with partially identifiable abort – as the
key challenge in this transformation.

As noted above, another important motivation behind studying protocol
transformations is the possibility of efficiency improvements. On the face of it,
protocol transformations are not ideal for obtaining efficient protocols, as one
can hope to obtain extra efficiency by engineering fine details of the protocols
as applicable to the specific flavor of MPC. While that may indeed be true, a
protocol transformation can leverage advances in one flavor of MPC to obtain
efficiency improvements in another flavor. As it turns out, this lets us obtain
several new asymptotic efficiency results based on a single new transformation.
Considering that efficiency of MPC is a well-studied area, obtaining several new
result at once illustrates the power of such transformations.

Secure Protocol Transformations 433

There are other practical and theoretical motivations that led to this work,
which we mention below.

– From a pragmatic point of view, understanding the connections across
flavors of MPC will help in modular implementations of protocols. Indeed, the
implementation of a transformation from one flavor to another would tend to
be significantly simpler than an entire protocol in the latter flavor, specified and
implemented from scratch.

– Roles of important techniques can often be encapsulated as transforma-
tions among appropriate intermediate security notions (e.g., “player elimination”
can be encapsulated as implementing a transformation from “identifiable-abort-
security” to full-security). In the absence of such abstraction, these techniques
remain enmeshed within more complex protocols, and may not benefit from
research focus that a transformation can attract.

– More generally, transformations are important in reducing duplicated
research effort. For instance, if a new technique is introduced in order to obtain
an efficiency improvement in one model, it is not clear a priori to which other
models the same technique may apply; and even when the same technique
directly applies to other models, one typically needs to manually modify proto-
cols and their analysis to ensure it. On the other hand, if generic transformations
are available across models, techniques can be easily adapted across models.

– Finally, a theoretical framework is necessary to understand the limitations
of protocol transformations, via formal impossibility theorems. Indeed, without a
rigorous notion of “black-box” transformations, it is not clear how to rule out the
possibility of a “transformation” which simply discards the protocol it is given
and builds one from scratch. This is especially the case for unconditional security,
where the standard notions of black-box use of computational assumptions are
not helpful in differentiating a legitimate transformation from one which builds
its own (unconditionally secure) protocol from scratch.

AMotivatingExample.As an illustration of the use of protocol transformations
in simplifying the landscape of MPC protocols, we consider two protocol schemes
from Goldreich’s book [15, Chapter 7]. The first one obtains (stand-alone) security-
with-abort against arbitrary number of corruptions by an active, probabilistic
polynomial time (PPT) adversary1 (under standard cryptographic assumptions),
for general function evaluation, in a model with broadcast channels only. The sec-
ond one obtains full-security (i.e., guaranteed output delivery) in the same setting,
but restricting the adversary to corrupt less than half the parties. Both these pro-
tocol schemes are obtained using the GMW transformation. However, the latter
feasibility result does not take advantage of the former, but instead uses verifiable
secret-sharing (VSS) and several other techniques to achieve full-security, while
retaining certain elements from the previous construction.

We point out that in fact, one could avoid the duplicated effort by giving a
protocol transformation from the former flavor to the latter flavor of MPC. For
this, we abstract out a slightly stronger security guarantee provided by the first
1 One may consider static or adaptive corruption here. By default, we shall consider

adaptive adversaries in all constructions in this paper.

434 Y. Ishai et al.

protocol: while it allows an adversary to abort the protocol after learning its
own input, aborting always leads to identification of at least one party that is
corrupted by the adversary. This notion of security is often referred to as security
with identifiable-abort [21]. In Sect. 4.1, we show that one can easily transform
such a protocol into a protocol with full-security.

Security Augmentation and Efficiency Leveraging. Typically, an MPC
protocol transformation falls into one of two broad (informally defined) classes:
security augmentation and efficiency leveraging. Security augmentation refers to
building MPC protocols with strong security guarantees by transforming MPC
protocols with weaker security guarantees. The IPS compiler [22] is an instance of
security augmentation. Efficiency leveraging, on the other hand, aims to improve
the efficiency of MPC protocols, without necessarily increasing their security
guarantee. In such a transformation, the original (inefficient) protocol will typ-
ically be used on a “small” sub-computation task, in combination with other
cheaper (but less secure) protocols applied to the original “large” computation
task. The goal of the sub-computation task is usually to ensure that the strong
attacks on the final protocol has the effect of weak attacks on an execution of
the cheaper, less secure protocol. An instance of efficiency leveraging is given by
Bracha’s transformation [5], in which the strength of the security guarantee cor-
responds to the corruption-threshold (i.e., what fraction of parties are corrupted)
that can be tolerated.

1.1 Our Contributions

Framework. Firstly, we formalize the notion of a Black-Box Transformation
(BBT) from protocol schemes satisfying some security (or efficiency) require-
ments to a protocol scheme satisfying some other requirements.2 Towards this,
we formalize notions like protocol schemes (which map functionalities to pro-
tocols) and security definitions (which are just sets of pairs of functionalities
and protocols), all in a fairly abstract fashion. A BBT itself is modeled using
a circuit that describes a protocol’s structure as a program built from various
components.

The framework is general enough to cast all of the above mentioned trans-
formation (GMW, Bracha, IKOS and IPS) as instances of BBT.

We remark that we treat security notions highly abstractly, and do not impose
any conditions on how security is proven. However, in all our positive results and
examples, security definitions use a simulation paradigm, and one could define
a “fully” blackbox transformation by requiring that the simulator of the protcol
resulting from the transformation be constructed in a black-box manner from
the simulators of the given protocols. For the sake of simplicity, and to keep the
focus on the structure of the constructions rather than on the proofs of security,
2 The term “Black-Box” refers to the fact that (the next-message function of) the

resulting protocol uses (the next-message function of) all the constituent protocols
and the functionality itself as oracles; however, note that the constituent protocols
themselves may depend on their functionalities in a non-black-box manner.

Secure Protocol Transformations 435

we do not formally include this restriction in our definition of BBT. We also
point out that this strengthens our impossibility results.

New Transformations and Consequences. We present a new transformation
which can be used to obtain known and new results about (information-
theoretically) secure MPC for general function evaluation, with guaranteed
output delivery, given an honest-majority and a broadcast channel. Our trans-
formation yields such an MPC scheme starting from two protocol schemes –
one achieving full-security, but for a lower threshold (βn corruption threshold,
for some β > 0) and one achieving semi-honest security under honest-majority
(Corollary 1). (See the next section for an overview of the transformation, and
the various intermediate transformations that lead to it.) From this transforma-
tion we obtain the following results:

1. We readily obtain the result of Rabin and Ben-Or [27] as a consequence
of the earlier work of Ben-Or et al. and Chaum et al. [3,7], via the above
transformation.

2. We obtain the first “constant-rate” MPC protocol scheme with guaranteed
output delivery against corruption of less than n/2 parties, provided the num-
ber of parties is constant (Corollary 2). That is, the total communication in
this protocol is at most cn|C|, where C is the circuit representation of the
function, and cn is a constant independent of the security parameter and C
but dependent only on the number of parties. This result is obtained – fol-
lowing the lead of [22]3 – by applying our transformation to the scheme of
[12] (combined with a secret-sharing scheme due to [8]) and the semi-honest
secure scheme of [3].

3. Next, we present an efficiency leveraging transformation, which is designed to
improve the efficiency of a protocol scheme with full-security, by combining it
with a (cheaper) protocol which achieves security-with-abort (Theorem 8). By
applying this transformation to the above protocol with full-security and an effi-
cient protocol with security-with-abort from [14], we obtain a “scalable” MPC
protocol with full-security and optimal corruption-threshold – i.e., tolerating
corruption of less than n/2 parties (Corollary 3).4 For an arguably natural class
of functions (namely, sequential computations, where the size of a circuit imple-
menting the function is comparable to its depth), this is the first scalable pro-
tocol with full-security and optimal threshold (complementing a result of [4],
which obtains similar efficiency for circuits which are of relatively low depth).

4. We present an efficient new transformation from two-party protocols in the
OT-hybrid or OLE-hybrid model that offer security against passive corrup-
tions to zero-knowledge proofs in the commitment-hybrid model, improving

3 In [22], these two protocol schemes were combined to obtain a similar constant-rate
protocol, but in the oblivious-transfer (OT) hybrid model and with security-with-
abort.

4 Here the term “scalable” denotes that for evaluating large circuits C, the communi-
cation complexity per party scales as Õ(|C|) (up to polylog multiplicative factors and
polynomial additive terms of the security parameter and the number of partiesh).

436 Y. Ishai et al.

over a recent similar transformation of Hazay and Venkitasubramaniam [18]
for the case of static zero-knowledge. (We note that the IKOS transformation
for protocols in such hybrid models requires at least 3 parties.) The trans-
formation from [18] cannot be applied in the OLE-hybrid model, and when
applied to natural protocols in the OT-hybrid model such as the GMW pro-
tocol, it requires several separate commitments for each gate in the circuit.
Our transformation for the OLE-hybrid model can be applied towards effi-
cient zero-knowledge proofs for arithmetic circuits and in both hybrids our
transformation requires just a constant number of commitments overall (for
a constant soundness error). This transformation may have relevance to the
recent line of work on practical zero-knowledge proofs initiated in [24]. In
contrast to [18], we do not consider here the goal of adaptive zero-knowledge
in the plain model.

5. Our final application considers the problem of relaxing the corruption thresh-
old from the optimal n/2 to n(1/2−ε), for any constant ε > 0. In this case, we
obtain a highly scalable protocol in which the total communication for evaluat-
ing a circuit C is Õ(|C|), ignoring additive terms that depend on the number
of parties, but not the size of the circuit (Corollary 4). This improves over a
result of [13].5
For this, we apply Bracha’s transformation [5] to one of the above protocols.
Specifically, we use Bracha’s transformation to combine an outer protocol that
has a relatively low corruption threshold but is highly scalable with respect to
communication and computation (in our case the one from [13]), and an inner
protocol with optimal threshold (in our case, the one from item 2 above), to
obtain a protocol with a near-optimal threshold.

Impossibility Results. One may ask if security against active corruption can
solely be based on security against semi-honest adversaries. Such questions can
be formalized as questions about the existence of a BBT. We present two impos-
sibility results:

1. We consider the question of functionally-black-box protocol schemes, intro-
duced by Rosulek [28]. (This is a special case of protocol transformations
where no protocol scheme is provided to the transformation.) Rosulek demon-
strated a two-party functionality family for which there is no functionally
black-box protocol, assuming the existence of one-way functions. We present
an unconditional version of this result (Theorem 1).

2. We show a functionality family – namely, zero-knowledge proof functionalities
– for which there is no BBT from semi-honest security to security (with abort)
against active adversaries (Theorem 2).

We remark that the proof of our second result breaks down if we expanded
the family of functionalities from ZK functionalities to all efficient functionalities.
5 In [13], in the absence of broadcast channels, the near-optimal threshold of n(1

3
− ε)

was considered. We can extend our result to this setting by implementing broadcast
channels among a constant number of parties, with a constant factor blow-up in
communication.

Secure Protocol Transformations 437

We leave it as an important open problem to prove broader impossibility results
for general computation (in which the family considered is the family of all
functionalities).

1.2 Technical Overview

Black-Box Transformations. We make precise a notion of a black-box trans-
formation among protocol schemes. Given a functionality f , a black-box trans-
formation can define new functionalities (which are syntactically just programs)
that access f in a black-box manner. Then, it can invoke a given protocol scheme
on any such functionality, to obtain a protocol (which is, again, a program). The
transformation can repeat these steps of defining new functionalities in terms of
programs it already has, and of invoking given protocol schemes on such func-
tionalities any number of times. At the end, it outputs one of the programs as
its protocol.

We point out that the “protocol step” (invoking a protocol scheme on a
functionality) is not limited to using the functionality as a black-box. However,
it is a black-box step in the sense that the transformation can be instantiated
with any protocol scheme with the requisite security guarantees.

Example: IPS Transformation. An example of a black-box transformation
(that we shall build on later) is the IPS transformation [22]. We shall graphically
represent a transformation using a circuit diagram like the one in Fig. 1.

Fig. 1. Black-Box Transformation in the IPS compiler

Here, each rectangular node (labeled T IPS
0 , T IPS

1 and T IPS
2) outputs a program

which makes black-box access to one or more programs input to that node. T IPS
0

converts an n-party functionality f into a functionality fout involving n “clients”
and N “servers”. T IPS

1 defines fin to be an n-party functionality in which the
trusted party carries out the program of a server in the protocol πout. The bulk
of the compiler is part of the transformation T IPS

2 , which combines the programs
of two protocols πout and πin in a black-box way to define the final protocol.

The diagram also shows two other nodes, labeled Λβ-full and Λsh/OT, each of
which take as input a functionality (fout and fin resp.) and produces a protocol
(πout and πin resp.). The labels on the nodes indicate the security guarantees
required of these protocols (security against active corruption of strictly less than
a β > 0 fraction of the parties, and security against semi-honest corruption, in

438 Y. Ishai et al.

the OT hybrid model resp.). [22] show that irrespective of what protocol schemes
are used to define the protocols produced by these nodes, as long as those schemes
meet the required security conditions, the resulting protocol will be a protocol
for f with security against active corruption of any number of parties.

New Transformations. We present several new transformations, some of which
are summarized in Table 1. In particular, we show how to transform a low-
threshold fully-secure protocol scheme and a high/optimal-threshold semi-honest
secure protocol scheme to a high/optimal-threshold protocol with full-security
(presented as Corollary 1). The main step is to achieve a weaker notion of secu-
rity (called “security with partially-identifiable-abort”) against the same high
fraction of corruption. Then, we show how a protocol with partially-identifiable-
abort security can be transformed to one with full-security.

The second of these two transformations turns out to be easy, using “Error-
Correcting Secret-Sharing” or ECSS (also known as robust secret-sharing) [6],
which can be realized easily using ordinary Secret-Sharing and one-time message
authentication codes (MAC) (see the full version). Partially-identifiable-abort-
security allows us to perform, in case of an abort, a player elimination process,
so that an honest majority is maintained. By carrying this out not on the origi-
nal function, but on a function which accepts ECSS-shared inputs and produces
ECSS-shared outputs, we show how to obtain full-security. The more challeng-
ing transformations is obtaining partially-identifiable-abort-security in the first
place, as discussed below.

Obtaining Partially-Identifiable-Abort Security. This transformation is
based on the IPS transformation [22] which, however, was not designed for the
setting with an honest majority. Hence, it relied on an OT-hybrid model, and
could obtain only “security with abort.” We modify this transformation in a cou-
ple of ways to obtain partially-identifiable-abort security in the honest-majority
setting, in the plain model (with a broadcast channel). There are two major
modifications we introduce, summarized below.

Watchlist Channels in the Plain Model. An important aspect of the IPS trans-
formation is a collection of “watchlist channels” used by each party to monitor
secretly chosen instances of a semi-honest secure inner protocol. In the IPS trans-
formation, Rabin OT is used to implement the watchlist channel. Instead, we rely
on a weaker variant, ÕT, which we can directly implement in the honest-majority
setting (without even broadcast channels), using Shamir’s secret-sharing.
ÕT allows an adversary to selectively cause aborts when there is no erasure.
The reason this suffices for building a watchlist channel is that this functionality
will be applied to random inputs, and when an abort occurs, we can safely iden-
tify a pair of inconsistent parties – at least one of which is corrupt – by having
all parties reveal their views in the protocol (over a broadcast channel).6

6 When no abort occurs, the adversary can indeed learn some information (i.e., that
an erasure occurred), but this can happen only in a small number of instances before
an abort occurs.

Secure Protocol Transformations 439

Table 1. A summary of the main black-box transformations in this paper. The first
column lists the type of the protocol scheme(s) given, and the second column lists
the type of protocol scheme obtained. t stands for the number of parties that can
be corrupted. idα-security denotes partially-identifiable-abort security, in which, in the
event of an abort, a set of parties, at least α fraction of which are corrupt, is identified by
all honest parties. sh-security stands for security against semi-honest corruption, abort
and full-security stand for security against active corruption, with the latter having
guaranteed output delivery.

From To Theorem Notes

idα-security, t < αn full, t < αn Theorem 3,
Theorem 4

Using player-elimination.
Theorem 4 relies on a
non-blackbox
decomposition of the
function, and yields
efficiency close to the
non-abort-case efficiency
of the given protocol

(sh-security, t < αn) and
(full-security, t < βn)

idα, t < αn Theorem 5,
Theorem 6

An honest-majority version
of the IPS transformation.
Any β > 0 suffices.
Theorem 6 saves a factor
of n using an expander
graph-based watchlist
scheme

(sh-security, t < αn) and
(full-security, t < βn)

full, t < αn Corollary 1 Combining the above two

(abort-secure π1, t < αn)
and (idα-secure π2,
t < αn)

idα, t < αn Theorem 7 Efficiency Leveraging:
resulting protocol almost
as efficient as π1 when
there is no aborta

(abort-secure π1, t < αn)
and (full-secure π2,
t < αn)

full, t < αn Theorem 8 Efficiency Leveraging:
resulting protocol is
almost as efficient as π1.
From Theorem 7 and
Theorem 4. Relies on a
non-blackbox
decomposition of the
function

aNote that a näıve protocol which runs π1 first and in the event of an abort, runs
π2 for the same functionality does not work. If π1 aborting is considered as an abort
event, then it gives the same efficiency guarantee, but is not an idα-secure scheme,
because if π2 completes without an abort, the protocol fails to identify an α-corrupt
set. If π1 aborting is not considered an abort event, the protocol fails to meet the
efficiency guarantee.

440 Y. Ishai et al.

Obtaining Partially-Identifiable Abort Instead of Abort. In the original IPS
transformation, even if the outer protocol has security with guaranteed output
delivery, the final protocol offers only security with abort (without any iden-
tification of the corrupt parties). This is due to the fact that when a party
detects an inconsistency, it simply aborts the protocol. In the setting with hon-
est majority, we show how to modify the IPS transformation, so as to obtain
partially-identifiable abort, such that a set of two parties can be identified of
which at least one is guaranteed to be corrupt.

Consider when Pi detects an inconsistency in the messages reported over a
watchlist channel that it has access to, in an inner protocol session. In this case,
Pi cannot exactly identify the source of inconsistency, but only localize it to a
pair of parties Pi1 , Pi2 , one of which is corrupt. However, since Pi itself could be
a corrupt party, at this point the honest parties can agree on one of (Pi, Pi1 , Pi2)
being corrupt. But being able to identify a set in which only 1/3 fraction is
guaranteed to be corrupt falls below our required guarantee of 1 out of 2 being
corrupt.

To further localize corruption, we require all the parties to broadcast their
views in the inner-protocol session in which an inconsistency was detected, as
they had earlier communicated over the watchlist channel to Pi. If an inconsis-
tency is detected among the broadcast views, then all parties can identify a pair
(Pi1 , Pi2) which are inconsistent with each other. On the other hand, if all the
views that are broadcast are consistent with each other, then, if Pi had indeed
observed an inconsistency earlier, it can point out one party Pi1 which reported
a view over the watchlist channel different from the one it reported over the
broadcast channel. Then Pi is required to broadcast this party’s identity, and all
parties agree on the pair (Pi, Pi1).

To see that this transformation retains security, note that by causing an
abort, the adversary can cause at most one server’s computation to be revealed
over the broadcast channel. This corresponds to the adversary corrupting one
extra server in the outer protocol. Since the choice of parameters in the IPS
compiler leaves a comfortable margin for the number of server corruptions, this
does not affect the overall security.

Efficiency Improvements. When considering a non-constant number of par-
ties, there are a couple of major sources of inefficiency in the transformation
above, which we can address.

Firstly, in the transformation from partially-identifiable-abort security to full
security, the protocol could be restarted Θ(n) times. To avoid this overhead, we
require the function to be given in the form of a composition of Θ(n) functions
(for instance, a layered circuit with Θ(n) layers), each one of approximately the
same size complexity. Then, one can restrict the duplicated effort for each restart
to correspond to a single component, and can ensure that overall O(n) restarts
can only about double the cost.

Secondly, in the IPS compiler, every party can potentially watch every inner
protocol session. This requires that all the communication in each inner-protocol
session is sent out (encrypted with one-time pads) to all the n parties. To avoid

Secure Protocol Transformations 441

this overhead, we can use an expander graph to define which parties may watch
the execution of which servers. Specifically, we can use an expander graph
between the set of parties and the set of servers in the outer protocol, in which
the degree of each server is a constant, but any subset of n/2 parties has in its
neighborhood (i.e., will potentially watch) almost all of the servers. Thus, the
communication in each inner-protocol session (corresponding to the servers in
the outer protocol) is sent out to only a constant number of parties.

Efficiency Leveraging: Transformations for Improving Efficiency. We
present a new instance of efficiency leveraging, in which an MPC protocol scheme
with full-security is “extended” by leveraging the efficiency of cheaper MPC
protocols which only offer security with abort. Specifically, we show how to
combine a protocol which guarantees only security with abort given an honest
majority (e.g., from [14]) and a protocol with full-security given honest majority
(like the one we constructed above) to obtain one which approaches the efficiency
of the former protocol while enjoying full-security like the latter.

The basic idea is simple. We can obtain a protocol with 1/2-identifiable-abort
security as follows: given a functionality, we will run a protocol with security-
with-abort to compute it; if the protocol terminates without aborting (as con-
firmed with the help of broadcast messages), then our protocol terminates suc-
cessfully. If it aborts, then we run an (inefficient) MPC protocol with full-security
for a functionality which accepts the views in the first protocol and detects a
pair of parties with conflicting views, at least one of which is corrupt (if no con-
flict is detected, then a party who aborted in the first place can be identified
as a corrupt party, since, as part of the security guarantees, we shall require
zero probability for abort if all parties run honestly). To make this idea work,
we need to ensure that the inefficient MPC is called only on a small piece of
computation. With appropriate parameters for decomposition of the function,
this indeed gives new asymptotic results (for relatively “narrow” circuits).

Negative Results. We prove two negative results. Firstly, we show that there
is a function family F such that there is no “functionally blackbox” protocol
scheme [28] for F (even for semi-honest security). The family F consists of
boolean functions of the form fα, where α ∈ {0, 1}k and fα(x, y) = 1 if and only
if x ⊕ y = α.

Our second negative result shows a function family G such that semi-honest
secure protocol schemes for G cannot be converted in a blackbox manner to
protocols with active security (with abort). We choose G to be the family of
zero-knowledge proofs for a class of relations. Then, there is a semi-honest secure
protocol for G which only accesses the given functionality f ∈ G in a blackbox
manner. Hence, a blackbox transformation from semi-honest secure protocol
schemes to schemes with active security translates to a functionally blackbox
protocol scheme for G with active security.

To complete the proof, we show how to define G (assuming the existence
of a pseudorandom function) such that there is no active secure, functionally
blackbox protocol scheme for G.

442 Y. Ishai et al.

1.3 Organization of the Paper

The rest of the paper is organized as follows (with some of the details deferred
to the full version). Section 2 includes several basic definitions of the framework,
and Sect. 3 defines the notion of a blackbox transformation. In Sect. 4, we give
some simple transformations, including a new transformation that improves on a
recent result by [18]. Section 5 presents two impossibility results regarding black-
box transformations. Section 6 through Sect. 8 present several transformations,
which are summarized in Table 1. Section 9 presents the results we obtain by
applying these transformations to protocol schemes in the literature.

2 Preliminaries

The basic objects in our framework are protocols. Technically, a protocol is spec-
ified by a single program (say, Turing Machine) for the “next-message function”
of all the parties in the protocol (formally defined in the full version). We shall
write Π to denote the set of all protocols.

A functionality is technically just a special instance of a protocol, involving a
trusted party. We often abuse our notation and refer to the trusted party’s pro-
gram as the functionality. We shall often refer to a functionality family F , which
is simply a set of functionalities, i.e., F ⊆ Π. We denote the family of all prob-
abilistic polynomial time computable secure function evaluation functionalities
by F∗ (represented by circuits).

We use a synchronous model of communication (with rushing adversaries), so
that all parties in a protocol proceed in a round-by-round fashion. Note that this
is applicable to ideal functionalities too. However, typically we are not interested
in the exact number of rounds in the ideal functionality, as long as it finishes
within a polynomial number of rounds.

2.1 Security Definitions

Technically, a security definition for a functionality family F is formalized as a
relation Λ ⊆ F ×Π. The intention is that (f, π) ∈ Λ iff π is a secure protocol for
f . For a security notion named secure, the corresponding relation will typically
be written as Λsecure.

In Table 2 we name some of the main security definitions considered in our
results. For instance, ΛF

α-full/BC includes all pairs (f, π) such that f is a func-
tionality in the family F , and π is a UC-secure protocol with guaranteed out-
put delivery (within a polynomial number of rounds), against computationally
unbounded adversaries who may adaptively corrupt strictly less than α fraction
of the parties, and BC means that the protocol uses a broadcast channel. In all
our security notions, for simplicity of our transformations, we require that an
honest party aborts the protocol only if there is no possible honest execution of
the protocol that is consistent with its view. We also define a security notion
generalizing the notion of security with identifiable abort:

Secure Protocol Transformations 443

Table 2. Terminology used for guarantees from protocols.

ΛF
secure (f, π) s.t. f ∈ F and π meets the definition secure (for a polynomial-round

version of f). If F = F∗, the family of all probabilistic polynomial time
function evaluation functionalities, we simply write Λsecure

α-secure secure, restricted to corruption
of strictly less than α
fraction of the parties

secure/F protocol is in the F-hybrid
model. e.g., secure/BC
denotes protocols using
broadcast channels

sa standalone security (default is
UC security)

ppt adversary is PPT (default is
unbounded adversary)

sh semi-honest adversary full active adversary (with
guaranteed output delivery)

abort adversary may learn its output
and then decide which honest
parties get their outputs and
which do not

idθ same as abort, but on abort,
honest parties agree on a
non-empty set of parties, at
least a θ fraction of which is
corrupt. We shall abbreviate
α-idα as α-id

Security with θ-Identifiable Abort. Given a functionality f , we define a
functionality f 〈idθ〉 to formalize the notion of security with θ-identifiable abort.
As defined in the full version, we require the functionalities to be in a normal
form, involving a computation phase and an output delivery phase.
f 〈idθ〉 internally runs f and interacts with Adv as follows.

1. Accept the inputs from all parties (including honest parties and parties corrupted
by Adv) and forward to f . (If there is no input from Pi, substitute it with a dummy
input.) Set the output vector as set by f .

2. If Adv sends getoutput, then send the corrupted parties’ outputs to Adv.
3. If Adv sends (corrupt, T) s.t. T is a subset of parties in which at least a θ fraction

are corrupt, then change the output of all honest parties to be (corrupt, T).
4. Output phase: Deliver the (current) output to all parties.

2.2 Protocol Schemes

A protocol scheme maps a functionality to a protocol (with a desired security
property).

Definition 1 (Λ-scheme). P : F → Π is said to be a Λ-scheme if F is a
functionality family such that Λ ⊆ F∗ × Π, and for every f ∈ F , (f,P(f)) ∈ Λ.

For example, the semi-honest BGW-protocol scheme is a ΛF
α-sh-scheme where F

is the family of all circuit-evaluation functionalities and α = 1
2 . Typical proto-

col schemes are uniform, in that there is a Turing Machine which, on input a
standardized description of f , for f ∈ F , outputs the code of P(f).

444 Y. Ishai et al.

Complexity Notation. To discuss asymptotic efficiency guarantees of proto-
col schemes, we augment the notation for security definitions to include proto-
cols’ communication (and sometimes, computational) cost. Typically, a proto-
col’s complexity is measured as a function of some complexity measure of the
functionality f that it is realizing, as well as the number of parties n and the
security parameter k of the protocol execution. For each functionality family,
we shall require a cost measure size : F → Z

+, that maps f ∈ F to a positive
integer. We stress that a functionality f denotes a specific implementation (of a
trusted party in a protocol), and so there can be different f ∈ F which are all
functionally equivalent, but with differing values of size(f).

To capture the typical efficiency guarantees in the literature, we define a
p - ΛF

secure scheme as a ΛF
secure scheme P such that for any f ∈ F , P(f) is a

protocol whose communication cost (for n parties, and security parameter k) is

O(p(n, k) · size(f) + poly(n, k)). (1)

For typical functionality families F , a functionality f ∈ F is represented as
a circuit Cf , and size(f) is the size of Cf . The function p(n, k) reflects the
multiplicative overhead of secure computation, on top of the size of the (insecure)
computation.

Often, protocol schemes which offer a smaller value for p(n, k) incur additive
costs. To denote protocol schemes with such complexities, we use a more detailed
notation: (p, q, r;D) - ΛF

secure schemes are ΛF
secure schemes P such that for all f ∈ F ,

the communication cost of P(f) is O(p(n, k) · size(f) + poly(n, k) · D(f)), its
computation cost is O(q(n, k) · size(f) + poly(n, k) · D(f)), and its randomness
cost is O(r(n, k)·size(f)+poly(n, k)·D(f)). Here D is a secondary cost measure –
typically the depth of the circuit Cf – which is often much smaller than size(f).
We omit D to indicate that D(f) is a constant and omit q and/or r to leave them
as unspecified poly(n, k) functions. We omit F if it equals F∗, the family of all
probabilistic polynomial time function evaluation functionalities.

For functionality families using circuit representation, a traditional choice
for D is depth: depth(f) denotes the depth of the circuit Cf representing f . We
shall find it useful to define another function width, defined as follows. For any
topological sorting of the gates in the circuit, define a sorted-cut as a partition
of the gates into two sets so that all the gates in one part appear before any
gate in the other part, in the topologically sorted order; the max-sorted-cut for
a sort order is the maximum number of wires crossing a sorted-cut. width(f)
is the value of the max-sorted-cut of Cf minimized over all topological sorts of
Cf . (Alternately, we could require the topological sort to be part of the circuit
specification. In this case, an appropriate model of computation would be a linear
bijection straight-line program [2], and width would correspond to the number of
“registers” in the program.)

For protocol schemes providing partially-identifiable security, like α-id-
schemes, we sometimes want to distinguish the cost of an execution without
an abort event and that with an abort event (and identification): a 〈γ, δ〉 - Λα-id

scheme denotes a Λα-id scheme P such that the communication cost of P(f) is

Secure Protocol Transformations 445

O(γ(n, k) · size(f) + poly(n, k)) without abort events and O(δ(n, k) · size(f) +
poly(n, k)) with abort.

Finally, we write (p, q, r;D)�ΛF
secure instead of (p, q, r;D) - ΛF

secure and so on,
if we intend to use Õ(·) instead of O(·) in the above costs.7 The notation is
summarized in Table 3.

Table 3. Additional notation for protocol schemes (for n parties, and security para-
meter k).

(p, q, r;D) - Λsecure Λsecure scheme P s.t. the communication cost of P(f) is O(p(n, k) ·
size(f) + poly(n, k) · D(f)), the computation cost is O(q(n, k) ·
size(f) + poly(n, k) · D(f)) and randomness cost is O(r(n, k) ·
size(f) + poly(n, k) · D(f))

(p, q; D) - Λsecure (p, q, r;D) - Λsecure, where r(n, k) is poly(n, k)

(p, q) - Λsecure (p, q;D) - Λsecure, where D(f) is a constant

(p; D) - Λsecure (p, q;D) - Λsecure, where q(f) is poly(n, k)

p - Λsecure (p, q;D) - Λsecure, where D(f) is a constant and q(f) is poly(n, k)

〈γ, δ〉 - Λα-id Λsecure scheme P s.t. the communication cost of P(f) is O(γ(n, k) ·
size(f)+poly(n, k)) without abort events and O(δ(n, k) · size(f)+
poly(n, k)) with abort

(params)�Λsecure Similar to (params) - Λsecure scheme, but with Õ(·) instead of O(·)

2.3 Error-Correcting Secret-Sharing

Some of our transformations rely on a simple variant of secret-sharing that has
been referred to as robust secret-sharing or as honest-dealer VSS [6,11,27]. To
clarify the nature of this primitive, we shall call it Error-Correcting Secret-
Sharing (ECSS), and define it formally below.

Definition 2 (Error-Correcting Secret Sharing). A pair of algorithms
(share, reconstruct) is said to be an (n, t)-Error-Correcting Secret Sharing
(ECSS) scheme over a message space M if the following hold:

1. Secrecy: For all s ∈ M and Nc ⊆ [n], |Nc| < t, the distribution of {σi}i∈Nc

is independent of s, where (σ1, ..., σn) ← share(s).
2. Reconstruction from upto t Erroneous Shares: For all s ∈ M, and

all (σ1, ..., σn) and (σ′
1, ..., σ

′
n) such that Pr[(σ1, ..., σn) ← share(s)] > 0 and

|{i | σ′
i = σi}| ≥ n − t, it holds that reconstruct(σ′

1, ..., σ
′
n) = s.

7 Õ(h) denotes O(h · polylogh).

446 Y. Ishai et al.

3 Defining Black-Box Transformations

In this section, we present our framework of black-box transformations, which
operates on protocol schemes (Definition 1). More specifically, a black-box trans-
formation defines a Λ-scheme in terms of Λ′-schemes, for one or more other secu-
rity notions Λ′. We present our definition in two parts – first the syntax of a
transformation, followed by its security requirements.

Definition 3 (Black-Box Transformation (BBT): Syntax). A BBT for a
functionality family F is defined as a circuit C with

– a single input wire taking a functionality f ∈ F ,
– a single output wire outputting a protocol π ∈ Π,
– one or more black-box nodes labeled with oracle TMs T1, · · · , Ts,
– one or more protocol nodes labeled with relations Λ1, · · · , Λt where Λi ⊆ Fi×Π

for some functionality family Fi.

For a black-box node labeled with Ti we require that the number of oracles accessed
by Ti is equal to the number of input wires to that node. For a protocol node, we
require that there is only one input wire.

Given such a circuit C and protocol schemes P1, · · · ,Pt such that each Pi is a
Λi-scheme, we define CP1,...,Pt(f) ∈ Π as follows. We shall set the value on each
wire in C to be a protocol in Π (possibly a functionality), starting with the input
wire and ending with the output wire, which is taken as the value CP1,...,Pt(f).
First, set the value on the input wire to be f . Then, for any black-box node with
all its input wires’ values already set to values π1, · · · , πd, set its output wire’s
value to Tπ1,··· ,πd

i , where Ti is the label on the node. For any protocol node with
its input wire’s value set to π, set its output wire’s value to Pi(π), where i is
the index of the protocol node in C (if Pi(π) is undefined, then CP1,...,Pt(f) is
undefined).

Definition 4 (Black-Box Transformation (BBT)). We say that a BBT C,
for a functionality family F , is a BBT from {Λ1, · · · , Λt} to Λ, if C has t
protocol nodes labeled with (Λ1, · · · , Λt) and, for all f ∈ F and all (P1, · · · ,Pt)
such that each Pi is a Λi-scheme, we have (f, CP1,...,Pt(f)) ∈ Λ.

4 Examples of Black-Box Transformations

In the full version, we illustrate how several important constructions from the
literature are in fact BBTs from simpler security notions or simpler function fam-
ilies, to more demanding ones. This list includes Bracha’s compiler [5] (from high-
threshold (and low-efficiency) security and low-threshold (and high-efficiency)
security to a high-threshold (and high-efficiency) security), the IKOS compiler
[20] (from semi-honest secure MPC and and honest-majority secure MPC to
active security for Zero-Knowledge proofs) and the IPS compiler [22] (as above,
but for arbitrary MPC). The GMW compiler [16] could also be viewed as a BBT

Secure Protocol Transformations 447

(from semi-honest security and active security specialized to zero-knowledge
functionality, to active security).

It is helpful to visualize these transformations using “circuit diagrams.” An
example of the IPS transformation was given in Fig. 1. Similar diagrams for the
other examples mentioned above are given in the full version.

Below we discuss two new simple BBTs, which yield much simpler alterna-
tives to more complex constructions in the literature.

Improving Over [18]. Very recently, Hazay and Venkitasubramaniam [18], pre-
sented an IKOS-like transformation that starts from any (semi-honest) two-party
protocol in the OT-hybrid model and gives a zero-knowledge proof system in the
commitment-hybrid model. We present a different transformation that has sev-
eral advantages over [18]: our transformation may start with a two-party protocol
in the OLE-hybrid model,8 whereas the one from [18] seems inherently restricted
to the OT-hybrid model. Perhaps more importantly, to achieve a constant level
of soundness our transformation uses only a constant number of commitments
(to long strings), compared to the protocol in [18] that uses as many commit-
ments as the number of OT calls. For the simplest case of the GMW protocol
applied to a boolean circuit of size s, our protocol requires only 6 commitments
whose total length is O(|C|) whereas the protocol from [18] requires O(|C|) sep-
arate bit-commitments. These features of our transformation make it appealing
for the design of practical ZK protocols based on OT-hybrid and OLE-hybrid
protocols such as GMW.

Our transformation, as well as the IKOS transformation on which it is based,
are presented in the full version. At a high-level, we give a simple BBT from a
2-party semi-honest MPC protocol scheme in the OLE-hybrid model to a 3-
party 1-private MPC protocol scheme in the plain model; this transformation is
then readily composed with the IKOS transformation (which can be applied to
a 1-private protocol) to obtain our full transformation.

4.1 A Pedagogical Application

One of the results from Goldreich’s textbook [15] can be simplified using a BBT.
In [15], two separate protocols for Λabort-ppt-sa-id (i.e., security-with-identifiable-
abort) and Λ1/2−full-ppt-sa (i.e., security with guaranteed output delivery, with an
honest majority) are presented, with the latter relying on VSS. Below, we give a
BBT from Λabort-ppt-sa-id to Λ1/2−full-ppt-sa, that uses ECSS (see Sect. 2.3) instead
of VSS.

To evaluate an n-party function f , each party shares its input using an
n/2�-
out-of-n error-correcting secret-sharing (ECSS) scheme (see Sect. 2.3), and sends
the resulting shares to the n parties. We remark that an ECSS is much simpler

8 OLE stands for Oblivious Linear function Evaluation. It is a generalization of Obliv-
ious Transfer where a sender has (a, b) in a field F and the receiver has x ∈ F. At
the end of the protocol, the receiver will learn ax + b while the sender learns noth-
ing. OLE-based protocols are useful for arithmetic computation. Such protocols are
obtained in [23] by generalizing the OT-based GMW protocol [16].

448 Y. Ishai et al.

than, say, a VSS protocol, and can be constructed readily by adding message
authentication code (MAC) tags to the shares of any threshold secret sharing
scheme (such as Shamir’s scheme). Then, the parties use a protocol π from the
protocol scheme with security-with-identifiable-abort to evaluate a function f ′,
which takes shares as its inputs, reconstructs them to get inputs for f , evaluates
f and reshares the outputs among all parties, again using ECSS. If the shares
given as inputs have fewer than n/2 errors, f ′ can error-correct and recover the
original input being shared; otherwise it defines the reconstructed value to be
a default value (this corresponds to the shares not being generated correctly in
the first place). If the protocol π for f ′ does not abort, then all the parties are
expected to redistribute the shares they received from π, so that each party gets
all the shares of its output; due to the error-correcting property, and since the
adversary can corrupt less than n/2 of the shares received by each honest party,
every honest party will be able to correctly recover its output. On the other
hand, if the protocol π aborts, due to the identifiable-abort security guarantee,
all honest parties will agree on the identity of one corrupt party. Note that
at this point, even though the adversary may learn its outputs from π (i.e.,
outputs of f ′), these carry no information and can be efficiently simulated (by
a simulator running the protocol with arbitrary inputs for the honest parties).
Hence, the parties can simply eliminate the identified party (and still retain
honest majority), and restart the entire protocol on a smaller functionality in
which the eliminated party’s input is replaced by a default value. This process
must eventually terminate, after at most
n/2� attempts, guaranteeing output
for all honest parties.

An ad-hoc use of the above “player elimination” technique was made in
several previous MPC protocols (see, e.g., [19] and references therein). In con-
trast, our use of this technique yields a completely general transformation from
a weaker flavor of MPC to a stronger one.

5 Impossibility of Black-Box Transformations

In this section, we present some impossibility results for BBT. Before proceeding,
we emphasize that in the definition of BBT, we do not require the security proofs
to be black-box in any form. In particular, the simulators used to define security
can arbitrarily depend on the functionality in a non-black-box manner. As such,
the impossibility results on BBT are of a rather strong nature.

Our first impossibility results relates to an interesting special case of a BBT,
namely, BBT from ∅ to Λ. This corresponds to the notion of a functionally-
black-box protocol introduced by Rosulek [28], wherein there is an oracle TM
such that for all f ∈ F , T f is a secure protocol (according to Λ) for f . Rosulek
demontrated a two-party functionality family for which there is no functionally
black-box protocol, assuming the existence of one-way functions. We present an
unconditional version of this result.

Theorem 1. There exists a two-party functionality family F such that there is
no BBT from ∅ to ΛF

sh. In particular, there is no BBT from ∅ to ΛF∗
sh .

Secure Protocol Transformations 449

The detailed proof is given in the full version. Here we sketch the main ideas
of the proof.

Proof Sketch. The family F we shall use to prove the theorem consists of boolean
functions of the form fα, α ∈ {0, 1}k, where fα(x, y) = 1 if and only if x ⊕
y = α. To show that there can be no secure protocol for fα, in which the two
parties access the function only in a blackbox manner, we consider the following
experiment. Pick x, y, α uniformly and independently at random, and run the
protocol for fα with inputs x, y. Then we argue that the probability for both of
the following events should be negligible:

(A) Either party queries their oracle with (p, q) such that p ⊕ q = α.
(B) Either party queries their oracle with (p, q) such that p ⊕ q = x ⊕ y.

The probability of event A is negligible since α is chosen uniformly at random,
and the parties make only a polynomial number of queries. The reason for the
probability of event B being negligible is the security of the protocol: in an ideal
world, since x ⊕ y = α, a corrupt party (simulator), even given α, can learn
only a negligible amount of information about the other party’s input. Now, we
consider a “coupled” experiment in which instead of α, we pick α∗ = x ⊕ y, and
run the same protocol but now for fα∗ . It can be argued that for the random
tapes in the protocol for which events (A) and (B) does not occur in the first
case, they will not occur in the second run too. Thus with high probability,
both the executions produce the same output, violating the correctness of the
protocol. �

Also, we consider the question of showing impossibility of BBT from semi-
honest security to active security. We present such a result conditioned on the
existence of one-way functions.

Theorem 2. Assuming the existence of one-way functions, there exists a two-
party functionality family G such that there is no BBT from {ΛG

sh} to ΛG
abort.

We present the intuition behind the proof below, and defer the detailed proof
to the full version.

Proof Sketch. We will let G to be the family of zero-knowledge proofs for a
class of relations. Then, there is a semi-honest secure protcol for G which only
access the given functionality f ∈ G in a blackbox manner. Hence, a black-
box transform from semi-honest secure protocol schemes to schemes with active
security translates to a functionally blackbox protocol scheme for G with active
security. To show that this does not exist, we assume the existence of a pseudo-
random function F and define G as follows. The relations associated with G are
Rs = {(x,w) | Fs(w) = x}, where Fs denotes F with seed s.

To show that there can be no ZK protocol for this relation in which the parties
only have blackbox access to an oracle for the relation Rs (but the simulator
may depend on s), we consider a cheating prover as follows. When given (x,w)
and access to Rs, it uses a wrapper around Rs to turn it into relation which

450 Y. Ishai et al.

accepts (x,w) (and does not accept (x′, w) for x′ = x), but otherwise behaves
like Rs. Then the cheating prover runs the honest prover with access to the
modified oracle. Using the ZK property we can argue that an honest verifier,
when given a random x, cannot detect the difference between interacting with
the real prover and the cheating prover. Thus, if the protocol is complete, the
cheating prover will be able to break soundness. �

6 A BBT from Partially-Identifiable-Abort to Full
Security

We present a simple black-box transformation from partially-identifiable abort
security (formalized using Λα-id below) to full security. This will be an important
ingredient in our applications in Sect. 9. First, we present a simple but general ver-
sion of this transformation (which suffices for feasibility results); in Theorem 4, we
shall present a more efficient variant.

Theorem 3. For any 0 ≤ α ≤ 1/2, there exists a BBT from Λα−id/BC to
Λα-full/BC. Specifically, there is a BBT from p - Λα−id/BC to (np;D) - Λα-full/BC,
where D(f) is the input plus output size of f .

Our tools behind this construction are relatively simple. In particular, we
do not use verifiable secret-sharing (VSS), but instead use the much simpler
primitive Error-Correcting Secret-Sharing (ECSS) (see Sect. 2.3), which can be
realized easily using ordinary Secret-Sharing and one-time message authentica-
tion codes (MAC).

Here we give a high level overview of the construction, with a complete
description defered to the full version. The idea behind this BBT is that if
we have a protocol which either completes the computation or identifies a set of
parties such that at least α fraction of which are corrupt, then, in the event of
an abort, we can remove the identified set of parties from active computation
and restart the computation. Note that this preserves the corruption threshold
of α (i.e., strictly less than α fraction remains corrupt) among the set of “active”
parties.

For this idea to work, we need to keep the outputs secret-shared (so that by
aborting, the adversary does not learn any useful information, even though it
receives its outputs from the computation), and after the computation finishes,
guarantee reconstruction. Further, we need to use secret-sharing to let all the
parties deliver their inputs to the set of active parties. All this will be achieved
using ECSS in a straightforward manner, for α ≤ 1/2.

A More Efficient Variant. In the above BBT, we restarted the entire com-
putation in the event of an abort. To avoid this, we rely on having access to a
“layered representation” of the function. Formally, consider a parametrized func-
tionality f̂ , parametrized by an index i ∈ {1, · · · , d}, such that f = f̂ [d]◦...◦f̂ [1],
such that size(f̂ [i]) = O(size(f)/d), for all i. We define widthd(f) to be the small-
est number w such that there exists a decomposition of f into d layers, each of

Secure Protocol Transformations 451

size O(size(f)/d), such that the number of output wires from any layer is at
most w. We shall typically take d to be a polynomial d(n, k). Note that width(f)
defined in Sect. 2.2 is an upper-bound on widthd(f) for all d.

Since decomposing f into f̂ is not a black-box operation, we require a “pro-
tocol scheme” that carries out this decomposition. For this we define a Λlayer[d]

scheme to be one which maps f to a parametrized function f̂ such that

f = f̂ [d] ◦ · · · ◦ f̂ [1],

and ∀i ∈ [d], size(f̂ [i]) = O(size(f)/d) and the number of bits output by f̂ [i] ≤
widthd(f).

Then, as shown in the full version, we obtain the following efficiency improve-
ment over Theorem 3.

Theorem 4. For any 0 < α ≤ 1/2, there exists a BBT from
{Λlayer[d], 〈γ, δ〉 - Λα-id} to (γ;D) - Λα-full, where d(n, k) = n · δ(n,k)

γ(n,k) and D(f) =
widthd(f).

7 A BBT from {Λα-sh, Λβ-full} to Λα-id

Our goal in this section is to obtain a BBT that increases the corruption thresh-
old of a fully secure protocol, by combining it with a semi-honest protocol which
has the higher threshold. Given Theorem 3, it suffices to obtain a protocol with
partially-identifiable-abort against the higher corruption threshold. Formally, we
shall prove the following theorem, which is interesting when β < α.

Theorem 5. For any 0 < α, β ≤ 1/2, there exists a BBT from {Λα-sh, Λβ-full} to
Λα−id/BC.

This BBT (detailed in the full version) resembles the IPS compiler, but
achieves 1/2-identification in case of abort, and also avoids the use of OT in
watchlists. For this, it replaces T IPS

2 in IPS (see Fig. 1) with a black-box trans-
formation T2. Figure 2 compares T IPS

2 and T2. T IPS
2 consists of a “core” compiler

IPScore, which produces a protocol in a “watchlist-channel hybrid” model (also
using OT if it is needed by the inner protocol). Separately, a watchlist-channel
functionality W was realized using a protocol wIPS in the OT-hybrid model.
Finally, the former was composed with the latter to obtain a protocol in the
OT-hybrid model.

In T2, firstly the OT used in the watchlist protocol is replaced with a function-
ality ÕT, which is then implemented by a protocol π

ÕT
in the honest-majority

setting; further this watchlist protocol is modified in a simple manner to achieve
1/2-identification. The functionality of the resulting protocol is captured by W∗.
Next, the protocol generated by IPScore is modified to facilitate 1/2-identification
(even if given the watchlist functionality W∗ instead of W), following the out-
line sketched in Sect. 1.2 (see paragraph Obtaining Partially-Identifiable-Abort
Security). The final protocol is obtained by composing this protocol with the
watchlist protocol for W∗.

452 Y. Ishai et al.

Fig. 2. T IPS
2 and T2. The shaded region shows the new components in T2. Note that

T2 retains IPScore and IPSWL from T IPS
2 as it is.

7.1 Using a Sparse Watchlist

The BBT in Theorem 5 is in fact a BBT from {(pin, qin, rin) - Λα-sh,
(pout, qout) - Λβ-full} to p - Λα−id/BC, where p = n2 · (pin +rin) · (qout +n ·pout). But
by exploiting the honest majority guarantee which was absent in the setting of
[22], we can state the following version.

Theorem 6. For any 0 < α, β ≤ 1/2, and polynomials pin, qin, rin, pout, qout,
there exists a BBT from {(pin, qin, rin) - Λα-sh, (pout, qout) - Λβ-full} to p - Λα-id/BC,
where p = n · (pin + rin) · (qout + n · pout).

The above result saves a factor of n compared to the previous transformation.
The efficiency improvement comes from a sparser watchlist mechanism (using
an expander graph to define which parties may watch the execution of which
servers) in the BBT from (Λβ-full, Λα-sh) to Λα−id/BC. We present the details in
the full version.

8 Efficiency Leveraging

Bracha’s transformation is a classical example of efficiency leveraging. It was
originally proposed in the context of byzantine agreement [5], and later applied
to MPC protocols (see, e.g., [13]). Below, we record a version of this result that
is sufficient for our applications.

Proposition 1 (Bracha’s Transformation [5]). Let 0 < ε, β ≤ α ≤ 1/2, and
let p′(n, k) = cn be independent of k. Then, for each secure ∈ {sh, abort, full} and

Secure Protocol Transformations 453

any function D, there exists a BBT from {(p, q;D) - ΛF
β−secure, p′ - Λα−secure} to

(p′′;D) - ΛF
(α−ε)−secure, where p′′(n, k) = p(n, k) + q(n, k).

In this section, we present a new instance of efficiency leveraging for full-
security: a simple BBT from {Λα-abort, Λα-full} to Λα-full, in which the resulting
protocol’s efficiency is comparable to that of the protocol in Λα-abort.

First we present a efficiency leveraging transformation for Λα-id which can
then be combined with Theorem 4 to obtain efficiency leveraging for Λα-full. In
our efficiency leveraging transformation for Λα-id the efficiency of the resulting
protocol, when there is no abort event, is comparable to that of a cheaper Λα-abort

protocol. Formally, we have the following theorem.

Theorem 7. For any 0 ≤ α ≤ 1/2, and functions p, q, p′ ∈ poly(n, k), there
exists a BBT from {(p, q) - Λα-abort, p

′ - Λα-id} to 〈γ, δ〉 - Λα-id, where γ = p and
δ = p′ · (p + q).

The protocol scheme claimed in Theorem 7 is shown in Fig. 3. The first
node is a protocol node of p - Λα-abort, which converts a functionality f into a
protocol πabort.

The second node is a black-box node T1, which converts the protocol πabort to
an (n-party) functionality f∗, in which the trusted party takes the view of each
party in an execution of πabort as the input, carries out the execution of πabort, and
identifies a set of two parties which have inconsistent views, if it exists.9 When
there is none, it outputs ∅. The third node Λα-id compiles f∗ into a protocol πid.

Finally, a black-box node T2 combines πabort and πid together and transforms
them into a protocol π, which works as follows: initially the parties execute
πabort on the given input, and on finishing this execution successfully, each party
broadcasts “done.” If all parties broadcast “done,” then each party outputs the
output from the execution of πabort and terminates. If not, they execute πid

with their views in the execution of πabort as input. If this latter execution itself
aborts, πid identifies a set of parties S at least an α fraction of which is corrupt
(where α ≤ 1/2). otherwise (i.e., if πid finishes without an abort event), then all
parties agree on the output of f∗, namely a set S of two parties at least one of
which is corrupt, or the emptyset ∅; if the output is ∅, the parties set S to be

Fig. 3. Black-Box Transformation from {(p, q) - Λα-abort, p
′ - Λα-id} to 〈γ, δ〉 - Λα-id, where

γ = p and δ = p′ · (p + q).

9 Recall that the view of a party involves its initial input, the randomness, and all the
received messages.

454 Y. Ishai et al.

the singleton set consisting of the lexicographically smallest party who did not
broadcast “done” after the execution of πabort. In all cases, if πabort resulted in
an abort, the honest parties agree on a set of parties S of which at least an α
fraction is corrupt.

We verify that the complexity of π is as claimed in the theorem. When there
is no abort event, the communication cost is essentially the same as that of
πabort, namely p(n, k); otherwise, there is an additional the cost from πid, which
is Õ(p(n, k)+ p′(n, k) · size(f∗)), where size(f∗) = Õ((p(n, k)+ q(n, k)) · size(f)).
Hence the whole scheme is in 〈γ, δ〉 - Λα-id with γ = p and δ′ = p′ · (p + q).

Combining Theorem 7 with Theorem 4 we get the following result. Here we
state it as efficiency leveraging for full-security; however, the result holds as a
BBT from {Λlayer[d], (p, q) - Λα-abort, p

′ - Λα-id} as well.

Theorem 8. For all 0 ≤ α ≤ 1/2, and for all functions p, q, p′ ∈ poly(n, k), there
exists a BBT from {Λlayer[d], (p, q) - Λα-abort, p

′ - Λα-full} to (p;D) - Λα-full, where
d = n·p′·(p+q)

p and D(f) = widthd(f).

9 Applications

In Sect. 4.1, we already saw a pedagogical application of BBT, in simplifying
the exposition of security with guaranteed output delivery (with computation-
ally bounded adversaries). In this section, we give several interesting examples
regarding how to use the BBTs in the previous sections for deriving both feasi-
bility and efficiency results.

◦ Rabin and Ben-Or without Honest-Majority VSS. As our first exam-
ple, we reproduce the classic feasibility result of Rabin and Ben-Or [27] for fully
secure MPC for corruption against t < n/2 parties. The core new tool devel-
oped in this paper (and used in subsequent results in this regime of corruption)
was Verifiable Secret-Sharing (VSS) that is secure against corruption of t < n/2
parties. Interestingly, our construction by-passes the need for an explicit VSS
protocol for this corruption regime, instead showing that one can directly use
fully secure MPC from prior work [3,7]. Our construction is based on the fol-
lowing direct corollary of Theorems 3 and 5.

Corollary 1. For any 0 < α, β ≤ 1/2, there exists a BBT from {Λα-sh, Λβ-full}
to Λα-full/BC.

To obtain the result of [27] we simply apply Corollary 1 to the protocols in [3,7].

◦ Constant-Rate MPC with Full-Security for Small Number of Parties.
Our first quantitative result is a “constant-rate” honest-majority MPC protocol
with guaranteed output delivery, when the number of parties involved is constant.
That is, as the size of the function grows, the communication complexity of the
protocol grows linearly at a rate that is independent of the security parameter.
For MPC of large circuits, against the optimal corruption threshold n/2, this
gives an amortized complexity of O(1) per gate, compared to O(k) per gate in
the previously best result from [4].

Secure Protocol Transformations 455

Corollary 2. There exists a p - Λ1/2-full/BC-scheme, where p(n, k) = cn is inde-
pendent of k.

This result is obtained as a corollary of Theorems 3 and 610 First we obtain a
p - Λ1/2−id/BC scheme by applying the BBT from Theorem 6 to the Λ1/2-sh-scheme
from [3] and the constant rate Λβ-full-scheme (for some β > 0) that is obtained
by instantiating the protocol scheme from [12] using the constant-rate ramp
scheme of [8]. (The same “outer protocol” was used in [22] to obtain a constant-
rate Λabort/OT-scheme.) Then by further applying the BBT from Theorem 3, we
obtain the p - Λ1/2-full/BC protocol as claimed.

◦ Scalable MPC with Full-Security, Optimal Threshold. Our next result
is a “scalable” honest-majority MPC protocol with guaranteed output delivery.
We define the function class Farith of functions represented as arithmetic circuits
over a field F such that log |F| > k. For f ∈ Farith, size(f) refers to log |F| · |Cf |,
where |Cf | is the number of gates in the circuit Cf representing f . Equivalently,
size(f) measures the number of binary wires in the circuit Cf ; similarly width(f)
measures the width of Cf in bits.

Corollary 3. There exists a (p;D) - ΛFarith
1
2 -full/BC

-scheme, where p(n, k) = n and
D = width(f).

That is, for MPC of large arithmetic circuits over a large field, with security
against the optimal corruption threshold n/2, we get an amortized communica-
tion cost of O(n) bits per binary wire in the circuit. This result is obtained as
a corollary of Theorems 4 and 7, by applying the BBTs to the ΛFarith

1/2-abort-scheme
from [14] and the p - Λ1/2-id-scheme from Corollary 2. Note that we have used
width(f) as an upper-bound on widthd(f) over all d.

Our result complements a similar result of Ben-Sasson et al. [4] in which
the secondary complexity measure is depth, instead of width. We remark that a
natural regime for scalable MPC involves long sequential computations (carried
out by a small or moderate number of parties), so that a circuit for the com-
putation would be deep and narrow. In such a regime, the above result, which
yields a cost of O(n · size(f) + poly(n, k)), compares favorably to the protocols
of [4] which yield a cost of Ω̃(n · size(f) + n2 · depth(f) + poly(n, k)).

◦ Highly Scalable MPC with Full-Security, Near Optimal Threshold.
Our final application considers the problem of relaxing the corruption threshold
from the optimal α = 1/2 to α = 1/2 − ε, for any constant ε.

Corollary 4. For every ε > 0, there exists a (pε;D) - Λ
(1
2−ε)-full/BC

-scheme,
where pε(n, k) = cε is independent of n and k and D(f) = depth(f).

10 The construction leading to Theorem 5 also suffices here. We point to Theorem 6
only because it makes the parameters explicit; the optimization in Sect. 7.1 is not
important for this result.

456 Y. Ishai et al.

This generalizes a result in [13], which obtained a similar result (without using
a broadcast channel) for the threshold 1

3 − ε. We obtain this result by applying
Proposition 1 (Bracha’s efficiency leveraging transformation) to our cn - Λ 1

2 -full/BC

scheme from Corollary 2 and the (c1, c2; depth) - Λβ-full scheme from [13] (for, say,
β = 1/6 and c1, c2 being constants), with α = 1/2.

Acknowledgments. This research was done in part while the authors were visiting
the Simons Institute for the Theory of Computing, supported by the Simons Founda-
tion and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
#CNS-15-23467. The individual authors were supported during this work by the fol-
lowing grants: ISF grant 1709/14, BSF grant 2012378, ERC starting grant 259426,
a DARPA/ARL SAFEWARE award, NSF Frontier Award 14-13955, NSF grants 12-
28856, 12-28984, 11-36174, 11-18096, and 10-65276, a Xerox Faculty Research Award,
a Google Faculty Research Award, an equipment grant from Intel, and an Okawa
Foundation Research Grant. This material is in part based upon work supported by
the Defense Advanced Research Projects Agency through the ARL under Contract
W911NF-15-C-0205. The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense, the National Science Foun-
dation, or the U.S. Government.

References

1. Proceedings of the 20th STOC. ACM (1988)
2. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of

registers. SIAM J. Comput. 21(1), 54–58 (1992)
3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th
STOC, pp. 1–10. ACM (1988)

4. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

5. Bracha, G.: An o(log n) expected rounds randomized byzantine generals protocol.
J. ACM 34(4), 910–920 (1987)

6. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012)

7. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proceedings of 20th STOC, pp. 11–19. ACM (1988)

8. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

9. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369. ACM (1986)

10. Cramer, R., Damg̊ard, I.B., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

11. Cramer, R., Damg̊ard, I.B., Fehr, S.: On the cost of reconstructing a secret, or VSS
with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 503–523. Springer, Heidelberg (2001)

Secure Protocol Transformations 457

12. Damg̊ard, I.B., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006)

13. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

14. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure multiparty computation. In: The
Proceedings of the 46th Annual Symposium on the Theory of Computing (STOC)
(2014)

15. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004). ISBN:0521830842

16. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM,
ed. Proceedings of 19th STOC, pp. 218–229. ACM (1987). See [14, Chap. 7] for
more details

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of 17th STOC, pp. 291–304. ACM (1985)

18. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party compu-
tation. Cryptology ePrint Archive, Report 2016/074. http://eprint.iacr.org/2016/
074. (2016 to appear in Proceedings of Crypto 2016)

19. Hirt, M., Nielsen, J.B.: Upper bounds on the communication complexity of opti-
mally resilient cryptographic multiparty computation. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 79–99. Springer, Heidelberg (2005)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30. ACM (2007)

21. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 369–386. Springer, Heidelberg (2014)

22. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008)

23. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009)

24. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8
November 2013, pp. 955–966 (2013)

25. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31.
ACM (1988)

26. Perry, J., Gupta, D., Feigenbaum, J., Wright, R.N.: Systematizing secure compu-
tation for research and decision support. In: Abdalla, M., De Prisco, R. (eds.) SCN
2014. LNCS, vol. 8642, pp. 380–397. Springer, Heidelberg (2014)

27. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of 21st STOC, pp. 73–85. ACM (1989)

28. Rosulek, M.: Must you know the code of f to securely compute f ? In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 87–104. Springer,
Heidelberg (2012)

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Shamir, A., Rivest, R.L., Adleman, L.M.: Mental poker. Technical report LCS/TR-

125, Massachusetts Institute of Technology, April 1979

http://eprint.iacr.org/2016/074
http://eprint.iacr.org/2016/074

458 Y. Ishai et al.

31. Yao, A.C.: Protocols for secure computation. In: Proceedings of 23rd FOCS, pp.
160–164. IEEE (1982)

32. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th FOCS,
pp. 162–167. IEEE (1986)

On the Communication Required
for Unconditionally Secure Multiplication

Ivan Damg̊ard(B), Jesper Buus Nielsen, Antigoni Polychroniadou,
and Michael Raskin

Department of Computer Science, Aarhus University, Aarhus, Denmark
{ivan,jbn,antigoni,raskin}@cs.au.dk

Abstract. Many information-theoretic secure protocols are known for
general secure multi-party computation, in the honest majority setting,
and in the dishonest majority setting with preprocessing. All known pro-
tocols that are efficient in the circuit size of the evaluated function follow
the same “gate-by-gate” design pattern: we work through an arithmetic
(boolean) circuit on secret-shared inputs, such that after we process a
gate, the output of the gate is represented as a random secret sharing
among the players. This approach usually allows non-interactive process-
ing of addition gates but requires communication for every multiplication
gate. Thus, while information-theoretic secure protocols are very efficient
in terms of computational work, they (seem to) require more communi-
cation and more rounds than computationally secure protocols. Whether
this is inherent is an open and probably very hard problem. However, in
this work we show that it is indeed inherent for protocols that follow the
“gate-by-gate” design pattern. We present the following results:
– In the honest majority setting, as well as for dishonest majority with

preprocessing, any gate-by-gate protocol must communicate Ω(n)
bits for every multiplication gate, where n is the number of players.

– In the honest majority setting, we show that one cannot obtain a
bound that also grows with the field size. Moreover, for a constant
number of players, amortizing over several multiplication gates does
not allow us to save on the computational work, and – in a restricted
setting – we show that this also holds for communication.

All our lower bounds are met up to a constant factor by known protocols
that follow the typical gate-by-gate paradigm. Our results imply that a
fundamentally new approach must be found in order to improve the
communication complexity of known protocols, such as BGW, GMW,
SPDZ etc.

The authors of this work were supported by the Danish National Research Founda-
tion and the National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which part
of this work was performed; by the CFEM research center (supported by the Danish
Strategic Research Council). Ivan Damg̊ard was also supported by the Advanced
ERC grant MPCPRO. Jesper Buus Nielsen is supported by European Research
Council Starting Grant 279447. This work was done in [part] while Antigoni Poly-
chroniadou was visiting the Simons Institute for the Theory of Computing, supported
by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptog-
raphy through NSF grant CNS-1523467.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 459–488, 2016.
DOI: 10.1007/978-3-662-53008-5 16

460 I. Damg̊ard et al.

1 Introduction

Secure Multi-Party Computation (MPC) allows n players to compute an agreed
function on privately held inputs, such that the desired result is correctly com-
puted and is the only new information released. This should hold, even if t out
of n players have been actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function
can be computed with unconditional (perfect) security, against a passive adver-
sary if n ≥ 2t+1 and against an active adversary if n ≥ 3t+1 [BOGW88,CCD88].
If we assume a broadcast channel and accept a small error probability, n ≥ 2t+1
is sufficient to get active security [RBO89].

The protocols behind these results require a number of communication rounds
that is proportional to the depth of an (arithmetic) circuit computing the func-
tion. Moreover, the communication complexity is proportional to the size of
the circuit. Whether we can have constant round protocols and/or communica-
tion complexity much smaller than the size of the circuit and still be efficient
(polynomial-time) in the circuit size of the function is a long-standing open prob-
lem. Note that this is indeed possible if one makes computational assumptions.
Note also that if we give up on being efficient in the circuit size, then there
are unconditionally secure and constant round protocols for any function [IK00]
(which will, however, be very inefficient in general with respect to the compu-
tation). Moreover, there are works that apply to special classes of circuits (e.g.,
constant-depth circuits [BI05]) or protocols that require exponential amount of
computation [BFKR90,NN01] and exponential storage complexity [IKM+13].

The above issues are not only of theoretical interest: the methods we typi-
cally use in information-theoretic secure protocols tend to be computationally
much more efficient than the cryptographic machinery we need for computa-
tional security. So unconditionally secure protocols are very attractive from a
practical point of view, except for the fact that they seem to require a lot of
interaction.

The Gate-by-gate Design Pattern. The fact that existing information-
theoretic secure protocols (which are efficient in the circuit size of the function)
have large round and communication complexity is a natural consequence of
the fact that all such protocols follow the same typical “gate-by-gate” design
pattern: Initially all inputs are secret-shared among the players. Then, for each
gate in the circuit, where both its inputs have been secret-shared, we execute a
subprotocol that produces the output from the gate in a secret-shared form. The
protocol maintains as an invariant that for all gates that have been processed
so far, the secret-sharing of the output value is of the same form used for the
inputs (so we can continue processing gates) and is appropriately randomised
such that one could open this sharing while revealing only that output value. As
a result, it is secure to reveal/open the final outputs from the circuit.

For all known constructions which are efficient in the circuit size of the
function, it is the case that multiplication gates require communication to be

On the Communication Required for Unconditionally Secure Multiplication 461

processed (while addition/linear gates usually do not). The number of rounds is
at least the (multiplicative) depth of the circuit, and the communication com-
plexity is Ω(ns) for a circuit of size s (the size being measured as the number of
multiplication gates) in the worst case for t < n/3 and t < n/2 see the results of
[DN07,BTH08] and [BSFO12,GIP+14,GIP15], respectively. Note that protocols
that tolerate a sub-optimal number of corrupted parties (e.g., t < 0.49n) and
are based on packed secret-sharing techniques can reduce the amortised cost of
multiplications if they can be parallelised [DIK+08,IPS09,DIK10,GIP15]. These
techniques do not apply to all circuits, in particular not to “tall and skinny” cir-
cuits whose multiplicative depth is comparable to their size. In addition, they
can at best save an O(n) factor in communication and computational work.

The situation is essentially the same for recent protocols that are designed
for dishonest majority in the preprocessing model [DPSZ12,NNOB12] (except
that amortization based on packed secret-sharing does not apply here due to the
dishonest majority setting).

1.1 Contributions

In this paper, we ask a very natural question for unconditionally secure protocols
which, to the best of our knowledge, has not been studied in detail before:

Is it really inherent that the typical gate-by-gate approach to secure compu-
tation requires communication for each multiplication operation?

Our Model. To avoid misunderstandings, let us be more precise about the
model we assume: we consider synchronous protocols that are semi-honest and
statistically secure against static corruption of at most t of the n players. We
assume that point-to-point secure channels are available, and protocols are
allowed to have dynamic communication patterns (in a certain sense we make
precise later), i.e., it is not fixed a priori whether a protocol sends a message in
a given time slot. Moreover, there is no bound on the computational complexity
of protocols, in particular arbitrary secret sharing schemes are allowed. A gate-
by-gate protocol is a protocol that evaluates an arithmetic circuit and for every
multiplication gate, it calls a certain type of subprotocol we call a Multiplication
Gate Protocol (MGP). We define MGPs precisely later, but they basically take
as input random shares of two values a, b from a field and output random shares
of c = ab. Neither the MGP nor the involved secret sharing schemes have to
be the same for all gates. We do not even assume that the same secret sharing
scheme is used for the inputs and outputs of an MGP, we only require that the
reconstruction threshold for the output sharing is at most 2t for honest majority
and at most n for dishonest majority.

An ordered gate-by-gate protocol must call the MGP’s in an order corre-
sponding to the order in which one would visit the gates when evaluating the
circuit, whereas this is not required in general. Thus the gate-by-gate notion is
somewhat more general than what one might intuitively expect and certainly

462 I. Damg̊ard et al.

includes much more than, say the standard BGW protocol – which, of course,
makes our negative results stronger.

Note that if multiplications did not require communication, it would imme-
diately follow (for semi-honest security) that we would have an unconditionally
secure two-round protocol for computing any function. But as mentioned above
this is not a priori impossible: it follows, for instance, from [IK00,IKM+13],
that if less than a third of the players are corrupted, there is indeed such a two-
round protocol (which, however, requires super polynomial computational work
in general).

Honest Majority Setting. For honest majority protocols it is relatively easy
to show that multiplications do require communication: we argue in the paper
that any MGP secure against t corruptions requires that at least 2t + 1 players
communicate. For protocols with dynamic communication pattern this bound
holds in expectation. It turns out that a protocol beating this bound would imply
an unconditionally secure two-party protocol computing a multiplication, which
is well known to be impossible. This implies that the communication complexity
of any gate-by-gate protocol for honest majority must be proportional to n · s
where s is the circuit size and that the round complexity of an ordered gate-by-
gate protocol must be at least proportional to the multiplicative depth of the
circuit. This matches the best protocols we know for general Boolean circuits
up to a constant factor. For arithmetic circuits over large fields one might wonder
whether the communication must grow with the field size. However, this cannot
be shown via a general bound on MGPs: we give an example secret sharing
scheme allowing for an MGP with communication complexity independent of
the field size.

A gate-by-gate protocol is not allowed to amortise over several multiplications
that can be done in parallel. This is anyway not possible in general, for instance
if we evaluate a “tall and skinny” circuit forcing us to do multiplications sequen-
tially. But for more benign circuits, amortization is indeed an option. However,
we show that in a restricted setting, MGPs doing k multiplication gates in par-
allel must have communication that grows linearly with k. We also show (in full
generality) that amortization can save at most an O(n) factor in the computa-
tional work, matching what we can get from known techniques based on packed
secret-sharing. This proof technique for this bound is quite interesting: We base
it on a lower bound by Winkler and Wullschleger [WW10] on the amount of
preprocessed data one needs for (statistically) secure two-party computation of
certain functions. We find it somewhat surprising that an information theoretic
bound on the size of data translates to a bound on local computation.

Dishonest Majority Setting with Preproccesing. The argument used for
the honest majority case breaks down if we consider protocols in the preprocess-
ing model (where correlated randomness is considered): here it is indeed possible
to compute multiplications with unconditional security, even if t = n−1 of the n
players are corrupt. Nevertheless, we show similar results for this setting: here,

On the Communication Required for Unconditionally Secure Multiplication 463

any MGP secure against t = n − 1 corruptions must have all n players com-
municate. This implies that, also in this setting, any gate-by-gate protocol has
communication complexity Ω(n · s). Note that existing constructions [DPSZ12]
meet the resulting bound for gate-by-gate protocols up to a constant factor.

To obtain the result, we exploit again the lower bound by Winkler and
Wullschleger, but in a different way. In a nutshell, we show that constructions
beating our bound would imply a protocol that is too good to be true according
to [WW10].

The result holds exactly as stated above assuming that the target secret-
sharing scheme that the protocol outputs shares in is of a certain type that
includes the simple additive secret-sharing scheme (which is also used in
[DPSZ12,NNOB12]). If we put no restrictions on the target scheme, the results
get a bit more complicated. Essentially what we show is the following: suppose
we replace the multiplication gate by a more general gate that does some com-
putation on a fixed number of inputs, such as the inner product of two vectors.
Then we show that once the computation done by the gate gets large enough (in
a certain sense we define in the paper), again a protocol handling such a gate
must communicate a lot. It is the target secret-sharing scheme that determines
how “large” the gate needs to be, see more details within.

Comparison to Related Work. There is a lot of prior work on lower bound-
ing communication in interactive protocols, see for instance [Kus92,FY92,CK93,
FKN94,KM97,KR94,BSPV99,GR03] (see [DPP14] for an overview of these
results). They typically provide lower bounds for very specific functions such
as modular addition, and are not applicable to our situation. Probably the most
relevant previous work is [DPP14]. Their model does not match ours, as they
consider three parties where only two have input and only the third party gets
output. Hence we cannot use their results directly, but it is instructive to consider
their techniques as it shows why our problem is more tricky than it may seem at
first. One important idea used in [DPP14] is to make a “cut”, i.e., one considers
a (small) subset C of the parties and then argue that either the communication
between C and the rest of the world must be large enough to determine their
inputs, since otherwise other players could not compute the output; or that C
must receive information of sufficient size to be able to compute its own outputs.

It turns out that these ideas are not sufficient for us: recall that we start
from a situation where players already have shares of the input values a, b. Now,
if C is large enough to be qualified in the input secret sharing scheme, then C
already has information enough to determine a, b (and for some secret sharing
schemes even the shares of all players). So C can in principle compute correct
shares of c = ab by itself without communicating with anyone. On the other
hand, if C is unqualified, then the complement of C is typically qualified, and
therefore does not need information from C to compute output. But one might
think that C needs to receive information to determine its output, in particular,
the output shares must be properly coordinated to form a consistent sharing of
c. Remember, however, that players already have properly coordinated shares of

464 I. Damg̊ard et al.

the inputs, and they might be able to use those to form a correct output sharing
while communicating less. Indeed, this is what happens for addition gates, where
there is no communication, players just add their shares locally.

It follows that the idea of a cut is not enough, one must exploit in some non-
trivial way that we are handling a multiplication gate, which is exactly what we
do. It is possible that one could use the fact that we do multiplication together
with the concept of residual information which was also used in [DPP14], to get
better bounds than we achieve here, but this remains a speculation.

Note that our model does not count communication needed to construct the
shares that are input, nor does it count any communication needed to reconstruct
results from the output shares. This does count in the standard model and makes
lower bounds easier to prove. For instance, in [DNOR15] lower bounds were
recently proved on the message complexity of computing a large class of functions
securely, primarily by showing that a significant number of messages must be sent
before the input are uniquely determined. In fact, if we included a secret sharing
phase before the multiplication protocol and a reconstruction phase after it, these
would entail so much communication that the bounds obtained from existing
results would leave nothing to explain why the privacy preserving multiplication
step is communication intensive.

It is also easy to see that one cannot get bounds in our model based only on
correctness, for instance by methods from communication complexity. If parties
have shares in a and b, no communication is needed to produce some set of cor-
rect shares in ab: one can simply consider the shares in a and b together as a
(redundant) sharing of ab. Indeed this satisfies all our demands to a multiplica-
tion gate protocol except privacy: the output threshold is the same and we can
correctly reconstruct ab, but privacy is of course violated because reconstruction
would tell us more than ab. So, our bounds arguably require privacy.

2 Preliminaries

Notation. We say that a function ε is negligible if ∀c ∃ σc ∈ N such that if
σ ≥ σc then ε(σ) < σ−c. We write [n] to denote the set {1, 2, ..., n}. More-
over, calligraphic letters denote sets. The complement of a set A is denoted
by A. The distribution of a random variable X over X is denoted by PX .
Given the distribution PXY over X × Y, the marginal distribution is denoted
by PX(x) :=

∑
y∈Y PXY (x, y). A conditional distribution PX|Y (x, y) over X ×Y

defines for every y ∈ Y a distribution PX|Y =y. The statistical distance between
two distributions PX and P ′

X over the domain X is defined as the maximum,
over all (inefficient) distinguishers D : X → {0, 1}, of the distinguishing advan-
tage SD(PX , P ′

X) =
∣∣Pr[D(X) = 1]−Pr[D(X ′) = 1]

∣∣. The conditional Shannon
entropy of X given Y is defined as H(X|Y) := −∑

x,y PXY (x, y) log PX|Y (x, y)
where all logarithms are binary and the mutual information of X and Y as
I(X;Y) = H(X) − H(X|Y). We also use h(p) = −p log p − (1 − p) log(1 − p) for
the binary entropy function. Furthermore, we denote by Πf an n-party protocol
for a function f and by ΠA,B

f a two-party protocol between parties A and B.

On the Communication Required for Unconditionally Secure Multiplication 465

Protocols. We consider protocols involving n parties, denoted by the set
P = {P1, . . . ,Pn}. The parties communicate over synchronous, point-to-point
secure channels. We consider non-reactive secure computation tasks, defined by
a deterministic or randomized functionality f : X1 × . . . × Xn → Z1 × . . . × Zn.
The functionality specifies a mapping from n inputs to n outputs the parties
want to compute. The functionality can be fully specified by a conditional prob-
ability distribution PZ1···Zn|X1···Xn

, where Xi is a random variable over Xi, Zi

is a random variable over Zi, and for all inputs (x1, . . . , xn) we have a probabil-
ity function PZ1···Zn|X1···Xn=(x1,...,xn) and PZ1···Zn|X1···Xn=(x1,...,xn)(z1, . . . , zn) is
the probability that the output is (z1, . . . , zn) when the input is (x1, . . . , xn). Vice
versa, we can consider any conditional probability distribution PZ1···Zn|X1···Xn

as a specification of a probabilistic functionality. In the following we will freely
switch between the terminology of probabilistic functionalities and conditional
probability distributions.

We consider stand-alone security as well as static and passive corruptions
of t out of n parties for some t ≤ n. This means that a set of t parties are
announced to be corrupted before the protocol is executed, and the corrupted
parties still follow the protocol but might pool their views of the protocol to
learn more than they should. We consider statistical correctness and statistical
security. We allow simulators to be inefficient. Except that we do not consider
computational security, the above model choices are the possible weakest ones,
which just makes our impossibility proofs stronger.

The Security Parameter. The security is measured in a security parameter
σ and we require that the “insecurity” goes to 0 as σ grows. We do not allow n
to grow with σ, i.e., we require that the protocol can be made arbitrarily secure
when run among a fixed set of parties by just increasing σ. The literature some-
times consider protocol which only become secure when run among a sufficiently
large number of parties. We do not cover such protocols.

Communication Model. We assume that each pair of parties are connected
by a secure communication channel, which only leaks to the adversary the length
of each message sent1. We consider protocols proceeding in synchronous rounds.
Following [DPP14] we assume that in each round each pair of parties (Pi,Pj)
will specify a prefix free code Mi,j ⊂ {0, 1}∗ and then Pi will send a message
m ∈ Mi,j . The codes might be dynamically chosen, but we require that the
parties agree on the codes. If the length of a sent message does not match the
length specified by the receiver, the receiver will terminate with an error symbol
⊥ as output, which will make it count as a violation of correctness.

Let ε denote the empty string and let E = {ε}. If Mi,j = E, then we say that
Pi sends no message to Pj in that round, i.e., we use the empty string to denote
the lack of a message. Notice that if Mi,j
= E, then ε
∈ Mi,j as Mi,j must be
prefix free. Therefore, at the point where Pj specifies the code Mi,j for a given
round, Pj already knows whether or not Pi will send a message in that round.

1 This is a standard way to model secure communication by an ideal functionality
since any implementation using crypto would leak the message length.

466 I. Damg̊ard et al.

We in particular say that Pj anticipates a message from Pi when Mi,j
= E. We
will only be interested in counting the number of messages sent, not their size.
When the protocol is correct, the number of messages sent is obviously equal to
the number of messages anticipated.

Definition 1 (Anticipated message complexity). We say that the expected
message complexity of a party is the expected number of times a non-empty
message is sent or anticipated by the party. The expected message complexity of
a protocol is simply the sum of the expected message complexity of the parties,
divided by 2. We divide by 2 to avoid counting a transmitted message twice. The
expectation is taken over the randomness of the players and maximised over all
inputs.

The reason for insisting on a prefix free code for this slightly technical notion
is to avoid a problem we would have if we allowed the communication pattern
to vary arbitrarily: consider a setting where Pj wants to send a bit b to Pi. If
b = 0 it sends no message to Pi or say the empty string. If b = 1 it sends 0
to Pi. If b is uniformly random, then in half the cases Pj sends a message of
length 0 and in half the cases it sends a message of length 1. This means that
a more liberal way of counting the communication complexity would say that
the expected communication complexity is 1

2 . This would allow to exchange 1
bit of information with an expected 1

2 bits of communication. This does not
seem quite reasonable. The prefix-free model avoids this while still allowing the
protocol to have a dynamic communication pattern. Note that since we want to
prove impossibility it is stronger to allow protocols with dynamic rather than
fixed communication patterns.

Protocols with Preprocessing. We will also consider protocols for the pre-
processing model. In the preprocessing model, the specification of a protocol also
includes a joint distribution PR1···Rn

over R1× . . .×Rn, where the Ri’s are finite
randomness domains. This distribution is used for sampling correlated random
inputs (r1, . . . , rn) ← PR1···Rn

received by the parties before the execution of the
protocol. Therefore, the preprocessing is independent of the inputs. The actions
of a party Pi in a given round may in this case depend on the private random
input ri received by Pi from the distribution PR1···Rn

and on its input xi and
the messages received in previous rounds. In addition, the action might depend
on the statistical security paramenter σ which is given as input to all parties
along with xi and ri. Using the standard terminology of secure computation,
the preprocessing model can be thought of as a hybrid model where the parties
have one-time access to an ideal randomized functionality P (with no inputs)
providing them with correlated, private random inputs ri.

Security Definition. A protocol securely implements an ideal functionality
with an error of ε, if the entire view of each corrupted player can be simulated
with an error of at most ε in an ideal setting, where the players only have black-
box access to the ideal functionality. Formally, consider Definition 2 below.

Definition 2. Let Π be a protocol for the PR1···Rn
-preprocessing model. Let

PZ1···Zn|X1···Xn
be an n-party functionality. Let Adv be a randomized algorithm,

On the Communication Required for Unconditionally Secure Multiplication 467

which chooses to corrupt a set A ⊆ {1, . . . , n} of at most t ∈ N parties. Let
x = (x1, . . . , xn) ∈ X1 × . . .×Xn be an input. Let PatternΠ(σ,x) denote the com-
munication pattern in a random run of the protocol Π, i.e., the list of the length
of the messages exchanged between all pairs of parties in all rounds, on input
x and with security parameter σ. Define ViewΠ

Adv(σ,x) to be the PatternΠ(σ,x)
concatenated with the view of the parties Pi for i ∈ A in the same random run
of the protocol Π. Let OutputΠA(σ,x) be just the inputs and outputs of the honest
parties Pi for i
∈ A in the same random run of the protocol Π. Let

ExecΠ
Adv(σ,x) = (ViewΠ

Adv(σ,x),OutputΠA(σ,x)).

Let S be a randomized function called the simulator. Sample z according to
PZ1···Zn|X1···Xn

(x). Give input {(xi, zi)}i∈A to S. Let S({(xi, zi)}i∈A) denote the
random variable describing the output of S. Let

SimS(σ,x) =
(
S({(xi, zi)}i∈A), {(xi, zi)}i�∈A

)
.

The protocol is ε-semi-honest secure with threshold t if there exist S such that
for all x and all A with |A| ≤ t it holds that

SD(ExecΠ
Adv(σ,x),SimS(σ,x)) ≤ ε(σ).

The protocol is statistically semi-honest secure with threshold t if it is ε-semi-
honest secure for a negligible ε.

Secret-Sharing. A (t+1)-out-of-n secret-sharing scheme takes as input a secret
s from some input domain and outputs n shares, with the property that it is
possible to efficiently reconstruct s from every subset of t + 1 shares, but every
subset of at most t shares reveals nothing about the secret s. The value t is called
the privacy threshold of the scheme.

A secret-sharing scheme consists of two algorithms: the first algorithm, called
the sharing algorithm Share, takes as input the secret s and the parameters t
and n, and outputs n shares. The second algorithm, called the recovery algorithm
Recover, takes as input t + 1 shares and outputs a value s. It is required that
the reconstruction of shares generated from a value s produces the same value
s. Formally, consider the above definition.

Definition 3 (Secret-sharing). Let F be a finite field and let n, t ∈ N. A pair
of algorithms Sn

t = (Share,Recover) where Share is randomized and Recover is
deterministic are said to be a secret-sharing scheme if for every n, t ∈ N, the
following conditions hold.

Reconstruction: For any set T ⊆ {1, . . . , n} such that |T | > t and for any
s ∈ F it holds that

Pr[Recover(ShareT (s, n, t)) = s] = 1

where ShareT is the restriction of the outputs of Share to the elements in T .

468 I. Damg̊ard et al.

Privacy: For any set T ⊆ {1, . . . , n} such that |T | ≤ t and for any s, s′ ∈ F it
holds that

ShareT (s, n, t) ≡ ShareT (s′, n, t)

where we use ≡ to denote that two random variables have the same distrib-
ution.

Additive Secret-Sharing. In an additive secret-sharing scheme, n parties hold
shares the sum of which yields the desired secret. By setting all but a single share
to be a random field element, we ensure that any subset of n − 1 parties cannot
recover the initial secret.

Definition 4 (Additive secret-sharing). Let F be a finite field and let n ∈ N.
Consider the secret-sharing scheme An = (Share,Recover) defined below.

– The algorithm Share on input (s, n) performs the following:
1. Generate (s1, . . . , sn−1) uniformly at random from F and define sn =

s − ∑n−1
i=1 si.

2. Output (s1, . . . , sn) where si is the share of the i-th party.
– The recovery algorithm Recover on input (s1, · · · , sn), outputs

∑n
i=1 si.

It is easy to show that the distribution of any n − 1 of the shares is the
uniform one on F

n−1 and hence independent of s.

Secret-sharing Notation. In the sequel for a value s ∈ F we denote by
[s]S

n
t a random sharing of s for the secret-sharing scheme Sn

t . That is, [s]S
n
t ←

Share(s, n, t) where [s]S
n
t = (s1, . . . , sn). Similarly, we denote by [s]A

n

a random
additive sharing of s secret shared among n parties.

Primitives. In the sequel we consider the following two-party functionalities
which naturally extend to the multi-party setting.

Definition 5 (Multiplication MULT functionality). Let F be a finite
field. Consider two parties A and B. We define the two-party functionality
MULT(a, b) which on input a ∈ F from party A and b ∈ F from party B outputs
MULT(a, b) = a · b to both parties.

Definition 6 (Inner Product IPκ functionality). Let F be a finite field and
let κ ≥ 1. Consider two parties A and B. We define the two-party functionality
IPκ(a, b) which on input a ∈ F

κ from party A and b ∈ F
κ from party B outputs

IPκ(a, b) =
∑κ

i=1 aibi to both parties.

3 Secure Computation in the Plain Model

We first investigate the honest majority scenario. As explained in the introduc-
tion, we will consider protocols that compute arithmetic circuits over some field

On the Communication Required for Unconditionally Secure Multiplication 469

securely using secret-sharing. All known protocols of this type handle multipli-
cation gates by running a subprotocol that takes as input shares in the two
inputs a and b to the gate and output shares of the product ab, such that the
output shares contain only information about ab (and no side information on
a nor b). Accordingly, we define below a multiplication gate protocol (MGP) to
be an interactive protocol for n players that does exactly this, and then show a
lower bound on the communication required for such a protocol.

Definition 7 (Multiplication Gate Protocol ΠMULT). Let F be a finite
field and let n ∈ N. Let Sn

t and Ŝn
t′ be two secret-sharing schemes as per Defin-

ition 3. A protocol ΠMULT is an n-party Multiplication Gate Protocol (MGP)
with thresholds t, t′, input sharing-scheme Sn

t and output sharing-scheme Ŝn
t′ if

it satisfies the following properties:

Correctness: In the interactive protocol ΠMULT, players start from sets of
shares [a]S

n
t ← Share(a, n, t) and [b]S

n
t ← Share(b, n, t). Each player out-

puts a share such that these together form a set of shares [ab]Ŝ
n
t′ . Moreover,

t′ < 2t.
t-privacy: If the protocol is run on randomly sampled shares [a]S

n
t and [b]S

n
t ,

then the only new information the output shares can reveal to the adversary
is ab. We capture this by requiring that for any adversary corrupting a player
subset A of size at most t, there exists a simulator SA which when given the
input shares of the parties in A (denoted by [a]S

n
t

A , [b]S
n
t

A) and the product ab,

will simulate the honest parties’ output shares (denoted by [ab]Ŝ
n
t′

A) and the
view of the parties in A with statistically indistinguishable distribution.
Formally, for any adversary ADV corrupting a player set A with |A| ≤ t
there exist SA such that for randomly sampled shares [a]S

n
t ← Share(a, n, t)

and [b]S
n
t ← Share(b, n, t), it holds that

SD

((
ViewΠMULT

ADV (σ, [a]S
n
t , [b]S

n
t)), [ab]

Ŝn
t′

A

)
, SA(σ, [a]

Sn
t

A , [b]
Sn
t

A , ab)

)
≤ ε(σ), (1)

where σ is a security parameter and where, in the underlying random experi-
ment, probabilities are taken over the choice of input shares as well as random
coins of the protocol and simulator.

Note that we do not require the input and output sharing schemes to be the
same, we only require that the output threshold is not too large (t′ < 2t).
Known MPG’s actually have t′ = t to allow continued computation, we want to
be more generous to make our lower bound stronger. Note also that we do not
require the simulators to be efficient.

Recall that we use the term gate-by-gate protocol to refer to any protocol
that computes an arithmetic circuit securely by invoking an MGP for each
multiplication gate in the circuit such that the sets of shares that are input are
randomly chosen. We leave unspecified what happens with addition gates as this
is irrelevant for the bounds we show. An ordered gate-by-gate protocol invokes

470 I. Damg̊ard et al.

MGP’s for multiplication gates in an order corresponding to the order in which
one would visit the gates when evaluating the circuit.

In the following we show that any MGP in a gate-by-gate protocol must
communicate for every multiplication gate in the honest majority setting even
if only semi-honest security is required. The technique of our proof is as follows.
We build an information-theoretic two-party computation protocol utilizing an
n-party MGP by emulating multiple parties (in the head) and then use the
impossibility result on the existence of an information-theoretic two-party com-
putation protocol to show a contradiction.

Theorem 1. There exists no MGP ΠMULT as per Definition 7 with thresholds
t, t′, and with expected anticipated message complexity ≤ 2t.

Proof. Suppose for contradiction that there exists an MGP ΠMULT with
expected anticipated communication complexity at most 2t. We first show a
proof in the simpler case where the communication pattern is fixed. This means
that at most 2t parties are communicating, i.e., they send or receive messages
and the set of parties that communicate is known and fixed. For simplicity of
exposition, suppose that these parties are P1, . . . ,P2t. We are going to use ΠMULT

to construct a two-party unconditionally secure protocol ΠA,B
MULT which securely

computes the MULT function between parties A,B as per Definition 5.
In particular, given two parties A and B, with inputs a, b ∈ F, respectively,

involved in the ΠA,B
MULT protocol, we are going to let A emulate the first t parties

that communicate and B emulate the other t parties, say Pt+1, . . . ,P2t. The
protocol ΠA,B

MULT proceeds as follows:

Protocol ΠA,B
MULT(σ, a, b)

Input Phase:
1. Parties A,B secret share their inputs a, b using the secret-sharing scheme

Sn
t . More specifically, A computes [a]S

n
t ← Share(a, n, t) and B computes

[b]S
n
t ← Share(b, n, t).

2. Party A sends the input shares (at+1, . . . , a2t) to party B and Party B
sends the input shares (b1, . . . , bt) to party A.

Evaluation Phase:
1. Parties A,B invoke the protocol ΠMULT(σ, a1, . . . an, b1, . . . bn). The emu-

lation of ΠMULT yields a set of shares [c]Ŝ
n
t′ and outputs (c1, . . . , ct) to

party A and (ct+1, . . . , c2t) to party B.
Output Phase:
2. Party A sends the output shares (c1, . . . , ct) to party B and Party B sends

the output shares (ct+1, . . . , c2t) to party A.
3. Each party given 2t > t′ shares of c recovers the output c = a · b

We now show that the above protocol is correct and secure. Correctness
follows immediately from t′ < 2t - as then 2t shares are enough to reconstruct.
The protocol is secure (private) due to the t-privacy property of ΠMULT. More
precisely, if party A is corrupted, we need to simulate his view of the protocol
given a and the product ab. We do this as follows: Let A be the set of parties A

On the Communication Required for Unconditionally Secure Multiplication 471

emulates in the MGP. We now compute [a]S
n
t ← Share(a, n, t) and sample [b]S

n
t

A
which can be done by the privacy property of Sn

t . We then run the simulator SA
guaranteed by the t-privacy property to get SA(σ, [a]S

n
t

A , [b]S
n
t

A , ab). Note that this
output includes A’s view of the MGP as well as all output shares.

The simulator now outputs [a]S
n
t , [b]S

n
t

A and SA(σ, [a]S
n
t

A , [b]S
n
t

A , ab). This is
statistically indistinguishable from A’s view of ΠA,B

MULT(σ, a, b) by the privacy
property of Sn

t and Eq. (1). A similar simulator for B’s view is easy to construct.
However, the above leads to a contradiction since it is well known [BGW88,

CCD88] that it is impossible to realize passively secure two-party multiplica-
tion (such as the ΠA,B

MULT protocol) in the information theoretic setting (even if
inefficient simulators are allowed). Therefore, the theorem follows.

We now address the case where the communication pattern might be
dynamic. We say that a party communicated if it sent a non-empty message
or if it anticipated a non-empty message. So by definition, the expected number
of communicating parties is ≤ 2t. Since the observed value is an integer, there is
some non-zero, constant probability p such that the observed value of the num-
ber of communication parties is at most 2t. We can therefore pick a subset C of
the parties of size 2t such that it happens with probability at least p/

(
n
2t

)
that

only the parties in C communicate. Since we can increase the security parameter
σ independently of n, the number p/

(
n
2t

)
is a positive constant (in σ). We can

then modify ΠA,B
MULT(a, b) such that B runs t parties in C and A runs the other t

parties. The protocol runs as ΠA,B
MULT(a, b) except that if it A or B observe that

a party in C anticipates a non-empty message from a party outside C, then the
execution is terminated. In case the protocol terminates, the two parties just try
again. Since p/

(
n
2t

)
is a positive constant this succeeds in an expected constant

number of tries. Notice that when the protocol succeeds, all parties in C received
all the messages they would have received in a run of ΠA,B

MULT(a, b) where all the
parties were active, as parties only receive the messages they anticipate. Hence
the parties in C have correct outputs (except with negligible probability). For
the same reason the output of the parties simulated by A and B will be correct.
Hence A and B can reconstruct the output from the 2t shares. We can also argue
that the protocol is private: We will simulate A’s (or B)’s view by running the
simulator SA (where again A is the set of parties emulated by A) repeatedly until
a view is produced where no party in C anticipates a message from outside of
C. Note that SA simulates the view of an adversary corrupting A, and this view
includes the communication pattern from which it is evident who anticipates
messages. ��

The above theorem immediately implies:

Corollary 1. Any gate-by-gate protocol that is secure against t = Θ(n) corrup-
tions must communicate Ω(n · |C|) bits where |C| is the size of the circuit C to
compute, and moreover, an ordered gate-by-gate protocol must have a number of
rounds that is proportional to the (multiplicative) depth of C.

Jumping ahead, we note that the arguments for this conclusion break down
completely when we consider secure computation in the preprocessing model

472 I. Damg̊ard et al.

with dishonest majority since in such a model it is no longer true that two-party
unconditionally secure multiplication is impossible: just a single preprocessed
multiplication triple will be enough to compute a multiplication. We return to
this issue in the next section.

A bound that grows with the field size? It is natural to ask if we can get a lower
bound on the complexity of an MPG that grows with the field size? after all,
existing MGPs do need to send more bits for larger fields. However, the answer
is no, as the following example shows: for a ∈ F, define za to be 0 if a = 0
and 1 otherwise. Then we represent an element a ∈ F as a pair (za, 	a) where
	a is randomly chosen if a = 0 and otherwise 	a = logg(a), where g is a fixed
generator of the multiplicative group F

∗. Let u = |F∗|. Observe that now we
have (zab, 	ab) = (za · zb, (a + 	b) mod u).

We now construct a secret sharing scheme: given a secret a ∈ F, we first
compute (za, 	a) and then share za using, e.g., Shamir’s scheme and share 	a

additively modulo u. An MGP for this scheme can use a standard protocol to
compute shares in za · zb and local addition to get shares in (a + 	b) mod u.
Clearly, the communication complexity of this MGP does not depend on |F|.

Of course, the secret sharing scheme we defined is not efficient (at least
not in all fields) because one needs to take discrete logs. This is not formally a
problem since we did not make any assumptions on the efficiency of secret sharing
schemes. But we can in fact get a more satisfactory solution by replacing the
additive sharing of the discrete log with black-box sharing directly over the group
F

∗ [CF02]. This is doable in polynomial time, will cost a factor that is logarithmic
in the number of players, but since black-box secret-sharing is homomorphic over
the group operation, the resulting MGP still has communication independent
of |F|.
Amortized Multiplication Gate Protocols. There is one clear possibility
for circumventing the bounds we just argued for gate-by-gate protocols, namely:
what if the circuit structure allows us to do, say k multiplications in parallel?
Perhaps this can be done more efficiently than k separate multiplications? Of
course, this will not help for a worst case circuit whose depth is comparable to
its size. But in fact, for “nicer” circuits, we know that such optimizations are
possible, based on so-called packed secret-sharing. The catch, however, is that
apart from loosing in resilience this only works if there is a gap of size Θ(k)
between the privacy and reconstruction thresholds of the secret-sharing scheme
used, so the number of players must grow with k.

One may ask if this is inherent, i.e., can we save on the communication
needed for many multiplication gates in parallel, only by increasing the number
of players? While we believe this is true, we were not able to show it in full
generality. But we were able to do so for computational complexity, as detailed
below. Furthermore, for a restricted setting we explain below and a fixed number
of players, we could show that the communication must grow linearly with k.

First, we can trivially extend Definition 3 to cover schemes in which the secret
is a vector a = (a1, . . . , ak) of field elements instead of a single value. A further

On the Communication Required for Unconditionally Secure Multiplication 473

extension covers ramp schemes in which there are two thresholds: the privacy
threshold t which is defined as in Definition 3 and a reconstruction threshold
r > t, where any set of size at least r can reconstruct the secret. Such a scheme
is denoted by Sn

t,r. Note that the shares in this case may be shorter than the
secret, perhaps even a single field element per player. We can now define a simple
extension of the multiplication gate protocol concept:

Definition 8 (k-Multiplication Gate Protocol ΠMULTk). Let F be a finite field
and let n ∈ N. Let Sn

t,r and Ŝn
t,r be two ramp sharing schemes defined over F, for

sharing vectors in F
k. ΠMULTk is said to be a k-Multiplication Gate Protocol

(k-MGP) with thresholds t, r, input sharing scheme Sn
t,r and output sharing scheme

Ŝn
t,r if it satisfies the following properties:

Correctness: In the interactive protocol ΠMULTk , players start from sets of
shares [a]S

n
t,r and [b]S

n
t,r . Each player outputs a share such that these together

form a set of shares [a ∗ b]Ŝ
n
t,r , where a ∗ b is the coordinatewise product of

a and b.
t-privacy: If the protocol is run on randomly sampled shares [a]S

n
t and [b]S

n
t ,

then the only new information the output shares can reveal to the adversary
is a∗b. We capture this by requiring that for any adversary corrupting player
subset A of size at most t, there exists a simulator SA which when given the
input shares of the parties in A (denoted by [a]S

n
t

A , [b]S
n
t

A) and the product ab,

will simulate the honest parties’ output shares (denoted by [a ∗ b]Ŝ
n
t′

A) and the
view of the parties in A with statistically indistinguishable distribution.

Formally, for any adversary ADV corrupting player set A with |A| ≤ t
there exist SA such that for randomly sampled shares [a]S

n
t ← Share(a, n, t)

and [b]S
n
t ← Share(b, n, t), it holds that

SD

((
View

Πk
MULT

ADV (σ, [a]S
n
t , [b]S

n
t)), [a ∗ b]

Ŝn
t′

A

)
, SA(σ, [a]

Sn
t

A , [b]
Sn
t

A ,a ∗ b)

)
≤ ε(σ), (2)

where σ is a security parameter and where, in the underlying random experi-
ment, probabilities are taken over the choice of input shares as well as random
coins of the protocol and simulator.

Before giving our result on k-MGPs we note that for any interactive protocol,
it is always possible to represent the total computation done by the players as
an arithmetic circuit over a finite field (arithmetic circuits can emulate Boolean
circuit which can in turn emulate Turing machines). We can encode messages
as field elements and represent sending of messages by wires between the parts
of the circuit representing sender and receiver. For a protocol Π, we refer to an
algorithm outputting such a circuit as an arithmetic representation of Π. Note
that such a representation is not in general unique, but once we have chosen
one, it makes sense to talk about, e.g., the number of multiplications done by a
player in Π.

474 I. Damg̊ard et al.

Theorem 2. Let t < r ≤ n ∈ N. Also let P = {P1, . . . ,Pn} be a set of parties.
Assume that the k-MGP ΠMULTk defined over F has thresholds t, r. Then for any
arithmetic representation of ΠMULTk (over any finite field) and for each subset
S ⊂ P of size n − 2t, the total number of multiplications done by players in S
is Ω(k).

Proof. Suppose for contradiction that there exists a k-MGP ΠMULTk in which
the total number of multiplications done by players in S is o(k). Assume for nota-
tional convenience that S = {P2t+1, . . . ,Pn}. We are going to use it to construct
a two-party unconditionally secure protocol ΠA,B

MULT in the preprocessing model
which securely computes k multiplications as follows. We let u ← PU denote the
correlated randomness we will use in ΠA,B

MULT. Given two parties A and B involved
in the ΠA,B

MULT protocol, the idea is to use the assumed k-MGP where A emulates
t players and B emulates another t players. In addition, parties A,B together
emulate the rest of the parties in S. This can be done using the preprocessed
data u: we consider the parties in S as a reactive functionality fS which can be
implemented using an existing protocol in the preprocessing model. One example
of such a protocol is the SPDZ protocol [DPSZ12] denoted by ΠSPDZ

fS
2 which

uses additive-secret sharing. Therefore, protocol ΠA,B
MULT proceeds as follows:

Protocol ΠA,B
MULT({ai}i∈[k], {bi}i∈[k], u):

Input Phase:
1. ∀i ∈ [k], parties A,B secret share their inputs ai, bi using the ramp shar-

ing scheme Sn
t,r. So A computes [a]S

n
t,r ← Share((a), n, t) and B com-

putes [b]S
n
t,r ← Share((b), n, t). For simplicity of exposition, we denote by

(ā1, . . . , ān), (b̄1, . . . , b̄n) the shares of [a]S
n
t,r and [b]S

n
t,r , respectively.

2. Party A sends the input shares (ā1, . . . , āt) to party B and Party B sends
the input shares (b̄t, . . . , b̄2t) to party A.

3. Additively secret share the inputs (ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the par-
ties in S between A and B using the additive secret-sharing A2 and obtain
the shares ([ā2t+1]A

2
, . . . , [ān]A

2
, [b̄2t+1]A

2
, . . . , [b̄n]A

2
). For the following

phase, as we mentioned above, we will think of the computation done by
the parties in S as a reactive functionality fS which is implemented using
the protocol ΠSPDZ

fS in the preprocessing model.
Evaluation Phase:

Parties A,B invoke the protocol ΠMULTk([a]S
n
t,r , [b]S

n
t,r) in which A,B

emulate t parties each, and they together emulate the rest, n − 2t play-
ers, using the preprocessed data u invoking protocol ΠSPDZ

fS . To this
end, note that ΠSPDZ

fS represents data by additive secret-sharing. Values
(ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the parties in S were already additively
shared, so they can be used directly as input to ΠSPDZ

fS .
Now, the emulation of ΠMULTk is augmented with the protocol ΠSPDZ

fS

2 We do passive security here, so a simpler variant of SPDZ will suffice, without
authentication codes on the shared values.

On the Communication Required for Unconditionally Secure Multiplication 475

as follows: when a party in S would do a local operation, we do the same
operation in ΠSPDZ

fS . When a party outside S sends a message to a party
in S an additive secret-sharing of that message is formed between A
and B. When a party in S sends a message to a party outside S the
corresponding additive secret-sharing is reconstructed towards A or B,
depending on who emulates the receiver. In the end, we will obtain addi-
tive sharings between A and B of the outputs of parties in S, namely
([c̄2t+1]A

2
, . . . , [c̄n]A

2
).

Output Phase:
1. A sends the output shares (c̄1, . . . , c̄t) to B, B sends the output shares

(c̄t+1, . . . , c̄2t) to A computed by ΠMULTk , and A and B exchange their
additive shares ([c̄2t+1]A

2
, . . . , [c̄n]A

2
) in order to recover (c̄2t+1, . . . , c̄n).

2. Now both A and B have n ≥ r shares of the output and can recover the
result a ∗ b.

We now show that the above protocol is correct and secure. Correctness
follows immediately from the correctness of ΠMULTk and ΠSPDZ

fS . We argue
that the protocol is secure (private) due to the security of ΠSPDZ

fS and the
t-privacy property of the MGP ΠMULTk (see Eq. (1)). For the case where A is
corrupted, we first observe that by using the simulator for the ΠSPDZ

fS protocol,
we can argue that the view of A in the real protocol is statistically close to the
one obtained by replacing players in S by the ideal functionality fS .

We can then make a simulator for corrupt A in the fS -hybrid model, as
follows: The shares received by A in the input phase can be simulated by the
privacy property of the input sharing scheme, and the rest of the view can be
simulated by invoking the simulator SA of the protocol ΠMULTk guaranteed by
Definition 7, on input [a]S

n
t

A , [b]S
n
t

A ,a ∗ b. Note that SA is in charge of simulating
fS . It can therefore define the responses of fS such that they are consistent with
the view generated by SA.3

We therefore conclude from Eq. (2) that SA generates a view that is sta-
tistically indistinguishable from the real view of an adversary corrupting A. A
similar argument holds for B.

Now note that the preprocessed data required by the protocol ΠSPDZ
fP

amount to a constant number of field elements for each multiplication done.
This means that our 2-party protocol needs o(k) preprocessed field elements by
assumption on ΠMULTk . However, this leads to a contradiction since by results
in [WW10], it is impossible for two parties to compute k multiplications with
statistical security using preprocessed data of size o(k) field elements. ��

What this theorem shows is, for instance, that if we want each player to do
only a constant number of local multiplications in a k-MGP, then n needs to be
Ω(k). Since this is precisely what protocols based on packed sharing can achieve
(see, e.g., [DIK+08]), the bound in the theorem is in this sense tight. What the

3 Note that ΠSPDZ
fS reveals the structure of the circuit for fS . This is secure as we

assume that the parties in S are represented as known arithmetic circuits.

476 I. Damg̊ard et al.

theorem also says is that every subset of size n−2t needs to work hard, so in the
case where we tolerate a maximal number of corruptions, i.e., n = 2t+1, we see
that a gate by gate protocol in this case must have computational complexity
Ω(n|C|), for any circuit of size |C|, not only for “tall and skinny” circuits as we
had before.

A restricted result on communication complexity. Our final result on honest
majority concerns k-MGPs that are regular by which we mean, first that the
output shares they produce follow the same distribution that is also produced
by the Share algorithm of the output secret sharing scheme. This is a rather
natural condition that is satisfied by all known k-MGP’s. Second, we will assume
that the input and output schemes are the same, have r = t + 1 (thus excluding
packed sharing), and is ideal, i.e., each share is a single field element. This is
satisfied by Shamir’s scheme, for instance. The ideal assumption can be replaced
by much weaker conditions requiring various symmetry properties, but we stick
with the simpler case for brevity.

Theorem 3. A regular k-MGP has (expected) Ω(k) communication complexity.

Proof. The message pattern and -lengths in the k-MGP must not depend on the
inputs a1, ..., ak, b1, ..., bk, so we are done if we show the bound for some fixed
distribution of inputs. We choose the uniform distribution, and we write A1, A2

etc. for the corresponding random variables. Now consider any subset A of t
players and another player P . Let U denote the joint view of players in A before
we do the k-MGP and U ′ denote the view after. V, V ′ denote the corresponding
views of P . Finally, CA, CP denote the messages sent and received by A and P
during the k-MGP. Note that I(U ;V) = 0: We have not sent any messages yet,
and furthermore, even given the t shares of A in some ai, since ai is uniform in
F and the scheme is ideal, the share of P is uniform in F as well. Also, without
loss of generality, we can set U ′ = (U,CA) and V ′ = (V,CP).

However, since the Ci = AiBi are not uniform, we do have common informa-
tion after the protocol. We see this as follows: since 0 times any value is 0, the
value 0 is more likely for ci than others. So H(Ci) ≤ log q − ε for some constant
ε > 0 that depends on |F| = q. Furthermore, given the vector of shares SA of
A in Ci, there is a 1-1 correspondence between possible values of Ci and values
of the share Sp of P . This means that H(Sp|SA) ≤ log |F| − ε. On the other
hand, H(Sp) = log q because the scheme is ideal, so therefore I(SA;SP) ≥ ε.
This applies to every Ci, so we have that I(U ′;V ′) ≥ kε. We can now compute
as follows, using a standard chain rule for mutual information:

εk ≤ I((U,CA); (V,CP))
= I(U ; (V,CP)) + I(CA; (V,CP)|U)
≤ I(U ; (V,CP)) + H(CA)
= I(U ;V) + I(U ;CP |V) + H(CA)
≤ I(U ;V) + H(CP) + H(CA)
= H(CP) + H(CA).

So indeed, the expected size of the communication grows linearly with k.

On the Communication Required for Unconditionally Secure Multiplication 477

4 Secure Computation in the Preprocessing Model

It is well known that all functions can be computed with unconditional security in
the setting where n−1 of the n players may be corrupted, and where the players
are given correlated randomness, also known as preprocessed data, that does not
have to depend on the function to be computed, nor on the inputs. Winkler and
Wullschleger [WW10] proved lower bounds on the the amount of preprocessed
data needed to compute certain functions with statistical security where the
bound depends on certain combinatorial properties of the target function.

All existing protocols in the preprocessing model that are efficient in the
circuit size of the function, work according to the gate-by-gate approach we
encountered in the previous section. We can define (ordered) gate-by-gate pro-
tocols and MGPs exactly as for the honest majority setting, with two exceptions:
MGPs are allowed to consume preprocessed data, and the output threshold t′

must equal the input threshold t. This is because we typically have t = n − 1
in this setting, and then it does not make sense to consider t′ > t, then even all
players cannot reconstruct the output,

As before, we want to show that multiplication gate protocols require a cer-
tain amount of communication, but as mentioned before, we can no longer base
ourselves on impossibility of unconditionally secure multiplication for two par-
ties, since this is in fact possible in the preprocessing model. Instead, the contra-
diction will come from the known lower bounds on the size of the preprocessed
data needed to compute certain functions.

4.1 Protocols Based on Additive Secret-Sharing

We start by showing that any gate-by-gate protocol must communicate for every
multiplication gate when the underlying secret sharing scheme is the additive
one. We show that an MGP that does not communicate enough implied a pro-
tocol that contradicts the lower bound by Winkler and Wullschleger [WW10] on
the the amount of preprocessed data needed to compute certain functions with
statistical security.

Theorem 4. Consider the preprocessing model where n−1 of the n players may
be passively corrupted. In this setting, there exists no MGP ΠMULT with expected
anticipated communication complexity ≤ n − 1 and with additive secret-sharing
An as output sharing scheme.

Proof. Suppose for contradiction that there exists an MGP ΠMULT (with pre-
processed data u ← PU) which contradicts the claim of the theorem. Similar to
Theorem 1 we will first assume a fixed communication pattern. Assume for nota-
tional convenience that only the parties P1, . . . ,Pn−1 communicate. Given two
parties A and B, we are going to construct a two-party protocol ΠA,B

MULT which
on input a, b ∈ F from A,B, respectively, securely computes ab. The idea is for
A to emulate the n − 1 players who communicate in ΠMULT while B emulates
the last player. In particular, protocol ΠA,B

MULT proceeds as follows:

478 I. Damg̊ard et al.

Protocol ΠA,B
MULT

Input Phase:
1. Parties A,B secret share their inputs a, b using the input secret-

sharing scheme An of ΠMULT. More specifically, A computes [a]A
n ←

Share(a, n, n − 1) and B computes [b]A
n ← Share(b, n, n − 1).

2. Party A sends the input share an to party B and Party B sends the input
shares (b1, .., bn−1) to party A.

Evaluation Phase:
1. Parties A,B invoke the MGP ΠMULT as per Definition 7 in the pre-

processing model where A emulates the n − 1 players who communicate,
and we assume these are the first n − 1 players. This means that this
phase involves no communication between A and B, but it may consume
some preprocessed data u. The execution of ΠMULT yields a sharing of
[c]A

n

and outputs (c1, ..., cn−1) to party A and cn to party B.
Output Phase:
1. A sends

∑n−1
i=1 ci to B and B sends cn to A. The parties add the received

values to recover the output c = a · b.

Correctness of this protocol follows immediately. The protocol can be argued to
be secure(private). In particular, the simulator S for ΠA,B

MULT proceeds as follows.
The preprocessing data to be used by the corrupted party can be simulated with
the correct distribution without any knowledge of the inputs. In the input phase,
the corrupted party receives only an unqualified set of shares whose distribution
can be simulated perfectly. There is no communication to be simulated in the
evaluation phase. In the output phase, it is the case that whenever the protocol
computes the correct result, then the share received from the honest party is
trivial to simulate because it is determined from the corrupted party’s own share
and the result ab. Hence, the only source of error is the negligible probability
that the output is wrong in the real execution, so it follows that

SD(ExecΠA,B
MULT

Adv (σ, (a, b)),SimS(σ, (a, b))) ≤ ε(σ).

However, we can say even more: Let u ← PU be the preprocessed data that is
consumed during the protocol (ΠMULT uses preprocessed data). We now define
a new protocol ΠA,B

MULTk that will compute k independent multiplications (do
not confuse this protocol with the amortized and honest majority protocol in
Definition 8). It does this by running k instances of ΠA,B

MULT, using the same
preprocessed data u for all instances.

Normally, it is of course not secure to reuse preprocessed data, but in this
particular case it works because the communication in ΠA,B

MULT is independent of
u, and so is the simulation. More precisely, ΠA,B

MULTk is clearly correct because
each instance of ΠA,B

MULT runs with correctly distributed preprocessed data. It is
also private: we can simulate by first simulating the corrupted party’s part of u
and then running k instances of the rest of S’s code. Again, the only source of
error is the case where the real protocol computes an incorrect result, but the

On the Communication Required for Unconditionally Secure Multiplication 479

probability of this happening for any of the k instances is at most a factor k
larger than for a single instance, by a union bound, and so is still negligible.

However, this leads to a contradiction with the result of [WW10]: they showed
that the amount of preprocessed data needed for a secure multiplication is at
least some non-zero number of bits w. It also follows from [WW10] that if we
want k multiplications on independently chosen inputs this requires kw bits. So
if we consider a k large enough that kw is larger than the size of u, we have a
contradiction and the theorem follows.

We now generalise to dynamic communication patterns. As in the proof of
Theorem 1 we can find a party Pi such that with some constant positive proba-
bility p the party Pi does not send a message and no party anticipates a message
from Pi. Assume without loss of generality that this is party Pn. Assume first
that p is negligibly close to 1. In that case the parties can apply the above pro-
tocol unmodified. Consider then the case where p is not negligibly close to 1.
We also have that p is not negligibly close to 0. Hence there is a non-negligible
probability that Pn sends a message and a non-negligible probability that Pn

does not send a message. The decision of Pn to communicate or not can depend
only on four values:

– Its share an of a.
– Its share bn of b.
– Its share un of the correlated randomness.
– Its private randomness, call it rn.

This means that there exist a function
(an, bn, un, rn) ∈ {0, 1} such that Pn

communicates iff
(an, bn, un, rn) = 1. Observe that the decision can in fact not
depend more than negligibly on an and bn. If it did, this would leak informa-
tion on these shares to the parties P1, . . . ,Pn−1 which already know all the
other shares. This would in turn leak information on a or b to the parties
P1, . . . ,Pn−1, which would contradict the simulatability property of the protocol.
We can therefore without loss of generality assume that there exist a function

(un, rn) ∈ {0, 1} such that Pn communicates iff
(un, rn) = 1.

Assume that with non-negligible probability over the choice of the un received
by Pn it happens that the function
(un, rn) depends non-negligibly on rn, i.e.,
for a uniform rn it happens with non-negligible probability that
(un, rn) = 0
and it also happens with non-negligible probability that
(un, rn) = 1. Since rn is
independent of the view of the parties P1, . . . ,Pn−1, as it is the private random-
ness of Pn, it follows that the probability that one of the other parties anticipate
a message from Pn is independent of whether
(un, rn) = 0 or
(un, rn) = 1.
Hence it either happens with non-negligible probability that
(un, rn) = 0 and
yet one of the other parties anticipate a message from Pn or it happens with
non-negligible probability that
(un, rn) = 1 and yet none of the other parties
anticipate a message from Pn. Both events contradict the correctness of the
protocol. We can therefore without loss of generality assume that there exist a
function
(un) ∈ {0, 1} such that Pn communicates iff
(un) = 1. By assumption
we have that p is non-zero, so there exist some un such that
(un) = 0. We can

480 I. Damg̊ard et al.

therefore condition the execution on the event
(un) = 0. Let PU be the distri-
bution from which u is sampled. Consider then the random variable PU ′ which
is distributed as PU under the condition that
(un) = 0. We claim that if we
run ΠMULT with PU ′ instead of PU then the protocol is still secure. Assuming
that this claim is true, A and B can apply the above protocol, but simply use
(ΠMULT, PU ′) instead of (ΠMULT, PU).

What remains is therefore only to argue that (ΠMULT, PU ′) is secure. To
simulate the protocol, run the simulator S′

A for (ΠMULT, PU) until it outputs a
simulated execution where Pn did not communicate. Let E be the event that
Pn does not communicate. Since it can be checked from just inspecting the view
of the real execution of (ΠMULT, PU) (or the simulation) whether E occurred, it
follows that E occurs with the same probability in the real execution and the
simulation (or at least probabilities which are negligible close) or we could use
the occurrence of E to distinguish. Since E happens with a positive constant
probability it then also follows that the real execution conditioned on E and the
simulation condition on E are indistinguishable, or we could apply a distinguisher
for the conditioned distributions when E occurs and otherwise make a random
guess to distinguish the real execution of (ΠMULT, PU) from its simulation. This
shows that S′

A simulates (ΠMULT, PU ′). ��

A generalisation. We note that Theorem 3 easily extends to any output secret
sharing scheme with the following property: Given shares c1, ..., cn of c, there is
a function φ such that one can reconstruct c from c1, ..., cn−1, φ(cn) and given c
and c1, ..., cn−1 one can simulate φ(cn) with statistically close distribution. The
proof is the same as above except that in the output phase, B sends φ(cn) to A,
who computes c and sends it to B.

Theorem 3 shows, for instance, that the SPDZ protocol [DPSZ12] has opti-
mal communication for the class of gate-by-gate protocols using additive secret-
sharing: it sends O(n) messages for each multiplication gate, and of course one
needs to send Ω(n) messages if all n players are to communicate, as mandated
in the theorem. Note also that in the dishonest majority setting, the privacy
threshold of the secret-sharing scheme used has to be n − 1, so we cannot have
a gap between the reconstruction and privacy thresholds, and so amortisation
tricks based on packed secret-sharing cannot be applied. We therefore do not
consider any lower bounds for amortised MGP’s.

4.2 Protocols Based on Any Secret-Sharing Scheme

Note that if we consider an MGP whose output sharing scheme is not the addi-
tive scheme, the protocol ΠA,B

MULT in the proof of Theorem 4 may not work. This
is because it is no longer clear that given your own share of the product and
the result, the other party’s share is determined. In particular, the distribution
of the other share may depend on the preprocessed data we consume and so
if we just send that share in the clear, it is not obvious that we can reuse the
preprocessing.

On the Communication Required for Unconditionally Secure Multiplication 481

The solution is to not send shares in the clear, but have the parties securely
compute the output from their shares. This can be done using an existing general
protocol for secure computation in the preprocessing model. This will mean
that we can indeed reuse preprocessed data consumed by the MGP protocol
itself. However, we now consume new preprocessed data for every instance of
the reconstruction protocol since this protocol requires communication. It turns
out that if we use a variant of the MGP that computes, not just one product, but
an inner product of long enough vectors, we can still obtain a contradiction. This
works because we can show that computing the inner product of long vectors
requires lots of preprocessed data. On the other hand, the inner product itself
is just one field element, therefore the cost of reconstructing such a small result
is not significant.

In order to obtain the above result and give more details, we proceed by
proving some auxiliary results with lower bounds on the amount of preprocessed
data needed for a secure evaluation of a function f .

Lower Bounds for Secure Function Evaluation in the Preprocessing
Model. In this section we will give lower bounds for secure implementations of
functions f : X ×Y → Z in the PU , PV -preprocessing model, which for simplicity
of exposition we refer to as PUf ,Vf

, that outputs correlated randomness for the
semi-honest setting. In particular, we are in the setting where the parties A,B
have access to a functionality that gives a random variable Uf to A and Vf to B
with some guaranteed joint distribution PUf ,Vf

of Uf , Vf . Given this, the parties
compute securely a function f : X × Y → Z where A holds x ∈ X , and B holds
y ∈ Y. This function should have no redundant inputs for party A4:

∀x, x′ ∈ X (x
= x′ → ∃y ∈ Y : f(x, y)
= f(x′, y)) (3)

The authors of [WW10] obtained Theorem 5 that gives a lower bound on
the conditional entropy of PUf ,Vf

. Their bound applies for input distributions X
and Y which are independent and uniformly distributed. This implies worst case
communication complexity. Our bound in Theorem 6 also applies to independent
and uniform distributions.

Theorem 5. Let f : X × Y → Z be a function that satisfies property (3).
Assume there exists a protocol having access to PUf ,Vf

which is an ε-secure
implementation of f in the semi-honest model with t = 1 corruptions. Then

H(Uf |Vf) ≥ max
y

H(X|f(X, y)) − (3|Y| − 2)(ε log |Z| + h(ε)) − ε log |X | − h(ε).

Our general result will only apply to functions where the output lives in a
ring Z. As it will become apparent, for the next theorem we require the following
property for a function f : X × Y → Z:

∀x, x′ ∈ X (x
= x′ → ∃y1, y2 ∈ Y : f(x, y1)−f(x, y2)
= f(x′, y1)−f(x′, y2)) (4)
4 Party A must enter all the information about X into the protocol. An example of a

function that satisfies this property is the inner product IP.

482 I. Damg̊ard et al.

Note that the bound in Theorem 5 still applies for functions f that satisfy
properties (3) and (4).

In the following we explore the lower bounds on the amount of preprocessed
data with respect to composition of functions. In Theorem 6 we prove a lower
bound on the conditional entropy of PUh,Vh

for a function h which is a linear
combination of two functions f and g. Our bound also applies to compositions of
k functions where k is an arbitrary number. Basically, we show that the amount
of preprocessed data you need to compute the sum of f and g is the sum of
what you need to compute f and g separately, as long as f and g are applied to
distinct and independent inputs. We clearly need this assumption, as otherwise
the theorem is clearly false, just think of applying f = g on the same inputs.

Theorem 6. Let f : X × Y → Zf , g : Z × W → Zg be functions that satisfy
properties (3) and (4). Assume that Zf = Zg. Let h be a linear combination of f
and g, namely: ∀x ∈ X , y ∈ Y, z ∈ Z, w ∈ W, h(x, z, y, w) := αf(x, y)+βg(z, w)
for some α, β
= 0. If there exists a protocol that securely implements the function
h with access to PUh,Vh

, then it holds that

H(Uh|Vh) ≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)).

Furthermore, the function h will have the following property:

∀x
= x′ ∈ X , z
= z′ ∈ Z ∃y1, y2 ∈ Y, w1, w2 ∈ W :
h(x, z, y1, w1) − h(x, z, y2, w2)
= h(x′, z′, y1, w1) − h(x′, z′, y2, w2)(5)

Proof. We start by proving that the function h has this property:

∀x, x′ ∈ X , z, z′ ∈ Z((x, z)
= (x′, z′) →
∃y ∈ Y, w ∈ W : h(x, z, y, w)
= h(x′, z′, y, w) (6)

By assumption we consider the following two properties on the function g:

∀z
= z′ ∈ Z ∃w ∈ W : g(z, w)
= g(z′, w) (7)

∀z
= z′ ∈ Z ∃w1, w2 ∈ W : g(z, w1) − g(z, w2)
= g(z′, w1) − g(z′, w2) (8)

and properties (3) and (4).
In order to prove properties (6) and (5) for the function h we proceed as

follows:

Case 1. x = x′, z
= z′:
Suppose that ∃y such that f(x′, y) = f(x′, y). By assumption ∃w ∈
W : g(z, w)
= g(z′, w). Therefore, it follows that f(x′, y) − f(x, y)
=
g(z, w) − g(z′, w) and property (6) holds.

Case 2. x
= x′, z = z′:
Suppose that ∃w such that g(z′, w) = g(z′, w). By assumption ∃y ∈ Y :
f(x, y)
= g(x′, y). It follows that f(x′, y) − f(x, y)
= g(z, w) − g(z′, w)
and property (6) holds.

On the Communication Required for Unconditionally Secure Multiplication 483

Case 3. x
= x′, z
= z′:
Let c = f(x′, y) − f(x, y) for some y ∈ Y. By assumption ∃w1, w2 ∈ W
such that c1 = g(z, w1) − g(z′, w1) and c2 = g(z, w2) − g(z′, w2) such
that c1
= c2. Without loss of generality, assume that c
= c1 then
f(x′, y) − f(x, y)
= g(z, w1) − g(z′, w1) and property (5) follows.

Since the function h satisfy property (6) it also has property (3) and hence we
get from Theorem 5 that

H(Uh|Vh) ≥ max
y,w

H(X,Z|h(X,Z, y, w)).

We then get that:

H(Uh|Vh) ≥ max
y,w

H(X,Z|αf(X, y) + βg(Z,w)) (9)

≥ max
y,w

H(X,Z|f(X, y), g(Z,w)) (10)

≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) (11)

Inequality (11) follows from the independence of X,Z. This proves the theorem. ��
Remark 1. The above theorem also applies to multiplicative relations ruling out
the cases where g(z, w) = 0 and f(x, y) = 0.

Exploiting Theorem 6 we prove a lower bound for the inner product function
IPk as per Definition 6.

Lemma 1. Let κ ≥ 1 and let f : X × Y → Z be a multiplication function as
per Definition 5. If there exist a protocol ΠIPk

which securely implements the
inner product function IPk with error probability ε in the semi-honest model and
having access to PUIPk

VIPk
then

H(UIPk
|VIPk

) ≥ k · max
y

H(X|f(X, y)) (12)

Proof. Since the function f satisfies properties (3) and (4), a straightforward
application of Theorem 6 for k = 2 yields H(UIP2 |VIP2) ≥ 2 ·max

y
H(X|f(X, y)).

However it is easy to see that the proof of Theorem 6 extends to addition of k
functions for any k, so the lemma follows in the same way from this more general
result. ��

Utilising Theorem 6 in the following we prove that any function whose “pre-
processing complexity” is large enough requires lots of communication. What
“large enough” means here is determined by the output secret-sharing scheme
used in the protocol, in a sense we make precise below. In the following, when f
is a function with two inputs and one output, we will speak about a protocol for
computing shares of an f-output, denoted by Πf−output. This is essentially the
same as an MGP except that we replace multiplication by f . So the protocol
takes as input shares of x1 and x2 and computes shares of f(x1, x2) as output.

484 I. Damg̊ard et al.

Note that the inputs x1, x2 may be vectors of field elements, whereas we will by
default assume that the output is a single field element.

In the sequel, for simplicity of exposition let Lf denote a lower bound on
the amount of preprocessed data needed for a secure implementation of f in the
preprocessing model and let Uf denote an upper bound.

Reconstruction Protocol Πrec. Let Sn
t be the secret-sharing scheme as per

Definition 3 and let f ′
Sn
t

be the reconstruction function of Sn
t . Then, we can

securely implement the function f ′
Sn
t

in the preprocessing model via the protocol
ΠSPDZ yielding the protocol Πrec

5. It follows that Πrec demands communication
and that its complexity depends only on the underlying secret-sharing scheme
Sn

t . In this case we obtain an upper bound Urec on the amount of preprocessed
data consumed by Πrec.

Theorem 7. Consider the preprocessing model where t of the n players may
be passively corrupted. Let Πrec be a secure output reconstruction protocol with
access to PUrec,Vrec

for the secret-sharing scheme Ŝn
t . Let f be a function with

two inputs and one field element as output such that Urec < Lf . There exists no
passively secure n-player protocol Πf−output with expected anticipated commu-
nication complexity ≤ t for computing shares of an f-output with Ŝn

t as output
secret-sharing scheme.

Proof. We start by assuming a fixed communication pattern. Suppose for con-
tradiction that there exists a protocol Πf where at most t players communicate.
Assume that it is the t first parties. Given two parties A and B, we are going
to construct a two-party protocol ΠA,B

f which on input a, b from A,B, respec-
tively, securely computes f(a, b). The idea is to execute the Πf−output protocol
in which A emulates the t players who communicate while B emulates the rest
of the parties but we are interest just for one additional party, say Pt+1. In
particular, protocol ΠA,B

f (a, b) proceeds as follows:

Protocol ΠA,B
f (a, b):

Input Phase:
1. Parties A,B secret share their inputs a, b using the secret-sharing scheme

Sn
t . More specifically, A computes [a]S

n
t ← Share(a, n, t) and B computes

[b]S
n
t ← Share(b, n, t).

2. Party A sends the input share (at+1, . . . , an) to party B and Party B
sends the input shares (b1, . . . , bt) to party A.

Evaluation Phase:
1. Parties A,B invoke the protocol Πf−output where A emulates the t players

who communicate, and we assume these are the first t players. This means
that this phase involves no communication between A and B, but it may
consume some preprocessed data. The execution of Πf−output yields a
sharing of [c]S

n
t and outputs (c1, ..., ct) to party A and (ct+1, . . . , cn) to

party B.
5 Note that any protocol in the preprocessing model can be used.

On the Communication Required for Unconditionally Secure Multiplication 485

Output Phase:
1. Both parties locally invoke protocol ΠRec with access to PUrec,Vrec

which
on input [c]Ŝ

n
t outputs the result f(a, b).

Correctness of the protocol follows immediately from the correctness of
Πf−output and ΠRec. The protocol can be argued to be secure(private). More
specifically, the simulator SA of ΠA,B

f proceeds as follows. In the input phase,
the parties receive only an unqualified set of shares whose distribution can be
simulated perfectly. There is no communication to be simulated in the evaluation
phase. In the output phase, simulation is guaranteed by the invocations of the
sub-simulator of the secure protocol ΠRec. Hence, it follows that

SD(Exec
ΠA,B

f

Adv (σ, (a, b)),SimSA(σ, (a, b))) ≤ ε(σ).

We can claim the following: Note that the communication in ΠA,B
f is actu-

ally independent of the preprocessed data needed in order to securely compute
f . Therefore, while reusing the same preprocessed data for each invocation of
Πf−output, we could have executed 	 instances of ΠA,B

f on independent inputs
without affecting correctness since the simulation is independent of the pre-
processed data. However, since protocol ΠRec is interactive its preprocessed data
must be refreshed for each of the 	 executions of ΠRec. This means that the
amount of preprocessed data needed in order to compute 	 instances of f is
Uf + 	 · Urec. So if we consider an 	 large enough such that 	 · Lf > Uf + 	 · Urec,
we have a contradiction and the theorem follows.

The generalization to dynamic communication patterns follows along the
lines of the proof of Theorem 4: there we split the players in a maximal unquali-
fied set (n − 1 players) and the rest (1 player). Here we do the same except that
the maximal unqualified set has t players and n−t remain. We then argue exactly
as in the proof of Theorem 4 that decisions to send/receive cannot depend on
private randomness or shares, and therefore we can build a new protocol that
can be used in our construction of a 2-party protocol. ��

Given a function f with one output and a non-zero lower bound, we can add
it to itself on distinct inputs a sufficient number of times in order to satisfy the
condition in the above theorem. An example of a function f is the inner product
function IPk which is the composition of k MULT functions. In Lemma 1 we
obtained a lower bound LIPk on the amount of preprocessed data consumed by
a protocol that securely implements the function IPk. Now, if k is large enough
to satisfy the condition Urec < LIPk

, then it holds that 	 · Urec + LMULT < 	 · LIPk

for large enough 	 leading to a contradiction with Theorem 7.

5 Conclusions

We have shown that any information-theoretic secure protocol that follows the
typical gate-by-gate design pattern must communicate for every multiplication

486 I. Damg̊ard et al.

gate, even if only semi-honest security is required, for both honest majority and
dishonest majority with preprocessing where the target secret sharing scheme is
an additive one. We have also shown similar results for any target secret sharing
scheme in the dishonest majority setting. This highlights a reason why, even with
preprocessing, all known protocols which are efficient in the circuit size |C| of the
evaluated function require Ω(n|C|) communication and Ω(dC) rounds where dC

is the depth of C. Our result implies that a fundamental new approach must be
found in order to construct protocols with reduced communication complexity
that beat the complexities of BGW, GMW, SPDZ etc. Of course, it is also
possible that our bounds hold for any protocol efficient in the circuit size of the
function, and this is the main problem we leave open. Another open problem is
to find unrestricted bounds on MGPs for parallel multiplications.

References

[BFKR90] Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low
communication overhead. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO
1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 1–10. ACM Press, May 1988

[BI05] Barkol, O., Ishai, Y.: Secure computation of constant-depth circuits with
applications to database search problems. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 395–411. Springer, Heidelberg (2005)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC 1988, pp. 1–10. ACM, New York (1988)

[BSFO12] Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure
multiparty computation with a dishonest minority. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer,
Heidelberg (2012)

[BSPV99] Blundo, C., De Santis, A., Persiano, G., Vaccaro, U.: Randomness com-
plexity of private computation. Comput. Complex. 8(2), 145–168 (1999)

[BTH08] Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-Secure MPC with linear com-
munication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 213–230. Springer, Heidelberg (2008)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: 20th Annual ACM Symposium on The-
ory of Computing, pp. 11–19. ACM Press, May 1988

[CF02] Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary
abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
272–287. Springer, Heidelberg (2002)

[CK93] Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular
addition. Inf. Process. Lett. 45(4), 205–210 (1993)

On the Communication Required for Unconditionally Secure Multiplication 487

[DIK+08] Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scal-
able multiparty computation with nearly optimal work and resilience. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer,
Heidelberg (2008)

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty com-
putation and the computational overhead of cryptography. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer,
Heidelberg (2010)

[DN07] Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty
computation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
572–590. Springer, Heidelberg (2007)

[DNOR15] Damg̊ard, I., Nielsen, J.B., Ostovsky, R., Rosen, A.:Unconditionally secure
computation with reduced interaction. Cryptology ePrint Archive, Report
2015/630 (2015). http://eprint.iacr.org/

[DPP14] Data, D., Prabhakaran, M.M., Prabhakaran, V.M.: On the communi-
cation complexity of secure computation. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 199–216. Springer,
Heidelberg (2014)

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: 26th Annual ACM Symposium on Theory of Com-
puting, pp. 554–563. ACM Press, May 1994

[FY92] Franklin, M.K., Yung, M.: Communication complexity of secure computa-
tion (extended abstract). In: 24th Annual ACM Symposium on Theory of
Computing, pp. 699–710. ACM Press, May 1992

[GIP+14] Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits
resilient to additive attacks with applications to secure computation. In:
Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Comput-
ing, pp. 495–504. ACM Press, May / June 2014

[GIP15] Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computa-
tion: from passive to active security via secure SIMD circuits. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741.
Springer, Heidelberg (2015)

[GR03] Gál, A., Rosén, A.: Lower bounds on the amount of randomness in private
computation. In: 35th Annual ACM Symposium on Theory of Computing,
pp. 659–666. ACM Press, June 2003

[IK00] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In: 41st Annual
Symposium on Foundations of Computer Science, pp. 294–304. IEEE Com-
puter Society Press, November 2000

[IKM+13] Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky,
A.: On the power of correlated randomness in secure computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer,
Heidelberg (2013)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with
no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
294–314. Springer, Heidelberg (2009)

http://eprint.iacr.org/

488 I. Damg̊ard et al.

[KM97] Kushilevitz, E., Mansour, Y.: Randomness in private computations. SIAM
J. Discrete Math. 10(4), 647–661 (1997)

[KR94] Kushilevitz, E., Rosén, A.: A randomness-rounds tradeoff in private com-
putation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp.
397–410. Springer, Heidelberg (1994)

[Kus92] Kushilevitz, E.: Privacy and communication complexity. SIAM J. Discrete
Math. 5(2), 273–284 (1992)

[NN01] Naor, M., Nissim, K.: Communication preserving protocols for secure func-
tion evaluation. In: 33rd Annual ACM Symposium on Theory of Comput-
ing, pp. 590–599. ACM Press, July 2001

[NNOB12] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach
to practical active-secure two-party computation. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer,
Heidelberg (2012)

[RBO89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 73–85. ACM Press, May 1989

[WW10] Winkler, S., Wullschleger, J.: On the efficiency of classical and quantum
oblivious transfer reductions. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 707–723. Springer, Heidelberg (2010)

Obfuscation

Universal Constructions and Robust
Combiners for Indistinguishability Obfuscation

and Witness Encryption

Prabhanjan Ananth1(B), Aayush Jain1, Moni Naor2, Amit Sahai1,
and Eylon Yogev2

1 Center for Encrypted Functionalities and Department of Computer Science, UCLA,
Los Angeles, USA

{prabhanjan,aayush,sahai}@cs.ucla.edu
2 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

{moni.naor,eylon.yogev}@weizmann.ac.il

Abstract. Over the last few years a new breed of cryptographic prim-
itives has arisen: on one hand they have previously unimagined utility
and on the other hand they are not based on simple to state and tried
out assumptions. With the on-going study of these primitives, we are left
with several different candidate constructions each based on a different,
not easy to express, mathematical assumptions, where some even turn
out to be insecure.

A combiner for a cryptographic primitive takes several candidate con-
structions of the primitive and outputs one construction that is as good
as any of the input constructions. Furthermore, this combiner must be
efficient: the resulting construction should remain polynomial-time even
when combining polynomially many candidate. Combiners are especially
important for a primitive where there are several competing construc-
tions whose security is hard to evaluate, as is the case for indistinguisha-
bility obfuscation (IO) and witness encryption (WE).

One place where the need for combiners appears is in design of a uni-
versal construction, where one wishes to find “one construction to rule

P. Ananth—Partially supported by grant #360584 from the Simons Foundation.
Partially supported by grants under Amit Sahai.
A. Jain—Supported by grants under Amit Sahai.
M. Naor—Research supported in part by grants from the Israel Science Foundation
grant no. 1255/12, BSF and from the I-CORE Program of the Planning and Bud-
geting Committee and the Israel Science Foundation (grant no. 4/11). Moni Naor is
the incumbent of the Judith Kleeman Professorial Chair.
A. Sahai—University of California Los Angeles and Center for Encrypted Function-
alities. Research supported in part from a DARPA/ARL SAFEWARE award, NSF
Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through
the ARL under Contract W911NF-15-C-0205. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 491–520, 2016.
DOI: 10.1007/978-3-662-53008-5 17

492 P. Ananth et al.

them all”: an explicit construction that is secure if any construction of
the primitive exists.

In a recent paper, Goldwasser and Kalai posed as a challenge finding
universal constructions for indistinguishability obfuscation and witness
encryption. In this work we resolve this issue: we construct universal
schemes for IO, and for witness encryption, and also resolve the exis-
tence of combiners for these primitives along the way. For IO, our uni-
versal construction and combiners can be built based on either assuming
DDH, or assuming LWE, with security against subexponential adver-
saries. For witness encryption, we need only one-way functions secure
against polynomial time adversaries.

1 Introduction

We live in a golden, but dangerous, age for cryptography. New primitives are
proposed along with candidate constructions that achieve things that were pre-
viously in the realm of science fiction. Two such notable examples are indistin-
guishability obfuscation1 (IO), and witness encryption2 (WE). However, at the
same time, we are seeing a steady stream of new attacks on assumptions that
are underlie, or at least are closely related to, these new candidates. With this
proliferation of constructions and assumptions comes the question: how do we
evaluate these various assumptions, which constructions do we choose and how
do we actually use them?

What is better: one candidate construction of indistinguishability obfuscation
(IO) or two such candidate constructions? What about a polynomial-sized fam-
ily of candidates? The usual approach should be “the more the merrier”, but how
do we use these several candidates to actually obfuscate? The relevant notion is
that of a combiner: it takes several candidates for a primitive and produces one
instance of the primitive so that if any of the original ones is a secure construction
then the result is a secure primitive. Furthermore, this combiner must be efficient:
the resulting construction should remain polynomial-time. Another issue is what
doweassumeabout the insecure constructions.Are theyat least correct, i.e. do they
maintain the functionality, or can they be arbitrarily faulty? We are interested in
a combiner that adds very little complexity to the basic underlying schemes and
assumes as little as possible regarding the insecure schemes, i.e. they may be com-
pletely dysfunctional. Furthermore, we would like the assumptions underlying our
combiner to be as minimal and standard as possible.

One Candidate to Rule Them All (Theoretically Speaking). In fact, we can
even go further: A closely related issue to the existence of combiners is that

1 Indistinguishability obfuscation is the ability to scramble a program so that it is
not possible to decide what was the source code out of two semantically equivalent
options.

2 Witness encryption is a method for encrypting a message relative to a string x and
language L so that anyone with a witness w that x ∈ L can decrypt but if x �∈ L
then no information about the message is leaked.

Universal Constructions and Robust Combiners 493

of a universal construction of a primitive: a concrete construction of the primi-
tive that is secure if any secure construction exists. In the context of candidate
constructions, a universal IO candidate would change the game considerably
between attacker and defender: Currently, each IO candidate is based on spe-
cific mathematical techniques, and a cryptanalysis of each candidate can be done
by finding specific weaknesses in the underlying mathematics. With a universal
IO candidate, the only way to give a cryptanalysis of this candidate would be to
prove that no secure IO scheme exists. To the best of our knowledge, no plausible
approaches have been proposed for obtaining such a proof. Thus, a universal IO
scheme would vastly raise the bar on what an attacker must do.

Furthermore, intriguingly, we note that IO exists if P=NP. In contrast to
other objects in cryptography, IO by itself does not imply hardness. This raises
the possibility of a future non-constructive existence proof for IO, even without
needing to resolve P vs NP. If we have a universal IO scheme, then any such
non-constructive proof would be made explicit: the universal IO scheme would
be guaranteed to be secure.

Indeed, in a recent opinion paper regarding assumptions Goldwasser and
Kalai [19] wrote:

We pose the open problem of finding a universal instantiations for other
generic assumptions, in particular for IO obfuscation, witness encryption,
or 2-message delegation for NP.

In this work we resolve two out of those three primitives, namely IO and witness
encryption, for security against subexponential adversaries for IO, and polyno-
mial adversaries for witness encryption. Our universal constructions also resolve
the existence of combiners for these primitives along the way. For IO, our uni-
versal construction and combiners can be built based on either assuming DDH,
or assuming LWE, with security against subexponential adversaries. For witness
encryption, we need only one-way functions secure against polynomial adver-
saries.

Robust IO Combiners. We construct both (standard) combiners and robust
combiners. A (standard) combiner handles only security: the promise is that
all given candidates are correct, but only one is promised to be secure. These
combiners are useful when different schemes are based on different hardness
assumptions, but they all have a proof of correctness. The resulting combined
scheme will be correct and as secure as all the underlying assumptions.

A robust combiner handles the case where security and correctness are both
promised only for a single candidate. We only know of constructing universal
schemes from robust combiners and in particular, (standard) combiners does not
suffice.

The Status of IO Schemes or – Are We Dead Yet? The state of the art
of IO is in flux. There is a steady stream of proposals for constructions and
a similar stream of attacks on various aspects of the constructions. In order to
clarify the state of the art in the full version [2] we provide a detailed explanation
of the constructions, the attacks and what implications they have (a summary

494 P. Ananth et al.

is provided in Fig. 13 of the full version). As of now (June 2016) there is no
argument or attack known that implies that all iO schemes or primitives used
by them are broken.

Brief History of Combiners and Universal Cryptographic Primitives.
The notion of a combiner and its connection to universal construction were
formalized by Harnik [21] (see also Herzberg [22,23]). An early instance of a
combiner for encryption is that of Asmuth and Blakely [8]. A famous example
of a universal construction (and the source of the name) is that of one-functions
due to Levin [27] (for details see Goldreich [17, Sect. 2.4.1]).

Related Work. Concurrent to our work, Fischlin et al. [13], building upon [24],
also studied the notion of robust obfuscation combiners. The security notions
considered in their work also deal with virtual black box obfuscation and virtual
gray box obfuscation, that are not dealt with in our work. However, they achieve
a much weaker result: they can only combine a constant number of candidates
and furthermore, they assume that a majority of the candidates are correct.
Thus, their combiners are not useful to obtaining any implication to universal
indistinguishability obfuscation.

1.1 Our Results

Our first result is a construction of an IO combiner. We give two separate con-
structions, one using LWE, and other using DDH. Thus, we can build IO com-
biners from two quite different assumptions.

Theorem 1 (Informal). Under the hardness of Learning with Errors (LWE)
and IO secure against sub-exponential adversaries, there exist an IO combiner.

Theorem 2 (Informal). Under the hardness of Decisional Diffie-Hellman
(DDH) and IO secure against sub-exponential adversaries, there exist an IO
combiner.

We show how to adapt the LWE-based IO combiner to obtain a universal IO
scheme.

Theorem 3 (Informal). Under the hardness of Learning with Errors (LWE)
against sub-exponential adversaries and the existence of IO secure against sub-
exponential adversaries, there exists a universal IO scheme.

For witness encryption, we have similar results, under assumptions widely
believed to be weaker. We prove the following theorem.

Theorem 4 (Informal). If one-way functions exist, then there exist a secure
witness encryption combiner.

Again, we extend this and get a universal witness encryption scheme.

Theorem 5 (Informal). If one-way functions and witness encryption exist,
then there is a universal witness encryption scheme.

Universal Constructions and Robust Combiners 495

Theorem 5 assumes the existence of one-way functions. Notice that if P = NP
then WE exist, however, one-way functions do not. Thus, in most cryptographic
application one-way functions are used as an additional assumption. Neverthe-
less, we can make a stronger statement: If there exist any hard-on-average lan-
guage in NP then there is a universal WE scheme. In [25] it was shown that the
existence of witness encryption and a hard-on-average language in NP implies the
existence of one-way functions. By combing this with Levin’s universal one-way
function [27] we obtain our result.

In full version, we present the constructions of universal secret sharing for
NP and universal witness PRFs. Both these constructions assume only one-way
functions.

2 Techniques

We present the technical challenges and describe how we overcome them.

2.1 Universal Obfuscation

A natural starting point is to revisit the construction of universal one-way func-
tions [27] – constructions of other known universal cryptographic primitives [21]
have the same flavor. An explicit function f is said to be a universal one-way
function if the mere existence of any one-way function implies that f is one-way.

The universal one-way function funiv on input x = y1|| . . . ||y�, where |x| = �2,
executes as follows3:

1. Interpret the integer i ∈ {1, . . . , �} as a Turing machine Mi. This interpreta-
tion is quite standard in the computational complexity literature4.

2. Output M1(y1)|| · · · ||M�(y�).

To argue security, we exploit the fact that there exists a secure one-way function
represented by Turing machine Mowf . Let �0 be an integer that can be interpreted
as Mowf . We argue that it is hard to invert Mowf(x), where x has length at least
�20 and is drawn uniformly at random. To see why, notice that in Step 1, Mowf

will be included in the enumeration. From the security of Mowf it follows that
it is hard to invert Mowf(y�0), where y�0 is the �th

0 block of x. This translates to
the un-invertibility of funiv(x). This proves that funiv is one-way5.

Let us try to emulate the same approach to obtain universal indistinguisha-
bility obfuscation. On input circuit C, first enumerate the Turing machines
M1, . . . ,M�, where � here is the size of the circuit C. We interpret Mi’s as indis-
tinguishability obfuscators. It is not clear how to implement the second step in

3 If x can not be expressed of this form then suitably truncate x till it is of this form.
4 This fact was used to prove the famous Gödel’s incompleteness theorem [16].
5 Note that the definition of one-way function only requires un-invertibility to hold for

sufficiently long inputs. This requirement is satisfied by funiv as its un-invertibility
holds for inputs of lengths greater than �20.

496 P. Ananth et al.

the context of obfuscation – unlike one-way functions we cannot näıvely break the
circuit into blocks and individually obfuscate each block. We need a mechanism
to jointly obfuscate a circuit using multiple obfuscators M1, . . . ,M� such that
the security of the joint obfuscation is guaranteed as long as one of the obfusca-
tors is secure. This is where indistinguishability obfuscation combiners come in.
Designing combiners for indistinguishability obfuscation involves a whole new
set of challenges and we deal with them in a separate section (Sect. 2.2). For
now, we assume we have such combiners at our disposal.

Warmup Attempt. Using combiners for IO, we propose the following approach
to achieve universal obfuscation. The universal obfuscator IOuniv on input circuit
C executes the following steps:

1. Interpret the integer i ∈ {1, . . . , �} as a Turing machine Mi.
2. Obfuscate C by applying the IO combiner on the machines M1, . . . ,M�. Out-

put the result C of the IO combiner.

Unlike the case of one-way functions, in addition to security we need to argue
correctness of the above scheme. An obfuscator Mi is said to be correct if the
obfuscated circuit Mi(C) is equivalent to C (or agrees on most inputs) and this
should be true for every circuit C. This in turn depends on the correctness of
obfuscators M1, . . . ,M�. But we don’t have any guarantee on the correctness of
M1, . . . ,M�.

Test-and-Discard. We handle this by first checking for every i whether the
obfuscator Mi is correct. This is infeasible in general. However, we test the
correctness of Mi only on the particular circuit obfuscated by Mi during the
execution of the universal obfuscation. In more detail, suppose we execute IOuniv

on circuit C and during the execution of the IO combiner, let [C]i (derived from
C) be the circuit that we obfuscate using machine Mi. Then we test whether
Mi([C]i) agrees with Mi on significant fraction of inputs. This can be done by
picking inputs at random and testing whether both circuits (obfuscated and un-
obfuscated) agree on these inputs. If Mi fails the test, it is discarded. If it passes
the test, then Mi cannot be used directly since Mi([C]i) could agree with [C]i on
(1 − 1/poly)-fraction of inputs and yet it could pass the test with non-negligible
probability. So we need to reduce the error probability of Mi([C]i) to negligible
before it is ready to be used.

Correctness Amplification. A first thought would be to use the recent
work that shows an elegant correctness amplification for IO by Bitansky and
Vaikuntanathan [6]. In particular, they show how to transform an obfuscator
that is correct on at least (1/2 + 1/poly)-fraction of inputs into one that is cor-
rect on all inputs. At first glance this seems to be “just what the doctor ordered”,
there is, however, one catch here: their transformation is guaranteed to work if
the obfuscator is correct for every circuit C on at least (1/2 + 1/poly)-fraction
of inputs. However, we are only ensured that it is approximately correct on only
one circuit! Nonetheless we show how to realize correctness amplification with
respect to a single circuit and ensure that Mi([C]i) does not agree with [C]i on

Universal Constructions and Robust Combiners 497

only negligible fraction of inputs. Once we perform the error amplification, the
obfuscator Mi will be used in the IO combiner. In the end, the result of the IO
combiner will be an obfuscated circuit C; the correctness guarantees of Mi([C]i),
for every i, translate to the corresponding correctness guarantee of C.

Handling Selective Abort Obfuscators. We now move on to security. For two
equivalent circuits C0, C1, we need to argue that their obfuscations are computa-
tionally indistinguishable. To do this, we need to rely on the security of IO com-
biner. The security of IO combiner requires that as long as one of the machines Mi

is a secure obfuscator6 then the joint obfuscation of C0 using M1, . . . ,M� is indis-
tinguishable from the joint obfuscation of C1 using the same candidates. The fact
that same candidates are used is crucial here since the final obfuscated circuit could
potentially reveal the description of the obfuscators combined.

However, there is no such guarantee offered in our case! Recall that we have
a ‘test-and-discard’ phase where we potentially throw out some obfuscators. It
might be the case that a particular candidate Mmal is correct only on circuits
derived from C0 but fails on circuits derived from C1. We call such obfusca-
tors selective abort obfuscators. Clearly, selective abort obfuscators can lead to
a complete break of security. In fact, if there are � obfuscators used then poten-
tially � − 1 of them could be of selective abort type. To protect against these
adversarial obfuscators we ensure that the distribution of the � derived circuits
is computationally independent from the circuit to obfuscate.

Issue of Runtime. While the above ideas ensure correctness and security, we
haven’t yet shown that our scheme is efficient. In fact it could potentially be the
case our scheme never halts on some inputs7. This could happen since we have no a
priori knowledge on the runtime of the obfuscators considered. We propose a näive
solution to this problem: we assume the knowledge of an upper bound on the run-
time of the actually secure obfuscator. In some sense, the assumption of time bound
might be inherent – without this we are required to predict a bound on the runtime
of a Turing machine and we know in general this is an undecidable problem.

2.2 Combiners for Indistinguishability Obfuscation

We now focus our attention on constructing an IO combiner. Recall, in the
setting of IO combiner we are given multiple IO candidates8 with all of them
satisfying correctness but with only one of them being secure. We then need to
combine all of them to produce a joint obfuscator that is secure.

6 Just as in the case of one-way functions, for sufficiently large circuits C, one of the
enumerated machines will be a secure obfuscator.

7 This is not a problem for the case of one-way functions because of a well established
result that given any one-way function that runs in arbitrary polynomial time we can
transform it into a different one-way function that takes quadratic time.

8 IO candidates are just indistinguishability obfuscation schemes. The scheme of [3] is
an example of an IO candidate, scheme of [30] is another example and so on.

498 P. Ananth et al.

This scenario is reminiscent of a concept we are quite familiar with: Secure
Multi-Party Computation (MPC). In the secure multi-party computation set-
ting, there are multiple parties with individual inputs and the goal of all these
parties is to jointly compute a functionality. The privacy requirement states that
the inputs of the honest parties are hidden other than what can be leaked by
the output.

Indeed, MPC provides a natural template to solve the problem of building
an IO combiner: Let Π1, . . . , Πn be the IO candidates and let C be the circuit
to be obfuscated.

– Secret share the circuit C into n shares s1, . . . , sn.
– Take any n-party MPC protocol for the functionality F that can tolerate all-

but-one malicious adversaries [18]. The n-input functionality F takes as input
((s1, x1), (s2, x2), . . . , (sn, xn)); reconstructs C from the shares and outputs
C(x) only if x = x1 = · · · = xn.

– Obfuscate the “code” (or algorithmic description) of the ith party using Πi.
– The joint obfuscation of all the parties is the final obfuscated circuit!

To evaluate on an input x, perform the MPC protocol on the obfuscated parties
with (si, x) being the input of the ith party.

Could the above approach lead to a secure IO combiner? The hope is that
the security of MPC can be used to argue that one of the shares (corresponding
to the honest party) is hidden which then translates to the hiding of C.

However, we face some fundamental challenges in our attempt to realize the
above template, and in particular we will not be able to just invoke general
solutions like [18], and we will need to leverage more specialized cryptographic
objects.

Challenge #1: Single-Input versus Multi-Inputs Security. Recall that
in the context of MPC, we argue the security only for a particular set of inputs
(one for every party) in one session. In particular, a fresh session needs to be
executed to compute the functionality on a different set of inputs. However,
obfuscation is re-usable – it enables multiple evaluations of the obfuscated circuit.
The obfuscated circuit should hide the original circuit independent of the number
of times the obfuscated circuit is evaluated. On the other hand, take the classical
Yao’s garbled circuits [32], used in two party secure computation, for example.
Suppose we are provided with the ability to evaluate the garbled circuit on two
different inputs then the security completely breaks down.

Challenge #2: Power of the Adversary. Suppose we start with an arbitrary
multi-round MPC protocol. In the world of IO combiners, this corresponds to
executing a candidate multiple times during the evaluation of a single input.
While the party in the MPC protocol can maintain state in between executions,
a candidate does not have the same luxury since it is stateless. This enables the
adversarial evaluator to launch so called resetting attacks: during the evaluation
of the IO combiner on a single input x, a secure candidate could first be executed
on transcripts consistent with x and later executed on transcripts consistent
with a different input x′. Since, the secure candidate cannot maintain state, it is

Universal Constructions and Robust Combiners 499

possible that it cannot recognize such a malicious execution. We need to devise
additional mechanisms to prevent such attacks.

Challenge #3: Virtual Black Box Obfuscation versus IO. The above
two challenges exist even if we had started off with virtual black box (VBB)
obfuscation. Dealing with indistinguishability obfuscation as opposed to VBB
presents us with fresh challenges. Indeed, in MPC, we take for granted that
an honest party hides its input from the adversary. However, if we obfuscate
the parties using IO, it is not clear whether the relevant input – the share
of C – is hidden at all. Arguing this requires importing IO-friendly tools (for
instance, [31]) studied in the recent literature and making it compatible with
the tools of MPC that we want to use.

We will see next how to address the above challenges.

Our Approach. We present two different approaches to construct IO combin-
ers. The first solution, in addition to existence of IO, assumes the hardness of
Decisional Diffie Hellman. The second solution assumes additionally the hard-
ness of learning with errors. Common to both these solutions is a technique of [9]
that we’ll call the partition-programming technique. We give a brief overview of
this technique below.

Partition-Programming Technique: Consider a randomized algorithm P (·, ·) that
takes as input secret sk, public instance x ∈ {0, 1}λ and produces a distribution
Dx. Suppose there exists a simulator Sim that on input x outputs a distribution
D∗

x such that the distributions Dx and D∗
x are statistically close.

Let us say we are given obfuscation of P (sk, ·) (sk is hardwired in the
program), we show how to use the partition-programming technique to remove
the secret sk. We proceed in 2λ hybrids: In the ith hybrid, we have a hybrid
obfuscated program that on input x, executes P (sk, x) if x ≤ i but otherwise it
executes Sim(x). Now, the indistinguishability of ith hybrid and (i + 1)th hybrid
can be argued directly from the security of IO: here we are using the fact that
the simulated distribution and the real distribution are statistically close. In
the (2λ+1)th hybrid, we have a program that only uses Sim, on every input, to
generate the output distribution. Thus, we have removed the secret sk from the
program.

This technique will come in handy when we address Challenge #1. We will
see below how this technique will be used in both the solutions.

DDH-Based Solution. We begin by tackling Challenge #2. We noted that
using interactive MPC solutions are bound to result in resetting attacks. Hence,
we restrict our attention to non-interactive solutions. We need to determine
our communication pattern between the candidates. In particular, we consider
the “line” communication pattern: Suppose there are n candidates Π1, . . . , Πn

and let C be the circuit to be obfuscated. For this discussion, we use the same
notation Πi to also refer to the circuit obfuscated by the candidate Πi. The first
obfuscated circuit Π1 produces an output that will be input to Π2 and so on.

500 P. Ananth et al.

In the end, Πn will receive the input from Πn−1 and the output of Πn will
determine the final output.

Lets examine how to achieve a solution in the above communication model,
by first considering a näıve approach: Π1 has hardwired into it an encryption
Enc(pk,C) of circuit C to be obfuscated. It receives an input x, it performs a
part of the computation and sends the result to the next candidate Π2 who
performs another part of the computation, sends it to Π3 and so on. In the
end, the last candidate Πn has the secret key sk to decrypt the output. This
is clearly insecure because if both Π1 and Πn are broken then using sk and
Enc(pk,C) we can recover the circuit C. This suggests the use of a re-encryption
scheme. A re-encryption scheme is associated with public keys pk1, . . . , pkn+1

and corresponding re-encryption keys rk1→2, . . . , rkn→(n+1). The first candidate
Π1 will have hardwired into it Enc(pk1, C) and the ith candidate has hardwired
into it the re-encryption key rki→i+1. Thus, the ith candidate performs part of
the computation, re-encrypts with respect to pki+1 using its re-encryption key
rki→i+1. We provide the secret key skn+1, corresponding to public key pkn+1, as
part of the obfuscated circuit. Using this, the evaluator can decrypt the output
and produce the answer. Intuitively, as long as one candidate hides one secret
key, the circuit C should be safe.

The natural next step is to figure out how to implement the “computation”
itself: one direction would be to consider re-encryption schemes that are homo-
morphic with respect to arbitrary computations. However, we currently do not
know of the existence of such schemes based on DDH (for LWE-based solutions,
see below). We note that [1] faced similar hurdles while designing DDH-based
multi-server delegation schemes. They employed the use of re-randomizable gar-
bled circuits to implement the “computation” aspect of the above approach.
A re-randomizable garbling scheme is a garbling scheme which is accompanied
by a re-randomization algorithm that takes as input garbled circuit-input wire
keys pair (GC, wx) and outputs (GCr, wr

x).
Following along the lines of the approach of [1], we propose the following

solution template:

1. First we compute the garbled circuit-wire keys pair (GC1, w1) of circuit C
corresponding to the re-randomizable garbled circuits scheme. Here, w1 com-
prises of keys associated to bits 0 and 1 with respect to every position. Π1

has hardwired into it, Enc(pk1, (GC1, w1)).
2. Π1 takes as input x and produces Enc(pk2, (GC2, w2

x)), where (GC2, w2
x) is

obtained by first re-randomizing (GC1, w1) and then choosing the wire keys
corresponding to x. This process is enabled using the re-encryption key rk1→2.
In addition, we require that the re-encryption process allows for homomor-
phic operations – in particular, it should allow for homomorphism of re-
randomization operation of the garbling schemes.

3. The ith candidate takes as input Enc(pki, (GCi, wi
x)); homomorphically re-

randomizes the garbled circuit while simultaneously re-encrypting the cipher-
text to obtain Enc(pki+1, (GCi+1, wi+1

x)).

Universal Constructions and Robust Combiners 501

4. In the end, the nth candidate Πn outputs Enc(pkn+1, (GCn+1, wn+1
x)). Using

the secret key skn, we can decrypt the output (GCn+1, wn+1
x). We then evalu-

ate the garbled circuit GCn+1 using the wire keys wn+1
x to recover the output.

We employ a specific re-randomizable garbled circuits by [15] and homomor-
phic re-encryption scheme by [7], where both these primitives can be based on
DDH. The above template does not immediately work since an adversarial eval-
uator could feed in incorrect inputs to the secure candidate. While [1] used
non-interactive zero knowledge proofs (NIZKs) to resolve this issue, we need to
employ “IO-friendly” proofs such as statistically-sound NIZKs [5,31]. Refer to
full version [2] for the formal construction.

Security: To argue security, we need to rely on the security of re-encryption
schemes in addition to the security guarantees of the other schemes. The secu-
rity property of a re-encryption scheme states that given re-encryption keys
{rki→i+1}i∈[n]\{rki→i+1} and a secret key skn+1, it is computationally hard to
distinguish Enc(pk1,m0) from Enc(pk1,m1).

To argue the security of universal obfuscator, we have to get rid of the re-
encryption key corresponding to the secure candidate – indeed, in the case of [1]
the re-encryption key corresponding to the honest party is removed in the secu-
rity proof. In our scenario, however, this can only be implemented if we hardwire
all possible outputs inside the code of the secure candidate. Clearly, this is not
possible since there are exponentially many outputs. This is where we will use
the partition-programming technique to remove the re-encryption key. To apply
the technique, we argue that the re-encrypted ciphertexts are statistically close
to freshly generated ciphertexts (which will be our simulated distribution) and
this property holds for the particular instantiation of [7] we are considering.

LWE-Based Solution. We give an alternate construction based on the learning
with errors (LWE) assumption. One potential approach is to take the above solu-
tion and replace the DDH-based primitives with LWE-based primitives. Namely,
we replace re-randomizable garbled circuits and re-encryption schemes with fully
homomorphic encryption schemes. While we believe this is a viable approach,
it turns out we can give an arguably more elegant solution by using the notion
of multi-key fully homomorphic encryption [10,28,29]. A multi-key FHE allows
for generating individual public key-secret key pairs {pki, ski} such that they
can be later combined to obtain a joint public key pk. To be more precise,
given a ciphertext with respect to pki, there is an “Expand” operation that
transforms it into a ciphertext with respect to a joint public key pk. Once this
done, the resulting ciphertext can be homomorphically evaluated just like any
FHE scheme. The resulting ciphertexts can then be individually decrypted using
ski’s to obtain partial decryptions. Finally, there is a mechanism to combine the
partial decryptions to obtain the final output.

Before we outline the solution below, we first fix the communication model.
We consider a “star” interaction network: suppose there are n candidates
Π1, . . . ,Πn. Each candidate Πi is executed on the same input x. The joint
outputs of all these candidates are then combined to obtain the final output.
We propose the solution template based on multi-key FHE below.

502 P. Ananth et al.

1. We first secret share C into different shares s1, . . . , sn.
2. Generate public key-secret key pairs {pki, ski} for all i ∈ [n]. Encrypt si with

respect to pki to obtain the ciphertext CTi.
3. “Expand” every ciphertext CTi into another ciphertext ĈTi with respect to

the joint public key pk which is a function of (pk1, . . . , pkn).
4. Every candidate Πi has hardwired into it the secret key ski and ciphertext

ĈTi. It takes as input x and first homomorphically evaluates the universal

circuit Ux on ĈTi to obtain an encryption of C(x), namely ̂
CT

C(x)
i , with

respect to pk. Finally, using ski it outputs the partial decryption of ̂
CT

C(x)
i .

5. The different partial decryptions output by the candidates are later combined
to obtain the final output.

Security: We rely on the semantic security of the MFHE scheme to argue the
security of the obfuscator. The security notion of multi-key FHE intuitively
guarantees that the semantic security on ciphertext CTi can be argued as long
as the adversary never gets the secret key ski for some i ∈ [n]. A näıve approach
is to remove the secret key ski from the secure candidate Πi. A similar issue that
we encountered in the case of DDH-based solution arises here as well – we need
to hardwire exponentially many outputs. Here comes partition-programming
technique to the rescue! We show how to use this technique to remove ski after
which we can argue the semantic security of MFHE, and thus the security of the
obfuscator. To apply this technique, we need an alternate simulated distribution
that simulates the partial decryption keys. We use the scheme of [29] who define
such a simulatability property where the simulated distribution is statistically
close to the real distribution. Refer to Sect. 4 for the formal construction.

The above LWE-based construction, unlike the DDH-based construction, sat-
isfies some additional properties that are used to design a special type of IO
combiner (we call this decomposable IO combiner in Sect. 3.1) which will then
be used to construct universal indistinguishability obfuscation.

Robust IO Combiners. The description above details how to construct a
(standard) IO combiner, that is, one that assumes all candidates are correct.
The construction on a robust combiner is similar to the construction of the
universal IO scheme. We discard candidates that are not approximately correct
and boost the correctness of those that are. The difference between a universal
scheme and a robust combiner is that in a robust combiner we are given n
arbitrary candidates whereas in a universal scheme we construct the candidates
by enumerating over TMs in a lexicographic order.

2.3 Universal Witness Encryption

We have discussed the construction of an IO combiner, and how to use the
combiner to achieve a universal construction of IO. We describe our construction
of a universal witness encryption (WE) scheme. We show that a universal WE
scheme exists on the sole assumption of the existence of a one-way function.

Universal Constructions and Robust Combiners 503

First, we construct a WE combiner. This is achieved similarly to combiners for
public-key encryption [21], using secret sharing. To encrypt a message m one
secret shares the message to n shares such that all of them are needed to recover
the message. Then, he encrypts each share using a different candidate. If at least
one of the candidate schemes is secure then at least one share is unrecoverable
and the message remains hidden.

The main challenge constructing a universal WE scheme is handling correct-
ness. In the universal IO construction we had two main steps. The first was to
test whether a candidate is approximately correct. This step was accomplished
easily by sampling the obfuscated circuit on random inputs and verifying its
correctness. Notice that although we cannot verify that the candidate is approx-
imately correct for all circuits, we can verify that it is correct for the circuit in
hand. The second step was to boost the correctness to achieve (almost) perfect
security. This was obtained by suitably adapting the transformation described
by Bitansky and Vaikuntanathan [6] to work in our setting where we only have
a correctness guarantee for a single circuit.

The techniques used for the universal IO scheme seem not to apply for WE.
Consider a language L with a relation R and a candidate scheme Π. To test
correctness on an input x and a message m, one needs to encrypt the message and
decrypt the resulting ciphertext. However, decryption requires a valid witness
for x, where it might be NP-hard to find one! Testing, therefore, is limited to
instances where it is easy to find a witness, a regime where witness encryption is
trivial. Moreover, even given an approximate candidate, the boosting techniques
used for the universal IO scheme do not apply for witness encryption.

Witness Injection. We describe a transformation that modifies any WE candi-
date scheme to be “testable” and also show how to boost the correctness of such
testable schemes. Our first technique is to inject a “fake” witness for any x such
that it will be easy to find this witness, for a party which has a trapdoor and
computationally hard without the trapdoor (this is as in Feige and Shamir [12]).
Moreover, this transformation will be indistinguishable for the (computationally
bounded) candidate scheme.

Denote (x,w) ∈ R for an instance x with a valid witness w. Let PRG be
a length doubling pseudorandom generator. For any string z, we augment the
language L and define Lz with the relation Rz such that

(x,w) ∈ Rz ⇐⇒ (x,w) ∈ R ∨ PRG(w) = z.

Notice that if we choose z = PRG(s) for a random seed s, then Lz is the trivial
language of all strings. Whereas, if z is chosen uniformly at random then with
high probability Lz is equivalent to L, and these two cases are indistinguishable
for anyone not holding the seed. This step enables us to test a candidate for some
specific instance x: We choose z ← PRG(s), encrypt relatively to Lz, decrypt
using the “fake” witness s and verify the output. After testing, we replace z
with a random string (outside the range of the PRG) to get back the original
language L. The problem is that this guarantees correctness only on our specific
witness. The decryption algorithm, however, might refuse to cooperate for any
other witness the user chooses to use.

504 P. Ananth et al.

Witness Protection Program. The next step is to apply what we call a witness-
worst-case transformation. That is, a scheme that works on all witnesses with
the same probability. Our main tool is a non-interactive zero knowledge (NIZK)
proof system with statistical soundness. Suppose (P, V) is such a NIZK scheme
with a common random string σ. Then we further augment the language Lz to
Lz,σ with relation Rz,σ such that:

(x, π) ∈ Rz,σ ⇐⇒ V (σ, x, π) = 1.

If (x,w) ∈ R is a valid instance witness pair for L, then the corresponding witness
for Lz,σ will be π ← P (σ, x, w). That is, executing the transformed scheme on
x,w relative to the language L translate to executing the original scheme on
x, π relative to the language Lz,σ for a randomly chosen z. Finally, to boost
the success probability we apply a standard “BPP amplification”; encrypt many
times and take the majority.

The result is roughly the following algorithm. We take any scheme and apply
our witness-worst-case transformation for z ← PRG(s). Afterwards, we can test
it on a fake witness while we are assured that it will work the same for any
other witness. Then, if the scheme passes all tests, we replace z with a random
string, and boost the correctness such that it will work for any witness with all
but negligible probability. Finally, we apply the WE combiner to get a universal
scheme. For the exact details see Sect. 2.3.

Relying on One-Way Functions. The description above of a universal wit-
ness encryption scheme used NIZK proof system as a building block, where
we promised using only one-way functions. These proofs are not known to be
implied by one-way functions and moreover no universal NIZK scheme is known
(and this is an interesting open problem!). However, standard interactive zero
knowledge can be constructed for any language in NP for one-way functions and
moreover there exist a universal one-way function [27]. Of course, we cannot
use an interactive protocol, but, taking a closer look we observe that we can
simulate a protocol between a verifier and a prover before the actual witness
is given. That is, we can simulate a zero-knowledge protocol that might have
many rounds, however, only the final round depends on the witness itself. Such
protocols are known as pre-process non-interactive zero-knowledge protocols and
where studied in [11,26] where they proved how to construct them based on
way-one functions.

For the final scheme, we will run the pre-process protocol to get two private
states σV and σP for the verifier and the prover respectively, just before the final
round. The modified language will be Lz,σV

with relation Rz,σV
, where

(x, π) ∈ Rz,σV
⇐⇒ V (σV , x, π) = 1.

We will publish σP as part of the encryption so that a user, given witness w can
produce the corresponding final round of the proof π ← P (σP , x, w). Notice that
the given the state of the prover, σP , the proof π is not zero-knowledge. However,
since the decryption algorithm of the scheme does not get the state of the prover
(only the state of the verifier) then from his perspective it is zero-knowledge.

Universal Constructions and Robust Combiners 505

3 Indistinguishability Obfuscation (IO) Combiners

Suppose we have many indistinguishability obfuscation (IO) schemes, also
referred to as IO candidates). We are additionally guaranteed that one of the
candidates is secure. No guarantee is placed on the rest of the candidates and
they could all be potentially broken. Indistinguishability obfuscation combiners
provides a mechanism of combining all these candidates into a single monolithic
IO scheme that is secure. We emphasize that the only guarantee we are provided
is that one of the candidates is secure and in particular, it is unknown exactly
which of the candidates is secure.

We give a thorough formal treatment of the concept of IO combiners next.
We start by providing the syntax of an obfuscation scheme and then present the
definitions of a (secure) IO candidate. Then, in Sect. 3.1 we finally present the
definition of IO combiner.

Syntax of Obfuscation Scheme. An obfuscation scheme associated to a class of
circuits C = {Cλ}λ∈N consists of two PPT algorithms (Obf,Eval) defined below.

– Obfuscate, C ← Obf(1λ, C): It takes as input security parameter λ, a circuit
C ∈ Cλ and outputs an obfuscation of C, C.

– Evaluation, y ← Eval
(
C, x

)
: This is a deterministic algorithm. It takes as

input an obfuscation C, input x ∈ {0, 1}λ and outputs y.

Throughout this work, we will only be concerned with uniform Obf algorithms.
That is, Obf and Eval are represented as Turing machines (or equivalently uni-
form circuits).

μ-Correct IO Candidate. We define the notion of an IO candidate below.
The following definition of obfuscation scheme incorporates only the correct-
ness and polynomial slowdown properties of an indistinguishability obfuscation
scheme [4,14,20].

Definition 1 (μ-Correct IO Candidate). An obfuscation scheme Π =
(Obf,Eval) is an μ-correct IO candidate for a class of circuits C = {Cλ}λ∈N,
with every C ∈ Cλ has size poly(λ), if it satisfies the following properties:

– Correctness: For every C : {0, 1}λ → {0, 1} ∈ Cλ, x ∈ {0, 1}λ it holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

] ≥ μ(λ),

over the random coins of Obf.
– Polynomial Slowdown: For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the

running time of Obf on input (1λ, C) to be poly(|C|, λ). Similarly, we have
the running time of Eval on input (C, x) is poly(|C|, λ).

Note that an identity function I is a valid IO candidate. We make use of this
fact later on.

Remark 1. We say that Π is an IO candidate if it is a μ-correct IO candidate
with μ = 1.

506 P. Ananth et al.

μ-Correctε-Secure IO Candidate. If any IO candidate additionally satisfies the
following (informal) security property then we define it to be a secure IO candi-
date: for every pair of circuits C0 and C1 that are equivalent we have obfuscations
of C0 and C1 to be indistinguishable by any PPT adversary.

Definition 2 (μ-Correct ε-Secure IO Candidate). An obfuscation scheme
Π = (Obf,Eval) for a class of circuits C = {Cλ}λ∈N is a μ-correct ε-secure IO
candidate if it satisfies the following conditions:

• Π is a μ-correct IO candidate with respect to C,
• Security. For every PPT adversary A, for every sufficiently large λ ∈ N, for

every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ {0, 1}λ and |C0| = |C1|,
we have:∣∣∣Pr[0 ← A

(
Obf(1λ, C0), C0, C1

)]
− Pr

[
0 ← A

(
Obf(1λ, C1), C0, C1

)]∣∣∣ ≤ ε(λ)

We remarked earlier that identity function is an IO candidate. However, note
that the identity function is not a secure IO candidate.

Remark 2. We say that Π is a secure IO candidate if it is a μ-correct ε-secure
IO candidate with μ = 1 and ε(λ) = negl(λ), for some negligible function negl.

In the literature [14,31], a secure IO candidate is simply referred to as an indis-
tinguishability obfuscation scheme.

We have the necessary ingredients to define an IO combiner.

3.1 Definition of IO Combiner

We present the formal definition of IO combiner below. First, we provide the
syntax of the IO combiner. Later we present the properties associated with an
IO combiner.

There are two PPT algorithms associated with an IO combiner, namely,
CombObf and CombEval. Procedure CombObf takes as input circuit C along with
the description of multiple IO candidates9 and outputs an obfuscation of C. Pro-
cedure CombEval takes as input the obfuscated circuit, input x, the description of
the candidates and outputs the evaluation of the obfuscated circuit on input x.

Syntax of IO Combiner. We define an IO combiner Πcomb = (CombObf,
CombEval) for a class of circuits C = {Cλ}λ∈N.

– Combiner of Obfuscate algorithms, C ← CombObf(1λ, C,Π1, . . . ,Πn):
It takes as input security parameter λ, a circuit C ∈ C, description of IO
candidates {Πi}i∈[n] and outputs an obfuscated circuit C.

– Combiner of Evaluation algorithms, y ← CombEval(C, x,Π1, . . . , Πn): It
takes as input obfuscated circuit C, input x, descriptions of IO candidates
{Πi}i∈[n] and outputs y.

9 The description of an IO candidate includes the description of the obfuscation and the
evaluation algorithms.

Universal Constructions and Robust Combiners 507

We define the properties associated to any IO combiner. There are three main
properties – correctness, polynomial slowdown, and security. The correctness
and the polynomial slowdown properties are defined on the same lines as the
corresponding properties of the IO candidates.

The intuitive security notion of IO combiner says the following: suppose
one of the candidates is a secure IO candidate then the output of obfuscator
(CombObf) of the IO combiner on C0 is computationally indistinguishable from
the output of the obfuscator on C1, where C0 and C1 are equivalent circuits.

Definition 3 ((μ′, μ)-Correct (ε′, ε)-Secure IO Combiner). Consider a cir-
cuit class C = {Cλ}λ∈N. We say that Πcomb = (CombObf,CombEval) is a (μ′, μ)-
correct (ε′, ε)-secure IO combiner if the following conditions are satisfied:
Let Π1, . . . , Πn be n μ-correct IO candidates for P/poly, where μ is a function
of μ′ and ε is a function of ε′.

– Correctness. Let C ∈ Cλ∈N and x ∈ {0, 1}λ. Consider the following process:
(a) C ← CombObf(1λ, C,Π1, . . . , Πn), (b) y ← CombEval(C, x,Π1, . . . ,Πn).
Then, Pr[y = C(x)] ≥ μ′(λ) over the randomness of CombObf.

– Polynomial Slowdown. For every C : {0, 1}λ → {0, 1} ∈ Cλ, we have the
running time of CombObf on input (1λ, C,Π1, . . . , Πn) to be at most poly(|C|+
n + λ). Similarly, we have the running time of CombEval on input (C, x,
Π1, . . . , Πn) to be at most poly(|C| + n + λ).

– Security. Let Πi be ε-secure for some i ∈ [n]. For every PPT adversary A,
for every sufficiently large λ ∈ N, for every C0, C1 ∈ Cλ with C0(x) = C1(x)
for every x ∈ {0, 1}λ and |C0| = |C1|, we have:
∣∣∣Pr[0 ← A

(
C0, C0, C1,Π1, . . . , Πn

)]
− Pr

[
0 ← A

(
C1, C0, C1,Π1, . . . , Πn

)]∣∣∣
≤ ε′(λ),

where Cb ← CombObf(1λ, Cb,Π1, . . . , Πn) for b ∈ {0, 1}.
Some remarks are in order.

Remark 3. We say that Πcomb is an IO combiner if it is a (μ′, μ)-correct (ε′, ε)-
secure IO combiner, where (a) μ′ = 1, (b) μ = 1, (c) ε′ = negl′ and, (d) ε = negl
with negl and negl′ being negligible functions.

4 Constructions of IO Combiners

We propose constructions of combiners for indistinguishability obfuscation. Here
we present a construction based on the learning with errors assumption. In full
version [2], we also present a construction based on the decisional Diffie Hell-
man assumption. We present the formal construction below. For an informal
explanation of the construction, we refer the reader to Introduction.

508 P. Ananth et al.

Construction. Consider a circuit class C. We use a threshold multi-key FHE
scheme TMFHE = (Setup,KeyGen,Enc,Expand,FHEEval,Dec,PartDec,FinDec).
We additionally use a puncturable PRF family F .

We construct an IO combiner Πcomb = Πcomb[Π1, . . . , Πn] for C below.

CombObf(1λ, C,Π1, . . . , Πn) : It takes as input security parameter λ, circuit
C ∈ Cλ, description of candidates {Πi = (Πi.Obf,Πi,Eval)}i∈[n] and does the
following.

1. Initialization of TMFHE Parameters:
– Execute the setup of the threshold multi-key FHE scheme, params ←
Setup(1λ, 1d), where d = poly(λ, |C|)10. Execute {(ski, pki) ← KeyGen
(params)}i∈[n].

– Sample n random strings {Si}i∈[n] of size | C | such that
⊕

i∈[n] Si = C.
– For all i ∈ [n], encrypt the string Si using pki, CTi ← Enc(pki, Si).
– For every i ∈ [n], generate the expanded ciphertext under pki by executing

ĈTi ← Expand((pk1, . . . , pkn), i,CTi).
2. Obfuscating Circuits using IO Candidates:

– For every i ∈ [n], sample puncturable PRF keys Ki $←− {0, 1}λ.
– For

every i ∈ [n], construct circuit Gi = Gi

[
Ki, ski, {pki}i∈[n], {ĈTi}i∈[n]

]
∈ Ci as described in Fig. 1.

– Generate Gi ← Πi.Obf(1λ, Gi).

Output the obfuscation C =
(

G1, . . . , Gn

)
.

CombEval(C, x,Π1, . . . , Πn) : On input an obfuscation C, an input x, descrip-
tions of candidates {Πi}i∈[n] evaluate the obfuscations on input x to obtain
pi ← Πi.Eval(Gi, x) for all i ∈ [n]. Execute the final decryption algorithm,
y ← FinDec(p1, . . . , pn). Output y.

5 Universal Obfuscation

We introduce the notion of universal obfuscation. We define a pair of Turing
machines Πuniv.Obf and Πuniv.Eval to be a universal obfuscation if the existence
of a secure IO candidate implies that (Πuniv.Obf,Πuniv.Eval) is also a secure
IO candidate. Constructing a universal obfuscation scheme means that we can
turn the mere existence of a secure IO candidate into an explicit construction.
Formally, we have the following definition:

Definition 4 ((T, ε)-Universal Obfuscation). We say that a pair of Turing
machines Πuniv = (Πuniv.Obf,Πuniv.Eval) is a universal obfuscation, parame-
terized by T and ε, if there exists an ε-secure indistinguishability obfuscator for
P/poly with time function T then Πuniv is an indistinguishability obfuscator for
P/poly with time function poly(T).
10 Looking ahead, we set d to be the size of C as against its depth so that a PPT

adversary will not be able to distinguish obfuscations of two functionally equiva-
lent circuits C0 and C1 with the same size but potentially different depths by just
measuring the size of params.

Universal Constructions and Robust Combiners 509

Fig. 1. Circuit Gi

5.1 Construction of (T, ε)-Universal Obfuscation

We proceed to construct a (T, ε)-universal obfuscation. The core building block
in our construction is a decomposable IO combiner – this is a specific type of IO
combiner that satisfies additional properties (explained below).

Main Ingredient: Decomposable IO Combiner. A decomposable IO combiner is
a type of IO combiner, where the obfuscate algorithm has a specific structure.
In particular, the obfuscate algorithm takes as input circuit C to be obfuscated,
the description of the candidates Π1, . . . , Πn and executes in two main steps.
In the first step, circuit C is preprocessed into n circuits [C]1, . . . , [C]n. In the
second step, each individual circuit [C]i is obfuscated using the candidate Πi.
The concatenation of the resulting obfuscated circuits is the final output.

In addition to the standard properties of IO combiner, we require that the
decomposable IO combiner satisfies two more properties: Circuit-Specific Cor-
rectness and Decomposable Security. The formal description is given below.

Definition 5 (Decomposable IO Combiner). A (ε′, ε)-secure IO combiner
Πcomb = (Πcomb.Obf,Πcomb.Eval) of (Π1, . . . , Πn) for a class of circuits C =
{Cλ} is said to be (ε′, ε)-secure (η′, η)-decomposable IO combiner if there
exists a PPT algorithm Preproc such that the following holds: Πcomb.Obf on input
(1λ, C ∈ Cλ,Π1, . . . , Πn) executes the steps:

(a) (Preprocessing step) C = ([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C),
(b) (Candidate Obfuscation step) for all i ∈ [n], [C]i ← Πi.Obf(1λ, [C]i),

(c) Outputs C =
(
[C]1, . . . , [C]n, aux

)
.

Additionally, we require the following properties to hold:

510 P. Ananth et al.

– (η′, η)-Circuit-Specific Correctness. Consider a circuit C ∈ Cλ. Let
([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C). Let for all i ∈ [n], [C]i ←
Πi.Obf(1λ, [C]i). Denote C = ([C]1, . . . , [C]n).

If for all i ∈ [n], Pr
x

$←−{0,1}λ

[
[C]i(x) = [C]i(x)

]
≥ η(λ) then

Pr
x

$←−{0,1}λ

[
C(x) = C(x)

] ≥ η′(λ).

– Decomposable Security: For every C0, C1 ∈ Cλ such that |C0| = |C1|, for
every i ∈ [n], we have:

{{
[C]0i

}
i�=i,
i∈[n]

}
≈c

{{
[C]1i

}
i�=i,
i∈[n]

}
,

where [C]bi ← Preproc(1λ, 1n, Cb ∈ Cλ) for b ∈ {0, 1}.
We claim that the construction of IO Combiner in Sect. 4 is already a decom-
posable IO combiner. To show this, we first note that the obfuscator Πuniv.Obf
in the construction in Sect. 4 can be decomposed in a preprocessing step and
candidate obfuscation step: the preprocessing step comprises of all the steps till
the generation of circuits {Gi}i∈[n] (Fig. 1). The output of the preprocessing step
is (G1, . . . , Gn).

Furthermore, the circuit-specific correctness property was already proved
in [2]. More specifically, we showed the aforementioned construction satisfies
(1 − nμ, 1 − μ)-circuit specific correctness property. All is remaining is to show
that the construction satisfies decomposable security. We prove the following
theorem. The proof can be found in [2].

Theorem 6. The construction presented in Sect. 4 is a (negl, ε)-secure (1 − 1
λ ,

1 − 1
λ2)-decomposable IO combiner, where the number of candidates is λ.

Step I: Construction of Approx. Correct(T, ε)-Universal Obfuscation.
We construct a universal obfuscation scheme Πuniv = (Obf,Eval) for a class of
circuits C below. Our scheme will be approximately correct. The main ingredient
is a decomposable IO combiner (Definition 5) Πcomb = (Πcomb.Obf,Πcomb.Eval)
for C. But first, we establish some notation.

Notation. Let S be the class of all possible Turing machines. It is well known
result [16] that there is a one-to-one correspondence between S2 and N given by
φ : N → S2. Furthermore, there is a fixed polynomial f such that the time to
compute φ(j) is at most ≤ f(j), for every j ∈ N.

Πuniv.Obf(1λ, C) : It takes as input security parameter λ, circuit C ∈ Cλ and
executes the following steps:

1. Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi =
(Πi.Obf,Πi.Eval).

Universal Constructions and Robust Combiners 511

2. Preprocessing phase of Decomposable IO Combiner. First compute
the preprocessing step, ([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C) (n = λ).

3. Eliminating Candidates with Large Runtimes. For all i ∈ [λ], execute
Πi.Obf(1λ, [C]i) for at most t = T

(
λ,

∣∣[C]i
∣∣) number of steps. For every

i ∈ [λ], if the computation of Πi.Obf
(
1λ, [C]i

)
does not abort within t number

of time steps re-assign Πi.Obf = I and Πi.Eval = UTM , where I is an identity
TM11 and UTM is a universal TM12.
At the end of this step, the execution of Πi.Obf(1λ, [C]i) takes time at most
T

(
λ,

∣∣[C]i
∣∣).

4. Eliminates Candidates with Imperfect Correctness. For all i ∈ [λ],
execute Πi.Obf(1λ, [C]i) for at most t = T (λ,

∣∣[C]i
∣∣) number of steps. Denote

[C]i to be the result of computation. Denote � to be the input length of [C]i.

For every i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←− {0, 1}�. Check if the

following condition holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

))
= 1 (1)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I and
Πi.Eval = UTM . At the end of this step, every candidate satisfies the above
condition.

5. Candidate Obfuscation Phase of Decomposable IO Combiner. For
all i ∈ [λ], execute Πi.Obf

(
1λ, [C]i

)
for at most t = T (λ,

∣∣[C]i
∣∣) number of

steps. Denote [C]i to be the result of computation.
6. Output C =

(
(Π1, . . . , Πλ), ([C]1, . . . , [C]λ, aux)

)
.

Πuniv.Eval(C, x) : On input the obfuscated circuit C and input x, do the following.

First parse C as
(
(Π1, . . . , Πλ), Ccomb = ([C]1, . . . , [C]λ, aux)

)
. Compute y ←

Πcomb.Eval
(
Ccomb, x,Π1, . . . , Πλ

)
. Output y.

Theorem 7. Assuming that Πcomb is a (negl, ε)-secure
(
1 − 1

λ , 1 − 1
λ2

)
-

decomposable IO combiner, the above scheme Πuniv is a (T, ε)-universal obfusca-
tion that is

(
1 − 1

λ

)
-correct.

Proof. We first remark about the running time of the obfuscator and the eval-
uator algorithms. First, we consider Πuniv.Obf. The running time of first step
(Bullet 1) is λf(λ) = poly(λ) (where f was defined earlier in the proof). The
running time of each of the rest of the steps is poly(λ, t, |C|). Plugging in the fact
that t = T (λ,poly(λ, |C|)), we have that the total running time of all the steps
to be poly(T (λ, |C|))13. We move on to Πuniv.Eval. Here, the running time is gov-
erned by the running time of the Πcomb.Eval algorithm which is poly(T (λ, |C|)).
And hence, the running time of Πuniv.Eval is again poly(T (λ, |C|)).
11 An identity TM on input C outputs C.
12 A universal TM on input circuit-input pair (C, x) outputs C(x).
13 Observe that here we used two facts of the time function: (a) T (λ, |C|) ≥ |C| + λ

and, (b) T (λ, poly(|C|)) = poly′(T (λ, |C|)).

512 P. Ananth et al.

Correctness. Consider the following lemma.

Lemma 1. Πuniv is a
(
1 − 1

λ

)
-correct IO candidate.

Proof. Consider a circuit C ∈ Cλ. We prove the following claim. For all i ∈ [n],
let ([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C) with n = λ. Also, let {Πi}i∈[n] be
the description of the candidates at the end of Bullet 3. Note that some of the
candidates could be re-assigned in Bullets 2 and 3. Let [C]i ← Πi.Obf(1λ, [C]i).
We prove the following claim in full version [2].

Claim 8. Let i ∈ [n] be such that

Pr
x

$←−{0,1}λ

[
[C]i(x) = Πi.Eval([C]i, x)

]
≤ 1 − 1

λ2

Then, the ith candidate Πi satisfies Condition (1) (Bullet 4) with negligible
probability (over the random coins of xj,i).

The above claim proves that at the end of Bullet 4, with overwhelming proba-
bility the following holds for every i ∈ [n]:

Pr
x

$←−{0,1}λ

[
[C]i(x) = Πi.Eval([C]i, x)

]
≥ 1 − 1

λ2

We now apply the circuit-specific completeness property of the (1 − 1
λ , 1 − 1

λ2)-
decomposable IO combiner Πcomb which ensures that the following holds:

Pr
x

$←−{0,1}λ

[
C(x) = Πcomb.Eval(C, x)

] ≥ 1 − 1
λ

where C = ([C]1, . . . , [C]n, aux). Note that C is the output of Πuniv.Obf.
Also, the output of Πuniv.Eval on input (C, x) is dictated by the result of
Πcomb.Eval(C, x).

Thus, we have

Pr
x

$←−{0,1}λ

[
C(x) = Πuniv.Eval(C, x)

] ≥ 1 − 1
λ

,

where C ← Πuniv.Obf(1λ, C).

Security. We prove the following lemma.

Lemma 2. Πuniv is a (negl)-secure IO candidate.

Proof. Recall that the universal obfuscator proceeds in two phases. In the first
phase, it chooses the “correct” candidates and then in the second phase, it com-
bines all these candidates to produce the obfuscated circuit. At first glance, it
should seem that as long as we ensure that one of the “correct”candidates is

Universal Constructions and Robust Combiners 513

secure then the security of IO combiner should hold, and thus the security of
universal obfuscator will follow. To make this more precise, lets say C0 and C1

are two equivalent circuits. Let
−→
Π0 = Π0

1 , . . . , Π0
n0

and
−→
Π1 = Π1

1 , . . . , Π1
n1

be the
“correct” candidates chosen with respect to C0 and C1 respectively. Now, assum-
ing that

−→
Π0 and

−→
Π1 have at least one secure candidate; the hope is that we can

then invoke the security of IO combiner to argue computational indistinguisha-
bility of obfuscation of C0 and C1. This does not work because the security of
IO combiner dictates that

−→
Π0 =

−→
Π1. Indeed obfuscation of C0 (resp., C1) could

potentially reveal
−→
Π0 (resp.,

−→
Π1) at which point no security holds. While we can-

not argue that
−→
Π0 =

−→
Π1, because of the selective abort obfuscators described in

Introduction, we can still show that
−→
Π0 ≈c

−→
Π1. Arguing the indistinguishability

of the candidates then helps us invoke the security of IO combiner and then the
proof of the theorem follows. Arguing the indistinguishability of candidates is
performed by invoking the decomposable security property of the underlying IO
combiner. We present the key lemmas here. Completed proof can be found in
the full version [2].

Formal Details. We first introduce some notation. Consider a circuit C ∈ Cλ.
Let ((Π1, . . . , Πλ), ([C]1, . . . , [C]λ), aux) be the output of Πuniv.Obf(1λ, C). Note
that many of the candidates (Π1, . . . , Πλ) could potentially be re-assigned during
the execution of Πuniv.Obf. This re-assignment is a function of the circuit C
that is obfuscated and the random coins of the algorithm. Hence, we can define
a distribution DistC,λ,i, parameterized by C, λ, i ∈ [n], on {0, 1}λ such that

x
$←− DistC,λ,i defines which of the candidates gets re-assigned. That is, the ith

bit xi = 1 indicates that Πi will remain unchanged and xi = 0 indicates that Πi

is re-assigned. Furthermore, xi is always 1.
In more detail, we define the sampling algorithm of distribution Distλ,C,i

as follows: denote by Π ′
1, . . . , Π

′
λ the set of candidates enumerated in Bullet 1

and let Πi be an IO candidate that is always correct. Note that the description
of these candidates are independent of the circuit C and they only depend on
the security parameter λ. At the end of Bullet 4, denote the candidates to be
(Π1, . . . , Πλ). We then assign x to be such that the ith bit of x, namely, xi = 1
if Π ′

i = Πi else xi = 0 if Π ′
i �= Πi. Output x. Note that xi = 1 since Πi is always

correct.
The formal description of the sampling algorithm of Distλ,C,i is given next.

Sampler of Distλ,C,i :

– Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi =
(Πi.Obf,Πi.Eval).

– First compute the preprocessing step, ([C]1, . . . , [C]n, aux) ← Preproc(1λ,
1n, C). Here, n = λ. Maintain another copy of the set of candidates - for
every i ∈ [λ], set Π ′

i = Πi.
– For all i ∈ [λ], execute Πi.Obf(1λ, [C]i) for at most t = T

(
λ,

∣∣[C]i
∣∣) number of

steps. For every i ∈ [λ], if the computation of Πi.Obf
(
1λ, [C]i

)
does not abort

514 P. Ananth et al.

within t number of time steps re-assign Πi.Obf = I and Πi.Eval = UTM ,
where I is an identity TM and UTM is a universal TM.

– For all i ∈ [λ], execute Πi.Obf(1λ, [C]i) for at most t = T (λ,
∣∣[C]i

∣∣) number of
steps. Denote [C]i to be the result of computation. Denote � to be the input

length of [C]i. For every i ∈ [n], sample λ3 points x1,i, . . . , xλ3,i
$←− {0, 1}�.

Check if the following condition holds:

λ3∧
j=1

(
[C]i(xj,i) = Πi.Eval

(
[C]i, xj,i

))
= 1 (2)

If for any i ∈ [λ] the above condition does not hold, re-assign Πi.Obf = I and
Πi.Eval = UTM .

– Construct a string x ∈ {0, 1}λ such that the ith bit xi is generated as:

xi =
{

1, if Πi = Π ′
i

0, otherwise

– Output x.

Remark 4. For every x in the support of Distλ,C,i we have xi = 1 (ith bit of x)
since the ith candidate is always correct.

We prove the following useful sub-lemma. For every two circuits C0, C1 we claim
that the outputs of the corresponding distributions Distλ,C0,i and Distλ,C1,i are
computationally indistinguishable. Here, i corresponds to the candidate that is
always correct. The proof can be found in [2].

SubLemma 1 (Candidate Indistinguishability Lemma). For large
enough security parameter λ, any two circuits C0, C1 ∈ Cλ, i ∈ [n] we have

{x
$←− Distλ,C0,i} ≈c {x

$←− Distλ,C1,i}, where ith candidate (respresented by φ(i))
is always correct, assuming that Πcomb satisfies decomposable security property.

We now proceed to prove the main lemma. Recall that we are assured the
existence of a secure IO candidate that is always correct. Let i ∈ Z>0 be such
that φ(i) represents the secure candidate. Let λ ≥ i. Consider two equivalent
circuits C0, C1 ∈ Cλ. That is, |C0| = |C1| and for every x ∈ {0, 1}λ we have
C0(x) = C1(x). Our goal is to show that Πuniv.Obf(1λ, C0) ≈c Πuniv.Obf(1λ, C1).

We define the following experiment. The following experiment, parameterized
by (C0, C1), is same as Πuniv.Obf(1λ, C0) except that the decision to choose which
of the candidates to obfuscate the derived circuits {[C]i} is made solely based
on the circuit C1.

Universal Constructions and Robust Combiners 515

ExptObf(1λ, C0, C1, i) :

– Let φ(i) = (Πi.Obf,Πi.Eval), for i ∈ {1, . . . , λ}. Denote Πi = (Πi.Obf,
Πi.Eval).

– Compute the preprocessing step, ([C]1, . . . , [C]n, aux) ← Preproc(1λ, 1n, C0)
with n = λ.

– Sample x from Distλ,C1,i, where i ∈ [λ]. That is, x is sampled from the distri-
bution Dist parameterized by (λ,C1, i).

– For every i ∈ [λ] and xi = 0, re-assign Πi.Obf = I and Πi.Eval = UTM .
– Execute [C]i ← Πi.Obf(1λ, [C]i) for at most T (λ, |[C]i|) number of steps.
– Output C = ([C]1, . . . , [C]λ).

Consider the following claims.

Claim 9. The distributions D0 =
{
ExptObf

(
1λ, Cb, Cb, i

)}
and D1 =

{Πuniv.Obf
(
1λ, Cb

)} are identical, for b ∈ {0, 1}.
The proof of the above claim follows directly from the description of Distλ,C,i.

Claim 10. The distributions D0 =
{
ExptObf

(
1λ, Cb, C0, i

)}
and D1 ={

ExptObf(1λ, Cb, C1, i)
}

are computationally indistinguishable for b ∈ {0, 1}.
The proof of the above claim follows from the Candidate Indistinguishability

Lemma (Lemma 1).

Claim 11. The distributions D0 =
{
ExptObf

(
1λ, C0, Cb, i

)}
and D1 ={

ExptObf(1λ, C1, Cb, i)
}

are computationally indistinguishable for b ∈ {0, 1}.
We rely on the security (third bullet in Definition 3) of decomposable IO com-
biner to prove this claim. That is, the output of the IO combiner on two equiv-
alent circuits are computationally indistinguishable. The proof can be found in
the full version [2].

From Claims 9, 10 and 11, it follows that Πuniv.Obf(1λ, C0) ≈c

Πuniv.Obf(1λ, C1). In more detail,

Πuniv(1λ, C0) ≡ ExptObf
(
1λ, C0, C0, i

)
(from Claim 9)

≈c ExptObf
(
1λ, C0, C1, i

)
(from Claim 10)

≈c ExptObf
(
1λ, C1, C1, i

)
(from Claim 11)

≡ Πuniv(1λ, C1)(from Claim 9)

We have demonstrated that Πuniv satisfies both the correctness and security
properties. This proves the theorem.

Step II: Approx. Correct to Exact(T, ε)-Universal Obfuscation. In Step
I, we showed how to construct a universal obfuscator that is

(
1 − 1

λ

)
correct.

That is, for sufficiently large security parameter λ ∈ N, every circuit C ∈ Cλ, it
holds that:

Pr
x

$←−{0,1}λ

[
Πuniv.C(x) = Eval(C, x) : C ← Πuniv.Obf(1λ, C)

] ≥ 1 − 1
λ

516 P. Ananth et al.

We now apply the transformation of BV [6] to obtain a universal obfuscator that
is exact (with overwhelming probability). In particular, we apply their transfor-
mation that is based on sub-exponential LWE assumption.

That is, for every C ∈ Cλ, x ∈ {0, 1}λ, with high probability it holds that:

Pr
[
Πuniv.C(x) = Eval(C, x) : C ← Πuniv.Obf(1λ, C)

]
= 1

We state the formal theorem below.

Theorem 12. Assuming learning with errors secure against adversaries run-
ning in time 2nε′

and (1 − 1/λ)-correct (T, ε)-universal obfuscation, we have a
(T, ε) -universal obfuscation that is exact (with overwhelming probability).

Combining Step I and II =⇒ Main Result. Combining both the above
steps and instantiating the decomposable IO combiner (Theorem 6) we get the
following result:

Theorem 13. Assuming LWE secure against adversaries running in time 2nε′
,

there exists a (T, ε)-Universal Obfuscation with ε′ being a function of ε.

6 Witness Encryption Combiners

6.1 Definition of WE Combiner

We present the formal definition of a WE combiner below. The definition is
similar to the definition of IO combiners. The task of the WE combiner is to
take n candidates that are correct (in terms of encryption and decryption), and
yield a scheme which is as secure as any one of the candidate schemes.

For a scheme Π we say that it is a correct WE candidate if it satisfies that
correctness requirement and we say that a candidate is secure if it satisfies the
security requirement (definitions found in the full version). We say that it is
correct and secure if it satisfies both the requirements.

There are two PPT algorithms associated with an WE combiner, namely,
CombEnc and CombDec. Procedure CombEnc takes as input an instance x, a
message m along with the description of multiple WE candidates and outputs
a ciphertext. Procedure CombDec takes as input the ciphertext, a witness w,
the description of the candidates and outputs the original message. Since the
execution times of the candidates could potentially differ, we require the algo-
rithms CombEnc and CombDec in addition to their usual inputs also take a time
function T as input. T dictates an upper bound on the time required to execute
all the candidates.

Syntax of WE Combiner. We define an WE combiner Πcomb = (CombEnc,
CombDec) for a language L.

– Combiner of encryption algorithms, CT ← CombEnc(1λ, x,m,Π1, . . . ,
Πn, T): It takes as input security parameter λ, an instance x, a message m,
description of WE candidates {Πi}i∈[n], time function T and outputs a cipher-
text.

Universal Constructions and Robust Combiners 517

– Combiner of decryption algorithms, y ← CombDec(CT, w,Π1, . . . , Πn,
T): It takes as input a ciphertext CT, a witness for the instance x, descriptions
of WE candidates {Πi}i∈[n], time function T and outputs y.

We define the properties associated with a WE combiner scheme. There are two
properties – correctness and security. We only consider the scenario where all
the candidate WE schemes are (almost) perfectly correct but only one of them
is secure.

Definition 6 (Secure WE Combiner). Let Π1, . . . , Πn be n (almost) per-
fectly correct WE candidates for NP (that is all the schemes are correct, however
all of them need not be secure). We say that Πcomb = (CombEnc,CombDec) is a
secure WE combiner if the following conditions are satisfied:

– Correctness. Consider the following process: (a) CT ← CombEnc(1λ, x,m,
Π1, . . . , Πn, T), (b) y ← CombDec(CT, w,Π1, . . . , Πn, T).
Then, Pr[y = m] ≥ 1 − negl(λ) over the randomness of CombEnc.

– Security: If for some i ∈ [n] candidate Πi is secure then, for any PPT adver-
sary A and any polynomial p(·), there exists a negligible function negl(·), such
that for any λ ∈ N, any x /∈ L and any two equal-length messages m1 and m2

such that |x|, |m1| ≤ p(λ), we have that

|Pr[A(CombEnc(1λ, x,m1,Π1, . . . ,Πn, T) = 1]−
Pr[A(CombEnc(1λ, x,m2,Π1, . . . , Πn, T)) = 1]| ≤ negl(λ).

Henceforth, we set the time function to be an a priori fixed polynomial. In our
constructions presented next, we drop the parameter T which is input to the
above algorithms.

6.2 Construction of WE Combiner

We give a construction of a WE combiner. Formally, we prove the following
theorem.

Theorem 14. If one-way functions exist, then there exists a secure WE
combiner.

The construction is given below. As described in Sect. 2.3, the main ingredient
of the construction is a (perfectly) secure secret sharing scheme.

CombEnc(1λ, x,m,Π1, . . . , Πn) : It takes as input security parameter λ, instance
x, message m, description of candidates {Πi = (Πi.Enc,Πi.Dec)}i∈[n] and does
the following.

1. Secret share the message. Choose n random strings r1, . . . , rn ∈ {0, 1}|m|

such that r1 ⊕ . . . ⊕ rn = m.
2. Encrypt shares using candidates. For i ∈ [n], encrypt ri using candidate

Πi: yi ← Πi.Enc(x, ri).

518 P. Ananth et al.

3. Output (y1, . . . , yn).

CombDec(1λ,y, w,Π1, . . . , Πn): On input y = (y1, . . . , yn), an input x with wit-
ness w, descriptions of candidates {Πi}i∈[n] run the decryption candidates to
obtain ri ← Πi.Dec(1λ, yi, w) for all i ∈ [n]. Compute m ← r1 ⊕ . . . ⊕ rn and
output m.

Correctness: The correctness follows immediately from the scheme. For any
x ∈ L using the witness w we will get all ri for i ∈ [n] and from them we
compute the correct message m = r1 ⊕ . . . ⊕ rn.

Security: To prove security, assume that x /∈ L and let i∗ ∈ [n] be such that
candidate Πi∗ is secure. Let m0,m1 be any two messages. Consider the following
sequence of hybrids. Let H0, parameterized by (r1, . . . , rn), be a distribution on
the encryptions of m0. That is, H0 is a distribution over (y1, . . . , yn) where
yi ← Πi.Enc(x, ri) where ri are random strings such that r1 ⊕ . . . ⊕ rn = m0.
Then we define H1, again parameterized by (r1, . . . , rn), to be a distribution
on encryptions of the message m0 ⊕ m1 ⊕ ri. That is, H0 is a distribution over
yi∗ ← Πi∗ .Enc(1λ, x, r′) where r′ = m0 ⊕ m1 ⊕ ri. From the security of Πi∗ we
have that H0 ≈ H1. Notice that

r1 ⊕ . . . ⊕ ri∗−1 ⊕ r′ ⊕ ri∗+1 . . . ⊕ rn = m0 ⊕ m1 ⊕ m0 = m1.

Moreover, the distribution of r1, . . . , ri∗−1, r
′, ri∗+1, . . . , rn and the distribution

r1, . . . , rn such that r1⊕ . . .⊕rn = m1 are identical. Therefore, if we define H2 to
be the distribution on the honest encryptions of the message m1 (i.e., performed
according to the scheme), we get that H1 ≡ H2. Thus we have that H0 ≈ H2

which proves the security of the above scheme.

Acknowledgements. We thank Yuval Ishai for helpful discussions and for bringing
to our notice the problem of universal obfuscation. We additionally thank Abhishek
Jain and Ilan Komargodsky for useful discussions.

References

1. Ananth, P., Chandran, N., Goyal, V., Kanukurthi, B., Ostrovsky, R.: Achieving
privacy in verifiable computation with multiple servers-without fhe and without
pre-processing. In: PKC (2014)

2. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: Boosting correctness and combining security. IACR Cryptology
ePrint Archive (2016)

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, p. 1. Springer, Heidelberg (2001)

Universal Constructions and Robust Combiners 519

5. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015)

6. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from
approximate to exact. In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 67–95. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 4

7. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

8. Asmuth, C.A., Blakley, G.R.: An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Comput.
Math. Appl. 7(6), 447–450 (1981). doi:10.1016/0898-1221(81)90029-8. http://
www.sciencedirect.com/science/article/pii/0898122181900298. ISSN: 0898-1221

9. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

10. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 630–656. Springer, Heidelberg (2015)

11. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282.
Springer, Heidelberg (1990)

12. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC (1990)

13. Fischlin, M., Herzberg, A., Noon, H.B., Shulman, H.: Obfuscation combiners (2016)
14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

15. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and
rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010)

16. Gödel, K.: Über formal unentscheidbare sätze der principia mathematica und ver-
wandter systeme i. Monatshefte für mathematik und physik (1931)

17. Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1.
Cambridge University Press, Cambridge (2001)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
(1987)

19. Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a position paper.
In: Kushilevitz, E., et al. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 505–522.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 21

20. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

21. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

22. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

23. Herzberg, A.: Folklore, practice and theory of robust combiners. J. Comput. Secur.
17(2), 159–189 (2009). doi:10.3233/JCS-2009-0336

http://dx.doi.org/10.1007/978-3-662-49096-9_4
http://dx.doi.org/10.1016/0898-1221(81)90029-8
http://www.sciencedirect.com/science/article/pii/0898122181900298
http://www.sciencedirect.com/science/article/pii/0898122181900298
http://dx.doi.org/10.1007/978-3-662-49096-9_21
http://dx.doi.org/10.3233/JCS-2009-0336

520 P. Ananth et al.

24. Herzberg, A., Shulman, H.: Robust combiners for software hardening. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 282–289.
Springer, Heidelberg (2010)

25. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: FOCS (2014)

26. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991)

27. Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica
7(4), 357–363 (1987). doi:10.1007/BF02579323

28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

29. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key
FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 26

30. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

32. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS
(1986)

http://dx.doi.org/10.1007/BF02579323
http://dx.doi.org/10.1007/978-3-662-49896-5_26

Obfuscation Combiners

Marc Fischlin1(B), Amir Herzberg2, Hod Bin-Noon2, and Haya Shulman3

1 Technische Universität Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

2 Bar Ilan University, Ramat Gan, Israel
3 Fraunhofer SIT, Darmstadt, Germany

Abstract. Obfuscation is challenging; we currently have practical can-
didates with rather vague security guarantees on the one side, and
theoretical constructions which have recently experienced jeopardizing
attacks against the underlying cryptographic assumptions on the other
side. This motivates us to study and present robust combiners for obfus-
cators, which integrate several candidate obfuscators into a single obfus-
cator which is secure as long as a quorum of the candidates is indeed
secure.

We give several results about building obfuscation combiners, with
matching upper and lower bounds for the precise quorum of secure can-
didates. Namely, we show that one can build 3-out-of-4 obfuscation com-
biners where at least three of the four combiners are secure, whereas 2-
out-of-3 structural combiners (which combine the obfuscator candidates
in a black-box sense) with only two secure candidates, are impossible.
Our results generalize to (2γ + 1)-out-of-(3γ + 1) combiners for the pos-
itive result, and to 2γ-out-of-3γ results for the negative result, for any
integer γ.

To reduce overhead, we define detecting combiners, where the com-
bined obfuscator may sometimes produce an error-indication instead of
the desired output, indicating that some of the component obfuscators
is faulty. We present a (γ +1)-out-of-(2γ +1) detecting combiner for any
integer γ, bypassing the previous lower bound. We further show that γ-
out-of-2γ structural detecting combiners are again impossible.

Since our approach can be used for practical obfuscators, as well as for
obfuscators proven secure (based on assumptions), we also briefly report
on implementation results for some applied obfuscator programs.

1 Introduction

Software obfuscation has a long tradition in aiming at protecting against reverse
engineering. For example, the first International Obfuscated C Code Contest
(www.ioccc.org) has been organized in 1984 and experienced the 23rd event in
this series in 2014. There are obfuscators for all popular programming languages
today. For example, for Java, there are several open-source projects like Pro-
Guard, ClassEncrypt, or JavaGuard, and an even larger number of commercial
products. These approaches are usually based on heuristics and best practices,

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 521–550, 2016.
DOI: 10.1007/978-3-662-53008-5 18

www.ioccc.org

522 M. Fischlin et al.

ranging from simple renaming of function and variables names, to elaborate
schemes, e.g. [19]. However, these practical obfuscators do not provide verifi-
able, proven security guarantees.

Provably secure obfuscation, in the sense that it is based on some reasonable
cryptographic assumption, has long been a highly desirable yet hard-to-reach
goal. Even worse, there have been devastating impossibility results for the nat-
ural notion of virtual black-box obfuscation [8] and only limited positive results
for special cases like point functions [16]. A significant breakthrough came with
the work by Garg et al. [28], indicating that the relaxed yet useful notion of indis-
tinguishability obfuscation may be achievable for general circuits. This notion
basically says that one cannot distinguish the obfuscated codes of two function-
ally equivalent circuit programs.

It is fair to say that the underlying cryptographic assumption, on which is
security of the construction of Garg et al. [28] is based upon, is non-standard
and not well analyzed (yet). This is also true for the alternative approach to
build indistinguishability obfuscators proposed by Pass et al. [48]. This is com-
plemented by yet other proposals of Gentry et al. [32] based on a more standard-
like computational assumption about multilinear maps, and of Ananth and Jain
[3] based on compact functional encryption. At the same time, recent attacks
[18,21–23,31] on multilinear maps, albeit currently not known to break the afore-
mentioned obfuscation candidates, testify that constructions may suddenly turn
out to lack the desired security guarantees. New suggestions and attacks keep
on appearing at high frequency [6,30,41,46].

The above leaves us with multiple choices of candidates for building obfusca-
tors, both in practice as well as in theory, and it is currently difficult to determine
the best choice in terms of security. For the heuristic, practical obfuscators, it
may be even harder to distinguish sound constructions from weak approaches,
since the design strategies may be vague. A straightforward idea to boost con-
fidence in obfuscator candidates, both in theory as well as in practice, is to
interlock multiple solutions and approaches. This idea of failure-tolerant cryp-
tographic designs has traditionally been subsumed under the notion of robust
combiners.

1.1 Robust Combiners for Obfuscation

The notion of robust combiners has been introduced by Harnik et al. [34] based
on the idea of tolerant cryptographic designs by Herzberg [35–37]. Such com-
biners take several candidates for a cryptographic task and provide a secure
solution if a quorum of the candidates is indeed secure. The idea has been suc-
cessfully applied to several cryptographic primitives, including hash functions
[14,25,27,45,47,49,50], encryption [24,34], commitments [34–36], and oblivious
transfer [34,43,44].

A robust combiner for obfuscation would take as input a program (abstractly
in form of a circuit or a Turing machine1) and create an obfuscated version with
1 In our presentation of our formal results we focus on circuits instead of Turing

machines, since our approach applies equally well to both settings but the state of
the art of solutions is much more advanced in the circuit setting.

Obfuscation Combiners 523

the help of the candidate obfuscators O1,O2, . . . ,ON . As long as a sufficient
number of candidate obfuscators is indeed secure, the combiner should also pro-
vide a secure obfuscator. In order to make formal claims about the robustness
of the combiner, due to the lack of rigorous security properties for practical
obfuscators, one inevitably needs to base the notion of security for the combiner
on the various models in the cryptographic literature, such as virtual black-box
obfuscation or indistinguishability obfuscation.2

What distinguishes the idea of combiners for obfuscation from the previ-
ous scenarios is that obfuscation combiners are higher-order combiners which
are closely linked to the functionality of their inputs. Consider for instance the
case of hash function combiners where it usually suffices that the combiner pre-
serves the security property only, enabling solutions like the concatenation com-
biner CombH1,H2(x) = H1(x)||H2(x) with longer output for collision resistance.
Devising hash combiners with equal output size as H1,H2, retaining this mild
functional property, is conceivably hard [14,49,50]. An obfuscation combiner, in
contrast, must provide a circuit which computes the same function as the input
circuit; it cannot implement a different function with a larger output. Indeed,
note that functional preservation and input hiding are conflicting requirements
for obfuscation and one is easy to achieve without the other.

As a concrete example consider combiners in the context of virtual black-box
obfuscation. Herzberg and Shulman [38] show that the cascading construction
CombO1,O2(·) = O2(O1(·)) of two candidate obfuscators O1,O2 is robust for this
notion as long as functional correctness of the candidates is guaranteed. If this
is not granted and the inner obfuscator is corrupt then O1 may implement an
arbitrary function, such that the combiner neither preserves functional correct-
ness nor necessarily input hiding. The latter holds as one usually does not have
any security guarantees for input circuits with diverging functionalities, even if
obfuscator O2 is sound. Analogously, if the outer obfuscator is corrupt then the
resulting cascade may no longer sustain functionality.

While functional correctness of an obfuscator is usually not based on
unproven cryptographic assumptions, unlike the obfuscation property, there are
two reasons why certifying functional correctness may still be hard. First, soft-
ware implementations are error prone, and the complexity of previous theoretical
proposals for obfuscation [28,32,48] seems to be inimical in this regard. Secondly,
one may have little control over, or insights into, the actual obfuscation program.
This is clearly true for commercial obfuscation programs; in fact, the programs
of such obfuscators are often themselves obfuscated. The creation of a corrupt
obfuscator, which intentionally leaks some information, is easy; to demonstrate
this, we implemented demos of different types of corrupted-obfuscators, includ-
ing obfuscators which leak information even when used in cascade.

The concern about corrupt-obfuscators may also emerge in theoretical solu-
tions. As an example for the latter, in the universal-parameter generation setting
[39] a trusted party publishes an obfuscated program which parties can use to

2 There are approaches to define metrics for practical obfuscators [5,20], but mainly
in terms of software complexity. We discuss them in Sect. 7.

524 M. Fischlin et al.

generate common parameters. What if we now prefer to use several potentially
untrusted authorities and combine their obfuscated programs?

1.2 Our Results

Our goal is to provide a general combiner for obfuscation. It should satisfy the
formal requirements in order to allow for sound solutions both in theory and in
practice. Ideally, the combiner should tolerate a large number of corrupt obfusca-
tors, be very efficient, and ensure various notions of obfuscation simultaneously.
Note that, while virtual black-box obfuscation may be impossible in general, for
some functions and attack models [7,15] the notion may still be achievable, such
that our combiner should also comply with this notion.

On the positive side we present a 3-out-of-4 combiner which can tolerate
a single corrupt combiner out of four candidates. It is depicted in Fig. 1 and
consists of two layers. In the first layer we insert the input circuit C into three
combinations of three of the obfuscators each; in each combination, we output
a circuit that produces the majority of the three obfuscated circuits. We only
require three of the four combinations of picking three of four obfuscators. Each
unit ensures that if at most one candidate is corrupt then functional correctness
is still preserved. In the next layer we then run each of the first-layer major-
ity circuits through the complementary fourth obfuscation candidate and again
take the majority to ensure correctness. Obfuscation follows as either all three
candidates on the first layer are sound and thus hide the input circuit, or the
fourth candidate on the second layer ensures this.

Fig. 1. Our 3-out-of-4 combiner. The MAJ circuit has three hardwired circuits C1, C2

and C3 with equal input and output sizes, which also correspond to the input and
output size of the MAJ circuit. For input x the MAJ circuit evaluates each of the three
circuits for x and returns the bit-wise majority of the circuit’s outputs.

Obfuscation Combiners 525

Our combiner indeed works for different notions of obfuscation such as vir-
tual black-box and grey box obfuscation,3 indistinguishability obfuscation, and
differing-input obfuscation. In total it requires twelve calls to obfuscators and
has depth 2. The latter is important as obfuscation may cause a polynomial
blow-up in size. Remarkably, while most theoretical solutions currently induce a
significant size expansion, with a few exceptions [4,13], obfuscators in practice
only display a mild increase in code size. Note that devising combiners of depth
1 with a structure as above is impossible as the corrupt obfuscator may then
leak information about the input circuit via the output.

We then show an impossibility result for 2-out-of-3 combiners. There are, of
course, trivial combiners in this case, such as the combiner which simply uses
the sound candidate only, and the (inefficient) combiner for indistinguishability
obfuscation that evaluates the input circuit and then outputs the lexicographic
smallest equivalent circuit. We thus focus on structural combiners that use a fixed
pattern, independently of the status of the candidates, and do not semantically
interpret the input circuit. Our 3-out-of-4 combiner is structural in this regard.
We show that no 2-out-of-3 structural combiner may ensure both functional cor-
rectness and obfuscation. This holds for the weaker notion of indistinguishability
obfuscation and therefore also for the stronger notions of black-box and grey-box
obfuscation. Note that this also applies to any 1-out-of-2 combiner.4

We extend the positive result as well as the negative result to the case of (2γ+
1)-out-of-(3γ + 1) resp. 2γ-out-of-3γ combiners. That is, we give a construction
which can be seen as a less efficient generalization of our basic solution if one
can corrupt at most γ out of 3γ +1 obfuscators. We then argue that one cannot
have structural combiners if γ out of the 3γ obfuscators can be corrupt. For both
settings we can draw on the ideas and techniques from the basic cases.

The combiners above are correcting in the sense that they guarantee func-
tional correctness if a quorum of input obfuscator candidates is secure. One can
also envision a weaker notion of combiners, which output circuits that either
compute the correct output of the input circuit, but may also output, instead, a
special error indicator ⊥. This error indicator should be output only when one
of the component obfuscator is faulty; if all obfuscators are sound then the com-
biner must never output ⊥. In particular, such combiners cannot output false
answers. We call them detecting combiners in analogy to coding theory.

For detecting combiners we achieve slightly different bounds. That is, we show
that one can have (γ +1)-out-of-(2γ +1) combiners for any γ. For the case γ = 1
and 2-out-of-3 combiners we can again provide an optimized version similar to
our original 3-out-of-4 combiner. Concerning lower bounds, we can apply the
ideas of the other combiners to show that there cannot exist structural γ-out-of-
2γ detecting combiners for any γ. The reduced overhead of detecting combiners
may make them attractive option for practical implementations, where once
detection ability exists, the attack-vector of providing faulty obfuscator appears
unlikely.

3 With respect to dependent auxiliary inputs [33].
4 Every 1-out-of-2 combiner is also a 2-out-of-3 combiner if it ignores the third

obfuscator.

526 M. Fischlin et al.

While our main results follow the common approach in provably secure obfus-
cation, we stress that we view our approach to be equally well suited for practice.
In Sect. 7 we therefore evaluate performance of our combiner when applied to
practical obfuscators, and discuss the implications of our findings in this domain.

Concurrent Work. Independently of our work, Ananth et al. [2] also discuss the
idea of obfuscation combiners. Their approach is fundamentally different from
ours, and results in (non-structural) obfuscation combiners which are secure as
long as a single candidate is secure. However, this comes at the cost of a sig-
nificant overhead, and also requires additional cryptographic assumptions such
as LWE or DDH, and indistinguishability obfuscation against sub-exponential
adversaries.

2 Preliminaries

We exclusively treat circuits here; the approach can be transfered to the case
of Turing machines straightforwardly. When speaking of circuits C from some
class C = (Cλ)λ∈N we usually mean some arbitrary (but efficiently computable)
description of the circuit. When considering specific encodings with dedicated
properties, as required for our lower bounds, we usually write 〈C〉 for the encod-
ing of the circuit under scheme 〈·〉. If, on the other hand, we consider the function
implemented by the circuit we usually write C(·) instead, and C(x) for the out-
put of circuit C on input x. When writing C(·) = C ′(·) or C ≡ C ′ we refer to
functional equality of circuits C and C ′, comprising input and output length,
whereas C = C ′ or 〈C〉 = 〈C ′〉 means equal descriptions (under the encoding in
question).

2.1 Obfuscators

Barak et al. [8] defined several notions of obfuscators, with virtual black-box
(VBB) obfuscators being the strongest one. This notion says that the adversary
cannot learn anything from an obfuscated circuit beyond the circuit’s outputs for
chosen inputs. While they also showed that this notion is in general unachievable,
for specific cases such as point functions one may be able to attain this level of
obfuscation. Below we mainly consider obfuscation of circuits, and we also con-
sider the possibility that the obfuscator itself may be non-uniform and work
specifically for different values of λ. The latter allows corrupt (also called mali-
cious) obfuscators to match the algorithm class of adversaries and distinguishers.
All obfuscators here, sound and corrupt ones, are nonetheless considered to be
stateless.

Definition 1 (Virtual Black-Box Obfuscation). A (possibly non-uniform)
PPT algorithm O is a virtual black-box obfuscator for circuit class C = (Cλ)λ∈N

if the following holds:

Functional Correctness: For any λ ∈ N, any circuit C ∈ Cλ, any obfuscated
version O ← O(1λ, C) we have C ≡ O.

Obfuscation Combiners 527

VBB Obfuscation: For any (possibly non-uniform) PPT algorithm A there
exists a (possibly non-uniform) algorithm PPT S and a negligible function
ε(λ) such that for all circuits C ∈ Cλ we have

|Prob
[A(1λ,O(1λ, C)) = 1

] − Prob
[SC(1λ) = 1

]| ≤ ε(λ),

where the probabilities are over the randomness of O and A resp. S.

Virtual grey-box (VGB) obfuscation [10] is defined analogously, only that
the simulator above is computationally unbounded but can make at most a
polynomial number of queries to its oracle circuit. Clearly, VBB obfuscation
implies VGB obfuscation. A stronger notion is based on the extension to (depen-
dent) auxiliary inputs [33] where both the adversary and the simulator receive
a random sample aux as additional input, where aux may depend on any circuit
C ′ ∈ Cλ.5 We will use this version for proving the security of our combiners for
VBB and VGB obfuscation.

Another meaningful relaxation, implied by both notions above in the non-
uniform setting, is indistinguishability obfuscation [8] which basically says that
the obfuscations of two functional equivalent circuits are indistinguishable:

Definition 2 (Indistinguishability Obfuscator). A (possibly non-uniform)
PPT algorithm iO is called an indistinguishability obfuscator for a circuit class
C = (Cλ)λ∈N if the following conditions hold:

Functional Correctness: For any λ ∈ N, any circuit C ∈ Cλ, any obfuscated
version O ← iO(1λ, C) we have C ≡ O.

Indistinguishability: For any (possibly non-uniform) PPT distinguisher D,
there exists a negligible function ε(λ) such that for all circuits C0, C1 ∈ Cλ

with C0 ≡ C1 we have

|Prob
[D(1λ, C0, C1, iO(1λ, C0)) = 1

]
− Prob

[D(1λ, C0, C1, iO(1λ, C1)) = 1
]| ≤ ε(λ),

where the probabilities are over the randomness of iO and D.

There are several variations of the above definitions. For one, we can allow for a
negligible error in the functional correctness (over the random choices of the obfus-
cator). Both our positive and our negative result are robust with respect to such
a change. That is, our 3-out-of-4-combiners uses a constant number of obfusca-
tor calls such that the error would remain negligible; obfuscation would still hold,
because the leakage due to incorrect obfuscator outputs has negligible probabil-
ity. Similarly, our impossibility result about 2-out-of-3 combiners would still hold,
even if the starting combiners would have perfect functional correctness, but the
(fixed-size structural) combiner could have a negligible error. Alternatively, one
may use the recent approach in [12] to eliminate the error first.

5 This slightly strengthens the original auxiliary input setting [33] where only C′ = C
is allowed.

528 M. Fischlin et al.

Finally, yet another version of obfuscation, called differing-inputs obfuscation
[8], demands indistinguishability of two obfuscated circuits, but only if the input
circuits C0, C1 can be sampled such that finding inputs where C0 and C1 differ,
is infeasible. More formally, we assume that there is a PPT algorithm Sampler
associated to the circuit family C such that for any PPT algorithm A there exists
a negligible function ε(λ) such that the probability that C0(x) 	= C1(x), where
(C0, C1, aux) ← Sampler(1λ) and x ← A(1λ, C0, C1, aux), is at most ε(λ). Note
that we assume that Sampler(1λ) only outputs circuits C0, C1 ∈ Cλ.

A differing-inputs obfuscator diO for C and Sampler is now defined anal-
ogously to an indistinguishability obfuscator, only that it is infeasible to dis-
tinguish outputs diO(1λ, C0) and diO(1λ, C1) for (C0, C1, aux) ← Sampler(1λ),
even if given aux as additional input. While the notion is also quite useful for
the design of protocols [1], Garg et al. [29] argue that the notion may be hard
to achieve.

2.2 Combiners for Obfuscators

Roughly, a combiner for obfuscators is a procedure which uses a set of
obfuscators O1,O2, . . . to turn an input circuit C into an obfuscated one,
with the guarantee that if an (unspecified) quorum of the underlying obfus-
cators is secure, then so is the combiner. In the definition below we
abstractly speak of o-obfuscators, leaving open which obfuscation category
o ∈ {VBB, VGB, indistinguishability, differing-inputs} we refer to.

For combiners of primitives with multiple properties, such as functional cor-
rectness and obfuscation here, there are varying levels of combiners, called weak,
mild, and strong [26,27]. A strong combiner preserves security “property-wise”,
i.e., for each property individually if sufficiently many candidates have this prop-
erty then so does the combiner. A weak combiner only preserves all properties
if there are enough candidates which are secure and thus have all properties
simultaneously. The mild notion is in between where the candidates must some-
how cover all properties but for each property possibly by different candidates.
In [26,27] it has been discussed that strong robustness implies mild robustness
which in turn implies weak robustness, and that the implications are strict in
case of hash functions for some properties.

Definition 3 (Robust Combiner for o-Obfuscation). Let Comb be a PPT
oracle algorithm and let O1, . . . ,ON be o-obfuscators candidates. Then Comb is
called a

– strongly robust t-out-of-N combiner if for each of functional correctness and
o-obfuscation, if at least t of the N candidates have this property, then so does
the combiner CombO1,...,ON ;

– mildly robust t-out-of-N combiner if, whenever functional correctness and o-
obfuscation are each satisfied by at least t of the N candidates, then the com-
biner too has both properties;

Obfuscation Combiners 529

– weakly robust t-out-of-N combiner if the combiner is a functional correct o-
obfuscator if there are at least t out of N candidates which are simultaneously
functionally correct and o-obfuscators.

The definition assumes that the obfuscators and combiner all work for the
same class C of obfuscatable circuits. This neglects an important aspect, though:
If the combiner calls obfuscators recursively then the candidates need to be able
to handle obfuscated circuits, too. We assume that this is indeed the case —
and discuss it more explicitly for our structural combiners below— making the
implicit assumption that the candidates also allow for a superclass CComb of
circuits which is rich enough tor capture intermediate circuits created by the
specific combiner. Still, the task for the combiner is to obfuscate the “core” class
C of circuits.

Fig. 2. Example of a unit (with pass-through version on the right-hand side).

As usual for combiners in general, there is always a secure obfuscation com-
biner, namely, the one which “obliviously” uses the secure obfuscator Oi and
ignores the other ones in order to obfuscate the input circuit. However, this only
provides an existential proof and says nothing about how to design an actual
solution. Even worse, for indistinguishability obfuscation there is a trivial (non-
efficient) combiner for obfuscators which can be described effectively [8]. The
combiner takes as input (the description of) a circuit C and finds the (lexi-
cographically) minimal circuit Cmin which computes the same functionality as
C and outputs this circuit Cmin. Then any two circuits C,C ′ with the same
functionality yield the same obfuscated circuit Cmin. This combiner ignores the
candidate obfuscators and already constitutes an unconditionally secure obfus-
cator itself. It is even efficient relative to a Σp

2 oracle. Hence, any lower bound
for combiners would need to bypass this result and therefore need to implicitly
show that Σp

2 	= P .
One option to circumvent the first problem is to require to have an effec-

tive mean to turn attacks against the combiner into attacks for the candidate
obfuscators. This option of so-called black-box combiners has been used for other
lower bounds such as for hash function combiners [14,49,50]. Still, in our setting
such black-box combiners would have to deal with the problem of the inefficient
combiner.

530 M. Fischlin et al.

An alternative path, which we also take here, is therefore to restrict the way
how the combiner works. Whereas the above unconditional combiner approaches
the circuit semantically by plotting its behavior, we look into what we call struc-
tural combiners here. Basically, these are combiners which have a prescribed
structure with place-holder gates for the obfuscators, and they merely plug in
the input circuit and derive the output circuit according to this fixed structure,
without evaluating the circuits. It turns out that our 3-out-of-4 combiner is in
fact structural.

2.3 Structural Combiners

A structural combiner for obfuscators is a circuit consisting of NAND gates
and of obfuscator gates, where each one of the latter is labeled with one of
the obfuscators Oi. The layout is independent of the actual obfuscators and
should thus work with any concrete obfuscator candidates, i.e., be black-box.
The combiner is structured in so-called units. A unit is a sub circuit which takes
as input the descriptions of circuits and itself describes a circuit. The unit first
inserts the input circuits into some of the obfuscators, where we allow multiple
appearances of obfuscators in a unit, and then processes the output circuits by
a circuit consisting of NAND gates only. An example is given in the left part
of Fig. 2. If the input circuit is given to obfuscators i1, i2, . . . then we call this
an {i1, i2, . . . }-unit for the multiset {i1, i2, . . . }. The example in Fig. 2 describes
a {1, 3}-unit. Furthermore, we can even let some input circuit be passed to the
NAND-circuit completely, saying that the unit is pass-through in this case. Since
it is irrelevant for our lower bound which circuit is passed through, we do not
need to specify the identifier. The right hand side of Fig. 2 shows a pass-through
version of a {1, 3}-unit.

The output of a unit can itself serve again as the input for another unit. We
can therefore nest units in a tree-like structure as in Fig. 3. In particular, we can
analogously to the notion of depths of circuits define the depth of a unit, starting
with level-1 units, as well as paths from the input circuit to the final unit. We
call the path of units form level-1 units to the final unit a full path. A unit which
is level-1 always receive the combiner’s input circuit as inputs, but potentially
also other unit circuits if it is simultaneously a higher level unit. Every unit has
at least one input circuit, and a unit can of course serve as multiple inputs to
other units.

To complete the description of a structural combiner we need to specify the
output of our combiner for some input circuit C, once the obfuscator candidates
are determined. We call this the initialization of the combiner with C. Basically
the output is again a circuit and it is derived by stepwise replacing the obfuscator
gates in units (starting with level-1 units which receive C as input) with samples
of the output of the corresponding obfuscator. Note that the structure of the
combiner circuit remains, only the obfuscator gates are now filled in with concrete
circuits. In case of pass-through units we additionally place the code of the
unit’s input circuit inside the new circuit at the corresponding position. Once
a unit has been initialized we can use it as input to a higher-level unit and

Obfuscation Combiners 531

initialize that unit, till we have eventually initialized the final unit. Instructively,
the reader may think of this as a left-to-right pass in Fig. 3 to compute the
final output circuit, denoted as CombO1,O2,...(C). Note that this is a random
variable, depending on the randomness of the obfuscators. A sample of this
random variable can then be fed with inputs x to produce some output y.

Fig. 3. Combiner circuit consisting of units.

The above assumes that the class of obfuscatable circuits for structural cir-
cuits is closed under recursive constructions of units. We note that for concrete
constructions such as our 3-out-of-4 combiner in the next section it suffices that
we can also obfuscate level-1 units of the original input circuits. Given a circuit
class C = (Cλ)λ∈N, some fixed structural combiner Comb, and fixed obfuscators
O1,O2, . . . we denote by CComb = (CComb

λ)λ∈N the class of circuits which, besides
all circuits C ∈ Cλ, for any C also includes all possible initializations of all units
of the combiner (except for the final unit) for the given obfuscators. It is under-
stood that, when considering a specific combiner Comb, all candidate obfuscators
O1,O2, . . . must be able to handle the class CComb, whereas the combiner only
works for the “inner” class C. Instructively, one may think of C as the class one
would like to obfuscate, although the candidate obfuscators allow for broader
classes.

3 Robust 3-out-of-4 Combiner for Obfuscators

In this section we present a 3-out-of-4 (structural) combiner for obfuscation,
depicted in Fig. 1 on Page 524.

3.1 Construction

The idea is to first obfuscate the input circuit C by all combinations of 3 out of
the 4 given obfuscators O1, . . . ,O4 and for each combination taking the majority

532 M. Fischlin et al.

of the output of the three obfuscated circuits. Note that since at least 2 of the 3
obfuscators in such a combination work properly, the majority decision provides
a functionally correct output. Formally, for the majority circuit MAJ combining
three input circuits by evaluating each one for a given input x and taking the
bit-wise majority of the outputs, we thus build the circuits

Oi1,i2,i3 ← MAJ(Oi1(C),Oi2(C),Oi3(C)), 1 ≤ i1 < i2 < i3 ≤ 4

for all possible 4 combinations of i1, i2, i3. Since we merely need an arbitrary
3 of these 4 circuits for the next stage, we take the combinations leaving out
obfuscators 1, 2 and 3 (in this order).

Of course, a corrupt obfuscator among Oi1 ,Oi2 ,Oi3 in the majority combi-
nation could still reveal information about the input circuit C. We hence add
another layer where we now combine three of the majority combinations as
before, by running each combination Oi1,i2,i3 through the complementary obfus-
cator Oi4 and taking the majority of these circuits again. Put differently, we now
build the circuit

MAJ(O1(O2,3,4),O2(O1,3,4),O3(O1,2,4)).

Functional correctness of our combiner is guaranteed because each of the input
circuits O2,3,4, O1,3,4, O1,2,4 computes the correct function and at least two of
the level-2 obfuscators O1,O2,O3 are correct. The obfuscation property holds
because if one of the level-2 obfuscators, say, O∗

1 , is malicious, then the level-1
obfuscators generating O2,3,4 already hide the input circuit. Furthermore, the
malicious obfuscator O∗

1 cannot bias the functional correctness of the circuits
O1,3,4 and O1,2,4 in the other branches, such that the sound second-layer obfus-
cators O2,O3 also hide O1,3,4 and O1,2,4 and thus the input circuit C, even if
O∗

1 on the first level reveals information about C.

3.2 Security

We start by showing that the combiner is (strongly) robust for indistinguisha-
bility obfuscation. Recall that strong robustness refers to the fact that each
property, functional correctness and obfuscation, is preserved individually. Note
that for our combiner (and also the security proof) it suffices that the parties
merely have black-box access to all obfuscators.

Theorem 1. The combiner in Fig. 1 is a strongly robust 3-out-of-4 combiner
for indistinguishability obfuscation.

Proof. Functional correctness is straightforward, given that for each unit at least
two obfuscators are functionally correct and since we apply the majority of the
outputs.

We next show indistinguishability. Take an arbitrary distinguisher D against
our combiner. We need to show that there exists a negligible function ε such
that for an arbitrary pair C0, C1 ∈ Cλ of circuits, the distinguishing advantage

Obfuscation Combiners 533

of D is smaller than ε(λ). The idea is to show that one can gradually replace the
input circuits C0 to the obfuscators in the combiner by circuit C1, taking some
care with the single corrupt obfuscator.

For the gradual replacement fix the order of the nine level-1 obfuscators
O2,O3,O4, . . . ,O1,O2,O4 according to their appearance in Fig. 1 from top to
down, with one exception: for a parameter k ∈ {1, 2, 3, 4}, a reminiscent for the
index of the corrupt obfuscator O∗

k, we move all occurrences of this obfuscator
to the very end of the list. For instance, for k = 2 we would have the order
O3,O4,O1, . . . ,O4,O∗

2 ,O∗
2 . Let K = K(k) ∈ {7, 8} be the first index of O∗

k in
that list. Define now the random hybrid variables Hk

i (C0, C1) for i = 0, 1, . . . , 9
as the output of our combiner if we pass circuit C0 for the first i obfuscators
(according to our order) and C1 for the remaining 9 − i ones. Then, clearly
Hk

9 (C0, C1) corresponds to the distribution of our combiner for input C0, and
Hk

0 (C0, C1) to the one of our combiner for C1. It hence suffices to show for any
i that D’s probability of distinguishing adjacent Hk

i−1,H
k
i is negligible.

To bound the advantage of D for each pair (Hk
i−1,H

k
i) we will wrap the algo-

rithm into a sequence of distinguishers Dk
i for i = 1, 2, . . . , 9. The distinguisher

Dk
i works in two modes, depending on the status of the i-th obfuscator in our

sequence:

– If i is such that the i-th obfuscator is not corrupt, i.e., i < K(k), then Dk
i

expects as input a pair C0, C1 and an obfuscated circuit O′ generated by
the i-th obfuscator in our order for Cb, b ∈ {0, 1}. Algorithm Dk

i computes
the output of our combiner (with the given obfuscators) but inserts C1 as
input in the first i − 1 level-1 obfuscators, O′ as the output of the i-th level-1
obfuscator, and C0 as input in the final 9 − i slots. It completes the output O
of the combiner for these data and lets D run on C0, C1 and O. Algorithm Dk

i

returns whatever D outputs.
– If the i-th obfuscator is corrupt, i.e., i ≥ K(k), then Dk

i expects as extra
auxiliary input a pair C0, C1 and a sample O′ of one of the sound obfuscator
candidates. Here the obfuscator Oj producing O′ is determined by looking
at the level-1 unit u in which the i-th (corrupt) obfuscator O∗

k appears. For
this unit, and its three obfuscators, there exists the fourth, complementing
obfuscator Oj to which the unit’s output is fed to on the level-2 unit. For
instance, if k = 2, K = 8, and i = 8, then the corresponding level-1 unit u is
the top one in Fig. 1, and the complementing obfuscator is O1.
The input to the complementing obfuscator Oj for deriving O′ is either a
sample of the level-1 unit where all honest obfuscators are initialized with
C0 and the corrupt one with C1, or all of them are initialized with C0. By
assumption, both samples are in the class CComb

λ such that the sample can be
passed to Oj . Algorithm Dk

i now evaluates our combiner, by replacing inputs
to obfuscators up to index i by C1, for subsequent indices giving input C0,
and replacing the output of the complementing obfuscator Oj in unit u when
evaluating our combiner by O′. Return D’s output bit on input C0, C1 and
the combiner’s output O.

534 M. Fischlin et al.

Assume i is such that the i-th obfuscator in order is still different from O∗
k,

i.e., i < K. Then if O′ is the obfuscation of C1, then Dk
i runs D exactly on

the distribution of the hybrid variable Hk
i−1(C0, C1). In particular, for i = 1

algorithm Dk
i runs D on a sample of our combiner’s output for C1. Analogously,

for i = 9 and O′ stemming from the complementing obfuscator for a sample of
the level-1 unit with all C0 inputs, the input to D is distributed like a sample of
our combiner for C0 (and thus of Hk

9 (C0, C1)).
Assume that the k-th obfuscator is indeed corrupt. For i < K it follows

from the indistinguishability obfuscation of the sound obfuscators that there
exist negligible functions εi(λ) such that for any C0, C1, the advantage of Dk

i

in distinguishing the two input cases is at most εi(λ). For i ≥ K this follows
as the input circuits to the two sound obfuscators in unit u are already C0,
such that the majority computation of the unit ensures that in both cases the
unit circuit computes the function C0(·). It follows that both input circuits
to the complementing obfuscator Oj compute the same function and we can
again conclude from the security of the obfuscator that the advantage must be
bounded by some function εi(λ). Note that here we take advantage of the fact
that indistinguishability holds for all circuits and therefore in paticular also for
our partly combiner samples.

It therefore also holds for any i that the advantage of D in distinguishing
Hi−1(C0, C1) and Hi(C0, C1) for any C0, C1 is at most εi(λ), too. Hence, the
overall advantage of D is at most ε(λ) :=

∑9
i=1 εi(λ) and thus negligible. it

suffices that the proof provides an existential result.6

The claim carries over to the case of differing-inputs obfuscation. Recall that
the main difference to indistinguishability obfuscation is that, for the differing-
inputs case, the circuits in question are generated by an algorithm Sampler such
that the circuits may compute different functions, but Sampler ensures that
finding differing inputs is infeasible. We can basically apply the same hybrid
argument in this case as above. However, for the step i ≥ K, when using the
obfuscation of our level-1 unit, we need to specify sampler Sampler′k with oracle
access to O1, . . . ,O4 to generate the input circuit for the complementing obfus-
cator. Algorithm Sampler′k first runs Sampler to get (C0, C1, aux), then generates
two samples of the level-1 unit (one time using C0 for the honest obfuscators
and C1 for O∗

k, and the other time using C0 everywhere), and finally outputs
these two samples and aux′ = (C0, C1, aux) as auxiliary data. Note that find-
ing an input x where the two level-1 unit samples differ is impossible, as both
implement the same function.

We next show that the claim remains true with respect to virtual black-
box and grey-box obfuscation. For this we assume that the adversary and the
simulator receive some circuit-dependent auxiliary input aux as additional input,
as explained in Sect. 2.

6 Note that we do not need to know the index k of the obfuscator; unlike the con-
struction it suffices that the proof provides an existential result.

Obfuscation Combiners 535

Proposition 1. The combiner in Fig. 1 is a strongly robust 3-out-of-4 combiner
for virtual black-box and grey-box obfuscation with respect to dependent auxiliary
input.

Proof. Functional correctness follows as in the case of indistinguishability obfus-
cation. We only discuss the VBB property here; the VGB property follows anal-
ogously.

Consider an adversary A0 against VBB obfuscation. This adversary receives
an output sample O′ of our combiner as input and some auxiliary input
aux[0] = aux[0](C). Let k be again the index of the malicious obfuscator and
this time define L = L(k) ∈ {3, 5} as follows. For k = 4 we would have the
malicious obfuscator O∗

4 only on first-level units and we only need to look at the
L = 3 second-level obfuscators. For k ∈ {1, 2, 3}, on the other hand, the mali-
cious combiner appears in a second-level unit and we thus consider the L = 5
sound obfuscators, consisting of the 3 obfuscators leading to the second-level
appearance of O∗

k and the remaining 2 honest level-two obfuscators.
Assume now that we change the auxiliary input to include the obfusca-

tor results of our combiner for all L sound obfuscators defined above. Denote
these intermediate results, ordered according to the obfuscator application, by
O[1..L] = (Oi1 , Oi2 , Oi3 , . . . , OiL

), and let O[1..i] denote the first i entries in
O[1..L]. Let aux[0..i] denote the sample given by a sample of first i obfuscator
outputs, together with the (independent) sample aux[0] of A0.

Instead of considering A0(1λ, O′, aux[0]) we construct an algorithm A1 which
receives 1λ and aux[0..L] as input, assembles a combiner output O′ from aux[1..L]
by possibly evaluating the (level-2) malicious obfuscator, and runs adversary
A0(1λ, O′, aux[0]). Then, clearly, the output distribution of both algorithms are
identical. We can now view A1 as an algorithm which receives aux[0..L − 1]
as auxiliary input, and the obfuscated circuit aux[L] together with 1λ as regular
input.7 For this algorithm A1, by assumption about the security of OiL

producing
OiL

, there exists a simulator SC
1 (1λ, aux[0..L − 1]) with negligibly close output

distribution.
Given S1 we construct an adversary A2 which receives auxiliary input

aux[0..L−2], and 1λ and aux[L−1] as regular input. It runs S1(1λ, aux[0..L−2])
and uses aux[L − 1] to answer oracle calls. Note that, by the functional correct-
ness of OiL−1 , using aux[L − 1] to simulate the oracle C of S1 is sound as both
circuits compute the same function. We can set this argument forth to eventually
obtain a simulator SC

L (1λ, aux[0]), producing some output distribution which is
negligibly close to the one of our initial adversary A0(1λ, O′, aux[0]). This shows
VBB obfuscation.

7 By construction, if we shift the input of a level-2 obfuscator then this is a sample
of a level-1 unit, whereas the other auxiliary inputs are based on the original and
functional equivalent circuit C.

536 M. Fischlin et al.

4 Lower Bounds for Combiners

To illustrate how we use the two required security properties, function preserva-
tion and indistinguishability, against each other to derive our general result, it is
useful to demonstrate our technique for some toy examples. In the examples we
use an unspecified notion of indistinguishability of the obfuscators as we merely
highlight the issues; the reader may think for sake of concreteness of the notion
of indistinguishability obfuscation.

4.1 Simple Attempts that Fail

The first attempt to build a secure combiner consists of a single unit and is given
in the left hand part of Fig. 4. It uses three obfuscators O1,O2,O3 and runs
the input circuit through each of them. Then it combines the three obfuscated
circuits by a majority circuit. Note that this means that this part takes the
circuits and has some input wires for the input x, and it evaluates each circuit
on x and outputs y as the bit-wise majority of the answers. While we cannot
break the functional correctness of the combiner with a single corrupt obfuscator
O∗

i , we can easily break the indistinguishability property. To this end we take
control of obfuscator O∗

1 and let it simply output the input circuit in clear. Note
that this means that the unit, after having been initialized, reveals the input
circuit in clear as well, and this easy to distinguish.

In our second example we have two obfuscators O1,O2, let the output of them
be combined arbitrarily, and then input the derived circuit into obfuscator O3.
Note that in this case it is unclear how to break the indistinguishability property
by corrupting a single obfuscator only. If it is O3 then the obfuscators of the first
unit already hide the input circuit; if we corrupt one of the obfuscators O1,O2

then the final obfuscation hides the actual circuit.
We can, nonetheless, in the second example break the functional preservation

property. Namely, assume that both O1 and O2 are secure and that there are
two potential input circuits D0,D1 computing different functions for the same
input and output length. If we control O1, then we let it on any input circuit
rather obfuscate D1. Vice versa, if we control O2 then we let it always obfuscate
D0, independently of the actual input. It follows that the initialized combiners

Fig. 4. Examples of (insecure) structural combiners

Obfuscation Combiners 537

for D0 (with our malicious O∗
1 and with genuine O2) and for D1 (with genuine

O1 and our malicious O∗
2) have the same distribution. For at least one of the two

cases the computed function must then be incorrect, as the initialization samples
for both input circuits D0,D1 have the same distributions in both cases.

4.2 The General Case of 2-out-of-3 Combiners

The attacks in the simple case show the path for our general impossibility result
for 2-out-of-3 structural combiners. If one of the three obfuscators appears in all
units on the path from some level-1 unit to the final unit, then it can pass on
information about the input circuit C to the final unit. This is done by forwarding
some information about the input circuit in the output of the obfuscator. This
would clearly violate the indistinguishability property. Hence, on all paths there
must be a unit which only uses (at most) the same two obfuscators. But then
we can “confuse” the combiner as we did in the second example above. The
argument, however, requires some care to deal with the fact that we have many
paths. Note also that the confusion strategy fails in our 3-out-of-4 construction
because the majority of the three combiners yields the correct function.

For sake of concreteness we use the notion of indistinguishability obfuscation
for the obfuscators and the combiners. Recall that this means that for any func-
tionally equivalent circuits C0, C1 from class C the combiners initialization with
these two circuits must be computationally indistinguishable. To avoid trivial
cases we assume that the class C contains at least two distinct but functionally
equivalent circuits E0, E1, and that it also contains two circuits D0,D1 comput-
ing d ifferent functions. We call such classes non-trivial.

Since we pass on circuits as inputs we need to fix some encoding. Let
〈·〉 denote such a function mapping circuits from the class C to strings. We
assume that the encoding is such that given an encoding of a unit (after ini-
tialization) one can reconstruct the circuits output by the obfuscators. That
is, there exists an efficient algorithm reconstruct such that given any initializa-
tion V ← U(C1, C2, C3, . . .) of a unit U , including obfuscated circuits Oi ←
Oij

(Ci) and possibly pass-through circuits Oi = Ci, we have reconstruct(〈V 〉) =
(〈O1〉 , 〈O2〉 , 〈O3〉 , . . .). Furthermore, we assume that the encoding of no unit
coincides with the encoding of our equivalent circuits E0 or E1 such that it is
clear if each 〈Oi〉 is the result of a unit initialization or rather one of the cir-
cuits E0 or E1. We call such encodings 〈·〉 admissible. Note that this means that
the combiner itself cannot apply any obfuscation techniques beyond the ones
provided by the obfuscators placed inside the unit.

We first show that on any full path (from level-1 units to the final unit) each
of the three combiners does not appear in a unit (and that a unit in which it
does not appear is not pass-through). This holds for any structural combiner,
independently of the total number of obfuscators and the number of malicious
ones:

Lemma 1. Let CombO1,O2,...,ON be a structural combiner for a non-trivial cir-
cuit class C with admissible encoding 〈·〉. Then for any full path of units of the

538 M. Fischlin et al.

combiner and for any i ∈ {1, 2, . . . , N} there must be a unit which is not pass-
through and which is not an {i, . . . }-unit, or else the combiner cannot be an
indistinguishable obfuscator.

Proof. Assume that there exists a full path of units and an i ∈ {1, 2, . . . , N}
such that each unit on the path is an {i, . . . }-unit or that it is pass-through (or
both). Then we show how to break indistinguishability obfuscation as follows. Let
E0, E1 be some functional equivalent circuits in the class with distinct encodings
under 〈·〉. We corrupt obfuscator Oi and for each input circuit let it, for each call,
simply output the input circuit in clear, by duplicating the input description.

Since each unit on the pass includes the i-th obfuscator (or is pass through)
a distinguisher can distinguish between a combiner obfuscation of E0 and E1

as follows. The distinguisher receives as input the initialization of the final unit
U , and runs reconstruct(〈U〉) to recover all (obfuscated or pass-through) input
circuits O1, O2, Since the distinguisher knows the layout of the combiner it
can recursively apply the reconstruction algorithm to outputs of the i-th com-
biner resp. to passed circuits; both are initialized units. Following the full path
in question, the distinguisher eventually obtains either E0 or E1 as the input
circuit, and can thus distinguish the two cases easily. �

We next show that, given that each full path contains a unit in which, say,
obfuscator O3 does not appear, we can confuse the combiner. This time, the
claim only holds for 2-out-of-3 combiners:

Lemma 2. Let CombO1,O2,O3 be a structural combiner for a non-trivial circuit
class C with admissible encoding 〈·〉. Then the combiner cannot be perfectly cor-
rect.

In particular, if u denotes the number of units in the structural combiner and
m the maximal number of obfuscator gates in a unit, then with probability at
least 2−u(mu)−mu (over the random choices of the obfuscators) the combiner’s
function is different from the one of the input circuit. If u and m are constant,
for instance, this means a constant error in functional preservation.

Proof. By Lemma 1 for each path from level-1 units to the final unit there exists
a unit which does not contain, say, the obfuscator O3 and which is neither pass-
through. Put differently, such a unit contains (at most) the obfuscators O1,O2,
each one possibly multiple times Let U1, U2, . . . be the corresponding units which
we call confusion units. In the example in Fig. 5 the confusion units on the three
paths are marked by dotted lines.

We consider two cases, one time corrupting obfuscator O1, the other time
corrupting obfuscator O2. Let us first consider the case that we corrupt obfus-
cator O1. Our version O∗

1 of the obfuscator will internally hold, and formally
attributed to the non-uniformity, an initialization sample of CombO1,O2,O3(D1)
with the genuine obfuscators for input circuit D1. In particular, for each confu-
sion unit Ui it will include the j ≤ m circuit codes of Oj

i [D1] which the original
obfuscator O1 output in unit Ui in this sample. In order to make our obfusca-
tor state-free we will guess the right insertion positions and injected circuits.

Obfuscation Combiners 539

That is, for each call (about some input circuit) our malicious obfuscator O∗
1

tosses a coin. If it comes out as head, then the obfuscator proceeds as the gen-
uine obfuscator would. If it is tail, then it picks one of the at most mu circuits
Oj

i [D1] at random, and returns this circuit. An example of a run with good
guesses is given in the left part of Fig. 5.

Fig. 5. Confusion units in this example are marked by dotted lines.

For the other case we corrupt O2 and include a sample of CombO1,O2,O3(D0)
of the genuine obfuscators, this time for input circuit D0. Analogously to the
other case denote the output of O2 in the confusion unit Ui by Oj

i [D0]. When
called, the malicious obfuscator O∗

2 also generates an honest answer with proba-
bility 1

2 , and inserts one of the pre-sampled circuits Oj
i [D0], the choice made at

random, in the other case.
For the analysis we start with the case of a malicious obfuscator O∗

1 . Note
that, if we let u denote the number of units in the combiner, then with probability
2−u we overwrite the obfuscator’s behavior exactly for the confusion units, since
we predict the status of each unit (confusion or not) exactly with probability 1

2 . If
so, then we also inject the hardwired circuits Oj

i [D1] “correctly” in confusion unit
Ui with probability at least (mu)−mu, since we have at most u units with at most
m obfuscator gates and need to guess for each unit correctly among the at most
mu possibilities among all Oj

i [D1]’s. If this happens, and the combiner receives

Fig. 6. Confusion strategy with malicious obfuscator O∗
1 injecting parts of the upper

D1 initialization sample into the lower D0 initialization (left), and malicious obfuscator
O∗

2 injecting parts of the upper D0 initialization sample into the lower D1 initialization
(right).

540 M. Fischlin et al.

circuit D0 as input, then in the confusion units we have consistent samples for
O1 gates (if present), as if the combiners input had been D1. See the left part
of Fig. 6 for an example. Simultaneously, in the same unit, we have consistent
samples for O2 gates (if present), as if the overall input had been circuit D0.

By symmetry, the same is true if we control obfuscator O∗
2 and the combiner’s

input is D1. Hence, with probability at least 2−u(mu)−mu either case creates the
same output distribution. If this happens, then on each path to the final unit
the corresponding confusion unit produces the same distribution upon the single
initialization in both cases. It follows that the combiner must implement an
incorrect function in one of the cases, showing that functional preservation is
not satisfied. It follows that the combiner cannot be perfectly correct.

Noting that the combiner cannot work even if 2 of the 3 obfuscators both
have both properties simultaneously, the previous lemmas imply that there are
not even weakly robust 2-out-of-3 combiners for indistinguishability obfuscation.
It follows that there cannot exist stronger forms of structural combiners either,
such as 1-out-of-2 combiners, strong combiner, or virtual grey-box combiners.

Theorem 2. For any o∈{V BB, V GB, indistinguishability, differing-inputs}
there is no structural weakly robust 2-out-of-3 o-obfuscation combiner
CombO1,O2,O3 for non-trivial circuit classes C with admissible encoding 〈·〉.

5 The General Case of (2γ[+1])-out-of-(3γ[+1])
Combiners

In this section we present a generalization of our 3-out-of-4 combiner to the case
of (2γ+1)-out-of-(3γ+1) combiners for any fixed integer γ. In fact, our combiner
for γ = 1 in Sect. 3 can be seen as a special parallelized version of the general
approach here. We then discuss that our lower bound for 2-out-of-3 structural
combiners also carries over to the more general case of 2γ-out-of-3γ combiners,
showing that our general combiner here is optimal in this regard.

5.1 Robust (2γ + 1)-out-of-(3γ + 1) Combiners

Consider all sets I of subsets of {1, 2, . . . , 3γ+1} of size 2γ+1. For each such set I
form the unit which, similar to our 3-out-of-4 case, first in parallel obfuscates the
input circuit with each obfuscator Oi for i ∈ I, and then compute the majority
circuit over all these 2γ + 1 obfuscated circuits. We write

OI(·) = MAJ {Oi(·) | i ∈ I }
for this unit. To obfuscate a circuit C compose each of these units for all the I’s
sequentially, in arbitrary order. Let us denote this process by

(
∏
I

OI)(·) = OI�
(· · · OI3(OI2(OI1(·))) · · ·)

for constant � =
(
3γ+1
2γ+1

)
. Call this the sequential-subset combiner for γ.

Obfuscation Combiners 541

Intuitively, the sequential-subset combiner guarantees robustness as there
exists a subset I such that this subset only uses the 2γ+1 uncorrupt obfuscators.
At the same time each circuit OI computes the correct function as the majority
of the 2γ + 1 obfuscators faithfully computes the correct function.

Theorem 3. For any constant γ the sequential-subset combiner is a strongly
robust (2γ + 1)-out-of-(3γ + 1) combiner for indistinguishability obfuscation, for
differing-inputs obfuscation, for virtual black-box obfuscation, and for grey-box
obfuscation, the latter ones for dependent auxiliary inputs.

The proof is similar to our 3-out-of-4 combiner. Functionally correctness fol-
lows from the fact that the majority computation in each OIi

ensures that the
at most γ corrupt obfuscators cannot bias the outcome. Obfuscation follows
as before because there must exist one set I which exclusively contains non-
malicious obfuscators.

5.2 Impossibility for 2γ-out-of-3γ Combiners

In this section we discuss that our lower bound for 2-out-of-3 structural combin-
ers carries over to the more general case of 2γ-out-of-3γ combiners.

Theorem 4. There is no structural weakly robust 2γ-out-of-3γ obfuscation com-
biner CombO1,O2,...,O3γ for non-trivial circuit classes C with admissible encod-
ing 〈·〉.
Proof. Recall the proof for the 2-out-of-3 case. There, in the first step we have
shown that on each path from a level-1 unit to the output unit there must be
a unit in which obfuscator O3 does not appear and which is not pass-through.
We called these units confusion units.

The same argument now applies here as well for the γ obfuscators with
indices 2γ +1, . . . , 3γ. Else, if there was a path in which one of these obfuscators
appears in each unit (or if the unit is pass-through), then we could easily corrupt
these obfuscators and forward information about the input circuit through the
admissible encoding 〈·〉. Hence, in the case here there must be a confusion unit
on each path, which only uses circuits with indices 1, 2, . . . , 2γ and which are
not pass-through.

In the second step of the proof for the 2-out-of-3 case we then show that in
the confusion units with obfuscators O1 and O2 we can confuse the combiner.
One time we corrupt O1 and let it insert samples of circuit D1, and the other
time we corrupt O2 and insert samples for D0, where D0,D1 compute different
functions. Then the combiner’s view when run on input D0 in the first case, and
on D1 in the second case, has the same distribution and the combiner cannot
provide functional correctness.

We apply the same argument here, one time corrupting the first γ obfuscators
with indices 1, . . . , γ and inserting a sample for D1, and the other time corrupt-
ing obfuscators with indices between γ + 1, . . . , 2γ and using a sample for D0.
Then the combiner’s views in both cases (for input circuit D0 in the first case,

542 M. Fischlin et al.

and for D1 in the second case) are identical again such that it cannot provide a
correct combiner.

As in the 2-out-of-3 case the malicious obfuscators above insert the confusion
samples at random positions, such that it only achieves confusion with the same
bound as in the previous case. Note also that we took advantage of the fact that
corrupt combiners are coordinated centrally by the adversary.

6 Detecting Combiners

The combiners in the previous section were correcting in the sense that they guar-
anteed functionality correctness if a quorum if obfuscator candidates is secure.
Here we consider combiners which should create circuits which either output
the correct value, but may give some error output ⊥. We call them detecting
combiners.

For detecting combiners we require a weaker correctness property, namely
that for any circuit C ∈ C, for any O ← CombO1,O2,...(C) we have that
O(x) ∈ {C(x),⊥} for all x ∈ {0, 1}∗ in the domain of C. This means that
the combiner may sometimes fail to compute the correct function value but then
it signals this by outputting a special symbol ⊥. To prevent trivial solutions
like the combiner which outputs the circuit that always returns ⊥ we assume
that C ≡ O if all obfuscators are secure. Note that our assumption about the
obfuscators O1,O2, . . . being able to deal with (intermediate) combiner outputs
in CComb implies that the obfuscators may now also receive circuits which occa-
sionally output ⊥.

6.1 Robust (γ + 1)-out-of-(2γ + 1) Detecting Combiners

To build our (γ + 1)-out-of-(2γ + 1) combiner we follow the approach of our
sequential-subset combiner. We can also straightforwardly give the optimized
version for the case of a 1-out-of-3 combiner, akin to our 1-out-of-4 combiner,
but omit this step here. To build the sequential-subset combiner consider here
all sets I of subsets of {1, 2, . . . , 2γ +1} of size γ +1. For each such set I we first
obfuscate the input circuit with each obfuscator Oi for i ∈ I. But now instead
of completing the computation by adding a majority sub circuit, we now use the
detecting version which (a) either outputs the string on which all circuits agree
upon as output (even if it is ⊥), or (b) returns ⊥ is there is no such unanimous
decision. Let

OI(·) = UNAN{Oi(·) | i ∈ I}
denote this unit with the unanimity circuit at the end. For obfuscation of C now
compute the sequential-subset combiner

(
∏
I

OI)(·) = OI�
(· · · OI3(OI2(OI1(·))) · · ·)

as before for constant � =
(
2γ+1
γ+1

)
.

Obfuscation Combiners 543

Theorem 5. For any constant γ the sequential-subset combiner is a strongly
robust (γ +1)-out-of-(2γ +1) detecting combiner for indistinguishability obfusca-
tion, for differing-inputs obfuscation, for virtual black-box obfuscation, and for
grey-box obfuscation, the latter ones for dependent auxiliary inputs.

The proof is similar to the case of correcting combiners, except that we only
guarantee the weaker functional correctness. This property is given since in each
unit for index set I there is at least one honest obfuscator among the γ + 1
ones, the unanimity circuit either outputs the function value computed by the
honest obfuscator (if all other circuits agree), which may either be the correct
function value for some x or ⊥, or it returns the error message ⊥. It follows that
the overall output of the combiner circuit can only comply with the circuit’s
output, or returns ⊥. The obfuscation properties follow as before noting that
the obfuscators are able to handle input circuits with output ⊥, and that there
must exist an index set I which only contains good obfuscators.

6.2 Impossibility of γ-out-of-2γ Detecting Combiners

The idea for the lower bound for correcting combiners carries over to detecting
combiners, as follows.

Theorem 6. There is no structural weakly robust γ-out-of-2γ obfuscation com-
biner CombO1,O2,...,O2γ for non-trivial circuit classes C with admissible encoding
〈·〉.
Proof. As in the case of 2-out-of-3 combiners and 2γ-out-of-3γ combiners, here,
there must be also (non-pass-through) confusion units in each path from input
units to the final unit, where none of the obfuscators with indices γ + 1, . . . , 2γ
appears. Assume now that we corrupt the obfuscators with indices 1, . . . , γ and
let these obfuscators insert intermediate samples of a circuit D0 of the combiner’s
obfuscation in the confusion units, independently of the input. If the insertions
happen at the right position with significant probability, then the combiner must
output an obfuscated circuit as if the combiner has been run on D0 for honest
obfuscators. In particular, the combiner’s circuit must then compute the function
D0 on every input. This holds even if the original input circuit was D1, computing
a different function than D0, i.e., D0(z) 	= D1(z) for some string z. But then the
combiner’s circuit produces a false output D0(z) 	= ⊥ for input z and cannot be
detecting.

7 Implementation and Evaluation

Our formal results have been stated in terms of the common notion of cir-
cuit obfuscation. In practice, however, programs are usually considered to be
better modeled for Turing machines. We stress that our results, especially for
the majority-based combiner, hold for such Turing machine programs as well.

544 M. Fischlin et al.

Namely, our 3-out-of-4 combiner would then output the program implementing
the nested majority implementations.

Concerning provably secure instantiations for Turing machine obfuscation,
we note that if the running time and the input length of the Turing machine are
bounded then one can in principle transform such machines into corresponding
circuits, albeit at the cost of increasing the complexity significantly. A more
efficient solution is to use obfuscation techniques for Turing machines directly.
Given the current state of constructions this is possible if the input length can be
bounded [40] and, for other constructions, if the space is also bounded beforehand
[11,17].

To evaluate the suggested combiners for typical obfuscation programs in prac-
tice we implemented the PyObf python package [9] that can be used to wrap
existing obfuscators and to implement new combiners. Even though the concep-
tual construction of a combiner is not related to the concrete implementation
of the underlying obfuscators, implementations for different programming lan-
guages might differ, since some constructions introduce new run-time parts (e.g.,
as the MAJ circuit in our case) to the program. We chose to use JavaScript as the
implementation programming language because of the relatively high number of
available obfuscators.

7.1 Performance Evaluation

For performance evaluation we used Yahoo!’s YUICompressor v2.4.88 as O1, a
slightly randomized version of it as O2, Google’s Closure Compiler v201510159

as O3, and jsPacker.pl v1.00b10 as O4. Note that there is no essential difference
between O1 and O2, especially in terms of obfuscation overhead, since the latter
only uses different and randomized symbol selection routine. Security of combin-
ers usually relies on somewhat independent components but since we are mainly
interested in performance evaluation here we opted for using the related choice.
The evaluated combiners are:

C1(.) = O4(O3(O2(O1(.))))
C2(.) = O2(O1(O4(O3(.))))
C3(.) = MAJ(O1(O2,3,4),O2(O1,3,4),O3(O1,2,4))
C4(.) = MAJ(O3(O4,1,2),O4(O3,1,2),O1(O3,4,2))

The evaluated programs (with varying input size, ranging from a few thou-
sand bytes to a roughly million bytes) are Cookies.js v1.2.211 (6, 637 bytes), High-
light.js v9.0.012 (22, 604 bytes), jCarousel v0.3.413 (46, 007 bytes), Backbone.js

8 https://github.com/yui/yuicompressor.
9 https://github.com/google/closure-compiler.

10 http://dean.edwards.name/download/.
11 https://github.com/ScottHamper/Cookies.
12 https://highlightjs.org.
13 http://sorgalla.com/jcarousel/.

https://github.com/yui/yuicompressor
https://github.com/google/closure-compiler
http://dean.edwards.name/download/
https://github.com/ScottHamper/Cookies
https://highlightjs.org
http://sorgalla.com/jcarousel/

Obfuscation Combiners 545

v1.2.314 (71, 415 bytes), Chart.js v1.0.215 (109, 612 bytes), Epoch v0.8.416

(115, 940 bytes), Swig v1.4.217 (143, 975 bytes), PhysicsJS v0.7.018 (171, 847
bytes), jQuery v1.6.419 (238, 166 bytes), Raphaël v2.1.420 (304, 254 bytes), Dojo
v1.10.421 (629, 481 bytes), Video.js v5.4.422 (675, 527 bytes) and AngularJS
v1.4.523 (1, 052, 336 bytes).

Note that the above circuit model describes a program as a function with
input and output, in contrast to the common software design of JavaScript
libraries that heavily depends on the JavaScript context (e.g., the window
object). But this difference is irrelevant to performance evaluation.

Fig. 7. Overhead of individual obfuscators (time and output bloat ratio) for the various
programs (in relation to their input sizes for the obfuscator). Note that we do not
display obfuscator O2 here as its performance is essentially identical to the one of O1.

Figure 7 gives the effectiveness of the obfuscators in terms of obfuscation
time and of output-bloat ratio. Here we show the figures in relation of the sizes
of the various programs (from 6, 637 bytes to 1, 052, 336 bytes) given as input
to the obfuscators. Note that the results may depend heavily on the specific
input programs such that we cannot expect perfectly monotonic behavior in
the graphs. Also, as mentioned before, many practical obfuscators come with
techniques for code size reduction such that the output bloat ratio can be—and
often is—smaller than 1. Next, we compare these figures to the results of the

14 http://backbonejs.org/.
15 http://www.chartjs.org/.
16 http://epochjs.github.io/epoch/.
17 http://paularmstrong.github.io/swig/.
18 http://wellcaffeinated.net/PhysicsJS/.
19 https://jquery.com/.
20 https://github.com/DmitryBaranovskiy/raphael.
21 https://dojotoolkit.org/.
22 http://videojs.com/.
23 https://angularjs.org/.

http://backbonejs.org/
http://www.chartjs.org/
http://epochjs.github.io/epoch/
http://paularmstrong.github.io/swig/
http://wellcaffeinated.net/PhysicsJS/
https://jquery.com/
https://github.com/DmitryBaranovskiy/raphael
https://dojotoolkit.org/
http://videojs.com/
https://angularjs.org/

546 M. Fischlin et al.

Fig. 8. Overhead of cascaded combiner (time and output bloat ration).

Fig. 9. Overhead of 3-out-of-4 combiner (time and output bloat ration).

suggested combiners, first to the cascade combiners in Fig. 8 and then to the
3-out-of-4 combiners in Fig. 9.

In summary, the proposed obfuscation combiners do not add significant run
time overhead compared to a single obfuscator. The factor is roughly propor-
tional to the number of invoked instances, with some gains presumably due to
the intermediate code optimization. Due to the advanced compression techniques
the code size of our cascaded combiners is in the same order as the individual
obfuscators. For the 3-out-of-4 combiner we of course get an increased output
size because of the tripling for each majority step, potentially also hampering
some code reductions.

7.2 Security Evaluation

Due to the unclear situation about security properties of practical obfuscators we
have proven robustness of our combiners with respect to the common theoretical
notions of obfuscation in the literature. There are approaches to define metrics

Obfuscation Combiners 547

for practical obfuscators, though. A first approach is by Collberg et al. [20] who
define notions for potency (the incomprehensibility of the transformed program
for humans), resilience (the hardness of undoing the transformation through the
joint effort of engineers and deobfuscation techniques), and cost (the overhead
caused by the obfuscator). The measure of quality of an obfuscator is then given
by a vector of these three metrics.

While the notion of cost in [20] even distinguishes the full range between expo-
nential and constant overhead in execution resources, the metrics for potency
and resilience in [20] are less rigorous. They are accompanied by suitable soft-
ware complexity measures such as program length or cyclomatic complexity [42].
Anckaert et al. [5] later used software complexity measures, too, for establishing
a benchmarking system for obfuscators for binary executables.

While it is beyond the scope of our work here, it may be interesting to
benchmark our obfuscation combiners according to the metrics in [5]. Note that
their metrics focus on resilience and somewhat neglect the overhead. Since our
combiners in principle increase the software complexity at the cost of incurring
additional steps, one should expect that combinations of benchmarked obfusca-
tors yield better values in this regard.

8 Conclusion

Our positive results about combiners, and also our lower bounds, indicate how
to proceed both in theory and practice. If you only have two available candidates
then the best solution appears to be the sequential composition O2(O1(·)), if one
can somehow guarantee that the inner obfuscator provides functional correctness.
For three candidates (out of which at least two are sound) then our 2-out-of-3
detecting combiner should be the primary choice. To ensure correct output, our
3-out-of-4 combiner provides a secure solution.

Acknowledgements. We are grateful to Christian Collberg for his feedback and
encouragement. Marc Fischlin is supported by the Heisenberg grant Fi 940/3-2 and
the SPP 1736 grant Fi 940/5-1 of the German Research Foundation (DFG). Amir
Herzberg is support by the Israeli Ministry of Science and Technology.

References

1. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013). http://
eprint.iacr.org/2013/689

2. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal obfuscation and
witness encryption: boosting correctness and combining security (2016). http://
eprint.iacr.org/2016/281

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 308–326. Springer, Heidelberg (2015)

http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2013/689
http://eprint.iacr.org/2016/281
http://eprint.iacr.org/2016/281

548 M. Fischlin et al.

4. Ananth, P., Jain, A., Sahai, A.: Indistinguishability obfuscation with constant
size overhead. IACR Cryptology ePrint Archive, Report 2015/1023 (2015). http://
eprint.iacr.org/2015/1023

5. Anckaert, B., Madou, M., Sutter, B.D., Bus, B.D., Bosschere, K.D., Preneel, B.:
Program obfuscation: a quantitative approach. In: Proceedings of the 3th ACM
Workshop on Quality of Protection, QoP 2007, Alexandria, VA, USA, 29 October
2007, pp. 15–20. ACM (2007)

6. Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfus-
cation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 27

7. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

9. Bin Noon, H.: Pyobf (2016). https://github.com/hodbn/pyobf
10. Bitansky, N., Canetti, R.: On strong simulation and composable point obfusca-

tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

11. Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings
and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC,
pp. 439–448. ACM Press, New York (2015)

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approxi-
mate to exact. http://eprint.iacr.org/2015/704

13. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 171–190. IEEE
Computer Society (2015)

14. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision
resistant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 570–583. Springer, Heidelberg (2006)

15. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits
via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349,
pp. 1–25. Springer, Heidelberg (2014)

16. Canetti, R.: Towards realizing random oracles: hash functions that hide all
partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

17. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Succinct garbling and
indistinguishability obfuscation for RAM programs. In: Servedio, R.A., Rubinfeld,
R. (eds.) 47th ACM STOC, pp. 429–437. ACM Press, New York (2015)

18. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

19. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation-
tools for software protection. IEEETSE. IEEE Trans. Softw. Eng. 28, 735–746
(2002)

20. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical report #148, Department of Computer Science, The University of
Auckland, New Zealand (1997)

http://eprint.iacr.org/2015/1023
http://eprint.iacr.org/2015/1023
http://dx.doi.org/10.1007/978-3-662-49896-5_27
https://github.com/hodbn/pyobf
http://eprint.iacr.org/2015/704

Obfuscation Combiners 549

21. Coron, J.S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 247–266. Springer, Heidelberg (2015)

22. Coron, J.S., Lee, M., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. Cryptology ePrint Archive, Report 2015/1037 (2015). http://eprint.
iacr.org/2015/1037

23. Coron, J.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of two candidate fixes of
multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975
(2014). http://eprint.iacr.org/2014/975

24. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

25. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (2007)

26. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(2008)

27. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions. J. Crypt. 27(3), 397–428 (2014)

28. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, October 2013, pp. 40–49. IEEE Computer Society Press (2013)

29. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs
obfuscation and extractable witness encryption with auxiliary input. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014)

30. Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities
of multilinear maps. Cryptology ePrint Archive, Report 2016/390 (2016). http://
eprint.iacr.org/2016/390

31. Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptan-
alyzing multilinear maps without encodings of zero. Cryptology ePrint Archive,
Report 2014/929 (2014). http://eprint.iacr.org/2014/929

32. Gentry, C., Lewko, A., Sahai, A., Waters, B.: Indistinguishability obfuscation from
the multilinear subgroup elimination assumption (2015)

33. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: 46th FOCS, October 2005, pp. 553–562. IEEE Computer Society Press
(2005)

34. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for
oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

35. Herzberg, A.: Folklore, practice and theory of robust combiners. Cryptology ePrint
Archive, Report 2002/135 (2002). http://eprint.iacr.org/2002/135

36. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

37. Herzberg, A.: Folklore, practice and theory of robust combiners. J. Comput. Secur.
17(2), 159–189 (2009)

38. Herzberg, A., Shulman, H.: Robust combiners for software hardening. In: Acquisti,
A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 282–289.
Springer, Heidelberg (2010)

http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2015/1037
http://eprint.iacr.org/2014/975
http://eprint.iacr.org/2016/390
http://eprint.iacr.org/2016/390
http://eprint.iacr.org/2014/929
http://eprint.iacr.org/2002/135

550 M. Fischlin et al.

39. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. Cryptology ePrint Archive, Report 2014/507
(2014). http://eprint.iacr.org/2014/507

40. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th
ACM STOC, pp. 419–428. ACM Press, New York (2015)

41. Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding
schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 2

42. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320
(1976)

43. Meier, R., Przydatek, B.: On robust combiners for private information retr-
ieval and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 555–569. Springer, Heidelberg (2006)

44. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (2007)

45. Mennink, B., Preneel, B.: Breaking and fixing cryptophia’s short combiner. In:
Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813,
pp. 50–63. Springer, Heidelberg (2014)

46. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147. http://eprint.iacr.org/2016/147

47. Mittelbach, A.: Cryptophia’s short combiner for collision-resistant hash functions.
In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013.
LNCS, vol. 7954, pp. 136–153. Springer, Heidelberg (2013)

48. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-
secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part I. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014)

49. Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions
don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 23–33.
Springer, Heidelberg (2007)

50. Pietrzak, K.: Compression from collisions, or why crhf combiners have a long out-
put. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 413–432. Springer,
Heidelberg (2008)

http://eprint.iacr.org/2014/507
http://dx.doi.org/10.1007/978-3-662-49890-3_2
http://eprint.iacr.org/2016/147

On Statistically Secure Obfuscation
with Approximate Correctness

Zvika Brakerski1, Christina Brzuska2, and Nils Fleischhacker3(B)

1 Weizmann Institute of Science, Rehovot, Israel
2 Technical University of Hamburg, Hamburg, Germany
3 CISPA, Saarland University, Saarbrücken, Germany

fleischhacker@cs.uni-saarland.de

Abstract. Goldwasser and Rothblum (TCC ’07) prove that statistical
indistinguishability obfuscation (iO) cannot exist if the obfuscator must
maintain perfect correctness (under a widely believed complexity the-
oretic assumption: NP �⊆ SZK ⊆ AM ∩ coAM). However, for many
applications of iO, such as constructing public-key encryption from one-
way functions (one of the main open problems in theoretical cryptogra-
phy), approximate correctness is sufficient. It had been unknown thus far
whether statistical approximate iO (saiO) can exist.

We show that saiO does not exist, even for a minimal correctness
requirement, if NP �⊆ AM ∩ coAM, and if one-way functions exist.
A simple complementary observation shows that if one-way functions do
not exist, then average-case saiO exists. Technically, previous approaches
utilized the behavior of the obfuscator on evasive functions, for which
saiO always exists. We overcome this barrier by using a PRF as a “base-
line” for the obfuscated program.

We broaden our study and consider relaxed notions of security for iO.
We introduce the notion of correlation obfuscation, where the obfusca-
tions of equivalent circuits only need to be mildly correlated (rather than
statistically indistinguishable). Perhaps surprisingly, we show that cor-
relation obfuscators exist via a trivial construction for some parameter
regimes, whereas our impossibility result extends to other regimes. Inter-
estingly, within the gap between the parameters regimes that we show
possible and impossible, there is a small fraction of parameters that still
allow to build public-key encryption from one-way functions and thus
deserve further investigation.

Z. Brakerski—Supported by the Israel Science Foundation (Grant No. 468/14), the
Alon Young Faculty Fellowship, Binational Science Foundation (Grant No. 712307)
and Google Faculty Research Award.
Christina Brzuska is grateful to NXP for supporting her chair for IT Security Analysis.
C. Brzuska and N. Fleischhacker—Part of this work was done while Christina
Brzuska and Nils Fleischhacker were working for Microsoft Research, Cambridge.
N. Fleischhacker—Supported by the German Federal Ministry of Education and
Research (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA – www.cispa-security.org) and the German research foun-
dation (DFG) through funding for the collaborative research center 1223.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 551–578, 2016.
DOI: 10.1007/978-3-662-53008-5 19

http://www.cispa-security.org

552 Z. Brakerski et al.

1 Introduction

Constructing public-key cryptography (e.g. public-key encryption) from private-
key cryptography (such as one-way functions) is one of the most fundamental
questions in theoretical cryptography, going back to the seminal paper of Diffie
and Hellman [9]. Diffie and Hellman suggested that program obfuscators with
sufficiently strong security properties would allow to realize this transforma-
tion. A program obfuscator is a compiler that takes as input a program, and
outputs another program with equivalent functionality, but which is harder to
reverse engineer. Diffie and Hellman suggested to obfuscate the encryption cir-
cuit of a symmetric-key encryption scheme, and use the obfuscated program as
a public key so as to obtain a public-key encryption scheme. An additional hint
that obfuscation may be instrumental in solving this riddle was provided by
Impagliazzo and Rudich [20,21], who proved that a transformation from sym-
metric to public-key must make non black-box use of the underlying symmetric
primitive. Indeed, program obfuscation is one of very few non black-box tech-
niques known in cryptography.

Modern research showed that the Diffie-Hellman transformation requires
obfuscators with security guarantees that do not exist in general [1,2,16]. How-
ever, recent years have seen incredibly prolific study of weak notions of obfus-
cation, following the introduction of a candidate indistinguishability obfuscator
(iO) by Garg et al. [10]. The security guarantee of iO is that the obfuscation
of two functionally equivalent circuits should result in indistinguishable out-
put distributions. That is, that reverse engineering could not detect which of
two equivalent implementations had been the source of the obfuscated program.
Sahai and Waters [30] showed that even this seemingly weak notion suffices for
private-key to public-key transformation (via a clever construction that does not
resemble the Diffie-Hellman suggestion).

One would have hoped that a weak notion such as iO may be realizable
with statistical security, i.e. that reverse engineering (to the limited extent
required by iO) will not be possible even to an attacker with unlimited compu-
tational power. The existence of such statistical indistinguishability obfuscator
(siO) would resolve the question of constructing public key cryptography from
one-way functions, as well as would allow to construct one-way functions based
on the hardness of NP [23]. Alas, Goldwasser and Rothblum [14,15] proved that
siO cannot exist unless the polynomial hierarchy collapses (in particular that it
implies NP ⊆ SZK, and it is known that SZK ⊆ AM∩ coAM), which is con-
sidered quite unlikely in computational complexity, and at any rate way beyond
the current understanding of complexity theory. This seems to put a damper on
our hopes to achieve statistically secure obfuscation.

However, the [14,15] negative result crucially relies on the correctness of
the obfuscator. That is, it only rules out such obfuscators that perfectly pre-
serve the functionality of the underlying primitive (at least with high proba-
bility over the coins of the obfuscator). In contrast, the symmetric to public
key transformation can be made to work with only approximate correctness, i.e.
a non-negligible correlation between the functionality of the input circuit and

On Statistically Secure Obfuscation with Approximate Correctness 553

that of the output circuit (where the probability is taken over the randomness
of the obfuscator and the input domain). The question of whether statistical
approximate iO (saiO) exists was therefore the new destination in the quest for
understanding obfuscation. Interestingly, it turns out that ruling out computa-
tional notions of iO in some idealized models also boils down to the question of
whether saiO exists (see Sect. 1.2 below). The study of this notion is the objective
of this paper.

Our Results. We show that statistical approximate iO (saiO) does not exist
if one-way functions exist (under the assumption that NP �⊆ AM ∩ coAM).
Thus, in particular, that saiO cannot be used for the transformation from sym-
metric to public-key cryptography. We show that if one-way functions exist,
then any non-negligible correlation between the output of the obfuscator and
the input program would imply an SZK algorithm for unique SAT (USAT). As
SAT reduces to USAT via a randomized reduction [32], a result of Mahmoody
and Xiao [27] shows that this implies that SAT is in AM ∩ coAM.

To complement our result, we observe that if one-way functions do not exist,
then an average-case notion of saiO exists for any distribution. Specifically, for
any efficiently samplable distribution over circuits, there exists an saiO obfus-
cator whose correctness holds with high probability over the circuits in that
distribution (inverting the order of quantifiers would imply a worst-case saiO).

A Study of Correlation Obfuscation. Our impossibility results extend beyond the
case of saiO. In fact, the result applies even when the security of the obfuscator
is approximate. Namely, when we are only guaranteed that the obfuscation of
functionally equivalent circuits results in distributions that have mild statistical
distance (as opposed to negligible). This motivated us to explore the properties
of this new kind of obfuscators, that as far as we know have not been studied in
the literature before.

We consider statistical approximate correlation obfuscation sacO. A sacO
obfuscator is characterized by two parameters ε ∈ [0, 1/2) and δ ∈ [0, 1). The
requirement is that correctness holds with probability 1 − ε (with respect to the
randomness of the obfuscator and a random choice of input), and that obfuscat-
ing two functionally equivalent circuits results in distributions with statistical
distance δ. The case of negligible δ is exactly saiO, discussed above, and the case
of ε = 0 corresponds to perfect correctness.

We observe that our impossibility result degrades gracefully and holds so long
as 2ε + 3δ < 1. We found this state of affairs unsatisfactory, and tried to extend
the result to hold for the entire parameter range. However, it turns out that sacO
exists via an almost trivial construction whenever 2ε + δ > 1 (e.g. ε = δ = 0.4).
We do not know if sacO exists in the intermediate parameter regime.

Lastly, we conduct a study of whether sacO is sufficient to construct public-
key encryption from one-way functions. We present an amplified version of the
Sahai-Waters construction using an amplification technique due to Holenstein.
Interestingly, it appears that there is a region in the parameter domain that
would allow to construct public-key encryption from one-way functions, but is

554 Z. Brakerski et al.

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correctness Error ε

S
ta

ti
st

ic
a
l
D

is
ta

n
ce

δ
Ruled out by Negative Result

Achievable with Trivial Construction

Allows Holenstein Amplification

Gap Possibly Allowing PKE from OWF

Fig. 1. The graph gives an overview over the possible range of parameters for sacO.
In the upper right are parameter regimes that can be achieved using the construction
described in Appendix A. In the lower left are the strong parameter regimes ruled
out by our negative result in Sect. 3. The graph shows nicely the gap between the
parameters that can be ruled out and those that can be used to construct public key
encryption using the construction of Sahai and Waters as well as the amplification
technique of Holenstein.

not ruled out by our current technique. See Fig. 1 for the landscape of sacO
parameters. We leave it as an intriguing open problem to close the gap between
the various parameter regimes.

1.1 Our Techniques

Our starting point is the Goldwasser-Rothblum impossibility result. Consider
a statistical iO obfuscator such that for any pair of functionally equivalent cir-
cuits, the obfuscator generates statistically indistinguishable distributions, and
in addition the output circuit of the obfuscator is always functionally equiva-
lent to the input circuit (this can be relaxed to hold only with high probability
over the random coins of the obfuscator). Goldwasser-Rothblum observe that
an unsatisfiable SAT formula Ψ is functionally equivalent to the all-zero func-
tion 0 and therefore the distributions produced by a siO obfuscator in both
cases should be statistically indistinguishable. Slightly more formally, let X[C]
denote the distribution output by the obfuscator on input circuit C, then we
get that X[Ψ] ≡ X[0], where ≡ denotes statistical indistinguishability. On the
contrary, if Ψ is a satisfiable formula, then it has a different functionality than
0 and therefore the support of X[Ψ] and X[0] will be disjoint (and thus obvi-
ously not statistically indistinguishable). It follows that in order to solve SAT,
it suffices to tell whether X[Ψ] is close to X[0]. As we know due to Sahai and

On Statistically Secure Obfuscation with Approximate Correctness 555

Vadhan [29], there is an SZK protocol that takes two polynomial-time samplers,
and decides whether they sample from distributions that are ε1-statistically close
or ε2-statistically far, so long as (ε2−ε1) is a noticeable function. The conclusion
is that an siO obfuscator implies an SZK protocol for SAT which in turn implies
that NP ⊆ SZK.

To sum up the core argument, to show that an siO obfuscator does not exists
unless NP ⊆ SZK, Goldwasser-Rothblum built the formula-indexed distribu-
tion X[Ψ] that samples an siO obfuscation of Ψ and has the properties that it
is (i) efficiently sampleable, (ii) if Ψ is not satisfiable, then X[Ψ] and X[0] are
close, while (iii) if Ψ not satisfiable, then X[Ψ] and X[0] are far.

Allowing the obfuscator to have approximate correctness thwarts this app-
roach completely. Hard SAT instances are obviously ones where the density of
accepting inputs is sub-polynomial, since otherwise random sampling would yield
a satisfying assignment with non-negligible probability. Therefore a satisfiable
and unsatisfiable SAT formulae will have almost identical functionality. One
could consider an saiO obfuscator that on any SAT formula that is not trivially
satisfiable, would just produce an obfuscation of 0. This means that X[Ψ] will
have the same distribution whether Ψ is satisfiable or not and thus, property
(iii) is not satisfied anymore.

In order to overcome this issue, we construct a different distribution on
formula-indexed circuits CX [k, Ψ] (where k is some uniformly random key k)
such that if Ψ is not satisfiable, then CX [k, Ψ] and CX [k,0] have the same func-
tionality, and if Ψ is satisfiable, then CX [k, Ψ] and CX [k,0] differ on a single
point. Then, assuming one-way functions exist, we show that, although these
two circuits differ on a single point only, the obfuscator saiO of CX [k, Ψ] has
to produce a distribution that is statistically far from saiO of CX [k,0]. To do
this, we rely on the fact that the obfuscator itself is computationally efficient,
and therefore it cannot break the hardness of one-way functions and derived
cryptographic objects such as pseudorandom functions (PRFs) or puncturable
PRFs (see below). This way, we construct a new formula-indexed distribution
X[Ψ] that satisfies properties (i), (ii) and (iii) as discussed above.

Puncturable PRFs were introduced simultaneously in [6,7,22] and were uti-
lized as an essential building block for indistinguishability obfuscation in [30].
A standard PRF is a function that can be efficiently computable using a key k,
but is indistinguishable from a random function via oracle access. A puncturable
PRF is a PRF where one can generate a punctured key k{x0} which allows to
compute the PRF at all points except x0, but the value at x0 is still indistin-
guishable from uniform, even given the punctured key. Punctured PRFs can be
constructed from any one-way function.

Based on a puncurable PRF and an saiO obfuscator O, we now construct a
distribution on pairs of circuits (for now not indexed by a formula) such that
the two circuits differ on a single point only and yet, an saiO obfuscator will
produce distributions that are far. Let k be a key for a puncturable PRF, let
x0 be a random point in the domain, let k{x0} be a key punctured at x0 and
consider the function fk{x0},y that outputs PRF(k{x0}, x) = PRF(k, x) for all

556 Z. Brakerski et al.

x �= x0, and outputs y on input x0. Then by definition fk{x0},y for a random
y and fk{x0},y0 = PRF(k, ·) for y0 = PRF(k, x0) are identical in functionality
except maybe at point x0. However, using puncturing, we can guarantee that
the distributions O(fk{x0},y) and O(fk{x0},y0), where k, x0, y are chosen uni-
formly at random are statistically far. To see this, it is enough to show that
O(fk{x0},y) and O(PRF(k, ·)) are statistically far since fk{x0},y0 = PRF(k, ·)
and thus O(fk{x0},y0) ≡ O(PRF(k, ·)). Consider the predicate that checks
whether O(PRF(k, ·))(x0) = PRF(k, x0). This predicate must have non-negligible
bias towards holding true, and is efficiently checkable, which also implies that
O(fk{x0},y)(x0) = fk{x0},y(x0) holds true with noticeable bias, since otherwise
we will have an efficient distinguisher from fk{x0},y0 = PRF(k, ·) in contradiction
to the puncturable PRF security. Finally, since y �= y0 with high probability
(assume for simplicity that the PRF and the obfuscator have long outputs and
keys of half the size), this implies that O(fk{x0},y) and O(fk{x0},y0) have notice-
able statistical distance, since they will have noticeable probability mass on
circuits that respect the functionality on x0. Note that we used a computational
argument, the security of punctured PRFs, to derive a statistical statement
about the output distribution of the obfuscator.

We would like to use the aforementioned distributions to distinguish between
satisfiable and unsatisfiable formulae. Let us restrict our attention to Unique-
SAT formulae that are either unsatisfiable or have only one satisfying assignment.
Unique-SAT is known to be NP-Hard via a randomized reduction [32], and a
result of Mahmoody and Xiao [27] shows that if Unique-SAT is in SZK ⊆
AM ∩ coAM, then SAT is in AM ∩ coAM (See Sect. 2.1).

Let Ψ be a formula that has a unique satisfying assignment, then one can
randomize the satisfying assignment (if it exists) to be uniformly distributed
over the input space (e.g. by XORing all variables with a random string). Now,
consider the function fk,y,Ψ defined s.t. fk,y,Ψ (x) = PRF(k, x) if x does not satisfy
Ψ , and fk,y,Ψ (x) = y otherwise. By definition, if Ψ is unsatisfiable then fk,y,Ψ =
PRF(k, ·) and if Ψ is satisfiable by some x0 (which is uniformly distributed)
then fk,y,Ψ = fk{x0},y. Therefore O(fk,y,Ψ) is guaranteed to have a noticeable
statistical distance in the case where Ψ is unsatisfiable (in which case it is close
to O(fk,y,0)) and in the case where it is uniquely satisfiable (in which case it is
far from O(fk,y,0)). This will allow us to produce an SZK protocol to distinguish
the two possibilities.

In a World without OWFs. We recall that if OWFs do not exist then for any
efficiently computable function f and with overwhelming probability over a y
sampled from the output distribution of f , it is possible to efficiently sample
(almost) uniformly (up to negligible error) from the set f−1(y) = {x : f(x) = y}
[19]. Given an efficiently sampleable distribution over circuits, we can construct
an average-case obfuscator for this family as follows. Let sampC be a sampler for
this distribution of circuits and consider the function f(r, x1, . . . , xm) for a large
polynomial m such that f(r, x1, . . . , xm) = (x1, . . . , xm, C(x1), . . . , C(xm)), for
C = sampC(r).

On Statistically Secure Obfuscation with Approximate Correctness 557

Now, to obfuscate a circuit C, sample x1, . . . , xm and compute yi = C(xi).
Then sample (r, x1, . . . , xm) from f−1(x1, . . . , xm, y1, . . . , ym) and finally output
C ′ = sampC(r). This is clearly a perfect indistinguishability obfuscator (i.e. two
circuits with the same functionality will produce identical distributions). It is
also approximately correct on the average, because on average, if two circuits
agree on a randomly chosen set of points, then they will have a large agreement
altogether.

We note that a similar and even simpler argument shows that if all effi-
ciently computable functions are PAC learnable [31], even allowing membership
queries, then saiO with perfect indistinguishability exists. This follows immedi-
ately by definition by giving the learner (black-box) access to C, and outputting
its hypothesis C ′ as the output of the obfuscator. In such case OWFs trivially
do not exist.

The Landscape of Correlation Obfuscation. Extending our techniques to rule out
sacO with 2ε + 3δ < 1 follows from carefully analyzing the parameters in the
proof outlined above (one can get 2ε + 4δ < 1 by straightforward analysis, and
the slight improvement comes from properly defining the random variables in the
problem). We can show a trivial sacO obfuscator for 2ε+ δ > 1 as follows. Given
an input circuit C, use random sampling to find the majority value of the truth
table of C (if C is approximately balanced, then any value works). Then output
the constant function taking the majority value with probability 2ε, and output
C itself with probability 1−2ε. Correctness will hold with probability 1−ε, since
if C is output then correctness is perfect, and if the constant function is output
then correctness is approximately 1/2. The correlation between two functionally
equivalent circuits is at least 2ε since the calculation of the majority value only
depends on the truth table. We provide a more formal analysis in Appendix A.
It seems that such a trivial obfuscator cannot imply any non-trivial results.

We notice that a sacO obfuscator can be plugged into the Sahai-Waters con-
struction, and would imply weak notions of security and correctness for the
resulting public-key encryption scheme. Holenstein [18] shows that, for some
parameters, this weak notion can be amplified to standard security and correct-
ness. Plugging in our parameters, we get that roughly when 1

2 − 3ε + 2ε2 > δ,
sacO would imply symmetric to public key transformation using this method.
This leaves a small region of parameters where sacO is not known to be impos-
sible, and if it is possible it will imply highly non-trivial results. It is not clear
whether other parameter regimes can also be useful, or whether our impossibility
can be extended to rule out the entire useful regime. We refer to Fig. 1 again for
a visual characterization of the parameter regimes.

1.2 Consequences of Our Result

Our result strengthens previous negative results for proving the existence of iO
in several ideal models. Previous works show that a construction of statistically
secure (perfectly correct) iO in any of those ideal models implies the existence
of saiO in the standard model. Actually, one can generalize these results to

558 Z. Brakerski et al.

also hold for saiO. Combined with our result, we now yield that a construction
of iO or saiO in these ideal models implies that NP ⊆ AM ∩ coAM or the
non-existence of one-way functions.

This line of research was initiated by Canetti et al. [8] who show that
given a VBB obfuscator in the random oracle model, one can remove the ran-
dom oracle at the cost of relaxing the correctness of the obfuscator. Pass and
Shelat [28] show an analogous result for VBB obfuscators in the ideal constant-
degree encoding model, and Mahmoody et al. [25] show analogous results for
the generic group model and the generic trapdoor permutation model. All these
results transform a VBB obfuscator in an oracle world into an approximately
correct VBB obfuscator in the standard model. They yield an impossibility result
for VBB obfuscation in the ideal models, as approximately correct VBB is known
not to exist, assuming trapdoor permutations, see [3,8]. The crucial insight of
Mahmoody et al. [26] is that all these oracle removal procedures are actually
oblivious to the exact notion of obfuscation. The reason is that all proofs pro-
ceed by showing that the oracle-free obfuscation is as secure as the oracle-based
obfuscation, i.e., the oracle-free obfuscated circuit can be simulated by an adver-
sary in the oracle world, given the oracle-based obfuscated circuit. Therefore, if
one has an iO obfuscator in any of the ideal models, via the oracle removal
procedures, one obtains an saiO obfuscator in the standard model. Mahmoody
et al. [26] conclude that, as an saiO obfuscator in the standard model allows
to resolve the long-standing open problem of building public-key encryption
from symmetric-key encryption, it seems very hard to construct such an object.
In other words, their result rules out saiO assuming that building public-key
encryption from symmetric-key encryption is impossible. Our result strength-
ens1 their result by ruling out saiO based on the accepted complexity postulate
that NP �⊆ AM ∩ coAM and the fundamental assumption of cryptography
that one-way functions exist. Therefore, based on the same assumptions, iO in
all aforementioned idealized models cannot exist.

1.3 Open Problems

The main question that we leave open is the set of parameters for sacO that are
useful and that are (im)possible. Note that it is desirable to have more positive
results not only for sacO, but also for acO, the computational variant of sacO, in
the spirit of Bitansky-Vaikuntanathan [4] who give an assumption-based trans-
formations from aiO to standard iO. Even if sacO for useful parameters turns out
to be impossible, it might still be easier to build acO for useful parameters and
then use amplification rather than to build fully secure fully correct iO directly.

In particular, note that for a certain parameter range of sacO, we do
not know of any impossibility results of building sacO in ideal models.
1 Note that our result is only a “stronger” result in a moral sense, but not in a

formal sense. While the non-existence of one-way function would allow us to build a
reduction from public-key encryption to symmetric-key encryption (as in this case,
both do not exist), it is not known that NP ⊆ AM ∩ coAM implies that we can
build a public-key encryption scheme from a one-way function.

On Statistically Secure Obfuscation with Approximate Correctness 559

The oracle removal procedures that we discuss in Sect. 1.2 maintain security
and only weaken correctness. Therefore, a variant of the oracle removal proce-
dures can also be proven for sacO (losing some amount of correctness). As not
all useful parameters for sacO are ruled out by our results, one might aim for
building sacO in an ideal model for these parameters. Note that one can use our
result as a sanity check for any potential oracle construction: If the construction
would also work for parameters that we rule out, then it is probably better to
pursue a different approach.

Another direction for building useful statistical variants of iO is to relax the
computational efficiency of the obfuscator in which case the distributions X[Ψ]
that we considered before are not efficiently sampleable anymore (condition (i))
and thus, the SZK argument fails. Interestingly, Lin et al. [24] recently showed
that such a notion of iO that they call XiO has indeed useful applications to
transformations on functional encryption.

2 Preliminaries

We first introduce some general notation. By n ∈ N, we denote the security
parameter that we give to all algorithms implicitly in unary representation 1n.
By {0, 1}� we denote the set of all bit-strings of length �. For a finite set S, we
denote the action of sampling x uniformly at random from S by x ←$ S, and
denote the cardinality of S by |S|. Algorithms are assumed to be randomized,
unless otherwise stated. We call an algorithm efficient or PPT if it runs in time
polynomial in the security parameter. If A is randomized then by y ← A(x; r) we
denote that A is run on input x and with random coins r and produced output
y. If no randomness is specified, then we assume that A is run with freshly
sampled uniform random coins, and write this as y ←$ A(x;U) or in shorthand
y ←$ A(x). For a circuit C we denote by |C| the size of the circuit. We say a
function negl(n) is negligible if for any positive polynomial poly(n), there exists
an N ∈ N, such that for all n > N , negl(n) ≤ 1

poly(n) . To define statistically
secure variants of obfuscation we will use the following definition of statistical
distance.

Definition 1 (Statistical Distance). For two probability distributions X,Y
we define the statistical distance SD(X,Y) as

SD(X,Y) = max
A

(Prx ←$ X [A(x) = 1] − Pry ←$ Y [A(y) = 1])

where A ranges over all probabilistic algorithms including inefficient ones.

2.1 Complexity Theory

We refer the reader to Goldreich’s book [11] for a detailed exposition of com-
plexity theory. We now discuss a few object that are most relevant to our
proof. We let SAT denote the set of all satisfiable CNF formulae, we let USAT

560 Z. Brakerski et al.

denote the set of CNF formulae that have exactly one satisfying assignment,
and UNSAT denote the set of CNF formulae that have no satisfying assignment.
Given a formula Ψ , deciding whether Ψ ∈ SAT is an NP-Complete problem.
We recall that a promise problem Π = (ΠYes,ΠNo) is a pair of disjoint subsets
of {0, 1}∗. Of particular interest to us is the unique SAT (promise) problem
UniqueSAT = (USAT,UNSAT). Total problems (a.k.a languages) are a special
case of promise problems, e.g. (SAT,UNSAT) is exactly the SAT problem. In
such a case, it suffices to specify ΠYes in order to completely define the problem.

We consider the notion of randomized polynomial time Turing reductions
between problems. A promise oracle to a problem Π = (ΠYes,ΠNo), is one that
always answers 1 on inputs in ΠYes and always answers 0 on inputs in ΠNo,
but otherwise can answer arbitrarily, and even inconsistently between calls. We
define the class BPPΠ as the class of problems solvable using a probabilistic
polynomial time algorithm with access to a Π oracle. In other words, BPPΠ is
the class of problems that are reducible to Π. One can verify that this class indeed
composes, i.e. if Π̃ ∈ BPPΠ then BPPΠ̃ ⊆ BPPΠ . Valiant and Vazirani [32]
showed that SAT is reducible to unique SAT.

Theorem 1 (Valiant-Vazirani). SAT ∈ BPPUniqueSAT.

An additional promise problem which will be of interest to us is the GapSD
problem, defined by Sahai and Vadhan [29]. This problem essentially captures
the hardness of distinguishing between efficient samplers for statistically close
distributions and ones for statistically far distributions. We recall that for a
circuit C (which we regard as a sampler from a distribution), C(U) denotes the
distribution generated by running C on a random input.

Definition 2 (GapSD Problem). The problem GapSD = (GapSDYes,
GapSDNo) is defined as follows. Consider tuples of the form (C0, C1, ν, 1�), where
C0, C1 are circuits, ν is a threshold value and 1� is a unary encoding of a prob-
ability gap. Define

GapSDYes = {(C0, C1, ν, 1�) : SD(C0(U), C1(U)) < ν},

and
GapSDNo = {(C0, C1, ν, 1�) : SD(C0(U), C1(U)) > ν + 1/�}.

Combining results by Mahmoody and Xiao [27] and by Bogdanov and Lee [5] as
follows implies that BPPGapSD is contained in AM ∩ coAM.2

Theorem 2. BPPGapSD ⊆ AM ∩ coAM.

Proof. It follows from [5, Theorem 9] that GapSD ∈ AM ∩ coAM. This means
that both (GapSDYes,GapSDNo) and its complement (GapSDNo,GapSDYes) have
AM protocols, say with completeness 9/10 and soundness 1/10. Consider the

2 In fact, by applying [27] we get that BPPSZK ∈ AM∩coAM, which is almost what
we need. However, it is only known that GapSD ∈ SZK under a somewhat weaker
definition of the GapSD problem.

On Statistically Secure Obfuscation with Approximate Correctness 561

protocol that takes (C0, C1, ν, 1�) and does the following. First, execute the AM
protocol for (GapSDYes,GapSDNo) on input x1 = (C0, C1, ν+1/(4�), 1(4�)). Then,
execute the AM protocol for (GapSDNo,GapSDYes) (note the reverse order) on
x2 = (C0, C1, ν − 1/(2�), 1(4�)). Accept only if the two executions accepted.
Now, assume that ν = SD(C0, C1). Then it holds that x1 ∈ GapSDYes and
x2 ∈ GapSDNo and therefore our new protocol accepts with probability at
least 8/10. However, if |ν − SD(C0, C1)| > 1/� then either x1 ∈ GapSDNo or
x2 ∈ GapSDYes and therefore our new protocol accepts with probability at most
2/10. This means that our protocol is an AM protocol that, for any ε, can
decide given (C0, C1), 1�1/ε� and ν whether ν = SD(C0(U), C1(U)) or whether
|ν − SD(C0(U), C1(U))| > ε.

Consider the class R-TFAM as defined in [27, Definition 3.1] and con-
sider the real valued function fSD : {0, 1}∗ → R defined as fSD(C0, C1, 1k) =
SD(C0(U), C1(U)) (note that the third parameter is ignored and is used only
for padding purposes). Our protocol above implies, by definition, that fSD ∈
R-TFAM.

Furthermore, it holds that BPPGapSD ⊆ BPPOfSD , for any oracle OfSD
that

on input x ∈ {0, 1}n outputs a value y such that |y − fSD(x)| ≤ 1/n. To see this,
we notice that we can answer GapSD queries of the form (C0, C1, ν, 1�) as follows:
First compute y = OfSD

(C0, C1, 12�), then if y < ν +1/(2�) return Yes, otherwise
return No. This implies that BPPGapSD ⊆ BPPR-TFAM by [27, Definition 3.2]
(when choosing ε(n) = 1/n).

Finally, [27, Theorem 1.1] states that BPPR-TFAM ⊆ AM ∩ coAM, which
implies that BPPGapSD ⊆ AM ∩ coAM as desired.

We now state an important corollary of Theorem 2 which shows that there
would be unlikely consequences if UniqueSAT ∈ BPPGapSD.

Corollary 3. If UniqueSAT ∈ BPPGapSD, then NP ⊆ AM ∩ coAM.

Proof. By definition it holds that NP ⊆ BPPSAT. Theorem 1 implies that
BPPSAT ⊆ BPPUniqueSAT. If UniqueSAT ∈ BPPGapSD then BPPUniqueSAT ⊆
BPPGapSD. Together with BPPGapSD ⊆ AM ∩ coAM from Theorem 2, we get

NP ⊆ BPPSAT ⊆ BPPUniqueSAT ⊆ BPPGapSD ⊆ AM ∩ coAM,

and the corollary follows.

2.2 Obfuscation

In this subsection, we define the statistically secure variant of approximately
correct indistinguishability obfuscation (saiO) and its generalization that we call
statistically secure Approximately Correct Correlation Obfuscation (sacO). We
start with the generalized variant sacO first and then define saiO as a special
case. The notion of correlation obfuscation, in contrast to standard indistin-
guishability obfuscation, does not require that the output of the obfuscator is
indistinguishable for functionally equivalent circuits. Rather, it only requires that
there is a noticeable correlation between the outputs.

562 Z. Brakerski et al.

Definition 3 (Approximately Correct Correlation Obfuscation). Let O
be a PPT algorithm that takes boolean circuits (with a single output bit) as inputs
and produces boolean circuits as output. For a circuit C, we let O(C; r) denote
the output of running O on C with randomness r, and we let O(C) denote the
distribution O(C; r) with uniform r.

We say that O is a (1−ε)-approximately correct and (1−δ)-secure correlation
obfuscator sacO if the following conditions hold:

Approximate Correctness. For any circuit C it holds that

Prr,x [O(C; r)(x) = C(x)] ≥ 1 − ε(|C|, n).

Correlation. For any pair of circuits C1, C2 which compute the same function
and such that |C1| = |C2| it holds that SD(O(C1),O(C2)) ≤ δ(|C1|, n).

The definition of statistically secure approximately correct indistinguishabil-
ity obfuscation (saiO) follows by requiring negligible statistical distance δ.

Definition 4 (Approximately Correct Indistinguishability Obfusca-
tion). Let O be a (1 − ε)-approximately correct and (1 − δ)-secure correlation
obfuscator. We say that O is also a (1 − ε)-approximately correct statistically
secure indistinguishability obfuscator (saiO) if there exists a negligible function
negl(|C|, n) such that for all circuits C it holds that δ(|C|, n) ≤ negl(|C|, n).

2.3 Puncturable Pseudorandom Functions

We use a weak notion of puncturable pseudorandom function. This notion suffices
for our results and follows trivially from the stronger standard definition.

Definition 5 (Puncturable Pseudorandom Functions). A pair of PPT
algorithms (PRF,Puncture) is a puncturable pseudorandom function with one-
bit output if, on input a key k ∈ {0, 1}n or a punctured key k∗ and an input
value x ∈ {0, 1}n, PRF deterministically outputs a bit b and on input a key
k ∈ {0, 1}n and an input value x0, Puncture outputs a punctured key k∗ such
that the following two properties are satisfied.

Functionality Preserved Under Puncturing. For all keys k, all input values x0,
all punctured keys k∗ ←$Puncture(k, x0), and all input values x �= x0, it holds
that

PRF(k∗, x) = PRF(k, x).

Security. For every PPT adversary (A1,A2) such that A1(1n; r1) outputs an
input value x0 and state st, consider an experiment where k ←$ {0, 1}n, k∗ =
Puncture(k, x0; t), and b ←$ {0, 1}. Then we have

|Prk,r1,t,r2 [A2(st, k∗, x0,PRF(k, x0); r2) = 1]
−Prk,b,r1,t,r2 [A2(st, k∗, x0, b; r2) = 1] ≤ negl(n).

As observed by [6,7,22] puncturable PRFs can, for example, be constructed from
pseudorandom generators (and thereby one-way functions [17]) via the GGM
tree-based construction [12,13].

On Statistically Secure Obfuscation with Approximate Correctness 563

3 Negative Results for sacO and saiO

We now prove our main theorem that sacO for a large class of parameters, in
particular the saiO parameters, is impossible assuming one-way functions and
NP �⊆ AM ∩ coAM.

Theorem 4 (Impossibility of sacO). If (1−ε)-approximately correct, (1−δ)-
secure sacO for P exists, and there exists some polynomial poly(|C| , n) such that
δ(|C| , n) ≤ 1

3 − 2
3ε(|C| , n) − 1

poly(|C|,n) , then one-way functions do not exist or
NP ⊆ coAM ∩ AM.

By setting δ to be some negligible function, impossibility of saiO follows imme-
diately as a corollary.

Corollary 5 (Impossibility of saiO). If (1 − ε)-approximately correct, saiO
for P exists, and there exists some polynomial poly(|C| , n) such that ε(|C| , n) ≤
1
2 − 1

poly(|C|,n) , then one-way functions do not exist or NP ⊆ coAM ∩ AM.

Proof (Theorem 4). We define an efficiently samplable distribution X[Ψ] that
is parametrized by a formula Ψ , and we define a reference distribution Y that
should be parametrized by the size of Ψ and the number of variables in Ψ , but
we omit the dependency on Ψ for readability. We note that in the introduction,
we discussed to use Y = X[0], where 0 is a canonical representation of an
unsatisfiable formula of the same size as Ψ . It is intuitive to think of Y as being
indeed equal to X[0]. However, for the sake of tightness, jumping ahead, we
will use a slightly different distribution and note that this allows us to gain an
additive term of δ in Claim 11.

As in the proof by Goldwasser and Rothblum [14,15] that we sketched in the
introduction, we want to define X[Ψ] (and Y) in a way such that properties (1),
(2) and (3) are satisfied, assuming one-way functions and sacO. If we manage to
do so, then we suceed in showing that these assumptions imply the collapse of
the polynomial hierarchy.

Our proof will rely on the promise problem (USAT,UNSAT) rather than
the language SAT (See Subsect. 2.1) and therefore, instead of using the gap
statistical distance problem GapSD directly as Goldwasser-Rothblum, we will
consider BPPGapSD to be able to accommodate the randomized reduction from
SAT to USAT (See Theorem 1).

Our proof does not rely on complexity-theoretic techniques, except for prov-
ing the following claim and showing that the theorem follows from it.

Claim 6. Assume that there is a formula-indexed distribution X[Ψ], a reference
distribution Y , a function ν, and a polynomial poly(n) such that the following
three conditions are satisfied.

(1) There is a uniform polynomial-time algorithm A, that on input Ψ , constructs
two polynomial-size randomized circuits that sample from X[Ψ] and Y respec-
tively.

(2) If Ψ is in UNSAT, then X[Ψ] is has statistical distance at most ν(n) from Y .

564 Z. Brakerski et al.

(3) If Ψ is in USAT, then X[Ψ] has statistically distance at least ν(n) + 1
poly(n)

from Y .

Then USAT is in BPPGapSD ⊆ AM ∩ coAM.

Proof. Given that conditions (1), (2) and (3) are satisfied, we construct an algo-
rithm B such that for all GapSD oracles and all formulae Ψ , BGapSD(Ψ) outputs
1 with probability 1 if Ψ ∈ USAT and 0 with probability 1 if Ψ ∈ UNSAT.
On input Ψ , the algorithm B runs A to get circuits for X[Ψ] and Y and
queries (X[Ψ], Y, ν(n), 1poly(n)) to the GapSD oracle. B returns whatever the
oracle returns. By properties (1), (2) and (3), the query that B makes is in
GapSDYes if Ψ ∈ USAT and in GapSDNo if Ψ ∈ UNSAT. Hence, B is correct and
USAT is in BPPGapSD. Moreover, due to Theorem 2 by Mahmoody and Xiao,
BPPGapSD ⊆ AM ∩ coAM.

To obtain the main theorem, we need to show that USAT is in BPPGapSD implies
that NP is in AM∩coAM which directly follows from Corollary 3 of Theorem 2
by Mahmoody and Xiao. Thus, if we can show that a distributions as described
in conditions (1), (2) and (3) exist, then the theorem follows.

We now define X[Ψ] and Y and then show that they satisfy (1), (2) and (3)
assuming the existence of one-way functions and sacO with suitable correctness
and security.

Definition 6 (Distribution). Let �(n) be a sufficiently large polynomial desig-
nating the size to which all circuits are padded before being obfuscated. Let Ψ be a
formula, let (PRF,Puncture) be a puncturable pseudorandom function, and let O
be a (1 − ε)-correct, statistically (1 − δ)-secure approximate correlation obfusca-
tor, where δ(|C| , n) ≤ 1

3 − 2
3ε(|C| , n)− 1

poly(|C|,n) . We now define the distribution
X[Ψ] and Y , where the circuits CX [k, b, s, Ψ] and Cprf[k] are defined to the right
of the distributions.

X[Ψ](1n)

k ←$ {0, 1}n

s ←$ {0, 1}n

C := CX [k, s, Ψ]

C′ ←$O(C)

return (k, s, C′)

CX [k, s, Ψ](x)

if Ψ(x ⊕ s) = 1

return PRF(k, x) ⊕ 1

else

return PRF(k, x)

Y (1n)

k ←$ {0, 1}n

s ←$ {0, 1}n

C := Cprf[k]

C′ ←$O(C)

return (k, s, C′)

Cprf[k](x)

return PRF(k, x)

Claim 7 (Distribution). The distributions defined in Definition 6 satisfy the
conditions demanded in Claim 6. I.e., there exists a function ν and a polynomial
poly(n) such that they satisfy the following:

(1) There is a uniform polynomial-time algorithm A, that on input Ψ , constructs
two polynomial-size randomized circuits that sample from X[Ψ] and Y respec-
tively.

(2) If Ψ is in UNSAT, then X[Ψ] is has statistical distance at most ν(n) from Y .

On Statistically Secure Obfuscation with Approximate Correctness 565

(3) If Ψ is in USAT, then X[Ψ] has statistically distance at least ν(n) + 1
poly(n)

from Y .

We will first state two claims and a lemma that will allow us to prove Claim 7.
We will then prove Claim 7 and afterwards prove the claims and the lemma.

Claim 8 (Efficient Sampling). There is a uniform polynomial-time algorithm
A, that on input Ψ , constructs two polynomial-size randomized circuits that sam-
ple from X[Ψ] and Y respectively.

Claim 9 (Statistical Proximity). For all formulae Ψ ∈ UNSAT, X[Ψ] has
statistical distance at most δ(�(n), n) from Y .

Lemma 10 (Statistical Distance). There exists a negligible function negl(n),
such that for all formulae Ψ ∈ USAT, X[Ψ] has statistical distance at least 1 −
2ε(�(n), n) − 2δ(�(n), n) − negl(n) from Y .

Proof (Claim 7). Condition (1) follows immediately from Claim 8. Condition
(2) follows from Claim 9 for a function ν(n) = δ(�(n), n). From Lemma 10, it
follows that, if Ψ is in USAT, then X[Ψ] has statistically distance at least 1 −
2ε(�(n), n)−2δ(�(n), n)−negl(n) from Y . Combining this with the ν(n) obtained
from Claim 9 we get that condition (3) holds, if there exists a polynomial poly(n),
such that

δ(�(n), n) + 1
poly(n) ≤ 1 − 2ε(�(n), n) − 2δ(�(n), n) − negl(n)

⇔ 3δ(�(n), n) ≤ 1 − 2ε(�(n), n) − 1
poly(n) − negl(n)

⇔ δ(�(n), n) ≤ 1
3

− 2
3
ε(�(n), n) − 1

poly(n) − negl(n) . (1)

And, since negl(n) is dominated by an inverse polynomial, Eq. 1 is already
ensured by Definition 6, condition (3) holds, and the claim follows.

Proof (Claim 8). Sampling k and s is efficient and so is constructing CX [k, s, Ψ]
and Cprf[k]. Finally, from the efficiency of the obfuscator, it follows that X[Ψ]
and Y are efficiently samplable by polynomial-size randomized circuits.

Proof (Claim 9). For all unsatisfiable formulae Ψ , the circuits CX [k, s, Ψ]
and Cprf[k] are functionally equivalent and of same size �(n). Hence, by sta-
tistical security of the obfuscator, the distributions (k, s,O(CX [k, s, Ψ])) and
(k, s,O(Cprf[k])) have statistical distance at most δ(�(n), n).

We now turn to the most involved part of the proof, which is to show that
Lemma 10 holds. In order to show that for all formulae Ψ ∈ USAT, X[Ψ] is
statistically far from Y , we show that, if Ψ ∈ USAT, then the distribution X[Ψ]
has a property that Y does not have. We state the property in two claims.

Claim 11. For all x0, it holds that

Pr(k,s,C′) ←$ Y (1n) [C ′(x0 ⊕ s) �= PRF(k, x0 ⊕ s)] ≤ ε(�(n), n).

566 Z. Brakerski et al.

Claim 12. If Ψ ∈ USAT, then there exists xΨ , such that

Pr(k,s,C′) ←$ X[Ψ](1n) [C ′(xΨ ⊕ s) �= PRF(k, xΨ ⊕ s)]
≥ 1 − ε(�(n), n) − 2δ(�(n), n) − 2negl(n) .

Proof (Lemma 10). Lemma 10 follows directly from Claims 11 and 12, because
the stated properties are statistical properties, i.e., we can give an inefficient
distinguisher as follows: The distinguisher determines xΨ through exhaustive
search and then, given a sample (k, s, C ′) from either X[Ψ] or Y , checks whether
PRF(k, ·) and C ′ differ on input xΨ ⊕ s. If the sample is from X[Ψ], they will
differ with probability greater than 1 − ε(�(n), n) − 2δ(�(n), n) − negl(n). If on
the other hand the sample is from Y , then they will differ only with probability
less than ε(�(n), n). This concludes the proof of Lemma 10, subject to proving
the claims.

It now remains to prove Claims 11 and 12. The proof of the first property is
relatively straightforward, while the proof of the second property contains the
technical key arguments that we discussed above.

Proof (Claim 11). To prove the claim, we will argue that the following equalities
hold:

Pr(k,s,C′) ←$ Y (1n) [C ′(x0 ⊕ s) �= PRF(k, x0 ⊕ s)] (2)
= Prk,s ←$ {0,1}n,C′ ←$O(Cprf[k]) [C

′(x0 ⊕ s) �= PRF(k, x0 ⊕ s)] (3)
= Prk,s ←$ {0,1}n,C′ ←$O(Cprf[k]) [C

′(s) �= PRF(k, s)] (4)
≤ε(�(n), n) (5)

Equation 3 is simply a restatement of the claim. Given that s is uniformly and
independently distributed, s and x0 ⊕s are distributed identically and therefore,
also Eq. 4 holds. Finally, Eq. 4 simply checks whether an obfuscated circuit does
not agree with the original circuit on a uniformly chosen input. This happens by
definition of correctness with probability at most ε(�(n), n), yielding Eq. 5 and
concluding the proof.

Proof (Claim 12). Let xΨ denote the accepting assignment of Ψ . We first define
the following game

Game1(n)

(k, s, C′) ←$ X[Ψ]

x0 := xΨ ⊕ s

b := PRF(k, x0) ⊕ 1

return (C′(x0)
?
=b)

and observe that

Pr(k,s,C′) ←$ X[Ψ](1n) [C ′(xΨ ⊕ s) �= PRF(k, xΨ ⊕ s)] = Pr[Game1(n) = 1] .

On Statistically Secure Obfuscation with Approximate Correctness 567

We will now bound this probability using a series of game hops. To specify
the game hops, we need to specify an additional circuit Cpunct[k∗, x0, b](x), that
is parametrized by a punctured PRF key k∗, an input x0, and a bit b.

Cpunct[k∗, x0, b](x)

if x = x0

return b

else

return PRF(k∗, x)

Note that Game2 is a re-write of Game1 by making X[Ψ] explicit.

Game2(n)

k ←$ {0, 1}n

s ←$ {0, 1}n

x0 := xΨ ⊕ s

b := PRF(k, x0) ⊕ 1

C′ := O(CX [k, s, Ψ])

return (C′(x0)
?
=b)

Game3(n)

k ←$ {0, 1}n

s ←$ {0, 1}n

x0 := xΨ ⊕ s

b := PRF(k, x0) ⊕ 1

k∗ ←$Puncture(k, x0; t)

C′ := O(Cpunct[k
∗, x0, b])

return (C′(x0)
?
=b)

Game4(n)

k ←$ {0, 1}n

x0 ←$ {0, 1}n

b := PRF(k, x0) ⊕ 1

k∗ ←$Puncture(k, x0; t)

C′ := O(Cpunct[k
∗, x0, b])

return (C′(x0)
?
=b)

obfuscation security perfect

puncturable prf

Game5(n)

k ←$ {0, 1}n

x0 ←$ {0, 1}n

b := PRF(k, x0)

k∗ ←$Puncture(k, x0; t)

C′ := O(Cpunct[k
∗, x0, b])

return (C′(x0)
?
=b)

Game6(n)

k ←$ {0, 1}n

x0 ←$ {0, 1}n

b := PRF(k, x0)

C′ := O(Cprf[k])

return (C′(x0)
?
=b)

puncturable prf

obfuscation security

We will first bound the differences between each pair of consecutive games
and then prove a bound for Pr[Game6(n) = 1].

Hop from Game1 to Game2. The changes between the two games are purely
syntactic. I.e., the definition of the sampling process from X[Ψ] is explicitely
written down in Game2. Therefore, the two games are perfectly equivalent, and
it holds that

Pr[Game1(n) = 1] = Pr[Game2(n) = 1] . (6)

568 Z. Brakerski et al.

Hop from Game2 to Game3. Here it is critical to observe that CX [k, s, Ψ] and
Cpunct[k∗, x0, b] are functionally equivalent. Even though the key is punctured on
x0 = xΨ ⊕ s in Cpunct, this makes no difference, since PRF is never invoked on x0

in the circuit. Instead the circuit outputs the hardcoded value b = PRF(k, x0)⊕1
on input x0, which is the same value output by CX [k, s, Ψ]. Therefore, the two
circuits are functionally equivalent and it follows from the statistical security of
the obfuscator that the statistical difference between the distributions of C ′ in
the two games is at most δ(�(n), n). It follows, that also the distribution of the
outputs of Game2 and Game3 have a statistical distance of at most δ(�(n), n).
I.e.,

|Pr[Game3(n) = 1] − Pr[Game2(n) = 1]| ≤ δ(�(n), n). (7)

Hop from Game3 to Game4. Since s is no longer known to the obfuscator in
Game3, x0 := xΨ ⊕ s is simply a uniformly distributed value. Thus, x0 is distrib-
uted identically in Game3 and Game4 and it follows that

Pr[Game3(n) = 1] = Pr[Game4(n) = 1] . (8)

Hop from Game4 to Game5. Note that xΨ is no longer required to evaluate Game4
and Game5. Therefore, the two games can be evaluated efficiently. This allows us
to bound the difference between the two games by the security of the puncturable
pseudorandom function. To bound the difference between games Game4(n) and
Game5(n), we construct a distinguisher (A1,A2) with advantage

1
2 · |Pr[Game4(n) = 1] − Pr[Game5(n) = 1]|

against the puncturable PRF as follows:

A1(1n; r1)

x0 ←$ {0, 1}n

return (⊥, x0)

A2(st, k∗, x0, b; r2)

C′ := O(Cpunct[k
∗, x0, b])

return (C′(x0)
?
=b)

Observe, that in the case where A2 receives the PRF value, it holds that

Prk,r1,t,r2 [A2(st, k∗, x0,PRF(k, x0); r2) = 1] = Pr[Game5(n) = 1] . (9)

If on the other hand, A2 receives a b chosen uniformly at random, then b is equal
to PRF(k, x0) and PRF(k, x0) ⊕ 1 with probability 1

2 respectively, and it holds
that

Prk,b,r1,t,r2 [A2(st, k
∗, x0, b; r2) = 1] =

1

2
Pr[Game4(n) = 1] +

1

2
Pr[Game5(n) = 1] (10)

By security of the puncturable PRF, it must hold that

|Prk,r1,t,r2 [A2(st, k∗, x0,PRF(k, x0); r2) = 1]
−Prk,b,r1,t,r2 [A2(st, k∗, x0, b; r2) = 1] | ≤ negl(n)

On Statistically Secure Obfuscation with Approximate Correctness 569

Combining this with Eqs. 9 and 10 yields

∣∣∣∣Pr[Game5(n) = 1] − 1

2
Pr[Game4(n) = 1] − 1

2
Pr[Game5(n) = 1]

∣∣∣∣ ≤ negl(n)

=⇒ 1

2
|Pr[Game5(n) = 1] − Pr[Game4(n) = 1]| ≤ negl(n)

=⇒ |Pr[Game5(n) = 1] − Pr[Game4(n) = 1]| ≤ 2negl(n) . (11)

Hop from Game5 to Game6. Here it is critical to observe that Cpunct[k∗, x0, b] and
Cprf[k] are functionally equivalent. Even though the key is punctured on x0 in
Cpunct, this makes no difference, since PRF is never invoked on x0 in the circuit.
Instead the circuit outputs the hardcoded value b = PRF(k, x0) on input x0.
Therefore, the two circuits are functionally equivalent and it follows from the
statistical security of the obfuscator that the statistical difference between the
distributions of C ′ in the two games is at most δ(�(n), n). It follows, that also
the distribution of the outputs of Game5 and Game6 have a statistical distance
of at most δ(�(n), n). I.e.,

|Pr[Game5(n) = 1] − Pr[Game6(n) = 1]| ≤ δ(�(n), n). (12)

It remains to bound the probability Pr[Game6(n) = 1]. Observe, that x0 is
a uniformly chosen input unknown to the obfuscator. Further, the Game6(n)
simply checks whether the output of circuit C ′ is the correct output value of the
obfuscated circuit. Therefore, the correctness of the obfuscator implies that

Pr[Game6(n) = 1] ≥ 1 − ε(�(n), n). (13)

Finally, combining Eq. 13 with Eqs. 6 through 12, we get

Pr[Game1(n) = 1]
≥ Pr[Game6(n) = 1] − |Pr[Game1(n) = 1] − Pr[Game6(n) = 1]|
≥1 − ε(�(n), n) − 2δ(�(n), n) − 2negl(n)

thus concluding the proof of Claim 12 and Theorem 4.

Acknowledgment. We are grateful to Andrej Bogdanov, Kai-Min Chung, Siyao Guo,
Markulf Kohlweiss, Arno Mittelbach and Vinod Vaikuntanathan for helpful discussions.
In particular, Andrej and Vinod pointed out that PAC-learneability implies approx-
imate obfuscation and that thus, CNF formulae are PAC-learneable, which implies
that impossibility results for saiO need to obfuscate more complex functions than
CNF formulae. The discussions with Vinod at the Mathematisches Forschungsinstitut
Oberwolfach (MFO) inspired the idea of embedding a formula into a PRF. Vinod also
suggested that in the absence of one-way functions, there exists a perfectly secure vari-
ant of obfuscation where the correctness is on average over the circuit distribution, the
input and the obfuscator.

570 Z. Brakerski et al.

A A Positive Result for Correlation Obfuscation

In this appendix, we instantiate approximately correct correlation obfuscation for
a large class of weak parameters. The idea of the construction is fairly simple and
is based on two observations. For circuits with only a single bit output, we can
efficiently estimate the majority of the outputs by using random sampling. This
estimation depends only on the function computed by a circuit and not on the
circuit itself. Therefore an obfuscator that simply outputs the estimated majority
is fully secure but only correct with probability about 1/2. An obfuscator, that
simply outputs the circuit itself, on the other hand, is not secure at all (statistical
distance is 1), but is fully correct.

By combining these two obfuscators and outputting the majority with proba-
bility 2ε and the circuit itself with probability 1− 2ε we can construct a roughly
(1 − ε) approximatly correct and (1 − 2ε) secure obfuscator Oε,μ as detailed
below. The parameter μ is some inverse polynomial function that describes the
amount of approximation error that we allow (and that affects the correctness
of Oε,μ) when the obfuscators samples repeatedly from the output distribution
of the circuit to see whether the circuit is closer to the constant 1 or constant 0
function.

For any circuit C, in(C) denotes the number of input wires. For b ∈ {0, 1},
Constib is a canonical circuit with input length i and constant output b. The
Bernoulli distribution of a parameter p ∈ [0, 1] is defined by Berp, i.e., it holds
that Prb ←$ Berp [b = 1] = p and Prb ←$ Berp [b = 0] = 1 − p. Depending on the
desired error parameter μ, the obfuscation proceeds as follows.

Oε,μ(C, 1n)

b ←$ Ber2ε

if b = 1 :

m := EstMaj(C, μ, 1n)

C′ := Constin(C)
m

else

C′ := C

return C′

EstMaj(C, μ, 1n)

for i := 1, . . . , � 4n
μ2 �

xi ←$ {0, 1}in(C)

yi := C(xi)

return maj(y1, . . . , y� 4n
µ2 �)

Claim 13. On input (C, 1n), the obfuscator Oε,μ runs in time linear in 4n
μ2 |C|

plus the time needed to sample from Ber2ε and is an (1 − (ε + μ)) approximately
correct and (1 − 2ε) secure correlation obfuscator for circuits with single bit
output.

Proof. Efficiency follow by construction and so does security, because EstMaj
only uses the input-output behaviour of the circuit which is the same for two
functionally identical circuits. If the function induced by the circuit C is less
than μ

4 from being balanced (i.e., 1 with probability 1
2 on a uniformly random

input), then the correctness error is at most μ
2 , if b = 1, and 0, if b = 0 and hence,

On Statistically Secure Obfuscation with Approximate Correctness 571

the overall correctness error is upper bounded by (1−2ε) ·0+2ε · μ
2 = εμ ≤ ε+μ.

If the function induced by the circuit C outputs a fixed value, w.l.o.g. 1, with
probability at least 1

2 + μ
4 , then via a Chernoff bound, the probability that

EstMaj(C, μ, 1n) outputs 1 is at least 1−negl(n) and in that case, the correctness
error is at most 1

2 − μ
4 and else, the correctness error is at most 1. Hence, for

the case that b = 1, we obtain an upper bound on the correctness error of
(12 − μ

4) · (1−negl(n))+1 ·negl(n) = 1
2 − μ

4 +negl(n). As before, when b = 0, the
correctness error is 0 and hence, we obtain as upper bound on the correctness
error (1 − 2ε) · 0 + 2ε · (12 − μ

4 + negl(n)) = ε − μ
2 ≤ ε + μ.

B Correctness and Security Parameters for sacO
to Build a Public-Key Encryption Scheme
from a One-Way Function

By inspecting the Sahai-Waters [30] construction to transform a one-way function
into a public-key encryption scheme (PKE) by using obfuscation, Bitansky and
Vaikuntanathan [4] and Mahmoody et al. [26] observe that approximately correct
iO suffices for this transformation. Both papers consider approximately correct
variants of iO with “full” security, i.e., where the adversary has only negligible
advantage in distinguishing obfuscations of two functionally equivalent circuits.
As discussed in previous sections, approximately correct correlation obfuscation
(sacO) with weaker security might still be useful. We therefore work out the exact
correctness and security parameters required of a sacO for the Sahai-Waters trans-
formation to work. Jumping ahead, we note that part of the bounds that we obtain
here are ruled out by our impossibility result, but not all of them.

For much weaker parameters, we earlier gave a trivial construction of sacO.
We do not deem this construction to be useful. As expected, there is a gap
between the parameters that we can construct trivially and the parameters that
we can rule out (else, we would have a proof that one-way functions imply the
collapse of the polynomial hierarchy). Also, as expected, the trivial bounds do not
suffice to instantiate the Sahai-Waters construction (according to our analysis
that we have reasons to believe is tight).

On the other hand, our impossibility result does not rule out all useful bounds
for sacO. It is an interesting question to (1) show that also for the parameters in
this small gap, sacO cannot exist, or (2) show a construction for these parame-
ters, and/or (3) improve the parameters that are needed for meaningful appli-
cations. Note that even if it turns out that sacO for these parameters cannot
exist, (3) could still be a fruitful research direction, because it might be helpful
to weaken the parameters also on variants of acO with computational security
in order to obtain constructions from weaker assumptions.

We will consider sacO with (1−δ)-security and (1−ε) correctness, and we will
also yield a PKE that does not achieve full correctness and that does not achieve
full security. In some cases, as observed by Holenstein [18], via amplification, it is
possible to achieve full security and correctness with overwhelming probability.
However, as we discuss now, amplification is not always possible.

572 Z. Brakerski et al.

B.1 Amplification

We define (1 − εPKE)-correct and (12 − δPKE)-secure PKE as follows.

Definition 7 (Approximate Public Key Encryption). Let PKE = (KGen,
Enc,Dec) be a public key encryption scheme.

Correctness We say that PKE is (1 − εPKE)-correct, if it holds that

Prb,KGen,Enc [Dec(sk,Enc(b, pk)) = b, (pk, sk) ←$PKE.KGen(1n)] ≥ 1 − εPKE(n).

Security. We say that PKE is (12 − δPKE)-secure, if for all efficient adversaries
A, there exists a negligible function negl(n) such that

Prb ←$ {0,1},KGen,Enc [A(pk,Enc(b, pk)) = b, (pk, sk) ←$KGen(1n)]

≤ 1
2

+ δPKE(n) + negl(n) .

We would like to amplify such a scheme into “standard” PKE, where εPKE
and δPKE are negligible. We now discuss via a counterexample why such an
amplification is not generally possible. Take a bit encryption scheme that outputs
the message bit with probability α and a random bit with probability 1−α and
where decryption is the identity function. This PKE scheme is (12− α

2)-secure and
(12+α

2)-correct. Correctness parameters are thus only meaningful if εPKE and δPKE
are bounded away from 1

2 and if, moreover, there is a meaningful relationship
between the security and the correctness parameter. Holenstein [18] shows (and
we use the presentation of Mahmoody et al. [26] here) that amplification is
possible if there exists a polynomial poly(n) such that

(1 − 2εPKE(n))2 > 2δPKE(n) +
1

poly(n)
.

Note that Holenstein also shows a tightness result for his amplification technique
with respect to restricted black-box reductions.

B.2 The Sahai-Waters Construction

We now present the Sahai-Waters [30] construction of a public-key encryp-
tion scheme from a one-way function. We recall that by H̊astad et al. [17],
Goldreich et al. [13], and several independent proofs [6,7,22] that the GGM
construction is a puncturable PRF, puncturable PRFs and OWFs are existen-
tially equivalent. The key generation of the Sahai-Waters construction draws a
key k for a puncturable PRF as the secret key sk and then outputs an obfuscation
of the following circuit CSW[k] as a public key pk:

CSW[k](m, r)

r′ := PRG(r)

c := m ⊕ PRF(k, r′)

return (r′, c)

On Statistically Secure Obfuscation with Approximate Correctness 573

The encryption algorithm Enc(pk,m, r) interprets the public key pk as a
circuit, runs it on (m, r) and returns the result as a ciphertext. Finally, for
decryption of a pair (r′, c), the decryption algorithm Dec(sk, (r′, c)) outputs m :=
c ⊕ PRF(sk, r′).
Claim 14 (Sahai-Waters). The Sahai-Waters construction instantiated with
sacO with correctness 1 − ε and security 1 − δ yields a public-key encryption
scheme with correctness error εPKE(n) = ε(|C| , n) and a distinguishing advantage
of δPKE(n) = δ(|C| , n) + ε(|C| , n).

Before we prove this claim, we will first illustrate what this implies for the
bounds on parameters allowing for Holenstein amplification. Combining the
bound for Holenstein amplification with Claim 14, we get that

2δPKE(n) +
1

poly(n)
< (1 − 2εPKE(n))2 (14)

=⇒ 2δ(|C| , n) + 2ε(|C| , n) +
1

poly(n)
< (1 − 2ε(|C| , n))2 (15)

=⇒ δ(|C| , n) <
1
2

− 3ε(|C| , n) + 2ε(|C| , n)2 − 1
2poly(n)

. (16)

We thus get the following corollary.
Corollary 15. Any (1−ε) correct and (1−δ) secure sacO implies a construction
of public key encryption from one-way functions, if there exists some polynomial
poly(|C| , n) such that

δ(|C| , n) <
1
2

− 3ε(|C| , n) + 2ε(|C| , n)2 − 1
poly(n)

.

Proof (Proof of Claim 14). Note that correctness of the encryption scheme is over a
random message, the randomness of the key generation and the randomness of the
encryption algorithm. The obfuscated circuit is therefore invoked on a uniformly
random input and the probability that it does not output the correct ciphertext
can thus be bounded by the correctness error of the obfuscator. Since the decryp-
tion of the scheme is perfectly correct, we thus get that εPKE(n) = ε(|C| , n).

To prove securtity, we first define the following game

Game1(n)

k ←$ {0, 1}n

r ←$ {0, 1}n/2

pk ←$O(CSW[k])

b ←$ {0, 1}
c := pk(b, r)

b′ ←$ A(pk, c)

return (b′ ?
=b)

574 Z. Brakerski et al.

and observe that

Prb ←$ {0,1},KGen,Enc [A(pk,Enc(b, pk)) = b, (pk, sk) ←$KGen(1n)]
= Pr[Game1(n) = 1] .

We will now bound this probability using a series of game hops.

Game2(n)

k ←$ {0, 1}n

r ←$ {0, 1}n/2

r′ := PRG(r)

pk ←$O(CSW[k])

b ←$ {0, 1}

c := (b ⊕ PRF(k, r′), r′)

b′ ←$ A(pk, c)

return (b′ ?
=b)

Game3(n)

k ←$ {0, 1}n

r′ ←$ {0, 1}n

pk ←$O(CSW[k])

b ←$ {0, 1}

c := (b ⊕ PRF(k, r′), r′)

b′ ←$ A(pk, c)

return (b′ ?
=b)

obfuscation security

Game4(n)

k ←$ {0, 1}n

r′ ←$ {0, 1}n

k∗ ←$Puncture(k, r′; t)

pk ←$O(CSW[k∗])

b ←$ {0, 1}

c := (b ⊕ PRF(k, r′), r′)

b′ ←$ A(pk, c)

return (b′ ?
=b)

Game5(n)

k ←$ {0, 1}n

r′ ←$ {0, 1}n

k∗ ←$Puncture(k, r′; t)

pk ←$O(CSW[k∗])

b ←$ {0, 1}
s ←$ {0, 1}
c := (b ⊕ s, r′)

b′ ←$ A(pk, c)

return (b′ ?
=b)

obfuscation security

PRG security

PRF security

We will first bound the differences between each pair of consecutive games
and then argue a bound for Pr[Game5(n) = 1].

Hop from Game1 to Game2. The change between the two games is that the cipher-
text is now no longer computed using the obfuscated circuit. Instead, it is com-
puted as specified in the unobfuscated circuit CSW[k]. Since the input to the
circuit is uniformly and independently distributed, we can bound the probabil-
ity that the two computations differ by the correctness of the sacO. I.e. it holds

On Statistically Secure Obfuscation with Approximate Correctness 575

that
|Pr[Game1(n) = 1] − Pr[Game2(n) = 1]| ≤ ε(|C| , n). (17)

Hop from Game2 to Game3. The change between the two games is that the bit-
string r′ is no longer the output of a PRG and instead a uniformly chosen random
string. We can thus bound the difference between the two games using the secu-
rity of the pseudorandom generator. I.e., we can construct a distinguisher D with
advantage |Pr[Game2(n) = 1] − Pr[Game3(n) = 1]| as follows

D(r′)

k ←$ {0, 1}n

pk ←$O(CSW[k])

b ←$ {0, 1}
c := (b ⊕ PRF(k, r′), r′)

b′ ←$ A(pk, c)

return (b′ ?
=b)

Observe, that in the case where D receives the output of the PRG, it holds
that

Prr,D [D(PRG(r)) = 1] = Pr[Game2(n) = 1] . (18)

If on the other hand, D receives an r′ chosen uniformly at random, then it holds
that

Prr′,D [D(r′) = 1] = Pr[Game3(n) = 1] . (19)

By definition of a secure PRG, there further exists a negligible function negl(n),
such that

|Prr,D [D(PRG(r)) = 1] − Prr′,D [D(r′) = 1]| ≤ negl(n) .

Combining this with Eqs. 18 and 19, we get

|Pr[Game2(n) = 1] − Pr[Game3(n) = 1]| ≤ negl(n) (n). (20)

Hop from Game3 to Game4. In this hop, the obfuscated circuit is replaced. It is
critical to observe, that if r′ is not in the range of PRG, then the two circuits are
functionally equivalent, since the PRF will never be invoked on the point the key
is punctured on. In this case, the distance between the two games can therefore
be bounded by the security of the sacO. If r′ is in the range of PRG, then we have
no guarantee, but this only occurs with probabilty 2−n/2. Thus it follows that

|Pr[Game3(n) = 1] − Pr[Game4(n) = 1]| ≤ δ(|C| , n) + 2−n/2. (21)

Hop from Game4 to Game5. Note that in Game5, the PRF value is replaced
with a uniformly chosen random value. This allows us to bound the difference
between the two games by the security of the puncturable pseudorandom func-
tion. To bound the difference between games Game4 and Game5, we construct a
distinguisher (D1,D2) with advantage

576 Z. Brakerski et al.

|Pr[Game4(n) = 1] − Pr[Game5(n) = 1]|

against the puncturable PRF as follows:

D1(1n; r1)

r′ ←$ {0, 1}n

return (⊥, r′)

D2(st, k∗, r′, s; r2)

pk ←$O(CSW[k∗])

b ←$ {0, 1}
c := (b ⊕ s)

b′ ←$ A(pk, c)

return (C′(x0)
?
=b)

Observe, that in the case where A2 receives the PRF value, it holds that

Prk,r1,t,r2 [D2(st, k∗, r′,PRF(k, r′); r2) = 1] = Pr[Game4(n) = 1] . (22)

If on the other hand, D2 receives an s chosen uniformly at random, it holds that

Prk,s,r1,t,r2 [D2(st, k∗, r′, s; r2) = 1] = Pr[Game5(n) = 1] (23)

By security of the puncturable PRF, it must hold that there exists a negligible
function negl(n) such that

|Prk,r1,t,r2 [D2(st, k∗, r′,PRF(k, r′); r2) = 1]
−Prk,s,r1,t,r2 [D2(st, k∗, r′, s; r2) = 1] | ≤ negl(n)

Combining this with Eqs. 22 and 23 yields

|Pr[Game5(n) = 1] − Pr[Game4(n) = 1]| ≤ negl(n) (24)

It remains to bound the probability Pr[Game5(n) = 1]. However, the cipher-
text in Game5 is simply a uniformly distributed random value that does not reveal
any information about b. Therefore, it is easy to see that Pr[Game5(n) = 1] = 1

2 .
Combining this with Eqs. 17, 20, 21, and 24, we can conclude that

Pr[Game1(n) = 1] ≤ 1
2

+ δ(|C| , n) + ε(|C| , n),

thus concluding the proof.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

On Statistically Secure Obfuscation with Approximate Correctness 577

3. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation
and applications to resettable cryptography. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th Annual ACM Symposium on Theory of Computing,
Palo Alto, CA, USA, 1–4 June 2013, pp. 241–250. ACM Press (2013)

4. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: from approxi-
mate to exact. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562,
pp. 67–95. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 4

5. Bogdanov, A., Lee, C.H.: Limits of provable security for homomorphic encryption.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp.
111–128. Springer, Heidelberg (2013)

6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

8. Canetti, R., Kalai, Y.T., Paneth, O.: On Obfuscation with random oracles. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 456–467.
Springer, Heidelberg (2015)

9. Diffie, W., Hellman, M.E.: Multiuser cryptographic techniques. In: American Fed-
eration of Information Processing Societies, 1976 National Computer Conference.
AFIPS Conference Proceedings, New York, NY, USA, 7–10 June 1976, vol. 45, pp.
109–112. AFIPS Press (1976)

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–
29 October 2013, pp. 40–49. IEEE Computer Society Press (2013)

11. Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge
University Press, Cambridge (2008)

12. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th Annual Symposium on Foundations of Computer
Science, Singer Island, Florida, 24–26 October 1984, pp. 464–479. IEEE Computer
Society Press (1984)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

14. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

15. Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. J. Cryptology
27(3), 480–505 (2014)

16. Hada, S., Sakurai, K.: A note on the (im)possibility of using obfuscators to trans-
form private-key encryption into public-key encryption. In: Miyaji, A., Kikuchi,
H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 1–12. Springer,
Heidelberg (2007)

17. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

18. Holenstein, T.: Strengthening Key Agreement Using Hard-Core Sets. Ph.D. thesis,
ETH Zurich (2006)

19. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: 30th Annual Symposium on Foundations
of Computer Science, Research Triangle Park, North Carolina, 30 October -
1 November 1989, pp. 230–235. IEEE Computer Society Press (1989)

http://dx.doi.org/10.1007/978-3-662-49096-9_4

578 Z. Brakerski et al.

20. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing, Seattle,
Washington, USA, 15–17 May 1989, pp. 44–61. ACM Press (1989)

21. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (1990)

22. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 13, 20th Conference on Computer and Communications Secu-
rity, Berlin, Germany, 4–8 November 2013, pp. 669–684. ACM Press (2013)

23. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: 55th Annual Symposium on Foundations
of Computer Science, Philadelphia, PA, USA, 18–21 October 2014, pp. 374–383.
IEEE Computer Society Press (2014)

24. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encod-
ings and applications. Cryptology ePrint Archive, Report 2015/720 (2015). http://
eprint.iacr.org/2015/720

25. Mahmoody, M., Mohammed, A., Nematihaji, S.: On the impossibility of virtual
black-box obfuscation in idealized models. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016-A. LNCS, vol. 9562, pp. 18–48. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49096-9 2

26. Mahmoody, M., Mohammed, A., Nematihaji, S., Pass, R., Shelat, A.: Lower
bounds on assumptions behind indistinguishability obfuscation. In: Kushilevitz,
E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol. 9562, pp. 49–66. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49096-9 3

27. Mahmoody, M., Xiao, D.: On the power of randomized reductions and the check-
ability of SAT. In: Proceedings of the 25th Annual IEEE Conference on Compu-
tational Complexity, CCC 2010, Cambridge, Massachusetts, 9–12 June 2010, pp.
64–75. IEEE Computer Society (2010)

28. Pass, R., Shelat, A.: Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A. LNCS, vol.
9562, pp. 3–17. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 1

29. Sahai, A., Vadhan, S.P.: A complete promise problem for statistical zero-knowledge.
In: 38th Annual Symposium on Foundations of Computer Science, Miami Beach,
Florida, 19–22 October 1997, pp. 448–457. IEEE Computer Society Press (1997)

30. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, New York, NY, USA, 31 May - 3 June 2014, pp. 475–484. ACM
Press (2014)

31. Leslie, G.: Valiant.: a theory of the learnable. Commun. ACM 27(11), 1134–1142
(1984)

32. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. In:
Sedgewick, R. (ed.) 17th Annual ACM Symposium on Theory of Computing,
Providence, Rhode Island, USA, 6–8 May 1985, pp. 458–463. ACM Press (1985)

http://eprint.iacr.org/2015/720
http://eprint.iacr.org/2015/720
http://dx.doi.org/10.1007/978-3-662-49096-9_2
http://dx.doi.org/10.1007/978-3-662-49096-9_2
http://dx.doi.org/10.1007/978-3-662-49096-9_3
http://dx.doi.org/10.1007/978-3-662-49096-9_1

Revisiting the Cryptographic Hardness
of Finding a Nash Equilibrium

Sanjam Garg1, Omkant Pandey2, and Akshayaram Srinivasan1(B)

1 University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

2 Stony Brook University, Brookhaven, USA
omkant@gmail.com

Abstract. The exact hardness of computing a Nash equilibrium is a
fundamental open question in algorithmic game theory. This problem
is complete for the complexity class PPAD. It is well known that prob-
lems in PPAD cannot be NP-complete unless NP = coNP. Therefore, a
natural direction is to reduce the hardness of PPAD to the hardness of
problems used in cryptography.

Bitansky, Paneth, and Rosen [FOCS 2015] prove the hardness of PPAD
assuming the existence of quasi-polynomially hard indistinguishability
obfuscation and sub-exponentially hard one-way functions. This leaves
open the possibility of basing PPAD hardness on simpler, polynomially
hard, computational assumptions.

We make further progress in this direction and reduce PPAD hard-
ness directly to polynomially hard assumptions. Our first result proves
hardness of PPAD assuming the existence of polynomially hard indis-
tinguishability obfuscation (iO) and one-way permutations. While this
improves upon Bitansky et al.’s work, it does not give us a reduction to
simpler, polynomially hard computational assumption because construc-
tions of iO inherently seems to require assumptions with sub-exponential
hardness. In contrast, public key functional encryption is a much simpler
primitive and does not suffer from this drawback. Our second result
shows that PPAD hardness can be based on polynomially hard compact
public key functional encryption and one-way permutations. Our results
further demonstrate the power of polynomially hard compact public key
functional encryption which is believed to be weaker than indistinguisha-
bility obfuscation. Our techniques are general and we expect them to
have various applications.

1 Introduction

The problem of computing a Nash equilibrium is fundamental to algorithmic
game theory. The hardness of this problem has attracted significant attention.
Since a mixed Nash equilibrium is guaranteed to exist for every game [Nas51],
the problem belongs to the complexity class TFNP [MP91]. In a series of works,
originating from Papadimitriou [Pap94], the problem was established to be
complete for the complexity class PPAD [DGP09,CDT09]. PPAD is a subclass of
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 579–604, 2016.
DOI: 10.1007/978-3-662-53008-5 20

580 S. Garg et al.

TFNP containing problems that reduce (in polynomial time) to a special prob-
lem called as end-of-line (or EOL in short). Informally, EOL instance includes
a “succinct” description of an exponential sized directed graph where each node
has in-degree and out-degree at most 1 and a source node having in-degree 0
and out-degree 1. The goal is to find another source or a sink (having in-degree
1 and out-degree 0). It is easy to observe that such a node is guaranteed to exist
by a simple parity argument.

The exact hardness of this problem, however, is still not fully understood.
Since the class PPAD is total, it is unlikely to contain NP-complete problems
unless polynomial hierarchy collapses to the first level [MP91,Pap94]. This is
similar to the status of hardness assumptions in cryptography which are not
believed to be NP-complete, but nevertheless, hard. Due to this similarity, cryp-
tographic problems were suggested as natural candidates in [Pap94] for study-
ing the hardness of PPAD. Indeed, the hardness of some total super-classes of
PPAD, such as PPA and PPP, can already be reduced to “standard” crypto-
graphic problems like factoring and collision-resistant hashing [Jer12]. However,
such a reduction is not known for PPAD.

A natural extension of this idea is to consider cryptographic problems with
a richer and more powerful structure. One of the richest cryptographic structure
is program obfuscation as formulated by Barak et al. [BGI+12]. It is a compiler
to transform any computer program into an “unintelligible one” while preserv-
ing its functionality. Ideally, the obfuscation of a program should be a “virtual
black-box” (VBB), i.e., access to the obfuscated program should be no better
than access to a black-box implementing the program [BGI+12]. Abbot et al.
[AKV04] show that PPAD-hardness can be based on VBB obfuscation of a nat-
ural pseudo random function. Unfortunately, VBB obfuscation is impossible in
general [BGI+12], and there are strong limitations to obfuscating pseudorandom
functions [GK05,BCC+14], including the one in [AKV04].

A natural relaxation of VBB obfuscation is indistinguishability obfuscation
(iO) [BGI+12]. Informally, iO guarantees that the obfuscation of a circuit
looks indistinguishable from the obfuscation of any other, functionally equiv-
alent, circuit of same size. Starting from the work of Garg et al. [GGH+13b],
several candidate constructions [BR14,BGK+14,PST14,GLSW15,Zim15,AB15,
GMS16] for iO have been suggested based on various assumptions on multilinear
maps [GGH13a] and public key functional encryption [AJ15,BV15a,AJS15].

Motivated by the progress on obfuscation, Bitansky et al. [BPR15] revisit the
hardness of PPAD and provide an elegant reduction to the hardness of iO. This
is the first reduction of its kind which reduces PPAD-hardness to the security of a
concrete and plausible cryptographic primitive. This, together with the progress
on iO, gives hope to the possibility of basing PPAD-hardness on simpler, more
standard cryptographic primitives.

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 581

1.1 Our Contribution

In this work, we revisit the problem of reducing PPAD-hardness to rich and
expressive cryptographic systems. We build upon the work of [BPR15] with two
specific goals:

– Rely on polynomial-hardness of iO: One drawback of the BPR reduction
is that it requires iO schemes with at least quasi-polynomial security. It is
not clear if such a large loss in the reduction is necessary. Our first goal is to
obtain an improved, polynomial time reduction.

– Rely on simpler, polynomially hard, assumptions: While tremendous
progress has been made on justifying the security of current iO schemes, ulti-
mately the security of the resulting constructions still either relies on an expo-
nential number of assumptions (basically, one per pair of circuits), or a poly-
nomial set of assumptions with exponential loss in the reduction. Our second
goal is thus to completely get rid of iO or any other component with non-
polynomial time flavor, and reduce PPAD-hardness to simpler, polynomially
hard, assumptions.

With respect to our first goal, we prove the following theorem:

Theorem 1. Assuming the existence of polynomially hard one-way permuta-
tions and indistinguishability obfuscation for P/poly, the end-of-line problem
is hard for polynomial-time algorithms.

This polynomially reduces the hardness of PPAD to iO since PPAD is the
class of problems that are reducible to the end-of-line problem.
With respect to our second goal, we show that PPAD-hardness can be reduced
to the security of compact public-key functional encryption (FE) in polynomial
time. We note that polynomially hard public key functional encryption is a
polynomially falsifiable assumption [Nao03].

A public key functional encryption (FE) scheme for general circuits [BSW11,
O’N10] is similar to an ordinary (public-key) encryption scheme with the crucial
difference that there are many decryption keys, each of which has an associated
function f ; when an encryption of a message m is decrypted with a key for
function f , it decrypts to the value f(m). The intuitive security guarantee is
that given the secret key corresponding to f and a ciphertext encrypting m, an
adversary would not be able to get any information about m except f(m). Our
second result proves the following theorem:

Theorem 2. Assuming the existence of polynomially-hard one-way permuta-
tions and compact public key functional encryption for general circuits, the
end-of-line problem is hard for polynomial-time algorithms.

Compact functional encryption, as demonstrated by the recent results of
Bitansky and Vaikuntanathan [BV15b] and Ananth et al. [AJS15], can be generi-
cally constructed from the so called “collusion-resistant function encryption with
collusion-succinct ciphertexts”, which in turn can be constructed from simpler

582 S. Garg et al.

polynomial hardness assumptions over multi-linear maps, as shown by Garg et al.
[GGHZ16]. This is in sharp contrast to iO where all constructions still inherently
seem to require exponential loss in the security reduction1. Combined with the
results of [GGHZ16,BV15b,AJS15], Theorem 2 bases PPAD-hardness on simpler
polynomial hardness assumptions. It is interesting to note that compact public
key functional encryption implies indistinguishability obfuscators [AJ15,BV15a]
but with sub-exponential security loss.

1.2 Our Techniques

We now present a technical overview of our approach. Building upon the work
of [BPR15], it suffices to show a sampling procedure that samples hard instances
of sink-of-verifiable-line problem. We will first show how to generate such
instances using polynomially-hard iO and then discuss how to do the same using
polynomially-hard FE .

PPAD Hardness from Indistinguishability Obfuscation. Let us start by
recalling the definition of PPAD. The class PPAD is defined to be the set of all
total search problems that are polynomial time reducible to the end-of-line

(EOL) problem. Intuitively, an EOL instance includes a succinct description of
an exponential sized directed graph with each node having in-degree and out-
degree at most 1. Given a source node (which has in-degree 0 and out-degree 1),
the goal is to find another source or a sink (which has in-degree 1 and out-degree
0). By a simple parity argument one can observe that such a node is guaranteed
to exist.

The hardness of PPAD was proven in [BPR15] by considering a different
problem, proposed in [AKV04], called sink-of-verifiable-line problem (SVL)
in [BPR15]. It was shown that SVL reduces to the EOL problem [AKV04,BPR15],
and therefore hardness of SVL implies hardness of EOL and PPAD.

An instance of the SVL problem is specified by a tuple (xs,Succ,Ver, T)
where xs is called the source node, Succ and Ver are called successor and veri-
fication circuits respectively, and T is a target index. Succ succinctly defines an
(exponential sized) directed line graph starting from the source node xs. That
is, a node x is connected to a node y in the graph through an outgoing edge
if and only if y = Succ(x). Ver is used to verify whether a given node is the
ith node (starting from the source node xs) on the path defined by Succ. To be
more precise, Ver(x, i) = 1 if and only if x = Succi−1(xs). The goal, given the
instance, is to find the T -th node (Target) on the path. We want to construct an
efficiently samplable distribution over instances of SVL for which no polynomial
time algorithm can find the T -th node with non-negligible probability.

BPR Approach. Bitansky et al., building upon [AKV04], consider a line graph
where the i-th node is defined by the output of pseudorandom function (PRF)
on i, i.e., the i-th node is (i, σ) such that σ = PRFS(i) for a randomly chosen
1 An informal explanation of this observation appears in [GLSW15].

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 583

key S. Intuitively, σ is a signature on i. The successor circuit of the hard SVL
instance, Succ, is then defined by obfuscating a “verify and sign” circuit, VSS ,
using general purpose iO; VSS simply outputs the next point (i+1,PRFS(i+1))
if the input is a valid point (i, σ) and rejects otherwise. The verification circuit
Ver simply tests that a given input will not be rejected by the successor circuit.
The source node is given by (1,PRFS(1)) and the target index T is set to a
super-polynomial value in the security parameter.

Intuitively, the hardness of the above instance relies on the fact that it is
impossible to obtain a signature on a node before obtaining the signature on the
previous node in the path. Since T is super-polynomial in the security parameter,
it follows that no polynomial time algorithm can obtain a signature on T . While
the underlying idea of this reduction is intuitive, reducing its hardness to iO is
more involved. This is shown by first changing the obfuscated circuit Succ so that
it does not behave correctly on a randomly chosen point u, and simply outputs ⊥.
One can think of the Succ circuit being “punctured” at point u. This would also
imply that the “punctured” circuit does not output a signature on u + 1 unlike
the original circuit. The next step uses this fact to “puncture” the circuit at the
point u+1. This step is realized through the “punctured” programming approach
of Sahai and Waters [SW14]. At a high level, this process is then repeated for
the next point u + 2, and then for u + 3, and so on, until the circuit does not
have the ability to sign on any point in the interval [u, T]. Once the circuit is
“punctured” at T , it can be observed that no algorithm can find the T th node
with non-zero probability. Performing these changes however, requires more care
since the number of points in [u, T] is not polynomial. In hindsight, the primary
reason for sub-exponential loss in this approach is because it is not possible to
“puncture” a larger interval in a “single shot.” In particular, to be able to use
the security of iO, this approach must increase the “punctured” interval by one
point at a time.

Our Approach: Many Chains of Varying Length. Our main idea is to introduce
a richer structure to the nodes in the graph, that avoids the need to increase the
“punctured” interval by one point at a time. Instead, we want to make longer
“jumps”, sometimes of exponential length, in the proof strategy. Specifically, we
aim to make only polynomially many jumps in total to travel from u to T .

In particular, instead of considering one signature per node, we consider κ
signatures for every node where 2κ is the total number of nodes on the line. That
is, a node in our graph is of the form (i, σ1, . . . , σκ) where σj is a signature on
the first j bits of i computed using a key Sj (different for each index) for every
j ∈ [κ]. The successor circuit is obfuscation of a program which simply checks
each signature on appropriate prefixes of i, and if so, it signs all κ prefixes of i+1
using appropriate keys. The verification circuit is as before, the source node is
simply the signatures on the first node, i.e., (0κ,PRFS1(0), . . . ,PRFSκ

(0κ)), and
T = 2κ − 1. Observe that the BPR reduction is equivalent to having only σκ.

We now explain how this structure on the nodes helps us in achieving a
polynomial loss in the reduction. As before, we start by “puncturing” the suc-
cessor circuit on a random point u. To illustrate the main idea, let us assume

584 S. Garg et al.

that the binary representation of u has k trailing 1s, i.e., u is of the form:
u1 · · · uκ−k−1‖01k where 1 ≤ k ≤ κ. Then, u + 1 = u1 · · · uκ−k−1‖10k, i.e., it has
k trailing 0s. Observe that:

1. The first κ − k prefix bits of u + 1 are identical to the first κ − k prefix bits
of all points in the interval [u + 1, u + 2k].

2. Signature σκ−k (corresponding to the prefix of length κ − k) for the node
u+1 is not needed (for checking and signing) anywhere else on the line graph
except for nodes in the interval [u + 1, u + 2k].

As before, suppose that we have punctured the successor circuit at a random
node u. Then, the fact that the punctured circuit does not output any signature
on u+1 means that it does not output the signature σκ−k on the first κ−k bits
of u+1; consequently, and most importantly, this means that it does not output
this signature on the first κ − k bits of any point in the interval [u + 1, u + 2k].
This allows us to increase the interval from [u + 1, u + 2k] by considering only a
constant number of hybrids. We then repeat this process by considering u + 2k

as our next point and iterate until we reach T .
Metaphorically, the signatures can be thought of as “virtual chains” emanat-

ing from each node and connecting to other nodes. The first chain coming out of
a node i is connected to i’s immediate neighbor which is i+1. The second chain
is connected to a node two hops away from i and the j-th chain is connected to
a node 2j hops away from i and so on. The number of chains coming out from
a node i is one more than the number of trailing ones in the binary represen-
tation of i. Equivalently, the number of chains coming out of i is the number
of bits that change from i to i + 1. Puncturing the circuit is viewed as cutting
chains of appropriate lengths between points. While BPR strategy always cuts
a chain of length 1, our proof strategy cuts the longest possible chain it can and
then iterates the process again until it reaches the target T . See Fig. 1 for an
illustration.

Fig. 1. Illustration of cutting a chain for u = 0111

While implementing the above idea we face the difficulty that for a random
u the number of chains coming out of u could be very small (as small as 1). We
get over this difficulty by initially cutting “smaller” length chains until we have
the ability to cut “larger” length chains. Intuitively, this is made possible since
the number of trailing 1 s in u + 2k is strictly larger than the number of trailing
1s (given by k) in u. We show that we need to cut no more than a linear (in

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 585

the security parameter κ) number of chains to reach T and hence our reduction
suffers only a polynomial (in fact linear) loss in the security parameter.

PPAD Hardness from Functional Encryption. We now give a technical
overview of our hardness result for PPAD from compact functional encryption
with polynomial loss. As noted earlier, although iO can be reduced to compact
FE [AJ15,BV15a], we cannot directly rely on this reduction since it suffers sub-
exponential security loss. Instead, we try to directly reduce PPAD-hardness to
compact FE .

To directly reduce PPAD-hardness to FE , we follow the same approach as
before, and generate hard on average instances of SVL using functional encryp-
tion. To demonstrate the technical challenges while proving the result from FE
we will be considering a single PRF key, as in BPR [BPR15], instead of our idea
of using κ keys to implement “multiple chains of varying length”. The scenario
with a single PRF key already captures the main technical challenges while keep-
ing the exposition simple. Later, we will explain how to combine the two ideas
together to obtain a direct polynomial reduction to FE .

The line graph implicitly defined by this successor circuit will be similar to
the BPR reduction as before. The successor circuit encodes a pseudo random
function PRFS : {0, 1}κ → {0, 1}κ in its description. The source node is given
by (0κ,PRFS(0κ)). A node (x, σ) is present on the line graph if and only if
σ = PRFS(x). The successor circuit takes as input (x, σ), checks the validity of
the node and if the node is valid outputs (x + 1,PRFS(x + 1)). The target index
is given by 2κ − 1.

Our goal is to produce an “obfuscated” (or encrypted) version of this suc-
cessor circuit using FE . To do this, we will rely on the “binary tree construc-
tion” idea of [AJ15,BV15a] for constructing iO from FE . Note that though this
reduction suffers from sub-exponential loss and we tailor the construction of our
successor circuit so that it suffers only from a polynomial loss.

Binary Tree Based Evaluation [AJ15,BV15a]. Let us first recall the main ideas
of [AJ15,BV15a] for constructing iO from FE . We present an “over-simplified”
version of their construction which is actually sufficient for our purposes but is
not sufficient for achieving iO security.

An “obfuscation” for a circuit C : {0, 1}κ → {0, 1}∗ is a sequence of κ + 1
functional keys FSK1, · · · ,FSKκ+1 generated using independently sampled mas-
ter secret keys MSK1, · · · ,MSKκ+1 along with a ciphertext cφ encrypting the
empty string under public-key PK1 (corresponding to MSK1). The first κ func-
tion keys implement the “bit-extension” functionality. That is, the ith function
key corresponds to a function that takes in an (i − 1)-bit string y ∈ {0, 1}i−1

and outputs functional encryptions of y‖0 and y‖1 under PKi+1
2. The function

key FSKκ+1 corresponds to the circuit C.
To evaluate the obfuscated circuit on an input x ∈ {0, 1}κ, one does the

following: decrypt cφ under FSK1 to obtain encryptions of 0 and 1. Depending

2 The randomness needed for generating the encryptions is obtained using a PRF.

586 S. Garg et al.

on the bit x1, choose either the left or right encryption and decrypt it using
FSK2 and so on. Thus, in κ steps one can obtain an encryption of x under
PKκ+1 which can be used to compute C(x) using FSKκ+1. One can think of the
construction as having a binary tree structure where evaluating the circuit on
an input x corresponds to traversing along the path labeled x.

Sub-exponential Loss. An intuitive reason for why this construction requires
sub-exponential loss to achieve iO is that the behavior of the obfuscated circuit
should be changed on all κ-bit inputs which are 2κ in number. The key insight
in our reduction is that we can achieve our goals by changing the behavior of
the obfuscated circuit at only polynomial many inputs and thus incurring only
a polynomial security loss.

Our Construction. We will motivate our construction through a series of
attempts and fixes.

First Attempt. Our first attempt was to mimic the construction of [AJ15,BV15a].
We generate 2κ + 1 functional keys FSK1, · · · ,FSK2κ+1 where the first 2κ of them
correspond to the bit-extension function used for encrypting (x, σ) under PK2κ+1

and FSK2κ+1 corresponds to the circuit Next that checks the validity of the node
(x, σ) and outputs the next node in the graph if (x, σ) is valid. The main question
with this approach is: How does the circuitNext check the validity of the input node
and output the next node in the path? The circuitNext must somehow have access
to the PRF key S but this access should not be “visible” to the outside world.

We definitely cannot hardwire the PRF key S in the circuit as the current
constructions of public key functional encryption schemes do not provide any
meaningful notions of “function-privacy”. One possible approach is to “propa-
gate” the key S along the entire tree. That is, encrypt the key S in the cipher-
text cφ and the bit extension functions output encryptions that also includes S.
Though this approach sounds promising, we are unable to use the “punctured”
programming techniques of Sahai and Waters that were crucial in the reduction
of PPAD hardness to iO. In particular, to puncture the key S at a point x we
need to puncture the key along every path thus incurring a sub-exponential loss
that we wanted to avoid. To fix this issue, we develop “fine-grained” puncturing
techniques.

Second Attempt: “Prefix Puncturing.” To solve the problem explained earlier,
we develop techniques to “surgically” puncture the PRF key S along a path
x without affecting the distribution on rest of the paths. We now explain the
details.

Every string y ∈ {0, 1}≤κ has a natural association with a node in the binary
tree where the root is associated with the empty string φ. At a high level, we
want the set of keys Ky appearing in node y to have the following properties:

– The keys derived from Ky can be used for checking the validity of every node
in the subtree rooted at y. This translates to be able to compute the PRF

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 587

value at x for every (x, σ) that appears in the subtree rooted at y. We denote
this property as prefix puncturability.

– The keys derived from Ky can be used for computing the next node for every
node in the subtree rooted at y. This would translate to the ability to compute
the PRF value at x + 1 for every (x, σ) appearing at the subtree rooted at y.

A pseudorandom function that has a natural binary tree structure and has the
prefix-puncturable property is the construction due to Goldreich et al. [GGM86].
We exploit this property in the GGM construction to propagate the “prefix-
punctured” keys along the binary tree.

At every node y ∈ {0, 1}≤κ, we propagate two keys Sy, Sy+1 where Sy denotes
the key S prefix-punctured at string y. Intuitively, Sy is the key used for checking
the input node is valid and Sy+1 is used for generating the next node on the
path3. The bit extension function generates Sy‖0, Sy‖0+1 and Sy‖1, Sy‖1+1 from
Sy, Sy+1 and propagates these values along with y‖0 and y‖1 respectively. The
circuit Next receives Sx, Sx+1 where x ∈ {0, 1}κ and checks the validity of the
input signature using Sx and generates the next node in the path if the input is
valid using Sx+1.

Note that the puncturing of the keys does not happen after the level κ as by
this time we have parsed the x which completely determines the key Sx, Sx+1.
Therefore, we need to propagate Sx, Sx+1 along the entire subtree rooted at x
where we parse σ. This creates the following problem: consider a scenario where
the successor circuit already outputs ⊥ on the point x and we are trying to
extend the interval to include x + 1. Recall that the crucial idea behind the
ability to increase the interval is that Sx+1 does not occur anywhere else in the
computation of the circuit. We observe that Sx+1 gets propagated along the
entire subtree (of exponential size) rooted at x where the input σ is parsed.
Hence, to “remove all traces” of Sx+1 along the subtree rooted at x, we need to
incur a sub-exponential loss.

Final Construction: “Encrypt the Next Signature.” We solve the above problem
by “implicitly” checking whether the given node is valid. This implicit checking
is facilitated by encrypting the signature on the next node by using the signature
on the current node. Intuitively, an evaluator can obtain the signature on the
next node if and only if he holds a valid signature on the current node.

Instead of propagating the keys Sx, Sx+1 in clear in the subtree parsing σ,
we “cut-short” the tree at level where x is parsed. Once x is parsed (and hence
we have the values Sx and Sx+1), we apply a length doubling injective pseudo
random generator PRG on the signature Sx to obtain two halves PRG0(Sx) and
PRG1(Sx). We encrypt Sx+1 under PRG1(Sx) and output the encryption along
with PRG0(Sx). The Next circuit takes σ,PRG0(Sx) and the encrypted version

3 Note that instead of Sy+1 it is enough to propagate Sy+1‖0κ−|y| . It is in fact crucial
for our reduction that we propagate Sy+1‖0κ−|y| instead of Sy+1. But we will use
Sy+1 for ease of notation and exposition.

588 S. Garg et al.

of Sx+1 and checks whether PRG0(σ) = PRG0(Sx)4 and if yes it decrypts using
PRG1(σ) to obtain Sx+1. Notice that now we don’t run into the same problem
while trying to increase the interval to include Sx+1. This is because we can
first change Sx to a random string by relying on pseudo randomness at punc-
tured point property of GGM PRF and then relying on semantic security of
secret key encryption we can change the encryption under PRG1(Sx) to some
junk value. Implementing these two steps is non-trivial and we rely on “hidden
trapdoor” technique of Ananth et al. [ABSV15] while generating the function
keys to achieve this.

Note that we still haven’t explained how the successor circuit is “punctured”
at a random point in the first place. To this end, we “artificially” change the
honest execution of the circuit to have a hardwired random value v and the circuit
checks if PRG(x) = v and if so outputs ⊥. The honest execution does not output
⊥ for any input x with overwhelming probability since PRG has sparse images.
We then change this random v to PRG(u) for a random u relying on the security
of the PRG. A consequence of this fix is that even our honest evaluation of the
successor circuit looks somewhat “artificial”. This seems necessary to circumvent
the sub-exponential loss incurred while constructing obfuscation from functional
encryption.

Putting it All Together. To show hardness of PPAD from FE by incurring polyno-
mial loss in the security reduction we need to combine the above ideas with that
of “multiple-chains of varying length”. As explained in the chain-cutting tech-
nique we generate κ GGM keys S1, · · · , Sκ. We propagate the “prefix-punctured”
keys corresponding to every index i ∈ [κ] along every node in the binary tree.
A careful reader might have noticed that though it is necessary to check the
validity of the input signatures for every prefix, it is actually sufficient to gen-
erate signatures on the next node on the path only for those bit positions that
change when incrementing by 1. This is because for the rest of the bit positions
that share the same prefix with the input node and we can just output those
input signatures along with those newly computed ones, provided the input is
valid. This observation is in fact crucial to prove the security of our construc-
tion. We need to ensure that the Next circuit must have the ability to check the
validity of every signature but it has access only to those prefix punctured keys
corresponding to the bit positions that change when incrementing by 1.

We satisfy these two “conflicting” properties by decoupling the process of
checking the input signatures and the process of generating the next node on
the path. In order to check the input signatures we propagate PRG0(Si,x) for
every i ∈ [κ] and to generate the signatures on the next node on the path we
propagate an encrypted version of Sj,x+1 under PRG1(Sj,x) only for those bits j
that change when incrementing x.

4 We need this explicit check for the verification circuit to decide if a particular node
is an ith node or not. Also, we need a stronger property on pseudo random generator
called as left half injectivity for this check to be correct always.

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 589

1.3 Subsequent Work

Garg et al. in [GPSZ16] extended our techniques to base Trapdoor Permuta-
tions on polynomial hardness of compact Functional Encryption. In the same
work, they also showed how to base Non-Interactive Key Exchange (NIKE)
for unbounded parties from polynomially hard compact Functional Encryption.
Recently, Garg and Srinivasan [GS16] extended our techniques to construct adap-
tively secure Functional Encryption against unbounded collusions from single-
key, selectively secure Functional encryption with weakly compact ciphertexts.

Rosen et al. [RSS16] investigated the possibility of basing average-case PPAD
hardness on standard cryptographic assumptions. They showed that average-case
PPAD hardness does not imply one-way functions in a black-box manner and
average-case SVL hardness cannot be based on injective trapdoor functions in a
black-box manner. An implication of this work is that it might be possible to
base PPAD hardness on one-way functions but such a result has to use techniques
that significantly deviate from Bitansky et al. [BPR15] and our work.

Hubác̆ek and Yogev [HY16] extended our result to base hardness of a com-
plexity class CLS on compact Functional Encryption. CLS is a sub-class of
PPAD and captures Continuous Local Search problems. They showed a reduction
between the SVL problem and a problem called as end-of-metered-line which
is contained in CLS. This allowed them to base hardness of CLS on polynomially
hard compact Functional Encryption.

2 PPAD

A large part of this section is taken verbatim from [BPR15]. A search problem
is given by a tuple (I,R). I defines the set of instances and R is an NP relation.
Given x ∈ I, the goal is to find a witness w (if it exists) such that R(x,w) =
1. We say that a search problem (I1, R1) polynomial time reduces to another
search problem (I2, R2) if there exists polynomial time algorithms P,Q such
that for every x1 ∈ I1, P (x1) ∈ I2 and given w2 such that (P (x1), w2) ∈ R2,
R1(x1, Q(w2)) = 1.

A search problem is said to be total if for any x ∈ {0, 1}∗, there exists a
polynomial time procedure to test whether x ∈ I and for all x ∈ I, the set
of witnesses w such that R(x,w) = 1 is non-empty. The class of total search
problems is denoted by TFNP. PPAD [Pap94] is a subset of TFNP and is defined
by its complete problem called as end-of-line (abbreviated as EOL).

Definition 1 [Pap94]. EOL = {IEOL, REOL} where IEOL = {(xs,Succ,Pred) :
Succ(xs) �= xs = Pred(xs)} and REOL((xs,Succ,Pred), w) = 1 iff(
Pred(Succ(w)) �= w

) ∨ (
Succ(Pred(w)) �= w ∧ w �= xs).

Definition 2 [Pap94]. The complexity class PPAD is the set of all search prob-
lems (I,R) such that (I,R) ∈ TFNP and (I,R) polynomial time reduces to EOL.

A related problem to EOL is the sink-of-verifiable-line (abbreviated as
SVL) which is defined as follows:

590 S. Garg et al.

Definition 3 [AKV04,BPR15]. SVL = {ISVL, RSVL} where ISVL = {(xs,Succ,
Ver, T)} and RSVL((xs,Succ,Ver, T), w) = 1 iff

(
Ver(w, T) = 1

)
.

SVL instance defines a single directed path with the source being xs. Succ is
the successor circuit and there is a directed edge between u and v if and only if
Succ(u) = v. Ver is the verification circuit and is used to test whether a given
node is the ith node from xs. That is, Ver(x, i) = 1 iff x = Succi−1(xs). The goal
is to find the T th node in the path. It is easy to observe that for every valid SVL
instance the set of witness w is not empty. But SVL may not be total since there
is no known efficient procedure to test whether the instance is valid or not. But
it was shown in [AKV04,BPR15] that SVL polynomial time reduces to EOL.

Lemma 1 [AKV04,BPR15]. SVL polynomial time reduces to EOL.

3 Preliminaries

κ denotes the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for all polynomials poly(·), μ(κ) < 1
poly(κ) for large enough κ. For

a probabilistic algorithm A, we denote by A(x; r) the output of A on input x
with the content of the random tape being r. We will omit r when it is implicit
from the context. We denote y ← A(x) as the process of sampling y from the
output distribution of A(x) with a uniform random tape. For a finite set S,

we denote x
$← S as the process of sampling x uniformly from the set S. We

model non-uniform adversaries A = {Aκ} as circuits such that for all κ, Aκ is
of size p(κ) where p(·) is a polynomial. We will drop the subscript κ from the
adversary’s description when it is clear from the context. We will also assume
that all algorithms are given the unary representation of security parameter 1κ

as input and will not mention this explicitly when it is clear from the context. We
will use PPT to denote Probabilistic Polynomial Time algorithm. We denote [κ]
to be the set {1, · · · , k}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial.

A binary string x ∈ {0, 1}κ is represented as x1 · · · xκ. x1 is the most sig-
nificant (or the highest order bit) and xκ is the least significant (or the lowest
order bit). The i-bit prefix x1 · · · xi of the binary string x is denoted by x[i]. We
use x‖y to denote concatenation of binary strings x and y. We say that a binary
string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such that
x = y‖z.

Injective Pseudo Random Generator. We give the definition of an injective
Pseudo Random Generator PRG.

Definition 4. An injective pseudo random generator PRG is a deterministic
polynomial time algorithm with the following properties:

– Expansion: There exists a polynomial �(·) (called as the expansion factor)
such that for all κ and x ∈ {0, 1}κ, |PRG(x)| = �(κ).

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 591

– Pseudo randomness: For all κ and for all poly sized adversaries A,

|Pr[A(PRG(Uκ)) = 1] − Pr[A(U�(κ)) = 1]| ≤ negl(κ)

where Ui denotes the uniform distribution on {0, 1}i.
– Injectivity: For every κ and for all x, x′ ∈ {0, 1}κ such that x �= x′, PRG(x) �=

PRG(x′).

We in fact need an additional property from an injective PRG. Let us consider
PRG where the expansion factor (or the output length) is given by 2 · �(·). Let
us denote the first �(·) bits of the output of the PRG by the function PRG0 and
the next �(·) bits of the output of the PRG by PRG1.

Definition 5. A pseudo random generator PRG is said to be left half injective
if for every κ and for all x, x′ ∈ {0, 1}κ such that x �= x′. PRG0(x) �= PRG0(x′).

Note that left half injective PRG is also an injective PRG. We note that
the standard construction of pseudo random generator for arbitrary polynomial
stretch from one-way permutations is left half injective. For completeness, we
state the construction:

Lemma 2. Assuming the existence of one-way permutations, there exists a
pseudo random generator that is left half injective.

Proof. Let f : {0, 1}κ → {0, 1}κ be a one-way permutation with hardcore
predicate B : {0, 1}κ → {0, 1} [GL89]. Let G be an algorithm defined as fol-
lows: On input x ∈ {0, 1}κ, G(x) = fn(x)‖B(x)‖B(f(x)) · · · B(fn−1(x)) where
n = 2�(κ) − κ. Clearly, |G(x)| = 2�(κ). The pseudo randomness property of
G(·) follows from the security of hardcore bit. The left half injectivity property
follows from the observation that fn is a permutation.

Puncturable Pseudo Random Function. We recall the notion of puncturable
pseudo random function from [SW14]. The construction of pseudo random func-
tion given in [GGM86] satisfies the following definition [BW13,KPTZ13,BGI14].

Definition 6. A puncturable pseudo random function PRF is a tuple of PPT
algorithms (KeyGenPRF ,PRF,Punc) with the following properties:

– Efficiently Computable: For all κ and for all S ← KeyGenPRF (1κ), PRFS :
{0, 1}poly(κ) → {0, 1}κ is polynomial time computable.

– Functionality is preserved under puncturing: For all κ, for all y ∈
{0, 1}κ and ∀x �= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF (1κ) and S{y} ← Punc(S, y).
– Pseudo randomness at punctured points: For all κ, for all y ∈ {0, 1}κ,

and for all poly sized adversaries A
|Pr[A(PRFS(y), S{y}) = 1] − Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ), S{y} ← Punc(S, y) and Uκ denotes the uniform
distribution over {0, 1}κ.

592 S. Garg et al.

Indistinguishability Obfuscator. We now define Indistinguishability obfuscator
from [BGI+12,GGH+13b].

Definition 7. A PPT algorithm iO is an indistinguishability obfuscator for a
family of circuits {Cκ}κ that satisfies the following properties:

– Correctness: For all κ and for all C ∈ Cκ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.
– Security: For all C0, C1 ∈ Cκ such that for all x, C0(x) = C1(x) and for all

poly sized adversaries A,

|Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Functional Encryption. We recall the notion of functional encryption with selec-
tive indistinguishability based security [BSW11,O’N10].

A functional encryption FE is a tuple of PPT algorithms (FE.Setup,FE.Enc,
FE.KeyGen,FE.Dec) with the message space {0, 1}∗ having the following syntax:

– FE.Setup(1κ) : Takes as input the unary encoding of the security parameter κ
and outputs a public key PK and a master secret key MSK.

– FE.EncPK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryp-
tion C of m under the public key PK.

– FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a
function f (given as a circuit) as input and outputs the function key FSKf .

– FE.Dec(FSKf , C): Takes as input the function key FSKf and the ciphertext C
and outputs a string y.

Definition 8 (Correctness). The functional encryption scheme FE is correct
if for all κ and for all messages m ∈ {0, 1}∗,

Pr

⎡
⎢⎣y = f(m)

∣∣∣∣∣∣∣

(PK,MSK) ← FE.Setup(1κ)
C ← FE.EncPK(m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , C)

⎤
⎥⎦ = 1 (1)

Definition 9 (Selective Security). For all κ and for all poly sized adver-
saries A, ∣∣Pr[Expt1κ,0,A = 1] − Pr[Expt1κ,1,A = 1]

∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0,
m1 such that |m0| = |m1| to the challenger.

– The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the chal-
lenge ciphertext C ← FE.EncPK(mb). It then sends (PK,C) to A.

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 593

– Function Queries: A submits function queries f to the challenger. The chal-
lenger responds with FSKf ← FE.KeyGen(MSK, f).

– If A makes a query f to functional key generation oracle such that f(m0) �=
f(m1), output of the experiment is ⊥. Otherwise, the output is b′ which is the
output of A.

Remark 1. We say that the functional encryption scheme FE is single-key,
selectively secure if the adversary A in Expt1κ,b,A is allowed to query the
functional key generation oracle FE.KeyGen(MSK, ·) on a single function f .

Definition 10. (Compactness, [AJS15,BV15a,AJ15]). The functional
encryption scheme FE is said to be compact if for all κ ∈ N and for all
m ∈ {0, 1}∗ the running time of the encryption algorithm FE.Enc is poly(κ, |m|).

Prefix Puncturable Pseudo Random Functions. We now define the notion of
prefix puncturable pseudo random function PPRF which is satisfied by the con-
struction of the pseudo random function in [GGM86].

Definition 11. A prefix puncturable pseudo random function PPRF is a tuple
of PPT algorithms (KeyGenPPRF ,PrefixPunc) satisfying the following properties:

– Functionality is preserved under repeated puncturing: For all κ, for all
y ∈ ∪poly(κ)

k=0 {0, 1}k and for all x ∈ {0, 1}poly(κ) such that there exists a z ∈
{0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF (1κ).
– Pseudorandomness at punctured prefix: For all κ, for all x ∈

{0, 1}poly(κ), and for all poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1] − Pr[A(Uκ,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ) and Keys = {PrefixPunc(S, x[i−1]‖(1 −
xi))}i∈[poly(κ)].

4 Hardness from Indistinguishability Obfuscation

In this section, we prove that SVL is hard on average assuming polynomial hard-
ness of indistinguishability obfuscation, injective PRGs and puncturable pseudo
random functions. Coupled with the fact that SVL reduces to EOL (Lemma 1)
we have the following theorem.

Theorem 3. Assume the existence of one-way permutations and indistin-
guishability obfuscation against polynomial time adversaries then we have that
EOL problem is hard for polynomial time algorithms.

594 S. Garg et al.

4.1 Hard on Average SVL Instances

In this section, we describe an efficient sampler that provides hard on average
instances (xs,Succ,Ver, 1κ) of SVL. Here xs is the source node and Succ is the
successor circuit. We define a directed edge between u and v if and only if
Succ(u) = v. Ver is the verification circuit and is used to test whether a given
node is the kth node from xs. That is, Ver(x, k) = 1 iff x = Succk−1(xs). For the
generated instances, we argue that it is hard to find the 1κ node in the path.

The formal description of hard on average SVL instance sampler is provided
in Fig. 3. Internally this sampler generates an obfuscation of the Next circuit pro-
vided in Fig. 2. Next we describe the SVL instances which we consider informally.

The instance we generate defines a line graph. The nodes in the graph are of
the form: (x, σ1, · · · , σκ) where x ∈ {0, 1}κ. The nodes satisfy the following rela-
tion: for all i ∈ [κ], PRFSi

(x[i]) = σi and in that case we say that (x, σ1, · · · , σκ)
is valid. The node (x, σ1, · · · , σκ) is connected to (x + 1, σ′

1, · · · , σ′
κ) through an

outgoing edge and is connected to (x − 1, σ′′
1 , · · · , σ′′

κ) through an incoming edge
where σ′

1, · · · , σ′
κ and σ′′

1 , · · · , σ′′
κ satisfy the above described PRF relationship.

The source node is given by (0κ,PRFS1(0), · · · ,PRFSκ
(0κ)).

At a very high level successor circuit of our SVL instances provides a method
for moving forward from one node to the next. The successor circuit in our
instances corresponds to an obfuscation of the Next circuit. This circuit on input
a node of the form (x, σ1, · · · , σκ) checks for the validity of the input. If it is
valid, it outputs the next node (x + 1, σ′

1 · · · σ′
κ) where σ′

i = PRFSi
((x + 1)[i]) in

the path. On an invalid input, it outputs ⊥.

Input: (x, σ1, · · · , σκ)
Hardcoded Parameters: S1, · · · , Sκ

1. For any i ∈ [κ], if σi = PRFSi(x[i]) then output ⊥.
2. If x = 1κ, then output SOLVED.
3. Else output (x + 1, σ1, · · · , σκ), where for all i ∈ [κ] compute σi =

PRFSj ((x + 1)[i]).

Padding: This circuit is padded so that total size of the circuit is p(κ), for some
polynomial p(·) specified later.

Fig. 2. NextS1,··· ,Sκ

For the hard SVL instances we additionally need to provide a verification
circuit. The verification circuit just uses the successor circuit in a very natural
manner. The verification circuit on input (x, σ1, · · · , σκ, j) outputs 1 if and only
if x = j − 1 and NextS1,··· ,Sκ

(x, σ1, · · · , σκ) �= ⊥.
Due to space constraints we defer the proof of hardness to full version of this

paper [GPS15].

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 595

– Sampled Ingredients: Sample {Si}i∈[κ] ← KeyGenPRF(1κ). For all i ∈ [κ],
Si is a seed for a PRF mapping i bits to κ bits. That is, PRFSi : {0, 1}i →
{0, 1}κ.

– Source Node: The source node xs = (0κ,PRFS1(0), · · · ,PRFSκ(0κ)).
– Successor Circuit: The successor circuit is given by iO(NextS1,··· ,Sκ) where

the circuit NextS1,··· ,Sκ is described in Figure 2.
– Verification Circuit: The verification circuit, given by Ver, on input

((x, σ1 · · · σκ), j) checks if x = j − 1 and iO(NextS1,··· ,Sκ)((x, σ1 · · · σκ)) = ⊥.

Fig. 3. Sampler for hard on average instances of SVL based on hardness of iO

5 Hardness Result Based on Functional Encryption

In this section we show that SVL is hard on average assuming polynomially hard
functional encryption and one-way permutations. Coupled with the fact that
SVL reduces to EOL (Lemma 1) we have the following theorem.

Theorem 4. Assume the existence of one-way permutations and functional
encryption against polynomial time adversaries then we have that EOL problem
is hard for polynomial time algorithms.

Recall that hard SVL instance based on iO (Sect. 4), required κ puncturable
PRF keys. Basing hardness on polynomially hard functional encryption requires
us to still maintain κ keys. However, now we need to use prefix-puncturing
(see Definition 11) which is more delicate and needs to be handled carefully.
Consequently the construction ends up being complicated. However, the spe-
cial mechanism of prefix-puncturing that we use is crucial to understanding our
construction. So towards simplifying exposition, we start by abstracting out the
details of this puncturing and present a special tree structure and some proper-
ties about it next.

5.1 Special Tree Key Structure

Let x[i] denote the first i (higher order) bits of x i.e. x1 · · · xi. Now note that
any y ∈ {0, 1}i can be identified with a node in a binary tree for which nodes at
depth i correspond to strings {0, 1}i. Note that the root of the tree corresponds
to the empty string φ. As previously mentioned our construction needs κ PPRF
keys, namely S1, . . . Sκ. The key Si works on inputs of length i. We use Si,x to
denote the key Si prefix punctured at a string x ∈ {0, 1}≤i.

Looking ahead, in our hard-on-average instances of SVL each x ∈ {0, 1}κ will
be attached with associated signature values σ1, . . . , σκ where for each i ∈ [κ]
we have that σi = PrefixPunc(Si, x[i]). Furthermore in our construction given
x and the associated signature values, we will need to verify these values and
provide the associated signature values for x + 1, but this has to be done in

596 S. Garg et al.

a circuitous manner because of several security reasons. We do not delve into
the security arguments right away, but focus on describing the prefix-puncturing
that we need to perform.

We next describe the set Vi
x where x ∈ {0, 1}≤i, which contains suitable

prefix-puncturings of the key Si. Intuitively, we want this set to contain all
keys that will allow us to perform the task of checking the validity of the ith

associated signature on any input of the form x‖y where y ∈ {0, 1}κ−|x| as well
as computing the ith associated signature for (x‖y) + 1. Furthermore, it should
suffice to generate Vi

x‖y for all y. For any node x ∈ {0, 1}≤i, this very naturally
translates to the keys Si,x and Si,x+1. A careful reader might have noticed that
instead of Si,x+1, it in fact suffices to just have Si,(x+1)‖0i−|x| . As it turns out
we must only include Si,(x+1)‖0i−|x| . Including Si,x+1 prevents the Derivability
Lemma (Lemma 4) from going through.

Recall that the key Si corresponds to a PPRF key for inputs of length i.
Therefore, for x‖y such that |x| = i, the key Si can be prefix-punctured only
for the prefix x = (x‖y)[i]. This raises the following question. Should we include
Si,x and Si,x+1 in all Vi

x‖y? As we will see later, in our construction, we carefully
decouple the checking of associated signatures from the generation of new asso-
ciated signatures. An important consequence, relevant here is that, even though
the checks need to be performed for all x‖y, a new ith associated signature needs
to be generated for only one choice of y, namely 1κ−|x| (the all 1 string of length
κ − |x|). This design choice (which is crucial for polynomial security loss) also
allows us to set Vi

x‖y for all other choices of y to be ∅. In terms of the binary tree
structure one can think of this as Vi

x getting passed only along the rightmost
path in the subtree rooted at x. At a very high level, this allows us to argue that
the key Si (proved formally in Lemma 4) can be punctured at a special point by
removing keys fron Vi

x for only a polynomial number of choices of x and i. This
is crucial for ensuring that our proof of security has only a polynomial number
of hybrids.

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

V2
0 = {S2,0, S2,10}

V2
01 = {S2,01, S2,10}

V2
010 = ∅

W2
0 = ∅

W2
01 = {PRG0(S2,01)}

W2
010 = {PRG0(S2,01)}

Fig. 4. Example of values contained in V 2
x for x ∈ {0, 1}≤3.

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 597

Next note that dropping keys from V i
x‖y (such that |x| = i) hinders the

checking of associated signatures provided along with inputs x‖y where y �= 1κ−i.
We tackle this issue by introducing a vestigial set Wi

x‖y corresponding to each
Vi

x‖y. This vestigial set contains remnants of the keys that were dropped from
Vi

x. We craft these remnants to be such that they suffice for performing the
necessary checks. In particular, we set these remnants to be the left half of an
left half injective PRG evaluation on the dropped key.

More formally, Vi
x and Vx are defined as follows. In the following, for any

i ∈ [κ] we treat 1i + 1 as 1i, and φ + 1 as φ. Here 1i is a string of i 1s and φ is
the empty string.

Vx =
⋃

i∈[κ]

Vi
x Vi

x =

⎧⎪⎨
⎪⎩

{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i

∅ otherwise

Wx =
⋃

i∈[κ]

Wi
x Wi

x =

{
{PRG0(Si,x[i])} if |x| ≥ i

∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Vφ =
⋃

i∈[κ]

Vi
φ Vi

φ = {Si}

Wφ =
⋃

i∈[κ]

Wi
φ Wi

φ = ∅

Illustration with an Example. Finally we explain what sets V2
x,W2

x contain when
x is a prefix of 010 in Fig. 4. At the root node we have V2

φ = {S2} and Wφ = ∅.
The set V2

0 contains S2,0 and S2,10 and the set W2
0 is still empty. Next note that

V2
01 contains S2,01, S2,10 and W2

01 contains PRG0(S2,01). Finally set V2
010 = ∅ and

W2
010 continues to contain PRG0(S2,01).

Properties of the Special Tree Key Structure. We now prove several properties
about the special tree key structure. Intuitively speaking the crux of the lemmas
is the claim V-set for can a node can be used to derive its children. Furthermore
each element in V-set for any node can only be derived from the V-set of nodes
in exactly two different paths.

Lemma 3 (Computability Lemma). There exists an explicit efficient pro-
cedure that given Vx,Wx computes Vx‖0,Wx‖0 and Vx‖1,Wx‖1.

Proof. We start by noting that it suffices to show that for each i, given Vi
x,Wi

x

one can compute Vi
x‖0,W

i
x‖0 and Vi

x‖1,W
i
x‖1. We argue this next. Observe that

two cases arise either |x| < i or |x| ≥ i. We deal with the two cases:

598 S. Garg et al.

– |x| < i: In this case Vi
x is {Si,x, Si,(x+1)‖0i−|x|} and these values can be

used to compute Si,x‖0, Si,x‖1, Si,(x‖0)+1 = Si,x‖1 and Si,((x‖1)+1)‖0i−|x|−1 =
Si,(x+1)‖0‖0i−|x|−1 = Si,(x+1)‖0i−|x| . Observe by case by case inspection that
these values are sufficient for computing Vi

x‖0,W
i
x‖0 and Vi

x‖1,W
i
x‖1 in all

cases.
– |x| ≥ i: Note that according to the constraints placed on x by the definition,

if Vi
x = ∅ then both Vi

x‖0 and Vi
x‖1 must be ∅ as well. On the other hand if

V i
x �= ∅ then Vi

x‖0 is still ∅ while Vi
x‖1 = Vi

x. Additionally, W i
x‖0 = W i

x‖1 = W i
x.

This concludes the proof.

Lemma 4 (Derivability Lemma). For every i ∈ [κ], x ∈ {0, 1}i and x �= 1i

we have that, Si,x+1 can be derived from keys in Vi
y if and only if y is a prefix

of x‖1κ−i or (x + 1)‖1κ−i. Additionally, Si,0i can be derived from keys in Vy if
and only if y is a prefix of 0i‖1κ−i (Fig. 5).

φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Fig. 5. Black nodes represent the choices of x ∈ {0, 1}≤3 such that V 2
x can be used to

derive S2,10.

Proof. We start by noting that for any y ∈ {0, 1}>i ∩ {0, 1}≤κ, by definition of
V-sets we have that Vi

y = Vi
y[i]

or Vi
y = ∅. Hence it suffices to prove the above

lemma for y ∈ {0, 1}≤i.
We first prove that if y is a prefix of x or (x + 1) then we can derive Si,x+1

from V i
y . Two cases arise:

– Observe that if y is a prefix of x then we must have that either y is a prefix
of x + 1 or x + 1 = (y + 1)‖0i−|y|. Next note that by definition of V-sets we
have that Vi

y = {Si,y, Si,(y+1)‖0i−|y|}, and one of these values can be used to
compute Si,x+1.

– On the other hand if y is a prefix of x+1 then again by definition of V-sets we
have that Vi

y = {Si,y, Si,(y+1)‖0i−|y|}, and Si,y can be used to compute Si,x+1.

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 599

Next we show that no other y ∈ {0, 1}≤i allows for such a derivation. Note
that by definition of V-sets we have that V i

y = {Si,y, Si,(y+1)‖0i−|y|}. We will
argue that neither Si,y nor Si,(y+1)‖0i−|y| can be used to derive Si,x+1.

– We are given that y is not a prefix of x + 1. This implies that Si,y cannot be
used to derive Si,x+1.

– Now we need to argue that Si,(y+1)‖0i−|y| cannot be used to compute Si,x+1.
For this, it suffices to argue that x+1 �= (y+1)‖0i−|y|. If x+1 = (y+1)‖0i−|y|

then y must be prefix of x. However, we are given that this is not the case.
This proves our claim.

The argument for the value Si,0i follows analogously. This concludes the proof.

5.2 Hard on Average SVL Instances

In this section, we describe our construction for hard on average instance of SVL.
In particular, we describe our sampler that samples hard on average instances
(xs,Succ,Ver, 1κ). Here xs is the source node and Succ is the successor circuit.
We define a directed edge between u and v if and only if Succ(u) = v. Ver is the
verification circuit and is used to test whether a given node is the kth node from
xs. That is, Ver(x, k) = 1 iff x = Succk−1(xs). For the generated instances, we
argue that it is hard to find the 1κ node in the path.

In our construction we use a selectively secure functional encryp-
tion scheme (FE.Setup,FE.KeyGen, FE.Enc,FE.Dec), a prefix-puncturable
PRF (Definition 11), a semantically secure symmetric key encryption
(SK.KeyGen,SK.Enc,SK.Dec) and injective PRGs having the left half injectiv-
ity property Definition 5. PRG0 and PRG1 denote the left and the right part of
the output of this PRG.

The formal description of hard on average SVL instance sampler is provided in
Fig. 6. Internally this sampler generates the successor circuit to include functional
encryption secret keys for circuits provided in Fig. 7. Next we informally describe
the SVL instances considered.

A sampled instance implicitly defines a line graph where each node in the
graph is of the form (x, σ1, · · · , σκ) where σi = PrefixPunc(Si, x[i]) for all i ∈ [κ].
We say a node is valid if the above condition holds. The node (x, σ1, · · · , σκ) is
connected to (x + 1, σ′

1, · · · , σ′
κ) by an outgoing edge and to (x − 1, σ′′

1 , · · · , σ′′
κ)

by an incoming edge. The successor circuit on input (x, σ1, · · · , σκ) checks for
the validity of the node and if the node is valid it outputs (x + 1, σ′

1, · · · , σ′
κ).

The verification circuit on input (x, σ1, · · · , σκ, j) outputs if and only if x = j−1
and (x, σ1, · · · , σκ) is valid.

We now explain how the successor circuit works. The successor circuit is
described by a sequence of κ + 1 secret keys FSK1, · · · ,FSKκ+1 for appropriate
functions. There keys are generated corresponding to independent instances of
functional encryption. Along with the keys the successor circuit also contains a
ciphertext cφ that encrypts the empty string, φ, under PK1 along with the key
values Vφ and Wφ. Intuitively, the function key FSKi corresponds to a function

600 S. Garg et al.

- Sampled Ingredients:
1. Sample {Si}i∈[κ] and Kφ from KeyGenPPRF (1κ). Here Si’s is a key that

works for i bit inputs, namely PPRFSi : {0, 1}i → {0, 1}κ for all i ∈ [κ].
Similarly, Kφ works on inputs of length rand(κ) where rand(·) would be
specified later. Initialize Vi

φ = Si, Vφ = i∈[κ] V
i
φ and Wφ = ∅.

2. Sample (PKi, MSKi) ← FE.Setup(1κ) for all 1 ≤ i ≤ κ + 1.
3. Sample sk ← SK.KeyGen(1κ) and let Π ← SK.Encsk(π) and Λ ←

SK.Encsk(λ) where π = 0 (κ) and λ = 0 (κ). Here (·) and (·) are ap-
propriate length functions specified later.

4. Sample v ← {0, 1}2κ.
- Functional encryption ciphertext and keys to simulate obfuscation:

1. For each i ∈ [κ] generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Π) and
FSKκ+1 ← FE.KeyGen(MSKκ+1, Gv,Λ), where Fi,PKi+1,Π and Gv,Λ are
circuits described in Figure 7.

2. Let cφ = FE.EncPK1(φ,Vφ,Wφ, 0κ, 0)
- Source node: The source node xs is given by (0κ, σ1, · · · , σκ) where σi =
PPRFSi(0

i) for all i ∈ [κ].
- Successor Circuit: The successor circuit Succ in our setting takes as in-

put x, σ1, . . . , σκ and outputs x + 1, σ1, . . . , σκ if the associated signatures
σ1, · · · , σκ are valid. It proceeds as follows:
1. For i ∈ [κ] compute cx[i−1] 0, cx[i−1] 1 := FE.Dec(FSKi, cx[i−1]).

2. Obtain dx = ((α1, . . . , ακ), (βj , . . . , βκ)) as output of FE.Dec(FSKκ+1, cx).
Here j = f(x) where f(x) is the smallest j such that x = x[j] 1κ−j .

3. Output ⊥ if PRG0(σi) = αi for any i ∈ [κ] or if dx = ⊥.
4. If x = 1κ, output SOLVED.
5. For each i ∈ [j − 1] set σi = σi.
6. For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and σi as SK.Decγj ,··· ,γκ(βi),

decrypting βi encrypted under γj , . . . γκ.
7. Output (x + 1, σ1, · · · , σκ).

- Verification Circuit: The verification circuit Ver on input x, σ1, . . . , σκ, j
outputs 1 if Succ on input x, σ1, . . . , σκ doesn’t output ⊥ and x = j − 1 and
0 otherwise.

Fig. 6. Hard on average instance for SVL based on hardness of FE.

Fi that takes as input a binary string x of length i and outputs an encryption
of x‖0 and x‖1 under PKi+1. Additionally these ciphertexts, in addition to x‖0
and x‖1, also contain key values Vx‖0,Wx‖0 and Vx‖1,Wx‖1 respectively. Recall
from Sect. 5.1 that the keys in these sets are used to test validity of signatures
provides as input and to generate the new ones.

The successor circuit on an input of the form (x, σ1, · · · , σκ) does the fol-
lowing. It first obtains an encryption of x along with key values Vx and Wx

under the public key PKκ+1. This is done as follows. Start with cφ and decrypt
it using key FSK1 to obtain encryptions of 0 and 1. Choose one of them based
on which one is a prefix of x and continue the process. Repeating this process

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 601

Fi,PKi+1,Π

Hardcoded Values: i, PKi+1, Π .
Input: (x ∈ {0, 1}i−1, Vx,Wx, Kx, sk, mode)

1. If (mode = 0) then output FE.EncPKi+1(x 0,Vx 0,Wx 0, Kx 0, sk,mode; Kx 0)
and FE.EncPKi+1(x 1,Vx 1,Wx 1, Kx 1, sk,mode; Kx 1), where for b ∈ {0, 1},
Kx b = PrefixPunc(Kx, b 0) and Kx b = PrefixPunc(Kx, b 1) and
(Vx 0,Wx 0), (Vx 1,Wx 1) are computed using the efficient procedure
from the Computability Lemma (Lemma 3).

2. Else recover (x||0, cx 0) and (x 1, cx 1) from SK.Decsk(Π) and output cx 0

and cx 1.

Gv,Λ

Hardcoded Values: v, Λ
Input: x ∈ {0, 1}κ,Vx,Wx, Kx, sk,mode

1. If (PRG(x) = v) then output ⊥.
2. If mode = 0, (Below j = f(x) where f(x) is the largest j such that x =

x[j] 1κ−j .)
(a) For each i ∈ [κ], set αi = PRG0(σi) (obtained from Wi

x for i ≤ j and from
Vi

x for i > j).
(b) For each i ∈ {j, . . . , κ} set γi = PRG1(σi) and βi =

SK.Encγj ,··· ,γκ (Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γκ. (Using ran-
domness obtained by expanding Kx sufficiently.)

(c) Output ((α1, . . . , ακ), (βj , . . . , βκ))
3. Else recover (x, dx) from SK.Decsk(Λ) and output dx.

Fig. 7. Circuits for which functional encryption secret keys are given out.

κ times results in the desired ciphertext. Next decrypt the obtained ciphertext
using FSKκ+1 and it provides some information essential for checking validity of
provided input signatures and additional information to generate the signatures
for the next node. More details are provided in Figs. 6 and 7.
Setting rand(·) We set rand(κ) = 2κ + r(κ) where r(κ) is the maximum number
of random bits used for generating encryptions of Si,x[i]+1 under γj , · · · , γκ for
every i ∈ [j, κ].

Due to space constraints, we defer the proof of hardness of the sampled SVL
instance to the full version of the paper [GPS15].

602 S. Garg et al.

Acknowledgements. The first author would like to thank Sidharth Telang for useful
discussions on related topics. Research supported in part from DARPA Safeware Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, and NSF CRII Award 1464397.
The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the U.S.
Government.

References

[AB15] Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order
graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015)

[ABSV15] Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selec-
tive to adaptive security in functional encryption. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677.
Springer,
Heidelberg (2015)

[AJ15] Ananth, P., Jain, A.: Indistinguishability obfuscation from compact func-
tional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015)

[AJS15] Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically:
Indistinguishability obfuscation from non-compact functional encryption.
IACR Cryptology ePrint Archive, 2015:730 (2015)

[AKV04] Abbot, T., Kane, D., Valiant, P.: On Algorithms for Nash Equilibria
(2004). http://web.mit.edu/tabbott/Public/final.pdf

[BCC+14] Bitansky, N., Canetti, R., Cohn, H., Goldwasser, S., Kalai, Y.T., Paneth,
O., Rosen, A.: The impossibility of obfuscation with auxiliary input or a
universal simulator. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 71–89. Springer, Heidelberg (2014)

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 6 (2012)

[BGI14] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
501–519. Springer, Heidelberg (2014)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014)

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a nash equilibrium. In: FOCS (2015)

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)

[BV15a] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. In: 56th FOCS, pp. 171–190. IEEE Computer Soci-
ety Press (2015)

http://web.mit.edu/tabbott/Public/final.pdf

Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium 603

[BV15b] Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from
functional encryption. IACR Cryptology ePrint Archive, 2015:163 (2015)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[CDT09] Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing
two-player nash equilibria. J. ACM 56(3), 1–57 (2009)

[DGP09] Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of
computing a nash equilibrium. Commun. ACM 52(2), 89–97 (2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th FOCS, pp. 40–49, Berkeley, CA, USA. IEEE Computer
Society Press, 26–29 October 2013

[GGHZ16] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional
encryption from multilinear maps. In: TCC (2016)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GK05] Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with aux-
iliary input. In: FOCS, pp. 553–562 (2005)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way func-
tions. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, Seattle, Washigton, USA, pp. 25–32, 14–17 May 1989

[GLSW15] Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfus-
cation from the multilinear subgroup elimination assumption. In: 56th
FOCS, pp. 151–170. IEEE Computer Society Press (2015)

[GMS16] Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulner-
abilities of multilinear maps. IACR Cryptology ePrint Archive, 2016:390
(2016)

[GPS15] Garg, S., Pandey, O., Srinivasan, A.: On the exact cryptographic hard-
ness of finding a nash equilibrium. Cryptology ePrint Archive, Report
2015/1078 (2015). http://eprint.iacr.org/2015/1078

[GPSZ16] Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-
exponential barrier in obfustopia. Cryptology ePrint Archive, Report
2016/102 (2016). http://eprint.iacr.org/2016/102

[GS16] Garg, S., Srinivasan, A.: Unifying security notions of functional encryp-
tion. Cryptology ePrint Archive, Report 2016/524 (2016). http://eprint.
iacr.org/

[HY16] Hubácek, P., Yogev, E.: Hardness of continuous local search: query com-
plexity and cryptographic lower bounds. Electron. Colloquium Comput.
Complex. (ECCC) 23, 63 (2016)

[Jer12] Emil Jerábek. Integer factoring and modular square roots. CoRR
abs/1207.5220 (2012)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegat-
able pseudorandom functions and applications. In: 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2013,
Berlin, Germany, pp. 669–684, 4–8 November 2013

http://eprint.iacr.org/2015/1078
http://eprint.iacr.org/2016/102
http://eprint.iacr.org/
http://eprint.iacr.org/

604 S. Garg et al.

[MP91] Megiddo, N., Papadimitriou, C.H.: On total functions, existence theo-
rems and computational complexity. Theor. Comput. Sci. 81(2), 317–324
(1991)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg
(2003)

[Nas51] Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
[O’N10] O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology

ePrint Archive, 2010:556 (2010)
[Pap94] Papadimitriou, C.H.: On the complexity of the parity argument and other

inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)
[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from

semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer,
Heidelberg (2014)

[RSS16] Rosen, A., Segev, G., Shahaf, I.: Can PPAD hardness be based on stan-
dard cryptographic assumptions? Electron. Colloquium Comput. Com-
plex. (ECCC) 23, 59 (2016)

[SW14] Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deni-
able encryption, and more. In: Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, 31 May–03 June 2014, pp. 475–484
(2014)

[Zim15] Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467.
Springer, Heidelberg (2015)

Asymmetric Cryptography
and Cryptanalysis II

Cryptanalysis of GGH15 Multilinear Maps

Jean-Sébastien Coron1(B), Moon Sung Lee1, Tancrède Lepoint2,
and Mehdi Tibouchi3

1 University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu
2 CryptoExperts, Paris, France

3 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. We describe a cryptanalysis of the GGH15 multilinear maps.
Our attack breaks the multipartite key-agreement protocol in polyno-
mial time by generating an equivalent user private key; it also applies to
GGH15 with safeguards. We also describe attacks against variants of the
GGH13 multilinear maps proposed by Halevi (ePrint 2015/866) aiming
at supporting graph-induced constraints, as in GGH15.

1 Introduction

Multilinear Maps. For the past couple of years, cryptographic multilinear
maps have found numerous applications in the design of cryptographic proto-
cols, the most salient example of which is probably the construction of indistin-
guishability obfuscation (iO) [GGH+13b]. The first multilinear maps candidate
(GGH13) was described by Garg, Gentry and Halevi [GGH13a] from ideal lat-
tices. It was then followed by another candidate (aka, CLT13) due to Coron, Lep-
oint and Tibouchi [CLT13] using the same techniques but over the integers, and
later by a third candidate (GGH15) by Gentry, Gorbunov and Halevi [GGH15],
related to the homomorphic encryption scheme from [GSW13].

Unfortunately, these candidates do not rely on well-established hardness
assumptions, and recent months have witnessed a number of attacks (includ-
ing [CHL+15,CGH+15,HJ16,BGH+15,PS15,CFL+16]) showing that they fail
to meet a number of desirable security requirements, and that they cannot be
used to securely instantiate such and such protocols. Some attempts to protect
against these attacks have also known a similar fate [CLT15,BGH+15]. The secu-
rity of the constructions based on these multilinear maps is currently unclear to
the community [Hal15]. While two recent works [CGH+15,MSZ16] have shown
polynomial-time attacks against some obfuscation candidates, many iO candi-
dates remain unaffected by the attacks proposed so far. The same cannot be
said for the more immediate application of multilinear maps that is one-round
multipartite key agreement.

One-Round Multipartite Key-Agreement Protocol. Since its discovery
in 1976, the Diffie–Hellman protocol [DH76] is one of the most widely used
c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 607–628, 2016.
DOI: 10.1007/978-3-662-53008-5 21

608 J.-S. Coron et al.

cryptographic protocol to create a common secret between two parties. A gen-
eralization of this one-round protocol to three parties was proposed in 2000 by
Joux [Jou00] using cryptographic bilinear maps; it was later extended to k ≥ 4
parties assuming the existence of a cryptographic (k − 1)-linear map by Boneh
and Silverberg [BS02]. In a nutshell, the protocol works as follows: assuming
some public parameters are shared by all the parties, each party broadcasts
some data and keeps some data secret, and then by combining their secret data
with the other parties’ published values using the multilinear map, they can
derive a shared common secret key.

The first candidates for a k-partite Diffie–Hellman key-agreement protocol for
arbitrary k were described in [GGH13a,CLT13] using respectively the GGH13
and CLT13 multilinear maps candidates. Unfortunately, the protocols were later
shown to be insecure in [HJ16,CHL+15]: using the public parameters and the
broadcast data, an eavesdropper can recover the shared common secret key in
polynomial time.

The GGH15 Key-Agreement Protocol. Since the third proposed multilin-
ear maps scheme, GGH15, does not fit the same graded encoding framework as
the earlier candidates, one needs new constructions to use it to instantiate cryp-
tographic protocols. And the first such application was again a Diffie–Hellman
key-agreement protocol [GGH15, Sect. 5.1]. To avoid similar attacks as the one
that targeted GGH13 and CLT13, based on encodings of zero, the protocol was
designed in such a way that the adversary is never given encodings of the same
element that could be subtracted without doing the full key-agreement compu-
tation. Namely, each party i has a directed path of matrices Ai,1, . . . ,Ai,k+1

all sharing the same end-point Ai,k+1 = A0, and has a secret value si. She can
then publish encodings of si on the chains of the other parties in a “round robin”
fashion, i.e. si is encoded on the j-th edge of the chain of the party i′ = j − i+1,
with index arithmetic modulo k. The graph for 3 parties is illustrated in Fig. 1.

A0

A1,3A1,2A1,1

A2,3A2,2A2,1

A3,3A3,2A3,1

s1 s2

s3

s3 s1 s2

s2 s3

s1

Fig. 1. Graph for a 3-partite key-agreement protocol with GGH15 multilinear maps.

On the i-th chain, Party i will then be able to multiply these encodings (the
one he kept secret and the ones published by the other parties) to get an encoding

Cryptanalysis of GGH15 Multilinear Maps 609

of
∏

j sj relative to the path Ai,1 � A0. Now, since the encodings of si cannot
be mixed before the end-point A0, it seems difficult to obtain an encoding of 0
on an edge in the middle of the graph to mount “zeroizing attacks” [GGH15].

Halevi’s Candidate Key-Agreement Protocols. As no attack was known
on GGH15 multilinear maps and in an attempt to reinstate a key-agreement pro-
tocol for GGH13, Halevi recently proposed, on the Cryptology ePrint Archive,
two variants of GGH13 supporting a similar key-agreement protocol [Hal15].1

The first variant uses the “asymmetric” GGH13 scheme to handle the graph
structure [Hal15, Sect. 7]. Namely, in basic GGH13 each encoding is multi-
plicatively masked by a power zi of a secret mask z; in asymmetric GGH13,
the encodings can be masked by powers of multiple zj ’s. Therefore, in this
new key-agreement protocol candidate, the public encodings are now associated
with independent masks zi,j ’s such that their product yields the same value Z,
i.e.

∏
j zi,j = Z for all i (so that the final encoding shall extract to the same

shared key). The graph for 3 parties is illustrated in Fig. 2.

Z

z1,1
·z1,2z1,1

z3,1
·z3,2z3,1

z2,1
·z2,2z2,11

s1

s2

s
3

s
1

s2

s3

s1 s2 s3

Fig. 2. Multipartite key agreement from asymmetric GGH13, with 3 parties, from
[Hal15, Sect. 7].

Once again, the fact that the encodings of the same value si are multiplied
with different masks gives hope that no encoding of 0 multiplied by a value
other than Z can be obtained, and therefore that zeroizing attacks are impossi-
ble [GGH13a,CGH+15].

A second variant of GGH13, which we refer to as Graph-GGH13, mimics the
structure of GGH15 encodings more closely and is described in [Hal15, Sect. 6].
An encoding c ∈ α + gR relative to a path u � v is now a matrix C̃ = P−1

u ·
C · Pv, where C ∈ Z

n×n
q is the multiply-by-c matrix, and the Pw’s are secret

random matrices. In the key-agreement protocol, each party i has a directed
path of matrices P i,1, . . . ,P i,k+1 all sharing the same end-point P i,k+1 = P0

1 As mentioned in the last remark of the paper, although the key-agreement protocol
can be described also based on CLT13, the attacks from [CGH+15] can be used to
break it.

610 J.-S. Coron et al.

and the same start-point P i,1 = P1, and has a secret value si. She can then
publish encodings of si on the chains of the other parties in a “round robin”
fashion. The graph for 3 parties is illustrated in Fig. 3.

P 0

P 1,3P 1,2

P 2,3P 2,2P 1

P 3,3P 3,2

s1

s2

s
3

s3 s1 s2

s
2

s3

s1

Fig. 3. Multipartite key agreement from GGH13 with graph constraints, with 3 parties,
from [Hal15, Sect. 6].

And here again, the fact that the encodings corresponding to the same si are
multiplied on the left and on the right by completely random matrices P i,j makes
it difficult to cancel them out and obtain an encoding of 0 without evaluating
the full “chains” (that is, the operations of the key agreement itself).

Finally, in order to capture the intuition of what it means for an attacker
to break the scheme, Halevi defined, for both schemes, the “core computa-
tional task” of an adversary as recovering any basis of the (hidden) plaintext
space [Hal15, Sect. 2.2].

Our Contributions. Our main contribution is to describe a cryptanalysis of
the Diffie–Hellman key-agreement protocol when instantiated with GGH15 mul-
tilinear maps. Our attack makes it possible to generate an equivalent user private
key in polynomial time, which in turn allows to recover the shared session key.
Our attack proceeds in two steps: in the first step, we express the secret exponent
of one user as a linear combination of some other secret exponents correspond-
ing to public encodings, using a variant of the Cheon et al. attack [CHL+15].
This does not immediately break the protocol because the coefficients of the
linear combination can be large. In the second step, we use the previous linear
combination to derive an encoding equivalent to the user private encoding, by
correcting the error resulting from the large coefficients of the linear combina-
tion. Our attack also applies to GGH15 with safeguards; we extend the basic
attack by using another linear relation to estimate the error incurred from the
large coefficients, thus enabling to recover the shared session key.

In the full version of this paper [CLLT15], we also describe attacks that break
both variants of GGH13 proposed by Halevi in [Hal15]. Our attacks apply some
variant of the Cheon et al. attack [CHL+15] to recover a basis of the secret
plaintext space R/gR in polynomial time. This was considered as the “core
computational task of an attacker” in [Hal15].

Cryptanalysis of GGH15 Multilinear Maps 611

Source Code. A proof-of-concept implementation of our cryptanalysis of
GGH15, using the Sage [Dev16] mathematics software system, is available at:
http://pastebin.com/7kZHnTXY

2 The GGH15 Multilinear Map Scheme

We briefly recall the GGH15 multilinear map scheme; we refer to [GGH15] for
a full description. In the following we only consider the commutative variant
from [GGH15, Sect. 3.2], as only that commutative variant can be used in the
multipartite key-agreement protocol from [GGH15, Sect. 5.1].

2.1 GGH15 Multilinear Maps

The construction works over polynomial rings R = Z[x]/(f(x)) and Rq = R/qR
for some degree n irreducible integer polynomial f(x) ∈ Z[x] and an integer
q. The construction is parametrized by a directed acyclic graph G = (V,E).
To each node u ∈ V a random row vector Au ∈ Rm

q is assigned, where m is
a parameter. An encoding of a small plaintext element s ∈ R relative to path
u � v is a matrix with small coefficients D ∈ Rm×m such that:

Au · D = s · Av + E (mod q)

where E is a small error vector of dimension m with components in R; we refer to
[GGH15] for how such encoding D can be generated, based on a trapdoor sam-
pling procedure from [MP12]. Only small plaintext elements s ∈ R are encoded.
As in [Hal15] we use the row vector notation for Au, rather than the column
vector notation used in [GGH15].2 It is easy to see that two encodings D1 and
D2 relative to the same path u � v can be added; namely from:

Au · D1 =s1 · Av + E1 (mod q)
Au · D2 =s2 · Av + E2 (mod q)

we obtain:

Au · (D1 + D2) = (s1 + s2) · Av + E1 + E2 (mod q).

Moreover two encodings D1 and D2 relative to path u � v and v � w can
be multiplied to get an encoding relative to path u � w. Namely given:

Au · D1 = s1 · Av + E1 (mod q)
Av · D2 = s2 · Aw + E2 (mod q)

2 With the column vector notation, the corresponding equation in [GGH15] is D ·Au =
s ·Av + E (mod q).

http://pastebin.com/7kZHnTXY

612 J.-S. Coron et al.

we obtain by multiplying the matrix encodings D1 and D2:

Au · D1 · D2 = (s1 · Av + E1) · D2 (mod q)
= s1 · s2 · Aw + s1 · E2 + E1 · D2 (mod q)
= s1 · s2 · Aw + E ′ (mod q)

for some new error vector E ′. Since s1, E1, E2 and D2 have small coefficients,
E’ still has small coefficients (compared to q), and therefore the product D1 ·D2

is an encoding of s1 · s2 for the path u � w.
Finally, given an encoding D relative to path u � w and the vector Au,

extraction works by computing the high-order bits of Au · D . Namely we have:

Au · D = s · Aw + E (mod q)

for some small E , and therefore the high-order bits of Au · D only depend on
the secret exponent s.

Remark 1. As emphasized in [GGH15], only the plaintext space of the si’s is
commutative, not the space of the encoding matrices D i. The ability to multiply
the plaintext elements si in arbitrary order will be used in the multipartite key-
agreement protocol below.

2.2 The GGH15 Multipartite Key-Agreement Protocol

We briefly recall the multipartite key-agreement protocol from [GGH15,
Sect. 5.1]. We consider the protocol with k users. As illustrated in Fig. 4 for k = 3
users, each user i for 1 ≤ i ≤ k has a directed path of vectors Ai,1, . . . ,Ai,k+1,
all sharing the same end-point A0 = Ai,k+1. The i-th user will use the result-
ing chain to extract the session key. Each user i has a secret exponent si. Each
secret exponent si will be encoded in each of the k chains; the encoding of si on
the j-th chain for j �= i will be published, while the encoding of si on the i-th
chain will be kept private by user i. Therefore on the i-th chain only user i will
be able to compute the session key. The exponents si are encoded in a “round
robin” fashion; namely the i-th secret si is encoded on the chain of user j at
edge � = i + j − 1, with index arithmetic modulo k. Only the vectors Ai,1 for
1 ≤ i ≤ k are made public to enable extraction of the session-key; the others are
kept private. We recall the formal description of the protocol in the full version
of this paper [CLLT15].

We illustrate the protocol for k = 3 users. For the chain corresponding to
User 1, we have the following encodings:

A1,1 · D1,1 = s1 · A1,2 + F 1,1 (mod q)
A1,2 · D1,2 = s2 · A1,3 + F 1,2 (mod q)
A1,3 · D1,3 = s3 · A0 + F 1,3 (mod q)

Cryptanalysis of GGH15 Multilinear Maps 613

A0

A1,3A1,2A1,1

A2,3A2,2A2,1

A3,3A3,2A3,1

s1, (D1,1) s2,D1,2

s3 ,D
1,3

s3,D2,1 s1,D2,2 s2, (D2,3)

s2,D3,1 s3, (D3,2)

s1,
D3,3

Fig. 4. Graph of a key agreement between 3 parties for GGH15. The vertices contain
random vectors Aij , and encodings are represented on the edges. Each party is repre-
sented by a different color, keeps the encoding in parenthesis secret and publishes the
two other encodings.

where D1,2 and D1,3 are public while D1,1 is kept private by User 1. Therefore
User 1 can compute modulo q:

A1,1 · D1,1 · D1,2 · D1,3 = (s1 · A1,2 + F 1,1) · D1,2 · D1,3 (mod q)
= (s1 · s2 · A1,3 + s1 · F 1,2

+ F 1,1 · D1,2) · D1,3 (mod q).

Letting F̂ 1,2 := s1 · F 1,2 + F 1,1 · D1,2, we obtain:

A1,1 · D1,1 · D1,2 · D1,3 =
(
s1 · s2 · A1,3 + F̂ 1,2

)
· D1,3 (mod q)

= s1 · s2 · s3 · A0 + s1 · s2 · F 1,3 + F̂ 1,2 · D1,3 (mod q).

Since s1, s2 and s3 are small and F 1,3, F̂ 1,2 and D1,3 have small components,
User 1 can extract the most significant bits corresponding to s1 · s2 · s3 · A0.
Similarly User 2 will compute the session key using the following chain, where
D2,1 and D2,2 are public while D2,3 is private to User 2:

A2,1 · D2,1 = s3 · A2,2 + F 2,1 (mod q)
A2,2 · D2,2 = s1 · A2,3 + F 2,2 (mod q)
A2,3 · D2,3 = s2 · A0 + F 2,3 (mod q).

Namely User 2 can compute:

A2,1 · D2,1 · D2,2 · D2,3 = (s3 · s1 · A2,3 + s3 · F 2,2

+ F 2,1 · D2,2) · D2,3 (mod q)
= s3 · s1 · s2 · A0 + F (mod q)

for some small vector F , and extract the same most significant bits corresponding
to s1 · s2 · s3 · A0; the same holds for User 3.

614 J.-S. Coron et al.

The previous encodings are generated by random linear combination of public
encodings, corresponding to secret exponents ti,� for 1 ≤ � ≤ N , for large enough
N . More precisely, for each 1 ≤ i ≤ k one generates random small plaintext
elements ti,� for 1 ≤ � ≤ N , which are then encoded on all chains j at edge
i′ = i+ j −1 (with index modulo k), by C j,i′,�. This means that for k = 3 users,
we have the following encodings corresponding to User 1:

A1,1 · C 1,1,� = t1,� · A1,2 + E1,1,� (mod q)
A2,2 · C 2,2,� = t1,� · A2,3 + E2,2,� (mod q)
A3,3 · C 3,3,� = t1,� · A0 + E3,3,� (mod q)

and the tuple (D1,1,D2,2,D3,3) is generated by linear combination of the tuple
(C 1,1,�,C 2,2,�,C 3,3,�), so that the matrices D1,1, D2,2 and D3,3 encode the
same secret exponent s1; the same holds for users 2 and 3. We refer to the full
version of this paper [CLLT15] for the formal description of the protocol.

3 Cryptanalysis of GGH15 Without Safeguards

In the following we describe a cryptanalysis of the multipartite key-agreement
protocol based on GGH15 multilinear maps recalled in the previous section.
Heuristically our attack recovers the session-key from public element in polyno-
mial-time. Our attack proceeds in two steps.

1. In the first step, we are able to express one secret exponent s1 as a linear
combination of the other secret exponents t1,�, using a variant of the Cheon
et al. attack [CHL+15]. However this does not immediately break the proto-
col, because the coefficients are not small.

2. In the second step, we compute an equivalent of the private encoding of User 1
from the previous linear combination, by correcting the error due to the large
coefficients. This breaks the key-exchange protocol.

3.1 Description with 3 Users

For simplicity we first consider the protocol with only 3 users; the extension to
k ≥ 3 users is relatively straightforward and described in the full version of this
paper [CLLT15]. Therefore we consider the following 3 rows corresponding to
the 3 users:

A1,1 · D1,1 = s1 · A1,2 + F 1,1 (mod q) A1,1 · C 1,1,� = t1,� · A1,2 + E1,1,� (mod q)
A1,2 · D1,2 = s2 · A1,3 + F 1,2 (mod q) A1,2 · C 1,2,� = t2,� · A1,3 + E1,2,� (mod q)
A1,3 · D1,3 = s3 · A0 + F 1,3 (mod q) A1,3 · C 1,3,� = t3,� · A0 + E1,3,� (mod q)
A2,1 · D2,1 = s3 · A2,2 + F 2,1 (mod q) A2,1 · C 2,1,� = t3,� · A2,2 + E2,1,� (mod q)
A2,2 · D2,2 = s1 · A2,3 + F 2,2 (mod q) A2,2 · C 2,2,� = t1,� · A2,3 + E2,2,� (mod q)
A2,3 · D2,3 = s2 · A0 + F 2,3 (mod q) A2,3 · C 2,3,� = t2,� · A0 + E2,3,� (mod q)
A3,1 · D3,1 = s2 · A3,2 + F 3,1 (mod q) A3,1 · C 3,1,� = t2,� · A3,2 + E3,1,� (mod q)
A3,2 · D3,2 = s3 · A3,3 + F 3,2 (mod q) A3,2 · C 3,2,� = t3,� · A3,3 + E3,2,� (mod q)
A3,3 · D3,3 = s1 · A0 + F 3,3 (mod q) A3,3 · C 3,3,� = t1,� · A0 + E3,3,� (mod q)

Cryptanalysis of GGH15 Multilinear Maps 615

where all encodings C i,j,� and D i,j are public, except D1,1 which is private on
Row 1, D2,3 is private on Row 2, and D3,2 is private on Row 3. The corre-
sponding graph is illustrated in Fig. 4. Note that on each row we have used the
same index � for t1,�, t2,� and t3,�, but on a given row one can obviously compute
product of encodings for different indices.

First Step: Linear Relations. In the first step of the attack, we show that
we can express s1 as a linear combinations of the t1,�’s. For this we consider the
rows 2 and 3, for which the encodings D2,2 and D3,3 corresponding to s1 are
public. In the remaining of the attack, we always consider a fixed index � = 1
for the encodings corresponding to t3,�, and for simplicity we write t3 := t3,1,
C 1,3 := C 1,3,1, C 2,1 := C 2,1,1 and C 3,2 := C 3,2,1.

Since we always work with the same t3, on Row 2 we define the product
encodings Ĉ 2,2,� := C 2,1 ·C 2,2,�, and on Row 3 we define the product encodings
Ĉ 3,2,� := C 3,1,� · C 3,2; recall that we use a fixed index for t3. Therefore we can
write:

A2,1 · Ĉ 2,2,� = t1,� · t3 · A2,3 + Ê2,2,� (mod q) (1)
A2,3 · C 2,3,� = t2,� · A0 + E2,3,� (mod q)

A3,1 · Ĉ 3,2,� = t2,� · t3 · A3,3 + Ê3,2,� (mod q)
A3,3 · C 3,3,� = t1,� · A0 + E3,3,� (mod q)

for some small error vectors Ê2,2,� and Ê3,2,�.
For simplicity of notations, we first consider a fixed index i for the encodings

corresponding to t1,i, and we write t1 := t1,i, Ĉ 2,2 := Ĉ 2,2,i and C 3,3 := C 3,3,i.
Similarly we consider a fixed index j for the encodings corresponding to t2,j and
we write t2 := t2,j , C 2,3 := C 2,3,j and Ĉ 3,2 := Ĉ 3,2,j . We use similar notations
for the corresponding error vectors.

All previous equations hold modulo q only. To get a result over R instead
of only modulo q, we compute the difference between two rows, for the same
product of secret exponents. More precisely, we compute:

ω = A2,1 · Ĉ 2,2 · C 2,3 − A3,1 · Ĉ 3,2 · C 3,3 (2)

= t1 · t3 · t2 · A0 + t1 · t3 · E2,3 + Ê2,2 · C 2,3

− t2 · t3 · t1 · A0 − t2 · t3 · E3,3 − Ê3,2 · C 3,3

= t1 · t3 · E2,3 + Ê2,2 · C 2,3 − t2 · t3 · E3,3 − Ê3,2 · C 3,3. (3)

Namely the latter equation holds over R (and not only modulo q) because all
the terms in (3) have small coefficients; namely the only term t1 · t2 · t3 ·A0 with
large coefficients modulo q is canceled when doing the subtraction.

We have that ω is a vector of dimension m. Now an important step is to
restrict ourselves to the first component of ω. Namely in order to apply the

616 J.-S. Coron et al.

same technique as in the Cheon et al. attack, we would like to express ω as
the product of two vectors, where the left vector corresponds to User 1 and the
right vector corresponds to User 2. However due to the “round-robin” fashion
of exponent encodings, for this we would need to swap the product Ê3,2 · C 3,3

appearing in (3), since Ê3,2 corresponds to User 2 while C 3,3 corresponds to
User 1; this cannot be done if we consider the full vector ω. By restricting
ourselves to the first component of ω, the product Ê3,2 ·C 3,3 becomes a simple
scalar product that can be swapped; namely the scalar product of Ê3,2 by the
first column vector C ′

3,3 of the matrix C 3,3. We obtain the scalar:

ω = t1 · t3 · E2,3 + Ê2,2 · C ′
2,3 − t2 · t3 · E3,3 − C ′

3,3 · Ê3,2

where C ′
2,3 and C ′

3,3 are the first column vectors of C 2,3 and C 3,3 respectively,
both of dimension m; similarly E2,3 and E3,3 are the first components of E2,3

and E3,3 respectively.
We can now write ω as the scalar product of 2 vectors, the left one corre-

sponding only to User 1, and the right one corresponding only to User 2:

ω =
[
t1 Ê2,2 E3,3 C ′

3,3

]
·

⎡
⎢⎢⎣

t3 · E2,3

C ′
2,3

−t2 · t3
−Ê3,2

⎤
⎥⎥⎦ .

Note that the two vectors in the product have dimension 2m + 2.
As in the Cheon et al. attack [CHL+15], we can now extend ω to a matrix

by considering many left row vectors and many right column vectors. However
instead of a square matrix as in the Cheon et al. attack, we consider a rectan-
gular matrix with 2m + 3 rows and 2m + 2 columns. In Eq. (2), this is done by
considering 2m + 3 public encodings Ĉ 2,2,i and C 3,3,i corresponding to User 1,
and similarly 2m + 2 encodings C 2,3,j and Ĉ 3,2,j corresponding to User 2, for
1 ≤ i ≤ 2m+3 and 1 ≤ j ≤ 2m+2. More precisely we compute as previously over
R the following matrix elements, restricting ourselves to the first component:

(W)ij = A2,1 · Ĉ 2,2,i · C ′
2,3,j − A3,1 · Ĉ 3,2,j · C ′

3,3,i (4)

and as previously we can write:

(W)ij =
[
t1,i Ê2,2,i E3,3,i C ′

3,3,i

]
·

⎡
⎢⎢⎣

t3 · E2,3,j

C ′
2,3,j

−t2,j · t3
−Ê3,2,j

⎤
⎥⎥⎦ .

We obtain a (2m + 3) × (2m + 2) matrix W with:

W =

⎡
⎣ . . .

t1,i Ê2,2,i E3,3,i C ′
3,3,i

. . .

⎤
⎦

︸ ︷︷ ︸
A

·

⎡
⎢⎢⎣

t3 · E2,3,j

...
C ′

2,3,j ...−t2,j · t3
−Ê3,2,j

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

Cryptanalysis of GGH15 Multilinear Maps 617

where the matrix A has 2m+3 rows vectors, each of dimension 2m+2, and the
matrix B has 2m + 2 column vectors, each of dimension 2m + 2; hence B is a
square matrix.

By doing linear algebra, we can find a vector u over R of dimension 2m + 3
such that u · W = 0, which gives:

(u · A) · B = 0.

Heuristically with good probability the matrix B is invertible, which implies:

u · A = 0.

Since the first column of the matrix A is the column vector given by the t1,i’s,
such vector u gives a linear relation among the secret exponents t1,i.

Moreover, since the encodings D2,2 and D3,3 corresponding to s1 are public,
we can express s1 as a linear combination of the t1,i’s, over R. Namely we can
define as previously the product encoding D̂2,2 := C 2,1 · D2,2, with:

A2,1 · D̂2,2 = s1 · t3 · A2,3 + F̂ 2,2 (mod q)

for some small error vector F̂ 2,2, and we can now compute the same (W)ij as
in (4) but with D̂2,2 and D ′

3,3 instead of Ĉ 2,2,i and C ′
3,3,i, where D ′

3,3 is the
first column of D3,3. More precisely, we compute for all 1 ≤ j ≤ 2m + 2:

ωj = A2,1 · D̂2,2 · C ′
2,3,j − A3,1 · Ĉ 3,2,j · D ′

3,3

which gives as previously:

ωj =
[
s1 F̂ 2,2 F3,3 D ′

3,3

]
·

⎡
⎢⎢⎣

t3 · E2,3,j

C ′
2,3,j

−t2,j · t3
−Ê3,2,j

⎤
⎥⎥⎦ .

This implies that we can replace any row vector [t1,i Ê2,2,i E3,3,i C
′
3,3,i] in the

matrix A by the row vector:

[s1 F̂ 2,2 F3,3 D ′
3,3] (5)

where D ′
3,3 is the first column of D3,3, and F3,3 is the first component of F 3,3.

Using the previous technique, we can therefore obtain a linear relation between
s1 and the t1,i’s over R. More precisely, with overwhelming probability, such a
relation can be put in the form:

μ · s1 =
2m+2∑
i=1

λi · t1,i (6)

with μ ∈ Z and λ1, . . . , λ2m+2 ∈ R. Indeed, we obtain such a relation by com-
puting the kernel of the matrix analogous to W above in echelon form over the

618 J.-S. Coron et al.

fraction field of R, which gives the kernel of the corresponding matrix A (assum-
ing that B is invertible). Unless a minor of that matrix vanishes, which happens
with only negligible probability, this gives a relation where the coefficient of s1
is 1 and the other coefficients are in the fraction field R ⊗Z Q of R. By clearing
denominators, we get an expression of the form (6).

Then, by considering exactly one additional t1,i (say t1,2m+3) and carry-
ing out the same computations with indices i = 2, . . . , 2m + 3 instead of
i = 1, . . . , 2m + 2, we get a second relation:

ν · s1 =
2m+3∑
i=2

λ′
i · t1,i.

If the integers μ and ν are relatively prime, which happens with significant
probability3, we can apply Bézout’s identity to obtain a linear relation in R
where the coefficient of s1 is 1:

s1 =
2m+3∑
i=1

αi · t1,i. (7)

Note that we have the same linear relations for the other components of the
vector (5) corresponding to s1, namely:

F̂ 2,2 =
2m+3∑
i=1

αi · Ê2,2,i, F3,3 =
2m+3∑
i=1

αi · E3,3,i, D ′
3,3 =

2m+3∑
i=1

αi · C ′
3,3,i. (8)

Second Step: Equivalent Private-Key. In this second step, we show how to
publicly compute an encoding equivalent to D1,1, which is private to User 1; this
will break the key-agreement protocol. In the first step, we had considered rows
2 and 3 to derive the linear relations (7) and (8); we now consider Row 1. On
Row 1, the encodings D1,2 and D1,3 are public, so we can define as previously
the product encoding D̂1,3 = D1,2 · D1,3, which gives:

A1,2 · D̂1,3 = s2 · s3 · A0 + F̂ 1,3 (mod q)

for some small error vector F̂ 1,3. Recall that the encoding D1,1 is private to
User 1, with:

A1,1 · D1,1 = s1 · A1,2 + F 1,1 (mod q). (9)

Therefore only User 1 can privately compute:

A1,1 · D1,1 · D̂1,3 = s1 · s2 · s3 · A0 + s1 · F̂ 1,3 + F 1,1 · D̂1,3 (mod q) (10)

and extract the high order bits of s1 ·s2 ·s3 ·A0 mod q to generate the session key.
3 Heuristically, it is the probability that two random elements of R have coprime

norms, since the rational integer denominator of an element of the fraction field has
the same prime factors as its norm. For R = Z[x]/(x2n +1), that probability is close
to 3/4: see the full version of this paper [CLLT15].

Cryptanalysis of GGH15 Multilinear Maps 619

We cannot compute the previous equation since D1,1 is private. However
since we know a linear relation (7) between s1 and the t1,i’s, and the encodings
C 1,1,i corresponding to t1,i are public, with:

A1,1 · C 1,1,i = t1,i · A1,2 + E1,1,i (mod q)

it is then natural to compute:

D̃1,1 =
2m+3∑
i=1

αi · C 1,1,i,

which gives:

A1,1 · D̃1,1 = s1 · A1,2 +
2m+3∑
i=1

αi · E1,1,i (mod q). (11)

The difference with (9) is that the error term
∑2m+3

i=1 αi ·E1,1,i is not necessarily
small since the coefficients αi can be large. Therefore if we compute:

A1,1 ·D̃1,1 ·D̂1,3 = s1 ·s2 ·s3 ·A0 +s1 · F̂ 1,3 +

(
2m+3∑
i=1

αi · E1,1,i

)
·D̂1,3 (mod q)

(12)
then as opposed to (10) this does not reveal the high-order bits of s1 · s2 ·
s3 · A0 mod q. In the following, we show how to derive an approximation of∑2m+3

i=1 αi · E1,1,i over R, in order to correct the error in (11) and break the
protocol. This is the second part of our attack.

As in the first step of the attack, to get equations over R and not only modulo
q, we consider the difference between two rows, this time the difference between
rows 1 and 3 (instead of rows 2 and 3). We have the public encodings:

A1,1 · C 1,1,� = t1,� · A1,2 + E1,1,� (mod q)

A1,2 · Ĉ 1,3,� = t2,� · t3 · A0 + Ê1,3,� (mod q)

A3,1 · Ĉ 3,2,� = t2,� · t3 · A3,3 + Ê3,2,� (mod q)
A3,3 · C 3,3,� = t1,� · A0 + E3,3,� (mod q)

where we let Ĉ 1,3,� := C 1,2,� · C 1,3, for some small error vector Ê1,3,�. As
previously we can compute over R, restricting ourselves to the first component,
where Ĉ

′
1,3,j and C ′

3,3,i are the first columns of Ĉ 1,3,j and C 3,3,i respectively:

ωij = A1,1 · C 1,1,i · Ĉ ′
1,3,j − A3,1 · Ĉ 3,2,j · C ′

3,3,i

= t1,i · Ê1,3,j + E1,1,i · Ĉ ′
1,3,j − t2,j · t3 · E3,3,i − Ê3,2,j · C ′

3,3,i.

620 J.-S. Coron et al.

We can therefore compute over R, using the coefficients αi from the linear rela-
tion (7):

Ωj =
2m+3∑
i=1

αi ·
(
A1,1 · C 1,1,i · Ĉ ′

1,3,j − A3,1 · Ĉ 3,2,j · C ′
3,3,i

)
(13)

=
2m+3∑
i=1

αi ·
(
t1,i · Ê1,3,j + E1,1,i · Ĉ ′

1,3,j − t2,j · t3 · E3,3,i − Ê3,2,j · C ′
3,3,i

)
.

Using the linear relations (7) and (8), we obtain:

Ωj = s1 · Ê1,3,j − t2,j · t3 · F3,3 − Ê3,2,j · D ′
3,3 +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĉ ′

1,3,j

which gives:

Ωj = uj +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĉ ′

1,3,j (14)

for some small uj in R. In summary we obtain a large scalar Ωj because the
coefficients αi in (13) are large, but eventually what makes Ωj large is only
the contribution from (

∑2m+3
i=1 αi · E1,1,i) · Ĉ ′

1,3,j ; namely because of the linear
relations (7) and (8) the other terms remain small.

We can now write (14) in vectorial form, where we let Ĉ
′′
1,3 be the square

matrix whose columns are the column vectors Ĉ
′
1,3,j for 1 ≤ j ≤ m; recall that

the Ĉ
′
1,3,j are the first column vectors of the matrix encodings Ĉ 1,3,j . We obtain

a row vector Ω of dimension m, where:

Ω = u +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĉ ′′

1,3 (15)

where Ĉ
′′
1,3 is a public square matrix of dimension m.

Now the crucial observation is that because the vector u has small compo-
nents, we can get an approximation of the vector

∑2m+3
i=1 αi · E1,1,i by reduc-

ing the vector Ω modulo the matrix Ĉ
′′
1,3, assuming that Ĉ

′′
1,3 is an invertible

matrix, which heuristically holds with good probability. This can be done by
solving over the fraction field of R the linear system Ω = y · Ĉ ′′

1,3 and then
rounding to R the coefficients of y . Heuristically the vector E = �y� should be
a good approximation of

∑2m+3
i=1 αi · E1,1,i; namely letting:

E ′ =
2m+3∑
i=1

αi · E1,1,i − E (16)

Cryptanalysis of GGH15 Multilinear Maps 621

we get using y = Ω · Ĉ ′′−1

1,3 :

E ′ = (Ω − u) · Ĉ ′′−1

1,3 − E

= y − E − u · Ĉ ′′−1

1,3

and therefore since y − E and u are small, the difference vector E’ should be
small if the norm of the transpose of the matrix Ĉ

′′−1

1,3 remains small. We know

that such a bound holds with probability close to 1 if we model Ĉ
′′
1,3 as a random

matrix (e.g. Rudelson [Rud08] provides a bound of the form O(m3/2)), and so
we expect E’ to be small (compared to q) for randomly generated encodings,
since in the GGH15 parameter selection one takes m = Θ(log q).

Combining (11) and (16), we get:

A1,1 · D̃1,1 − E = s1 · A1,2 + E ′ (mod q)

for a small vector E ′. Note that the previous equation is very similar to the
original equation for the private encoding D1,1:

A1,1 · D1,1 = s1 · A1,2 + F 1,1 (mod q)

the only difference being the publicly computed correction vector E . Therefore
the pair (D̃1,1,E) gives us an equivalent of the private encoding D1,1, which
breaks the protocol. More precisely we can eventually compute from public para-
meters:(

A1,1 · D̃1,1 − E
)

· D1,2 · D1,3 =
(
s1 · A1,2 + E ′) · D̂1,3 (mod q)

= s1 · s2 · s3 · A0

+ s1 · F̂ 1,3 + E ′ · D̂1,3 (mod q).

Since all the error terms are small, this enables to extract the high-order bits of
s1 · s2 · s3 · A0 mod q, and breaks the protocol.

3.2 Extension to k ≥ 3 Users

The extension of our attack to k ≥ 3 users is relatively straightforward and
described in the full version of this paper [CLLT15].

4 Cryptanalysis of GGH15 with Safeguards

In [GGH15, Sect. 5.1] two safeguards for multipartite key agreement based on
GGH15 multilinear maps are described:

1. Kilian-style randomization of the encodings, where C is replaced by C̄ :=
R−1 ·C ·R′ using the randomizer matrices R, R’ belonging to two adjacent
nodes.

2. Choosing the first encoding matrix in each chain to have large entries.

In the following, we show how to extend our previous attack when those two
safeguards are used.

622 J.-S. Coron et al.

4.1 First Safeguard: Kilian-Style Randomization of the Encodings

The following safeguard for GGH15 multilinear maps is described in [GGH15],
using Kilian-type randomization [Kil88]. For each internal node v in the graph
one can choose a random invertible m × m matrix Rv modulo q, and for the
sinks and sources we set Rv = I . Then each encoding C relative to path u � v
is replaced by a masked encoding C̄ := R−1

u ·C ·Rv. Concretely, in the GGH15
key-agreement protocol, instead of publishing encodings C i,j with:

Ai,j · C i,j,� = t1+(j−i mod k),� · Ai,j+1 + E i,j,� (mod q)

one would only publish the masked encodings modulo q:

C̄ i,j,� := R−1
i,j · C i,j,� · Ri,j+1 (17)

with Ri,1 = Ri,k+1 = I for all i; the same masking is applied to the encodings
D i,j . Since the product of encoding on any source-to-sink path remains the same,
the same value is eventually extracted. Namely for all i we have:

k∏
j=1

C̄ i,j =
k∏

j=1

C i,j

and therefore exactly the same session-key as before is computed by all users.

4.2 Second Safeguard: First Encodings with Large Entries

The second safeguard described in [GGH15, Sect. 5.1] consists in choosing the
first encodings C i,1 in each chain to have large entries modulo q, instead of
small entries. Namely the first encoding C i,1 does not contribute in the error
term when computing the session-key, so it can have large entries.

4.3 Cryptanalysis of GGH15 with both Safeguards

In this section we show how to extend our attack from Sect. 3 when both safe-
guards are used. Note the first step of our attack still applies, since in the first
step we are only using product of encodings from source to sink. Namely in
Eq. (4) exactly the same value (W)ij is obtained when using masked encodings.
Therefore we can still derive the same linear relation between secret exponents
as in (7) and (8).

However the second step of our attack does not apply directly, since our
second step requires the knowledge of the matrix Ĉ

′′
1,3 in (15), which is obtained

from the first columns of the encodings Ĉ 1,3,j = C 1,2,j · C 1,3. Since these are
partial products only, such partial products would be masked by the unknown
randomization matrix R−1

1,2 modulo q, hence the matrix Ĉ
′′
1,3 is unknown.

We can however adapt our second step as follows. For simplicity we keep the
same notations as previously, that is we describe our extended attack in term of

Cryptanalysis of GGH15 Multilinear Maps 623

the original encodings C i,j,�, instead of the masked encodings C̄ i,j,� from (17);
in that case we are only allowed to use products of encodings from source to
sink. We first start with a slightly different equation from (15):

Ω = u +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĝ ′′

1,3 (18)

where Ĝ
′′
1,3 is a matrix whose columns are the first column vectors of D1,2 ·C 1,3,j

for 1 ≤ j ≤ 2m + 2. Note that in (12) the error term that we must estimate to
recover the session key is:

E =

(
2m+3∑
i=1

αi · E1,1,i

)
· D̂1,3 (19)

Using a similar approach as in the attack first step, our approach consists in
finding a vector x with coefficients in the fraction field R ⊗Z Q of R such that:

D̂
′
1,3 = Ĝ

′′
1,3 · x

where D̂
′
1,3 is the first column vector of D̂1,3. Applying the vector x on (18)

and rounding in R, we obtain:

�Ω · x� = �u · x� +

(
2m+3∑
i=1

αi · E1,1,i

)
· D̂ ′

1,3

Since the components of u (over R) are small, and moreover the coefficients of
x (over R ⊗Z Q) are heuristically also small, the scalar �u · x� in R is small
compared to q, and therefore we obtain a good estimate of the first component
of the error vector E from (19), which enables to recover the first component of
the session key and breaks the scheme.4

4.4 Detailed Description

First Step: Linear Relations in R. The first step of our attack is exactly the
same as previously. Namely as mentioned previously the first step of our previous
attack still applies, since in the first step we are only using product of encodings
from source to sink. More precisely in Eq. (4) exactly the same value (W)ij is
obtained when using masked encodings, and therefore we can still derive the
same linear relations as in (7) and (8):

s1 =
2m+3∑
i=1

αi · t1,i, F̂ 2,2 =
2m+3∑
i=1

αi · Ê2,2,i,

F3,3 =
2m+3∑
i=1

αi · E3,3,i, D ′
3,3 =

2m+3∑
i=1

αi · C ′
3,3,i. (20)

4 Other components of the session key can be also obtained analogously.

624 J.-S. Coron et al.

Note that as opposed to Sect. 3 we don’t know the value of the encodings D ′
3,3

and C ′
3,3,i, since they are masked by the Rij matrices; we only recover the

coefficients αi in R.

Second Step: Another Linear Relation. In the second step, our goal is to
find a vector x with coefficients in the fraction field R ⊗Z Q of R such that:

D ′
1,3 =

2m+2∑
i=1

xi · C ′
1,3,i

where D ′
1,3 and C ′

1,3,i are the first column vectors of D1,3 and C 1,3,i respec-
tively. We show that this can be done using the same approach as in the attack
first step.

Namely letting Ĉ 1,2,� := C 1,1,� · C 1,2 where we let C 1,2 := C 1,2,1 corre-
sponding to t2 := t2,1, we obtain:

A1,1 · Ĉ 1,2,� = t1,� · t2 · A1,3 + Ê1,2,� (mod q)
A1,3 · C 1,3,� = t3,� · A0 + E1,3,� (mod q)

Similarly letting Ĉ 2,3,� := C 2,2,� · C 2,3 where C 2,3 := C 2,3,1, we get:

A2,1 · C 2,1,� = t3,� · A2,2 + E2,1,� (mod q)

A2,2 · Ĉ 2,3,� = t1 · t2,� · A0 + Ê2,3,� (mod q)

We can therefore compute the following matrix elements in R, restricting our-
selves as previously to the first component of the vectors:

(W)ij = A1,1 · Ĉ 1,2,i · C ′
1,3,j − A2,1 · C 2,1,j · Ĉ ′

2,3,i

= t1,i · t2 · E1,3,j + Ê1,2,i · C ′
1,3,j − t3,j · Ê2,3,i − E2,1,j · Ĉ ′

2,3,i

for all 1 ≤ i ≤ 2m + 2 and 1 ≤ j ≤ 2m + 2, where C ′
1,3,j and Ĉ

′
2,3,i are the first

column vectors of C 1,3,j and Ĉ 2,3,i respectively. This gives:

(W)ij =
[
t1,i t2 Ê1,2,i Ê2,3,i Ĉ

′
2,3,i

]
·

⎡
⎢⎢⎣

E1,3,j

C ′
1,3,j

−t3,j

−E2,1,j

⎤
⎥⎥⎦ .

Moreover, since the encodings D1,3 and D2,1 corresponding to s3 on rows 1 and
2 are public, we can additionally compute the corresponding vector:

(V)i = A1,1 · Ĉ 1,2,i · D ′
1,3 − A2,1 · D2,1 · Ĉ ′

2,3,i

=
[
t1,i t2 Ê1,2,i Ê2,3,i Ĉ

′
2,3,i

]
·

⎡
⎢⎢⎣

F1,3

D ′
1,3

−s3
−F 2,1

⎤
⎥⎥⎦ .

Cryptanalysis of GGH15 Multilinear Maps 625

where D ′
1,3 is the first column vector of D1,3. Therefore assuming that the matrix

W is invertible, we can find x in R ⊗Z Q such that:

W · x = V

which gives as required:

D ′
1,3 =

2m+2∑
i=1

xi · C ′
1,3,i (21)

Note that the only difference with the linear relations from Step 1 is that we
don’t require the xi’s to be in R, only in the fraction field R ⊗Z Q of R; this
implies that heuristically such coefficients should remain small in absolute value.

Third Step: Estimating the Error Term. In the third step our goal is to
estimate the error term when computing the session-key, as in the second step
of the basic attack. We first start with a slightly different equation from (15):

Ω = u +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĝ ′′

1,3 (22)

where Ĝ
′′
1,3 is a matrix whose columns are the first column vectors of D1,2 ·C 1,3,j

for 1 ≤ j ≤ 2m + 2. Therefore the only difference with (15) is that we use the
matrix Ĝ

′′
1,3 instead of Ĉ

′′
1,3.

To obtain (22) we proceed as follows. Instead of letting Ĉ 1,3,� = C 1,2,� ·C 1,3

as in the basic attack, we let Ĉ 1,3,� = D1,2 · C 1,3,�. Similarly we let Ĉ 3,2,� :=
D3,1 · C 3,2,�. This is possible because on rows 1 and 3 the encodings D1,2 and
D3,1 corresponding to s2 are public. We obtain:

A1,1 · C 1,1,� = t1,� · A1,2 + E1,1,� (mod q)

A1,2 · Ĉ 1,3,� = s2 · t3,� · A0 + Ê1,3,� (mod q)

A3,1 · Ĉ 3,2,� = s2 · t3,� · A3,3 + Ê3,2,� (mod q)
A3,3 · C 3,3,� = t1,� · A0 + E3,3,� (mod q)

As previously we can compute over R, restricting ourselves to the first com-
ponent, where Ĉ

′
1,3,j and C ′

3,3,i are the first columns of Ĉ 1,3,j and C 3,3,i respec-
tively:

ωij = A1,1 · C 1,1,i · Ĉ ′
1,3,j − A3,1 · Ĉ 3,2,j · C ′

3,3,i

= t1,i · Ê1,3,j + E1,1,i · Ĉ ′
1,3,j − s2 · t3,j · E3,3,i − Ê3,2,j · C ′

3,3,i.

We can therefore compute over R, using the coefficients αi from the linear rela-
tions (20):

Ωj =
2m+3∑
i=1

αi · ωij

=
2m+3∑
i=1

αi ·
(
t1,i · Ê1,3,j + E1,1,i · Ĉ ′

1,3,j − s2 · t3,j · E3,3,i − Ê3,2,j · C ′
3,3,i

)

626 J.-S. Coron et al.

Using the linear relations in (20), we obtain:

Ωj = s1 · Ê1,3,j − s2 · t3,j · F3,3 − Ê3,2,j · D ′
3,3 +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĉ ′

1,3,j

where D ′
3,3 is the first column vector of D3,3. This gives:

Ωj = uj +

(
2m+3∑
i=1

αi · E1,1,i

)
· Ĉ ′

1,3,j

for some small uj in R. Since we have let Ĉ 1,3,j = D1,2·C 1,3,j for 1 ≤ j ≤ 2m+2,
in vectorial form we obtain (22) as required, where Ĝ

′′
1,3 is the matrix whose

columns are the first column vectors of D1,2 · C 1,3,j for 1 ≤ j ≤ 2m + 2.
Recall that in (12) the error term that we must estimate to recover the session

key is:

E =

(
2m+3∑
i=1

αi · E1,1,i

)
· D̂1,3 (23)

where D̂1,3 = D1,2 · D1,3. In the following we will only estimate the first com-
ponent, so we let D̂

′
1,3 = D1,2 · D ′

1,3, where D̂
′
1,3 and D ′

1,3 are the first column
vectors of D̂1,3 and D1,3 respectively.

We now use the vector x computed in the second step. In matrix notation,
Eq. (21) gives:

D ′
1,3 = C ′′

1,3 · x
where C ′′

1,3 is the matrix whose columns are the first column vectors of C 1,3,i

for 1 ≤ i ≤ 2m + 2. Using Ĝ
′′
1,3 = D1,2 · C ′′

1,3, this gives:

D̂
′
1,3 = D1,2 · D ′

1,3 = D1,2 · C ′′
1,3 · x = G ′′

1,3 · x

where D̂
′
1,3 is the first column vector of D̂1,3. Applying the vector x on (22),

we therefore get:

Ω · x = u · x +

(
2m+3∑
i=1

αi · E1,1,i

)
· D̂ ′

1,3

We claim that this provides a good estimate of the first component of the error
vector E from (23). Recall that the components of x are in R ⊗Z Q, so by
rounding to the nearest integer we can get the following value in R:

E′ = �Ω · x� = �u · x� +

(
2m+3∑
i=1

αi · E1,1,i

)
· D̂ ′

1,3 (24)

Since the components of u (over R) are small, and moreover the coefficients of
x (over R ⊗Z Q) are also small (heuristically), the scalar �u · x� in R is small.

Cryptanalysis of GGH15 Multilinear Maps 627

Finally, letting as previously:

D̃1,1 =
2m+3∑
i=1

αi · C 1,1,i,

we obtain:

A1,1 · D̃1,1 = s1 · A1,2 +
2m+3∑
i=1

αi · E1,1,i (mod q).

which gives as previously:

A1,1 · D̃1,1 · D̂ ′
1,3 = s1 · s2 · s3 ·A0 + s1 · F̂1,3 +

(
2m+3∑
i=1

αi · E1,1,i

)
· D̂ ′

1,3 (mod q)

Therefore combining with (24) we can compute from public parameters:

A1,1 · D̃1,1 · D̂ ′
1,3 − E′ = s1 · s2 · s3 · A0 + s1 · F̂ ′

1,3 − �u · x� (mod q)

Since the terms s1 · F̂ ′
1,3 and �u · x� are small, this reveals the first component

of the secret vector s1 · s2 · s3 · A0, which breaks the scheme.

Acknowledgements. This work has been supported in part by the European Union’s
H2020 Programme under grant agreement number ICT-644209.

References

[BGH+15] Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.:
Cryptanalysis of the quadratic zero-testing of GGH. Cryptology ePrint
Archive, Report 2015/845 (2015). https://eprint.iacr.org/2015/845

[BS02] Boneh, D.: Silverberg, Alice: Applications of multilinear forms to cryp-
tography. Contemp. Math. 324, 71–90 (2002)

[CFL+16] Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis
of the new CLT multilinear map over the integers. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 20

[CGH+15] Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes:
new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 247–266. Springer,
Heidelberg (2015)

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015)

[CLLT15] Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of
GGH15 multilinear maps. Cryptology ePrint Archive, Report 2015/1037
(2015). http://eprint.iacr.org/

https://eprint.iacr.org/2015/845
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://eprint.iacr.org/

628 J.-S. Coron et al.

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CLT15] Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the
integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015)

[Dev16] The Sage Developers. Sage Mathematics Software (Version 7.0) (2016).
http://www.sagemath.org

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: Reingold, O. (ed.) FOCS 2013, pp. 40–49. IEEE Computer
Society, USA (2013)

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS,
vol. 9015, pp. 498–527. Springer, Heidelberg (2015)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013)

[Hal15] Halevi, S.: Graded encoding, variations on a scheme. Cryptology ePrint
Archive, Report 2015/866 (2015). https://eprint.iacr.org/2015/866

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH Map. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 21

[Jou00] Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma,
W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg
(2000)

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J.
(ed.) STOC 1988, pp. 20–31. ACM (1988)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilin-
ear maps: cryptanalysis of indistinguishability obfuscation over GGH13.
Cryptology ePrint Archive, Report 2016/147 (2016). https://eprint.iacr.
org/2016/147

[PS15] Pellet-Mary, A., Damien Stehlé, D.: Cryptanalysis of Gu’s ideal multilin-
ear map. Cryptology ePrint Archive, Report 2015/759 (2015). https://
eprint.iacr.org/2015/759

[Rud08] Rudelson, M.: Invertibility of random matrices: norm of the inverse. Ann.
Math. 168(2), 575–600 (2008)

http://www.sagemath.org
https://eprint.iacr.org/2015/866
http://dx.doi.org/10.1007/978-3-662-49890-3_21
https://eprint.iacr.org/2016/147
https://eprint.iacr.org/2016/147
https://eprint.iacr.org/2015/759
https://eprint.iacr.org/2015/759

Annihilation Attacks for Multilinear Maps:
Cryptanalysis of Indistinguishability Obfuscation

over GGH13

Eric Miles1(B), Amit Sahai1, and Mark Zhandry2,3

1 Center for Encrypted Functionalities, UCLA, Los Angeles, USA
{enmiles,sahai}@cs.ucla.edu

2 MIT, Cambridge, USA
mzhandry@gmail.com

3 Princeton University, Princeton, USA

Abstract. In this work, we present a new class of polynomial-time
attacks on the original multilinear maps of Garg, Gentry, and Halevi
(2013). Previous polynomial-time attacks on GGH13 were “zeroizing”
attacks that generally required the availability of low-level encodings of
zero. Most significantly, such zeroizing attacks were not applicable to
candidate indistinguishability obfuscation (iO) schemes. iO has been the
subject of intense study.

To address this gap, we introduce annihilation attacks, which attack
multilinear maps using non-linear polynomials. Annihilation attacks can
work in situations where there are no low-level encodings of zero. Using
annihilation attacks, we give the first polynomial-time cryptanalysis of
candidate iO schemes over GGH13. More specifically, we exhibit two
simple programs that are functionally equivalent, and show how to effi-
ciently distinguish between the obfuscations of these two programs.

Given the enormous applicability of iO, it is important to devise iO
schemes that can avoid attack. We discuss some initial directions for
safeguarding against annihilating attacks.

1 Introduction

In this work, we present a new class of polynomial-time attacks on the original mul-
tilinear maps of Garg, Gentry, and Halevi [GGH13a]. Previous attacks on GGH13

A. Sahai—Research supported in part from a DARPA/ARL SAFEWARE award,
NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276,
a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment
grant from Intel, and an Okawa Foundation Research Grant. This material is based
upon work supported by the Defense Advanced Research Projects Agency through
the ARL under Contract W911NF-15-C-0205. The views expressed are those of the
author and do not reflect the official policy or position of the Department of Defense,
the National Science Foundation, or the U.S. Government.
M. Zhandry—Supported in part by the Defense Advanced Research Projects Agency
(DARPA) and the U.S. Army Research Office under contract number W911NF-15-
C-0226.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 629–658, 2016.
DOI: 10.1007/978-3-662-53008-5 22

630 E. Miles et al.

were not applicable to many important applications of multilinear maps, most
notably candidate indistinguishability obfuscation (iO) schemes over GGH13
[GGH+13b,BR14,BGK+14,PST14,AGIS14,MSW14,BMSZ16]. Indeed, previ-
ous attacks on GGH13 can be classified into two categories:

– Works presenting polynomial-time attacks that either explicitly required the
availability of low-level encodings of zero [GGH13a,HJ16], or required a differ-
ently represented low-level encoding of zero, in the form of an encoded matrix
with a zero eigenvalue [CGH+15]. As a result, such “zeroizing” attacks do not
apply to any iO candidates.

– Works that yield subexponential or quantum attacks [CDPR16,ABD16,
CJL16]. This includes the works of [ABD16,CJL16] that were announced con-
currently with the initial publication of our work. We note that the attacks
of [ABD16,CJL16] on GGH13 mmaps, for example, require exponential run-
ning time if n = λ log2 q.

iO has been the subject of intense study. Thus, understanding the security of
candidate iO schemes is of high importance. To do so, we need to develop new
polynomial-time attacks that do not require, explicitly or implicitly, low-level
encodings of zero.

Annihilation Attacks. To address this gap, we introduce annihilation attacks,
which attack multilinear maps in a new way, using non-linear polynomials. Anni-
hilation attacks can work in situations where there are no low-level encodings of
zero. Using annihilation attacks, we give the first polynomial-time cryptanalysis
of several candidate iO schemes over GGH13 from the literature. More specifi-
cally, we exhibit two simple programs that are functionally equivalent, and show
how to efficiently distinguish between the obfuscations of these two programs.
We also show how to extend our attacks to more complex candidate obfus-
cation schemes over GGH13, namely ones that incorporate the “dual-input”
approach of [BGK+14]. (Note that, even without the dual-input structure,
[BGK+14,AGIS14,MSW14,BMSZ16] were candidates for achieving iO security
when implemented with [GGH13a].) Additionally, we give the first polynomial-
time cryptanalysis of the candidate order revealing encryption scheme due to
Boneh et al. [BLR+15] when instantiated over GGH3.

We now give an overview of our attack. The overview will introduce the main
conceptual ideas and challenges in mounting our attack. After the overview, we
will discuss potential defenses that may thwart our attack and generalizations
of it.

1.1 Overview of the Attack

We begin with a simplified description of the GGH13 scheme, adapted from text
in [CGH+15].

Annihilation Attacks for Multilinear Maps 631

The GGH13 Scheme. For GGH13 [GGH13a] with k levels of multilinearity,
the plaintext space is a quotient ring Rg = R/gR where R is the ring of integers
in a number field and g ∈ R is a “small element” in that ring. The space of
encodings is Rq = R/qR where q is a “big integer”. An instance of the scheme
relies on two secret elements, the generator g itself and a uniformly random
denominator z ∈ Rq. A small plaintext element α is encoded “at level one” as
u = [e/z]q where e is a “small element” in the coset of α, that is e = α + gr for
some small r ∈ R.

Addition/subtraction of encodings at the same level is just addition in Rq,
and it results in an encoding of the sum at the same level, so long as the numera-
tors do not wrap around modulo q. Similarly multiplication of elements at levels
i, i′ is a multiplication in Rq, and as long as the numerators do not wrap around
modulo q the result is an encoding of the product at level i + i′.

The scheme also includes a “zero-test parameter” in order to enable test-
ing for zero at level k. Noting that a level-k encoding of zero is of the form
u = [gr/zk]q, the zero-test parameter is an element of the form pzt = [hzk/g]q
for a “somewhat small element” h ∈ R. This lets us eliminate the zk in the
denominator and the g in the numerator by computing [pzt · u]q = h · r, which
is much smaller than q because both h, r are small. If u is an encoding of a
non-zero α, however, then multiplying by pzt leaves a term of [hα/g]q which
is not small. Testing for zero therefore consists of multiplying by the zero-test
parameter modulo q and checking if the result is much smaller than q.

Note that above we describe the “symmetric” setting for multilinear maps
where there is only one z, and its powers occur in the denominators of encodings.
More generally, we will equally well be able to deal with the “asymmetric” setting
where there are multiple zi. However, we omit this generalization here as our
attack is agnostic to such choices. Our attack is also agnostic to other basic
parameters of the GGH13, including the specific choice of polynomial defining
the ring R.

Setting of Our Attack. Recall that in our setting, we – as the attacker – will
not have access to any low-level encodings of zero. Thus, in general, we are given
as input a vector u of � encodings, corresponding to a vector α of � values being
encoded, and with respect to a vector r of � random small elements. Thus, for
each i ∈ [�], there exists some value ji < k such that

ui =
[
αi + gri

zji

]
q

αi �= 0

What a Distinguishing Attack Entails. In general, we consider a situation where
there are two distributions over vectors of values: α(0) and α(1). Rather than
directly viewing these as distributions over values, we can think of them as dis-
tinct vectors of multivariate polynomials over some underlying random variables,
which then induce distributions over values via the distributions on the under-
lying random variables. Thus, from this viewpoint, α(0) and α(1) are just two
distinct vectors of polynomials, that are known to us in our role as attacker.

632 E. Miles et al.

Then a challenger chooses a random bit b ∈ {0, 1}, and we set α = α(b).
Then we are given encodings u of the values α using fresh randomness r, and
our goal in mounting an attack is to determine the challenger’s bit b.

Note that to make this question interesting, it should be the case that
all efficiently computable methods of computing top-level encodings of zero
(resp. non-zero) using encodings of α(0) should also yield top-level encodings
of zero (resp. non-zero) using encodings of α(1). Otherwise, an adversary can
distinguish the encodings simply by zero testing.

Using Annihilating Polynomials. Our attack first needs to move to the poly-
nomial ring R. In order to do so, the attack will need to build top-level encodings
of zero, and then multiply by the zero-testing element pzt. Because we are in
a setting where there are no low-level encodings of zero, top-level encodings of
zero can only be created through algebraic manipulations of low-level encodings
of nonzero values that lead to cancellation. Indeed, a full characterization of
exactly how top-level encodings of zero can be created for candidate iO schemes
over GGH13 was recently given by [BMSZ16]. In general, our attack will need to
have access to a collection of valid algebraic manipulations that yield top-level
encodings of zero, starting with the encodings u.

Generally, then, a top-level encoding of zero e produced in this way would
be stratified into levels corresponding to different powers of g, as follows:

e =
gγ1 + g2γ2 + · · · gkγk

zk

and thus
f := [e · pzt]q = h · (γ1 + gγ2 + · · · gk−1γk)

Above, each γi is a polynomial in the entries of α and r. As suggested
by the stratification above, our main idea is to focus on just one level of the
stratification. In particular, let us focus on the first level of the stratification,
corresponding to the polynomial γ1.

A Simple Illustrative Example. Suppose that we had three ways of generating
top-level encodings of zero, e, e′, and e′′, which yield products f, f ′, and f ′′

in the ring R. Suppose further that e, e′, and e′′ contained polynomials γ1 =
xr; γ′

1 = xr2; and γ′′
1 = x, where x is a random variable underlying α(0).

Then we observe that there is an efficiently computable annihilating polynomial,
Q(a, b, c) := a2 − bc, such that Q(γ1, γ′

1, γ
′′
1) is the zero polynomial. Further,

because Q is homogeneous, Q(h ·γ1, h ·γ′
1, h ·γ′′

1) is also the zero polynomial. (We
will always ensure that our annihilating polynomials are homogeneous, which
essentially comes for free due to the homogeneity of the γ1 polynomials in the
iO setting; see Lemma 1.)

Thus, if we compute Q(f, f ′, f ′′), we obtain an element in the ring R that is
contained in the ideal 〈hg〉.

However, consider the top-level encodings of zero e, e′, and e′′ that arise from
α(1), which is a different vector of polynomials over x than α(0). Suppose that in

Annihilation Attacks for Multilinear Maps 633

this case, the encodings e, e′, and e′′ contain polynomials γ1 = x3r; γ′
1 = xr; and

γ′′
1 = x. In this scenario, the polynomial Q is no longer annihilating, and instead

yields Q(γ1, γ′
1, γ

′′
1) = x6r2 −x2r. Thus, what we have is that if the challenge bit

b = 0, then Q(f, f ′, f ′′) is contained in the ideal 〈hg〉, but if the challenge bit
b = 1, then Q(f, f ′, f ′′) is not contained in the ideal 〈hg〉.

Obtaining this distinction in outcomes is the main new idea behind our
attack.

Central Challenge: How to Compute Annihilating Polynomials? While
it was easy to devise an annihilating polynomial for the polynomials contained
in the simple example above, in general annihilating polynomials can be hard
to compute. Every set of n + 1 or more polynomials over n variables is alge-
braically dependent and hence must admit an annihilating polynomial. Indeed,
therefore, if we do not worry about how to compute annihilating polynomials,
our high-level attack idea as described above would apply to every published iO
scheme that can be instantiated with GGH13 maps that we are aware of, and it
would work for every pair of equivalent programs that output zero sufficiently
often. This is simply because every published iO candidate can be written as
an algebraic expression using only a polynomial number of underlying random
variables, whereas the obfuscated program can be evaluated on an exponential
number of inputs.

However, unless the polynomial hierarchy collapses (specifically, unless Co-
NP ⊆ AM), there are sets of (cubic) polynomials over n variables for which
the annihilating polynomial cannot be represented by any polynomial-size arith-
metic circuit [Kay09]. As a result, for our attack idea to be meaningful, we must
show that the annihilating polynomials we seek are efficiently representable by
arithmetic circuits and that such representations are efficiently computable. In
particular, we seek to do this in the context of (quite complex) candidates for
indistinguishability obfuscation.

We begin by looking deeper at the structure of the polynomials γ1 that we
need to annihilate. In particular, let’s examine what these polynomials look like
as a consequence of the stratification by powers of g. We see that by the structure
of encodings in GGH13, each polynomial γ1 will be linear in the entries of r and
potentially non-linear in the entries of α. This is already useful, since the r
variables are totally unstructured and unique to each encoding given out, and
therefore present an obstacle to the kind of analysis that will enable us to find
an annihilating polynomial.

To attack iO, we will first design two simple branching programs that are
functionally equivalent but distinct as branching programs. To this end, we con-
sider two branching programs that both compute the always zero functionality.
The simplest such program is one where every matrix is simply the identity
matrix, and this will certainly compute the constant zero functionality. To design
another such program, we observe that the anti-identity matrix

B =
(

0 1
1 0

)

634 E. Miles et al.

can be useful, because it has the property that BB = I. Thus, to make another
branching program that computes the always zero functionality, we can create a
two-pass branching program, where the (two) matrices corresponding to x1 = 0
are both set to B, and all other matrices are set to I.

With these branching programs in mind, we analyze the γ1 polynomials that
arise. The main method that we use to prune the search space for annihilating
polynomials is to find changes of variables that can group variables together in
order to minimize the number of active variables. We use a number of methods,
including inclusion-exclusion formulas, to do this. By changing variables, we are
able to reduce the problem to finding the annihilating polynomial for a set of
polynomials over only a constant number of variables. When only a constant
number of variables are present, exhaustive methods for finding annihilating
polynomials are efficient. For further details, refer to Sect. 5.

Moving to More Complex iO Candidates. The above discussion covers the main
ideas for finding annihilating polynomials, and by generalizing our methods,
we show that they extend to more challenging settings. Most notably, we can
extend our methods to work for the dual-input technique of [BGK+14], which has
been used in several follow-up works [AGIS14,MSW14,BMSZ16]. Previously, no
cryptanalysis techniques were know to apply to this setting. For further details,
see Sects. 4 and 5.

An Abstract Attack Model. We first describe our attacks within a new
abstract attack model, which is closely related to a model proposed in [CGH+15,
Appendix A]. The new model is roughly the same as existing generic graded
encoding models, except that a successful zero test returns an algebraic element
rather than a bit b ∈ {0, 1}. These algebraic elements can then be manipulated,
say, by evaluating an annihilating polynomial over them. This model captures
the fact that, in the GGH13 candidate graded encoding scheme [GGH13a], the
zero test actually does return an algebraic element in a polynomial ring that can
be manipulated.

We describe our attacks in this abstract model to (1) highlight the main new
ideas for our attack, and (2) to demonstrate the robustness of our attack to
simple “fixes” for multilinear maps that have been proposed.

Theorem 1. Let O denote the single-input variant of the iO candidates in
[BGK+14,PST14,AGIS14,MSW14,BMSZ16] (over GGH13 [GGH13a] maps).

There exist two functionally-equivalent branching programs A,A′ such that
O(A) and O(A′) can be efficiently distinguished in the abstract attack model
described in Sect. 2.

Note that in the single input case, the [BGK+14,AGIS14,BMSZ16] obfus-
cators over GGH13 [GGH13a] maps were shown to achieve iO security in the
standard generic graded encoding model. This theorem shows that such security
does not extend to our more refined model.

Annihilation Attacks for Multilinear Maps 635

The attack in Theorem 1 works by executing the obfuscated program hon-
estly on several inputs, which produces several zero-tested top-level 0-encodings.
Recall that in our model, each successful zero-test returns an algebraic element.
We then give an explicit polynomial that annihilates these algebraic elements in
the case of one branching program, but fails to annihilate in the other. Thus by
evaluating this polynomial on the algebraic elements obtained and testing for
zero, it is possible to distinguish the two cases.

Beyond the Abstract Attack Model. Our abstract attack does not imme-
diately yield an attack on actual graded encoding instances. For example, when
the graded encoding is instantiated with [GGH13a], the result of an annihilat-
ing polynomial is an element in the ideal 〈hg〉, whereas if the polynomial does
not annihilate, then the element is not in this ideal. However, this ideal is not
explicitly known, so it is not a priori obvious how to distinguish the two cases.

We observe that by evaluating the annihilating polynomial many times on
different sets of values, we get many different vectors in 〈hg〉. With enough
vectors, we (heuristically) can compute a spanning set of vectors for 〈hg〉. This
is the only heuristic portion of our attack analysis, and it is similar in spirit
to previous heuristic analysis given in other attacks of multilinear maps (see,
e.g., [CGH+15]). With such a spanning set, we can then test to see if another
“test” vector is in this ideal or not. This is the foundation for our attack on
obfuscation built from the specific [GGH13a] candidate.

Dual-Input Obfuscation and Beyond. Moving on to the dual-input setting, we
do not know an explicit annihilating polynomial for the set of algebraic ele-
ments returned by our model. However, we are able to show both that such a
polynomial must exist, and furthermore that it must be efficiently computable
because it has constant size. Thus we demonstrate that there exists an efficient
distinguishing adversary in the abstract attack model. As before, we can turn
this into a heuristic attack on obfuscation built from [GGH13a] graded encod-
ings. We also show that modifying the branching programs to read d > 2 bits
at each level does not thwart the attack for constant d, because the annihilating
polynomial still has constant size (albeit a larger constant).

Theorem 2. Let O denote the dual-input variant of the iO candidates found in
[BGK+14,PST14,AGIS14,MSW14,BMSZ16] (over GGH13 [GGH13a] maps).

There exist two functionally-equivalent branching programs A,A′ such that
O(A) and O(A′) can be efficiently distinguished in the abstract attack model
described in Sect. 2.

We do not currently know how to extend these attacks to the multilinear
maps of Coron, Lepoint, and Tibouchi [CLT13].

1.2 Attacking Candidate Order-Revealing Encryption

We show how to apply annihilating polynomials to the candidate order-revealing
encryption (ORE) scheme of Boneh et al. [BLR+15]. ORE is a symmetric key

636 E. Miles et al.

encryption scheme where it is possible to learn the order of plaintexts without
knowing the secret key, but nothing else is revealed by the ciphertexts. Such a
scheme would allow, for example, making range queries on an encrypted data-
base without the secret key. The ORE of [BLR+15] is one of the few imple-
mentable applications of multilinear maps. We demonstrate a polynomial such
that whether or not the polynomial annihilates depends on more than just the
order of the plaintexts. We therefore get an attack in our refined abstract model:

Theorem 3. Let E denote theORE scheme of [BLR+15] (overGGH13 [GGH13a]
maps). There exist two sequences of plaintexts m0

1 < · · · < m
(0)
� and m

(1)
1 < · · · <

m
(1)
� such that E(m0

1), · · · , E(m0
�) and E(m1

1), · · · , E(m1
�) can be efficiently distin-

guished in the abstract attack model described in Sect. 2.

We also show how to extend our attack to obtain an explicit attack when
instantiated over GGH13 maps. This attack has an analogous heuristic compo-
nent as in our attack on obfuscation.

1.3 Defenses

The investigation of the mathematics needed to build iO remains in its infancy.
In particular, our work initiates the study of annihilation attacks, and significant
future study is needed to see how such attacks can be avoided. We begin that
process here with a brief discussion of some promising directions. (Following the
initial publication of our work, Garg, Mukherjee, and Srinivasan [GMS16] gave
a new candidate iO construction, based on a new variant of the [GGH13a] multi-
linear maps, that provably resists all known polynomial-time attacks, including
ours, assuming an explicit PRF in NC1. Following that, we [MSZ16] gave a sim-
pler candidate iO construction, using the original [GGH13a] multilinear maps,
that provably resists all known polynomial-time attacks under a more general
assumption.)

As noted above, the primary obstacle to mounting annihilation attacks is
finding an efficiently representable annihilating polynomial. Indeed, at present
we only know how to mount our attack for a small class of matrix branching
programs. Many iO candidates work by first transforming a general program into
one of a very specific class of branching programs, that does not include any of
the matrix branching programs that we know how to attack using annihilation
attacks. However, exactly which iO candidates can be attacked using annihilation
attacks, and how annihilation attacks can be prevented, remains unclear.

Is it possible that more complex algebraic constructions of iO candidates can
avoid the existence of such annihilating polynomials? For example, we do not
know how to extend our attack to the original iO candidate of [GGH+13b], and
it is still a possibility that their candidate is secure. The difficulty of extend-
ing our attack to their scheme stems from the extra defenses they apply, namely
appending random elements to the diagonal of the branching program. This ran-
domization of the branching program means our polynomials do not annihilate,

Annihilation Attacks for Multilinear Maps 637

and has so far prevented us from pruning the search space of polynomials to find
new annihilating polynomials.

On the other hand, there may still be efficiently computable annihilating
polynomials for [GGH+13b], or for that matter any other candidate iO scheme.
Given any candidate, how would we argue that no such annihilating polynomials
exist? As one approach, we propose exploring ideas from the proof of [Kay09]
that shows the existence of sets of polynomials for which no efficient annihi-
lating polynomial can be found, unless Co-NP ⊆ AM. Perhaps these ideas
can be combined with ideas from [BR14,MSW14] to identify a candidate iO
scheme where finding relevant annihilating polynomials will be provably as hard
as inverting a one-way function.

Going further, we propose exploring non-algebraic methods for randomizing
the matrix branching programs being obfuscated, in such a way that this random-
ization destroys all algebraic descriptions of the α values that are being given
out in encoded form. For example, suppose a matrix branching program can
be randomized (while preserving functionality) using matrices drawn randomly
from discrete matrix subgroups, resulting in matrices whose entries cannot be
written as Z-linear (or Zp-linear) polynomials. Then the usual algebraic notion
of annihilating polynomials may no longer be capable of yielding an attack.

2 Model Description

We now describe an abstract model for attacks on current multilinear map can-
didates. There are “hidden” variables X1, . . . , Xn for some integer n, Z1, . . . , Zm

for another integer m, and g. Then there are “public” variable Y1, . . . , Ym, which
are set to Yi = qi({Xj})+ gZi for some polynomials qi. All variables are defined
over a field F.

The adversary is allowed to make two types of queries:

– In a Type 1 query, the adversary submits a “valid” polynomial pk on the
Yi. Here “valid” polynomials come from some restricted set of polynomials.
These restrictions are those that are enforceable using graded encodings. Next,
we consider p as a polynomial of the formal variables Xj , Zi, g. Write pk =
p
(0)
k ({Xj}, {Zi}) + gp

(1)
k ({Xj}, {Zi}) + g2....

If pk is identically 0, then the adversary receives ⊥ in return. If p
(0)
k is not

identically 0, then the adversary receive ⊥ in return. If pk is not 0 but p
(0)
k

is identically 0, then the adversary receives a handle to a new variable Wk,
which is set to be pk/g = p

(1)
k ({Xj}, {Zi}) + gp

(2)
k ({Xj}, {Zi}) +

– In a Type 2 query, the adversary is allowed to submit arbitrary polyno-
mials r with small algebraic circuits on the Wk that it has seen so far.
Consider r({Wk}) as a polynomial of the variables Xj , Zi, g, and write
r = r(0)({Xj}, {Zi}) + gr(1)(({Xj}, {Zi})) + g2.... If r(0) is identically zero,
then the model responds with 0. Otherwise the model responds with 1.

In current graded encoding schemes, the set of “valid” polynomials is deter-
mined by the restrictions placed by the underlying set structure of the graded

638 E. Miles et al.

encoding. Here we consider a more abstract setting where the set of “valid”
polynomials is arbitrary.

In the standard abstract model for graded encodings, Type 1 queries output
a bit as opposed to an algebraic element, and there are no Type 2 queries.
However, this model has been shown to improperly characterize the information
received from Type 1 queries in current candidate graded encoding schemes.
The more refined model above more accurately captures the types of attacks
that can be carried out on current graded encodings.

2.1 Obfuscation in the Abstract Model

We now describe an abstract obfuscation scheme that encompass the schemes
of [AGIS14,BMSZ16], and can also be easily extended to incorporate the scheme
of [BGK+14]. The obfuscator takes as input a branching program of length �,
input length n, and arity d. The branching program contains an input function
inp : [�] → 2[n] such that |inp(i)| = d for all i ∈ [�]. Moreover, the branching
program contains 2d� + 2 matrices A0, {Ai,Si

}i∈[�], A�+1 where Si ranges over
subsets of inp(i), and A0A�+1 are the “bookend” vectors. To evaluate a branching
program on input x, we associate x with the set T ⊆ [n] where i ∈ T if and only
if xi = 1. To evaluate the branching program on input x (set T) compute the
following product.

A(T) = A0 ×
�∏

i=1

Ai,T∩inp(i) × A�+1

The output of the branching program is 0 if and only if A(T) = 0.
The obfuscator first generates random matrices {Ri}i∈[�+1] and random

scalars {αi,Si
}i∈[�],Si⊆inp(i). Then it computes the randomized branching pro-

gram consisting of the matrices Ãi,Si
= αi,Si

(Ri · Ai,Si
· Radj

i+1) and bookend
vectors Ã0 = A0 · Radj

1 and Ã�+1 = R�+1 · A�+1. Here Radj
i denotes the adjugate

matrix of Ri that satisfies Radj
i × Ri = det(Ri) · I. It is easy to see that this

program computes the same function as the original branching program.
Finally, the obfuscator sets the “hidden” variables in the model to the Ã

matrices. Denote the “public” variables as Yi,S = Ãi,S + gZi,S = αi,SRi · Ai,S ·
Radj

i+1 +gZi,S (and define Y0, Y�+1 analogously). The set of valid Type 1 polyno-
mials is set up so that honest evaluations of the branching program are considered
valid. That is, the polynomials

pT = Y0 ×
�∏

i=1

Yi,T∩inp(i) × Y�+1

are explicitly allowed. Notice that the g0 coefficient of pT is exactly Ã(T) ≡
A(T), so the evaluator can run the program by querying on pT , and checking if
the result is ⊥.

Annihilation Attacks for Multilinear Maps 639

In the case d = 1, this obfuscator corresponds to the basic single-input
branching program obfuscator of [AGIS14,BMSZ16]. In the more restricted
model where there are no Type 2 queries, it was shown how to set the
underlying graded encodings so that the only valid Type 1 queries are linear
combinations of arbitrarily-many pT polynomials. This is sufficient for indistin-
guishability obfuscation. When d = 2 this corresponds to the dual-input version
of these obfuscators, in which it was shown how to set up the underlying graded
encodings so that the the linear combination has polynomial size. This is suffi-
cient for virtual black box obfuscation (again in the more restricted model).

In any case, since for functionality the set of allowed queries must include
honest executions of the program, we always allow queries on the pT polynomials
themselves. As such, our attacks will work by only making Type 1 queries on
honest evaluations of pT . Thus with any restrictions in our abstract model that
allow for such honest evaluations of pT , we will demonstrate how to to break
indistinguishability security.

An Equivalent Formulation. When the obfuscator described above is concretely
implemented, the final step is to encode each element of each Y matrix in the
GGH13 candidate multilinear map scheme [GGH13a]. Recall that for this, an
element a ∈ Zp is mapped to a polynomial a + gr ∈ Z[x]/(xn + 1) (here we omit
the level of the encodings, which is without loss of generality since we only com-
pute honest evaluations of the branching program). Then, when evaluating on
an input whose output is 0, the g0-coefficient in pT will be 0 in the GGH13 ring,
namely it will be 0 modulo the ideal 〈g〉. However, we would like this coefficient
to be identically 0.

To this end, we note that the obfuscation procedure can be viewed in a
slightly different way that will guarantee this. Namely, we first encode the A
matrices in the GGH13 ring, and then we perform the randomization steps over
this ring. We note that, crucially, the necessary adjoint matrices Radj

i can be
computed over this ring. Then by the properties of the adjoint, we are guaranteed
that the off-diagonal entries of each (Radj

i ×Ri) are identically 0, and this ensures
that the g0-coefficient of pT is as well.

3 Abstract Attack

Here we describe an abstract attack on obfuscation in our generic model. For
simplicity, we describe the attack for single input branching programs, which
proves Theorem 1. We extend to dual-input and more generally d-input branch-
ing programs in Sect. 5, which will prove Theorem2.

3.1 The Branching Programs

The first branching program A is defined as follows. It has 2n + 2 layers, where
the first and last layers consist of the row vector A0 := (0 1) and the column
vector A2n+1 := (1 0)T respectively. The middle 2n layers scan through the

640 E. Miles et al.

input bits twice, once forward and once in reverse, with input selection function
inp(i) := min(i, 2n + 1 − i) (so x1 is read in layers 1 and 2n, x2 is read in layers
2 and 2n − 1, etc.)1. In each of these layers, both matrices are the identity, i.e.
we have

Ai,0 = Ai,1 =
(

1 0
0 1

)

for i ∈ [2n]. Here, we adopt the more standard notation for branching programs
where the matrix Ai,b is selected if xinp(i) = b.

The branching program A = {inp, A0, A2n+1, Ai,b | i ∈ [2n], b ∈ {0, 1}} is
evaluated in the usual way:

A(x) := A0 ×
2n∏
i=1

Ai,xinp(i) × A2n+1.

Clearly this satisfies A(x) = 0 for all x.
The second branching program A′ = {inp′, A′

0, A
′
2n+1, A

′
i,b | i ∈ [2n], b ∈

{0, 1}} is defined almost identically. The sole difference is that, in the layers
reading bits any of the bits x1, . . . , xk for some integer k ≤ n, the matrices
corresponding to “xi = 0” are changed to be anti-diagonal. Namely, we have

A′
i,0 = A′

2n+1−i,0 =
(

0 1
1 0

)
for i ∈ [k]

and all other components remain the same (i.e. inp′ = inp, A′
0 = A0, A′

2n+1 =
A2n+1, and A′

i,b = Ai,b for all (i, b) where b = 1 or i ∈ [k + 1, 2n − k]). We
again have A′(x) = 0 for all x, because the anti-diagonal matrix above is its own
inverse and all the matrices commute.

3.2 The Distinguishing Attack

We now specialize the abstract obfuscation scheme from Sect. 2 to the single-
input case. We choose invertible matrices {Ri ∈ Z

2×2
p }i∈[2n+1] and non-zero

scalars {αi,x ∈ Zp}i∈[2n],b∈{0,1} uniformly at random. Next, we define

Ã0 := A0·Radj
1 Ã2n+1 := R2n+1·A2n+1 Ãi,b := αi,bRi·Ai,b·Radj

i+1

for i ∈ [2n], b ∈ {0, 1}, where Radj
i is the adjugate matrix of Ri. Finally, each of

the entries of the various Ã are what are actually encoded, meaning the “public”
variables consist of

Yi,b = αi,bRi · Ai,b · Radj
i+1 + gZi,b

1 Recall that in the single-input case, the set outputted by inp(i) is just a singleton
set.

Annihilation Attacks for Multilinear Maps 641

Next, by performing a change of variables on the Zi,b, we can actually write

Yi,b = αi,bRi · (Ai,b + gZi,b) · Radj
i+1

The underlying graded encodings guarantee some restrictions on the types
of Type 1 encodings allowed — however, the restrictions must allow evaluation
of the branching program on various inputs. In particular, the query

px := Y0 ×
2n∏
i=1

Yi,xinp(i) × Y2n+1

is allowed. Now, the coefficient of g0 in px is given by

p(0)x := Ã0 ×
2n∏
i=1

Ãi,xinp(i) × Ã2n+1 = ρ
∏

i

αi,xinp(i)A0 ×
2n∏
i=1

Ai,xinp(i) × A2n+1

which evaluates to 0 by our choice of branching programs. (Note that by the
discussion at the end of Sect. 2, we can take this coeffficient to be identically 0,
and not merely divisible by g.) Here ρ :=

∏
i det(Ri) satisfies ρI =

∏
i RiR

adj
i ,

and we abuse notation by letting Y0,xinp(0) denote Y0 (and similarly for the other
matrices).

Thus, the model, on Type 1 query px, will return a handle to the variable

p
(1)
x := ρ

∏

i

αi,xinp(i)

2n+1∑

i=0

(

A0,xinp(0)
· · · Ai−1,xinp(i−1)

· Zi,xinp(i)
· Ai+1,xinp(i+1)

· · · A2n+1,xinp(2n+1)

)

As in Sect. 2, we will associate x ∈ {0, 1}n with sets T ⊂ [n] where i ∈ T
if and only if xi = 1. For i ∈ [2, n], write α′

i,b = αi,bα2n+1−i,b. Also set α′
1,b =

ρα1,bα2n,b. Thus ρ
∏2n

i=1 αi,xinp(i) =
∏n

i=1 α′
i,xi

. Define this quantity as Ux = UT .
It is straightforward to show that the UT satisfy the following equation2 when
|T | ≥ 2.

UT = U
−(|T |−1)
∅ ·

∏
j∈T

U{j}

Moreover, any equation satisfied by the UT is generated by these equations.
For the other part of p

(1)
x = p

(1)
T , there are two cases:

– The branching program is all-identity, with bookends (1 0) and (0 1)T . Then
Ai,0 = Ai,1 =: Ai. Here, we write βi,b = A0 · · · Ai−1·Zi,b·Ai+1 · · · A2n+1. Notice
that the βi,b are all independent. For 0 ≤ i ≤ n, let β′

i,b = βi,b + β2n+1−i,b.
Thus,

2n+1∑

i=0

(
A0,xinp(0) · · ·Ai−1,xinp(i−1) · Zi,xinp(i) · Ai+1,xinp(i+1) · · ·A2n+1,xinp(2n+1)

)
=

n∑

i=0

β′
i,xi

2 See Theorem 4 for a proof of a more general identity.

642 E. Miles et al.

Define this quantity as Vx = VT . It is similarly straightforward to show that
the VT satisfy the following equation when |T | ≥ 2.

VT = −(|T | − 1)V∅ +
∑
j∈T

V{j}

Moreover, any equation satisfied by the VT is generated by these equations.
Piecing together, we have that p

(1)
T = UT VT , where UT , VT satisfy the equa-

tions above.
– The branching program is as above, except that it has reverse diagonals for

b = 0, i ≤ k. Consider a term · · · Ai−1,xinp(i−1) ·Zi,xinp(i) ·Ai+1,xinp(i+1) · · · . Suppose
for the moment that i ≤ k + 1. Since each Ai,b is either diagonal or anti-
diagonal, we have that · · · Ai−1,xinp(i−1) = · · · Ai−1,xi−1 is equal to the row
vector (0 1) if the parity of x[1,i−1] is zero, and is equal to (1 0) if the parity
is 1. Similarly, Ai+1,xinp(i+1) · · · is equal to the column vector (1 0)T if the
parity of x[1,i−1] is zero, and (0 1)T otherwise3. Therefore, · · · Ai−1,xinp(i−1) ·
Zi,xinp(i) ·Ai+1,xinp(i+1) · · · is equal to

(
Zi,xinp(i)

)
1,2

or
(
Zi,xinp(i)

)
2,1

, depending on
the parity of x[1,i−1]. Therefore, define γi,b,p to be the result of the product
when xi = b and the parity of x[1,i−1] is p. For i ∈ [2n+k, 2n], the same holds,
so we can absorb the product for this i into γi,b,p. For i ∈ [k + 2, 2n − k − 1],
the same holds true, except that it is only the parity of the bits x[1,k] that
matter. Therefore, we can write the product as γi,b,p where xi = b and the
parity of x[1,k] is p. Notice that each of the γi,b,p are independent.
Define

WT = Wx =
n∑

i=1

γi,xi,parity(x[1,min(i−1,k)])

Then we have that p
(1)
T = UT WT .

The WT must satisfy some linear relationships, since the number of W is 2n,
but the number of γ is 4n. We have not derived a general equation, but instead
we will focus on two cases. If the bits x1, . . . , xk are fixed (say to 0), then the
parity for these bits is always the same (0). Therefore, WT for these T satisfy
the same equations as the VT . Thus, any equation satisfied by the p

(1)
T for

these T in the all-identity case will also be satisfied in the anti-diagonal case.
In the other case, take T ⊆ {1, 2, 3}, and suppose k = 1. In this simple case, it
is straightforward to show that the following are the only linear relationships
among these W :

W1,2,3 + W1 = W1,2 + W1,3

W2,3 + W∅ = W2 + W3

These are different, and fewer, than the equations satisfied by the VT . This
will be the basis for our distinguishing attack.

3 The rest of the bits of x do not matter, since both matrices for each of these bits
occur in the product Ai+1,xinp(i+1) · · · , and therefore cancel out.

Annihilation Attacks for Multilinear Maps 643

To distinguish the two branching programs, it suffices to find a polynomial
Q that annihilates the p

(1)
T for T ⊆ {1, 2, 3} in the all-identity case, but does

not annihilate in the anti-identity case. Here is such a polynomial; we note that,
though it does not matter for our attack, this is in fact the minimal annihilating
polynomial for {p

(1)
T }T⊆{1,2,3}.

Q1,2,3 =
(
p
(1)
∅ p

(1)
1,2,3

)2

+
(
p
(1)
1 p

(1)
2,3

)2

+
(
p
(1)
2 p

(1)
1,3

)2

+
(
p
(1)
3 p

(1)
1,2

)2

− 2
(
p
(1)
∅ p

(1)
1,2,3p

(1)
1 p

(1)
2,3 + p

(1)
∅ p

(1)
1,2,3p

(1)
2 p

(1)
1,3 + p

(1)
∅ p

(1)
1,2,3p

(1)
3 p

(1)
1,2

+p
(1)
1 p

(1)
2,3p

(1)
2 p

(1)
1,3 + p

(1)
1 p

(1)
2,3p

(1)
3 p

(1)
1,2 + p

(1)
2 p

(1)
1,3p

(1)
3 p

(1)
1,2

)

+ 4(p(1)∅ p
(1)
1,2p

(1)
1,3p

(1)
2,3 + p

(1)
1,2,3p

(1)
1 p

(1)
2 p

(1)
3)

The fact that Q1,2,3 annihilates in the all-identity case can be verified by
tedious computation. The fact that it does not annihilate in the anti-diagonal
case can also be verified by tedious computation as follows. Consider a generic
degree 4 polynomial Q in the p

(1)
T for T ⊆ {1, 2, 3}. The condition “Q annihilates

the p
(1)
T ” can be expressed as a linear equation in the coefficients of Q. Since Q

has degree 4 in 8 variables, the number of coefficients is bounded by a constant,
so the linear constraints can be solved. The result of this computation is that
Q = 0 is the only solution.

By Schwartz-Zippel, if Q does not annihilate, then with overwhelming prob-
ability over the randomness of the obfuscation, the result of applying Q is non-
zero.

The attack thus works as follows. First query on inputs x which are zero in
every location except the first three bits. Since the branching program always
evaluates to zero, the model will return a handle to the element p

(1)
T , where

T ⊆ {1, 2, 3} is the set of bits where x is 1. Then, evaluate the polynomial
Q1,2,3 on the elements obtained. If the result is 0, then guess that we are in the
all-identity case. If the result is non-zero, then guess that we are in the anti-
diagonal case. As we have shown, this attack distinguishes the two cases with
overwhelming probability.

We make one final observation that will be relevant for attacking the spe-
cific [GGH13a] candidate. We note that, for either branching program, the fol-
lowing is true. Let T0 be some subset of [k+1, n] of size 3, and write T0 = i1, i2, i3.
Let T1 some subset of [1, n] \ T0. Then for any subset T ⊆ [3], write p̂

(1)
T := p

(1)
T ′ ,

where T ′ = {i : i ∈ T1 or i = ij for some j ∈ T}. If we then evaluate the above
polynomial Q1,2,3 over the p̂

(1)
T , we see that it annihilates. This is because the

corresponding p
(1)
T ′ satisfy the same equations as above.

3.3 Extensions

Here we consider the extension of our attack to other settings.

644 E. Miles et al.

More General Branching Programs. First, a straightforward extension of our
analysis above shows that Q1,2,3 will successfully annihilate for any “trivial”
branching program where, for each layer i, the matrices Ai,0 and Ai,1 are the
same. In other words, the evaluation of the branching program is completely inde-
pendent of the input bits. In contrast, above we showed a very simple branching
program which does not satisfy this property for which Q1,2,3 does not annihi-
late. More generally, it appears that for more complicated branching programs,
Q1,2,3 will typically annihilate. Therefore, our attack generalizes to distinguish
“trivial” branching programs from many complicated branching programs.

Padded-[BMSZ16]. Next, we observe that our attack does not require the branch-
ing programs to compute the all-0s function, and that essentially any desired
functionality can be used.

Assume that we are given BPs A,A′ that both compute the same function
f : {0, 1}n → {0, 1}. We augment them to obtain new BPs B,B′ by adding 6
extra “padding” layers anywhere in the program; the first two of these input
layers read (new) input bit xn+1, the next two read xn+2, and the final two read
xn+3. For B we put the identity matrix everywhere in these layers, while for B′

we put the anti-identity matrix when the bit read is 0.
The augmented BPs compute essentially the same function as before, namely

f ′ : {0, 1}n+3 → {0, 1} where f ′(x) = f(x|1···n). So, provided it is easy to
find an input x for which the original function f(x) = 0, we can obtain the
outputs B(x◦y) and B′(x◦y) for every y ∈ {0, 1}3 and evaluate the annihilating
polynomial Q1,2,3 on them. By the same analysis, this will distinguish the two
BPs in our attack model.

[BGK+14] and [BR14]. Our attack also extends to the candidate obfuscator from
[BGK+14]. This obfuscator differs slightly from the one described in Sect. 2, as
we describe now. Assume that we start with a BP consisting solely of w × w
matrices (i.e. without bookends), such that the product matrix = identity iff the
function evaluates to 0. The [BGK+14] obfuscator first chooses random vectors
s, t ∈ Z

w
p , and adds these as the bookends. Then, in addition to giving out

the encoded matrices Yi,b and bookends s and t, the obfuscator gives out the
encoded value of the inner product 〈s, t〉, as well an encoding of each αi,b. Finally,
evaluation of the obfuscated program on input x is given by

s ×
∏

i

Yi,xinp(i) × t − 〈s, t〉 ·
∏

i

αi,xinp(i)

which is an encoding of 0 iff the product of the original BP matrices = identity.
Note that the first term in the subtraction matches the polynomial px that

was analyzed above, so to extend our attack to the [BGK+14] obfuscator we must
account for the g1-coefficient of the second term 〈s, t〉 · ∏

i αi,xinp(i) . Denoting
α0,xinp(0) := 〈s, t〉, the polynomial we need to analyze becomes

∏
i(αi,xinp(i) +

g · zi,xinp(i)), where as above the z variables represent the GGH13 randomness.

The g1-coefficient of this polynomial is
∑

i

(
zi,xinp(i)

∏
j �=i αj,xinp(j)

)
, which we can

rewrite as

Annihilation Attacks for Multilinear Maps 645

∏
i

αi,xinp(i)

∑
i

z̃i,xinp(i) (1)

via the change of variables z̃i,xinp(i) = zi,xinp(i)/αi,xinp(i). Finally, observe that
expression (1) can be easily absorbed into the previous decomposition

p(1)x = ρ
∏

i

αi,xinp(i)

∑
i

β′
i,xi

and indeed the same annihilating polynomial Q1,2,3 works for the [BGK+14]
obfuscator as well.

We also believe that our attack extends to the candidate obfuscator in [BR14],
because evaluating the program in that setting corresponds to a subtraction
similar to the one just analyzed. However, we have not completely verified this
due to the complexity of the [BR14] construction.

[PST14]. The main difference between the candidate obfuscator in [PST14] and
the one in Sect. 2 is that the initial BP matrices are first padded with extra 1 s
along the diagonal, i.e. they transform

Ai,b �→
(

Ai,b

I

)

However, since this preserves the property of a layer having the same matrix for
both bits, our analysis can be applied to attack this candidate as well.

[GGH+13b]. The only candidate branching program obfuscator to which we do
not know how to apply our attack is the original candidate due to [GGH+13b].
In this candidate, the initial BP matrices are first padded with extra random
elements on the diagonal, i.e. they transform

Ai,b �→
(

Ai,b

Di,b

)

where Di,b is a random diagonal matrix of dimension d (and Ai,b is assumed to
have dimension 5). Then, bookend vectors s and t are chosen

s = (s1, . . . , s5, 0, . . . , 0︸ ︷︷ ︸
d/2

, $, . . . , $︸ ︷︷ ︸
d/2

) t = (t1, . . . , t5, $, . . . , $︸ ︷︷ ︸
d/2

, 0, . . . , 0︸ ︷︷ ︸
d/2

)

subject to
∑

i≤5 siti = 0. (This is a slight simplification of [GGH+13b], but it
illustrates the core technical problem in applying our attack.)

Now consider the evaluation on input x:

px = s ×
∏

i

(
Ai,xinp(i)

Di,xinp(i)

)
× t = s ×

(∏
i Ai,xinp(i) ∏

i Di,xinp(i)

)
× t

While this product indeed encodes value
∑

i≤5 siti = 0 when
∏

i Ai,xinp(i) = I,
the g1-coefficient becomes quite complicated. This is due to the uniform entries
in s and t, which select some of the GGH randomization variables from the
“southwest” quadrant of the product matrix. As a result, we do not know how
to extend our attack to this setting.

646 E. Miles et al.

4 Attack on GGH13 Encodings

In this section we explain how the abstract attack above extends to actual obfus-
cation schemes [BGK+14,AGIS14,BMSZ16] when implemented with [GGH13a]
multilinear maps. At a high level, this is done by implementing Type 1 and
Type 2 queries ourselves, without the help of the abstract model’s oracle.

Implementing Type 1 queries is straightforward: for any honestly executed
0-output of the program, namely an encoding

px =
[(

p(0)x ({Xj}, {Zi}) + gp(1)x ({Xj}, {Zi}) + g2...
)

/zk
]

q

with p
(0)
x ({Xj}, {Zi}) = 0, we can multiply by the zero-testing parameter pzt =

[hzk/g]q to obtain

Wx := [px · pzt]q = h ·
(
p(1)x ({Xj}, {Zi}) + gp(2)x ({Xj}, {Zi}) + g2...

)
(2)

This differs from what is returned in the abstract attack because of the factor h.
To handle this, we ensure that our annihilating polynomial Q is homogeneous,
and thus Q({h · p

(1)
x ({Xj}, {Zi})}x) = 0 whenever Q({p

(1)
x ({Xj}, {Zi})}x) =

0. (Lemma 1 in fact shows we can assume Q is homogeneous without loss of
generality, because the p

(1)
x are all homogeneous and of the same degree.)

To implement Type 2 queries, we must check whether a given polynomial Q
over {Wx}x∈S (for some S ⊆ {0, 1}n) is an annihilating polynomial, i.e. whether
Q

(
{h · p

(1)
x ({Xj}, {Zi})}x∈S

)
= 0. To do this we observe that, for any such

Q, Q ({Wx}x∈S) produces a ring element in the ideal 〈hg〉. So, we compute
many such elements vi = Qi ({Wx}x∈Si

), where Qi is the (homogeneous) poly-
nomial that annihilates {p

(1)
x ({Xj}, {Zi})}x∈Si

when the encodings were formed
by obfuscating the all-identity branching program. More specifically, we compute
enough vi to (heuristically) form a basis of 〈hg〉. Then, we compute one more
element v∗ which is either in 〈hg〉 or not depending on which branching program
was obfuscated, and finally we use the 〈hg〉-basis to test this.

4.1 The Attack

We use essentially the same pair of branching programs A,A′ that were used in
the abstract attack (see Sect. 3.1): A consists of all identity matrices, while in
A′ the two matrices corresponding to x1 = 0 are changed to be anti-diagonal.

Let O denote the obfuscator described in Sect. 2.1. This obfuscator is exactly
the one from [BMSZ16], with two exceptions. First, it operates on a branching
program reading only one bit per layer, while in [BMSZ16] the branching pro-
grams read two bits per layer. In Sect. 5, we show that our abstract attack, and
thus also the concrete attack described here, extends to the dual-input setting.
(In fact, we show that it extends to arity-d branching programs for any constant
d.) Second, Eq. (2) (and the presence of zk in pzt) assumes that all encodings

Annihilation Attacks for Multilinear Maps 647

output by O are level-1 GGH encodings, while in [BMSZ16] a more complicated
level structure is used (following [BGK+14,MSW14]). However, since our attack
only uses these encodings to honestly execute the obfuscated program, (2) holds
even for this level structure.

Here is our attack:

– Let m = nO(1) be the dimension of the underlying encodings (this is a parame-
ter of the [GGH13a] scheme). Note that any m linearly independent elements
of 〈hg〉 form a basis for 〈hg〉. Let m′ � m be an integer.

– Repeat the following for t = 1, . . . , m′:
• Choose a random size-3 subset T0 = {i1, i2, i3} ⊆ [n] that does not contain

1. T0 will correspond to the set of input bits that we vary.
• Choose a random subset T1 ⊆ ([n] \ T0). T1 will correspond to a fixing of

the bits outside T0.
• For each T ⊆ [3],

* let xT ∈ {0, 1}n be the string such that xi = 1 if and only if either
i ∈ T1, or i = ij for some j ∈ T (recall that T0 = {i1, i2, i3}).

* Run the obfuscated program on input x, until the zero test query. Let
p
(1)
T be the vector obtained from zero testing.

• Evaluate the polynomial Q1,2,3 in Sect. 3 on the p
(1)
T . Let the output be

defined as vt. That is, we let xT vary over the the 8 possible values obtained
by fixing all the input bits outside of T0, run the obfuscated program on
each of the xT , and then evaluate the polynomial Q1,2,3 on the results to
get vt.

– Find a linearly independent subset V of the vt.
– Choose a random size-3 subset T ∗

0 = {i1, i2, i3} ⊆ [n] that does contain 1. For
each T ⊆ [3], compute p

(1)
T as above. Then evaluate the polynomial Q1,2,3 on

the p
(1)
T to obtain a vector v∗.

– Finally, test if v∗ is in the span of V . If it is, output 1. Otherwise, output 0.

Analysis of Our Attack. As in Sect. 3, let T0 ⊆ [n], and choose an arbitrary
fixing of the remaining bits. Suppose we evaluate the branching program on
the 8 different inputs corresponding to varying the bits in T0, and then run the
polynomial Q1,2,3 on the results. Then Q1,2,3 annihilates annihilates in either of
the following cases:

– T0 does not contain 1.
– The branching program is the all-identity program, even if T0 contains 1.

Therefore, we see that Q1,2,3 annihilates for each t = 1, . . . ,m′. In the case
of [GGH13a], Q1,2,3 annihilating mans that the resulting vector v is an element
of the ideal 〈hg〉.

Thus, each of the vt are elements in the ideal, regardless of the branching
program. We will heuristically assume that the vt span the entire ideal. This is
plausible since the number m′ of vt is much larger than the dimension of the
ideal. Increasing m′ relative to m should increase the likelihood of the heuristic
being true.

648 E. Miles et al.

For v∗, however, things are different. v∗ is in the ideal if the branching
program is the all-identity, but outside the ideal (with high probability) if the
branching program has anti-diagonals, since in this case Q1,2,3 does not annihi-
late. Therefore, our test for v∗ being linearly independent from v will determine
which branching program we were given.

5 Beyond Single-Input Branching Programs

In this section, we show an abstract attack on dual-input branching programs,
proving Theorem2. More generally, we show that generalizing to d-input branch-
ing programs for any constant d will not prevent the attack.

We first recall our semantics of branching programs in the general d-ary
setting. Fix integers d, � and n which respectively correspond to the number of
bits read by each layer of the branching program, the length of the branching
program, and the input length. Let inp : [�] → 2[n] be any function such that
|inp(i)| = d for all i ∈ [�]. A branching program of length � then consists of
2d�+2 matrices A0, {Ai,Si

}i∈[�], A�+1 where Si ranges over subsets of inp(i), and
A0A�+1 are the “bookend” vectors.

We associate an input x with the subset T ∈ 2[n] of indices where x is 1. To
evaluate the branching program on input x (set T) compute the product

A(T) = A0 ×
�∏

i=1

Ai,T∩inp(i) × A�+1

Consider the obfuscation of the branching program. Let Ri be the Kilian
randomizing matrices. Let αi,S be the extra randomization terms. Then the
encoded values seen by the adversary are the matrices Yi,S = αi,SRi.Ai,S .Radj

i+1+
gZi,S

By performing a change of variables on the Zi,S , we can actually write Yi,S =
αi,SRi · (Ai,S + gZi,S) · Radj

i+1

The encodings will guarantee some restrictions on the Type 1 queries allowed
— however they must allow evaluation of the branching program. Thus we
assume that the following query is allowed for every T ⊆ [n].

pT = Y0 ×
�∏

i=1

Yi,T∩inp(i) × Y�+1

Now we will assume a trivial branching program where (1) within each layer,
all matrices are the same (Ai,Si

= Ai,S′
i

for any Si, S
′
i ∈ inp(i)), so in particular

the program is constant, and (2), the branching program evaluates to 0 on all
inputs. Therefore, the g0 coefficient in pT will evaluate to zero everywhere. Thus,
a Type 1 query will output a handle to the variable

p
(1)
T = ρ

(∏
i

αi,S∩inp(i)

)∑
i

(· · · Ai,T∩inp(i−1) · Zi,T∩inp(i) · Ai+1,T∩inp(i+1) · · ·)

Annihilation Attacks for Multilinear Maps 649

For any sets S′ ⊆ S ⊆ [n] with |S| = d, define

αS,S′ :=
∏

i:inp(i)=S

αi,S′ βS,S′ :=
∑

i:inp(i)=S

βi,S′

and for any set T ⊆ [n], define

UT :=
∏

S:|S|=d

αS,T∩S VT :=
∑

S:|S|=d

βS,T∩S

Then we have that p
(1)
T = UT VT .

The following theorem shows that, for |T | > d, UT and VT can each be
written as rational polynomials in the variables UT ′ , VT ′ for |T ′| ≤ d.

Theorem 4. Let T ⊆ [n] with |T | > d. Then,

UT =
∏

T ′⊆T :|T ′|≤d

U
(−1)d−|T ′| · (|T |−|T ′|−1

d−|T ′|)
T ′

and

VT =
∑

T ′⊆T :|T ′|≤d

(−1)d−|T ′| ·
(|T | − |T ′| − 1

d − |T ′|
)

· VT ′ .

Proof. We prove this equation for VT , the proof for UT is analogous. Consider
expanding the left and right sides of the equation in terms of the βS,Z and
equating the coefficients of βS,Z on both sides, we see that the following claim
suffices to prove the theorem:

Claim. For any sets T, S, Z,

∑
T ′⊆T :|T ′|≤d,T ′∩S=Z

(|T | − |T ′| − 1
d − |T ′|

)
(−1)d−|T ′| =

{
1 if T ∩ S = Z

0 if T ∩ S �= Z

The left hand side (resp. right hand side) of the above equation corresponds
to the coefficient of βS,Z in the right hand side (resp. left hand side) of the V
equation in Theorem 4. Hence the theorem follows from the claim.

We now prove the claim. First, suppose Z � T ∩ S. Then the sum on the
right is empty, so the result is zero, as desired. Next, suppose Z ⊆ T ∩ S. Then
for any T ′ in the sum, we can write T ′ = Z ∪ T ′′ where T ′′ ⊆ T \ (S ∪ Z) and
|T ′′| ≤ d−|Z|. Therefore, we can think of the sum as being over T ′′. The number
of T ′′ of size i is

(|T\(S∪Z)|
i

)
. Therefore, the sum on the left is equal to

d−|Z|∑
i=0

(|T \ (S ∪ Z)|
i

)(|T | − |Z| − i − 1
d − |Z| − i

)
(−1)d−i−|Z|

650 E. Miles et al.

Let e = d − |Z|, t = |T | − |Z| = |T \ Z| (since Z ⊆ (T ∩ S) ⊆ T), and
k = |T \ (S ∪Z)|. Notice that k ≤ t, and that k = t if and only Z = T ∩S. Thus,
we need to show that

e∑
i=0

(
k

i

)(
t − i − 1

e − i

)
(−1)e−i =

{
1 if k = t

0 if k < t

First, we use the identity (−1)s
(
s−r−1

s

)
=

(
r
s

)
with s = e − i and r = e − t to

replace
(
t−i−1

e−i

)
(−1)e−i with

(
e−t
e−i

)
(note that the binomial coefficients are defined

for negative integers such as e − t).
Then we have that the left hand side becomes

∑e
i=0

(
k
i

)(
e−t
e−i

)
. The Chu-

Vandermonde identity shows that this is equal to
(
k+(e−t)

e

)
=

(
e−(t−k)

e

)
. Notice

that if t = k, the result is 1. Moreover, if k < t, then the upper index of the
binomial is less than the bottom index, so the result is 0. This proves the claim
and hence the theorem.

Annihilating Polynomial for p
(1)
T . We now describe our abstract attack using

annihilating polynomials. The first step is to argue that it is possible to efficiently
devise a non-zero polynomial Q on several of the p

(1)
T such that Q is identically

zero when the p
(1)
T come from the obfuscation. In particular, we need Q to be

identically zero as a polynomial over the α’s and β’s. Using Theorem 4, it suffices
to find Q that is identically zero as a rational function over the UT , VT for |T | ≤ d.

We will first consider the values p
(1)
T as polynomials in the VT , UT , |T | ≤ d

over the rationals. Let k = 2d + 2, and consider all p
(1)
T for T ⊆ [k]. Then

each p
(1)
T is a rational function of the UT , VT for T ⊆ [k], |T | ≤ d. There are∑d

i=0

(
k
i

)
< 22d+1 such T , and therefore fewer than 22d+2 such UT , VT . Yet

there are 22d+2 different p
(1)
T for T ⊆ [k] of arbitrary size. Thus, there must be

some algebraic dependence among the p
(1)
T . Notice moreover that the expression

for p
(1)
T , T ⊆ [k] in terms of the UT ′ , VT ′ , T ′ ⊆ [k], |T ′| ≤ d are fixed rational

functions with integer coefficients, independent of the branching program, n, or
�; the only dependence is on d. Recall that we are taking d to be a constant,
so the number of p

(1)
T , VT ′ , UT ′ and the coefficients in the relation between them

are all constants. Therefore, there is a fixed polynomial Qd in the p
(1)
T over the

rationals such that Qd is identically zero when the p
(1)
T come from obfuscation.

We note that by a more tedious argument, it is actually possible to show
there must be an algebraic dependence among the p

(1)
T , and hence an annihilating

polynomial for them, when T varies over the subsets of [k] for k = 2d + 1 (as
opposed to 2d + 2).

By multiplying by the LCM of the denominators of the rational coefficients,
we can assume without loss of generality that Qd has integer coefficients. There-
fore, there is a fixed integer polynomial Qd such that Qd(p

(1)
T) is identically 0.

Since the coefficients are integers, this polynomial actually also applies in any
field or ring; we just need to verify that it is not identically zero in the field/ring.

Annihilation Attacks for Multilinear Maps 651

This will be true as long as the characteristic of the ring is larger than the largest
of the coefficients. Since in our case, the ring characteristic grows (exponentially)
with the security parameter, for high enough security parameter, the polynomial
Qd will be non-zero over the ring.

Computing the Annihilating Polynomial Qd. In Sect. 3, we gave an annihilating
polynomial for the case d = 1. For more general d, we do not know a more general
expression. However, we still argue that such a Qd can be efficiently found for
any d:

– The polynomial Qd is just a fixed polynomial over the integers; in particular
is has a constant-sized description for constant d. Thus, we can assume that
Qd is simply given to the adversary.

– If we want to actually compute Qd, this is possible using linear algebra.
Using degree bounds for the annihilating polynomial due to [Kay09], we can
determine an upper bound t on the degree of Qd. Then, the statement “Qd

annihilates the p
(1)
T ” can be expressed as a system of linear equations in the

coefficients of Qd, where the equations themselves are determined by expres-
sions for p

(1)
T in terms of the UT ′ , VT ′ . By solving this system of linear equa-

tions, it is possible to obtain a polynomial Qd. We note that, for constant d, t
will be constant, the system of linear constraints will be constant, and hence
it will take constant time to compute Qd. In terms of d, the running time is
necessarily exponential (since the number of variables p

(1)
T is exponential).

The following lemma shows that we can take Q to be a homogeneous poly-
nomial, which will be necessary for obtaining an attack over [GGH13a].

Lemma 1. Let p1, . . . , pk be homogeneous polynomials each of the same degree
d. Let Q be any polynomial that annihilates {pi}i, and let Qr denote the homo-
geneous degree-r part of Q. Then Qr annihilates {pi}i for each r ≤ deg(Q).

Proof. If Qr({pi}i) �= 0 for some r ≤ deg(Q), then Qr contains some degree-dr

monomial m. Then because
∑deg(Q)

r=0 Qr({pi}i) = Q({pi}i) = 0, some Q(r′) for
r′ �= r must contain the monomial −m. However, since Q(r′) is homogeneous of
degree dr′ �= dr, this is a contradiction.

Completing the Attack. Using the annihilating polynomial above, we immedi-
ately get an attack on the abstract model of obfuscation. The attack distinguishes
the trivial branching program where all matrices across each layer are the same,
from a more general all-zeros branching program that always outputs zero, but
has a non-trivial branching program structure.

The attack proceeds as follows: query the model on Type 1 queries for all pT

as T ranges over the subsets of [k]. Since the branching program always outputs
0, the model will return a handle to the p

(1)
T polynomials. Then evaluate the

annihilating polynomial Qd above on the obtained p
(1)
T . If the result is non-zero

(as will be the case for many non-trivial branching programs), then we know the

652 E. Miles et al.

branching program was not the trivial branching program. In contrast, if the
result is zero, then we can safely guess that we are in the trivial branching pro-
gram case. Hence, we breach the indistinguishability security of the obfuscator.

6 Attacking Order Revealing Encryption

In this section, we describe how to attack the order revealing encryption (ORE)
scheme of Boneh et al. [BLR+15], proving Theorem3.

Theorem 3. Let E denote theORE scheme of [BLR+15] (overGGH13 [GGH13a]
maps). There exist two sequences of plaintexts m0

1 < · · · < m
(0)
� and m

(1)
1 < · · · <

m
(1)
� such that E(m0

1), · · · , E(m0
�) and E(m1

1), · · · , E(m1
�) can be efficiently distin-

guished in the abstract attack model described in Sect. 2.

We first recall the definition of an order revealing encryption scheme.

Definition 1. An order revealing encryption scheme consists of four algorithms
(Gen, Enc, Dec, Comp) such that:

– Gen takes as input the security parameter, and outputs public parameters PP
and a secret key sk.

– Enc(sk,m) is a secret key encryption algorithm that outputs a ciphertext c.
– Dec(sk, c) is a decryption algorithm that outputs a plaintext.
– Comp(PP, c0, c1) is a public key comparison procedure that takes as input two

ciphertexts, and outputs a bit b.
– Correct Decryption. This is the standard correctness requirement for secret

key encryption. For any m, with overwhelming probability over the choice
of (PP, sk) and the random coins of Enc, we have that Dec(sk, Enc(sk,m))
outputs m.

– Correct Comparison. For any messages m0,m1, m0 < m1, we have
that with overwhelming probability over the choice of (PP, sk) and
the random coins of Enc, Comp(PP, Enc(sk,m0), Enc(sk,m1)) = 0 and
Comp(PP, Enc(sk,m1), Enc(sk,m0)) = 1.

– Security. For any two polynomial-length sequences of ordered messages
m

(0)
0 < m

(0)
1 < · · · < m

(0)
� and m

(1)
0 < m

(1)
1 < · · · < m

(1)
� of the

same length �, we have that the following two distributions are computation-
ally indistinguishable: PP, Enc(sk,m(0)

0), Enc(sk,m(0)
1), . . . , Enc(sk,m(0)

�) and
PP, Enc(sk,m(1)

0), Enc(sk,m(1)
1), . . . , Enc(sk,m(1)

�).

We note that the security definition is much weaker than that defined
in [BLR+15], which allowed for adaptive message queries. Nonetheless, we will
give an attack on their scheme even for our weaker definition

Annihilation Attacks for Multilinear Maps 653

6.1 Description of [BLR+15] in Abstract Model

We now given an abstract description of the [BLR+15] order revealing encryption
scheme in our model for graded encodings. We will actually describe a simplified
variant for which, for any ciphertext, that ciphertext can be inserted into either
the first or second ciphertext slot of Comp, but not both. That is, Enc now takes
as input an additional bit b, and if b = 0, and Comp(PP, c0, c1) is only required to
be correct where c0 is encrypted using bit 0, and c1 is encrypted using bit 1. This
is how the Boneh et al. [BLR+15] protocol works; to obtain the usual notion
of order revealing encryption, the encryption procedure simply encrypts twice,
once to each input.

The starting point for the construction is a branching program
A1,0, A1,1, B1,0, B1,1, . . . , An,0, An,1, Bn,0, Bn,1 such that:

– For any two n-bit integers x, y,
∏n

i=1 Axi
· Byi

= 0 if and only if x < y. Note
that it is trivial to extend our attacks to work in the case where < is replaced
with ≤, >, or ≥.

– For any j ∈ [n], the products
∏j

i=1 Axi
· Byi

and
∏n

i=n−j+1 Axi
· Byi

, which
will be vectors of some dimension, only depend on the result of comparing the
first or last, respectively, j bits of x and y. That is,

∏j
i=1 Axi

· Byi
takes on

one of 3 possible values, depending on the three possible results of comparing
x[1,i], y[1,i], <,>, or =.

Note that here we describe a branching program without bookends, but where
the matrices are shaped so that the output is a scalar. It is straightforward to
obtain a branching program in this form by multiplying the branching program
by the bookend vectors.

The secret key sk for the ORE scheme consists of 2n − 1 random matrices
Ri, as well as the necessary information to compute encodings in the graded
encoding. The public key will be the description of the graded encoding scheme,
which allows for Type 1 and Type 2 queries, with the class of valid Type 1
queries to be specified later.

Encryption. To encrypt integer x into the left input to Comp, choose random
αx,i for i ∈ [n], and compute Ãx,i = αx,iR2i−2 · Ai,xi

· Radj
2i−1. Here, R0 is just

the integer 1. Then the Ãx,i are encoded, meaning the public values seen by the
adversary are

Xx,i = αx,iR2i−2 · (Ai,xi
+ gZx,i) · Radj

2i−1

for random Zx,i. Here, we use the re-labeling of the Z variables used in Sect. 3.
Encryption in the right input to Comp is analogous. Choose random βx,i for

i ∈ [n], and compute B̃x,i = βx,iR2i−1 · Bi,xi
· Radj

2i . Here, R2n is just the integer
1. Then the B̃x,i are encoded, meaning the public values seen by the adversary
are

Yx,i = βx,iR2i−1 · (Bi,xi
+ gWx,i) · Radj

2i

for random Wx,i.

654 E. Miles et al.

Comparison. To compare two ciphertexts c0, c1 consisting of Xx,i and Yy,i for
integers x, y, perform a Type 1 query on the product

n∏
i=1

Xx,i · Yy,i =
n∏

i=1

αx,iβy,i (Ai,xi
+ gZx,i) · (Bi,yi

+ gWy,i)

Notice that the g0 term is exactly equal to
∏n

i=1 Axi
· Byi

, up to scaling by
the αx,i, βy,i. Therefore, the result is zero if and only if x < y. Thus, it is possible
to determine the order of the two plaintexts.

Note that these Type 1 queries must be explicitly allowed for correctness.
[BLR+15] analyze the types of queries that are allowed in the standard generic
model for graded encodings; however, for our attack, we do not require any other
Type 1 queries.

6.2 Our Attack

Suppose Comp gives 0 on encryptions of x and y. We denote the coefficient of g1

by V (x, y), which is equal to the following expression.

(
n∏

i=1

αx,iβy,i

)
n∑

i=1

⎛

⎝
i−1∏

j=1

Aj,xj · Bj,yj

⎞

⎠ · (Ai,xi · Wy,i + Zx,i · Bi,yi

) ·
⎛

⎝
n∏

j=i+1

Aj,xj · Bj,yj

⎞

⎠

Define αx =
∏n

i=1 αx,i and βy =
∏n

i=1 βy,i. Recall that
∏i−1

j=1 Aj,xj
·Bj,yj

only
depends on the result of comparing the first i−1 bits, and that

∏n
j=i+1 Aj,xj

·Bj,yj

only depends on the result of comparing the last n − i bits. Therefore, we can
re-write the g1 coefficient as:

V (x, y) = αxβy

n∑
i=1

(
Zx,i,Comp(x[1,i−1],y[1,i]),yi,Comp(x[i+1,n],y[i+1,n])

+ Wy,i,Comp(x[1,i−1],y[1,i−1]),xi,Comp(x[i+1,n],y[i+1,n])

)

For variables Zx,i,a,b,c,Wy,i,a,b,c where a, c ∈ {<,=, >} and b ∈ {0, 1}.

Choosing the Query Points. We now describe how we choose our query points.
Let k be a positive integer, and n = 2k + 4. Let X0, Y0,X1, Y1 be sets of n-bit
integers that have the form:

– Xb: x = 0 x̂ 00 0k 0 for a k-bit integer x̂. In particular X0 = X1.
– Yb: y = b 1k 11 ŷ b for a k-bit integer ŷ.

Then Xb, Yb satisfy the following:

– For any x ∈ Xb, y ∈ Yb, x < y.

Annihilation Attacks for Multilinear Maps 655

– For any x ∈ X1, y ∈ Y1, x[1,i] < y[1,i] for all i ∈ [n]. That is, the result of
comparing the first i bits for any i is always <.

– For any x ∈ X0, y ∈ Y0, x[1,i] < y[1,i], unless
• i = 1
• i ∈ [2, k + 1] and x̂[1,i−1] = 1i−1.

– For any x ∈ X1, y ∈ Y1, x[i,n] < y[i,n] for any i ∈ [n]. That is, the result of
comparing the last n − i + 1 bits for any i is always <.

– For any x ∈ X0, y ∈ Y0, x[i,n] < y[i,n], unless
• i = n
• i ∈ [k + 4, 2k + 3] and ŷ[i−k−3,k] = 1i−k−3.

We first consider X1, Y1. For these x, y, Comp(x[1,i−1], y[1,i−1]) and
Comp(x[i+1,n], y[i+1,n]) will always be the independent of the choice of x ∈ X1

and y ∈ Y1, namely <.4 Moreover, for i = 1 or i ∈ [k +2, n], xi is independent of
x. Therefore, the Zx,i,Comp(x[1,i−1],y[1,i]),yi,Comp(x[i+1,n],y[i+1,n]) for these i are inde-
pendent of y. They can thus be absorbed into the other Zx’s. Similar statements
hold for the yi’s for i ∈ [1, k + 3] or i = n.

This lets us write

V (x, y) = αxβy

k∑
i=1

(Zx,i,ŷi
+ Wy,i,x̂i

)

for x ∈ X1, y ∈ Y1, and variables Zx,i,b,Wy,i,b. We write this as the sum of two
inner products: V (x, y) = Zx · Γy + Δx · Wy where

Zx = αx(Zx,1,0 Zx,1,1 Zx,2,0 Zx,2,1 · · · Zx,n,0 Zx,n,1)
Wy = βy(Wy,1,0 Wy,1,1 Wy,2,0 Wy,2,1 · · · Wy,n,0 Wy,n,1)
Δx = αx((1 − x̂1) x̂1 (1 − x̂2) x̂2 · · · (1 − x̂n) x̂n)
Γy = βy((1 − ŷ1) ŷ1 (1 − ŷ2) ŷ2 · · · (1 − ŷn) ŷn)

Let V be the matrix of V (x, y) values as x, y vary over X1, Y1, respectively.
Let Z,Δ be the matrices containing the vectors Zx,Δx (respectively) as rows,
and let W,Γ be the matrices containing the vectors Wy,Γy (respectively) as
columns. Then we can write

V = Z · Γ + Δ · W = (Z Γ) ·
(

Δ
W

)

Now, the smallest dimension of the matrices Γ,Δ is 2k, so their rank is clearly
at most 2k. We now argue that the rank is in fact at most k + 1 for each. To
see this, note that the columns of Δ are spanned by the following k + 1 column
vectors: v

(0)
x = αx, and v

(i)
x = x̂i for i ∈ [k]. Thus the rank of Δ is at most

4 Technically, in the case i = 1, Comp(x[1,i−1], y[1,i−1]) will give =. However, this is still
independent of the choice of x and y, so all of the following arguments are still valid.

656 E. Miles et al.

k +1. Moreover, it is straightforward to argue that any k′ ≤ k +1 rows of Δ are
linearly independent. Similar arguments hold for Γ.

Since Z,W are full rank with overwhelming probability, Z · Γ and Δ · W
each have rank min(k + 1, 2k). Therefore, their sum V has rank at most 2k + 2.
Moreover, since Z,W are random matrices, the ranks will add with overwhelming
probability, so the total rank is min(2k + 2, 2k).

We now consider X0, Y0. Performing a similar treatment as we did in the case
of X1, Y1, for any x ∈ X0, y ∈ Y0, we can therefore write

V (x, y) = αxβx

((
k−1∑
i=1

Zx,i,ŷi,δ0(ŷ[i+1,k])

)
+

(
k∑

i=2

Wy,i,x̂i,δ1(x̂[1,i−1])

))

where δb(z) is 1 if and only if all the bits of z are equal to b, and 0 otherwise. Note
that one might expect there to be a Zx,0,δ0(ŷ) term. However, δ0(ŷ) is determined
by ŷ1 and δ0(ŷ[2,k]), and hence Zx,0,δ0(ŷ) can be absorbed into Zx,1,ŷ1,δ0(ŷ[2,k]).
Similar statements hold for Wy,k+1,δ1(x̂), Zx,k,ŷk

, and Wy,1,x̂1 .
Through a similar analysis as in the X1, Y1 case, the matrix V whose entries

are V (x, y) can be written as Z · Γ + Δ · W for 2k × (4k − 4) matrices Z,Δ and
(4k − 4) × 2k matrices Γ,W , where Z,W contain the variables Zx,i,b,c,Wy,i,b,c

and Δ,Γ are matrices that depend on the bits of x, y. Note that these matrices
will be different than those computed in the X1, Y1 case. The matrices Δ,Γ can
each be shown to have rank min(2k, 2k). Then V has rank min(4k, 2k).

Hence, the rank of V will depend on whether we consider X0, Y0 or X1, Y1.
This will be the basis for our attack.

The Attack. We now describe our distinguishing attack. Set k = 4, and let
X0, Y0,X1, Y1 be the sets of 2k = 16 integers each, as above.

– Query on the sequences (X0, Y0) and (X1, Y1), obtaining 32 ciphertexts corre-
sponding to encryptions of (Xb, Yb). Let D be the ciphertexts encrypting Xb,
and E be the ciphertexts encrypting Yb. Note that we only need the cipher-
texts in D to be valid left inputs to Comp, and the ciphertexts in E to be valid
right inputs.

– For each d ∈ D, e ∈ E, make a Type 1 query on the polynomial corresponding
to runing the comparison procedure on d, e. Since x < y for each x ∈ Xb, y ∈
Yb, the polynomial will evaluate to 0, and hence result of the query will be an
algebraic element Vd,e.

– Assemble the 2k = 16 × 2k = 16 matrix V of the Vd,e components.
– Compute the determinant of V . If the result is zero, output 1. Otherwise,

output 0.

In the case b = 1, V will have rank 2k +2 = 10 < 16. Hence the determinant
gives 0. In the vase b = 0, V will have rank 4k = 16. Hence the determinant
will be non-zero with overwhelming probability. Thus, our attack successfully
determines which set of encryptions it received.

Annihilation Attacks for Multilinear Maps 657

Attack Over GGH13. We now describe how to turn this into an actual attack
on ORE built on GGH13 multilinear maps. Let � be some integer. Let X(a) be
X1, except with the �-bit integer a prepended to each of the elements in X1.
Similarly define Y (a). Define X∗

b , Y ∗
b as Xb, Yb, except with 0� prepended to each

element.
Let m = nO(1) be the dimension of the underlying encodings, and m′ � m

be an integer. Let S ⊆ {0, 1}� be a set of size m′ that does not contain zero. We
will attack ORE instantiated with (12 + �)-bit integers.

The attack works as follows:

– Query on sequences (X∗
0 , Y ∗

0), {(X(s), Y (s))}s∈S and (X∗
1 , Y ∗

1), {(X(s),
Y (s))}s∈S , obtaining ciphertexts (D∗, E∗), {(D(s), E(s))}s∈S . Note that we
only need the D ciphertexts to be valid left inputs, and the E ciphertexts
to be valid right inputs to Comp.

– For each s ∈ S, do the following:
• Construct the matrix V (s), which consists of all the results of comparing

d, e for d ∈ D(s), e ∈ E(s).
• Compute the determinant polynomial on V (s), obtaining vs.

– Find a linearly independent subset U of the vs.
– Construct the matrix V ∗, which consists of all the results of comparing d, e

for d ∈ D∗, e ∈ E∗.
– Compute the determinant polynomial on V ∗, obtaining v∗.
– Test if v∗ is in the span of U . If it is, output 1, otherwise output 0.

From our prior analysis, V (s) is not full rank, so the determinant annihilates
each of the V (s), giving a vector vs in the idea 〈hg〉5. We will heuristically
assume that the vs span the entire ideal, which is plausible since the number of
s, namely m′, is much larger relative to the dimension of the ideal. Meanwhile,
the determinant only annihilates V ∗ in the case b = 1. Thus v∗ will be in 〈hg〉 if
b = 1, but not if b = 0. Our linear independence test therefore distinguishes the
two cases.

References

[ABD16] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions. In: Advances in Cryptology, CRYPTO (2016)

[AGIS14] Ananth, P., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoid-
ing Barrington’s theorem. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 646–658 (2014)

[BGK+14] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfus-
cation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg
(2014)

5 This follows from the discussion in Sect. 4 and the fact that the determinant is
homogeneous.

658 E. Miles et al.

[BLR+15] Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman,
J.: Semantically secure order revealing encryption: multi-input functional
encryption without obfuscation. In: Proceedings of EuroCrypt (2015)

[BMSZ16] Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing
obfuscation: new mathematical tools, and the case of evasive circuits. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
764–791. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 27

[BR14] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 1–25. Springer, Heidelberg (2014)

[CDPR16] Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators
of principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49896-5 20

[CGH+15] Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks
and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015)

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for CSPR problems and
cryptanalysis of the GGH multilinear map without an encoding of zero.
Technical report, Cryptology ePrint Archive, report 2016/139 (2016)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: Proceedings of FOCS (2013)

[GMS16] Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnera-
bilities of multilinear maps. Cryptology ePrint Archive, Report 2016/390
(2016). http://eprint.iacr.org/

[HJ16] Hu, Y., Jia, H.: Cryptanalysis of GGH map. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 537–565. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 21

[Kay09] Kayal, N.: The complexity of the annihilating polynomial. In: Proceedings
of the 24th Annual IEEE Conference on Computational Complexity, CCC
2009, Paris, France, pp. 184–193, 15–18 July 2009

[MSW14] Miles, E., Sahai, A., Weiss, M.: Protecting obfuscation against arithmetic
attacks. IACR Cryptology ePrint Archive 2014, p. 878 (2014)

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Secure obfuscation in a weak multilinear
map model: a simplified construction secure against all known attacks.
Cryptology ePrint Archive (2016). http://eprint.iacr.org/

[PST14] Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from
semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 500–517. Springer,
Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-49896-5_27
http://dx.doi.org/10.1007/978-3-662-49896-5_20
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://eprint.iacr.org/

Three’s Compromised Too: Circular Insecurity
for Any Cycle Length from (Ring-)LWE

Navid Alamati and Chris Peikert(B)

University of Michigan, Ann Arbor, USA
cpeikert@alum.mit.edu

Abstract. A public-key encryption scheme is k-circular secure if a cycle
of k encrypted secret keys (Encpk1(sk2),Encpk2(sk3), . . . ,Encpkk(sk1)) is
indistinguishable from encryptions of zeros. Circular security has applica-
tions in a wide variety of settings, ranging from security of symbolic proto-
cols to fully homomorphic encryption. A fundamental question is whether
standard security notions like IND-CPA/CCA imply k-circular security.

For the case k = 2, several works over the past years have constructed
counterexamples—i.e., schemes that are CPA or even CCA secure but not
2-circular secure—under a variety of well-studied assumptions (SXDH,
decision linear, and LWE). However, for k > 2 the only known counterex-
amples are based on strong general-purpose obfuscation assumptions.

In this work we construct k-circular security counterexamples for any
k ≥ 2 based on (ring-)LWE. Specifically:
– for any constant k = O(1), we construct a counterexample based on

n-dimensional (plain) LWE for poly(n) approximation factors;
– for any k = poly(λ), we construct one based on degree-n ring-LWE

for at most subexponential exp(nε) factors.
Moreover, both schemes are k′-circular insecure for 2 ≤ k′ ≤ k.

Notably, our ring-LWE construction does not immediately translate
to an LWE-based one, because matrix multiplication is not commuta-
tive. To overcome this, we introduce a new “tensored” variant of LWE
which provides the desired commutativity, and which we prove is actually
equivalent to plain LWE.

1 Introduction

Classical security definitions for encryption, like semantic security [19], only con-
sider messages that the attacker itself can generate. In certain contexts, how-
ever, a system must encrypt secret keys, which are unknown to the attacker,
under corresponding public keys. Prominent examples of this include the anony-
mous credential scheme of Camenisch and Lysyanskaya [13], methods for proving

C. Peikert—This material is based upon work supported by the National Science
Foundation under CAREER Award CCF-1054495 and CNS-1606362, and by the
Alfred P. Sloan Foundation. The views expressed are those of the authors and do not
necessarily reflect the official policy or position of the National Science Foundation
or the Sloan Foundation.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 659–680, 2016.
DOI: 10.1007/978-3-662-53008-5 23

660 N. Alamati and C. Peikert

the computational soundness of symbolic protocols [2], password managers and
disk encryption utilities, and Gentry’s “bootstrapping” technique for obtaining
(unbounded) fully homomorphic encryption [16,17].

For these reasons, the notions of circular and, more generally, key-dependent
message (KDM) security have attracted much attention in recent years. Infor-
mally, a public-key cryptosystem is k-circular secure if an encryption cycle
(Encpk1(sk2),Encpk2(sk3), . . . ,Encpkk

(sk1)) is indistinguishable from encryptions
of “junk” messages. KDM security considers a broader setting in which (adver-
sarially specified) functions of the secret keys may be encrypted under any of
the public keys.

Early positive results on circular/KDM security go back to Black et al. [8,13],
who proposed KDM-secure schemes in the random oracle model. Several years
later, Boneh et al. [9] were the first to give a cryptosystem in the standard
model with a proof of KDM-security (for affine functions) under a well-studied
assumption, namely, Decision Diffie-Hellman (DDH). This was soon followed
by constructions based on the learning with errors (LWE) [5] and quadratic
residuosity [10] assumptions; constructions for richer notions like identity-based
encryption [3]; and “KDM amplification” transforms that extended the class of
functions far beyond affine ones [4,6,11,24].

Despite all this progress, a very basic yet still unresolved question about
circular/KDM security—especially in light of the fact that almost all the systems
cited above are specially designed to obtain it—is:

Do classical security notions like IND-CPA or IND-CCA imply k-circular
security?

For k = 1 there are trivial counterexamples, but for k ≥ 2 the question is much
more interesting, and has been studied extensively in recent years. To date there
is a significant gap between what is known for the cases k = 2 and k > 2.

The case k = 2. In this setting there are several negative results based on
well-studied assumptions. The first counterexamples were presented by Acar
et al. [1] and Cash et al. [14], who respectively gave schemes that are CPA
secure but not 2-circular secure, and schemes that are CPA/CCA secure but
not even weakly two-circular secure. (Weak circular security refers to the secrecy
of other encrypted messages in the presence of an encryption cycle.) In both
works, CPA/CCA security was under the SXDH assumption for groups with
asymmetric bilinear pairings.

Most recently, Bishop et al. [7] gave additional counterexamples for k = 2,
based on the decision linear and LWE assumptions. In addition, they intro-
duced the useful notion of a cycle tester, which simplifies and modularizes the
construction of counterexamples. For example, they showed how to combine a
k-cycle tester with any CPA/CCA-secure cryptosystem to obtain CPA/CCA-
secure schemes that are not k-circular secure. (However, all their concrete cycle
testers were for k = 2.)

The case k > 2. For larger values of k, the relationship between CPA/CCA
and circular security remained open for many years. Intuitively, constructing a

Circular Insecurity for Any Cycle Length from (Ring-)LWE 661

counterexample for this case is more difficult because encryption must set up a
relation among k ciphertexts that can be efficiently detected; bilinear maps make
this possible for k = 2, but seem less useful for k > 2. Indeed, the only negative
results are two recent concurrent and independent works of Koppula et al. [20]
and Marcedone and Orlandi [25], which used strong obfuscation assumptions to
construct, for any k, encryption schemes that are CPA secure but k-circular inse-
cure. More specifically, the counterexample in [20] is based on indistinguishability
obfuscation (iO) for arbitrary circuits (e.g., the candidate construction proposed
in [15]), whereas [25] used the even stronger assumption of virtual black box
(VBB) obfuscation for a certain large enough class of functions. (Later, follow-
ing [20], the authors of [25] refined their scheme to rely only on iO.) Separately,
Koppula et al. also showed that any k-circular security counterexample can be
generically transformed into one that is not even weakly circular secure, because
an encryption cycle implicitly reveals all the secret keys.

In summary, for k = 2 we have circular-security counterexamples under a rea-
sonably wide variety of well-studied assumptions, whereas for k > 2 the available
evidence is weaker, since it is based on the more speculative assumption that
secure iO exists. In particular, up to this point we do not have a candidate iO
scheme with a proof of security under simple, plausible, and concrete assump-
tions. This stands in contrast to well-studied problems like those relating to
bilinear pairings or (ring-)LWE, the latter of which are provably hard assuming
the worst-case hardness of certain lattice problems [12,22,27,28].

1.1 Contributions

Our main contributions are k-circular security counterexamples, for any k ≥ 2,
based on the LWE [28] and ring-LWE [22] assumptions. We stress that these are
the first circular security counterexamples for k > 2 that do not rely on general-
purpose obfuscation assumptions. More specifically, we prove the following two
main theorems (in what follows, λ denotes the security parameter):

Informal Theorem 1. For any poly(λ)-bounded k ≥ 2, there exists (in the
common random string model) a k-cycle tester based on ring-LWE in degree-n
rings for Õ(nk)O(k) approximation factors. Moreover, it is also a k′-cycle tester
for 2 ≤ k′ ≤ k.

As example parameterizations, for any constant k = O(1) we obtain a k-cycle
tester based on poly(n) approximation factors, which are conjectured to offer
2Ω̃(n) hardness. For arbitrary k = poly(λ), we can obtain a k-cycle tester based
on subexponential 2nε

factors for any desired constant ε > 0, by letting n =
Ω̃(λc/ε) be a sufficiently large polynomial in λ. For such factors, ring-LWE is
conjectured to offer 2Ω̃(n1−ε) ≥ 2Ω(λ) hardness.

Informal Theorem 2. For any constant k ≥ 2, there exists (in the common
random string model) a k-cycle tester based on plain LWE in n dimensions for
nO(k2) approximation factors. Moreover, it is also a k′-cycle tester for 2 ≤ k′ ≤ k.

662 N. Alamati and C. Peikert

We emphasize that unlike many lattice-based cryptographic schemes, the
ring-LWE-based cycle tester from our first theorem does not appear to “mechan-
ically” translate to plain LWE, so additional ideas are needed to prove our second
theorem. In brief, this is because the ring-LWE problem is usually defined over a
commutative ring, whereas in the plain LWE setting, the corresponding ring of
n-by-n matrices is not commutative (see Sect. 1.2 below for further details). To
overcome this obstacle, we introduce a new variant of LWE that we call tensored
LWE, and prove that it is equivalent to plain LWE for corresponding parame-
ters. We note, however, that this technique limits the solution to constant (but
arbitrary) k = O(1), because it induces key sizes that are exponential in k.

Finally, by combining our cycle testers with appropriate (ring-)LWE-based
CPA/CCA-secure encryption schemes [18,26,28] using the generic transforma-
tions given in [7,20], we immediately obtain CPA/CCA-secure cryptosystems
that are k-circular insecure, and (in the CPA-secure case) for which an encryp-
tion cycle even reveals all the encrypted secret keys.

Recent Related Work. In a concurrent and independent work, Koppula and
Waters [21] also constructed a k-cycle tester for arbitrary (a priori bounded) k
based on plain LWE; it can be easily adapted to ring-LWE using standard trans-
formations. Like ours, their construction uses “telescoping products,” but the
exact way in which these are used to detect cycles differs significantly—in par-
ticular, their construction does not need secret keys to commute under multipli-
cation (see Sect. 1.2 below for further details). This yields different simplicity and
efficiency profiles for the schemes. Specifically, our ring-LWE scheme has public
keys, secret keys, and ciphertexts that are all an Ω(n) factor smaller than in the
ring-LWE version of their scheme, and is arguably technically simpler and more
direct. However, their plain-LWE construction can handle any polynomial cycle
length k = poly(λ), whereas our plain-LWE construction is restricted to any con-
stant k = O(1) due to an nk factor in our key and ciphertext lengths, which arises
from our “tensored” form of plain LWE that yields commuting secrets. In addi-
tion, their scheme does not use a common random string, whereas ours does.

1.2 Techniques

Here we give an overview of our constructions and proof techniques. To start, we
give a brief exposition of the LWE-based two-cycle tester from [7]. We recall that
a k-cycle tester is a relaxed form of encryption scheme that does not require a
decryption algorithm; it only requires an efficient algorithm that reliably detects
when a k-tuple of ciphertexts forms an encryption cycle.

In the two-cycle tester from [7], a secret key is the randomness used to gen-
erate a uniformly random matrix S ∈ Z

n×m
q along with a “trapdoor” TS, using

the GenTrap algorithm from, e.g., [26]. The matrix S is interpreted as a matrix
of LWE secrets, and the public key is the LWE instance (A,B ≈ StA) for a
uniformly random A ∈ Z

n×m
q .

To encrypt under a public key (A,B), we interpret the message as random-
ness for GenTrap, thereby generating some Ŝ with trapdoor TŜ. We then choose

Circular Insecurity for Any Cycle Length from (Ring-)LWE 663

a random short integer vector r, let v = Ar, and output the two-component
ciphertext

(
x ← Ŝ−1[v] , u = Br ≈ StAr = Stv

) ∈ Z
m × Z

m
q .

Here x ← Ŝ−1[v] denotes using the trapdoor TŜ to randomly sample a short
solution to Ŝx = v without revealing any information about TŜ, e.g., using
a discrete Gaussian distribution [18]. (This is used in the proof of IND-CPA
security.) Notice that x is a short integer vector, whereas u is “large.”

Now consider an encryption cycle for two keys, which consists of ciphertexts

(xi = S−1
1−i[vi] , ui ≈ St

ivi)

for i ∈ {0, 1}, where Si is the (secret) matrix produced by GenTrap using the ith
secret key as randomness. Because the xi are short, we have

〈u0,x1〉 = ut
0 · x1 ≈ vt

0S0 · S−1
0 [v1] = vt

0 · v1 = 〈v0,v1〉
〈u1,x0〉 = ut

1 · x0 ≈ vt
1S1 · S−1

1 [v0] = vt
1 · v0 = 〈v1,v0〉.

Because the inner product is commutative, testing whether 〈u0,x1〉 ≈ 〈u1,x0〉
(mod q) will therefore detect a two-cycle. (For ordinary ciphertexts, the approx-
imation is unlikely to hold, because the inner products are essentially uniform
and independent.)

Challenges Beyond Two-Cycles. Generalizing the above construction to
work for cycle lengths larger than two comes with several technical challenges.
One is that there does not appear to be an appropriate generalization of the inner
product 〈·, ·〉 to three or more vectors. However, a promising idea is to replace v
with a matrix V of many columns, and likewise replace x with X ← Ŝ−1[V],
so that Ŝ · X = V. Then for, say, a 3-cycle, if we could somehow arrange for
Vi = Zi · Si for some Zi, we would have the “telescoping product”

Ut
0 · X1 · X2 = Vt

0 · S0 · S−1
0 [V1] · X2

= St
0 · Zt

0 · Z1 · S1 · S−1
1 [V2]

= St
0 · Zt

0 · Z1 · Z2 · S2,

and similarly for U1 ·X2 ·X0. Unfortunately, we do not see any way to generate
Vi = Zi · Si in the encryption algorithm, because Si is secret (it can only
be obtained from the ith secret key). Alternatively, we might try to obtain a
more “LWE-like” approximation Vi ≈ Zi · Si using the public key, but then
the above equations do not even hold approximately, because V0 is “large” and
hence amplifies the errors too much.

Our Solution. With the above attempt in mind, we take a different and
arguably simpler approach to LWE-based cycle testers, which resolves both of

664 N. Alamati and C. Peikert

the difficulties identified above. Our approach is easiest to understand in the
ring setting first. For concreteness, define R = Z[X]/(Xn + 1) for n a power of
two, and define Rq = R/qR = Zq[X]/(Xn + 1) for a suitably large modulus q.

As in [7], a secret key in our system is the randomness used by (a ring variant
of) GenTrap to produce a row vector a ∈ Rm

q with a trapdoor Ta. However, here
we simply take a to be the public key, rather than using it as a vector of ring-LWE
secrets.

To encrypt under public key a, as in [7] we interpret the message as ran-
domness for GenTrap to obtain an â ∈ Rm

q and trapdoor Tâ. We then choose
an s ∈ R from the ring-LWE error distribution, let b ≈ s · a ∈ Rm

q (where the
approximation hides ring-LWE errors), and output the ciphertext

C ← â−1[b] ∈ Rm×m,

where â−1[b] uses Tâ to randomly sample a short matrix C over R such that
â · C = b. Notice that in contrast with [7], the ciphertext is just one short
matrix—it does not contain any “large” components, which will be important
for cycle testing.

Consider now an encryption cycle of, say, three secret keys, which consists of
ciphertexts

Ci ← a−1
i−1[bi], bi ≈ si · ai

for each i ∈ Z3 (where the subscript arithmetic is modulo three). We then have
the telescoping product

a2 · C0 · C1 · C2 = a2 · a−1
2 [b0] · C1 · C2

≈ s0 · a0 · a−1
0 [b1] · C2

≈ s0 · s1 · a1 · a−1
1 [b2]

≈ s0 · s1 · s2 · a2,

where the approximations hold because all the si and Ci are short. Similarly,

a0 · C1 · C2 · C0 ≈ s1 · s2 · s0 · a0.

Now because the ring R is commutative, the above right-hand sides are
almost identical, except for the different public keys a0,a2. But this issue is easily
addressed: the GenTrap algorithm comes in a version that takes a vector over Rq

as a public parameter, and outputs an a having that vector as its prefix. There-
fore, our cycle tester just checks whether the first entries of the above products
(corresponding to the common prefix of a0,a2) are approximately equal. More
precisely, the difference should be smaller than some bound that depends on the
maximum cycle length k we want to be able to detect; this induces our choice of
the modulus q. Finally, notice that the tester also works equally well for cycles
of length k′ for 2 ≤ k′ ≤ k.

Circular Insecurity for Any Cycle Length from (Ring-)LWE 665

Adapting to Plain LWE. There is a standard mechanical translation of cryp-
tosystems from ring-LWE to plain LWE, which replaces every uniformly random
a ∈ Rq with a uniformly random matrix A ∈ Z

n×n
q , and every error term s ∈ R

with a matrix S ∈ Z
n×n whose entries are drawn independently from the LWE

error distribution. However, when this translation is applied to the above scheme,
it is easy to see that the cycle tester does not work, because the error matrices Si

are unlikely to commute with each other under multiplication.
We resolve this difficulty by introducing a new tensoring technique that guar-

antees commutativity. (We believe that the technique will find additional applica-
tions.) The central fact we use is that the tensor product of square n-dimensional
matrices obeys the following special case of the mixed-product property :

S1 ⊗ S2 = (S1 ⊗ In) · (In ⊗ S2) = (In ⊗ S2) · (S1 ⊗ In) ∈ Z
n2×n2

.

In particular, the matrices S1 ⊗ In and In ⊗ S2 commute under multiplication.
(Naturally, the above equations generalize to the tensor product of any k > 2
matrices.)

We apply the above facts in our plain-LWE cycle tester as follows. When
encrypting to the ith public key, we use an LWE secret matrix

S′
i = In ⊗ · · · ⊗ In︸ ︷︷ ︸

i terms

⊗ Si ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
k−i−1 terms

∈ Z
nk×nk

,

where Si ∈ Z
n×n has entries drawn from the error distribution. By the above,

these Si all commute with each other under multiplication, allowing us to con-
clude that (certain entries of) the telescoping products are approximately equal.
Also notice that it is not necessary for all the Si to appear in the final product,
so the same cycle tester also detects k′-cycles for 2 ≤ k′ ≤ k.

In order for all this to work, the public key matrices Ai must have nk rows,
which is why our construction is limited to constant k = O(1). Of course, it is
not immediately obvious whether LWE is actually hard for such highly struc-
tured secret matrices S′

i. Fortunately, we prove that this form of the problem is
equivalent to n-dimensional LWE with the same error distribution, up to a poly-
nomial factor in the number of samples given to the attacker. Known worst-case
hardness theorems for LWE are essentially agnostic to the number of samples,
so the reduction’s lossiness in this respect is of little concern.

2 Preliminaries

For a positive integer t we let [t] = {0, . . . , t−1}. The primary security parameter
is denoted λ.

Tensor Products. The tensor (or Kronecker) product A ⊗ B of an m1-by-n1

matrix A with an m2-by-n2 matrix B, both over a common ring R, is the
m1m2-by-n1n2 block matrix consisting of m2-by-n2 blocks, whose (i, j)th block is
ai,j ·B, where ai,j denotes the (i, j)th entry of A. Equivalently, we can view A⊗B

666 N. Alamati and C. Peikert

as having rows indexed by [m1]× [m2] and columns indexed by [n1]× [n2], where
the ((i1, i2), (j1, j2))th entry is ai1,j1 · bi2,j2 . This corresponds to the previous
definition by “flattening” the row and column index sets using the bijection that
maps (k1, k2) ∈ [�1] × [�2] to k1 · �2 + k2 ∈ [�1�2].

We extensively use the mixed-product property of tensor products, which says
that

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD)

for any matrices A,B,C,D of compatible dimensions. In particular,

(A⊗B) = (A⊗ Iheight(B)) · (Iwidth(A) ⊗B) = (Iheight(A)⊗B) · (A⊗ Iwidth(B)).

Subgaussians. For analyzing error growth in our schemes it will be convenient
to use the notion of subgaussian random variables and matrices. We say that a
real random variable X (or its distribution) is subgaussian with parameter s if
for all t ∈ R, the (scaled) moment-generating function satisfies1

E[exp(2πtX)] ≤ (1 + negl(λ)) · exp(πs2t2).

More generally, we say that a random matrix (over vector) X is subgaussian
with parameter s if utXv is subgaussian with parameter s for all unit vec-
tors u,v. It follows immediately from the definitions that a poly(λ)-dimensional
matrix made up of independent subgaussian entries, or of independent sub-
gaussian rows or columns, with common parameter s is itself subgaussian with
parameter s.

The largest singular value, also known as spectral norm, of a matrix X is
defined as s1(X) := maxu �=0‖Xu‖/‖u‖. It is clear that the spectral norm is
sub-additive and sub-multiplicative: s1(X+Y) ≤ s1(X)+ s1(Y) and s1(XY) ≤
s1(X) · s1(Y). We use the following standard fact about subgaussian matrices;
see [29] for a proof.

Proposition 1. For a subgaussian matrix X ∈ R
m×n with parameter s, we have

s1(X) ≤ s · O(
√

m +
√

n) except with probability at most 2−Ω(m+n).

2.1 Cryptographic Definitions

Here we present some cryptographic definitions. The definition of k-cycle tester
is from [7].

Definition 1. Let Π = (Setup,Gen,Enc) be a public-key encryption scheme
(omitting the decryption algorithm) for message space M = Mλ. We say that Π
is IND-CPA secure if every efficient adversary A has negligible (in λ) advantage
in distinguishing the following two games for b ∈ {0, 1}:

1 We remark that the 1 + negl(λ) factor makes this a slight relaxation of the stan-
dard definition of subgaussian; it coincides with the notion of negl(λ)-subgaussian
from [26].

Circular Insecurity for Any Cycle Length from (Ring-)LWE 667

1. Generate pp ← Setup(1λ) and (pk, sk) ← Gen(pp).
2. Given (pp, pk) to A, which outputs a pair of messages (m0,m1) ∈ M2.
3. Generate c ← Enc(pk,mb) and give c to the adversary.

Definition 2. Let Π = (Setup,Gen,Enc) be a public-key encryption scheme
(omitting the decryption algorithm) for message space M = Mλ ⊇ Sλ, where
Sλ denotes the secret-key space for security parameter λ. We say that Π is
IND-CIRC-CPAk secure if the following two games are computationally indistin-
guishable.

1. Generate pp ← Setup(1λ) and (pki, ski) ← Gen(pp) for every i ∈ Zk.
2. In Game 0, let ci ← Enc(pki, ski−1) for i ∈ Zk (where arithmetic in the

subscripts is modulo k).
In Game 1, let ci ← Enc(pki, 0) for i ∈ Zk (where 0 ∈ M denotes some
arbitrary fixed message).

3. Output (pp, (pki)i∈Zk
, (ci)i∈Zk

).

Definition 3 (Cycle Tester [7]). Let Γ = (Setup,Gen,Enc,Test) be a tuple of
randomized algorithms for which:

– Π = (Setup,Gen,Enc) is a public-key encryption scheme for message space
M = Mλ ⊇ Sλ;

– Test((pki, ci)i∈Zk
), given a tuple of public keys pki and corresponding cipher-

texts ci, outputs a bit b ∈ {0, 1}.
We say that Γ is a k-cycle tester if Π is IND-CPA secure, and if Test has non-
negligible advantage in the IND-CIRC-CPAk game against Π.

2.2 Learning with Errors

Definition 4. For positive integer dimensions n,m, modulus q, and error dis-
tribution χ over Z, the decision-LWEn,q,χ,m problem is to distinguish, with non-
negligible advantage, between (A;bt = stA + et) where A ← Z

n×m
q , s ← χn,

e ← χm, and uniformly random (A;bt) of the same dimensions.2

A standard instantiation of LWE is to let χ be a discrete Gaussian distri-
bution (over Z) with parameter r = 2

√
n, which is known to be subgaussian

with parameter r (see [26]). For this parameterization, and for any polynomially
bounded m, it is known that LWE is at least as hard as quantumly approximat-
ing certain “short vector” problems on n-dimensional lattices, in the worst case,
to within Õ(q

√
n) factors [28]. Classical reductions are also known for different

parameterizations [12,27].

2 Notice that the coordinates of s are drawn from the error distribution χ; as shown
in [5], this form of the problem is equivalent (up to a small difference in m) to the
one where s ← Z

n
q is drawn uniformly at random.

668 N. Alamati and C. Peikert

A standard hybrid argument shows that the multi-secret form of LWE—
which is to distinguish

(
A

B = SA + E

)
∈ Z

(n+t)×m
q

from uniform, where A ← Z
n×m
q , S ← χt×n, and E ← χt×m for some desired

t,m = poly(n)—is equivalent to the above single-secret version, up to a t factor
loss in the distinguishing advantage.

Tensored Form. In this work we rely on another equivalent form of LWE, which
we call the tensored form. Let m, t = poly(n) be as above, and additionally let
l, r = poly(n) be arbitrary. The problem is to distinguish

(
A

B = (Il ⊗ S ⊗ Ir) · A + E

)
∈ Z

l(n+t)r×m
q

from uniform, where A ← Z
lnr×m
q , S ← χt×n, and E ← χltr×m.

Lemma 1. The tensored form of LWE for parameters n, t,m, l, r is equivalent
to the multi-secret form for the same n, t and M = mlr samples.

Proof. The equivalence follows simply by an appropriate (efficient and reversible)
reindexing. Specifically, given a multi-secret instance (A;B) ∈ Z

(n+t)×M
q , we

transform it to a tensored instance (A′;B′) ∈ Z
l(n+t)r×m
q as follows. For conve-

nience, we construct A′ by indexing its rows by [l]× [n]× [r] in the standard way,
and similarly for B′. We partition A into m blocks, each consisting of lr columns
of dimension n. We arbitrarily index these columns by [l]× [r], and arrange them
into a single column indexed by [l] × [n] × [r] in the obvious way; the matrix A′

is made up of these m columns. Similarly, we construct B′ from B by group-
ing each block of lr columns of dimension t into a single column vector indexed
[l]×[t]×[r]. It is easy to see that if (A;B) is uniformly random, then so is (A′;B′).
Furthermore, by construction and by definition of matrix multiplication it can
be verified that if B = SA+E for some S,E, then B′ = (Il ⊗ S⊗ Ir) ·A′ +E′,
where E′ is obtained from E in exactly the same way that B′ is obtained from B.
Therefore, the transformation is a tight reduction from the multi-secret to the
tensored form. Moreover, the transformation is efficiently reversible, which gives
a reduction in the opposite direction.

2.3 Lattice Trapdoors

We recall some standard facts about trapdoors and preimage sampling for cryp-
tographic lattices; for full details, see [18,26]. There exist efficient randomized
algorithms GenTrap, SampleDom, and SamplePre having the following proper-
ties. For any positive integers n, q, there exist suitable m̄ < m = O(n log q) for
which the following hold (the parameters n, q, m̄,m are implicit inputs to all the
algorithms):

Circular Insecurity for Any Cycle Length from (Ring-)LWE 669

– GenTrap(Ā;R) takes some Ā ∈ Z
n×m̄
q and random coins R ∈ R from a certain

space R, and outputs a matrix A ∈ Z
n×m
q whose first m̄ columns are Ā, and

for which R serves as a “trapdoor.”
– SampleDom() outputs a random x ∈ Z

m, drawn from a certain distribution D.
For brevity we usually write x ← D.

– For any Ā ∈ Z
n×m̄
q and R ∈ R defining A as above, and any u ∈ Z

n
q ,

SamplePre(Ā,R,u) outputs a random x ∈ Z
m (drawn from a certain distrib-

ution) such that Ax = u.
When A and R are clear from context, we usually write A−1[u] for the sake
of brevity, and because it satisfies the identity A ·A−1[u] = u. (We stress that
A−1[·] denotes a randomized algorithm, not a formal matrix inverse.)

We extend the above notation column-wise to matrices, i.e., D� is the distri-
bution over Z

m×� in which the columns are drawn independently from D, and
A−1[B] ∈ Z

m×� for B ∈ Z
n×�
q applies A−1 independently to each column of B.

Proposition 2. The above algorithms satisfy the following statistical properties:

1. For uniformly random A ← Z
n×m
q and x ← D, the distribution of (A,Ax)

is within negligible statistical distance of uniform.
2. For uniformly random Ā and R ← R, the distribution of A = GenTrap(Ā,R)

is within negligible statistical distance of uniform.
3. For any Ā and any R ∈ R defining A = GenTrap(Ā;R), the following

experiments are within negligible statistical distance:
(a) choose x ← D and output (x,u = Ax);
(b) choose uniformly random u ← Z

n
q , let x ← A−1[u], and output (x,u).

4. For any A output by GenTrap (on randomness R), and any u ∈ Z
n
q , the

distribution A−1[u] is subgaussian with parameter Õ(m) = Õ(n log q).

Remark 1. We emphasize that Item 3 of Proposition 2 applies for any (possibly
adversarial) choice of the trapdoor R, which is needed in our application because
the trapdoor will indeed be provided by the adversary. Fortunately, the GenTrap
and SamplePre algorithms described in [26] can easily be instantiated to satisfy
this property. In brief, this is GenTrap produces a short random matrix R ∈ R
as the trapdoor, and SamplePre works for any Gaussian parameter exceeding a
certain Θ̃(s1(R)) bound. By defining R to be, say, the set of all binary matrices
of appropriate dimensions, we ensure that s1(R) ≤ m for every R ∈ R, while
also satisfying Item 2 via the leftover hash lemma.

2.4 The Ring Setting

Here we provide some background on rings, their geometry, and ring-LWE; then
we recall analogous facts about trapdoors in the ring setting. For more details
see [22,26]. (This material is only used for our ring-LWE construction in Sect. 4,
and may be safely skipped.)

For simplicity, we work in the 2nth cyclotomic ring R := Z[X]/(Xn + 1)
for n a power of two. (However, all of our results can be adapted to arbitrary

670 N. Alamati and C. Peikert

cyclotomics using the techniques from [23].) The canonical embedding σ : R →
C

n maps r ∈ R to (σi(r))i∈Z∗
2n

, where σi(r) = r(ωi) and ω = exp(π
√−1/n) ∈ C

is the principal complex 2nth root of unity. (Notice that this definition is agnostic
to the choice of Z[X]-representative of r ∈ Z[X]/(Xn + 1), which makes it
“canonical.”)

We use the canonical embedding to endow R with a geometry. Specifically, for
a ring element r ∈ R we define ‖r‖ := ‖σ(r)‖ and ‖r‖∞ := ‖σ(r)‖∞. We extend
the norm notation to vectors and matrices by defining ‖x‖ = (

∑
i‖xi‖2)1/2 for

any vector x over R, and ‖X‖∞ = max‖xi,j‖∞ for any vector or matrix X
over R. Finally, we define the spectral norm of X as

s1(X) := sup
u �=0

‖Xu‖/‖u‖,

where the supremum is taken over all nonzero vectors (of appropriate dimension)
over R. Clearly, the spectral norm is sub-additive and sub-multiplicative: s1(X+
Y) ≤ s1(X) + s1(Y) and s1(XY) ≤ s1(X) · s1(Y). The following standard fact
relates the spectral and �∞ norms.

Proposition 3. For any matrix E ∈ Rl×k we have s1(E) ≤ √
lk · ‖E‖∞.

The following standard fact bounds the coefficients of a ring element r ∈ R by
its �∞ norm.

Proposition 4. For a ring element r ∈ R, let r =
∑n−1

j=0 rj · Xj ∈ Z[X] for
rj ∈ Z denote its canonical representative (with respect to the standard power
basis of R). Then rj ≤ ‖r‖∞ for every j.

Ring-LWE. For an integer q, define Rq := R/qR = Zq[X]/(Xn + 1).

Definition 5. Let χ be an error distribution over R. The decision-RLWER,q,χ,m

problem is to distinguish, with non-negligible advantage, between (a;b = s · a +
e) ∈ Rm

q × Rm
q where a ← Rm

q , s ← χ, e ← χm, and uniformly random (a; b)
of the same dimensions.

For appropriate parameters, decision-RLWE problem is (quantumly) at least as
hard as the (q · poly(n,m))-approximate shortest vector problem on any ideal
lattice in R, i.e., in the worst case [22]. The standard error distribution for which
this theorem applies is a sufficiently wide discrete Gaussian distribution χ over R,
for which

Pr
e←χ

[‖e‖∞ > nc] = negl(n) (1)

for some universal constant c > 1.

Trapdoors. Similarly to the plain setting, there are efficient randomized algo-
rithms GenTrap, SampleDom, and SamplePre having the following properties. For
any modulus q, there exist suitable m̄ < m = Õ(log q) for which the following
hold (the parameters R, q, m̄,m are implicit inputs to all the algorithms):

Circular Insecurity for Any Cycle Length from (Ring-)LWE 671

– GenTrap(ā;R) takes some ā ∈ Rm̄
q and random R ∈ R from a certain space R,

and outputs a vector a ∈ Rm
q whose first m̄ components are ā, and for which R

serves as a “trapdoor.”
– SampleDom() outputs a random column vector xt ∈ Rm, drawn from a certain

distribution D. For brevity we usually write xt ← D.
– For any ā ∈ Rm̄

q and R ∈ R defining a as above, and any u ∈ Rq,
SamplePre(ā,R, u) outputs a random column vector xt ∈ Rm (drawn from
a certain distribution) such that a · xt = u.
We usually write a−1[u] for the sake of brevity, and because it satisfies the
identity a · a−1[u] = u. Moreover, Dl is the distribution over Rm×l in which
the columns are drawn independently from D. The notation a−1[v] ∈ Rm×l

q ,
where v ∈ Rl

q, applies a−1 to each component of v independently.

The following proposition follows by a standard adaptation of “plain” trap-
door constructions (e.g., [26]) to the ring setting, and by the regularity lemma
for rings given in [23].

Proposition 5. The above algorithms satisfy the following statistical properties:

1. For uniformly random a ← Rm
q and xt ← D, the distribution of (a,a · xt) ∈

Rm+1 is within negligible statistical distance of uniform.
2. For uniformly random ā and R ← R, the distribution of a = GenTrap(ā,R)

is within negligible statistical distance of uniform.
3. For any ā and any R ∈ R defining a = GenTrap(ā;R), the following experi-

ments are within negligible statistical distance:
(a) choose xt ← D and output (x, u = a · xt);
(b) choose uniformly random u ← Rq, let xt ← a−1[u], and output (x, u).

4. There exists a universal constant c > 1 such that, for any a output by GenTrap
(on randomness R), and for any u ∈ Rq,

Pr[‖a−1[u]‖∞ > nc] = negl(n).

3 LWE-Based Construction

In this section we construct, for any constant k ≥ 2, a k-cycle tester that is IND-
CPA secure based on the conjectured hardness of (plain) LWE, appropriately
parameterized. The scheme involves the following parameters:

– N := nk for a positive integer n, an integer modulus q, and an error dis-
tribution χ over Z, where n, q, χ are the parameters of the underlying LWE
problem. For concreteness, we use the standard LWE error distribution χ,
which is subgaussian with parameter O(

√
n).

– M̄ < M = O(N log q), where M̄,M are the dimensions associated with
GenTrap for N, q.

– The secret-key and message spaces are both the randomness/trapdoor space R
of GenTrap when given an N -by-M̄ input.

672 N. Alamati and C. Peikert

Finally, each key is uniquely and arbitrarily identified with some i ∈ Zk =
{0, . . . , k − 1}, which is provided to the key-generation algorithm. The tester is
defined as follows.

– Setup(): output a uniformly random Ā ← Z
N×M̄
q .

– Gen(i, Ā): let Ai = GenTrap(Ā;Ri) for Ri ← R, and output (i,Ai) as the
public key and the trapdoor Ri as the secret key.
Recall from Proposition 2 that the first M̄ columns of Ai are Ā, and that Ai

is negligibly far from uniform over the random choice of Ā and Ri.
– Enc((i,Ai),R ∈ R): let A = GenTrap(Ā;R), so that R is a trapdoor for A.

Choose an LWE secret matrix Si ← χn×n and an error matrix Ei ← χN×M ,
and output the ciphertext matrix

C ← A−1[S′
i · Ai + Ei] ∈ Z

M×M ,

where S′
i = (Ini ⊗ Si ⊗ Ink−i−1) ∈ Z

N×N .

(The A−1 operation is performed using trapdoor R.)
– Test((Ai,Ci)i∈Zk

): given public key matrices Ai and ciphertexts Ci, check
whether

(Ak−1·C0·C1 · · ·Ck−1−A0·C1 · · ·Ck−1·C0)·Ī ∈ (−q/4, q/4)N×M̄ (mod q),
(2)

where Ī = (IM̄
0

) ∈ Z
M×M̄ for every i, which we use in the analysis below.)

Remark 2. In Eq. (2), the choice of products appearing in the difference is not
special; the difference between any two products Ai·Ci+1·Ci+2 · · ·Ci for distinct
values of i ∈ Zk would work equally well.

Remark 3. The number and order of ciphertexts in an encryption cycle is also
not too important. The Test algorithm naturally generalizes to work on any k′

public keys and ciphertexts indexed by an ordered set S ⊆ Zk, for 2 ≤ k′ ≤ k.
We simply take the difference of two products Ai · ∏

j∈S Cj for two distinct i,
where the order of indices j cyclically follows the order of S and ends with j = i.

In the remainder of this section we prove the following theorem:

Theorem 1. For any constant k ≥ 2 and a sufficiently large q = Õ(n3(k2−1)/2),
the above scheme is a k′-cycle tester for 2 ≤ k′ ≤ k, assuming the hardness of
decision-LWEn,q,χ,M ·nk−1 .

Recall that the LWE instantiation from Theorem 1 is at least as hard as
(quantumly) approximating certain lattice problems on n-dimensional lattices,
in the worst case, to within Õ(n3k2/2−1) = poly(n) factors, which is conjectured
to be exponentially hard in n.

In Sect. 3.1 below we prove IND-CPA security, in Sect. 3.2 we show that Test
almost always accepts on an encryption cycle, and in Sect. 3.3 we show that Test
almost never accepts on a non-cycle. Together these prove Theorem 1.

Circular Insecurity for Any Cycle Length from (Ring-)LWE 673

3.1 Security

Lemma 2. The tuple (Setup,Gen,Enc) is IND-CPA secure under the LWE
assumption from Theorem 1.

Proof. We consider the following sequence of hybrid experiments, showing that
adjacent hybrids are indistinguishable (either computationally or statistically),
and that the last one does not depend on the adversary’s choice of challenge
message, which proves the claim. For simplicity, assume that the adversary names
some target identity i ∈ Zk at the start of the IND-CPA game. (The proof easily
adapts to the case where the adversary adaptively chooses i after seeing all the
public keys.)

Hybrid 1: Here the matrix Ai ∈ Z
N×M
q in the public key is generated uniformly

at random, instead of by GenTrap. By Item 2 of Proposition 2, this experiment
is statistically indistinguishable from the real IND-CPA game.

Hybrid 2: Here the matrix Bi ∈ Z
N×M
q given as input to the A−1 operation

is chosen uniformly at random, rather than as Bi = S′
i · Ai + Ei (as in the

previous hybrid).
Using the tensored form of LWE, which by Lemma 1 is equivalent to the
one appearing in the theorem statement, a straightforward reduction shows
that this experiment is computationally indistinguishable from the previous
one. Specifically, given an instance (A′;B′) of the tensored form of LWE, the
reduction sets Ai = A′, Bi = B′, and finally lets Ci ← A−1[Bi], using the
adversary’s challenge message to define A and compute the A−1[·] operation
(using the SamplePre algorithm) in the usual way.

Hybrid 3: Here the matrix Ci is drawn from DM , i.e., each column is indepen-
dently drawn from D, instead of by invoking A−1[Bi] for a matrix A defined
by the adversary’s challenge message.
We claim that for any choice of Ā and challenge message, this experiment is
within negligible statistical distance of the previous one. This follows imme-
diately by Item 3 of Proposition 2, applied across each pair of corresponding
columns of Ui and Ci.

Clearly, the final hybrid experiment does not depend on the adversary’s choice
of challenge message, so the proof is complete.

3.2 Testing an Encryption Cycle

Lemma 3. For a sufficiently large q = Õ(n3(k2−1)/2), the Test algorithm accepts
with all but negligible probability when given an encryption k-cycle, i.e., in Game
0 of Definition 2.

Remark 4. The lemma and its proof easily adapt to the case where Test is given a
k′-cycle for 2 ≤ k′ ≤ k, as described in Remark 3. This is because the matrices S′

i

commute with each other under multiplication, and the error terms are no larger
in size and number.

674 N. Alamati and C. Peikert

Proof. We have ((i,Ai),Ri) ← Gen(i, Ā) and Ci ← Enc((i,Ai),Ri−1) for each
i ∈ Zk, where all arithmetic in the subscripts is modulo k. Notice that when
encrypting secret key Ri−1 to produce Ci, the encryption algorithm performs
the A−1 operation for A = Ai−1. We therefore have

Ci ← A−1
i−1[S

′
i · Ai + Ei] ∈ Z

M×M

where S′
i = (Ini ⊗ Si ⊗ Ink−i−1)

= (In ⊗ · · · ⊗ In︸ ︷︷ ︸
i terms

⊗ Si ⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
k−i−1 terms

) ∈ Z
N×N

for some error matrices Si,Ei. Notice that because each Si appears in a differ-
ent position in its tensor product, the mixed-product property implies that the
matrices S′

i commute with each other under multiplication, i.e.,

S′
i · S′

j = S′
j · S′

i.

Now observe that in Eq. (2), the minuend (left-hand term) of the difference
expands as

L := Ak−1 · A−1
k−1[S

′
0 · A0 + E0] · C1 · · ·Ck−1

≈ S′
0 · A0 · A−1

0 [S′
1 · A1 + E1] · C2 · · ·Ck−1 (error E0 · C1 · · ·Ck−1)

≈ S′
0 · S′

1 · A1 · A−1
1 [S′

2 · A2 + E2] · C3 · · ·Ck−1 (error S′
0 · E1 · C2 · · ·Ck−1)

· · ·
≈ S′

0 · · ·S′
k−1 · Ak−1. (error S′

0 · · ·S′
k−2 · Ek−1)

(We analyze the error terms below.) Similarly, the subtrahend (right-hand term)
of the difference expands in the same way as

R := A0 · C1 · · ·Ck−1 · C0 ≈ S′
1 · · ·S′

k−1 · S′
0 · A0

= S′
0 · S′

1 · · ·S′
k−1 · A0,

with error terms as in the previous expansion, but with all the subscripts incre-
mented (modulo k). Finally, observe that

(L − R) · Ī ≈ S′
0 · · ·S′

k−1 · (Ak−1 − A0) · Ī = 0,

where the approximation includes the errors (times Ī) from both of the above
expansions.

It remains analyze the error terms from the above expansions. Recall that
each Ei and Si is made up of independent entries drawn from χ, which is sub-
gaussian with parameter O(

√
n). Similarly, by Item 4 of Proposition 2, every

Ci has independent subgaussian columns with parameter Õ(M). Therefore, by
Proposition 1,

s1(Ei) = O(
√

nM), s1(S′
i) = s1(Si) = O(n), s1(Ci) = Õ(M3/2)

Circular Insecurity for Any Cycle Length from (Ring-)LWE 675

except with negligible probability. It follows that in the analysis of L,R
above, the spectral norm of each error matrix—and thereby the magnitude
of every entry—is bounded by Õ(n1/2 · M3k/2−1). Taking a sufficiently large
q = Õ(n3(k2−1)/2) ensures that every entry in the sum of the error matrices has
magnitude less than q/4, so the tester accepts.

3.3 Testing a Non-cycle

Lemma 4. Under the LWE assumption from Theorem 1, the Test algorithm
accepts with only negligible probability when given ciphertexts that all encrypt
zero, i.e., in Game 1 of Definition 2.

Proof. We consider the following sequence of hybrid experiments for generating
the tester’s input. We show that successive hybrids are indistinguishable (either
computationally or statistically), which implies that the tester’s acceptance prob-
ability differs by only a negligible amount in successive hybrids. Moreover, we
show that its acceptance probability in the final hybrid is exponentially small,
which proves the claim.

Hybrid 1: Here the public keys Ai are uniformly random and independent
(modulo their common prefix Ā), and each ciphertext Ci is independently
sampled from DM .
Following the proof of Lemma 2, this experiment is computationally indis-
tinguishable from the real one (under the LWE assumption), and hence the
tester’s acceptance probability is only negligibly different in the two experi-
ments.

Hybrids 2, 3, . . . , k + 1: In hybrid 2, in the cycle-test algorithm (Eq. (2))
we replace Ak−1 · C0 with a uniformly random A′

0, and similarly replace
A0 · C1 with a uniformly random A′

1 (both independent of everything else).
Hybrids 3 through k + 1 are defined similarly, so that the final cycle-test
algorithm simply tests whether (A′

k−1 − A′
0) · Ī ∈ (−q/4, q/4) (mod q) for

uniformly random and independent A′
k−1,A

′
0. Clearly, this test accepts with

probability bounded by the negligible quantity 2−N ·M̄ ≤ 2−n.
We claim that each of these hybrids is within negligible statistical distance of
the previous one. For Hybrid 2 this follows by Item 1 of Proposition 2: because
Ak−1,A0 are uniformly random, and C0,C1 are independent, Ak−1 ·C0 and
A0 · C1 are negligibly far from uniformly random and independent. (This is
where we use the fact that k ≥ 2.) The same argument applies for subsequent
hybrids. This completes the proof.

4 Ring-LWE Construction

In this section we present a k-cycle tester that is IND-CPA secure assuming the
hardness of ring-LWE (RLWE), appropriately parameterized. The construction
works very similarly to the plain LWE one from Sect. 4. However, it is not limited

676 N. Alamati and C. Peikert

to constant k = O(1), but can be instantiated for any k = poly(λ), because it
does not use the tensoring technique. The scheme involves the following para-
meters:

– the ring R = Z[X]/(Xn +1) for power-of-two n, the standard ring-LWE error
distribution χ over R, and an integer modulus q (which we instantiate below);

– m̄ < m = Õ(log q), where m̄,m are the dimensions associated with the ring-
based GenTrap for parameters R, q;

– The secret-key and message spaces are both R, the randomness/trapdoor
space of the ring-based GenTrap.

The construction is as follows.

– Setup(): output a uniformly random ā ∈ Rm̄
q .

– Gen(ā): let a ← GenTrap(ā;R) for R ← R. Output a as the public key and
the trapdoor R as the secret key.

– Enc(a,R ∈ R): let v ← GenTrap(ā;R) where v ∈ Rm
q . Choose s ← χ and

e ← χm. Output the ciphertext

C ← v−1[s · a + e] ∈ Rm×m,

where the v−1 operation is performed using the trapdoor R.
– Test((ai,Ci)i∈Zk

): Given public keys ai and ciphertexts Ci, check whether

(ak−1 · C0 · C1 · · ·Ck−1 − a0 · C1 · · ·Ck−1 · C0) · Ī ∈ Qm̄ (mod q), (3)

where Ī = (Im̄
0) ∈ Rm×m̄, and Q ⊆ R is the set of ring elements whose

coefficients (with respect to the standard power basis) all are in (−q/4, q/4).

In the remainder of this section we prove the following theorem:

Theorem 2. For any k = poly(λ) and a sufficiently large q = Õ(nk)O(k), the
above scheme is a k′-cycle tester for 2 ≤ k′ ≤ k, assuming the hardness of
decision-RLWER,q,χ,m.

Recall that the Ring-LWE instantiation from Theorem 2 is at least as hard
as (quantumly) approximating certain lattice problems on ideal lattices in R, in
the worst case, to within Õ(nk)O(k) factors.

Lemma 5 below establishes IND-CPA security. In Sect. 4.1 we show that Test
almost always accepts on an encryption cycle, and in Sect. 4.2 we show that Test
almost never accepts on a non-cycle. Together these prove Theorem 2.

Lemma 5. The tuple (Setup,Gen,Enc) is IND-CPA secure under the RLWE
assumption from Theorem 2.

Due to space restrictions, we omit the proof, which proceeds very similarly
to the proof of Lemma 2.

Circular Insecurity for Any Cycle Length from (Ring-)LWE 677

4.1 Testing an Encryption Cycle

Lemma 6. For a sufficiently large q = Õ(nk)O(k), the Test algorithm accepts
with all but negligible probability when given an encryption k-cycle, i.e., in Game
0 of Definition 2.

Proof. For input (ai,Ci)i∈Zk
, we have

Ci ← a−1
i−1[si · ai + ei]

for some si ← χ and ei ← χm. Moreover, by commutativity of R we have
sisj = sjsi for any i, j ∈ Zk. Now for the left-hand term of Eq. (3) we have

l := ak−1 · a−1
k−1[s0 · a0 + e0] · C1 · · ·Ck−1

≈ s0 · a0 · a−1
0 [s1 · a1 + e1] · C2 · · ·Ck−1 (error e0 · C1 · · ·Ck−1)

≈ s0 · s1 · a1 · a−1
1 [s2 · a2 + e2] · C3 · · ·Ck−1 (error s0 · e1 · C2 · · ·Ck−1)

· · ·
≈ s0 · · · sk−1 · ak−1. (error s0 · · · sk−2 · ek−1)

(We analyze the error terms below.) Similarly, for the right-hand term of Eq. (3),
we have

r := a0 · C1 · · ·Ck−1 · C0 ≈ s1 · · · sk−1 · s0 · a0
= s0 · · · sk−1 · a0,

with error terms as in the previous expansion, but with all the subscripts incre-
mented (modulo k). Therefore,

(l − r) · Ī ≈ s0 · · · sk−1 · (ak−1 − a0) · Ī = 0,

where the approximation includes the errors from the expansions of both l and r,
and where we use the fact that ai · Ī = ā for every i ∈ Zk.

It remains to analyze the error terms. Recall that each ei is made up of
independent entries from χ. Also, each secret si comes from χ. Lastly, each
ciphertext Ci ∈ R

m×m is drawn as some a−1[·]. Then by Eq. (1), Proposition 3,
and Item 4 of Proposition 5, we have (except with negligible probability)

s1(si) ≤ nc, s1(ei) ≤ √
m · nc, s1(Ci) ≤ m · nc

for some universal constant c > 1. Let e denote the sum of all the error terms
in the above approximations for l, r. We have

‖e‖∞ ≤ s1(e) ≤ 2k · mk−1 · nck.

Because m = Õ(log q), for a sufficiently large q = Õ(nk)O(k), Proposition 4
guarantees that every coefficient of every entry of e has the magnitude less
than q/4, and therefore e ∈ Qm and Test accepts, as desired.

678 N. Alamati and C. Peikert

4.2 Testing a Non-cycle

Lemma 7. Under the same RLWE assumption from Theorem 2, for k ≥ 2
the Test algorithm accepts with only negligible probability on ciphertexts that all
encrypt zero, i.e., in Game 1 of Definition 2.

Proof. We consider the following sequence of hybrids. We show that adjacent
hybrids are indistinguishable, either computationally or statistically. Hence, the
tester’s acceptance probability differs by only a negligible amount in successive
hybrids.

Hybrid 1: In this hybrid, the public keys are uniformly random and inde-
pendent (modulo their common prefix ā), and each ciphertext is sampled
independently from Dm. Following the proof of Lemma 5, this hybrid is com-
putationally indistinguishable from real game.

Hybrids 2, 3, . . . , k + 1: In the second hybrid, in Eq. (3) we replace ak−1 ·C0

with a uniformly random a′
0 and replace a0 · C1 with a uniformly random

a′
1. We define hybrids 3 through k + 1 similarly. Hence, the final algorithm

tests whether (a′
k−1 − a′

0) · Ī ∈ Qm̄, where both terms in the difference are
uniformly random and independent. The acceptance probability is therefore
bounded by 2−n.
Statistical indistinguishability of each of these hybrids from the previous one
follows by Item 1 of Proposition 5. Therefore, the algorithm rejects on non-
cycles with high probability, and proof is complete.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

2. Adão, P., Bana, G., Herzog, J.C., Scedrov, A.: Soundness of formal encryption in
the presence of key-cycles. In: di Vimercati, S.C., Syverson, P.F., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

3. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012)

4. Applebaum, B.: Key-dependent message security: generic amplification and
completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 527–546. Springer, Heidelberg (2011)

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

6. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

7. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.)
Advances in Cryptology – ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800.
Springer, Heidelberg (2015)

Circular Insecurity for Any Cycle Length from (Ring-)LWE 679

8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

10. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

11. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011)

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC, pp. 575–584 (2013)

13. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

14. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 540–557. Springer, Heidelberg (2012)

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

16. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). http://crypto.stanford.edu/craig

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984). Preliminary version in STOC 1982

20. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary
length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS,
vol. 9015, pp. 378–400. Springer, Heidelberg (2015)

21. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles
from LWE. In: CRYPTO. (to appear 2016)

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43:1–43:35 (2010). Preliminary version in Eurocrypt 2010

23. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013)

24. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

25. Marcedone, A., Orlandi, C.: Obfuscation (→) (IND-CPA security ! → circular
security). In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
77–90. Springer, Heidelberg (2014)

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

http://crypto.stanford.edu/craig

680 N. Alamati and C. Peikert

27. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC, pp. 333–342 (2009)

28. Regev, O.: On lattices, learning with errors, random linear codes, cryptography. J.
ACM 56(6), 1–40 (2009). Preliminary version in STOC 2005

29. Vershynin, R.: Compressed sensing, theory and applications, pp. 210–268. Cam-
bridge University Press (2012). http://www-personal.umich.edu/ romanv/papers/
non-asymptotic-rmt-plain.pdf. chapter 5

http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

Circular Security Separations for Arbitrary
Length Cycles from LWE

Venkata Koppula(B) and Brent Waters

University of Texas at Austin, Austin, USA
{kvenkata,bwaters}@cs.utexas.edu

Abstract. We describe a public key encryption that is IND-CPA secure
under the Learning with Errors (LWE) assumption, but that is not circu-
lar secure for arbitrary length cycles. Previous separation results for cycle
length greater than 2 require the use of indistinguishability obfuscation,
which is not currently realizable under standard assumptions.

1 Introduction

The notion of key dependent message security departs from standard encryption
security in that it allows the attacker to access ciphertexts where the messages
are functions of the secret key. One prototypical example is k-circular security.
An encryption scheme is said to be k-circular secure, if an adversary is unable to
distinguish Enc(pk1, skk),Enc(pk2, sk1), . . . ,Enc(pkk, skk−1) from k encryptions
of the all 0 message.

The demand for encryption schemes that provide circular security has arisen
in multiple applications. Camenisch and Lysyanskaya [13] applied circular secure
encryption to anonymous credential systems, while Laud [22] and Adão et al. [2]
use circular security to prove the soundness of symbolic protocols. Most notably
Gentry’s [19] bootstrapping technique shows how to achieve fully homomorphic
encryption (FHE) for circuits of any depth chosen at evaluation time (i.e. not fixed
at setup) from those of shallower depth if the FHE scheme is circular secure. There
have been multiple constructions of circular secure schemes or more generally key-
dependent message security, some proven in the random oracle model [8,13] and
others in the standard model from particular assumptions [3–6,9–11].

One interesting question is whether k-circular security can come “for free”.
Is there some k such that any IND-CPA secure encryption scheme is guaranteed
to be k-circular secure? If true, this would give an immediate path to applying
Gentry’s FHE bootstrapping technique among other applications.

A trivial folklore argument provides a separation for the case of k = 1. The
first non-trivial example for k = 2 was given by Acar et al. [1] and extended by
Cash et al. [14] using the Decisional Diffie-Hellman assumption over asymmetric

B. Waters—Supported by CNS-1228599 and CNS-1414082. DARPA through the
U.S. Office of Naval Research under Contract N00014-11-1-0382, Google Faculty
Research award, the Alfred P. Sloan Fellowship, Microsoft Faculty Fellowship, and
Packard Foundation Fellowship.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part II, LNCS 9815, pp. 681–700, 2016.
DOI: 10.1007/978-3-662-53008-5 24

682 V. Koppula and B. Waters

bilinear groups. Subsequently, Bishop et al. [7] extended the result to include
symmetric groups under the decision linear assumption as well as moving to
the lattice setting with a counterexample under the Learning with Errors (LWE)
assumption. However, they leave open the possibility of getting “free” circular
security by simply extending the key cycle lengths to be greater than two.

The more general case of k-length cycles for arbitrary size k was considered by
Koppula et al. [21] who showed that under the assumption of indistinguishability
obfuscation (for polynomial sized circuits), for any k there exists schemes that are
IND-CPA secure, but that are not k-circular secure. Marcedone and Orlandi [23]
independently gave a similar result, but under the assumption of a virtual black
box secure obfuscator for a certain functionality.

While these works cast doubts on the ability to get free circular security for
larger cycle lengths, they do so by invoking a quite strong primitive of obfusca-
tion. Notably, the only current candidates for obfuscation rely on the multilinear
encodings for which the first candidate was proposed in 2013 [17]. In addition,
to being relatively untested there have subsequently been several attacks discov-
ered [15,16] on various multilinear encoding proposals.

Separation Without Obfuscation. This brings up to the central question of this
paper.

Can we separate IND-CPA and circular security for arbitrary length cycles
using standard assumptions (i.e. without invoking obfuscation or multilinear

maps)?

Such a result would provide a firmer understanding of circular security. In
addition, the introduction of the first general purpose obfuscation candidate [18]
has lead to the realization of many cryptographic primitives that to this point
were not realizable (e.g., deniable encryption, functional encryption, etc.). How-
ever, very few of these newly realized primitives have since been adapted to a
standard assumption — one not involving obfuscation or multilinear maps. We
believe that attacking this problem for one primitive can begin to crack the ice
and hopefully begin to lead to insights for others.

A Separation Example from Learning with Errors. The main result of our paper
is the introduction of a family of encryption systems that are IND-CPA secure
under the LWE assumption, but which are made to not be k-circular secure for
arbitrary k.

We first illustrate the challenges of building such a scheme by looking at the
recent Bishop, Hohenberger and Waters construction [7], which gave a separa-
tion from LWE for k = 2. In this work, Bishop et al. first proposed a general
framework for constructing circular security separations. This framework, called
the k-cycle tester framework, consists of algorithms for setup, key generation,
encryption and testing cycles. Note that unlike an encryption scheme, there
is no decryption algorithm here. The setup algorithm outputs public parame-
ters, which are used by the key generation algorithm to choose the public key
and secret key. The encryption algorithm takes a public key and a message,

Circular Security Separations for Arbitrary Length Cycles from LWE 683

and outputs its encryption. The cycle tester algorithm takes k public keys and k
encryptions, and outputs 1 if the k public keys/ciphertexts form a key cycle (that
is, cti ← Enc(pki, ski−1)), else it outputs 0 with all but negligible probability.
For security, encryptions of distinct messages must be computationally indistin-
guishable. Bishop et al. showed how to use such a k-cycle tester, together with
an IND-CPA encryption scheme, to construct an IND-CPA encryption scheme
that is not k-circular secure. They also showed several constructions of a 2-cycle
tester from various assumptions, including one from LWE.

The BHW 2-cycle Tester from LWE: Unlike most existing LWE based encryption
schemes where the message is part of a large norm vector, Bishop et al. used
a novel approach for encrypting the message: via lattice trapdoors. A lattice
trapdoor generation algorithm outputs a matrix A together with a trapdoor TA.
The matrix looks uniformly random, while the trapdoor can be used to compute,
for any matrix U, a low norm matrix S = A−1(U) such that A · S = U.1

Moreover, if U is chosen uniformly at random, then S reveals no information
about the matrix A, or the randomness used to sample A, TA. Bishop et al. used
the message vector as randomness for the lattice trapdoor generation algorithm.

Their construction (with some modifications) can be described as follows.
The setup algorithm simply outputs the LWE parameters. The key generation
algorithm first samples a matrix A along with its lattice trapdoor TA. The secret
key is the randomness used to compute A, TA. To compute the public key, the
algorithm chooses a matrix C, computes D = C·A+noise and outputs (C,D) as
the public key. The encryption algorithm uses the message msg as randomness for
the trapdoor generation algorithm, computing a matrix Z and its trapdoor TZ.
Next, it chooses a uniformly random {−1, 1} vector r and computes u = C� · r
and v = D� · r ≈ A� · C� · r. The final ciphertext consists of a short vector
s = Z−1(u) that contains the message, and a large vector v that is used for
cycle testing. For IND-CPA security, one can use the LWE assumption and the
Leftover Hash Lemma to argue that C� · r is indistinguishable from a uniformly
random vector, and therefore Z−1(C� · r) reveals no information about msg.

The cycle testing algorithm takes as input two ciphertexts (v1, s1), (v2, s2)
and checks if v�

1 · s2 is close to v�
2 · s1. To see why this works, let us consider

the case when the two ciphertexts form a key cycle; that is, s1 = B−1
2 (C�

1 · r1),
v�
1 = r�

1 · C1 · B1 + noise and s2 = B−1
1 (C�

2 · r2), v�
2 = r�

2 · C2 · B2 + noise.
In this case, the testing algorithm outputs 1 because v�

1 · s2 ≈ r�
1 · C1 · C�

2 · r2
= r�

2 · C2 · C�
1 · r1 ≈ v�

2 · s1. However, if both ciphertexts are encryptions of 0,
then both v�

1 ·s2 and v�
2 ·s1 are uniformly random elements, and therefore, they

are likely not close to each other. At a high level, this approach works because
in a key cycle, the B1 in v1 and B−1

1 in s2 cancel each other (and similarly the
matrix B2 and B−1

2 in v2 and s1 respectively).
Unfortunately, the BHW approach cannot be directly used to handle longer

cycles.

1 For simplicity, we use the notation A−1(·) to represent the pre-image S. In the formal
description of our algorithms, we use the pre-image sampling algorithm SamplePre.

684 V. Koppula and B. Waters

Our Approach via Cascading Cancellations: For simplicity, let us consider the
problem of constructing a 3-cycle tester (this can be easily extended to han-
dle longer cycles). The starting point of our approach is the following sim-
ple observation: for i = 1, 2, 3, let Bi be matrices with trapdoors, and let
X,C1,C2,C3 be arbitrary matrices. Consider the matrices M1 = B−1

3 (C1 ·X),
M2 = B−1

1 (C2 · B2) and M3 = B−1
2 (C3 · B3). Then B1 · M2 · M3 · M1 =

C2 · C3 · C1 · X. The matrix B1 starts the ‘chain reaction’ by canceling B−1
1 in

M1, and after each matrix multiplication, the product is a canceling matrix for
the next one in the sequence.

In fact, this observation can be easily extended to have noisy matrices: for
i = 1, 2, 3, let Bi be matrices with trapdoors, Ci matrices with low norm entries,
and X any arbitrary matrix. Consider the matrices M1 = B−1

3 (C1 · X + noise),
M2 = B−1

1 (C2 · B2 + noise) and M3 = B−1
2 (C3 · B3 + noise). Then B1 · M2 ·

M3 · M1 ≈ C2 · C3 · C1 · X. This observation inspires us to try the following
approach: each ciphertext consists of two low norm matrices such that a key
cycle gives us two parallel chains with the same end product matrix. Before
discussing this approach in more detail, we will present an extension of the cycle
tester framework which will help simplify our presentation.

Extending the BHW k-cycle Tester Framework: We introduce an extension of the
BHW cycle tester framework, which we call the Leader-Follower k-cycle tester
framework. This framework has a setup algorithm for outputting the parameters,
two different key generation and encryption algorithms, and finally a tester algo-
rithm. Looking ahead, in our separation, one of the public keys/ciphertexts has a
special role, and they are generated using the ‘leader’ key generation/encryption
algorithms, while the remaining are generated using the ‘follower’ key genera-
tion/encryption algorithms. For correctness, we require that the test algorithm
outputs 1 if the k ciphertexts form an encryption cycle, else it outputs 0. For
security, both the leader and follower encryption schemes must satisfy IND-CPA
security. One can establish a simple reduction from our Leader-Follower frame-
work to the BHW cycle-tester framework.

First Attempt via Two Parallel Chains: As an initial attempt, we present a
Leader-Follower 3-cycle tester where any message/secret key consists of two
strings, each of which can be used to sample a lattice trapdoor. To begin, we
will describe the follower key generation/encryption algorithms.

The follower key generation algorithm chooses two strings x1,x2 and sets
(x1,x2) as the secret key. To compute the public key, it first chooses two matrices
B1,B2 with trapdoors (using strings x1 and x2 respectively as randomness). The
public key simply consists of the matrices B1,B2. The corresponding encryption
algorithm uses the message msg = (y1,y2) to sample matrices Z1,Z2 together
with the respective trapdoors. Next, it chooses a low norm matrix C and outputs
S1 = Z−1

1 (C · B1 + noise), S2 = Z−1
2 (C · B2 + noise) as the ciphertext.

The leader key generation algorithm is a bit more involved. The secret key
is chosen as in the follower key generation, and the public key has an addi-
tional component: a uniformly random matrix X. As in the follower encryp-
tion algorithm, the leader encryption algorithm chooses matrices Z1,Z2 and

Circular Security Separations for Arbitrary Length Cycles from LWE 685

their trapdoors. Next, it chooses low norm matrices C1 and outputs S1 =
Z−1

1 (C · X + noise), S2 = Z−1
2 (C · X + noise).

The testing algorithm, on input three ciphertexts (S11,S12), (S21,S22),
(S31,S32) and three public keys (B11,B12,X), (B21,B22), (B31,B32), checks if
B11 ·S21 ·S31 ·S11 ≈ B12 ·S22 ·S32 ·S12. The testing algorithm works as desired,
because if Ci is the random matrix used for computing Sij and the three cipher-
texts form an encryption cycle, then both the expressions are approximately
C2 · C3 · C1 · X.

For IND-CPA security of follower key generation/encryptions, note that by
the LWE assumption, both C ·B1 +noise and C ·B2 +noise are indistinguishable
from truly random matrices. As a result, S1 and S2 hide the randomness used
to choose Z1 and Z2.

Next, let us consider IND-CPA security of leader key generation/encryptions.
Unfortunately, this part is problematic, because the matrices Z−1

1 (C ·X+noise)
and Z−1

2 (C ·X+noise) clearly reveal information about Z1 and Z2 (for example,
one can check if Z1 = Z2). To address this problem, we first increase the num-
ber of parallel chains to a suitably large number (say �), and have � matrices
X1, . . . ,X� as part of the leader public key. These matrices satisfy the following
relation: there exist a {−1, 1} coefficient vector x such that xi ·Xi = 0. This vec-
tor x must be hidden from the IND-CPA adversary; however, the test algorithm
must be able to somehow use this vector to cancel out the Xi matrices.

Our Solution: Our final solution is similar to the approach outlined above. The
messages and secret keys consist of � strings, each of which can be used as the
randomness for lattice trapdoor generation. The follower key generation and
encryption algorithms are similar to the ones described above, except that now
there are � public matrices B1, . . . ,B�, and the ciphertext consists of � low norm
matrices S1, . . . ,S�, where Si = Z−1

i (C · Bi + noise).
The main differences are in the leader key generation algorithm. The leader

key generation algorithm first uses the secret key to sample � matrices B1, . . . ,B�

along with their trapdoors. Next, it chooses an � length string x, chooses � − 1
matrices X1, . . . ,X�−1, and sets X� such that

∑
i xi · Xi = 0. The public key

consists of the matrices (x1 ·B1, . . . , x� ·B�,X1, . . . ,X�) (note the xi coefficients
attached to each Bi). To encrypt a message, one chooses matrices Z1, . . . ,Z� with
trapdoors using the message strings as randomness. Then it chooses a matrix
C and outputs Si = Z−1

i (C · Xi + noise) as the ciphertext. To argue IND-CPA
security, note that the matrices Xi look uniformly random (since the vector x
is hidden from the adversary). As a result, the matrices C · Xi + noise look like
� uniformly random matrices, and therefore the adversary does not learn any
information about the Zi matrices.

The test algorithm is similar to what was described in the previous solution,
except at the end, the algorithm computes the sum of the final products, and
checks if it is of low norm. The correctness of the test algorithm for k = 3 can be
verified easily from the table below. Let pk1 = (x1 ·B11, . . . , x� ·Bi�,X1, . . . ,X�),
and let ct1, ct2, ct3 be the three ciphertexts that form a 3-cycle.

686 V. Koppula and B. Waters

pk1 matrices x1 · B11 . . . x� · B1�

ct2 matrices S21 = B−1
11 (C2 · B21 + noise) . . . S2� = B−1

1� (C2 · B2� + noise)
ct3 matrices S31 = B−1

21 (C3 · B31 + noise) . . . S3� = B−1
2� (C3 · B3� + noise)

ct1 matrices S11 = B−1
31 (C1 · X1 + noise) . . . S1� = B−1

3� (C1 · X� + noise)
Product ≈ x1 · C2 · C3 · C1 · X1 . . . ≈ x� · C2 · C3 · C1 · X�

Clearly, the sum of the products is low norm, and therefore the testing algo-
rithm outputs 1 if the input is a key cycle. For a non-key cycle, each of these
products is a uniformly random matrix, and therefore, with high probability,
their sum has large norm. This concludes our scheme.

2 Preliminaries

Notations: We will use lowercase bold letters for vectors (e.g. v) and uppercase
bold letters for matrices (e.g. A). For any finite set S, x ← S denotes a uniformly
random element x from the set S. Similarly, for any distribution D, x ← D
denotes an element x drawn from distribution D. The distribution Dn is used
to represent a distribution over vectors of n components, where each component
is drawn independently from the distribution D. Berp denotes the Bernoulli
distribution over {0, 1}, where Prx←Berp [x = 1] = p.

Given a randomized algorithm A(·), the notation A(·; ·) is used to explicitly
describe the randomness used by A (e.g. A(x; r) denotes computation on input
x using randomness r).

Randomness Extraction: We will use the following theorem, which follows from
the Leftover Hash Lemma.

Theorem 1. Let m > (n+1) log2 q+ω(log n) and q a prime. Then the statistical
distance between the following distributions is negligible in n.

{(A,A · r) : A ← Z
n×m
q , r ← {−1, 1}m} ≈ {(A,u) : A ← Z

n×m
q ,u ← Z

m
q }.

2.1 Lattice Preliminaries

Given positive integers n,m, q and a matrix A ∈ Z
n×m
q , we let Λ⊥

q (A) denote
the lattice {x ∈ Z

m : Ax = 0 mod q}. For u ∈ Z
n
q , we let Λu

q (A) denote the
set {x ∈ Z

m : Ax = u mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distrib-
ution Dσ with parameter σ is defined by the probability distribution function
ρσ(x) = exp(−π · ||x||2/σ2). For any set L ⊂ R

m, define ρσ(L) =
∑

x∈L ρσ(x).
The discrete Gaussian distribution DL,σ over L with parameter σ is defined by
the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.

The following lemma (Lemma 4.4 of [20,25]) shows that if the parameter σ
of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Circular Security Separations for Arbitrary Length Cycles from LWE 687

Lemma 1. Let m,n, q be positive integers withm > n, q ≥ 2. LetA ← Z
n×m
q be a

uniformly random matrix of dimensions n × m, σ = Ω̃(n) and L = Λ⊥
q (A). Then

Pr[||x|| >
√

m · σ : x ← DL,σ] ≤ negl(n).

Learning with Errors (LWE). The Learning with Errors (LWE) problem was
introduced by Regev [28]. The LWE problem has four parameters: the dimen-
sion of the lattice n, the number of samples m, the modulus q and the error
distribution χ(n).

Assumption 1 (Learning with Errors). Let n, m and q be positive inte-
gers and χ a noise distribution on Z. The Learning with Errors assumption
(n,m, q, χ)-LWE, parameterized by n,m, q, χ, states that the following distribu-
tions are computationally indistinguishable:{

(A, s� · A + e) :
A ← Z

n×m
q ,

s ← Z
n
q , e ← χm

}
≈c

{
(A,u) :

A ← Z
n×m
q ,

u ← Z
m
q

}

Under a quantum reduction, Regev [28] showed that for certain noise dis-
tributions, LWE is as hard as worst case lattice problems such as the deci-
sional approximate shortest vector problem (GapSVP) and approximate shortest
independent vectors problem (SIVP). The following theorem statement is from
Peikert’s survey [27].

Theorem 2 [28]. For any m ≤ poly(n), any q ≤ 2poly(n), and any discretized
Gaussian error distribution χ of parameter α·q ≥ 2·√n, solving (n,m, q, χ)-LWE
is as hard as quantumly solving GapSVPγ and SIVPγ on arbitrary n-dimensional
lattices, for some γ = Õ(n/α).

Later works [12,26] showed classical reductions from LWE to GapSVPγ . Given
the current state of art in lattice algorithms, GapSVPγ and SIVPγ are believed
to be hard for γ = Õ(2nε

), and therefore (n,m, q, χ)-LWE is believed to be hard
for Gaussian error distributions χ with parameter 2−nε · q · poly(n).
LWE with Short Secrets. In this work, we will be using a variant of the LWE
problem called LWE with Short Secrets. In this variant, introduced by Applebaum
et al. [5], the secret vector is also chosen from the noise distribution χ. They showed
that this variant is as hard as LWE for sufficiently large number of samples m.

Assumption 2 (LWE with Short Secrets). Let n, m and q be positive inte-
gers and χ a noise distribution on Z. The LWE with Short Secrets assumption
(n,m, q, χ)-LWE-ss, parameterized by n,m, q, χ, states that the following distrib-
utions are computationally indistinguishable2:{

(A,S · A + E) :
A ← Z

n×m
q ,

S ← χn×n,E ← χn×m

}
≈c

{
(A,U) :

A ← Z
n×m
q ,

U ← Z
n×m
q

}
.

2 Applebaum et al. showed that {(A, s� · A + e) : A ← Z
n×m
q , s ← χn, e ← χm} ≈c

{(A,u) : A ← Z
n×m
q ,u ← Z

m
q }, assuming LWE is hard. However, by a simple

hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.

688 V. Koppula and B. Waters

Lattices with Trapdoors. Lattices with trapdoors are lattices that are statistically
indistinguishable from randomly chosen lattices, but have certain ‘trapdoors’
that allow efficient solutions to hard lattice problems.

Definition 1. A trapdoor lattice sampler consists of algorithms TrapGen and
SamplePre with the following syntax and properties:

– TrapGen(1n, 1m, q) → (A, TA): The lattice generation algorithm is a random-
ized algorithm that takes as input the matrix dimensions n,m, modulus q and
�TG(n) bits of randomness, and outputs a matrix A ∈ Z

n×m
q together with a

trapdoor TA.
– SamplePre(A, TA,u, σ) → s: The presampling algorithm takes as input a

matrix A, trapdoor TA, a vector u ∈ Z
n
q and a parameter σ ∈ R (which

determines the length of the output vectors). It outputs a vector s ∈ Z
m
q .

These algorithms must satisfy the following properties:

1. Correct Presampling: For any string y ∈ {0, 1}�TG , vector u and parameter σ,
let (A, TA) ← TrapGen(1n, 1m;y), s ← SamplePre(A, TA,u, σ). Then A · s =
u and ‖s‖∞ ≤ √

m · σ.
2. Well Distributedness of Matrix: The following distributions are statistically

indistinguishable:

{A : (A, TA) ← TrapGen(1n, 1m)} ≈s {A : A ← Z
n×m
q }.

3. Well Distributedness of Preimage: For any string y ∈ {0, 1}�TG , let (A, TA) =
TrapGen(1n, 1m;y). Then if σ = ω(

√
n · log q · log m), the following distribu-

tions are statistically indistinguishable:

{s : u ← Z
n
q , s ← SamplePre(A, TA,u, σ)} ≈s DZm,σ.

Note that the first and third properties must be satisfied for all strings
y ∈ {0, 1}�TG . These properties are satisfied by the gadget-based trapdoor lat-
tice sampler of [24].

3 Circular Security and Our Framework for Generating
Circular Separations

In this section, we define the notion of circular security for public key encryption
schemes, and then discuss frameworks for obtaining separation between circular
security and IND-CPA security. Let PKE = (Setup,KeyGen,Enc,Dec) be a public
key encryption scheme. A k-encryption cycle consists of k encryptions, where the
ith encryption is an encryption of the (i − 1)th secret key using the ith public
key. Intuitively, the scheme is k-circular secure if no adversary can distinguish
between an encryption cycle and k encryptions of zeros.

Circular Security Separations for Arbitrary Length Cycles from LWE 689

Definition 2 (k-Circular Security). Let PKE = (Setup,KeyGen,Enc,Dec)
be a public key cryptosystem. The scheme is said to k-circular secure if for all
PPT adversaries A, the following expression is at most negl(λ).

∣∣∣∣∣ Pr
[
1 ← A({(pki, cti)}i) : pp ← Setup(1λ); (pki, ski) ← KeyGen(pp);

cti ← Enc(pki, ski−1)

]

−Pr
[
1 ← A({(pki, cti)}i) :

pp ← Setup(1λ); (pki, ski) ← KeyGen(pp);
cti ← Enc(pki, 0|ski−1|)

] ∣∣∣∣∣.

The above definition is derived from the Key-Dependent Message (KDM)
security notion of Black et al. [8]. A weaker security notion, proposed by Cash
et al. [14] requires the adversary to output the secret key when given an encryp-
tion cycle. Koppula et al. [21] showed that if there exists an adversary that can
distinguish between an encryption cycle and encryptions of zeros, then there
exists an adversary that can recover the entire secret key given an encryption
cycle. Therefore, in this work, we focus on Definition 2.

3.1 The BHW Cycle Tester Framework

In a recent work, Bishop et al. [7] introduced a generic framework for creating
circular security counterexamples. In this cycle tester framework, there are four
algorithms - Setup, KeyGen, Encrypt and Test. The setup algorithm outputs the
public parameters, the key generation algorithm uses the public parameters to
output a public key/secret key pair. The encryption algorithm takes a public key
and message as input, and outputs a ciphertext. Finally, the testing algorithm
takes as input k public keys and k ciphertexts, and outputs 1 if the k encryptions
form an encryption cycle, else it outputs 0. Note that in this framework, there is
no decryption algorithm. The security requirement is identical to the IND-CPA
security game. The following description is taken from [7].

Definition 3 (k-Cycle Tester). A cycle tester Γ = (Setup,KeyGen,Enc,Test)
for message space M and secret key space S is a tuple of algorithms specified as
follows:

– Setup(1λ, 1k) → pp. The setup algorithm takes as input the security parameter
λ and the length of cycle k. It outputs the public parameters pp.

– KeyGen(pp) → (pk, sk). The key generation algorithm takes as input the public
parameters pp and outputs a public key pk and secret key sk ∈ S.

– Enc(pk,m ∈ M) → C. The encryption algorithm takes as input a public key
pk and a message m ∈ M and outputs a ciphertext C.

– Test(pk, ct) → {0, 1}. On input pk = (pk1, . . . , pkk) and ct = (ct1, . . . , ctk),
the testing algorithm outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.

690 V. Koppula and B. Waters

1. (Testing Correctness) There exists a polynomial p(·) such that for all security
parameters λ, the Test algorithm’s advantage (given by the following expres-
sion) is at least 1/p(λ).

Pr
[
1 ← Test(pk, ct) : pp ← Setup(1λ); (pki, ski) ← KeyGen(pp);

cti ← Enc(pk, ski−1)

]

− Pr
[
1 ← Test(pk, ct) :

pp ← Setup(1λ); (pki, ski) ← KeyGen(1λ);
cti ← Enc(pki, 0|ski−1|)

]

2. (IND-CPA Security) Let Π = (Setup,KeyGen,Enc, ·) be an encryption scheme
with empty decryption algorithm. The scheme Π must satisfy the IND-CPA
security definition.

Bishop et al. [7] showed that in order to construct a separation between
IND-CPA and k-circular security, it suffices to construct a k-cycle tester (as
defined in Definition 3).

Theorem 3 (CPA Separation from Cycle Testers, [7]). If there exists an
IND-CPA-secure encryption scheme Π for message space M = (M1 × M2) and
secret key space S1 ⊆ M1 and an k-cycle tester Γ for message space M2 and
secret key space S2 ⊆ M2, then there exists an IND-CPA-secure encryption
scheme Π ′ for message space M = (M1×M2) and secret key space S = (S1×S2)
that is k-circular insecure.

3.2 Our Leader-Follower Tester Framework

In this section, we propose an adaptation of the BHW cycle tester framework
that we call Leader-Follower Tester. In this modification, the key generation
and encryption have two modes - leader and follower. The tester algorithm
takes k public keys and ciphertexts: the first public key (resp. ciphertext) is
a ‘leader’ public key (resp. ciphertext). The remaining are ‘follower’ public
keys/ciphertexts. It outputs 1 if the ciphertexts form a cycle, else it outputs
0. First, we will formally define the syntax/properties of this modification, and
then show how this implies the cycle tester framework of [7].

Definition 4 (k-Leader-Follower Tester). A Leader-Follower cycle tester Γ
= (Setup, KeyGen-L, KeyGen-F, Enc-L, Enc-F, Test) for message space M and
secret key space S is a tuple of algorithms specified as follows:

– Setup(1λ, 1k) → pp. The setup algorithm takes as input the security parameter
n and length of cycle k, and outputs public parameters pp.

– KeyGen-L(pp) → (pk, sk). The leader key generation algorithm takes as input
the public parameters pp, and outputs a public key pk and secret key sk ∈ S.

– KeyGen-F(pp) → (pk, sk). The follower key generation algorithm takes as input
the public parameters pp, and outputs a public key pk and secret key sk ∈ S.

– Enc-L(pk,m ∈ M) → C. The leader encryption algorithm takes as input a
leader public key pk and a message m ∈ M and outputs a ciphertext C.

Circular Security Separations for Arbitrary Length Cycles from LWE 691

– Enc-F(pk,m ∈ M) → C. The follower encryption algorithm takes as input a
follower public key pk and a message m ∈ M and outputs a ciphertext C.

– Test(pk, ct) → {0, 1}. The test algorithm takes as input a public key vector
pk = (pk1, . . . , pkk) and a ciphertext vector ct = (ct1, . . . , ctk). Of these, the
first public key and ciphertext are of leader type, while the remaining are of
follower type. The testing algorithm outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.

1. (Testing Correctness) There exists a polynomial p(·) such that for all security
parameters λ, the Test algorithm’s advantage (given by the following expres-
sion) is at least 1/p(λ).

Pr

⎡
⎣1 ← Test({pki, cti}) :

pp ← Setup(1λ, 1k); (pk1, sk1) ← KeyGen-L(pp);
ct1 ← Enc-L(pk1, skk); (pki, ski) ← KeyGen-F(pp);
cti ← Enc-F(pk, ski−1)

⎤
⎦

− Pr

⎡
⎣1 ← Test({pki, cti}) :

pp ← Setup(1λ, 1k); (pk1, sk1) ← KeyGen-L(pp);
ct1 ← Enc-L(pk1, skk); (pki, ski) ← KeyGen-F(pp);

cti ← Enc-F(pki, 0
|ski−1|)

⎤
⎦

2. (IND-CPA Security for Both Modes) Let Π-L = (Setup,KeyGen-LEnc-L, ·)
and Π-F = (Setup, KeyGen-F, Enc-F, ·) be two encryption schemes with
empty decryption algorithm. We require that both Π-L and Π-F must sat-
isfy IND-CPA security.

We will now show that the Leader-Follower Tester defined above implies the
tester framework of [7] (Definition 3).

Lemma 2. Suppose there exists a k-Leader-Follower-Tester (Setup, KeyGen-L,
Enc-L, KeyGen-F, Enc-F, Test) as defined in Definition 4. Then there exists a
k-Tester (Setup′, KeyGen′, Enc′, Test′) that satisfies Definition 3.

Proof. The proof of this lemma is fairly straightforward: the setup algorithm
first chooses a bit b ← Ber1/k. If b = 1, it runs KeyGen-L and sets the mode to be
‘leader’, else it runs KeyGen-F and sets the mode to be ‘follower’. The encryption
algorithm, based on the mode, either uses Enc-L or Enc-F. The detailed proof
can be found in the full version of this paper.

The purpose of introducing this modification is that it simplifies the descrip-
tion of our construction (see Sect. 4). In our construction, one of the k public
keys/ciphertexts is used to ‘tie’ the ends together, and therefore is referred to as
the Leader. A similar structure can be found in the counterexample shown by [21].

4 Separation for k-Circular Security

In this section, we will describe a Leader-Follower cycle tester E = (Setup,
KeyGen-L, Enc-L, KeyGen-F, Enc-F, Test) such that it satisfies the properties

692 V. Koppula and B. Waters

described in Definition 4. Recall, �TG(n) denote the number of bits of random-
ness required by the TrapGen algorithm. For simplicity of description, we will
drop the dependence on n.

Fix any ε < 1/2. Our scheme has following algorithms:

– Setup(1λ, 1k): The setup algorithm chooses the following parameters: matrix
dimensions n,m, LWE modulus q, parameter σ for the Gaussian noise distri-
bution χ, and an additional parameter �. These parameters will be functions
of λ, k and ε. We require the parameters to satisfy the following relations:
– (n,m) are the dimensions of matrices output byTrapGen, therefore m =

Ω(n · log q).
– q = 2nε

, σ = poly(n) and χ = Dσ (for LWE noise/modulus ratio to be less
than poly(n)/2n

ε

)
– � = Ω(n · log q) (for Leftover Hash Lemma 1)
– � · (� · m · n · σ)k < q/8 (for the correctness of our Test algorithm)

One instantiation which works is as follows: fix some constant c > 0, let
n = ((c+ε)·k)1/ε ·λ, m = 6n·log q, σ = nc for some large enough constant
c. Then setting q = 2nε

, � = 2n log q satisfies the above relations.

The message space of our scheme (which is also the space of secret keys)
is ({0, 1}�TG)�.

– KeyGen-L(pp): The leader key generation algorithm first chooses y1, . . .y� ←
{0, 1}�TG . For i ≤ �, the algorithm computes (Bi, TBi

) = TrapGen(1n;yi).
Next it chooses a string x ∈ {−1, 1}� by choosing uniformly random bits
xi ← {−1, 1} for i ≤ � − 1 and setting x� = 1. The first part of the public key
consists of matrices Di defined as follows:

Di = xi · Bi ∈ Z
n×m
q for all i ≤ �

Next, it selects random vectors hi ∈ Z
n
q for i < � and lets h� = −∑

i<� xi ·hi.
The second part of the public key consists of the vectors {hi}i.
The secret key is sk = {yi}i≤� and the public key is pk = ({Di}i≤�, {hi}i≤�).

– Enc-L(pk,msg): Let pk = {Di}, {hi} and msg = (m1, . . . ,m�). The leader
encryption algorithm computes (Zi, TZi

) = TrapGen(1n;mi) for i ≤ �. Next,
it chooses matrix C ← χn×n, error vector ei ← χn for i ≤ �, and sets
fi = C · hi + ei. Finally, it computes si ← SamplePre(Zi, TZi

, σ, fi).
The ciphertext is set to be ct = (s1, . . . , s�).

– KeyGen-F(pp): The follower setup algorithm takes as input the security para-
meter 1n. It first chooses � uniformly random binary vectors of length �TG;
that is, it chooses yi ← {0, 1}�TG for i ≤ �. Next, it computes (Bi, TBi

) =
TrapGen(1n;yi).
The algorithm outputs secret key sk = {yi}i≤� and public key pk = {Bi}i≤�.

Circular Security Separations for Arbitrary Length Cycles from LWE 693

– Enc-F(pk,msg): Let msg = (m1, . . . ,m�). The follower encryption algorithm
computes (Zi, TZi

) = TrapGen(1n;mi) for i ≤ �. Next, it chooses matrix
C ← χn×n, error matrix Ei ← χn×m and sets Fi = C · Bi + Ei. Finally, it
computes Si ← SamplePre(Zi, TZi

, σ,Fi).
The ciphertext is set to be ct = (S1, . . . ,S�).

– Test((pk(1), . . . , pk(k)), (ct(1), . . . , ct(k))): Let pk(1) = ({D(1)
i }, {hi}), ct(1) =

(s(1)1 , . . . , s(1)�) and ct(j) = (S(j)
1 , . . . ,S(j)

�) for 2 ≤ j ≤ k.
The test algorithm computes

σ =
∑
i∈[�]

D(1)
i · (

∏
2≤j≤k

S(j)
i) · s(1)i .

It tests if σ ∈ [−q/8, q/8] and outputs 1 if so to indicate a cycle. Otherwise it
outputs 0.

4.1 Proof of Correctness

First, we will show that the Test algorithm distinguishes between a cycle and
encryptions of zeros with overwhelming probability. For this, we need to set
up some notations. Let Bd = n · σ. From Lemma 1, it follows that if x ← χn,
then ‖x‖∞ ≤ Bd with overwhelming probability. Let pk(1) = ({Di}, {hi}) where
Di = xi · B(1)

i .
Next, the follower public keys are pk(p) = {Bp

i } for 2 ≤ p ≤ k and TBp
i

denote
the trapdoor corresponding to matrix Bp

i for p ≤ k, i ≤ �.

We will first analyse the case where the ciphertexts are encryptions of a cycle.
Let ct(1) = (s1, . . . , s�). Here, fi = C(1) ·hi + ei and si = SamplePre(B(k)

i , T
B

(k)
i

,
σ, fi).

Next, for 2 ≤ p ≤ k, let F(p)
i = C(p)·B(p)

i +E(p)
i and S(p)

i = SamplePre(B(p−1)
i ,

T
B

(p−1)
i

, σ, F(p)
i). Let Δi,p∗ = Di ·(

∏p∗

p=2 S
(p)
i) and Δ′

i,p∗ = xi ·(
∏p∗

p=2 C
(p)) ·B(p∗)

i

Claim 1. For any i ≤ �, p∗ ∈ [2, k],

‖Δi,p∗ − Δ′
i,p∗‖∞ ≤ (� · m · Bd)p∗−1.

Proof. The proof of this theorem involves a simple induction argument on p∗.
First, the base case: p∗ = 2. In this case, Δi,p∗ = Di·S(2)

i = xi·C(2)·B(2)
i +xi·E(2)

i .
Hence ‖Δi,2 − Δ′

i,2‖∞ ≤ � · m · Bd.
Suppose this holds true for all indices less than p∗. Now, Δi,p∗ = Δi,p∗−1 ·

S(p∗)
i , and let Δi,p∗−1 = Δ′

i,p∗−1+Erri,p∗−1, where ‖Erri,p∗−1‖∞ ≤ (�·m·Bd)p∗−2.

Δi,p∗ = Δ′
i,p∗−1 · S(p∗)

i + Erri,p∗−1 · S(p∗)
i

= Δ′
i,p∗ + xi · (

p∗−1∏
p=2

C(p)) · E(p∗)
i + Erri,p∗−1 · S(p∗)

i

694 V. Koppula and B. Waters

Let Erri,p∗ = xi · (
∏p∗−1

p=2 C(p)) · E(p∗)
i + Errp∗−1 · S(p∗)

i .

‖Erri,p∗‖∞ ≤ (� · n · Bd)p∗−2 · (� · m · Bd) + ‖Errp∗−1‖∞ · (m · Bd)
≤ (� · n · Bd)p∗−2 · (� · m · Bd) + (� · m · Bd)p∗−2 · (m · Bd)
≤ (� · m · Bd)p∗−1

Finally, let us now consider the term Δi,k · si. By a similar analysis as above, we
can show that Δi,k · si = xi · (

∏k
p=2 C

(p)) · C(1) · hi + Errori where ‖Errori‖∞ ≤
(� · m · Bd)k. As a result,

‖
∑

i

Δi,k · si‖∞ = ‖
∑

i

xi · hi‖∞ +
∑

i

‖Errori‖∞ ≤ � · (� · m · Bd)k.

Given our choice of parameters, � · (� · m · Bd)k < q/8, and as a result, the
Test algorithm outputs 1.

On the other hand, if the k cycle consists of encryptions of 0, then for all
i ≤ �, Di · ∏k

p=2 S
(p)
i · si is a uniformly random vector in Z

n
q , and therefore the

test algorithm outputs 1 with negligible probability.

4.2 Proof of INDCPA Security

In this section, we will show that the construction described above is IND-CPA
secure as per Definition 4. Recall, the IND-CPA security definition for leader-
based encryption schemes requires two separate IND-CPA proofs for both leader
and follower modes.

INDCPA Security for Leader Mode. First, we will prove IND-CPA security
for Leader mode. For this, we will define a sequence of hybrid experiments,
and then show that the hybrids are computationally indistinguishable. The first
hybrid will correspond to the IND-CPA security game, while the final hybrid will
be one where the adversary has 0 advantage. Due to space constraints, we will
describe the first hybrid in full detail, and then onwards, we will only present
the step that is modified.

Hyb0: This corresponds to the IND-CPA security game.

1. Setup Phase:
(a) The challenger first chooses yi ← {0, 1}�TG for i ≤ � and computes

(Bi, TBi
) = TrapGen(1n;yi).

(b) Next, it chooses xi ← {−1, 1} for i < �, sets x� = 1.
(c) It chooses hi ← Z

n
q for i < �, sets h� = −∑

i<� xi · hi.
(d) Finally, the challenger sends ({xi · Bi}, {hi}) to the adversary.

2. Challenge Phase
(a) The adversary sends two messages msg0,msg1. The challenger chooses

matrix C ← χn×n, error vector ei ← χn for i ≤ � and sets fi = C ·hi +ei

for i ≤ �.

Circular Security Separations for Arbitrary Length Cycles from LWE 695

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m�). The challenger
computes (Zi, TZi

) = TrapGen(1n;mi).
(c) Using TZi

, the challenger computes si ← SamplePre(TZi
, fi) for all i ≤ �.

It sends ct∗ = ({si}).
3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb1: In this game, the challenger chooses Bi uniformly at random, and outputs
{Bi} as part of public key, instead of {xi · Bi}.

1. Setup Phase:
(a) The challenger first chooses Bi ← Z

n×m
q .

(d) Finally, the challenger sends ({Bi}, {hi}) to the adversary.

Hyb2: In this game, the challenger chooses h� uniformly at random instead of
setting it as −∑

xihi. Therefore, from this game onwards, the challenger does
not need to choose xi for i < �.

1. Setup Phase:
(c) It chooses hi ← Z

n
q for i ≤ �.

Hyb3: In this game, the challenger modifies the challenge phase. It chooses uni-
formly random vectors fi ← Z

n
q .

2. Challenge Phase
(a) The adversary sends two messages msg0,msg1.

The challenger chooses fi ← Z
n
q for all i ≤ �.

Hyb4: In this game, the challenger chooses si from the Discrete Gaussian distri-
bution DZm,σ with parameter σ. Note that in this hybrid, the adversary has 0
advantage.

2. Challenge Phase
(a) Next, the challenger chooses bit b ← {0, 1} and si ← Dσ. It sends ct∗ =

{si}.

Analysis: We will now show that any PPT adversary has nearly identical advan-
tage in the hybrid experiments described above. Let Advi

A denote the advantage
of adversary A in experiment Hybi.

Claim 2. For any adversary A, Adv0A − Adv1A ≤ negl(n).

696 V. Koppula and B. Waters

Proof. We will show that the statistical distance between the distributions of
public keys in Hyb0 and Hyb1 is negligible in the security parameter n. Note
that the only difference between the two hybrids is the distribution of Bi for
i ≤ �.

From the well-distributedness property of TrapGen, we know that the follow-
ing distributions have negligible statistical distance:

{Bi : (Bi, TBi
) ← TrapGen(1n)} ≈ {Bi : Bi ← Z

n×m
q }.

Next, note that the following distributions are identical:

{(xi, xi · Bi) : xi ← {−1, 1},Bi ← Z
n×m
q } ≡ {(xi,Bi) : xi ← {−1, 1},Bi ← Z

n×m
q }

Therefore, we can conclude that
{

(xi, xi · Bi) :
xi ← {−1, 1},
(Bi, TBi

) ← TrapGen(1n)

}
≈

{
(xi,Bi) :

xi ← {−1, 1},
Bi ← Z

n×m
q

}
.

As a result, the public key distributions in Hyb0 and Hyb1 are statistically indis-
tinguishable.

Claim 3. For any adversary A, Adv1A − Adv2A ≤ negl(n).

Proof. The only difference between hybrid experiments Hyb1 and Hyb2 is in the
choice of h�. In Hyb1, h� = −∑

i xihi, while in Hyb2, it is chosen uniformly at
random. Here, we will use the Leftover Hash Lemma (Theorem 1). Since � >
(n + 1) log2 q + ω(log n), it follows that

{(A = [h1| . . . |h�−1],h� = −A · r) : hi ← Z
n
q for all i ≤ � − 1, r ← Z

�−1
q }

≈
{(A = [h1| . . . |h�−1],h�) : hi ← Z

n
q for all i ≤ �}

Claim 4. Assuming (n, �, q, χ)-LWE-ss (Assumption 2), for any PPT adversary
A, Adv2A − Adv3A ≤ negl(n).

Proof. The only difference in Hyb2 and Hyb3 is the manner in which fi are
computed. In Hyb2, the challenger chooses C ← χn×n, ei ← χn and sets fi =
C · hi + ei for all i ≤ �. In Hyb3, fi are chosen uniformly at random from Z

n
q .

Suppose there exists an adversary A such that Adv2A −Adv3A is non-negligible
in n. Then there exists a reduction algorithm B that can use A to break Assump-
tion 2 with non-negligible advantage. First, B receives as LWE challenge two n×�
matrices (H,F). It chooses � matrices Bi ← Z

n×m
q , sets hi as the ith column of

H and sends {Bi,hi} as the public key.
On receiving the challenge messages msg0,msg1, B uses F to compute

the challenge ciphertext. It first chooses b ← {0, 1}, computes (Zi, TZi
)

using msgb and sets fi to be the ith column of F. Next, it computes
si ← SamplePre(Zi, TZi

, σ, fi) and sends the vectors {si} as the ciphertext.

Circular Security Separations for Arbitrary Length Cycles from LWE 697

Finally, the adversary sends the guess b′. If b = b′, B guesses that F is an
LWE matrix, else it guesses that F is uniformly random.

Clearly, if F = C · H + E for some C ← χn×n, E ← χn×�, then B simu-
lates Hyb2, and if F is uniformly random, then this corresponds to Hyb3. This
concludes our proof.

Claim 5. Assuming the well-distributedness property of (TrapGen,SamplePre)
(Definition 1), for any adversary A, Adv3A − Adv4A ≤ negl(n).

Proof. This follows directly from the well-distributedness property of (TrapGen,
SamplePre) algorithms, because the vectors {fi}i are chosen uniformly at random
from Z

n
q . Therefore, the well-distributedness property states that for all random

coins y, {si : (M, TM) ← TrapGen(1n;y), si ← SamplePre(M, TM, σ, fi)} ≈s

DZm,σ.

Using the above claims, we can show that Adv0A − Adv5A ≤ negl(n), and
therefore, the scheme is IND-CPA secure for Leader setup.

4.3 INDCPA Security for Follower Mode

This case is similar to the Leader mode, therefore we will only describe the
intermediate hybrids, and refer to the corresponding proofs from the section
above.

Hyb0: This corresponds to the IND-CPA security game.

1. Setup Phase:
(a) The challenger first chooses yi ← {0, 1}�TG for i ≤ �. Next, it computes

(Bi, TBi
) = TrapGen(1n;yi).

The challenger sends {Bi}i to the adversary.
2. Challenge Phase

(a) The adversary sends two messages msg0,msg1. The challenger first
chooses C ← χn×n, Ei ← χn×m and sets Fi = C · Bi + Ei.

(b) Next, it chooses b ← {0, 1}. Let msgb = (m1, . . . ,m�). The challenger
computes (Zi, TZi

) = TrapGen(1n;mi).
(c) Using TZi

, the challenger computes Si ← SamplePre(Zi, TZi
, σ,Fi) for all

i ≤ �. It sends ct∗ = {Si}i as the challenge ciphertext.
3. Guess: The adversary sends its guess b′ and wins if b = b′.

Hyb1: In this hybrid, the challenger uses truly random matrices Bi.

1. Setup Phase:
(a) The challenger chooses Bi ← Z

n×m
q for i ≤ � and sends {Bi}i to the

adversary.

Hyb2: In this hybrid, the challenger uses truly random matrices Fi to compute
the ciphertext.

698 V. Koppula and B. Waters

2. Challenge Phase
(a) The adversary sends two messages msg0,msg1. The challenger first

chooses Fi ← Z
n×m
q for all i ≤ �.

Hyb3: In this hybrid, the challenger chooses the matrices Si with entries from
the discrete Gaussian distribution Dm

Zm,σ. Therefore, in this game, any adversary
has 0 advantage.

2. Challenge Phase
(b) Next, it chooses Si ← Dm

Zm,σ for all i ≤ �. It sends ct∗ = {Si}i.

Analysis: As mentioned above, the proofs for this section will be very similar to
the ones in Sect. 4.2.

Claim 6. For any PPT adversary A, Adv0A − Adv1A ≤ negl(n).

The proof of this claim is identical to the proof of Claim 2.

Claim 7. Assuming (n,m · �, q, χ)-LWE-ss (Assumption 2), for any PPT adver-
sary A, Adv1A − Adv2A ≤ negl(n).

The proof of this claim is similar to the proof of Claim 4.

Claim 8. Assuming the well-distributedness property of (SamplePre,TrapGen)
algorithms (Definition 1), for any PPT adversary A, Adv3A − Adv4A ≤ negl(n).

This proof is identical to the proof of Claim5.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

2. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness and completeness of formal
encryption: the cases of key cycles and partial information leakage. J. Comput.
Secur. 17(5), 737–797 (2009)

3. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012)

4. Applebaum, B.: Key-dependent message security: generic amplification and
completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 527–546. Springer, Heidelberg (2011)

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

6. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

Circular Security Separations for Arbitrary Length Cycles from LWE 699

7. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg (2015)

8. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

9. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008)

10. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). IACR
Cryptology ePrint Archive 2010, 226 (2010)

11. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218.
Springer, Heidelberg (2011)

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Symposium on Theory of Computing Conference, STOC
2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 575–584 (2013)

13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. IACR Cryptology ePrint
Archive 2001, 19 (2001)

14. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 540–557. Springer, Heidelberg (2012)

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015)

16. Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and
their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9216, pp. 247–266. Springer, Heidelberg (2015)

17. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

18. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May – 2 June 2009, pp. 169–178 (2009)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008,
pp. 197–206 (2008)

21. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary
length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS,
vol. 9015, pp. 378–400. Springer, Heidelberg (2015)

22. Laud, P.: Encryption cycles and two views of cryptography. In: NORDSEC
2002 - Proceedings of the 7th Nordic Workshop on Secure IT Systems (Karlstad
University Studies 2002:31), pp. 85–100 (2002)

700 V. Koppula and B. Waters

23. Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA security � circular secu-
rity). In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90.
Springer, Heidelberg (2014)

24. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

25. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

26. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May – 2 June 2009,
pp. 333–342 (2009)

27. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939 (2015). http://eprint.iacr.org/

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

http://eprint.iacr.org/

Author Index

Abe, Masayuki III-387
Agrawal, Shweta III-333
Alamati, Navid II-659
Albrecht, Martin I-153
Alwen, Joël II-241
Ananth, Prabhanjan II-491
Applebaum, Benny III-449

Bai, Shi I-153
Barbulescu, Razvan I-543
Bar-On, Achiya I-435
Baum, Carsten III-478
Beierle, Christof I-625, II-123
Bellare, Mihir I-247, I-373
Ben-Zvi, Adi I-179
Bin-Noon, Hod II-521
Biryukov, Alex II-93
Blackburn, Simon R. I-179
Blocki, Jeremiah II-241
Bogdanov, Andrej III-593
Boura, Christina I-654
Bourse, Florian II-62
Boyle, Elette I-509
Brakerski, Zvika I-190, II-551, III-363
Brzuska, Christina II-551

Camenisch, Jan III-208
Canteaut, Anne I-654
Carmer, Brent III-416
Cascudo, Ignacio III-179
Chase, Melissa III-499
Chen, Yu III-303
Ciampi, Michele III-270
Cogliati, Benoît I-121
Cohen, Ran III-240
Coretti, Sandro III-240
Coron, Jean-Sébastien II-607
Costello, Craig I-572
Couteau, Geoffroy I-308

Dai, Yuanxi I-95
Damgård, Ivan II-459, III-179, III-478
David, Bernardo III-179
Degabriele, Jean Paul I-403

Degwekar, Akshay III-533
Del Pino, Rafaël II-62
Derbez, Patrick II-157
Dinur, Itai II-185
Dodis, Yevgeniy I-341, III-93
Döttling, Nico III-179, III-619
Dubovitskaya, Maria III-208
Ducas, Léo I-153
Dulek, Yfke III-3
Dunkelman, Orr II-185
Dupuis, Frédéric III-33
Duval, Sébastien I-457
Dwork, Cynthia III-123
Dziembowski, Stefan II-272

Faust, Sebastian II-272
Fehr, Serge III-33
Fischlin, Marc II-521
Fleischhacker, Nils II-551, III-619
Fouque, Pierre-Alain II-157

Gagliardoni, Tommaso III-60
Ganesh, Chaya III-499
Garay, Juan III-240
Garg, Sanjam II-579, III-563
Gilboa, Niv I-509
Güneysu, Tim II-302
Guo, Jian I-605

Halevi, Shai III-93
Hanaoka, Goichiro II-3
Hazay, Carmit II-397
Hemenway, Brett III-149
Herold, Gottfried II-272
Herzberg, Amir II-521
Hirt, Martin II-335
Hoang, Viet Tung I-3
Hoshino, Fumitaka III-387
Hülsing, Andreas III-60

Ishai, Yuval I-509, II-430, III-593

Jafargholi, Zahra III-149
Jain, Aayush II-491

Jean, Jérémy II-123
Journault, Anthony II-272

Kane, Daniel I-373
Kaplan, Marc II-207
Keller, Nathan I-435, II-185
Kiltz, Eike II-33
Kim, Taechan I-543
Kölbl, Stefan II-123
Koppula, Venkata II-681
Kranz, Thorsten I-625
Krupp, Johannes III-619
Kumaresan, Ranjit II-366
Kunihiro, Noboru II-3
Kushilevitz, Eyal II-430

Lallemand, Virginie I-457
Lamontagne, Philippe III-33
Larsen, Kasper Green III-478
Leander, Gregor I-625, II-123
Lee, Moon Sung II-607
Lepoint, Tancrède II-607
Leurent, Gaëtan II-207
Leverrier, Anthony II-207
Libert, Benoît III-333
Liu, Meicheng I-605
Longa, Patrick I-572

Masny, Daniel II-33, II-272
Maurer, Ueli II-335
Mennink, Bart I-64
Miles, Eric II-629
Minelli, Michele II-62
Mironov, Ilya I-341
Mohassel, Payman III-499, III-563
Moradi, Amir II-123, II-302

Naehrig, Michael I-572
Naor, Moni II-491, III-123
Naya-Plasencia, María II-207
Nielsen, Jesper Buus II-459, III-179
Nielsen, Michael III-478

Ohkubo, Miyako III-387
Ostrovsky, Rafail III-149, III-270

Pan, Jiaxin II-33
Pandey, Omkant II-579
Papamanthou, Charalampos III-563

Paterson, Kenneth G. I-403
Peikert, Chris II-659
Perlman, Renen I-190
Perrin, Léo II-93
Peters, Thomas I-308
Peyrin, Thomas I-33, II-123
Pointcheval, David I-308
Polychroniadou, Antigoni II-459
Prabhakaran, Manoj II-430

Qu, Longjiang I-605

Raghuraman, Srinivasan II-366
Raskin, Michael II-459
Raykov, Pavel III-449
Rial, Alfredo III-208
Rijmen, Vincent I-605
Rogaway, Phillip I-373
Rosulek, Mike III-416
Rotella, Yann I-457
Rothblum, Guy N. III-123
Rothblum, Ron D. III-93

Sahai, Amit II-430, II-491, II-629
Salvail, Louis III-33
Sasaki, Yu II-123
Sasdrich, Pascal II-123
Scafuro, Alessandra III-149
Schaffner, Christian III-3, III-60
Schneider, Tobias II-302
Schröder, Dominique III-619
Schuldt, Jacob C.N. I-403
Sealfon, Adam II-366
Seurin, Yannick I-33, I-121
Shamir, Adi II-185
Shrimpton, Thomas I-277
Shulman, Haya II-521
Sim, Siang Meng II-123
Siniscalchi, Luisa III-270
Speelman, Florian III-3
Srinivasan, Akshayaram II-579
Stam, Martijn I-277
Standaert, François-Xavier II-272
Stehlé, Damien III-333
Steinberger, John I-95
Stephens-Davidowitz, Noah I-341
Sun, Bing I-605

Tackmann, Björn I-247
Tessaro, Stefano I-3

702 Author Index

Tibouchi, Mehdi II-607
Tsaban, Boaz I-179
Tschudi, Daniel II-335

Udovenko, Aleksei II-93

Vaikuntanathan, Vinod III-363, III-533
Vasudevan, Prashant Nalini III-533
Venkitasubramaniam, Muthuramakrishnan

II-397
Viola, Emanuele III-593
Visconti, Ivan III-270

Warinschi, Bogdan I-277
Waters, Brent II-681

Wee, Hoeteck II-62
Wichs, Daniel III-93, III-149
Williamson, Christopher III-593
Woodage, Joanne I-403

Yamada, Shota II-3
Yamakawa, Takashi II-3
Yogev, Eylon II-491
Yu, Ching-Hua II-430
Yu, Yu I-214

Zhandry, Mark I-479, II-629
Zhang, Jiang I-214, III-303
Zhang, Zhenfeng III-303
Zikas, Vassilis II-335, III-240

Author Index 703

	Preface
	Crypto 2016 The 36th IACR International Cryptology Conference
	Contents -- Part II
	Asymmetric Cryptography
	Adversary-Dependent Lossy Trapdoor Function from Hardness of Factoring Semi-smooth RSA Subgroup Moduli
	1 Introduction
	1.1 Background
	1.2 Our Result
	1.3 Our Technique
	1.4 Discussion
	1.5 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Syntax and Security Notions
	2.3 Known Lemmas
	2.4 Semi-smooth RSA Subgroup Modulus

	3 Adversary-Dependent Decisional RSA Subgroup Assumption
	4 Adversary-Dependent Lossy Trapdoor Function
	4.1 Definition
	4.2 Construction

	5 Applications
	5.1 Collision Resistant Hash Function
	5.2 CPA Secure Public Key Encryption
	5.3 Deterministic Encryption

	6 CCA Secure PKE with Short Ciphertext
	6.1 Construction
	6.2 Security

	References

	Optimal Security Proofs for Signatures from Identification Schemes
	1 Introduction
	1.1 Our Contributions
	1.2 Example Instantiations
	1.3 Related Work

	2 Definitions
	2.1 Preliminaries
	2.2 Canonical Identification Schemes
	2.3 Digital Signatures
	2.4 Signatures from Identification Schemes

	3 Security Implications
	3.1 Multi-Instance Reset Lemma
	3.2 Proof of the Main Theorems

	4 Impossibility Results
	5 Instantiations
	5.1 Schnorr Identification/Signature Scheme
	5.2 Chaum-Pedersen Identification/Katz-Wang Signature Scheme

	References

	FHE Circuit Privacy Almost for Free
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Discussions

	2 Preliminaries
	3 Core Randomization Lemma
	3.1 Additional Preliminaries
	3.2 Proof of Lemma3.1
	3.3 Rerandomizing LWE samples

	4 Basic GSW Cryptosystem
	4.1 Rerandomizing and Scaling GSW Ciphertexts

	5 Our Scheme: Circuit-Private Homomorphic Evaluation for GSW
	5.1 Homomorphic Evaluation for Branching Programs
	5.2 Proof of Circuit Privacy
	5.3 Setting the Parameters
	5.4 Arbitrary Modulus and Random Trapdoor Matrix
	5.5 Extension to General Circuits

	References

	Symmetric Cryptography
	Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem
	1 Introduction
	2 A Decomposition of the 6-Bit APN Permutation
	2.1 High-Level TU-Decomposition
	2.2 Decomposing T
	2.3 Joining the Decompositions of T and U

	3 Analysing Our Decomposition
	3.1 Cryptographic Properties
	3.2 The Butterfly Structure
	3.3 Propagation of Affine Mappings Through the Components
	3.4 Replacing Components
	3.5 Relations with the Kim and the Cube Functions
	3.6 Univariate Polynomial Representations

	4 Differentially 4-Uniform Permutations of Larger Blocks
	4.1 Butterfly with Non-Trivial
	4.2 Feistel Network (= 1)

	5 Implementing 6-Bit APN Permutations
	5.1 Efficient Bit-Sliced Implementations
	5.2 Hardware Implementation

	6 Conclusion
	References

	The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS
	1 Introduction
	2 Specification of SKINNY
	3 Rationale of SKINNY
	3.1 Estimating Area and Performances
	3.2 General Design and Components Rationale
	3.3 Comparing Differential Bounds
	3.4 Comparing Theoretical Performance

	4 Security Analysis
	4.1 Differential/Linear Cryptanalysis
	4.2 Further Cryptanalysis

	5 Implementations, Performance and Comparison
	6 The Low-Latency Tweakable Block Cipher MANTIS
	6.1 Description of the Cipher
	6.2 Design Rationale
	6.3 Security Analysis

	References

	Cryptanalytic Tools
	Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks
	1 Introduction
	2 Preliminaries
	2.1 Generalized Demirci-Selçuk (GDS) Attack
	2.2 Systems of AES-like Equations

	3 New Set of Tools
	3.1 Generic Attack on Simple Block Cipher
	3.2 Extension to a Larger Class of Block Ciphers
	3.3 Two Other Modes
	3.4 Limitations and Usage

	4 Applications
	4.1 MCrypton
	4.2 IDEA
	4.3 XTEA
	4.4 ZORRO
	4.5 SIMON

	5 Conclusion
	A Key Schedule Equations Used in the 20-Round AttackAgainst SIMON32/64
	References

	Memory-Efficient Algorithms for Finding Needles in Haystacks
	1 Introduction
	2 Problem Statement and Model Description
	2.1 Notations and Conventions

	3 Trivial Memoryless Algorithms
	3.1 Memoryless Mode Verification Algorithm
	3.2 Memoryless Sampling Algorithm

	4 Using Rho-based Collision Detection Algorithms
	5 The 2Rho Algorithm
	5.1 Analysis of 2Rho in the Range N-3/4 p N-1/2

	6 Deeper Nesting of the Rho Algorithm
	7 Time-Memory Tradeoffs
	7.1 Parallel Collision Search
	7.2 Mode Verification with Memory
	7.3 Mode Detection with Parallel Collision Search
	7.4 Mode Detection with Parallel Collision Search Over 2Rho
	7.5 Mode Detection with Parallel Collision Search over 3Rho
	7.6 Discussion

	8 Finding Multiple Peaks
	9 Conclusions and Open Problems
	A Detailed Complexity Analysis of the Rho Approach for p> 1/N
	B The Parallel Collision Search Algorithm
	References

	Breaking Symmetric Cryptosystems Using Quantum Period Finding
	1 Introduction
	2 Simon's Algorithm and Attack Strategy
	2.1 Simon's Problem and Algorithm
	2.2 Dealing with Unwanted Collisions
	2.3 Attack Strategy

	3 Previous Works
	3.1 Applications to a Three-Round Feistel Scheme
	3.2 Application to the Even-Mansour Construction

	4 Application to the LRW Construction
	5 Application to Block Cipher Modes of Operations
	5.1 Deterministic MACs: CBC-MAC and PMAC
	5.2 Randomized MAC: GMAC
	5.3 Classical Authenticated Encryption Schemes: GCM and OCB
	5.4 New Authenticated Encryption Schemes: CAESAR Candidates

	6 Simon's Algorithm Applied to Slide Attacks
	7 Conclusion
	A Proof of Theorem1
	B Proof of Theorem 2
	References

	Hardware-Oriented Cryptography
	Efficiently Computing Data-Independent Memory-Hard Functions
	1 Introduction
	1.1 Memory-Hard Functions and Their Complexity
	1.2 MHF Candidates
	1.3 Our Contributions
	1.4 Related Work

	2 Preliminaries
	2.1 Complexity and Quality of Attacks
	2.2 Pebbling and Graph Theory

	3 Generic Attack
	4 Sandwich Graph Attacks
	5 (n,,w)-Random Graph Attacks
	6 Ideal iMHFs Don't Exist
	7 Practical Considerations
	8 Conclusions
	References

	Towards Sound Fresh Re-keying with Hard (Physical) Learning Problems
	1 Introduction
	2 Preliminaries
	3 General Framework
	3.1 Re-keying Schemes
	3.2 The Leakage Model for Re-Keying Schemes
	3.3 Masking Schemes

	4 Fresh Re-keying with Physical Noise
	4.1 Security of Our Construction Based on Physical Noise
	4.2 Concrete Parameters

	5 Fresh Re-keying Without Physical Noise
	5.1 Offset LWR-based Re-Keying
	5.2 Concrete Parameters

	6 Implementation Results
	References

	ParTI -- Towards Combined Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks
	1 Introduction
	2 Background
	2.1 Threshold Implementation
	2.2 Error Detecting Codes
	2.3 Concurrent Error Detection

	3 Methodology
	3.1 Design Considerations
	3.2 Attacker Model
	3.3 Code Selection
	3.4 Threshold Implementations with Error Detecting Codes
	3.5 Security Analysis

	4 Case Study: LED
	4.1 Cipher Description
	4.2 Design and Implementation
	4.3 Area Comparison
	4.4 Resistance Against SCA
	4.5 Resistance Against FI

	5 Conclusions
	References

	Secure Computation and Protocols I
	Network-Hiding Communication and Applications to Multi-party Protocols
	1 Introduction
	1.1 Related Literature
	1.2 Our Contributions
	1.3 Comparison with
	1.4 Preliminaries and Notation
	1.5 Organization of the Paper

	2 Topology Hiding Security Definition
	3 Topology-Hiding Communication
	3.1 Multi-homomorphic Threshold Encryption with Reversible Randomization
	3.2 Topology-Hiding Threshold Encryption
	3.3 Multi-party Boolean OR
	3.4 Topology-Hiding Broadcast and Secure Channels

	4 Applications
	4.1 Topology-Hiding Secure Multi-Party Computation
	4.2 Anonymous Broadcast

	References

	Network Oblivious Transfer
	1 Introduction
	1.1 Our Model: Network Oblivious Transfer
	1.2 Related Work and Our Contributions

	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Secure Computation
	2.3 Oblivious Transfer

	3 Warm-Ups
	3.1 Case 1: Fig.2(a)
	3.2 Case 2: Fig.2(b)
	3.3 Case 3: Fig.2(c)
	3.4 Case 4: Fig.2(d)
	3.5 Cases 1--4 are Exhaustive

	4 Lower Bound
	5 Building Blocks
	5.1 The t-claw Protocol
	5.2 The t-clique Protocol
	5.3 Cascading
	5.4 The 2-path Graph
	5.5 Combiners

	6 The Case t = n/2
	7 The Case t=n-2
	8 The General Case: tn/2
	8.1 General Protocol (Quasi-polynomial for t=n/2+O(1))
	8.2 General Protocol (Efficient for t=n-O(1))

	References

	On the Power of Secure Two-Party Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Applications
	1.3 Our Techniques
	1.4 Perspective

	2 Preliminaries
	2.1 Adaptive Instance-Dependent Commitment Schemes
	2.2 Zero-Knowledge Proofs
	2.3 Garbled Circuits
	2.4 Randomized Encoding

	3 Warmup: Static Zero-Knowledge Proofs from 2PC
	4 Instance-Dependent Commitments from Garbled Schemes
	5 Randomized Encoding from Two-Party Computation
	5.1 Corollaries and Applications
	5.2 Commit-and-Prove Zero-Knowledge Proofs

	6 Constructing Adaptive Zero-Knowledge Proofs
	References

	Secure Protocol Transformations
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Organization of the Paper

	2 Preliminaries
	2.1 Security Definitions
	2.2 Protocol Schemes
	2.3 Error-Correcting Secret-Sharing

	3 Defining Black-Box Transformations
	4 Examples of Black-Box Transformations
	4.1 A Pedagogical Application

	5 Impossibility of Black-Box Transformations
	6 A BBT from Partially-Identifiable-Abort to Full Security
	7 A BBT from {-sh,-full } to -id
	7.1 Using a Sparse Watchlist

	8 Efficiency Leveraging
	9 Applications
	References

	On the Communication Required for Unconditionally Secure Multiplication
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	3 Secure Computation in the Plain Model
	4 Secure Computation in the Preprocessing Model
	4.1 Protocols Based on Additive Secret-Sharing
	4.2 Protocols Based on Any Secret-Sharing Scheme

	5 Conclusions
	References

	Obfuscation
	Universal Constructions and Robust Combiners for Indistinguishability Obfuscation and Witness Encryption
	1 Introduction
	1.1 Our Results

	2 Techniques
	2.1 Universal Obfuscation
	2.2 Combiners for Indistinguishability Obfuscation
	2.3 Universal Witness Encryption

	3 Indistinguishability Obfuscation (IO) Combiners
	3.1 Definition of IO Combiner

	4 Constructions of IO Combiners
	5 Universal Obfuscation
	5.1 Construction of (T,)-Universal Obfuscation

	6 Witness Encryption Combiners
	6.1 Definition of WE Combiner
	6.2 Construction of WE Combiner

	References

	Obfuscation Combiners
	1 Introduction
	1.1 Robust Combiners for Obfuscation
	1.2 Our Results

	2 Preliminaries
	2.1 Obfuscators
	2.2 Combiners for Obfuscators
	2.3 Structural Combiners

	3 Robust 3-out-of-4 Combiner for Obfuscators
	3.1 Construction
	3.2 Security

	4 Lower Bounds for Combiners
	4.1 Simple Attempts that Fail
	4.2 The General Case of 2-out-of-3 Combiners

	5 The General Case of (2[+1])-out-of-(3[+1]) Combiners
	5.1 Robust (2+1)-out-of-(3+1) Combiners
	5.2 Impossibility for 2-out-of-3 Combiners

	6 Detecting Combiners
	6.1 Robust (+1)-out-of-(2+1) Detecting Combiners
	6.2 Impossibility of -out-of-2 Detecting Combiners

	7 Implementation and Evaluation
	7.1 Performance Evaluation
	7.2 Security Evaluation

	8 Conclusion
	References

	On Statistically Secure Obfuscation with Approximate Correctness
	1 Introduction
	1.1 Our Techniques
	1.2 Consequences of Our Result
	1.3 Open Problems

	2 Preliminaries
	2.1 Complexity Theory
	2.2 Obfuscation
	2.3 Puncturable Pseudorandom Functions

	3 Negative Results for sacO and saiO
	A A Positive Result for Correlation Obfuscation
	B Correctness and Security Parameters for sacO to Build a Public-Key Encryption Scheme from a One-Way Function
	B.1 Amplification
	B.2 The Sahai-Waters Construction

	References

	Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Subsequent Work

	2 PPAD
	3 Preliminaries
	4 Hardness from Indistinguishability Obfuscation
	4.1 Hard on Average SVL Instances

	5 Hardness Result Based on Functional Encryption
	5.1 Special Tree Key Structure
	5.2 Hard on Average SVL Instances

	References

	Asymmetric Cryptography and Cryptanalysis II
	Cryptanalysis of GGH15 Multilinear Maps
	1 Introduction
	2 The GGH15 Multilinear Map Scheme
	2.1 GGH15 Multilinear Maps
	2.2 The GGH15 Multipartite Key-Agreement Protocol

	3 Cryptanalysis of GGH15 Without Safeguards
	3.1 Description with 3 Users
	3.2 Extension to k 3 Users

	4 Cryptanalysis of GGH15 with Safeguards
	4.1 First Safeguard: Kilian-Style Randomization of the Encodings
	4.2 Second Safeguard: First Encodings with Large Entries
	4.3 Cryptanalysis of GGH15 with both Safeguards
	4.4 Detailed Description

	References

	Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13
	1 Introduction
	1.1 Overview of the Attack
	1.2 Attacking Candidate Order-Revealing Encryption
	1.3 Defenses

	2 Model Description
	2.1 Obfuscation in the Abstract Model

	3 Abstract Attack
	3.1 The Branching Programs
	3.2 The Distinguishing Attack
	3.3 Extensions

	4 Attack on GGH13 Encodings
	4.1 The Attack

	5 Beyond Single-Input Branching Programs
	6 Attacking Order Revealing Encryption
	6.1 Description of BLR+15 in Abstract Model
	6.2 Our Attack

	References

	Three's Compromised Too: Circular Insecurity for Any Cycle Length from (Ring-)LWE
	1 Introduction
	1.1 Contributions
	1.2 Techniques

	2 Preliminaries
	2.1 Cryptographic Definitions
	2.2 Learning with Errors
	2.3 Lattice Trapdoors
	2.4 The Ring Setting

	3 LWE-Based Construction
	3.1 Security
	3.2 Testing an Encryption Cycle
	3.3 Testing a Non-cycle

	4 Ring-LWE Construction
	4.1 Testing an Encryption Cycle
	4.2 Testing a Non-cycle

	References

	Circular Security Separations for Arbitrary Length Cycles from LWE
	1 Introduction
	2 Preliminaries
	2.1 Lattice Preliminaries

	3 Circular Security and Our Framework for Generating Circular Separations
	3.1 The BHW Cycle Tester Framework
	3.2 Our Leader-Follower Tester Framework

	4 Separation for k-Circular Security
	4.1 Proof of Correctness
	4.2 Proof of INDCPA Security
	4.3 INDCPA Security for Follower Mode

	References

	Author Index

