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Abstract. Simon is a lightweight block cipher family proposed by NSA
in 2013. It has drawn many cryptanalysts’ attention and varieties of
cryptanalysis results have been published, including differential, linear,
impossible differential, integral cryptanalysis and so on. In this paper, we
give the improved linear attacks on all reduced versions of Simon with
dynamic key-guessing technique, which was proposed to improve the dif-
ferential attack on Simon recently. By establishing the boolean function
of parity bit in the linear hull distinguisher and reducing the function
according to the property of AND operation, we can guess different sub-
keys (or equivalent subkeys) for different situations, which decrease the
number of key bits involved in the attack and decrease the time com-
plexity in a further step. As a result, 23-round Simon32/64, 24-round
Simon48/72, 25-round Simon48/96, 30-round Simon64/96, 31-round
Simon64/128, 37-round Simon96/96, 38-round Simon96/144, 49-round
Simon128/128, 51-round Simon128/192 and 53-round Simon128/256
can be attacked. As far as we know, our attacks on most reduced ver-
sions of Simon are the best compared with the previous cryptanalysis
results. However, this does not shake the security of Simon family with
full rounds.

1 Introduction

In 2013, NSA proposed a new family of lightweight block cipher with Feistel
structure, named as Simon, which is tuned for optimal performance in hard-
ware applications [7]. The Simon family consists of various block and key sizes
to match different application requirements. There is no S-box in the round func-
tion. The round function consists of AND, rotation and Xor (ARX structure),
leading to a low-area hardware requirement.

Related Works. Simon family has attracted a lot of cryptanalysts’ attention
since its proposition. Many cryptanalysis results on various versions of Simon
were published. For differential attack, Alkhzaimi and Lauridsen [5] gave the first
differential attacks on all versions of Simon. The attacks cover 16, 18, 24, 29,
40 rounds for the versions with block size 32, 48, 64, 96 and 128 respectively.
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At FSE 2014, Abed et al. [3] gave differential attack on variants of Simon reduced
to 18, 19, 26, 35, 46 rounds with respective block size 32, 48, 64, 96 and 128.
At the same time, Biryukov et al. [9] gave differential attack on several versions
of Simon independently. And 19-round Simon32, 20-round Simon48, 26-round
Simon64 were attacked. Then Wang et al. [20] proposed better differential attacks
with existing differentials, using dynamic key-guessing techniques. As a result,
21-round Simon32/64, 23-round Simon48/72, 24-round Simon48/96, 28-round
Simon64/96, 29-round Simon64/128, 37-round Simon96/96, 37-
roundSimon96/144, 49-roundSimon128/128, 49-roundSimon128/192, 50-round
Simon128/256 were attacked.

For the earlier linear cryptanalysis, 11, 14, 16, 20, 23-round key recovery attacks
onSimonwith block size 32, 48, 64, 96, 128 were presented in [2]. Then, Alizadeh et
al. [4] improved the linear attacks on 13-round Simon32, 15-round Simon48, 19-
round Simon64, 28-round Simon96, 35-round Simon128. Recently, Abdelraheem
et al. [1] took advantage of the links between linear characteirstics and dif-
ferential characteristics for Simon and found some linear distinguishers using
differential characteristics found earlier. They presented various linear attacks
on Simon with linear, multiple linear, linear hull cryptanalysis. The linear hull
cryptanalysis has better attack results, which can attack 21-round Simon32/64,
20-round Simon48/72, 21-round Simon48/96, 27-round Simon64/96, 29-round
Simon64/128, 36-round Simon96/144, 48-round Simon128/192 and 50-round
Simon128/256. Then, with the Mixed-integer Linear Programming based tech-
nique, Shi et al. [17] searched new linear trails and linear hulls, and 21, 21, 29
rounds for Simon32/64, Simon48/96, Simon64/128 were attacked respectively.
Also, Sun et al. [18] found a 16-round linear hull distinguisher of Simon48, with
which he attacked 23-roundSimon48/96. Ashur [6] introduced a new way to calcu-
late the correlations of short linear hulls and provided a more accurate estimation
for some previously published linear trails. He gave multiple linear cryptanalysis
on24-roundSimon32/64, 23-roundSimon48/72, 24-roundSimon48/96, 24-round
Simon64/96 and 25-roundSimon64/128. However, it uses the correlation when all
the subkeysare zeroas the expected correlationunder randomkey situations,which
is not exact. Moreover, if the potential of each linear hull of the cipher is smaller
than that of random permutations, then the combination of these linear hulls can
not distinguish between the cipher and a random permutation.

Also, there are some results with other attack models, such as impossible dif-
ferential cryptanalysis [4,10,12,21], zero-correlation cryptanalysis [21] and inte-
gral cryptanalysis [21].

Our Contributions. In this paper, we give the improved linear hull attacks
on all reduced versions of Simon family with dynamic key-guessing technique,
which was proposed initially to improve the differential attack on Simon [20],
using existing linear hull distinguishers. In linear attack, one important point
is to compute the empirical correlations (bias) of the parity bit, which derives
from the Xor-sum of the active bits at both sides of the linear hull distinguisher,
under some key guess. Our attack on Simon improves this procedure efficiently.
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Table 1. Summary of Linear Hull Attacks on Simon

Cipher Attacked rounds Data Time Reference

Simon32/64 21 230.56 255.56 [1]

21 - - [17]

23 231.19 261.84A + 256.3E Sect. 4.2

Simon48/72 20 244.11 270.61 [1]

24 247.92 267.89A + 265.34E Sect. 4.3

Simon48/96 21 244.11 270.61 [1]

21 - - [17]

23 247.92 292.92 [18]

25 247.92 289.89A + 288.28E Sect. 4.3

Simon64/96 27 262.53 288.53 [1]

30 263.53 293.62A + 288.13E Sect. 4.3

Simon64/128 29 262.53 2123.53 [1]

29 - - [17]

31 263.53 2119.62A + 2120.00E Sect. 4.3

Simon96/96 37 295.2 267.94A + 288E Sect. 4.3

Simon96/144 36 294.2 2123.5 [1]

38 295.2 298.94A + 2136.00E Sect. 4.3

Simon128/128 49 2127.6 287.77A + 2120E Sect. 4.3

Simon128/192 48 2126.6 2187.6 [1]

51 2127.6 2155.77A + 2184.00E Sect. 4.3

Simon128/256 50 2126.6 2242.6 [1]

53 2127.6 2239.77A + 2248.01E Sect. 4.3

* ‘-’ means not given; A means addition; E means encryption;

The non-linear part in the round function of Simon is mainly derived
from the bitwise AND (&) operation while it has a significant feature. For
details, if one of the two elements is equal to zero, the result of their AND
will be zero, no matter what value the other element takes. For a function
f = f1(x1, k1)&f2(x2, k2), if we GUESS k1 at first, and SPLIT the all x = x1||x2

into two cases: case 1, f1(x1, k1) = 0; case 2, f1(x1, k1) = 1, there is no need to
guess the key bits k2 in case 1, since f = 0 holds for any value of f2 in case 1.
Then, we can compute the correlations in each case with less time and at last,
we COMBINE the two correlations together for corresponding key k = k1||k2.

At first, we give the boolean representations for the parity bit in the linear
distinguisher of Simon. And then we apply the GUESS, SPLIT and COM-
BINE technique in the calculation of the empirical correlations, which mainly
exploits the dynamic key-guessing idea to reduce the number of subkey bits
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guessed significantly. For example, in the attack on 21-round Simon32, 32 sub-
key bits are involved. With above technique, we can only guess 12.5 bits from
the total 32-bit subkey on average to compute the correlations.

As a result, the improved attack results are shown as follows. We can
attack 23-round Simon32/64, 24-round Simon48/72, 25-round Simon48/96, 30-
round Simon64/96, 31-round Simon64/128, 37-round Simon96/96, 38-round
Simon96/144, 49-round Simon128/128, 51-round Simon128/192 and 53-round
Simon128/256. This improves the linear attack results for all versions. From
the point of number of rounds attacked, the results on most versions are best
up to now. The existing and new linear hull attack results on Simon are sum-
marized in Table 1. Also, we implement the 21-round attack on Simon32. In the
attack, we can decrease the 32 subkey bits involved in the attack by 8 bits. The
experiments show that the attack success probability is about 27.7% using 231.19

plaintext-ciphertext pairs.
The paper is organised as follows. In Sect. 2, we introduce the linear (hull)

cryptanalysis and give the description of Simon family. Section 3 gives the
dynamic key-guessing technique used in the linear cryptanalysis. Then the
improved attacks on Simon32/64 and all other variants are given in Sect. 4.
Finally, we conclude in Sect. 5. AppendixA gives the time complexities to cal-
culate the empirical correlations in some simple situations.

2 Preliminaries

2.1 Linear Cryptanalysis and Linear Hull

F2 denotes the field with two elements and F
n
2 is the n-dimensional vector space

of F2. Let g : Fn
2 → F2 be a Boolean function. Let B(g) =

∑
x∈F

n
2
(−1)g(x). The

correlation c(g) of g and 0 (in the following paper, when we say the correlation
of a function, it means the correlation of this function and 0) is defined by

c(g) = 2−n
∑

x∈F
n
2

(−1)g(x) = 2−nB(g). (1)

(In some situations of the remainder of this paper, we regard B(g) as the cor-
relation for simplicity of description.) The bias of g is defined by half of c(g),
which is represented as ε(g) = 1

2c(g).
Linear cryptanalysis [13] is a powerful cryptanalytic method proposed in 1993

to cryptanalysis DES. At first, one tries to find a good linear approximation
involving some plaintext bits, ciphertext bits and the subkey bits as follows

α · P ⊕ β · C = γ · K, (2)

where α, β, γ are masks and P,C,K represent the plaintext, ciphertext and
keys. ‘good’ means that the probability of the linear approximations is far
away from 1/2, which is the probability in random situations. In other words,
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higher absolute of bias ε(α · P ⊕ β · C ⊕ γ · K) leads to better linear crypanalysis
result in general. Algorithms 1 and 2 in [13] are two attack models exploiting
the linear approximation as distinguisher. O( 1

ε2 ) known plaintexts are needed in
the key-recovery attacks.

Then in 1994, Nyberg [15] studied the linear approximations with same input
mask α and output mask β, and denoted them as linear hull. The potential of a
linear hull is defined as

ALH(α, β) =
∑

γ

ε2(α · P ⊕ β · C ⊕ γ · K) = ε̄2. (3)

The effect of linear hull is that the final bias ε̄ may become significantly higher
than that of any individual linear trail. Then the linear attacks with linear hull
require less known plaintexts, i.e., O( 1

ε̄2 ).
Selçuk and Biçak [16] gave the estimation of success probability in linear

attack for achieving a desired advantage level. The advantage is the complexity
reduction over the exhaustive search. For example, if m-bit key is attacked and
the right key is ranked t-th among all 2m candidates, the advantage of this attack
is m − log2(t). Theorem 2 in [16] described the relation between success rate,
advantage and number of data samples.

Theorem 1 (Theorem 2 in [16]). Let PS be the probability that a linear attack,
as defined by Algorithm-2 in [13], where all candidates are tried for an m-bit sub-
key, in an approximation of probability p, with N known plaintext blocks, deliv-
ers an a-bit or higher advantage. Assuming that the approximation’s probablity
is independent for each key tried and is equal to 1/2 for all wrong keys, we have,
for sufficiently large m and N ,

PS =
∫ ∞

−2
√

N |p−1/2|+Φ−1(1−2−a−1)

φ(x)dx, (4)

independent of m.

2.2 Description of SIMON

Simon is a family of lightweight block cipher with Feistel structure designed
by NSA, which is tuned for optimal performance in hardware applications [7].
The Simon block cipher with an n-bit word (hence 2n-bit block) is denoted
Simon2n, where n is limited to be 16, 24, 32, 48 or 64. The key length is required
to be mn where m takes value from 2, 3 and 4. Simon2n with m-word key is
referred to Simon2n/mn. There are ten versions in the Simon family and the
detailed parameters are listed in Table 2. Before introducing the round functions
of Simon, we give some notations of symbols used throughout this paper.
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Xr 2n-bit output of round r (input of round r + 1)

Xr
L left half n-bit of Xr

Xr
R right half n-bit of Xr

Kr subkey used in round r + 1

xi the i-th bit of x, begin with bit 0 from right (e.g., Xr
L,0 is the LSB of Xr

L )

xi1,...,it the XOR-sum of xi for i = i1, i2, . . . , it (e.g., x0,1 = x0 ⊕ x1)

x ≪ i left circulant shift by i bits of x

⊕ bitwise XOR

& bitwise AND

F (x) F (x) = ((x ≪ 1)&(x ≪ 8)) ⊕ (x ≪ 2)

The r-th round function of Simon2n is a Feistel map

FKr−1 : Fn
2 × F

n
2 → F

n
2 × F

n
2 ,

(Xr−1
L ,Xr−1

R ) → (Xr
L,Xr

R)

where Xr
R = Xr−1

L and Xr
L = F (Xr−1

L ) ⊕ Xr−1
R ⊕ Kr−1. The round function

of Simon is depicted in Fig. 1. Suppose the number of rounds is T , the whole
encryption of Simon is the composition FKT−1 ◦· · ·◦FK1 ◦FK0 . The subkeys are
derived from the master key. The key schedules are a little different depending
on the key size. However, the master key can be derived from any m consecutive
subkeys. Please refer to [7] for more details.

Table 2. The Simon Family Block Ciphers

block size (2n) key size (mn) rounds

32 (n = 16) 64 (m = 4) 32

48 (n = 24) 72 (m = 3) 36

96 (m = 4) 36

64 (n = 32) 96 (m = 3) 42

128 (m = 4) 44

96 (n = 48) 96 (m = 2) 52

144 (m = 3) 54

128 (n = 64) 128 (m = 2) 68

192 (m = 3) 69

256 (m = 4) 72

Xr−1
L Xr−1

R

≪ 8

≪ 1

≪ 2

&
⊕ ⊕ Kr−1

Xr
L Xr

R

Fig. 1. Round Function of Simon

3 Time Reduction in Linear Cryptanalysis
for Bit-Oriented Block Cipher

For bit-oriented block cipher, such as Simon, the operations of round function
can be seen as the concatenation of some boolean functions. For example, in
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Simon32, the 0-th bit of Xr
L is a boolean function of some bits of Xr−1 and

subkeys as follows,

Xr
L,0 = (Xr−1

L,15&Xr−1
L,8 ) ⊕ Xr−1

L,14 ⊕ Xr−1
R,0 ⊕ Kr−1

0 . (5)

Other bits in Xr
L have similar boolean representations and the bits in Xr

R are
same with the bits in Xr−1

L . The boolean representation of one bit can be
extended to multiple rounds.

3.1 Linear Compression

In Matsui’s improved linear cryptanalysis [14], the attacker can pre-construct
a table to store the plaintexts and ciphertexts. We call this pre-construction
procedure as linear compression, since the purpose is to reduce the size of efficient
states by compressing the linear part. The detail of the compression is as follows.

Suppose x is a l1-bit value derived from the n-bit plaintext or ciphertext and
k is a l2-bit value derived from the subkey. y ∈ F2 is a boolean function of x
and k, y = f(x, k). Let V [x] stores the count number of x. We define Bk(y) with
counter vector V and function y = f(x, k) for k as

Bk(y) =
∑

x

(−1)f(x,k)V [x]. (6)

So, Bk(y) is the correlation of y with x under key guess k. One needs to do
2l1+l2 computations of function f to calculate the correlations of y for all k with
a straight-forward method at most. If y is linear with some bits of x and k, the
time can be decreased.

For simplicity, let x = x′||x0, k = k′||k0 and y = x0 ⊕ k0 ⊕ f1(x′, k′), where
both x0 and k0 are single bits. The correlation of y under some k is

Bk(y) = (−1)k0
∑

x′
(−1)f1(x

′,k′)(V [x′||0] − V [x′||1]). (7)

It is obvious the correlations of y under same k′ and different k0 have same
absolute value, and they are different just in the sign. So if we compress the
x0 bit at first according to V ′[x′] = V [x′||0] − V [x′||1], Bk′

(y′) with counter
vertor V ′ and function y′ = g′(x′, k′) for k′ can be computed with 2l1+l2−2

calculations of f1. And the correlation Bk(y) can be derived directly from
Bk(y) = (−1)k0Bk′

(y′). We define k0 the related bit. If the absolute correla-
tions are desired, the related bit k0 can be omitted directly, since it has no effect
on the absolute values.

If y is linear with multiple bits of x and k, the linear bits can be combined
at first, then above linear compression can be applied. For example, y = (x0 ⊕
k0) ⊕ · · · ⊕ (xt ⊕ kt) ⊕ ft(x′′, k′′) where x′′, k′′ are the other bits of x and k
respectively. We can initialize a new counter vector V ′[x′′||x′

0] where x′
0 is 1-bit

value of the xor sum of x0, x1, . . . , xt. We set V ′[x′′||x′
0] =

∑
x0⊕···⊕xt=x′

0
V [x].

Let k′
0 = k0 ⊕ · · · ⊕ kt. The target value y becomes y = x′

0 ⊕ k′
0 ⊕ ft(x′′, k′′) with

counter vector V ′[x′′||x′
0], which is the case discussed above.
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3.2 Dynamic Key-Guessing in Linear Attack: Guess, Split
and Combination

Suppose one want to compute Bk(y) with counter vector V and boolean function
y = f(x, k), along with the definitions in the above section. With a straight-
forward method, the time to compute Bk(y) is 2l1+l2 . If for different values of
x, different key bits of k are involved in function f(x, k), the time to calculate
Bk(y) can be decreased.

y = f(x, k) KG fA(x, kA||kC)

fB(x, kB ||kC)SA

SBy = f(x, k) KG fA(x, kA||kC)

fB(x, kB ||kC)SA

SBGuess

Fig. 2. When kG is known, the set of x can be splitted to two sets. f is independent
of kB in set SA and independent of kA in set SB .

For simplicity, let k = kG||kA||kB ||kC , where kG, kA, kB , kC are lG2 , lA2 , lB2 and
lC2 bits (lG2 + lA2 + lB2 + lC2 = l2) respectively. Suppose when kG is known, the
all x can be splitted into two sets, i.e. SA with NA elements and SB with NB

elements (NA + NB = 2l1). And when x ∈ SA, f(x, k) = fA(x, kA||kC) which is
independent of kB ; when x ∈ SB, f(x, k) = fB(x, kB ||kC) which is independent
of kA (See Fig. 2). Then, Bk(y) can be obtained from the following combination

Bk(y) =
∑

x∈SA

(−1)fA(x,kA||kC)V [x] +
∑

x∈SB

(−1)fB(x,kB ||kC)V [x] (8)

for some guessed kG. The time to compute
∑

(−1)fA(x,kA||kC)V [x] for the x ∈ SA

needs NA2lG2 +lA2 +lC2 calculations, while
∑

(−1)fB(x,kB ||kC)V [x] for x ∈ SB needs
NB2lG2 +lB2 +lC2 . The combination needs 2l2 additions. So the time complexity
in total is about

NA2lG2 +lA2 +lC2 + NB2lG2 +lB2 +lC2 + 2l2

which improves the time complexity compared with 2l1+l2 .
The AND operation in Simon will generate the situations discussed above.

Let x, k ∈ F
2
2 and y = f(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1). V [x] denotes the count

number of x. With a straight-forward method, the calculation of correlations for
all k need time 22+2 = 24. If one side of the AND in f(x, k) is 0, y would be
0 without knowing the value in the other side. Exploiting this property, we can
improve the time complxity for calculating the correlations. At first, we guess one
bit of k, e.g. k0. Then we split the x into two sets and compute the correlations
in each set. At last, we combine the correlations according to the keys guessed.

– GUESS k0 and SPLIT the x into two sets
• For the x with x0 = k0, initialize a counter T0 and set T0 = V [0||x0] +

V [1||x0]
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• For the x with x0 = k0 ⊕ 1, initialize a counter T1 and set T1 = V [0||x0]−
V [1||x0] (Linear compression)

• COMBINE B(y) = T0 + (−1)k1T1 (k1 is a related bit)

So in total, it needs 2(1 + 1 + 2) = 23 additions to compute the correlations for
all the k, which improves the time complexity compared to the straight-forward
method. Although there are 2 bits of k involved in the attack, we guess only
one bit and make some computations while another bit is just involved in the
final combination. This can be viewed as that we reduce the number of key bits
guessed from 2 to 1. Morever, this technique adapts to some complicated boolean
functions and more key (or equivalent key) bits can be reduced significantly.
Some cases have been discussed in Appendix A.

4 Linear Cryptanalysis on SIMON

In this section, we will give the improved procedure of linear attack on Simon
using existing linear hull distinguishers for all versions of Simon

4.1 Linear Hulls of SIMON

Some linear hulls have been proposed recently in [1,17,18], and they are displayed
in Table 3. Abdelraheem et al. [1] took advantage of the connection between
linear- and differential- characteristics for Simon and transformed the differen-
tial characteristics proposed in [2,9] to linear characteristics directly. Similarly,
differentials can be transformed to the linear hulls. Also, they found a new 14-
round linear hull for Simon32/64, by constructing squared correlation matrix
to compute the average squared correlation. Shi et al. [17] searched the linear
characteristics with same input and output masks using the Mixed-integer Lin-
ear Programming modelling, which was investigated to search the differential
characteristics for bit-oriented block cipher [19] and then extended to search the
linear characteristics (hull) later [18].

Table 3. Linear Hulls for Simon

BS Input Active Bits Output Active Bits ALH #R Ref

32 Xi
L,6 Xi+13

R,14 2−31.69 13 [1]

Xi
L,5 Xi+13

R,13 2−30.19 13 [17]

Xi
L,0 Xi+14

L,8 , Xi+14
R,6 2−32.56 14 [1]

48 Xi
L,7, X

i
L,11, X

i
L,19, X

i
R,9, X

i
R,17 Xi+15

L,5 , Xi+15
R,3 , Xi+15

R,7 , Xi+15
R,11 , Xi+15

R,19 2−44.11 15 [1]

Xi
L,6, X

i
L,14, X

i
L,18, X

i
L,22, X

i
R,16 Xi+15

L,4 , Xi+15
L,20 , Xi+15

R,6 , Xi+15
R,18 , Xi+15

R,20 , Xi+15
R,22 2−42.28 15 [17]

Xi
L,1, X

i
L,5, X

i
L,21, X

i
R,23 Xi+16

L,1 , Xi+16
L,5 , Xi+16

R,23 2−44.92 16 [18]

64 Xi
L,20, X

i
L,24, X

i
R,22 Xi+21

L,22 , Xi+21
R,20 , Xi+21

R,24 2−62.53 21 [1]

Xi
L,6 Xi+21

L,0 , Xi+21
R,2 , Xi+21

R,6 , Xi+21
R,30 2−60.72 21 [17]

Xi
L,3, X

i
L,27, X

i
L,31, X

i
R,29 Xi+22

L,3 , Xi+22
R,1 , Xi+22

R,2 2−63.83 22 [17]

96 Xi
L,2, X

i
L,34, X

i
L,38, X

i
L,42, X

i
R,36 Xi+30

L,2 , Xi+30
L,42 , Xi+30

L,46 , Xi+30
R,0 , Xi+30

R,40 2−94.2 30 [1]

128 Xi
L,2, X

i
L,58, X

i
L,62, X

i
R,60 Xi+41

L,60 , Xi+41
R,0 , Xi+41

R,2 , Xi+41
R,58 , Xi+41

R,62 2−126.6 41 [1]

* BS means the block size of Simon; #R means the number of rounds for the linear hull
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Similar to the rotational property of integral distinguishers and zero-
correlation linear hull shown in [21], more linear hulls can be constructed as
follows.

Property 1. Assume that Xi
L,j0

0
, . . . , Xi

L,j0
t0

,Xi
R,j1

0
, . . . , Xi

R,j1
t1

→ Xi+r
L,j2

0
, . . . ,

Xi+r
L,j2

t2
, Xi+r

R,j3
0
, . . . , Xi+r

R,j3
t3

is a r-round linear hull with potential ε̄2 for Simon2n,

where j0
0 , . . . , j0

t0 , j
1
0 , . . . , j1

t1 , j
2
0 , . . . , j2

t2 , j
3
0 , . . . , j3

t3 ∈ {0, . . . , n − 1}. Let jp,s
q =

(jp
q + s) mod n,

where p = 0, . . . , 3, q = 0, . . . , tp, then for 0 ≤ s ≤ n − 1, we have that the
potential of the r-round linear hull Xi

L,j0,s
0

, . . . , Xi
L,j0,s

t0

,Xi
R,j1,s

0
, . . . , Xi

R,j1,s
t1

→
Xi+r

L,j2,s
0

, . . . , Xi+r

L,j2,s
t2

,Xi+r

R,j3,s
0

, . . . , Xi+r

R,j3,s
t3

for Simon2n is also ε̄2.

Observe the two 13-round linear hulls of Simon32 in Table 3 and we can find
they are in fact the rotations of same linear hull. The potential of Xi

L,6 → Xi+13
L,14

is estimated as 2−31.69 in [1] while that of Xi
L,5 → Xi+13

L,13 is estimated as 2−30.19

in [17]. The difference may come from the different search methods and different
linear trails found. Since Simon32 has small block size, we can test the bias
(potential) of the 13-round linear hull experimentally. In the experimentation,
we choose 600 keys randomly, and compute the corresponding bias from the
whole plaintexts space. The results are shown in the following table.

Table 4. Experimental bias for the 13-round linear hull of Simon32

ε2 = |p − 1/2|2 Number Number/600

ε2 ≥ 2−27.19 7 0.012

227.19 > ε2 ≥ 2−28.19 21 0.035

228.19 > ε2 ≥ 2−29.19 58 0.097

229.19 > ε2 ≥ 2−30.19 72 0.12

230.19 > ε2 ≥ 2−31.19 104 0.173

ε2 < 2−31.19 338 0.563

From the table, we know that about 26.4% of the keys have ε2 ≥ 2−30.19.
So 230.19 is a little optimistic for the other 73.6% keys. However, this linear hull
distinguisher is interesting and in the following, we will give the key recovery
procedure using this linear hull. Also, we implement the 21-round attack on
Simon32 and the results shows that we can decrease the candidate key space by
8 bits when the potential under the real key is large.

4.2 Improved Key Recovery Attack on SIMON32/64

We exploit the 13-round linear hull proposed in [17] to make key recovery attack
on round-reduced Simon32. The linear hull is

Xi
L,5 → Xi+13

R,13 .
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Table 5. 4 rounds before Xi
L,5 for Simon32

x Representation of xi k Representation of ki

x0 Xi−4
L,13 ⊕ (Xi−4

L,14&Xi−4
L,7 ) ⊕ Xi−4

R,15 ⊕ Xi−4
L,1 k0 Ki−4

15 ⊕ Ki−3
1 ⊕ Ki−3

5 ⊕ Ki−2
3

⊕Xi−4
L,5 ⊕Ki−1

5

x1 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 ) ⊕ Xi−4

R,0 k1 Ki−4
0

x2 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 ) ⊕ Xi−4

R,9 k2 Ki−4
9

x3 Xi−4
L,2 ⊕ (Xi−4

L,3 &Xi−4
L,12) ⊕ Xi−4

R,4 k3 Ki−4
4

x4 Xi−4
L,11 ⊕ (Xi−4

L,12&Xi−4
L,5 ) ⊕ Xi−4

R,13 k4 Ki−4
13

x5 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 ) ⊕ Xi−4

R,0 ⊕ Xi−4
L,2 k5 Ki−4

0 ⊕ Ki−3
2

x6 Xi−4
L,15 ⊕ (Xi−4

L,0 &Xi−4
L,9 ) ⊕ Xi−4

R,1 k6 Ki−4
1

x7 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 ) ⊕ Xi−4

R,10 k7 Ki−4
10

x8 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 ) ⊕ Xi−4

R,9 ⊕ Xi−4
L,11 k8 Ki−4

9 ⊕ Ki−3
11

x9 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,11) ⊕ Xi−4

R,3 k9 Ki−4
3

x10 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 ) ⊕ Xi−4

R,0 k10 Ki−4
0 ⊕ Ki−3

2 ⊕ Ki−4
4 ⊕ Ki−2

4

⊕(Xi−4
L,3 &Xi−4

L,12) ⊕ Xi−4
R,4

x11 Xi−4
L,15 ⊕ (Xi−4

L,0 &Xi−4
L,9 ) ⊕ Xi−4

R,1 ⊕ Xi−4
L,3 k11 Ki−4

1 ⊕ Ki−3
3

x12 Xi−4
L,0 ⊕ (Xi−4

L,1 &Xi−4
L,10) ⊕ Xi−4

R,2 k12 Ki−4
2

x13 Xi−4
L,9 ⊕ (Xi−4

L,10&Xi−4
L,3 ) ⊕ Xi−4

R,11 k13 Ki−4
11

x14 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 ) ⊕ Xi−4

R,10 ⊕ Xi−4
L,12 k14 Ki−4

10 ⊕ Ki−3
12

x15 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 ) ⊕ Xi−4

R,9 k15 Ki−4
9 ⊕ Ki−3

11 ⊕ Ki−4
13 ⊕ Ki−2

13

⊕(Xi−4
L,12&Xi−4

L,5 ) ⊕ Xi−4
R,13

x16 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,11) ⊕ Xi−4

R,3 ⊕ Xi−4
L,5 k16 Ki−4

3 ⊕ Ki−3
5

a Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8
b Xi−4 is the plaintext P , Ki−4, . . . , Ki−1 are the subkeys used in the initial four
rounds, i.e. KP
c In the description of the paper, xP = x = (x0, . . . , x16), kP = k = (k0, . . . , k16)

We mount a key recovery attack on 21-round Simon32/64 by adding four rounds
before and appending four rounds after the distinguisher. Here let P = Xi−4

be the plaintext and C = Xi+17 be the corresponding ciphertext. Suppose the
subkeys involved in the first four rounds are KP and those in the last four rounds
are KC . Then Xi

L,5 is a function of P and KP , Xi
L,5 = E(P,KP ). Similarly,

Xi+13
R,13 = D(C,KC) is a function of C and KC . Let S be the set of N plaintext-

ciphertext pairs obtained, the empirical correlation under some key KP ,KC is

c̄KP ,KC
=

1
N

∑

P,C∈S
(−1)E(P,KP )⊕D(C,KC). (9)
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Table 6. 4 rounds after Xi+13
R,13 for Simon32

x Representation of xi k Representation of ki

x0 Xi+17
R,5 ⊕ (Xi+17

R,6 &Xi+17
R,15 ) ⊕ Xi+17

L,7 ⊕ Xi+17
R,9

⊕Xi+17
R,13

k0 Ki+16
7 ⊕ Ki+15

9 ⊕ Ki+15
13 ⊕ Ki+14

11 ⊕Ki+13
13

x1 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 ) ⊕ Xi+17

L,8 k1 Ki+16
8

x2 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 ) ⊕ Xi+17

L,1 k2 Ki+16
1

x3 Xi+17
R,10 ⊕ (Xi+17

R,11&Xi+17
R,4 ) ⊕ Xi+17

L,12 k3 Ki+16
12

x4 Xi+17
R,3 ⊕ (Xi+17

R,4 &Xi+17
R,13 ) ⊕ Xi+17

L,5 k4 Ki+16
5

x5 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 ) ⊕ Xi+17

L,8 ⊕ Xi+17
R,10 k5 Ki+16

8 ⊕ Ki+15
10

x6 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 ) ⊕ Xi+17

L,9 k6 Ki+16
9

x7 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 ) ⊕ Xi+17

L,2 k7 Ki+16
2

x8 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 ) ⊕ Xi+17

L,1 ⊕ Xi+17
R,3 k8 Ki+16

1 ⊕ Ki+15
3

x9 Xi+17
R,9 ⊕ (Xi+17

R,10&Xi+17
R,3 ) ⊕ Xi+17

L,11 k9 Ki+16
11

x10 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 ) ⊕ Xi+17

L,8

⊕(Xi+17
R,11&Xi+17

R,4 ) ⊕ Xi+17
L,12

k10 Ki+16
8 ⊕ Ki+15

10 ⊕ Ki+16
12 ⊕ Ki+14

12

x11 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 ) ⊕ Xi+17

L,9 ⊕ Xi+17
R,11 k11 Ki+16

9 ⊕ Ki+15
11

x12 Xi+17
R,8 ⊕ (Xi+17

R,9 &Xi+17
R,2 ) ⊕ Xi+17

L,10 k12 Ki+16
10

x13 Xi+17
R,1 ⊕ (Xi+17

R,2 &Xi+17
R,11 ) ⊕ Xi+17

L,3 k13 Ki+16
3

x14 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 ) ⊕ Xi+17

L,2 ⊕ Xi+17
R,4 k14 Ki+16

2 ⊕ Ki+15
4

x15 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 ) ⊕ Xi+17

L,1

⊕(Xi+17
R,4 &Xi+17

R,13 ) ⊕ Xi+17
L,5

k15 Ki+16
1 ⊕ Ki+15

3 ⊕ Ki+16
5 ⊕ Ki+14

5

x16 Xi+17
R,9 ⊕ (Xi+17

R,10&Xi+17
R,3 ) ⊕ Xi+17

L,11 ⊕ Xi+17
R,13 k16 Ki+16

11 ⊕ Ki+15
13

a Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8
b Xi+17 is the ciphertext C, Ki+13, . . . , Ki+16 are the subkeys used in the last four rounds, i.e. KC
c In the description of the paper, xC = x = (x0, . . . , x16), kC = k = (k0, . . . , k16)

In a further step, Xi
L,5 can be represented as Xi

L,5 = f(x, k) where

f(x, k) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2)) ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
[(x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x9 ⊕ k9)&(x7 ⊕ k7)))]⊕
{(x10 ⊕ k10 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7))⊕
[(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14 ⊕ ((x3 ⊕ k3)&(x13 ⊕ k13)))])&

(x15 ⊕ k15 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9))⊕
[(x14 ⊕ k14 ⊕ ((x13 ⊕ k13)&(x3 ⊕ k3)))&(x16 ⊕ k16 ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))])}

where the representation of x and k are 17-bit value shown in Table 5. With
the same way, Xi+13

R,13 can also be represented as f(x, k) where the corresponding
x and k are described in Table 6. To distinguish them, let xP , kP be the x, k
described in Table 5 and xC , kC be the x, k described in Table 6. The N plaintext-
ciphertext pairs in S can be compressed into a counter vector V [xP , xC ], which
stores the number of xP , xC . Then there is

c̄kP ,kC
=

1
N

∑

xP ,xC

(−1)f(xP ,kP )⊕f(xC ,kC)V [xP , xC ]. (10)

Notice that f(x, k) is linear with x0 ⊕ k0. According to the linear compression
technique, the 0-th bit of xP and xC could be compressed initially. Suppose
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that x′
P is the 16-bit value of xP without the 0-th bit (same representations for

x′
C , k′

P , k′
C). Initialize a new counter vector V1 which has values

V1[x′
P , x′

C ] =
∑

xP,0,xC,0

(−1)xP,0⊕xC,0V [xP , xC ]. (11)

Then the correlation becomes

c̄k′
P ,k′

C
=

1
N

∑

x′
P ,x′

C

(−1)f ′(x′
P ,k′

P )⊕f ′(x′
C ,k′

C)V1[x′
P , x′

C ]

=
1
N

∑

x′
C

(−1)f ′(x′
C ,k′

C)
∑

x′
P

(−1)f ′(x′
P ,k′

P )V1[x′
P , x′

C ], (12)

where f ′ is part of f , i.e. f(x, k) = x0 ⊕ k0 ⊕ f ′(x′, k′), x′ = (x1, . . . , x16), k′ =
(k1, . . . , k16).

So we can guess k′
P (16-bit) at first and compress the plaintexts into a counter.

Then guess k′
C (16-bit) to decrypt the appending rounds, to achieve the final

correlations. In the following, we introduce the attack procedure in the forward
rounds in detail. The procedure to compute

∑
x′
P
(−1)f ′(x′

P ,k′
P )V1[x′

P , x′
C ] for each

x′
C is same with the procedure to compute Bk′

(y) with some counter vector V ′
1 [x′]

and boolean function f ′. Counter vector V ′
1 is part of counter vector V1. For each

specific x′
C ,

V ′
1 [x′] = V1[x′, x′

C ],
which means V ′

1 [x′] takes value of V1[x′
P , x′

C ] where x′
P = x′ and x′

C is fixed.
Morever, there are relations that x10 = x3 ⊕ x5, x15 = x4 ⊕ x8 in Tables 5 and 6,
which means there are only 14 independent bits for x′ (x′

P or x′
C).

Compute Bk′
(y) with counter vector V ′

1 [x
′] and Boolean function f ′.

(For simplicity, we define this procedure as Procedure A.) Although x′ is a 16-bit
value, there are only 214 possible values for x′ as explained above. We use the guess,
split and combination technique todecrease the time complexity to computeBk′

(y)
with counter vector V ′

1 [x′] and boolean function y = f ′, for 216 key vaules k′.

1. Guess k1, k3, k7 and split the plaintexts into 8 sets according to the value
(x1 ⊕k1, x3 ⊕k3, x7 ⊕k7). The simplification for f ′(x′, k′) after guessing some
keys are shown in Table 7.
The representation of fij are as follows,

f00 =((x5 ⊕ k5)&(x8 ⊕ k8)) ⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))

&(x14 ⊕ k14)])&(x15 ⊕ k15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},
f01 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9)) ⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)

&(x13 ⊕ k13)))&(x14 ⊕ k14)])&(x9,15 ⊕ k9,15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},
f10 =((x5 ⊕ k5)&(x8 ⊕ k8)) ⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))

&(x13,14 ⊕ k13,14)])&(x15 ⊕ k15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])},
f11 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9)) ⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13

⊕ k13)))&(x13,14 ⊕ k13,14)])&(x9,15 ⊕ k9,15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])}.
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Table 7. Simplification for f ′(x′, k′) after guessing k1, k3, k7

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit

k1, k3, k7 0,0,0 f00

0,0,1 f01

0,1,0 f10 k4

0,1,1 f11 k4

1,0,0 f00 k2

1,0,1 f01 k2

1,1,0 f10 k2,4

1,1,1 f11 k2,4

Table 8. Simplification for f00 after guessing k5, k14

Guess Value f00 Related Bit

k5, k14 0,0 (x10 ⊕ k10)&(x15 ⊕ k15)

0,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16)

1,0 (x10 ⊕ k10)&(x15 ⊕ k15) k8

1,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16) k8

The counter vectors for x′ can be compressed in a further step according to the
new representations of f ′. For example, if (x1⊕k1, x3⊕k3, x7⊕k7) = (0, 0, 0),
f ′ will be equal to the formula f00, which is independent of x2, x4, x6, x9. So
we compress the corresponding counters into a new counter V000, and

V000[x5, x8, x10 − x16] =
∑

x1=k1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

V ′
1 [x′].

Notice x10 = x3 ⊕ x5, so there are 8 independent x bits for x5, x8, x10 − x16.
Notice x15 = x4 ⊕ x8, for some fixed value of x5, x8, x10 − x16, there are 7
times addition in above equation. So generating this new counter vector needs
28 × 7 additions.

We give another example to illustrate the situations with related key bit.
If (x1 ⊕k1, x3 ⊕k3, x7 ⊕k7) = (1, 0, 0), there is f ′ = (x2 ⊕k2)⊕ f00. Notice in
this subset, f ′ is linear with x2 ⊕ k2 and x2 can be compressed into the new
counters with related key k2. So the new counter vector V100 is as follows,

V100[x5, x8, x10 − x16] =
∑

x1=k1⊕1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

(−1)x2V ′
1 [x′].

Also, there are 8 independent x bits for x5, x8, x10 − x16. For each fixed
x5, x8, x10 −x16, the new counter can be obtained with 7 additions according
to above equation.

The procedures to generate the new counter vectors for other cases are
similar as that of case (x1⊕k1, x3⊕k3, x7⊕k7) = (0, 0, 0) or (1, 0, 0). Morever,
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the time complexity to split the plaintexts and construct new counter vectors
is same for each case. Observing the four functions f00, f01, f10 and f11, we
know that they are with same form. In the following step, we explain the
attack procedure of case (x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7) = (0, 0, 0) in detail and
the others can be obtained in the same way.

Note that, there are 9 subkey bits in each function of f00, f01, f10 and f11

after guessing k1, k3, k7. So this can be viewed as that 3 + 9 = 12 subkey bits
are involved in the attack while there are 16 subkey bits are involved initially
in f ′. In the following, the number of key bits can be reduced in a further
step.

2. For f00, guess k5, k14 and split the plaintexts into 4 sets according to the
value (x5 ⊕ k5, x14 ⊕ k14). The simplification for f00 after guessing some keys
are shown in Table 8.
The time complexity of computing the counters’ value Bk5,k8,k10−k16(y) with
counter vector V000 and function f00 is as follows:
(a) Guess k5, k14 and split the states into four parts

i. (x5 ⊕ k5, x14 ⊕ k14) = (0, 0)
A. Since x10 = x3⊕x5, x5 = k5 and x3 = k3 (the first case in Table 7),

so the x10 here is fixed. There is one variable bit x15 to store. Let
V 00

000[x10, x15] store the number of (x10, x15). There is

V 00
000[x10, x15] =

∑

x5=k5,x14=k14

V000[x5, x8, x10 − x16].

There are two possible values for (x10, x15) here and for each
value, the above sum needs 25 − 1 additions (5 variable bits
(x8, x11, x12, x13, x16)). So generating the new counter vector needs
2 × (25 − 1) = 26 − 2 additions.

B. Computing Bk10,k15
00 (y) with new function (the first case in

Table 8) and vector V 00
000:

If k10 = x10, Bk10,k15
00 (y) = V 00

000[x10, 0] + V 00
000[x10, 1];

if k10 = x10 ⊕ 1, Bk10,k15
00 (y) = (−1)k15(V 00

000[x10, 0] − V 00
000[x10, 1]).

So in total there are no more than 22 additions.
ii. (x5 ⊕ k5, x14 ⊕ k14) = (0, 1)

A. There are 4 variable bits (x10,11, x12, x13, x15,16) to store.
Let V 01

000[x10,11, x12, x13, x15,16] store the counter number of
(x10,11, x12, x13, x15,16). There is

V 01
000[x10,11, x12, x13, x15,16] =

∑

x5=k5,x14=k14⊕1

V000[x5, x8, x10 − x16].

For each possible value of (x10,11, x12, x13, x15,16), the above sum
needs 22 − 1 additions (2 free variables (x8, x15), x10 is fixed,
x11 = x10 ⊕ x10,11, x16 = x15 ⊕ x15,16). So generating the new
counter vector needs: 24 × (22 − 1) = 26 − 24 additions.

B. Partial B
k10,11,k12,k13,k15,16
01 (y) with new function and vector V 01

000:
25.64 additions. (See f3 in Appendix A)
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iii. (x5 ⊕ k5, x14 ⊕ k14) = (1, 0)
A. Similar to the first case in Step (2(a)i), let V 10

000[x10, x15] store the
number of (x10, x15). There is

V 10
000[x10, x15] =

∑

x5=k5,x14=k14

V000(−1)x8 [x5, x8, x10 − x16].

So generating the new counter vector also needs 2 × (25 − 1) =
26 − 2 additions. k8 becomes a related bit.

B. Partial Bk10,k15
10 (y) with new function and vector V 10

000: 22 additions
(same with case (0, 0)).

iv. (x5 ⊕ k5, x14 ⊕ k14) = (1, 1)
A. Similar to the second case in Step (2(a)ii), let V 11

000[x10,11, x12, x13,
x15,16] store the counter number of (x10,11, x12, x13, x15,16).
There is

V 11
000[x10,11, x12, x13, x15,16]

=
∑

x5=k5,x14=k14⊕1

(−1)x8V000[x5, x8, x10 − x16].

So generating the new counter vector needs: 24×(22−1) = 26−24

additions. k8 becomes a related bit.
B. Partial B

k10,11,k12,k13,k15,16
11 (y) with new function and vector V 11

000:
25.64 additions. (See f3 in Appendix A)

(b) For each of 29 keys involved in f00, partial Bk5,k8,k10−k16(y) with function
y = f00 and counter vector V000 under key guess k5, k14 is

Bk5,k8,k10−k16(y) = (Bk10,k15
00 (y) + B

k10,11,k12,k13,k15,16
01 (y))

+ (−1)k8 (Bk10,k15
10 (y) + B

k10,11,k12,k13,k15,16
01 (y)).

We can add Bk10,k15
00 (y) and B

k10,11,k12,k13,k15,16
01 (y) at first, then add

Bk10,k15
10 (y) and B

k10,11,k12,k13,k15,16
01 (y), at last add the two parts according

to the index value and k8. The combination phase needs 26 +26 +27 = 28

additions in total when k5, k14 are fixed.
(c) In total, there are

22 × ((26 − 2 + 22 + 26 − 24 + 25.64) × 2 + 28) ≈ 211.19

additions to compute Bk5,k8,k10−k16(y) for all 29 possible key values.
Note that, about 1 subkey bit is guessed in the first (or third) step of
step 2a. In the second (or forth) step of step 2a, 1.5 subkey bits are
guessed on average. So, although there are 9 subkey bits in total, only
2+(1+1+1.5+1.5)/4=3.25 bits on average are guessed with dynamic key-
guessing technique.
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3. The time of computing Bk′
(y) with counter vector V ′

1 [x′] and boolean function
f ′ is shown in Table 9. T1 denotes the time of seperation of the plaintexts
according to the guessed bit of k. T2 denotes the time of computation in the
inner part. T3 is the time in the combination phase. When k1, k3, k7 are fixed,
in each case, T1 = 28 × 7 as explainted in Step 1. T2 is 211.19 as explained in
Step 2. There are 13 bits for k′ except k1, k3, k7, leading to T3 = 213 × 7. For
all guesses of k1, k3, k7, the total time is about 219.46 additions.

In Step 1, 3 key bits are guessed and the plaintexts are splitted into 8 situations.
For each situation, 3.25 key bits are guessed as explained above. So on average,
about 3 + 3.25 = 6.25 subkey bits are guessed in this procedure, while there are
16 subkey bits involved.

Table 9. Time Complexity of computing Bk′
(y) with counter vector V ′

1 [x′] and boolean
function f ′

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit Time

T1 T2 T3

k1, k3, k7 0,0,0 f00 28 × 7 211.19 213 × 7

0,0,1 f01 28 × 7 211.19

0,1,0 f10 k4 28 × 7 211.19

0,1,1 f11 k4 28 × 7 211.19

1,0,0 f00 k2 28 × 7 211.19

1,0,1 f01 k2 28 × 7 211.19

1,1,0 f10 k2,4 28 × 7 211.19

1,1,1 f11 k2,4 28 × 7 211.19

Total Time ((28 × 7 + 211.19) × 8 + 213 × 7) × 23 = 219.46

21-Round Attack on SIMON 32/64. Adding four rounds and appending four
rounds after the 13-round linear hull distinguisher, we give the 21-round linear
attack on Simon32/64. The estimated potential of the linear hull is ε̄2 ≈ 2−30.19

in [17], which is a little optimistic for more than half of keys. In the attack, we
use N = 231.19 plaintext-ciphertext pairs. According to Theorem 1, the relation
between the bias and success probability is shown in Table 10 when using 231.19

Table 10. Relation between bias and success probability using 231.19 data and setting
advantage a = 8

ε2 = 227.19 p0 ≈ 1.000

ε2 = 228.19 p1 ≈ 0.997

ε2 = 229.19 p2 ≈ 0.864

ε2 = 230.19 p3 ≈ 0.477

ε2 = 231.19 p4 ≈ 0.188



Improved Linear Hull Attack on Round-Reduced Simon 445

plaintext-ciphertext pairs. So according to Tables 4 and 10, the expected success
probability of the attack is larger than

0.012 ∗ p0 + 0.035 ∗ p1 + 0.097 ∗ p2 + 0.12 ∗ p3 + 0.173 ∗ p4 ≈ 0.22,

and it is smaller than

(0.012 + 0.035) ∗ p0 + 0.097 ∗ p1 + 0.12 ∗ p2 + 0.173 ∗ p3 ≈ 0.33.

There are 32 subkey bits involved in this attack. With our attack method,
only about 6.25 + 6.25 = 12.5 bits are guessed on average, which reduces the
number of key bits greatly.

Attack:

1. Compress the N plaintext-ciphertext pairs into the counter vector V1[x′
P , x′

C ]
of size 214+14.

2. For each of 214 x′
C

(a) Call Procedure A. Store the counters according to x′
C and k′

P
3. For each k′

P of 216 possible values.
(a) Call procedure A. Store the counters according to k′

P and k′
C .

4. The keys with counter values ranked in the largest 232−8 = 224 values would
be the right subkey candidates. Exploiting the key schedule and guessing
some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1)N = 231.19 times compression (2) 214 × 219.46 = 233.46 additions.
(3)216 × 219.46 = 235.46 additions. So the time to compute the empirical bias
for the subkeys involved is about 235.84 while that given in [1] with similar lin-
ear hull is 263.69. The time is improved significantly. Step (4) is to recovery the
master key, which needs 264−8 = 256 21-round encryptions. However, [1] does
not give this step.

Also we implemented the 21-round attack on Simon32 using 231.19 plaintext-
ciphertext pairs. (The exhaustive search part of the attack is not included since
it would take about 264−8 = 256 encryptions, which takes too much time.) In
the implementation, we set the main key randomly and collect 231.19 plaintext-
ciphertext pairs (data collection part), then use the dynamic key-guessing tech-
niques to recover 8-bit key information for the 32 subkey bits (recovery part). We
store the 232−8 = 224 keys with large bias in set S as the right key candidates,
then compute the real 32 subkey bits from the main key and check whether it is
in S. In the implementation, about 5GB memory is needed. The data collection
part (231.19 encryptions) takes about 11 minutes and the recovery part takes
about 11 minutes too (using Intel(R) Xeon(R) CPU E5-2620, 2.00GHz). 1000
experiments were done and 277 of them were successful. This derives that the
experimental success probability is about 27.7%, which is consistent with the
expected success probability.

22-Round Attack on SIMON32/64. Add one more round before the 21-
round attack, we can attack 22-round of Simon32/64. There are 13 active
key bits involved in round i − 5, which is κ1 = (Ki−5

0 − Ki−5
3 ,Ki−5

5 ,Ki−5
7 −

Ki−5
12 ,Ki−5

14 ,Ki−5
15 ), to obtain the x represented in Table 5.



446 H. Chen and X. Wang

Attack:

1. Guess each of 213 κ1

(a) Encrypt the plaintexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232+13−8 = 237 values
would be the right subkey candidates. Exploiting the key schedule and guess-
ing some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1.a)213 × N = 244.19 one-round encryptions. (1.b) 213 × 235.84 = 248.84

additions. (2) Exhaustive phase needs about 264−8 = 256 22-round encryptions.
So the total time is about 256 22-round encryptions and 248.84 additions.

23-round attack on SIMON32/64. Add one more round before and one round
after the 21-round attack, we can attack 23-round of SIMON32/64. There are
13 active key bits involved in round i+17, which is κ2 = (Ki+17

0 −Ki+17
3 ,Ki+17

5 ,
Ki+17

7 − Ki+17
12 ,Ki+17

14 ,Ki+17
15 ), to obtain the x represented in Table 6.

Attack:

1. Guess each of 213+13 κ1||κ2

(a) Encrypt the plaintexts by one round and decrypt the ciphertexts by one
round.

(b) Do as the first three steps in the 21-round attack
2. The keys with counter values ranked in the largest 232+26−8 = 250 values

would be the right subkey candidates. Exploiting the key schedule and guess-
ing some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1.a)226 × N = 257.19 two-round encryptions. (1.b) 226 × 235.84 = 261.84

additions. (2) Exhaustive phase needs about 264−8 = 256 23-round encryptions.
So the total time complexity is about 256.3 23-round encryptions and 261.84

additions.

4.3 Improved Key Recovery Attack on Other Variants of SIMON

With the dynamic key-guessing technique shown in above attack, we can also
improve the linear hull attacks on all other variants of Simon. The linear hulls
used are displayed in Table 3. For Simon48, we exploit the 22-round linear hull
proposed in [18], which covers most rounds up to date. For Simon64, the 21-
round linear hull with potential 2−62.53 proposed in [1] is used in the attack.
Also, the 31-round (resp. 40-round) linear hull for Simon96 (resp. Simon128) in
[1] are used to attack corresponding variant. Due to limited space, we do not give
the detail of the attacks (please refer to the full version [11] of this paper for the
details). However, the improved results for these variants are listed in Table 1.

4.4 Multiple Linear Hull Attack on SIMON

Combining multiple linear cryptanalysis [8] and linear hull together, one can
make multiple linear hull attack with improved data complexity. Our attack
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technique can be used in the multiple linear hull attack of Simon well. According
to the rotational property, Property 1, of Simon, lots of linear hulls with high
potential can be found. For example, the two 13-round linear hulls for Simon32
in Table 3 are rotations of same linear hull.

Suppose that the time to compute the bias for one linear hull is T1 and data
complexity is N . If m linear hulls with same bias are used in the multiple linear
hull attack, the data complexity would be decreased to N/m. But the time com-
plexity would increase to mT1 +2K, where K is the size of the independent key bits
involved in all m linear hull attacks. For example, there are 32 independent key
bits involved in the 21-round attack of Simon32 with linear hull Xi

L,5 → Xi+13
R,13 .

The data complexity is 231.19 known plaintext-ciphertext pairs and the time needs
about 235.84 additions to get the bias. When another linear hull Xi

L,6 → Xi+13
R,14 is

taken in to make a multiple linear hull attack, the data size will decrease to 230.19.
There are also 32 independent key bits involved in this linear hull attack. But, the
total independent key size of both linear hulls is 48. So the time to compute the bias
for the multiple linear hull attack with above two linear hulls needs about 236.84

additions and 248 combinations.

5 Conclusion

In this paper, we gave the improved linear attacks on all the reduced versions of
Simon family with dynamic key-guessing techniques. By establishing the boolean
function of parity bit in the linear hull distinguisher and reducing the expressions
of function according to the property of AND operation, we decrease the number
of key bits involved in the attack and decrease the attack complexity in a further
step. As a result, we can attack 23-round Simon32/64, 24-round Simon48/72,
25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128, 37-
round Simon96/96, 38-round Simon96/144, 49-round Simon128/128, 51-round
Simon128/192 and 53-round Simon128/256. The differential attack in [20] and
our linear hull attack are bit-level cryptanalysis results, which provide the more
efficient and precise security estimation results on Simon. It is mentioned that,
the bit-level cryptanalysis combining with dynamic key-guessing techniques are
applicable to more light-weight block ciphers and hash functions etc.
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Basic Research Program of China (Grant No. 2013CB834205).

A Time Complexity in Some Situations

In this section, we give the time complexities of computing the counters Bk(y) for
some simple functions of y = f(x, k). This would be the deepest layer’s operation
in the linear attack to Simon. Notice in the following, ‘Guess’ denotes the bits
guessed at first. The second column xi ⊕ki denotes the value of xi which is used
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in the splitting phase. The third column denotes the new representation of the
target function according to the value of xi ⊕ ki. ‘RB’ is the related bit (defined
in Sect. 3). T1 denotes the time of seperation of the plaintexts according to the
guessed bit of k. T2 denotes the time of computation in the inner part. T3 is the
time in the combination phase. Total Time is the final time complexity, which
is twice of the sum of all T1, T2 and T3. Notice that T1, T2 and T3 represent the
number of addition operations. For simplicity, we denote f∗ the function with
same form of f . For example, if f1 = (x0⊕k0)&(x1⊕k1) and f ′

1 = (x0⊕k0)&(x3⊕
k3), we say f ′

1 is with form f1∗. The calculation of B(y) for the functions with
same form have same procedures and time complexties.

1. f1 = (x0 ⊕ k0)&(x1 ⊕ k1)

Guess x0 ⊕ k0 f1 RB T1 T2 T3

k0
0 0 1 21 0 k1 1

Total Time 2 × (1 + 1 + 2) = 23

2. f2 = (x0 ⊕ k0) ⊕ (x1 ⊕ k1)&(x2 ⊕ k2)

Guess x0 f2 RB T1 T2 T3

f1∗ k0 22 × 1 23 23

Total Time 22 + 23 + 23 = 24.32

3. f3 = (x0 ⊕ k0)&((x1 ⊕ k1) ⊕ (x2 ⊕ k2)&(x3 ⊕ k3))

Guess x0 ⊕ k0 f3 RB T1 T2 T3

k0
0 0 23 − 1 23

1 f2∗ 24.32

Total Time 2 × (23 − 1 + 24.32 + 23) = 25.64

The detail of case 1, where f1(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1), has been given in
Sect. 3.2. The other cases are derived similarly. For example, in case 2, linear
compression is done before any key guessing, leading to the compression of bit
x0 and generation of related bit k0.
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