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Abstract. Implementations of white-box cryptography aim to protect
a secret key in a white-box environment in which an adversary has full
control over the execution process and the entire environment. Its funda-
mental principle is the map of the cryptographic architecture, including
the secret key, to a number of encoded tables that shall resist the inspec-
tion and decomposition of an attacker. In a gray-box scenario, however,
the property of hiding required implementation details from the attacker
could be used as a promising mitigation strategy against side-channel
attacks (SCA). In this work, we present a first white-box implemen-
tation of AES on reconfigurable hardware for which we evaluate this
approach assuming a gray-box attacker. We show that – unfortunately –
such an implementation does not provide sufficient protection against an
SCA attacker. We continue our evaluations by a thorough analysis of the
source of the observed leakage, and present additional results which can
be used to build stronger white-box designs.

1 Introduction

Initially the field of white-box cryptography was mainly motivated by applica-
tions of the field of Digital Rights Management (DRM) that aims to protect
a secret key in a white-box environment, where an adversary has full control
over the execution process and the environment of a cryptographic implementa-
tion. However, with the widespread emerging of embedded and pervasive com-
puting devices implementing cryptographic functions and primitives, the threat
of white-box adversaries is no longer limited to cryptographic software imple-
mentations. Although, an adversary might be limited by the gray-box model
in practice (i.e., he cannot control the execution process and the environment
entirely), Side-Channel Analysis (SCA) attacks are well-known to be used to
exploit information leakage related to the device internals e.g., by analyzing
power consumption or electromagnetic radiations (EM). Still, for successfully
mounting such physical attacks, the attacker requires at least some knowledge
about the internals in order to build adequate hypotheses that can be used, for
example, for key extraction. In this context the nature of white-box cryptogra-
phy that effectively disguising all internals and the secret key from the attacker
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by encoding them into tables, seems to yield some inherent resistance against
such physical attacks.

Previous Works: In 2002, first white-box implementations for DES [9] and
AES [10] were proposed by Chow et al. in order to protect a secret key within
a cryptographic implementation in presence of a white-box adversary. However,
these seminal proposals and their implementations were soon shown to be vul-
nerable to differential cryptanalysis [13,22] as well as algebraic cryptanalytic
attacks [3,16,17]. This led to some new proposals for white-box implementa-
tions of AES. In 2009, Xiao et al. in [23] proposed a variant of the design of
Chow et al. using larger linear encodings, for which again a vulnerability against
algebraic cryptanalytic attacks was identified in [20]. Other approaches suggest
to build white-box AES implementations using pertubations [7] (which was bro-
ken in [21]) or based on the concept of dual-ciphers [14].

Recent work in [2] aims to generalize and formalize notions for white-box
cryptography and related attacks for any SLT cipher presenting general attack
strategies and upper bounds for their complexity. Besides the vulnerabilities
against differential and algebraic cryptanalysis, Bos et al. in [4] showed that
secret keys of existing white-box implementations can be extracted by observing
the addresses which are accessed during the execution if the external encodings
are known to the adversary. The underlying so-called Differential Computational
Analysis (DCA) applies the concept of Differential Power Analysis (DPA) [15]
on eavesdropped address bits.

A first white-box implementation in hardware has been proposed for the
NOEKEON cipher in [6,8] using 1-bit linear nibble encodings (i.e. masking with
deterministic masks).

Our Contribution: In this work we propose a white-box implementation of
AES dedicated to reconfigurable hardware. Although the white-box implemen-
tation of Chow et al. initially was proposed for software implementations, we
show that the implementation can be mapped to existing reconfigurable hard-
ware architectures. Note that only recent generations of reconfigurable hardware
devices provide adequate amounts of resources to cope with the large memory
requirements of white-box implementations.

For this hardware implementation we next examine the vulnerability to SCA
attacks assuming a gray-box adversary model. These results, obtained from an
FPGA platform extend the observation by Bos et al. (in [4]). We show that SCA
attacks such as classical DPA can reveal the secrets in hardware implementations
applying white-box cryptography even in gray-box settings.

Finally, we perform a thorough mathematical investigation and analysis of
the construction of look-up tables used in white-box cryptography. We explain
and verify the reason behind the success of such (DCA and DPA) attacks what
has not been addressed in the seminal work of Bos et al.. Our results give a
better understanding of the mathematical foundations of these attacks which
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can pave the way for improved future white-box designs and implementations
that are resistant against such analyses and threats.

Outline: The remainder of this article is organized as follows: Sect. 2 introduces
the basic concept of white-box cryptography and gives a detailed explanation of
the white-box implementation of Chow et al. including design and construction
approach and known attacks and vulnerabilities. The process of transforming this
white-box implementation into a hardware architecture (realized on an FPGA)
is described in Sect. 3. In Sect. 4 we deal with gray-box adversary model and
SCA attacks. We recap the concept of DCA and pinpoint the source of leakage
of the given AES white-box implementation before we conclude in Sect. 5.

2 Background

This section introduces the basic concept of white-box cryptography and gives
a detailed description of the seminal AES white-box implementation of Chow
et al.

2.1 White-Box Cryptography

Cryptographic algorithms are designed to enable a secure communication even
in the presence of an attacker. Nowadays, cryptographers differentiates between
three common attacker models which try to estimate and model the capabilities
of an adversary. Usually, modern cryptographic algorithms and their implemen-
tations are analyzed within such attacker models in order to deduce and estimate
their security.

The traditional security and attacker model is the so-called black-box model
which assumes a trusted execution environment and secure communication end-
points. In this model, cryptographic implementations are considered as black-box
where an adversary can only observe the input and output behavior.

Since the development and deployment of embedded systems for security
purposes the black-box model has been superseded by the gray-box model. This
model includes the black-box settings but in addition assumes some expanded
capabilities of a possible attacker. Cryptographic implementations are no longer
considered as black-box but instead an adversary has limited access to the imple-
mentation internals which can be used to break the implementation. Note that
gray-box attacks (e.g., SCA attacks) usually focus and target cryptographic
implementations rather than cryptographic algorithms which still should be
secure under the assumption of the black-box model.

However, another attacker model called white-box model has been intro-
duced in particular for software implementations of cryptographic algorithms.
For this model, the capabilities of an adversary are virtually unlimited since the
attacker is assumed to have full control over the implementation and its exe-
cution environment. Aim of any implementation considered to be secure under
the white-box model is to behave as a virtual black-box to any kind of attacker
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such that even a white-box attacker should not have any additional advantage
over black-box attackers. The ideal white-box implementation would consists
of a single look-up table mapping a plaintext to its specific ciphertext already
including a (hidden) secret key. Obviously this is impractical for modern ciphers
with block and key sizes of 128 bits or more. An alternative approach is to trans-
form the cryptographic primitive into a functionally-equivalent implementation
using a series of smaller look-up tables. In a further step, secret and invertible
encodings are applied to each look-up table individually in order to protect and
hide secret key materials.

In general, the strategy for the design of white-box implementations of a
round-based symmetric block cipher can be depicted as:

(f(r+1))−1 ◦ Er ◦ fr
︸ ︷︷ ︸

table

◦ · · · ◦ (f(3))−1 ◦ E2 ◦ f2
︸ ︷︷ ︸

table

◦ (f(2))−1 ◦ E1 ◦ f1
︸ ︷︷ ︸

table

= (f(r+1))−1 ◦ Er ◦ · · · ◦ E2 ◦ E1 ◦ f1 = (f(r+1))−1 ◦ EK ◦ f1,

where Ei∈{1...r} is a single round instance of the block cipher and f1 respectively
(fr+1)−1 are considered as external input and output encoding of the white-box
implementation (in order to prevent Code Lifting attacks [11]).

The white-box model has initially been proposed by Chow et al. [9] in 2002
when focusing on a fixed key implementation of the DES algorithm, and shortly
afterwards a white-box implementation of the AES algorithm was presented [10].
In the following, we first introduce this seminal AES white-box implementation
and discuss the design principles and known attacks and vulnerabilities under
the white-box model before we show how to implement this design in hardware.

2.2 White-Box Implementation of AES

The architecture presented in [10] is a fixed key implementation with a fully
unrolled design merging the atomic operations into a series of look-up tables.
Basic design goals of this construction are to hide the key and algorithm structure
through implementing the algorithm as a network of randomized look-up tables.
Each look-up table is encoded and protected individually using random linear
and non-linear bijections. Since a detailed discussion of the design would exceed
the scope of this work we refer the interested reader to [19] and restrict the
discussion of the white-box implementation to its basic design principle and
construction.

Design and Construction: The transformation of an unprotected AES imple-
mentation (independently of the used key size) into a white-box protected fixed
key implementation according to the scheme of Chow et al. can be achieved
in two phases: first, the AES algorithm has to be rewritten and translated as
a series of look-up tables and second, secret but invertible encodings have to
be applied to all look-up tables in order to build a white-box implementation.
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The following section will describe this process exemplary for the case of AES-
128 as presented in [10], but again subdividing each phase into two steps.

In the following, we use the lower-case letter x for single bytes of the inter-
mediate round state, k̂ for a single byte of a round key, a raising index r for the
current round and lowering indices (i,j) for the current byte position in the state
matrix, where i denotes the row index and j the column index. Functions are
represented with sans serif fonts. The AES S-box is denoted with S(.) and the
matrix of the MixColumns operation is denoted by MC.

Step 1: Partial Evaluation. In the first step, the S-box computation is combined
with the preceding addition of the round key. Merging both operations yields
into a single look-up table defined as T-box:

Tr
i,j(x) = S(x ⊕ k̂r

i,j) for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9

T10
i,j(x) = S(x ⊕ k̂10

i,j−i) ⊕ k̂11
i,j for 0 ≤ i, j ≤ 3

This step results in 160 different key-dependent T-boxes. It should be noted,
that the T-boxes of the last round incorporate two bytes of two different round
keys. This is due to the missing MixColumns operation and the final post-
whitening key addition.

Step 2: Matrix Partitioning. A well-known implementation technique for the
MixColumns operation is to decompose it into four different 8 × 32-bit look-
up tables using the matrix partitioning strategy. Eventually, four 32-bit table
outputs are added, resulting in the original MixColumns transformation. Apply-
ing this approach to our previously constructed T-boxes gives us a new set of
different TMC tables, where MCi denotes the i-th column of the MC matrix:

TMCr
i,j(x) = MCi ◦ Tr

i,j(x) for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9

Finally, this results in 144 different 8 × 32-bit TMC look-up tables and
additionally 16 different 8 × 8-bit T-boxes for the last round. Since all look-
up tables comprise a small portion of the secret key, they have to be pro-
tected against attackers aiming at extracting the secret. For a better illus-
tration, the key-dependent tables can be seen as miniature block ciphers that
have to be enhanced by well-known techniques such as diffusion and confusion
for protection purposes. Before applying randomly chosen invertible non-linear
white-box encodings to the key-dependent tables in order to achieve confusion,
diffusion is achieved through the application of linear transformations1 called
mixing bijections.

Step 3: Mixing Bijections. To add diffusion to each key-dependent table, two
different linear transformations are necessary: an 8×8-bit linear transformations

1 Note that originally affine and non-affine transformations were considered. However,
since the constant of any affine transformation can be combined with the non-affine
mapping, this eventually behaves as linear transformations.
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Lr
i,j is inserted before TMCr

i,j , and a 32 × 32-bit transformation Rr
i is applied

afterwards. In order to cancel out the effect of the transformation Rr
i after the

addition of the TMC output values, another untwist table is introduced after
each TMC table. This untwist table takes care of canceling the effect of the
transformation Rr

i and applying new 8 × 8-bit transformations (Lr+1
i,j )−1 to keep

the encryption process consistent during all rounds. These transformations can
be found by randomly creating linear matrices and checking for invertibility.

Step 4: Nibble Encodings. Eventually, non-linear white-box encodings are applied
to all table inputs and outputs. For the sake of efficiency, concatenation of 4-bit
nibble encodings were chosen rather than 8-bit byte encodings. Since these non-
linear encodings avoid linear operation over the TMC table outputs, dedicated
tables for the XOR operations have to be introduced. These nibble encodings
can be found by constructing random 4-bit permutations. All in all, this design
strategy results in five different look-up tables that are defined as follows:

L-Ia: Nout ◦ R1
i ◦ TMC1

i,j ◦ (Fi,j)−1 (8 × 32-bit)

L-Ib: Gi,j ◦ T10
i,j ◦ L10i,j ◦ (Nin)−1 (8 × 8-bit)

L-II: Nout ◦ Rr
i ◦ TMCr

i,j ◦ Lr
i,j ◦ (Nin)−1 (8 × 32-bit)

L-III: Nout ◦ (Lr+1
i,j )−1 ◦ (Rr

i )
−1 ◦ (Nin)−1 (8 × 32-bit)

L-IV: Nin ◦ L⊕ ◦ (Nout)−1 (8 × 4-bit)

Combining these tables in their designated way (a single round is depicted
in Fig. 1) results in an encoded fixed-key white-box AES instantiation

AES′
K = G ◦ AESK ◦ F−1,

where F−1 and G are responsible for external input and output encodings respec-
tively.

Known Attacks and Vulnerabilities: Below we briefly outline the known
attacks and vulnerabilities of the above presented white-box AES implementa-
tion. Some of the threats were already considered during its design. For those, we
additionally explain how the attacks were targeted and how the countermeasures
were integrated.

Code Lifting Attacks. Since the secret key is hidden and integrated into the
white-box implementation, the goal of an attacker is obviously to extract
the secret key. However, such fixed-key white-box implementations suffer from
another kind of threat where an attacker is not interested in extracting the
secret key but instead cloning the entire white-box implementation in order to
use it at another place. This threat is known as “‘Code Lifting”’ where the
entire white-box application is seen as a single key that is cloned and misused
by an attacker to encrypt and decrypt data without being in possession of the
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Fig. 1. White-box implementation of a quarter AES round

secret key. To avoid such kind of attacks, external encodings (F and G) are intro-
duced, turning an white-box implementation EK into an obfuscated encryption
function E′

K = G ◦ EK ◦ F−1 with hidden external encodings. By pushing the
white-box implementation boundaries, the attacker is no longer able to misuse
the white-box implementation as long as the external encodings are unknown.

White-Box Inversion. Besides cloning the white-box implementation through
Code Lifting, inverting the encryption (or decryption) function is another prac-
tical issue in particular for white-box implementations of AES. Since the entire
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algorithm is implemented through look-up tables, any white-box attacker would
be able to extract the tables and compute the inverses of all rounds. This allows
to turn any implemented encryption (respectively decryption) function into an
decryption (respectively encryption) without knowing the secret key. In fact,
this issue cannot be prevented but mitigated by external encodings since it pre-
vents the attacker to use the inverted function in a meaningful way. In particular
the application of non-invertible external encodings can prevent the inversion of
white-box implementations ensuring the property of one-wayness.

Stripping of Non-Linear Encodings. A first algebraic analysis of the above-
explained white-box AES implementation has been presented by Billet et al.
[3] which revealed serious vulnerabilities of this design approach by stripping of
the non-linear encodings of the look-up tables and allowing a white-box attacker
to efficiently extract the embedded secret key. Later, Michiels et al. [17] gener-
alized this attack for any cipher following the substitution-linear transformation
(SLT) approach. In general, Billet et al.’s approach considers a quarter of the
AES round function (depicted in Fig. 1) as a single 32 × 32-bit function rather
than a decomposition into a series of look-up tables. Following this strategy, the
influence of the mixing bijection Rr

i and any other internal (non-linear) encoding
are canceled out.

It was observed, that with moderate computational effort, the non-linear
encodings at the beginning and end of each quarter AES round can be removed,
so that only some (unknown) affine transformation will remain. Applying this
technique to three subsequent rounds, thus removing the non-linear encodings
up to an affine part, the secret key eventually can be retrieved with a complexity
of at maximum 230 (cf. [3]). Note, however, that this attack is only possible in
the setting of white-box adversaries, since an attacker needs to have full access
to the tables and control over their inputs and outputs.

3 FPGA Implementation

This section briefly introduces modern reconfigurable hardware architectures
exemplary considering Xilinx FPGAs and describes necessary hardware resources
to implement white-box cryptography efficiently in reconfigurable hardware.
Afterwards, the approach of transforming the white-box AES implementation
of Chow et al. into an efficient hardware architecture for recent Xilinx Kintex-
7 FPGAs is outlined. Finally, we give performance and implementation results on
the area and throughput efficiency of the proposed architecture.

3.1 Hardware Resources

Modern FPGAs consist of a sea of general-purpose logic resources that can
implement arbitrary circuits of Boolean functions using small look-up tables.
The logic resources are arranged in an extremely regular array-like structure
and enhanced by special purpose units e.g., Digital Signal Processors (DSPs) or
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Block Memories (BRAMs). The reconfigurable devices are programmed using a
configuration file called bitstream that contains all configuration information for
implemented hardware resources, i.e., the programmable interconnections, the
general purpose logic and the special purpose resources.

General Purpose Logic Resources: Xilinx decided to cluster several general
purpose logic resources as Configurable Logic Blocks (CLBs) and arrange them
in a grid-like structure of rows and columns. Starting with the Virtex-5 family of
Xilinx devices, each CLB constitutes two slices each equipped with four 6-input
Look-Up Tables (LUTs) and eight adjacent Flip-Flops (FFs) to implement any
circuit of Boolean functions. Starting with the newer 7-series devices, only two
different types of slices (Slice-L and Slice-M) were implemented which only differ
in capabilities of using LUTs as distributed memory instead of function genera-
tors. Both, Slice-L and Slice-M instances, provide some wide multiplexers that
allow to connect the outputs of the LUTs in order to implement any 8 × 1-bit
Boolean function efficiently into a single slice.

Dedicated Block Memory Resources: Besides general purpose logic that
can also serve as (distributed) memory, modern FPGAs provide larger amounts
of data storage in terms of dedicated BRAMs. These flexible, low-power memory
units can be configured by the user and provide between 16-Kbits to 32-Kbits
accessible in single or dual port mode (additionally, 2-Kbits respectively 4-Kbits
memory for parity check purposes are available). In dual port mode, two fully
independent ports providing read and write access (even with different clocks)
can be used to access or manipulate data that is stored in memory. In addition,
each BRAM can be configured individually and used in different configurations
considering port width and memory depth, ranging from 32K × 1-bit to 1K ×
32-bit entries.

3.2 White-Box Architecture in Hardware

White-box cryptography was initially proposed to protect software implemen-
tations. In this context we like to remark that bitstream configuration files of
FPGA designs are digital binary files that are stored in external memory (that
are accessible for an attacker) and thus exposed to very similar threats. Further,
the basic idea of white-box implementations is to transform a cryptographic
implementation into a series of look-up tables. This perfectly fits the regular
structure of FPGAs implementing arrays of look-up tables with programmable
interconnections. Hence we can conclude that FPGAs seem to be a very good
fit for cryptographic white-box implementations in hardware.

However, since every individual look-up table of the white-box implementa-
tion is different (due to different round keys and randomly chosen encodings),
we cannot implement any area-efficient round-based or serialized architecture
of the AES algorithm nor reuse any of the look-up tables. Instead, we have to
implement an entirely unrolled implementation with every round instantiated
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separately. Due to the application of BRAM primitives, which have a latency of
a single clock cycle, this causes an initial latency of 19 clock cycles (due to 19
stages of 16 parallel look-up tables in the proposed white-box implementation)
but in order to increase the throughput it is possible to operate the encryption
architecture in a pipeline fashion providing ciphertexts at each clock cycle (after
the initial latency).

Mapping Tables into CLBs: Besides the implementation of the key depend-
ing TMC-Tables and T-boxes, the encoded look-up tables to perform the XOR
operations consume a large part of the required storage. Although modern
FPGAs provide large amounts of general purpose data storage in terms of
BRAM, implementing all look-up tables using these dedicated memory prim-
itives is still not feasible. Therefore, some tables have to be transferred to the
general purpose logic in order to fit the design into an FPGA. Since any 8 × 1-
bit Boolean function can be implemented efficiently into a single slice and each
XOR operation and its corresponding look-up table can be decomposed into four
different 8 × 1-bit functions, it is a natural choice to implement these tables in
general purpose logic. In total, each XOR-table can be implemented using four
slices equipped with 4 LUTs each, thus in total 16 LUT instances are required
(this equals 1024-bit memory). Fortunately, the last round can do without XOR
operations, so we only have to implement these tables for 9 rounds. As depicted
in Fig. 1, a quarter round of the AES white-box implementation implements 48
XOR-tables which results in 192 tables per full round and 1728 tables in total.

Mapping Tables into Block Memory: The remaining look-up tables can be
implemented in BRAM primitives. Most of the tables, except for the T-boxes
of the last round, 8 × 32-bit functions are implemented which requires 8192-
bit of memory. Since we can use the BRAM in dual port mode, two tables
can be implemented in a single BRAM which allows us to entirely use the 16-
Kbit BRAMs resulting in a very dense and efficient implementation. In total,
as depicted in Fig. 1, 8 different look-up tables with 32-bit output values are
implemented in a quarter AES round, thus 32 tables are necessary to build a
full round function (except for the last round). In total, 176 different such tables
have to be instantiated along with 16 different 8 × 8-bit T-boxes for the last
round. Note, that all BRAM tables have a similar shape except for the first and
last round.

3.3 Performance Evaluation

Table 1 provides the memory consumption of our white-box implementation of
AES-128 broken down to different look-up table types and their implementation
size (resources and memory). In total, 536KB of memory are required to imple-
ment this white-box implementation on an FPGA, whereby 41 % of the memory
is required for tables of type L-IV implemented in logic and the remaining 59 %
of memory is necessary to store tables of type L-I to L-III in BRAMs.



White-Box Cryptography in the Gray Box 195

Table 1. Area and memory consumption of different table types

Look-up tables Resources Memory

No. Type Size LUT BRAM Byte

16 L-Ia (8 × 32-bit) - 8 16 384

16 L-Ib (8 × 8-bit) - 8 4 096

144 L-II (8 × 32-bit) - 72 147 456

144 L-III (8 × 32-bit) - 72 147 456

1728 L-IV (8 × 4-bit) 27 648 - 221 184

Total 27 648 160 536 576

Utilization (for XC7K160T) 28 % 46 % 40 %

As mentioned before, the design has an initial latency of 19 clock cycles intro-
duced by the BRAM stages. If operated in pipelined mode, this architecture can
return one ciphertext per clock cycle after the initial 19 clock cycles. Due to the
pipelined architecture and small critical paths, the entire design can operate at a
maximum frequency of 100 MHz, resulting in a final throughput of 12.8 Gbit/s.
Implementing this on a recent Xilinx Kintex-7 XC7K160T, this design occupies
roughly 28 % of the available slices and 46 % of provided BRAM ressources.

4 Side-Channel Analysis

4.1 Differential Computational Analysis Attack

Recently, Bos et al. introduced a new analysis methodology for cryptographic
white-box implementations in [4] which requires neither knowledge or possession
of the implemented and used look-up tables nor reverse-engineering the tables
during the attack process. The following section briefly introduces the method-
ology of the DCA attack in order to extract secret keys from unknown white-box
implementations.

Methodology: DCA primarily targets software-based white-box implementa-
tions. In order to successfully perform a key-recovery attack the following two
conditions have to be fulfilled:

1. The attacker is able to execute the white-box implementation several times,
with different (randomly chosen) plaintexts.

2. Either input- or output external encodings are known to the attacker.

In particular the second requirement is of major importance since it already
implies that this attack can be prevented if external encodings are applied and
kept secret. However, in practice, at least one encoding (either the initial encod-
ing or the final decoding) usually is known by the user in order to allow a



196 P. Sasdrich et al.

meaningful application of the encryption (or decryption) function. If both afore-
mentioned conditions are fulfilled, assuming that the underlying cryptographic
algorithm is known to the attacker, the following three steps can be followed to
perform a DCA attack.

Step 1: Record Multiple Measurements. It is assumed, that the adversary can
execute the white-box implementation in a fully controlled environment. During
multiple execution of the encryption algorithm with randomly chosen plaintexts,
all accessed memory addresses and any data written to or read from memory
are recorded.

Step 2: Conversion to Ideal Traces. A certain type of information is extracted
from the recorded data. Common examples of promising information are data
read from memory (corresponding to the look-up table outputs), data written
to stack (intermediate values of the encryption process) or parts of memory
addresses (corresponding to inputs of the look-up tables). The extracted data
is converted to a format that can be used by common DPA tools. The authors
proposed to serialize the recorded data into a binary string and append the
results according to their temporal occurrence. This final binary string is handled
as a kind of side-channel trace that we denote to as Ideal Trace since it refers to
the result of a fully noise-free probing process.

Step 3: Perform DPA Attack. Following the concept of classical DPA, by guess-
ing a key byte k∗ and knowing the corresponding plaintext bytes p, the output
bits of the S-box, i.e., S(p⊕k∗), are predicted. Using these models (8 for each key
byte) DPA attacks are performed on the Ideal Traces to distinguish the correct
key guess amongst the others.

Although the authors of [4] reported successful key recoveries, the reason
behind such a success has not be clearly stated. Below we first address our
observations from an SCA adversary point of view, and later deal with the
leakage source.

4.2 Differential Power Analysis Attack

In this scenario we supposed a gray-box adversary model, where the underly-
ing cryptographic algorithm (e.g., AES) is known, but no information about
the type of the implementation and its structure (e.g., white-box or ordinary
design) is known to the attacker. Further, we suppose that there is no external
encoding in the design, e.g., the gray-box seen by the attacker performs stan-
dard AES encryption (or decryption). However, the adversary is able to observe
side-channel information (e.g., power consumption) of the implementation while
it is operated.

Measurement Setup. We made use of a SAKURA-X FPGA board [1] equipped
with a Kintex-7 XC7K160T FPGA to practically examine the vulnerability of
our white-box design with respect to such an SCA adversary. By means of a
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digital oscilloscope, the side-channel traces have been collected by measuring
the voltage drop over a 1Ω resistor in the Vdd path of the FPGA during the
operation of the design. The sampling was performed at a rate of 500MS/s and
a bandwidth limit of 20MHz while the design was running at a stable, jitter-free,
but low clock frequency of 3MHz to mitigate the noise. During the measurement
phase, our hardware implementation of white-box AES was provided by fully
random plaintexts. A sample power trace, where the rounds (19 clock cycles)
are clearly distinguishable, is shown in Fig. 2.
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Fig. 2. A sample power trace.

Evaluation. We have collected 10 million power traces of encryptions while the
plaintexts were selected randomly. In fact, we have applied several different vari-
ants of power analysis attacks including CPA [5], DPA [15] and collision ones [18]
with different hypothetical models. The best result has been achieved by means
of the classical DPA, which is the same as CPA with single-bit power model.
Similar to the case of DCA, for each key byte candidate k∗ the output bits of
the S-box at the first round, i.e., S(p ⊕ k∗), have been predicted and correlated
to the power traces. The results of such 8 different CPA attacks on each bit of
one of the S-box outputs are shown in Fig. 3. As shown by the graphics, only one
of the attacks (bit 2) is able to recover the secret. We have performed the same
attacks on all 16 S-boxes of the first round. Although the attacks on different
S-boxes did not show identical results, at least one of the output bits of each
S-box led to a successful key recovery, hence full 128-bit key could be recovered.

We would like to note that DCA [4] is indeed a CPA with single-bit power
model, assuming the identity function as the actual leakage model of the device
and noise-free measurements. Hence, we have shown that the attack is still fea-
sible in case of imperfect (i.e., noisy) measurements and a more complex side-
channel leakage function.

4.3 Mathematical Foundations

In order to discuss about the reason behind such a leakage, we first need to give
the following definitions.
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Fig. 3. CPA results, S-box output bit model, 10 million traces

Definition 1. Let x =< x1, ..., xn >, ω =< ω1, ..., ωn > be elements of {0, 1}n

and x · ω = x1ω1 ⊕ ... ⊕ xnωn. Let f(x) be a Boolean function of n variables.
Then the Walsh transform of the function f(x) is a real valued function over
{0, 1}n that can be defined as Wf (ω) =

∑

x∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, ..., xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ m, it is called a balanced m-th order
correlation immune (CI) function or an m-resilient function, where HW stands
for Hamming weight.

For the sake of simplicity, we consider Fig. 4 as one of the 8-to-32 bit L-Ia
look-up tables used at the first round of our white-box implementation. As stated
before, it is supposed that no external encodings exist in the design (or they are
known to the adversary), hence we did not draw them in the figure. Let us denote
the output of the S-box by x and the combination of MC and linear encoding
R and non-linear 4-to-4 bit encodings by 32 Boolean functions fi∈{1,...,32}(x) :
{0, 1}8 → {0, 1}. The results of CPA and DCA indicate that at least one of these
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Fig. 4. Detailed representation of an
8 × 32 look-up table at the first round
of our white-box design
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Fig. 5. Walsh transforms for all 32 func-
tions fi∈{1,...,32}(·) with HW (ω) = 1.

functions fi(·) is not first-order correlation immune. In order to investigate this,
we calculated the Walsh transform of all these functions for all ω ∈ {0, 1}8. The
results for 8 cases, where HW (ω) = 1, are shown in Fig. 5.
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Fig. 6. Walsh transforms for all 32 functions fi∈{1,...,32}(·) with HW (ω) = 1 for all
key candidates k∗ ∈ {0, 1}8.

As shown by the graphics, Walsh transform of a couple of functions for two
particular ω show an extreme imbalance. However, this fact does not guaran-
tee that a CPA or DPA leads to a successful key recovery. To clarify this fact,
we suppose that the linear encoding R and non-linear 4-to-4 bit encodings are
unknown, and for each key candidate k∗ we derive fi∈{1,...,32}(x) by 32-bit output

of L-Ia
(

p = S−1(x) ⊕ k∗
)

. For each key candidate k∗ ∈ {0, 1}8 we again calcu-

lated the Walsh transforms for all ω ∈ {0, 1}8. Figure 6 represents the results of
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each ω;HW (ω) = 1 over all key candidates. As shown by the figures, for ω = 2
the extreme imbalance of some functions fi∈{1,...,32}(·) for the correct key can
be detected amongst that for other key candidates. This indeed justifies why
DCA and CPA led to successful key recoveries as this observation perfectly fits
to the result of CPA on the same key byte (as shown in Fig. 3), where similarly
only second bit of the S-box output (compatible with ω = 2) led to successful
key recovery. It is noteworthy that we have similarly examined all other look-up
tables of the first cipher round, and for each of them the Walsh transform of at
least one ω;HW (ω) = 1 for the correct key showed extremely high imbalance
(compared to that for other key candidates). We should stress that all linear and
non-linear encodings used in our design have been randomly generated as stated
in Step 3 and Step 4 of Sect. 2.2.

4.4 How to Avoid Such Attacks

At the first glance, it can be concluded that if any imbalances is avoided in
functions fi∈{1,...,32}(·), i.e., all fi to be first-order correlation immune, DPA
and DCA can be avoided. However, it should be noted that such a correlation
immunity is valid only in case of classical DPA. In other words, if any of the
functions fi has an extremely high imbalance for any ω ∈ {0, 1}8, that makes
it recognizable compared to other key candidates, there exists an attack which
can recover the correct key. Such an attack can make use of a power model
(or distinguisher) corresponding to that ω. Alternatively, those power analysis
attacks which consider the distribution of the leakages, e.g., Mutual Information
Analysis [12] which relaxes the power model, can be applied.
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Fig. 7. Sum of all imbalances Δk for all key candidates.

In contrary, if many of the functions fi are m-correlation immune (for any
arbitrary m), this opens another door to recover the key. Suppose that for all
key candidates k∗ and for all ω we calculated the Walsh transforms Wfi

. If we
sum up all the imbalances for each key candidate as

Δk∈{0,1}8 =
∑

∀ω∈{0,1}8

∑

i=1,...,32

∣

∣

∣Wfi
(ω)

∣

∣

∣ ; k∗ = k,
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the Δk for the correct key candidate might be distinguishable (though mini-
mum). In case of our design (the same look-up table which have been considered
above), Fig. 7 shows Δk for all key candidates, where the correct key is obvi-
ously distinguishable. In fact, these results indicate that the linear and non-linear
encodings cannot be arbitrary (randomly) selected. Otherwise, the key can be
easily revealed by the above explained procedure. This raises a question as what
should be the characteristics of such random encodings in such a way that these
attacks are not applicable. At least, it can be said that ∀ω the distribution of
Walsh transforms of all fi should be not distinguishable from that of other key
candidates. But how to define the corresponding characteristics to fulfill such a
property is considered as future works.

5 Conclusion

In this paper, we presented the first white-box implementation of AES realized in
reconfigurable hardware. Assuming a gray-box adversary model, we have prac-
tically examined the resistance of our architecture against side-channel attacks.
Unfortunately, we were able to successfully perform attacks using classical DPA.
However, our observations approve previous results on software-based white-
box implementations and extend these results to hardware implementations and
physical side-channel attacks. Finally, we provide a to-date missing thorough
mathematical analysis of the underlying reasons that enable attacks on such
white-box implementations even assuming a gray-box model in case of a lack of
unknown external encodings.

Directions for future works include (i) specifying the requirements of lin-
ear and non-linear encodings in such a way that the tables cannot be analyzed
through their imbalances and (ii) developing designs of new white-box implemen-
tations to provide resistance against side-channel attacks. In practice, a conceiv-
able approach to avoid vulnerabilities of white-box implementations in a gray-
box adversary model might be a dynamic update of intermediate encodings. In
particular for reconfigurable devices, which offer partial reconfiguration abilities,
this might be an interesting approach to make side-channel attacks practically
infeasible.

Acknowledgment. The authors would like to thank Gregor Leander from Ruhr Uni-
versity Bochum (Germany) for helpful discussions and his comments on the application
of Walsh transform.
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