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Preface

The 23rd International Conference on Fast Software Encryption (FSE 2016) was held
at Bochum, Germany, during March 20–23, 2016. The conference was organized by
Ruhr University Bochum with Gregor Leander serving as the general chair in col-
laboration with the International Association for Cryptologic Research (IACR). The
conference had about 150 registered participants from 28 different countries. FSE 2016
received 91 submissions. The 25 members of the Program Committee were assisted by
more than 80 external reviewers. In total, they delivered 304 reviews, with each sub-
mission being reviewed by at least three Program Committee members, five in the case
of a submission co-authored by members of the Program Committee. The review
process was double-blind, and conflicts of interest were handled carefully. It was
managed through an online review system that supported discussions among Program
Committee members. Eventually, the Program Committee selected 29 papers from 16
countries (a 31.9 % acceptance rate) for publication in the proceedings.

Besides the 29 selected talks, the program included one invited talk by Henri Gilbert
from ANSSI, France, on white-box cryptography. The workshop also featured a rump
session, chaired by Dan Bernstein and Tanja Lange, with several short informal
presentations.

As in previous FSE events, the Program Committee identified the best submissions
of the conference for their scientific quality, their originality, and their clarity. The FSE
2016 Best Paper Award went to José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
and François Dupressoir, for their paper “Verifiable Side-Channel Security of Cryp-
tographic Implementations: Constant-Time MEE-CBC.” This paper, along with the
article “Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext
Compression” by Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint,
María Naya-Plasencia, Pascal Paillier, and Renaud Sirdey received a special invitation
for submission to the Journal of Cryptology.

Many people contributed to FSE 2016. I would like to thank the authors for con-
tributing their excellent research, but also the Program Committee members and their
external reviewers, who spent a lot time and effort reading and analyzing the numerous
submissions. I really enjoyed the discussions during the selection phase and I am
particularly grateful to Alex Biryukov, Christina Boura, Svetla Nikova, Yu Sasaki,
François-Xavier Standaert, and Marc Stevens for accepting to shepherd papers. Finally,
I sincerely thank Gregor Leander, the general chair, and his organization team, who
worked so hard for the conference to be pleasant for all attendees. Their smooth
organization made the event a big success.

I was extremely honored to serve as Program Chair of FSE 2016. The program
contained a wide spectrum of the latest research in symmetric cryptography, ranging
from cryptanalysis to security proofs, practical implementation aspects to foundations,
and considering various primitives such as block ciphers, stream ciphers, hash func-
tions, authenticated encryption, MAC, etc. I hope the selected papers will consolidate



our knowledge in symmetric cryptography, but also open new directions to continue
making symmetric cryptography a vibrant research community.

May 2016 Thomas Peyrin
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New Bounds for Keyed Sponges
with Extendable Output: Independence Between

Capacity and Message Length

Yusuke Naito1(B) and Kan Yasuda2

1 Mitsubishi Electric Corporation, Kanagawa, Japan
naito.yusuke@ce.mitsubishielectric.co.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
yasuda.kan@lab.ntt.co.jp

Abstract. We provide new bounds for the pseudo-random function
security of keyed sponge constructions. For the case c ≤ b/2 (c the capac-
ity and b the permutation size), our result improves over all previously-
known bounds. A remarkable aspect of our bound is that dependence
between capacity and message length is removed, partially solving the
open problem posed by Gaži et al. at CRYPTO 2015. Our bound is essen-
tially tight, matching the two types of attacks pointed out by Gaži et al.
For the case c > b/2, Gaži et al.’s bound remains the best for the case of
single-block output, but for keyed sponges with extendable outputs, our
result partly (when query complexity is relatively large) provides better
security than Mennink et al.’s bound presented at ASIACRYPT 2015.

Keywords: PRF · XOF · Game playing · Coefficient H technique ·
Lazy sampling · Multi-collision · Stirling’s approximation

1 Introduction

The sponge construction today, though being originally introduced as a mode
for keyless hash functions [7], is drawing more and more attention in the secret-
key setting. The primary reason seems to lie in the flexibility: the keyed sponge
construction has been modified in a variety of ways such as duplexing [6], par-
allelism [3] and full-state (i.e. the rate being equal to the permutation size)
absorption [9,19]. However, one of the reasons why the sponge construction was
so attractive in the first place was that it inherently possessed the capability of
extendable output.

FIPS 202 [17] standardizes two sorts of extendable output functions (XOFs):
SHAKE128 and SHAKE256, which have a permutation size of b = 1600 bits and
capacity values of c = 256, 512 bits, respectively. FIPS 202 states:

XOFs are a powerful new kind of cryptographic primitive that offers the
flexibility to produce outputs with any desired length. ... In practice, the
use of an XOF as a key derivation function (KDF ) could preclude the

c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 3–22, 2016.
DOI: 10.1007/978-3-662-52993-5 1



4 Y. Naito and K. Yasuda

possibility of related outputs, by incorporating the length and/or type of the
derived key into the message input to the KDF. In that case, a disagreement
or misunderstanding between two users of the KDF about the type or length
of the key they are deriving would almost certainly not lead to related
outputs.

To confirm the above statement in a more formal way, we need to investigate
the security of the KDF as a pseudo-random function (PRF).

Previous PRF Bounds. Several different types of PRF bounds are known for
keyed sponges. Security parameters of keyed sponges include the permutation
size b, the capacity c, the rate r := b − c, and the key length k. The main focus
remains on the capacity value c, because usually it is this parameter that defines
a dominant term in a bound. Nevertheless, none of the previous bounds has been
shown to be strictly tight in relation to parameter c, as explained below.

The PRF security of keyed sponges can be derived from the indifferentiability
of the sponge construction. The indifferentiability of the sponge construction [7]
crucially depends on the capacity c, and hence so does the derived PRF bound.
Roughly, the indifferentiability-based PRF bound has a dominant term of the
form (�q + Q)2/2c, where parameter � is the maximum length of an adversarial
query, parameter q the maximum number of construction (online) queries to the
keyed sponge C, and parameter Q the maximum number of primitive (offline)
queries to the underlying permutation P .

Note that we are working in the ideal model [1,13,16] where the underlying
permutation P is regarded as a random permutation. In practice, P is a fixed
permutation; hence Q corresponds to the time complexity of the adversary, mea-
suring how many times the adversary could perform offline computation of P .

The above indifferentiability-based PRF bound is rather loose, and the
actual PRF security of keyed sponges should be much higher, as first noticed
by Bertoni et al. [8]. Later, Andreeva et al. [1] successfully removed the term
Q2/2c and obtained a bound which was basically

(
(�q)2 + μQ

)
/2c. Here, μ is an

adversarial parameter called “multiplicity” and lies somewhere between 2�q/2r

and 2�q.
Concurrently, Gaži et al. [13] provided a “nearly tight” bound [16] which was

roughly of the form (q2 + �q + qQ)/2c. Gaži et al. also pointed out two attacks
matching q2/2c and qQ/2c, respectively. They observed that their bound “only
mildly depends on the length” when � is sufficiently small [13] but left it open
whether their bound was tight for all cases, especially when � is large. It should
be noted that Gaži et al. [13] only treated the case of single-block output, and
their method did not seem to be easily extendable to the case of multiple-block
output [16].

For the case of extendable output, recently Mennink et al. [16] has provided
another bound which is essentially (�q2 + μQ)/2c. While definitely improving
Andreeva et al.’s

(
(�q)2 + μQ

)
/2c, Mennink et al.’s bound does not come close

to Gaži et al.’s (q2 + �q + qQ)/2c, at least for the case of single-block output.
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Table 1. Comparison of target keyed sponge constructions

Key Extendable

Inner Outer output

Bertoni et al. [8] — � �
Chang et al. [11] � � �
Andreeva et al. [1] � � �
Gaži et al. [13]a — � —

Mennink et al. [16]b � — �
This paper � � �
aGaži et al. [13] treat the case where the
rate values are different between absorbing
and squeezing phases. Only the rate r for the
squeezing phase appears in the bound; the rate
for absorbing phase does not affect security in
their analysis.
bMennink et al. [16] study the case of full-state
absorption, i.e. the rate for absorbing phase is
equal to the permutation size except for the first
call of the underlying permutation.

Consequently, it seems that there is still room for improvement. It might be
possible to come up with a tighter PRF bound for keyed sponges, especially for
the case of extendable output.

Inner- and Outer-Keying. There are two ways of keying the sponge con-
struction. The difference between the two methods is analogous to the one
between NMAC and HMAC [4]. The first method, which is like NMAC, is
called the inner-keyed sponge [1]. This replaces (part of) the inner IV with a
secret key K ∈ {0, 1}k, so that k ≤ c. The inner-keyed sponge was proposed by
Chang et al. [11] who showed that it has a certain advantage in the standard-
model security.

The second method, which is like HMAC, is called the outer-keyed sponge [1].
This is nothing but the sponge construction itself that processes the input K‖M
(i.e. a message prefixed by a secret key K) and hence does not have a limita-
tion on the key size k. A first analysis of the outer-keyed sponge was given by
Bertoni et al. [8]. The obvious advantage of this method, besides key length, is
that we can make use of existing sponge constructions that have been already
implemented as hash functions.

Our Contributions. We provide new PRF bounds for keyed sponges with
extendable output, under the condition that the rate and capacity remain the
same for absorbing and squeezing phases. We treat both inner- and outer-keyed
sponges (cf. Table 1). Previous PRF bounds and our results are summarized in
Table 2.
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– Case c ≤ b/2. This case includes SHAKE128 and SHAKE256. In this case,
our bound improves over all previously-known PRF bounds. For the inner-
keyed sponge, our bound is qualitatively better than the previous two bounds
by Andreeva et al. [1] and by Mennink et al. [16]. For example, if k = c (which
is the case that provides the highest security for the inner-keyed sponge), then
the previous bounds contained (�q2+μQ)/2c, whereas our bound only contains
(�q+q2+qQ)/2c. On the other hand, for the outer-keyed sponge, observe that
the term related to capacity in our bound becomes roughly (q2+qQ)/2c, which
is dominant in many scenarios. Note the absence of �q here; we remove the
dependence between capacity c and message length �, partially answering the
open question posed by Gaži et al. [13]. Together with the two attacks pointed
out by Gaži et al. [13] whose complexities were roughly q2/2c and qQ/2c, we see
that our bound is strictly tight in terms of parameters q and Q. Furthermore,
for the outer-keyed sponge, the remaining parameter � is restricted only by the
term �2q2/2b, whereas previous bounds contained �q/2c or �2q2/2c. Hence, our
bound has a qualitatively weaker restriction on �, under the condition c ≤ b/2.

– Case c > b/2. This is the case for lightweight hash functions, such as
Quark [2], SPONGENT [10] and PHOTON [14]. In this case, our contribution is
more subtle. For single-block output, Gaži et al.’s bound [13] remains the best,
beating our bound as well as Mennink et al.’s [16]. However, for multiple-block
output, our result improves over Mennink et al.’s [16] which has been the best
known bound for extendable output. The two bounds are incomparable due to
the parameter μ, but roughly speaking, we see that our bound becomes better
when query complexity is relatively large. For simplicity, assume k = c and
put μ = 2�q. Then Mennink et al.’s bound becomes roughly (�q2 + �qQ)/2c,
whereas our bound has a dominant term of

(
(�q2 + �qQ)/2b

)1/2. By compari-
son, our bound becomes smaller when �q2 + �qQ > 2c−r.

For our proofs we take an approach different from previous work. We first
make use of the game-playing technique, introducing just one intermediate game
between the real and ideal worlds. Our transition between the games heavily
relies on the coefficient H technique of Patarin [18]. To evaluate probabilities of
“bad” events, we make extensive use of lazy sampling. As pointed out by Bellare
and Rogaway [5], the lazy sampling of random functions with many constraints
can be tricky. We show how to carefully lazy-sample input/output points for
underlying permutations with certain restrictions. Lastly, we adopt techniques
developed by Jovanovic et al. [15] for bounding the size of multi-collisions and
for finally optimizing the bound (or “balancing” the terms).

2 Preliminaries

Notation. Let {0, 1}∗ be the set of all bit strings, and for an integer d ≥ 0,
let {0, 1}d be a set of d-bit strings. Let 0d denotes the bit string of d-bit zeroes.
For a bit string x ∈ {0, 1}d, let x[i, j] be the substring of x from i-th bit to j-th

bit, where 1 ≤ i ≤ j ≤ d. For a finite set X, x
$←− X means that an element is
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Table 2. Comparison of PRF bounds for keyed sponges. In the bounds, parameter κ is
key length in blocks, i.e. κ := k/r; parameter μ is the multiplicity, i.e. 2�q/2r ≤ μ ≤ 2�q;
parameter t ≥ 1 can be arbitrary; the number e is Napier’s constant 2.71828 · · · ; the
function λ is defined as λ(x) := x/2k if κ = 1 and λ(x) := min{ε1, ε2} if κ ≥ 2, where
ε1 := (x2/2c+1) + (x/2k) and ε2 := (1/2b) + x(12b/2r)κ/2.

Inner-keyed (k ≤ c)

Andreeva et al. [1]
(�q)2

2c
+

μQ

2k

Mennink et al. [16]
2�q2

2c
+

μQ

2k
+

2(�q)2

2b

This paper (c ≤ b/2)
3q2 + qQ + 2r(q + Q)

2c
+

�q + Q

2k
+

(3 + 32e2r−2)�2q2

2b

This paper (c > b/2)

(
18e�q(q + Q)

2b

)1/2

+
3q2 + qQ + 2r(q + Q)

2c

+
�q + Q

2k
+

3�2q2

2b

Outer-keyed

Indifferentiability [7]
2(κ + �q + Q)2

2c
+

Q

2k

Andreeva et al. [1]
(�q)2 + 2μQ

2c
+

2κQ

2b
+ λ(Q)

Gaži et al. [13]
6bq2 + 8�q + qQ

2c
+

(6t + 17)�q2 + 7�qQ + 2q

2b

+
136�4q2

22b
+

2(�q)t+1

2bt
+ λ(�q + Q)

This paper (c ≤ b/2)
3q2 + 2qQ + 2r(q + Q)

2c

+
(3.5 + 32e2r−2)�2q2 + 2qQ + 2κQ

2b
+ λ(Q)

This paper (c > b/2)

(
18e�q(q + Q)

2b

)1/2

+
3q2 + 2qQ + 2r(q + Q)

2c

+
3.5�2q2 + 2qQ + 2κQ

2b
+ λ(Q)

randomly drawn from X and is set to x. For a set X, Perm(X) is the set of all
permutations on X. For sets X and Y , Func(X,Y ) is the set of all functions:
X → Y . We denote by ∅ an empty set. For sets X and Y , X ← Y means that
set Y is assigned to set X, and X

∪←− Y means X ← X ∪ Y .

PRF-Security. Through this paper, a distinguisher D is a computationally
unbounded probabilistic algorithm. It is given query access to one or more oracles
O, denoted DO. Its complexity is solely measured by the number of queries made
to its oracles. For integers k > 0 and τ > 0, let FK : {0, 1}∗ → {0, 1}τ be a keyed
hash function based on a permutation having keys K ∈ {0, 1}k. The security
proof will be done in the ideal model, regarding the underlying permutation as
a random permutation P $←− Perm({0, 1}b) for an integer b > 0. We denote by
P−1 its inverse.
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0b
-k

m1 m2 z

P

mn

P P P

s1t1 tn sn tn+1 sn+1 tn+ -1 n+ -1ss0

K

Fig. 1. IKSponge Construction

The PRF-security of FK is defined in terms of indistinguishability between
the real world and the ideal world. In the real world, D has query access to FK , P,
and P−1 for a key K

$←− {0, 1}k and P $←− Perm({0, 1}b). In the ideal world, it has

query access to a random function R, P, and P−1, for R $←− Func({0, 1}∗, {0, 1}τ )

and P $←− Perm({0, 1}b). After D’s interaction, it outputs y ∈ {0, 1}. The event
is denoted by D ⇒ y. Then the advantage function is defined as

Advprf
F (D) = Pr[DFK ,P,P−1 ⇒ 1] − Pr[DR,P,P−1 ⇒ 1].

We call queries to FK/R “online queries” and queries to (P,P−1) “offline
queries.” Though this paper, without loss of generality, assume that D is deter-
ministic and makes no repeated query.

3 Inner Keyed Sponge and the PRF-Security

3.1 Inner Keyed Sponge Construction

The inner keyed sponge construction uses the sponge function as the underlying
function. By IKSponge we denote the construction.

First we explain the sponge function. The sponge function is a permutation-
based one. For an integer b > 0, let P ∈ Perm({0, 1}b) be the underlying permu-
tation. By SpongeP , we denote the sponge function using P . For integers r > 0
and c ≥ 0 with r + c = b, r is a bit length so-called rate and c is a bit length
so-called capacity. For an input m ∈ {0, 1}∗, the output SpongeP (m) = z is
calculated as follows. Firstly, a bit string pad(|m|) is appended to the suffix of
m such that the bit length of m‖pad(|m|) becomes a multiple of r and the last
r-bit block is not 0r. The example of the padded string is m‖pad(|m|) = m‖1‖0∗,
which means that 1 and the minimum number of zeroes so that the bit length
becomes a multiple of r. Secondly, the padded bit string is partitioned into r-bit
blocks m1, . . . , ml, where ml �= 0r. Thirdly, b-bit internal state s is updated by
the following procedure.

s ← 0b; for i = 1, . . . l do s ← P (mi‖0c ⊕ s)

Finally, the �out × r-bit string z is produced by the following procedure.

z ← s[1, r]; for i = 1, . . . �out − 1 do s ← P (s); z ← z‖s[1, r]
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Next we explain the IKSponge construction. For an integer k with 0 < k ≤ c,
let K ∈ {0, 1}k be a secret key. By IKSpongeP

K , we denote IKSponge with P
having K. IKSponge equals Sponge with the initial value 0b−k‖K. Concretely,
for a message m, the response IKSpongeP

K(m) = z is denoted as follows, and the
Fig. 1 shows the procedure.

1. Partition m‖pad(|m|) into r-bit blocks m1, . . . , mn

2. s0 ← 0b−k‖K
3. For i = 1, . . . , n do ti ← mi‖0c ⊕ si−1; si ← P (ti)
4. z ← sn[1, r]
5. For i = 1, . . . , �out − 1 do tn+i ← sn+i−1; sn+i ← P (tn+i); z ← z‖sn+i[1, r]
6. Return z

3.2 PRF-Security of the IKSponge Construction

We show the PRF-security of IKSponge in the ideal permutation model.

Theorem 1. Let D be a distinguisher which makes q online queries of r-bit
block length at most �in and Q offline queries. Then, for any parameter ρ, we
have Advprf

IKSponge(D) ≤ �q+Q
2k + 3q2+qQ+2ρ(q+Q)

2c + 3�2q2

2b + 2r+1 ×
(

2e�q
ρ2r

)ρ

, where
� = �in + �out − 1 and e = 2.71828 · · · is Napier’s constant.

Corollary 1. We assume c ≤ b/2. Then, we put ρ = r, and without loss of
generality, assume r ≥ 2 (otherwise r = c = 1 and b=2). Since r ≥ b/2, we have
Advprf

IKSponge(D) ≤ 3q2+qQ+2r(q+Q)
2c + (3+32e2r−2)�2q2

2b + �q+Q
2k .

We assume c > b/2, and put ρ = max
{

r,
(

2e×�q
2r−c(q+Q)

)1/2
}

. Then we have

Advprf
IKSponge(D) ≤

(
32e�q(q+Q)

2b

)1/2

+ 3q2+qQ+2r(q+Q)
2c + 3�2q2

2b + �q+Q
2k .

4 Proof of Theorem 1

We prove the PRF-security of IKSpongeP
K via three games. We denote these

games by Game 1, Game 2, and Game 3. For i ∈ {1, 2, 3}, we let Gi :=
(Li,P,P−1) to which D has query access in Game i. Note that in each game,

P is independently drawn as P $←− Perm({0, 1}b). We let L1 := IKSpongeP
K and

L3 := R. Hence we have

Advprf
IKSponge(D) =

2∑

i=1

(
Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1]

)
. (1)

Hereafter, we upper-bound Pr[DGi ⇒ 1] − Pr[DGi+1 ⇒ 1] for i ∈ {1, 2}. Note
that we define L2 before Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] is evaluated.

In the following proof, for α ∈ {1, . . . , Q}, we denote an α-th offline query by
xα or yα, and the response by yα or xα, where yα = P(xα) or xα = P−1(yα).
For α ∈ {1, . . . , q}, we denote an α-th online query by mα and the response
by zα. We also use superscripts for other values defined by online queries, e.g.,
n1, t11, s

1
1, n

2, t21, s
2
1, etc.
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4.1 Upper-Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

We start by defining L2. Let G1,G2, . . . ,G�
$←− Func({0, 1}b, {0, 1}b) be random

functions. Let K
$←− {0, 1}k be a secret key. For an online query m ∈ {0, 1}∗, the

response L2(m) = z is defined as follows.

1. Partition m‖pad(|m|) into r-bit blocks m1, . . . , mn

2. s0 ← 0b−k‖K
3. For i = 1, . . . , n do ti ← mi‖0c ⊕ si−1; si ← Gi(ti)
4. z ← sn[1, r]
5. For i = 1, . . . , �out −1 do tn+i ← sn+i−1; sn+i ← Gn+i(tn+i); z ← z‖sn+i[1, r]
6. Return z

Transcript. Let τL = {(m1, z1), . . . , (mq, zq)} be the set of query-response pairs
defined by online queries and τP = {(x1, y1), . . . , (xQ, yQ)} be the set of query-
response pairs defined by offline queries. Additionally, we define sets τ1, . . . , τ�.
For i ∈ {1, . . . , �}, let τi =

⋃q
α=1{(tαi , sα

i )} be the set of all input-output pairs
at the i-th block defined by online queries. Note that for α ∈ {1, . . . , q}, i ∈
{1, . . . , �} if (tαi , sα

i ) is not defined then {(tαi , sα
i )} is an empty set.

This proof permits D to obtain these sets and a secret key K after D’s
interaction but before it outputs a result. We let τ1..� =

⋃�
i=1 τi. Then D’s

transcript is summarized as τ = {τL, τP , τ1..�,K}.

Let T1 be the transcript in Game 1 obtained by sampling K
$←− {0, 1}k and

P $←− Perm({0, 1}b). Let T2 be the transcript in Game 2 obtained by sampling

K
$←− {0, 1}k, P $←− Perm({0, 1}b), G1,G2, . . . ,G�

$←− Func({0, 1}b, {0, 1}b). We call
τ valid if an interaction with their oracles could render this transcript, namely,
Pr[Ti = τ ] > 0 for i ∈ {1, 2}. Then Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] is upper-
bounded by the statistical distance of transcripts, i.e.,

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ SD(T1,T2) =
1
2

∑

τ

|Pr[T1 = τ ] − Pr[T2 = τ ]| ,

where the sum is over all valid transcripts.

Coefficient H Technique. We upper-bound the statistical distance by using the
coefficient H technique [12,18]. In this technique, firstly, we need to partition
valid transcripts into good transcripts Tgood and bad transcripts Tbad. Then we
can upper-bound the statistical distance SD(T1,T2) by the following lemma.

Lemma 1 (Coefficient H Technique). Let 0 ≤ ε ≤ 1 be such that for all
τ ∈ Tgood,

Pr[T1=τ ]
Pr[T2=τ ] ≥ 1 − ε. Then, SD(T1,T2) ≤ ε + Pr[T2 ∈ Tbad].

The proof of the lemma is given in [12]. Hence, we can upper-bound Pr[DG1 ⇒
1] − Pr[DG2 ⇒ 1] by defining good and bad transcripts and by evaluating ε and
Pr[T2 ∈ Tbad].
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Good and Bad Transcripts. We define Tbad that satisfies one of the following
conditions.

– hittx,sy ⇔ ∃(t, s) ∈ τ1..�, (x, y) ∈ τP s.t. t = x ∨ s = y
– hittt ⇔ ∃i, j ∈ {1, . . . , �} with i �= j s.t. ∃(ti, si) ∈ τi, (tj , sj) ∈ τj s.t. ti = tj
– hitss ⇔ ∃(t, s), (t′, s′) ∈ τ1..� s.t. t �= t′ ∧ s = s′

Tgood is defined such that the above conditions are not satisfied.

Upper-Bound of Pr[T2 ∈ T bad]. We start by defining additional conditions
mcollT , mcollS , and colltt. Firstly, we define mcollT and mcollS which are
(q + ρ)- and ρ-multi-collision conditions for sets T and S, respectively. Here,
T keeps all inputs to G2, . . . ,G�, and S keeps all outputs of G1, . . . ,G�, where
T :=

⋃q
α=1

⋃nα+�out−1
i=2 {tαi } and S :=

⋃q
α=1

⋃nα+�out−1
i=1 {sα

i }. Note that sets T
and S do not keep duplex elements, and T does not keep inputs to G1. Then the
conditions are defined as

mcollT ⇔ ∃t(1), t(2), . . . , t(q+ρ) ∈ T s.t. t(1)[1, r] = t(2)[1, r] = · · · = t(q+ρ)[1, r]

mcollS ⇔ ∃s(1), s(2), . . . , s(ρ) ∈ S s.t. s(1)[1, r] = s(2)[1, r] = · · · = s(ρ)[1, r]

where ρ is a free parameter which was described in Theorem 1. We let mcoll :=
mcollT ∨mcollS . Secondly, we define colltt which is a collision condition for inputs
to a random function in L2. The condition is defined as follows.

colltt ⇔∃α, β ∈ {1, . . . , q} with α �= β, i ∈ {2, . . . ,min{nα, nβ} + �out − 1}
s.t. tαi−1 �= tβi−1 ∧ tαi = tβi .

Then we have

Pr[T2 ∈ Tbad] ≤ Pr[hittx,sy ∨ hittt ∨ hitss]
≤ Pr[hitss] + Pr[colltt] + Pr[mcollS ] + Pr[mcollT |¬colltt]

+ Pr[hittx,sy|¬mcoll] + Pr[hittt ∧ ¬(colltt ∨ mcoll)] . (2)

�We upper-bound Pr[hitss]. Note that |τ1..�| ≤ �q holds, and for all (t, s) ∈ τ1..�

s is randomly drawn from {0, 1}b. Hence we have Pr[hitss] ≤
(
�q
2

)
× 1

2b = 0.5�2q2

2b .
� We upper-bound Pr[hittx,sy|¬mcoll]. Note that hittx,sy implies that

∃α ∈ {1, . . . , q}, i ∈ {1, . . . , nα + �out − 1}, β ∈ {1, . . . , Q} s.t. tα
i = xβ ∨ sα

i = yβ .

We then consider the following cases.

Case 1⇔ hittx,sy ∧ tαi = xβ ∧ i = 1:
Note that tα1 has the form tα1 = mα

1 ‖0c⊕0b−k‖K. Since K is randomly drawn
from {0, 1}k, the probability that Case 1 holds is at most Q

2k .
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Fig. 2. Procedures for set T1 and prefix=mα

Case 2⇔ hittx,sy ∧ tαi = xβ ∧ i �= 1:
By ¬mcollT , the number of elements in T whose first r bits are equal to
xβ [1, r] is at most q + ρ. We note that for some r-bit block Mα, tαi has
the form tαi = Mα‖0c ⊕ sα

i−1, where Mα is 0r or a message block. Since
sα

i−1[r + 1, b] is randomly drawn from {0, 1}c, the probability that Case 2
holds is at most (q+ρ)Q

2c .
Case 3⇔ hittx,sy ∧ sα

i = yβ :
By ¬mcollS , the number of elements in S whose first r bits are equal to
yβ [1, r] is at most ρ. Since sα

i [r + 1, b] is randomly drawn from {0, 1}c, the
probability that Case 3 holds is at most ρQ

2c .

Hence we have Pr[hittx,sy|¬(hitux,wy ∨ mcoll)] ≤ Q
2k + (q+2ρ)Q

2c .

� We upper-bound Pr[mcollS ]. Fix s ∈ {0, 1}r and s(1), s(2), . . . , s(ρ) ∈ S. Since
they are randomly drawn from {0, 1}b, the probability that s(1)[1, r] = s(2)[1, r] =
· · · = s(ρ)[1, r] = s holds is at most

(
1
2r

)ρ. By s ∈ {0, 1}r and |S| ≤ �q, we have

Pr[mcollS ] ≤ 2r ×
(
�q
ρ

)
×

(
1
2r

)ρ ≤ 2r ×
(

e�q
ρ × 1

2r

)ρ

, using Stirling’s approximation
(x! ≥ (x/e)x for any x).

� We upper-bound Pr[mcollT |¬colltt]. First we partition set T into two sets
T1 and T2. Roughly speaking, T1 keeps all inputs to random functions whose
first r bits can be controlled by message blocks. The Fig. 2 (with the boxed
statement) depicts the procedure of L2 corresponding with T1, which considers
γ-th and α-th online queries with γ < α and nγ < nα (nγ and nα are the query
lengths in blocks at the γ-th and α-th online queries, respectively) such that
these message blocks satisfy the condition: ∃j∗ ∈ {nγ + 1, . . . , nγ + �out − 1} s.t.
mα

1 = mγ
1 ,mα

2 = mγ
1 , . . . , mα

nγ = mγ
nγ ,mα

nγ = 0r, . . . , mα
j∗−1 = 0r,mα

j∗ �= 0r. We
call the condition between the α-th and γ-th online queries “prefix condition.”

In this case, tαj∗ becomes an element of T1. Since sα
j∗−1 = sγ

j∗−1 holds and
before the α-th online query a distinguisher can find sγ

j∗−1[1, r] which is the part
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m1 m2 mn
β β β

β zβ

s0

Fig. 3. Lazy sampling random functions in Case 2, where black boxes represent out-
puts defined at the β-th query and gray boxes represent outputs defined after D’s
interaction.

of output blocks at the γ-th online query, he can assign any value to tαj∗ [1, r] by
using the message block mα

j∗ . We call the input tαj∗ “controllable input,” and T1

keeps all controllable inputs. The definitions of these sets are given as follows.

T1 :=
{

tαj∗ ∈ T : (α ∈ {2, . . . , q}) ∧
(
∃γ ∈ {1, . . . , α − 1} s.t.

(
nγ < nα

)

∧
(
∀j ∈ {1, . . . , nγ} : mα

j = mγ
j

)
∧

(
∃j∗ ∈ {nγ + 1, . . . , nγ + �out − 1} s.t.

(∀j ∈ {nγ + 1, . . . , j∗ − 1} : mα
j = 0r) ∧ (mα

j∗ �= 0r)
))}

,

and T2 := T\T1. Note that for any α1, α2, . . . , αi ∈ {1, . . . , q} with α1 < α2 <
· · · < αi and with the prefix relations, the number of controllable inputs is
at most i − 1, because set T1 does not keep duplex elements. Hence, we have
|T1| ≤ q − 1, and thereby Pr[mcollT |¬colltt] is upper-bounded by the proba-
bility that a ρ-multi-collision occurs in T2 under the condition ¬colltt, that is,
∃t(1), t(2), . . . , t(ρ) ∈ T2 s.t. t(1)[1, r] = t(2)[1, r] = · · · = t(ρ)[1, r]. Hereafter, we
upper-bound the ρ-multi-collision probability under the condition ¬colltt.

Fix t ∈ {0, 1}r and tαi ∈ T2 with α ∈ {1, . . . , q} and i ∈ {2, . . . , nα +�out−1}.
We upper-bound the probability that tαi [1, r] = t holds under the condition
¬colltt. We consider the following cases.

Case 1⇔ (tαi [1, r] = t) ∧ (nα + 1 ≤ i):
By nα + 1 ≤ i, tαi = sα

i−1 holds, where sα
i−1 = Gi−1(tαi−1). By ¬colltt, sα

i−1

is randomly drawn from at least 2b − q values. Thus, the probability that
Case 1 holds is at most 2c

2b−q
.

Case 2⇔ (tαi [1, r] = t) ∧ (2 ≤ i ≤ nα):
In the evaluation, we lazy sample random functions G1, . . . ,G� that is con-
sistent with the condition ¬colltt. The procedure is shown bellow.

− At the β-th online query with β ∈ {1, . . . , q}, the following procedure is
performed.
• For j ∈ {nβ , . . . , nβ +�out−1}, sβ

j [1, r] is randomly drawn from {0, 1}r.
− After D’s interaction, the following procedure is performed.

• For all β ∈ {1, . . . , q} and j ∈ {1, . . . , nβ −1}, if tβj is a new input to Gj

then sβ
j is randomly drawn from {0, 1}b, keeping the condition ¬colltt.

• For all β ∈ {1, . . . , q} and j ∈ {nβ , . . . , nβ + �out − 1}, sβ
j [r + 1, b] is

randomly drawn from {0, 1}c, keeping the condition ¬colltt.
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The Fig. 3 depicts the above procedure. Without loss of generality, assume that
q < 2c (If q ≥ 2c then the advantage of Theorem 1 becomes 1 or more). Note
that for each random function, there are at most q inputs, and for a ∈ {0, 1}r,
there are 2c elements in {0, 1}b whose first r bits are equal to a. Thus, for all
β ∈ {1, . . . , q} and j ∈ {nβ , . . . , nβ + �out − 1}, sβ

j [r + 1, b] can be defined such
that it is consistent with the condition ¬colltt. Thus, the above procedure realizes
random functions G1, . . . ,G� that are consistent with the condition ¬colltt.

For 2 ≤ i ≤ nα, tαi has the form tαi = mα
i ‖0c ⊕ sα

i−1. By the above procedure,
sα

i−1 is randomly drawn from at least 2b − q values after D’s interaction (i.e.,
after mα

i is determined). Hence, the probability that tαi [1, r] = t holds is at most
2c

2b−q
.

We next fix t(1), t(2), . . . , t(ρ) ∈ T2 and t ∈ {0, 1}r. By the above evalua-
tions, the probability that t(1)[1, r] = t(2)[1, r] = · · · = t(ρ)[1, r] = t holds is at

most
(

2c

2b−q

)ρ

≤
(

2
2r

)ρ, assuming q ≤ 2b−1. By t ∈ {0, 1}r and |T2| ≤ �q, we

have Pr[mcollT |¬colltt] ≤ 2r ×
(
�q
ρ

)
×

(
2
2r

)ρ ≤ 2r ×
(

e�q
ρ × 2

2r

)ρ

, using Stirling’s
approximation (x! ≥ (x/e)x for any x).

� We upper-bound Pr[colltt]. We denote by collαtt the condition where at the α-th
online query colltt holds. Then we have
Pr[colltt] ≤

∑q
α=2 Pr[collαtt ∧ ¬collα−1

tt ] ≤
∑q

α=2 Pr[collαtt|¬collα−1
tt ].

Next we fix α ∈ {2, . . . , q}, and upper-bound Pr[collαtt|¬collα−1
tt ], which is the

probability that colltt holds at the α-th online query when it does not hold up to
the (α−1)-th online query. In order to upper-bound the probability, we consider
two cases with respect to the following condition.

prefix=mα ⇔∃γ ∈ {1, . . . , α − 1} s.t.
(
nγ < nα

)
∧

(
∀j ∈ {1, . . . , nγ} : mγ

j = mα
j

)

∧
(
∃j∗ ∈ {nγ + 1, . . . , nγ + �out − 1} s.t.

mα
nγ+1 = 0r, . . . , mα

j∗−1 = 0r,mα
j∗ �= 0r

)
.

We call such γ-th online query “prefix online query” of the α-th query, and
such j∗ “distinct point.” The Fig. 2 (without the boxed statement) depicts the
procedures of L2 corresponding with the condition. In this evaluation, similar
to Case 2 of Pr[mcollT |¬colltt], we lazy sample random functions G1, . . . ,G� that
are consistent with the condition ¬collα−1

tt . The procedure is shown bellow.

– At the β-th online query with β ∈ {1, . . . , α − 1}, the following procedure is
performed.

• For all j ∈ {nβ , . . . , nβ +�out−1}, sβ
j [1, r] is randomly drawn from {0, 1}r.

– At the α-th online query, the following procedure is performed.
• For all β ∈ {1, . . . , α − 1},

* for all j ∈ {1, . . . , nβ −1}, if tβj is a new input to Gj then the response
sβ

j is randomly drawn from {0, 1}b, keeping the condition ¬collα−1
tt ,

* for all j ∈ {nβ , . . . , nβ + �out −1}, sβ
j [r +1, b] is randomly drawn from

{0, 1}c, keeping the condition ¬collα−1
tt .
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Fig. 4. Lazy sampling random functions in the evaluation of Pr[collαtt|¬collα−1
tt ], where

black boxes represent outputs defined up to the (α − 1)-th query and gray boxes
represent outputs defined at the α-th query.

• For j ∈ {1, . . . , nα + �out −1}, if tαj is a new input to Gj then the response
sα

j is randomly drawn from {0, 1}b.

The top (resp., the bottom) of the Fig. 4 depicts the above procedure under
the condition prefix=mα (resp., ¬prefix=mα). Then we evaluate the probability
Pr[collαtt|¬collα−1

tt ] as follows.

Case 1⇔ collαtt under the condition ¬collα−1
tt ∧ ¬prefix=mα :

For i ∈ {2, . . . , nα + �out − 1}, let collα,i
tt be the condition where collαtt holds

at the i-th block of the α-th online query, and let coll≤α,i−1
tt := collα,2

tt ∨
collα,3

tt ∨ · · · ∨ collα,i−1
tt . Note that for i ∈ {2, . . . , nα + �out − 1}, collα,i

tt ∧
¬coll≤α,i−1

tt is the condition where collαtt holds at the i-th block of the α-th
online query for the first time. (i.e., collαtt does not hold up to the (i − 1)-
th block), and thus collαtt ⇔

∨nα+�out−1
i=2 (collα,i

tt ∧ ¬coll≤α,i−1
tt ), where collα,2

tt ∧
¬coll≤α,1

tt := collα,2
tt . In the following, for i ∈ {2, . . . , nα +�out−1}, we assume

that coll≤α,i−1
tt does not hold, and thus upper-bound the probability that

collα,i
tt holds under the condition ¬collα−1

tt ∧ ¬coll≤α,i−1
tt ∧ ¬prefix=mα . By p1,i,

we denote the probability. Note that for some r-bit string Mα tαi has the form
tαi = Mα‖0c ⊕ sα

i−1, where Mα is a message block or 0r. By the condition
¬coll≤α,i−1

tt , tαi−1 is a new input to Gi−1, and thereby sα
i−1 is randomly drawn

from {0, 1}b after Mα is determined. Hence, we have p1,i ≤ (α−1)× 1
2b , and

thereby Pr[Case 1] ≤ � × (α − 1) × 1
2b .
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Case 2⇔ collαtt under the condition ¬collα−1
tt ∧ prefix=mα :

In this analysis, we use the conditions collα,i
tt and coll≤α,i−1

tt defined above.
For i ∈ {2, . . . , nα + �out − 1}, we assume that coll≤α,i−1

tt does not hold,
and thus upper-bound the probability that collα,i

tt holds under the condition
¬collα−1

tt ∧ ¬coll≤α,i−1
tt ∧ prefix=mα . By p2,i, we denote the probability. We

assume that the γ-th online query (γ ∈ {1, . . . , α − 1}) is the prefix online
query of the α-th online query, and j∗ is the distinct point. If there are two
or more prefix online queries of the α-th online query then we consider the
prefix online query such that the distinct point is maximum.
− Firstly, we consider the case of i ∈ {2, . . . , j∗ − 1}. By prefix=mα , tαi = tγi

holds. By the condition ¬collα−1
tt ∧ ¬coll≤α,i−1

tt , we have p2,i = 0.
− Secondly, we consider the case of i = j∗. Note that tαj∗ [r+1, b] = sα

j∗−1[r+
1, b] holds, and by the lazy sampled random functions, sα

j∗−1 is randomly
drawn from at least 2b − q values. Thus we have p2,i ≤ (α − 1) × 2r

2b−q
.

− Finally, we consider the case of i ∈ {j∗ +1, . . . , nα +�out −1}. In this case,
for some r-bit string Mα, tαi has the form tαi = Mα‖0c ⊕ sα

i−1, where
Mα is a message block or 0r. Since j∗ is maximum and by the condition
¬coll≤α,i−1

tt tαi−1 is a new input to Gi−1, sα
i−1 is randomly drawn from

{0, 1}b after Mα is determined. Hence, we have p2,i ≤ (α − 1) × 1
2b .

Hence, we have Pr[Case 2] ≤ (α − 1) ×
(

2r

2b−q
+ �out

2b

)
.

Finally, we assume that q ≤ 2b−1. We then have
Pr[colltt] ≤

∑q
α=2(α − 1) × max

{
�
2b ,

(
2r

2b−q
+ �out

2b

)}
≤ q2

2c + 0.5�q2

2b .

� We upper-bound Pr[hittt ∧¬(colltt ∨mcoll)]. We start by defining the following
condition.

hitK ⇔ ∃α ∈ {1, . . . , q}, i ∈ {2, . . . , nα + �out − 1} s.t. tαi [r + 1, b] = 0c−k‖K

Then we have

Pr[hittt ∧ ¬(colltt ∨ mcoll)] ≤ Pr[hitK ] + Pr[hittt ∧ ¬(colltt ∨ mcoll) ∧ ¬hitK ] .

Since K is randomly drawn from {0, 1}k, we have Pr[hitK ] ≤ �q
2k .

Next, we upper-bound Pr[hittt ∧ ¬(colltt ∨ mcoll) ∧ ¬hitK ]. Note that hittt
implies that

∃α, β ∈ {1, . . . , q}, i ∈ {1, . . . , nα + �out − 1}, j ∈ {1, . . . , nβ + �out − 1}
s.t. i �= j ∧ tαi = tβj .

For α ∈ {1, . . . , q}, we define a condition where hittt holds up to the α-th online
query. The concrete definition is given bellow.

hitαtt ⇔∃β, γ ∈ {1, . . . , α}, i ∈ {1, . . . , nβ + �out − 1}, j ∈ {1, . . . , nγ + �out − 1}
s.t. i �= j ∧ tβi = tγj .
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Then the following inequation holds.

Pr[hittt ∧ ¬(colltt ∨ mcoll) ∧ hitK ]

≤
q∑

α=1

Pr[hitαtt ∧ ¬hitα−1
tt ∧ ¬(mcoll ∨ colltt) ∧ ¬hitK ]

≤
q∑

α=1

Pr[hitαtt ∧ ¬hitα−1
tt ∧ ¬mcoll ∧ ¬hitK |¬colltt] .

First fix α ∈ {1, . . . , q}, and upper-bound the probability Pr[hitαtt ∧¬hitα−1
tt ∧

¬mcoll ∧ ¬hitK |¬colltt]. In this evaluation, we lazy sample random functions
G1, . . . ,G� by the similar way to the evaluation of Pr[colltt]. The procedure is
shown bellow, and the Fig. 4 depicts the procedure.

– At the β-th online query with β ∈ {1, . . . , α − 1}, the following procedure is
performed.

• For all j ∈ {nβ , . . . , nβ +�out−1}, sβ
j [1, r] is randomly drawn from {0, 1}r.

– At the α-th online query, the following procedure is performed.
• For all β ∈ {1, . . . , α − 1},

* for all j ∈ {1, . . . , nβ −1}, if tβj is a new input to Gj then the response
sβ

j is randomly drawn from {0, 1}b, keeping the condition ¬colltt,
* for all j ∈ {nβ , . . . , nβ + �out −1}, sβ

j [r +1, b] is randomly drawn from
{0, 1}c, keeping the condition ¬colltt.

• For j ∈ {1, . . . , nα + �out −1}, if tαj is a new input to Gj then the response
sα

j is randomly drawn from {0, 1}b, keeping the condition ¬colltt.

In this evaluation, we consider two cases with respect to the condition prefix=mα

which was defined in the analysis of Pr[colltt]. In addition, the following analyses
use the terms “prefix online query” and “distinct point.”

Case 1⇔ hitαtt∧¬hitα−1
tt ∧¬mcoll∧¬hitK under the condition ¬colltt∧¬prefix=mα :

For i ∈ {1, . . . , nα + �out − 1}, let hitα,i
tt be the condition where hitαtt holds at

the i-th block of the α-th online query, that is,

hitα,i
tt ⇔(∃β ∈ {1, . . . , α − 1}, j ∈ {1, . . . , nβ + �out − 1} s.t. i �= j ∧ tαi = tβj )

∧ (∃j ∈ {1, . . . , i − 1} s.t. tαi = tαj ).

Then hitαtt ⇒
∨nα+�out−1

i=1 hitα,i
tt . In the following, for i ∈ {1, . . . , nα+�out−1},

we upper-bound the probability that hitα,i
tt ∧ ¬hitα−1

tt ∧ ¬mcoll∧ ¬hitK holds
under the condition ¬colltt ∧ ¬prefix=mα . By p1,i, we denote the probability.
− Firstly, we consider the case of i = 1. In addition to the condition

¬colltt ∧ ¬prefix=mα , we assume that hitK does not hold, and don’t
consider the condition ¬hitα−1

tt ∧ ¬mcoll. Since tα1 has the form tα1 =
(mα

1 ‖0c) ⊕ (0b−k‖K), the probability that hitα,1
tt holds under the condi-

tion ¬colltt ∧ ¬prefix=mα ∧ ¬hitK is 0 and thus we have p1,1 = 0.
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− Secondly, we consider the case of i ≥ 2. In this case, we don’t consider the
condition ¬hitα−1

tt ∧¬mcoll∧¬hitK . Note that for an r-bit string Mα, tαi
has the form tαi = Mα‖0c⊕sα

i−1, where Mα is a message block or 0r. Since
sα

i−1 is randomly drawn from at least 2b − q values after Mα is defined,
the probability that hitα,i

tt holds under the condition ¬colltt ∧ ¬prefix=mα

is at most (�−1)(α−1)+(i−1)
2b−q

≤ (�−1)α
2b−q

, and thus we have p1,i ≤ (�−1)α
2b−q

.

Hence, we have Pr[Case 1] ≤ (� − 1) × (�−1)α
2b−q

.
Case 2⇔ hitαtt ∧¬hitα−1

tt ∧¬mcoll∧¬hitK under the condition ¬colltt ∧prefix=mα :
In this analysis, we use the condition hitα,i

tt for i ∈ {1, . . . , nα + �out − 1},
defined in Case 1. We let hit≤α,i−1

tt := hitα−1
tt ∨ hitα,1

tt ∨ · · · ∨ hitα,i−1
tt ,

where hitα,0
tt := hitα−1

tt . Then the following holds: hitαtt ∧ ¬hitα−1
tt ⇒

∨nα+�out−1
i=1 (hitα,i

tt ∧ ¬hit≤α,i−1
tt ). In this evaluation, we don’t consider the

condition ¬hitK , and thus for i ∈ {1, . . . , nα + �out − 1}, upper-bound
the probability that hitα,i

tt ∧ ¬hit≤α,i−1
tt ∧ ¬mcoll holds under the condition

¬colltt ∧ prefix=mα . By p2,i, we denote the probability. We assume that the
γ-th online query (γ ∈ {1, . . . , α − 1}) is the prefix online query of the α-th
online query, and j∗ is the distinct point. If there are two or more prefix
online queries of the α-th online query then we consider the prefix online
query such that the distinct point is maximum.
− Firstly, we consider the case of i < j∗. In this case, we don’t consider the

condition ¬mcoll, and assume that hit≤α,i−1
tt does not hold in addition

to the condition ¬colltt ∧ prefix=mα . By prefix=mα , tαi = tγi holds, and by
¬hit≤α,i−1

tt , hitγtt does not hold. Hence, hitα,i
tt does not hold under the

condition ¬colltt ∧ prefix=mα ∧ hit≤α,i−1
tt , and thus we have p2,i = 0.

− Secondly, we consider the case of i = j∗. In this analysis, we don’t consider
the condition ¬hit≤α,i−1

tt , and assume that mcoll does not hold in addition
to the condition ¬colltt ∧ prefix=mα . Note that since j∗ is the maximum
distinct point, tαj∗ is a new input to Gj∗ . By ¬mcollT , the number of
inputs to random functions whose first r bits are equal to tαj∗ [1, r] is at
most (q + ρ). Note that tαj∗ [r + 1, b] = sα

j∗−1[r + 1, b], and sα
j∗−1[r + 1, b]

is randomly drawn from at least 2c − q values. Hence, the probability
that hitα,i

tt holds under the condition ¬colltt ∧prefix=mα ∧¬mcoll is at most
q+ρ
2c−q , and thus we have p2,i ≤ q+ρ

2c−q .

− Finally, we consider the case of i > j∗. In this analysis, we don’t consider
the conditions ¬hit≤α,i−1

tt and ¬mcollT . Note that for an r-bit string Mα,
tαi has the form tαi = Mα‖0c ⊕ sα

i−1, where Mα is a message block or 0r.
By ¬colltt, sα

i−1 is randomly drawn from at least 2b − q values after Mα

is defined. We thus have p2,i ≤ (�−2)α
2b−q

.

Hence, we have Pr[Case 2] ≤ q+ρ
2c−q + (� − 2) × (�−2)α

2b−q
.
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Hence, we have

Pr[hittt ∧ ¬(colltt ∨ mcoll) ∧ ¬hitK ] ≤
q∑

α=1

max
{

(� − 1)2α
2b − q

,
q + ρ

2c − q
+

(� − 2)2α
2b − q

}

≤ 2(q + ρ)q
2c

+
�2q2

2b
, assuming q ≤ 2c−1.

Finally, we have Pr[hittt ∧ ¬(colltt ∨ mcoll)] ≤ �q
2k + 2(q+ρ)q

2c + �2q2

2b .

� We put the above bounds to the inequation (2). Then we have

Pr[T2 ∈ Tbad] ≤ �q + Q

2k
+

2q2 + qQ + 2ρ(q + Q)
2c

+
2�2q2

2b
+ 2r+1 ×

(
2e�q

ρ2r

)ρ

.

Upper-Bound of ε. Let τ ∈ Tgood. Let alli be the set of all oracles in Game i for
i = 1, 2. Let compi(τ) be the set of oracles compatible with τ in Game i for
i = 1, 2. Then Pr[T1 = τ ] = |comp1(τ)|

|all1| and Pr[T2 = τ ] = |comp2(τ)|
|all2| .

Firstly, we evaluate |all1|. Since K ∈ {0, 1}k and P ∈ Perm({0, 1}b), we have
|all1| = 2k · 2b!.

Secondly, we evaluate |all2|. Since K ∈ {0, 1}k, P ∈ Perm({0, 1}b), and

G1,G2, . . . ,G� ∈ Func({0, 1}b, {0, 1}b), we have |all2| = 2k · (2b!) ·
(
(2b)2

b
)�

.
Thirdly, we evaluate |comp1(τ)|. For i ∈ {1, . . . , �}, let γi be the number of

pairs in τi. Let γP be the numbers of pairs in τP . Let γ = γP +
∑�

i=1 γi. Since
τ1, . . . , τ� and τP are defined so that they do not overlap each other, we have
|comp1(τ)| = (2b − γ)!.

Fourthly, we evaluate |comp2(τ)|. Here, γ1, . . . γ�, and γP are analogously
defined. Then we have |comp2(τ)| = (2b − γP)! ·

∏�
i=1(2

b)2
b−γi = (2b − γP)! ·

(2b)�2b−γ+γP .
Finally, we have

Pr[T1 = τ ]
Pr[T2 = τ ]

=
|comp1(τ)|

|all1|
× |all2|

|comp2(τ)| =
(2b − γ)!
2k · (2b!)

× 2k · (2b!) · (2b)�2b

(2b − γP)! · (2b)�2b−γ+γP

=
(2b)γ · (2b − γ)!

(2b)γP · (2b − γP)!
≥ 1 ,

and thus ε = 0.

Upper-Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]. Finally, by Lemma 1, the
upper-bound of Pr[T2 ∈ Tbad] and ε yield the following bound.

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

≤ �q + Q

2k
+

2q2 + qQ + 2ρ(q + Q)
2c

+
2�2q2

2b
+ 2r+1 ×

(
2e�q

ρ2r

)ρ

. (3)
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4.2 Upper-Bound of Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1]

Firstly, we prove the following lemma.

Lemma 2. G2 and G3 are indistinguishable unless the following condition holds
in Game 2.1

coll ⇔∃α, β ∈ {1, . . . , q}, i ∈ {max{nα, nβ}, . . . ,min{nα, nβ} + �out − 1}
s.t. α �= β ∧ tαi = tβi .

Proof. If coll does not hold then all blocks in outputs of L2 are independently
drawn by random functions. Hence the above lemma holds. ��

By the above lemma, Pr[DG2 ⇒ 1|¬coll] = Pr[DG3 ⇒ 1] holds. Then we have

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[coll] .

Hereafter, we upper-bound Pr[coll]. In this evaluation, we use the condition
colltt given in Subsect. 4.1. Then we have Pr[coll] ≤ Pr[colltt] + Pr[coll|¬colltt]
where the upper-bound of Pr[colltt] is given in Subsect. 4.1: Pr[colltt] ≤ q2

2c + 0.5�q2

2b .
We thus upper-bound Pr[coll|¬colltt]. First fix α, β ∈ {1, . . . , q} with α �= β,

and upper-bound the probability that by the α-th and β-th online queries, coll
holds. We consider the following cases.

Case 1⇔ nα = nβ : Since mα �= mβ , there exists j∗ ∈ {1, . . . , nα} such that
tαj∗ �= tβj∗ . By ¬colltt, for all j ∈ {j∗ +1, . . . , nα +�−1}, tαj �= tβj holds. Hence,
in this case, coll does not hold.

Case 2⇔ nα �= nβ : Without loss of generality, assume that nα > nβ . By
mα

nα �= 0r and mα �= mβ , there exists j∗ ∈ {1, . . . , nβ} such that tαj∗ �= tβj∗

holds. By ¬colltt, for all j ∈ {j∗ + 1, . . . , nα + � − 1}, tαj �= tβj holds. Hence,
in this case, coll does not hold.

By the above evaluations, we have Pr[coll|¬colltt] = 0.
Finally, we have

Pr[DG2 ⇒ 1] − Pr[DG3 ⇒ 1] ≤ Pr[coll] ≤ q2

2c
+

0.5�q2

2b
. (4)

4.3 Upper-Bound of the Advantage

We put the upper-bounds (3) and (4) into the inequation (1). Then we have

Advprf
IKSponge(D) ≤ �q + Q

2k
+

3q2 + qQ + 2ρ(q + Q)
2c

+
3�2q2

2b
+ 2r+1 ×

(
2e�q

ρ2r

)ρ

.

1 Note that in this condition we consider a collision at the same position for two online
queries, where in the position the outputs of the queries are produced. Hence, the
first point of i is max{nα, nβ} and the last point is min{nα, nβ} + �out − 1.
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5 Outer Keyed Sponge and the PRF-Security

By OKSponge we denote the outer keyed sponge construction, and by OKSpongeP
K ,

denote OKSponge with P having K. For a message m ∈ {0, 1}∗, the response is
defined as OKSpongeP

K(m) := SpongeP (K∗‖m), where K∗ is defined by append-
ing some bit string to the suffix of K such that the bit length is a multiple
of r, e.g., a zero string is appended. So the difference between OKSponge and
IKSponge is the procedure to define the value s0. In OKSpongeP

K , s0 is defined
as follows, where κ := |K∗|/r.

1. Partition K∗ into r-bit blocks K1, . . . , Kκ;
Partition m‖pad(|K∗‖m|) into r-bit blocks m1, . . . , mn

2. w0 ← 0b; For i = 1, . . . , κ do ui ← Ki‖0c ⊕ wi−1; wi ← P (ui)
3. s0 ← wκ

Basically, we can prove the PRF-security of OKSponge by the similar proof but
need to consider the structural difference: s0 = 0b−k‖K in IKSponge and s0 = wκ

in OKSponge. If D does not know wκ, that is, D does not make an offline query
P(uκ) and P−1(wκ) then wκ becomes a secret random value of b bits. Therefore,
the upper-bound of the PRF-security of OKSponge can be obtained from that of
IKSponge, where the probability for K, �q+Q

2k , is replaced with the probability
for the “bad” event where D knows wκ. The probability for the bad event was
considered in [1,13], and we use their bound. The concrete upper-bound is given
as follows, where the probability for the bad event is λ(Q) + 2κQ

2b .

Theorem 2. Let D be a distinguisher which makes q online queries of r-
bit block length at most �in and Q offline queries. Then for any ρ, we have
Advprf

OKSponge(D) ≤ λ(Q)+ 2κQ
2b + 2qQ+3.5�2q2

2b + 3q2+2qQ+2ρ(q+Q)
2c +2r+1×

(
2e�q
ρ2r

)ρ

,

where � = �in + �out − 1, e = 2.71828 · · · is Napier’s constant, and λ(Q) = Q
2k if

k ≤ r, and λ(Q) = min

{
Q2

2c+1 + Q
2k , 1

2b + Q

2

(
1
2 − log2(3b)

2r
− 1

r

)
k

}

otherwise.

Corollary 2. We assume c ≤ b/2. Then, we put ρ = r, and without loss of
generality, assume r ≥ 2 (otherwise r = c = 1 and b=2). Since r ≥ b/2, we have
Advprf

OKSponge(D) ≤ 3q2+2qQ+2r(q+Q)
2c + (3.5+32e2r−2)�2q2+2qQ+2κQ

2b + λ(Q).

We assume c > b/2 and put ρ = max
{

r,
(

2e×�q
2r−c(q+Q)

)1/2
}

. Then we have

Advprf
OKSponge(D) ≤

(
18e�q(q+Q)

2b

)1/2

+ 3q2+2qQ+2r(q+Q)
2c + 3.5�2q2+2qQ+2κQ

2b +λ(Q).
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Abstract. Typical AE schemes are supposed to be secure when used
as specified. However, they can – and often do – fail miserably when
used improperly. As a partial remedy, Rogaway and Shrimpton proposed
(nonce-)misuse-resistant AE (MRAE) and the first MRAE scheme SIV
(“Synthetic Initialization Vector”). This paper proposes RIV (“Robust
Initialization Vector”), which extends the generic SIV construction by
an additional call to the internal PRF. RIV inherits the full security
assurance from SIV, but unlike SIV and other MRAE schemes, RIV is
also provably secure when releasing unverified plaintexts. This follows a
recent line of research on “Robust Authenticated Encryption”, similar to
the CAESAR candidate AEZ.

An AES-based instantiation of RIV runs at less than 1.5 cpb on
current x64 processors. Unlike the proposed instantiation of AEZ, which
gains speed by relying on reduced-round AES, our instantiation of RIV
is provably secure under the single assumption of the AES being secure.

Keywords: Robustness · Subtle authenticated encryption · Provable
security

1 Introduction

Authenticated Encryption. A secure authenticated encryption (AE) scheme
generates ciphertexts that can not be efficiently distinguished from random bit-
strings of the same length as the ciphertext and are infeasible to forge. Typical
AE schemes are nonce-based [45], i.e., the user is responsible to supply an addi-
tional input that must be unique for every encryption. If a nonce ever repeats,
the scheme’s security may fully forfeit. While the concept of unique nonces is
simple in theory, it is hard to ensure in practice [19], which led to severe secu-
rity breaches in the past. Rogaway and Shrimpton [46] defined (nonce-)misuse-
resistant AE (MRAE) as notion with the goal of providing full authenticity, and
privacy up to the detection of repeated encryptions of the same associated data
and message under the same nonce and key. Since then, the topic received signif-
icant attention by the community, resulting in a large corpus of MRAE schemes,
e.g., [6,10,16,20,22,27–30,33,43,46].
c© International Association for Cryptologic Research 2016
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Robustness aspects of AE are not limited to nonce reuse. “One shortcoming
of AE as commonly understood is its idealized, all-or-nothing decryption” [7].
Leaking any information about the message before its authentication has been
verified breaks this assumption. At least five noteworthy recent works strength-
ened the existing security definitions of robustness.1 Boldyreva et al. [15] (BDPS)
studied the effects when multiple distinct error messages are distinguishable in
probabilistic or stateful schemes. Andreeva et al. [4] formalized notions that cap-
ture the remaining security under release of unverified plaintexts (RUP). Hoang
et al. [24] defined robust AE (RAE) as a notion for the best achievable security
of an AE scheme with a user-chosen ciphertext expansion. Badertscher et al. [5]
investigated RAE with the frameworks by Maurer and Renner [38,39]. Barwell
et al. [7] defined subtle AE (SAE) as a reference framework for the BDPS, RUP,
and RAE notions. The SAE definitions comprise leakage beyond information
about the invalid plaintext, which allows to model leakage as a property of the
decryption implementation rather than as a property of the scheme.

Previous Robust AE Schemes. In spite of so much progress regarding stricter
security definitions, the portfolio of dedicated robust AE schemes remains still
modest. Among the 57 CAESAR submissions, only four candidates consider
robustness against leakage of invalid plaintexts: Julius [6] lacks a security proof;
POET [1] and APE [3] concern on-line confidentiality, which cannot provide
nonce-misuse resistance in the strong sense of Rogaway and Shrimpton, as has
been criticized, e.g., by [25]. Only AEZ [24] provides robust AE. Though, AEZ
follows a “proof-then-prune” approach: while the security proof assumes a strong
block cipher, the performant instantiation employs four-round AES instead.
Since AEZ also defines a key schedule, it appears more as a primitive of its
own right than as a block-cipher-based AE scheme.

Beyond CAESAR, Bertoni et al. [12] proposed Mr. Monster Burrito,
a four-round Feistel network with the round-reduced Keccak-f permuta-
tion in duplex-wrap mode, and the sponge in counter mode for encryption.
Shrimpton and Terashima [47] proposed Protected IV (PIV), a framework of
strong tweakable ciphers (STPRPs), which generalized the Ψ3 construction by
Coron et al. [17]. PIV is fast (comparable with the construction proposed in
this work); though, it requires the block-cipher inverse for decryption. Note that
theoretically, more robust AE schemes could be constructed. Hoang et al. [24]
showed that the well-known Encode-then-Encipher (EtE) [9] approach achieves
RAE security when (a hash of) nonce and associated data are used as tweak.
In theory, this implies that a secure STPRP can be transformed into a robust
AE scheme, which allows to choose from the schemes that have been developed
over the previous decade, e.g., in the domains of full-disk and format-preserving
encryption.

Contribution. This work proposes a modular framework, called Robust IV
(RIV), which provides provable SAE security. RIV is an extension of SIV [26,46]

1 By robustness, we mean resistance against both nonce misuse and decryption leakage
beyond the single error information.
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that inherits both the simplicity and the naturally strong security properties of
SIV and adds robustness against leakage of invalid plaintexts. We propose an
instantiation which runs at less than 1.5 clock cycles per byte (cpb) on current
x64 processors.

Outline. The remainder of this work is structured as follows: after Sect. 2 recalls
the preliminaries, Sect. 3 describes the generic RIV framework. Section 4 recalls
the relevant notions. Section 5 summarizes our formal security analysis. Section 6
details our instantiation, and Sect. 7 concludes this work.

2 Preliminaries

We use lowercase letters x, y for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X ,Y for sets. By
ε we denote the empty string. We denote the concatenation of binary strings X
and Y by X ‖Y and the result of their bitwise XOR by X ⊕ Y . We indicate
the length of X in bits by |X|, and write Xi for the i-th block, X[i] for the
i-th most significant bit of X, and X[i..j] for the bit sequence X[i], . . . , X[j].
X � X denotes that X is chosen uniformly at random from the set X . We
define two sets of particular interest: Perm(X ) be the set of all permutations
on X and Func(X ,Y) the set of all functions F : X → Y. A uniform random
function ρ : X → Y with domain X and range Y is a random variable uniformly
distributed over Func(X ,Y). We define by X1, . . . , Xj

x←− X the injective splitting
of the string X into x-bit blocks such that X = X1 ‖ · · · ‖Xj , with |Xi| = x for
1 ≤ i ≤ j − 1, and |Xj | ≤ x.

For an event E, we denote by Pr[E] the probability of E. We write 〈x〉m

for the binary m-bit-string representation of an integer x and 〈x〉 for the binary
n-bit-string representation of x for an integer n that is clear from the context.
If not stated otherwise, we assume representations to be encoded in big-endian
manner, i.e., the decimal 〈135〉 is encoded to the n-bit string 000..010000111.

Universal Hashing. Universal hash functions are well-known components for
compressing a message while guaranteeing maximal probabilities about output
relations. We briefly recall the definitions that are relevant in this work.

Definition 1 (ε-Almost-(XOR-)Universal Hash Functions). Let X ,Y ⊆
{0, 1}∗. Let H = {H |H : X → Y} denote a family of hash functions. H is called
ε-almost-universal (ε-AU) iff for all distinct elements X,X ′ ∈ X , it holds that
PrH�H [H(X) = H(X ′)] ≤ ε. H is called ε-almost-XOR-universal (ε-AXU) iff
for all distinct elements X,X ′ ∈ X and Y ∈ Y, it holds that PrH�H[H(X) ⊕
H(X ′) = Y ] ≤ ε.

Theorem 1 (Theorem 3 from [14]). Let X ,Y ⊆ {0, 1}∗. Further, let H =
{H |H : X → Y} be a family of ε-AXU hash functions. Then, the family H′ =
{H ′ |H ′ : X × Y → Y} with H ′(X,Y ) := H(X) ⊕ Y , is ε-AU.
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Nonce-Based Encryption Schemes. A nonce-based encryption scheme [45]
is a tuple Π = (E ,D) of deterministic encryption and decryption algorithms
E : K × N × M → C and D : K × N × C → M, with associated non-empty key
space K, non-empty nonce space N , and M, C ⊆ {0, 1}∗ denoting message and
ciphertext space, respectively. We often write EN

K (M) and DN
K(C) as short forms

of E(K,N,M) and D(K,N,C). An adversary that never repeats a nonce over
its encryption queries is called nonce-respecting, and nonce-ignoring otherwise.
We assume for all K ∈ K, N ∈ N , M ∈ M, and C ∈ C length-preservation,
i.e., |EN

K (M)| = |M |, correctness, i.e., DN
K(EN

K (M)) = M , and tidiness, i.e.,
EN

K (DN
K(C)) = C. We call a nonce-based encryption scheme Π = (E ,D) nonce-

keystream-based iff its encryption algorithm derives a keystream κN ⊆ {0, 1}∗,
with |κN | = |M |, from the given nonce N and computes the ciphertext as C ←
κN ⊕ M . Naturally, the decryption algorithm of such an encryption scheme is
identical to its encryption algorithm, i.e., EN

K (M) := DN
K(M) for all K ∈ K,

N ∈ N , and M ∈ M.

Nonce-Based AE Schemes. A nonce-based authenticated encryption scheme
(with associated data) [44] is a tuple Π̃ = (Ẽ , D̃) of a deterministic encryption
algorithm Ẽ : K×N ×H×M → C×T , and a deterministic decryption algorithm
D̃ : K×N ×H×C×T → M∪{⊥}, with associated non-empty key space K, non-
empty nonce space N , and H, M, C ⊆ {0, 1}∗ denote the header, message, and
ciphertext space, respectively. We define a tag space T = {0, 1}τ for a fixed τ ≥ 0.
We often write ẼN,H

K (M) and D̃N,H
K (C, T ) as short forms of Ẽ(K,N,H,M) and

D̃(K,N,H,C, T ). If a given tuple (N,H,C, T ) is valid, D̃N,H
K (C, T ) returns the

corresponding plaintext M , and ⊥ otherwise. We assume that for all K ∈ K, N ∈
N , H ∈ H, and M ∈ M holds stretch-preservation: if ẼN,H

K (M) = (C, T ), then
|C| = |M | and |T | = τ , correctness: if ẼN,H

K (M) = (C, T ), then D̃N,H
K (C, T ) =

M , and tidiness: if D̃N,H
K (C, T ) = M �= ⊥, then ẼN,H

K (M) = (C, T ), for all
C ∈ C and T ∈ T . Note that some notions (e.g., [41]) regard an authenticated
ciphertext C with |C| = |M | + τ instead of an explicitly separated tuple (C, T ).

Subtle AE Schemes. Barwell et al. defined a subtle AE scheme Π̃ = (Ẽ , D̃,Λ)
as a tuple of deterministic encryption and decryption algorithms Ẽ and D̃ as
above2, and an additional deterministic leakage algorithm Λ : K × N × H ×
C × T → {�} ∪ L, with a non-empty leakage space L and a symbol � �∈ L to
indicate a valid input. This means, for all K ∈ K, N ∈ N , H ∈ H, C ∈ C, and
T ∈ T holds: if ΛN,H

K (C, T ) = �, then D̃N,H
K (C, T ) �= ⊥; moreover, it holds that

if ΛN,H
K (C, T ) �= �, then D̃N,H

K (C, T ) = ⊥.

3 Definition of RIV

Definition 2 (RIV). Let d, n, τ ≥ 1. Let K1, K2, and K = K1 × K2 be non-
empty key sets, N a non-empty nonce space, {0, 1}d the non-empty domain

2 Though, their definitions denote the authenticated ciphertext (C, T ) as C.
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Fig. 1. Left: Schematic illustration of the encryption of RIVF,Π with a PRF F and
a nonce-based encryption scheme Π = (E , D). Right: Definition of encryption and
decryption algorithms of RIVF,Π , and definition of a plaintext-leaking oracle Λ that
will be used in our security analysis.

space, and H,M, C ⊆ {0, 1}∗ header, message, and ciphertext spaces, respec-
tively, and T = {0, 1}τ a tag space. Let further F : K1 ×{0, 1}d ×N ×H×M →
{0, 1}n be a function and Π = (E ,D) a nonce-based encryption scheme with asso-
ciated key space K2 and nonce space {0, 1}τ . Let F i

K(·, ·, ·) denote FK(〈i〉d, ·, ·, ·).
Then, we define the AE scheme RIVF,Π = (Ẽ , D̃) with encryption algorithm
Ẽ : K×N ×H×M → C ×T and decryption algorithm D̃ : K×N ×H×C ×T →
M ∪ {⊥}, as given in Fig. 1.

Definition 3 (R̂IV). We define the SAE scheme R̂IVF,Π = (Ẽ , D̃,Λ) with an
additional deterministic leakage algorithm Λ : K × N × H × C × T → M × {�},
as given in Fig. 1.

Feistel Structure and Encode-then-Encipher (EtE). RIV can be seen as
an application of the EtE [9] approach by Bellare et al. EtE can generically be
used for constructing a robust AE scheme from a tweakable cipher, assuming its
enciphering resists chosen-plaintext and chosen-ciphertext attacks [24]. The RIV
cipher, however, is essentially an unbalanced three-round Feistel-network.3 It is
well-known that such ciphers are secure against chosen-plaintext, but vulnerable
to chosen-ciphertext attacks [35] (see also [2,36,42]). RIV is robust in spite of
its weak enciphering scheme, because its encoding operation has been chosen to
specifically cover this weakness.
3 If the used encryption scheme Π = (E , D) is nonce-keystream-based, the RIV cipher
is a three-round Feistel network.
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4 Security Notions

Adversaries and Advantages. An adversary A is an efficient Turing machine
that interacts with a given set of oracles that appear as black boxes to A. We
use the notation A for the class of all computationally bounded adversaries
and AO for the output of A after interacting with some oracle O. We write
ΔA(OL;OR) := supA∈A |Pr[AOL ⇒ 1] − Pr[AOR ⇒ 1]| for the advantage of
A to distinguish between oracles OL and OR. All probabilities are defined over
the random coins of the oracles and those of the adversary, if any. We write
AdvX

F (q, 	, t) = maxA∈A{AdvX
F (A)} to refer to the maximal advantage over all

X-adversaries A on a given function F that run in time at most t and pose at
most q queries consisting of at most 	 blocks in total to the available oracles. If A
shall distinguish between two sets of oracles (OL

1 , . . . ,OL
k ) and (OR

1 , . . . ,OR
k ), we

refer to the i-th oracle that A interacts with by Oi ∈ {OL
i ,OR

i }. By Oi ↪→ Oj ,
we denote that A first queries Oi and later Oj with the output of Oi. Wlog.,
we assume that A never asks queries to which it already knows the answer. In
the case when A has access to multiple oracles O1, . . . ,Ok, we denote by qi the
number of queries and by 	i the maximal number of blocks that A poses at most
to oracle Oi, 1 ≤ i ≤ k.

If Oi and Oj represent a family of algorithms indexed by inputs, the indices
must match, e.g., when ẼN,H

K (M) and D̃N,H
K (C) represent encryption and decryp-

tion algorithms with a fixed key K and indexed by N and H, then ẼK ↪→ D̃K

says that A first queries ẼN,H
K (M) and later D̃N,H

K (C).
We define ⊥, when in place of an oracle, to always return the invalid

symbol ⊥. We denote by $O an oracle that, given an input X, computes
Y ← O(X), chooses uniformly at random a value Y ′ from the space of all
possible outputs with |Y ′| = |Y |, and returns Y ′. We assume that $O performs
lazy sampling, i.e., $O(X) returns the same value when queried with the same
input X. We often omit the key for brevity, e.g., $Ẽ(X) will be short for $ẼK (X).

4.1 Security Definitions for Encryption Schemes

Definition 4 (PRF Advantage). Let F : K×X → Y be a function with non-
empty key space K, and A a computationally bounded adversary with access to
an oracle, where K � K and ρ � Func(X ,Y). Then, the PRF advantage of A
on F is defined as AdvPRF

F (A) := ΔA(FK ; ρ).

Definition 5 (PRP Advantage). Let n, k ≥ 1 be fixed. Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a block cipher and A a computationally bounded adversary
with access to an oracle. Further, let K � {0, 1}k and π � Perm({0, 1}n). Then,
the PRP advantage of A on E is defined as AdvPRP

E (A) := ΔA(EK ;π).

Stinson [48] showed that one can construct an (ε1 + ε2)-AU family of hash
functions from the consecutive application of an ε1-AU and an ε2-AU family of
hash functions. From that we can derive the following theorem.
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Theorem 2. Let X ,Y,Z ⊆ {0, 1}∗ and let K be a non-empty set. Further, let
H = {H : X → Y} be a family of ε-AU hash functions and let G : K×Y → Z be a
function. Then, we can define FK(X) := GK(H(X)), with independent K � K
and H � H. Let A be a PRF adversary on F that asks at most q queries of
at most 	 blocks in total, and runs in time at most t. Then, there exists a PRF
adversary A1 on G that asks at most q queries and runs in time O(t) such that

AdvPRF
F (A) ≤ AdvPRF

G (A1) + ε · q2/2.

Theorem 2 follows from the fact, that the PRF advantage of F is upper
bounded by the maximal PRF advantage on G plus the maximal probability of
output collisions of the form H(X) = H(X ′) over q queries.

Definition 6 (nE Advantage [41]). Let Π = (E ,D) be a nonce-based encryp-
tion scheme and K � K. Let A be a nonce-respecting adversary with access to
an oracle. Then, the nE advantage of A on Π is defined as AdvnE

Π (A) :=
ΔA(EK ; $E).

We adapt the definition of indistinguishability from random bits from [23]
for nonce-based encryption schemes. Note that we strengthen it to adversaries
that do not repeat nonces over all encryption and decryption queries.

Definition 7 (SRND Advantage). Let be Π = (E ,D) a nonce-based encryp-
tion scheme and K � K. Let A be a nonce-respecting adversary with access to
two oracles O1 and O2, s.t. A never asks for O1 ↪→ O2 and never repeats a
nonce over all its encryption and decryption queries. Then, we define the SRND
advantage of A on Π as AdvSRND

Π (A) := ΔA(EK ,DK ; $E , $D).

4.2 Security Definitions for Nonce-Based AE Schemes

For this subsection, let Π̃ = (Ẽ , D̃) be a nonce-based AE scheme, K � K, and
A be a computationally bounded adversary on Π̃.

Definition 8 (IND-CPA Advantage). Let A have access to an encryption
oracle. Then, the IND-CPA advantage of A with respect to Π̃ is defined as
AdvIND-CPA

Π̃
(A) := ΔA(ẼK ; $Ẽ).

Definition 9 (INT-CTXT Advantage). Let A have access to two oracles O1

and O2 such that A never queries O1 ↪→ O2. Then, the INT-CTXT advantage
of A on Π̃ is defined as AdvINT-CTXT

Π̃
(A) := Pr[AẼK ,D̃K forges], where “forges”

means that D̃K returns anything other than ⊥ for a query of A.

Definition 10 (nAE Advantage [41]). Let A have access to two oracles O1

and O2 such that A never queries O1 ↪→ O2. Then, the nAE advantage of A on
Π̃ is defined as AdvnAE

Π̃
(A) := ΔA(ẼK , D̃K ; $Ẽ ,⊥).

Bellare and Namprempre showed for probabilistic AE that chosen-ciphertext
security results from IND-CPA and INT-CTXT security [8]. Fleischmann
et al. proved in [19] a generalized theorem for nonce-based AE.
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Theorem 3 (Theorem 1 in [19]). Let A be a computationally bounded nAE

adversary on Π̃ with access to two oracles O1 and O2 such that A never queries
O1 ↪→ O2; A makes at most q queries of total length of at most 	 blocks and
runs in time at most t. Then, there exist an IND-CPA adversary A1 on Π̃ and
an INT-CTXT adversary A2 on Π̃, both making at most q queries of at most
	 blocks and running in time O(t) each, such that

AdvnAE
Π̃

(A) ≤ AdvIND-CPA
Π̃

(A1) + AdvINT-CTXT
Π̃

(A2).

4.3 Security Definitions for Subtle AE Schemes

Subtle AE (SAE) defines a compound security notion that provides guarantees
for privacy and authenticity under the existence of a leakage oracle. It comprises
the notions IND-CPA, INT-CTXT, and an additional notion ERR-CCA.

For this subsection, let Π̃ = (Ẽ , D̃,Λ) be an SAE scheme, K,K ′ � K × K
independent keys, and A a deterministic adversary with access to three oracles
O1,O2, and O3 such that A neither queries O1 ↪→ O2 nor O1 ↪→ O3.

Definition 11 (ERR-CCA Advantage). The ERR-CCA advantage of A
on Π̃ is defined as AdvERR-CCA

Π̃
(A) := ΔA(ẼK , D̃K ,ΛK ; ẼK , D̃K ,ΛK′).

Definition 12 (SAE Advantage). The SAE advantage of A on Π̃ is defined
as AdvSAE

Π̃
(A) := ΔA(ẼK , D̃K ,ΛK ; $Ẽ ,⊥,ΛK′).

In the full version of [7], Barwell et al. prove a statement equivalent to
Theorem 4. We apply Theorem 3 to decompose their AE security advantage
term into the separate advantages for IND-CPA and INT-CTXT.

Theorem 4. Let A run in time at most t and ask at most q queries of at most 	
blocks to its respective oracles. Then, there exist computationally bounded IND-
CPA, INT-CTXT, and ERR-CCA adversaries A1, A2, and A3, respectively,
on Π̃ such that

AdvSAE
Π̃

(A) ≤ AdvIND-CPA
Π̃

(A1) + AdvINT-CTXT
Π̃

(A2) + AdvERR-CCA
Π̃

(A3),

where A1, A2, and A3 each make at most q queries of at most 	 blocks and run
in time O(t) each.

Since [4] omitted a compound notion for their security under release of unver-
ified plaintexts, Barwell et al. defined RUPAE as ΔA(ẼK , D̃K ,VK ; $Ẽ , D̃K′ ,⊥)
[7, Theorem 3, Corollary 2]. They showed that the maximal SAE advantage on an
AE scheme Π̃ is, with a reduction term, also equivalent to the maximal RUPAE
advantage. Moreover, they showed that – again with a reduction term – it is also
equivalent to the maximal robust-AE advantage on Π̃ with fixed stretch τ .
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5 Security Results for Generic RIV

This section summarizes our security results. For the remainder of this section,
let d, n, τ ≥ 1 be integers, K1, K2 be non-empty key spaces, and K1,K2 �
K1 × K2 be independent keys, F : K1 × {0, 1}d × N × H × M → {0, 1}n, and
Π = (E ,D) be a nonce-based encryption scheme with associated key space K2.

Theorem 5. Let A be a computationally bounded SAE adversary on R̂IVF,Π

which asks at most q queries of at most 	 blocks in total and runs in time at
most t. Then, there exists a computationally bounded PRF adversary A1 on F
that asks at most 2q queries of at most 2(d + n	) bits and runs in time O(t),
and a computationally bounded SRND adversary A2 on Π that asks at most q
queries of at most 	 blocks in total and runs in time O(t) such that

AdvSAE
R̂IVF,Π

(A) ≤ 8q2 + 3q

2n
+ 4 ·

(
AdvPRF

F (A1) + AdvSRND
Π (A2)

)
.

Due to space limitations, the proof can be found in the full version of this
paper4. We can derive the following corollary for the nAE advantage on RIVF,Π

in the absence of a plaintext-leaking oracle.

Corollary 1. Let A be a computationally bounded nAE adversary on RIVF,Π

which asks at most q queries of at most 	 blocks in total and runs in time at
most t. Then, there exist a computationally bounded PRF adversary A1 on F
that asks at most 2q queries of at most 2(d + n	) bits and runs in time O(t),
and a computationally bounded SRND adversary A2 on Π that asks at most q
queries of at most 	 blocks in total and runs in time O(t), such that

AdvnAE
RIVF,Π

(A) ≤ 2q2 + q

2n
+ 2 ·

(
AdvPRF

F (A1) + AdvSRND
Π (A2)

)
.

The proof can be found can be found in the full version of this paper.

Proof Ideas. The intuition of our proofs is the following: in encryption direction,
for every fresh tuple of nonce, header, and message, F will produce a fresh
IV ← F 1

K(N,H,M) that has not occurred before with overwhelming probability.
Since Π is SRND-secure, E will produce a randomly chosen ciphertext. The
second invocation of F with a fresh ciphertext then produces a random tag.
To determine the privacy advantage of the scheme, we have to bound only the
PRF-advantage on F , the SRND-security of E , and the probabilities of random
collisions of IV s from the birthday paradox.

In decryption direction, whenever the nonce, header, or ciphertext changes,
IV ← F 2

K(N,H,C) will be a random value up to the birthday bound. Since Π is
SRND-secure, a fresh IV (regarded over all encryption and decryption queries)
will produce a fresh pseudorandom plaintext. Thus, even when the adversary
learns the decrypted (invalid) message, M will provide it with no information

4 The full version of this paper will soon appear on ePrint.
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about other plaintexts as long as the IV does not repeat. When an adversary
changes N , H, or C and manages to cancel the difference by a fresh tag, the
second call to F 1

K(N,H,M) will yield a random IV ′ that differs from IV with
probability close to 1/2n. Thus, a similar argumentation as for the encryption
also applies to the inverse direction. Finally, the domain separation from the
first parameter to F protects against choices of (N,H,M) = (N,H,C).

6 Instantiation

Pseudo-Dot-Product Hashing. Let n,m ≥ 1 with even m and let X =⋃m/2
i=1 {0, 1}2in. Given a set of m pair-wise independent key words K =

(K1, . . ., Km) and an m-word input M = (M1, . . . , Mm), with Mi,Ki ∈ {0, 1}n,
1 ≤ i ≤ m, a pseudo-dot-product (PDP) family of hash functions H = {H :
X × X → {0, 1}2n} is defined as

HK(M) :=
m/2∑

i=1

(M2i−1 + K2i−1) · (M2i + K2i).

Bernstein [11] credits it to Winograd [51] and classifies it as (m, �m/2�)-design,
i.e., it requires m independent key words and �m/2� multiplications to process m
message words. If modular additions and multiplications are performed within
the rings Z2n and Z22n , the construction is known as NH, to be 1/2n-AU, and
is used in variants in UMAC [13], VMAC [18,32], and HS1 [33]. All these con-
structions employ a multi-stage hashing process: the input is first compressed
with NH, before the results are used as inputs in a usual polynomial hash (and
optionally further processed by an inner-product hash). To obtain a slightly
higher security margin and efficiency, we consider a recently proposed variant,
called CLHASH.

6.1 CLHASH

CLHASH [34] is a family of multi-stage hash functions that produces 64-bit
hashes and employs a PDP family of hash functions CLNH, which resembles
NH, but replaces modular additions and multiplications with XORs and carry-
less multiplications in GF(264)/p(x) with the irreducible polynomial p(x) = x64+
x4 + x3 + x + 1. Therefore, CLNH can exploit the vpclmulqdq instruction for
64-bit carry-less multiplication which was originally introduced for boosting the
performance of GCM [21].

CLHASH[m] splits a given message M into (64m)-bit blocks (M1, . . . , Ms),
and pads the final block with zeroes such that its length becomes a multiple of
128 bits. Each block Mj is compressed with CLNH to a 128-bit value Aj . If
the message consists of only a single block, the message length |M | is multiplied
with an independent key KL ∈ {0, 1}64 and XORed to the result; the result is
reduced to a 64-bit value modulo p(x) = x64 + x4 + x3 + x + 1 and returned.
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Algorithm 1. Definition of CLHASHT[m, t] with a hash length of 64t bits, a
block length of m/8 bytes, and t Toeplitz iterations.

101: function CLHASHT[m, t]K(M)
102: (KN , KP , KA, KL) ← KeyGen(K)
103: s ← max(�64 · |M |/m�, 1)

104: (M1, . . . , Ms)
64m←−−− M

105: Ms ← pad128(Ms)
106: for i ← 1 to t do
107: for j ← 1 to s do
108: Kj ← KN (2i−1)..m+2(i−1)

109: Aj ← CLNH[m]Kj (Mj)

110: if s = 1 then
111: H1 ← A1

112: else
113: KP i ← KP i mod 2126

114: Oi ← PolyKP i
(A1, . . . , As)

115: Hi ← CLNH[2]KAi
(Oi)

116: Hi ← HashLenKLi
(Hi, |M |)

117: return (H1 ‖ · · · ‖ Ht)

201: function CLNH[m]Kj (Mj)
202: return

⊕m
i=1

(
Mj2i−1 ⊕ Kj2i−1

)
203: · (Mj2i ⊕ Kj2i)

301: function KeyGen(K)
302: κ ← 64(m + 2t − 2)
303: KN ← K[1..κ]
304: KP ← K[(κ + 1)..(κ + 128t)]
305: κ ← κ + 128t
306: KA ← K[(κ + 1)..(κ + 128t)]
307: κ ← κ + 128t
308: KL ← K[(κ + 1)..(κ + 64t)]
309: return (KN , KP , KA, KL)

401: function PolyKP (A1, . . . , As)
402: return

⊕s
i=1 Ai · Ks−i

P

403: mod(2128 + 4 + 2)

501: function HashLenKL(Hi, |M |)
502: return (Hi ⊕ (KL · |M |))
503: mod(264 + 27)

601: function padn(X)
602: if (|X| mod n = 0) then
603: return X
604: return X ‖ 0n−|X| mod n

For longer messages, the values Aj are processed by a polynomial hash with
an independent key KP ∈ {0, 1}128 and reduced modulo q(x) = x127 + x + 1.
For efficiency, the two most significant bits of KP are fixed to zero, and a lazy
reduction modulo x128 + x2 + x is used instead without affecting security.

The 128-bit result of the polynomial hash is then reduced to a 64-bit value
by another application of CLNH with two further independent key words
KA1 ,KA2 ∈ {0, 1}64. The result H is finally XORed with the hashed length
to account for inputs of variable lengths, and is reduced to a 64-bit value.

In [34], the authors show that CLHASH is XOR-universal for messages of
up to b = 8m bytes, and ε-AXU for messages of up to N bytes.

Theorem 6 (Lemma 9 in [34]). Let N ≥ 1 denote the maximal message
length in bytes, m ≥ 2 be even, and b = 8m the key size of CLNH. Then,
CLHASH as defined above is ε-AXU with

ε ≤ εCLNH[m] + εPoly + εCLNH[2] ≤ 1
264

+
N/b − 1

2126
+

1
264

,

where the terms stem from the facts that CLNH[m] is an εCLNH[m]-AU, and the
polynomial hash an εPoly-AXU family of hash functions.

The recommended values N ≤ 264 and b = 1024 yield ε ≤ 2.004/2−64. The
construction requires b + 40 bytes of key material: b bytes for CLNH, a 16-byte
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value KP for the polynomial hash, two eight-byte values KA[1],KA[2] for the
final call to CLNH, and an eight-byte value KL for hashing the input length.

Toeplitz Extension. To obtain a hash function with 128-bit security, one can
process the same message twice under independent keys and concatenate the
results. Doubling the key lengths of KP , KA, and KL increases their keys to 80
bytes. Since doubling the key length for CLNH would absurdly increase the key
material, we use the Toeplitz extension [31,37] instead. Let Ki..j be short for
Ki, . . . , Kj , 1 ≤ i ≤ j. Given an ε-AU family of hash functions H : {0, 1}mn ×
{0, 1}mn → {0, 1}n which compresses an m-word input with an m-word key, one
can derive a hash function Ht : {0, 1}(m+2t−2)n × {0, 1}mn → {0, 1}tm by

Ht
K1..(m+2t−2)

(M) := HK1..m
(M) ‖HK3..(m+2)(M) ‖ · · · ‖HK(2t−1)..(m+2t−2)(M).

So, the i-th call to H employs the key shifted by 2i−2 words. In total, the key size
increases slightly from m to m+2(t− 1) words. We refer to the Toeplitz version
of CLNH by CLNHT[m, t], and to that of CLHASH[m] by CLHASHT[m, t].
Algorithm 1 provides a specification. In total, CLHASHT[m, t] requires (8m +
56t − 16) bytes of key material, which corresponds to (8m + 96) bytes for t = 2.

Definition 13 (Toeplitz CLHASH). Let n = 64, t ≥ 1, m ≥ 2 be even.
Let X =

⋃m/2
i=1 {0, 1}2in. Let further KN = {0, 1}64m+128(t−1), KP = {0, 1}128t,

KA = {0, 1}128t, KL = {0, 1}64t, and K = KN × KP × KA × KL. The family
of keyed hash functions CLHASHT[m, t] : K × X → {0, 1}64t is defined in
Algorithm 1.

Theorem 7. For any fixed n, t ≥ 1, and even m ≥ 2, CLNHT[m, t] is 2−nt-AU
on equal-length strings.

The proof of Theorem 7 can be found in the full version of this paper.

Theorem 8. Let N ≤ 264 be the maximal message length in bytes, t ≥ 1, m ≥ 2
be even, and b = 8m the key length for CLNH in bytes. Then, CLHASHT[m, t]
is an εt-AXU family of hash functions with

ε ≤ εCLNH[m] + εPoly + εCLNH[2] ≤ 1
264

+
N/b − 1

2126
+

1
264

≤ 3
264

.

The proof of Theorem 8 follows from Theorem 7 and the fact that the keys for
the individual iterations of polynomial, inner-product, and length hashing steps
are chosen uniformly from their respective spaces and pairwise independently
for each iteration. We can derive that CLHASHT[m, 2] is ε-AXU for ε ≤ 9/2128

when m ≥ 2.

6.2 Constructing a PRF

Let n, d ≥ 1, and N , H, M be as in Sect. 3. For brevity, we define Y :=
{0, 1}d × N × H × M. Let Encode : Y → {0, 1}∗ define an injective encod-
ing function. Then, we can construct a PRF from the composition of Encode,
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Algorithm 2. Encryption of nonce-based XOR-CTR, instantiated with a block
cipher E : {0, 1}k × {0, 1}n → {0, 1}n, with n, k ≥ 1.

1: function XOR-CTR[E].EN
K (M)

2: IV ← EK(N)
3: m ← �|M |/n�
4: κ ← EK(IV ⊕ 〈0〉) ‖ · · · ‖ EK(IV ⊕ 〈m − 1〉)
5: return C ← M ⊕ κ[first |M | bits]

a family of ε-AU hash functions H′ = {H ′|H ′ : {0, 1}∗ → {0, 1}n}, and a block
cipher E : K2 × {0, 1}n → {0, 1}n, with independent keys K1 ∈ K1 determin-
ing the hash function, and K2 ∈ K2 for the cipher. We call the construction
EHE[Encode,H′, E] : Y → {0, 1}n (for Encode-Hash-Encrypt) and define it as

EHE[Encode,H′, E]K1,K2(D,N,H,M) := EK2(H′
K1

(Encode(D,N,H,M))).

We write EHE[H′, E] or even EHE as short forms of EHE[Encode,H′, E]
when the components are clear from the context. The injective encoding excludes
collisions between distinct inputs. From Theorem 2, and applying the PRF/PRP
switching lemma, we can derive the following theorem.

Theorem 9. Let π � Perm({0, 1}n). Further, let EHE[Encode,H′, π], H′,
and Encode be defined as above. Let A be a computationally bounded adversary
that asks at most q queries of at most 	 blocks and runs in time at most t. Then

AdvPRF
EHE[Encode,H′,π](A) ≤

(
q

2

)
·
(

1
2n

+ ε

)
.

6.3 Encryption

When starting counter-mode encryption from a random value and incrementing
by modular addition, one has to either consider potential carry bits or to reduce
the security by fixing a maximal message length. Wang et al. [50] proposed
to replace modular addition by XOR, which avoids the need for concerning
carry bits. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. We define
XOR-CTR[E] = (E ,D) as the nonce-based encryption scheme with encryption
algorithm XOR-CTR[E].E : {0, 1}k × N × {0, 1}∗ → {0, 1}∗ and associated
non-empty nonce-space N , as defined in Algorithm 2.

We denote by XOR-CTR[π, π′] a version of XOR-CTR with two indepen-
dent n-bit permutations π and π′, where π is used for encrypting the nonce
and π′ for producing the keystream. Then, XOR-CTR[π, π′] is almost identi-
cal to the CTR2[π, π′] construction in [45], with the difference that the former
replaces the addition of IV and counter modulo 2n by XOR. Since this change
does not affect the probability of block-cipher inputs to repeat, the nE advan-
tage of XOR-CTR is given by Theorem 10, which adapts Theorem 3 in [45].
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Theorem 10. Let π, π′ � Perm({0, 1}n) × Perm({0, 1}n) be independent per-
mutations and A be a nonce-respecting nE adversary, which runs in time at
most t and poses at most q queries to its oracles with at most 	 blocks. Then

AdvnE
XOR-CTR[π,π′](A) ≤ 	2

2n
.

From the fact that encryption and decryption of XOR-CTR[π, π′] are iden-
tical operations, we can derive the following theorem.

Theorem 11. There exists a reduction of a nonce-respecting SRND adversary
A with access to two oracles on XOR-CTR[π, π′] to a nonce-respecting nE
adversary A′ on XOR-CTR[π, π′] such that

AdvSRND
XOR-CTR[π,π′](A) ≤ AdvnE

XOR-CTR[π,π′](A
′),

where both A and A′ ask at most q queries of at most 	 blocks to their available
oracle(s) and run in time O(t).

6.4 Instantiation of RIV

We instantiate RIVF,Π with EHE[Encode,H′, E] for F , with CLHASHT[m, 2]
as family of universal hash functions H′, and XOR-CTR[E] for Π, with the
AES-128 as E. Algorithm 3 provides a specification. Our instantiation RIVF,Π

expects a 128-bit user-supplied secret key SK, from which the remaining key
material is derived by calling ESK(·) iteratively in counter mode. The secret key
is not used further. RIV uses n = τ = 128, i.e., n-bit tags, and n-bit IV s for the
counter mode. Moreover, the nonce space is fixed to 128 bits: N = {0, 1}n. For
F , it employs a four-bit domain separation, i.e., d = 4, and an injective encoding
function Encode : {0, 1}d × N × H × M → {0, 1}∗, as defined in Algorithm 3.
Header and message lengths are restricted to multiple of eight bits. The maximal
number of header and message bytes to be encrypted under the same key are
260 bytes each. So, the maximal number of bytes for RIV is less than 262 bytes.
We recommend that at most 250 bytes be encrypted under the same key.

Using a Single Key for the Block Cipher. There are four uses of the block
cipher E in RIV: in the first invocation of EHE, for encrypting the IV , for
generating the keystream in XOR-CTR[E], and in the second invocation of
EHE. If four more calls to the AES key schedule would be tolerable, one could
use four independent keys. Alternatively, we use a single key for the uses of E,
and have to consider the security impact in the following theorem. Its proof can
be found in the full version of this paper.

Theorem 12. Let RIVF,Π be defined as in Algorithm 3. Let K1,K2 � K be
independent keys. We replace the calls to E by independent random permutations
π1, π2, π3, π4 � Perm({0, 1}n)4. Let A be a computationally bounded adversary
that has access to three oracles O1, O2, and O3 for encryption, decryption, and
leakage, respectively. A shall distinguish between a real setting of RIVF,Π as
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Algorithm 3. Definition of our instantiation RIVF,Π . Message and header
lengths are restricted to multiple of eight bits, and nonces/IVs/tags are 128
bits: n = τ = 128, and d = 4. Here, we leave the key size of CLHASHT[m, 2],
m, as a parameter to study its impact on performance later.

101: function ẼSK(N, H, M)
102: (K1, K2) ← KeyGen(SK)
103: IV ← EHE1

K1,K2(N, H, M)
104: C ← XOR-CTR[E].EK2(IV, M)
105: T ← EHE2

K1,K2(N, H, C) ⊕ IV
106: return (C, T )

201: function KeyGen(SK)
202: K2 ← ESK(〈0〉)
203: κ ← (8m + 96)/16
204: K1 ← ESK(〈1〉) ‖ · · · ‖ ESK(〈κ〉)
205: return (K1, K2)

301: function EHED
K1,K2(N, H, X)

302: Y ← Encode(D, N, H, X)
303: return EK2(H′

K1(Y ))

401: function padn(X)
402: if (|X| mod n = 0) then
403: return X
404: return X ‖ 0n−|X| mod n

501: function D̃SK(N, H, C, T )
502: (K1, K2) ← KeyGen(SK)
503: IV ← EHE2

K1,K2(N, H, C) ⊕ T
504: M ← XOR-CTR[E].DK2(IV, C)
505: IV ′ ← EHE1

K1,K2(N, H, M)
506: if (IV = IV ′) then
507: return M
508: return ⊥
601: function Encode(D, N, H, X)
602: H ← pad128(H)
603: X ← pad128(X)
604: L ← 〈D〉d ‖ 〈|H|/8〉60 ‖ 〈|X|/8〉64
605: return (H ‖ N ‖ X ‖ L)

701: function H′
K1(X)

702: return CLHASHT[m, 2]K1(X)

801: function EK2(X)
802: return AES-128K2(X)

above with a single-keyed block cipher E, and RIVF,Π which uses four indepen-
dent uniformly chosen permutations π1, π2, π3, π4 � Perm({0, 1}n) with π1 used
in EHE1, π2 used in EHE2, and π3, π4 used for XOR-CTR[π3, π4]. A asks
at most q queries of at most 	 blocks and runs in time at most t. Then, we can
upper bound the distinguishing advantage of A by

16.5	2 · max {ε, 1/2n} + AdvPRP
E (	 + 3q,O(t)).

Theorem 13. Let d = 4, n = τ = 128, and m ≥ 2 be even. Let RIVF,Π be as
given in Algorithm 3 and let A1, A2, A3 be computationally bounded IND-CPA,
INT-CTXT, and ERR-CCA adversaries on RIVF,Π , respectively, which run
each in time at most t and ask at most q queries of at most 	 blocks in total.
Then, it holds that

AdvIND-CPA
RIVF,Π

(A) ≤ 2q2 + 	2

2n
+ q2ε + δE ,

AdvINT-CTXT
RIVF,Π

(A) ≤ 2q2 + q + 	2

2n
+ q2ε + δE ,

AdvERR-CCA
RIVF,Π

(A) ≤ 8q2 + 2q + 2	2

2n
+ 2q2ε + δE ,

where δE = 16.5	2 · ε + AdvPRP
E (	 + 3q,O(t)) and ε ≤ 9/2128.
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The proof follows from Theorems 5, 8, 9, and 11, and those of the lemmata
from Sect. 5 that can be found in the full version of this paper.

6.5 Performance of RIV

We implemented reference and optimized versions of RIV in C.5 Since the
default key length for one iteration CLNH of b = 1024 bytes (which corre-
sponds to CLHASHT[128, 2]) appeared high, we tested also a variant with a
smaller key size of b = 256 bytes for CLNH (CLHASHT[32, 2]). Table 1 sum-
marizes the results of our benchmarks. Our code was compiled using gcc v4.9.3
with options -O3 -maes -mavx2 -mpclmul -march=native, and run on (1) an
Intel Core i5-4200M (Haswell) at 2.50 GHz, and (2) on an Intel i5-5200 (Broad-
well) at 2.20 GHz, both with the TurboBoost, SpeedStep, and HyperThreading
technologies disabled. For measuring, we used the median of 10000 encryptions,
omitting the cost for key setup, using the rdtsc instruction.

Our results show that RIV can run at less than 1.5 cpb on Haswell. Interest-
ingly, a SIV-like reduced version of RIV, which is an easily obtained byproduct
that simply omits the second call to F , represents a performant MRAE scheme
with ≤ 1.04 cpb. This is slightly faster than the 4867/4096 ≈ 1.17 cpb reported
for the manually assembly-optimized AES-GCM-SIV [22] and 1.06 cpb for the
version of MRO with four-round BLAKE2b in [20], concerning messages of at
least four KiB length on Haswell. Clearly, the reported performance of AEZv4
of about 0.7 cpb is unrivaled. Though, our construction provides a slightly higher
security margin. Moreover, the security of AEZv4 bases on heuristic assump-
tions on four-round AES.

Table 1. Performance results on Intel Haswell and Broadwell, respectively, in cycles
per byte for the encryption with optimized implementations of RIV and a reduced
version, which omits the second call to F . b denotes the key length for CLNH in bytes.
Details regarding our setup are provided in the text.

Message length (bytes)

Platform Instance b 128 256 512 1024 2048 4096 8192 16384

Haswell RIV 256 3.81 2.78 2.14 1.81 1.62 1.48 1.40 1.37

RIV 1024 3.53 2.13 1.81 1.49 1.37 1.29 1.25 1.22

RIV (2-pass) 256 1.71 1.40 1.26 1.14 1.08 1.04 1.01 0.99

RIV (2-pass) 1024 2.20 1.60 1.17 1.08 1.01 0.97 0.94 0.92

Broadwell RIV 256 3.16 2.41 1.84 1.49 1.38 1.26 1.20 1.15

RIV 1024 3.13 2.11 1.56 1.34 1.16 1.09 1.04 1.02

RIV (2-pass) 256 2.16 1.67 1.30 1.09 1.03 0.95 0.92 0.90

RIV (2-pass) 1024 2.19 1.50 1.14 1.01 0.92 0.86 0.84 0.82

5 Our code is open to the public domain: https://github.com/medsec/riv.

https://github.com/medsec/riv
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7 Conclusion

This work described a modular framework RIV for the construction of provably
secure subtle AE schemes by extending the SIV framework from two to three
passes. The obvious strength of RIV resides in the simplicity of its structure: it
allows a straight-forward transformation of existing SIV-based constructions into
subtle AE schemes. We proved the security in the standard model under notions
that strive for ideal security goals; a further step could be to prove achievable
security in the RAE setting with fixed stretch. Moreover, since the generic RIV
construction bases only on PRF assumptions, this leaves open the possibility
for proofs in the indifferentiability setting [40]. RIV is slightly less efficient than
earlier STPRP constructions, i.e., it employs three additional calls to an n-bit
PRP, compared to e.g., a single call in HCTR-based [50] constructions. Since
the use of a nonce-based encryption scheme (E ,D) poses only the requirement on
the IV to be a nonce, it might look to be sufficient to have two calls to universal
hash functions instead of to calls to a PRF F . Yet, at least the outputs from
the first invocation of F , F 1

K1
(·, ·, ·) must be unpredictable in order to prevent

leaking information about the message in the tag. A potential future work can
be to further study reductions of the design to target even higher efficiency.
Nevertheless, we proposed an instantiation that is highly efficient on current x64
platforms and avoids the weak-key issues that were reported for GHASH-based
polynomials in HCTR instantiations [49].
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Abstract. Lightweight cryptography strives to protect communication
in constrained environments without sacrificing security. However, secu-
rity often conflicts with efficiency, shown by the fact that many new
lightweight block cipher designs have block sizes as low as 64 or 32
bits. Such low block sizes lead to impractical limits on how much data
a mode of operation can process per key. MAC (message authentica-
tion code) modes of operation frequently have bounds which degrade
with both the number of messages queried and the message length. We
present a MAC mode of operation, LightMAC, where the message length
has no effect on the security bound, allowing an order of magnitude
more data to be processed per key. Furthermore, LightMAC is incredibly
simple, has almost no overhead over the block cipher, and is paralleliz-
able. As a result, LightMAC not only offers compact authentication for
resource-constrained platforms, but also allows high-performance parallel
implementations. We highlight this in a comprehensive implementation
study, instantiating LightMAC with PRESENT and the AES. Moreover,
LightMAC allows flexible trade-offs between rate and maximum message
length. Unlike PMAC and its many derivatives, LightMAC is not cov-
ered by patents. Altogether, this makes it a promising authentication
primitive for a wide range of platforms and use cases.

Keywords: Lightweight · MAC · LightMAC · Message length ·
Birthday bound · Integrity · Verification

1 Introduction

With the rise of the Internet of Things, connected devices are being placed every-
where, resulting in a wide variety of efficiency, robustness, and feature require-
ments for communication. Securing the communcation remains important, and
as a result, many block ciphers have been created to work efficiently in con-
strained environments. These block ciphers offer a range of block and key sizes,
from 128 to 32 bits; see Table 1 for a sample.
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 43–59, 2016.
DOI: 10.1007/978-3-662-52993-5 3
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The key size is often chosen carefully to ensure a sufficiently high security
level, resulting in the block size becoming the dominant factor in determining
security. As is well known, reducing block size can increase the chance of an
inner state collision when block ciphers are used in so-called modes of operation:
constructions which repeatedly apply a block cipher to achieve functionality
beyond what a block cipher offers.

Consider MAC (Message Authentication Code) modes of operation, which
aim to provide data authenticity for long messages. Common MAC modes, such
as CBC-MAC [5], OMAC [24], and PMAC [10] have security bounds which
degrade relative to both the number of messages tagged, q, and the length of
the messages measured in blocks, �; see Table 2 for a list of modes with their
dependence on �. For many modes, an adversary which is able to tag q messages
of length � blocks will have a success probability of roughly

q2�

2n
, (1)

where n is the block size of the underlying block cipher. With a 32 bit block size
and a guarantee that adversaries do not forge with probability more than one in
a million, one gets a restriction of the form

q2�

232
≤ 1

220
or q2� ≤ 212, (2)

meaning 64 one-block messages can be tagged under the same key. But what
if the messages are longer than one block? With conventional MACs only 32
four-block messages can be tagged, corresponding to 32 ·22 ·32 = 212 bits, or 512
Bytes of data per key. If the messages are sixteen blocks long, only 16 messages
can be tagged, which is 16 · 24 · 32 = 213 bits, or 1 KiB of data per key. Figure 1
displays how much data the various modes from Table 2 can process per key,
when the threshold success probability is set to 1/220.

1.1 Contributions

We present a MAC mode, LightMAC, which enables one to tag much longer mes-
sages than typically possible. LightMAC is depicted in Fig. 2 and Algorithm 1.

The security upper bound for LightMAC is

(1 + ε) · q2

2n
, where ε ∈ O

(
1

2n/2 − 1

)
, (3)

which is independent of the message length (see Sect. 4). In other words, with a
32 bit block size, and setting the message-length parameter s to 16, roughly 64
messages can be tagged with length up to 215 blocks. Note that keys are used
most efficiently when the messages are as long as possible: up to 64 ·215 ·32 = 226

bits, or 8 MiB of data can be tagged per key. LightMAC uses two independent
keys, but even after normalizing by the number of keys, the amount of data
processed per key is still 4 MiB, a significant improvement over 1 KiB.
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Table 1. Supported block sizes are often small, and can be as low as 32 bits.

Block size (bits) 32 48 64 80 96 128 256

AES [15] ×
CLEFIA [38] ×
DESLX [27] ×
Fantomas [19] ×
HIGHT [23] ×
ITUbee [26] ×
KLEIN [18] ×
KATAN [13] × × ×
LBlock [42] ×
LED [21] ×
LEA [22] ×
mCrypton [28] ×
Mysterion [25] × ×
Noekeon [14] ×
Piccolo [37] ×
PRESENT [11] ×
PRIDE [1] ×
PRINCE [12] ×
RC5 [36] × × ×
Rectangle [48] ×
RoadRunneR [2] ×
Robin [19] ×
SEA [39] ×
SIMECK [43] × × ×
Simon [3] × × × × ×
Speck [3] × × × × ×
TWINE [40] ×
XTEA [33] ×
Zorro [17] ×

Figure 1 compares LightMAC to the other published modes from Table 2. The
figure shows that LightMAC starts with a factor 24 improvement over many of
the modes, which grows to roughly 210 as the number of queries increases. Modes
such as PMAC with Parity and PMACX were designed to handle long message
lengths and offer competitive bounds, at the cost of increased design complexity.
LightMAC’s advantage over these modes is its simplicity and low overhead.
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Table 2. The table below contains the coefficients of the powers of � contained in the
security bounds for adversaries making q queries of length �, with block size n bits.
References are to papers proving the bounds. In the bound for EMAC, the function
d′(�) has been replaced by �.

Mode 1 � �2 �3 �4

3kf9 [47] 4q
2n

+ 4q3

22n
4q
2n

+ 4q3

22n
2q3

22n
4q3

22n

CBC-MAC [6] 12q2

2n
64q2

22n

EMAC [6] q2

2n
32q2

22n

OMAC [31] 5q2

2n
8q2

22n

PMAC [32] −3.5q2

2n
5q2

2n

PMAC Plus [45] 3q
2n

27q3

22n

PMACX
(m=14,l=12)

[49] 72+1.5q2

2n
+ 576q2

22n
576q2

22n
144q2

22n

PMAC with Parity [46] q2

2n
q2

22n

Sum of CBCs [44] 12q3

22n

Like PMAC [10], LightMAC allows block cipher calls to be made in parallel,
but unlike PMAC, LightMAC is based on Bernstein’s protected counter sum [8],
and hence should not suffer from patent issues.

A disadvantage of LightMAC is that its rate is low. In order to tag mes-
sages of length up to 2n/2−1 blocks, n/2 bits of the block must be sacrificed
for a counter, hence two block cipher calls must be called per block of data.
However, the rate can be improved: if the maximum message length that will
be communicated is known to be less than 2s(n − s) bits, then the rate can be
set to (n − s)/n blocks per block cipher call. For example, using a 32 bit block
cipher, if the message lengths are less than 29 blocks, then the rate can be set
to 2/3 blocks per call. Therefore, unlike other modes, LightMAC can be opti-
mized according to the application: the shorter the messages, the more efficient
LightMAC is, while allowing the same number of message to be queried. Section 5
presents implementation results for LightMAC instantiated with the AES [15]
and PRESENT [11], and discusses LightMAC’s efficiency in more detail.

1.2 Related Work

In 1995, Bellare et al. [4] described the XOR MACs, which XORed together
finite-input-length pseudorandom functions (PRF) to create stateful and ran-
domized MACs. In 1999, Bernstein [8] introduced the protected counter sum,
which composes an XOR MAC with an independent PRF call to create a
stateless, deterministic MAC. In 2012, Yasuda [46] explained the basic idea for
LightMAC in his paper’s introduction, which can be viewed as an adaptation of
Bernstein’s protected counter sum using block ciphers.
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Fig. 1. A plot of message block lengths per key versus the number of queries that can
be made in order to achieve the threshold success probability of 2−20. In other words,
if (x, y) is a point on the graph, then x · y represents the number of blocks that can be
processed per key. The blocksize is set to 32 bits.

Another MAC algorithm designed for lightweight use is Chaskey [30]. The
Chaskey paper includes a block cipher and a permutation mode, but both have
bounds which deteriorate quadratically with respect to message length.

In certain cases the bounds in Table 2 can be improved. For example, for
� ≤ 2n/8 and q ≥ �2, EMAC’s bound becomes 16q2

2n + 128q2�8

22n as shown by
Pietrzak [34]. For the sum of CBCs, Yasuda [44] also showed that if � ≤ 22n/5,
the advantage becomes 40�3q3

22n .

2 Preliminaries

The set {0, 1}n represents all bit-strings of length n; the set {0, 1}≤n is all bit-
strings of length less than or equal to n. For two bit-strings A and B, we write
A‖B and AB interchangeably for the concatenation of A and B. Let r be an
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integer, then M [1]M [2] · · · M [�] r←− M represents splitting M into r-bit blocks
with the length of the last block, M [�], being anywhere from zero to r − 1 bits.

A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n where E(K, ·)
defines a permutation for all K ∈ {0, 1}k. The integer n is the block length of E
and we write EK(X) to mean E(K,X). Given a block length n, concatenation
of 10∗ to a string means appending a one followed by the minimum number of
zeros to make the total string length a multiple of n bits.

The symbol 0n represents the n-bit string consisting of only zeros. Given
a string A of length n, and an integer t ≤ n, then �A	t denotes the t least
significant bits of A.

For an integer 1 ≤ i ≤ 2s, is represents some s-bit constant with the prop-
erty that if 1 ≤ i < j ≤ 2s then is 
= js. For example, is could be an s-bit
representation of the integer i, or the ith s-bit Gray code.

3 LightMAC

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let s and t be integers
not greater than n/2 and n, respectively, and fix some representation for is
(see Sect. 2). LightMAC accepts two independent and uniformly generated keys
K1 and K2 from {0, 1}k, and a message M of length at most 2s(n − s) bits.
LightMAC produces an output of length t bits. Figure 2 and Algorithm 1 depict
how the output is produced.

LightMAC can be used as either a pseudorandom function (PRF) or a MAC
(see Sects. 4.2 and 4.3 for definitions). When used as a PRF, LightMAC is fully
described by Algorithm 1. When used as a MAC, tags are generated using Algo-
rithm 1, and verification of a message-tag pair (M,T ) is done by comparing
LightMAC (M) with T : if the two are equal, verification succeeds, otherwise
not.

The parameters of LightMAC are the integers s and t, the representation of
is, and the block cipher E, which implicity fixes k and n. The parameters must
be agreed upon before a session starts, and remain constant during.

EK1 EK1 EK1

1s M [1] 2s M [2] 3s M [3] M [4] 10∗

+ + + EK2 t T

Fig. 2. LightMAC evaluated on a message M [1] M [2] M [3] M [4]
n−s←−−− M . The rounded

squares represent block cipher calls and the trapezium is truncation to t bits.
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Algorithm 1. LightMAC K1,K2(M)

Input: K1,K2 ∈ {0, 1}k, M ∈ {0, 1}≤2s(n−s)

Output: T ∈ {0, 1}t

1 V ← 0n ∈ {0, 1}n

2 M [1]M [2] · · · M [�] n−s←−−− M
3 for i = 1 to � − 1 do
4 V ← V ⊕ EK1

(
is M [i]

)

5 end
6 V ← V ⊕ (M [�] 10∗)
7 T ← �EK2(V )	t

8 return T

4 Security

Although Bellare, Guérin, and Rogaway [4] describe how to instantiate an
XOR MAC using the Data Encryption Standard, they only provide proofs for
pseudorandom functions, not pseudorandom permutations. Hence, even though
the XOR MACs were proven to have bounds with no message length depen-
dence, subsequent application of the PRP-PRF switching lemma would estab-
lish quadratic message length dependence. A similar explanation applies to the
protected counter sum’s security bound. Therefore a direct security proof is nec-
essary for LightMAC.

The XOR MACs and protected counter sum did not exhibit any message
length dependence because the XOR of independent, uniformly distributed ran-
dom variables is still uniformly distributed. In this section we use the fact that
roughly the same applies to the XOR of distinct block cipher outputs to achieve
message length independence for LightMAC.

4.1 Block Cipher Security

The security of LightMAC is reduced to that of its underlying block cipher, that
is, if an attack is found against LightMAC, then the attack can be reduced to
an attack against the block cipher. The quality of the reduction is measured by
the security bounds computed in Theorems 1 and 2.

The statements of the theorems include terms describing the quality of the
underlying block cipher, which is measured as follows.

Definition 1. Let E : K × X → X be a block cipher, and let π be a uniformly
distributed random permutation over the set of permutations on X. Then the
PRP-advantage against E of adversaries A making q queries and running in
time τ is

PRP(q, τ) := sup
A∈A

∣
∣P

[
AEK = 1

]
− P [Aπ = 1]

∣
∣ , (4)

where AO = 1 is the event that A outputs 1 when given access to oracle O, and
K is uniformly distributed over K.
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4.2 LightMAC as a PRF

A PRF Φ : K × M → T is a construction which should be computationally
indistinguishable from a uniformly distributed random function (URF), that is,
a uniformly distributed random variable over the set of all functions from M to
T. The quality of the PRF is measured via the PRF-advantage of adversaries.

Definition 2. The PRF-advantage of an adversary A in distinguishing the PRF
Φ : K × M → T from the URF $ : M → T is

∣
∣
∣P

[
AΦK = 1

]
− P

[
A$ = 1

]∣∣
∣ , (5)

where AO = 1 is the event that A outputs 1 when given access to oracle O, and
K is uniformly distributed over K.

Theorem 1. The PRF-advantage against LightMAC of any adversary running
in time τ and making at most q queries of length at most 2s(n−s) bits is bounded
above by

(
1 +

1
2n/2 − 1

+
1

2(2n/2 − 1)2

)
· q2

2n
+ PRP(q · (2s − 1), τ1) + PRP(q, τ2), (6)

where n is the block size in bits, τ1 ∈ τ + O(q · (2s − 1)), and τ2 ∈ τ + O(q).

Proof. Let A be a PRF-adversary against LightMAC running in time τ and
making at most q queries of length at most 2s(n − s) bits. Construct the PRP
adversary B1 against EK1 as follows: B1 simulates EK2 by uniformly randomly
choosing key K2, runs A, and responds to A’s queries using a combination of its
own oracle and the simulated EK2 ; B1 forwards A’s response as its own. Con-
struct the PRP adversary B2 against EK2 similarly. Then A’s PRF-advantage
against LightMAC is bounded above by

α + PRP(q · (2s − 1), τ1) + PRP(q, τ2), (7)

where α is A’s PRF-advantage against LightMAC with its EK1 and EK2 calls
replaced with π1 and π2 calls, respectively, where π1 and π2 are independent,
uniformly distributed random permutations.

We replace π2 with a uniformly distributed random function φ using the
PRP-PRF switching lemma, at a cost of q2/2n+1 in advantage. The PRF we are
left with is

Φ(M) = φ

(

M [�]10∗ ⊕
�−1⊕

i=1

π1(isM [i])

)

, (8)

which is LightMAC instantiated with π1 and φ, and

α ≤ α′ +
q2

2n+1
, (9)

where α′ is A’s PRF-advantage against Φ.
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Let F denote the function contained in the call to φ in Eq. 8. Then, as
long as F ’s outputs are distinct, each input to φ is unique, meaning Φ will be
indistinguishable from $. In other words,

α′ ≤
∑

i<j

P [F (Mi) = F (Mj)] ≤ q2

2
max

Mi �=Mj

P [F (Mi) = F (Mj)] , (10)

where Mi for i = 1, . . . , q are the messages queried by A. The maximum on the
right hand side is computed in Sect. 4.4, resulting in the bound

α′ ≤ q2

2
· 1
2n − 2s+1 + 1

. (11)

Therefore, using the fact that s ≤ n/2, we have

α ≤ q2

2n+1
+

q2

2
· 1
2n − 2s+1 + 1

(12)

≤ q2

2n

(
1 +

1
2n/2 − 1

+
1

2(2n/2 − 1)2

)
, (13)

giving us our desired bound. �

4.3 LightMAC as a MAC

A MAC consists of a tagging and a verification algorithm. The tagging algorithm
accepts messages from some message set M and produces tags from a tag set
T. The verification algorithm receives message-tag pairs (M,T ) as input, and
outputs 1 if the pair (M,T ) is valid, and 0 otherwise. The insecurity of a MAC
is measured as follows.

Definition 3. Let A be an adversary with access to a MAC. The advantage of
A in breaking the MAC is the probability that A is able to produce a message-tag
pair (M,T ) for which the verification algorithm outputs 1, where M has not been
previously queried to the tagging algorithm.

Theorem 2. The MAC-advantage against LightMAC of any adversary running
in time τ and making at most q tagging queries and v verification queries of
length at most 2s(n − s) bits, is bounded above by

(
1 +

2
2n/2 − 1

+
1

(2n/2 − 1)2

)
·
(

q2

2n
+

v

2t

)
+

PRP(q · (2s − 1), τ1) + PRP(q, τ2) + PRP(v2s, τ3), (14)

where n is the block size in bits, τ1 ∈ τ + O(q · (2s − 1)), τ2 ∈ τ + O(q), and
τ3 ∈ τ + O(v2s).
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Proof. We apply the same reduction as in the proof of Theorem 1 to replace
LightMAC’s EK1 and EK2 calls with π1 and π2 calls, respectively. As a MAC,
LightMAC follows the hash-then-encrypt paradigm as described by Dodis and
Pietrzak [16], with the function F from Sect. 4.4 as the “hash” part, hence apply-
ing Proposition 1 from their paper we get an upper bound of

(
1 +

2
2n/2 − 1

+
1

(2n/2 − 1)2

)
·
(

q2

2n
+

v

2t

)
. (15)

�

4.4 Collision Probability of F

Proposition 1. Let m = 2s(n − s). Let M [1]M [2] · · · M [�] n−s←−−− M for M ∈
{0, 1}≤m, and define F to be

F (M) = M [�]10∗ ⊕
�−1⊕

i=1

π(is M [i]) , (16)

where π is a uniformly distributed random permutation over {0, 1}n, then the
probability that two distinct messages M1,M2 ∈ {0, 1}≤m collide is

P [F (M1) = F (M2)] ≤ 1
2n − �1 − �2 + 1

, (17)

where �i is the length of Mi in (n − s)-bit blocks rounded up.

Proof. The equation F (M1) = F (M2) can be rewritten as

�1⊕

i=1

π(isM1[i]) ⊕
�2⊕

i=1

π(isM2[i]) = M1[�1]10∗ ⊕ M2[�2]10∗. (18)

Since M1 
= M2 there are two cases:

1. �1 = �2, M1[�1]10∗ 
= M2[�2]10∗, and M1[i] = M2[i] for all i, or
2. either �1 
= �2 or there exists an i such that M1[i] 
= M2[i].

In the first case there is no collision, hence we focus on the second case. Without
loss of generality we can assume that M1[i] 
= M2[i] for all i, and we can simplify
the problem to calculating the probability that

�⊕

i=1

π(xi) = c, (19)

where � = �1 + �2, c = M1[�1]10∗ ⊕ M2[�2]10∗, and xi 
= xj for i 
= j.
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Let N = 2n, then P
[⊕�

i=1 π(xi) = c
]

equals

1
N !

∣
∣
∣
∣
∣

{

y1, . . . , yN

∣
∣
∣
∣
∣

�⊕

i=1

yi = c and yi 
= yj for i 
= j

}∣
∣
∣
∣
∣
. (20)

By Lemma 1 we have that the probability is bounded above by N !/(N − � + 1),
giving us our desired result. �

Lemma 1. Let c ∈ {0, 1}n and let N = 2n. The number of sequences
(y1, y2, . . . , yN ) ∈ ({0, 1}n)N with yi 
= yj for i 
= j such that

�⊕

i=1

yi = c, (21)

is not greater than N !/(N − � + 1).

Proof. We start by fixing y1, for which there are N possibilities. Since y2 cannot
equal y1, there are N − 1 possibilities for y2. Continuing this way, we have that
there are N − i possibilities for yi+1, with i ≤ � − 2. For y� there is at most one
possibility, namely c ⊕ y1 ⊕ y2 ⊕ · · · y�−1. All yj for j > � must be distinct from
all preceding yi, hence in total there are at most

N · (N − 1) · · · · · (N − � + 2) · (N − �)! =
N !

N − � + 1
(22)

possible sequences. �

5 Implementation

In this section, we discuss the implementation characteristics of LightMAC
and compare it to the serial two-key CBC-MAC with last block encryption,
EMAC [6], and to PMAC with Parity (PMAC/P) [46], which provides a paral-
lelizable rate 2/3 construction and can be considered its main competitor.

5.1 Implementation Characteristics of LightMAC

LightMAC is a mode with very low overhead: besides the block cipher calls,
it only requires an s-bit counter generator and one additional n-bit state for
summing the block cipher outputs.

This means that the code size (for embedded software or microcontrollers)
and area requirements (for hardware implementations) of LightMAC can be
estimated as roughly equivalent to CBC-MAC with encryption of the last block
by a second key. Compared to PMAC with Parity, LightMAC uses only two
keys instead of four. In comparison to all PMAC variants, the absence of finite
field doubling further improves its implementation characteristics on embedded
platforms or hardware.
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In terms of throughput, a compact serial implementation of LightMAC will
give a performance of about n/(n − s) block cipher call equivalents per message
block of n − s bits, which means that the serial performance of LightMAC on
a given platform can readily be evaluated based on the performance of the best
available implementation of the chosen underlying block cipher. Except for very
short messages, the overhead imposed by the final block cipher call is negligible.

Like PMAC and its derivatives, LightMAC has the advantage that the indi-
vidual block cipher calls can be parallelized. While this is typically less important
on lightweight platforms, where compactness and power/energy consumption are
the prime concerns, this property enables high-performance implementations for
the server side: since exactly the same lightweight algorithms used on small
devices will also have to be used by the servers communicating with them, they
should ideally also have good implementation characteristics in high-performance
software environments. The importance of this was for instance pointed out
in [29]. Many lightweight algorithms and modes of operation are inherently ser-
ial in nature and therefore inefficient in software. Our implementation study
therefore focuses on this scenario.

5.2 The Setting

We explore the high-performance parallel software implementation possibilities
for LightMAC, with the following choices regarding platform and instantiation
parameters:

Underlying Block Ciphers. We use the block ciphers PRESENT [11] and
AES [15] for our implementations. PRESENT is a lightweight 64-bit block cipher
that was recently standardised by ISO, and AES serves as a baseline.

Choice of s and t. We always use full tag lengths t = n, meaning 64-bit tags
for PRESENT and 128-bit tags for AES. We furthermore instantiate LightMAC
with the following values of s:

1. s = n/2 for the maximum supported message length (and correspondingly
lowest rate 1/2);

2. s = n/3, rounded to the nearest multiple of 8, for a mode with rate 2/3;
3. s = 8, for a short maximum message length with the highest rate (1 − 8/n).

Altogether, these parameter choices illustrate a wide spectrum of use cases.

Platform. We implement LightMAC on Intel’s recent Skylake microarchitec-
ture, using the 256-bit AVX2 instruction set. PRESENT was implemented in a
bitsliced fashion processing 8 blocks in parallel. Other implementation strategies
are known to yield a significantly lower performance, see [7] for a comprehen-
sive study. For the AES, the AES-NI instruction set [20] was used. The key
scheduling was precomputed for both ciphers. Since byte-aligned s-bit addition
is inexpensive on this platform, the counters is are implemented as the s-bit
representation of the integer i.
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Message Lengths. We provide performance data for all message lengths of
� = 2b bytes, with 7 ≤ b ≤ 13, wherever 8� ≤ 2s(n − s).

5.3 Performance Measurements

All measurements were taken on a single core of an Intel Core i7-6700 CPU at
3.4 GHz with Turbo Boost disabled, and averaged over 200000 repetitions. The
performance of the block ciphers AES and PRESENT, both in serial and parallel
implementations, is provided as a reference point in Table 3. Our findings on the
performance of LightMAC and related MACs are summarised in Table 4. All
performance numbers are given in cycles per byte (cpb).

Table 3. Baseline performance of ciphers PRESENT and AES on Skylake (AVX2,
AES-NI).

Block cipher Encryption [cycles/byte] Key schedule [cycles]

PRESENT (table-based) 57.83 353

PRESENT (8 blocks bitsliced) 11.23 790

AES (AES-NI, serial) 2.57 116

AES (AES-NI, pipelined) 0.63 116

Table 4. Software performance of LightMAC, EMAC and PMAC with Parity
(PMAC/P), instantiated with PRESENT and AES on the Intel Skylake platform
(AVX2, AES-NI). All numbers are given in cycles per byte (cpb). Data is provided
for message lengths smaller than 2s(n − s) bits.

Message length (bytes)

Algorithm s Rate 128 256 512 1024 2048 4096 8192

EMAC-PRESENT – 1 63.02 61.21 60.28 59.80 59.57 59.41 59.32

PMAC/P-PRESENT – 2/3 39.62 32.44 28.82 27.07 26.48 26.14 26.00

LightMAC-PRESENT 32 1/2 25.50 23.67 22.75 22.32 22.08 21.97 21.92

LightMAC-PRESENT 24 2/3 25.70 21.21 20.17 19.03 18.09 17.80 17.80

LightMAC-PRESENT 8 7/8 20.31 18.34 14.65 13.48 – – –

EMAC-AES – 1 3.42 3.19 3.03 2.91 2.74 2.68 2.67

PMAC/P-AES – 2/3 1.53 1.48 1.33 1.24 1.17 1.15 1.14

LightMAC-AES 64 1/2 1.33 1.29 1.27 1.26 1.26 1.26 1.25

LightMAC-AES 40 2/3 1.37 1.31 1.12 1.04 0.95 0.95 0.92

LightMAC-AES 8 15/16 1.38 1.00 0.82 0.80 0.72 – –

Discussion. One can observe that with both PRESENT and the AES as the
underlying block ciphers, LightMAC provides a performance of about the inverse
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of its rate times the baseline block cipher speed. This confirms that LightMAC
imposes very low overhead in addition to the block cipher invocations.

In contrast to the serial EMAC, LightMAC provides significantly greater
performance despite featuring a smaller rate. This demonstrates the advantage
of parallelisability over a sequential algorithm.

Comparing the LightMAC instantiations with rate 2/3 to PMAC with Par-
ity (PMAC/P), we note that the use of the same key throughout the message
processing (as opposed to three different keys in PMAC/P) significantly improves
the performance for the PRESENT-based implementation: LightMAC is consis-
tently around 50 % faster. This is largely due to the fact that the parts of each
subkey of PMAC/P’s three bitsliced keys have to be interleaved in an appropriate
way. The effect is less pronounced for the AES where no conversion to bitsliced
format is needed, and due to the AES-NI instructions which freely accept both
registers and memory locations for the subkeys. Still, LightMAC is about 20 %
faster, while additionally providing a flexible range of trade-offs between rate
and maximum message length.

6 Conclusions

We proposed LightMAC, a new MAC mode of operation specifically suited to
lightweight applications. Its security bound was shown in Sect. 4 to not depend
on the message length, allowing an order of magnitude more data to be processed
per key.

Featuring a simple design with very low overhead over the block cipher, it
not only offers compact authentication for resource-constrained platforms, but
also allows high-performance parallel implementations, as demonstrated by the
implementation study of LightMAC instantiated with PRESENT and the AES
in Sect. 5. Furthermore, the implementation results show how the s-parameter
translates directly to a trade-off between rate and maximum message length.

Unlike PMAC and its many derivatives, LightMAC is not covered by patents.
Altogether, this makes it a promising authentication solution for a wide range
of platforms and use cases.
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Abstract. Spritz is a stream cipher proposed by Rivest and Schuldt at
the rump session of CRYPTO 2014. It is intended to be a replacement of
the popular RC4 stream cipher. In this paper we propose distinguishing
attacks on the full Spritz, based on a short-term bias in the first two bytes
of a keystream and a long-term bias in the first two bytes of every cycle
of N keystream bytes, where N is the size of the internal permutation.
Our attacks are able to distinguish a keystream of the full Spritz from
a random sequence with samples of first two bytes produced by 244.8

multiple key-IV pairs or 260.8 keystream bytes produced by a single key-
IV pair. These biases are also useful in the event of plaintext recovery in
a broadcast attack. In the second part of the paper, we look at a state
recovery attack on Spritz, in a special situation when the cipher enters a
class of weak states. We determine the probability of encountering such a
state, and demonstrate a state recovery algorithm that betters the 21400

step algorithm of Ankele et al. at Latincrypt 2015.

Keywords: RC4 · Spritz · Stream cipher · Short-term bias · Long-term
bias · Distinguishing attack · Plaintext recovery attack · State recovery
attack

1 Introduction

RC4, designed by Rivest in 1987, is still one of most widely used stream ciphers
in the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. After the
disclosure of its algorithm in 1994, RC4 has attracted intensive cryptanalytic
efforts over past 20 years. Finally, in 2013, practical plaintext recovery attacks
on RC4 in SSL/TLS were proposed by AlFardan et al. [1] and Isobe et al. [9]. In
the response to these results, usage of RC4 has drastically decreased, especially
in TLS, and major companies such as Google, Microsoft, and Mozilla announced
that they will officially remove the RC4 from web browsers by early 2016.

At the same time, there has been extensive research in recent years to come
up with RC4-like stream ciphers that while marginally slower in software, would
wipe out the known shortcomings of RC4. Many such ciphers like RC4A [17],
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 63–77, 2016.
DOI: 10.1007/978-3-662-52993-5 4



64 S. Banik and T. Isobe

NGG [14], GGHN [8], Quad-RC4 [16], RC4+ [10] and VMPC [24] have been proposed
to fulfil this objective. However, all the aforementioned ciphers have had distin-
guishing attacks reported against them [3–5,12,18,20,21]. Spritz [19] is a stream
cipher proposed by Rivest and Schuldt at the rump session of CRYPTO 2014.
The authors intended Spritz to be a replacement for RC4, and hence the design
for Spritz was chosen meticulously, with special attention given to the fact that
known weaknesses of RC4 [11,13] do not carry over. The authors automati-
cally examined many thousands of candidates to obtain cryptographically secure
update functions and an estimated 5 “core-months” of CPU time were used in
the statistical experiments performed by them. Their experiments suggested that
281 samples were required to distinguish the output of Spritz from random.

1.1 Description of Spritz

Spritz consists of a permutation S over the set {0, 1, 2, . . . , N −1} (default value
of N is 256) and six pointers i, j, k, w, a, z, where i, j, k are index pointers, w gives
the step distance for i, a is a nibble counter, and z stores the output byte. The
design specifies a number of modules that are executed for producing a keystream
as defined in Fig. 1. The authors specify a number of modes of operation using
the Spritz structure like a stream cipher, hash function, MAC etc. In the stream
cipher mode of operation the keystream is produced in the following manner.
First the permutation is initialized using the INITIALIZESTATE(N) routine. The
secret key K is then absorbed into the state using the ABSORB(K) module.
Additionally, if an IV is to be used, then the ABSORBSTOP() module is invoked
and the IV is absorbed by calling the ABSORB(IV ) function. Thereafter, the
SQUEEZE module is invoked to produce keystream bytes.

1.2 Previous Work

The only published work on cryptanalysis of Spritz is presented in [2]. The
authors tackle the problem of state recovery using three different approaches. The
best algorithm they propose theoretically recovers the internal permutation used
in Spritz in 21400 steps. Additionally, in [23], the author proposed a distinguisher
for a scaled down version of Spritz (N = 8). It was observed that the event
Zi = Zi+2 was biased. However, the bias was not theoretically proven and no
analogous result for the full Spritz (N = 256) was proposed.

1.3 Our Contribution and Organization

In this paper, we first show a short-term bias which is present in the first two
bytes of a keystream and a long-term bias which appears in the first two bytes of
every cycle of N keystream bytes. We theoretically prove that these biases exist
in a keystream of Spritz regardless of the value of N . Based on these biases,
we propose distinguishing attacks on the full Spritz (N = 256). Our attacks
are able to distinguish a keystream of the full Spritz from a random sequence



Cryptanalysis of the Full Spritz Stream Cipher 65

INITIALIZESTATE(N)

1. i = j = k = a = z = 0, w = 1.
2. for v → 0 to N − 1

S[v] = v

ABSORB(I)

1. for v → 0 to I.length − 1
ABSORBBYTE(I[v])

ABSORBBYTE(b)

1. ABSORBNIBBLE(low(b))
2. ABSORBNIBBLE(high(b))

ABSORBNIBBLE(x)

1. if a = �N
2

�
SHUFFLE()

2. SWAP(S[a], S[�N/2� + x])
3. a = a + 1

ABSORBSTOP()

1. if a = �N
2

�
SHUFFLE()

2. a = a + 1

SHUFFLE()

1. WHIP(2N)
2. CRUSH()
3. WHIP(2N)
4. CRUSH()
5. WHIP(2N)
6. a = 0

WHIP(r)

1. for v → 0 to r − 1
UPDATE()

2. do w = w + 1
until gcd(w,N) = 1

CRUSH()

1. for v → 0 to �N/2� − 1
if S[v] > S[N − 1 − v]

SWAP(S[v], S[N −1−v])

SQUEEZE(r)

1. if a > 0
SHUFFLE()

2. P = Array.New(r)
3. for v → 0 to r − 1

P [v] = DRIP()
4. return P

DRIP()

1. if a > 0
SHUFFLE()

2. UPDATE()
3. return OUTPUT()

UPDATE()

1. i = i + w
2. j = k + S[j + S[i]]
3. k = i + k + S[j]
4. SWAP(S[i], S[j])

OUTPUT()

1. z = S[j + S[i + S[z + k]]]
2. return z

Fig. 1. Modules for Spritz. When N is a power of 2, the last two lines of WHIP are
equivalent to w = w + 2.



66 S. Banik and T. Isobe

Table 1. Summary of results on Spritz

Type of attack Complexity Reference

1 Distinguishing attack on scaled down version (N = 8) 221.9 outputs [23]

2 Distinguishing attack on full Spritz in multiple key-IV setting 244.8 outputs Sect. 2

3 Distinguishing attack on full Spritz in single key-IV setting 260.8 outputs Sect. 2

4 State recovery attack 21400 steps [2]

21247 steps Sect. 3

with samples of first two bytes produced by 244.8 multiple key-IV pairs or 260.8

keystream bytes produced by a single key-IV pair. These biases are applicable
to a plaintext recovery attack in a broadcast setting and multi-session setting in
SSL/TLS.

Thereafter we show that under certain conditions, Spritz enters a weak class
of states, during which, the odd and even elements of the permutation are never
swapped with each other. In this case, the sequence constructed with the last bit
of every keystream byte becomes periodic with period equal to 4. We show that
in such an event, a state recovery attack on Spritz is more efficient and improves
upon the 21400 step algorithm proposed in [2]. Table 1 shows the summary of our
results.

In Sect. 2, we will present the distinguisher on Spritz and study a few of
its implications. In Sect. 3, we will present our state recovery attack on Spritz.
Section 4 concludes the paper.

2 Distinguishing Attacks on Spritz

Before we proceed to outline the details of the distinguisher, let us present a few
observations on how the various index pointers are used when Spritz is operated
in the stream cipher mode. Note that when Spritz is used in the stream cipher
mode: the sequence of execution of modules is

A. ABSORB(K)
B. ABSORBSTOP(), ABSORB(IV ) (optional, only if IV is used)
C. SQUEEZE().

1. In the ABSORB(K) (and also ABSORB(IV )) phase, the internal permutation
is swapped according to the nibble values of the key (IV). During this phase
the index a is used only to keep track of the number of nibbles currently
absorbed in the permutation. After the ABSORB phase, the index a plays
no further role in the SQUEEZE phase when the cipher starts producing
keystream bytes.

2. The index w, which is used to increment the index i, is constant during the
SQUEEZE phase. The value of this index does not depend on the secret key,
and hence is not secret. Its value can be deduced from the length of the secret
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key and IV. If the length of key is limited to �N/4� bytes, and no IV is used,
then the SHUFFLE procedure is executed only once. In that case, the value
of w during the SQUEEZE phase is 7.

3. If the length of the Key is more than �N/4� bytes the value of w can be
deduced by examining the number of times the SHUFFLE module has been
called during the ABSORB phases. For example, if N = 256, and a Key of
size 80 bytes, the SHUFFLE procedure gets called twice, at the end of the
64th byte and at the beginning of SQUEEZE. Each SHUFFLE call increases
the value of w by 6 and so the value of w during the keystream generation is
1 + 6 + 6 = 13.

4. The value of the index i at the beginning of the SQUEEZE phase is always
0, whatever be the the size of the Key and IV used in the ABSORB phases.
This is because whenever �N/4� bytes get absorbed, the value of the pointers
i, j, k are altered by call to the SHUFFLE module. Each SHUFFLE module
calls the WHIP(2N) module thrice. Each WHIP module in turn updates i
using the rule i = i + w a total of 2N times. Whatever be the actual value
of w, at the end of the any call to the WHIP module, the updated value of
i = 0 + 2wN ≡ 0 mod N . And so the value of i remains 0 going in and out of
the WHIP executions and hence also the SHUFFLE module.

5. The only indices that change during the SQUEEZE phase is i, j, k, z.
6. The sequence of updates during the SQUEEZE phase is therefore given as:

(a) i = i + w
(b) j = k + S[j + S[i]]
(c) k = k + i + S[j]
(d) SWAP (S[i], S[j])
(e) return z = S[j + S[i + S[z + k]]]

2.1 Bias in First Two Output Bytes of a Keystream

We first prove that the first two output bytes produced by the Spritz stream
cipher are biased towards the tuple (−w,−w). For example, if N = 256, and if
a 64 byte key is used, then w = 7, and then the first 2 bytes are biased towards
the value (249, 249).

Theorem 1. The first two output bytes Z1 and Z2 produced by the Spritz stream
cipher are biased towards (−w,−w). The probability of this event is given by
Pr[Z1 = Z2 = −w] = 1

N2 + 3
N4 .

Proof. We outline three mutually exclusive events I, II and III, each of which
occurs with probability 1

N4 , that guarantees that the first two output bytes
produced by the cipher are both equal to −w. Each of the three events are
denoted by the states of the permutation and the values of the index pointers
before the beginning of the SQUEEZE phase.

I. S[w] = −w, S[2w] = 0, k = 0, S[j − w] = 2w
II. k = 2w, S[j + S[w]] = −2w, S[2w] = w,S[0] = −w
III. k + S[j − w] = 2w, k + S[2w] = 0, S[w − k] = 0, S[w] = −w
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For example, when I occurs in the first round we have the following changes:
1. i ← i + w = w
2. j ← 0 + S[j + S[w]] = S[j − w] = 2w
3. k ← k + i + S[j] = 0 + w + S[2w] = 0 + w + 0 = w
4. S[w] ← 0, S[2w] ← −w after SWAP
5. z ← S[j+S[i+S[z+k]]] = S[2w+S[w+S[w]]] = S[2w+S[w]] = S[2w] = −w

Similarly in the second round we have the following changes:
1. i ← i + w = 2w,
2. j ← w + S[2w + S[2w]] = w + S[w] = w
3. k ← k + i + S[j] = w + 2w + S[w] = 3w + 0 = 3w
4. S[w] ← −w, S[2w] ← 0 after SWAP
5. z ← S[w + S[2w + S[3w − w]]] = S[w + S[2w + S[2w]]] = S[w] = −w

We get similar results when we analyze II and III. Let us now denote by E
the union of the events I, II and III. We have Pr[E] = 3

N4 , and Pr[Z1 = Z2 =
−w|E] = 1. We assume that when E does not occur Pr[Z1 = Z2 = −w|Ec] = 1

N2 ,
and is more or less uniformly random. We were able to verify the assumption by
running computer simulations. Therefore by Bayes theorem, we have:

Pr[Z1 = Z2 = −w] = Pr[Z1 = Z2 = −w|E] · Pr[E] + Pr[Z1 = Z2 = −w|Ec] · Pr[Ec]

= 1 · 3
N4

+
1

N2
·
[
1 − 3

N4

]
≈ 1

N2
+

3
N4 ��

Experimental Results: By performing extensive computer simulations with
(a) one billion random keys, and (b) a fixed key with one billion random IVs,
the probability Pr[Z1 = Z2 = −w] was found to be around 1

N2 + 2.9
N4 for N = 16

and N = 32. In Figs. 2 and 3, we plot
[
Pr[(Z1, Z2) = x] − 1

N2

]
· N4 for all values

of x when N = 16 and 32 respectively with w = 7. The x-axis is marked as
NZ1+Z2. We can see a sharp peak at the x-axis mark corresponding to (−7,−7)
(i.e. 9 ∗ 16 + 9 = 153 for N = 16 and 25 ∗ 32 + 25 = 825 for N = 32). The plot is
not uniform and there seems to be some bias for other values of x too, but the
most significant bias exists at the point corresponding to (−w,−w).

2.2 Distinguishing Attack with Multiple Key-IV Pairs
Based on a Short-Term Bias

We now state the following theorem from [11], which outlines the number of
output samples required to distinguish two distributions X and Y .

Theorem 2. (Mantin-Shamir [11]) Let X,Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).
Then for small p and q, O

(
1

pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.
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Let X be the probability distribution of Z1 and Z2 in an ideal random stream,
and let Y be the probability distribution of Z1 and Z2 in streams produced by
Spritz for randomly chosen keys. Let the event e denote Z1 = Z2 = −w, which
occurs with probability of 1

N2 in X and 1
N2 + 3

N4 = 1
N2 ·

(
1 + 3

N2

)
in Y . By using

the Theorem 2 with p = 1
N2 and q = 3

N2 , we can conclude that we need about
1

pq2 = N6

9 ≈ 244.8 output samples to reliably distinguish the two distributions.
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Therefore, we can mount a distinguishing attack with multiple key-IV pairs,
if output samples of Z1 and Z2 produced by 244.8 distinct key-IV pairs are
available. In the single key setting, it requires samples of first two bytes Z1 and
Z2 generated by 244.8 different IVs.

2.3 Distinguishing Attack with a Single Key-IV Pair
Based on a Long-Term Bias

The distinguishing attack on Spritz described in Theorem1 requires that i and
z are both zero at the beginning of the SQUEEZE phase. In general, during the
production of a single stream of keystream bytes from any key or key/IV pair i
and z are not both zero at the beginning of each round. This is why although the
result in Theorem 1, holds for distinguishing the first 2 output bytes produced
by multiple key/IV pairs, the same result can not be translated for a single
keystream byte sequence using the event Zt = Zt+1 = −w.

However i becomes 0 after every N rounds, and so in order to distinguish
a single sequence of keystream bytes, one could look at the event ZmN+1 =
ZmN+2 = −w (for all integers m ≥ 0) i.e. the first two of every cycle of N
keystream bytes. However we still need ZmN = 0 for the initial conditions of the
distinguisher to be fulfilled and so we should really look at the event Pr[ZmN+1 =
ZmN+2 = −w|ZmN = 0]. For the reasons outlined in Theorem 1, we also have

Pr[ZmN+1 = ZmN+2 = −w|ZmN = 0] =
1

N2
+

3
N4

where the probability this time is calculated over several integral values of m.
Note that we will need T = O(N

6

9 ) ≈ 244.8 samples to reliably distinguish the
stream. However for this we need T · N cycle of keystream bytes (as ZmN = 0
will on average occur once every N cycle) and hence T · N2 = O(N

8

9 ) ≈ 260.8

keystream bytes. The distinguishing attack was verified for 100 random keys for
N = 16, 32.

2.4 Plaintext Recovery Attacks in the Broadcast Setting

These short- and long-term biases are also used for plaintext recovery attacks
in the broadcast setting where the same plaintext is encrypted with different
keys or/and IV in the same manner of previous attacks [1,9,11,15]. Note that
the broadcast setting is converted into the multi-session setting where the target
plaintext block are repeatedly sent in the same position in the plaintexts in
multiple SSL/TLS sessions. According to Theorem 2, given 1

pq2 ciphertexts, we
can distinguish the distribution of correct candidates of plaintext bytes (the
biased distribution) from the distribution of wrong candidates of plaintext bytes
(a random distribution) with a constant probability. It can be considered as the
lower bound of the required number of ciphertexts for recovering biased bytes
of a plaintext in this setting as mentioned in [11]. Recent statistical methods
to detect a correct plaintext e.g. likelihood calculations of techniques [1,22] and
Bayesian analysis [7] might help to reduce the required number of ciphertexts
when mounting an actual attack.
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3 State Recovery Attack on Spritz

We first look at a class of special states of the Spritz stream cipher that occurs
just before the beginning of the SQUEEZE phase.

Definition 1. Define a Spritz state as the 3-tuple (S, j, k) just at the beginning
of the SQUEEZE phase. A Spritz state is called a SPECIAL state if all the fol-
lowing conditions hold simultaneously.

1. S[t] ≡ 0 mod 2, if t ≡ 1 mod 2,
2. S[t] ≡ 1 mod 2, if t ≡ 0 mod 2,
3. j ≡ 0 mod 2 and k ≡ 0 mod 2

In other words a SPECIAL state occurs when all the even indexed positions of
the S array hold odd values, all the odd indexed positions hold even values and
additionally j and k are even. We will now show that if the state at the beginning
of the SQUEEZE phase is a SPECIAL state, then the sequence Zt mod 2, t =
0, 1, 2, 3, . . . is periodic with period equal to 4.

Lemma 1. If the state at the beginning of the SQUEEZE phase is a SPECIAL
state then the following hold (assuming N is even):

(a) The state after every four iterations is a SPECIAL state.
(b) In every iteration, the updated values of i and j are equal modulo 2. Hence

no SWAP between odd and even values occur. And so, even and odd indexed
positions of the S array will continue to hold odd and even values respectively.

(c) Zt ≡ Zt+4 mod 2, for all values of t.

Proof. Note that i and z are 0 at the beginning of the SQUEEZE phase and so
both are even to begin with. If N is even, the design of the WHIP module ensures
that the value of w is odd, whatever be the length of key/IV. Thereafter, all the
above claims can be verified by running four iterations of the UPDATE function.
We summarize the modulo 2 values of the various indices over 4 iterations in
Table 2. Note that the updated values of i, j in each round is either both odd or
both even, which means that the odd and even values are never swapped during
the SQUEEZE phase. At the end of round 4, i, j, k, z become even again and so
the modulo values of the above indices will repeat every 4 cycles. And therefore,
the sequence of the modulo 2 values of the keystream byte z becomes periodic
with period 4: 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 . . . ��

Probability of a SPECIAL state: Combinatorially, it is easy to see that the
total number of SPECIAL states is

(
N
2

)2 ·
[(

N
2

)
!
]2

. Therefore, if carry out the
key/IV Setup operation with different keys/ single key and different IVs, then
the probability that the state at the beginning of the SQUEEZE state is SPECIAL
is given by

ρ =

(
N
2

)2 ·
[(

N
2

)
!
]2

N2 · (N !)
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Table 2. The modulo 2 values of the various indices through 4 iterations. The ones
marked with ∗ are used in the State recovery process in Algorithm 1

# Index t = 1 t = 2 t = 3 t = 4

1 i = i + w∗ 1 0 1 0

2 j + S[i]∗ 0 0 0 0

3 j = k + S[j + S[i]]∗ 1 0 1 0

4 k = k + i + S[j] 1 0 1 0

5 z + k∗ 1 0 0 1

6 i + S[z + k]∗ 1 1 0 0

7 j + S[i + S[z + k]]∗ 1 0 0 1

8 z = S[j + S[i + S[z + k]]] 0 1 1 0

For N = 256, ρ ≈ 2−253.7. So if one employs an IV of length more than 254 bits,
it is likely that a SPECIAL state will be encountered in ρ−1 attempts. Using this,
a state recovery attack can be mounted in a Multiple IV mode as follows:

1. For a fixed key, and Multiple IVs collect keystream of around 10 ∗ N bytes
and inspect the sequence Zt mod 2.

2. If the sequence is 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0 . . . i.e. periodic with period 4,
then the attacker can conclude with high probability that he has encountered
a SPECIAL state and he proceeds according to Algorithm 1.

3. The above technique is likely to succeed once in ρ−1 attempts.

3.1 State Recovery of SPECIAL states

Once the attacker is sure that he has encountered a SPECIAL state, he has the
task of recovering a much simpler state and he proceeds in the same manner as
in [2, Algorithm 1]. However, there a few differences as given in Algorithm1.

The algorithm can be summarized in the following words: In each round, the
attacker guesses the value of some of the elements of the internal permutation
to determine the value of all the five indices required in the state update oper-
ation, each time making sure that odd indices get even values and vice versa.
He then inspects the keystream byte produced in the round and tries to deter-
mine if the intermediate guessed permutation is consistent with the keystream
byte observed. The attacker computes the index d = j + S[i + S[z + k]] with
the guessed values of the permutation and then performs the Verification step:
Depending on the comparison between S[d] and the current keystream byte Zr

he makes the following transitions:

If S[d] = NULL and Zr �∈ S → Assign S[d] = Zr,Go to next round r + 1
If S[d] = NULL and Zr ∈ S → Contradiction!! Try another assignment
If S[d] �= NULL and Zr �= S[d] → Contradiction!! Try another assignment
If S[d] �= NULL and Zr = S[d] → Go to next round r + 1
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Input: Keystream bytes Zt for t = 0 to 10 ∗ N ;
Output: Permutation S at the beginning of SQUEEZE stage;

S[t] ← NULL for t = 0 to N − 1;
Run StateRecovery(S, i, j, k, 0);

StateRecovery(S, i, j, k, r);
inext ← i + w;
if S[inext] = NULL ∧ u1 is not in S ∧ u1 �≡ inext mod 2 then

Assign S[inext] ← u1 /* for u1 ← 0 to N − 1 */

end

a = j + S[inext];
if S[a] = NULL ∧ u2 is not in S ∧ u2 �≡ a mod 2 then

Assign S[a] ← u2 /* for u2 ← 0 to N − 1 */

end

jnext ← j + S[a];
if S[jnext] = NULL ∧ u3 is not in S ∧ u3 �≡ jnext mod 2 then

Assign S[jnext] ← u3 /* for u3 ← 0 to N − 1 */

end

knext ← k + inext + S[jnext];
SWAP (S[inext], S[jnext]);
b ← Zr−1 + knext;
if S[b] = NULL ∧ u4 is not in S ∧ u4 �≡ b mod 2 then

Assign S[b] ← u4 /* for u4 ← 0 to N − 1 */

end

c ← inext + S[b];
if S[c] = NULL ∧ u5 is not in S ∧ u5 �≡ c mod 2 then

Assign S[c] ← u5 /* for u5 ← 0 to N − 1 */

end

d ← jnext + S[c];
if S[d] is NULL ∧Zr is not in S then

Assign S[d] ← Zr;
StateRecovery(S, inext, jnext, knext, r + 1);

end
if S[d] is NULL ∧Zr is in S then

Contradiction /*Try another assignment */;
end
if S[d] is not NULL ∧S[d] �= Zr then

Contradiction /*Try another assignment */;
end
if S[d] is not NULL ∧S[d] = Zr then

StateRecovery(S, inext, jnext, knext, r + 1);
end

Algorithm 1. State recovery algorithm for SPECIAL states



74 S. Banik and T. Isobe

3.2 Complexity of the Algorithm

The complexity is given by the number of guesses or assignments made, until a
solution is found. As in [2], we compute the complexity by splitting the algorithm
in several cases ci(x) to which we assign probabilities according to the occurrence
of each case. Note that we can view the above internal state recovery algorithm,
as two modules each working to recover exactly one half of the elements of the
permutation. This is true since, the odd and the even indices never swap among
each other. Let us denote by T1, T2 as the average number of assignments that
would made in recovering the odd/even indexed elements of the permutation, if
they were operating independent of the other. Since for every assignment in T1

we would need T2 assignments to verify the correctness of the solution, the total
complexity of our algorithm is T = T1 · T2.

To estimate T1, we have to note the parity of the the odd indices assigned in
every cycle. We already know that the parity of all the indices will repeat after
every 4 rounds, so observing the first 4 cycles is sufficient. As per Algorithm 1, the
five indices that are used in the assignment process are inext, a, jnext, b, c, and the
index used in the verification process is d. It is easy to see that these correspond
to i, j + S[i], j, z + k, i + S[z + k] and j + S[i + S[z + k]] respectively. A quick
look at Table 2, tells us four of the assignment indices and the only verification
index are odd in the first round. Thereafter the second and third rounds have
one and two assignment indices odd. The fourth round has one assignment and
one verification index odd. This means that there are four assignments followed
by a verification, which is followed by another cycle of four assignments and a
verification. Therefore in total we have 10 stages of assignment/verification. Let
ci[x] (1 ≤ i ≤ 10) denote the average complexity associated with each stage,
assuming that x elements of the N/2 odd-indexed positions are already filled,
then we have

ci[x] =

⎧⎪⎪⎨
⎪⎪⎩

x
N/2

· ci+1[x] + (1 − x
N/2

) · (N
2

− x) · ci+1[x + 1], for i ∈ [1, 10] \ {5, 10}

( x
N/2

)2 · ci+1[x] + (1 − x
N/2

)2 · ci+1[x + 1], for i = 5, 10

/*c11 denotes c1*/.

In the above equation, when i ∈ [1, 10]\{5, 10}, it denotes an assignment phase,
when i = 5, 10, it denotes a verification phase. During an assignment, if x ele-
ments are already present in the permutation, then with probability x

N/2 , the
index to be assigned would be already filled, and in this case the algorithm
would move on to stage i+1 without assignment. Alternatively with probability
1 − x

N/2 , the index is empty and there are exactly N
2 − x ways to assign it, after

which it moves to stage i+1. During verification stage the analysis is as follows:

a. With probability x
N/2 , the verification index d is already filled.

b. Therefore with probability x
N/2 · (1 − x

N/2 ), the index is already filled by a
value other than Zr. In this case the path is terminated.

c. With probability ( x
N/2 )2 the index is filled with Zr and the algorithm moves

to the next phase.
d. With probability (1 − x

N/2 ) the verification index d is empty.
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e. Therefore with probability (1− x
N/2 ) · ( x

N/2 ) it happens that Zr exists in some
other index of the permutation. In this case too the path is terminated.

f. With probability (1− x
N/2 )2, Zr is not present in the permutation, and so after

assigning S[d] ← Zr it moves to the next stage.

The complexity T1 can be estimated as c1[0], with the boundary conditions
ci[N2 − 1] = 1. The above recurrence can be solved by a dynamic program-
ming approach to find an estimate for c1[0]. A similar recurrence relation
can be deduced for estimating T2 by keeping track of the even valued assign-
ment/verification indices. We write the recurrence relation below for the benefit
of the reader.

ci[x] =

⎧⎪⎪⎨
⎪⎪⎩

x
N/2

· ci+1[x] + (1 − x
N/2

) · (N
2

− x) · ci+1[x + 1], for i ∈ [1, 14] \ {6, 10}

( x
N/2

)2 · ci+1[x] + (1 − x
N/2

)2 · ci+1[x + 1], for i = 6, 10

/*c15 denotes c1*/.

Experimental Results: We performed the state recovery for N = 14, 16, 18, 20
for 100 random permutations. The algorithm was always able to recover the
permutation. In Fig. 4, we plot the base 2 logarithm of the theoretical estimate
T with the base 2 logarithm of the experimentally obtained average number
of steps, for different even values of N . We can see that the theoretical value
always overestimates the experimentally obtained complexity. For N = 256,
the theoretical estimate for T ≈ 21233. And so the estimated complexity of
state recovery is given as T ·

(
N
2

)2 ≈ 21247 (taking into account the additional
complexity of guessing the values of j, k at the beginning of the SQUEEZE phase).
So the total complexity consists of ρ−1 encryptions plus T ·

(
N
2

)2
assignments

which again comes to approximately 21247.
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4 Conclusion

In this paper, we analyzed the security of the stream cipher Spritz. We first
proposed distinguishing attacks based on the short-term and the long-term biases
in the keystream of Spritz. The distinguisher can be used both for distinguishing
keystreams produced by multiple key-IVs and for distinguishing a keystream
produced by a single key-IV pair. In the second half of the paper we looked at
the state recovery attack on Spritz (in the multiple IV setting), in the situation
when the cipher has entered a special class of SPECIAL states. We calculated
the probability of such an event happening, and went on to outline an algorithm
to recover the internal permutation. Our estimates suggest that in this case we
need approximately 21247 assignments to recover the internal state which is an
improvement on the 21400 step algorithm proposed in [2].

Acknowledgements. The authors would like to thank the anonymous reviewers who
helped improve the quality of this paper.
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Abstract. Filter generators are vulnerable to several attacks which have
led to well-known design criteria on the Boolean filtering function. How-
ever, Rønjom and Cid have observed that a change of the primitive root
defining the LFSR leads to several equivalent generators. They usually
offer different security levels since they involve filtering functions of the
form F (xk) where k is coprime to (2n − 1) and n denotes the LFSR
length. It is proved here that this monomial equivalence does not affect
the resistance of the generator against algebraic attacks, while it usually
impacts the resistance to correlation attacks. Most importantly, a more
efficient attack can often be mounted by considering non-bijective mono-
mial mappings. In this setting, a divide-and-conquer strategy applies
based on a search within a multiplicative subgroup of F∗

2n . Moreover, if
the LFSR length n is not a prime, a fast correlation involving a shorter
LFSR can be performed.

Keywords: Stream ciphers · Correlation attacks · LFSR · Filter gen-
erator · Nonlinear equivalence · Monomials

1 Introduction

The running-key used in a stream cipher is produced by a pseudo-random gen-
erator whose initialization is the secret key shared by the users. Linear feedback
shift registers (LFSR) are building-blocks used in many keystream generators
since they are appropriate to low-cost implementations, produce sequences with
good statistical properties and have a simple mathematical description. While
basic LFSR-based generators, like combination generators or filter generators,
are not used directly as keystream generators in modern stream ciphers, they are
still widely used either as a part of the generator or in modified form [13]. This
situation then motivates an in-depth evaluation of the security of LFSR-based
generators. Actually, several modern ciphers have been analyzed by enhanced
variants of attacks, which were first dedicated to simple LFSR-based generators
(e.g. [26,29,34]).

Partially supported by the French Agence Nationale de la Recherche through the
BRUTUS project under Contract ANR-14-CE28-0015.

c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 78–98, 2016.
DOI: 10.1007/978-3-662-52993-5 5



Attacks Against Filter Generators Exploiting Monomial Mappings 79

At this aim, our work investigates the security of the so-called filter gener-
ator, which consists of a single LFSR whose content is filtered by a nonlinear
Boolean function. These generators have been extensively studied and are known
to be vulnerable to several types of attacks, mainly algebraic attacks and their
variants [9,10,17,38] and (fast) correlation attacks [32]. These attacks have led
to the definition of design criteria, especially related to the choice of the filtering
function, and they have initiated a whole line of research on the constructions
of appropriate filtering functions. However, it has been observed more recently
by Rønjom and Cid [36] that a simple change of the primitive characteristic
polynomial of the LFSR (i.e., a change of the primitive root of the underly-
ing finite field), may lead to an equivalent generator whose filtering function
corresponds to the composition of a monomial permutation with the original fil-
tering function, x �→ F (xk) for some k coprime to (2n − 1) where n is the LFSR
length. This observation opens the door to new weaknesses since the main secu-
rity criteria, like the nonlinearity, the degree or the algebraic immunity of the
filtering function, are not invariant under this nonlinear equivalence. Hence, this
raises many open questions about the relevance of the usual criteria, as noted by
Rønjom and Cid. In this context, the objective of our paper is to answer most
of these questions by evaluating the minimal security offered by all generators
derived by monomial equivalence, and to further investigate the possibilities to
transform the constituent LFSR by applying a monomial mapping, especially a
non-bijective monomial mapping.

Our contributions. Our contributions are then two-fold: first, we show that, even
if the degree and the algebraic-immunity of a Boolean function may highly vary
within an equivalence class, the monomial equivalence defined by Rønjom and
Cid has no impact on the resistance of a filter generator against algebraic attacks
and their variants. The reason is that the degree and the algebraic immunity are
not the relevant parameters for estimating the security of a filter generator as
shown in [17,20,28]. Instead, the complexities of these attacks are determined
by the linear complexity and the spectral immunity of the filtering function,
which are derived from the univariate representation of the function and are
therefore invariant under monomial equivalence. On the other hand, the sec-
ond family of attacks, namely (fast) correlation attacks, are highly affected by
monomial equivalence, implying that the associated criterion must be the gen-
eralized nonlinearity of the filtering function as defined in [41]. But we show
that the non-bijective monomial mappings also play a very important role, usu-
ally much more important than monomial permutations, because the LFSR can
then be transformed into an LFSR producing a sequence with smaller period τ . A
divide-and-conquer attack can then be mounted exploiting this property, where
the number of values to be examined decreases from (2n − 1) to τ . Moreover, if
the LFSR length n is not a prime, the new LFSR involved in the attack may be
shorter than the original one, leading to a much more efficient fast correlation
attack.
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Organization of the paper. We first introduce the monomial equivalence between
filter generators as described by Rønjom and Cid [36] and show that the uni-
variate representation of both the LFSR and the filtering function is well-suited
for analyzing its impact. Section 3 then focuses on algebraic attacks and proves
that all filter generators obtained by monomial equivalence have the same behav-
iour with respect to this family of attacks. Section 4 then investigates correlation
attacks and their variants, and shows that the situation is very different. Also, we
describe a new setting for (fast) correlation attacks where non-bijective monomi-
als are used. Two types of attacks are then presented: fast correlation involving a
shorter LFSR which can be mounted when the LFSR length is not a prime, and
correlation attacks based on FFT which recover log2 τ bits of the initial state
where τ is a divisor of (2n − 1).

2 Equivalence Between Filtered LFSR

2.1 Filtered LFSRs

In the following, we focus on binary filtered LFSRs. The binary LFSR of length n
with characteristic polynomial, P (X) = Xn +

∑n−1
i=0 ciX

i ∈ F2[X], is the finite-
state automaton which produces the binary sequences s = (st)t≥0, satisfying the
linear recurrence relation

st+n =
n−1∑

i=0

cist+i, ∀t ≥ 0.

In this paper, we implicitly assume that the LFSRs we consider are non-singular,
i.e., the constant term c0 in the characteristic polynomial does not vanish. Other-
wise the transition function of the LFSR is not bijective, leading to a possible loss
of entropy of the internal state, which is clearly not suitable in cryptographic
applications. Also, the characteristic polynomial is assumed to be irreducible,
which guarantees that, for any nonzero initial state of the LFSR, the generated
sequence cannot be produced by a shorter LFSR [42]. In other words, the linear
complexity of any sequence generated by the LFSR from a nonzero initial state
is equal to the LFSR length. A well-known property of LFSR sequences is that
any sequence produced by an LFSR with an irreducible characteristic polyno-
mial P (and a nonzero initial state) is periodic and its least period is equal to
the order of P , i.e., to the smallest positive integer r for which P (X) divides
Xr + 1. Hence, the characteristic polynomials of LFSRs used in practical appli-
cations are chosen primitive. More details on the properties of LFSR sequences
can be found e.g. in [19,25].

In this context, a filter generator (aka filtered LFSR), is a keystream genera-
tor composed of a single binary LFSR of length n whose content is filtered by a
nonlinear Boolean function of n variables. More precisely, the output sequence
(st)t≥0 of the filter generator is given by

st = f(ut+n−1, ut+n−2, . . . , ut), ∀t ≥ 0 ,

where (ut)t≥0 denotes the sequence generated by the LFSR.
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It is worth noticing that, in most practical proposals, the filtering function
does not depend on all n bits of the internal state. For obvious implementation
reasons, f is usually chosen in such a way that it depends on m < n variables
only. It can then be equivalently described by an m-variable Boolean function f ′

and a decreasing sequence (γi)1≤i≤m, with 1 ≤ γi ≤ n, such that for any n-tuple
(x1, . . . , xn),

f(x1, . . . , xn) = f ′(xγ1 , . . . , xγm
) .

Here, unless explicitly mentioned, the filtering function will be defined as a func-
tion of n variables, where n is the LFSR length, even if some (or most) of these
variables are not involved in the evaluation of the function.

2.2 Univariate Representation of Filtered LFSRs

Filter generators have been extensively studied and are known to be vulnera-
ble to several types of attacks which have led to the definition of some security
criteria on the tapping sequence (γi)1≤i≤m [14] and on the Boolean filtering
function (see e.g. [4] for a survey). For instance, it is well-known that f must
have a high algebraic degree in order to generate a keystream sequence with a
high linear complexity [39], a high algebraic-immunity in order to resist alge-
braic attacks [10,31] and a high nonlinearity in order to resist fast correlation
attacks [32]. These design criteria on the filtering function must be considered
up to some equivalence in the sense that several filtered LFSR may generate the
same set of sequences. This equivalence between filtered LFSR can be simply
described by defining the LFSR next-state function over the finite field with
2n elements instead of the vector space F

n
2 .

In this field-oriented description, we will use the following classical notation.
The finite field with 2n elements is denoted by F2n . The multiplicative order of
a nonzero element α in a finite field, ord(α), is the smallest positive integer r
such that αr = 1. The trace function from F2n into F2 is denoted by Trn, i.e.,

Trn(x) =
n−1∑

i=0

x2i

.

The index n will omitted if it is clear from the context.

Proposition 1 (Theorem 9.2 in [30]). Let P be an irreducible polynomial in
F2[X] with degree n. Let α ∈ F2n be a root of P and {β0, . . . , βn−1} denote the
dual basis of {1, α, . . . , αn−1}, i.e.,

Trn(αiβj) =
{

0 if i �= j
1 if i = j

.

Then, the content of the LFSR with characteristic polynomial P at time (t + 1)
is equal to its content at time t multiplied by α, where these vectors are identified
with elements in the field F2n decomposed on the basis {β0, . . . , βn−1}.
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With the notation of the previous proposition, we consider the isomorphism ϕ
from F

n
2 into F2n defined by the basis {β0, . . . , βn−1}. Then, the internal state

at time t of the LFSR initialized by X0 = ϕ(u0, . . . , un−1) corresponds to

Xt = X0α
t

and the keystream bit at time t is given by

st = f ◦ ϕ−1(X0α
t) .

Therefore, any filter generator has an equivalent univariate representation
defined by a root α ∈ F2n of the LFSR characteristic polynomial, and a function
F from F2n into F2. This generator produces from any initial state X0 ∈ F2n

the sequence st = F (X0α
t). For the sake of clarity, univariate functions defined

over F2n will be denoted by capital letters, while small letters will be used for
multivariate functions over F

n
2 . Clearly, the multivariate representation of a fil-

ter generator, (P, f), can be recovered from its univariate representation (α, F ):
since P is irreducible, it corresponds to the minimal polynomial of α and f
is equal to F ◦ ϕ where ϕ is the isomorphism associated to the dual basis of
{1, α, α2, . . . , αn−1}. Conversely, a given multivariate representation (P, f) cor-
responds to n univariate representations (α, F ) since there are several possible
values for α corresponding to the conjugate roots of P , i.e., α, α2, α22 , . . . , α2n−1

.
The univariate filtering functions F associated to the different choices for α
are then linearly equivalent because they only differ from the composition with
the Frobenius map. However, composing F with a linear permutation does not
change its cryptographic properties (see the next section for details).

As a function from F2n into F2n , F can be written as a univariate polyno-
mial in F2n [X] and the coefficients of this polynomial are computed from the
values of F by the discrete Fourier Transform (DFT) of F (aka Mattson-Solomon
transform) (see e.g. [2,15,27]).

Proposition 2 (Discrete Fourier Transform of a Function). Let F be a
function from F2n into F2n . Then, there exists a unique univariate polynomial
in F2n [X]/(X2n

+ X) such that

F (X) =
2n−1∑

i=0

AiX
i .

Moreover, A0 = F (0), A2n−1 =
∑

x∈F2n
F (x) and the coefficients Ai, 1 ≤ i ≤

2n − 2, are given by the discrete Fourier transform of the values of F at all
nonzero inputs, namely

Ai =
2n−2∑

k=0

F (γk)γ−ki, 1 ≤ i ≤ 2n − 2

where γ is a primitive element in F2n .
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It is worth noticing that, in our context, the value of F (0) does not affect the
security of the filter generator: this value is only involved when the LFSR internal
state vanishes, which is obviously always avoided since the sequence generated
from the all-zero state is constant. Therefore, we will always consider in the
following that the coefficient of degree (2n − 1) in the univariate form of F
is equal to zero. In other words, the univariate form of F is identified with
(A0, . . . , A2n−2) which is the DFT of the values of F . In our situation also,
F takes its values in F2, implying that A2i = A2

i for any 1 ≤ i ≤ 2n − 2.
In this case, the coefficients Ai for all i in the same cyclotomic coset modulo
(2n − 1), C(i) = {i, 2i mod (2n − 1), 22i mod (2n − 1), . . . , 2n−1i mod (2n − 1)}
can be gathered, leading to the so-called trace representation:

F (X) =
∑

k∈Γ

Trnk(AkXk),

where Γ is a set of representatives of all cyclotomic cosets modulo (2n − 1), nk

denotes the size of the cyclotomic coset of k and Ak ∈ F2nk .

2.3 Monomial Equivalence Between Filtered LFSR

Using the univariate representation, it is easy to observe that, for any nonzero λ ∈
F2n , the sequence generated by the filtered LFSR with characteristic polynomial
P and filtering function F from the initial state X0 ∈ F2n is the same as the
sequence obtained by filtering the same LFSR with G(x) = F (λx) from the
initial state Y0 = λ−1X0. It follows that not only F but also any function
G(x) = F (λx) can be attacked when cryptanalyzing the generator. But, this
equivalence does not affect the security of filter generators since all design criteria
are known to be invariant under linear equivalence, i.e., under the composition
of the filtering function by an F2-linear permutation of F2n .

However, Rønjom and Cid [36] exhibited some nonlinear equivalence relations
between filtered LFSR when the LFSR characteristic polynomial P is primitive.
This equivalence relation boils down to changing the primitive root of F2n in
the univariate representation of the generator. Let us consider two primitive
elements in F2n , namely α and β, implying that β = αk for some integer k
with gcd(k, 2n − 1) = 1. Let Pα and Pβ denote their minimal polynomials.
Then, we observe that, at any time t ≥ 0, the internal state Xt of the LFSR
with characteristic polynomial Pα and the internal state Yt of the LFSR with
characteristic polynomial Pβ initialized with Y0 = Xk

0 satisfy

Yt = Y0β
t =

(
X0α

t
)k = Xk

t .

This implies that the set of all sequences obtained by filtering by F the LFSR
defined by α corresponds to the sequences generated by filtering by G(x) = F (xr)
the LFSR defined by β = αk where rk ≡ 1 mod (2n − 1). From now on, this
equivalence between filter generators will be named monomial equivalence1. It
1 Note that, among all monomials, only the permutations of F2n , i.e., X �→ Xk with

gcd(k, 2n − 1) = 1 provide an equivalence relation.
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follows that there exist Φ(2n−1)
n monomial transformations which are not linearly

equivalent and nevertheless provide equivalent filtering LFSR, where Φ is the
Euler’s totient function. Any attack against one among these Φ(2n−1)

n generators
then provides an attack against the whole class. Most notably, an initial-state
recovery attack against the generator defined by β enables the attacker to recover
the initial state X0 of the LFSR defined by α by using that X0 = Y r

0 . Therefore,
the security level offered by a filter generator is clearly the minimal security
among all generators in its equivalence class.

3 Monomial Equivalence and Algebraic Attacks

Determining the cryptographic properties of a Boolean function up to any change
of the primitive element seems rather complicated, since the major properties
of the function, like its degree or its nonlinearity, are not invariant under these
nonlinear transformations (see e.g. [36, Appendix A]). However, the recent works
by Gong et al. [17,20,37,38] point out that this difficulty mainly comes from the
fact that the multivariate representation of the function is usually not relevant
for evaluating its security level. Instead, the univariate representation provides a
much more powerful tool which allows to directly determine the security offered
by a generator against algebraic attacks (and its variants). Indeed, the action
of the monomial equivalence can be described in a much simpler way when the
univariate expression of the function is considered: the class of all filtering func-
tions in the equivalence class of F consists of all functions G =

∑2n−2
i=0 BiX

i

whose univariate representation (B0, . . . , B2n−2) is obtained by decimating the
univariate representation of F by some integer k coprime to (2n − 1), i.e.,
Bi = Aik mod (2n−1). Using this simple transformation, it becomes possible to
determine how the complexity of algebraic-type attacks varies within the equiv-
alence class of a filtering function.

3.1 Linear Complexity

The simplest algebraic attack consists in writing the Boolean equations defining
the successive keystream bits. We then obtain a multivariate system depending
on n binary unknowns, which are the bits of the initial state. The degree of
each equation is equal to the degree of the filtering function f , which tends to
show that the complexity for solving this algebraic system highly depends on
the degree of f . Instead of linearizing the system of degree deg(f) derived from
f , another strategy consists in exploiting the fact that the keystream sequence
produced by a filter generator can also be seen as the output of a single LFSR.
The length of the shortest LFSR generating the sequence is its linear complexity
Λ. It determines the complexity of solving the smallest linear system expressing
each output bit of the generator as a linear function of its initial state. It is widely
believed that, exactly as for the combination generator, the linear complexity of
a filter generator increases with the degree of the filtering function (see e.g. [24,
39]). For instance, it has been shown by Rueppel that, when the LFSR length n
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is a large prime, Λ ≥
(
n
d

)
for most functions f of degree d [39, Chapter 5].

However, as explained in [28], the well-known Blahut’s theorem [2] implies that
Λ is entirely determined by the univariate form of the filtering function, F (X) =
∑2n−2

i=0 AiX
i:

Λ = #{0 ≤ i ≤ 2n − 2 : Ai �= 0} .

Then, it clearly appears from this formula that the linear complexity of the filter
generator is invariant under monomial equivalence since decimating the vector
(A0, . . . , A2n−2) by some k coprime to (2n − 1) does not modify the number of
its nonzero terms.

A major observation due to Rønjom and Helleseth [38] is that the linear
complexity is always smaller than or equal to the number of unknowns we expect
in a linearized version of the system of equations derived from the multivariate
representation. Indeed, the resulting linear system considers as unknowns all
monomials of degree at most deg(f) in the bits of the initial state, i.e. roughly

Λ = Λ(F ) �
deg f∑

i=1

(
n

i

)
unknowns.

Using that the multivariate degree of the univariate monomial Xk is the number
of ones in the binary representation of k, which is identified with wH(k), we get
that all coefficients Ak with wH(k) > deg f vanish. Therefore, the linear com-
plexity Λ of the generator, i.e., the number of nonzero Ak, is at most the number
of k such that wH(k) ≤ deg(f), which corresponds to the number of unknowns
in the multivariate linear system. Therefore, for any filter generator obtained
by monomial equivalence, the best basic algebraic attack has data complexity
O(Λ). The on-line step of the attack has time complexity O(Λ) (since the knowl-
edge of Λ keystream bits determines the initial state of the equivalent LFSR and
the whole output sequence). The precomputation step consists in computing the
linear complexity and the minimal polynomial of the keystream. This can be
done by applying Berlekamp-Massey algorithm to the filter generator initialized
by any chosen value, with time complexity O(Λ2). This can also be done by
inverting a Λ × Λ Vandermonde matrix, with time complexity O(Λ log2 Λ) as
noticed in [17,35,38]. Another equivalent point of view, which yields the same
complexity, is the so-called selective discrete Fourier spectra attack [16,17]. The
complexities of all variants of this attack are then invariant under monomial
equivalence.

3.2 Algebraic Attacks

The fact that algebraic attacks can be applied to any generator obtained by
monomial equivalence has led Rønjom and Cid to define the general algebraic
immunity of a filtering function F [36, Definition 6] as the smallest algebraic
immunity for a function in the monomial equivalence class of F . But, exactly as
algebraic attacks allow to decrease the degree of the equations below the degree
of the filtering function by considering an annihilator g of f [10], the same
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idea can be used for improving the previously described attack based on the
univariate approach [17]. Then, the complexity of the best attack is determined
by the smallest linear complexity for an annihilator of F . This quantity has been
named the spectral immunity of F [17, Definition 1]. As we discussed before, for
any function G, including any annihilator of F ,

Λ(G) ≤
deg G∑

i=0

(
n

i

)
,

implying that this attack based on the univariate approach is always faster than
the usual algebraic attack.

Suppose now that the previously described attack is applied to some equiva-
lent filter generator involving the filtering function F ′ defined as F ′(x) = F (xk),
for some k with gcd(k, 2n − 1) = 1. The attack then exploits the linear com-
plexity of an annihilator G′ of F ′. But, it can be observed that a function G′ is
an annihilator of F ′ if and only if G(x) = G′(xr) is an annihilator of F where
rk ≡ 1 mod (2n − 1). Then, the linear complexity of G′ is then equal to the
linear complexity of G, the corresponding annihilator of F . It follows that the
attack applied to F ′ has the same complexity as the attack against the original
filter generator. In other words, the spectral immunity of a filtering function F
is invariant under monomial equivalence.

Therefore, it appears that the monomial equivalence does not affect the com-
plexity of algebraic attacks since the optimal versions of these attacks are based
on the univariate representation and involve the number of nonzero coefficients
in this representation which is invariant under monomial equivalence.

4 Univariate Correlation Attacks

4.1 Correlation-Like Attacks on Filtered LFSR

Another type of attacks against LFSR-based stream ciphers is the correlation
attack and its variants. For generators using many LFSR combined by a Boolean
function, a divide-and-conquer technique can be used by exploiting an approxi-
mation of the combining function f by a function g with fewer variables [40]. The
attack then consists in performing an exhaustive search for the internal state of
the small generator (called the target generator) composed of fewer LFSR com-
bined by g, and in deciding which one of the states gives an output sequence
having the expected correlation with the keystream. A well-known improved
variant, named fast correlation attack [32] applies when g is linear. It identifies
the problem with a decoding problem. Then an exhaustive search for the ini-
tial state of the target generator is not required anymore. Instead, a decoding
algorithm for a linear code is used, for instance an algorithm exploiting sparse
parity-check relations [6,8,32]. In the case of filtered LFSR, the situation is dif-
ferent since the only relevant target generator producing sequences correlated to
the keystream, consists of an LFSR of the same size as the original generator
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Fig. 1. Generalized correlation attack where gcd(k, 2n − 1) = 1 and G(x) = Trn(λxk).

filtered by a linear approximation of f . In this situation, the classical correlation
attack cannot be faster than a brute-force attack, implying that only fast cor-
relation attacks are relevant on filtered LFSR. To avoid these attacks, filtering
functions must have a high nonlinearity.

Rønjom and Cid [36, Sect. 6.2] have then pointed out that the monomial
equivalence requires extending the nonlinearity criterion. As the nonlinearity of
a Boolean function f is the distance of f to all affine functions, the distance
to all monomial functions with an exponent coprime to (2n − 1) must also be
taken into account. Indeed, the fast correlation attack can be generalized as
follows. Let us consider an LFSR of size n, of primitive root α and of initial
state X0, filtered by a Boolean function F . We suppose now that there exist
λ ∈ F2n\{0} and k coprime to (2n − 1) such that the function F is highly
correlated to G(x) = Trn(λxk). Because k is coprime to (2n − 1), the monomial
equivalence can be applied to the LFSR filtered by G, as depicted on Fig. 1.
Then we can perform a fast correlation attack and recover the initial state of the
LFSR defined by αk, which corresponds to Xk

0 . As k is coprime to (2n − 1), we
then recover X0. In other words, a fast correlation attack can be mounted even
if the approximation G of F is nonlinear but has a trace representation with a
single term, Trn(λxk) with gcd(k, 2n−1) = 1. The corresponding design criterion
is that the filtering function F must have a high generalized nonlinearity. This
notion has been first introduced by Youssef and Gong in 2001 [41], but was not
motivated by any attack.

Definition 1 (Extended Walsh-Transform [41]). Let F a function from F2n

into F2, then its extended Walsh transform is

F̂ (λ, k) =
∑

x∈F2n

(−1)F (x)+Tr(λxk)

where λ ∈ F2n and gcd(k, 2n − 1) = 1. Then, the generalized nonlinearity:

NLG(F ) = 2n−1 − 1
2

max
λ∈F2n

k:gcd(k,2n−1)=1

|F̂ (λ, k)|

is the distance of F to the components of all monomial permutations of F2n .
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4.2 A More Efficient Correlation Attack

The previously described attack applies when F is correlated with a monomial
function whose exponent k is coprime to (2n−1). However, the exponents k with
gcd(k, 2n −1) > 1 must also be taken into account even if they do not provide an
equivalence relation. Let us now consider some k which is not coprime to (2n−1)
and some Boolean function H such that F is correlated to G : x �→ H(xk).
We can then also apply some monomial transformation to the target generator
which is composed of the LFSR defined by α filtered by G. Indeed, the LFSR
internal state at time t is X0α

t, implying that the sequence produced by the
target generator is σt = G(X0α

t) = H(Xk
0 αkt) for all t ≥ 0. On the other hand,

the LFSR with characteristic polynomial Pαk generates the successive internal
states (Y0α

kt)t≥0, implying that σ can also be generated by the LFSR defined by
αk filtered by H. In other words, the two generators produce exactly the same
sequence if the initial state of the LFSR defined by αk satisfies Y0 = Xk

0 , as
depicted on Fig. 2. It is important to notice that the least period of the sequence
generated by the LFSR defined by αk is

τk = ord(αk) =
2n − 1

gcd(k, 2n − 1)
.

We will see that this quantity plays a major role in the attack.

Pα F

st

Pα G

σt

Compare

X0

X0

Pα F

st

Pαk H

σt

Compare

X0

Xk
0

Fig. 2. Generalized correlation attack where gcd(k, 2n − 1) > 1.

Firstly, the number of possible values for an initial state of the target LFSR
of the form Y0 = Xk

0 is τk. As previously mentioned, the classical correlation
attack described by Siegenthaler is not relevant against filter generators because
it requires an exhaustive search over all possible initial states of the constituent
LFSR, leading to a time complexity higher than or equal to the cost of a brute-
force attack. But, in our new setting, the attacker needs to perform an exhaustive
search over a set of size τk < 2n, implying that this exhaustive search may be
faster than the brute-force attack. More precisely, the data complexity required
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for applying the optimal hypothesis test (i.e., defined by the Neyman-Pearson
Lemma) and determining the correct initialization out of τk possibilities is

N =
2 ln(τk)

ε2

where ε is the correlation between F and G (see e.g. [18, Sect. 4.1]). The time
complexity of Siegenthaler’s Algorithm is

Time = O

(
τk ln(τk)

ε2

)
.

The counter-part of this attack compared to the case where k is coprime to
(2n − 1) is that the knowledge of the quantity recovered in the attack, Xk

0 , does
not enable us to determine the whole initial state X0 since k is no longer coprime
to (2n − 1). However, we get some information on X0.

Lemma 1. The knowledge of Xk
0 gives log2(τk) bits of information on X0 where

τk = (2n − 1)/ gcd(k, 2n − 1).

Proof. Let X0 be a non-zero element in the field F2n and α a primitive root.
There is a unique i ∈ [0, 2n − 2] such that X0 = αi. Then, r = i mod τk satisfies

Xk
0 = αqkτkαrk = αrk

by definition of τk. Moreover, r is the unique integer in [0, τk − 1] such that
Xk

0 = αrk. Indeed, if there exist r1 and r2, r1 > r2 such that αr1k = αr2k then
α(r1−r2)k = 1. Then, (r1 − r2) is a multiple of τk which is the order of αk. This
is impossible since r2 − r1 ∈ [0, τk − 1]. Therefore, for X0 = αi, the knowledge of
Xk

0 gives the value of the remainder of the Euclidean division of i by τk. It then
provides log2(τk) bits of information on X0. ��

4.3 Recovering the Remaining Bits of the Initial State

Once Xk
0 has been recovered, the remaining (n− log(τk)) bits of X0 can be found

by an exhaustive search with time complexity proportional to

2n − 1
τk

= gcd(k, 2n − 1).

Another method consists in combining several correlation attacks in a divide-
and-conquer approach, exactly as against combination generators. Suppose that
there exist two integers k1 and k2 such that the two distinct correlation attacks
can be performed in order to successively recover Xk1

0 and Xk2
0 . This means that

we have found
r1 = i mod τk1 and r2 = i mod τk2 .

By the Chinese remainder theorem, this leads to the value of the remainder of
the Euclidean division of i by lcm(τk1 , τk2). The best situation for the attacker
is obviously the case where τk1 and τk2 are coprime, otherwise there is some
redundancy between the information retrieved by the two distinct attacks.



90 A. Canteaut and Y. Rotella

4.4 Fast Correlation Attack When H is Linear

In the correlation attack, the target generator is composed of the LFSR defined
by αk filtered by a Boolean function H, and it generates sequences σ with period
τk < (2n−1). Then, as noticed in the pioneer work by Meier and Staffelbach [32],
any N -bit portion of σ can be seen as a codeword in a code of length N and
size τk. Therefore, recovering the initial state of the target generator boils down
to decoding the corresponding n-bit keystream with respect to this code since
the keystream can be identified with the result of the transmission of σ through
a binary symmetric channel with error-probability 1

2 (1 − ε) where ε is the cor-
relation between the two sequences.

In the specific case where the function H defining G(x) = H(xk) is linear, i.e.,
H(x) = Tr(λx) for some λ ∈ F2n , the involved code is a linear code. Some decod-
ing algorithms dedicated to linear codes can then be used. These algorithms are
faster than the exhaustive search (which corresponds to a maximum-likelihood
decoding), at the price of a higher data complexity. The corresponding attack is
then named fast correlation attack [32]. Obviously, a major parameter affecting
the complexity of the decoding procedure is the dimension of the involved code.
This dimension is the degree of the minimal polynomial of αk, which may be
smaller than n: it corresponds to the size nk of the cyclotomic class of k. Equiv-
alently, nk is the smallest integer m such that 2m ≡ 1 mod τk. In other words,
if αk belongs to a subfield F2m of F2n , then the fast correlation attack consists
in decoding a linear code of dimension m, instead of a code of dimension n.
This may enable the attacker to recover log2(τk) bits of the initial state with a
lower complexity than the fast correlation attack involving the original LFSR of
length n. The optimal situation which maximizes the number of bits recovered
by the attacker for a given complexity is then when τk = 2m −1 for some divisor
m of n, i.e., when k is such that gcd(k, 2n−1) = (2n−1)/(2m−1). Several decod-
ing algorithms have been proposed in this context [6–8,21,22,32,33] which offer
different trade-offs between the dimension of the code and the error probability
(see [1] for a recent survey).

Example 1. Let us consider an LFSR of size 10 with primitive characteristic
polynomial P (X) = X10 +X9 +X7 +X6 +X5 +X4 +X3 +X2 +1. We then use
as a filtering function a balanced function of 10 variables with a high nonlinearity
obtained by Dobbertin’s construction [12]. As described by Dobbertin, we start
from a bent function which is constant on a subspace of dimension n

2 and replace
this constant restriction by a balanced function in order to make the whole
function balanced. Here we start from Tr(αx33) where α is a root of P since
this function is bent, and modify it as in [12]. It is worth noticing that this
modification makes the function much more complex. In particular, it increases
its degree and its linear complexity, at the price of a very small degradation of
its nonlinearity. We construct this way a balanced function F of 10 variables
with nonlinearity 481 and algebraic immunity 3. By computing its univariate
representation, we get that the linear complexity of the keystream is equal to 992.
Therefore, this filtering function meets all design criteria related to algebraic-
like attacks and to fast correlation attacks. However, by construction, our filtered
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function F is very close to the Boolean function G(x) = Tr(αx33). This means
that the keystream is highly correlated to the output of the LFSR defined by α33.
Indeed, the correlation between the two sequences equals ε = 1−2−9dH(F,G) =
0.96. We can mount a fast correlation attack on an LFSR of size 5, and we recover
almost 5 bits of the internal state of the generator. This attack is obviously much
faster than the usual fast correlation attack: in our new setting, the involved
correlation is ε = 0.96 and the code dimension is n33 = 5, while the usual fast
correlation attack corresponds to a correlation ε′ = 1−481×2−9 = 0.06 and code
dimension n = 10. The remaining 5 bits of the initial state can be determined
by an exhaustive search over 33 possible values.

The previous example was rather specific since the filtering function is
designed from a component of a monomial mapping xk with k of the form
k = (2n−1)

(2m−1) . However, a similar situation may happen for many other filter-
ing functions which do not have any such specific structure. In order to quantify
the advantage of this new setting, we first need a closer look at the complexity
of fast correlation attacks. The decoding algorithms used in this context include
some methods exploiting the existence of low-weight parity-check relations for
the LFSR sequence [6,8,21,32]. These relations are derived from sparse multiples
of the LFSR characteristic polynomial, implying that the data complexity which
corresponds the degree of these multiples grows very fast with the LFSR length
(unless the LFSR characteristic polynomial is very sparse). Once these relations
have been found in a precomputation step, the attack consists in applying an
iterative decoding algorithm. For instance, the complexity of the original attack
based on parity-check relations with 3 terms is estimated by [6]:

Data = O
(

1
ε

× 2
n
2

)
and Time = O

((
1
ε

)3

× 2
n
2

)

.

Using parity-check relations with a higher weight w decreases the influence of
the LFSR length by replacing 2n/2 by 2n/(w−1), at the price of a higher influence
of the correlation, i.e., in the data complexity ε is replaced by ε2(w−2)/(w−1).
The time complexity can be improved by different techniques, but the data
complexity of most of these algorithms has a similar behaviour.

Example 2. Let us consider the same LFSR of size 10 as in Example 1, but now
filtered by a Boolean function which is not constructed from a monomial func-
tion. We choose as a filtering function the following function of 6 variables:
f(x0, x1, x2, x3, x4, x5) = x0x1x2x3x4 + x0x1x2x3x5 + x0x1x2x4x5 +x0x1x2x4 +
x0x1x2 +x0x1x3x4 +x0x1x3 +x0x1x4 +x0x1x5 +x0x1 +x0x2x3x4 +x0x2x3x5 +
x0x2x4x5 + x0x2x4 + x0x2 + x0x3x4 + x0x4 + x0 + x1x2x3x4x5 + x1x2x3x4 +
x1x2x3x5 + x1x2x3 + x1x2x4 + x1x2 + x1x3x5 + x1x3 + x1x4 + x1x5 + x1 +
x2x3x4x5 + x2x3x4 + x2x3x5 + x2x3 + x2 + x3x4 + x4x5 + x4

and the inputs of f are given by the following tapping sequence (γ1, . . . , γ6) =
(9, 8, 6, 3, 1, 0). The corresponding 10-variable function has nonlinearity 352,
algebraic immunity 3 and the linear complexity of the generated keystream
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is 637. But there exists a function G of the form G(x) = Tr(λx33) at distance
456 from F . The correlation between the keystream and the output of a non-
filtered LFSR of size n33 = 5 is then equal to ε = 0.11. A fast correlation attack
in this setting appears to be more efficient than the usual fast correlation attack,
which has parameters n = 10 and ε′ = 0.31. For instance, if the iterative algo-
rithm with parity-check relations of weight 3 is used, the ratio between the data
complexities of the two attacks is given by

Data

Data′ =
(

ε′

ε

)
× 2

n33−n
2 = 0.498 .

4.5 Correlation Attack Using a Fast Fourier Transform When H is
Nonlinear

In the general case, i.e., when H is nonlinear, the correlation attack, as originally
described in [40] corresponds to an exhaustive search over all initial states of the
target generator of the form Y0 = Xk

0 . For each of these Y0, the first N bits of
the corresponding output sequence σ are generated and the correlation between
σ and the keystream is computed, namely

N−1∑

t=0

(−1)st+σt (1)

where N is the number of keystream bits we need to be able to detect the bias,
i.e., N = 2 ln(τk)

ε2 where ε is the expected correlation. The time complexity of this
algorithm is therefore proportional to

τk × N =
2τk ln(τk)

ε2
.

We will now show that this time complexity can be improved by using a fast
Fourier transform even when H is nonlinear2. A similar technique has been
described in [5,34] but in an attack against combination generators. We now
prove that it also applies in our context.

Let 〈αk〉 denote the multiplicative subgroup of F
∗
2n generated by αk, i.e.,

the set with τk elements {1, αk, α2k, · · · , α(τk−1)k}. This set is composed of all
possible internal states Y0 = Xk

0 which must be examined in the attack. Then,
the attacker aims at finding the initial state Y0 ∈ 〈αk〉 which maximizes the
correlation given by (1) where σt = H(Y0α

kt). For any Y0 ∈ 〈αk〉, we compute

Z(Y0) =
N−1∑

t=0

(st ⊕ σt) =
τk−1∑

r=0

� N−r
τk

	−1
∑

q=0

(sqτk+r ⊕ σr)

2 The use of a fast Fourier transform for computing the correlation in the linear case
has been pointed out by several authors including [8,26].
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since for any t, σt = σt+τk
. We then deduce

Z(Y0) =

τk−1∑
r=0

(σr ⊕ 1)

⎛
⎜⎝

� N−r
τk

�−1∑
q=0

sqτk+r

⎞
⎟⎠+

τk−1∑
r=0

σr

⎛
⎜⎝
⌈N − r

τk

⌉
−

� N−r
τk

�−1∑
q=0

sqτk+r

⎞
⎟⎠ .

For any 0 ≤ r < τk, we set

S(r) =

� N−r
τk

	−1
∑

q=0

sqτk+r .

Then, we have

Z(Y0) =
τk−1∑

r=0

(σr ⊕ 1)S(r) +
τk−1∑

r=0

σr

(⌈N − r

τk

⌉
− S(r)

)

=
τk−1∑

r=0

(−1)σr

(
S(r) − 1

2

⌈N − r

τk

⌉)
+

N

2
.

It follows that

N−1∑

t=0

(−1)st+σt(Y0) = N − 2Z(Y0) =
τk−1∑

r=0

(−1)σr(Y0)

(⌈N − r

τk

⌉
− 2S(r)

)
.

We need to compute this value for Y0 = αik for every 0 ≤ i < τk. But,

σt(αik) = H(αikαtk) = H(α(t+i)k) = σt+i(1) .

In other words, we search for the integer i, 0 ≤ i < τk which maximizes the value

τk−1∑

r=0

(−1)σr+i mod τk
(1)

(⌈N − r

τk

⌉
− 2S(r)

)
,

which corresponds to the convolution product of two vectors of length τk, namely
(σt(1))0≤t<τk

and (S(t))0≤t<τk
. This can be done efficiently with a fast Fourier

transform with time complexity O(τk log τk) (see e.g. [3] or [23, p. 299]). The
memory complexity of the attack is then O(τk) and the overall time complexity
(including the computation of all S(t)) is then roughly

Time = τk log τk +
2 ln(τk)

ε2
.

Example 3. Let us consider the LFSR of size 12 with characteristic polynomial
P (X) = X12 + X10 + X9 + X8 + X7 + X5 + X4 + X3 + X2 + X + 1 and
filtered by the same 6-variable function as in Example 2, but where the inputs
of F are now defined by the tapping sequence (γ1, . . . , γ6) = (11, 10, 7, 5, 2, 0).
Then, the correlation between F and any function of the form G = Tr(λxk)
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with k =  2n−1
2m−1 and gcd(, 2n − 1) = 1 is too low for improving on the classical

correlation attack. However, we can use k = 45 which satisfies ord(αk) = 91.
In this case, we are able to get a higher correlation since we allow all possible
functions H, not only the linear ones. Here, the best approximation by a function
of the form G(x) = H(xk) gives us a correlation equal to 0.125. With an FFT,
the attack requires roughly (592 + 574) = 1166 operations, and 574 keystream
bits. The whole initial state can then be recovered by an exhaustive search.

4.6 Approximation of the Filtering Function by H(xk)

All previous correlation attacks exploit the existence of a function G of the
form G(x) = H(xk) for some k with gcd(k, 2n − 1) > 1, which provides a good
approximation of F . In particular, the fast correlation attacks involving a shorter
LFSR point out that the notion of generalized nonlinearity as defined in [41] must
be extended in order to capture these new attacks: it appears that the distance
of the filtering function to all Tr(λxk) with k =  × 2n−1

2m−1 where m is a divisor
of n and gcd(, 2n − 1) = 1 is a much more relevant quantity than its distance
to the components of monomial permutations.

Moreover, even if such a fast correlation attack is not feasible, for instance
if n is a prime, an efficient correlation attack may be possible based on the
approximation of F by G(x) = H(xk) for some k with gcd(k, 2n − 1) > 1. As
observed in the previous example, the fact that H can be nonlinear usually yields
a higher correlation. The best approximation of the form G(x) = H(xk) can be
computed from F as follows. For the sake of simplicity, we now suppose that k
is a divisor of (2n − 1), or equivalently that τ = (2n − 1)/k (otherwise, we get
similar results by replacing k by gcd(k, 2n −1)). Let 〈ατ 〉 be the cyclic subgroup
of F2n of order k. Then, by shifting this cyclic subgroup, we obtain the sets
Ei = αi〈ατ 〉, for 0 ≤ i < τ which provide the partition

F
∗
2n =

τ−1⋃

i=0

Ei

where all sets Ei, for 0 ≤ i < τ , are disjoint. It follows that G is constant on any
set Ei since, for x = αi × αjτ , we have

G(x) = H((αiαjτ )k) = H(αik).

The correlation between F and G can therefore be expressed as follows:
∑

x∈F2n

(−1)F (x)+H(xk) = 1 +
∑

x∈F∗
2n

(−1)F (x)+H(xk)

= 1 +
τ−1∑

i=0

(−1)H(αik)

⎛

⎝
∑

y∈Ei

(−1)F (y)

⎞

⎠ . (2)
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If gcd(k, τ) = 1, all values αik, for 0 ≤ i < τ belong to different sets Ej . Hence,
the function H which maximizes this correlation is the function defined by

H(αik) =
{

0 if
∑

y∈Ei
(−1)F (y) > 0

1 if
∑

y∈Ei
(−1)F (y) < 0

In other words, H(αik) = 1 if and only if the Hamming weight of the restriction
of F to Ei is strictly greater than k/2. It can be observed that H is uniquely
determined because the weight of the restriction of F cannot be equal to k/2
since k is odd. This also implies that, for the optimal choice of H, we obtain

∑

x∈F2n

(−1)F (x)+H(xk) = 1 +
τ−1∑

i=0

∣
∣
∣

∑

y∈Ei

(−1)F (y)
∣
∣
∣ ≥ 1 + τ

since each term in the sum is at least 1. Therefore, for any F , we can always find
a function H such that the correlation between F and G(x) = H(xk) is at least
(1 + τ)2−n � k−1. It is worth noticing that this lower bound on the correlation
does not decrease when the LFSR length n increases.

In the case where gcd(k, τ) = d > 1, we have that αik and α(i+ τ
d )k belong to

the same set Ej . Indeed, α
kτ
d ∈ 〈ατ 〉. Equation (2) can then be rewritten as

∑

x∈F2n

(−1)F (x)+H(xk) = 1 +

τ
d −1∑

i=0

(−1)H(αik)

⎛

⎝
d−1∑

j=0

⎛

⎝
∑

y∈Ei+j τ
d

(−1)F (y)

⎞

⎠

⎞

⎠ .

In this case, the value of H at point αik is defined by the weight of the restriction
of F to the set

⋃d−1
j=0 Ei+j τ

d
. Using again that this set has an odd cardinality, we

get that the correlation between F and G(x) = H(xk) is at least (1 + τ
d )2−n.

While in usual (fast) correlation attacks, choosing a filtering function with
a high nonlinearity guarantees that the attack will be infeasible, this is not the
case here. For instance, some bent functions in the so-called class PS− [11] are
constant on all sets λ〈ατ 〉 for τ = 2n/2+1, while they have the best nonlinearity.

The previous results enable us to find the best approximation of F by a
function of the form H(xk). However, improving the complexity of this search
when n grows and F depends on a few inputs only remains an open issue.
Indeed, it seems difficult to use this property of F to simplify the search for the
optimal H. Another open problem is to be able to find in an efficient way the
best approximation of the form G(x) = Tr(λxk).

5 Conclusions

While the monomial equivalence introduced by Rønjom and Cid does not affect
the security of filter generators regarding algebraic attacks, it usually allows to
decrease the complexity of correlation attacks and their variants. Most impor-
tantly, considering a non-bijective monomial mapping enables the attacker to
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mount a divide-and-conquer attack by decomposing the set of all nonzero initial
states with respect to some multiplicative subgroup having a smaller order. If
the LFSR length is not a prime, the involved subgroup may be a subfield and
this divide-and-conquer attack can be further improved as in fast correlation
attacks. A counter-measure to avoid these attacks then consists in choosing for
the LFSR length a Mersenne prime, i.e. both n and (2n − 1) are prime.
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Abstract. In this article, we analyze the circulant structure of general-
ized circulant matrices to reduce the search space for finding lightweight
MDS matrices. We first show that the implementation of circulant matri-
ces can be serialized and can achieve similar area requirement and clock
cycle performance as a serial-based implementation. By proving many
new properties and equivalence classes for circulant matrices, we greatly
reduce the search space for finding lightweight maximum distance separa-
ble (MDS) circulant matrices. We also generalize the circulant structure
and propose a new class of matrices, called cyclic matrices, which preserve
the benefits of circulant matrices and, in addition, have the potential of
being self-invertible. In this new class of matrices, we obtain not only the
MDS matrices with the least XOR gates requirement for dimensions from
3 × 3 to 8 × 8 in GF(24) and GF(28), but also involutory MDS matrices
which was proven to be non-existence in the class of circulant matrices.
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tory and MDS simultaneously. Compared to the existing best known light-
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terms of XOR gates required for a hardware implementation. Notably, our
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1 Introduction

In the designing of symmetric-key ciphers, there are two fundamental concepts
required for the overall security of the cipher—the confusion and diffusion prop-
erties described by Shannon [21]. Informally, the latter is to spread the internal
dependencies as much as possible [22]. The diffusion layer of a cipher is often
achieved by a linear diffusion matrix that transforms an input vector to some
output vector through linear operations. For the choice of the diffusion layer,
there can be a trade-off between the security and computation efficiency. Sev-
eral designs compromise the diffusion power for a faster diffusion layer, while
another trend is to maximize the diffusion power with maximum distance sepa-
rable (MDS) matrices. The diffusion power of a matrix is often quantified by the
branch number of the matrix, and an MDS matrix achieves maximum branch
number, also known as perfect diffusion property. MDS matrices are widely used
in many ciphers like AES [9], LED [11], SQUARE [8]. However, very often the price
for having strong diffusion property is the heavy implementation cost, in either
software or hardware implementations. Therefore, there is a need to reduce the
implementation cost when perfect diffusion property is desired.

Recently, the designing and improving of hardware efficiency become a major
trend. Several lightweight block ciphers [5,7,11,24] and lightweight hash func-
tions [2,6,10] are designed to minimize the implementation cost. Notably in the
hash function PHOTON [10], a new type of MDS matrices that can be computed
recursively were proposed, so-called serial matrices, where a serial matrix A of
order k is raised to power k and the resultant matrix Ak is MDS. In compar-
ison to round-based implementation, serial-based implementation trades more
clock cycles for lesser hardware area requirement. Such matrices were later used
in block ciphers like LED [11] and more recently in authentication encryption
scheme like the PRIMATEs [1].

In a nutshell, a round-based implementation computes the entire diffusion
matrix of order k and applies the diffusion layer in one clock cycle. Hence, it is
necessary to have all, if not most, of the k2 entries of the diffusion matrix to be
lightweight. On the other hand, a serial-based implementation computes the non-
trivial row of a serial matrix1, and applies it for k times recursively. Therefore,
the primary implementation cost is the k entries of the non-trivial row and the
computation time takes k clock cycles. Although it is natural to perceive that
these two implementations require very different matrices, there are a type of
matrices that can achieve the best of both worlds—circulant matrices.

Circulant matrices are a common type of matrices for the diffusion layer, a
typical example of which is the AES diffusion matrix. They have a simple struc-
ture that every row is a right-shift of the previous row. Hence, a circulant matrix
can be defined by its first row of k entries. In addition, it is known that an MDS
circulant matrix can contain repeated lightweight entries. For instance in the AES
diffusion matrix, there are two 1’s which practically has no implementation cost

1 A serial matrix of order k consists of k − 1 rows with a single 1 and k − 1 many 0’s
and a row with non-trivial entries.
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for multiplication. In comparison to Hadamard matrices, another common type
of matrices for the diffusion layer [3,4], which must contain k distinct entries to be
MDS, circulant matrices tend to achieve lower implementation cost in a round-
based implementation. Although circulant matrices cannot be directly used in
a serial-based implementation, their circulant structure can be implemented in
a serialized manner and achieve similar performance as the serial-based imple-
mentation. In short, using a circulant matrix in the diffusion layer gives the
flexibility to do a trade-off between the area requirement and the clock cycle,
whereas most of the other matrix types are suitable for either one but not both
implementations.

One approach to build lightweight MDS matrices from some matrix type
is to focus on some subclass of such matrices that are MDS, based on some
pre-defined metric for lightweight, then pick the lightest MDS matrices from
this subclass. In [13,16], the authors chose to maximise the number of 1’s for
better efficiency and constructed circulant-like matrices that are MDS with as
many 1’s as possible, then searched for the lightest MDS circulant-like matri-
ces. In another work [12], the authors quantified lightweight with low Hamming
weight and focused on involutory (self-inverse) matrices, they proposed the con-
struction of Hadamard-Cauchy matrices that are MDS and can be involutory,
then minimized the Hamming weight of a few entries of the Hadamard-Cauchy
matrices. Although this approach is efficient for finding lightweight MDS matri-
ces, the matrices found are optimal among the subclasses rather than the whole
population of the matrix type.

Another approach is to pick the lightest matrix from some matrix type and
check for MDS, and extend the search to the next lightest matrix if it is not MDS.
This approach, also often regarded as exhaustive search, can be seen in [17,22].
The clear advantage of the exhaustive search over the previous approach is that
it guarantees optimal for the given matrix type. In addition, it has the freedom
to change the metric for lightweight when necessary. Despite the advantages,
this approach suffers from the large search space. In [22], the authors tackled
this problem by introducing the concept of the equivalence classes of Hadamard
matrices to significantly reduce the search space for finding lightweight involutory
MDS (IMDS) matrices. However, the equivalence relation for circulant matrices
has not yet been discovered in the literatures.

There are two main challenges in the second approach. Given a set of light-
weight coefficients, the first challenge in finding MDS circulant matrices with
these coefficients would be the large search space due to the necessity of check-
ing the MDS property for all possible permutations. The second challenge is
that MDS circulant matrices can have repeated entries which makes the search
space larger than other types of matrices, for instance Hadamard matrices, of
the same order. Perhaps due to these challenges, the existing work on circulant
matrix used either the first approach to find lightweight MDS circulant matrix
of order 8 from some subclass of circulant matrices [13,14], or the second app-
roach but could not complete the search for lightweight MDS circulant matrix
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of order 8 [17]. Therefore, this paper is devoted to tackle these problems and
reduce the search space for finding generic lightweight MDS circulant matrices
through analyzing the circulant structure.

Contributions. In Sect. 2.3, we illustrate how circulant matrices can have a
trade-off between the area requirement and clock cycle in hardware implementa-
tion. This shows that using circulant matrix in a diffusion layer gives the designer
the flexibility to choose the implementation between lower area requirement and
faster computation according to the needs. In Sect. 3, we tackle both challenges
faced when using the second approach for finding lightweight MDS circulant
matrices. In Sect. 3.1, we prove the existence of equivalence classes for circulant
matrices in terms of the branch number. Since the circulant matrices within an
equivalence class have the same branch number, it is sufficient to check one rep-
resentative from each equivalence class and hence reduce the search space. In
Sect. 3.2, we show that there are at most 5 types of MDS circulant matrices for
order k ≤ 8, namely circulant matrices whose first row has k distinct entries, 1,
2 or 3 pairs of repeated entries, or 3 repeated entries. This allows us to complete
the search for lightweight MDS circulant matrix of order 8 which previously was
not achievable by [17]. In Sect. 4, we generalize the circulant structure and pro-
pose a new type of matrices—cyclic matrices, which preserve the benefits and
advantages of circulant matrices. Using group theory, we prove that, in terms
of branch number, cyclic matrices are equivalent to circulant matrices. This
greatly simplifies the understanding and analysis on the branch number of the
cyclic matrices. In Sect. 5, we present the lightest MDS left-circulant matrices
(where each row is a left rotation instead of right), for order k ≤ 8, based on the
same metric used in [17,22]. In addition, we overcome the constraint that circu-
lant matrix cannot be involutory and MDS simultaneously, and also present the
lightest involutory MDS left-circulant matrices. To the best of our knowledge,
the latter matrices are the first of its kind. We would like to emphasize that all
the techniques and most results presented in this paper are independent of the
metric for lightweight. In other words, one can choose another metric and apply
our techniques to reduce the search space for finding the desired matrices.

2 Preliminary

In this section, we first state some notations that will be frequently used for the
rest of the paper. Next, we formally define what branch number of a matrix is,
and provide two propositions that will be useful in the later proofs. Lastly, we
give an introduction to circulant matrix, the advantages of using it and how the
implementation of circulant matrix can be serialized. In this paper, we assume
that the matrices are square matrices unless otherwise stated.
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2.1 Notations

n : Dimension of the finite field
GF(2n) : Finite field of order 2n

0x : Prefix for hexadecimal, common notation for expressing
binary polynomial coefficients or n-bit strings

k : Order of the square matrix
M [i, j] : (i,j)-entry of the matrix M , where i, j ∈ {0, 1, ..., k − 1}
wt(v) : Number of nonzero components of the vector v

2.2 Branch Number of the Diffusion Layer

Recall that the diffusion power of the diffusion layer is often quantified by the
branch number of the diffusion matrix.

Definition 1. The branch number of a matrix M of order k over finite field
GF(2n) is the minimum number of nonzero components in the input vector v
and output vector u = M · v as we range over all nonzero v ∈ [GF(2n)]k. I.e.,
the branching number of matrix M is BM = minv �=0{wt(v) + wt(Mv)}.

That is to say, for any nonzero input and output pair of a diffusion matrix,
the number of nonzero components will be at least the branch number of the
diffusion matrix. This is essential for protecting against the cryptanalysis like
differential attack that exploits the differential patterns between the plaintext
and the ciphertext. As the sum of nonzero components is lower bounded by
the branch number, having a high branch number implies that a small input
difference will inevitably lead to a large output difference, and to achieve a small
output difference would require a large input difference.

Definition 2 [23]. A maximum distance separable (MDS) matrix of order k is
a matrix that attains the optimal branch number k + 1.

When there is a single difference in the input vector, the best possible diffu-
sion is to spread the difference to all k components of the output vector, hence
the largest possible branch number is k+1. For instance, the AES diffusion matrix
has order 4 and a branch number 5, hence it is MDS.

The following propositions are simple yet crucial building blocks for the
results in this paper.

Proposition 1 [19, p. 321, Theorem 8]. A matrix is MDS if and only if its
square submatrices are all nonsingular.

Proposition 2. For any permutation matrices P and Q, the branch numbers
of these two matrices M and PMQ are the same.

Proof. Since P and Q are permutation matrices, there can be bijection map-
pings between the input vectors (resp. output vectors) of M and PMQ where
the vectors differ by some permutation, hence the minimum number of nonzero
components in the input and output pairs remains the same and they have the
same branch number. ��
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2.3 Circulant Matrices and Its Implementation

Circulant Matrices. Here, let us formally define circulant matrices and related
notations.

Definition 3. A circulant matrix C of order k is a matrix where each sub-
sequent row is a right rotation of the previous row. We denote the matrix as
circ(c0, c1, ..., ck−1), where ci’s are the entries of the first row of the matrix. The
(i, j)-entry of C can be expressed as C[i, j] = c(j−i) mod k.

There are several advantages of using circulant matrix in a diffusion layer:

1. It has a higher probability of finding an MDS matrix as compared to a ran-
domized square matrix [8].

2. It has at most k distinct entries, and in addition it can be MDS and contain
repeated lightweight entries, which tends to have lower implementation cost
as compared to matrices like Hadamard and Cauchy matrices that must have
at least k distinct entries in order to be MDS.

3. It has the flexibility to be implemented in both round-based and serialized
implementations.

However, it was shown in [15] that involutory MDS (IMDS) circulant matri-
ces of order 4 do not exist, and was further proved in [13] that IMDS circulant
matrices of any order do not exist. To preserve the benefits of circulant matri-
ces, we generalize the circulant structure in Sect. 4 and find lightweight IMDS
matrices that are presented in Sect. 5.

Serialized Implementation of Circulant Matrices. First, let us illus-
trate the round-based implementation using an arbitrary circulant matrix
circ(a, b, c, d) of order 4, and an arbitrary input vector (w, x, y, z), we compute
the output vector as follows,

⎛

⎜
⎜
⎝

a b c d
d a b c
c d a b
b c d a

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

w
x
y
z

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

aw + bx + cy + dz
dw + ax + by + cz
cw + dx + ay + bz
bw + cx + dy + az

⎞

⎟
⎟
⎠ .

The entire diffusion matrix is implemented and the output components can be
computed in parallel and in one clock cycle.

On the other hand, one clock cycle of a serial-based implementation is com-
puted as follows,

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
a b c d

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

w
x
y
z

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x
y
z

aw + bx + cy + dz

⎞

⎟
⎟
⎠ ,
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where the output is fed back to the input and this process is repeated for
another 3 times to get the final output. Excluding the control logics and memo-
ries required, serial-based implementation requires implementing one row of the
matrix and takes k clock cycles to compute the output vector.

Clearly a circulant matrix can be implemented in the round-based manner.
Although it is not in a form of a serial matrix that is required for serial-based
implementation, implementation of a circulant matrix can still be serialized.
The key observation is that the same permutation is applied to obtain each
subsequent row. For a circulant matrix, the permutation is a right rotation. To
serialize the implementation of circulant matrix, we implement the first row of
the circulant matrix and compute the first output component.

⎛

⎜
⎜
⎝

a b c d
⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

w
x
y
z

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

aw + bx + cy + dz
⎞

⎟
⎟
⎠ .

Next, we update the input vector by applying the inverse permutation to obtain
(x, y, z, w) and apply the first row of the matrix again,

⎛

⎜
⎜
⎝

a b c d
⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x
y
z
w

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ax + by + cz + dw

⎞

⎟
⎟
⎠ ,

and we obtain the second component of the output vector. We repeat the process
to obtain the entire output vector in 4 clock cycles. Thus, similar to serial-based
implementation, we only need to implement one row of the matrix and it takes
k clock cycles to compute the output vector.

In fact, one can even achieve other area requirement and clock cycle trade-offs
that are between the round-based and serial-based implementation performance.
In the previous example, one can also implement 2 rows of the circulant matrix
and compute 2 output components in parallel, this will take 2 clock cycles to com-
plete the diffusion layer computation. More generally, we can have t-serialized
implementation when we are using circulant matrices, where t divides k. The
estimated implementation costs and clock cycles required for the implementa-
tions are summarized in Table 1. Note that this does not include the memory
costs and control logics required for different implementations. From Table 1, it
is clear that the round-based and serialized implementations are special case of
t-serialized implementation where t = 1 and t = k respectively.

Circulant matrices are not the only matrix type that can be serialized. In
fact, if the same permutation, not necessarily being a right rotation, is applied
to obtain each subsequent row, we can still serialize the implementation. This
observation leads us to generalize the circulant matrices to cyclic matrices, see
also Sect. 4, which can be serialized too.
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Table 1. Estimated implementation costs and clock cycles for various implementations

Type of implementation Matrix implementation (no. of entries) Clock cycle

Round-based k2 1

Serial-based k k

Serialized k k

t-serialized k2/t t

3 Properties of Circulant Matrices

There are mainly two challenges in the method of picking the lightest circulant
matrix and checking the MDS property. Firstly, for a generic (not considering the
values of the entries) circulant matrix of order k, circ(c0, c1, ..., ck−1), there are
k! ways to permute the entries, which can quickly be intractable. Secondly, the
choice of the k lightweight nonzero entries need not be distinct, which potentially
cause the search space to be much larger than just choosing k distinct entries
and permuting them.

In Sect. 3.1, we first introduce an equivalence relation to partition the k!
circulant matrices into equivalence classes, where circulant matrices within an
equivalence class share the same branch number. This allows us to reduce the
search space by checking the MDS property for one representative from each
equivalence class. Next in Sect. 3.2, we analyze the circulant structure and show
that for order k ≤ 8, there are at most 5 types of MDS circulant matrices,
namely circulant matrices whose first row has k distinct entries, 1, 2 or 3 pairs
of repeated entries, or 3 repeated entries. This shows that any MDS circulant
matrix must belong to one of these 5 types.

3.1 Compact Equivalence Classes of Circulant Matrices

For the ease of our discussion on the permutation of the entries, we focus on the
permutation of the index of the elements.

Definition 4. An index permutation σ on an ordered set {c0, c1, ..., ck−1} is a
permutation that permutes the index of the elements.

Example 1. Let σ be an index permutation on an ordered set {c0, c1, c2, c3, c4}
where σ(i) = 4 − i, the resultant ordered set will be {c4, c3, c2, c1, c0}.

Definition 5. Given a matrix M of order k that is defined by its first row under
a rule, we denote by Mσ the matrix generated under the same rule by the first
row of M modified by applying an index permutation σ.

Definition 6. Two matrices M and M ′ are called permutation-equivalent,
denoted by M ∼B M ′, if there exist two permutation matrices P and Q such
that M ′ = PMQ.
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It is easy to verify that ∼B is a well-defined equivalence relation. By Proposi-
tion 2, we know that the permutation-equivalent matrices have the same branch
number. Using this equivalence relation, we partition the k! possible circulant
matrices into equivalence classes with respect to their branch number.

Definition 7. An equivalence class of circulant matrices is a set of circulant
matrices satisfying the equivalence relation ∼B.

We first analyze what index permutation satisfies the relation, then we deduce
the number of equivalence classes of circulant matrices.

Lemma 1. Given two circulant matrices C and Cσ, C ∼B Cσ if and only if σ
is some index permutation satisfying σ(i) = (bi+a)mod k, ∀i ∈ {0, 1, ..., k −1},
where a, b ∈ Zk and gcd(b, k) = 1.

Proof. The “if” direction is immediate once we have proven the “only if” direc-
tion. Assume that C ∼B Cσ. By Definition 6, there exists permutation matrices
P and Q such that Cσ = PCQ, where P (resp. Q) is in fact a row (resp. column)
permutation on C. Since C is circulant, one can observe that if Cσ = PC, then
the first row of Cσ is some row of C and thus corresponds to some rotation of
the first row of C, which shows that the index permutation σ can be expressed
as πa(i) = (i + a) mod k. That is, πa corresponds to a row permutation Pa.
Therefore, for any Cσ such that Cσ = PCQ, we can always apply some index
permutation π−a to fix the first element c0 and accordingly pre-multiply Cσ by
a corresponding row permutation P−a, which gives Cπ−a◦σ = P−aPCQ, where
π−a(σ(0)) = 0.

Next, we consider index permutation that fixes 0. Note that this implies that
the row and column permutations on C fix the first row and column. Suppose
that Cφb = PCQ, φb(0) = 0 and φb(1) = b, then the column permutation Q
maps column b of C to column 1 of Cφb , and similarly the row permutation P
maps row k − b of C to row k − 1 of Cφb . By definition of circulant matrices, we
know that cφb(2), which is the third entry of Cφb , can be written as Cφb [0, 2] =
Cφb [(k−1), 1]. Since the pre-image of row k−1 and column 1 of Cφb are row k−b
and column b of C, we can express that entry of Cφb as an entry of C, that is
Cφb [(k − 1), 1] = C[(k − b), b]. And again by definition of circulant matrices, the
entry cb−(k−b) mod k = c2b mod k. That is to say, by defining φb(1) = b, we have
restricted the permutation of the next index to be φb(2) = 2b mod k. Following
the same argument, we can conclude that φb(i) = bi mod k. In addition, we
must have gcd(b, k) = 1 so that φb is a permutation on {0, 1, ..., k − 1}.

Finally, we can see that if C ∼B Cσ then σ = πa ◦ φb, that is, σ(i) = (bi + a)
mod k. ��

For simplicity, we call the permutations satisfying Lemma1 the C-
permutations. That is to say, C ∼B Cσ if and only if σ is a C-permutation.
We show in the full version of this paper [18] how to generate one representative
for each equivalence class.
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Theorem 1. There are (k−1)!
ϕ(k) equivalence classes of circulant matrices of

order k, where ϕ(k) is the Euler’s totient function.

Proof. It is clear that the cardinality of each equivalence class is the number of
possible index permutation σ. By Lemma 1, we know that σ(i) = (bi + a) mod
k, where a, b ∈ Zk and gcd(b, k) = 1. Since there are k possible values for a
and b has to be coprime with k, there are ϕ(k) possible values for b, and each
equivalence class has cardinality of k · ϕ(k). Hence the number of equivalence
classes is k!

k·ϕ(k) = (k−1)!
ϕ(k) . ��

Note that the “only if” direction of the Lemma 1 implies that this is the most
compact equivalence classes for generic circulant matrices in terms of branch
number. In [22], the authors presented equivalence classes of Hadamard matrices
to reduce the search space for checking the MDS property. But whether there
exists larger (more compact) equivalence classes to further reduce the search
space remains an open question. Observing its similarity with our work, we
analyze the equivalence classes of Hadamard matrices in [22] and find that it
is already the most compact equivalence class. The proof is included in the full
version of this paper [18].

3.2 Types of MDS Circulant Matrices of Order k ≤ 8

In short, this section proves the following theorem.

Theorem 2. For order k ≤ 8, there are at most 5 types of MDS circulant
matrices, namely circulant matrices whose first row has:

Type 0: k distinct entries;
Type 1: 1 pair of repeated entries;
Type 2: 2 pairs of repeated entries;
Type 3: 3 pairs of repeated entries;
Type 4: or 3 repeated entries.

Given an ordered multi-set of entries {c0, c1, ..., ck−1}, suppose that two
entries of them are the same, denoted by ci = c(i+d) mod k for some i, d ∈
{0, 1, ..., k − 1}. From Sect. 3.1, we see that any rotation of the entries are
permutation-equivalent. Hence, for any d > 	k

2 
, it is equivalent to considering
c(i−d) mod k = c(i−d)+d which is equal to ci+(k−d) mod k = ci, where k − d ≤ 	k

2 
.
Without loss of generality, we assume i + d ≤ k − 1 and d ≤ 	k

2 
.
First, we state two lemmas that will help us in proving Theorem 2.

Lemma 2. An MDS circulant matrix of even order k does not have ci = ci+ k
2
.

Proof. Suppose that there exists ci = ci+ k
2
. Considering the submatrix of order

2 by taking row 0 and k
2 , and column i and i + k

2 , we have
(

ci ci+ k
2

c(i− k
2 ) mod k ci

)

.
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Since i− k
2 ≡ i+ k

2 (mod k), we have a singular submatrix and by Proposition 1,
there is a contradiction. ��

Lemma 3. An MDS circulant matrix does not have ci = ci+d and cj = cj+d,
where i �= j.

Proof. Suppose that there exist ci = ci+d and cj = cj+d, where i < j. Consider
the submatrix of order 2 by taking row 0 and (i − j) mod k, and column i and
i + d, we have (

ci ci+d

cj cj+d

)
,

Since these two columns are identical, we have a singular submatrix and by
Proposition 1, there is a contradiction. ��

From Lemmas 2 and 3, we can conclude that an MDS circulant matrix of
order k allows at most 	k−1

2 
 possible distinct distances and thus has at least
k+1

2 � distinct elements. Specially for order k = 8, it allows 3 possible distinct
distances and thus there are at most 3 pairs of repeated entries. If some entry
has multiplicity 3, say ci = ci+d1 = ci+d2 , then the three distances d1, d2, d2 −d1
are pairwise distinct. It also implies that any higher multiplicity is impossible
for an MDS circulant matrix of order 8 as the number of pairwise equalities is
more than 3 (a similar property that an MDS matrix of order 8 has at most
24 ones was proved in [16]). Similarly, for order k < 8, there are also at most
3 possible distances. Therefore, we obtain Theorem 2 that any MDS circulant
matrix of order k ≤ 8 is one of the 5 matrix types.

In Table 2, we list all the possible types of MDS circulant matrices for order
k ≤ 8. These results can also be extended to higher order circulant matrices.
Note that this is a necessary condition for an MDS circulant matrix, it does not
guarantee the existence of MDS circulant matrix for any of the circulant matrix
type. For k = 8, we check that there are MDS matrices of each type, see also
Sect. 5.

Table 2. Possible types of MDS circulant matrices of order k ≤ 8

Order Possible d k distinct 1 pair 2 pairs 3 pairs 3 repeated

3 {1} � �
4 {1} � �
5 {1, 2} � � �
6 {1, 2} � � �
7 {1, 2, 3} � � � � �
8 {1, 2, 3} � � � � �



112 M. Liu and S.M. Sim

4 Cyclic Matrices

In this section, we generalize the circulant matrix structure and introduce a new
type of matrices, we call them the cyclic matrices. Despite that cyclic matrices
capture the essential requirement to have t-serialized implementation, analyzing
all cyclic matrices is not feasible. Using results from elementary group theory,
we can relate cyclic matrices to circulant matrices in terms of branch number.
This allows us to apply the results on circulant matrices in Sect. 3 to the cyclic
matrices as well.

Generalized Circulant Matrices. Recall from Sect. 2.3 that to serialize the
implementation of a matrix, the same permutation is applied to obtain each
subsequent row. Hence, we generalize the circulant structure by considering other
permutations beside the right rotation.

Definition 8. A cyclic matrix Cρ of order k is a matrix where each subsequent
row is some permutation ρ of the previous row, where ρ is a cycle of length k. We
denote the matrix as cycρ(c0, c1, ..., ck−1), where ci’s are the entries of the first
row of the matrix. The (i, j)-entry of Cρ can be expressed as Cρ[i, j] = cρi(j).

For example, the permutation of the circulant matrix structure can be
expressed as a cycle (0 1 2 ... k − 1), where ρ = (i0 i1 i2 ... ik−1) means
ρ(ij) = i(j−1) mod k for 0 ≤ j ≤ k − 1. In the definition of cyclic matrix, we
require the permutation to be a cycle of length k to avoid repeated rows and
repeating elements in a column (which will not satisfy the property of MDS).

Since there are (k − 1)! cycles of length k, it is infeasible to analyze every
single the cyclic structures. However, using Proposition 2 and elementary group
theory, we can elegantly reduce the problem to simply analyzing the circulant
matrices. First, observe that the permutation ρ is an element of the symmetric
group Sk, and the collection of the permutations of the k rows of the matrix
forms a cyclic group, hence the name cyclic matrices.

Example 2. Considering the cycle permutation ρ = (0 2 1 3), we can express
cycρ(a, b, c, d) as follows

⎛

⎜
⎜
⎝

(a, b, c, d)
ρ(a, b, c, d)
ρ2(a, b, c, d)
ρ3(a, b, c, d)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a b c d
d c a b
b a d c
c d b a

⎞

⎟
⎟
⎠ ,

where the collection of the permutations of each row forms a cyclic group of
order 4, 〈(0 2 1 3)〉 = {(), (0 2 1 3), (0 1)(2 3), (0 3 1 2)}.

Relation to Circulant Matrices. Next, we show that any cyclic matrix is
permutation-equivalent to some circulant matrix. More preciously, there is a
bijection between the cyclic and circulant matrices satisfying ∼B. To prove this,
we use the following proposition from elementary group theory.
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Proposition 3 [20, Chap. 5.3]. Any two permutations ρ, τ which have the same
cycle type are conjugate in Sk.

That is to say, there exists permutation σ ∈ Sk such that σρ = τσ. In the
nutshell, σ can be computed by placing one permutation above the other and
view it as a Cauchy’s 2-line notation for permutation.

Example 3. Let ρ = (0 2 1 3) and τ = (0 1 2 3), viewing it as a Cauchy’s
2-line notation, we have (

0 2 1 3
0 1 2 3

)
,

from which we see that 0 and 3 are fixed while 1 and 2 are swapped. Therefore,
we obtain σ = (1 2) and we can verify that σρ = τσ.

Theorem 3. Given an ordered set S with k elements and some cyclic matrix
structure, there exists a bijection between the cyclic matrices and the circulant
matrices satisfying the relation ∼B, where both sets of matrices are generated by
some index permutation on S.

Proof. Let the permutation of some cyclic matrix be ρ and circulant matrix be
τ = (0 1 2 ... k−1). By Proposition 3, there exist some permutation σ such that
σρ = τσ. Hence for any row i ∈ {0, 1, ..., k − 1}, we have σρi = τ iσ. In the form
of a matrix, the permutation for each row of the matrices can be expressed as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ(S)
σ ◦ ρ(S)
σ ◦ ρ2(S)

...
σ ◦ ρk−1(S)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ(S)
τ ◦ σ(S)
τ2 ◦ σ(S)

...
τk−1 ◦ σ(S)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where σ in the cyclic matrix can be viewed as a column permutation, while in the
circulant matrix it is a index permutation on S. Therefore by Proposition 2, the
cyclic matrix has the same branch number as a circulant matrix that undergoes
index permutation σ.

Lastly, one can easily infer that for any index permutation π on the cyclic
matrix, it corresponds to a circulant matrix that undergoes index permutation
σ ◦ π. ��

Example 4. Consider a cyclic matrix of order 4 with the row permutation ρ =
(0 2 1 3), while the circulant matrix is τ = (0 1 2 3). From Example 3, we
have σ = (1 2) that satisfies σρ = τσ. Applying column permutation σ on the
cyclic matrix and index permutation σ on circulant matrix, we obtain the same
matrix as follows

⎛

⎜
⎜
⎝

a b c d
d c a b
b a d c
c d b a

⎞

⎟
⎟
⎠

col perm σ−−−−−−−→

⎛

⎜
⎜
⎝

a c b d
d a c b
b d a c
c b d a

⎞

⎟
⎟
⎠

index perm σ←−−−−−−−−

⎛

⎜
⎜
⎝

a b c d
d a b c
c d a b
b c d a

⎞

⎟
⎟
⎠ .
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This theorem shows that for any cyclic matrix, we have some column permu-
tation σ that transforms it into a circulant matrix (or any other cyclic matrix)
while preserving the branch number. However, the involution property of circu-
lant matrix may not hold true for the cyclic matrices, which gives us an insight
that there might exist IMDS cyclic matrices while it is not the case for the cir-
culant matrices. And we indeed find IMDS cyclic matrices which are presented
in Sect. 5.

Corollary 1. Any cyclic matrix corresponds to some circulant matrix preserv-
ing the coefficients and the branch number.

This is immediate from Theorem 3 and the fact that their entries are the
same up to some permutation. In addition, we can draw the following corollary
immediately from Theorems 2 and 3.

Corollary 2. For order k ≤ 8, there are at most 5 types of MDS cyclic matrices,
namely cyclic matrices whose first row has:

Type 0: k distinct entries;
Type 1: 1 pair of repeated entries;
Type 2: 2 pairs of repeated entries;
Type 3: 3 pairs of repeated entries;
Type 4: or 3 repeated entries.

5 Results on Lightest (Involutory) MDS Matrices

There are different ways to define lightweight/efficient. For instance in AES, the
diffusion matrix entries were chosen for its simplicity and low Hamming weight,
while [14,16] defined efficiency by the number of 1’s in the matrix. In hardware
implementation, it is common to consider the area required and a simplified
metric is to count the number of XOR gates needed for implementation. In [16,
17,22], the authors evaluate the number of XOR gates needed to implement the
multiplication of the diffusion matrices. Detailed description of the XOR count
can be found in [16,17,22]. In this paper, we quantify the weight of a diffusion
matrix by the sum of XOR counts in its first row2.

In this section, we mainly focus on a special case of cyclic matrices, called left-
circulant matrices. First, we provide a strategy to search for MDS left-circulant
matrices by exploiting the properties of the matrices, including the permutation-
equivalence relationship. Then, we show that, though no circulant matrices are
IMDS, there are IMDS left-circulant matrices. We also provide a strategy to
search for such IMDS matrices. The experimental results show that all the light-
est MDS matrices and IMDS matrices can be confirmed for 3 ≤ k ≤ 8, by using
our strategies.
2 This is adapted from [17], in which the number of XOR counts of one row is given

by
∑k

i=1 γi + (� − 1) · n, where γi is the XOR count of the i-th entry and � is the
number of nonzero coefficients in the row. Since the latter term is fixed for any MDS
matrix of order k over GF(2n), we are only interested in the sum of the XOR counts
of the coefficients in a row.
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5.1 Lightweight MDS Left-Circulant Matrices

The definition of left-circulant matrices is given as follows.

Definition 9. A left-circulant matrix L of order k is a matrix where each sub-
sequent row is a left rotation of the previous row. We denote the matrix as
�-circ(c0, c1, ..., ck−1), where ci’s are the entries of the first row of the matrix.
The (i, j)-entry of L can be expressed as L[i, j] = c(i+j) mod k.

It is infeasible to exhaust all the possible MDS left-circulant matrices
over GF(28) for k = 8. Notice that the permutation-equivalence relationship
(Lemma 1) of circulant matrices also applies to left-circulant matrices. Com-
bining Corollary 2 and permutation-equivalence relationship, we can exhaust all
the possible MDS left-circulant matrices over GF(2n) with small XOR count for
n ≤ 8 and k ≤ 8.

To efficiently determine whether a left-circulant matrix is MDS, we collect in
advance the symbolic expressions of all determinants of its submatrices, and use
them to compute the values of determinants. Once detecting that a determinant
has value 0, the matrix is confirmed to be not MDS; otherwise, it is MDS.
Using this method, the detection of MDS left-circulant matrices is speeded up
(by dozens of times for 5 ≤ k ≤ 8) since a lot of submatrices have the same
determinants in terms of symbolic expressions.

We show in Table 3 our experimental results on MDS left-circulant k × k
matrices over GF(2n) with smallest XOR count for n = 4, 8 and 3 ≤ k ≤ 8. All
the provided matrices are optimal among the MDS cyclic matrices in terms of
the metric as used in [17,22]. We also exhaust all the left-circulant matrices over
GF(24) for k = 7, 8, and the results show that no such matrices are MDS. It was
also noted in [17] that there do not exist circulant 8times8 matrices over GF(24).

Table 3. Lightest MDS left-circulant matrices of order 3 ≤ k ≤ 8

k Polynomial Left-circulant matrices XOR count

GF(28)

3 0x1c3 (0x1, 0x1, 0x2) 3

4 0x1c3 (0x1, 0x1, 0x2, 0x91) 8

5 0x1c3 (0x1, 0x1, 0x2, 0x91, 0x2) 11

6 0x1c3 (0x1, 0x2, 0xe1, 0x91, 0x1, 0x8) 18

7 0x1c3 (0x1, 0x1, 0x91, 0x2, 0x4, 0x2, 0x91) 21

8 0x1c3 (0x1, 0x1, 0x2, 0xe1, 0x8, 0xe0, 0x1, 0xa9) 30

GF(24)

3 0x13 (0x1, 0x1, 0x2) 1

4 0x13 (0x1, 0x1, 0x9, 0x4) 3

5 0x13 (0x2, 0x2, 0x9, 0x1, 0x9) 4

6 0x13 (0x1, 0x1, 0x9, 0xc, 0x9, 0x3) 12
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We list in Table 4 the lightest 8×8 MDS matrices for each type of left-
circulant matrices as well as the lightest ones under the two commonly used
irreducible polynomials, 0x11b and 0x11d, which are respectively adopted in AES
and WHIRLPOOL, and we compare them with the WHIRLPOOL matrix and the MDS
Hadamard matrix found in [22]. From this table, we can see that the lightest
MDS left-circulant matrices of all types except Type 0 (in which all the coef-
ficients are distinct) have XOR count smaller than the known best ones. For
WHIRLPOOL, we also provide an MDS left-circulant matrix which has smaller
XOR count using the same irreducible polynomial as in WHIRLPOOL.

We also compare in Table 5 our candidates with the previous lightweight
MDS matrices for n < 8. It shows that all our candidates have the minimum
XOR count, though some of them have the same XOR count as the known ones.

Table 4. Comparison of 8×8 MDS matrices

5.2 Lightweight IMDS Left-Circulant Matrices

In this section, we first describe the involutory MDS left-circulant matrices and
then show our experimental results.

Before showing our main results, we provide some useful properties for left-
circulant matrices. It is known that the product of two circulant matrices is a
circulant matrix. For left-circulant matrices, a similar property can be obtained.
To simplify the presentation of the proofs, we omit “modulo k” from the indexes
but it is expected that modulo k is applied when necessary.

Proposition 4. The product of two left-circulant matrices is a circulant matrix.

Proof. Let A = �-circ(a0, a1, ..., ak−1) and B = �-circ(b0, b1, ..., bk−1) be two left-
circulant matrices. Then the (i, j)-entry of their product is

∑k−1
t=0 A[i, t]·B[t, j] =

∑k−1
t=0 ai+tbt+j =

∑k−1
t=0 atbt+(j−i), which completes the proof. ��

It is shown in [14] that C2d = (
∑2d−1

i=0 ci)2
d

I and det(C) = (
∑2d−1

i=0 ci)2
d

for
any 2d×2d circulant matrix C = circ(c0, c1, ..., c2d−1) over GF(2n). Thus we have
the following result for left-circulant matrices.
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Table 5. Comparison of MDS matrices of order k < 8

Proposition 5. For 2d × 2d matrix L = �-circ(c0, c1, ..., c2d−1) over GF(2n),

L2d+1
= (

∑2d−1
i=0 ci)2

d+1
I and det(L) = (

∑2d−1
i=0 ci)2

d

.

Proof. By the proof of Propostion 4, we know L2 is a circulant matrix with
(i, j)-entry

∑2d−1
t=0 ctct+(j−i), and thus (L2)2

d

= (
∑2d−1

i=0

∑2d−1
t=0 ctct+i)2

d

I =

((
∑2d−1

t=0 ct)2)2
d

I, which also implies det(L) = (
∑2d−1

i=0 ci)2
d

. ��

Proposition 6. For matrix L = �-circ(c0, c1, ..., ck−1) over GF(2n), L is invo-
lutory if and only if

∑k−1
i=0 ci = 1 and

∑k−1
i=0 cici+j = 0 for all 1 ≤ j ≤ 	k−1

2 
.

Proof. Since the (i, j)-entry of L2 is
∑k−1

t=0 ctct+(j−i), L is involutory if and only
if

∑k−1
t=0 ct = 1 and

∑k−1
t=0 ctct+(j−i) = 0 for j �= i. The proof is completed by the

facts that
∑k−1

t=0 ctct+(j−i) =
∑k−1

t=0 ctct+(i−j) and
∑k−1

t=0 ctct+ k
2

= 0 for even k. ��

A left-circulant matrix is symmetric and thus an involutory left-circulant
matrix is orthogonal. It was shown in [14] that a circulant matrix is not IMDS
and an orthogonal circulant 2d × 2d matrix is not MDS. Similarly, we can prove
that an involutory (orthogonal) left-circulant 2d × 2d matrix is not MDS.

Theorem 4. If L is a 2d × 2d left-circulant matrix over GF(2n), then L is not
IMDS.

Proof. It is sufficient to prove that if L is involutory then L is not MDS.
Assume that L = �-circ(c0, c1, ..., c2d−1) is involutory. By Propostion 6,

it holds that
∑2d−1

i=0 cici+2t+1 = 0 for 0 ≤ t ≤ 2d−2 − 1, and thus

(
∑2d−1−1

t=0 c2t)(
∑2d−1−1

t=0 c2t+1) =
∑2d−2−1

t=0

∑2d−1
i=0 cici+2t+1 = 0. Note that
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�-circ(c0, c2, ..., c2d−2) and �-circ(c1, c3, ..., c2d−1) are two submatrices of L.
Therefore, according to Proposition 5, at least one of the determinants of these
two submatrices equals 0, which shows L is not MDS. ��

Our computations also show that there are no IMDS cyclic matrices for
k = 4, 8. Nevertheless, there are IMDS left-circulant matrices for k = 3, 5, 6, 7.

Next we explain how to search for IMDS left-circulant matrices. Notice that
an IMDS left-circulant matrix must satisfy the 	k+1

2 
 equations mentioned in
Proposition 6. Theoretically, we can solve the equations and then check whether
the solutions satisfy the MDS property. However, it is unclear how to efficiently
solve the equations in a straightforward way. Solving the equations over GF(2n)
using Gröbner basis is very slow for n = 8 and is slow even for n = 4. To find the
solutions faster, we first guess the values of about 	k−1

2 
 out of the k coefficients,
then solve the equations. For n = 4, we guess all the possible values. For n = 8,
we only guess some of the lightest elements. Our experiments show that it is
sufficient to guess the lightest 9 elements to find the lightest IMDS left-circulant
matrix.

We can check by Lemma 1 and Proposition 6 that if a left-circulant matrix
is involutory then all its permutation-equivalent matrices are involutory. Thus
we can use permutation-equivalence relationship to reduce the search space. In
other words, once obtain an upper bound of the minimum XOR count, we can
exhaust all the possible IMDS left-circulant matrices less than the threshold,
and confirm the lightest one, as done for MDS left-circulant matrices.

We provide our results in Table 6. As shown in the table, there are no IMDS
left-circulant matrices over GF(24) for k = 6. All the listed matrices have been
confirmed to achieve the smallest XOR count.

Table 6. Lightest IMDS left-circulant matrices of order 3 ≤ k ≤ 7

k Polynomial Matrices XOR count

GF(28)

3 0x169 (0x5a, 0xa, 0x51) 30

4 -

5 0x165 (0x1, 0x2, 0xb3, 0xbb, 0xa) 46

6 0x165 (0x1, 0x1, 0xb3, 0x2c, 0x4, 0x9a) 46

7 0x165 (0x1, 0x2, 0x5c, 0xb2, 0xa4, 0x10, 0x58) 68

7 0x139 (0x1, 0x1, 0x8, 0x96, 0x21, 0x98, 0x26) 68

GF(24)

3 0x1f (0x2, 0xf, 0xc) 12

4 -

5 0x13 (0x1, 0x2, 0x5, 0x4, 0x3) 14

6 -
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6 Conclusion

In this paper, we have presented a series of theory on generalized circulant matri-
ces, so-called cyclic matrices, and also exploited the technique to successfully
find the lightest MDS and involutory MDS matrices among this class of matri-
ces with small orders. On one hand, cyclic matrices maintain the characteristics
of circulant matrices, such as compact and flexible implementations in hardware
and branch number in diffusion layer. On the other hand, they possess some
advantages that circulant matrices cannot provide, for instance, the existence
of involutory MDS matrices. The discovery of properties and constructions of
MDS cyclic matrices may provide practical significance as well as theory value.
Before this work, searching for the lightest MDS circulant matrices of order 8
are widely believed to be infeasible. Our results demonstrate an opposite view
on this—we make it feasible under a credible metric—despite no guarantee of
general case. As such, we can find the lightest MDS circulant matrices of order
8 which have less XOR count than the previously known ones in the literatures.
Specially for the hash function WHIRLPOOL, we also provide a better MDS matrix
which has smaller XOR count under the same setting. Although it is proven that
IMDS left-circulant matrix of order 2d does not exist, we find IMDS matrices
for the other orders which forms a complement to the work in [22], where there
exist only IMDS Hadamard matrices of order 2d. All in all, we have found new
lightweight MDS matrices that are flexible in hardware implementation and also
a complete set of lightweight IMDS matrices for order k ≤ 8.

Acknowledgements. The authors would like to thank Jian Guo, Gregor Leander,
Thomas Peyrin, Yu Sasaki and the anonymous reviewers for their valuable suggestions.
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Abstract. In the present paper, we investigate the problem of con-
structing MDS matrices with as few bit XOR operations as possible.
The key contribution of the present paper is constructing MDS matrices
with entries in the set of m × m non-singular matrices over F2 directly,
and the linear transformations we used to construct MDS matrices are
not assumed pairwise commutative. With this method, it is shown that
circulant involutory MDS matrices, which have been proved do not exist
over the finite field F2m , can be constructed by using non-commutative
entries. Some constructions of 4 × 4 and 5 × 5 circulant involutory MDS
matrices are given when m = 4, 8. To the best of our knowledge, it is the
first time that circulant involutory MDS matrices have been constructed.
Furthermore, some lower bounds on XORs that required to evaluate one
row of circulant and Hadamard MDS matrices of order 4 are given when
m = 4, 8. Some constructions achieving the bound are also given, which
have fewer XORs than previous constructions.

Keywords: MDS matrix · Circulant involutory matrix · Hadamard
matrix · Lightweight

1 Introduction

Linear diffusion layer is an important component of symmetric cryptography
which provides internal dependency for symmetric cryptography algorithms. The
performance of a diffusion layer is measured by branch number. Using a diffusion
layer with bigger branch number in cryptography provides better resistance to
differential and linear attack. As for lightweight cryptography, which is aiming
to provide security in a limited resource environment, the cost of implementing
an linear diffusion layer is also of importance. With the rapid development of
lightweight cryptography, it is of particular interest to investigate the problem
of constructing lightweight linear diffusion with bigger branch number.

A linear diffusion layer is a linear transformation over (Fm
2 )n, where m is

the bit length of an S-box and n is the number of S-boxes that the linear diffu-
sion layer acts on. Note that every linear transformation can be represented by a
c© International Association for Cryptologic Research 2016
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matrix, then a linear diffusion layer is often represented by a n×n matrix and the
entries can be viewed as linear transformations over F

m
2 . The maximum branch

number of a n×n matrix over (Fm
2 )n is n+1. A linear diffusion layer with max-

imum branch number is called a perfect diffusion layers or a Maximal Distance
Separable (MDS) matrix. An MDS matrix is a linear multipermutation [22].

A common way to construct MDS matrices is using MDS codes over finite
fields. Multiplication with elements in finite fields is a basic operation in the
evaluation of a matrix over finite fields. Usually, this operation is heavy in imple-
mentation. To improve its implementation efficiency, it is often constructing a
matrix with fewer different elements of finite fields and choosing elements of finite
fields with lower Hamming weight. Therefore, some matrices can be defined by
fewer elements are preferred, such as circulant matrix and Hadamard matrix.
The diffusion layer of AES is an typical example of this construction method. It
is a 4 × 4 circulant MDS matrix over F28 .

Another main method to construct lightweight MDS matrices is recursive
construction. The main idea is that firstly constructing a linear transformation
which is sparse and compact in implementation, and then composing it several
times to get an MDS matrix. This method is first used in the design of Pho-
ton lightweight hash family [10] and LED lightweight block cipher [9], and then
attracted lots of attentions. The method is extended by using linear transfor-
mations instead of multiplications of elements in finite fields in [20]. Then the
work is improved by using linear transformations with fewer XORs in [23], where
some extreme lightweight MDS matrices are given. A method is given to get rid
of expensive symbolic computations of the above method for constructing larger
recursive MDS matrices in [1]. The method is also further investigated in [12].
The construction of recursive MDS matrices also has a relation with coding the-
ory. It is shown that recursive MDS matrices can be constructed from Gabidulin
codes [4], and also can be obtained directly from shortened MDS cyclic codes [2].

However, a recursive MDS matrix may leads to high latency since it has to run
several rounds to get outputs. Then how to construct lightweight MDS matrices
without using recursive construction is an interesting problem needs further study.
Some works revisit the method of constructing MDS matrices over finite fields by
choosing elements whose multiplication’s implementation efficiency can be further
improved. Recently, it is shown that the choice of the irreducible polynomial used
to compute multiplication with elements over finite fields has a great influence of
the efficiency [19]. This property is further investigated in [21], where algorithms
are designed to search lightweight MDS matrices with few XORs that required
to evaluate one row of the corresponding matrix. Several constructions and their
comparisons with previous constructions are also given in [21].

Our Contributions. In the present paper, we investigate the problem of con-
structing MDS matrices with as few bit XOR operations as possible. Note that
multiplication with elements of the finite field F2m is only a special type of linear
transformations over F

m
2 . Moreover, there exist many other linear transforma-

tions over Fm
2 which can not be represented by multiplication with elements over

F2m . Therefore, constructing matrices over the space of linear transformations
over F

m
2 may leads to new constructions of lightweight MDS matrices.
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In previous constructions, the entries used to construct MDS matrices are
pairwise commutative, such as MDS matrices over finite fields, or assumed pair-
wise commutative, such as recursive MDS matrices with elements being linear
transformations [20,23]. Note that a matrix over a commutative ring is non-
singular if and only if its determinant is a unity in the ring, then the assumption
is convenient for charactering MDS matrices since the determinants of square
sub-matrices can be computed.

However, the restriction of choosing commutative linear transformations may
lose MDS matrices with fewer XORs. Then we do not assume the linear transfor-
mations over Fm

2 that used to construct MDS matrices are pairwise commutative
in the present paper.

The strategy we used to determine whether a construction is MDS is com-
puting all its square sub-matrices’ rank. Then it is too complex to construct
MDS matrices with larger order. In symmetric cryptography algorithms, the
most often used S-boxes are 4-bit and 8-bit S-boxes, and it is often use diffusion
layers of order 4. Therefore, we focus on constructing 4 × 4 MDS matrices with
entries in the space of linear transformations over F4

2 and F
8
2 in the present paper.

The first result is that circulant involutory MDS matrices can be constructed
with our method. Circulant involutory MDS matrices can be implemented effi-
ciently and the same circuit can be used both in encryption and decryption.
However, it has been proved in [13,16] that there do not exist circulant invo-
lutory MDS matrices over the finite field F2m . In fact, the proof is only valid
when the entries of the matrix are pairwise commute. This property is satisfied
by previous construction methods but not our method.

We show that there exist circulant involutory MDS matrices over the space of
linear transformations over Fm

2 . Some constructions are also given. To the best of
our knowledge, it is the first time that circulant involutory MDS matrices have
been constructed. For 4 × 4 circulant involutory MDS matrices constructed in
the present paper, the fewest sum of XORs of one row’s entries is m+1,m = 4, 8.
Moreover, we also construct 4 × 4 orthogonal circulant MDS matrix, which is
also proved do not exist over finite fields [13].

Lower bounds on XORs that required to evaluate one row of circulant (non-
involution) MDS matrices, involutory Hadamard MDS matrices and Hadamard
(noninvolution) MDS matrices are also investigated. We show that for circulant
MDS matrices with the first row’s entries are [I, I, A,B], the fewest sum of XORs
of A and B is 3. For involutory Hadamard MDS matrices, the fewest sum (the
fewest sum we get) of the XORs of entries in the first row is m + 2 for m = 4
(m = 8). For Hadamard MDS matrices, the fewest sum of XORs of one row’s
entries is 4 for m = 4 and the fewest sum we get of XORs of one row’s entries is
5 for m = 8. Lower bounds on the entries of “optimal” 4 × 4 MDS matrices is
also characterized.

Outline of This Paper. The present paper is organized as follows. In Sect. 2,
we give some preliminaries. A general bound on XORs that required to evalu-
ate one row of circulant and Hadamard MDS matrices is also given. In Sect. 3,
we investigate the construction of lightweight involutory, non-involutory and
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orthogonal circulant MDS matrices. In Sect. 4, we investigate the construction
of lightweight involutory and non-involutory Hadamard MDS matrices. Compar-
isons with previous constructions are given at the end of the section. In Sect. 5,
we investigate the construction of lightweight “optimal” 4 × 4 MDS matrices. A
short conclusion is given in Sect. 6.

2 Preliminaries and a General Bound

A map A : Fm
2 → F

m
2 is called linear if A(x + y) = A(x) + A(y) for x, y ∈ F

m
2 .

Fixed a basis of F
m
2 over F2, a linear map over F

m
2 can be represented by an

m × m matrix over F2, which is also denoted by A. Then A(x) = A · x, where
x = (x1, . . . , xm) ∈ F

m
2 is viewed as a column vector throughout this paper. A

linear map is a permutation over F
m
2 if and only if its matrix representation is

non-singular. The notation GL(m,S) denotes the set of all m × m non-singular
matrices with entries in S.

For a, b ∈ F2, a+ b is called the bit XOR operation. For A ∈ GL(m,F2), #A
denotes the number of XOR operations that required to evaluate A · x directly,
where x ∈ F

m
2 , and we call A has #A XOR operations. It is easy to see that #A

equals the number of XORs in A(x) and hence

#A =
m∑

i=1

(ω(A[i]) − 1),

where ω(A[i]) means the number of nonzero entries in the i-th row of A. For A ∈
GL(m,F2), a simplified representation of A is given by extracting the nonzero
positions in each row of A. For example, [2, 3, 4, [1,4]] is the representation of
the following matrix.

⎛

⎜
⎜
⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

⎞

⎟
⎟
⎠,

and it is a matrix with 1 XOR operation.
Every linear diffusion can be represented by a matrix as follows

L =

⎛

⎜
⎜
⎜
⎝

L1,1 L1,2 · · · L1,n

L2,1 L2,2 · · · L2,n

...
... · · ·

...
Ln,1 Ln,2 · · · Ln,n

⎞

⎟
⎟
⎟
⎠

,

where Li,j is an m × m matrix over F2 for 1 ≤ i, j ≤ n. For X = (x1, . . . , xn) ∈
(Fm

2 )n,

L(X) = (
n∑

i=1

L1,i(xi), . . . ,
n∑

i=1

Ln,i(xi)),
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where Li,j(xk) = Li,j · xk, for 1 ≤ i, j ≤ n, 1 ≤ k ≤ m. A linear diffusion L
defined as above is called involutory if L ◦ L(X) = X for all X ∈ (Fm

2 )n, which
is equivalent to that L2 is the identity matrix of order mn.

For X = (x1, . . . , xn) ∈ (Fm
2 )n, the bundle weight of X, which is denoted by

ωb(X), is defined as the number of nonzero entries of X. This means

ωb(X) = |{xi : xi �= 0, 1 ≤ i ≤ n}|.

The branch number of L is defined as

min{ωb(X) + ωb(L(X)) | X ∈ (Fm
2 )n,X �= 0}.

The upper bound on the branch number of L is n + 1, and a matrix achieved
the bound is called an MDS matrix.

Square sub-matrices of L of order t means the following matrices

L(J,K) = (Ljl,kp
, 1 ≤ l, p ≤ t)

where J = [j1, . . . , jt] and K = [k1, . . . , kt] are two sequence of length t, and
1 ≤ j1 < . . . < jt ≤ n, 1 ≤ k1, . . . , kt ≤ n. Note that L(J,K) · (x1, . . . , xt) = 0
does not have nonzero solutions if and only if L(J,K) is of full rank. Then the
following result holds, which is proved in [5].

Theorem 1. Let L = (Li,j), 1 ≤ i, j ≤ n, and the entries of L are m × m
matrices over F2. Then L is an MDS matrix if and only if all square sub-matrices
of L of order t are of full rank for 1 ≤ t ≤ n.

According to Theorem 1, the computation would be complicated when n is
large. Then in the present paper we focus on 4 × 4 matrices, which are widely
used in cryptography. More precisely, we construct lightweight MDS matrices
using circulant matrix and Hadamard matrix. Both of them can be defined by
the first row’s entries and hence can be implemented efficiently.

2.1 A General Bound

In this subsection, we give a general bound of XORs on circulant and Hadamard
MDS matrices.

A matrix is called circulant if each row is rotated to the right of the preceding
row by one entry. Then for a 4 × 4 circulant matrix, we means

Circ(A,B,C,D) =

⎛

⎜
⎜
⎝

A B C D
D A B C
C D A B
B C D A

⎞

⎟
⎟
⎠,

where A,B,C,D ∈ GL(m,F2).
A 2k × 2k matrix H is called a Hadamard matrix if it can be represented as

(
H1, H2

H2, H1

)
,
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where H1,H2 are two 2k−1×2k−1 Hadamard matrices. Then for a 4×4 Hadamard
matrix, we means

Had(A,B,C,D) =

⎛

⎜
⎜
⎝

A, B, C, D
B, A, D, C
C, D, A, B
D, C, B, A

⎞

⎟
⎟
⎠,

where A,B,C,D ∈ GL(m,F2).
Remember that our aim is constructing MDS matrices with as few XOR

operations as possible. Then we prefer linear transformations with no XORs.
However, the following results limits the amounts of such linear transformations
used in our constructions.

Lemma 1. Let L =
(

L1, L2

L3, L4

)
, Li ∈ GL(m,F2), 1 ≤ i ≤ 4. If rank(L) = 2m,

then
4∑

i=1

#Li ≥ 1.

Proof. Assume #Li = 0, 1 ≤ i ≤ 4. Then for 1 ≤ i ≤ 4, each row and each
column of Li has exactly one entry equals 1 since Li are non-singular. This

means every entry of
m∑

j=1

Li[j] equals to 1. Therefore, every entry of
2m∑

i=1

L[i]

equals to 0, which means rank(L) < 2m and we complete the proof. �	

Then we have the following result.

Theorem 2. 1. Let L = Circ(A,B,C,D) be a circulant MDS matrix, where
A,B,C,D ∈ GL(m,F2). Then #A + #B + #C + #D ≥ 2.

2. Let L = Had(A,B,C,D) be a Hadamard MDS matrix, where A,B,C,D ∈
GL(m,F2). Then #A + #B + #C + #D ≥ 3.

Proof. Let L = Circ(A,B,C,D) be a circulant MDS matrix. Assume

#A + #B + #C + #D ≤ 1.

Then there are at least 3 entries with 0 XORs in the first row. Without loss of
generality, we suppose #A = #B = #C = 0. Then according to Lemma 1, it
holds

rank(L([1, 2], [2, 3])) = rank(
(

B ,C
A ,B

)
) < 2m.

This is a contradiction since L is an MDS matrix. The other cases can be proved
similarly.

Let L = Had(A,B,C,D) be a Hadamard MDS matrix. Assume

#A + #B + #C + #D ≤ 2.
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Then there are at least 2 entries with 0 XORs in the first row. Without loss of
generality, we suppose #A = #C = 0. Then according to Lemma1, it holds

rank(L([1, 3], [1, 3])) = rank(
(

A ,C
C ,A

)
) < 2m.

This is a contradiction since L is an MDS matrix. The other cases can be proved
similarly. �	

The above result means that there are at most two entries with no XORs in
one row of a circulant MDS matrix, and there are at most one entry with no
XORs in one row of a Hadamard MDS matrix. We suppose L[1, 1] = I in our
constructions, where I denotes the identity matrix throughout this paper.

3 Lightweight Circulant MDS Matrices

In this section, we investigate the construction of lightweight circulant involutory,
non-involutory and orthogonal MDS matrices respectively.

3.1 Constructing Circulant Involutory MDS Matrices

First, we have the following result.

Lemma 2. Let L = Circ(I,A,B,C) be a circulant matrix, where A,B,C ∈
GL(m,F2). Then L is an involution if and only if the following equalities hold:

AB = BA,BC = CB,A2 = C2, AC + CA = B2.

Proof. By matrix multiplication, it can be checked that

L2 = Circ(I,A,B,C) · Circ(I,A,B,C)
= Circ(I + AC + CA + B2, BC + CB,A2 + C2, AB + BA).

On the other hand, L is an involution if and only if L2 = Circ(I, 0, 0, 0). There-
fore, L is an involution if and only if

AB = BA,BC = CB,A2 = C2, AC + CA = B2

hold simultaneously. �	

We give a general construction of circulant involutory matrix in the follow-
ing result. For A ∈ GL(m,F2), the multiplication order of A is defined as the
minimum positive integer d such that Ad = I.

Lemma 3. Suppose A,C ∈ GL(m,F2) with A2 = C2 = I, and the multiplica-
tion order of A+C equals 4k−2 for some integer k with k > 1. Let B = (A+C)2k.
Then the matrix Circ(I,A,B,C) is an involution.
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Proof. Let B = (A + C)2k. Note that

A2 = C2 = I,

then according to Lemma 2, we only need to prove that A,B,C satisfy the fol-
lowing equalities

AB = BA,BC = CB,AC + CA = B2.

First, it is easy to see that

(A + C)2 = A2 + AC + CA + C2 = AC + CA.

Then we have
B = (A + C)2k = (AC + CA)k.

Therefore,

AB = A(AC + CA)k

= A(AC + CA)(AC + CA)k−1

= (A2C + ACA)(AC + CA)k−1

= (CA2 + ACA)(AC + CA)k−1

= (CA + AC)A(AC + CA)k−1

= · · ·
= (AC + CA)kA
= BA.

Similarly, it can be checked that

BC = CB.

Note that (A + C)4k−2 = I, then we have

B2 = (A + C)4k = (A + C)2 = AC + CA.

According to Lemma 2, we have Circ(I,A, (A + C)2k, C) is an involution. �	

Remark 1. If k = 1, then the multiplication order of A+C equals 2 and B = (A+
C)2 = I. In this case, L = Circ(I,A, I, C) constructed as above is also a circulant
involution. However, it is not an MDS matrix since rank(L([1, 3], [1, 3])) < 2m.
Then we always suppose k > 1 since we want to construct circulant involutory
MDS matrices.

Using above results, our searching strategy is as follows. Firstly, we get the
set S which contains all involutory matrix from the set which we want to search.
Then for each pair of (A,C) ∈ S × S, we compute the multiplication order
d of A + C. If d mod 4 = 2, then let B = (A + C)

d
2+1, and test whether

Circ(I,A,B,C) is MDS by Theorem1.
When m = 4, we search A,C over GL(4,F2). There exist A,C such that

Circ(I,A,B,C) is MDS. The fewest sum of XORs of one rows’ entries of an
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MDS involutory Circ(I,A,B,C) constructed as above is 5. There are 48 pairs
of A,C with this property. These 48 matrices are of the type Circ(I,A,B,C)
and Circ(I, C,B,A) for 24 different pairs of A,C.

When m = 8, we search A,C over all 8×8 non-singular matrices over F2 with
less than or equal to 3 bit XOR operations. The fewest sum of XORs of one rows’
entries of an MDS Circ(I,A,B,C) constructed as above is 9. There are 40320
pairs of A,C satisfy this property. For all these pairs of A,C, Circ(I, C,B,A)
are also circulant involutory MDS matrices.

Theorem 3. Their exist A,B,C ∈ GL(m,F2), m = 4, 8, such that Circ(I,A,
B,C) is an involutory MDS matrix. Furthermore, the following statements hold.

1. When m = 4, circulant involutory MDS matrices constructed with the above
method satisfy #A + #B + #C ≥ 5.

2. When m = 8, if #A ≤ 3 and #C ≤ 3, then circulant involutory MDS
matrices constructed with the above method satisfy #A + #B + #C ≥ 9.

Example 1. Examples of A,B,C such that Circ(I,A,B,C) are circulant invo-
lutory MDS matrices with #A + #B + #C = m + 1.1

(1) m = 4, A = [1, 2, [1, 3], [1, 2, 4]], C = [4, 3, 2, 1], B = (A + C)4 = [2, [1, 2],
[3, 4], 3].

(2) m = 8, A = [1, 2, [1, 3], [1, 2, 4], 6, 5, 8, 7], C = [5, 8, [2, 6], 7, 1, [3, 8], 4, 2], and
B = (A + C)16 = [[7, 8], 1, 7, [3, 8], [2, 4], [1, 4], 6, 5].

We further investigate the construction of 5 × 5 circulant involutory MDS
matrices. In order to simplify our characterization, we investigate 5×5 circulant
matrices of the type Circ(I,A,B,B,A), where A,B ∈ GL(m,F2). Concerning
the property of involutory of Circ(I,A,B,B,C), it is easy to prove the following
result.

Lemma 4. Let L = Circ(I,A,B,B,A) be a circulant matrix, where A,B ∈
GL(m,F2). Then L is an involution if and only if A2 = AB + BA = B2.

We give constructions by exhaustive searching for A,B with the following
method. The method is often used hereafter in the paper, and we give a detailed
general description here.

The following result is helpful. It can be proved via elementary linear algebra
and we omit the proof here.

Lemma 5. Suppose A,B,C ∈ GL(m,F2) are m × m non-singular matrices
over F2. Then the following statements hold.

(1)
(

I, A
B, C

)
is of full rank if and only if rank(BA + C) = m.

(2)
(

A, I
B, C

)
is of full rank if and only if rank(CA + B) = m.

1 More examples of circulant involutory MDS matrices with #A+#B +#C = m+1
are given in the appendix of the extended version of the paper [14].
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(3)
(

A, B
I, C

)
is of full rank if and only if rank(AC + B) = m.

(4)
(

A, B
C, I

)
is of full rank if and only if rank(BC + A) = m.

Let L = Circ(I,A,B,B,A). According to Theorem 1, if L is MDS, then all
its square sub-matrices are of full rank. According to Lemma5, we have the
following fact by investigating all square sub-matrices of order 2. If L is MDS,
then the following matrices are non-singular:

A + I,A2 + I,B + I,B2 + I,A2 + B,A + B2, A + B.

Note that A2 + I is non-singular if and only if A + I is non-singular. Then the
conditions can be simplified as the following matrices are non-singular:

A + I,B + I,A + B2, A2 + B,A + B.

Based on the above observations, we have the following searching strategy.
First, note that both A and B should satisfy rank(X + I) = m,X = A,B. The
equalities that both A and B satisfied are called general rules. Then we can
select the candidate set of A and B from the set we want to search over by using
general rules, which means

SA,B := {X : X ∈ Ssearch | rank(X + I) = m}.

The for A ∈ SA,B , we can get the candidate set of B by using the other conditions
that should be satisfied, which means

SB := {B : B ∈ SA,B | rank(A + B) = m ∧ rank(A2 + B) = m ∧ rank(A + B2) = m
∧A2 = AB + BA ∧ A2 = B2}.

At last, for B ∈ SB , we test whether L is MDS by Theorem 1.
When m = 4, we search A,B over GL(4,F2). The fewest XORs of one row’s

entries of an involutory MDS Circ(I,A,B,B,A) is 4. There are 24 pairs of
A,B such that Circ(I,A,B,B,A) are involutory circulant MDS matrices with
#A + #B = 2. These 24 MDS matrices are of the type Circ(I,A,AT , AT , A)
and Circ(I,AT , A,A,AT ) for 12 different A.

When m = 8, we search A,B over GL(8,F2) with #A + #B ≤ 3. No involu-
tory MDS matrix returns. Therefore, if Circ(I,A,B,B,A) is an involutory MDS
matrix, then #A + #B ≥ 4.

Then we have the following result.

Theorem 4. Their exist A,B ∈ GL(m,F2), m = 4, 8, such that Circ(I,A,B,
B,A) is an 5 × 5 involutory MDS matrix. Furthermore, if Circ(I,A,B,B,A) is
an involutory MDS matrix, then #A + #B ≥ m

2 .

Similar as the method “Subfield construction”that used in [6,19,21], it is
easy to construct involutory MDS Circ(I,A,B,B,A) over F8

2 with #A + #B =
4, since we have constructed involutory MDS Circ(I,A,B,B,A) over F

4
2 with
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#A + #B = 2. Let X ∈ GL(4,F2), #X = 1 and Circ(I,X,XT ,XT ,X) is an
involutory MDS matrix. Then Circ(I,A,AT , AT , A) is also an involutory MDS
matrix, where A ∈ GL(8,F2) of the following form

A =
[

X, 0
0, X

]
.

Then we can construct 24 circulant involutory MDS by using the above method
and the searching result when m = 4.

In order to get more circulant involutory MDS matrices, we searching A over
GL(8,F2) with #A = 2. We get 20160 A such that Circ(I,A,AT , AT , A) are
involutory MDS matrices and #A + #AT = 4.

Example 2. Examples of A,B such that Circ(I,A,B,B,A) are circulant invo-
lutory MDS matrices with #A + #B = m

2 .

(1) m = 4, A = [2, 3, 4, [1, 3]], B = AT = [4, 1, [2, 4], 3].

(2) m = 8, X = [2, 3, 4, [1, 3]], A =
[

X, 0
0, X

]
= [2, 3, 4, [1, 3], 6, 7, 8, [5, 7]], B =

AT = [4, 1, [2, 4], 3, 8, 5, [6, 8], 7].
(3) m = 8, A = [[3, 5], 8, 1, 3, 4, 2, 6, [2, 7]], B = AT = [3, [6, 8], [1, 4], 5, 1, 7, 8, 2].

It is interesting that 5 × 5 circulant involutory MDS matrices can be con-
structed with only 3 different entries. We have tried some other methods to
construct circulant involutory MDS matrices with higher order. However, we do
not get an circulant involutory MDS matrix with order large than or equal to 6
until present. We leave it as an open problem.

Problem 1. Construct n × n circulant involutory MDS matrices over GL(m,F2)
or prove that they do not exist, where n ≥ 6, m = 4, 8.

3.2 Constructing Circulant Non-involutory MDS Matrices

In this subsection, we want to construct non-involutory MDS matrices with as
few XORs as possible. We consider circulant matrices of the type

Circ(I, I, A,B),

since it has the most many entries with no XORs in one row.
The searching strategy is similar as previous subsection. If Circ(I, I, A,B)

is MDS, then the following matrices are non-singular:

A + I,B + I,A + B,AB + I,A2 + B,A + B2.

When m = 4, we search A,B over GL(4,F2). The fewest XORs of one row’s
entries of an MDS Circ(I, I, A,B) is 3. Their are 48 pair of (A,B) such that
Circ(I, I, A,B) are MDS matrices with #A + #B = 3. These 48 matrices are
of the type Circ(I, I, A,A−2) and Circ(I, I, A−2, A) for 24 different A.
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When m = 8, we search A,B over all 8 × 8 non-singular matrices over F2

with 1 bit XOR. No MDS matrix returns. This means if Circ(I, I, A,B) is an
MDS matrix over GL(8,F2), then either A or B has at least 2 XORs, and hence
#A + #B ≥ 3. Therefore, the following result hold.

Theorem 5. Let L = Circ(I, I, A,B), where A,B ∈ GL(m,F2), m = 4, 8. If L
is an MDS matrix, then #A + #B ≥ 3.

In order to get circulant MDS matrix with the above equality holds when
m = 8, we let B = A−2 and search A over all 8×8 non-singular matrices over F2

with 1 bit XOR. At last, we get 80640 A such that Circ(I, I, A,A−2) are MDS
matrices with #A + #A−2 = 3. Furthermore, Circ(I, I, A−2, A) are also MDS
matrices for all these A.

Example 3. Examples of A,B such that Circ(I, I, A,B) and Circ(I, I, B,A) are
MDS matrices with #A + #B = 3.

(1) m = 4, A = [2, 3, 4, [1, 4]], B = A−2 = [[2, 3], [3, 4], 1, 2].
(2) m = 8, A = [2, 3, 4, 5, 6, 7, 8, [1, 3]], B = A−2 = [[1, 7], [2, 8], 1, 2, 3, 4, 5, 6].

3.3 Constructing Circulant Orthogonal MDS Matrices

A square matrix L is called orthogonal if L−1 = LT , where LT is the transpose
of L. It is proven in [13] there do not exist 2d × 2d circulant orthogonal MDS
matrix over finite fields. In this subsection, we show that 4 × 4 circulant orthog-
onal MDS matrices can also be constructed with non-commutative entries.

Firstly, note that for L = Circ(I,A,B,C), where A,B,C ∈ F2m , it holds
LT = Circ(I, CT , BT , AT ). This means one have to implement new entries
AT , BT , CT in decryption circuit when L is orthogonal. In order to simplify
implementation, we let A,B,C ∈ GL(m,F2) are symmetric matrices, which
means A = AT , B = BT , C = CT . Then it holds

LT = Circ(I, CT , BT , AT ) = Circ(I, C,B,A),

and it is easy to prove the following result.

Lemma 6. Let L = Circ(I,A,B,C) be a circulant matrix, where A,B,C ∈
GL(m,F2) are symmetric matrices. Then L is orthogonal if and only if the fol-
lowing equalities hold:

A2 + B2 = C2, AC = CA,A + C = BA + CB,A + C = AB + BC.

If L = Circ(I,A,B,C) is MDS, then the following matrices are non-singular:

B + I,B + A2, B + C2, AC + I,AB + C.

When m = 4, we search symmetric A,B,C over GL(4,F2). The fewest XORs
of one row’s entries of an orthogonal MDS Circ(I,A,B,C) is 8. Their are 24
triples of A,B,C such that Circ(I,A,B,C) are orthogonal MDS matrices with
#A + #B + #C = 8. Then we have the following result.
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Theorem 6. There exist symmetric A,B,C ∈ GL(4,F2) such that Circ(I,A,
B,C) is an orthogonal MDS matrix. Furthermore, if Circ(I,A,B,C) is an
orthogonal MDS matrix, then #A + #B + #C ≥ 8.

Example 4. Example of A,B,C such that Circ(I,A,B,C) is an orthogonal cir-
culant MDS matrix #A + #B + #C = 2m.

(1) m = 4, A = [1, 2, 4, [3, 4]], B = [[1, 4], [2, 3, 4], [2, 3], [1, 2, 4]], C = [2, [1, 2],
3, 4].

(2) m = 8, A =
[

A1, 0
0, A1

]
, B =

[
B1, 0
0, B1

]
, C =

[
C1, 0
0, C1

]
, where A1, B1, C1

are the A,B,C in the above item.

4 Lightweight Hadamard MDS Matrices

In this section, we investigate the construction of lightweight Hadamard involu-
tory and non-involutory MDS matrices respectively.

4.1 Constructing Hadamard Involutory MDS Matrices

In the case of a, b, c are elements of finite fields, Had(1, a, b, c) is an involution
if and only if a2 + b2 = c2. In the case of A,B,C ∈ GL(m,F2), we have the
following result.

Lemma 7. Let A,B,C ∈ GL(m,F2). Then L = Had(I,A,B,C) is an involu-
tion if and only if A,B,C are pairwise commutative and A2 + B2 = C2.

Proof. By matrix multiplication, it can be checked that

L2 = Had(I,A,B,C) · Had(I,A,B,C)
= Had(I + A2 + B2 + C2, BC + CB,AC + CA,AB + BA).

Therefore, L is an involution if and only if L2 = Had(I, 0, 0, 0), which is equiv-
alent to

AB = BA,BC = CB,AC = CA,A2 + B2 = C2

hold simultaneously. �	

When m = 4, we search A,B,C over GL(4,F2) as previous. The fewest XORs
of one row’s entries of an involutory MDS Had(I,A,B,C) is 6. There are 144
triples of A,B,C such that Had(I,A,B,C) are involutory MDS matrices with
#A + #B + #C = 6. These 144 matrices are of the type Had(I,A1, A2, A3),
where (A1, A2, A3) is a permutation of (A,A−1, A + A−1) for 24 different A.

When m = 8, we also consider Hadamard matrix of the type

L = Had(I,A,A−1, A + A−1),

where A ∈ GL(m,F2). According to the above lemma, L is an involution. We
use the method in [20,23] to characterize whether L is MDS. By computing the
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determinants of all the square sub-matrices of L and factorizing these polyno-
mials, we get that L is an MDS matrix if and only if all the following matrices
are non-singular:

A,A + I,A2 + A + I,A3 + A + I,A3 + A2 + I.

Then we search A over GL(8,F2) with #A ≤ 3. The fewest XORs of one
row’s entries of an involutory MDS Had(I,A,A−1, A+A−1) is 10. We get 80640
A such that Had(I,A,A−1, A + A−1) are involutory MDS matrices with #A +
#A−1 + #(A + A−1) = 10.

We also have searched some other types of Hadamard matrices. However, we
do not get a Hadamard involutory matrix with one row’s XORs less then 10
until present.

Theorem 7. 1. Let A,B,C ∈ GL(4,F2). If L = Had(I,A,B,C) is an MDS
involution matrix, then #A + #B + #C ≥ 6.

2. Let A ∈ GL(8,F2) with #A ≤ 3. If L = Had(I,A,A−1, A + A−1) is an MDS
involution matrix, then #A + #A−1 + #(A + A−1) ≥ 10.

Example 5. Examples of A,B,C such that Had(I,A,B,C) are involutory MDS
matrices with #A + #B + #C = m + 2.

(1) m = 4, A = [2, [1, 3], 4, [2, 3]], B = A−1 = [[1, 2, 4], 1, [1, 4], 3], C = A+A−1 =
[[1, 4], 3, 1, 2].

(2) m = 8, A = [2, 3, 4, 5, 6, 7, 8, [1, 3]], B = A−1 = [[2, 8], 1, 2, 3, 4, 5, 6, 7], C =
A + A−1 = [8, [1, 3], [2, 4], [3, 5], [4, 6], [5, 7], [6, 8], [1, 3, 7]].

4.2 Constructing Non-involutory Hadamard MDS Matrices

In this subsection, we want to construct non-involutory Hadamard MDS matrix
with as few XORs as possible. The searching strategy is similar as previous. If
Had(I,A,B,C) is MDS, then the following matrices are non-singular:

A + I,B + I, C + I,AB + C,AC + B,BA + C,BC + A,CB + A,CA + B.

When m = 4, we search A,B,C over GL(4,F2). The fewest XORs of one
rows’ entries of an MDS Had(I,A,B,C) is 4. There are 72 triples of A,B,C
such that Had(I,A,B,C) are MDS matrices with #A+#B+#C = 4. These 72
matrices are of the type Had(I,A1, A2, A3), where (A1, A2, A3) is a permutation
of (A,AT , A + AT ) for 12 different A.

When m = 8, we search A over GL(8,F2) with #A ≤ 2. The fewest XORs
of one rows’ entries of an MDS Had(I,A,AT , A + AT ) is 8.

In order to get Hadamard MDS matrices with fewer XORs in one row, we
investigate Hadamard matrices of the type Had(I,A,AT , B). According to our
searching, if #A ≤ 1 and #B ≤ 2, then there are no MDS Had(I,A,AT , B).
Then we have the following result.

Theorem 8. 1. Let A,B,C ∈ GL(4,F2). If L = Had(I,A,B,C) is an MDS
matrix, then #A + #B + #C ≥ 4.
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2. Let A,B ∈ GL(8,F2). If L = Had(I,A,AT , B) is an MDS matrix, then
#A + #AT + #B ≥ 5.

In order to get MDS Had(I,A,AT , B) with #A+#AT +#B = 5, we choose
A with #A = 2 and rank(A + I) = 8 randomly, and then test whether there
exist B with #B = 1 such that Had(I,A,AT , B) is MDS. We repeat the process
several times and get 622 pairs of A,B ∈ GL(8,F2), such that Had(I,A,AT , B)
is MDS and #A + #AT + #B = 5.

Example 6. Examples of A,B,C such that Had(I,A,B,C) are MDS matrices
with the bounds in the above theorem hold.

(1) m = 4, A = [2, 3, 4, [1, 3]], B = AT = [4, 1, [2, 4], 3], C = A + AT =
[[2, 4], [1, 3], 2, 1].

(2) m = 8, A = [2, 3, 4, [1, 5], 8, 7, 5, [3, 6]], B = AT = [4, 1, [2, 8], 3, [4, 7], 8, 6, 5],
C = [[4, 7], 6, 5, 8, 7, 1, 2, 3].

Table 1. Comparisons with previous constructions of non-involutory MDS matrices

Matrix type Elements The first row XOR count Ref.

Circulant GL(8, F2) [I, I, A,B] 3 + 3 × 8 = 27 Subsect. 3.2

Circulant F28/0 × 11b (0 × 02, 0 × 03, 0 × 01, 0 × 01) 14 + 3 × 8 = 38 AES [8]

Hadamard GL(8, F2) [I, A,AT , B] 5 + 3 × 8 = 29 Subsect. 4.2

Hadamard F28/0 × 1c3 (0 × 01, 0 × 02, 0 × 04, 0 × 91) 13 + 3 × 8 = 37 [21]

Subfield-Hadamard F24/0 × 13 (0 × 1, 0 × 2, 0 × 8, 0 × 9) 2 × (5 + 3 × 4) = 34 [21]

Table 2. Comparisons with previous constructions of involutory MDS matrices

Matrix type Elements The first row XOR count Ref.

Circulant GL(8, F2) [I, A,B,C] 9 + 3 × 8 = 33 Subsect. 3.1

Hadamard GL(8, F2) [I, A,A−1, A + A−1] 10 + 3 × 8 = 34 Subsect. 4.1

Subfield-Hadamard F24/0 × 13 (0 × 1, 0 × 4, 0 × 9, 0xd) 2 × (6 + 3 × 4) = 36 [21]

Hadamard F28/0 × 165 (0 × 01, 0 × 02, 0xb0, 0xb2) 16 + 3 × 8 = 40 [21]

Hadamard F28/0 × 11d (0 × 01, 0 × 02, 0 × 04, 0 × 06) 22 + 3 × 8 = 46 [3]

Compact Cauchy F28/0 × 11b (0 × 01, 0 × 12, 0 × 04, 0 × 16) 54 + 3 × 8 = 78 [7]

Hadamard-Cauchy F28/0 × 11b (0 × 01, 0 × 02, 0xfc, 0xfe) 74 + 3 × 8 = 98 [11]

Table 3. Comparisons of MDS matrices over F
4
2 and F24

Matrix type Elements The first row XOR count Ref.

Circulant GL(4,F2) [I, I, A,B] 3 + 3× 4 = 15 Subsect. 3.2

Involutory circulant GL(4,F2) [I, A,B,C] 5 + 3× 4 = 17 Subsect. 3.1

Hadamard GL(4,F2) [I, A,B,C] 4 + 3× 4 = 16 Subsect. 4.2

Hadamard F24/0× 13 (0× 1, 0× 2, 0× 8, 0× 9) 5 + 3× 4 = 17 [21]

Involutory Hadamard GL(4,F2) [I, A,A−1, A+A−1] 6 + 3× 4 = 18 Subsect. 4.1

Involutory Hadamard F24/0× 13 (0× 1, 0× 4, 0× 9, 0xd) 6 + 3× 4 = 18 [15,21]

Involutory Hadamard F24/0× 19 (0× 1, 0× 2, 0× 6, 0× 4) 6 + 3× 4 = 18 [18]
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We give comparisons of our constructions with previous constructions in
Tables 1, 2 and 3 respectively.

The lower bounds on XORs of circulant and Hadamard MDS matrices given
in Sects. 3 and 4 are under the supposition L[1, 1] = I. Therefore, it is possible
to improve the previous lower bounds when L[1, 1] �= I. However, we have the
following result with searching, which shows that the lower bounds can not be
improved when m = 4.

Theorem 9. Let Ai ∈ GL(4,F2), and A =
4∑

i=1

#Ai. Then the following state-

ments hold.

1. If Circ(A1, A2, A3, A4) is a circulant MDS matrix, then A ≥ 3.
2. If Circ(A1, A2, A3, A4) is a circulant involutory MDS matrix, then A ≥ 5.
3. If Had(A1, A2, A3, A4) is a Hadamard MDS matrix, then A ≥ 4.
4. If Had(A1, A2, A3, A4) is a Hadamard involutory MDS matrix, then A ≥ 6.

5 Lightweight “Optimal” 4× 4 MDS Matrices

It is proven in [17] that the highest possible number of 1 and the lowest possible
number of different entries for a 4 × 4 MDS matrix over finite fields are 9 and 3
respectively. The matrix with the two properties hold simultaneously are called
“optimal” in their presentation slides. The following matrix

⎛

⎜
⎜
⎝

a 1 1 1
1 1 b a
1 a 1 b
1 b a 1

⎞

⎟
⎟
⎠

is an example of “optimal” matrix which is given in [17]. Similarly as above, we
investigate the following special matrix,

L =

⎛

⎜
⎜
⎝

A I I I
I I B A
I A I B
I B A I

⎞

⎟
⎟
⎠,

where A,B ∈ GL(m,F2) are m × m non-singular matrices over F2.
If L is MDS, then the following matrices are non-singular:

A + I,B + I,A + B,A + B2, A2 + B,AB + I.

When m = 4, we search A,B over GL(4,F2), which is the set of all 4 × 4
non-singular matrices over F2. The fewest XORs of “optimal” MDS matrices
is 13. There are 24 pairs of A,B ∈ GL(m,F2) such that the corresponding
constructions are MDS matrices with 4#A + 3#B = 13. All these pairs satisfy
B = A−2.
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When m = 8, we search A,B over the set of all 8 × 8 non-singular matrices
over F2 with 1 bit XOR operation. No MDS matrix returns. This means if L is a
“optimal” MDS matrix over GL(8,F2), then either A or B has at least 2 XORs,
and hence #L ≥ 10.

Then we have the following result.

Theorem 10. Let L be a matrix constructed as above, where A,B ∈ GL(m,F2),
m = 4, 8. If L is an MDS matrix, then

4#A + 3#B ≥
{

13, m = 4;
10, m = 8.

In order to get “optimal” matrices over GL(8,F2) with 10 XORs, we let
B = A−2 and search A over all 8 × 8 non-singular matrices over F2 with 1
bit XOR operation. We get 40320 A ∈ GL(8,F2) such that the corresponding
constructions are “optimal” MDS matrices with 10 XORs.

It is interesting that “optimal” 4×4 MDS matrices over GL(8,F2) has fewer
XORs than “optimal” 4 × 4 MDS matrices over GL(4,F2).

Example 7. Examples of A,B such that L are “optimal” MDS matrices with the
bounds in the above result hold.

(1) Let A = [[2, 3], 4, 2, 1], B = A−2 = [2, [1, 3], [1, 3, 4], 3]. Then L constructed
as above is an MDS matrix with 4#A + 3#B = 13.

(2) Let A = [4, 5, 6, 8, 3, [4, 7], 1, 2], B = A−2 = [[1, 6], 4, 2, 7, 8, 5, [3, 7], 1]. Then
L constructed as above is an MDS matrix with 4#A + 3#B = 10.

6 Conclusion

In the present paper, we mainly investigate the construction of 4× 4 lightweight
MDS matrices with entries in the set of m × m non-singular matrices over F2.
With this method, circulant, Hadamard and involutory Hadamard MDS matrices
with fewer XORs than previous constructions are given. Moreover, circulant
involutory MDS matrices are also constructed with our method. Constructing
lightweight MDS matrices of large order with the method of the present paper
is an interesting problem need further study.
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Abstract. We explore the feasibility of applying SAT solvers to opti-
mizing implementations of small functions such as S-boxes for multi-
ple optimization criteria, e.g., the number of nonlinear gates and the
number of gates. We provide optimized implementations for the S-boxes
used in Ascon, ICEPOLE, Joltik/Piccolo, Keccak/Ketje/Keyak, LAC,
Minalpher, PRIMATEs, Prøst, and RECTANGLE, most of which are
candidates in the secound round of the CAESAR competition. We then
suggest a new method to optimize for circuit depth and we make tooling
publicly available to find efficient implementations for several criteria.
Furthermore, we illustrate with the 5-bit S-box of PRIMATEs how mul-
tiple optimization criteria can be combined.

Keywords: S-box · SAT solvers · Implementation optimization · Multi-
plicative complexity · Circuit depth complexity · Shortest linear straight-
line program

1 Introduction

Implementations of cryptographic algorithms are typically optimized for one
or multiple criteria, such as latency, throughput, power consumption, memory
consumption, etc., but also criteria such as the cost of adding masking counter-
measures to protect against side-channel attacks. It is worthwhile to spend time
on this optimization, as the implementations are typically used many times. It
is usually a hard problem to find an implementation that is actually theoreti-
cally minimal with respect to the criteria, e.g., general circuit minimization is∑P

2 -complete [10]. However, for small functions this is still possible, using, for
instance, SAT solvers. Especially for building blocks that can be used in multiple
cryptographic algorithms, such as S-boxes, it is useful to look at methods for
finding minimal implementations with respect to some given criteria.

In Sect. 2, we first discuss the simpler problem of finding minimal implemen-
tations of linear functions. We give a brief overview of methods for finding the
shortest linear straight-line program.

This work was supported by the European Commission through the Horizon 2020
program under project number ICT-645622 (PQCRYPTO).

c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 140–160, 2016.
DOI: 10.1007/978-3-662-52993-5 8



Optimizing S-Box Implementations for Several Criteria Using SAT Solvers 141

We then move towards S-boxes and in Sect. 3 we consider known methods
[13,20] that manage to find minimal implementations for the relevant optimiza-
tion criteria of multiplicative complexity [9], bitslice gate complexity [12], and
gate complexity. The definitions of these criteria are given in Sect. 3. We study
how feasible the methods actually are by applying them to S-boxes that are used
in recent cryptographic algorithms, such as several candidates in the CAESAR
competition and lightweight block ciphers. Additionally, we provide tools that
allow anyone to conveniently do the same to other small S-boxes.

Then we look at another optimization criterion: the circuit depth complexity.
This is relevant in hardware implementations to decrease the delay and to be
able to increase the clock frequency. We suggest a new method for encoding the
circuit depth complexity decision problem in SAT and we show how feasible this
method is in practice by providing efficient low-depth S-box implementations for
Joltik [17], Piccolo [22], LAC [23], Prøst [18], and RECTANGLE [24] in Sect. 3.5.

Finally, in Sect. 4 it is discussed how several optimization criteria can be com-
bined, by first optimizing the S-box used by the PRIMATEs [2] for multiplicative
complexity and then for gate complexity. This is done by taking the intermediate
result after optimizing for multiplicative complexity, identifying the linear parts
of this, and by treating these as instances of the shortest linear straight-line
program problem.

Contributions of This Paper. To summarize, the contributions of this paper
are

– implementations of the S-boxes in Ascon, ICEPOLE, Joltik/Piccolo,
Keccak/Ketje/Keyak, LAC, Minalpher, Prøst, and RECTANGLE with a
provably minimal number of nonlinear gates;

– a new method for encoding the circuit depth complexity decision problem as
an instance of SAT;

– optimized and sometimes even provably minimal implementations of the
S-boxes in Joltik/Piccolo, LAC, Prøst, and RECTANGLE with respect to
bitslice gate complexity, gate complexity, and circuit depth complexity;

– a method to combine multiple optimization criteria;
– an implementation of the S-box used by the PRIMATEs that is first optimized

for multiplicative complexity and then for (bitslice) gate complexity;
– tools and documentation to optimize implementations of small nonlinear func-

tions such as S-boxes using SAT solvers, with respect to multiplicative com-
plexity, bitslice gate complexity, gate complexity, or circuit depth complexity,
are put into the public domain. These tools are available online.

2 The Shortest Linear Straight-Line Program Problem

Before tackling the optimization of S-boxes, let us restrict ourselves to linear
functions and let us consider the Shortest Linear Program (SLP) problem over
GF (2). Let A be an m×n matrix of constants over GF (2) and let x be a vector
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of n variables over GF (2). The SLP problem is to find the program with the
smallest number of lines that computes Ax , where every program line is of a
certain form.

Let Z be a set of variables over GF (2), that initially contains the input
variables {x0, . . . , xn−1}. Let zi, zj ∈ Z. Then every program line is of the form

z′ := zi + zj .

After executing this program line, the new variable z′ is added to the set, Z :=
Z∪{z′}. The new variable z′ can therefore be used in the next program line. The
program is said to compute Ax when ∃(z1, . . . , zm) ∈ Zm {Ax = (z1, . . . , zm)ᵀ}
holds.

Being able to find the shortest straight-line linear program has obvious appli-
cations to cryptology. Solving the SLP over GF (2) is equivalent to finding the
shortest circuit to compute a function using only XOR gates. Optimizing imple-
mentations of linear operations, such as MixColumns in AES and the linear
transformation in certain implementations of SubBytes, can therefore be seen
as instances of the SLP problem over GF (2). However, this method does not
apply to nonlinear operations such as S-boxes. We show in Sect. 3 what kind of
methods can be used in such cases.

Solving the SLP Problem. Boyar, Matthews, and Peralta showed in [7] that
the SLP problem over GF (2) is NP-hard. Off-the-shelf SAT solvers can be used
to find solutions for small instances of this problem. Fuhs and Schneider-Kamp
presented a method [16] to encode the SLP problem as an instance of SAT and
they show how this can be used to optimize the affine transformation of AES’s
SubBytes [15,16].

For larger instances, exact methods will quickly become infeasible. Alterna-
tively, Boyar and Peralta published an approach to solve the SLP problem over
GF (2) based on a heuristic [8]. In short, the heuristic method uses a base vector
set S, initialized with unit vectors for all variables in x , and a distance vector
Dist [] that keeps track of the minimal Hamming distance to S for each row in
A. Repeatedly, the sum of the pair of base vectors in S that minimizes the sum
of Dist [] is added to S and Dist [] is updated, until Dist [] is the all-zero vector.
If there is a tie between two pairs of base vectors, the pair that maximizes the
Euclidean length of the new Dist [] vector is chosen. This algorithm makes it
possible to find solutions to larger instances of the SLP problem.

3 Optimizing S-Box Implementations using SAT-Solvers

For nonlinear functions such as S-boxes, known approaches based on heuristics [8]
all exploit additional algebraic structure that may be available, e.g., as for the
S-box of AES. However, in general this additional structure may not exist and
one may need to fall back to generic methods such as SAT solvers.
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S-box implementations in both software and hardware can be optimized with
SAT solvers according to several criteria. In this paper we consider the following
optimization goals:

Multiplicative complexity. The multiplicative complexity of a function [9]
is defined as the smallest number of nonlinear gates with fan-in 2 required
to compute this function. If we restrict our S-box implementations to the
{AND, OR, XOR, NOT} operations, we only need to consider the number of ANDs
and ORs. Optimizing for this goal is useful in the case of protecting against
side-channel attacks using random masks, where nonlinear gates are typ-
ically more expensive to mask. There are also applications in multi-party
computation and fully homomorphic encryption, where the cost of nonlinear
operations is even more significant [1].

Bitslice gate complexity. The bitslice gate complexity of a function [12] is
defined as the smallest number of operations in {AND, OR, XOR, NOT} required
to compute this function. This translates directly to efficient bitsliced soft-
ware implementations, as on most common CPU architectures, there are no
instructions for computing NAND, NOR, or XNOR immediately.

Gate complexity. The gate complexity of a function is defined as the smallest
number of logic gates required to compute this function. Unlike for bitslice gate
complexity, NAND, NOR, and XNOR gates are now also allowed. This translates
to efficient hardware implementations, although the different amounts of area
required by these types of gates and the different delays still need to be taken
into account. Note that we only consider gates with a fan-in of at most 2.

Circuit depth complexity. The depth of a circuit is defined as the length
of the longest paths from an input gate to an output gate. Every function
can be computed by a circuit with depth 2, e.g., by expressing the function
in conjunctive or disjunctive normal form. However, this can lead to very
wide circuits with a lot of gates, which is typically not desirable. There is
somewhat of a trade-off between circuit depth and number of gates. Still,
optimizing for this goal is useful in the case of hardware implementations, to
be able to decrease the total delay and therefore to be able to increase the
clock frequency. Again, only gates with a fan-in of at most 2 are considered.

These criteria come with corresponding decision problems. For example,
given a function f and some positive integer k, the multiplicative complexity
decision problem is defined as:

“Is there a circuit that implements f and that uses at most k nonlinear
operations?”

The decision problems for the other three optimization goals can be defined anal-
ogously. Off-the-shelf SAT solvers can be used to solve these decision problems.
When a SAT solver successfully finds a circuit for some value k but outputs
UNSAT for k−1, it is proven that k is the minimum value. Note that when a SAT
solver outputs SAT for some value k, it also provides a satisfying valuation that
can be used to reconstruct an implementation of f .
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In order to use SAT solvers to solve these decision problems, the problems
first have to be encoded in logical formulas in conjunctive normal form (CNF),
because that is the input format that the SAT solver requires.

3.1 Notation

For the encoding, we use the notation of [20]. We consider systems of multivariate
equations over GF (2). In these equations, let:

– xi be variables representing S-box inputs;
– yi be variables representing S-box outputs;
– qi be variables representing gate inputs;
– ti be variables representing gate outputs;
– ai be variables representing wiring between gates;
– bi be variables representing wiring ‘inside’ gates. This will become more clear

when they are first used in Sect. 3.3.

In the implementations the logical connectives are used to denote the types
of operations, i.e., let ∧, ∨, ⊕, ¬ denote AND, OR, XOR, NOT, respectively, and let
↑, ↓, ↔ denote NAND, NOR, XNOR, respectively.

3.2 Optimizing for Multiplicative Complexity

Courtois, Mourouzis and Hulme [13,20] suggested a method to encode the mul-
tiplicative complexity decision problem. Let f : Fn

2 → F
m
2 be an S-box and let

k be the multiplicative complexity that we want to test for. Then first create a
set of equations C in ANF consisting of:

– ∀i ∈ {0, . . . , k − 1}: ti = q2i · q2i+1, to encode the k AND gates.

– ∀i ∈ {0, . . . , 2k− 1}: qi = al +
(∑n−1

j=0 al+j+1 · xj

)
+

(
∑ i

2�−1

j=0 al+n+j+1 · tj
)

,

where l = i(n + 1) +
⌊
i2−2i+1

4

⌋
, to encode that the inputs of the AND gates

can be any linear combination of S-box inputs and previous AND gate outputs.
The single a represents an optional NOT gate.

– ∀i ∈ {0, . . . ,m − 1}: yi =
(∑n−1

j=0 as+j · xj

)
+

(∑k−1
j=0 as+n+j · tj

)
, where s =

2k(n+ 1) + k(k − 1) + i(n+ k), to encode that the S-box outputs can be any
linear combination of S-box inputs and AND gate outputs.

For example, when n = m = 4 and k = 3, this leads to the following set of
equations C:

q0 = a0 + a1 · x0 + a2 · x1 + a3 · x2 + a4 · x3

q1 = a5 + a6 · x0 + a7 · x1 + a8 · x2 + a9 · x3

t0 = q0 · q1
q2 = a10 + a11 · x0 + a12 · x1 + a13 · x2 + a14 · x3 + a15 · t0
q3 = a16 + a17 · x0 + a18 · x1 + a19 · x2 + a20 · x3 + a21 · t0
t1 = q2 · q3
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q4 = a22 + a23 · x0 + a24 · x1 + a25 · x2 + a26 · x3 + a27 · t0 + a28 · t1
q5 = a29 + a30 · x0 + a31 · x1 + a32 · x2 + a33 · x3 + a34 · t0 + a35 · t1
t2 = q4 · q5
y0 = a36 · x0 + a37 · x1 + a38 · x2 + a39 · x3 + a40 · t0 + a41 · t1 + a42 · t2
y1 = a43 · x0 + a44 · x1 + a45 · x2 + a46 · x3 + a47 · t0 + a48 · t1 + a49 · t2
y2 = a50 · x0 + a51 · x1 + a52 · x2 + a53 · x3 + a54 · t0 + a55 · t1 + a56 · t2
y3 = a57 · x0 + a58 · x1 + a59 · x2 + a60 · x3 + a61 · t0 + a62 · t1 + a63 · t2

This set of equations does not depend on f yet, but only on the values of
n and m. The equations in C have to be satisfied for all possible S-box inputs.
An equation set C ′ is created that contains 2n copies of the equations in C, in
which all xi, yi, qi, ti are renumbered, but in which all ai, bi remain the same.
f is ‘bound’ to the problem description by adding its truth table as 2n(n + m)
constant equations, i.e., one for every bit in both the S-box input and the S-box
output, to C ′.

C ′ is in ANF. The method by Bard, Courtois, and Jefferson [3] for converting
sparse systems of low-degree multivariate polynomials over GF (2) is used to
convert C ′ to CNF, such that it is understood by the SAT solver.

Results. This method makes it feasible to find the multiplicative complexity
of several 4-bit and 5-bit S-boxes. Finding the multiplicative complexity comes
with an actual implementation that uses this minimal number of nonlinear gates.
After Courtois, Hulme, and Mourouzis applied this method to the S-boxes of
PRESENT and GOST [12], we show that we can also find results for more
recently introduced 4-bit and 5-bit S-boxes.

We consider the S-boxes, and if applicable, their inverses (denoted by −1), in
Ascon [14], ICEPOLE [19], Keccak [4]/Ketje [5]/Keyak [6], all PRIMATEs [2],
Joltik [17]/Piccolo [22], LAC [23], Minalpher [21], Prøst [18], and RECTAN-
GLE [24]. Minalpher’s and Prøst’s S-boxes are involutory, which is why their
inverses are not listed separately. The inverse S-boxes in Ascon, ICEPOLE,
Keccak, Ketje, and Keyak are not actually used in decryption and are there-
fore not considered.

For all S-boxes except the one used by the PRIMATEs we are able to prove
the multiplicative complexity. The results are summarized in Table 1. The actual
implementations can be found in Appendix A, but note that these should not
be used by themselves as we are being very generous with XOR gates. The linear
parts should be optimized separately, as we will demonstrate in Sect. 4.

These and subsequent results are obtained using MiniSat 2.2.01 and Cryp-
toMiniSat 2.9.102 using default parameters on a single core of an Intel Xeon
E7-4870 v2 running at 2.30 GHz.

1 http://www.minisat.se/MiniSat.html.
2 http://www.msoos.org/cryptominisat2/.

http://www.minisat.se/MiniSat.html
http://www.msoos.org/cryptominisat2/
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Table 1. Multiplicative complexity of S-boxes

S-box Size n × m Multiplicative complexity

Ascon 5 × 5 5

ICEPOLE 5 × 5 6

Keccak/Ketje/Keyak 5 × 5 5

PRIMATEs 5 × 5 ∈ {6, 7}
PRIMATEs−1 5 × 5 ∈ {6, 7, 8, 9, 10}
Joltik/Piccolo 4 × 4 4

Joltik−1/Piccolo−1 4 × 4 4

LAC 4 × 4 4

Minalpher 4 × 4 5

Prøst 4 × 4 4

RECTANGLE 4 × 4 4

RECTANGLE−1 4 × 4 4

For the PRIMATEs S-box and inverse S-box, we find solutions for k = 7 and
k = 10, respectively. Furthermore, we find for both S-boxes that the case for
k = 5 yields UNSAT. We have started several attempts to find a decisive answer
for k = 6, including

– reducing the CNF, e.g., using NICESAT [11];
– fine-tuning SAT solver parameters;
– trying other SAT solvers;
– trying other SAT solvers that can run in parallel on many cores, such as
Plingeling and Treengeling3; and

– letting all of this run for several months on a machine with 120 cores and 3
TB of RAM.

Unfortunately, none of these attempts resulted in an answer as no solver
instance has terminated yet. As these SAT solvers typically have much more
difficulty with proving the UNSAT case than proving the SAT case, and as the
SAT proof for k = 7 was found in less than 40 hours, we expect the k = 6 case
to yield UNSAT and we therefore conjecture the multiplicative complexity of the
PRIMATEs S-box to be 7. In Sect. 4 we go into more detail on optimizing the
PRIMATEs S-box. For the inverse S-box, we did not manage to find solutions
for k ∈ {6, 7, 8, 9}.

3.3 Optimizing for Bitslice Gate Complexity

In [13,20], a method is also given to optimize for bitslice gate complexity. How-
ever, it is only applied on the small CTC2 toy cipher and therefore it remains
unclear how practical this method is for real-world ciphers. We investigate this
by applying the method to the same S-boxes as in the previous section.
3 http://fmv.jku.at/lingeling/.

http://fmv.jku.at/lingeling/
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The encoding scheme for the bitslice gate complexity decision problem is
slightly different compared to the multiplicative complexity decision problem.
Let f : Fn

2 → F
m
2 again be an S-box and let k now be the bitslice gate complexity

that we want to test for. Then our first set of equations C in ANF consists of:

– ∀i ∈ {0, . . . , k−1}: ti = b3i ·q2i ·q2i+1+b3i+1 ·q2i+b3i+1 ·q2i+1+b3i+2+b3i+2 ·q2i,
to encode the k AND, OR, XOR or NOT gates. The bi determine what kind of gate
this will represent, as can be seen in Table 2.

– ∀i ∈ {0, . . . , k − 1}: 0 = b3i · b3i+2 and 0 = b3i+1 · b3i+2, to make sure that the
gate is either a unary NOT or a binary AND/OR/XOR, but not the XOR of them.
This excludes NAND/NOR/XNOR gates.

– ∀i ∈ {0, . . . , 2k − 1}: qi =
(∑n−1

j=0 al+j · xj

)
+

(
∑ i

2�−1

j=0 al+n+j · tj
)

, where

l = in +
⌊
i2−2i+1

4

⌋
, to encode that the inputs of the gates can be any S-box

input bit or any previously computed bit.
– ∀i ∈ {0, . . . , 2k−1}, ∀j ∈ {l, . . . , l+n+

⌊
i
2

⌋
−2},∀u ∈ {j+1, . . . , l+n+

⌊
i
2

⌋
−1}:

0 = aj · au, to encode an ‘at most one’ constraint on the gate inputs.

– ∀i ∈ {0, . . . ,m − 1}: yi =
(∑n−1

j=0 as+j · xj

)
+

(∑k−1
j=0 as+n+j · tj

)
, where s =

2kn + k(k − 1) + i(n + k), to encode that the S-box output bit can be any
S-box input bit or any gate output.

– ∀i ∈ {0, . . . ,m−1}, ∀j ∈ {s, . . . , s+n+k−2}, ∀u ∈ {j+1, . . . , s+n+k−1}:
0 = aj · au, to encode an ‘at most one’ constraint on the S-box outputs.

Table 2. Encoding of different types of gates (bitslice gate complexity)

b3ib3i+1b3i+2 Gate ti function

000 0

001 ¬q2i
010 q2i ⊕ q2i+1

011 Prevented by constraint on b3i+2

100 q2i ∧ q2i+1

101 Prevented by constraint on b3i+2

110 q2i ∨ q2i+1

111 Prevented by constraint on b3i+2

Converting C to C ′ and then to CNF is the same process as with the multi-
plicative complexity decision problem. Note that the ‘constraint equations’ on ai
and bj do not have to be duplicated 2n times for C ′, as they are not renumbered.
This saves a lot of redundant clauses.

Results. As the amount of CNF clauses that is necessary to describe the bit-
slice gate complexity decision problem becomes much larger compared to the
multiplicative complexity decision problem, it can take much more time for a
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SAT solver to actually solve a problem instance. Still, for some 4-bit and 5-bit
S-boxes results can be obtained within minutes or within a few hours. Table 3
contains some examples. If a bitslice gate complexity is listed as ≤ k, a solution
was found for k, but we were unable to prove that this is the minimum because
the SAT solver did not terminate within a reasonable amount of time for k − 1.
The actual implementations with the given number of operations can be found
in Appendix A.

Table 3. Bitslice gate complexity of S-boxes

S-box Size n × m Bitslice gate complexity Implementation

Keccak/Ketje/Keyak 5 × 5 ≤ 13 3 AND, 2 OR, 5 XOR, 3 NOT

Joltik/Piccolo 4 × 4 10 1 AND, 3 OR, 4 XOR, 2 NOT

Joltik−1/Piccolo−1 4 × 4 10 1 AND, 3 OR, 4 XOR, 2 NOT

LAC 4 × 4 11 2 AND, 2 OR, 6 XOR, 1 NOT

Minalpher 4 × 4 ≥ 11

Prøst 4 × 4 8 4 AND, 4 XOR

RECTANGLE 4 × 4 ∈ {11, 12} 1 AND, 3 OR, 7 XOR, 1 NOT

RECTANGLE−1 4 × 4 ∈ {10, 11, 12} 4 OR, 7 XOR, 1 NOT

For Prøst and the (forward) S-box of RECTANGLE, it is interesting to note
that the SAT solvers are able to find the same implementations as the corre-
sponding authors already suggested. We have proven that their bitsliced imple-
mentations are indeed minimal.

3.4 Optimizing for Gate Complexity

A method to encode the gate complexity decision problem was also provided
in [13,20], but again, actual results were only given for the CTC2 toy cipher.
We show that it is feasible to compute the gate complexity for real-world 4-bit
S-boxes as well.

The encoding is very similar to the bitslice gate complexity decision problem.
The first set of equations C in ANF only differs in two places:

– Instead of the previous rule for ti, the gates are encoded differently:
∀i ∈ {0, . . . , k − 1}: ti = b3i · q2i · q2i+1 + b3i+1 · q2i + b3i+1 · q2i+1 + b3i+2, to
encode the k gates. The bi determine what kind of gate this will represent, as
can be seen in Table 4.

– The additional constraints on the bi are completely omitted.

Converting C to C ′ and then to CNF is similar to the previous optimization
goals.
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Table 4. Encoding of different types of gates (gate complexity)

b3ib3i+1b3i+2 Gate ti function

000 0

001 1

010 q2i ⊕ q2i+1

011 q2i ↔ q2i+1

100 q2i ∧ q2i+1

101 q2i ↑ q2i+1

110 q2i ∨ q2i+1

111 q2i ↓ q2i+1

Results. Our results on real-world 4-bit S-boxes are summarized in Table 5.
The full implementations can be found in Appendix A. For our 5-bit S-boxes
we did not manage to retrieve results. Note that all types of logic gates are
considered equally expensive. There is no type of gate that is preferred over
the other, because information such as differences in area consumption or time
delay are not taken into account. The implementations found by the SAT solver
should therefore not be used directly for hardware implementations. However,
they serve as an optimal starting point from where to swap ‘expensive’ gates
for cheaper ones, depending on the specific technology that is to be used. For
example, the designers of Piccolo suggested a hardware implementation [22] of
their S-box that may or may not be more efficient than the implementation given
here, depending on the specific technology.

Table 5. Gate complexity of S-boxes

S-box Gate complexity Implementation

Joltik/Piccolo 8 2 OR, 1 XOR, 2 NOR, 3 XNOR

Joltik−1/Piccolo−1 8 2 OR, 1 XOR, 2 NOR, 3 XNOR

LAC 10 1 AND, 3 OR, 2 XOR, 4 XNOR

Prøst 8 4 AND, 4 XOR

RECTANGLE ∈ {10, 11} 1 AND, 1 OR, 2 XOR, 1 NAND, 1 NOR, 5 XNOR

RECTANGLE−1 ∈ {10, 11} 1 AND, 1 OR, 6 XOR, 1 NAND, 1 NOR, 1 XNOR

3.5 Optimizing for Depth Complexity

There are many situations in high-speed hardware implementations where the
implementer wants to keep the depth of the circuit as low as possible, in order
to be able to increase the clock frequency, without having to use significantly
more gates. We provide a novel method to find low-depth implementations of
small functions such as S-boxes using SAT solvers. This method is inspired by
the encoding of the gate complexity decision problem, but modified in some
important ways.
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In the encoding of the gate complexity decision problem, we expressed that
every gate can use the S-box input and the outputs of previous gates as its input.
The key idea here is to divide the circuit into depth layers and to encode the
notion that a gate can only use the S-box input and the output of gates in the
previous layers as its input. This is made more precise later.

First we note that it is necessary to limit the potential increase of the number
of gates when reducing the depth of a circuit. We introduce a fixed maximum
layer width w to address this, so we allow at most w gates to be executed in
parallel. For some function f , we want to be able to answer questions such as:
“is there a circuit implementing f with depth k and with at most w gates on
each depth layer?”.

Using this fixed maximum layer width, we make our encoding method more
precise by once more creating a set C of multivariate equations over GF (2) in
ANF that consists of:

– ∀i ∈ {0, . . . , kw − 1}: ti = b3i · q2i · q2i+1 + b3i+1 · q2i + b3i+1 · q2i+1 + b3i+2, to
encode the kw gates. The bi determine what kind of gate this will represent,
as can be seen in Table 4.

– ∀i ∈ {0, . . . , 2kw − 1}: qi =
(∑n−1

j=0 al+j · xj

)
+

(∑v−1
j=0 al+n+j · tj

)
, where

v =
⌊

i
2w

⌋
w and l = in + v (i − v − w), to encode that the inputs of the gates

can be any S-box input bit or any previously computed bit.
– ∀i ∈ {0, . . . , 2kw−1}, ∀j ∈ {l, . . . , l+n+v−2}, ∀u ∈ {j+1, . . . , l+n+v−1}:

0 = aj · au, to encode an ‘at most one’ constraint on the gate inputs.

– ∀i ∈ {0, . . . ,m − 1}: yi =
(∑n−1

j=0 as+j · xj

)
+

(∑kw−1
j=0 as+n+j · tj

)
, where

s = kw(2n + kw − w) + i(n + kw), to encode that the S-box output bit can
be any S-box input bit or any gate output.

– ∀i ∈ {0, . . . ,m−1}, ∀j ∈ {s, . . . , s+n+kw−2}, ∀u ∈ {j+1, . . . , s+n+kw−1}:
0 = aj · au, to encode an ‘at most one’ constraint on the S-box outputs.

Converting C to C ′ and subsequently expressing this in CNF is again the
same process as before.

Results. Using our method, we are able to find low-depth implementations for
our 4-bit S-boxes. The results are summarized in Table 6 and the corresponding
implementations can be found in Appendix A. The last column in Table 6 lists
scenarios that yield UNSAT, to show boundaries on what is possible. The trade-off
between circuit depth and the number of gates is made here in such a way that
reducing the depth by 1 would imply the implementation to have at least twice
as many gates as is required by the gate complexity.

4 Combining Criteria: Optimizing the PRIMATEs S-Box

So far, we have seen how to optimize for one specific goal. However, a result that
is optimized for multiplicative complexity may contain more XOR gates than is
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Table 6. Depth complexity of S-boxes

S-box Depth complexity w Implementation UNSAT boundaries

Joltik/Piccolo 4 2 2 OR, 1 XOR, k = 4, w = 1

2 NOR, 3 XNOR k = 3, w = 10

Joltik−1/Piccolo−1 4 3 3 OR, 5 XOR, k = 4, w = 2

1 NOR, 3 XNOR k = 3, w = 10

LAC 3 6 3 OR, 4 XOR, k = 3, w = 4

4 NAND, 4 XNOR k = 2, w = 10

Prøst 4 3 4 AND, 1 OR, 4 XOR, k = 4, w = 2

1 NAND, 1 XNOR k = 3, w = 10

RECTANGLE 3 6 2 AND, 3 OR, 5 XOR, k = 3, w = 4

1 NAND, 1 NOR, 3 XNOR k = 2, w = 10

RECTANGLE−1 3 6 1 OR, 8 XOR, k = 3, w = 4

3 NAND, 2 NOR, 2 XNOR k = 2, w = 10

desired, and a result that is optimized for gate complexity may contain more
nonlinear gates than is desired for a masked implementation. Here we show how
multiple optimization goals can be combined by looking at the 5-bit PRIMATEs
S-box. We first optimize for multiplicative complexity to have a minimal number
of nonlinear gates, and subsequently we minimize the number of linear gates. The
result is an implementation that has 4 AND, 3 OR, 31 XOR, and 5 NOT gates.

The PRIMATEs S-box is an almost bent permutation with a maximum linear
and differential probability of 2−4. It is chosen because of its low area consump-
tion in hardware implementations.

When the optimization method for multiplicative complexity is applied, we
find a solution with multiplicative complexity 7 as follows:

q0 = x0 ⊕ x3

q1 = x1

t0 = q0 ∨ q1

q2 = ¬(x1 ⊕ x3)
q3 = x0 ⊕ x2

t1 = q2 ∧ q3

q4 = x0 ⊕ x1 ⊕ x4

q5 = x0 ⊕ x2 ⊕ x3

t2 = q4 ∧ q5

q6 = ¬(x0 ⊕ x2 ⊕ x3 ⊕ x4)
q7 = x1 ⊕ x2 ⊕ x4

t3 = q6 ∨ q7

q8 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

q9 = x2 ⊕ t0 ⊕ t3

t4 = q8 ∧ q9

q10 = x0 ⊕ x3 ⊕ x4

q11 = ¬(x0 ⊕ x4)
t5 = q10 ∨ q11

q12 = ¬(x1 ⊕ x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4)
q13 = x2 ⊕ x3

t6 = q12 ∧ q13

y0 = x1 ⊕ x3 ⊕ t2 ⊕ t3 ⊕ t5 ⊕ t6

y1 = x0 ⊕ x4 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6

y2 = x1 ⊕ x2 ⊕ x4 ⊕ t1 ⊕ t3 ⊕ t4 ⊕ t5

y3 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6

y4 = ¬(x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6)
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It is not hard to see that there are a lot of redundant XOR operations in this
implementation. We distinguish between XOR operations before the nonlinear
gates (on xi) and XOR operations after the nonlinear gates (on ti). It is possible
to see them as two straight-line linear programs, where the first describes the
linear part of the S-box approached from the input and the second describes the
linear part approached from the S-box output.

The shortest linear straight-line program problem A1x1 can be given by

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q0 1 0 0 1 0
q1 0 1 0 0 0
q2 0 1 0 1 0
q3 1 0 1 0 0
q4 1 1 0 0 1
q5 1 0 1 1 0
q6 1 0 1 1 1
q7 0 1 1 0 1
q8 1 1 1 1 1
q9 0 0 1 0 0
q10 1 0 0 1 1
q11 1 0 0 0 1
q12 0 1 1 0 0
q13 0 0 1 1 0
y0 0 1 0 1 0
y1 1 0 0 0 1
y2 0 1 1 0 1
y3 1 0 1 1 1
y4 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x1 =

⎛

⎜
⎜
⎜
⎜
⎝

x0

x1

x2

x3

x4

⎞

⎟
⎟
⎟
⎟
⎠

.

The shortest linear straight-line program problem A2x2 can be given by

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q9 1 0 0 1 0 0 0
q12 1 0 1 1 1 0 0
y0 0 0 1 1 0 1 1
y1 0 1 1 1 1 1 1
y2 0 1 0 1 1 1 0
y3 0 0 0 1 1 1 1
y4 1 0 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t0
t1
t2
t3
t4
t5
t6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We are able to find a minimal straight-line program computing A2x2 using
SAT solvers. We use the method suggested by Fuhs and Schneider-Kamp [16]
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to encode the SLP problem as a SAT instance in CNF. This yields a result
that is incorporated in our implementation of the PRIMATEs S-box. Finding
a minimal straight-line program computing A1x1 turned out to be infeasible
using SAT solvers within a reasonable amount of time. Therefore, we apply the
heuristic approach as suggested by Boyar and Peralta [8]. This does provide us
with a short straight-line program. We combine both results and amend the orig-
inal PRIMATEs S-box implementation to get the more efficient implementation
below, where zi represent helper variables.

z0 = x0 ⊕ x4

z1 = x1 ⊕ x2

z2 = x2 ⊕ x3

q0 = x0 ⊕ x3

t0 = q0 ∨ x1

q2 = x1 ⊕ x3

q3 = ¬(x0 ⊕ x2)
t1 = q2 ∨ q3

q4 = x1 ⊕ z0

q5 = x0 ⊕ z2

t2 = q4 ∧ q5

q6 = ¬(x4 ⊕ q5)

q7 = x4 ⊕ z1

t3 = q6 ∨ q7

q8 = q4 ⊕ z2

z9 = t0 ⊕ t3

q9 = x2 ⊕ z9

t4 = q8 ∧ q9

q10 = ¬(x3 ⊕ z0)
t5 = q10 ∧ z0

q12 = ¬(z1 ⊕ z9 ⊕ t2 ⊕ t4)
t6 = q12 ∧ z2

z3 = t5 ⊕ t6

z4 = t3 ⊕ z3

z5 = t2 ⊕ z4

z6 = t1 ⊕ t6

z7 = t4 ⊕ z5

z8 = t1 ⊕ z7

z10 = t0 ⊕ z7

z11 = t4 ⊕ z4

z12 = z6 ⊕ z11

y0 = ¬(q2 ⊕ z5)
y1 = z0 ⊕ z8

y2 = q7 ⊕ z12

y3 = q6 ⊕ z11

y4 = x2 ⊕ z10

We are able to decrease the previous result of 58 XOR gates to only 31 XOR
gates.

Tools. We provide tools to generate C ′ in ANF for all discussed optimization
goals and to convert a SAT solver solution back to an S-box implementation. We
place those tools into the public domain. They and additional documentation
are available online at https://github.com/Ko-/sboxoptimization.

5 Conclusion

SAT solvers can be used to find minimal implementations for small functions
such as S-boxes with respect to criteria as the multiplicative complexity, bitslice
gate complexity, gate complexity, and circuit depth complexity. We have shown
how this can be done and how multiple criteria can be combined. However, for
8-bit S-boxes and larger functions these methods quickly become infeasible. One
will then have to resort to approaches based on heuristics.

A Optimized S-Box Implementations

For all given implementations, x0 and y0 denote the most significant bit of the
S-box input x and the S-box output y, respectively.

https://github.com/Ko-/sboxoptimization
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A.1 Optimized for Multiplicative Complexity

Only implementations that do not reach the minimal number of nonlinear oper-
ations when optimizing for other criteria are listed here. The implementations
below serve as a demonstration of what kind of output can be expected from SAT
solvers when optimizing for multiplicative complexity. To increase the amount
of solutions and therefore the likelihood that we will find one fast, we do not
put restrictions on the number of linear gates, which is why the implementations
below are not very efficient. The number of linear gates can be reduced further
as shown in Sect. 4.

Ascon
k = 5

q0 = ¬(x3 ⊕ x4)
q1 = ¬x4

t0 = q0 ∧ q1

q2 = x0 ⊕ x2 ⊕ x4

q3 = x1

t1 = q2 ∧ q3

q4 = x0 ⊕ x1 ⊕ x4

q5 = x1

t2 = q4 ∧ q5

q6 = x3 ⊕ x4

q7 = x0

t3 = q6 ∧ q7

q8 = x3 ⊕ t1 ⊕ t2

q9 = x1 ⊕ x2

t4 = q8 ∧ q9

y0 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ t1

y1 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t4

y2 = x1 ⊕ x2 ⊕ x3 ⊕ t0

y3 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t3

y4 = x3 ⊕ x4 ⊕ t2

ICEPOLE
k = 6

q0 = x0 ⊕ x3 ⊕ x4

q1 = x0 ⊕ x3

t0 = q0 ∧ q1

q2 = ¬(x2 ⊕ x4)
q3 = x2 ⊕ x3 ⊕ x4

t1 = q2 ∧ q3

q4 = x2 ⊕ t0 ⊕ t1

q5 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t1

t2 = q4 ∧ q5

q6 = x0 ⊕ x1 ⊕ x4

q7 = x1 ⊕ x4

t3 = q6 ∧ q7

q8 = x1 ⊕ x2 ⊕ t0 ⊕ t1 ⊕ t2

q9 = x0 ⊕ x1 ⊕ t0 ⊕ t1 ⊕ t2

t4 = q8 ∧ q9

q10 = ¬(x2 ⊕ t1 ⊕ t3 ⊕ t4)
q11 = ¬(x0 ⊕ t4)
t5 = q10 ∧ q11

y0 = x0 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t5

y1 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t2 ⊕ · · ·
· · · ⊕ t3 ⊕ t4 ⊕ t5

y2 = x0 ⊕ x3 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5

y3 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t0 ⊕ t1 ⊕ · · ·
· · · ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5

y4 = x2 ⊕ x4 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t4 ⊕ t5

PRIMATEs
k = 7
See Sect. 4.
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PRIMATEs−1

k = 10

q0 = x0 ⊕ x2 ⊕ x3

q1 = ¬(x2 ⊕ x4)
t0 = q0 ∧ q1

q2 = x0

q3 = x1

t1 = q2 ∧ q3

q4 = x2 ⊕ x3 ⊕ t0

q5 = ¬x1

t2 = q4 ∧ q5

q6 = x1 ⊕ t1 ⊕ t2

q7 = x2 ⊕ x4

t3 = q6 ∧ q7

q8 = x2 ⊕ t0 ⊕ t2 ⊕ t3

q9 = x0 ⊕ x3 ⊕ x4 ⊕ t1 ⊕ t2 ⊕ t3

t4 = q8 ∧ q9

q10 = x0 ⊕ x2 ⊕ x3 ⊕ t1 ⊕ t2 ⊕ t3

q11 = x1 ⊕ x3 ⊕ t0 ⊕ t2

t5 = q10 ∧ q11

q12 = x0 ⊕ x4

q13 = t0 ⊕ t3 ⊕ t4 ⊕ t5

t6 = q12 ∧ q13

q14 = ¬(x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ t0 ⊕ · · ·
· · · ⊕ t1 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6)

q15 = x0 ⊕ x3 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t4 ⊕ t6

t7 = q14 ∧ q15

q16 = ¬(x2 ⊕ x3 ⊕ t2 ⊕ t5)
q17 = ¬(x0 ⊕ x1 ⊕ x4 ⊕ t0 ⊕ t1 ⊕ · · ·

· · · ⊕ t2 ⊕ t3 ⊕ t6 ⊕ t7)

t8 = q16 ∧ q17

q18 = x4 ⊕ t2 ⊕ t5 ⊕ t6 ⊕ t8

q19 = ¬(x0 ⊕ x1 ⊕ x4 ⊕ t4 ⊕ t7 ⊕ t8)
t9 = q18 ∧ q19

y0 = x0 ⊕ x1 ⊕ t0 ⊕ t6 ⊕ t7 ⊕ t9

y1 = t0 ⊕ t3 ⊕ t6

y2 = t3 ⊕ t5 ⊕ t6 ⊕ t7

y3 = t1 ⊕ t2 ⊕ t4

y4 = x1 ⊕ t0 ⊕ t4 ⊕ t8

Minalpher
k = 5

q0 = x1 ⊕ x2 ⊕ x3

q1 = x1

t0 = q0 ∧ q1

q2 = x0 ⊕ x1 ⊕ x3

q3 = x1 ⊕ x2 ⊕ t0

t1 = q2 ∧ q3

q4 = x0 ⊕ t0

q5 = x0 ⊕ x1 ⊕ x2 ⊕ t0

t2 = q4 ∧ q5

q6 = ¬(x0 ⊕ x1 ⊕ x2 ⊕ t0 ⊕ t2)
q7 = ¬(x0 ⊕ x1 ⊕ t1)
t3 = q6 ∧ q7

q8 = x0 ⊕ x2 ⊕ x3 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t3

q9 = x1 ⊕ x2 ⊕ t0 ⊕ t2 ⊕ t3

t4 = q8 ∧ q9

y0 = x2 ⊕ t4

y1 = x0 ⊕ x2 ⊕ t1

y2 = t0 ⊕ t3

y3 = t1 ⊕ t2 ⊕ t3
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A.2 Optimized for Bitslice Gate Complexity

Keccak/Ketje/Keyak
k = 13

t0 = ¬x2

t1 = t0 ∧ x3

y1 = t1 ⊕ x1

t3 = ¬x4

t4 = t3 ∧ x0

y3 = x3 ⊕ t4

t6 = x3 ∨ t3

y2 = t0 ⊕ t6

t8 = ¬x0

t9 = y1 ∨ t0

t10 = t8 ∧ x1

y0 = t9 ⊕ t8

y4 = x4 ⊕ t10

Joltik/Piccolo
k = 10

t0 = x0 ∨ x1

t1 = t0 ⊕ x3

y0 = ¬t1
t3 = x2 ∨ y0

y2 = t3 ⊕ x1

t5 = x1 ∨ x2

t6 = t5 ⊕ x0

t7 = t1 ∧ t6

y3 = x2 ⊕ t7

y1 = ¬(t6)

Joltik−1/Piccolo−1

k = 10

t0 = ¬x1

t1 = ¬x0

t2 = t1 ∧ t0

y2 = t2 ⊕ x3

t4 = x0 ∨ y2

y1 = x2 ⊕ t4

t6 = y2 ∨ y1

y0 = t6 ⊕ t0

t8 = y0 ∨ y1

y3 = t8 ⊕ t1

LAC
k = 11
t0 = x3 ⊕ x2

t1 = x1 ∨ x0

y3 = t1 ⊕ t0

t3 = x1 ∧ y3

t4 = ¬x3

t5 = t4 ⊕ t3

y2 = t5 ⊕ x0

t7 = t5 ∧ y2

t8 = y3 ∨ y3

y1 = t7 ⊕ x1

y0 = t8 ⊕ x0

Prøst
k = 8
t0 = x2 ∧ x1

y1 = t0 ⊕ x3

t2 = x0 ∧ x1

y0 = x2 ⊕ t2

t4 = y1 ∧ y0

y2 = x0 ⊕ t4

t6 = y1 ∧ y2

y3 = x1 ⊕ t6

RECTANGLE
k = 12

t0 = x3 ∨ x0

t1 = x1 ⊕ t0

y1 = x2 ⊕ t1

t3 = x3 ∧ t1

t4 = x0 ⊕ t3

y2 = y1 ⊕ t4

t6 = x3 ⊕ x2

t7 = ¬y2
t8 = t7 ∨ t1

y0 = t8 ⊕ t6

t10 = t7 ∨ y0

y3 = t10 ⊕ t1

RECTANGLE−1

k = 12

t0 = ¬x2

t1 = x0 ∨ t0

t2 = x3 ⊕ t1

y2 = t2 ⊕ x1

t4 = t0 ∨ t2

t5 = x0 ⊕ t4

y3 = t5 ⊕ y2

t7 = t2 ∨ y3

t8 = t7 ⊕ t5

y0 = t8 ⊕ x2

t10 = y0 ∨ y3

y1 = t10 ⊕ t2
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A.3 Optimized for Gate Complexity

Joltik/Piccolo
k = 8

t0 = x1 ∨ x0

t1 = x1 ↓ x2

y0 = x3 ↔ t0

y1 = t1 ⊕ x0

t4 = y1 ∨ y0

t5 = y0 ↓ x2

y2 = t5 ↔ x1

y3 = t4 ↔ x2

Joltik−1/Piccolo−1

k = 8

t0 = x1 ↓ x0

y2 = t0 ⊕ x3

t2 = y2 ↓ x0

y1 = x2 ↔ t2

t4 = y1 ∨ y2

y0 = t4 ↔ x1

t6 = y0 ∨ y1

y3 = t6 ↔ x0

LAC
k = 10

t0 = x2 ↔ x3

t1 = x1 ∧ t0

t2 = t1 ⊕ x3

y2 = x0 ↔ t2

t4 = x0 ∨ x1

y3 = t4 ↔ t0

t6 = t3 ∨ y3

t7 = x0 ∨ t2

y0 = t6 ⊕ x0

y1 = x1 ↔ t7

Prøst
k = 8

t0 = x2 ∧ x1

y1 = t0 ⊕ x3

t2 = x0 ∧ x1

y0 = x2 ⊕ t2

t4 = y1 ∧ y0

y2 = x0 ⊕ t4

t6 = y1 ∧ y2

y3 = x1 ⊕ t6

RECTANGLE
k = 11

t0 = x3 ↓ x0

t1 = x1 ⊕ t0

t2 = x2 ↔ x0

y1 = t1 ↔ x2

t4 = t1 ∧ t2

t5 = y1 ↔ x3

t6 = t1 ∨ x3

y2 = t2 ⊕ t6

t8 = y2 ↑ t5

y3 = t1 ↔ t8

y0 = t5 ↔ t4

RECTANGLE−1

k = 11

t0 = x3 ∨ x2

t1 = x0 ⊕ t0

t2 = t1 ↓ x1

t3 = t2 ⊕ x3

y1 = x2 ⊕ t3

t5 = t1 ⊕ x2

y3 = t5 ⊕ x1

t7 = y1 ↑ y3

t8 = y3 ∧ t1

y0 = t7 ↔ t1

y2 = t8 ⊕ t3

A.4 Optimized for Depth Complexity

The extra whitespace separates the different depth layers.

Joltik/Piccolo
k = 4,w = 2

t0 = x1 ∨ x0

t1 = x1 ↓ x2

y0 = x3 ↔ t0

y1 = t1 ⊕ x0

t4 = y1 ∨ y0

t5 = y0 ↓ x2

y2 = t5 ↔ x1

y3 = t4 ↔ x2

Joltik−1/Piccolo−1

k = 4,w = 3
t0 = x1 ∨ x0

t1 = x2 ↔ x0

t2 = x3 ⊕ x1

t3 = t2 ⊕ t0

y2 = x3 ↔ t0

t5 = t0 ⊕ t1

t6 = t3 ↓ t5

t7 = y2 ∨ t1

t8 = y2 ∨ x0

y1 = x2 ⊕ t8

y3 = x0 ⊕ t6

y0 = t3 ↔ t7
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LAC
k = 3,w = 6

t0 = x0 ↑ x1

t1 = x3 ⊕ x0

t2 = x3 ↔ x2

t3 = x2 ⊕ x0

t4 = x2 ∨ x0

t5 = x1 ∨ x0

y3 = t5 ↔ t2

t7 = t0 ↔ t4

t8 = t5 ↑ x3

t9 = t3 ↑ t2

t10 = t5 ∨ t2

t11 = x1 ↑ t2

y1 = t10 ⊕ t7

y2 = t11 ⊕ t1

y0 = t9 ↔ t8

Prøst
k = 4,w = 3

t0 = x1 ∧ x2

t1 = x1 ∧ x0

t2 = x3 ∧ x0

y1 = t0 ⊕ x3

t4 = t2 ⊕ x1

y0 = x2 ⊕ t1

t6 = y0 ↑ y1

t7 = y1 ∧ x2

t8 = t4 ∨ t2

y2 = x0 ↔ t6

y3 = t7 ⊕ t8

RECTANGLE
k = 3,w = 6
t0 = x0 ↓ x3

t1 = x1 ⊕ x2

t2 = x3 ↔ x2

t3 = x0 ∧ x1

t4 = x1 ∧ x2

t5 = x1 ⊕ x0

t6 = t4 ∨ t2

t7 = x3 ↑ t5

t8 = t4 ⊕ t3

t9 = t1 ∨ t5

y1 = t0 ↔ t1

t11 = t0 ∨ t2

y3 = t9 ⊕ t6

y2 = t1 ↔ t7

y0 = t8 ⊕ t11

RECTANGLE−1

k = 3,w = 6

t0 = x0 ⊕ x1

t1 = x0 ↑ x2

t2 = x3 ↔ x2

t3 = x2 ↓ x3

t4 = x2 ⊕ x1

t5 = x1 ∨ x0

t6 = t3 ⊕ x2

t7 = t3 ↓ x1

t8 = t0 ↑ t2

t9 = t4 ⊕ t1

t10 = t4 ↑ t1

t11 = t2 ⊕ t5

y1 = t7 ⊕ t11

y2 = t9 ⊕ x3

y3 = t0 ↔ t6

y0 = t10 ⊕ t8
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Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 24–35. Springer,
Heidelberg (2008)

11. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF gen-
eration. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2009, 3001 Leuven, Belgium, Belgium, pp. 1590–1595. European
Design and Automation Association (2009)

12. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems
in cryptography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475
(2011). http://eprint.iacr.org/

13. Courtois, N., Mourouzis, T., Hulme, D.: Exact logic minimization and multiplica-
tive complexity of concrete algebraic and cryptographic circuits. Int. J. Adv. Intell.
Syst. 6(3 and 4), 165–176 (2013)

14. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.1. CAESAR sub-
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Abstract. We provide further evidence that implementing software
countermeasures against timing attacks is a non-trivial task and requires
domain-specific software development processes: we report an imple-
mentation bug in the s2n library, recently released by AWS Labs.
This bug (now fixed) allowed bypassing the balancing countermeasures
against timing attacks deployed in the implementation of the MAC-then-
Encode-then-CBC-Encrypt (MEE-CBC) component, creating a timing
side-channel similar to that exploited by Lucky 13.

Although such an attack could only be launched when the MEE-CBC
component is used in isolation – Albrecht and Paterson recently con-
firmed in independent work that s2n’s second line of defence, once rein-
forced, provides adequate mitigation against current adversary capabili-
ties – its existence serves as further evidence to the fact that conventional
software validation processes are not effective in the study and valida-
tion of security properties. To solve this problem, we define a method-
ology for proving security of implementations in the presence of timing
attackers: first, prove black-box security of an algorithmic description of
a cryptographic construction; then, establish functional correctness of an
implementation with respect to the algorithmic description; and finally,
prove that the implementation is leakage secure.

We present a proof-of-concept application of our methodology to
MEE-CBC, bringing together three different formal verification tools to
produce an assembly implementation of this construction that is ver-
ifiably secure against adversaries with access to some timing leakage.
Our methodology subsumes previous work connecting provable security
and side-channel analysis at the implementation level, and supports the
verification of a much larger case study. Our case study itself provides
the first provable security validation of complex timing countermeasures
deployed, for example, in OpenSSL.
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1 Introduction

There is an uncomfortable gap between provable security and practical imple-
mentations. Provable security gives strong guarantees that a cryptographic con-
struction is secure against efficient black-box adversaries. Yet, implementations
of provably secure constructions may be vulnerable to practical attacks, due to
implementation errors or side-channels. The tension between provable security
and cryptographic engineering is illustrated by examples such as the MAC-then-
Encode-then-CBC-Encrypt construction (MEE-CBC), which is well-understood
from the perspective of provable security [22,26], but whose implementation has
been the source of several practical attacks in SSL or TLS implementations.
These security breaks are, in the case of MEE-CBC, due to vulnerable imple-
mentations providing the adversary with padding oracles, either through error
messages [29], or through observable non-functional behaviours such as execu-
tion time [2,16]. These examples illustrate two shortcomings of provable security
when it comes to dealing with implementations. First, the algorithmic descrip-
tions used in proofs elide many potentially critical details; these details must be
filled by implementors, who may not have the specialist knowledge required to
make the right decision. Second, attackers targeting real-world platforms may
break a system by exploiting side-channel leakage, which is absent in the black-
box abstractions in which proofs are obtained.

These shortcomings are addressed independently by real-world cryptography
and secure coding methodologies, both of which have their own limitations. Real-
world cryptography [18] is a branch of provable security that incorporates lower-
level system features in security notions and proofs (for example, precise error
messages or message fragmentation). Real-world cryptography is a valuable tool
for analyzing the security of real-world protocols such as TLS or SSH, but is only
now starting to address side-channels [8,15] and, until now, has stayed short of
considering actual implementations. Secure coding methodologies effectively mit-
igate side-channel leakage; for instance, the constant-time methodology [13,21]
is consensual among practitioners as a means to ensure a good level of protec-
tion against timing and cache-timing attacks. However, a rigorous justification
of such techniques and their application is lacking and they are disconnected
from provable security, leaving room for subtle undetected vulnerabilities even
in carefully tailored implementations.

In this paper we show how the real-world cryptography approach can be
extended – with computer-aided support – to formally capture the guarantees
that implementors empirically pursue using secure coding techniques.

1.1 Our Contributions

Recent high-visibility attacks such as Lucky 13 [2] have shown that timing leak-
age can be exploited in practice to break the security of pervasively used proto-
cols such as TLS, and have led practitioners to pay renewed attention to software
countermeasures against timing attacks. Two prominent examples of this are
the recent reimplementation of MEE-CBC decryption in OpenSSL [23], which
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enforces a constant-time coding policy as mitigation for the Lucky 13 attack,
and the defense in depth mitigation strategy adopted by Amazon Web Services
Labs (AWS Labs) in a new implementation of TLS called s2n, where various
fuzzing- and balancing-based timing countermeasures are combined to reduce
the amount of information leaked through timing. However, the secure-coding
efforts of cryptography practitioners are validated using standard software engi-
neering techniques such as testing and code reviews, which are not well-suited
to reasoning about non-functional behaviours or cryptography.

As a first contribution and motivation for our work, we provide new evidence
of this latent problem by recounting the story of Amazon’s recently released s2n
library, to which we add a new chapter.

New evidence in s2n. In June 2015, AWS-Labs made public a new open-source
implementation of the TLS protocol, called s2n [28] and designed to be “small,
fast, with simplicity as a priority”. By excluding rarely used options and exten-
sions, the implementation can remain small, with only around 6 K lines of code.
Its authors also report extensive validation, including three external security
evaluations and penetration tests. The library’s source code and documentation
are publicly available.1

Recently, Albrecht and Paterson [1] presented a detailed analysis of the coun-
termeasures against timing attacks in the original release of s2n, in light of the
lessons learned in the aftermath of Lucky 13 [2]. In their study, they found that
the implementation of the MEE-CBC component was not properly balanced, and
exposed a timing attack vector that was exploitable using Lucky 13-like tech-
niques. Furthermore, they found that the second layer of countermeasures that
randomizes error reporting delays was insufficient to remove the attack vector.
Intuitively, the granularity of the randomized delays was large enough in com-
parison to the data-dependent timing variations generated by the MEE-CBC
component that they could be ‘filtered out’ leaving an exploitable side-channel.
As a response to these findings, the s2n implementation was patched,2 and both
layers of countermeasures were improved to remove the attack vector.3

Unfortunately, this is not the end of the story. In this paper we report an
implementation bug in this “fixed” version of the library, as well as a timing
attack akin to Lucky 13 that bypasses once more the branch-balancing timing
countermeasures deployed in the s2n implementation of MEE-CBC. This imple-
mentation bug was subtly hidden in the implementation of the timing counter-
measures themselves, which were added as mitigation for the attack reported

1 https://github.com/awslabs/s2n.
2 See the details of the applied fixes in https://github.com/awslabs/s2n/commit/

4d3729.
3 We note that the delay randomization countermeasure was further improved since

the attacks we describe to sampling the delay between 10 s and 30 s (https://github.
com/awslabs/s2n/commit/731e7d). Further, measures were added to prevent care-
less or rogue application code from forcing s2n to signal decryption failures to the
adversary before that delay had passed (https://github.com/awslabs/s2n/commit/
f8a155).

https://github.com/awslabs/s2n
https://github.com/awslabs/s2n/commit/4d3729
https://github.com/awslabs/s2n/commit/4d3729
https://github.com/awslabs/s2n/commit/731e7d
https://github.com/awslabs/s2n/commit/731e7d
https://github.com/awslabs/s2n/commit/f8a155
https://github.com/awslabs/s2n/commit/f8a155
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by Albrecht and Paterson [1]. We show that the bug rendered the countermea-
sure code in the MEE-CBC component totally ineffective by presenting a timing
attack that breaks the MEE-CBC implementation when no additional timing
countermeasures were present. Due to space constraints, details of the attack
are given in the full version of the paper.4

Disclosure Timeline and Recommendations. The implementation bug and tim-
ing attack were reported to AWS Labs on September 4, 2015. The problem
was promptly acknowledged and the current head revision of the official s2n
repository no longer exhibits the bug and potential attack vector from the
MEE-CBC implementation. Subsequent discussions with Albrecht and Pater-
son and AWS Labs lead us to believe that s2n’s second line of defence (the finer
grained error reporting delay randomization mechanism validated by Albrecht
and Paterson [1]) is currently sufficient to thwart potential exploits of the timing
side-channel created by the bug. Therefore, systems relying on unpatched but
complete versions of the library are safe. On the other hand, any system relying
directly on the unpatched MEE-CBC implementation, without the global ran-
domized delay layer, will be vulnerable and should upgrade to the latest version.

The need for formal validation. The sequence of events reported above5

shows that timing countermeasures are extremely hard to get right and very hard
to validate. Our view is that implementors currently designing and deploying
countermeasures against side-channel attacks face similar problems to those that
were faced by the designers of cryptographic primitives and protocols before
the emergence of provable security. On the one hand, we lack a methodology
to rigorously characterize and prove the soundness of existing designs such as
the ones deployed, e.g., in OpenSSL; on the other hand, we have no way of
assessing the soundness of new designs, such as those adopted in s2n, except via
empirical validation and trial-and-error. This leads us to the following question:
can we bring the mathematical guarantees of provable security to cryptographic
implementations? We take two steps towards answering this question.

A Case Study: Constant-Time MEE-CBC. Our second and main con-
tribution is the first formal and machine-checked proof of security for an x86
implementation of MEE-CBC in an attack model that includes control-flow and
cache-timing channels. In particular, our case study validates the style of coun-
termeasures against timing attacks currently deployed in the OpenSSL imple-
mentation of MEE-CBC. We achieve this result by combining three state-of-
the-art formal verification tools: i. we rely on EasyCrypt [6,7] to formalize a
specification of MEE-CBC and some of the known provable security results for

4 https://eprint.iacr.org/2015/1241.
5 The very interesting blog post in http://blogs.aws.amazon.com/security/post/

TxLZP6HNAYWBQ6/s2n-and-Lucky-13 analyses these events from the perspective
of the AWS Labs development team.

https://eprint.iacr.org/2015/1241
http://blogs.aws.amazon.com/security/post/TxLZP6HNAYWBQ6/s2n-and-Lucky-13
http://blogs.aws.amazon.com/security/post/TxLZP6HNAYWBQ6/s2n-and-Lucky-13
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this construction;6 ii. we use Frama-C to establish a functional equivalence result
between EasyCrypt specifications and C implementations; and iii. we apply the
CompCert certified compiler [24] and the certified information-flow type-system
from [4] to guarantee that the compiled implementation does not leak secret
information through the channels considered, and that the compiled x86 code is
correct with respect to the EasyCrypt specification proved secure initially.

A Framework for Implementation Security. To tie these verification
results together, we introduce — as our third contribution — a framework of
definitions and theorems that abstracts the details of the case study. This frame-
work yields a general methodology for proving security properties of low-level
implementations in the presence of adversaries that may observe leakage. This
methodology relies on separating three different concerns: i. black-box specifi-
cation security, which establishes the computational security of a functional
specification (here one can adopt the real-world cryptography approach); ii.
implementation correctness, which establishes that the considered implemen-
tation behaves, as a black-box, exactly like its functional specification; and iii.
leakage security, which establishes that the leakage due to the execution of the
implementation code in some given leakage model is independent from its secret
inputs. Our main theorem, which is proven using the previous methodology,
establishes that our x86 implementation retains the black-box security proper-
ties of the MEE-CBC specification, i.e., it is a secure authenticated encryption
scheme, even in the presence of a strong timing attacker, and based on standard
black-box cryptographic assumptions.

We insist that we do not claim to formally or empirically justify the validity
of any particular leakage model: for this we rely on the wisdom of practitioners.
What we do provide is a means to take a well-accepted leakage model, and sepa-
rately and formally verify, through leakage security, that a concrete deployment
of a particular countermeasure in a given implementation does in fact guarantee
the absence of any leakage that would weaken a particular security property in
the chosen leakage model.

Outline. In Sect. 2, we describe the MEE-CBC construction and informally dis-
cuss its security at specification- and implementation-level. We then present the
definitions for implementation-level security notions and the statement of our
main theorem (Sect. 3). In Sect. 4, we introduce our methodology, before detail-
ing its application to MEE-CBC in Sect. 5. We then present and discuss some
benchmarking results in Sect. 6. Finally, we discuss potential extensions to our
framework not illustrated by our case study (Sect. 7). We conclude the paper
and discuss directions for future work in Sect. 8. A long version of this paper,

6 Formalizing all known results for MEE-CBC would be beyond the scope of this
paper, and we assume that our EasyCrypt specification of the construction inherits
all the security properties that have been proved in the literature. In other words, in
addition to the properties we formalize, we assume that our MEE-CBC specification
satisfies the standard notions of security for authenticated encryption as proved, e.g.,
by Paterson, Ristenpart and Shrimpton [26].
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with appendices including code snippets, formal definitions of standard black-
box specification-level security notions, and a discussion of further related work
appears on the IACR eprint server.7

2 Case Study: MEE-CBC

MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) is an instance of the MAC-
then-Encrypt generic construction that combines a block cipher used in CBC
mode with some padding and a MAC scheme in order to obtain an authenticated
encryption scheme. We consider the specific instantiation of the construction
that is currently most widely used within TLS: i. A MAC tag of length tlen
is computed over the TLS record header hdr, a sequence number seq and the
payload pld. The length of the authenticated string is therefore the length of
the payload plus a small and fixed number of bytes. Several MAC schemes can
be used to authenticate this message, but we only consider HMAC-SHA256. ii.
The CBC-encrypted message m comprises the payload pld concatenated with the
MAC tag (the sequence number is not transmitted and the header is transmitted
in the clear). iii. The padding added to m comprises plen bytes of value plen− 1,
where plen may be any value in the range [1..256], such that plen + |m| is a
multiple of the cipher’s block size. iv. We use AES-128 as block cipher, which
fixes a 16-byte block size.

At the high level, the HMAC construction computes

H((keyMAC ⊕ opad) ||H((keyMAC ⊕ ipad) || hdr || seq || pld)) .

We consider a hash function such as SHA-256, which follows the Merkle-
Damg̊ard paradigm: a compression function is iterated to gradually combine
the already computed hash value with a new 64-byte message block (hash values
are tlen bytes long).

Informal security discussion. The theoretical security of MEE-CBC has
received a lot of attention in the past, due to its high-profile usage in the
SSL/TLS protocol. Although it is well-known that the MAC-then-Encrypt con-
struction does not generically yield a secure authenticated encryption scheme [9],
the particular instantiation used in TLS has been proven secure [22,25,26]. The
most relevant result for this paper is that by Paterson, Ristenpart and Shrimp-
ton [26]. Crucially, their high-level proof explicitly clarifies the need for the
implementation to not reveal, in any way, which of the padding or MAC check
failed on decryption failures. This is exactly the kind of padding oracles exploited
in practical attacks against MEE-CBC such as Lucky 13 [2].

After the disclosure of the Lucky 13 attack [2], significant effort was invested
into identifying all potential sources of timing leakage in the MEE-CBC decryp-
tion algorithm. The implementation subsequently incorporated into OpenSSL,
for example, deploys constant-time countermeasures that guarantee the following

7 https://eprint.iacr.org/2015/1241.

https://eprint.iacr.org/2015/1241
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behaviours [23]: i. removing the padding and checking its well-formedness occurs
in constant-time; ii. the MAC of the unpadded message is always computed, even
for bad padding; iii. the MAC computation involves the same number of calls
to the underlying compression function regardless of the number of hash input
blocks in the decoded message, and regardless of the length of the final hash
block (which may cause an additional block to be computed due to the internal
Merkle-Damg̊ard length padding); and iv. the transmitted MAC is compared to
the computed MAC in constant-time (the transmitted MAC’s location in mem-
ory, which may be leaked through the timing of memory accesses, depends on
the plaintext length).Constant-time, here and in the rest of this paper, is used to
mean that the trace of program points and memory addresses accessed during
the execution is independent from the initial value of secret inputs. In particu-
lar, we note that the OpenSSL MEE-CBC implementation is not constant time
following this definition: the underlying AES implementation uses look-up table
optimizations that make secret-dependent data memory accesses and may open
the way to cache-timing attacks.

Our Implementation. The main result of this paper is a security theorem
for an x86 assembly implementation of MEE-CBC (MEE-CBCx86). The imple-
mentation is compiled using CompCert from standard C code that replicates the
countermeasures against timing attacks currently implemented in the OpenSSL
library [23]. We do not use the OpenSSL code directly because the code style of
the library (and in particular its lack of modularity) makes it a difficult target for
verification. Furthermore, we wish to fully prove constant-time security, which
we have noted is not achieved by OpenSSL. However, a large part of the code we
verify is existing code, taken from the NaCl library [14] without change (for AES,
SHA256 and CBC mode), or modified to include the necessary countermeasures
(HMAC, padding and MEE composition). Our C code is composed of the fol-
lowing modules, explicitly named for later reference: i. AES128NaCl contains the
NaCl implementation of AES128; ii. HMACSHA256NaCl contains a version of the
NaCl implementation of HMAC-SHA256 extended with timing countermeasures
mimicking those described in [23]; and iii. MEE-CBCC contains an implementa-
tion of MEE-CBC using AES128NaCl and HMACSHA256NaCl. We do not include
the code in the paper due to space constraints.

As we prove later in the paper, a strict adherence to the coding style adopted
in OpenSSL is indeed sufficient to guarantee security against attackers that, in
addition to input/output interaction with the MEE-CBC implementation, also
obtain full traces of program counter and memory accesses performed by the
implementation. However, not all TLS implementations have adopted a strict
adherence to constant-time coding policies in the aftermath of the Lucky 13
attack. We now briefly present the case of Amazon’s s2n library, discussing their
choice of countermeasures, and describing a bug in their implementation that
leads to an attack. A more detailed discussion can be found in the long version
of this paper.
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Breaking the MEE-CBC implementation in s2n. Although parts of the
s2n code for MEE-CBC are written in the constant-time style, there are many
(intentional) deviations from a strict constant-time coding policy. For example,
no attempt is made to de-correlate memory accesses from the padding length
value that is recovered from the decrypted (but not yet validated) plaintext. As
an alternative, the code includes countermeasures that intend to balance the
execution time of secret-dependent conditional branches that might lead to sig-
nificant variability in the execution time. Roughly, the goal of these countermea-
sures is to ensure that the total number of calls to the hash compression function
is always the same, independently of the actual padding length or validity.

The bug we found resides in a special routine that aims to guarantee that
a dummy compression function computation is performed whenever particular
padding patterns might lead to shorter execution times. An off-by-one error
in the checking of a boundary condition implied that the dummy compression
function would be invoked unnecessarily for some padding values (more precisely,
there are exactly 4 such padding values, which are easily deduced from the
(public) length of the encrypted record).

The leakage the bug produces is similar in size to that exploited by AlFardan
and Paterson [2] to recover plaintexts. We have implemented a padding-oracle-
style attack on the MEE-CBC decryption routine to recover single plaintext
bytes from a ciphertext: one simply measures the decryption time to check if
the recovered padding length causes the bug to activate and proceeds by trial
and error.8 The attack can be extended to full plaintext recovery using the same
techniques reported in [2].

We already discussed the real-world impact of our attack and our disclosure
interaction with AWS Labs in the introduction of this paper. However, we insist
that for the purpose of this paper it is not the real-world impact of our attack
that matters, but the software bug that gave rise to it in the first place. Indeed
the existence of such a programming bug and the fact that it remained unde-
tected through AWS Labs’ code validation process (and in particular despite unit
testing specifically designed to detect timing side-channels) reveal that there is
a need for a formal framework in which to rigorously prove that an implemen-
tation is secure against timing attacks. This is what we set out to do in the rest
of the paper.

3 Security Definitions and Main Theorem

After a brief reminder of the syntax and security notions for secret key encryp-
tion relevant to our case study, we introduce and discuss the corresponding
implementation-level security notions for the constant-time leakage model and
state our main theorem. Cryptographic implementations are often hardwired at
a particular security level, which means that asymptotic security notions are not
adequate to capture the security guarantees provided by software. We therefore
8 Plaintext recovery is easier than in Lucky 13, since leakage occurs whether or not

the padding string is correct.
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omit the security parameter in all our definitions. For simplicity we also keep the
running time of algorithms implicit in our notations, although we take care to
account for it in our security proofs and to show that there is no hidden slackness
in our reductions.

3.1 Secret Key Encryption

We recall that a secret-key encryption scheme Π = (Gen,Enc,Dec) is specified
as three algorithms: i. a probabilistic key generation algorithm Gen(; r) that
returns a secret key SK on input some random coins r; ii. a probabilistic encryp-
tion algorithm Enc(m,SK; r) that returns a ciphertext c on input a message m,
the secret key SK, and some random coins r; and iii. a deterministic decryption
algorithm Dec(c,SK) that returns either a message m or a failure symbol ⊥ on
input a ciphertext c and secret key SK. We denote the set of valid messages with
MsgSp and adopt standard notions of correctness, confidentiality (IND$-CPA)
and integrity (INT-PTXT and INT-CTXT) for authenticated symmetric encryp-
tion schemes.

Our goal in the rest of this section is to adapt these standard notions to
formally capture implementation-level security. In particular, we wish to give
the adversary the ability to observe the leakage produced by the computation of
its oracle queries. We first give generic definitions for some core concepts.

3.2 Implementation: Languages, Leakage and Generation

For the sake of generality, our definitions abstract the concrete implementation
languages and leakage models adopted in our case study. We later instantiate
these definitions with a black-box security model for C implementations and a
timing leakage model for x86 assembly implementations.

Language, leakage and machine. Given an implementation language L,
we consider a machine M that animates its semantics. Such a machine takes
as input a program P written in L, an input i for P , and some randomness r
and outputs both the result o of evaluating P with i and r, and the leakage �
produced by the evaluation. We use the following notation for this operation
o ← M(P, i; r)� � . We make the assumption that the machine is deterministic,
so that all randomness required to execute programs is given by the input r.
However, our security experiments are probabilistic, and we write o←$M(P, i)� �

to denote the probabilistic computation that first samples the random coins r
that must be passed as randomness input of P , and then runs M(P, i; r). This
approach agrees with the view that the problem of randomness generation is
orthogonal to the one of secure implementation [14]. We discuss this further in
Sect. 7.

We note that the definition of M makes three implicit assumptions. First, the
semantics of a program must always be defined, since M always returns a result;
termination issues can be resolved easily by aborting computations after a fixed
number of steps. Second, our view of M does not allow an adversary to influence
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a program’s execution other than through its queries. Finally, our model implies
that the semantics of L can be equipped with meaningful notions of leakage. In
the context of our use case, we adopt the common view of practical cryptography
that timing leakage can be captured via the code-memory and data-memory
accesses performed while executing a program. These can be sensibly formalized
over assembly implementations, but not over higher-level implementations (e.g.,
over C implementations), not least because there is no guarantee that optimizing
compilers do not introduce leakage. For this reason, in our case study, we consider
the following two implementation models:

– a C-level model using a machine M
∅
C (or simply MC) that animates the C

language semantics with no leakage;
– an assembly-level model using a machine M

CT
x86 that animates (a subset of)

the x86 assembly language, and produces leakage traces in the constant-time
leakage model as detailed below.

In both languages, we adopt the semantic definitions as formalized in the Com-
pCert certified compiler.

Constant-time leakage traces. Formally, we capture the constant-time
leakage model by assuming that each semantic step extends the (initially empty)
leakage trace with a pair containing: i. the program point corresponding to the
statement being executed; and ii. the (ordered) sequence of memory accesses
performed during the execution step. We specify when this particular leakage
model is used by annotating the corresponding notion with the symbol CT.

3.3 Authenticated Encryption in the Implementation Model

Given a language L and a (potentially leaking) machine M animating its seman-
tics, we now define M-correctness, M-IND$-CPA and M-INT-PTXT security for
L-implementations of SKE schemes in the leakage model defined by M. In what
follows, we let Π∗ = (Gen∗,Enc∗,Dec∗) be an SKE implementation in language L.

SKE implementation correctness. We say that Π∗ is M-correct if, for all
m ∈ MsgSp, random coins rgen, renc, and SK = M(Gen∗; rgen), we have that

M(Dec∗,M(Enc∗,m,SK; renc),SK) = m .

SKE implementation security. The M-IND$-CPA advantage of an adversary
A against Π∗ and public length function φ is defined as the following (concrete)
difference

AdvM-ind$-cpa
Π∗,φ,A :=

∣
∣
∣Pr

[
M-IND$-CPAA

Π∗,φ(Real) ⇒ true
]

− Pr
[
M-IND$-CPAA

Π∗,φ(Ideal) ⇒ true
]∣∣
∣ ,

where implementation-level game M-IND$-CPA is shown in Fig. 1. Here, public
length function φ is used to capture the fact that SKEs may partially hide the
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GameM-IND$-CPAA
Π∗,φ(b):

SK ←$ M(Gen∗)��g

b′ ←$ ARoR,Dec(�g)
Return (b′ = b)

proc.RoR(m):

c ←$ M(Enc∗, m, SK)��e

If (b = Ideal) Then c ←$ {0, 1}φ(|m|)

Return (c, �e)

proc.Dec(c):

m ← M(Dec∗, c, SK)��d
Return (⊥, �d)

Fig. 1. M-IND$-CPA experiment.

GameM-INT-PTXTA
Π∗ :

List ← []; win ← ⊥
SK ←$ M(Gen∗)��g

AEnc,Ver(�g)
Return win

proc.Enc(m):

c ←$ M(Enc∗, m, SK)��e
List ← m : List
Return (c, �e)

proc.Ver(c):

m ← M(Dec∗, c, SK)��d
win ← win ∨ (m �= ⊥ ∧ m /∈ List)
Return (m �= ⊥, �d)

Fig. 2. M-INT-PTXT experiment.

length of a message. If φ is the identity function or is efficiently invertible, then
the message length is trivially leaked by the ciphertext. In the case of our MEE-
CBC specification, for example, the message length is revealed only up to AES
block alignment.

We observe that in this refinement of the IND$-CPA security notion for imple-
mentations, the adversary may learn information about the secrets via the leak-
age produced by the decryption oracle Dec∗, even if its functional input-output
behaviour reveals nothing. In particular, in a black-box adversary model where
leakage traces are always empty, the Dec oracle can be perfectly implemented by
the procedure that ignores its argument and returns (⊥, ε), and the RoR oracle
can be simulated without any dependency on m in the Ideal world; this allows
us to recover the standard computational security experiment for IND$-CPA. On
the other hand, in models where leakage traces are not always empty, the adver-
sary is given the ability to use the decryption oracle with invalid ciphertexts and
recover information through its leakage output.

We extend standard INT-PTXT security in a similar way and define the
M-INT-PTXT advantage of an adversary A against Π∗ as the following (con-
crete) probability:

AdvM-int-ptxt
Π∗,A := Pr

[
M-INT-PTXTA

Π∗() ⇒ true
]
,

where implementation-level game M-INT-PTXT is shown in Fig. 2.
We similarly “lift” INT-CTXT, PRP (pseudorandomness of a permutation)

and UF-CMA (existential MAC unforgeability) security experiments and advan-
tages to implementations. This allows us to state our main theorem.

3.4 Main Theorem

The proof of Theorem 1 is fully machine-checked. However, foregoing machine-
checking of the specification’s security theorems allows us to strengthen the
results we obtain on the final implementations. We discuss this further after we
present our proof strategy.
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Theorem 1 (CT security of MEE-CBCx86). MEE-CBCx86 is MCT
x86-correct and

provides M
CT
x86-IND$-CPA and M

CT
x86-INT-PTXT security if the underlying com-

ponents AES128NaCl and HMACSHA256NaCl are black-box secure as a PRP and
a MAC, respectively. More precisely, let φ(i) = �(i + 1)/16� + 3, then

– For any M
CT
x86-IND$-CPA adversary Acpa that makes at most q queries to

its RoR oracle, each of length at most n octets, there exists an (explicitly
constructed) M∅

C-IND$-CPA adversary Bprp that makes at most q·�(n+1)/16�+
2 queries to its forward oracle and such that

AdvM
CT
x86-ind$-cpa

MEE-CBCx86,φ,Acpa ≤ AdvM
∅
C-prp

AES128NaCl,Bprp + 2 ·
(q · (�n+1

16 � + 2))2

2128
.

– For any M
CT
x86-INT-PTXT adversary Aptxt that makes at most qE queries to

its Enc oracle and qV queries to its Ver oracle, there exists an (explicitly
constructed) M

∅
C-UF-CMA adversary Bcma that makes at most qE queries to

its Tag oracle and qV queries to its Ver oracle and such that

AdvM
CT
x86-int-ptxt

MEE-CBCx86,Aptxt ≤ AdvM
∅
C-uf-cma

HMACSHA256NaCl,Bcma .

In addition, the running time of our constructed adversaries is essentially
that of running the original adversary plus the time it takes to emulate the
leakage of the x86 implementations using dummy executions in machine Mx86.
Under reasonable assumptions on the efficiency of Mx86, this will correspond to
an overhead that is linear in the combined inputs provided by an adversary to
its oracles (the implementations are proven to run in constant time under the
semantics of L when these inputs are fixed).

Note that the security assumptions we make are on C implementations of
AES (AES128NaCl) and HMAC-SHA256 (HMACSHA256NaCl). More importantly,
they are made in a black-box model of security where the adversary gets empty
leakage traces.

The proof of Theorem 1 is detailed in Sect. 5 and relies on the general frame-
work we now introduce. Rather than reasoning directly on the semantics of the
executable x86 program (and placing our assumptions on objects that may not
be amenable to inspection), we choose to prove complex security properties on
a clear and simple functional specification, and show that each of the refinement
steps on the way to an x86 assembly executable preserves this property, or even
augments it in some way.

4 Formal Framework and Connection to PL Techniques

Our formal proof of implementation security follows from a set of conditions
on the software development process. We therefore introduce the notion of an
implementation generation procedure.

Implementation generation. An implementation generation procedure
CL1→L2 is a mapping from specifications in language L1 to implementations in
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Game CorrA
M,Π,C():

bad ← false
Π∗ ← C(Π)

AEval(Π∗)
Return ¬ bad

proc. Eval(k, i, r):

o ← Π[k](i; r)
o′ ← M(Π∗[k], i; r)��

If o �= o′ then bad = true

Fig. 3. Game defining correct implementation generation. For compactness, we use
notation Π[k] (resp. Π∗[k]) for k ∈ {1, 2, 3} to denote the k-th algorithm in scheme
Π (resp. implementation Π∗), corresponding to key generation (1), encryption (2) and
decryption (3).

language L2. For example, in our use case, the top-level specification language
is the expression language LEC of EasyCrypt (a polymorphic and higher-order
λ-calculus) and the overall implementation generation procedure CLEC→Lx86 is
performed by a verified manual refinement of the specification into C followed
by compilation to x86 assembly using CompCert (here, Lx86 is the subset of x86
assembly supported by CompCert).

We now introduce two key notions for proving our main result: correct imple-
mentation generation and leakage security, which we relate to standard notions
in the domain of programming language theory. This enables us to rely on exist-
ing formal verification methods and tools to derive intermediate results that are
sufficient to prove our main theorem. In our definitions we consider two arbitrary
languages L1 and L2, a (potentially leaking) machine M animating the seman-
tics of the latter, and an implementation generation procedure CL1→L2 . In this
section, L1 and L2 are omitted when denoting the implementation generation
procedure (simply writing C instead). In the rest of the paper, we also omit them
when clear from context.

Correct implementation generation. Intuitively, the minimum require-
ment for an implementation generation procedure is that it preserves the input-
output functionality of the specification. We capture this in the following
definition.

Definition 1 (Correct implementation generation). The implementation
generation procedure C is correct if, for every adversary A and primitive speci-
fication Π, the game in Fig. 3 always returns true.

For the programming languages we are considering (deterministic, I/O-free
languages) this notion of implementation generation correctness is equivalent
to the standard language-based notion of simulation, and its specialization
as semantic preservation when associated with general-purpose compilers. A
notable case of this is CompCert [24] for which this property is formally proven
in Coq. Similarly, as we discuss in Sect. 5, a manual refinement process can be
turned into a correct implementation generation procedure by requiring a total
functional correctness proof. This is sufficient to guarantee black-box implemen-
tation security. However, it is not sufficient in general to guarantee implementa-
tion security in the presence of leakage.
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Leakage security. In order to relate the security of implementations to that
of black-box specifications, we establish that leakage does not depend on secret
inputs. We capture this intuition via the notion of leakage security, which imposes
that all the leakage produced by the machine M for an implementation is benign.
Interestingly from the point of view of formal verification, leakage security is
naturally related to the standard notion of non-interference [19]. In its simplest
form, non-interference is formulated by partitioning the memory of a program
into high-security (or secret) and low-security (or public) parts and stating that
two executions that start in states that agree on their low-security partitions
end in states that agree on their low-security partitions.

We define what the public part of the input means by specifying a function
τ that parametrizes our definition of leakage security. For the case of symmetric
encryption, for example, τ is defined to tag as public the inputs to the algorithms
an attacker has control over through its various oracle interfaces (in IND$-CPA,
INT-PTXT and INT-CTXT). More precisely, we define a specific projection func-
tion τSKE as follows:

τSKE(Gen) = ε τSKE(Enc, key, m) = (|key|, |m|) τSKE(Dec, key, c) = (|key|, c)
Our definition of leakage security then consists in constraining the information-

flow into the leakage due to each algorithm, via the following non-interference
notion.9

Definition 2 ((M, τ)-non-interference). Let P be a program in L2 and τ be
a projection function on P ’s inputs. Then, P is (M, τ)-non-interferent if, for
any two executions o ← M(P, i; r)� � and o′ ← M(P, i′; r′)� �′ , we have τ(P, i) =
τ(P, i′) ⇒ � = �′.

Intuitively, (M, τ)-non-interference labels the leakage � as a public output (which
must be proved independent of secret information), whereas τ is used to specify
which inputs of P are considered public. By extension, those inputs that are not
revealed by τ are considered secret, and are not constrained in any way during
either executions. Note that the leakage produced by a (M, τ)-non-interferent
program for some input i can be predicted given only the public information
revealed by τ(P, i): one can simply choose the remaining part of the input arbi-
trarily, constructing some input i′ such that τ(P, i) = τ(P, i′). In this case,
(M, τ)-non-interference guarantees that the leakage traces produced by M when
executing P on i and i′ are equal.

We can now specialize this notion of leakage security to symmetric
encryption.

Definition 3 (Leakage-secure implementation generation for SKE).
An implementation generation procedure C produces M-leakage-secure implemen-
tations for SKE if, for all SKE specifications Π written in L1, we have that
the generated L2 implementation (Gen∗,Enc∗,Dec∗) = C(Π) is (M, τSKE)-non-
interferent.
9 For simplicity, the length of random inputs is assumed to be fixed by the algorithm

itself.
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Putting the pieces together. The following lemma, shows that applying a
correct and leakage secure implementation generation procedure to a black-box
secure SKE specification is sufficient to guarantee implementation security.

Theorem 2. Let C be correct and produce M-leakage-secure implementations.
Then, for all SKE scheme Π that is correct, IND$-CPA-, INT-PTXT- and
INT-CTXT-secure, the implementation Π∗ = C(Π) is M-correct, M-IND$-CPA-,
M-INT-PTXT- and M-INT-CTXT-secure with the same advantages.

Proof. Correctness of Π∗ follows directly from that of C and Π. The security
proofs are direct reductions. We only detail the proof of M-IND$-CPA, but note
that a similar proof can be constructed for M-INT-PTXT and M-INT-CTXT.
Given an implementation adversary A, we construct an adversary B against Π
as follows. Adversary B runs Gen∗ on an arbitrary randomness of appropriate
size to obtain the leakage �Gen associated with key generation and runs adversary
A on �Gen. Oracle queries made by A are simulated by using B’s specification
oracles to obtain outputs, and the same leakage simulation strategy to present
a perfect view of the implementation leakage to A. When A outputs its guess,
B forwards it as its own guess. We now argue that B’s simulation is perfect.
The first part of the argument relies on the correctness of the implementation
generation procedure, which guarantees that the values obtained by B from its
oracles in the CPA-game are identically distributed to those that A would have
received in the implementation game. The second part of the argument relies
on the fact that leakage-secure implementation generation guarantees that B
knows enough about the (unknown) inputs to the black-box algorithms (the
information specified by τSKE) to predict the exact leakage that such inputs
would produce in the implementation model. Observe for example that, in the
case of decryption leakage, the adversary B only needs the input ciphertext c to
be able to exactly reproduce the leakage �Dec. Finally, note that the running time
of the constructed adversary B is that of adversary A where each oracle query
A introduces an overhead of one execution of the implementation in machine M

(which can reasonably be assumed to be close to that of the specification). 
�

5 Implementation Security of MEE-CBC

We now return to our case study, and explain how to use the methodology from
Sect. 4, instantiated with existing verification and compilation tools, to derive
assembly-level correctness and security properties for MEE-CBCx86.

Proof strategy. We first go briefly over each of the steps in our proof strategy,
and then detail each of them in turn in the remainder of this section. In the
first step, we specify and verify the correctness and black-box computational
security of the MEE-CBC construction using EasyCrypt. In a second step, we
use Frama-C to prove the functional correctness of program MEE-CBCC with
respect to the EasyCrypt specification. Finally, we focus on the x86 assembly code
generated by CompCert (MEE-CBCx86), and prove: i. its functional correctness
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with respect to the C code (and thus the top-level EasyCrypt specification); and
ii. its leakage security. An instantiation of Theorem 2 allows us to conclude the
proof of Theorem 1.

Black-box specification security. We use EasyCrypt to prove that the
MEE-CBC construction provides IND$-CPA security (when used with freshly
and uniformly sampled IVs for each query) and INT-PTXT security.

Lemma 1 (Machine-checked MEE-CBC security). The following two
results hold:

– For all legitimate IND$-CPA adversary Acpa that makes at most q queries,
each of length at most n octets, to its RoR oracle, there exists an explicitly
constructed PRP adversary Bprp that makes q · �(n + 1) / λ�+2 queries to its
forward oracle and such that:

Advind$-cpa
Π,φ,A ≤ Advprp

Perm,Bprp + 2 ·
(q ·

⌈
n+1

λ

⌉
+ 2)2

28·λ ,

where φ(i) = �(i + 1) / λ�+3 reveals only the number of blocks in the plaintext
(and adds to it the fixed number of blocks due to IV and MAC tag).

– For all PTXT adversary A that makes qV queries to its Dec oracle, there
exists an explicitly constructed SUF-CMA adversary Bcma that makes exactly
qV queries to its Ver oracle and such that:

Advint-ptxt
Π,A ≤ Advuf-cma

Mac,Bcma .

Our EasyCrypt specification relies on abstract algorithms for the primitives.
More precisely, it is parameterized by an abstract, stateless and deterministic
block cipher Perm with block size λ octets, and by an abstract, stateless and
deterministic MAC scheme Mac producing tags of length 2 ·λ.10 The proofs, for-
malized in EasyCrypt, are fairly standard and account for all details of padding
and message formatting in order to obtain the weak length-hiding property
shown in this lemma. Running times for Bprp and Bcma are as usual.

We note that, although we have not formalized in EasyCrypt the proof of
INT-CTXT security (this would imply a significant increase in interactive theo-
rem proving effort) the known security results for MEE-CBC also apply to this
specification and, in particular, it follows from [26] that it also achieves this
stronger level of security when the underlying MAC and cipher satisfy slightly
stronger security requirements.

implementation generation. Using Frama-C, a verification platform for C
programs,11 we prove functional equivalence between the EasyCrypt specification
and our C implementation. Specifically, we use the deductive verification (WP)
plugin to check that our C code fully and faithfully implements a functionality
described in the ANSI/ISO C Specification Language (ACSL). To make sure

10 This is only for convenience in these definitions.
11 http://frama-c.com/.

http://frama-c.com/
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that the ACSL specification precisely corresponds to the EasyCrypt specification
on which black-box security is formally proved, we rely on Frama-C’s ability to
link ACSL logical constructs at the C annotation level to specific operators in
underlying Why3 theories, which we formally relate to those used in the Easy-
Crypt proof. This closes the gap between the tools by allowing us to refer to a
common specification. Note that, since the abstract block cipher Perm and MAC
scheme Mac are concretely instantiated in the C implementation, we instantiate
λ = 16 (the AES block length in bytes) in this common specification and lift the
assumptions on Perm and Mac to the C implementation of their chosen instan-
tiation. We then use the CompCert certified compiler [24] to produce our final
x86 assembly implementation.

To prove leakage security, we use the certifying information-flow type sys-
tem for x86 built on top of CompCert [4], marking as public those inputs that
correspond to values revealed by τSKE. Obtaining this proof does not put any
additional burden on the user—except for marking program inputs as secret
or public. However, the original C code must satisfy a number of restrictions in
order to be analyzed using the dataflow analysis from [4]. Our C implementations
were constructed to meet these restrictions, and lifting them to permit a wider
applicability of our techniques is an important challenge for further work.12

Proof of Theorem 1. Let us denote by CLEC→x86 the implementation gener-
ation procedure that consists of hand-crafting a C implementation (annotated
with τSKE consistent security types), equivalence-checking it with an EasyCrypt
specification using Frama-C, and then compiling it to assembly using CompCert
(accepting only assembly implementations that type-check under the embedded
secure information-flow type system), as we have done for our use case. We
formalize the guarantees provided by this procedure in the following lemma.

Lemma 2 (Implementation generation). CLEC→x86 is a M
CT
x86-correct imple-

mentation generation procedure that producesMCT
x86-leakage secure SKE implemen-

tations.

Proof. Correctness follows from the combination of the Frama-C functional cor-
rectness proof and the semantic preservation guarantees provided by CompCert.
CompCert’s semantics preservation theorem implies that the I/O behaviour of
the assembly program exactly matches that of the C program. Functional equiv-
alence checking using Frama-C yields that the C implementation has an I/O
behaviour that is consistent with that of the EasyCrypt specification (under the
C semantics adopted by Frama-C). Finally, under the reasonable assumption that

12 In a recent development in this direction, Almeida et al. [3] describe a method, based
on limited product programs, for verifying constant-time properties of LLVM code.
Their method and the implementation they describe can deal with many examples
that the type system from [4] cannot handle, including a less ad hoc version of our
code and some of the OpenSSL code for MEE-CBC, whilst preserving a high degree
of automation. In addition, their construction easily extends to situations where
public outputs are needed to simulate the leakage trace.
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the CompCert semantics of C are a sound refinement of those used in Frama-C,
we obtain functional correctness of the assembly implementation with respect
to the EasyCrypt specification. For leakage security, we rely on the fact that the
information-flow type system of [4] enforces τSKE-non-interference and hence only
accepts (MCT

x86, τSKE)-leakage secure implementations. 
�

Theorem 1 follows immediately from the application of Theorem 2 instan-
tiated with Lemmas 1 and 2. Furthermore, foregoing machine-checking of the
black-box specification security proof and simply accepting known results on
MEE-TLS-CBC [26], we can also show that MEE-CBCx86 is M

CT
x86-INT-CTXT-

secure under slightly stronger black-box assumptions on AES128NaCl and
HMACSHA256NaCl.

6 Performance Comparison

We now characterize the different assurance/performance trade-offs of the tim-
ing mitigation strategies discussed in this paper. Figure 4 shows the time taken
by 5 different implementations of MEE-CBC (one of them compiled in differ-
ent ways) when decrypting a 1.5KB TLS1.2 record using the AES128-SHA256
ciphersuite.13 More specifically, we consider code from s2n (#1) and OpenSSL
(#2), and five different compilations of our formally verified MEE-CBC imple-
mentation (#3-7), focusing on raw invocations of MEE-CBC. It is clear that
the s2n code (#1) benefits from its less strict timing countermeasures, gaining
roughly 1.8× performance over OpenSSL’s (semi-)constant-time implementation
approach (#2). The figures for our verified implementation of MEE-CBC show
both the cost of formal verification and the cost of full constant-time guarantees.
Indeed, the least efficient results are obtained when imposing full code and data
memory access independence from secret data (#4-6).

# Implementation Compiler Clock Cycles Time
1 s2n GCC x86-64 -O2 14K 5µs
2 OpenSSL GCC x86-64 -O2 23K 9µs
3 MEE-CBCC (AES-NI) CompCert x86-32 51K 21µs
4 MEE-CBCC GCC x86-64 -O2 59M 25ms
5 MEE-CBCC GCC x86-64 -O1 62M 26ms
6 MEE-CBCx86 CompCert x86-32 101M 42ms
7 MEE-CBCC GCC x86-64 -O0 237M 99ms

Fig. 4. Performance comparison of various MEE-CBC implementations. (Median over
500 runs.)

13 The numbers were obtained in a virtualized Intel x86-64 Linux machine with 4 GB
RAM.
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The assembly implementation produced using the constant-time version of
CompCert (#6), is roughly 8400× slower than s2n, but still over twice as fast as
unoptimized GCC. However, the fact that the same C code compiled with GCC
-O2 (#4) is only 1.7× faster14 than the fully verified CompCert-generated code
shows that the bottleneck does not reside in verification, but in the constant-
time countermeasures. Indeed, profiling reveals that NaCl’s constant-time AES
accounts for 97 % of the execution time. These results confirm the observations
made in [12] as to the difficulties of reconciling resistance against cache attacks
and efficiency in AES implementations. To further illustrate this point, we also
include measurements corresponding to a modification of our MEE-CBC imple-
mentation that uses hardware-backed AES (#3). This cannot, in fairness, be
compared to the other implementations, but it does demonstrate that, with cur-
rent verification technology, the performance cost of a fully verified constant-time
MEE-CBC implementation is not prohibitive.

7 Discussions

On randomness. Restricting our study to deterministic programs with an argu-
ment containing random coins does not exclude the analysis of real-world sys-
tems. There, randomness is typically scarce and pseudorandom generators are
used to expand short raw high-entropy bitstrings into larger random-looking
strings that are fed to deterministic algorithms, and it is common to assume
that the small original seed comes from an ideal randomness source, as is done
in this paper. Our approach could therefore be used to analyze the entire pseudo-
random generation implementation, including potential leakage-related vulner-
abilities therein.

On length-hiding security. Existing implementations of MEE-TLS-CBC
(and indeed our own implementation of MEE-CBC) are not length-hiding as
defined in [26] in the presence of leakage. Indeed, the constant-time countermea-
sures are only applied in the decryption oracle and precise information about
plaintext lengths may be leaked during the execution of the encryption ora-
cle. Carrying length-hiding properties down to the level of those implementa-
tions may therefore require, either the implementation to be modified (and the
Frama-C equivalence proof adapted accordingly), or the specification of imple-
mentation security to more closely reflect particular scenarios–such as the TLS
record layer–where it may be difficult for the adversary to make chosen-plaintext
queries, but easy to make padding and verification oracle queries. In any case,
Lemma 1 does capture the length-hiding property given by our choice of min-
imal padding, and could be adapted to capture the more general length-hiding
property of Paterson, Ristenpart and Shrimpton [26] by making padding length
a public choice.

14 This is in line with general CompCert benchmarks.
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Leakage simulation and weaker non-interference notions. Our use
of leakage security in proving that leakage is not useful to an adversary natu-
rally generalizes to a notion of leakage simulation, whereby an implementation
is secure as long as its leakage can be efficiently and perfectly simulated from
its public I/O behaviour, including its public outputs. For example, an imple-
mentation of Encrypt-then-MAC that aborts as soon as MAC verification fails,
but is otherwise fully constant-time should naturally be considered secure,15

since the information gained through the leakage traces is less than that gained
by observing the output of the Ver oracle. The more general notion of leakage
simulation informally described here would capture this and can be related to
weaker notions of non-interference, where equality on low outputs is only required
on traces that agree on the value of public outputs. Theorem 2 can be modi-
fied to replace leakage security with the (potentially weaker) leakage simulation
hypothesis.

8 Conclusions and Directions for Future Work

Our proposed methodology allows the derivation of strong security guarantees
on assembly implementations from more focused and tractable verification tasks.
Each of these more specialized tasks additionally carries its own challenges.

Proving security in lower-level leakage models for assembly involves consid-
ering architectural details such as memory management, scheduling and data-
dependent and stateful leakage sources. Automatically relating source and exist-
ing assembly implementations requires developing innovative methods for check-
ing (possibly conditional or approximate) equivalences between low-level prob-
abilistic programs. Finally, obtaining formal proofs of computational security
and functional correctness in general remain important bottlenecks in the proof
process, requiring high expertise and effort. However, combining formal and
generic composition principles (such as those used in our case study) with tech-
niques that automate these two tasks for restricted application domains [5,11,20]
should enable the formal verification of extensive cryptographic libraries, in the
presence of leakage. We believe that this goal is now within reach.

On the cryptographic side, the study of computational security notions that
allow the adversary to tamper with the oracle implementation [10] may lead
to relaxed functional correctness requirements that may be easier to check, for
example by testing. Extensions of our framework to settings where the adversary
has the ability to tamper with the execution of the oracle are possible, and would
allow it to capture recent formal treatments of countermeasures against fault
injection attacks [27].

15 Some anonymity properties, such as untraceability, may require the cause of decryp-
tion failure to remain secret in the black-box model, in which case leakage must not
reveal it either [17].
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Abstract. Implementations of white-box cryptography aim to protect
a secret key in a white-box environment in which an adversary has full
control over the execution process and the entire environment. Its funda-
mental principle is the map of the cryptographic architecture, including
the secret key, to a number of encoded tables that shall resist the inspec-
tion and decomposition of an attacker. In a gray-box scenario, however,
the property of hiding required implementation details from the attacker
could be used as a promising mitigation strategy against side-channel
attacks (SCA). In this work, we present a first white-box implemen-
tation of AES on reconfigurable hardware for which we evaluate this
approach assuming a gray-box attacker. We show that – unfortunately –
such an implementation does not provide sufficient protection against an
SCA attacker. We continue our evaluations by a thorough analysis of the
source of the observed leakage, and present additional results which can
be used to build stronger white-box designs.

1 Introduction

Initially the field of white-box cryptography was mainly motivated by applica-
tions of the field of Digital Rights Management (DRM) that aims to protect
a secret key in a white-box environment, where an adversary has full control
over the execution process and the environment of a cryptographic implementa-
tion. However, with the widespread emerging of embedded and pervasive com-
puting devices implementing cryptographic functions and primitives, the threat
of white-box adversaries is no longer limited to cryptographic software imple-
mentations. Although, an adversary might be limited by the gray-box model
in practice (i.e., he cannot control the execution process and the environment
entirely), Side-Channel Analysis (SCA) attacks are well-known to be used to
exploit information leakage related to the device internals e.g., by analyzing
power consumption or electromagnetic radiations (EM). Still, for successfully
mounting such physical attacks, the attacker requires at least some knowledge
about the internals in order to build adequate hypotheses that can be used, for
example, for key extraction. In this context the nature of white-box cryptogra-
phy that effectively disguising all internals and the secret key from the attacker
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 185–203, 2016.
DOI: 10.1007/978-3-662-52993-5 10
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by encoding them into tables, seems to yield some inherent resistance against
such physical attacks.

Previous Works: In 2002, first white-box implementations for DES [9] and
AES [10] were proposed by Chow et al. in order to protect a secret key within
a cryptographic implementation in presence of a white-box adversary. However,
these seminal proposals and their implementations were soon shown to be vul-
nerable to differential cryptanalysis [13,22] as well as algebraic cryptanalytic
attacks [3,16,17]. This led to some new proposals for white-box implementa-
tions of AES. In 2009, Xiao et al. in [23] proposed a variant of the design of
Chow et al. using larger linear encodings, for which again a vulnerability against
algebraic cryptanalytic attacks was identified in [20]. Other approaches suggest
to build white-box AES implementations using pertubations [7] (which was bro-
ken in [21]) or based on the concept of dual-ciphers [14].

Recent work in [2] aims to generalize and formalize notions for white-box
cryptography and related attacks for any SLT cipher presenting general attack
strategies and upper bounds for their complexity. Besides the vulnerabilities
against differential and algebraic cryptanalysis, Bos et al. in [4] showed that
secret keys of existing white-box implementations can be extracted by observing
the addresses which are accessed during the execution if the external encodings
are known to the adversary. The underlying so-called Differential Computational
Analysis (DCA) applies the concept of Differential Power Analysis (DPA) [15]
on eavesdropped address bits.

A first white-box implementation in hardware has been proposed for the
NOEKEON cipher in [6,8] using 1-bit linear nibble encodings (i.e. masking with
deterministic masks).

Our Contribution: In this work we propose a white-box implementation of
AES dedicated to reconfigurable hardware. Although the white-box implemen-
tation of Chow et al. initially was proposed for software implementations, we
show that the implementation can be mapped to existing reconfigurable hard-
ware architectures. Note that only recent generations of reconfigurable hardware
devices provide adequate amounts of resources to cope with the large memory
requirements of white-box implementations.

For this hardware implementation we next examine the vulnerability to SCA
attacks assuming a gray-box adversary model. These results, obtained from an
FPGA platform extend the observation by Bos et al. (in [4]). We show that SCA
attacks such as classical DPA can reveal the secrets in hardware implementations
applying white-box cryptography even in gray-box settings.

Finally, we perform a thorough mathematical investigation and analysis of
the construction of look-up tables used in white-box cryptography. We explain
and verify the reason behind the success of such (DCA and DPA) attacks what
has not been addressed in the seminal work of Bos et al.. Our results give a
better understanding of the mathematical foundations of these attacks which
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can pave the way for improved future white-box designs and implementations
that are resistant against such analyses and threats.

Outline: The remainder of this article is organized as follows: Sect. 2 introduces
the basic concept of white-box cryptography and gives a detailed explanation of
the white-box implementation of Chow et al. including design and construction
approach and known attacks and vulnerabilities. The process of transforming this
white-box implementation into a hardware architecture (realized on an FPGA)
is described in Sect. 3. In Sect. 4 we deal with gray-box adversary model and
SCA attacks. We recap the concept of DCA and pinpoint the source of leakage
of the given AES white-box implementation before we conclude in Sect. 5.

2 Background

This section introduces the basic concept of white-box cryptography and gives
a detailed description of the seminal AES white-box implementation of Chow
et al.

2.1 White-Box Cryptography

Cryptographic algorithms are designed to enable a secure communication even
in the presence of an attacker. Nowadays, cryptographers differentiates between
three common attacker models which try to estimate and model the capabilities
of an adversary. Usually, modern cryptographic algorithms and their implemen-
tations are analyzed within such attacker models in order to deduce and estimate
their security.

The traditional security and attacker model is the so-called black-box model
which assumes a trusted execution environment and secure communication end-
points. In this model, cryptographic implementations are considered as black-box
where an adversary can only observe the input and output behavior.

Since the development and deployment of embedded systems for security
purposes the black-box model has been superseded by the gray-box model. This
model includes the black-box settings but in addition assumes some expanded
capabilities of a possible attacker. Cryptographic implementations are no longer
considered as black-box but instead an adversary has limited access to the imple-
mentation internals which can be used to break the implementation. Note that
gray-box attacks (e.g., SCA attacks) usually focus and target cryptographic
implementations rather than cryptographic algorithms which still should be
secure under the assumption of the black-box model.

However, another attacker model called white-box model has been intro-
duced in particular for software implementations of cryptographic algorithms.
For this model, the capabilities of an adversary are virtually unlimited since the
attacker is assumed to have full control over the implementation and its exe-
cution environment. Aim of any implementation considered to be secure under
the white-box model is to behave as a virtual black-box to any kind of attacker
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such that even a white-box attacker should not have any additional advantage
over black-box attackers. The ideal white-box implementation would consists
of a single look-up table mapping a plaintext to its specific ciphertext already
including a (hidden) secret key. Obviously this is impractical for modern ciphers
with block and key sizes of 128 bits or more. An alternative approach is to trans-
form the cryptographic primitive into a functionally-equivalent implementation
using a series of smaller look-up tables. In a further step, secret and invertible
encodings are applied to each look-up table individually in order to protect and
hide secret key materials.

In general, the strategy for the design of white-box implementations of a
round-based symmetric block cipher can be depicted as:

(f(r+1))−1 ◦ Er ◦ fr
︸ ︷︷ ︸

table

◦ · · · ◦ (f(3))−1 ◦ E2 ◦ f2
︸ ︷︷ ︸

table

◦ (f(2))−1 ◦ E1 ◦ f1
︸ ︷︷ ︸

table

= (f(r+1))−1 ◦ Er ◦ · · · ◦ E2 ◦ E1 ◦ f1 = (f(r+1))−1 ◦ EK ◦ f1,

where Ei∈{1...r} is a single round instance of the block cipher and f1 respectively
(fr+1)−1 are considered as external input and output encoding of the white-box
implementation (in order to prevent Code Lifting attacks [11]).

The white-box model has initially been proposed by Chow et al. [9] in 2002
when focusing on a fixed key implementation of the DES algorithm, and shortly
afterwards a white-box implementation of the AES algorithm was presented [10].
In the following, we first introduce this seminal AES white-box implementation
and discuss the design principles and known attacks and vulnerabilities under
the white-box model before we show how to implement this design in hardware.

2.2 White-Box Implementation of AES

The architecture presented in [10] is a fixed key implementation with a fully
unrolled design merging the atomic operations into a series of look-up tables.
Basic design goals of this construction are to hide the key and algorithm structure
through implementing the algorithm as a network of randomized look-up tables.
Each look-up table is encoded and protected individually using random linear
and non-linear bijections. Since a detailed discussion of the design would exceed
the scope of this work we refer the interested reader to [19] and restrict the
discussion of the white-box implementation to its basic design principle and
construction.

Design and Construction: The transformation of an unprotected AES imple-
mentation (independently of the used key size) into a white-box protected fixed
key implementation according to the scheme of Chow et al. can be achieved
in two phases: first, the AES algorithm has to be rewritten and translated as
a series of look-up tables and second, secret but invertible encodings have to
be applied to all look-up tables in order to build a white-box implementation.
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The following section will describe this process exemplary for the case of AES-
128 as presented in [10], but again subdividing each phase into two steps.

In the following, we use the lower-case letter x for single bytes of the inter-
mediate round state, k̂ for a single byte of a round key, a raising index r for the
current round and lowering indices (i,j) for the current byte position in the state
matrix, where i denotes the row index and j the column index. Functions are
represented with sans serif fonts. The AES S-box is denoted with S(.) and the
matrix of the MixColumns operation is denoted by MC.

Step 1: Partial Evaluation. In the first step, the S-box computation is combined
with the preceding addition of the round key. Merging both operations yields
into a single look-up table defined as T-box:

Tr
i,j(x) = S(x ⊕ k̂r

i,j) for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9

T10
i,j(x) = S(x ⊕ k̂10

i,j−i) ⊕ k̂11
i,j for 0 ≤ i, j ≤ 3

This step results in 160 different key-dependent T-boxes. It should be noted,
that the T-boxes of the last round incorporate two bytes of two different round
keys. This is due to the missing MixColumns operation and the final post-
whitening key addition.

Step 2: Matrix Partitioning. A well-known implementation technique for the
MixColumns operation is to decompose it into four different 8 × 32-bit look-
up tables using the matrix partitioning strategy. Eventually, four 32-bit table
outputs are added, resulting in the original MixColumns transformation. Apply-
ing this approach to our previously constructed T-boxes gives us a new set of
different TMC tables, where MCi denotes the i-th column of the MC matrix:

TMCr
i,j(x) = MCi ◦ Tr

i,j(x) for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9

Finally, this results in 144 different 8 × 32-bit TMC look-up tables and
additionally 16 different 8 × 8-bit T-boxes for the last round. Since all look-
up tables comprise a small portion of the secret key, they have to be pro-
tected against attackers aiming at extracting the secret. For a better illus-
tration, the key-dependent tables can be seen as miniature block ciphers that
have to be enhanced by well-known techniques such as diffusion and confusion
for protection purposes. Before applying randomly chosen invertible non-linear
white-box encodings to the key-dependent tables in order to achieve confusion,
diffusion is achieved through the application of linear transformations1 called
mixing bijections.

Step 3: Mixing Bijections. To add diffusion to each key-dependent table, two
different linear transformations are necessary: an 8×8-bit linear transformations

1 Note that originally affine and non-affine transformations were considered. However,
since the constant of any affine transformation can be combined with the non-affine
mapping, this eventually behaves as linear transformations.
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Lr
i,j is inserted before TMCr

i,j , and a 32 × 32-bit transformation Rr
i is applied

afterwards. In order to cancel out the effect of the transformation Rr
i after the

addition of the TMC output values, another untwist table is introduced after
each TMC table. This untwist table takes care of canceling the effect of the
transformation Rr

i and applying new 8 × 8-bit transformations (Lr+1
i,j )−1 to keep

the encryption process consistent during all rounds. These transformations can
be found by randomly creating linear matrices and checking for invertibility.

Step 4: Nibble Encodings. Eventually, non-linear white-box encodings are applied
to all table inputs and outputs. For the sake of efficiency, concatenation of 4-bit
nibble encodings were chosen rather than 8-bit byte encodings. Since these non-
linear encodings avoid linear operation over the TMC table outputs, dedicated
tables for the XOR operations have to be introduced. These nibble encodings
can be found by constructing random 4-bit permutations. All in all, this design
strategy results in five different look-up tables that are defined as follows:

L-Ia: Nout ◦ R1
i ◦ TMC1

i,j ◦ (Fi,j)−1 (8 × 32-bit)

L-Ib: Gi,j ◦ T10
i,j ◦ L10i,j ◦ (Nin)−1 (8 × 8-bit)

L-II: Nout ◦ Rr
i ◦ TMCr

i,j ◦ Lr
i,j ◦ (Nin)−1 (8 × 32-bit)

L-III: Nout ◦ (Lr+1
i,j )−1 ◦ (Rr

i )
−1 ◦ (Nin)−1 (8 × 32-bit)

L-IV: Nin ◦ L⊕ ◦ (Nout)−1 (8 × 4-bit)

Combining these tables in their designated way (a single round is depicted
in Fig. 1) results in an encoded fixed-key white-box AES instantiation

AES′
K = G ◦ AESK ◦ F−1,

where F−1 and G are responsible for external input and output encodings respec-
tively.

Known Attacks and Vulnerabilities: Below we briefly outline the known
attacks and vulnerabilities of the above presented white-box AES implementa-
tion. Some of the threats were already considered during its design. For those, we
additionally explain how the attacks were targeted and how the countermeasures
were integrated.

Code Lifting Attacks. Since the secret key is hidden and integrated into the
white-box implementation, the goal of an attacker is obviously to extract
the secret key. However, such fixed-key white-box implementations suffer from
another kind of threat where an attacker is not interested in extracting the
secret key but instead cloning the entire white-box implementation in order to
use it at another place. This threat is known as “‘Code Lifting”’ where the
entire white-box application is seen as a single key that is cloned and misused
by an attacker to encrypt and decrypt data without being in possession of the
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Fig. 1. White-box implementation of a quarter AES round

secret key. To avoid such kind of attacks, external encodings (F and G) are intro-
duced, turning an white-box implementation EK into an obfuscated encryption
function E′

K = G ◦ EK ◦ F−1 with hidden external encodings. By pushing the
white-box implementation boundaries, the attacker is no longer able to misuse
the white-box implementation as long as the external encodings are unknown.

White-Box Inversion. Besides cloning the white-box implementation through
Code Lifting, inverting the encryption (or decryption) function is another prac-
tical issue in particular for white-box implementations of AES. Since the entire
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algorithm is implemented through look-up tables, any white-box attacker would
be able to extract the tables and compute the inverses of all rounds. This allows
to turn any implemented encryption (respectively decryption) function into an
decryption (respectively encryption) without knowing the secret key. In fact,
this issue cannot be prevented but mitigated by external encodings since it pre-
vents the attacker to use the inverted function in a meaningful way. In particular
the application of non-invertible external encodings can prevent the inversion of
white-box implementations ensuring the property of one-wayness.

Stripping of Non-Linear Encodings. A first algebraic analysis of the above-
explained white-box AES implementation has been presented by Billet et al.
[3] which revealed serious vulnerabilities of this design approach by stripping of
the non-linear encodings of the look-up tables and allowing a white-box attacker
to efficiently extract the embedded secret key. Later, Michiels et al. [17] gener-
alized this attack for any cipher following the substitution-linear transformation
(SLT) approach. In general, Billet et al.’s approach considers a quarter of the
AES round function (depicted in Fig. 1) as a single 32 × 32-bit function rather
than a decomposition into a series of look-up tables. Following this strategy, the
influence of the mixing bijection Rr

i and any other internal (non-linear) encoding
are canceled out.

It was observed, that with moderate computational effort, the non-linear
encodings at the beginning and end of each quarter AES round can be removed,
so that only some (unknown) affine transformation will remain. Applying this
technique to three subsequent rounds, thus removing the non-linear encodings
up to an affine part, the secret key eventually can be retrieved with a complexity
of at maximum 230 (cf. [3]). Note, however, that this attack is only possible in
the setting of white-box adversaries, since an attacker needs to have full access
to the tables and control over their inputs and outputs.

3 FPGA Implementation

This section briefly introduces modern reconfigurable hardware architectures
exemplary considering Xilinx FPGAs and describes necessary hardware resources
to implement white-box cryptography efficiently in reconfigurable hardware.
Afterwards, the approach of transforming the white-box AES implementation
of Chow et al. into an efficient hardware architecture for recent Xilinx Kintex-
7 FPGAs is outlined. Finally, we give performance and implementation results on
the area and throughput efficiency of the proposed architecture.

3.1 Hardware Resources

Modern FPGAs consist of a sea of general-purpose logic resources that can
implement arbitrary circuits of Boolean functions using small look-up tables.
The logic resources are arranged in an extremely regular array-like structure
and enhanced by special purpose units e.g., Digital Signal Processors (DSPs) or



White-Box Cryptography in the Gray Box 193

Block Memories (BRAMs). The reconfigurable devices are programmed using a
configuration file called bitstream that contains all configuration information for
implemented hardware resources, i.e., the programmable interconnections, the
general purpose logic and the special purpose resources.

General Purpose Logic Resources: Xilinx decided to cluster several general
purpose logic resources as Configurable Logic Blocks (CLBs) and arrange them
in a grid-like structure of rows and columns. Starting with the Virtex-5 family of
Xilinx devices, each CLB constitutes two slices each equipped with four 6-input
Look-Up Tables (LUTs) and eight adjacent Flip-Flops (FFs) to implement any
circuit of Boolean functions. Starting with the newer 7-series devices, only two
different types of slices (Slice-L and Slice-M) were implemented which only differ
in capabilities of using LUTs as distributed memory instead of function genera-
tors. Both, Slice-L and Slice-M instances, provide some wide multiplexers that
allow to connect the outputs of the LUTs in order to implement any 8 × 1-bit
Boolean function efficiently into a single slice.

Dedicated Block Memory Resources: Besides general purpose logic that
can also serve as (distributed) memory, modern FPGAs provide larger amounts
of data storage in terms of dedicated BRAMs. These flexible, low-power memory
units can be configured by the user and provide between 16-Kbits to 32-Kbits
accessible in single or dual port mode (additionally, 2-Kbits respectively 4-Kbits
memory for parity check purposes are available). In dual port mode, two fully
independent ports providing read and write access (even with different clocks)
can be used to access or manipulate data that is stored in memory. In addition,
each BRAM can be configured individually and used in different configurations
considering port width and memory depth, ranging from 32K × 1-bit to 1K ×
32-bit entries.

3.2 White-Box Architecture in Hardware

White-box cryptography was initially proposed to protect software implemen-
tations. In this context we like to remark that bitstream configuration files of
FPGA designs are digital binary files that are stored in external memory (that
are accessible for an attacker) and thus exposed to very similar threats. Further,
the basic idea of white-box implementations is to transform a cryptographic
implementation into a series of look-up tables. This perfectly fits the regular
structure of FPGAs implementing arrays of look-up tables with programmable
interconnections. Hence we can conclude that FPGAs seem to be a very good
fit for cryptographic white-box implementations in hardware.

However, since every individual look-up table of the white-box implementa-
tion is different (due to different round keys and randomly chosen encodings),
we cannot implement any area-efficient round-based or serialized architecture
of the AES algorithm nor reuse any of the look-up tables. Instead, we have to
implement an entirely unrolled implementation with every round instantiated
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separately. Due to the application of BRAM primitives, which have a latency of
a single clock cycle, this causes an initial latency of 19 clock cycles (due to 19
stages of 16 parallel look-up tables in the proposed white-box implementation)
but in order to increase the throughput it is possible to operate the encryption
architecture in a pipeline fashion providing ciphertexts at each clock cycle (after
the initial latency).

Mapping Tables into CLBs: Besides the implementation of the key depend-
ing TMC-Tables and T-boxes, the encoded look-up tables to perform the XOR
operations consume a large part of the required storage. Although modern
FPGAs provide large amounts of general purpose data storage in terms of
BRAM, implementing all look-up tables using these dedicated memory prim-
itives is still not feasible. Therefore, some tables have to be transferred to the
general purpose logic in order to fit the design into an FPGA. Since any 8 × 1-
bit Boolean function can be implemented efficiently into a single slice and each
XOR operation and its corresponding look-up table can be decomposed into four
different 8 × 1-bit functions, it is a natural choice to implement these tables in
general purpose logic. In total, each XOR-table can be implemented using four
slices equipped with 4 LUTs each, thus in total 16 LUT instances are required
(this equals 1024-bit memory). Fortunately, the last round can do without XOR
operations, so we only have to implement these tables for 9 rounds. As depicted
in Fig. 1, a quarter round of the AES white-box implementation implements 48
XOR-tables which results in 192 tables per full round and 1728 tables in total.

Mapping Tables into Block Memory: The remaining look-up tables can be
implemented in BRAM primitives. Most of the tables, except for the T-boxes
of the last round, 8 × 32-bit functions are implemented which requires 8192-
bit of memory. Since we can use the BRAM in dual port mode, two tables
can be implemented in a single BRAM which allows us to entirely use the 16-
Kbit BRAMs resulting in a very dense and efficient implementation. In total,
as depicted in Fig. 1, 8 different look-up tables with 32-bit output values are
implemented in a quarter AES round, thus 32 tables are necessary to build a
full round function (except for the last round). In total, 176 different such tables
have to be instantiated along with 16 different 8 × 8-bit T-boxes for the last
round. Note, that all BRAM tables have a similar shape except for the first and
last round.

3.3 Performance Evaluation

Table 1 provides the memory consumption of our white-box implementation of
AES-128 broken down to different look-up table types and their implementation
size (resources and memory). In total, 536KB of memory are required to imple-
ment this white-box implementation on an FPGA, whereby 41 % of the memory
is required for tables of type L-IV implemented in logic and the remaining 59 %
of memory is necessary to store tables of type L-I to L-III in BRAMs.
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Table 1. Area and memory consumption of different table types

Look-up tables Resources Memory

No. Type Size LUT BRAM Byte

16 L-Ia (8 × 32-bit) - 8 16 384

16 L-Ib (8 × 8-bit) - 8 4 096

144 L-II (8 × 32-bit) - 72 147 456

144 L-III (8 × 32-bit) - 72 147 456

1728 L-IV (8 × 4-bit) 27 648 - 221 184

Total 27 648 160 536 576

Utilization (for XC7K160T) 28 % 46 % 40 %

As mentioned before, the design has an initial latency of 19 clock cycles intro-
duced by the BRAM stages. If operated in pipelined mode, this architecture can
return one ciphertext per clock cycle after the initial 19 clock cycles. Due to the
pipelined architecture and small critical paths, the entire design can operate at a
maximum frequency of 100 MHz, resulting in a final throughput of 12.8 Gbit/s.
Implementing this on a recent Xilinx Kintex-7 XC7K160T, this design occupies
roughly 28 % of the available slices and 46 % of provided BRAM ressources.

4 Side-Channel Analysis

4.1 Differential Computational Analysis Attack

Recently, Bos et al. introduced a new analysis methodology for cryptographic
white-box implementations in [4] which requires neither knowledge or possession
of the implemented and used look-up tables nor reverse-engineering the tables
during the attack process. The following section briefly introduces the method-
ology of the DCA attack in order to extract secret keys from unknown white-box
implementations.

Methodology: DCA primarily targets software-based white-box implementa-
tions. In order to successfully perform a key-recovery attack the following two
conditions have to be fulfilled:

1. The attacker is able to execute the white-box implementation several times,
with different (randomly chosen) plaintexts.

2. Either input- or output external encodings are known to the attacker.

In particular the second requirement is of major importance since it already
implies that this attack can be prevented if external encodings are applied and
kept secret. However, in practice, at least one encoding (either the initial encod-
ing or the final decoding) usually is known by the user in order to allow a
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meaningful application of the encryption (or decryption) function. If both afore-
mentioned conditions are fulfilled, assuming that the underlying cryptographic
algorithm is known to the attacker, the following three steps can be followed to
perform a DCA attack.

Step 1: Record Multiple Measurements. It is assumed, that the adversary can
execute the white-box implementation in a fully controlled environment. During
multiple execution of the encryption algorithm with randomly chosen plaintexts,
all accessed memory addresses and any data written to or read from memory
are recorded.

Step 2: Conversion to Ideal Traces. A certain type of information is extracted
from the recorded data. Common examples of promising information are data
read from memory (corresponding to the look-up table outputs), data written
to stack (intermediate values of the encryption process) or parts of memory
addresses (corresponding to inputs of the look-up tables). The extracted data
is converted to a format that can be used by common DPA tools. The authors
proposed to serialize the recorded data into a binary string and append the
results according to their temporal occurrence. This final binary string is handled
as a kind of side-channel trace that we denote to as Ideal Trace since it refers to
the result of a fully noise-free probing process.

Step 3: Perform DPA Attack. Following the concept of classical DPA, by guess-
ing a key byte k∗ and knowing the corresponding plaintext bytes p, the output
bits of the S-box, i.e., S(p⊕k∗), are predicted. Using these models (8 for each key
byte) DPA attacks are performed on the Ideal Traces to distinguish the correct
key guess amongst the others.

Although the authors of [4] reported successful key recoveries, the reason
behind such a success has not be clearly stated. Below we first address our
observations from an SCA adversary point of view, and later deal with the
leakage source.

4.2 Differential Power Analysis Attack

In this scenario we supposed a gray-box adversary model, where the underly-
ing cryptographic algorithm (e.g., AES) is known, but no information about
the type of the implementation and its structure (e.g., white-box or ordinary
design) is known to the attacker. Further, we suppose that there is no external
encoding in the design, e.g., the gray-box seen by the attacker performs stan-
dard AES encryption (or decryption). However, the adversary is able to observe
side-channel information (e.g., power consumption) of the implementation while
it is operated.

Measurement Setup. We made use of a SAKURA-X FPGA board [1] equipped
with a Kintex-7 XC7K160T FPGA to practically examine the vulnerability of
our white-box design with respect to such an SCA adversary. By means of a
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digital oscilloscope, the side-channel traces have been collected by measuring
the voltage drop over a 1Ω resistor in the Vdd path of the FPGA during the
operation of the design. The sampling was performed at a rate of 500MS/s and
a bandwidth limit of 20MHz while the design was running at a stable, jitter-free,
but low clock frequency of 3MHz to mitigate the noise. During the measurement
phase, our hardware implementation of white-box AES was provided by fully
random plaintexts. A sample power trace, where the rounds (19 clock cycles)
are clearly distinguishable, is shown in Fig. 2.
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Fig. 2. A sample power trace.

Evaluation. We have collected 10 million power traces of encryptions while the
plaintexts were selected randomly. In fact, we have applied several different vari-
ants of power analysis attacks including CPA [5], DPA [15] and collision ones [18]
with different hypothetical models. The best result has been achieved by means
of the classical DPA, which is the same as CPA with single-bit power model.
Similar to the case of DCA, for each key byte candidate k∗ the output bits of
the S-box at the first round, i.e., S(p ⊕ k∗), have been predicted and correlated
to the power traces. The results of such 8 different CPA attacks on each bit of
one of the S-box outputs are shown in Fig. 3. As shown by the graphics, only one
of the attacks (bit 2) is able to recover the secret. We have performed the same
attacks on all 16 S-boxes of the first round. Although the attacks on different
S-boxes did not show identical results, at least one of the output bits of each
S-box led to a successful key recovery, hence full 128-bit key could be recovered.

We would like to note that DCA [4] is indeed a CPA with single-bit power
model, assuming the identity function as the actual leakage model of the device
and noise-free measurements. Hence, we have shown that the attack is still fea-
sible in case of imperfect (i.e., noisy) measurements and a more complex side-
channel leakage function.

4.3 Mathematical Foundations

In order to discuss about the reason behind such a leakage, we first need to give
the following definitions.
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Fig. 3. CPA results, S-box output bit model, 10 million traces

Definition 1. Let x =< x1, ..., xn >, ω =< ω1, ..., ωn > be elements of {0, 1}n

and x · ω = x1ω1 ⊕ ... ⊕ xnωn. Let f(x) be a Boolean function of n variables.
Then the Walsh transform of the function f(x) is a real valued function over
{0, 1}n that can be defined as Wf (ω) =

∑
x∈{0,1}n(−1)f(x)⊕x·ω.

Definition 2. Iff the Walsh transform Wf of a Boolean function f(x1, ..., xn)
satisfies Wf (ω) = 0, for 0 ≤ HW (ω) ≤ m, it is called a balanced m-th order
correlation immune (CI) function or an m-resilient function, where HW stands
for Hamming weight.

For the sake of simplicity, we consider Fig. 4 as one of the 8-to-32 bit L-Ia
look-up tables used at the first round of our white-box implementation. As stated
before, it is supposed that no external encodings exist in the design (or they are
known to the adversary), hence we did not draw them in the figure. Let us denote
the output of the S-box by x and the combination of MC and linear encoding
R and non-linear 4-to-4 bit encodings by 32 Boolean functions fi∈{1,...,32}(x) :
{0, 1}8 → {0, 1}. The results of CPA and DCA indicate that at least one of these
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Fig. 4. Detailed representation of an
8 × 32 look-up table at the first round
of our white-box design
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Fig. 5. Walsh transforms for all 32 func-
tions fi∈{1,...,32}(·) with HW (ω) = 1.

functions fi(·) is not first-order correlation immune. In order to investigate this,
we calculated the Walsh transform of all these functions for all ω ∈ {0, 1}8. The
results for 8 cases, where HW (ω) = 1, are shown in Fig. 5.
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Fig. 6. Walsh transforms for all 32 functions fi∈{1,...,32}(·) with HW (ω) = 1 for all
key candidates k∗ ∈ {0, 1}8.

As shown by the graphics, Walsh transform of a couple of functions for two
particular ω show an extreme imbalance. However, this fact does not guaran-
tee that a CPA or DPA leads to a successful key recovery. To clarify this fact,
we suppose that the linear encoding R and non-linear 4-to-4 bit encodings are
unknown, and for each key candidate k∗ we derive fi∈{1,...,32}(x) by 32-bit output

of L-Ia
(
p = S−1(x) ⊕ k∗

)
. For each key candidate k∗ ∈ {0, 1}8 we again calcu-

lated the Walsh transforms for all ω ∈ {0, 1}8. Figure 6 represents the results of
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each ω;HW (ω) = 1 over all key candidates. As shown by the figures, for ω = 2
the extreme imbalance of some functions fi∈{1,...,32}(·) for the correct key can
be detected amongst that for other key candidates. This indeed justifies why
DCA and CPA led to successful key recoveries as this observation perfectly fits
to the result of CPA on the same key byte (as shown in Fig. 3), where similarly
only second bit of the S-box output (compatible with ω = 2) led to successful
key recovery. It is noteworthy that we have similarly examined all other look-up
tables of the first cipher round, and for each of them the Walsh transform of at
least one ω;HW (ω) = 1 for the correct key showed extremely high imbalance
(compared to that for other key candidates). We should stress that all linear and
non-linear encodings used in our design have been randomly generated as stated
in Step 3 and Step 4 of Sect. 2.2.

4.4 How to Avoid Such Attacks

At the first glance, it can be concluded that if any imbalances is avoided in
functions fi∈{1,...,32}(·), i.e., all fi to be first-order correlation immune, DPA
and DCA can be avoided. However, it should be noted that such a correlation
immunity is valid only in case of classical DPA. In other words, if any of the
functions fi has an extremely high imbalance for any ω ∈ {0, 1}8, that makes
it recognizable compared to other key candidates, there exists an attack which
can recover the correct key. Such an attack can make use of a power model
(or distinguisher) corresponding to that ω. Alternatively, those power analysis
attacks which consider the distribution of the leakages, e.g., Mutual Information
Analysis [12] which relaxes the power model, can be applied.
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Fig. 7. Sum of all imbalances Δk for all key candidates.

In contrary, if many of the functions fi are m-correlation immune (for any
arbitrary m), this opens another door to recover the key. Suppose that for all
key candidates k∗ and for all ω we calculated the Walsh transforms Wfi

. If we
sum up all the imbalances for each key candidate as

Δk∈{0,1}8 =
∑

∀ω∈{0,1}8

∑

i=1,...,32

∣
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the Δk for the correct key candidate might be distinguishable (though mini-
mum). In case of our design (the same look-up table which have been considered
above), Fig. 7 shows Δk for all key candidates, where the correct key is obvi-
ously distinguishable. In fact, these results indicate that the linear and non-linear
encodings cannot be arbitrary (randomly) selected. Otherwise, the key can be
easily revealed by the above explained procedure. This raises a question as what
should be the characteristics of such random encodings in such a way that these
attacks are not applicable. At least, it can be said that ∀ω the distribution of
Walsh transforms of all fi should be not distinguishable from that of other key
candidates. But how to define the corresponding characteristics to fulfill such a
property is considered as future works.

5 Conclusion

In this paper, we presented the first white-box implementation of AES realized in
reconfigurable hardware. Assuming a gray-box adversary model, we have prac-
tically examined the resistance of our architecture against side-channel attacks.
Unfortunately, we were able to successfully perform attacks using classical DPA.
However, our observations approve previous results on software-based white-
box implementations and extend these results to hardware implementations and
physical side-channel attacks. Finally, we provide a to-date missing thorough
mathematical analysis of the underlying reasons that enable attacks on such
white-box implementations even assuming a gray-box model in case of a lack of
unknown external encodings.

Directions for future works include (i) specifying the requirements of lin-
ear and non-linear encodings in such a way that the tables cannot be analyzed
through their imbalances and (ii) developing designs of new white-box implemen-
tations to provide resistance against side-channel attacks. In practice, a conceiv-
able approach to avoid vulnerabilities of white-box implementations in a gray-
box adversary model might be a dynamic update of intermediate encodings. In
particular for reconfigurable devices, which offer partial reconfiguration abilities,
this might be an interesting approach to make side-channel attacks practically
infeasible.

Acknowledgment. The authors would like to thank Gregor Leander from Ruhr Uni-
versity Bochum (Germany) for helpful discussions and his comments on the application
of Walsh transform.

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Baek, C.H., Cheon, J.H., Hong, H.: Analytic toolbox for white-box implementa-
tions: limitation and perspectives. IACR Cryptol. ePrint Arch. 2014, 688 (2014)

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html


202 P. Sasdrich et al.

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004)

4. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. IACR Cryptol. ePrint Arch. 2015,
753 (2015)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Bringer, J., Chabanne, H., Danger, J.: Protecting the NOEKEON cipher against
SCARE attacks in fpgas by using dynamic implementations. In: Prasanna, V.K.,
Torres, L., Cumplido, R. (eds.) 2009 Proceedings of the International Conference
on Reconfigurable Computing and FPGAs, ReConFig 2009, Cancun, Quintana
Roo, Mexico, pp. 9–11, pp. 183–188. IEEE Computer Society, December 2009

7. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptol. ePrint Arch. 2006, 468 (2006)

8. Cherif, Z., Flament, F., Danger, J., Bhasin, S., Guilley, S., Chabanne, H.: Evalua-
tion of white-box and grey-box noekeon implementations in FPGA. In: Prasanna,
V.K., Becker, J., Cumplido, R. (eds.) 2010 Proceedings of the International Confer-
ence on Reconfigurable Computing and FPGAs, ReConFig 2010, Cancun, Quin-
tana Roo, Mexico, pp. 13–15, pp. 310–315. IEEE Computer Society, December
2010

9. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Security and Privacy in Digital Rights Man-
agement, ACM CCS-9 Workshop, DRM 2002, Washington, DC, USA, November
18, 2002, Revised Papers, pp. 1–15 (2002)

10. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Selected Areas in Cryptography, 9th Annual Inter-
national Workshop, SAC 2002, St. John’s, Newfoundland, Canada, August 15–16,
2002, Revised Papers, pp. 250–270 (2002)

11. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
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Abstract. Masking is a popular countermeasure to thwart side-channel
attacks on embedded systems. Many proposed masking schemes, even
carrying “security proofs”, are eventually broken because they are flawed
by design. The security validation process is nowadays a lengthy, tedious
and manual process. In this paper, we report on a method to verify the
soundness of a masking scheme before implementing it on a device. We
show that by instrumenting a high-level implementation of the masking
scheme and by applying leakage detection techniques, a system designer
can quickly assess at design time whether the masking scheme is flawed
or not, and to what extent. Our method requires not more than working
high-level source code and is based on simulation. Thus, our method
can be used already in the very early stages of design. We validate our
approach by spotting in an automated fashion first-, second- and third-
order flaws in recently published state-of-the-art schemes in a matter
of seconds with limited computational resources. We also present a new
second-order flaw on a table recomputation scheme, and show that the
approach is useful when designing a hardware masked implementation.

1 Introduction

Since Kocher published the seminal paper on side-channel attacks [Koc96], cryp-
tographic embedded systems have been broken using some auxiliary timing infor-
mation [Koc96], the instantaneous power consumption of the device [KJJ99] or
the EM radiation [AARR02], among others. An attack technique of particu-
lar interest, due to its inherent simplicity, robustness and efficiency to recover
secrets (such as cryptographic keys or passwords) on embedded devices is Dif-
ferential Power Analysis (DPA), introduced in [KJJ99]. DPA relies on the fact
that the instantaneous power consumption of a device running a cryptographic
implementation is somehow dependent on the intermediate values occurring dur-
ing the execution of the implementation. An especially popular countermeasure
to thwart power analysis attacks, including DPA, is masking [CJRR99,GP99].
Masking works by splitting every sensitive variable appearing during the compu-
tation of a cryptographic primitive into several shares, so that any proper subset
of shares is independent of any sensitive variable. This, in turn, implies that the
instantaneous power consumption of the device is independent of any sensitive
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 204–222, 2016.
DOI: 10.1007/978-3-662-52993-5 11
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variable, and thus vanilla DPA cannot be mounted. In theory, a (d + 1)-order
DPA attack can still be mounted against a d-th order masked implementation;
however, in practice higher order DPA attacks are exponentially more difficult
to carry out [CJRR99].

Crucially, in many cases the attacker is not required to perform a higher
order attack because the masking is imperfect and thus does not provide the
claimed security guarantees. The causes of the imperfections can be manifold:
from implementation mistakes to more fundamental flaws stemming from the
masking scheme itself. There are many examples in the literature of such flawed
schemes: a “provably secure” scheme published in 2006 [PGA06] based on FFT
and broken two years later [CGPR08], a scheme published in 2006 [SP06] and
broken one year later [CPR07], another “provably secure” scheme published in
2010 [RP10] and (academically) broken three years later [CPRR13]; a scheme
published in 2012 [BFGV12] and broken in 2014 [PRR14].

The verification process of a masking scheme is nowadays a very lengthy
manual task, and the findings are published in solid papers involving convoluted
probability arguments at leading venues, some years later after the scheme is
published. Some even won a best paper award as [CPR07]. From the stand point
of a system designer, it is often not acceptable to wait for a public scrutiny of
the scheme or invest resources in a lengthy, expensive, evaluation.

Our Contribution. In this paper we provide an automated method to test
whether the masking scheme is sound or not, and to what extent. The method is
conceptually very simple, yet powerful and practically relevant. We give experi-
mental evidence that the technique works by reproducing state-of-the-art first-,
second- and third-order flaws of masking schemes with very limited computa-
tional resources. Our approach is fundamentally different from previously pro-
posed methodologies and is based on sampling and leakage detection techniques.

2 Leakage Detection for Masked Schemes in Simulation

Core Idea. In a nutshell, our approach to detect flawed masking schemes is
to simulate power consumption traces from a high-level implementation of the
masking scheme and then perform leakage detection tests on the simulated traces
to verify the first- and higher-order security claims of the masking scheme.

Input and Output of the Tool. The practitioner only ought to provide working
source code of the masked implementation. The tool instruments the code, per-
forms leakage detection tests and outputs whether the scheme meets its security
goals or not. In addition, should a problem be detected, the tool pinpoints the
variables causing the flaw and quantifies the magnitude of the statistical bias.

Security Claims of Masking Schemes. We use in this paper the conventional
notions for expressing the security claim of a masking scheme. Namely, a mask-
ing scheme provides first-order security if the expected value of each single inter-
mediate does not depend on the key. More generally, a masking scheme provides
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k-order security if the k-th order statistical moment of any combination of k
intermediates does not depend on the key. This formulation is convenient since
leakage detection tests are designed specifically to test these claims.

Three Steps. Our tool has three main ingredients: trace generation, trace pre-
processing and leakage detection. We describe each one in detail in the sequel.

2.1 Trace Generation

The first step of our approach is to generate simulated power traces in a noise-free
environment.

Implementation. To accomplish this, the masking scheme is typically imple-
mented in a high-level software language. The implementation is meant to gener-
ically reproduce the intermediate values present in the masking scheme, and can
be typically written from the pseudo-code description of the masking scheme.
(Alternatively, the description of the masking scheme can be tailored to a specific
software or hardware implementation and incorporate details from those.)

Execution. This implementation is executed many times, and during each execu-
tion, the instrumentation environment observes each variable V that the imple-
mentation handles at time n. At the end of each execution, the environment
emits a leakage trace c[n]. Each time sample n within this trace consists of
leakage L(V ) of the variable V handled at time n. The leakage function L is
predefined; typical instantiations are the Hamming weight, the least significant
bit, the so-called zero-value model or the identity function.

Randomness. The high-level implementation may consume random numbers (for
example, for remasking.) This randomness is provided by a PRNG.

2.2 Trace Pre-processing

This step is only executed if the masking scheme claims higher-order security.
The approach is similar to higher-order DPA attacks [CJRR99] and higher-order
leakage detection [SM15]. Suppose the scheme claims security at order k. We pre-
processes each simulated trace c[n] to yield c′[n1, . . . , nk] through a combination
function as

c′[n1, . . . , nk] =
i=k∏

i=1

(c[ni] − c̄[ni]). (1)

The result is a preprocessed trace c′. The length of the trace is expanded
from N to

(
N
k

)
unique time samples. (It is normally convenient to treat c′ as a

uni-dimensional trace.)
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2.3 Leakage Detection

The next step of our approach is to perform a leakage detection test on the
(potentially pre-processed) simulated traces. In its simplest form, a leakage
detection test [CKN00,CNK04,GJJR11,CDG+13,SM15] tries to locate and
potentially quantify information leakage within power traces, by detecting sta-
tistical dependencies between sensitive data and power consumption. In our con-
text, if the test detects information leakage on the simulated traces, this means
that the masking scheme fails to provide the promised security guarantees.

Procedure. The instrumentation environment performs a fixed-vs-fixed leakage
detection test using the T-test distinguisher [CDG+13].

The process begins by simulating a set of power traces with fixed unmasked
intermediate z = z0 and another set of traces with different unmasked interme-
diate value z = z1. Typical choices for the intermediate z are the full unmasked
state or parts of it. Then, a statistical hypothesis test (in this case, T-test) is
performed per time sample for the equality of means. The T-test [Stu08,Wel47]
first computes the following statistic

t[n] =
m0[n] − m1[n]
√

s20[n]
N0

+ s21[n]
N1

(2)

where mi[n], s2i [n], Ni are respectively the sample mean, variance and number
of traces of population i ∈ {0, 1} and n is the time index. This statistic t[n]
is compared against a predefined threshold C. A common choice is C = ±4.5,
corresponding to a very high statistical significance level of α = 0.001. If the sta-
tistic t[n] surpasses the threshold C, the test determines that the means of the
two distributions are significantly different, and thus the mean power consump-
tion of (potentially pre-processed) simulated power traces carry information on
the intermediate z. In this case, we say that the masking scheme exhibits leak-
age at time sample n and flunks the test. Otherwise, if no leakage is detected,
another test run is executed with different specific values for z0 and z1. The test
is passed only if no leakage is detected for any value of z0 and z1. (Typically,
there are only a couple dozen of (z0, z1) pairs if the optimizations described in
the next section are applied.) Note that a time sample n may correspond to a
single variable (first-order leakage) or a combination of variables (higher-order
leakage), if a pre-processing step is executed.

On Fixed-vs-Fixed. Using fixed-vs-fixed instead of fixed-vs-random has the
advantage of faster convergence of the statistic (at the expense of leakage behav-
ior assumptions that are benign in our context). (This has been previously
observed by Durvaux and Standaert [DS15] in a slightly different context.) One
could also use a fix-vs-random test. This usually results in a more generic eval-
uation.
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2.4 Optimizations

We note that the following “engineering” optimizations allow to lower the com-
putational complexity so that it is becomes very fast to test relevant masking
schemes.

Online Algorithms. There is certainly no need to keep in memory the complete
set of simulated power traces. For the computation of the T-test as Eq. 2, one
can use online formulas to compute means and variances present in the formula.
These algorithms traverse only once through each trace, so that a simulated
power consumption trace can be generated, processed and thrown away. This
makes the memory consumption of the approach independent of the number
of traces used. More number of traces would require just more computational
time, but not more memory. We note that the same is possible in higher-order
scenarios. Lengthy but straightforward calculations show that a T-test on pre-
processed traces can be computed online using well-known online formulae for
(mixed) higher-order moments [P08]. (This was previously reported by Schneider
and Moradi [SM15].)

Scale Down the Masking Scheme. It is usually possible to extrapolate the mask-
ing scheme to analogous, trimmed down, cryptographic operations that work
with smaller bit-widths or smaller finite fields. For example, when masking the
AES sbox, many masking schemes [RP10,CPRR13] rely on masked arithmetic
(masked multiplication and addition blocks) in GF(28) to carry out the inver-
sion in GF(28). It is often convenient to scale down the circuit to work on, say,
GF(24) for testing purposes –since the masking approach normally does not rely
on the specific choice of field size, any flaw exhibited in the smaller GF(24) ver-
sion is likely to be exhibited in the GF(28) version of the algorithm (and vice
versa). By experience we have observed that statistical biases tend to be more
pronounced in smaller field sizes, and thus are more easily detectable. (See for
instance [PRR14].) We suggest the use of this heuristic whenever possible for an
early alert of potential problems.

Reduce the Number of Rounds. There is little sense to check for a first-order
leak in more than a single round of an iterative cryptographic primitive, such
as AES. If the implementation is iterative, any first-order flaw is likely to show
up in all rounds. When testing for higher order security, however, one should
take into account that the flaw may appear from the combination of variables
belonging to different rounds.

Judiciously Select the Components to Check. For first-order security it is suffi-
cient to check each component of the masking scheme one by one in isolation.
The situation is slightly different in the multivariate scenario, where multiple
components can interfere in a way that degrades security. Still, the practitioner
can apply some heuristics to accelerate the search, such as testing for second-
order leakage first only in contiguous components. For example, second-order
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leakage is likely to appear earlier between two variables within the same round
or belonging to two consecutive rounds.

Deactivate Portions of the Plaintext. To accelerate the leakage search, a sub-
stantial portion of the plaintext can be deactivated, that is, fixed to a constant
value or even directly taken out from the algorithm. For example, in the case of
AES-128 one could deactivate 3 columns of the state, test only 4 active plaintext
bytes and still test for the security of all the components within one round.

Carefully Fix the Secret Intermediate Values. As we described, the framework
fixes two values z0, z1 for the unmasked sensitive intermediate, and then com-
pares the simulated traces distributions conditioned on z0 and z1. Depending on
the algorithm, concrete choices for zi (such as fixed points of the function being
masked) can produce “special” leakage. For example, in AES if we choose z1
such that the input to the inversion is 0 × 00, we can hit faster zero-value type
flaws.

3 Results

In this section we provide experimental results. We first begin by testing the
first-order security claim of two schemes, one that fails the claim (Sect. 3.1) and
another that fulfills it (Sect. 3.2). Then we will focus on second- and third- order
claims (Sects. 3.3 and 3.4 respectively). We point out a new second-order flaw
in Sect. 3.5, we elaborate on how previously published flaws were discovered in
Sect. 3.6. Finally in Sect. 3.7 we report on the use of the tool when designing
masked circuits.

3.1 Smoke Test: Reproducing a First-Order Flaw

As a first test, we test the first-order security of the scheme published in [BFGV12].
We will refer to this scheme as IP in the sequel. We focus on reproducing the results
from [PRR14],

Test Fixture. We study first the IPRefresh procedure. This procedure performs
a refreshing operation on the input IP shares. We scale down the scheme to
work in GF(22) following Sect. 2.4. The instrumentation framework finds 141
intermediate variables within a single execution of IPRefresh. The chosen leak-
age function is Hamming weight, and there is no pre-processing involved.

Leakage Detection. We ran the
(
4
2

)
= 6 possible fixed-vs-fixed tests covering all

possible combinations of pairs of different unshared input values (z1, z0). (Here
zi is the input to IPRefresh.) For each test, the maximum absolute t-value,
across all time samples, is plotted in the y-axis of Fig. 1 as a function of the
number of simulated traces (x-axis). A threshold for the T-test at 4.5 is also
plotted as a dotted line. This threshold divides the graph into two regions: a
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Fig. 1. T-statistic (absolute values)
of the IP masking scheme, under a
HW leakage model. Deemed insecure
(clearly exceeds the threshold at t =
4.5.) (Color figure online)

Fig. 2. T-statistic (absolute values)
applied to the Coron table recomputa-
tion masking scheme, under an Iden-
tity leakage model. First order test.
Deemed secure (no value beyond the
threshold at t = 4.5.)

t-statistic greater than |C| = 4.5 (in red) means that the implementation fails
the test, while a t-statistic below 4.5 (area in green) does not provide enough
evidence to reject the hypothesis that the scheme is secure. We can see that 5
out of 6 tests clearly fail in Fig. 1, since they attain t-values around 100 greater
than C. Thus, the IPRefresh block is deemed insecure. (Similar observations
apply to the IPAdd procedure.)

It is also possible to appreciate the nature of the T-test statistic: the t-
statistic grows with the number of traces N as of

√
N in the cases that the

implementation fails the test (note that the y-axis is in logarithmic scale.) This
can be interpreted as follows: as we have more measurements, we build more
confidence to reject the null hypothesis (in our context being that the masking
is effective.) If the number of simulated traces is large enough and no significant
t-value has been observed, the practitioner can gain confidence on the scheme
not being flawed. We will find this situation in the next subsection and elaborate
on this point.

3.2 A First-Order Secure Implementation

We tested the table recomputation scheme of Coron [Cor14]. This scheme passes
all fixed-vs-fixed tests with the identity leakage model. The results are plotted in
Fig. 2. We can observe that the t-statistic never crosses the threshold of 4.5 for
any test, and thus we cannot reject the null hypothesis that the implementation
is secure (i.e., the implementation is deemed secure, “on the strength of the
evidence presented” [CKN00]). Although it is theoretically possible that the
masking scheme exhibits a small bias that would only be detectable when using
more than 106 traces, that flaw would be negligible from a practical point of
view when using ≤ 106 traces, and definitely impossible to exploit in a noisy
environment if it is not even detectable at a given trace count, in a noiseless
scenario.



Detecting Flawed Masking Schemes with Leakage Detection Tests 211

70 void MaskRefresh(u8 *s) {

71 u8 r;

72 for (int i = 1; i < number_shares; i++) {

73 r = rnd ();

74 s[0] ^= r;

75 s[i] ^= r;

76 }

77 }

...

110 void SecMult (u8 *out, u8 *a, u8 *b) {

111 u8 aibj,ajbi;

...

114 for (int i = 0; i < number_shares; i++) {

115 for (int j = i + 1; j < number_shares; j++) {

...

119 aibj = mult(a[i], b[j]);

120 ajbi = mult(a[j], b[i]);

___________________________________________________

$ ./run

entering fixed_vs_fixed(00,01)

> leakage detected with 1.20k traces

higher order leakage between

line 74 and

line 120

with tvalue of -7.03

Fig. 3. Excerpts of the code and output of the leakage detection for the RP scheme.

3.3 Reproducing a Second-Order Flaw

To show that our proposed tool can also detect higher-order flaws, we imple-
mented the scheme of Rivain and Prouff (RP) from [RP10]. For the allegedly
second-order secure version of this scheme, there is a second-order flaw as spot-
ted by Coron et al. in [CPRR13] between two building blocks: MaskRefresh and
SecMult. We will see that we can easily spot this flaw with the methodology
proposed in this paper.

Text Fixture. We implemented the second-order masked inversion x �→ x−1 in
GF(2n) as per [RP10] with n = 3. This inversion uses the MaskRefresh and
SecMult procedures. In this case, we enable second-order pre-processing (on the
fly), expanding 135 time samples to

(
135
2

)
= 9045 time samples. Some excerpts

of the implementation are shown in Fig. 3.

Results. The instrumentation frameworks takes less than 5 s to determine that
there is a second order leakage between the variable handled at line 74 (inside
MaskRefresh) and 120 (inside SecMult), as Fig. 3, bottom, shows. Note that it
is trivial to backtrack to which variables corresponds a leaking time sample, and
thus determine the exact lines that leak jointly.
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r
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r

Fig. 4. Two MaskRefresh concatenated. As explained in the text, the second refresh
can be optimized to reduce the randomness requirements yet still achieving second
order security. (Color figure online)

Fixing the Second-Order Flaw. The folklore solution to fix the previous second-
order flaw is to substitute each MaskRefresh module by two consecutive
MaskRefresh invocations, as shown in Fig. 4. Applying the leakage detection
tests to this new construction shows that the leak is effectively gone. However,
it is quite reasonable to suspect that this solution is not optimal in terms of
randomness requirements. We can progressively strip down this design by elim-
inating some of the randomness of the second refreshing and check if the design
is still secure. We verified in this very simple test fixture that if we omit the last
randomness call (that is, we only keep the dotted red box instead of the second
dashed box in Fig. 4), the higher-order leaks are no longer present.

3.4 Reproducing a Third Order Flaw

Schramm and Paar published at CT-RSA 2006 [SP06] a masked table lookup
method for Boolean masking claiming higher-order security. This countermea-
sure was found to be flawed by Coron et al. at CHES 2007. Coron et al. found
a third-order flaw irrespective of the security parameter of the original scheme.
We reproduced their results by setting k = 3 when preprocessing the traces
as in Eq. 1. The flaw of [CPR07] was detected in less than one second, which
demonstrates that the tool is also useful to test the higher-order security claims
of masking schemes.

3.5 Schramm–Paar Second-Order Leak

Here we report on a new second-order flaw that we found with the presented
tool in the masked table recomputation method of Schramm and Paar when
used with unbalanced sboxes.

Schramm–Paar Method. The goal of the masked table recomputation is to
determine the sbox output shares N0, N1, . . . , Nd from the sbox input shares
M0,M1, . . . , Md. Schramm–Paar proceed as follows (we borrow the notation
from [CPR07]):
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1. Draw d output shares N1, . . . , Nd at random
2. Compute from N1, . . . , Nd a table S∗ such that

S∗(x) = S

(

x ⊕
d⊕

i=1

Mi

)

⊕
d⊕

i=1

Ni (3)

3. Set N0 := S∗(M0)

We set here d = 2, and aim at second-order security. An important part of
the procedure is to build the table S∗ in a way that the higher-order security
claims are fulfilled. [SP06] proposes several methods. However, for the purposes
of this paper the details of the recomputation method are not important.

Test Fixture. Following the guidelines of Sect. 2.4, we implement a very stripped
down version of the table recomputation method. We fix the simplest unbalanced
sbox S = (0, 0, 0, 1) (an AND gate), and work with 2-bit inputs and outputs
leaking Hamming weights. In a couple of seconds the tool outputs 4 different
bivariate second-order leakages, corresponding to the pairs (S∗(i), N0) for each
i in the domain of S∗. Here S∗(i) is the i-th entry on the S∗ table, and N0 is
one output mask.

Once these leaks are located, proving them becomes an easy task. And also
it becomes easy to generalize and see that the flaw appears whenever S is unbal-
anced. (We verified that second-order attacks using the leakage of S∗(0) and N
work as expected.)

3.6 Higher-Order Threshold Implementations

Here we report on how the observations from [RBN+15] regarding the security
of higher-order threshold implementations [BGN+14] were found. The results of
this section are obviously not new; the focus here is on the methodology carried
out to find those.

Intuition. The first suspicion stems from the fact that higher-order threshold
implementations originally claimed that the composition of sharings provides
higher-order security, if the sharings satisfy some property, namely uniformity.
This is a very surprising result, since it would imply that there is no need to
inject fresh randomness during the computation, minimizing overheads. In con-
trast, all other previously published higher-order masking schemes need to inject
randomness from time to time as the computation progresses. For example, the
security proof of private circuits (one of the earliest masking schemes) [ISW03]
critically relies on the fresh randomness to provide security.

Test Fixture. The hypothesis is that the previous security claim does not hold,
that is, the concatenation of uniform sharings do not provide higher-order secu-
rity. To test this, we design a minimal working test fixture consisting of a 32-
round Feistel cipher with a blocksize of 4 bits. For more details see [RBN+15].
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Fig. 5. Pairs of rounds with |t| > 80
(Color figure online)

Fig. 6. Pairs of rounds with |t| > 5
(Color figure online)

The shared version aims at providing second-order security, and shares each
native bit into 5 shares. The traces consist of 225 “timesamples” (each one com-
prising one leaked bit, including initialization.) This spans to 25650 timesamples
after second-order pre-processing.

Cranking it up. We run the simulation for a night (about 8 h), having simulated
200 million traces. We performed a fixed-vs-fixed test with unshared initial state
0000 and 1111. (There is no key in this cipher, the initial state is considered
to be the secret.) (This is grossly unoptimized code.) The results of the leakage
detection test is drawn in Fig. 5. We plot on the x- and y-axes the round index,
and each pixel in red if the t statistic surpasses the value 80, green otherwise. We
can see that many pairs of rounds leak jointly, in contradiction with the security
claims of the scheme. In Fig. 6 the same information is plotted but changing the
threshold to |t| > 5. We can see, surprisingly, that almost all pairs of rounds
lead to second-order leakage. A bit of manual mechanical effort is required to
prove this, but not more than taking a covariance.

3.7 Refreshing in Higher-Order Threshold AES Sbox

The designers from [CBR+15] had access to the tool presented in this paper.
They performed several design iterations, and verified the design on each itera-
tion. The final evaluation was performed on an FPGA.

Text Fixture. We implemented the whole sbox, with no downscaling of the com-
ponents to work in smaller fields. We leak register bits and the input value
(identity leakage function) to combinatorial logic blocks. (This is to account for
glitches as will be explained below.)
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Fig. 7. Higher-order masked AES sbox from de Cnudde et al.

First-Order Leaks. Within one day, a first-order leak was identified due to a
design mistake. This design error considered the concatenation of two values
a||b as input to the next stage; each value a and b considered independently is
a uniform sharing but its concatenation a||b is not, and hence the first order
leak. This first-order leak disappears if a refresh is applied to the inputs of one
GF(22) multiplier using 4 units of randomness (here 1 unit = 1 random field
element = 2 bits). This refresh block is similar to the 2010 Rivain–Prouff refresh
block [RP10], we remind it uses n−1 units of randomness to refresh n shares (in
our particular case here n = 5). We will see later that this refresh is problematic
in the higher-order setting.

Second-Order Leaks. Subsequently, two second-order bivariate leaks were identi-
fied between register values. This was solved by placing a refresh block between
stage 2 and 3 from Fig. 7 (taken from [CBR+15]).

In addition, many second-order bivariate leaks were identified between input
values to combinatorial logic blocks. In theory, hardware glitches could express
these leakages. Those disappear if one uses a “full refresh” using 5 units of
randomness. This effect was previously observed [BBD+15,RBN+15] and is a
reminiscent of [CPRR13].

Other Uses. We also used a preliminary version of this tool in [RRVV15].

4 Discussion

4.1 Implementing the Framework

We implemented the instrumentation framework on top of clang-LLVM. The
whole implementation (including leakage detection code) takes around 700 lines
of C++ code, which shows the inherent simplicity of our approach. It is easy to
audit and maintain.
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4.2 Time to Discover Flaw, Computational Complexity and Scaling

The computational requirements of the proposed approach are very low. In Fig. 8
we write the elapsed execution times required to spot the flaws from Sects. 3.1,
3.3 and 3.4. We can see that the flaws were identified in a matter of seconds on
a standard computer. All the experiments on this paper were carried out on a
modest 1.6 GHz laptop with 2 GB of RAM.

Bottlenecks. The main bottleneck on the running time of the methodology is
the first step: trace generation. The RP scheme is the one that took longer to
detect the flaw (5 s), presumably because of two reasons: (a) the scheme is more
inherently complex and thus it takes more time to simulate each trace and (b) the
bias exhibited in the scheme is smaller than the bias of other schemes, and thus
more traces are required to detect such a bias. We note that no special effort
on optimizing the implementations was made, yet, an average throughput of
5 k trace per second (including instrumentation) was achieved. The overhead of
instrumentation in the running time was estimated to make the implementation
on average ≈ × 1.6 slower.

Time to Pass. The time it takes to discover a flaw is normally less than the
time it takes to deem a masking scheme secure. For example, to assess that the
patch of Sect. 3.3 is indeed correct, it took about 6 min to perform a fix-vs-fix
test with up to 1 million traces (no leakage was detected). All possible 6 tests
take around 37 min. (The threshold of 1 million traces was chosen arbitrarily in
this example.)

Parallelization. We remark that this methodology is embarrassing parallel. Thus,
it is much easier to parallelize to several cores or machines than other approaches
based on SAT.

Memory. The memory requirements for this method are also negligible, taking
less than 4.5 MB of RAM on average. More interestingly, memory requirements
are constant and do not increase with the number of simulated traces, thanks
to online algorithms.

Scheme Flaw order Field size Time Traces needed

IP 1 4 0.04s 1k
RP 2 4 5s 14k
SP 3 4 0.2s 2k

Fig. 8. Running time to discover flaw in the studied schemes, and number of traces
needed to detect the bias.
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Scaling. The execution time of our approach scales linearly with the number of
intermediates when testing for first-order leakage, quadratically when testing for
second-order leakage and so on. This scaling property is exactly the same as for
DPA attacks. We could benefit from performance improvements that are typi-
cally used to mitigate scaling issues in DPA attacks such as trace compression,
but did not implemented those yet.

4.3 Limitations

Risk of False Negatives. Our tool should not be taken as the only test when
assessing a masked implementation, and is not meant to substitute practical
evaluation with actual measurements. Our tool provides an early warning that
the masking scheme may be structurally flawed, “by design”. However, even
when the masking scheme is theoretically secure, it is still possible to implement
it in an insecure way. This will not be detected with the proposed tool. For exam-
ple, in the case of a first-order masked software implementation, an unfortunate
choice of register allocation may cause distance leakage between shares, leading
to first-order leakage. Without register allocation information, our tool will not
detect this issue. One could provide this kind of extra information to our tool.
We left this as future work.

4.4 Related Works

There are already some publications that address the problem of automatic
verification of power analysis countermeasure.

SAT-based. Sleuth [BRNI13] is a SAT-based methodology that outputs a hard
yes/no answer to the question of whether the countermeasures are effective or
not. A limitation of [BRNI13] is that it does not attempt to quantify the degree
of (in)security. A first approximation to the problem was tackled in [EWTS14,
ABMP13].

MiniCrypt-based. Barthe et al. [BBD+15] use program verification techniques
to build a method prints a proof of security for a given masking scheme. It is
very hard to compare our tool with theirs since they are fundamentally different.
The goal is also different: while our results are probabilistic, the goal of Barth
et al. is to categorically prove the security of the scheme. Depending on the
context, one might be preferrable over the other. The two approaches are also
very different. Barthe et al. base their approach on EasyCrypt, a sophisticated
“toolset for reasoning about relational properties of probabilistic computations
with adversarial code.”

Considerations Related to Other Approaches. While our approach does certainly
not carry the beauty of proofs and formal methods, it offers a very practice-
oriented methodology to test the soundness of masking schemes. Our approach
is in nature statistical, and is a necessary condition for a masked scheme to
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be sound. It can be thought of a worst-case scenario, where the adversary has
access to noiseless and synchronized traces. A more formal study can then be
performed with the methods of Barthe et al. to gain higher confidence, since the
output of the tool of Barthe et al. is a hard proof.

4.5 Which Leakage Function to Select?

In previous Sect. 2 we mentioned that the practitioner has to choose a leakage
function to generate the simulated traces. It turns out that the specific choice
of leakage function seems not to be crucial —any reasonable choice will work.
Figure 9 compares different leakage functions: Hamming weight, identity, least-
significant bit and zero-value. The test fixture is the same one as in Sect. 3.1. For
each leakage function, we performed all possible fixed-vs-fixed tests. Figure 9 is
composed of 4 plots, one per leakage function. We can see that for any leakage
function, there is at least one fixed-vs-fixed test that fails. For the identity leakage
function, all tests fail. Thus, it is often convenient to use it to detect flaws faster
(more fixed-vs-fixed tests fail.) We speculate that this behavior may depend on
the concrete masking method used, and leave a detailed study as future work.

Glitches and Identity Leakage. We note that we can include the effect of hard-
ware glitches in our tool. Note that the information leaked by a combinatorial
logic block F on input x due to glitches is contained already in the input x.
Thus, we can simulate the information leaked by hardware glitches, even if we
do not have a precise timing model of the logic function, by leaking the whole
input value x (that is, using the identity leakage model.)

This would correspond to an extremely glitchy implementation of F where
glitches would allow to observe the complete input. This is certainly a worst-case
scenario. Crucially, glitches would not reveal more information than x. This trick

Fig. 9. Influence of leakage function.
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of using the identity leakage model on inputs of combinatorial blocks is helpful
when evaluating, for example, masked threshold implementations.

Another alternate approach is to add a detailed gate-level timing model to
simulate glitches. If such timing model is available, the detection quality can be
substantially enhanced.

5 Conclusion

We described a methodology to test in an automated way the soundness of a
masking scheme. Our methodology enjoys several attractive properties: simplic-
ity, speed and scalability. Our methodology is based on established and well-
understood tools (leakage detection). We demonstrated the usefulness of the
tool by detecting state-of-the-art flaws of modern masking designs in a matter
of seconds with modest computational resources. In addition, we showed how
the tool can assist the design process of masked implementations.
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Auxiliary Supporting Material

A MATLAB Code

This code prints the distribution of Z = S(M ⊕ M0) ⊕ S(M) for a fixed M and
varying M0.

% the sbox

S=[0 0 0 1];

% number of samples

N=10000;

% the sbox input

for M=0:3

M0=floor(4.*rand(1,N));

Z =bitxor(S(bitxor(M,M0)+1),S(M+1));

for i=0:1

fprintf(’ p(Z=%d|M=%d) = %1.2f\n’, i, M, sum(Z==i)./length(Z))

end

fprintf(’\n’)

end
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B Examplary Output

This is the distribution of Z when the secret M takes different values. We can see that
the expected value of Z is different when conditioned on M = 0 than when M = 3.
This means that there is a second-order information leak between (S∗(0), N0) and the
secret M .

p(Z=0|M=0) = 0.75

p(Z=1|M=0) = 0.25

p(Z=0|M=1) = 0.75

p(Z=1|M=1) = 0.25

p(Z=0|M=2) = 0.75

p(Z=1|M=2) = 0.25

p(Z=0|M=3) = 0.25

p(Z=1|M=3) = 0.75
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Abstract. Side-channel attacks are an important concern for the secu-
rity of cryptographic algorithms. To counteract it, a recent line of
research has investigated the use of software encoding functions such
as dual-rail rather than the well known masking countermeasure. The
core idea consists in encoding the sensitive data with a fixed Hamming
weight value and perform all operations following this fashion. This new
set of countermeasures applies to all devices that leak a function of the
Hamming weight of the internal variables. However when the leakage
model deviates from this idealized model, the claimed security guar-
antee vanishes. In this work, we introduce a framework that aims at
building customized encoding functions according to the precise leakage
model based on stochastic profiling. We specifically investigate how to
take advantage of adversary’s knowledge of the physical leakage to select
the corresponding optimal encoding. Our solution has been evaluated
within several security metrics, proving its efficiency against side-channel
attacks in realistic scenarios. A concrete experimentation of our proposal
to protect the PRESENT Sbox confirms its practicability. In a realistic
scenario, our new custom encoding achieves a hundredfold reduction in
leakage compared to the dual-rail, although using the same code length.

Keywords: Constant weight countermeasures · Stochastic characteri-
zation · Customized encoding function · Security metrics · Information
theoretic analysis · Side-channel analysis

1 Introduction

Side-Channel Attacks. Side-Channel attacks (SCA) are nowadays well known
and most designers of secure embedded systems are aware of them. Since the first
public reporting of these threats [15], a lot of effort has been devoted towards the
research about side-channel attacks and the development of corresponding coun-
termeasures. Side-channel attacks exploit information leaked from the physical
implementations of cryptographic algorithms. Since, this leakage (e.g. the power
consumption or the electromagnetic emanations) depends on the internally used
secret key, the adversary may perform an efficient key-recovery attack to reveal
c© International Association for Cryptologic Research 2016
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this sensitive data. As this property can be exploited with relatively cheap equip-
ment, these attacks pose a serious practical threat to cryptographic embedded
systems. Amongst the side-channel attacks, two classes may be distinguished:

– The set of so-called profiling SCA: is the most powerful kind of SCA attacks
and consists of two steps. First, the adversary procures a copy of the target
device and uses it to characterize the physical leakage. Second, he performs a
key-recovery attack on the target device. This set of profiled attacks includes
Template attacks [5] and Stochastic models (a.k.a. Linear Regression Analy-
sis) [10,22,23].

– The set of so-called non-profiling SCA: corresponds to a much weaker adver-
sary who has only access to the physical leakage captured on the target device.
To recover the secret key used, he performs some statistical analyses to detect
the dependency between the leakage measurements and this sensitive vari-
able. This set of non-profiled attacks includes Differential Power Analysis
(DPA) [15], Correlation Power Analysis (CPA) [3] and Mutual Information
Analysis (MIA) [13].

Side-Channel Countermeasures. A deep look at the state-of-the-art shows
that several countermeasures have been published to deal with side-channel
attacks. Amongst SCA countermeasures, two classes may be distinguished [18]:

– The set of so-called masking countermeasures: the core principle of masking
is to ensure that every sensitive variable is randomly split into at least two
shares so that the knowledge of a strict sub-part of the shares does not give
information on the shared variable itself. Masking can be characterized by
the number of random masks used per sensitive variable. So, it is possible
to give a general definition for a dth-order masking scheme: every sensitive
variable Z is randomly split into d + 1 shares M0, · · · ,Md in such a way
that the relation M0 ⊥ · · · ⊥ Md = Z is satisfied for a group operation ⊥
(e.g. the XOR operation used in the Boolean masking, denoted as ⊕) and no
tuple of strictly less than d+1 shares depends on Z. In the literature, several
provably secure higher-order masking schemes have been proposed, see for
instance [9,12,21].

– The set of so-called hiding countermeasures: the core idea consists in making
the activity of the physical implementation constant by either adding com-
plementary logic to the existing logic [7] (in a hardware setting) or by using a
specific encoding of the sensitive data [6,14,24] (in a software setting). There-
fore, making this activity constant would theoretically remove the correlation
between the leakage measurements and the secret key.

Constant Weight Countermeasures. A recent line of works has investigated
possibilities to protect block ciphers in software implementations using constant
weight coding rather than using masking techniques. It is a specific encoding that
has the particularity that all its codewords have a constant Hamming weight.
More precisely, Hoogvorst et al. in [14] have presented a dual-rail implementation
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of PRESENT [2]. The idea was straightforwardly taken from existing dual-rail
hardware, and consists in encoding one bit s.t. the logical value 0 is represented
as 01 and the logical value 1 is represented as 10 (or the inverse). Another idea
derived from dual-rail can be found in a work by Chen et al. [6]. Several encodings
are used, by reordering the bits and their complements in a word, in order to
ensure constant Hamming weight and distance leakage for all operations of the
block cipher PRINCE.

Recently, at CARDIS 2014, Servant et al. in [24] have proposed a new con-
stant weight implementation of the AES extending the idea of the software dual-
rail countermeasure proposed by Hoogvorst et al. in [14]. The core idea consists
in encoding efficiently the sensitive data as a whole (i.e. not bit per bit) with a
fixed Hamming weight value and then performing the AES internal operations
following this fashion. When assuming a Hamming weight leakage model, the
authors proved that their proposal is a leak-free countermeasure. However real
world devices do not fit this model, as explained hereafter.

Stochastic Characterization of the Leakage. It is often assumed that a
device leaks information based on the Hamming weight of the processed data.
This assumption is quite realistic and many security analyses in the literature
have been conducted following this model [3,19]. However, this assumption is not
complete in real hardware [28], due to small load imbalances, process variations,
routing, etc. For instance, authors in [16] have characterized, using a stochastic
approach, the leakage of four AES Sbox outputs when implemented in three
different devices. The obtained results prove that the leakage is very unbalanced
for each Sbox output and hence, the Hamming weight assumption is unsound
in practice. This imbalance always leaks some information that can be exploited
by a SCA adversary. Hence, the security guarantee claimed by constant weight
countermeasures does not necessarily hold in real world.

Our Contribution. In this paper, we refine the notion of data encoding as a
countermeasure to thwart side-channel attacks. In fact, we try to bridge the gap
between the physical leakage characteristics and the optimal encoding which bal-
ances at best the data leakage. This work exposes a method based on a first pre-
cise stochastic characterization of the target device, followed by the generation
of a specific encoding according to this model. To do so, we propose an algorithm
to select the best encoding function according to the physical leakage charac-
terized on the target device. Our experiments show that the proposed encoding
framework is more efficient than the existing constant weight countermeasures.
We theoretically prove that our proposal reduces the Signal-to-Noise Ratio and
hence, an adversary requires more traces to disclose the secret key than on the
existing constant weight countermeasures. Furthermore, the security evaluation
conducted illustrates that the leaked information is minimal and the efficiency
of stochastic attack in exploiting this leakage is reduced drastically. Finally, the
practical assessment of our proposal confirms its practicability to protect cryp-
tographic operations. When device registers leak roughly the same function, our
proposal could be applied to fully protect a block cipher. This assumption is
not fully realistic, meanwhile, our work is a first step towards protecting block
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ciphers by involving customized encoding. If registers happen to leak vastly dif-
ferently, then we need different encodings for each register and code conversions
between memory accesses to protect a whole block cipher.

Paper Outline. The paper is organized as follows. In Sect. 2, we first detail
two published constant weight implementations to protect a block cipher in
a software setting. Then, we describe our new encoding framework in Sect. 3
and provide a theoretical analysis of it in Sect. 4. Furthermore, an information
theoretic analysis and a security evaluation are conducted in Sect. 5. This is
followed by some practical experiments applied on real devices in Sect. 6. Finally,
Sect. 7 draws general conclusions and opens some perspectives for future work.

2 Existing Works on Leakage Balancing by Involving
Encoding Functions

This principle of data internal encodings has already been proposed by Chow
et al. in [8] in the context of white-box cryptography. Since then, several counter-
measures have been proposed aiming at balancing the leakage by using some con-
stant Hamming weight encodings in a grey-box context1. For instance, Hoogvorst
et al. [14] have adapted the hardware dual-rail countermeasure to protect a soft-
ware implementation of PRESENT. To do so, the authors suggest to duplicate
the bit values representation, i.e. to use two bits to represent the logical value
of one bit. For instance, one can encode the logical value 0 as 01 and the logical
value 1 as 10 (or the inverse). When applying such an encoding to protect a n-bit
variable, all codewords generated have a constant Hamming weight of n. Hence,
assuming a Hamming weight leakage model, the power consumption provides no
sensitive information. In the sequel, it will be referred as the dual-rail code.

The dual-rail representation is a specific case of this class of constant weight
codes, but it is not the only option one should consider in a software setting. As
a first example, authors of [6] propose a variation of the dual-rail applied to the
block cipher PRINCE. Another example is [24], in which the authors propose
a new balancing strategy based on the use of a code with the smallest cardinal
available to encode the sensitive data. To protect a 4-bit variable, one can use 16
codewords of 6-bit length, each with a constant Hamming weight of 3. This code
will be referred as the (3, 6)-code in the rest of this paper. The security analysis
conducted in [24] proves that this constant weight implementation is a leak-free
countermeasure under a Hamming weight leakage model assumption. However,
when the leakage function deviates from this idealized model, the security guar-
antee provided by this countermeasure vanish as discussed in [24].

To sum up, all these investigations on how to balance the physical leakage
were conducted under the Hamming weight leakage model and with no prior
characterization of the target device to incorporate the precise leakage model.
Moreover, the choice of the code is made independently of the real bit leakage

1 The adversary has access to the inputs and outputs of the cryptographic algorithm
plus extra side-channel information.
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(for example, in dual-rail representation, the logical value 1 is usually encoded
as 10). Therefore, the claimed security level of these countermeasures could not
be obtained in practice, where the bits may leak differently [16].

In the following section, we propose a framework for protecting sensitive data
by using specific encoding. It is aimed to bridge the physical leakage character-
istics to the choice of an optimal encoding function.

3 Towards a New Encoding Procedure for Leakage
Balancing

Unlike previous works in which the Hamming weight model is often assumed,
our solution is essentially based on harnessing the leakage characteristics and
building a customized encoding accordingly to obtain the best balanced leakage.
So, our framework is composed of two steps detailed in the following subsections.

3.1 First Step: Stochastic Characterization of the Leakage Function

A primordial step in our proposed framework is to take advantage of the adver-
sary’s knowledge of the target device during a stochastic characterization phase,
a.k.a. leakage profiling.

Let Z be a sensitive variable defined over Fn
2 , then a stochastic characteriza-

tion assumes that the leakage function L(Z) can be expressed as the sum of two
mutually independent parts:

– a deterministic part D(Z): a function representing the power consumption
during the processing of the sensitive variable Z and,

– a random part R: a Gaussian noise with null mean and standard deviation σ.

Hence, the leakage function can be rewritten: L(Z) = D(Z) + R =∑u
i=1 αiδi(Z)+N (0, σ), where αi are some weighting coefficients and δi are some

well chosen basis functions. Besides, we stress the fact that the basis choice is
essential since it directly impacts the profiling efficiency.

For the sake of simplicity, in this work, we assume a linear basis. This choice
is also motivated by the fact that higher-order basis functions are playing a
minor role despite their better representation of the reality [10]. Moreover, the
deterministic part of the leakage in practice is very close to the value of the linear
part as discussed in [10]. So, our goal here is to characterize the leakage func-
tion when its deterministic part deviates from the Hamming weight model, but
keeps the same degree. The study of higher-order basis functions (e.g. quadratic,
cubic,. . . ) is out of the scope of this paper.

This implies that every bit of the sensitive variable leaks independently.
This assumption is often used in SCA context to characterize the perceived
device leakage and sometimes referred as Independent Bit Leakage (IBL) assump-
tion [10]. We recall hereafter this assumption.
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Assumption 1 (IBL Assumption). Let Z be a sensitive variable defined over
F

n
2 , then the deterministic part of the leakage function can be rewritten: D(Z) =∑n
i=1 αiZ[i], where Z[i] denotes the ith bit of the sensitive variable Z.

Under Assumption 1, the leakage function can be rewritten:

L(Z) =
n∑

i=1

αiZ[i] + N (0, σ) . (1)

So to recover the leakage function, one can apply a linear regression [10,16]
to obtain a precise estimation of the αi coefficients under the IBL assumption.

3.2 Second Step: Encoding Function Selection

Once the leakage function is characterized, the second step of our framework
consists in applying Algorithm 1 to obtain the optimal encoding function w.r.t.
the profiled leakage.

Algorithm 1. Selection of the optimal encoding function
Input: m: the codeword bit-length, n: the sensitive variable bit-length and αi: the

leakage bit weights, where i in �1, m�
Output: 2n codewords of m-bit length
1: for X in �0, 2m − 1� do
2: Compute the power consumption for each codeword X and store the result in

table D: D[X] =
m∑

i=1

αiX[i]

3: Store the corresponding value of the codeword in the index table I: I[X] = X
4: end for
5: Sort the power consumption stored in table D and the index table I accordingly
6: for j in �0, 2m − 2n� do
7: Find the argmin of |D[j] − D[j + 2n]|
8: end for
9: return 2n codewords corresponding to �I[argmin], I[argmin + 2n]�

Our Algorithm 1 takes as inputs: the length in bits of respectively the code-
words and the sensitive data and, for each bit, the corresponding leakage weight
obtained during a stochastic profiling as explained in the previous subsection.
Then, it outputs 2n codewords such that the delta consumption is the lowest
among all subsets of 2n codewords. Since the bit weights are unbalanced in prac-
tice, we argue that finding a code that guarantees a perfectly constant leakage
remains an unreachable goal in most of cases.

Given the output codewords length, we compute the expected power con-
sumption for each codeword and we store the result and the codeword value in
table D and table I respectively (c.f. the first loop from Line 1 to Line 4 in
Algorithm 1). Then, we sort table D (in ascending or descending order) and the
index table I accordingly (c.f. Line 5 in Algorithm 1). Finally, since our goal is



There Is Wisdom in Harnessing the Strengths of Your Enemy 229

to choose a subset of 2n codewords such that the delta consumption is the lowest
one, we compute the delta of consumption for each subset of 2n elements (c.f.
the last loop from Line 6 to Line 8 in Algorithm 1) and later we select 2n indexes
from table I that minimize this delta. Thus, we obtain a code that ensures the
best balancing of the leakage w.r.t. the stochastic profiling result.

A clustering Algorithm [1] would also give good results for this problem, but
we explain hereafter why we chose this algorithm which is somewhat simpler to
analyze. Let d be the maximum distance between two elements of a set S of n
elements. One can show that V ar(S) < n.d2, so that intuitively, minimizing this
distance d gives a subset with one of the lowest variances (and hence, one of the
lowest SNR). There might be a set S′ with lower variance but higher distance
d′, but in that case it would be easier to distinguish the two extreme values of
this set. Some attacks might use this fact to improve the success rate.

Our framework consequently helps building properly encoding function cus-
tomized for the physically observable leakage. It acts as an interface between the
adversary’s knowledge of the physical leakage and the optimal encoding to be
used accordingly. We stress the fact that our Algorithm 1 is still applicable if
the IBL assumption is not respected. To do so, one should inject the obtained
leakage function in Line 2 and execute the algorithm to carry out the code.

4 Theoretical Analysis of the New Customized Encoding

In what follows, we provide a theoretical analysis of our solution. Namely, we will
show that to succeed a first-order univariate correlation attack on our proposal,
an adversary requires much more traces than on the existing constant weight
countermeasures. This is due to the fact that the selected subset of codewords
has a close-to-lowest power consumption variance among all possible subsets.

Let us start our analysis by exhibiting the explicit relationship between two
security metrics: the Minimum number of Traces to Disclose the key with a
given percentage of success rate (MTD), and the Signal-to-Noise Ratio (SNR).
This link has already been demonstrated by Mangard in [17] for unprotected
implementation. Our purpose is to provide the link between these two security
metrics for encoding-based countermeasures.

To do so, we first recall how the number of traces to disclose the key is
connected to the Correlation Power Analysis (CPA).

4.1 Analytical Derivation of the Security Level for Correlation
Attacks

The CPA attack [3] is based on the computation of the Pearson correlation
coefficient between the leakage function L(Z) and a prediction function f(Z)
chosen according to some assumptions on the device leakage model (e.g. the
Hamming weight function). Hence, the Pearson correlation coefficient can be
rewritten:

ρ[L(Z); f(Z)] =
Cov[L(Z); f(Z)]

σL(Z)σf(Z)
,
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where Cov[.; .] is the covariance and σL(Z) and σf(Z) are respectively the
standard deviation of the physical leakage and the prediction leakage function.
Besides, in [17] the author demonstrated that the number of curves required to
break a cryptographic implementation by CPA is equal to:

N1−β = 3 + 8

⎛

⎝ Z1−β

ln
(

1+ρ
1−ρ

)

⎞

⎠

2

, (2)

where Z1−β is a quantile of a normal distribution for the 2-sided confidence
interval with error 1 − β.

We introduce hereafter the optimal correlation function and exhibit its rela-
tionship to the SNR security metric. Then, we deduce the explicit link between
the number of traces to disclose the key and the SNR.

4.2 From Optimal Correlation Function to the SNR

The optimal correlation function is defined as the function that maximizes the
correlation ρ[L(Z); f(Z)] and can be obtained from Corollary 8 in [20]:

ρopt =

√
Var[E[L(Z) | Z = z]]

Var[L(Z)]
, (3)

where E[.] and Var[.] denote the mean and the variance function respectively.
Based on this definition, we introduce the following proposition.

Proposition 1. Let L(Z) satisfies Eq. (1). Then, the optimal correlation func-
tion satisfies:

ρopt =

√
1

1 + 1
SNR

, (4)

where the SNR can be rewritten:

SNR =

(

Var[
n∑

i=1

αiZ[i]]

)

/σ2 . (5)

As a direct consequence of Proposition 1, one can inject Eq. (4) into Eq. (2)
to find the number of traces required by a CPA attack to succeed according to
the SNR. Thus, assuming ρ is small2, it yields the number of traces to achieve
a success rate of 90%, denoted N90%:

N90% ≈ 8
(

Z90%

2ρ

)2

≈ 8

⎛

⎝ Z90%

2
√

1
1+ 1

SNR

⎞

⎠

2

≈
2Z2

90%

SNR
(6)

2 In fact, we can approximate ln
(

1+ρ
1−ρ

)
= ln(1 + ρ) − ln(1 − ρ) ≈ ρ − (−ρ) ≈ 2ρ.
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From Eq. (6) one can conclude that the smaller the SNR is, the more traces
are required to achieve a success rate of 90% for a CPA attack. As a direct
consequence, if we decrease the SNR by a factor X, then the required number
of traces to succeed the CPA attack will be multiplied by X.

In the next subsection, we evaluate our proposal by computing the SNR and
then deducing the N90%.

4.3 Evaluation of Our Proposal Within the SNR and the N90%

Security Metrics

We recall that the deterministic part of the leakage function, defined under
the IBL assumption, satisfies D(Z) =

∑n
i=1 αiZ[i]. In the sequel, we make an

additional assumption on the statistical distribution of the bit leakage weights
αi. In fact, for the sake of simplicity, the distribution of the αi coefficients can
fairly be approximated by a Gaussian law. This assumption that we shall call
Gaussian Bit Leakage Weight (GBLW) assumption is formalized hereafter.

Assumption 2 (GBLW Assumption). The bit leakage weights αi are mutu-
ally independent random variables drawn from a Gaussian distribution with unity
mean and standard deviation σα.

Under Assumption 2, the leakage function can be rewritten L(Z) = α · Z +
N (0, σ), where (·) denotes the scalar product operation and α = [α1, α2, . . . , αn]
denotes the bit leakage weight vector such that for every i in �1, n� we have
αi ∼ N (1, σα). Let C be a (n,m)-function, i.e. C : F

n
2 �→ F

m
2 s.t. n ≤ m,

denoting the encoding operation used to protect a sensitive variable Z in F
n
2 .

Then, the leakage function can be expressed as:

L(Z) = α · C(Z) + N (0, σ) =
m∑

i=1

αiC(Z)[i] + N (0, σ). (7)

In the next proposition, we give an explicit formula of the SNR when an
encoding function is involved to thwart SCA attacks.

Proposition 2. Let L(Z) satisfy Eq. (7). Then, for every Z in F
n
2 , the Signal-

to-Noise Ratio satisfies:

SNR =

⎛
⎜⎜⎝

m∑
i,j=1
i�=j

E[C(Z)[i]C(Z)[j]] + (σ2
α + 1)

m∑
i=1

E[C(Z)[i]] −
(

m∑
i=1

E[C(Z)[i]]

)2

⎞
⎟⎟⎠ /σ2.

(8)

Using the result of Proposition 2 and Eq. (6), one can evaluate the amount
of traces required to reach a 90% of success rate when an encoding is applied
to protect a sensitive data. For the sake of comparison, we will also evaluate
this metric for some well known countermeasures. We list hereafter the leakage
functions we consider:
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– Unprotected: Lunpro(Z) = α ·Cunpro(Z)+N (0, σ), where Cunpro is the identity
function.

– Software dual-rail [14]: Ldual(Z) = α · Cdual(Z) + N (0, σ), where Cdual is the
dual-rail code.

– Software constant weight [24]: LcstHW(Z) = α · CcstHW(Z) + N (0, σ), where
CcstHW is the (3, 6)-code.

– Our proposed customized encoding: L(Z)cust = α · Ccust(Z) + N (0, σ), where
Ccust is the code generated using Algorithm 1 for different codeword lengths.

In the sequel, we consider that the sensitive variable Z is a 4-bit variable,
(i.e. n = 4). Then, for each of the above described leakage functions, we have
computed the SNR over a set of 5.000 independent experiments using the result
of Proposition 2. The standard deviation of the bit leakage weights σα was fixed
at 0.25 and 0.5. Finally, we have deduced the N90% using Eq. (6).

In Fig. 1, we plot the number of traces to achieve a success rate of 90%
according to the noise standard deviation σ. For our customized encoding func-
tions, we show the results for different codewords lengths, i.e. Ccust : F4

2 �→ F
m
2

with m in �5, 10�.

Fig. 1. Evolution of the number of traces to achieve a success rate of 90 % (y-axis)
according to an increasing noise standard deviation σ (x-axis in log scale base 2). Left:
for σα = 0.25. Right: for σα = 0.5.

From Fig. 1, the following observations could be emphasized:

– As expected the constant weight encoding countermeasures are less efficient
than our customized encoding functions. For instance, when the noise stan-
dard deviation equals 16, about 10.000 and 2.000 are sufficient to reach a
success rate of 90% when σα equals 0.25 and 0.5 respectively. This is due to
the fact that these codes are generated independently of the physical leakage
by simply assuming a Hamming weight leakage model.
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– The longer the code is, the more resistant the countermeasure is. In fact, our
Algorithm 1 generates an encoding function such that the delta consumption
of the selected codewords, the corresponding physical leakage variance, and
the SNR are the lowest among all the subsets of codewords. So, the longer the
code is, the more efficient our proposed algorithm is in selecting an encoding
function that minimizes further the SNR. For instance, when σα = 0.25 and
σ = 2, the SNR decreases from about 0.032 for the (3, 6)-code to 7.8 × 10−5

for the customized code of length 10.
– For a fixed noise standard deviation, one can notice that if σα increases, the

adversary will need less traces to achieve a success rate of 90%. For instance,
when σ = 8 and the customized encoding of length 6 is used, the N90% equals
approximately 10.000 and 8.000 traces when σα varies from 0.25 to 0.5 as
shown in Fig. 1. This observation is in-line with Eq. (8). In fact, when σα

increases, the SNR increases accordingly and hence the N90% decreases. To
sum up, the degree of randomness of the leakage function has a noticeable
impact on the amount of traces required by an adversary to achieve a success
rate of 90%. So, the higher σα is, the longer encoding function a designer
should use.

– It is noteworthy that the code of length 5 is less efficient than the state-
of-the-art countermeasures when σα = 0.25. However, when σα = 0.5, this
customized code achieves a better result than the dual-rail and the (3, 6)-code.

To conclude, our proposed encodings bring an overwhelming gain in terms
of number of traces to succeed the CPA attack. For instance, to break the code
of length 7, an adversary requires about 12 and 50 times more traces to achieve
a CPA success rate of 90% compared to the dual-rail countermeasure when σα

equals 0.25 and 0.5 respectively.

5 Security Evaluation of the New Customized Encoding

As argued on the evaluation framework introduced in [25], the robustness of a
countermeasure encompasses two dimensions: its amount of leakage irrespective
of any attack strategy and its resistance to specific attacks. So, the evaluation
of protected implementations should hold in two steps. First, an information
theoretic analysis determines the actual information leakage. Second, a security
analysis determines the efficiency of various attacks in exploiting this leakage.

Following this evaluation framework, we start with an information theoretic
analysis in the following subsection.

5.1 Information Theoretic Analysis

To evaluate the information revealed by our proposed encoding functions, we
compute the Mutual Information Metric (MIM) between the sensitive variable
Z and the leakage function: I[Lcust(Z);Z] = H[Lcust(Z)]−H[Lcust(Z) | Z], where
H[.] denotes the entropy function. For the sake of comparison, we evaluate the
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MIM for the leakage functions listed in Sect. 4.3 as well. Besides, we compute
this metric also for a first-order masking leakage function:

Lmask(Z) = (α1 · (Z ⊕ M)) × (α2 · M) + N (0, σ) , (9)

where M denotes a random mask defined over F4
2 and (α1, α2) are respectively

the bit leakage weight vector of the masked data (Z ⊕ M) and the mask (M)
such that α1 	= α2. Put differently, we assume that the masked data bits and the
mask bits leak independently3. From Eq. (9), one can conclude that for masking
we consider a bivariate leakage, i.e. a product combination of the two leakages
(the masked data and the mask) is exploited by the adversary.

For each leakage function, the MIM was computed for several standard devi-
ations of the bit leakage weights (σα in {0.05, 0.25, 0.75, 1}) and over a set of
200 independent experiments. The MIM is computed via numerical integration
(Sect. 4.1.b of [10]). This method is accurate when the leakage is mathematically
generated to perform simulations. The obtained results are shown in Table 1.

Table 1. Evolution of the MIM (y-axis in log scale base 2) according to an increasing
noise standard deviation σ (x-axis in log scale base 2).

3 Our goal here is to analyze the masking countermeasure in the worst case scenario
(i.e. the mask register and the masked data register have different leakage functions).
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From Table 1, the following observations can be emphasized:

– Interestingly, all MIM curves are parallel and have the same slope (−2). In
fact, it has been demonstrated that the mutual information is proportional
to σ(−2d) for large enough noises, where d denotes the order of the smallest
statistical moment in the leakage distribution depending on the secret key
and corresponds also to the number of shares used to represent the sensitive
data [4,11,26]. Since for all the considered leakage functions the sensitive data
is represented with a single share (i.e. d= 1 )4, then the corresponding mutual
information decrease exponentially following a curve with slope (−2) when
the noise standard deviation σ increases. As expected, this confirms that the
unprotected implementation and the encoding-based countermeasures lead to
first-order univariate weaknesses and that the masking countermeasure leads
to first-order bivariate weakness.

– Despite having the same gradient, the amount of information leaked differs
from a leakage function to another. For instance, one can see that whatever
the σα value is, our proposed encoding functions of length superior to 6 leak
less than the other encoding countermeasures and the first-order masking.
This result is in-line with that of Sect. 4.3. In fact, the longer the code is,
the less information is leaked, the lowest the SNR is, and the more traces are
needed to break the implementation.

– For σα ≤ 0.25, our customized code of length 5 performs worse since it leaks
more than the dual-rail and the (3, 6)-code. This result is also in-line with
that shown in Fig. 1. In fact, an adversary requires less traces to break the
optimal code of length 5 than the (3, 6)-code. This could be simply explained
by the fact that for small σα the best code is a constant weight one and no
such a code exists for length 5 to generate 16 codewords.

– It is noteworthy that the first-order masking performs worse when σα ≥ 0.75.
It leaks slightly more information than an unprotected implementation. This
result can be explained by the fact that when the bits of the two shares (the
masked data and the mask) leak “very” differently, the countermeasure is
doubly impacted (i.e. unbalance of the masked data leakage and unbalance
of the mask leakage). This implies that the security guarantee by masking
vanish in such a scenario. This result is in-line with that obtained in [11],
where the MIM has been evaluated when the masking and the unprotected
leakage functions radically deviate from the idealized Hamming weight model.

– It appears also that the degree of the deviation from the Hamming weight
model (i.e. σα) has a noticeable influence on the amount of information
leaked. In fact, for a fixed noise standard deviation σ, the higher σα, the
larger the leakage. The same observation has been pinpointed in [11], i.e.
the quantity of information leaked is strongly affected by the degree of ran-
domness of the leakage function. Moreover, this result is in-line with that

4 For the masking leakage function, we stress the fact that we have used one share
which corresponds to the product combination of the masked data share and the
mask share (i.e. a second-order analysis of the first-order masking).
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discussed in Sect. 4.3, i.e. the higher σα, the less number of traces are needed
to achieve a 90% of success rate.

5.2 Side-Channel Security Analysis

To complete the security evaluation of our proposal, we conduct in this subsec-
tion a security analysis to evaluate its resistance to thwart SCA attacks. Namely,
we perform a security evaluation of the stochastic attacks, for which a strong
consistency with the previous security metrics analyses (i.e. the information the-
oretic analysis, the SNR and the MTD) should hold. To do so, we detail hereafter
the attack simulation setup.

Simulation Setup. The leakage measurements have been simulated as samples
of all the leakage functions listed in Sect. 4.3 and that detailed in Eq. (9) for
the first-order masking countermeasure. Moreover, the sensitive variable Z was
chosen to be a PRESENT Sbox output of the form S(X⊕k), where X represents
a varying 4-bit plaintext and k represents the key nibble to recover.

Attack Scenarios. For our simulation attacks, we focus on two scenarios:

– The best-case scenario: we consider a powerful adversary who has access to the
bit leakage weights and the characteristics of the optimal used code (i.e. the
code length and the subset of the codewords). Then, he performs a stochastic
attack by targeting the protected variable C(S(X ⊕ k)).

– The worst-case scenario: we consider a more realistic (and much weaker)
adversary who has only the control on the target device to characterize the
physical leakage. However, the characteristics of the used code are unknown.
So, the adversary performs a linear regression over a 4-bit variable, i.e. the
PRESENT Sbox output S(X ⊕ k).

For each scenario and for each leakage function, we compute the success rate
of the stochastic attack [16] over 200 independent experiments. Moreover, this
security metric was computed for several standard deviations of the bit leakage
weights (σα in {0.05, 0.25, 0.75, 1}). The noise standard deviation was fixed at
σ = 0.25. The simulation results in the best-case scenario are plotted in Table 2.

Simulation Results. For the best-case scenario, the results shown in Table 2
are in-line with those obtained during the information theoretic evaluation. In
fact, when the σα ≤ 0.25, the optimal code of length 5 performs worse since
an adversary requires less traces to achieve a 100% of success rate than the
constant weight countermeasures. Besides, we conclude again that the longer
the code is, the more resistant the implementation is. Moreover, the higher the
standard deviation of the bit leakage weights is, the less efficient the encoding
function is.

For the worst-case scenario, as expected, the stochastic attack performs worse
since the adversary does not have the control on the code length and the subset
of codewords used for the protection. So, the profiling phase outputs an imprecise
leakage model which impacts the attack efficiency. These simulation results also
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Table 2. Stochastic attack results in the best-case scenario for a noise standard devi-
ation σ = 0.25.

highlight the inefficiency of fixed constant weight codes such as the dual-rail in
all the presented models. Customized encodings of the same length of 8 bits
exhibit a much higher resistance.

6 Practical Evaluation of the New Customized Encoding

In the previous sections, we have confronted our theoretical analyses based on
the SNR and the MTD security metrics with simulations based on the security
evaluation framework proposed in [25]. In the following, we aim to confront these
results against real measurements.

6.1 Implementation Considerations and Memory-Security Trade-Off

Encoding of sensitive data with codewords of longer length, e.g. representing the
PRESENT Sbox output nibble as a byte, seems unreasonable for embedded soft-
ware products at first, as the computation tables grow quadratically in size with



238 H. Maghrebi et al.

the length of the code. In order to avoid large memory penalties when imple-
menting our solution, a trick detailed in [14] and [24] has to be used. It consists
in encoding a n-bit variable as two separate halves. This way, the linear and
non-linear operations of a block-cipher can be performed at a much lower mem-
ory cost than with a double-length encoding. We begin with a quick reminder of
this trick. Listing 1.1 shows how to perform an encoded memory access with an
8-bit input, encoded in two words of 7 bits each. This kind of operation could
be an AES Sbox or a XOR operation between two nibbles for example.

1 // R3 = @table_msb, R4 = @table_lsb, R5 = @shift1_table, R6 =

@shift7_table

2 // R0 = operand MSB = 0xxxxxxx, R1 = operand LSB = 0yyyyyyy

3 LDRB R2, [R5,R0] // R2 = 00000000xxxxxxx0

4 EOR R0,R0,R0 // Clear R0

5 LDRH R0, [R6,R2] // R0 = 00xxxxxxx0000000

6 EOR R0,R0,R1 // R0 = 00xxxxxxxyyyyyyy

7 EOR R1,R1,R1 // Clear R1

8 EOR R2,R2,R2 // Clear R2

9 LDRB R1, [R3,R0] // R1 =table_msb[operand] (7 bits)

10 LDRB R2, [R4,R0] // R2 =table_lsb[operand] (7 bits)

Listing 1.1. Double-length encoded access for a code of length 7 (ARM assembly)

This procedure works if we assume all registers leak more or less the same
function of their inputs. If registers happen to leak vastly differently, then we
need different encodings for each register and code conversions between memory
accesses. This study is out of the scope of this paper. As the code for the most
significant bits of a register could be different than the one for the least significant
bits, we require to tabulate the shift operation so that it outputs the correct code
for the given destination within the register (R5 and R6 in Listing 1.1).

Fig. 2. Protecting bit-level permutation with encoding functions.
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In the end this shows all classical operations of a block cipher (e.g. XOR,
Sbox) can be covered. Regarding bit-level operations (e.g. permutation in DES,
PRESENT), a solution may consist in tabulating these operations too, if there is
enough memory available. As shown in Fig. 2, inside the look-up table we decode
the inputs C(xi) by computing (C−1), apply the bit-level permutation (P) and
encode the result (Yi = P (xi)). In the former case, the overhead compared to an
unprotected implementation would be the same as the one obtained in [24]. This
means that an encoded AES would execute only roughly 4 times slower than its
unprotected version.

Regarding the choice of the code length, it is up to the designer to choose the
suitable length that guarantees the best performance-security trade-off accord-
ing to the perceived physical leakage. Perhaps a recommendation could be to
estimate the minimum number of traces to disclose the key (MTD) for differ-
ent code lengths (as investigated in Sect. 4.3) then select the encoding function
according to the available memory and the required level of security.

6.2 Experimental Setup

We have performed several practical experiments using a Micro-Controller inte-
grated circuit from STMicroelectronics. Namely, we choose the STM32F3 cir-
cuit [27] based on the 32-bit RISC ARM Cortex-M4F processor core with 90nm
CMOS process. In order to assess the practicability of our new framework in
realistic case, we use 4 different copies of the STM32F3 circuit (referred as
copy #1, #2, #3 and #4). Our goal is to provide an answer to the following
question: Does a customized encoding for one circuit ensure the same security
level when implemented on a different circuit of the same family?

So, the idea behind using four copies is to enable us to apply our framework
(i.e. stochastic profiling of the leakage and customized encoding generation)
on one copy and to use the same encoding functions to protect the other copies
without a prior profiling. The target operation is a PRESENT Sbox computation
protected by a customized encoding function with different codeword lengths.
The side-channel traces were obtained by measuring the electromagnetic radia-
tions (EM) emitted by the target device.

6.3 Attack Experiments and Results

To perform our profiling phase, we have first acquired 25.000 EM traces record-
ing an AES Sbox computation when implemented on copy #1. The use of the
AES Sbox (8 bits output) rather than the PRESENT Sbox (4 bits output) was
necessary to extract the weights of all the 8 bits of a register by a stochastic
approach. To do so, we have performed a linear regression attack and we have
captured the averaged bit weights returned when the attack succeeds to find
key5. For this circuit, we have observed that it leaks closely to the Hamming

5 As detailed in [16], the stochastic attack does not only return the best key candidate
but also a linear regression of the leakage.
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weight model which implies an exploitable penalty in the security of constant
weight countermeasures.

Second, we have executed Algorithm 1 to obtain the optimal encoding func-
tions of length varying in �5, 7� to protect the 4-bit PRESENT Sbox output.
Third, for each code length, we have implemented the protected PRESENT
Sbox on each copy. We stress the fact that we have used the obtained encoding
functions (for copy #1) to protect the three other copies without a prior leakage
characterization. For fair comparison, 50.000 EM traces were acquired with a
fixed experimental setup: i.e. the same electromagnetic probe, the same probe’s
position, the same oscilloscope configuration to sample the measurements and
the same temporal acquisition window. The code setup is a simple Sbox access
in RAM which overwrites a register containing zero. The Sbox was aligned in
memory for every encoding and the same registers were used for each copies.

Finally, we conducted 10 independent enhanced CPA attacks6 against each
implementation of the four copies (i.e. we used 10 independent set of 5.000 EM
traces). The evolution of the averaged rank of the correct key among 16 (4-bit
keys) is plotted in Fig. 3 for each circuit and code length.

Fig. 3. Evolution of the correct key rank according to the number of observations.

The various encodings perform as expected on all circuits, although they
were constructed from the profiling of only one of them. Longer codes provide
higher resistance, but only very slightly for a code of length 5. These practical
results are in-line with the simulation ones shown on Sect. 5.2. Overall, these

6 We assume a powerful adversary who has access to the used encoding function Ccust

and the bit leakage weight vector α. Hence, he is able to compute ρ[L(Z); α·Ccust(Z)].
We emphasize the fact each attack was processed on the whole trace.
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results confirm that one can profile a single device, devise the corresponding
encodings, then use them to protect another device of the same family without
loosing much in resistance. More studies should be performed in order to fully
assess the generic side of the countermeasure nonetheless.

7 Conclusion

In this paper, we have proposed a new framework for building customized encod-
ing function according to the physical leakage characteristics of the target device.
It gives assurance that even under good profiling conditions for an attacker, the
Signal-to-Noise Ratio is close to minimal. We also showed how much leakage
reduction is to be expected for previous constant weight countermeasures in the
case of an imbalanced leakage. The security evaluation conducted has shown
the overwhelming advantages of our proposal compared to the existing constant
weight countermeasures in more realistic scenarios. It is also more difficult to
attack than a first-order masking when the latter’s shares can be easily com-
bined by an attacker. It is also possible to obtain the same performance impact
as constant weight implementations, making customized encodings faster than
known second-order masking schemes. Besides, the obtained results within the
four considered security metrics (i.e. the SNR, the MTD, the information theo-
retic, the success rate of stochastic attack) are in-line, proving the tightness of
our security evaluation process. Finally, the practical assessment of our solution
have enabled us to confirm its practicability to protect cryptographic operations
when applied on four different copies of the same device.

Our work opens avenues for further research of new encoding functions when
assuming a higher-order leakage model (e.g. quadratic, cubic,. . . ) and also the
study of new designs combining both masking and encodings. Another future
work will consist in studying the inter-conversion of encoding functions when the
registers of a circuit have different leakage model and then, several customized
codes have to be used to protect a block cipher.
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Abstract. Key schedules in block ciphers are often highly simplified,
which causes weakness that can be exploited in many attacks. At ASI-
ACRYPT 2011, Dunkelman et al. proposed a technique using the weak-
ness in the key schedule of AES, called key-bridging technique, to improve
the overall complexity. The advantage of key-bridging technique is that
it allows the adversary to deduce some sub-key bits from some other
sub-key bits, even though they are separated by many key mixing steps.
Although the relations of successive rounds may be easy to see, the rela-
tions of two rounds separated by some mixing steps are very hard to find.
In this paper, we describe a versatile and powerful algorithm for searching
key-bridging technique on word-oriented and bit-oriented block ciphers.
To demonstrate the usefulness of our approach, we apply our tool to
the impossible differential and multidimensional zero correlation linear
attacks on 23-round LBlock, 23-round TWINE-80 and 25-round TWINE-
128. To the best of our knowledge, these results are the currently best
results on LBlock and TWINE in the single-key setting.

Keywords: Block ciphers · Key-bridging technique · Automatic
search · Impossible differential cryptanalysis · Zero-correlation linear
cryptanalysis · LBlock · TWINE

1 Introduction

A key schedule is an algorithm that expands a relatively short master key to a
relatively large expanded key for later use in encryption and decryption algo-
rithms. The key schedules in block ciphers are often highly simplified, which
causes weakness that can be exploited in many attacks, especially for lightweight
block ciphers. In these lightweight block ciphers, the security margin that con-
ventional block ciphers are equipped with is reduced as much as possible in order
to optimize the software and hardware efficiency. One obvious sacrifice is that the
key schedules are highly simplified for saving memory. Some key schedules have
round-by-round iterations with low diffusion [4,21,25]. Some key schedules do
simple permutations or linear operations with low diffusion [1,13]. Some have no
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 247–267, 2016.
DOI: 10.1007/978-3-662-52993-5 13
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key schedules, and just use master keys directly in each round [12,15]. These key
schedules are succinct but responsible for many attacks, especially related-key
attacks [3,16] and meet-in-the-middle attacks [2,5].

AES [8] is the most significant standard for block ciphers, so its security is
of paramount importance. However, the key schedule of AES has clear weakness
that directly assists the execution of some effective attacks. Especially in recent
years, meet-in-the-middle cryptanalysis with differential enumeration technique
[11] has shown to be a very powerful form of cryptanalysis against 7-round
AES-128 [9], 9-round AES-192 [17] and 10-round AES-256 [18], which are the
best single-key attacks on all versions of AES so far. A technique using the
weakness of the key schedule on AES, called key-bridging technique, is used
in these attacks to improve the overall complexity. Key-bridging technique is
proposed by Dunkelman et al. at ASIACRYPT 2011 [11]. The advantage of key-
bridging technique is that it allows the adversary to deduce some sub-key bytes
from some other sub-key bytes, even though they are separated by many key
mixing steps. Although the relations of successive rounds may be easy to see,
the relations of two rounds separated by some mixing steps are very hard to find.
The main novelty in this observation is that it exploits the weak key schedule of
AES-192 in order to provide a surprisingly long “bridge” for two sub-keys which
are separated by 8 key mixing steps. The key-bridging technique considerations
reduce the time complexity in the online phase of the attack on 8-round AES-192
by a factor of 232 and 8-round AES-256 by a factor of 28. At FSE 2014, Li et
al. introduce a new application of key-bridging technique called key-dependent
sieve technique, which filters the wrong states based on the key relations, to
further reduce the complexity in the precomputation phase [17]. Besides, they
introduce another application of key-bridging technique to split the whole attack
into some weak-key attacks according to the relations between the sub-keys in
the online phase and the precomputation phase.

Besides AES, the key-bridging technique helps improve the attack complexi-
ties of other block ciphers. For example, at FSE 2015, Biryukov et al. apply the
key-bridging technique to 25-round TWINE-128, and get a meet-in-the-middle
attack and an impossible differential attack [2]. At ACISP 2014, Wang et al. give
multidimensional zero-correlation linear attacks on LBlock and TWINE. In the
online phase of their attacks, the key-bridging technique is used to improve the
attack complexity [22].

Our Contribution. In this paper, we describe versatile and powerful algorithms
for searching key-bridging technique on word-oriented and bit-oriented block
ciphers. Our tool tries to find key-bridges automatically by dealing with a system
of equations. It takes as input a system of equations that describes the key
schedule and a set K0 of some key variables that we want to build key-bridges
among. It is made up of two phases: knowledge-propagation phase and relation-
derivation phase. In the knowledge-propagation phase, we can derive a set K

that K0 can propagate to. In the relation-derivation phase, the relations of the
variables in K0 can be known from K.
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To demonstrate the usefulness of our approach, we apply our tool to LBlock
and TWINE. We automatize the search for the best impossible differential attacks
by combining our key-bridging tool with the tool of Wu et al. [24]. Using Wu’s tool,
we can get all the impossible differential distinguishers with certain rounds [20].
Using our key-bridging tool, we can get all the key-bridges to reduce the com-
plexity in the key-sieving phase. With these two tools, we get a 23-round impos-
sible differential attack on LBlock with time complexity of 274.5 23-round LBlock
encryptions, memory complexity of 274.3 bytes and data complexity of 259.5 chosen
plaintexts. For TWINE-128, we get in total twelve 25-round impossible differen-
tial attacks with the same complexity as Biryukov et al.’s attack in [2].

For multidimensional zero-correlation linear cryptanalysis, we use the same
attack model Wang et al. proposed in [22] and get more key-bridges to improve
the overall complexity with our key-bridging tool. For the 23-round attack on
TWINE-80, we find that the key-bridges Wang et al. used in their attack do not
exist. This will make the time complexity of their attack greater than exhaus-
tively search. We use another zero-correlation linear distinguisher to fix this error
and get an attack on 23-round TWINE-80 with time complexity of 273 23-round
TWINE-80 encryptions, memory complexity of 260 bytes and data complexity
of 262.1 known plaintexts. For the 25-round attack on TWINE-128, we first get
some more key-bridges to improve the time complexity of Wang’s work. Then,
we use another distinguisher with more key-bridges in the first two steps of the
attack, and get an attack with time complexity of 2119 25-round TWINE-128
encryptions, memory complexity of 260 bytes and data complexity of 262.1 known
plaintexts. For the 23-round multidimensional zero-correlation linear attack on
LBlock, we find a distinguisher with more key-bridges than Wang et al. in [24],
and get an attack with time complexity of 272 23-round LBlock encryptions,
memory complexity of 260 bytes and data complexity of 262.1 known plaintexts.
For 25-round TWINE-128, we also find some meet-in-the-middle attacks with
the same complexity as Biryukov et al.’s attack in [2], even with one attack
which starts with two inactive nibbles at the beginning of distinguisher. This
distinguisher is useful when we want to get less false positive. To the best of our
knowledge, these results are the currently best results on LBlock and TWINE.

We present here a summary of our attack results on LBlock and
TWINE, and compare them to the best attacks known for them. This
summary is given in Table 1. The source code of some of these attacks
is available at https://onedrive.live.com/redir?resid=20C3554F0C8B0806!108&
authkey=!AJPOWJTJ4mSLrbI&ithint=folder%2c7z.

Organization of This Paper. The rest of this paper is organized as follows.
Section 2 presents the input of our tool and the previous works on key-bridging
technique. Section 3 gives our automatic search tool for key-bridging technique.
Section 4 (resp. Sect. 5) applies our tool to the impossible differential and mul-
tidimensional zero-correlation linear cryptanalysis on LBlock (resp. TWINE).
Finally, Sect. 6 concludes this paper.

https://onedrive.live.com/redir?resid=20C3554F0C8B0806!108&authkey=!AJPOWJTJ4mSLrbI&ithint=folder%2c7z
https://onedrive.live.com/redir?resid=20C3554F0C8B0806!108&authkey=!AJPOWJTJ4mSLrbI&ithint=folder%2c7z
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Table 1. Summary of the best attacks on LBlock and TWINE-80/128.

Cipher Attack type Rounds Data Memory (Bytes) Time (Enc) Source

LBlock Impossible Diff. 23 259 CPs 274 275.36 [6]

Impossible Diff 23 259.5 CPs 274.3 274.5 Sect. 4.2

Multidim. ZC 23 262.1 KPs 260 276 [22]

Multidim. ZC 23 262.1 KPs 260 272 Sect. 4.3

TWINE-80 Impossible Diff 23 257.85 CPs 284.06 279.09 [26]

Multidim. ZC 23 262.1 KPs 260 273 Sect. 5.2

TWINE-128 Impossible Diff.� 25 259.1 CPs 278.1 2124.5 [2]

MITM � 25 248 CPs 2109 2124.7 [2]

Multidim. ZC 25 262.1 KPs 260 2122.12 [22]

Multidim. ZC 25 262.1 KPs 260 2119 Sect. 5.2

KPs: Known-Plaintexts. CPs: Chosen-Plaintexts.
�: Find the other attacks with the same complexity in Sect. 5.3.

2 Preliminaries

In this section, we introduce the definitions and related works of key-bridging
technique. First of all, let’s give some notations used throughout this paper.

2.1 Notations

In this paper, WKi denotes the ith round key register, WKj
i denotes the jth word

of WKi, WKj0−j1
i denotes the jth

0 word to jth
1 word of WKi, WKi[k] denotes

the kth bit of WKi, WKj
i [k] denotes the kth bit of WKj

i and WKi ≪ b denotes
b-bit left cyclic shift of WKi.

2.2 The Key Schedule Functions

The input of our tool is a system of equations that describes the key schedule and
the key variables which we want to find relations among. Since our tool is useful
not only for the word-oriented key schedules (e.g., AES), but also for the bit-
oriented key schedules (e.g., PRESENT), we describe the systems of equations
for these two kinds of key schedules here. We take the key schedules of AES-192
and PRESENT-80 as examples.

The key schedule of AES-192 takes the 192-bit master key WK0 and extends
it into 9 key registers WK0,WK1, · · · ,WK8 of 192-bit each using a key schedule
algorithm given by the following equations [8]:

KSi :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WKj
i + WKj−4

i + WKj
i−1 = 0, j = 4, · · · , 23,

WK0
i + WK0

i−1 + S(WK21
i−1) + RCONi = 0,

WK1
i + WK1

i−1 + S(WK22
i−1) = 0,

WK2
i + WK2

i−1 + S(WK23
i−1) = 0,

WK3
i + WK3

i−1 + S(WK20
i−1) = 0,
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where S represents the S-box of the SubBytes transformation and “+” represents
xor. These 9 key registers are used to get 13 sub-keys RK−1, RK0, · · · , RK11 of
128-bit each (only the first 128-bit of WK8 is used to get RK11).

In some cases, we are interested in interchanging the order of the MixColumns
and AddRoundKey operations. As these operations are linear, they can be inter-
changed by first xoring the data with an equivalent key ui and then applying
the MixColumns operation.

The key schedule of PRESENT-80 takes the 80-bit master key WK0 and
extends it into 32 key registers WK0,WK1, · · · ,WK31 of 80 bits each using a
key schedule algorithm given by the following equations [4]:

KSi :

⎧
⎨

⎩

WKi[0 − 3] + S(WKi−1[61 − 64]) = 0,
WKi[60 − 64] + WKi−1[41 − 45] + [i − 1] = 0,
WKi[j] + WKi−1[(j + 19)mod 80] = 0, j = 4, · · · , 40, 46, · · · , 79

At round i, the 64-bit round key RKi = RKi[0]RKi[1] · · · RKi[63] consists
of the 64 leftmost bits of the current content of register WKi.

The key schedules of other bit-oriented and word-oriented block ciphers can
be treated as before. To simplify the statement, we ignore the round constants
in this paper since they are known to us.

2.3 Key-Bridging Technique on AES

In [11], Dunkelman et al. proposed the key bridging technique on AES-192. The
advantage of key-bridging technique is that it allows the adversary to deduce
some sub-key bytes from some other sub-key bytes, even though they are sep-
arated by many key mixing steps. Although the relations of successive rounds
may be easy to see, the relations of two rounds separated by some mixing steps
are very hard to find. The main novelty in this observation is that it exploits the
weak key schedule of AES-192 in order to provide a surprisingly long “bridge”
for two sub-keys which are separated by 8 key mixing steps (applied in reverse
direction). This observation is shown in Observation 1.

Observation 1 (Key-Bridging Technique on AES, [11]). By the key sched-
ule of AES-192, knowledge of columns 0, 1, 3 of the sub-key RK7 allows to deduce
column 3 of the whitening key RK−1 (which is actually column 3 of the master
key).

Given RK0−3
7 and RK4−7

7 , it is possible to compute RK12−15
5 ; given RK4−7

7

and RK12−15
7 , it is possible to compute RK12−15

4 . From these two values, it is
possible to compute RK12−15

−1 . We refer to [10] the detailed proof and reasoning.
The key-bridging technique considerations reduce the time complexity of the

online phase of the attacks on 8-round AES-192 by a factor of 232 and 8-round
AES-256 by a factor of 28 [10], and also improve the SQUARE attack and
related-key impossible differential attack on AES-192.
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At EUROCRYPT 2013, Derbez et al. gave improved attacks on 7-round AES-
128, 8-round AES-192 and 9-round AES-256 [9]. In the online phase of their
attack on 8-round AES-192, the use of the key-bridging technique saves a large
amount of time.

At FSE 2014, Li et al. introduced a new application of key-bridging technique
called key-dependent sieve technique, which filters the wrong states based
on the key relations, to further reduce the complexity in the precomputation
phase [17]. Besides, they found that the whole attack can be split up into some
weak-key attacks according to the relations between the sub-keys in the online
phase and the precomputation phase. These can be seen as other applications
of key-bridging technique.

In [18], Li and Jen gave an attack on 10-round AES-256. In their works, they
use key-bridging technique both in the precomputation phase and the online
phase.

2.4 Key-Bridging Technique on Other Block Ciphers

At FSE 2015, Biryukov et al. applied the key-bridging technique to 25-round
TWINE-128, and got a meet-in-the-middle attack and an impossible differential
attack [2].

In the meet-in-the-middle attack, 58 state nibbles are needed to perform
the online phase. Hopefully, the key schedule equations reduce the amount of
possible values from 24×58 = 2232 to 2124. Indeed, knowing 23 out of 24 nibbles of
one sub-key leads to the knowledge of enough key material to partially encrypt
and decrypt the plaintext and the ciphertext in order to obtain the value of the
required state variables. This can be seen as 37 key-bridges among the 68 relevant
sub-key nibbles. The same technique is applied to the impossible differential
attack.

At ACISP 2014, Wang et al. gave multidimensional zero-correlation linear
attacks on LBlock and TWINE. In the online phase of their attacks, the key-
bridging technique is used to reduce the overall complexity [22].

Most attacks on block ciphers can be split into three consecutive parts of r1,
r2 and r3 rounds, r = r1 + r2 + r3, such that a particular set of messages may
verify a certain property in the middle r2 rounds by guessing some key-bits in
the first r1 and last r3 rounds. These key-bits may have some relations by the key
schedule. If we can get these relations automatically, it can not only give better
attacked-rounds and complexity, but also a better understanding of the design
of block ciphers. Therefore, we give our automatic search tool for key-bridging
technique in the next section.

3 An Automatic Search Tool for Key-Bridging Technique

In this section, we introduce our automatic search tool for key-bridging technique
on word-oriented and bit-oriented block ciphers.
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3.1 Outline of the Tool

Let us denote by V(X) the vector space spanned by 1, x, S(x) for all x ∈ X, for
any set of variables X. If we denote by X the set of all internal key variables,
then the key schedule equations can be seen as a subspace of V(X). We introduce
the notation K0 to denote the set of original variables that we want to build key-
bridges among. We also introduce K to denote the set of variables that K0 can
propagate to. And |X| means the number of variables in a set X.

Our goal is to find relations among a set of variables. The difficulty in finding
such relations is how to get more information from K0 and how to use this
information to retrieve the relations. In this section, we present a tool that
finds such attacks automatically. It takes as input a system of equations E ⊆
V(X) that describes the key schedule and a set of variables K0 that we want to
find relations among. This tool consists of two phases: knowledge-propagation
phase and relation-derivation phase. In the knowledge-propagation phase, we
can derive a set K that K0 can propagate to. In the relation-derivation phase,
the relations of the variables in K0 can be known from K.

In the knowledge-propagation phase, if we substitute the values of K into
the original equations E, we would indeed get a system of equations with less
variables. In fact, this reduced system is the subspace (E + V(K))/V(K) of the
quotient space V(X)/V(K): starting from an equation f ∈ E, its equivalence class
[f ] in the quotient contains a representative where all the variables in K have
disappeared. Let’s denote by L a linear combination of some variables in V(K).
The variable x can be deduced from K if there exists an L such that x+L ∈ E,
S(x) +L ∈ E or the linear combination of x, S(x) and L belongs to E, and we
will write x ∈ PROPAGATE(K) when it is the case. It follows that in any solution
of the equations E, the value of x (resp. S(x)) is the value of L . Therefore, it
just has to evaluate L to uniquely determine the value of x.

In the relation-derivation phase, the subspace E ∩ V(K) of V(K) should be
derived. Then the linear relations among K0 can be known by dealing with the
quotient space (E ∩ V(K))/V(K0).

3.2 A Tool for Word-Oriented Ciphers

Knowledge-Propagation Phase.1 Let’s denote by M the coefficient matrix
made by the key schedule equations E. Each row is a function, and each column
is a variable. The order of variables is (X − K, K, c), where X − K means the
supplementary set of K in X. We ignore the constant column in the matrix to
better describe and express our tool in the rest of this paper. We can also view
the constant column as a special column vector which always exists in the last
of the matrix.

Given K0, we may propagate knowledge and derive the values of new vari-
ables, and this yields a new set K. But it may turn out that new variables may
again be derived from K. The problem boils down to getting new variables and
using these variables to get more information.
1 A similar idea of this phase was proposed in [14] by Khovratovich et al..
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Gauss-Jordan Elimination (GJE) is introduced to propagate knowledge
[23,27]. GJE is an algorithm for solving systems of linear equations. It is usu-
ally understood as a sequence of elementary row operations performed on the
associated matrix of coefficients. This method can also be used to find the rank
of a matrix, and to convert a matrix into reduced row echelon form. GJE(M)
means that we convert a matrix M into reduced row echelon form by Gauss-
Jordan Elimination. GJEn(M) means that we only convert the first n columns
into reduced row echelon form by the row operations of the whole M.

Since the equations E can be completely linear (e.g., key schedule of Simon) or
partial-nonlinear (e.g., key schedule of AES), some variables appear both linearly
and under the S-box. The following three situations can be used to propagate
knowledge:

1. If either x or S(x) belongs to K, then the other one can be deduced.
2. If there exists a linear combination L of V(K) such that for one variable

x /∈ K, x + L ∈ E, then x can be deduced from K.
3. If there is a linear combination L of V(K) such that there is a linear combi-

nation of x (x /∈ K), S(x) (S(x) /∈ K) and L belonging to E, then x can be
deduced from K.

Gauss-Jordan Elimination is used to deal with situation 2 and situation 3
as follows. The proof of the following two lemmas will be presented in the full
version of this paper.

Lemma 1. Situation 2 holds if and only if there is only one non-zero variable
in the first |X − K| columns of one row in GJE|X−K|(M).

Lemma 2. Situation 3 holds if and only if one of the following two cases holds
in GJE|X−K|(M) (for x and S(x)):

(i) The coefficients of x and S(x) are both pivot elements, and the corresponding
rows are (0, · · · , 0

︸ ︷︷ ︸
t1

, ex, et1+1, · · · , en−1) and (0, · · · , 0
︸ ︷︷ ︸

t2

, e′
S(x), e

′
t2+1, · · · , e′

n−1)

(t1 < t2), where et1+1 = e′
t1+1 = · · · = et2−1 = e′

t2−1 = 0, ei = c · e′
i for

i = t2 + 1, · · · , n − |K| − 1.
(ii) One of the coefficients of x and S(x) is pivot element (e.g., x)

and the corresponding row is (0, · · · , 0
︸ ︷︷ ︸

t1

, ex, 0, · · · , 0
︸ ︷︷ ︸

t2

, eS(x), 0, · · · , 0
︸ ︷︷ ︸

n−2−t1−t2−|K|

,

en−|K|, · · · , en−1).

When a new variable x (resp. S(x)) becomes a member of K, we have to
move the column that x (resp. S(x)) represents in M to the last few columns to
make the order of variables (X−K, K, c) unchanged. If one of these coefficients is
pivot element, then moving it may leave the matrix not in reduced row echelon
form. This can be fixed through simple column permutations in some cases.
In some other cases, a new column has to be recomputed. The following lemma
will make sure that the column operations don’t change the property of linear
relations.
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Lemma 3. Column operations keep the linear relations we get from situation
2 and 3 unchanged, i.e., these relations can be recovered from the last |K| + 1
columns of GJE|X−K|(M).

Proof. If situation 2 holds, then there is one new x ∈ PROPAGATE(K). After
moving the corresponding column and getting a new K, there exists a vector α
such that K · αT = c and the component of α for x is non-zero (here we treat K

as a vector and α is not unique).

After GJE|X−K|, the matrix can be represented as block matrix

|X−K|
︷︸︸︷

|K|
︷︸︸︷

( )

A0 A1

0 A2

.

Since K · αT has no variables in X − K, the row represents this equation must
exist in A2. If not, there must be a pivot element in X − K.

Situation 3 can be got for the same reason.
�

The pseudo-code of the knowledge-propagation phase is shown in
Algorithm 1. The inputs are a set of all internal key variables, a set of origi-
nal variables that we want to build key-bridges among and a coefficient matrix
made by the key schedule equations. The algorithm returns a set of variables

that K0 can propagate to and a block matrix

|X−K|
︷︸︸︷

|K|
︷︸︸︷

( )
A0 A1

0 A2

in order to recover all

the relations in K0.
From Lemmas 1 and 2, we can conclude that K is the maximum set K0 can

propagate to. From Lemma 3, all the relations can be recovered from M.

Relation-Derivation Phase. The input of this phase is the output of
Algorithm 1. First of all, we should derive the linear relations among K. Since

the output matrix M of Algorithm 1 has the form

|X−K|
︷︸︸︷

|K|
︷︸︸︷

( )
A0 A1

0 A2

, due to the

proof of Lemma 3, all the linear relations among |K| exist in A2. Meanwhile,
Rank(M) = Rank(A0) + Rank(A2). We should test the existence of linear rela-
tions among K by testing whether Rank(M) equals Rank(A0). If Rank(A2) �= 0,
change the order of columns in A2 to make sure that the order of variables is
(K − K0, K0, c).
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Algorithm 1. Pseudo-Code for Knowledge-Propagation Phase
1: function PROPAGATE(X, K, M)
2: Flag ← true
3: while Flag do
4: Flag ← false
5: M ← GJE|X−K|(M)

6: for all rows r in M do
7: if only one non-zero variable in the first |X − K| columns then
8: Flag ← true � situation 2
9: if S(x) ∈ X then
10: Change columns for x and S(x) in M

11: K ← K ∪ {x, S(x)}
12: go to line 3
13: else
14: Change columns for x in M

15: K ← K ∪ {x}
16: go to line 3
17: end if
18: end if
19: if case (ii) of Lemma 2 happens in r then
20: Flag ← true � situation 3
21: Change columns for x and S(x) in M

22: K ← K ∪ {x, S(x)}
23: go to line 3
24: end if
25: end for
26: for all pairs (x, S(x)) in X do
27: if case (i) of Lemma 2 happens in M then
28: Flag ← true � situation 3
29: Change columns for x and S(x) in M

30: K ← K ∪ {x, S(x)}
31: go to line 3
32: end if
33: end for
34: end while
35: return (K, M)
36: end function

Denote by EK the subspace of K spanned by the row vectors of A2. Indeed,
EK is the subspace E ∩ V(K) of V(K). By Gauss-Jordan Elimination, the linear
relations among K0 can be known by block matrix. However, more information
can be known by S-box operations.

If there exist an x ∈ K − K0 and a linear combination L ′ ∈ V(K0) such
that x + L ′ ∈ EK, then one can get S(x) = S(L ′). Since L ′ ∈ V(K0), S(L ′)
can be also deduced by variables in K0. Add S(L ′) to K and K0 (also add
a new column corresponding to S(L ′)), and add a new row corresponding to
S(x) + S(L ′) to A2 at the same time (make sure the order of variables is still
(K − K0, K0, c)). The reason to do this is that if there is a linear combination of
L ′′ ∈ V(K0) such that S(x) +L ′′ ∈ EK, then S(L ′) and L ′′ can form a linear
relation we want. Besides, if there is a linear combination of L ′′ ∈ V(K0) such
that S(x)+ ey · y +L ′′ ∈ EK (y /∈ K0), then ey · y +S(L ′)+L ′′ ∈ EK. So y can
be used to gain more information just as x. This can be also applied to S(x).
This step is called new-variable-adding.
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Algorithm 2. Pseudo-Code for Relation-Derivation Phase
1: function Derivation(K0, K, A2)
2: Flag ← true
3: Change the order of columns in A2
4: while Flag do
5: Flag ← false
6: A2 ← GJE|K−K0|(A2)

7: for all rows r in A2 do � new-variable-adding
8: if only one non-zero variable x in the first |K − K0| columns then
9: Flag ← true
10: if x is input of S-box then
11: Let S(L ′) be a new variables
12: K ← K ∪ {S(L ′)} and K0 ← K0 ∪ {S(L )}
13: Add a new column for S(L ′) and a new row for S(x) + S(L , )
14: go to line 4
15: else
16: Let S−1(L ) be a new variables

17: K ← K ∪ {S−1(L ′)} and K0 ← K0 ∪ {S−1(L ′)}
18: Add a new column for S−1(L ′) and a new row for S−1(x) + S−1(L ′)
19: go to line 4
20: end if
21: end if
22: end for
23: end while
24: RelationSet ← ∅
25: A2 ← GJE(A2)
26: for all row r in B2 do
27: Derive relation from r
28: Add this relation to RelationSet
29: end for
30: return RelationSet
31: end function

After the step above, a matrix as

|K−K0|
︷︸︸︷

|K0|
︷︸︸︷

( )
B0 B1

0 B2

can be known, Rank(B2)

linear independent relations among K0 can be recovered from B2.
The pseudo-code of the relation-derivation phase is shown in Algorithm 2.

The inputs are the outputs of Algorithm1. The function returns a set of relations
among the variables of K0.

3.3 A Tool for Bit-Oriented Ciphers

The key schedules of some block ciphers have operations on word-level (e.g.,
S-box) and bit-level (e.g., cyclic shift), such as PRESENT, LBlock and so on.
This tool is slightly different from the tool for word-oriented ciphers since it has
operations both on words and bits. It also consists of two phases: knowledge-
propagation phase and relation-derivation phase.

In the knowledge-propagation phase, since S-box permutation treats b bits
as a union, situations 1 and 3 of Sect. 3.2 are no longer suitable for bit-oriented
ciphers. The following lemma is used to deal with this situation.
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Lemma 4. Let S[wI
0 · · · wI

b−1] = [wO
0 · · · wO

b−1], where wI
i and wO

i are 1-bit vari-
ables, respectively. If the values in any b out of 2b input/output bits of one S-box
are known, then the values in the other b bits are uniquely determined, and can
be computed efficiently.

This situation can be dealt with by Gauss-Jordan Elimination as follows.

Lemma 5. Let S be a set of input and output bit-variables of one S-box. If the
order of variables in M is (X − K − S, S, K) and GJE(M) can be represented as:

|X−K−S|
︷︸︸︷

|S|
︷︸︸︷

|K|
︷︸︸︷

( )
D0 D1 D2

0 D3 D4

then the bit-variables of S can be uniformly determined if and only if
Rank(D3) ≥ b − nk, where nk is the number of bits in S which are already
in K.

It is easy to see that since S is the set of input and output bit-variables of
one S-box, the entropy of these bits is b. Rank(D3) = b − nk means b − nk

linearly independent relations can be built among variables in S and K, and
these relations are enough to reduce the entropy to 0.

This property is used in Algorithm 1 to get more information from S-box
instead of situation 1 and 3 of Sect. 3.2

In the relation-derivation phase, suppose the order of variables in K is (K −
K0 − S, S, K0) and GJE(A2) can be represented as:

|K−K0−S|
︷︸︸︷

|S|
︷︸︸︷

|K0|
︷︸︸︷

( )
E0 E1 E2

0 E3 E4

If Rank(E3) ≥ b−nk, since b−nk linearly independent relations are enough
to reduce the entropy to 0, 2b − nk − Rank(E3) new functions with the form
xi + L ′ can be added to A2, where xi ∈ S is not a pivot element of E3 and L ′

is a variable denoting how xi can be known from S and K0. Add L ′ to K0 and
K at the same time. This step is used to replace the new-variable-adding step of
Algorithm 2.

If Rank(E3) > b−nk, since b−nk linearly independent relations are enough
to reduce the entropy to 0, the other Rank(E3) − (b − nk) relations can be used
to filter the variables in K0. Use the variables in K0 to deduce these relations,
only 2b−Rank(E3) of them can satisfy the S-box table. For example, if we can get
b+1 S-box input/output bit-variables from K0, we can get 1 bit relation among
the variables in K0, and it is obliviously one key-bridge we want. This property
is used to get key-bridges in Algorithm 2.

We apply our automatic search tool to the attacks on LBlock and TWINE
in the following sections.
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4 Applications to LBlock

4.1 Description of LBlock

LBlock is a lightweight 64-bit block cipher designed by Wu et al. in 2011 [25]
and is based on a variant of Feistel Network. It supports key size of 80 bits
and the total number of iterations is 32. The Feistel function of LBlock is made
up of a key addition AK, an S-box layer S made up of 8 4-bit S-boxes and a
nibble permutation P . LBlock’s function design can be visualized in Fig. 1. The
key schedule of LBlock is rather simple. The 80-bit master key WK0 is stored
in a key register and represented as WK0 = WK0[0] · · · WK0[79]. At round i,
the leftmost 32-bit of current content of register is output as round key. The key
schedule of round i can be shown as follows (i = 1, · · · 31):

WKi ← WKi−1 ≪ 29,

WKi[0 − 3] ← S9(WKi[0 − 3]),
WKi[4 − 7] ← S8(WKi[4 − 7]),
WKi[29 − 33] ← WKi[29 − 33] ⊕ [i]2.

Fig. 1. Round function of LBlock block cipher

4.2 Impossible Differential Cryptanalysis on 23-Round LBlock

In INDOCRYPT 2012, Wu et al. presented an automatic search tool to search for
the best impossible differential distinguishers [24]. In CRYPTO 2015, Sun et al.
proved that this tool could find all impossible differentials of a cipher that are
independent of the choices of the S-boxes [20]. In this paper, we automatize the
search of the best impossible differential attacks by combining Wu’s tool with our
tool. Using Wu’s tool, we can get all distinguishers with certain rounds. Using
our key-bridging tool, we can get all the key-bridges to reduce the complexity in
key-sieving phase.

Recently, Boura et al. [7] proposed a generic version of impossible differential
attacks with the aim of simplifying and helping the construction and verification
of this type of cryptanalysis. In particular, they provided a formula to compute
the complexity of such an attack according to its parameters. To understand
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the formula, we first briefly review how an impossible differential attack is con-
structed. It starts by splitting the cipher into three parts: E = E3 ◦ E2 ◦ E1 and
finding an impossible differential (ΔX � ΔY ) through E2. Then ΔX (resp. ΔY )
is propagated through E−1

1 (resp. E3) with probability 1 to obtain Δin (resp.
Δout). We denote by cin and cout the log2 of the probability of the transitions
Δin → ΔX and Δout → ΔY , respectively. Finally we denote by kin and kout the
key materials involved in those transitions. All in all, the attack consists in dis-
carding the keys k for which at least one pair follows the characteristic through
E1 and E3 and in exhausting the remaining ones. The complexity of doing so is
as follows:

– data: CNα

– memory: Nα

– time: CNα
+ (1 + 2|kin∪kout|−cin−cout)NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα < (1 − 2−α), CNα
is the number

of chosen plaintexts required to generate Nα pairs satisfying (Δin,Δout), |k| is
the key size and CE′ is the ratio of the cost of partial encryption to the full
encryption.

We use this framework to mount an impossible differential attack on 23-
round LBlock. First we find an impossible differential distinguisher through 14
rounds of LBlock. The input (resp. output) inactive nibble of this distinguisher
is at position 12 (resp. 5). It is extended by 4 rounds at the beginning and by
5 rounds at the end in order to attack 23 rounds of the cipher. It can be seen
in Fig. 2 that the difference in the plaintexts has to be zero in 8 nibbles such
that cin + cout = 28 + 44 = 72. The key material kin ∪ kout is composed of
36 round-key nibbles which can assume 273 values thanks to our key-bridging
tool. Specifically, we can find 71 linear independent key-bridges among these 36
round-key nibbles. We show parts of the key-bridges we found in the full version
of this paper.

As a consequence, and according to the above formula, the memory complex-
ity of our attack is α · 271.5, the time complexity is α · 273 · CE′ + 280−α. As we
estimate the ratio CE′ to 36/184 ≈ 2−2.4, the value of α minimizing the overall
complexity is 6.8. So the memory complexity of our attack is 274.3 bytes, the
time complexity is 274.5 23-round LBlock encryptions and the data complexity
is 259.5 chosen plaintexts.

Besides this attack, we can get another 2 impossible differential attacks on
LBlock with the same complexity, i.e., ((12, 0)5, 14, 4), ((12, 5)5, 14, 4), where
((la, lb)Rb, Rd, Re) means that the position of input (resp. output) inactive nibble
of Rd-round distinguisher is la (resp. lb), and the number of rounds before (resp.
after) the distinguisher is Rb (resp. Re).

4.3 Zero-Correlation Cryptanalysis on 23-Round LBlock

At ACISP 2014, Wang et al. gave a multidimensional zero-correlation linear
attack on 23-round LBlock [22]. The main technique they used to improve the
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Fig. 2. Impossible differential attack on 23 rounds LBlock (Color figure online)

overall complexity is the partial compression technique, i.e., they reduce the
complexity of online phase by guessing each sub-key nibble one after another.
Since the time complexity of this attack is still greater than exhaustive search,
they use 13 key-bridges to make this attack available.

According to their paper, for 14-round LBlock, if the input mask a of the
first round locates at the left branch and the output mask b of the last round
locates in the right branch, then the correlation of the linear approximation is
zero, where a, b ∈ F 4

2 , a �= 0 and b �= 0. Indeed, we find in total 21 key-bridges
to reduce the overall complexity.

Combining this observation with our key-bridging tool, we find that
((1, 12)4, 14, 5) can get a better overall complexity. This is for the reason that
we find 21 key-bridges thanks to our key-bridging tool. Since the major com-
plexity of this attack comes from Step 4.1 and 4.2 of their paper, we explain the
key-bridges of these 2 steps in detail.

The nibble X1
4 corresponding to the input non-zero linear mask is affected

by 32 bits of plaintext X0 and 28 bits of round keys and the expression can be
shown as:

X1
4 = X5

0 ⊕ S(X12
0 ⊕ S(X0

0 ⊕ WK0
0 ) ⊕ WK2

1 ) ⊕ S(X15
0 ⊕ S(X7

0 ⊕ WK7
0 )⊕

S(X4
0 ⊕ S(X10

0 ⊕ S(X1
0 ⊕ WK1

0 ) ⊕ WK0
1 ) ⊕ WK2

2 ) ⊕ WK3
3 )
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Similarly, the nibble X12
18 corresponding to the output non-zero linear mask

is affected by 48 bits of plaintext X0 and 48 bits of round keys:

X12
18 = X6

23 ⊕ S(X12
23 ⊕ WK4

22) ⊕ S(X15
23 ⊕ S(X4

23 ⊕ S(X13
23 ⊕ WK5

22) ⊕ WK6
21) ⊕ WK1

20)

⊕ S(X12
23 ⊕ S(X3

23 ⊕ S(X10
23 ⊕ WK2

22) ⊕ WK5
21) ⊕ S(X0

23 ⊕ S(X9
23 ⊕ WK1

22)⊕
S(X14

23 ⊕ S(X2
23 ⊕ S(X8

23 ⊕ WK0
22) ⊕ WK4

21) ⊕ WK0
20) ⊕ WK4

19) ⊕ WK0
18)

Step 4.1. The guessed-keys of Step 4.1 are WK1
0 , WK7

0 , WK0
1 [3], WK0

0 and
WK1

22. Since WK7
0 ⇒ WK0

1 [0 − 2], WK0
1 can be known. Meanwhile, since

WK1
22, WK21[33], WK21[34], WK21[35] and WK21[36] are inputs/outpus bits

of one S-box, WK21[33], WK21[34], WK21[35] and WK21[36] can be known.
Since WK21[34] ⇒ WK11[4], WK21[35] ⇒ WK11[5], WK21[36] ⇒ WK11[6],
WK1

0 [0] ⇒ WK10[34], WK1
0 [1] ⇒ WK10[35], WK1

0 [2] ⇒ WK10[36], WK0
0 [3] ⇒

WK10[33], and WK11[4], WK11[5], WK11[6], WK10[34], WK10[35], WK10[36],
WK10[33] are input/output bits of one S-box, we can get 3-bit information to
restrain the values of WK0

0 [3], WK1
0 [0 − 2] and WK1

22. This is easily done by
making a small lookup table.

As the following four equations:

X5
1 = X15

0 ⊕ S(X7
0 ⊕ WK7

0 ),

X2
2 = X4

0 ⊕ S(X10
0 ⊕ S(X1

0 ⊕ WK1
0 ) ⊕ WK0

1 ),

X2
1 = X12

0 ⊕ S(X0
0 ⊕ WK0

0 ),

X10
22 = X0

23 ⊕ S(X9
23 ⊕ WK1

22),

are true for LBlock, the 80-bit plaintext and ciphertext state value which affects
the value of X1

4 ||X14
18 can be reduced to 60-bit after guessing the 14-bit equivalent

key. The time complexity of this step is N · 214 · 5 S-box accesses.

Step 4.2. The guessed-key of Step 4.2 is WK0
22. Since WK0[2] ⇒ WK10[32],

WK0[1] ⇒ WK10[31], WK0[0] ⇒ WK10[30], WK19[11] ⇒ WK11[3],
WK19[10] ⇒ WK11[2], WK19[9] ⇒ WK11[1], WK19[8] ⇒ WK11[0] and
WK10[32], WK10 [31], WK10[30], WK11[3], WK11[2], WK11[1], WK11[0] are
input/output bits of one S-box, 3-bit information of WK19[11], WK19[10],
WK19[9] and WK19[8] can be known. Meanwhile, WK1

22 ⇒ WK2
19[3], WK19[11],

WK19[10], WK19[9] and WK19[8] can be known.2 Since WK19[9] ⇒ WK21[32],
WK19[8] ⇒ WK21[31], WK19[7] ⇒ WK21[30], and WK22[0], WK22[1],
WK22[2], WK22[3], WK21[32], WK21[31], WK21[30] are input/output bits of
one S-box, 3-bit information of WK0

22 can be known. Since X12
22 = X2

23⊕S(X8
23⊕

WK0
22), we can obtain a new state with 56-bit length. The time complexity of

this step is 260 · 214+1 S-box accesses.
The time complexity of the following sub-steps will become less and less

thanks to our key-bridges. Let N = 262.1 as [22] shows, the time complexity of

2 WK0
0 and WK1

22 are known from Step 4.1.
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this attack is manipulated by Step 4.1, which is about 262.1+14 ·5·1/8·1/23 ≈ 271.
The total time complexity is 271 + 271 = 272 23-round LBlock encryptions. The
data complexity and memory complexity are the same as [22], i.e., the data
complexity is N = 262.1 known plaintexts, the memory complexity is about 260

bytes.

5 Applications to TWINE

5.1 Description of TWINE

TWINE is a lightweight 64-bit block cipher designed by Suzaki et al. in 2013 [21]
and is based on a variant of Type-2 generalized Feistel structure. One version
of TWINE uses an 80-bit key, another uses an 128-bit key and we denote these
versions TWINE-80 and TWINE-128. The Feistel function of TWINE consists
of an xor of a sub-key and a call to a unique S-box. TWINE’s function design
can be visualized in Fig. 3. The key schedule of TWINE-80 is quite simple. The
80-bit master key WK0 is stored in a key register and represented as WK0 =
WK0

0 · · · WK20
0 .

The key schedule of round i can be shown as follows (i = 1, · · · 35):

WK1
i−1 ← WK1

i−1 ⊕ S(WK0
i−1),WK4

i−1 ← WK4
i−1 ⊕ S(WK16

i−1),

WK7
i−1 ← WK7

i−1 ⊕ 0||CONSTH
i ,WK19

i−1 ← WK19
i−1 ⊕ 0||CONSTL

i ),

WK0−3
i−1 ← WK0−3

i−1 ≪ 4,

WKi ← WKi−1 ≪ 16.

Then WK1
i ||WK3

i ||WK4
i ||WK6

i ||WK13
i ||WK14

i ||WK15
i ||WK16

i is used as the 8-
nibble round key of round i. We use RKi to denote the round key of round i.
We refer to [21] for the 128-bit version of key schedule.

Fig. 3. Round function of TWINE block cipher

5.2 Zero-Correlation Cryptanalysis on TWINE

In [22], Wang et al. also gave multidimensional zero-correlation linear attacks on
23-round TWINE-80 and 25-round TWINE-128 using the partial compression
technique.
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However, using our automatic search tool, we find that the key-bridges they
used in the attack on 23-round TWINE-80 do not exist. In their paper, they say
that RK5

3 ⇒ RK3
0 , RK6

2 ⇒ RK1
0 and RK1

20 ⇒ RK6
22. By the key schedule of

TWINE-80,

RK3
0 ⇒ WK6

0 ⇒ WK2
1 ⇒ WK17

2 ⇒ WK13
3 ⇒ RK4

3 ,

RK1
0 ⇒ WK3

0 ⇒ WK18
1 ⇒ WK14

2 ⇒ RK5
2 ,

RK1
20 ⇒ WK3

20 ⇒ WK18
21 ⇒ WK14

22 ⇒ RK5
22.

So the key-bridges they used are not true.
Since RK4

3 and RK5
2 do not exist in the set of related round keys, this will

make the time complexity of Step 4.1 in their paper greater than exhaustive
search. So their attack on 23-round TWINE-80 is not available.

According to their paper, if the input mask a of the first round locates at the
even nibble and the output mask b of the last round locates in the odd nibble
for 14-round TWINE, then the correlation of the linear approximation is zero,
where a, b ∈ F 4

2 , a �= 0, b �= 0. Among these distinguishers, we find 4 of them with
the minimal number of guessed-keys (with some key-bridges) by our automatic
search tool. We use ((6, 9)4, 14, 5) to get multidimensional zero-correlation linear
attack on 23-round TWINE-80.

Three key-bridges we found are RK5
22 ⇒ RK1

20, RK0
21 ⇒ RK4

18 and RK6
22 ⊕

S(RK2
22) ⊕ S(RK5

22) ⇒ RK6
2 .

Since the major complexity of this attack comes from Step 4.1 and 4.2 , we
explain the key-bridges of these 2 steps. Assuming N known plaintexts are used.

Step 4.1. The distinguisher input nibble X6
4 is affected by 32 bits of plaintext X0

and 28 bits of round keys, and the distinguisher output nibble X9
18 is affected

by 48 bits of ciphertext X23 and 48 bits of round keys. Since X11
22 = X2

23 ⊕
S(X9

23 ⊕ RK5
22), X9

23 and X2
23 can be compressed to X11

22 by guessing RK5
22.

Since X13
22 = X10

23 ⊕ S(X15
23 ⊕ RK6

22), X15
23 and X10

23 can be compressed to X13
22 by

guessing RK6
22. Since RK5

22 ⇒ RK1
20, let A = X8

23 ⊕ S(X5
23 ⊕ S(X12

23 ⊕ S(X7
23 ⊕

RK2
22) ⊕ RK0

21) ⊕ RK1
20), X8

23, X5
23, X12

23 and X7
23 can be compressed to A by

guessing RK2
22 and RK0

21. The time complexity of this step is N · 216 · 5 S-box
accesses.

Step 4.2. By guessing RK2
22, one more nibble can be compressed. The time

complexity of this step is 264+16 S-box accesses.
Let N = 262.1, the time complexity of this attack is 273 23-round TWINE-

80 encryptions, the data complexity is 262.1, and the memory complexity is 260

bytes.
For their attack on 25-round TWINE-128, we find another key-bridge besides

their four key-bridges, i.e., S(RK1
21⊕S−1(RK3

0 ⊕RK2
24)) ⇒ RK3

24. So after Step
4.3 of their attack, one more key nibble RK3

0 can be known, and one more state
nibble can be compressed in this step. The time complexity of the following steps
is much smaller than the above 3 steps, so the time complexity of this attack is
(262+60 · 17 + 2 · 2124)/(25 × 8) + 2119 ≈ 2120.
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Besides, if ((12,3)5,14,6) is used to mount this attack, a better result can
be got. Using our tool, four key-bridges can be found, i.e., RK3

0 ⇒ RK1
3 ,

RK3
21 ⇒ RK1

24, S(RK0
24 ⊕ S−1(RK5

2 ⊕ RK7
23 ⊕ S(RK2

22))) ⇒ RK1
22, S(RK3

22 ⊕
S(RK1

19))⊕S−1(RK7
0 ⊕RK6

24⊕S(RK7
24)) ⇒ RK2

22. The overall time complexity
is determined by searching the remaining key candidates. So the time complexity
becomes 2119.

5.3 Impossible Differential and Meet-in-the-Middle Cryptanalysis
on TWINE

At FSE 2015, Biryukov et al. gave impossible differential cryptanalysis and meet-
in-the-middle cryptanalysis on 25-round TWINE-128 [2].

Combining Wu’s tool for impossible differential distinguisher and our auto-
matic tool, we find in total 12 attacks with the same time complexity as [2].

Combining Lin’s propagate-then-prune tool for meet-in-the-middle distin-
guisher [19] and our automatic tool, we find some attacks with the same
complexity as [2]. One of these attacks is (6, 10) → 5, i.e., the distinguisher
starts with two inactive nibbles at position (6,10) and ends with one nibble at
position 5. This attack is useful when we want to get less false positive.

6 Conclusions

In this paper, we studied the key-bridging technique Dunkelman et al. pro-
posed to deduce some sub-key bits from some other sub-key bits. We pre-
sented a versatile and powerful algorithm for searching key-bridging technique on
word-oriented and bit-oriented block ciphers. This tool can not only give better
attacked-rounds and complexity, but also a better understanding of the design
of block ciphers. To demonstrate the usefulness of our approach, we used our
tool to the impossible differential and multidimensional zero-correlation linear
attacks on 23-round LBlock, 23-round TWINE-80 and 25-round TWINE-128.
To the best of our knowledge, these results are the currently best results on
LBlock and TWINE in the single-key setting.
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Abstract. In recent years, Mixed Integer Linear Programming (MILP)
has been successfully applied in searching for differential characteristics
and linear approximations in block ciphers and has produced the signif-
icant results for some ciphers such as SIMON (a family of lightweight
and hardware-optimized block ciphers designed by NSA) etc. However, in
the literature, the MILP-based automatic search algorithm for differen-
tial characteristics and linear approximations is still infeasible for block
ciphers such as ARX constructions. In this paper, we propose an MILP-
based method for automatic search for differential characteristics and
linear approximations in ARX ciphers. By researching the properties of
differential characteristic and linear approximation of modular addition
in ARX ciphers, we present a method to describe the differential char-
acteristic and linear approximation with linear inequalities under the
assumptions of independent inputs to the modular addition and inde-
pendent rounds. We use this representation as an input to the publicly
available MILP optimizer Gurobi to search for differential characteristics
and linear approximations for ARX ciphers. As an illustration, we apply
our method to Speck, a family of lightweight and software-optimized
block ciphers designed by NSA, which results in the improved differen-
tial characteristics and linear approximations compared with the existing
ones. Moreover, we provide the improved differential attacks on Speck48,
Speck64, Speck96 and Speck128, which are the best attacks on them in
terms of the number of rounds.

Keywords: Automatic search · Differential characteristic · Linear
approximation · ARX · Speck

1 Introduction

Differential attacks [3] and linear attacks [15] are the most fundamental crypt-
analytic methods. They have been used in the cryptanalysis of numerous sym-
metric ciphers. Since the first and most important thing for the two methods is
c© International Association for Cryptologic Research 2016
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to identify differential characteristics and linear approximations, the automatic
search algorithms for differential characteristics and linear approximations have
been a focus of cryptographer’s concern. At EUROCRYPT’94, Matsui [16] pre-
sented the branch-and-bound search algorithm and found the differential charac-
teristics and linear approximations for DES block cipher. The branch-and-bound
search algorithm is one of the most powerful and classic search tools and is still
widely used now. Another research line for the application of automatic search
algorithm is to provide the provable security against differential cryptanalysis
and linear cryptanalysis, which is usually achieved by automatic searching for
the minimal number of active S-boxes.

Mixed-Integer Linear Programming (MILP) has been explicitly applied in
constructing automatic search algorithm in differential and linear cryptanalysis.
The problem of MILP is a class of optimization problems derived from Linear
Programming which aims to optimize an objective function under certain con-
strains. Mouha et al. [18] and Wu et al. [28] translated the problem of counting
the minimal number of differentially active S-boxes to an MILP problem which
can be solved automatically with open source or commercially available MILP
solvers. Their method has been applied in searching for the differential and linear
characteristics with specific patterns [14,29] and counting the minimal number
of active S-boxes of bit-oriented block ciphers by introducing bit-level represen-
tations [21,27].

Recently, the MILP-based method has been developed to be a general method
to automatically search for the real differential characteristics. Sun et al. [22] con-
structed the MILP-based model to search for (related-key) differential charac-
teristics by generating linear inequalities from the differential distribution table
of S-box, where only partial linear inequalities are used in MILP model to make
it solvable in practical time. Their search algorithm, however, is heuristic, since
the identified differential characteristics may not be consistent. By computing a
small number of inequalities which can exactly describe the differential distrib-
ution table of an S-box with the greedy algorithm, Sun et al. [24] transformed
the heuristic searching method to the exact and practical searching method.
Moreover, they constructed the MILP-based model for automatically searching
for linear approximations and extended these models to search for differential
and linear hull. Sun et al.’s method [22,24] is applicable to block ciphers involv-
ing bitwise XOR, S-box operation and the linear layer with bit permutation1.
Although the general linear layer can be transformed into bit XOR operations,
it makes the MILP problem much more difficult to be solved in practical time
since more XOR operations result in more variables and constraints.

Due to the excellent performance of ARX-based ciphers in software, many
symmetric-key ciphers are designed based on ARX operations2. It is worth not-
ing that the cryptanalytic techniques for ARX ciphers are very different from
those for ciphers with S-boxes such as AES and DES. In particular, the search

1 Although SIMON has no S-box, the And and XOR operations for SIMON could be
regarded as one S-box. So they also applied the method to SIMON.

2 ARX operation: modular addition, bit rotation and XOR.



270 K. Fu et al.

algorithms for differential characteristics and linear approximations for ARX
cipher utilize the different principle compared with those for ciphers with S-
boxes. In [10,12,17], the methods of automatic search for differential character-
istics in ARX designs are provided, but the methods are only compatible with
ARX-based Hash functions where the key is known and can be freely chosen. By
using the partial differential distribution table and Matsui’s branch-and-bound
algorithm, Biryukov and Velichkov [4] presented the first automatic search algo-
rithm for differential characteristics in ARX block ciphers, such as (X)TEA and
Speck. In a very recent paper [5] appearing in this volume of FSE’16, Biryukov
et al. proposed the first adaptation of Matsui’s algorithm for finding the best
differential and linear trails in ARX ciphers.

Although MILP-based search algorithm has got extremely remarkable appli-
cation for some block ciphers, the current method cannot be applied to ARX
block ciphers. A straightforward method to apply MILP model for ARX con-
structions is to regard the modular addition in F

n
2 as a 2n×n S-box and compute

a small number of linear inequalities to exactly represent the differential or lin-
ear pattern of the modular addition. However, in this way the number of linear
inequalities is too large to be solved in practical time for real ARX ciphers where
n is typically at least 16. This motivates us to study MILP-based search method
for ARX block ciphers.

1.1 Our Contributions

In this paper, we revisit the differential property and linear property for mod-
ular addition and provide a new framework of constructing the MILP model.
Concretely, we transform the differential property of modular addition shown
in [13] into linear inequalities to describe all possible differential patterns and
the corresponding differential probabilities. Moreover, we use linear inequalities
to capture all possible linear patterns and the corresponding correlations based
on the automaton algorithm for correlation of modular addition in [19,25]. The
number of the resulting linear inequalities is significantly less than that of linear
inequalities produced by regarding modular addition as one S-box. With the
linear inequalities, we can construct the MILP model to automatically search
for differential characteristics and linear approximations using the the commer-
cial optimizer Gurobi, where the object function is the probability of differential
characteristic or the correlation of linear approximation.

During constructing MILP models, we assume that the two inputs to modular
addition and the consecutive rounds are independent. However, as demonstrated
in [26], for some ARX constructions, the inputs to modular addition and the
consecutive rounds are not independent, which will result that the practical
probability (resp. correlation) of our identified differential (resp. linear) tails for
some fixed key may vary significantly from that derived from our model. This
deviation will have effect on the success rate of the attacks from practitioner’s
perspective.
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As an illustration, we apply our method to the block cipher Speck, which is
a family of lightweight block ciphers publicly released by the National Security
Agency (NSA) and has been optimized for performance in software implemen-
tations [2]. A variety of block sizes and key sizes for different implementations
are provided for it. Since its publication, Speck has received much attention
and many cryptanalytic results have been given. Abed et al. presented differ-
ential and rectangle attacks for almost all variants of Speck [1]. At FSE’14 [6],
Biryukov et al. searched for the differential characteristics, which cover 9, 11
and 14 rounds for Speck32, Speck48 and Speck64, respectively, and are better
than the differential characteristics in [1]. In [9], Dinur proposed the sub-cipher
attack and improved the key recovery attacks on all variants of Speck using the
differential characteristics in [6]. In [5], Biryukov et al. presented the probabili-
ties of the best differential trails for up to 10, 9, 8, 7, and 6 rounds of Speck32,
Speck48, Speck64, Speck96 and Speck128 respectively and evaluate the security
bounds of Speck against single-trail differential cryptanalysis under the Markov
assumption. As regards to linear cryptanalysis, Yao et al. identified 9, 9, 12, 6
and 6 rounds linear approximations for Speck32, Speck48, Speck64, Speck96 and
Speck128, respectively [30], and gave the key recovery attacks.

We use our models to search for the differential and linear trails for Speck.
In order for the MILP tool to run in reasonable time for larger block sizes (>48
bits), we split the block cipher into two or three parts – upper (middle) and
lower. We then search for trails independently in each part, by ensuring that
the output difference (mask) for one part is the same as the input difference
(mask) for its following part. For Speck48, Speck64, Speck96 and Speck128, we
find better differential characteristics and linear approximations than those of
previous works under the assumptions of independent inputs to the modular
addition and independent rounds. With the new differential characteristics, we
improve the differential attacks on the four variants of Speck. Comparing with
the previous best attacks for them [9], we can attack one, one, three and five
more rounds for Speck48, Speck64, Speck96 and Speck128 with any key size,
respectively. We summarize known attacks on Speck in Table 1. We compare
our identified differential characteristics and linear approximations with those of
previous works in Table 2.

Outline. The remainder of this paper is organized as follows. Section 2 gives
a brief description of the existing MILP-based search methods for block cipher.
Sections 3 and 4 introduce MILP-based algorithm for automatic searching for
differential characteristics and linear approximations for ARX ciphers. We apply
the new search tools in Speck and give the improved differential attacks on all
variants of Speck except Speck32 in Sect. 5. Finally, we conclude the paper in
Sect. 6.
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Table 1. Summary of attacks on speck

Variant Rounds attacked/ Time Data Memory Method Ref.

2n/mn Total rounds

48/72 11/22 267.93 243.727 - Linear [30]

12/22 258.8 243.2 245.8 Rectangle [1]

12/22 245.3 245 224 Differential [1]

14/22 265 241 222 Differential [9]

15/22 270 246 222 Differential This Paper

48/96 12/23 291.93 243.727 - Linear [30]

12/23 258.8 243.2 245.8 Rectangle [1]

12/23 245.3 245 224 Differential [1]

15/23 289 241 222 Differential [9]

16/23 294 246 222 Differential This Paper

64/96 14/26 294.9 262.7 - Linear [30]

14/26 289.4 263.6 265.6 Rectangle [1]

15/26 261.1 261 232 Differential [1]

18/26 293 261 222 Differential [9]

19/26 295 263 222 Differential This Paper

64/128 15/27 2126.9 262.7 - Linear [30]

14/27 289.4 263.6 265.6 Rectangle [1]

15/27 261.1 261 232 Differential [1]

19/27 2125 261 222 Differential [9]

20/27 2127 263 222 Differential This Paper

96/96 8/28 274.7 227.6 - Linear [30]

15/28 289.1 289 248 Differential [1]

16/28 285 285 222 Differential [9]

19/28 288 288 222 Differential This Paper

96/144 9/29 2122.7 227.6 - Linear [30]

16/29 2135.9 290.9 294.5 Rectangle [1]

15/29 289.1 289 248 Differential [1]

17/29 2133 285 222 Differential [9]

20/29 2136 288 222 Differential This Paper

128/128 8/32 292.7 228.3 - Linear [30]

16/32 2111.1 2116 264 Differential [1]

17/32 2113 2113 222 Differential [9]

22/32 2120 2120 222 Differential This Paper

128/192 9/33 2156.7 228.3 - Linear [30]

16/33 2111.1 2116 264 Differential [1]

18/33 2182.7 2125.9 2121.9 Rectangle [1]

18/33 2177 2113 222 Differential [9]

23/33 2184 2120 222 Differential This Paper

128/256 7/34 2220.7 228.3 - Linear [30]

16/34 2111.1 2116 264 Differential [1]

18/34 2182.7 2125.9 2121.9 Rectangle [1]

19/34 2241 2113 222 Differential [9]

24/34 2248 2120 222 Differential This Paper
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Table 2. Summary of differential characteristics and linear approximations for speck

Differential characteristic Linear approximation

Cipher # Rounds log2p Ref. # Rounds log2c Ref.

Speck32 9 −31 [1] 9 −14 [30]

9 −30 [6] 9 −14 This paper

9 −30 This paper

Speck48 10 −41 [1] 9 −20 [30]

11 −47 [6] 10 −22 This paper

11 −45 This paper

Speck64 13 −59 [1] 11 −25 [30]

13 −51 This paper 12 −31 [30]

14 −60 [6] 13 −30 This paper

14 −56 This paper

15 −62 This paper

Speck96 13 −84 [1] 6 −11 [30]

13 −67 This paper 15 −45 This paper

16 −87 This paper

Speck128 14 −112 [1] 6 −11 [30]

14 −90 This paper 16 −58 This paper

19 −119 This paper

2 Sun et al.’s MILP-Based Automatic Search for
(Related-Key) Differential and Linear Trails (Hull)

In this section, we briefly recall Sun et al.’s algorithm. For more details of their
algorithm, we refer to [22,24].

Objective Function of Differential Model. Let xi denote the difference
variable for the bit i. That is, xi = 0 if there is no difference at bit i; Otherwise,
xi = 1. Another bit variable Aj is used to denote the activity of an S-box, i.e.,
Aj = 0 if the S-box is non-active; Otherwise, Aj = 1. The objective function
is to minimize the sum of all variables

∑
j Aj , which indicates the activities of

the S-boxes appearing in the schematic description of the encryption and key
schedule algorithm.

Constraints of Differential Model. For every XOR operation with bit-level
input differences a, b and bit-level output difference c, the constraints include

⎧
⎪⎨

⎪⎩

d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

a + b + c ≥ 2d⊕
a + b + c ≤ 2

(1)

where d⊕ is a dummy bit variable.
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Next, we describe the constraints of the differential properties of an S-box in
a more accurate way. For an ω × ν S-box denoted by At, the input and output
differences are (x0, . . . , xω−1) and (y0, . . . , yν−1), respectively. Then

⎧
⎪⎨

⎪⎩

At − xk ≥ 0, k ∈ {0, . . . , ω − 1}

−At +
ω−1∑

j=0

xj ≥ 0
(2)

which ensures that nonzero input difference must activate the S-box.
Let (x0, . . . , xω−1, y0, . . . , yν−1) ∈ {0, 1}ω+ν ⊆ R

ω+ν denote an (ω + ν)-
dimensional vector, where R is the real number field. By computing the H-
Representation of the convex hull of all possible input-output differential pat-
terns of an S-box, many linear inequalities which can be used to remove some
impossible differential patterns of the S-box are obtained. The greedy algorithm
in [24] is applied to select a subset of the H-Representation of the convex hull
with less inequalities. As a result, they generate only a small number of lin-
ear inequalities, which can be used to exactly describe the differential pattern
of S-box and construct the MILP problem. Using any MILP optimizer such as
Gurobi [11], good differential characteristics can be found. If we set the value
of the object function as N , finish the solving process and output the current
solution till the value of object function is reduced to N . The corresponding
solution is the identified differential characteristic with N active S-boxes.

Note that this exact searching method is also applicable to searching for the
linear approximations.

Objective Function of Linear Model. Some notations for differential model
are also used in linear model, e.g., Aj denotes the activity of an S-box and the
objective function is to minimize

∑
j Aj .

Constraints of Linear Model. For every XOR operation with input masks
a, b and output mask c, the constraints should be

a = b = c.

For every three-forked branch with input mask a and output masks b and c, the
constraints should be ⎧

⎪⎨

⎪⎩

d� ≥ a, d� ≥ b, d� ≥ c

a + b + c ≥ 2d�
a + b + c ≤ 2

(3)

where d� is a dummy bit variable.
For an ω × ν S-box denoted by At, the input and output masks are

(x0, . . . , xω−1) and (y0, . . . , yν−1), respectively. If the output mask is nonzero,
At = 1; Otherwise, At = 0. Then, we have

⎧
⎪⎨

⎪⎩

At − yk ≥ 0, k ∈ {0, . . . , ν − 1}

−At +
ν−1∑

j=0

yj ≥ 0

which ensures that nonzero output mask must activate the S-box.
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For an (ω + ν)-dimensional vector (x0, . . . , xω−1, y0, . . . , yν−1) ∈ {0, 1}ω+ν ⊆
R

ω+ν , compute a small number of linear inequalities to exactly represent the
linear pattern of S-box. The other processes are similar to those in the model of
searching for differential characteristics.

In addition, the technique has been extended to find differential or linear hull
[24]. By adding the constraints imposed by the given properties (such as fixed
difference or linear mask), they updated the MILP model and obtained all trails
which consist of the given differential or linear hull.

3 MILP-Based Algorithm for Automatic Search for
Differential Characteristics in ARX Ciphers

In this section, we analyze the differential characteristics of modular addition
and identify important properties, which are crucial to the construction of our
MILP-based models for ARX ciphers. Using our method, we can give the lin-
ear inequalities which can exactly describe all differential patterns for modular
addition.

3.1 XOR-Differential Characteristics of Modular Addition

Definition 1. Let α, β and γ be fixed n-bit XOR differences. The XOR-differential
probability (DP) of addition modulo 2n (xdp+) is the probability with which α
and β propagate to γ through the ADD operation, computed over all pairs of n-bit
inputs (x,y):

xdp+(α, β → γ) = 2−2n · #{(x, y) : ((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ}.

In [13], Lipmaa et al. showed Algorithm 2 to compute xdp+(α, β → γ) which
consists of two steps: the first step is to verify if the differential characteristic
is possible and the second step is to compute the differential probability xdp+.
More precisely, the above two steps are shown in Theorems 1 and 2, respectively.

Theorem 1 (see [13]). The differential (α, β → γ) is possible iff (α[0]⊕β[0]⊕
γ[0]) = 0 and α[i − 1] = β[i − 1] = γ[i − 1] = α[i] ⊕ β[i] ⊕ γ[i] for α[i − 1] =
β[i − 1] = γ[i − 1], i ∈ [1, n − 1].

Theorem 2 (see [13]). Assume that (α, β → γ) is a possible differential char-
acteristic, then the differential probability xdp+ = 2−∑n−2

i=0 ¬eq(α[i],β[i],γ[i]), where

eq(α[i], β[i], γ[i]) =

{
1 α[i] = β[i] = γ[i]
0 others

.

Theorem 1 can be used to decide if the differential characteristic (α, β →
γ) for modular addition is possible. For instance, the differential (α, β →
γ) = (11100, 11100 → 11110) is impossible as α[0] = β[0] = γ[0] �=
α[1] ⊕ β[1] ⊕ γ[1]. Using Theorem 2, the probability of the differential
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characteristic can be computed efficiently. For example, for the differen-
tial (α, β → γ) = (11100, 00110 → 10110), the probability xdp+(α, β →
γ)=2−(¬eq(0,0,0)+¬eq(0,1,1)+¬Eq(1,1,1)+¬Eq(1,0,0))= 2−2.

From Theorem 2, if the n-bit differential characteristic is possible, the prob-
ability is only related with (α[i], β[i], γ[i]) for i ∈ [0, n − 2]. Taking advantage
of this property, we can construct the MILP model to compute the differential
probability xdp+. More details are shown in the following.

3.2 MILP Model for Differential Characteristics of Modular
Addition

In order to append the first condition α[0] ⊕ β[0] ⊕ γ[0] = 0 in Theorem 1 to the
set of the linear inequalities, we derive five linear inequalities satisfying the first
condition. The five linear inequalities are listed as follows,

⎧
⎪⎨

⎪⎩

d⊕ ≥ α[0], d⊕ ≥ β[0], d⊕ ≥ γ[0]
α[0] + β[0] + γ[0] − 2d⊕ ≥ 0
α[0] + β[0] + γ[0] ≤ 2

(4)

where d⊕ is a dummy bit variable.
Let the vector (α[i], β[i], γ[i], α[i + 1], β[i + 1], γ[i + 1]) denote the relation

of the differential values for the i-th and the (i + 1)-th bits. We have that
there are totally 56 possible patterns for the vector in accordance with The-
orem 1. For example, the differential pattern (0, 0, 0, 1, 1, 1) is impossible as αi

= βi = γi �= αi+1 ⊕ βi+1 ⊕ γi+1. Moreover, in order to compute the differential
probability efficiently, we append ¬eq(α[i], β[i], γ[i]) to the vector. As described
in [23], using the inequality generator() function in the sage. geometry.
polyhedron class of the SAGE Computer Algebra System [20], we get 65 linear
inequalities satisfying all 56 possible patterns. Based on the greedy algorithm
in [24], the number of linear inequalities can be reduced from 65 to 13. Fur-
thermore, the 13 linear inequalities can be used to compute the probability of
(α[i]‖β[i]‖γ[i] → α[i + 1]‖β[i + 1]‖γ[i + 1]) as the variable ¬eq(α[i], β[i], γ[i]) is
involved.

Actually, the 13 linear inequalities only represent the second condition
α[i] = β[i] = γ[i] = α[i + 1] ⊕ β[i + 1] ⊕ γ[i + 1], i ∈ [0, n − 2] in Theorem 1. In
total, there are (13 × (n − 1) + 5) linear inequalities to represent the differential
property of addition modulo 2n with two inputs of n-bit length. As described in
Theorem 2, the differential probability xdp+ = 2−∑n−2

i=0 ¬eq(α[i],β[i],γ[i]).

3.3 MILP Model for Differential Characteristics of ARX Ciphers

Besides modular addition, the XOR operations, three-forked branch and the
circular shift operations are also involved in ARX ciphers. For each XOR oper-
ation, we can also use Inequalities (4). For each three-forked branch operation
with input differences a, b and output difference c, the constraints should be

a = b = c.
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For the case of circular shift, we can also list some equations for the related bits.
So far, we have finished the construction of all linear inequalities or equations
for each operations in ARX ciphers which compose the constraints of MILP
model for differential characteristics of ARX ciphers.

As the differential probability xdp+ = 2−∑n−2
i=0 ¬eq(α[i],β[i],γ[i]) can be com-

puted using the method described in Sect. 3.2, we set the objective function
for the r-round differential characteristic as the

∑r
j=1

∑n−2
i=0 ¬eq(αj [i], βj [i], γj [i])

where αj , βj and γj are the input differences and output difference of mod-
ular addition for the j-th round. We aim to find the minimal value of∑r

j=1

∑n−2
i=0 ¬eq(αj [i], βj [i], γj [i]) which represents the differential probability of

the best identified differential characteristic. We can use the Gurobi optimizer
to solve the system of inequalities to search for differential characteristics for
ARX ciphers. However, just being able to obtain one differential characteristic
may be not enough. We can apply Sun’s method [24] to our new MILP model
and find the differential of ARX ciphers.

Note that in the above model, we assume that the two inputs to modular
addition and the consecutive rounds are independent. However, for some ARX
constructions, they are not independent, which will result that the practical
probability of our identified differential characteristics for some fixed key may
vary significantly from that derived from our model.

4 MILP Models for Automatic Search for Linear
Approximations in ARX Ciphers

In this section, we revisit the property of linear approximations for modular
addition operation and develop a new MILP-based tool to search for the linear
approximations for ARX ciphers.

4.1 Linear Approximations for Modular Addition

Let n be a non-negative integer. Given two vectors x = (an−1, . . . , a0) and y =
(bn−1, . . . , b0)∈ Fn

2 , let x ·y denote the standard inner product x ·y = an−1bn−1⊕
· · · ⊕ a0b0.

Definition 2 Let Λα, Λβ and Γ be fixed n-bit linear masks. The correlation of
addition modulo 2n (cor�) with input masks Λα, Λβ and output mask Γ can be
computed over all pairs of n-bit inputs (x, y):

cor�(Γ,Λα, Λβ) = cor(Γ · (x + y) ⊕ Λα · x ⊕ Λβ · y)

= 2−2n(#{x, y ∈ Fn
2 : Γ · (x + y) ⊕ Λα · x ⊕ Λβ · y = 0}

− #{x, y ∈ Fn
2 : Γ · (x + y) ⊕ Λα · x ⊕ Λβ · y = 1}).

Based on a fairly simple classification of the linear approximations of the
carry function, Nyberg and Wallén derive an efficient algorithm for computing
the correlation of linear approximation of addition modulo 2n with k inputs in
[19,25]. Since we only consider modular addition with two inputs, we describe
this method only for two inputs in [19,25] as follows.
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Theorem 3 (see [19,25]). For the linear approximation of addition modulo 2n

of two inputs with input masks Λα, Λβ and output mask Γ , Λα, Λβ , Γ ∈ Fn
2 and

Λα = (Λα[n−1], . . . , Λα[0]), Λβ = (Λβ [n−1], . . . , Λβ [0]), Γ = (Γ [n−1], . . . , Γ [0]),
we define the vector u = (u[n−1], . . . , u[0]) where u[i] = 4Γ [i]+2Λα[i]+Λβ [i], 0 ≤
u[i] < 8, 0 ≤ i < n. The correlation can be computed with the following linear
representation,

cor�(Γ,Λα, Λβ) = LAu[n−1]Au[n−2] · · · Au[1]Au[0]C, (5)

where Ar, r = 0, . . . , 7, is 2 × 2 matrice,

A0 =
1
2

[
2 0
0 1

]
, A1 = A2 = −A4 =

1
2

[
0 0
1 0

]
,

A7 =
1
2

[
0 2
1 0

]
,−A3 = A5 = A6 =

1
2

[
0 0
0 1

]
,

L is a row vector L = (1 0),and C is a column vector C = (1 1)T .

For example, for the linear approximation with binary vector masks (Γ =
10100, Λα = 11110, Λβ = 11000), u = 736208 and cor�=LA7A3A6A2A0C =
−2−3.

In order to provide a fast implementation for Theorem 3, Nyberg and Wallén
utilized the automaton to calculate LAu[n−1]Au[n−2] · · · Au[1]Au[0]C by multiply-
ing from left to right. Let e0 = L = (1 0) and e1 = (0 1), then we can show the
state transitions in Fig. 1. When reading u from left to right, if the automaton
ends up in state 0, then LAu[n−1]Au[n−2] · · · Au[1]Au[0]C = 0. If the automaton
ends up in state e0 or e1, then LAu[n−1]Au[n−2] · · · Au[1]Au[0]C = ±2−t, where t
is the number of transitions marked by a solid arrow, and the sign is determined
by the number of occurrences of {3, 4}:

LAu[n−1]Au[n−2] · · · Au[1]Au[0]C > 0

if and only if the number of occurrences is even. For example, as u = 736208,
LA7A3A6A2A0C = −2−3.

0e 1e

0

start

1,2,4,7
0

7

1,2,3,4,5,6 0,3,5,6

0, ,7

Fig. 1. State transitions for u = 736208
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Fig. 2. State transitions for addition modulo 2n

Based on the Fig. 1, we will give Proposition 1 to calculate the absolute value
of the correlation cor�(Γ,Λα, Λβ).

Proposition 1. For the linear approximation of addition modulo 2n of two
inputs with input masks Λα, Λβ and output mask Γ , the state transitions of
the automaton are shown in Fig. 2, where u[i] = 4Γ [i]+2Λα[i]+Λβ [i], 0 ≤ u[i] <
8, 0 ≤ i < n and εj ∈ {e0, e1}, 0 ≤ j < n. If the correlation for the linear
approximation is non-zero, the absolute value of the correlation can be computed
as follows,

|cor�(Γ,Λα, Λβ)x| = 2−#{0<i<n|εi=e1}. (6)

Based on Proposition 1, we construct the MILP model to compute the
absolute value of correlation of modular addition with two inputs in the
following.

4.2 MILP Model for Linear Approximations of Modular Addition

In this part, we will introduce a method to describe linear property of modular
addition in Theorem 3 and Proposition 1 as linear inequalities.

For the state transition from εi+1 to εi under u[i], 0 ≤ i < n, the bit variable
si is defined as follows, si = 0 if εi = e0, and si = 1 if εi = e1. We utilize the vec-
tor (si+1, Γ [i], Λα[i], Λβ [i], si) to denote the state transition, so esi+1Au[i] = esi

.
For the vector (si+1, Γ [i], Λα[i], Λβ [i], si), there are only 10 possible transitions
for the vector. As described in Sect. 3.2, we also use the inequality generator()
function in the sage. geometry. polyhedron class of SAGE and the greedy
algorithm in [24] to get eight linear inequalities satisfying all 10 possible tran-
sitions. Note that there is an additional constraint εn = e0 according to Fig. 2.
Hence, for linear approximation of addition modulo 2n with two inputs, the con-
straints contain 8×n+1 linear inequalities and the absolute value of correlation
is |cor�| = 2−∑n−1

i=1 si .

4.3 MILP Model for Linear Approximations for ARX Ciphers

For each XOR, three-forked branch and circular shift operations, we can also use
the method in Sect. 2 to produce the linear inequalities or equations. All linear
inequalities or equations for each operations in ARX ciphers compose the con-
straints of MILP model for linear approximations of ARX ciphers. We can set
the objective function for r-round linear approximation as the

∑r
j=1

∑n−1
i=1 si

to find the minimal value of it. It means to find the optimized linear approxima-
tion. We use the Gurobi optimizer to solve the system of inequalities to search
for the linear approximations.
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As describe in the model of searching for differential characteristics, we
assume that the two inputs to modular addition and the consecutive rounds
are independent. However, for some ARX constructions, they are not indepen-
dent. So the practical correlation of our identified linear approximations for some
fixed key may vary significantly from that derived from our model.

5 Application to Speck

5.1 Description of Speck

Speck is a family of ARX-based block ciphers proposed by the National Security
Agency of the USA in [2], which contains 10 variants. The variants are charac-
terized by the block size of 2n bits (where n is the word size) and the key size
of mn bits. The Speck block cipher variant with block size 2n and key size mn
is denoted as Speck2n/mn. The rotation constants α, β used in round functions
and the number of rounds r are listed in Table 3 for all variants of the Speck.

The round function of Speck consists of XOR, modular addition in F
n
2 and

rotation operations. If we denote the subkey in the i-th round as ki, the input
and output of the i-th round as (xi−1, yi−1) and (xi, yi), the round function is
operated as follows,

xi = ((xi−1 ≫ α) � yi−1) ⊕ ki, yi = (yi−1 ≪ β) ⊕ xi,

where α and β are rotation constants listed in Table 3.

Table 3. Parameters for speck family of block ciphers

Variant 2n/mn Block size 2n Word size n Key size mn Key words m Rounds r α β

32/64 32 16 64 4 22 7 2

48/72 48 24 72 3 22 8 3

48/96 48 24 96 4 23 8 3

64/96 64 32 96 3 26 8 3

64/128 64 32 128 4 27 8 3

96/96 96 48 96 2 28 8 3

96/144 96 48 144 3 29 8 3

128/128 128 64 128 2 32 8 3

128/192 128 64 192 3 33 8 3

128/256 128 64 256 4 34 8 3

5.2 Differential Characteristics and Linear Approximations of
Speck

In this subsection, we will give the details how to use the models in Sects. 3 and 4
to search for the differential characteristics and linear approximations for Speck.
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Firstly, we produce the system of inequalities to construct the model for
the differential or linear trails for Speck based on the methods in Sects. 3 and
4. Then we use Gurobi optimizer to solve our MILP model as [21–24]. Indeed,
other MILP optimizers, such as CPLEX [8], can also be used. The procedure of
our method is outlined as follows.

Step 1: Convert the system of inequalities describing r rounds of Speck into a
format that is readable by Gurobi.

Step 2: Use Gurobi to search for the trails with the input from Step 1.

Without loss of generality, we describe how to construct the model to search
for the differential characteristic of r-round Speck32. We denote the input differ-
ence and the output difference for the i-th round as Δzi−1 and Δzi, respectively,
Δzi = (Δz31

i , . . . , Δz0
i ), 0 < i ≤ r.

If we denote the two input differences of modular addition in the i-
th round as αi and βi and the output difference as γi, then we have
αi = (Δz22

i−1, . . . , Δz16
i−1,Δz31

i−1, . . . , Δz23
i−1), βi = (Δz15

i−1, . . . , Δz0
i−1), γi =

(Δz31
i , . . . , Δz16

i ). According to Sect. 3, we can produce 13 × (16 − 1) + 5 = 200
linear inequalities to represent the differential property of (αi, βi → γi) for mod-
ular addition in the i-th round.

For the XOR operation of two branches in the i-th round, the two input
differences are (Δz13

i−1, . . . , Δz0
i−1,Δz15

i−1,Δz14
i−1) and (Δz31

i , . . . , Δz16
i ), and the

output difference is (Δz15
i , . . . , Δz0

i ). Thus we have

Δz13
i−1 ⊕ Δz31

i = Δz15
i ,

...
Δz14

i−1 ⊕ Δz16
i = Δz0

i .

Then we use Inequalities (4) to describe the differential property of XOR oper-
ation of two branches in the i-th round, so 5 × 16 = 80 linear inequalities are
produced. Therefore, we use the above produced 200 + 80 = 280 linear inequal-
ities to describe the differential property of (Δzi−1 → Δzi).

In the similar way, 280 · r linear inequalities are derived to describe the
differential property of r rounds (Δz0 → Δz1 → . . . → Δzr). Moreover, one
additional condition

∑31
j=0 Δzj

0 > 0 is required to ensure the non-zero plaintext
difference.

We set the objective function as the minimal value of
∑r

i=1∑32−2
j=0 ¬eq(αi[j], βi[j], γi[j]) and convert the above 280 · r + 1 linear inequali-

ties as constraints into the LP format that is readable by Gurobi. Finally, we
use the Gurobi to find the the differential characteristic of r rounds of Speck32.

Similarly, the process of constructing the model to search for the linear
approximations for Speck can be implemented using the model in Sect. 4. Here
we will not provide the details about it due to the limited space. The source
code is published in https://github.com/fukai6/milp speck.git.

https://github.com/fukai6/milp_speck.git
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As we search for the differential and linear trails for Speck with block size
greater than 48, we use the splicing heuristic in order to speed up the search
process. The splicing heuristic is to search two short trails and concatenate
them to produce a long trail. For example, we can search r1-round differential
characteristic with output difference δ and r2-round differential characteristic
with input difference δ to construct an (r1 +r2)-round differential characteristic.
Based on the observation from our identified differential characteristic for small
number of rounds and differential characteristics presented in [4], we find that
the differential probability probably is better when the left of δ is 0x80 and
the right of δ is 0. In this way, we manually choose different values of r1 and
r2, and set δ = 0x80||0 as the output difference or input difference to search
two differential trails, then concatenate them to produce an (r1 + r2)-round
differential characteristic. For the linear approximation, we set the input mask
or output mask as 0x1||0.

Finally, the best differential characteristics and linear approximations we
found are listed in Tables 4, 5, 6 and 7, where

∑r
i=1 log2pi and

∑r
i=1 log2ci

are the probability of differential characteristic and the correlation of linear
approximation, respectively.

Note that the differential characteristics in Table 5 have been produced with
r1 = 11, r2 = 4 for Speck64 and r1 = 11, r2 = 5 for Speck 96, respectively. For
Speck128, with the splicing heuristic, we can only get an 18-round differential
characteristic with the probability 2−126 by setting r1 = r2 = 9 with reason-

Table 4. Differential characteristics for Speck32, Speck48 and Speck64

i Speck32 Speck48 Speck64

ΔL ΔR log2pi ΔL ΔR log2pi ΔL ΔR log2pi

0 0211 0A04 001202 020002 04092400 20040104

1 2800 0010 −4 000010 100000 −3 20000820 20200001 −6

2 0040 0000 −2 000000 800000 −1 00000009 01000000 −4

3 8000 8000 0 800000 800004 −0 08000000 00000000 −2

4 8100 8102 −1 808004 808020 −2 00080000 00080000 −1

5 8004 840E −3 8400A0 8001A4 −4 00080800 00480800 −2

6 8532 9508 −8 608DA4 608080 −9 00480008 02084008 −4

7 5002 0420 −7 042003 002400 −11 06080808 164A0848 −7

8 0080 1000 −3 012020 000020 −5 F2400040 40104200 −13

9 1001 5001 −2 200100 200000 −3 00820200 00001202 −8

10 202001 202000 −3 00009000 00000010 −4

11 210020 200021 −4 00000080 00000000 −2

12 80000000 80000000 0

13 80800000 80800004 −1

14 80008004 84008020 −3

15 808080A0 A08481A4 −5
∑r

i=1 log2pi −30 −45 −62
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Table 5. Differential characteristic for Speck96 and Speck128

i ΔL ΔR log2pi ΔL ΔR log2pi

0 240004000009 010420040000 0124000400000000 0801042004000000

1 082020000000 000120200000 −6 0800202000000000 4808012020000000 −6

2 000900000000 000001000000 −4 4800010000000000 0840080100000002 −6

3 000008000000 000000000000 −2 0808080000000006 4A08480800000016 −7

4 000000080000 000000080000 −1 4000400000000032 1042004000000080 −12

5 000000080800 000000480800 −2 0202000000000080 8012020000000480 −7

6 000000480008 000002084008 −4 0010000000000480 0080100000002084 −5

7 0800FE080808 0800EE4A0848 −12 8080000000002080 84808000000124A0 −5

8 000772400040 400000104200 −21 0400000000012440 2004000000080144 −9

9 000000820200 000000001202 −11 2000000000080220 2020000000480801 −9

10 000000009000 000000000010 −4 0000000000480001 0100000002084008 −7

11 000000000080 000000000000 −2 000000000E080808 080000001E4A0848 −8

12 800000000000 800000000000 0 00000000F2400040 4000000000104200 −15

13 808000000000 808000000004 −1 0000000000820200 0000000000001202 −8

14 800080000004 840080000020 −3 0000000000009000 0000000000000010 −4

15 808080800020 A08480800124 −5 0000000000000080 0000000000000000 −2

16 800400008124 842004008801 −9 8000000000000000 8000000000000000 0

17 8080000000000000 8080000000000004 −1

18 8000800000000004 8400800000000020 −3

19 8080808000000020 A084808000000124 −5∑r
i=1 log2pi −87 −119

Table 6. Linear approximations of Speck32, Speck48 and Speck64

i Speck32 Speck48 Speck64

ΓL ΓR log2ci ΓL ΓR log2ci ΓL ΓR log2ci

0 0380 5224 000131 050021 18600010 10724800

1 4880 4885 −1 018100 200101 −2 1B000000 03104000 −3

2 20A0 2071 −2 000100 000001 −1 18000000 18120000 −2

3 40A0 00C1 −2 000001 000000 0 C0000000 C0100000 −1

4 0080 4001 −3 0D0000 0C0000 −1 04000006 04800006 −1

5 0000 0001 0 606100 606C00 −2 00260030 04200030 −2

6 0004 0004 0 00024A 00620B −2 01010501 21013181 −5

7 3810 3010 −1 181040 731042 −4 01800126 00018021 −4

8 2180 01C0 −3 D812C0 9802D0 −3 00018100 20000101 −5

9 066A 0608 −2 040600 C4961A −5 00000100 00000001 −1

10 2484F2 2480F6 −2 00000001 00000000 0

11 09800000 08000000 −1

12 40610000 40680000 −2

13 00024982 00420802 −3∑r
i=1 log2ci 2−14 2−22 2−30
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Table 7. Linear approximation of Speck96 and Speck128

i ΓL ΓR log2ci ΓL ΓR log2ci

0 000001000130 040000010021 0001010000018798 6A800101300601C1

1 000000018100 200000000101 −2 0000018000300720 9400000180300625 −7

2 000000000100 000000000001 −1 0000000181818100 200000000181B105 −4

3 000000000001 000000000000 0 0000000001800120 0000000000018021 −3

4 0D0000000000 0C0000000000 −1 0000000000018100 2000000000000101 −4

5 604500000000 604C00000000 −2 0000000000000100 0000000000000001 −1

6 00224D000003 006228000003 −4 0000000000000001 0000000000000000 0

7 181070001018 1B105A680018 −12 0980000000000000 0800000000000000 −1

8 001200000010 180210400000 −6 4045000000000000 4048000000000000 −2

9 101000000000 00101A000000 −3 00224D0000000002 0042280000000002 −4

10 001800000000 000010000000 −2 1810600000000010 1A10536C00000010 −9

11 000010000000 000000000000 −1 0012000000000080 1002186000000080 −4

12 000000D00000 000000C00000 −1 0010000000000406 8010130000000406 −3

13 000006041800 000006048000 −2 3680000000002000 3080180000002004 −3

14 000030003490 000030043080 −3 8500000000010181 8524C000000101A1 −4

15 180181910500 800181A10526 −5 8002000000080001 2106000000080100 −6

16 01301A0000404401 0030180000404801 −3∑r
i=1 log2ci 2−45 2−58

able time. Thus, in order to find a better trail, we firstly search for a 13-round
differential trail with the splicing heuristic by setting r1 = 9 and r2 = 4, then
extend six rounds before the 13-round differential trial to get the 19-round dif-
ferential characteristic in Table 5, where the 6-round trail has been also found
with Gurobi.

The linear approximations in Tables 6 and 7 have been identified with the
parameters: r1 = 10, r2 = 3 for Speck64, r1 = 3, r2 = 12 for Speck96 and
r1 = 6, r2 = 10 for Speck128.

For the runtime of the searching algorithm, we spent about several hours
on personal computer (4 Core, Intel(R) Core(TM) i5 CPU 650 @3.20 GHz) for
Speck32 and about one day on IBM server (64 Core, Intel(R)Xeon(R) CPU
E7330, 2.40 GHz) for other variants of Speck. Note that we have searched for all
the differential characteristics and linear approximations for Speck32, however,
for other variants we aim to only find better trails than the previous ones but
we cannot guarantee they are the best trails.

A summary of the differential characteristics and the linear approximations
for Speck is provided in Table 2, which shows that we got better differential
characteristics and linear approximations for Speck48, Speck64, Speck96 and
Speck128.

In order to check the effect of the assumptions of independent inputs to themod-
ular addition and independent rounds for Speck, we experimentally calculate the
probability forour identifieddifferential characteristics inTables 4and 5.As it isnot
feasible to do this for many rounds, we break down the differential characteristics
to small overlapping segments according to the differential probability of the seg-



MILP-Based Automatic Search Algorithms for Differential 285

ments. The calculated probability of each one of these segments has been verified
experimentally by encrypting sufficiently many random plaintext pairs for some
arbitrary keys. The test results are shown in Table 8. In Table 8, the first column is
the tested cipher, the second column shows rounds covered by the segment of differ-
ential characteristic, the third column is the theoretic differential probability of the
corresponding segment of differential characteristic, the fourth column is the total
number of random chosen plaintext pairs used in the test, the fifth column is the
total number of tested key values, and the last column is the number of keys which
can get the calculated differential probability no less than the theoretic differential
probability. Note that we only test the last segment from round 12 to round 19 for
Speck-128 because the theoretic differential probabilities for the previous segments
are too low to be tested. From Table 8, we can see that the number of good keys sig-
nificantly deviates from the mean for some cases, which is due to the independent
assumptions for Speck cipher. Such deviation will have effect on the success rate of
the attacks in the practitioner’s perspective.

5.3 Key Recovery Attack on Speck

In [9] Dinur presented a generic key recovery framework for Speck which can
extend the differential attack for more rounds. The idea of the framework uses
the guess-and-determine technique instead of counting technique for standard
key recovery attack. Furthermore, the cryptanalytic technique of ARX cipher is
utilized to speed up the attack on Speck.

For Speck2n/mn, if the differential characteristic with probability p for r −1
rounds has been found, the attacker can add one round at the top of the differen-
tial characteristic and m rounds at the bottom of the differential characteristic

Table 8. Test for differential characteristics in Tables 4 and 5

Cipher Rounds Differential Number of Total number of Number of

of segment probability plaintext pairs keys good keys

Speck32/64 0–9 2−30 232 7040 3456

Speck48/96 0–6 2−19 222 10000 4093

Speck48/96 6–11 2−26 230 6400 2989

Speck64/128 0–6 2−19 222 10000 5513

Speck64/128 6–8 2−20 224 10000 4887

Speck64/128 8–15 2−23 226 10000 4918

Spec96/144 0–5 2−15 218 10000 5123

Spec96/144 5–7 2−16 220 10000 5039

Spec96/144 7–8 2−21 224 10000 5454

Spec96/144 8–11 2−17 220 10000 5020

Spec96/144 11–16 2−18 222 10000 4645

Spec128/256 12–19 2−23 226 10000 4876
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to cover r + m rounds in total. It is not necessary to guess the subkey in the
first round as it has no effect on the input difference. At last, the attacker can
recover the mn-bit secret key of a variant with r + m rounds of Speck2n/mn
using 2 · p−1 chosen plaintexts with time complexity of 2 · p−1 · 2(m−2)n and
memory complexity of 222 bytes.

With our identified differential characteristics for Speck, we can give the
improved key recovery attack. Since the attack is same as that in [9], details are
omitted. For each variant of Speck, we summarize our attacks and the previous
differential attacks in Table 1, which shows that our attacks for the variants of
Speck with block size 48, 64, 96 and 128 are best attacks in terms of the number
of rounds.

6 Conclusion

In this paper, we construct the MILP model to automatically search for differ-
ential and linear approximations for ARX ciphers by researching the differential
and linear property of modular addition under the assumptions of independent
inputs to the modular addition and independent rounds. Then we use the new
MILP model to search for the differential characteristics and linear approxima-
tions for Speck cipher. Compared with the previous best differential character-
istics for them, our identified differential characteristics for Speck64, Speck96
and Speck128 are extended for one, three and five rounds, respectively, and our
differential characteristic for Speck48 has higher probability. We use those new
differential characteristics to improve the currently best public attacks on the
four variants of Speck. In addition, we searched for the linear approximations for
Speck cipher and improved the previous linear approximations for Speck variants
with block size greater than 32.
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Abstract. We propose the first adaptation of Matsui’s algorithm for
finding the best differential and linear trails to the class of ARX ciphers.
It is based on a branch-and-bound search strategy, does not use any
heuristics and returns optimal results. The practical application of the
new algorithm is demonstrated on reduced round variants of block
ciphers from the Speck family. More specifically, we report the prob-
abilities of the best differential trails for up to 10, 9, 8, 7, and 7 rounds
of Speck32, Speck48, Speck64, Speck96 and Speck128 respectively,
together with the exact number of differential trails that have the best
probability. The new results are used to compute bounds, under the
Markov assumption, on the security of Speck against single-trail differ-
ential cryptanalysis. Finally, we propose two new ARX primitives with
provable bounds against single-trail differential and linear cryptanalysis –
a long standing open problem in the area of ARX design.

Keywords: Symmetric-key · Cryptanalysis · ARX · Speck

1 Introduction

ARX stands for Addition/Rotation/XOR and denotes a class of cryptographic
algorithms based on the simple arithmetic operations: modular addition, bitwise
rotation (and bitwise shift) and exclusive-OR. Although the acronym has gained
popularity only recently, algorithms using these operations have been designed
ever since the 80s.

Some notable historical examples of ARX designs are the block ciphers FEAL
(1987), RC5 (1994), and TEA (1994) (with its modified versions XTEA (1997)
and XXTEA (1998)). More recent proposals include the stream cipher Salsa20
(2008) and its variant ChaCha (2008); the hash functions BLAKE (2008) (using
a modified version of ChaCha) and Skein [12] (2008) (with its underlying block
cipher Threefish); the hash function for short messages SipHash (2012) and the
block cipher Speck [2] (2013) (both using a variant of Threefish’s MIX oper-
ation); the lightweight block cipher LEA (2013) and the MAC algorithm for
32-bit microcontrollers Chaskey (2014) (based on a reduced word-size variant of
SipHash’s round function).
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 289–310, 2016.
DOI: 10.1007/978-3-662-52993-5 15
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All mentioned ARX designs are also called pure, since they are exclusively
composed of the three basic ARX operations. In addition, there is also the sub-
class of augmented ARX designs that consists of a combination of the ARX
operations with other bitwise operations such as Boolean operators, Boolean
functions, etc. The most eminent representatives of this group are the hash
functions from the MD and SHA families.

As evidenced by the long list of proposals, there is a steady interest in the
ARX design philosophy. The reason is the simplicity and efficiency in both soft-
ware and hardware of these designs. In recent years ARX algorithms have become
especially attractive in the area of lightweight cryptography for environments
with highly constrained resources. According to new results from the Frame-
work for Fair Evaluation of Lightweight Cryptographic Systems (FELICS) [6],
presented at the NIST Lightweight Cryptography Workshop 2015 [25], the most
efficient lightweight designs have ARX structure.

The ARX class of primitives is often seen as an alternative to the well-
established class of S-box based algorithms, among whose most notable repre-
sentatives are the block cipher AES [8] and the historically significant block
cipher DES [24]. While primitives from this class make use of substitution tables
(S-boxes) as a source of non-linearity, the only non-linear component in ARX is
the modular addition operation. Due to the latter, these primitives are also less
vulnerable to cache-timing and side-channel attacks.

While ARX algorithms provide level of security comparable to S-box based
ones, they suffer from a major drawback – the methods for their analysis and
design are far less rigorous and mature. For S-box based ciphers it is possible to
compute provable bounds on the security against the two most powerful crypt-
analytic attacks – differential cryptanalysis [3] and linear cryptanalysis [19] (see
e.g. [7]). In contrast, the state of the art in the design of ARX can be sum-
marized in the following heuristic common-sense rule: mix the basic arithmetic
operations in a reasonable way and iterate them over sufficient number of rounds.
While this strategy seems to be largely successful in practice, it is based more
on experience and intuition, rather than on sound scientific arguments.

In this paper we address the mentioned problem by proposing for the first
time an algorithm that finds the best differential and linear trails of an ARX
cipher for a given number of rounds. It is based on a branch-and-bound search
strategy similar to Matsui’s search algorithm that was applied to DES [18] and
is inspired by the threshold search technique proposed in [5]. While the latter
uses heuristics in order to find high-probability trails that are not necessarily
optimal, our algorithm does not use any heuristics and finds optimal results.

The trails found with the described method are optimal under
the Markov assumption [14, Sect. 3, Theorem 2] (see also [8, Sect. 6.2,pp. 84]).
The Markov assumption ensures that (a) the analyzed primitive is a Markov
cipher in the sense of the definition in [14, Sect. 3] and (b) it can be assumed
that its round keys are chosen at random independently (i.e. the Hypothesis of
independent round keys [8, Sect. 8.7.2] holds). The Markov assumption allows
to treat the rounds of an iterated cipher independently and thus to compute the
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Table 1. Probabilities of the best (under the Markov assumption) differential trails
for Speck found with Best Search (BS) (Sect. 5) versus best probabilities found with
Threshold Search (TS) [4]. The column # lists the number of trails having the best
probability. The column R contains the number of rounds.

Speck32 Speck48 Speck64 Speck96 Speck128

R TS BS # TS BS # TS BS # BS # BS #

1 −0 −0 3 −0 −0 3 −0 −0 3 −0 3 −0 3

2 −1 −1 3 −1 −1 3 −1 −1 3 −1 3 −1 3

3 −3 −3 3 −4 −3 2 −3 −3 2 −3 2 −3 2

4 −5 −5 1 −7 −6 2 −7 −6 2 −6 2 −6 2

5 −9 −9 2 −10 −10 4 −13 −10 2 −10 2 −10 2

6 −15 −13 1 −14 −14 2 −21 −15 2 −15 2 −15 2

7 −22 −18 2 −20 −19 2 −27 −21 3 −21 2 −21 ≥ 1

8 −26 −24 7 −27 −26 12 −32 −29 ≥ 1 < −27 < −26

9 −30 −30 15 −33 −33 ≥ 1 −36 < −31

10 −34 1 −40 < −34 −40

11 −47 −44

12 −47

13 −52

14 −60

differential probability (resp. absolute linear correlation) of an r-round trail as
the product of the probabilities (resp. absolute correlations) of its corresponding
1-round trails. For ciphers that do not satisfy the Markov assumption,
fixed keys may exist for which the probability (resp. correlation) of
the best differential (resp. linear) trail may significantly deviate from
the optimal one as computed with our algorithm.

As a demonstration of the effectiveness of the technique we apply it to block
cipher Speck and we report for the first time all provably best (under the
Markov assumption) differential trails for reduced number of rounds. We also
demonstrate that in some cases the threshold search algorithm returns sub-
optimal results. These new results are summarized in Table 1.

As noted, the results shown in Table 1 are to be interpreted under the Markov
assumption. In Appendix 8 we show for the first time that Speck is not, in fact,
a Markov cipher. We stress, however, that making the Markov assumption even
for non-Markov ciphers is the best that a cryptanalyst can do in order to be able
to analyze such constructions. Furthermore, we have experimentally checked
that the reported differentials hold for most of the keys and therefore the results
shown in Table 4 are meaningful from a practitioner’s perspective.

The new technique can also be used to design new ARX primitives with
provable security bounds against linear and differential cryptanalysis – a long
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standing problem in the area of ARX design. Our main contributions can be
summarized as follow:

1. An algorithm for finding the best differential and linear trails in ARX ciphers
that satisfy the Markov Assumption.

2. The probabilities of the best differential trails for up to 10, 9, 8, 7, and 7
rounds of Speck32, Speck48, Speck64, Speck96 and Speck128 respec-
tively, together with the exact number of differential trails that have the best
probability.

3. A better choice of rotation constants for Speck w.r.t. single-trail differential
cryptanalysis.

4. Bounds on the security of Speck, under the Markov assumption, against
differential cryptanalysis, based on the reported best trails.

5. Two atomic ARX constructions with provable bounds against single-trail dif-
ferential and linear cryptanalysis.

The paper is organized as follows. We begin in Sect. 2 with a review of pre-
vious work on techniques for searching for differential and linear trails in ARX.
Section 3 provides basic definitions and propositions, necessary to follow the
exposition in subsequent sections. A general strategy for searching for the best
trails in ARX is described in Sect. 4 and the results from its application to Speck
are given in Sect. 5. Two new primitives – MARX and Speckey – with provable
bounds against single trail differential and linear cryptanalysis are proposed in
Sects. 6 and 7 concludes the paper. The notation used in the paper is summarized
in Table 2.

Table 2. Notation.

Symbol Meaning

w Word size in bits

n Total number of rounds

r Iterator over the number of rounds: 1 ≤ r ≤ n

N Cipher block size (in bits)

LSB, MSB Least Significant Bit, Most Significant Bit

x[i] The i-th bit of w-bit word x: 0 ≤ i < w: x[0] = LSB, x[w − 1] = MSB

x[i : j] The sequence of bits

x[i], x[i + 1], . . . , x[j] (if i < j) or x[i], x[i − 1], . . . , x[j] (if i > j)

� Addition modulo 2w

αr, βr Input XOR differences (resp. linear masks) to � at round r

γr Output XOR difference (resp. linear mask) of � at round r

(αr, βr → γr) A differential or a linear approximation of �
|c| Absolute value of c
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2 Previous Work

Finding high probability (resp. high absolute correlation) trails for ARX has
traditionally been a difficult task. The lack of S-boxes in this class of primitives
does not allow to efficiently compute the probabilities (resp. correlations) of all
possible differential transitions (resp. linear approximations) by the means of the
difference distribution table – DDT (resp. linear approximation table – LAT) of
the non-linear elements. This makes the construction of trails in ARX a tedious
and especially error-prone process as shown in [15]. Furthermore, while most
S-box designs are word-based with relatively small word sizes of 4 and 8 bits,
all ARX designs are bit-based with typical size of the words 32 and 64 bits. As
a consequence it is not possible to apply elegant design strategies such as the
wide-trail [7] to design primitives with provable bounds against differential and
linear cryptanalysis. Indeed the design of such an ARX construction is still an
open problem.

The described difficulties in the analysis and design of ARX have been
addressed by several researchers in the past. Depending on the angle from which
they approach the problem, their work can broadly be divided into three cat-
egories: bottom-up, top-down and approximation-based techniques. We briefly
describe these categories below.

Bottom-up Techniques. This category is by far the largest and encompasses
methods for the (automatic) construction of differential and linear trails in ARX.
Arguably the first such techniques date back to the collisions on the MD and
SHA families of hash functions by Wang et al. [34–36]. While these results were
reportedly developed by hand, subsequent methods were proposed for the fully
automatic construction of differential paths in ARX all of which were applied
to augmented ARX designs such as SHA1, SHA2, MD4 and MD5. In [16] was
proposed a method for the automatic construction of differential trails in pure
ARX designs and applied to the hash function Skein. While many of the men-
tioned techniques are general and potentially applicable to any ARX primitive,
all of them were applied exclusively to hash functions. To fill the gap, in [5]
was proposed the threshold search method for searching for differential trails in
ARX ciphers such as TEA, XTEA and Speck. This method was subsequently
extended to the case of differentials in [4]. Most recently, in 2015, two new tech-
niques for automatic search for linear trails have been proposed. One has been
applied to Speck [37], while the other is dedicated to authenticated encryption
schemes [11].

Top-down Techniques. Rather than constructing a trail one round at a time as
in the bottom-up approach, top-down techniques consider the cipher as a whole.
More precisely, the cipher is represented either as a system of Boolean equations
or as a system of mixed-integer inequalities. Each solution to the system corre-
sponds to a valid trail. In the first case, the Boolean equations are transformed
into a conjunctive normal form (CNF) formula, whose satisfying assignment/s
are found with a SAT solver. In the second case, the problem of searching for
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trails is effectively transformed into a mixed-integer linear problem (MILP) that
is usually solved by dedicated MILP solvers using linear-programming based
branch-and-bound algorithms. The SAT solver approach has been used to find
the best differential trails for several rounds of stream cipher Salsa20 and for
proving security bounds for the authenticated encryption cipher NORX. As to
the MILP-based methods, up to now they have been successful mainly in the
analysis of S-box designs [23,28]. The only applications of MILP to ARX that
we are aware of are the results on the augmented ARX cipher Simon [28] and a
very recent paper [13] on Speck appearing in this volume of FSE’16.

Approximation-based Techniques. In both top-down and bottom-up approaches,
complex techniques for analysis of existing algorithms are developed. In contrast,
in what we call approximation-based techniques, the problem is turned around:
new primitives are developed so that they are easy to be analyzed by design.
The main idea is to replace the non-linear component of ARX – the modular
addition – by a simpler non-linear approximation that can efficiently and accu-
rately be analyzed with existing methods. A design based on this strategy is
the authenticated encryption scheme NORX [1]. In it the addition operation is
replaced by the first-order approximation a ⊕ b ⊕ (a ∧ b) � 1 ≈ a � b, which
effectively limits the carry propagation to a sliding window of 2 bits. The latter
significantly facilitates the analysis of the scheme and also makes it hardware
efficient.

From the above overview of existing results it is clear that the question of
finding optimal trails in pure ARX ciphers has remained largely unexplored
so far. The only results in this direction that we are aware of are [21], which
applies a SAT solver approach and the MILP-based technique in [13]. While
the latter is potentially capable of finding optimal trails, its running time is not
well understood. To speed up the search, the authors apply a splicing heuristic
and their objective is finding better trails than existing ones rather than finding
optimal trails. We address this limitation with the method described in the
following sections.

3 Preliminaries

In this section we state basic definitions and propositions, that will be used in
later sections. We begin with the definitions of the differential probability xdp+

and the linear correlation xlc+.

Definition 1 (xdp+). The XOR differential probability (DP) of addition modulo
2w (xdp+) is the probability with which input XOR differences α and β propagate
to output XOR difference γ through the modular addition operation. The proba-
bility xdp+ is computed over all pairs of w-bit inputs (x, y):

xdp+(α, β → γ) = 2−2w · #{(x, y) : ((x ⊕ α) + (y ⊕ β)) ⊕ (x + y) = γ} . (1)
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The linear correlation xlc+ is defined in a similar way:

Definition 2 (xlc+). The XOR linear correlation (LC) of addition modulo 2w

(xlc+) is the correlation of the linear approximation (αT x) ⊕ (βT y) = (γT z),
where x, y, z : x + y = z mod 2w are w-bit values and α, β and γ are w-bit
linear masks, all represented as binary vectors of dimension w×1. The operation
ΓT a denotes the dot product between the transposed vector Γ (the mask) and the
vector a. The correlation xlc+ is computed over all pairs of w-bit inputs (x, y):

xlc+(α, β → γ) = 2−2w+1 · #{(x, y) : (αT x) ⊕ (βT y) = (γT z)} − 1 . (2)

The absolute value of the linear correlation is denoted by |xlc+|.

The probability xdp+ has the following property noted in [5, Sect. 2, Proposi-
tion 1]:

Proposition 1 (Monotonicity of xdp+). Let α, β and γ be w-bit XOR dif-
ferences. Denote with p̃i (w ≥ i ≥ 1) the probability xdp+(α[i − 1 : 0], β[i − 1 :
0] → γ[i − 1 : 0]) of the partial differential composed of the i LS bits of α, β, γ.
Then the probability xdp+ is monotonously decreasing with the word size of the
differences in the direction LSB to MSB:

p̃1 ≥ p̃2 . . . ≥ p̃w−1 ≥ p̃w = xdp+(α, β → γ) . (3)

Similar property holds also for |xlc+|, but in this case the correlation decreases
from MSB to LSB of the masks:

Proposition 2 (Monotonicity of xlc+). Let α, β and γ be w-bit linear masks.
Denote with c̃i (w−1 ≥ i ≥ 0) the absolute value of the correlation xlc+(α[w−1 :
i], β[w − 1 : i] → γ[w − 1 : i]) of the partial linear approximation composed of the
w − i MS bits of α, β, γ. Then the absolute correlation |xlc+| is monotonously
decreasing with the word size of the masks in the direction MSB to LSB:

c̃w−1 ≥ c̃w−2 . . . ≥ c̃1 ≥ c̃0 = |xlc+(α, β → γ)| . (4)

The DP and LC of modular addition have been thoroughly studied in the
literature and optimal methods for their computation have been proposed by sev-
eral authors: [17,22,33](for xdp+) and [10,20,26,27,32,33] (for xlc+). All cited
methods are linear in the size of the differences (resp. masks).

In the following sections, for computing xdp+ we use the method proposed
in [17] and for xlc+ we use the algorithm described in [10].

4 Best Trail Search for ARX

In this section we describe for the first time a Matsui-like algorithm for finding
the best differential and linear trails in ARX ciphers for which the Markov
assumption holds. Our technique belongs to the class of bottom-up approaches.
It is based on Matsui’s branch-and-bound algorithm [18], originally designed for
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the class of S-box ciphers, and is inspired by the threshold search algorithm
proposed in [5].

To search for the best trail on n rounds of a cipher, Matsui’s algorithm is
initialized with the best probabilities B1, B2, . . . , Bn−1 for the first n− 1 rounds
and an over-estimation Bn ≤ Bn of the best probability Bn for n rounds (the
bound). The search proceeds recursively over the rounds starting from the first
(r = 1) and gradually builds a trail until the n-th round is reached. At every
round 1 ≤ r ≤ n the probability

∏r
i=1 pi of the partially constructed trail up to

round r is multiplied by the best probability Bn−r for the remaining n−r rounds
to obtain an estimate for the full trail. If Bn−r

∏r
i=1 pi < Bn (i.e. the estimate

is lower than the bound), the algorithm backtracks to the previous round. In
this way branches of the recursion tree, that are not prospective, are cut. At
the last round the probability of the full trail is compared to the bound and
if it is bigger, the bound is set to the new probability: Bn ←

∏n
i=1 pi. The

procedure terminates when the bound Bn can not be updated any more. As
long as the condition Bn ≤ Bn is preserved, the returned result is guaranteed
to be optimal. The probabilities (resp. correlations) pi are computed by means
of the DDT (resp. LAT) of the cipher’s S-box.

In [5] was proposed a variant of Matsui’s algorithm applicable to the class
of ARX ciphers, called threshold search. The main idea is to consider addition
modulo 2w as a large S-box of size 22w×2w. Since computation of the full DDT of
this S-box is infeasible for typical word sizes of w ≥ 16 bits, the authors propose
to use a DDT with reduced size, called partial DDT (or pDDT). The pDDT is
composed of (a subset of) all differential transitions that have probability larger
than- or equal to a predefined probability threshold. The value of the threshold
and the maximum allowed size of the pDDT are chosen heuristically depending
on the analyzed primitive. Another proposed heuristic is a limit on the Hamming
weight of the differences.

If an input difference with no matching output difference in the pDDT is
encountered during the search, a second pDDT is computed on-the-fly. The
latter is composed of transitions that (a) have probabilities that are likely to
improve the probability of the best trail found so far and (b) are guaranteed to
result in input differences to the next round, that have at least one matching
output difference in the initial pDDT (as illustrated by the The Highways and
Country Roads Analogy [5]). Due to the use of the mentioned heuristics, the
trails found by the threshold search algorithm are not necessarily optimal.

Inspired by the threshold search approach, we propose a new variant of
Matsui’s algorithm for the class of ARX. In contrast to [5] our technique does not
use any heuristics and finds optimal results. The main new idea is to add a second
recursion at bit-level over the bits of the differences (resp. linear masks) in addi-
tion to the original recursion over the rounds. This modification preserves the
optimality of the search due to the monotonicity properties of modular addition
stated as Propositions 1 and 2 in Sect. 3. These properties allow us, at every
round r, to compute the probability of the partially constructed trail at the
bit-level using the partially constructed differences (resp. masks) at round r.
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Unprospective branches of the search tree are thus effectively cut not only at
round-level, but also at bit-level.

In more detail, let αr[0 : i], βr[0 : i] and γr[0 : i] be resp. input and output
differences to the modular addition at round r, that are partially constructed
up to bit i (i.e. only the i + 1 LS bits of the words are assigned). Let p̃r be
the probability of the corresponding partially constructed differential: (αr[0 :
i], βr[0 : i]) → γr[0 : i]. Then at round r and bit i, the algorithm checks whether
the following condition holds: Bn−rp̃r

∏r−1
i=1 pi ≥ Bn i.e. if the product of the

probability
∏r−1

i=1 pi of the partially constructed trail up to round r − 1 and the
probability p̃r of the partially constructed differential up to bit i at round r and
the best probability Bn−r for the remaining n− r rounds is still at least as good
as the bound Bn. If yes, then the search proceeds recursively to the next bit
position i + 1 or, if i = w, to the next round r + 1. Otherwise, it backtracks to
the previous bit or, if i = 0, to the previous round.

With the described strategy, we effectively deal with the problem of having
to store huge number of possible transitions through the addition operation.
Consequently it is not necessary to maintain a (partial) DDT or to use addi-
tional heuristics such as probability and Hamming weight thresholds to limit
the search and storage space. Moreover, our algorithm is conceptually closer to
Matsui’s original proposal than the threshold search. In his paper [18], Matsui
also describes a second level of recursion over the 8 S-boxes of DES (cf. proce-
dure Round-2-j in [18, Sect. 4, p. 371]). With it the probability of a partial trail
is computed up to round r − 1 and up to S-box i at round r, where 1 ≤ i ≤ 8.
This S-box level recursion is analogous to the proposed bit-level recursion for
modular addition.

In the following sections we use the block cipher Speck to illustrate the
application of the new technique in practice.

5 Application to SPECK

5.1 Description of SPECK

Speck is a family of lightweight block ciphers proposed in [2]. It is composed
of the five instances Speck32, Speck48, Speck64, Speck96 and Speck128,
corresponding resp. to the block sizes 32, 48, 64, 96 and 128 bits. Note that the
instance SpeckN has N/2-bit word size. In the following, with Speck we denote
any of the five variants if not otherwise specified.

Speck is a pure ARX cipher with a Feistel-like structure in which both
branches are modified at every round. Let Xr−1,L and Xr−1,R be respectively
the right and left N/2-bit input words to the r-th round of SpeckN (r ≥ 1)
and let kr be the N/2-bit round key applied at round r (see Fig. 1 (Left)). Then
the output words Xr,L, Xr,R from round r (input words to round r + 1) are
computed as follow:

Xr,L = ((Xr−1,L ≫ r1) � Xr−1,R) ⊕ kr , (5)
Xr,R = (Xr−1,R ≪ r2) ⊕ Xr,L . (6)
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Xr−1,L Xr−1,R

≫ r1

kr

≪ r2

Xr,L Xr,R

≫ r1

αr
βr

γr

kr

≪ r2

γr γr ⊕ (βr ≪ r2)

≫ r1

αr
βr

γr

•

kr

≪ r2

•

Γr,L Γr,R

Fig. 1. Left: The round function of Speck. Middle: Propagation of differences: αr =
γr−1 ≫ r1, βr = γr−1 ⊕ (βr−1 ≪ r2). Right: Propagation of linear masks: αr =
Γr−1,L ≫ r1, βr = Γr−1,R ⊕ (Γi,R ≫ r2), γr = Γi,L ⊕ Γi,R. The • sign denotes a
“three-forked branch” and acts as a XOR on the linear masks [18]. Differences γr (resp.
masks βr, γr) in bold can be freely chosen.

The rotation constants r1, r2 are specified as: r1 = 7, r2 = 2 for Speck32 and
r1 = 8, r2 = 3 for all other versions. The round function of Speck is depicted in
Fig. 1 (Left).

Every instance of the Speck family supports several key sizes and the total
number of rounds depends on the key size. A summary of the parameters (block
size, key size, number of rounds) of all instances of the family is presented in
Table 3.

Table 3. Speck parameters: block size (bits), key size (bits), number of rounds.

Instance Block Word Key Rounds Key Rounds Key Rounds

SpeckN size (N) size (N/2) size size size

Speck32 32 16 64 22

Speck48 48 24 72 22 96 23

Speck64 64 32 96 26 144 29

Speck96 96 48 96 28 144 29

Speck128 128 64 128 32 192 33 256 34

The key schedule of Speck is based on a simple ARX function that is iterated
a fixed number of times. We omit its description herein, as it is not relevant to
the presented results. For the detailed description of the Speck family we refer
the reader to the original proposal [2].
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5.2 Best Trail Search for Speck

In this section we apply the technique described in Sect. 4 in order to find the best
(under the Markov assumption) linear and differential trails of reduced-round
variants of Speck.

Differential Trail Search. The pseudo-code of the algorithm for the best differen-
tial trail search applied to Speck is shown in Algorithm 1. It has three parts: first
round (lines (4)–(14)), middle rounds (lines (16)–(25)) and last round (lines (27)–
(37)). Every part is composed of two blocks corresponding to the two levels of
recursion. In the first round the procedure starts by recursing over the bits of the
differences (lines (10)–(14)) beginning with the LSB. When the MSB is reached
(line (5)) (i.e. the differences αr, βr, γr are fully constructed), the procedure
switches back to the first block (lines (5)–(8)), where it recurses into the next
round (line (8)). The logic for the middle and last rounds is the same with the
exception that the bit level recursion is over the bits of the output difference γr

only (lines (22)–(25) and (34)–(37) resp.) and not over the bits of all differences
as in the first round. The reason is that the input differences αr and βr to the
addition in the middle and last rounds are fixed from the previous round by the
following relation: αr = γr−1 ≫ r1, βr = γr−1 ⊕ (βr−1 ≪ r2) (see line (7) and
Fig. 1 (middle)). In addition, at the last round there is no further round level
recursion, but instead the bound Bn is updated (line (32)).

We estimate the complexity of the differential search algorithm as follows. Let
m1 ≤ 23w be the number of differences α1, β1 and γ1 in the first round, for which
the probability of the differential (α1, β1 → γ1) is higher than Bn/Bn−1: m1 =
#{(α1, β1, γ1) : xdp+(α1, β1 → γ1) ≥ Bn/Bn−1}. Analogously, let mr ≤ 2w be
the number of differences γr in any middle or last round r ≥ 2 for which, for
fixed αr and βr, the probability of the differential (αr, βr → γr) is higher than
Bn/(Bn−r

∏r
i=1 pi): mr = #{γr : xdp+(αr, βr → γr) ≥ Bn/(Bn−r

∏r
i=1 pi)},

and let m be the maximum among these values: m = maxn≥r≥2 (mr). Then
the complexity of Algorithm 1 has the form O(

∏n
r=1 mr) ≤ O(m1m

r−1), which
is significantly lower than the complexity of full search 23w2w(r−1) = 2w(r+2) as
indicated by our experiments. However, the precise quantification of the values
mr, r ≥ 1 is difficult, since they change dynamically during the search. The
latter is a separate problem in itself, that can be investigated in future research.

Linear Trail Search. The algorithm for linear search for Speck is analogous
to the differential case with one significant difference, arising from the way in
which linear masks propagate through the round function (see Fig. 1 (right)).
Recall that in the differential search, the differences αr and βr in the middle
and last rounds are fixed from the previous round. In contrast, in the linear
case only the mask αr is fixed (with the relation αr = γr−1 ≪ r1), while βr

depends on the right output masks Γr−1,R and Γr,R resp. from the previous and
current round: βr = Γr−1,R ⊕ (Γr,R ≫ r2). Due to this fact, in the middle and
last rounds the linear search algorithm performs a recursion over the bits of one
more variable (βr) in addition to γr. Furthermore, since the mask Γr−1,R can
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Algorithm 1. Search for the Best Differential Trails in ARX (Application to
Speck).
Input: |

n : num. rounds; w: word size in bits; r1, r2: right and left rot. const.;
r : current round (n ≥ r ≥ 1);
i : current bit position (w > i ≥ 0);
B = (B1, B2, . . . , Bn−1) : probs. of the best trails for rounds 1, 2, . . . , (n − 1);

Bn : underestimate of the best prob. for n rounds: Bn ≤ Bn;
T = (T1, T2, . . . , Tr−1): Ti = (αi, βi, γi, pi) : pi = xdp+(αi, βi → γi), 1 ≤ i < r;
(αr, βr, γr): input and output differences to the mod. addition at round r;
p̃r : probability of the partial differential (αr[0 : i], βr [0 : i] → γr[0 : i]);

Output: |
Bn, T : the best prob. for n rounds and corresponding trail;

1: // Initialization: r ← 1, i ← 0, αr ← ∅, βr ← ∅, γr ← ∅
2: procedure best diff search(r, i, αr, βr, γr) do
3: // First round
4: if (r = 1) ∧ (r 	= n) then
5: if i = w then
6: pr ← xdp+(αr, βr → γr); Tr ← (αr, βr, γr, pr); add Tr to T ;
7: i ← 0; αr+1 ← (γr ≫ r1); βr+1 ← γr ⊕ (βr ≪ r2); γr+1 ← ∅;
8: call best diff search(r + 1, i, αr+1, βr+1, γr+1)
9: else

10: for jα, jβ , jγ ∈ {0, 1} do
11: αr [i] ← jα; βr[i] ← jβ ; γr[i] ← jγ ;

12: p̃r ← xdp+(αr [0 : i], βr[0 : i] → γr[0 : i]);

13: if (p̃r Bn−1) ≥ Bn then
14: call best diff search(r, i + 1, αr, βr, γr)
15: // Intermediate rounds
16: if (r > 1) ∧ (r 	= n) then
17: if i = w then
18: pr ← xdp+(αr, βr → γr); Tr ← (αr, βr, γr, pr); add Tr to T ;
19: i ← 0; αr+1 ← (γr ≫ r1); βr+1 ← γr ⊕ (βr ≪ r2); γr+1 ← ∅;
20: call best diff search(r + 1, i, αr+1, βr+1, γr+1)
21: else
22: for jγ ∈ {0, 1} do

23: γr[i] ← jγ ; p̃r ← xdp+(αr[0 : i], βr[0 : i] → γr[0 : i])

24: if (p1 p2 . . . pr−1 p̃r Bn−r) ≥ Bn then
25: call best diff search(r, i + 1, αr, βr, γr)
26: // Last round
27: if (r = n) then
28: if i = w then
29: pn ← xdp+(αn, βn → γn); Tn ← (αn, βn, γn, pn); add Tn to T ;

30: if (p1 p2 . . . pn−1 pn) ≥ Bn then
31: // Update bound and return to upper round

32: Bn ← (p1 p2 . . . pn−1 pn)
33: else
34: for jγ ∈ {0, 1} do

35: γn[i] ← jγ ; p̃n ← xdp+(αn[0 : i], βn[0 : i] → γn[0 : i])

36: if (p1 p2 . . . pn−1 p̃n) ≥ Bn then
37: call best diff search(r, i + 1, αr, βr, γr)
38: return

be freely chosen in the first round, an additional iteration over all such masks is
performed. The latter is independent of the bound Bn and therefore represents a
fixed cost of 2w additional iterations. All this added complexity makes the linear
search algorithm feasible only for the version Speck32.

Due to the mentioned differences, the complexity of the linear search
is significantly higher than the differential search. Let m1 ≤ 23w be the
number of masks α1, β1 and γ1 in the first round, for which the absolute
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correlation of the linear approximation (α1, β1 → γ1) is higher than Bn/Bn−1:
m1 = #{(α1, β1, γ1) : |xlc+(α1, β1 → γ1)| ≥ Bn/Bn−1}. Let mr ≤ 22w be
the number of masks βr and γr in any middle or last round r ≥ 2 for which,
for fixed αr, the absolute correlation of the linear approximation (αr, βr → γr)
is higher than Bn/(Bn−r

∏r
i=1 ci): mr = #{(βr, γr) : |xlc+(αr, βr → γr)| ≥

Bn/(Bn−r

∏r
i=1 ci)}, and let m = maxn≥r≥2 (mr). Then the complexity of the

linear search algorithm has the form: O(2w
∏n

r=1 mr) ≤ O(2wm1m
r−1), which

is much less than the complexity of full search 24w22w(r−1) = 22w(r+1). In the
former, notice the factor 2w due to the additional iteration over all w-bit masks
Γr−1,R in the first round. Again, similarly to the differential case, the precise
quantification of the values mr, r ≥ 1 in the linear case is difficult.

While the higher complexity of the linear search algorithm makes it infeasible
for versions of Speck other than Speck32, Algorithm 1 is quite practical as
shown by the results reported in the following section.

5.3 Results

With Algorithm 1 we find the best differential trails for reduced round variants of
all versions of Speck under the Markov assumption. Table 1 compares our results
to the ones obtained with the threshold search algorithm with the parameters
given in [4, Sect. 6, Table 6]: probability threshold pthres = 2−5, Hamming weight
threshold hwthres = 7 and maximum pDDT size 230. From the table it can be
seen that for certain number of rounds Algorithm1 significantly improves the
probabilities found with threshold search.

The execution times of Algorithm 1 for different number of rounds are shown
in Table 4. Most of the measurements were done on a PC with Intel R© CoreTM

Table 4. Probabilities and running times for the best (under the Markov assump-
tion) differential trails for Speck obtained with Algorithm 1 (log2 scale). Platforms:
Intel R© CoreTM E5-2637 CPU 3.50GHz or HPC cluster for ≥ 7 rounds. The column t pro-
vides the timeneeded to finda single best trail in s/m/h/d=seconds/minutes/hours/day,
where 1 day = 24 h. Note: times are rounded up.

# R Speck32 t Speck48 t Speck64 t Speck96 t Speck128 t

1 0 0s 0 0s 0 0s 0 0s 0 0s

2 −1 0s −1 0s −1 0s −1 0s −1 0s

3 −3 0s −3 0s −3 0s −3 0s −3 0s

4 −5 0s −6 0s −6 0s −6 6s −6 22s

5 −9 0s −10 1s −10 1m −10 5m −10 26m

6 −13 1s −14 3s −15 26m −15 5h −15 2d

7 −18 1m −19 1m −21 4h −21 5d −21 3h

8 −24 34m −26 9m −27 22h < −27 3d < −26 2d

9 −30 12m −33 7d < −31 1d

10 −34 6m < −34 3h
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E5-2637 CPU 3.50GHz. Exceptions are the results for more than 7 rounds and
block sizes larger than 48 bits, which were obtained using a parallel version of
Algorithm 1 executed on the HPC cluster of the University of Luxembourg [29].
The memory requirements in all cases are negligible.

A final note on the search strategy used for obtaining the times in Table 4:
when searching for the best probability for n rounds, we initialize the bound
Bn to the best probability for (n − 1) rounds: Bn ← Bn−1. If no trail with this
probability is found, the bound is decreased by a factor of 2: Bn ← Bn/2. This
process continues until a trail with probability equal to the bound is found. Thus
the times shown in Table 4 are measured from the start of the program to the
moment when the first trail is found.

5.4 Towards Security Bounds for Speck

The results from Table 4 can be used to trivially obtain upper bounds (under
the Markov assumption) on the security of Speck against single-trail differential
cryptanalysis. For example, given the probability pr of the best trail on r rounds
and the probability ps of the best trail on s rounds, the product prps gives
an upper bound on the probability of any trail on r + s rounds. The latter is
equivalent to the statement that any trail on r + s rounds has probability at
least prps or lower. We use this approach to compute upper bounds (under the
Markov assumption) on the probabilities of the best trails on all versions of
Speck. The results are shown in Table 5.

In view of the probabilities of the best found trails on Speck reported in [4,
Sect. 6, Table 6], the bounds in Table 5 are not tight.

5.5 On the Choice of Rotation Constants

We investigated the way in which the choice of the rotation constants r1 and r2

(see Fig. 1 (Left)) of Speck32, Speck48 and Speck64 influences the DP of the
best trails. For that purpose we assume that the exact values of the constants
are not as important as their relative difference. Under this assumption, we

Table 5. Upper bounds on the best (under the Markov assumption) probabilities of
differential trails on Speck computed using the best probabilities from Table 4 (log2

scale).

Instance Upper Rounds Upper Rounds Upper Rounds

Bound Bound Bound

Speck32 −69 22

Speck48 −72 22 −76 23

Speck64 −91 26 −96 29

Speck96 −90 28 −94 29

Speck128 −104 32 −104 33 −105 34
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Table 6. Best differential probabilities (DP) for 9 rounds of Speck32, 7 rounds of
Speck48 and 6 rounds of Speck64 for 16 choices of the rotation constant r1 with r2
fixed to its original value (Fig. 1 (Left)) (log2 scale).

r1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Speck32 −21 −25 −24 −30 −27 −30 −25 −30 −24 −31 −26 −29 −27 −27 −22 −24

Speck48 −11 −15 −20 −16 −21 −21 −19 −21 −19 −17 −19 −20 −13 −21 −20 −19

Speck64 −8 −13 −15 −13 −15 −15 −14 −15 −15 −15 −15 −15 −15 −13 −13 −15

fixed r2 to its original value and varied r1 over the first 16 possibilities. For each
choice, we determined the probability of the best differential trail for 9 rounds
of Speck32, 7 rounds of Speck48 and 6 rounds of Speck64 using Algorithm 1.
The results are presented in Table 6.

From Table 6 it can be seen that the original choice of rotation constants:
r1 = 7 and r2 = 2 for Speck32 and r1 = 8 and r2 = 3 for Speck48 is not
optimal w.r.t. the probability of the best differential trail. In the former case, it
results in DP of 2−30 over 9 rounds, while the optimal choice: r1 = 9 and r2 = 2
results in probability 2−31. In the latter case, the original rotation constants
(8, 3) result in DP of 2−19 over 7 rounds, while the choices (4, 3), (5, 3), (7, 3)
and (13, 3) result in lower probability 2−21. This may hint that we have found
better rotation constants for Speck. To be certain however, similar experiments
for the linear case must also be conducted. In addition, the implementation cost
of each pair of constants must be taken into account. Therefore the optimal
choice of r1 and r2 requires further investigation.

6 MARX and Speckey: ARX Primitives with Provable
Bounds

A limitation of Algorithm 1 is that its complexity significantly increases with
the number of rounds and word sizes as indicated by Table 4. To address this
problem, in this section we propose two new primitives – MARX and Speckey
for which it is feasible to compute the probabilities and linear correlations of the
best trails for any number of rounds and which satisfy the Markov assumption.
Both primitives have 32-bit state and 32-bit round key.

MARX (from MIX + ARX) is based on the round function of Threefish-
256 [12] (with its basic component – the MIX operation) with 8-bit words. This
round function is wrapped within a key addition on the input and on the output
and is iterated over a fixed number of rounds. Speckey, as the name suggests,
is based on block cipher Speck. More precisely, it is Speck32 with modified key
addition. The round functions of MARX and Speckey are shown on Fig. 2.

To choose the rotation constants of MARX, we exhaustively searched all
possible pairs of constants and applied Algorithm1 and its linear search version
to the resulting variants. Based on the results we selected the constants r1 = 2
and r2 = 5, as they provided differential probability (DP) ≤ 2−32 and absolute
linear correlation (LC) ≤ 2−17 over a minimal number of rounds, namely 12. As
to the word permutation, before settling for the one used in Threefish-256, we
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Fig. 2. Left: MARX (from MIX + ARX), based on the round function of Threefish-
256 [12] with 32-bit state, 32-bit round key and 8-bit words; Right: Speckey – a
variant of Speck32 with modified key addition.

Table 7. Best differential probabilities (DP) and absolute linear correlations (LC) of
MARX and Speckey (log2 scale).

# R 1 2 3 4 5 6 7 8 9 10 11 12

DPMARX −0 −0 −1 −2 −5 −9 −14 −20 −25 −29 −32 −34

LCMARX −0 −0 −0 −1 −2 −4 −7 −10 −13 −15 −16 −17

DPSpeckey −0 −1 −3 −5 −9 −13 −18 −24 −30 −34

LCSpeckey −0 −0 −1 −3 −5 −7 −9 −12 −14 −17

also considered a Feistel-like variant in which the words are circularly rotated
right by one. However this variant required more rounds to reach full diffusion
(best DP 2−32 and best absolute LC 2−17) compared to Threefish-256 – on
average two more rounds were necessary.

The best DP and LC of MARX and Speckey are shown in Table 7.
The main advantage of MARX and Speckey over Speck32 is that due to

the full state key addition at the beginning of every round, these two primitives
belong to the class of key-alternating ciphers [9, Sect. 5.1, Definition 2], which
is a sub-class of Markov ciphers and therefore satisfies the Markov assump-
tion. In addition, due to the 8 bit modular addition, MARX may be a more
suitable choice for devices with 8-bit microprocessors. A disadvantage is that
MARX needs two more rounds to achieve full diffusion compared to Speck32
(see Table 7) and that both MARX and Speckey use more operations per round
compared to Speck32. In Appendix 9 is described a variant of MARX, called
MARX2, that achieves full diffusion in the same number of rounds as Speck32
at the expense of two additional rotation operations.

Finally, we stress that the proposed new primitives are intended to serve
mainly as an example of how the best trail search algorithms can be used to
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design new ARX constructions with provable properties. At present, MARX
and Speckey have not undergone sufficient analysis against other cryptanalytic
techniques for us to have enough confidence in their cryptographic properties.

7 Conclusion

In this paper we proposed for the first time an adaptation of Matsui’s algorithm
for finding the best differential and linear trails in ARX ciphers. We showed
the practical application of the new method on reduced round variants of block
ciphers from the Speck family and we reported the first provably best differential
trails on these variants. The new results were used to compute the first bounds
(under the Markov assumption) on the security of Speck against single-trail
differential cryptanalysis. In addition, we also reported better choices of the
rotation constants for Speck w.r.t. single-trail differential cryptanalysis. Finally,
we proposed two new ARX primitives – MARX and Speckey – which satisfy
the Markov assumption and have provable bounds against single-trail differential
and linear cryptanalysis – a long standing open problem in the area of ARX
design. The source code of the tools for best trail search for Speck, Speckey
and MARX is publicly available as part of the YAARX Toolkit [30] and a
snapshot of the source tree is uploaded on the CryptoLUX website [31].

Acknowledgments. We thank our colleagues from the Laboratory of Algorithmics,
Cryptology and Security (LACS) at the University of Luxembourg for the stimulating
discussions. Some of the experiments presented in this paper were carried out using
the HPC facilities of the University of Luxembourg [29] – see http://hpc.uni.lu.

Appendix

8 Showing that Speck is not a Markov Cipher

In this section we show, by the means of a counter example, that Speck is not
a Markov cipher. For the purpose, we use an equivalent representation of the
round function of Speck (Fig. 1 (left)), shown on Fig. 3 (left).

According to the formal definition [14, Sect. 3], a Markov cipher is an iterative
cipher, whose round function is such that its differential probability is indepen-
dent of the input values, under an appropriate definition of a difference. More
formally, let f be the round function of an iterative cipher and let x and y be
resp. an input and output state and k be the round key: y = f(x, k). Let Δx
denote an XOR difference between two input values x and x∗: Δx = x ⊕ x∗.
Finally, let P

k
and P

x,k
denote the differential probability of f resp. over all round

keys k and over all input values and round keys (x, k). Then, if a cipher is
Markov, the two probabilities should be equal:

P
k
(Δy|Δx, x) = P

x,k
(Δy|Δx) . (7)

http://hpc.uni.lu
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A
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B

≪ r2

≫ r1

B ≫ r1 (A ≪ r2) ⊕ B

k2
≪ r2

Fig. 3. Left: Equivalent representation of one round of Speck. Middle: Main non-
linear component of Speck, illustrating two differentials that differ in probabil-
ity and hence contradict the Markov assumption: P ((3, 1)|(0, 1), (0, 0)) = 2−1 and
P ((3, 1)|(0, 1)) = 2−2. Right: Dependency between the inputs to the addition in one
round (B) and between the inputs to consecutive rounds (A).

In other words, for a Markov cipher the differential probability of f is indepen-
dent of the input values x for all x (when the subkey is uniformly random).

To show that Speck is not a Markov cipher, it is enough to provide values for
x, Δx and Δy for which equation (7) does not hold. To do this, we use the main
non-linear component of Speck shown on Fig. 3 (middle). For this component,
for the following values x = (xL, xR) = (0, 0), Δx = (ΔxL,ΔxR) = (0, 1) and
Δy = (ΔyL,ΔyR) = (3, 1) the two probabilities in (7) are not equal:

P
k
(Δy = (3, 1)|Δx = (0, 1), x = (0, 0)) = 2−1

�= P
x,k

(Δy = (3, 1)|Δx = (0, 1)) = 2−2 . (8)

An illustrative example of the dependency between the inputs to the addition
operation in one round and between the inputs to consecutive rounds is shown
on Fig. 3 (right).

9 MARX2: A Variant of MARX with Improved Diffusion

In this section we describe MARX2 – a variant of MARX with improved dwo
additional rotation operations and its round function is depicted in Fig. 4.

As can be seen from Fig. 4, MARX2 is composed of two parallel applica-
tions of the round function of Speck with 8-bit words. Due to the additional
rotation operations it achieves full diffusion in the same number of rounds
as Speck32, namely 10. The best DP and LC for the recommended rotation
amounts (r1, r2, r3, r4) = (2, 3, 1, 7) are shown in Table 8.



Automatic Search for the Best Trails in ARX 307

⊕ki−1

≪ r3

≪ r1

≪ r4

≪ r2

⊕ki

Fig. 4. MARX2: a variant of MARX with two additional rotations for improved diffu-
sion. The recommended rotation amounts are (r1, r2, r3, r4) = (2, 3, 1, 7)

Table 8. Best differential probabilities (DP) and absolute linear correlations (LC) of
MARX2 with rotation constants (r1, r2, r3, r4) = (2, 3, 1, 7) – see Fig. 4 (log2 scale).

# R 1 2 3 4 5 6 7 8 9 10

DPMARX2 −0 −1 −3 −5 −11 −16 −22 −25 −29 −35

LCMARX2 −0 −0 −1 −3 −5 −8 −10 −13 −15 −17

The rotation constants of MARX2 have been chosen by exhaustively search-
ing over all four rotation values (4095 values in total, excluding the all-zero
choice). For each set of amounts we applied Algorithm 1 and its linear search
variant and recorded the number of rounds necessary to reach full diffusion. The
results show that no set of rotation constants exists for which full diffusion can
be reached in less than 10 rounds. From the constants that ensure diffusion in 10
rounds we have selected (r1, r2, r3, r4) = (2, 3, 1, 7) as the recommended choice
since for this set we get slightly better DP than Speck32 (2−35 vs. 2−34). In
addition, all constants from the set are different and are not multiples of each
other, which may also be considered desirable properties. Other choices that
also result in full diffusion for 10 rounds are: (2, 3, 7, 2), (2, 3, 1, 2) and (5, 5, 2, 7).
Note that the constants (r1, r2, r3, r4) and (r2, r1, r4, r3) are equivalent.

Finally, we note that MARX2 is an illustration of another strategy for increas-
ing the block size of an ARX cipher. Rather than increasing the word size from
N to 2N , as is done in Speck, in order to increase the block size the designer
may alternatively double the number of N -bit block components as in MARX2.
This approach may result in improved efficiency on some platforms, such as e.g.
32-bit ARM, where the cost of a bit rotation is constant.
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Abstract. In typical applications of homomorphic encryption, the first
step consists for Alice to encrypt some plaintext m under Bob’s public key
pk and to send the ciphertext c = HEpk(m) to some third-party evaluator
Charlie. This paper specifically considers that first step, i.e. the problem of
transmitting c as efficiently as possible from Alice to Charlie. As previously
noted, a form of compression is achieved using hybrid encryption. Given a
symmetric encryption scheme E, Alice picks a random key k and sends a
much smaller ciphertext c′ = (HEpk(k),Ek(m)) that Charlie decompresses
homomorphically into the original c using a decryption circuit CE−1 .

In this paper, we revisit that paradigm in light of its concrete imple-
mentation constraints; in particular E is chosen to be an additive IV-
based stream cipher. We investigate the performances offered in this
context by Trivium, which belongs to the eSTREAM portfolio, and we
also propose a variant with 128-bit security: Kreyvium. We show that
Trivium, whose security has been firmly established for over a decade,
and the new variant Kreyvium have an excellent performance.

Keywords: Stream ciphers · Homomorphic cryptography · Trivium

1 Introduction

Since the breakthrough result of Gentry [30] achieving fully homomorphic
encryption (FHE), many works have been published on simpler and more effi-
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cient schemes based on homomorphic encryption. Because they allow arbitrary
computations on encrypted data, FHE schemes suddenly opened the way to
exciting new applications, in particular cloud-based services in several areas (see
e.g. [33,42,46]).

Compressed Encryption. In these cloud applications, it is often assumed that
some data is sent encrypted under a homomorphic encryption (HE) scheme to
the cloud to be processed in a way or another. It is thus typical to consider,
in the first step of these applications, that a user (Alice) encrypts some data
m under some other user’s public key pk (Bob) and sends some homomorphic
ciphertext c = HEpk(m) to a third-party evaluator in the Cloud (Charlie). The
roles of Alice and Bob are clearly distinct, even though they might be played by
the same entity in some applications.

However, all HE schemes proposed so far suffer from a very large ciphertext
expansion; the transmission of c between Alice and Charlie is therefore a very
significant bottleneck in practice. The problem of reducing the size of c as effi-
ciently as possible has first been considered in [46] wherein m is encrypted with
a symmetric encryption scheme E under some key k randomly chosen by Alice,
who then sends a much smaller ciphertext c′ = (HEpk(k),Ek(m)) to Charlie.
Given c′, Charlie then exploits the homomorphic property of HE and recovers

c = HEpk(m) = CE−1 (HEpk(k),Ek(m))

by homomorphically evaluating the decryption circuit CE−1 . This can be assimi-
lated to a compression method for homomorphic ciphertexts, c′ being the result
of applying a compressed encryption scheme to the plaintext m and c being
recovered from c′ using a ciphertext decompression procedure. In that approach
obviously, the new encryption rate |c′|/|m| becomes asymptotically close to 1 for
long messages, which leaves no significant margin for improvement. However, the
paradigm of ciphertext compression leaves totally open the question of how to
choose E in a way that minimizes the decompression overhead, while preserving
the same security level as originally intended.

Prior Art. The cost of homomorphically evaluating several symmetric prim-
itives has been investigated, including optimized implementations of AES
[18,23,31], and of the lightweight block ciphers Simon [43] and Prince [24].
Usually lightweight block ciphers seem natural candidates for efficient evalu-
ations in the encrypted domain. However, they may also lead to much worse
performances than a homomorphic evaluation of, say, AES. Indeed, contempo-
rary HE schemes use noisy ciphertexts, where a fresh ciphertext includes a noise
component which grows along with homomorphic operations. Usually a homo-
morphic multiplication increases the noise by much larger proportions than a
homomorphic addition. The maximum allowable level of noise (determined by
the system parameters) then depends mostly on the multiplicative depth of the
circuit. Many lightweight block ciphers balance out their simplicity by a large
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number of rounds, e.g. KATAN and KTANTAN [11], with the effect of con-
siderably increasing their multiplicative depth. This type of design is therefore
prohibitive in a HE context. Still Prince appears to be a much more suitable
block cipher for homomorphic evaluation than AES (and than Simon), because
it specifically targets applications that require a low latency; it is designed to
minimize the cost of an unrolled implementation [9] rather than to optimize e.g.
silicon area.

At Eurocrypt 2015, Albrecht, Rechberger, Schneider, Tiessen and Zohner
observed that the usual criteria that rule the design of lightweight block ciphers
are not appropriate when designing a symmetric encryption scheme with a low-
cost homomorphic evaluation [2]. Indeed, both the number of rounds and the
number of binary multiplications required to evaluate an Sbox have to be taken
into account. Minimizing the number of rounds is a crucial issue for low-latency
ciphers like Prince, while minimizing the number of multiplications is a require-
ment for efficient masked implementations.

These two criteria have been considered together for the first time by Albrecht
et al. in the recent design of a family of block ciphers called LowMC [2] with
very small multiplicative size and depth1. However, the proposed instances of
LowMC, namely LowMC-80 and LowMC-128, have recently had some secu-
rity issues [21]. They actually present some weaknesses inherent in their low mul-
tiplicative complexity. Indeed, the algebraic normal forms (i.e., the multivariate
polynomials) describing the encryption and decryption functions are sparse and
have a low degree. This type of features is usually exploited in algebraic attacks,
cube attacks and their variants, e.g. [4,20,22]. While these attacks are rather
general, the improved variant used for breaking LowMC [21], named interpola-
tion attack [38], specifically applies to block ciphers. Indeed it exploits the sparse
algebraic normal form of some intermediate bit within the cipher using that this
bit can be evaluated both from the plaintext in the forward direction and from
the ciphertext in the backward direction. This technique leads to several attacks
including a key-recovery attack against LowMC-128 with time complexity 2118

and data complexity 273, implying that the cipher does not provide the expected
128-bit security level.

Our Contributions. We emphasize that beyond the task of designing a HE-
friendly block cipher, revisiting the whole compressed encryption scheme (in
particular its internal mode of operation) is what is really needed in order to
take these concrete HE-related implementation constraints into account.

First, we identify that homomorphic decompression is subject to an offline
phase and an online phase. The offline phase is plaintext-independent and
therefore can be performed in advance, whereas the online phase completes
decompression upon reception of the plaintext-dependent part of the compressed

1 It is worth noting that in a HE context, reducing the multiplicative size of a sym-
metric primitive might not be the first concern (while it is critical in a multiparty
computation context, which also motivated the work of Albrecht et al. [2]), whereas
minimizing the multiplicative depth is of prime importance.
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ciphertext. Making the online phase as quick as technically doable leads us to
choose an additive IV-based stream cipher to implement E. However, we note that
the use of a lightweight block cipher as the building-block of that stream cipher
usually provides a security level limited to 2n/2 where n is the block size [48],
thus limiting the number of encrypted blocks to (typically) less than 232 (i.e.
32 GB for 64-bit blocks).

As a result, we propose our own candidate for E: the keystream genera-
tor Trivium [13], which belongs to the eSTREAM portfolio of recommended
stream ciphers, and a new proposal called Kreyvium, which shares the same
internal structure but allows for bigger keys of 128 bits2. The main advantage
of Kreyvium over Trivium is that it provides 128-bit security (instead of 80-bit)
with the same multiplicative depth, and inherits the same security arguments.
It is worth noticing that the design of a variant of Trivium which guarantees a
128-bit security level has been raised as an open problem for the last ten years [1,
p. 30]. Beside a higher security level, it also accommodates longer IVs, so that it
can encrypt up to 46 ·2128 plaintext bits under the same key, with multiplicative
depth only 12. Moreover, both Trivium and Kreyvium are resistant against the
interpolation attacks used for breaking LowMC since these ciphers do not rely
on a permutation which would enable the attacker to compute backwards.

We implemented our construction and instantiated it with Trivium,
Kreyvium and LowMC in CTR-mode. Our results show that the promising per-
formances attained by the HE-dedicated block cipher LowMC can be achieved
with well-known primitives whose security has been firmly established for over
a decade.

Organization of the Paper. We introduce a general model and a generic
construction to compress homomorphic ciphertexts in Sect. 2. Our construction
using Trivium and Kreyvium is described in Sect. 3. Subsequent experimental
results are presented in Sect. 4.

2 A Generic Design for Efficient Decompression

In this section, we describe our model and generic construction to transmit
compressed homomorphic ciphertexts between Alice and Charlie. We use the
same notation as in the introduction: Alice wants to send some plaintext m,
encrypted under Bob’s public key pk (of an homomorphic encryption scheme
HE) to a third party evaluator Charlie.

2.1 Offline/Online Phases in Ciphertext Decompression

Most practical scenarios would likely find it important to distinguish between
three distinct phases within the homomorphic evaluation of CE−1 :
2 Independently from our results, another variant of Trivium named Trivi-A has been

proposed [16]. It handles larger keys but uses longer registers. It then needs more
rounds for mixing the internal state, which means that it is much less adapted to
our setting than Kreyvium.
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1. an offline key-setup phase which only depends on Bob’s public key and can be
performed once and for all before Charlie starts receiving compressed cipher-
texts encrypted under Bob’s key;

2. an offline decompression phase which can be performed only based on some
plaintext-independent material found in the compressed ciphertext;

3. an online decompression phase which aggregates the result of the offline phase
with the plaintext-dependent part of the compressed ciphertext and (possibly
very quickly) recovers the decompressed ciphertext c.

As such, our general-purpose formulation c′ = (HEpk(k),Ek(m)) does not allow
to make a clear distinction between these three phases. In our context, it is much
more relevant to reformulate the encryption scheme as an IV-based encryption
scheme where the encryption and decryption process are both deterministic but
depend on an IV:

Ek(m) def=
(
IV,E′

k,IV (m)
)
.

Since the IV has a limited length, it can be either transmitted during an offline
preprocessing phase, or may alternately correspond to a state which is main-
tained by the server. Now, to minimize the latency of homomorphic decompres-
sion for Charlie, the online phase should be reduced to a minimum. The most
appropriate choice in this respect consists in using an additive IV-based stream
cipher Z so that

E′
k,IV (m) = Z(k, IV ) ⊕ m.

In this reformulation, the decompression process is clearly divided into a offline
precomputation stage which only depends on pk, k and IV , and an online phase
which is plaintext-dependent. The online phase is thus reduced to a mere XOR
between the plaintext-dependent part of the ciphertext E′

k,IV (m) and the HE-
encrypted keystream HE(Z(k, IV )), which comes essentially for free in terms
of noise growth in HE ciphertexts. All expensive operations (i.e. homomorphic
multiplications) are performed during the offline decompression phase where
HE(Z(k, IV )) is computed from HE(k) and IV .

2.2 Our Generic Construction

We devise the generic construction depicted on Fig. 1. It is based on a homomor-
phic encryption scheme HE with plaintext space {0, 1}, an expansion function G
mapping �IV -bit strings to strings of arbitrary size, and a fixed-size parametrized
function F with input size �x, parameter size �k and output size N .

Compressed Encryption. Given an �m-bit plaintext m, Bob’s public key pk
and IV ∈ {0, 1}�IV , the compressed ciphertext c′ is computed as follows:

1. Set t = ��m/N�,
2. Set (x1, . . . , xt) = G(IV ; t�x),
3. Randomly pick k ← {0, 1}�k ,
4. For 1 ≤ i ≤ t, compute zi = Fk(xi),
5. Set keystream to the �m leftmost bits of z1 || . . . || zt,
6. Output c′ = (HEpk(k),m ⊕ keystream).
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G
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CF CF CF · · · CF

HEpk(keystream)

C⊕ HEpk(m)

Fig. 1. Our generic construction. The multiplicative depth of the circuit is equal to the
depth of CF . This will be the bottleneck in our protocol and we want the multiplicative
depth of F to be as small as possible. With current HE schemes, the circuit C⊕ is
usually very fast (addition of ciphertexts) and has a negligible impact on the noise in
the ciphertext.

Ciphertext Decompression. Given c′ as above, Bob’s public key pk and
IV ∈ {0, 1}�IV , the ciphertext decompression is performed as follows:

1. Set t = ��m/N�,
2. Set (x1, . . . , xt) = G(IV ; t�x),
3. For 1 ≤ i ≤ t, compute HEpk(zi) = CF (HEpk(k), xi) with some circuit CF ,
4. Deduce HEpk(keystream) from HEpk(z1), . . . ,HEpk(zt),
5. Compute c = HEpk(m) = C⊕ (HEpk(keystream),m ⊕ keystream).

The circuit C⊕ computes HE(a ⊕ b) given HE(a) and b where a and b are
bit-strings of the same size. In our construction, the cost of decompression per
plaintext block is fixed and roughly equals one single evaluation of the circuit
CF ; most importantly, the multiplicative depth of the decompression circuit is
also fixed, and set to the depth of CF .

How Secure are Compressed Ciphertexts? From a high-level perspective,
compressed homomorphic encryption is just hybrid encryption and relates to
the generic KEM-DEM construct. A complete characterization of the security
results attached to the KEM-DEM framework is presented in [35]. In particular
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when the KEM and the DEM are IND-CPA, the resulting hybrid PKE scheme
is at least IND-CPA. This result applies directly here: assuming the semantic
security of our homomorphic KEM3, and a general-purpose IND-CPA secure
DEM, our compressed encryption scheme is IND-CPA secure.

Instantiating the Paradigm. The rest of the paper focuses on how to choose
the expansion function G and function F so that the homomorphic evaluation of
CF is as fast (and its multiplicative depth as low) as possible. In our approach,
the value of IV is assumed to be shared between Alice and Charlie and needs
not be transmitted along with the compressed ciphertext. For instance, IV is
chosen to be an absolute constant such as IV = 0� where � = �IV = �x. Another
example is to take for IV ∈ {0, 1}� a synchronized state that is updated between
transmissions. Also, the expansion function G is chosen to implement a counter
in the sense of the NIST description of the CTR mode [47], for instance

G(IV ; t�) = (IV, IV � 1, . . . , IV � (t − 1)) where a � b = (a + b) mod 2�.

Finally, F is chosen to ensure both an appropriate security level and a low mul-
tiplicative depth. We focus in Sect. 3 on the keystream generator corresponding
to Trivium, and on a new variant, called Kreyvium.

Interestingly, the output of an iterated PRF used in CTR mode is com-
putationally indistinguishable from random [6, Theorem 13]. Hence, under the
assumption that Trivium or Kreyvium is a PRF4, the keystream z1 || . . . ||zt pro-
duced by our construction is also indistinguishable. It follows directly from [35]
that the compressed encryption scheme is IND-CPA. Although the security of
Trivium and Kreyvium is empiric, Sect. 3 provides a strong rationale for the
Kreyvium design and makes it the solution with the smallest homomorphic eval-
uation latency known so far.

Why not Use a Block Cipher for F ? Although not specifically in these terms,
the use of lightweight block ciphers like Prince and Simon has been proposed
in the context of compressed homomorphic ciphertexts e.g. [24,43]. However a
complete encryption scheme based on the ciphers has not been defined. This
is a major issue since the security provided by all classical modes of operation
(including all variants of CBC, CTR, CFB, OFB, OCB. . . ) is inherently limited
to 2n/2 where n is the block size [48] (see also e.g. [39, p. 95]). Only a very few
modes providing beyond-birthday security have been proposed, e.g. [37,50], but
they induce a higher implementation cost and their security is usually upper-
bounded by 22n/3.

In other words, the use of a block cipher operating on 64-bit blocks like
Prince or Simon-32/64 implies that the number of blocks encrypted under
3 Note that it is usual that HE schemes succeed in achieving CPA security, but often

grossly fail to realize any form of CCA1 security, to the point of admitting simple
key recovery attacks [17].

4 Note that this equivalent to say that Kreyvium instantiated with a random key and
mapping the IV’s to the keystream is secure [7, Sect. 3.2].
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the same key should be significantly less that 232 (i.e. 32 GB for 64-bit blocks).
Therefore, only block ciphers with a large enough block size, like the LowMC
instantiation with a 256-bit block proposed in [2], are suitable in applications
which may require the encryption of more than 232 bits under the same key.

3 Trivium and Kreyvium, Two Low-Depth Stream
Ciphers

Since an additive stream cipher is the optimal
choice, we now focus on keystream generation,
and on its homomorphic evaluation. An IV-based
keystream generator is decomposed into:

– a resynchronization function, Sync, which takes
as input the IV and the key (possibly expanded
by some precomputation phase), and outputs
some n-bit initial state;

– a transition function Φ which computes the next
state of the generator;

– a filtering function f which computes a
keystream segment from the internal state.

Since generating N keystream bits may require a circuit of depth up to

(depth(Sync) + N depth(Φ) + depth(f)) ,

the best design strategy for minimizing this value consists in choosing a transition
function with a small depth. The extreme option is to choose for Φ a linear
function as in the CTR mode where the counter is implemented by an LFSR.
An alternative strategy consists in choosing a nonlinear transition whose depth
does not increase too fast when it is iterated. The influence of Sync on the
multiplicative depth of the circuit is further investigated in [14].

Size of the Internal State. A major specificity of our context is that a large
internal state can be easily handled. Indeed, in most classical stream ciphers,
the internal-state size usually appears as a bottleneck because the overall size of
the quantities to be stored highly influences the number of gates in the imple-
mentation. This is not the case in our context. It might seem, a priori, that
increasing the size of the internal state automatically increases the number of
nonlinear operations (because the number of inputs of Φ increases). But, this
is not the case if a part of this larger internal state is used, for instance, for
storing the secret key. This strategy can be used for increasing the security at
no implementation cost. Indeed, the complexity of all generic attacks aiming at
recovering the internal state of the generator is O(2n/2) where n is the size of
the secret part of the internal state even if some part is not updated during
the keystream generation. For instance, the time-memory-data-tradeoff attacks
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in [5,8,32] aim at inverting the function which maps the internal state of the gen-
erator to the first keystream bits. But precomputing some values of this function
must be feasible by the attacker, which is not the case if the filtering or transition
function depends on some secret material. On the other hand, the size n′ of the
non-constant secret part of the internal state determines the data complexity for
finding a collision on the internal state: the length of the keystream produced
from the same key is limited to 2n′/2. But, if the transition function or the fil-
tering function depends on the IV, this limitation corresponds to the maximal
keystream length produced from the same key/IV pair. It is worth noticing that
many attacks require a very long keystream generated from the same key/IV pair
and do not apply in our context since the keystream length is strictly limited by
the multiplicative depth of the circuit.

3.1 Trivium in the HE Setting

Trivium [13] is one of the 7 stream ciphers recommended by the eSTREAM
project [25]. Due to the small number of nonlinear operations in its transition
function, it appears as a natural candidate in our context.

Description. Trivium is a synchronous stream cipher with a key and an IV
of 80 bits each. Its internal state is composed of 3 registers of sizes 93, 84 and
111 bits, corresponding to a size of 288 bits in total. We use the notation intro-
duced by the designers: the leftmost bit of the 93-bit register is s1, and its
rightmost one is s93; the leftmost bit of the register of size 84 is s94 and the
rightmost s177; the leftmost bit of register of size 111 is s178 and the rightmost
s288. The initialization and the generation of an N -bit keystream are described
below.

(s1, s2, . . . , s93) ← (K0, . . . , K79, 0, . . . , 0)
(s94, s95, . . . , s177) ← (IV0, . . . , IV79, 0, . . . , 0)
(s178, s179, . . . , s288) ← (0, . . . , 0, 1, 1, 1)
for i = 1 to 1152 + N do

t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)

end for
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No attack better than an exhaustive key search is known so far on the full
Trivium. It can then be considered as secure. The family of attacks that seems
to provide the best result on round-reduced versions is the cube attack and its
variants [4,22,28]. They recover some key bits (resp. provide a distinguisher on
the keystream) if the number of initialization rounds is reduced to 799 (resp. 885)
rounds out of 1152. The highest number of initialization rounds that can be
attacked is 961: in this case, a distinguisher exists for a class of weak keys [41].

Multiplicative Depth. It is easy to see that the multiplicative depth grows
quite slowly with the number of iterations. An important observation is that, in
the internal state, only the first 80 bits in Register 1 (the keybits) are initially
encrypted under the HE and that, as a consequence, performing hybrid clear and
encrypted data calculations is possible (this is done by means of the following
simple rules: 0 · [x] = 0, 1 · [x] = [x], 0 + [x] = [x] and 1 + [x] = [1] + [x], where
the square brackets denote encrypted bits and where in all but the latter case,
a homomorphic operation is avoided which is specially desirable for multiplica-
tions). This optimization allows for instance to increase the number of bits which
can be generated (after the 1152 blank rounds) at depth 12 from 42 to 57 (i.e.,
a 35 % increase). Then, the relevant quantity in our context is the multiplicative
depth of the circuit which computes N keystream bits from the 80-bit key. The
proof of the following proposition is given in [14].

Proposition 1. In Trivium, the keystream length N(d) which can be produced
from the 80-bit key with a circuit of multiplicative depth d, d ≥ 4, is given by

N(d) = 282 ×
⌊d

3

⌋
+

⎧
⎨

⎩

81 if d ≡ 0 mod 3
160 if d ≡ 1 mod 3
269 if d ≡ 2 mod 3

.

3.2 Kreyvium

Our first aim is to offer a variant of Trivium with 128-bit key and IV, without
increasing the multiplicative depth of the corresponding circuit. Besides a higher
security level, another advantage of this variant is that the number of possible
IVs, and then the maximal length of data which can be encrypted under the
same key, increases from 280Ntrivium(d) to 2128Nkreyvium(d). Increasing the key and
IV-size in Trivium is a challenging task, mentioned as an open problem in [1,
p. 30] for instance. In particular, Maximov and Biryukov [45] pointed out that
increasing the key-size in Trivium without any additional modification cannot
be secure due to some attack with complexity less than 2128. A first attempt
in this direction has been made in [45] but the resulting cipher accommodates
80-bit IV only, and its multiplicative complexity is higher than in Trivium since
the number of AND gates is multiplied by 2.

Description. Our proposal, Kreyvium, accommodates a key and an IV of
128 bits each. The only difference with the original Trivium is that we have
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added to the 288-bit internal state a 256-bit part corresponding to the secret
key and the IV. This part of the state aims at making both the filtering and
transition functions key- and IV-dependent. More precisely, these two functions
f and Φ depend on the key bits and IV bits, through the successive outputs
of two shift-registers K∗ and IV ∗ initialized by the key and by the IV respec-
tively. The internal state is then composed of five registers of sizes 93, 84, 111,
128 and 128 bits, having an internal state size of 544 bits in total, among which
416 become unknown to the attacker after initialization.

We will use the same notation as the description of Trivium, and for the
additional registers we use the usual shift-register notation: the leftmost bit is
denoted by K∗

127 (or IV ∗
127), and the rightmost bit (i.e., the output) is denoted

by K∗
0 (or IV ∗

0 ). Each one of these two registers are rotated independently from
the rest of the cipher. The generator is described below, and depicted on Fig. 2.

(s1, s2, . . . , s93) ← (K0, . . . , K92)
(s94, s95, . . . , s177) ← (IV0, . . . , IV83)
(s178, s179, . . . , s288) ← (IV84, . . . , IV127, 1, . . . , 1, 0)
(K∗

127,K
∗
126, . . . , K

∗
0 ) ← (K0, . . . , K127)

(IV ∗
127, IV ∗

126, . . . , IV ∗
0 ) ← (IV0, . . . , IV127)

for i = 1 to 1152 + N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288 + K∗

0

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171 + IV∗

0

t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
t4 ← K∗

0

t5 ← IV ∗
0

(s1, s2, . . . , s93) ← (t3, s1, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, . . . , s287)
(K∗

127,K
∗
126, . . . , K

∗
0 ) ← (t4,K∗

127, . . . , K
∗
1 )

(IV ∗
127, IV ∗

126, . . . , IV ∗
0 ) ← (t5, IV ∗

127, . . . , IV ∗
1 )

end for

Related Ciphers. KATAN [11] is a lightweight block cipher with a lot in com-
mon with Trivium. It is composed of two registers, whose feedback functions are
very sparse, and have a single nonlinear term. The key, instead of being used
for initializing the state, is introduced by XORing two key information-bits per
round to each feedback bit. The recently proposed stream cipher Sprout [3],
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Fig. 2. Kreyvium. The three registers in the middle correspond to Trivium. The modifi-
cations defining Kreyvium correspond to the wo registers at the top and at the bottom.
(Color figure online)

inspired by Grain but with much smaller registers, also inserts the key in a sim-
ilar way: instead of using the key for initializing the state, one key information-
bit is XORed at each clock to the feedback function. We can see the parallelism
between these two ciphers and our newly proposed variant. In particular, the
previous security analysis on KATAN shows that this type of design does not
introduce any clear weakness. Indeed, the best attacks on round-reduced versions
of KATAN so far [29] are meet-in-the-middle attacks, that exploit the knowledge
of the values of the first and the last internal states (due to the block-cipher set-
ting). As this is not the case here, such attacks, as well as the recent interpolation
attacks against LowMC [21], do not apply. The best attacks against KATAN,
when excluding MitM techniques, are conditional differential attacks [40,41].

Design Rationale. We have decided to XOR the keybit K∗
0 to the feedback

function of the register that interacts with the content of (s1, . . . , s63) the later,
since (s1, . . . , s63) is initialized with some key bits. The same goes for the IV ∗

register. Moreover, as the keybits that start entering the state are the ones that
were not in the initial state, all the keybits affect the state at the earliest.

We also decided to initialize the state with some keybits and with all the IV
bits, and not with a constant value, as this way the mixing will be performed
quicker. Then we can expect that the internal-state bits after initialization are
expressed as more complex and less sparse functions in the key and IV bits.

Our change of constant is motivated by the conditional differential attacks
from [41]: the conditions needed for a successful attack are that 106 bits from
the IV or the key are equal to ’0’ and a single one needs to be ’1’. This suggests
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that values set to zero “encourage” non-random behaviors, leading to our new
constant. In other words, in Trivium, an all-zero internal state is always updated
in an all-zero state, while an all-one state will change through time. The 0 at
the end of the constant is added for preventing slide attacks.

Multiplicative Depth. Exactly as for Trivium, we can compute the number of
keystream bits which can be generated from the key at a given depth (see [14]).

Proposition 2. In Kreyvium, the keystream length N(d) which can be produced
from the 128-bit key with a circuit of multiplicative depth d, d ≥ 4, is given by

N(d) = 282 ×
⌊d

3

⌋
+

⎧
⎨

⎩

70 if d ≡ 0 mod 3
149 if d ≡ 1 mod 3
258 if d ≡ 2 mod 3

.

Security Analysis. We investigate how all the known attacks on Trivium can
apply to Kreyvium. A more detailled analysis is provided in [14].

TMDTO. TMDTO attacks aiming at recovering the initial state of the cipher
do not apply since the size of the secret part of the internal state (416 bits) is
much larger than twice the key-size: the size of the whole secret internal state
has to be taken into account, even if the additional 128-bit part corresponding
to K∗ is independent from the rest of the state. On the other hand, TMDTO
aiming at recovering the key have complexity larger than exhaustive key search
since the key and the IV have the same size [12,36].

Internal-State Collision. A distinguisher may be built if the attacker is able to
find two colliding internal states, since the two keystreams produced from collid-
ing states are identical. Finding such a collision requires around 2144 keystream
bits generated from the same key/IV pair, which is much longer than the maxi-
mal keystream length allowed by the multiplicative depth of the circuit. We also
show in [14] that, for a given key, finding two internal states colliding on all bits
except on IV ∗ does not provide any valid distinguisher. The birthday-bound of
2144{0,1}then provides a limit on the number of bits produced from the same
key/IV pair, not on the bits produced from the same key.

Cube Attacks [22,28] and Cube Testers [4]. They provide the best attacks for
round-reduced Trivium. In our case, as we keep the same main function, but
we have two additional XORs per round, thus a better mixing of the variables,
we can expect the relations to get more involved and hamper the application of
previously defined round-reduced distinguishers. One might wonder if the fact
that more variables are involved could ease the attacker’s task, but we point out
here that the limitation in the previous attacks was not the IV size, but the size
of the cubes themselves. Therefore, having more variables available is of no help
with respect to this point. We can conclude that the resistance of Kreyvium to
these types of attacks is at least the resistance of Trivium, and even better.
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Conditional Differential Cryptanalysis. Because of its applicability to Trivium
and KATAN, the attack from [41] is definitely of interest in our case. In partic-
ular, the highest number of blank rounds is reached if some conditions on two
registers are satisfied at the same time (and not only conditions on the regis-
ter controlled by the IV bits in the original Trivium). In our case, as we have
IV bits in two registers, it is important to elucidate whether an attacker can
take advantage of introducing differences in two registers simultaneously. First,
let us recall that we have changed the constant to one containing mostly 1. We
previously saw that the conditions that favor the attacks are values set to zero
in the initial state. In Trivium, we have (108 + 4 + 13) = 125 bits already fixed
to zero in the initial state, 3 are fixed to one and the others can be controlled
by the attacker in the weak-key setting (and the attacker will force them to be
zero most of the time). Now, instead, we have 64 bits forced to be 1, 1 equal
to zero, and (128 + 93) = 221 bits of the initial state controlled by the attacker
in the weak-key setting, plus potentially 21 additional bits from the key still
not used, that will be inserted during the first rounds. We can conclude that,
while in Trivium it is possible in the weak-key setting, to introduce zeros in the
whole initial state but in 3,bits, in Kreyvium, we will never be able to set to zero
64 bits, implying that applying the techniques from [41] becomes much harder.

Algebraic Attacks. Several algebraic attacks have been proposed against Trivium,
aiming at recovering the 288-bit internal state at the beginning of the keystream
generation (i.e., at time t = 1153) from the knowledge of the keystream bits.
The most efficient attack of this type is due to Maximov and Biryukov [45].
It exploits the fact that the 22 keystream bits at time 3t′, 0 ≤ t′ < 22, are
determined by all bits of the initial state at indexes divisible by 3 (starting
from the leftmost bit in each register). Moreover, once all bits at positions 3i
are known, then guessing that the outputs of the three AND gates at time 3t′

are zero provides 3 linear relations between the bits of the internal state and
the keystream bits. The attack then consists of an exhaustive search for some
bits at indexes divisible by 3. The other bits in such positions are then deduced
by solving the linear system derived from the keystream bits at positions 3t′.
Once all these bits have been determined, the other 192 bits of the initial state
are deduced from the other keystream equations. This process must be iterated
until the guess for the outputs of the AND gates is correct. In the case of Trivium,
the outputs of at least 125 AND gates must be guessed in order to get 192 linear
relations involving the 192 bits at indexes 3i + 1 and 3i + 2. This implies that
the attack has to be repeated (4/3)125 = 252 times. From these guesses, we
get many linear relations involving the bits at positions 3i only, implying that
only an exhaustive search with complexity 232 for the other bits at positions 3i is
needed. Therefore, the overall complexity of the attack is around 232×252 = 284.
A similar algorithm can be applied to Kreyvium, but the main difference is that
every linear equation corresponding to a keystream bit also involves one key
bit. Moreover, the key bits involved in the generation of any 128 consecutive
output bits are independent. It follows that each of the first 128 linear equations
introduces a new unknown in the system to solve. For this reason, it is not
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possible to determine all bits at positions 3i by an exhaustive search on less than
96 bits like for Trivium. Moreover, the outputs of more than 135 AND gates must
be guessed for obtaining enough equations on the remaining bits of the initial
state. Therefore the overall complexity of the attack exceeds 296×252 = 2148 and
is much higher that the cost of the exhaustive key search. It is worth noticing
that the attack would have been more efficient if only the feedback bits, and not
the keystream bits, would have been dependent on the key. In this case, 22 linear
relations independent from the key would have been available to the attacker.

4 Experimental Results

We now discuss and compare the practicality of our generic construction when
instantiated with Trivium, Kreyvium and LowMC. The expansion function
G implements a mere counter, and the aforementioned algorithms are used to
instantiate the function F that produces N bits of keystream per iteration as
defined by Propositions 1 and 2.5

HE Framework. In our experiments, we considered two HE schemes: the BGV
scheme [10] and the FV scheme [26] (a scale-invariant version of BGV). The BGV
scheme is implemented in the library HElib [34] and has become de facto a stan-
dard benchmarking library for HE applications. Similarly, the FV scheme was
previously used in several HE benchmarkings [15,27,43], is conceptually simpler
than the BGV scheme, and is one of the most efficient HE schemes.6 Addition-
ally, batching was used [49], i.e. the HE schemes were set up to encrypt vectors
in an SIMD fashion (componentwise operations, and rotations via the Frobe-
nius endomorphism). The number of elements that can be encrypted depends
on the number of terms in the factorization modulo 2 of the cyclotomic polyno-
mial used in the implementation. This batching allowed us to perform several
Trivium/Kreyvium/LowMC in parallel in order to increase the throughput.

Parameter Selection for Subsequent Homomorphic Processing. In all
the previous works on the homomorphic evaluation of symmetric encryption
schemes, the parameters of the underlying HE scheme were selected for the exact
multiplicative depth required and not beyond [2,19,24,31,43]. This means that
once the ciphertext is decompressed, no further homomorphic computation can
actually be performed by Charlie – this makes the claimed timings considerably
less meaningful in a real-world context.

5 Note that these propositions only hold when hybrid clear and encrypted data calcula-
tions are possible between IV and HE ciphertexts. This explains the slight differences
in the number of keystream bits per iteration (column “N”) between Tables 1 and 2.

6 We used the Armadillo compiler implementation of FV [15]. This source-to-source
compiler turns a C++ algorithm into a Boolean circuit, optimizes it, and generates
an OpenMP parallel code which can then be combined with a HE scheme.
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Table 1. Latency and throughput using HElib on a single core of a mid-end 48-core
server (4 x AMD Opteron 6172 processors with 64GB of RAM).

Algorithm Security level κ N used × depth #slots Latency sec. throughput

bits/min

Trivium-12 80 45 12 600 1417.4 1143.0

19 720 4420.3 439.8

Trivium-13 80 136 13 600 3650.3 1341.3

20 720 11379.7 516.3

Kreyvium-12 128 42 12 504 1715.0 740.5

19 756 4956.0 384.4

Kreyvium-13 128 124 13 682 3987.2 1272.6

20 480 12450.8 286.8

LowMC-128 ? ≤ 118 256 13 682 3608.4 2903.1

20 480 10619.6 694.3

LowMC-128 [2] ? ≤ 118 256 13 682 3368.8 3109.6

20 480 9977.1 739.0

We benchmarked both parameters for the exact multiplicative depth and
parameters able to handle circuits of the minimal multiplicative depth plus 7
to allow further homomorphic processing by Charlie (which is obviously what
is expected in applications of homomorphic encryption). We chose 7 because, in
practice, numerous applications use algorithms of multiplicative depth smaller
than 7 (see e.g. [33,42]). In what follows we compare the results we obtain
using Trivium, Kreyvium and also the LowMC cipher. For LowMC, we bench-
marked not only our own implementation but also the LowMC implementation
of [2] available at https://bitbucket.org/malb/lowmc-helib. Minor changes to
this implementation were made in order to obtain an equivalent parametriza-
tion of HElib. The main difference is that the implementation from [2] uses
an optimized method for multiplying a Boolean vector and a Boolean matrix,
namely the “Method of Four Russians”. This explains why our implementation
is approximately 6% slower, as it performs 2–3 times more ciphertext additions.

Experimental Results Using HElib. For sake of comparison with [2], we
ran our implementations and their implementation of LowMC on a single core
using HElib. The results are provided in Table 1. We recall that the latency refers
to the time required to perform the entire homomorphic evaluation whereas the
throughput is the number of blocks processed per time unit.

Experimental Results Using FV. On Table 2, we present the benchmarks
when using the FV scheme. The experiments were performed using either a single
core (in order to compare with BGV) or on all the cores of the machine the
tests were performed on. The execution time acceleration factor between 48-core
parallel and sequential executions is given in the column “Speed gain”. While

https://bitbucket.org/malb/lowmc-helib
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good accelerations (at least 25 times) were obtained for Trivium and Kreyvium
algorithms, the acceleration when using LowMC is significantly smaller (∼ 10
times). This is due to the huge number of operations in LowMC that created
memory contention and huge slowdown in memory allocation.

Table 2. Latency of our construction when using the FV scheme on a mid-end 48-core
server (4 x AMD Opteron 6172 processors with 64 GB of RAM).

Algorithm Security level κ N used × depth Latency (sec.) Speed gain

1 core 48 cores

Trivium-12 80 57 12 681.5 26.8 × 25.4

19 2097.1 67.6 × 31.0

Trivium-13 80 136 13 888.2 33.9 × 26.2

20 2395.0 77.2 × 31.0

Kreyvium-12 128 46 12 904.4 35.3 × 25.6

19 2806.3 82.4 × 34.1

Kreyvium-13 128 125 13 1318.6 49.7 × 26.5

20 3331.4 97.9 × 34.0

LowMC-128 ? ≤ 118 256 14 1531.1 171.0 × 9.0

21 3347.8 329.0 × 10.2

Interpretation. First, we would like to recall that LowMC-128 must be con-
sidered in a different category because of the existence of a key-recovery attack
with time complexity 2118 and data complexity 273 [21]. However, it has been
included in the table in order to show that the performances achieved by Trivium
and Kreyvium are of the same order of magnitude. An increase in the number of
rounds of LowMC-128 (typically by 4 rounds) is needed to achieve 128-bit secu-
rity, but this would have a non-negligible impact on its homomorphic evaluation
performance, as it would require to increase the depth of the cryptosystem sup-
porting the execution. For instance, a back-of-the-envelope estimation for four
additional rounds leads to a degradation of its homomorphic execution perfor-
mances by a factor of about 2 to 3 (more computations with larger parameters).
It is also worth noticing that the minimal multiplicative depth for which valid
LowMC output ciphertexts were obtained was 14 for the FV scheme and 13 for
the BGV scheme. The theoretical multiplicative depth is 12 but the high number
of additions explains this difference7.

7 The multiplicative depth is only an approximation of the homomorphic depth
required to absorb the noise generated by the execution of an algorithm [44]. It
neglects the noise induced by additions and thus does not hold for too addition-
intensive algorithms such as those in the LowMC family.
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Our results show that Trivium and Kreyvium have a smaller latency than
LowMC, but have a slightly smaller throughput. As already emphasized in [43],
real-world applications of homomorphic encryption (which are often cloud-based
applications) should be implemented in a transparent and user-friendly way. In
the context of our approach, the latency of the offline phase is still an important
parameter aiming at an acceptable experience for the end-user even when a
sufficient amount of homomorphic keystream could not be precomputed early
enough because of overall system dimensioning issues.

Also Trivium and Kreyvium are more parallelizable than LowMC is. There-
fore, our work shows that the promising performances obtained by the recently
proposed HE-dedicated cipher LowMC can also be achieved with Trivium, a
well-analyzed stream cipher, and a variant aiming at achieving 128 bits of secu-
rity. Last but not least, we recall that our construction was aiming at compressing
the size of transmissions between Alice and Charlie. We support an encryption
rate |c′|/|m| that becomes asymptotically close to 1 for long messages, e.g. for
�m = 1GB message length, our construction instantiated with Trivium (resp.
Kreyvium), yields an expansion rate of 1.08 (resp. 1.16).

5 Conclusion

Our work shows that the promising performances obtained by the recent HE-
dedicated cipher LowMC can also be achieved with Trivium, a well-known
primitive whose security has been thoroughly analyzed, e.g. [4,22,28,41,45]. The
10-year analysis effort from the community, initiated by the eSTREAM compe-
tition, enables us to gain confidence in its security. Also our variant Kreyvium
benefits from this analysis since the core of the cipher is essentially the same.

Acknowledgments. We thank Yannick Seurin for informing us about the complete
characterization of secure hybrid encryption.
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23. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using NTRU. IACR
Cryptol. ePrint Arch. 2014, 39 (2014)
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Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 208–220. Springer,
Heidelberg (2014)

25. ECRYPT - European Network of Excellence in Cryptology: The eSTREAM
StreamCipher Project (2005). http://www.ecrypt.eu.org/stream/

26. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptol. ePrint Arch. 2012, 144 (2012)

27. Fau, S., Sirdey, R., Fontaine, C., Aguilar, C., Gogniat, G.: Towards practical pro-
gram execution over fully homomorphic encryption schemes. In: IEEE Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 284–
290 (2013)

28. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Triv-
ium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 502–517. Springer, Heidelberg (2014)

29. Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In:
Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 61–81. Springer,
Heidelberg (2015)

30. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC, pp. 169–178. ACM (2009)

31. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)
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Abstract. We show several constructions based on the AES round func-
tion that can be used as building blocks for MACs and authenticated
encryption schemes. They are found by a search of the space of all secure
constructions based on an efficient design strategy that has been shown
to be one of the most optimal among all the considered. We implement
the constructions on the latest Intel’s processors. Our benchmarks show
that on Intel Skylake the smallest construction runs at 0.188 c/B, while
the fastest at only 0.125 c/B, i.e. five times faster than AES-128.

Keywords: Fast software implementation · AES · AES-NI · Skylake

1 Introduction

As a block cipher standard, the AES has inspired many cryptographic designs.
Stream and block ciphers, authenticated encryption schemes (AEs), crypto-
graphic hash functions and Message Authentication Codes (MACs) based on
the AES benefit from its two main features, namely, its security and efficiency.
The security benefit is twofold. First, as the AES is the most popular block cipher,
it has been extensively analyzed and its security is well understood [9,14,15].
Second, the AES is based on the so-called wide-trail strategy [6], which provides
resistance against the standard differential and linear attacks. The efficiency
benefit is significant as well. Due to its internal structure, the AES allows fast
software implementations based on look-up tables as well as even more efficient
bit-sliced implementations [12]. Furthermore, the latest mainstream processors
have a dedicated set of instructions, called AES-NI, that provides a complete
implementation of the AES. These handy instructions allow with a few lines of
code to execute one block cipher call with exceptionally high efficiency (mea-
sured in cycles per byte of data or c/B). For instance, on the same architecture,
the table-based implementation of AES-CTR runs at around 10 c/B, its bit-sliced
implementation at around 7.5 c/B, while its AES-NI implementation at less than
1 c/B. As significant speedups are observed when AES-NI are available, it is
important to understand how far we can benefit from them.

Depending on the security requirements and adversarial model, designs based
on the AES may use round-reduced version of the block cipher. For instance,
Pelican-MAC [8], Alpha-MAC [7], LEX [1], ASC-1 [11], and ALE [3], use only
c© International Association for Cryptologic Research 2016
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four rounds of the AES to process one message block (cf. to the ten rounds in
the original AES-128 block cipher). Obviously, the reduction in the number of
rounds has a direct impact on the efficiency and these designs run at much
higher speed. The decision to reduce the number of rounds to four stems from
the wide-trail strategy, since in some cases four rounds already provide sufficient
level of security. Only a few designs use less than four rounds, as the security
analysis becomes more intricate.

Our Contributions. We examine AES-based constructions that can be used as
building blocks of secret-key primitives (e.g., MACs and authenticated encryp-
tion schemes). Our main goal is to push the limits of efficiency of constructions
that can be implemented with the AES-NI, without sacrificing their security.

As reference points and benchmarks, we use the two authenticated encryp-
tion schemes AEGIS-128L and Tiaoxin-346 submitted to the CAESAR com-
petition [5]. These schemes, not only rely on round-reduced AES (to process
16-byte message block, AEGIS-128L uses four rounds, while Tiaoxin-346 only
three rounds of AES), but allow as well a full parallelization of the round calls. As
a result, with AES-NI implementation they achieve exceptionally high efficiency
and run at only 0.2–0.3 cycles per byte of message.

To understand the speed advantage of these designs, first we focus on AES-NI.
We investigate the performance of the AES-NI instruction aesenc (executes one
round of AES) on the latest Intel processors and deduce necessary conditions
for efficient designs. Consequently, our designs have internal states composed of
several 128-bit words (called blocks), while their step functions are based only
on aesenc and bitwise additions (XORs). The state size, the number of aesenc
calls per step, and the choice of state words to which aesenc is applied ensures
that our designs will have a high efficiency.

Next, we focus on the security of the designs. The most common attacks
for MACs and AE are internal collisions based on high probability differential
characteristics that start and end in zero state differences (but some intermediate
states contain differences, introduced through the messages). The inability of the
adversary to efficiently built such collisions is the single security criteria required
from our designs.

We consider two strategies that may lead to efficient and secure constructions.
In the first, the AES rounds are applied to the words of the state in a way such
that several steps of the construction mimic a few keyless AES rounds1. Due to the
wide-trail approach, this strategy provides easier security proofs. However, we
show that regardless of the step function chosen, such strategy has only limited
efficiency potential. For instance, strategy based on 4-round AES can never run
faster than 0.25 cycles per byte.

To achieve higher speed, we thus consider a second strategy, where message
and state words can be XOR-ed between the AES calls. The wide-trail approach
cannot longer be used (as each application is one-round AES), hence the security
proof for the constructions becomes much harder. To solve it, for each candidate
construction we transform the collision problem into a MILP problem, and find
1 This approach was chosen in Tiaoxin-346, where 2-round AES is used.



336 J. Jean and I. Nikolić

the optimal solution which corresponds to the characteristic with the highest
probability. The cases where such probability is too low correspond to secure
constructions.

We search for suitable designs based on the second strategy by gradually
increasing the state size and decreasing the number of AES rounds per step. In
some cases, several constructions have the same efficiency but provide different
security margin. We implement each construction on the latest Intel processors
and check if the theoretical and actual cycle per byte count match. We list 7
secure constructions that provide a good tradeoff between state size and effi-
ciency. The smallest has 6 words, and runs at 0.22 c/B on Haswell, and 0.188
c/B on Skylake. The most efficient has 12 words, and runs at 0.136 c/B on
Haswell, and 0.125 c/B on Skylake. This construction uses only 2 AES rounds
per one block of message, and thus it is five times faster than the AES.

2 Designs Based on the AES Round Function

2.1 The AES Round Function and the Instruction Set AES-NI

AES is the current block cipher standard and a well-studied cryptographic con-
struction. As such, parts of AES are used in many crypto designs. The usage
ranges from the utilization of the AES S-box in some hash functions, to applica-
tion of the AES round function in stream ciphers, and employment of the whole
AES in particular authenticated encryption schemes. The AES contains three dif-
ferent block ciphers, which only differs by their key sizes: in the remaining of
this paper, we simply write AES to refer to the 128-bit key version AES-128.

From a software perspective, it may seem that partitioning of the AES can go
up to the four basic round function operations: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. However, actual fast implementations of AES rely on the so-
called AES-NI: a special set of instructions available on the latest processors,
dedicated to efficiently executing rounds of AES .2 As efficiency is our primary
goal, we further focus on designs based on the instruction set of AES-NI. More
precisely, we use only the processor instruction aesenc, which performs one
regular (not the last) round of AES on an input state S with a subkey K:

aesenc(S,K) = MixColumns(ShiftRows(SubBytes(S))) ⊕ K.

Let us recall the two notions related to the performance of a processor instruc-
tion, namely, the latency and the reciprocal throughput of an instruction. Infor-
mally, latency is defined as the number of clock cycles required to execute an
instruction, whereas the reciprocal throughput (further called throughput) as

2 In addition to the encryption and decryption rounds, AES-NI includes as well instruc-
tions that perform subkey generation and inverse MixColumns. Note that the four
individual round operations can be realized as a composition of different instructions
from AES-NI. However, such composition would have greatly reduced efficiency in
comparison to the round calls.
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the number of clock cycles required to wait before executing the same instruc-
tion. In Table 1 are given the performances of aesenc on the five latest Intel’s
processors. For instance, on Intel’s Ivy Bridge family of processors aesenc has
a latency of 8 and a throughput of 1. This means that aesenc needs 8 cycles to
execute one AES round, and it can be called consecutively after 1 cycle.

Table 1. The latency and throughput of aesenc on the latest Intel’s processors.

Processor Latency Throughput

Sandy Bridge 8 1

Ivy Bridge 8 1

Haswell 7 1

Broadwell 7 1

Skylake 4 1

Our design strategies target the five latest Intel’s processors: Sandy and Ivy
Bridge (collectively referred to as *bridge), Haswell and Broadwell (referred to
as *well), and Skylake.

2.2 Efficiency

Our goal is to devise a strategy that results in designs based on aesenc that
have a superior efficiency over the AES. Improvements in efficiency can come
from two concrete approaches: reduction of the number of rounds per message
block, and, parallelization of the aesenc calls. Let us take a closer look at the
two approaches.

Reducing the Number of Rounds. The AES has 10 rounds3, i.e. it uses 10
aesenc calls4 to process a 16-byte message. Removing several rounds from the
AES leads to a block cipher susceptible to practical attacks. This, however, does
not imply that any design (not only a block cipher) should necessary use around
10 aesenc calls. In fact, a common approach based on the AES, is to design
cryptographic primitives that use only four AES rounds to process 16-byte data.

The goal of our design is to use a minimal number of calls to aesenc. For
this purpose, we define a metric, called a rate of design:

Definition 1 (Rate). The rate ρ of a design is the number of AES rounds (calls
to aesenc) used to process a 16-byte message.

3 Here, we simply use AES to refer to the AES-128.
4 The last round in AES is different and it is executed with a call to the AES-NI

instruction aesenclast, which has similar performance to aesenc.
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For instance, AES-128 has a rate of 10, AES-256 has a rate of 14, AEGIS-128L
has a rate of 4, and Tiaoxin-346 a rate of 3. Obviously, a smaller rate may lead
to more efficient designs.5

Parallelizing the Round Calls. A large improvement in efficiency may come
by switching from serial6 to parallel calls to aesenc.

A design is based on serial calls to aesenc (or to any other instruction of
that matter), if the following aesenc is called only after the previous aesenc
has finished. In such designs, the latency and the number of calls to aesenc
give an immediate bound on the required number of cycles. An example of a
serial construction is the cipher block chaining (CBC) mode because it requires
the output of processing the previous message block in order to process the
next message block.7 As AES-128 has 10 rounds, on Haswell (where aesenc
has a latency of 7), the AES-CBC requires 10 · 7 = 70 cycles to process 16-byte
plaintext (see Fig. 1): the first round (the first call to aesenc) starts at cycle 0 and
completes at 7, the second starts at 7 and completes at 14, . . . , the 10th starts
at 63 and completes at 70. As a result, the construction runs at 70/16 = 4.375
cycles/byte (or c/B for short).

aesenc aesenc · · · · · · aesenc

0 7 14 63 70

Fig. 1. Serial design: AES-CBC on Intel’s Haswell with aesenc latency of 7 cycles. Only
one message block is processed at once.

Designs with parallel calls to aesenc can be far more efficient, as the instruc-
tions are executed simultaneously, i.e. the following aesenc can be called while
one or more of the previous aesenc are still executing. The cycle count now
depends not only on the number of rounds and the latency, but also on the
throughput and the maximal number of independent instances of aesenc sup-
ported by the design. A textbook example of parallelizable construction is the
counter (CTR) mode.8 On Haswell it is possible to process 7 message blocks in
parallel (see Fig. 2): at cycle 0, aesenc is called and it will perform the first AES
round for the first message block (and return the result at cycle 7); at cycle 1,
aesenc for the first AES round of the second message block is called, etc., at
cycle 6 the aesenc for the first round of the seventh message block is called.
Then, aesenc that perform the second rounds for all the seven message blocks
5 A smaller rate is not a sufficient condition of efficiency as parallelizing aesenc calls

plays an important role as well (see the next paragraph).
6 Bogdanov et al. [2] have analyzed the speed improvements of serial modes when

processing multiple messages in parallel.
7 Recall that the AES-CBC is defined as Ci+1 = AESK(Ci ⊕ Mi+1).
8 Recall that the AES-CTR is defined as Ci = AESK(N ||i) ⊕ Mi, where N is a nonce.
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aesenc aesenc · · · · · · · · · aesenc

Throughput

aesenc aesenc · · · · · · · · · aesenc
aesenc aesenc · · · · · · · · · aesenc
aesenc aesenc · · · · · · · · · aesenc
aesenc aesenc · · · · · · · · · aesenc
aesenc aesenc · · · · · · · · · aesenc
aesenc aesenc · · · · · · · · · aesenc
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Fig. 2. Parallel design: AES-CTR on Intel’s Haswell with aesenc latency of 7 cycles. It
allows 7 message blocks to be processed in parallel. The aesenc is called every cycle.

are called at cycles 7–13. By repeating this procedure, it is possible to perform all
ten AES rounds for all 7 message blocks – the last rounds are executed at cycles
63–69, and the ciphertexts are produced at cycles 70–76. Hence only 76 cycles,
which can be brought down to 70 if longer messages are considered, are required
to process 7 message blocks, or on average only 10 cycles per one message block
(cf. to 70 cycles for processing a message block in the serial CBC mode). There-
fore, the CTR mode runs at 10/16 = 0.625 c/B, or precisely 7 times faster than
the CBC mode.

The State Size and the Number of aesenc Calls per Step. The parallel
calls to aesenc can be achieved only if the state size is sufficiently large. We
have seen that CBC mode requires a state composed of only one 16-byte word,
but provides no parallelization. On the other hand, if supplied with a state of
seven words, the CTR mode can run seven instances in parallel. As we strive for
designs with high efficiency and thus support for parallel calls to aesenc, they
will have larger states. In general, if the design makes c calls to aesenc per step,
then the state has to have at least c 128-bit words: only in this case we can have
fully parallelizable aesenc calls.

The optimal number of aesenc calls per step depends on the latency to
throughput ratio. The most efficient designs use around latency/throughput inde-
pendent calls to aesenc per one step. Let us understand this fact on the example
of a hypothetical design that has four aesenc calls per step to process 16-byte
message (has a rate of 4/1 = 4) and is implemented on Haswell, which in turn
has a ratio of 7/1 = 7. The four aesenc calls of the first step are called at cycles
0, 1, 2, and 3 (at every cycle because the throughput is 1), but the results of
these calls are obtained only at cycles 7, 8, 9, 10 (because the latency is 7). As
a result, at cycles 4, 5, and 6, no aesenc calls are made,9 and we say that the
aesenc port10 has not been saturated, i.e. there have been empty cycles. Due

9 Assuming that all the calls to aesenc of the next round depend on some of the
outputs of the previous four aesenc calls.

10 The part of the processor that executes aesenc.
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to the empty cycles, even though the rate is 4, one needs 7 cycles on Haswell to
process the message block, thus the speed is 7/16 = 0.4375 c/B. The cycle count
changes when the same design is implemented on Skylake (with ratio 4/1 = 4).
On this processor, the aesenc port is fully saturated, and on average it requires
only 4 cycles per 16-byte message,11 which means that this design would run at
4/16 = 0.25 c/B.

A construction with rate ρ can run at most at 0.0625ρ c/B because, by
definition, it needs ρ aesenc calls (in total at least ρ cycles) to process 16-byte
message, hence the maximal speed is ρ

16 = 0.0625ρ c/B. On the other hand, if the
number of aesenc calls per step is smaller than the latency to throughput ratio,
then, for the aforementioned reasons, the aesenc port may not be saturated,
and the speed may drop to 0.0625 latency

throughput c/B. In the sequel, we take this
number as our expected speed. The actual speed, however, may differ. It could be
lower, if the aesenc between different steps are dependent, i.e. if the inputs to
the aesenc of the next step depend on the outputs of the aesenc of the previous
step. On the other hand, the actual speed could be higher than the expected, if
more than latency

throughput aesenc could run at the same time – this happens, when
some of the aesenc calls of the next step can start before finishing most of the
aesenc of the previous step.

Summary. Let us summarize the facts of this subsection as they provide hints
to achieve high efficiency, i.e. low c/B measurement:

– lower rate (#aesenc per message block) leads to more efficient designs,
– all aesenc calls per step are independent and thus run in parallel,
– the state is at least as large as the number of aesenc calls per step,
– the #aesenc calls per step is close to the latency/throughput ratio.

2.3 Security Notions

We suggest design strategies to construct building blocks for symmetric-key
primitives, and thus we adapt the security requirements accordingly. Our con-
structions proposed further, for instance, could be used to build a MAC algo-
rithm, where an initialization phase first randomizes a 128-bit key and IV-
dependent internal state to produce a 128-bit tag by injecting message blocks.
In such a case, classical security requirements impose that no key-recovery or
forgery succeeds in less than 2128 operations. If an authenticated encryption
scheme uses our building block with a 128-bit key to produce a 128-bit tag, then
as well, less than 2128 computations must not break the scheme.

Analyzing the resistance of a design against all possible attacks is infeasible
without giving the full specification.12 To capture this, we reduce the security

11 If the aesenc are sufficiently independent between steps.
12 For instance, the initialization and finalization stages of the constructed stream

cipher or authenticated encryption scheme.
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claim of our constructions to the problem of finding internal collisions. Nonethe-
less, we emphasize that this is only one of the requirements of a cryptographic
primitive, thus the resistance against the remaining attacks should be checked
after completing the whole design.

The reason we use state collisions as our unique security requirement is
twofold. First, we cannot fathom how designers will use our building blocks,
and this notion applies directly to many different schemes, like hash functions
or MAC and AE where a state collision would yield forgery. Therefore, by focus-
ing only on this notion, we maximize the security of future designs based on
these building blocks. Second, the inherent algorithmic problem is well-studied
and understood: it consists in finding special types of differential characteristics
that start and end in zero difference. Finally, we can also argue how significant
this requirement is by recalling that several primitives have been broken due to
susceptibility to attacks based on state collisions (see for instance [13,20]).

To find a state collision means to identify two different sequences of mes-
sages such that, from the same initial state value, the same output state value
is reached in the scheme after injecting the different message sequences. Conse-
quently, we can describe this problem as finding a high-probability differential
characteristic from the all-zero state difference to the same all-zero state differ-
ence, where the differences come from the message bytes. By high-probability,
we mean higher than 2−128 since we focus on the AES, which relies on a 128-bit
internal state.

To elaborate on the security reduction to state collisions, we briefly recall
the wide-trail strategy adopted in the design of the AES [6]. This technique has
been introduced to make the AES resistant to classical differential cryptanalysis
in the single-key setting. In particular, the AES ensures a (tight) lower bound
of the number of active S-boxes for any number of rounds in this model (see
Table 2). In detail, the AES uses an Substitution-Permutation Network (SPN)
including an MDS code to provably bound the diffusion, measured in terms of
number of active S-boxes. Additionally, the S-box S from the substitution layer
has been constructed to have a differential probability upper bounded by 2−6,
which means that any differential equation S(x) ⊕ S(x ⊕ δ1) = δ2 over GF (28),
for nonzero δ1 and δ2, has at most four solutions.

Table 2. Minimum number of active S-boxes in the AES in the single-key model.

Rounds 1 2 3 4 5 6 7 8 9 10

Active S-boxes 1 5 9 25 26 30 34 50 51 55

Therefore, to construct secure designs based on the AES round function when
no differences are introduced in the subkeys, it is sufficient to ensure that a dif-
ference enters four rounds of AES. Indeed, four rounds necessarily have at least
25 active S-boxes, which directly yield an upper bound on any differential charac-
teristic probability: 2−6·25 = 2−150 � 2−128. This 4-round barrier explains why
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many previous designs chose to exploit this provable bound and gain in efficiency
in comparison to the ten rounds used in the actual AES-128 block cipher.

In our case, we are interested in designs which achieve higher performances
and do not necessarily rely on four rounds of AES. Consequently, the differential
characteristic mentioned before that starts and ends in no-difference states must
activate at least 22 S-boxes, so its probability would be at most 2−6·22 = 2−132 <
2−128. Hence, in the sequel the security goals imposed on our designs are such
that their best differential characteristic has at least 22 active S-boxes.

2.4 General Structure and Definitions

We define here the classes of AES-based designs that we study in the remaining
of the paper. For all the aforementioned reasons, we focus on only two operations
on 128-bit values: the AES round function denoted by A and performed by the
aesenc instruction, and the XOR operation denoted by ⊕.

More precisely, we study in Sect. 3 the class Ar
⊕ where the allowed operations

on a state of s words belong to {Ar,⊕}. The notation Ar refers to r cascaded
iterations of the permutation A. Next, in Sect. 4, we move on to the more general
class A1

⊕ (simply denoted A⊕), where the AES round function is not necessarily
cascaded. The general structure of the elements of A⊕ are depicted on Fig. 3,
where we represent by dashed lines the optional components. We define an iter-
ation of such designs as a step to avoid confusion with the round function A of
the AES.

Xi
1 Xi

2 Xi
3 · · · Xi

s−1 Xi
s

Xi+1
1 Xi+1

2 Xi+1
3 · · · Xi+1

s−1 Xi+1
s

A A A

A

M M M M M

Fig. 3. One step of the general structure of the designs investigated in this paper.
Dashed components mean they can be present or absent from the design.

We emphasize that all the designs belonging to these classes implement shifts
of the state words to make the various applications of A to be independent.
Consequently, each updated word Xi+1

t , for 0 ≤ t < s, necessarily depends on
Xi

t−1 (mod s), and optionally on Xi
t . The main rationale behind this stems from

the objective to reach high efficiency: should the diffusion be higher, for instance
where a single output of A would be XORed to every output words, the processor
would have to wait until all the output words have their final value. In our case,
the shifts allow to optimize the usage of the processor cycles: starting evaluating
the design from right to left, the first call to A is likely to be finished evaluating



Efficient Design Strategies Based on the AES Round Function 343

when we start processing the left-most state word. Hence, the iteration i+1 can
start without waiting for the end of iteration i.

However, this optimized scheduling of instructions comes at the expense of
the diffusion: from a single bit difference in the input state, reaching a full diffu-
sion might take several steps. As a complete opposite, reaching full diffusion in a
single step would mean XORing the output of a single A to all the output state
words, and would waste many cycles. While this seems to suggest an interesting
tradeoff, we nevertheless show in the sequel that there do exist designs in the
class A⊕ which, at the same time, achieve optimally high efficiency and meet
our security requirements.

In terms of implementation, as mentioned before, the aesenc operations ends
with the XOR of a round subkey and as a result, the implementations may benefit
from this free operation. Namely, if we should XOR the message block M after
the aesenc, we could just use the instruction aesenc(•,M). Otherwise, we might
just use aesenc(•, 0).

Notations. We use the following notations to describe the designs. We introduce
the parameters s that represents the number of 128-bit state words, a the number
of AES rounds in a single step, and m the number of 128-bit message blocks
processed per step. Additionally, we denote by ρ the rate of the design following
Definition 1, that is ρ = a/m.

3 The Class Ar
⊕ and Rate Bounds

The class Ar
⊕, where r > 1, consists of designs that are based on r cascaded

applications of the AES round function. This guarantees that state words will go
through r rounds of AES, without other state or message words being added to
them. Example of an actual construction from A2

⊕ is given in Fig. 4. This design
is based on 2-round AES as both of the words Xi

2 and Xi
5 will go through two

AES rounds before any other state or message word is XORed to them.

Xi
1 Xi

2 Xi
3 Xi

4 Xi
5 Xi

6 Xi
7

Xi+1
1 Xi+1

2 Xi+1
3 Xi+1

4 Xi+1
5 Xi+1

6 Xi+1
7

A A A A

M1 M2 M1 M2 M3 M2

Fig. 4. A design from A2
⊕.

Designs from Ar
⊕ are easier to analyze as they resemble r rounds of the AES.

As a result, their main advantage lies in the possibility to use the wide-trail
strategy of the AES which dictates that the minimal number of active S-boxes of
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2, 3, and 4 rounds of AES is 5, 9, and 25 active S-boxes, respectively (see Table 2).
For example, to prove that a particular A3

⊕ design is secure by our definition, we
have to show that in any differential characteristic that starts and ends in a zero
difference, a state difference must go at least three times through the cascaded
three rounds of AES. Such design would be secure, because the number of active
S-boxes for any characteristic would be at least 3 · 9 = 27 ≥ 22. For the class
A2

⊕ (resp. A4
⊕), the similar requirement is to activate five times (resp. once), the

cascaded 2-round (resp. 4-round) AES.
The efficiencies of these designs, however, are limited. Further, we show that

their rates cannot be arbitrary low, but are in fact bounded by r.

Theorem 1. The rate ρ of a design based on Ar
⊕ cannot be less than r, i.e.

ρ(Ar
⊕) ≥ r.

Proof. Any design from Ar
⊕ can be divided into several parts. Each r-step cas-

caded aesenc with the corresponding state words composes a so-called nonlinear
part. Consecutive XORs of the message and the state words (with no aesenc in
between) also compose a part, called a linear part. Note, there can be several
nonlinear and linear parts. For instance, the design from Fig. 4 can be divided
into two nonlinear parts (denoted with thick lines) and two linear parts (the
remaining two parts between the nonlinear parts).

A design is insecure if we can build a high-probability differential character-
istic that starts and ends in zero state difference (but some intermediate state
words have non-zero differences introduced through the message words). Fur-
ther, we show that if the rate is too small, more precisely if ρ < r, then we can
build a differential characteristic with no active S-boxes. That is, the difference
in the state can be introduced through the message words and then canceled in
the following steps, without reaching the state words to which aesenc is applied.
As a result, the probability of that differential characteristic would be one.

Let m be the number of message blocks XORed per step. Moreover, let N and
L be the total number of nonlinear and linear parts, respectively. Recall that each
of the N nonlinear parts has at least r cascaded applications of aesenc. Thus, for
the rate ρ, defined as the number of aesenc calls per message block, it holds:

ρ(Ar
⊕) ≥ N · r

m
. (1)

To build a differential characteristic with no active S-boxes, at each step of
the characteristic the difference that enters each of the N nonlinear parts should
be zero. This condition can be expressed as a system of linear equations where
the differences in the message words are the unknown variables. At each step,
we require the inputs to the nonlinear parts to be zero. Hence, for each step, N
equations are added to the system, and the number of variables is increased by
m. For instance, the system that corresponds to the design from Fig. 4 has the
following four equations that correspond to the first two steps of the character-
istics for the two non-linear layers:
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ΔM1
2 = 0,

ΔM1
3 = 0,

ΔM1
1 ⊕ ΔM2

3 = 0,

ΔM1
1 ⊕ ΔM1

2 ⊕ ΔM2
3 = 0,

where the unknown ΔM j
i is the difference in the message word Mi at step j of

the characteristic.
The resulting system is homogeneous because we require the input differences

to the nonlinear layers to be zero. When built for a differential characteristic on
R steps, the system has m ·R variables. Furthermore, it has N ·R equations that
correspond to the conditions that zero differences enter all nonlinear layers, and
additional s equations (where s is the number of state words) that correspond
to the conditions that all state words after step R have a zero difference. As
the system is homogeneous, it has a non-zero solution as long as the number of
variables exceeds the number of equations, i.e. m ·R > N ·R+s, or equivalently,
as long as

R(m − N) − s > 0. (2)

We show that if ρ < r, then (2) holds. From (1), it follows that r > ρ ≥ N ·r
m ,

hence N < m. Let m − N = t > 0. As the number s of state words is fixed, and
the number of steps R of the differential characteristic can increase, it follows
that R(m − N) − s = R · t − s > 0, when R > s

t . Therefore, when the rate ρ
of the design is smaller than r, the homogeneous system has a non-zero solution
which corresponds to a differential characteristic with no active S-boxes and, as
a result, the design is insecure. Hence, the rate ρ of a secure design cannot be
less than r. ��

Remark 1. The rate bound holds for any design based on r-round cascaded AES
(and not only for the class with shifts to the right, that we analyze).

From the theorem, we can conclude that regardless of the actual construction,
designs from A4

⊕,A3
⊕ and A2

⊕ cannot have rates lower than 4, 3, and 2, respec-
tively, and thus cannot run faster than 0.250 c/B, 0.188 c/B, and 0.125 c/B,
respectively.

Note, as the step functions of AEGIS-128L and Tiaoxin-346 run at 0.250
c/B and 0.188 c/B (have rates 4 and 3), in order to find more efficient designs,
we have to either find rate-3 designs with smaller states (at most 12 words as
Tiaoxin-346 has 13 words), or designs with lower rate. We have run a complete
search of all designs from A3

⊕ with at most 12 state words and found that none
of them is secure13. Furthermore, we have run a partial search14 among designs
from A2

⊕ and found constructions with rate 2.66, but not lower. Thus, to achieve
more efficient designs, in the next section we examine the class A⊕.

13 This gives a rise to the conjecture that the inequality from the theorem is strict.
14 In this case, the search space cannot be exhausted as it is too large.
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4 Designs in the Class A⊕

In this section, we focus on the more general class of designs A⊕, where the AES
round function is not necessarily iterated. From a cryptanalytic standpoint, it
means this class encompasses designs where state differences can be introduced
between two consecutive AES round functions. The main consequence in com-
parison to the previous class Ar

⊕ from Sect. 3 is that we lose the simplicity of the
analysis brought by the wide-trail strategy. One could compare the change of
analysis as transition from the single-key framework of the AES to its related-key
counterpart (where differences may be introduced between consecutive rounds).

However, in spite of the more complex analysis, we show there exists low-rate
designs in this larger class that meet our security requirements. Namely, we show
several designs that achieve rates 3, 2.5, and even rate 2.

The study of A⊕ is less straightforward than the previous case, thus we rely
on mixed integer linear programming (MILP) to derive lower bounds on the
number of active S-boxes the designs. In the next sections, we briefly recall the
MILP technique applied to cryptanalysis (Sect. 4.1) and we detail our results
(Sect. 4.2).

4.1 MILP and Differential Characteristic Search

From a high-level perspective, a MILP problem aims at optimizing a linear
objective function subject to linear equalities and/or linear inequalities. The
technique we use in this paper is said to be mixed integer linear programming
as it alleviates the all-integer constraint on the classical linear programming
variables. More precisely, in our case some variables might not be integers, but
all the integer variables are 0–1 variables. Therefore, we could dub this particular
setup as 0–1 MILP.

The 0–1 MILP problems are usually NP-hard, but solutions can be found
using different strategies, for instance, the cutting-plane method which itera-
tively refines a valid solution by performing cuts relying on the linear inequality
constraints of the problem. For our purposes, we use one of the many solvers
existing to date, namely the Gurobi solver [10]. Several published results rely on
MILP optimization tools to solve cryptanalytic problems: searches for differen-
tial characteristics in various schemes are given in [18], known lower bounds for
the number of active S-boxes for the related-key setting of AES in [16], analysis
of reduced versions of the Trivium stream cipher in [4], etc.

We aim at finding differential characteristics from the all-zero difference input
state to the same all-zero output state after a variable number of steps. As
mentioned before, our measure of security relies on the number of active S-boxes,
which gives an upper bound on the success probability of a differential attack that
may lead to state collisions. We transform the search of differential characteristics
into MILP problems whose objective functions count (and minimize) the number
of active S-boxes. In practice, since we use the AES round function, we only
require the differential characteristics to have at least 22 active S-boxes to ensure
security.
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Let X = {xi, i = 1, . . . , m} be the set of all the m variables and S ⊆ X
be the subset of variables representing the S-boxes of the scheme. With these
notations, a classical MILP problem that we study can be stated as follows:

Minimize:
∑

x∈S
x,

subject to: Ax = b, xi all 0–1 variables.

Recall that, for each x ∈ S, x = 1 if and if only if the S-box associated to x is
active. The other variables in X S represent intermediate state differences.

For a given state size of s 128-bit words, to express the problem of finding a
differential characteristic, we examine the effect of the four elementary transfor-
mations of the AES round function. We emphasize that the analysis is performed
in terms of truncated differences (x ∈ {0, 1}) since we are only concerned about
active or inactive S-boxes: the actual differences are insignificant. Therefore, as
soon as one S-box is active, the SubBytes operation maintains this property.
Hence, SubBytes does not introduce any linear constraints in the MILP prob-
lem. The same holds for the ShiftRows operation, which only permutes the bytes
of the internal state.

However, the MixColumns operation implements a linear code with max-
imal distance (MDS), and it does introduce linear constraints in the MILP
problem. Namely, the new inequalities enforce the minimal distance into the
problem description. Assuming that the MixColumns operation is applied to
the variables (representing truncated differences) [xi, xi+1, xi+2, xi+3] to produce
[x′

i, x
′
i+1, x

′
i+2, x

′
i+3], we introduce the nine following inequalities:

x1 + x2 + x3 + x4 + x′
1 + x′

2 + x′
3 + x′

4 − 5t ≥ 0,

t − v ≥ 0, v ∈ {x1, x2, x3, x4, x
′
1, x

′
2, x

′
3, x

′
4}.

The usage of the extra temporary variable t ensures that the MDS bound is valid
as soon as one of the x variables is nonzero (i.e. zero or at least five variables
equal one).

Finally, the AddRoundKey operation XORs a 128-bit subkey into the state,
which also introduces linear inequalities in the MILP problem description. Con-
sider the XOR y = x1 ⊕ x2 of two variables x1, x2 ∈ {0, 1} representing two
truncated differences. In the event that (x1, x2) = (0, 0), y naturally becomes 0,
and y becomes 1 if (x1, x2) ∈ {(0, 1), (1, 0)}. However, the behavior is undeter-
mined when (x1, x2) = (1, 1) as y can either be 0 or 1 depending on the actual
values of the corresponding differences. Indeed, because we lose information by
compressing the differences to truncated differences, we lose the information
on the possible equality of differences. Consequently, we have to consider both
cases: y ∈ {0, 1}. This partial behavior of XOR is captured by the four following
inequalities:

x1 + x2 + y − 2t ≥ 0,

t − v ≥ 0, v ∈ {x1, x2, y},

which basically excludes the case where only one of the three variables equals one.
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In summary, for a single round of AES, we introduce 4 × 9 + 16 × 4 = 100
inequalities to express the round constraints. On top of that, we introduce
16 × 4 = 64 additional inequalities for every extra XORs required to inject
the message blocks. Finally, we also need to add 2 × s × 16 equality constraints
to represent the required zero difference in the input state and in the output
state to reach a state collision. To give concrete numbers, we point out that
systems corresponding to our smaller designs would need around 10,000 binary
variables and 20,000 to 30,000 linear constraints.

Limitations. Despite providing a simple and efficient way of finding differen-
tial characteristics, MILP only yields upper bounds on the actual probabilities
of the differential characteristics as, theoretically, they can be impossible. We
emphasize that this does not relate to impossible differential characteristic, but
to the fact that partially undetermined behavior of the XOR operation (men-
tioned before) may result in inconsistent systems that produce truncated differ-
ential characteristics which are impossible to instantiate with actual differences.
Fortunately, while a cryptanalyst should ensure the validity of the produced
characteristics, we, as designers, only need to confirm that the upper bound on
the probability of the best differential characteristic is sufficiently low.

4.2 Results of the Search

In this section, we conduct the search for efficient designs and describe the
results produced by the MILP analysis. In the next Sect. 5, we give the actual
implementations and benchmarks of the produced designs.

Rate 3. We start the search with rate-3 designs and try to minimize the number
s of state words. For a given state size s, the general structure depicted in Fig. 3
contains at most 12s different designs. As the smallest possible size is s = 3,
we efficiently exhaust all the 123 designs. In this reduced space, we have found
that not a single design can reach 22 active S-boxes. Furthermore, for s = 4
state words, there exists secure constructions, albeit incompletely saturating the
aesenc port for all the current processors15, thus we do not consider them.

Ai Bi Ci Di Ei Fi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1

A A A A A A

M1 M1 M2 M2

Fig. 5. Rate-3 design with 6 words.

Ai Bi Ci Di Ei Fi Gi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1

A A A A A A

M1 M1 M2 M2

Fig. 6. Rate-3 design with 7 words.

15 The design uses only 3 aesenc calls per round, whereas the smallest latency among
all the processors is 4.
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Having this objective in mind for rate-3 designs, we then move to step func-
tions having either six calls to A (this saturates the Skylake aesenc port as
aesenc has latency of 4) and inject two message blocks in each step, or nine calls
to A (to saturate *bridge and *well aesenc ports) and inject three blocks. We
find three different designs with state sizes of 6, 7 and 8 words, respectively, that
are best suitable for Skylake. These designs achieve different security margins
with lower bounds of 22, 25 and 34 active S-boxes, respectively (refer to Figs. 5,
6 and 7).

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

A A A A A A

M1 M1 M2 M2

Fig. 7. Rate-3 design with 8 words.

For the case of nine calls to A (suitable as well for *bridge and *well
architectures), we propose the design from Fig. 8 that reaches a minimum of 25
active S-boxes, has nine state words, and uses no additional XOR operations.

Ai Bi Ci Di Ei Fi Gi Hi Ii

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1 Ii+1

A A A A A A A A A

M0 M1 M1 M2 M2 M3 M3

Fig. 8. Rate-3 design with 9 words.

Rate Smaller Than 3. To reach rates smaller than three, we first consider
cases with two message blocks injected in every step. This restricts the number
of A per round to five. We have performed a search within these restrictions and
found constructions with seven and eight state words (see Figs. 9 and 10). The
two design achieves rate 5/2 = 2.5, have at least 22 and 23 active S-boxes, and
saturate the aesenc port on Skylake processor.

Finally, we consider designs with rate of 2. We have not found a construction
that injects two message blocks per step, however, we have discovered one that
processes three message blocks per step (see Fig. 11). It has 12 state words, uses
6 aesenc to process 3 message blocks, and has at least 25 active S-boxes in
any differential characteristic. Note, this construction compares very favorably
to Tiaoxin-346: it is more compact and more efficient at the same time, since
Tiaoxin-346 reaches rate 3 with 13 state words.
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Ai Bi Ci Di Ei Fi Gi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1

A A A A A

M1 M1 M1 M1 M2 M2 M2

Fig. 9. Rate 2.5 with 7 state words.

Ai Bi Ci Di Ei Fi Gi Hi

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1

A A A A A

M1 M1 M1 M1 M2 M2 M2 M2

Fig. 10. Rate 2.5 with 8 state words.

Ai Bi Ci Di Ei Fi Gi Hi Ii Ji Ki Li

Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Fi+1 Gi+1 Hi+1 Ii+1 Ji+1 Ki+1 Li+1

A A A A A A

M1 M1 M1 M2 M2 M2 M3 M3 M3 M1 M2 M3 M3

Fig. 11. Rate-2 design with 12 state words.

5 Implementations Results

We benchmark the seven constructions on the latest Intel’s processors. The
aesenc on some of these processors have similar performances (see Table 1),
thus we benchmark on only three different platforms: Ivy Bridge (i5-3470) with
Linux kernel 3.11.0-12 and gcc 4.8.1, Haswell (i5-4570) with Linux kernel 3.11.0-
12 and gcc 4.8.1, and Skylake (i5-6200U) with Linux kernel 3.16.0-38 and gcc
4.8.4. We wrote the implementations in C and optimized them separately for
each processor. The benchmarks were produced with disabled Turbo Boost and
for 64kB messages16.

The produced benchmarks are given in Table 3. Recall that our expected
speed (expressed in c/B) is defined as 0.0625 · max(ρ, latency

throughput ). When the
measured speed matches the expected (at most 5 % discrepancy), in the table
we give the expected speed in bold text. On the other hand, when the measured
speed is lower (resp. higher) than the expected, we give the actual speed with
superscript − (resp. +).

From the table, we can see that in most of the cases, our benchmarks follow
the expected speed. For Ivy Bridge, the exceptions are the rate-3 design, which
runs in 0.222 c/B instead of the expected 0.189 c/B (17 % slower), and the
rate-2 design that runs at 0.190 c/B instead of 0.167 c/B (13 % slower). For
Haswell, three designs run faster than expected, with gains of 15 %, 24 %, 22 %,
respectively. On Skylake, the measured speed matches the expected speed for all
seven constructions.

Among the seven constructions, we would like to single out the last construc-
tions that has rate of 2, i.e. it uses two AES rounds to process a 16-byte message.
On all of the three tested processors, this construction is exceptionally efficient.
In addition, on Skylake, we were able to match the actual theoretical speed (our

16 Only a slight degradation of speed is observed when the message length is a few
kilobytes.
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Table 3. Benchmarks (in c/B) of designs based on the AES round function. s: number
of 128-bit state words, a: number of AES rounds in a single step, m: number of 128-
bit message blocks processed per step, x number of additional XORs per step, ρ:
rate of design (a/m), LB: lower bound on the number of active S-Boxes. Highlighted
numbers means that the aesenc port is saturated for the given processor. Numbers in
parentheses are projections, no actual measurements have been performed. Numbers
in bold denotes that practical and theoretical speed match (less than 5% difference),
while numbers with + (resp. −) denote that the practical speed is higher (resp. lower)
than the theoretical.

s a m x ρ LB Speed in c/B Reference

*bridge *well Skylake

5 5 1 1 5 25 (0.500) (0.436) (0.313) AEGIS-128 [19]

6 6 1 1 6 25 (0.500) (0.436) (0.375) AEGIS-256 [19]

8 8 2 2 4 25 (0.250) (0.250) (0.250) AEGIS-128L [19]

13 6 2 4 3 30 (0.250) (0.219) (0.188) Tiaoxin-346 [17]

6 6 2 0 3 22 0.250 0.219 0.188 Figure 5

7 6 2 3 3 25 0.250 0.219 0.188 Figure 6

8 6 2 4 3 34 0.250 0.219 0.188 Figure 7

9 9 3 0 3 25 0.222− 0.188 0.188 Figure 8

7 5 2 4 2.5 22 0.250 0.189+ 0.156 Figure 9

8 5 2 5 2.5 23 0.250 0.177+ 0.156 Figure 10

12 6 3 9 2 28 0.190− 0.136+ 0.125 Figure 11

measured speed was 0.126 c/B against the theoretical 0.125 c/B). Hence, designs
based on this construction may run five times faster than AES-128.

We note that on platforms without AES-NI support our design cannot reach
the target speed. However, by no means they are slow as they use only 2–3 AES
rounds to process 16-byte message block. Hence, the expected speed on these
platforms is still much higher than the speed of AES, e.g. we expect that our
constructions will run around 3–5 times faster than AES-128 in counter mode.

In addition, the state sizes of the constructions are large hence they are not
suitable for lightweight applications. However, we note that all seven construc-
tions have sizes which are smaller than the state of SHA-3 which has 25 64-bit
state words (equivalent to 12.5 128-bit blocks).

6 Conclusion

We have presented new building blocks for secret-key primitives based on the
AES round function. By targeting the most recent Intel processors from the past
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four years, we have relied on the dedicated instruction set AES-NI to construct
highly efficient designs. The designs are finely tuned for these processors to
take advantage of the available parallelism and to reach optimal speed. They
are based on the second, more efficient design strategy which requires a more
complex security proof (reduction to MILP), but allows higher efficiency.

We have provided seven different building blocks that follow our design strate-
gies and that reach high speed on the latest processors. On Ivy Bridge they run
at 0.190–0.250 c/B, on Haswell at 0.136–0.219 c/B, while on Skylake at 0.125–
0.188 c/B. We emphasize that our fastest construction uses only two AES rounds
to process 16-byte message and on Skylake runs at only 0.125 c/B. To the best of
our knowledge, this construction is much faster than any known cryptographic
primitive.

Follow-up works to introduce better designs may start from two related direc-
tions: either by trying to reduce the state size, or by increasing the number of
processed message in each step of the designs. The former might be useful to
improve so designs that requires too many registers and slow down the whole
process. The latter would automatically reduce the rate of the design and directly
affect the measured speed. This direction is however difficult to tackle as the
adversary has a lot more freedom to construct high-probability characteristics.
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Abstract. Ciphers that do not use S-boxes have been discussed for the
demand on lightweight cryptosystems, and their round functions consist
of and, rotation, and xor. Especially, the Simon family is one of the most
famous ciphers, and there are many cryptanalyses again the Simon fam-
ily. However, it is very difficult to guarantee the security because we can-
not use useful techniques for S-box-based ciphers. Very recently, the divi-
sion property, which is a new technique to find integral characteristics,
was shown in Eurocrypt 2015. The technique is powerful for S-box-based
ciphers, and it was used to break, for the first time, the full MISTY1 in
CRYPTO 2015. However, it has not been applied to non-S-box-based
ciphers like the Simon family effectively, and only the existence of the
10-round integral characteristic on Simon32 was proven. On the other
hand, the experimental characteristic, which possibly does not work for
all keys, covers 15 rounds, and there is a 5-round gap. To fill the gap,
we introduce a bit-based division property, and we apply it to show that
the experimental 15-round integral characteristic always works for all
keys. Though the bit-based division property finds more accurate inte-
gral characteristics, it requires much time and memory complexity. As a
result, we cannot apply it to symmetric-key ciphers whose block length is
over 32. Therefore, we alternatively propose a method for designers. The
method works for ciphers with large block length, and it shows “provable
security” against integral cryptanalyses using the division property. We
apply this technique to the Simon family and show that Simon48, 64,
96, and 128 probably do not have 17-, 20-, 25-, and 29-round integral
characteristics, respectively.

Keywords: Integral cryptanalysis · Division property · Provable secu-
rity · Simon family

1 Introduction

Non-S-box-based ciphers have been proposed for the demand on lightweight
cryptosystems [2,3]. Such ciphers are superior in lightweight environments
because they are implemented by logical operations and do not have a lookup
table like S-boxes. In 2013, the NSA proposed a lightweight block cipher family,
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 357–377, 2016.
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Table 1. Integral characteristics on Simon32

Methods #Rounds Balanced bit (right half) Reference

Experiment (no proof) 15 (?b??,????,b???,???b) [18]

Division 10 (bbbb,bbbb,bbbb,bbbb) [17]

Conventional bit-based division 14 (bbbb,bbbb,bbbb,bbbb) Sect. 3

Bit-based division using 3 subsets 15 (?b??,????,b???,???b) Sect. 4

called the Simon family, that follows this design principle [3]. However, it is too
difficult to guarantee the security against several cryptanalyses because we can-
not use many useful techniques for S-box-based ciphers. Therefore, many crypt-
analyses have been proposed against the Simon family, e.g., [1,5,6,10,15,18],
and the designers recently summarized cryptanalyses in [4]. In this paper, we
investigate the security of non-S-box-based ciphers against integral cryptanalyses
and illustrate our methods on the Simon family.

Division Property. Very recently, the division property, which is a new tech-
nique to find integral characteristics [9], was proposed in Eurocrypt 2015 [17].
The new technique permitted us to find a 6-round integral characteristic on
MISTY1 in CRYPTO 2015, leading to the first complete theoretical cryptanaly-
sis of the full MISTY1 [16]. Moreover, this technique was applied to general-
ized Feistel structures in [20], leading to improved integral cryptanalyses against
LBlock and TWINE. The division property also proves integral characteristics
on the Simon family in [17], and Simon32, 48, 64, 96, and 128 have 9-, 11-,
11-, 13-, 13-round integral characteristics, respectively1. However, the round
function is regarded as any function of degree 2. Therefore, we can expect that
integral characteristics can be extended to more rounds if one is able to exploit
the concrete structure of the round function. In fact, the experimental integral
characteristic, which possibly does not work for all keys, covers 15 rounds [18],
and there is a large gap between the proved characteristic and experimental one.

Our Contribution. The round function of the Simon family is regarded as any
function of degree 2 in [17] because we cannot decompose the round function into
several sub blocks like S-boxes. However, we can decompose the round function
into every bit, and we call the division property that focuses on every bit a
bit-based division property.

First, we apply the conventional bit-based division property to Simon32,
which is not against the definition of the division property. Therefore, we can
directly use the propagation rules of the division property. As a result, the
conventional bit-based division property proves that Simon32 has a 14-round
integral characteristic. However, there is still a gap of one round between the
1 Since the round key is XORed after the round function in Simon, we can trivially

get one-round extended integral characteristics.
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Table 2. Provable secure number of rounds for the Simon family

Ciphers Simon48 Simon64 Simon96 Simon128 reference

Vulnerable number 14 rounds 17 rounds 21 rounds 25 rounds [21]

Provable security 17 rounds 20 rounds 25 rounds 29 rounds this paper

proof and experiment. Namely, this means that either the experimental 15-round
characteristic does not work for all keys or the conventional bit-based division
property cannot find the accurate characteristic. As a result, we conclude that
the conventional bit-based division property is insufficient to find the accurate
characteristic. The conventional division property divides the set of u according
to whether the parity becomes 0 or unknown [17]. However, we should divide
the set of u according to whether the parity becomes 0, 1, or unknown because
we can also exploit the fact that the parity is not only 0 but also 1. To exploit
this fact, we newly introduce a variant of the bit-based division property, which
divides the set of u into three subsets. Since the variant is completely different
from the definition of the conventional division property, we show the propaga-
tion characteristic also. Finally, we apply the variant to Simon32 and show that
the experimental 15-round characteristic always works for all keys. The proved
characteristic is the completely same as the experimental one including the posi-
tion of balanced bits. Table 1 shows the comparison of integral characteristics,
where balanced and unknown bits are labeled as b and ?, respectively.

Although the bit-based division property can find more accurate integral
characteristics, their propagations require much time and memory complexity.
When we evaluate the propagation for n-bit block ciphers, it roughly requires
2n complexity because the bit-based division property has to manage the set
of n-dimensional vectors whose elements take values in F2. This is feasible
for Simon32 because the block length is 32 bits, but it is infeasible for other
Simon family members. Therefore, we introduce a new technique, which is use-
ful for designers but is not useful for attackers. We call this technique a lazy
propagation, where we evaluate only a part of all propagations. The lazy propa-
gation cannot find the integral characteristic, but it can evaluate the number of
rounds that the bit-based division property cannot find integral characteristics
even if we can evaluate the accurate propagation. Namely, the technique shows
“provable security” for the integral cryptanalysis using the division property,
and we expect that it becomes a useful technique for designers. Our provable
security guarantees the security against only the integral cryptanalysis using
the division property, and it does not always guarantee the security against all
integral-like cryptanalyses. However, for Simon32, the bit-based division prop-
erty can find the accurate integral characteristic. Therefore, we expect that it
also finds the best integral characteristic for the other Simon family if it is fea-
sible. Table 2 shows the number of rounds of Simon48, 64, 96, and 128, where
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the division property never finds integral characteristics. As a result, we expect
that Simon48, 64, 96, and 128 do not have 17-, 20-, 25-, and 29-round integral
characteristics, respectively2. Moreover, as the comparison, Table 2 also shows
the number of rounds that Simon48, 64, 96, and 128 have integral characteris-
tics [21].

2 Preliminaries

2.1 Notations

We make the distinction between the addition of F
n
2 and addition of Z, and we

use ⊕ and + as the addition of F
n
2 and addition of Z, respectively. For any a ∈ F

n
2 ,

the ith element is expressed in a[i], and the Hamming weight w(a) is calculated
as w(a) =

∑n
i=1 a[i]. For any a ∈ (Fn1

2 ×F
n2
2 ×· · ·×F

nm
2 ), the vectorial Hamming

weight of a is defined as W (a) = (w(a1), w(a2), . . . , w(am)) ∈ Z
m. Moreover,

for any k ∈ Z
m and k′ ∈ Z

m, we define k � k′ if ki ≥ k′
i for all i. Otherwise,

k � k′. In this paper, we often treat the set of k, and K denotes this set. Then,
let |K| be the number of vectors. We simply write K ← k when K := K ∪ {k}.
Moreover, we simply write K

x←− k, where the new K computed as

K :=

{
K ∪ {k} if the original K does not include k,

K \ {k} if the original K includes k.

2.2 Integral Attack

The integral attack was first introduced by Daemen et al. to evaluate the security
of Square [7], and then it was formalized by Knudsen and Wagner [9]. Attackers
first prepare N chosen plaintexts and encrypt them R rounds. If the XOR of
all encrypted texts becomes 0, we say that the cipher has an R-round integral
characteristic with N chosen plaintexts. Finally, we analyze the entire cipher by
using the integral characteristic. Therefore, it is very important to find integral
characteristic. There are two main approaches to find integral characteristics.
The first one is the propagation of the integral property [9] and the second one
is based on the degree estimation [8,11].

2.3 Division Property

The division property, which was proposed in [17], is a new method to find inte-
gral characteristics. This section briefly shows the definition and propagation
rules. Please refer to [17] in detail.

2 If we truly guarantee the security against integral attack, we have to consider the
key recovery part.
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Bit Product Function. The division property of a multiset is evaluated by
using the bit product function defined as follows. Let πu : F

n
2 → F2 be a bit

product function for any u ∈ F
n
2 . Let x ∈ F

n
2 be the input, and πu(x) is the AND

of x[i] satisfying u[i] = 1, i.e., it is defined as

πu(x) :=
n∏

i=1

x[i]u[i].

Notice that x[i]1 = x[i] and x[i]0 = 1. Let πu : (Fn1
2 × F

n2
2 × · · · × F

nm
2 ) → F2

be a bit product function for any u ∈ (Fn1
2 × F

n2
2 × · · · × F

nm
2 ). Let x ∈ (Fn1

2 ×
F

n2
2 × · · · × F

nm
2 ) be the input, and πu(x) is defined as

πu(x) :=
m∏

i=1

πui
(xi).

The bit product function also appears in the Algebraic Normal Form (ANF)
of a Boolean function. The ANF of a Boolean function f is represented as

f(x) =
⊕

u∈Fn
2

af
u

(
n∏

i=1

x[i]u[i]
)

=
⊕

u∈Fn
2

af
uπu(x),

where af
u ∈ F2 is a constant value depending on f and u.

Definition of Division Property

Definition 1 (Division Property [17]). Let X be a multiset whose elements
take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ). When the multiset X has the division

property Dn1,n2,...,nm

K
, where K denotes a set of m-dimensional vectors whose ith

element takes a value between 0 and ni, it fulfils the following conditions:

⊕

x∈X

πu(x) =

{
unknown if there are k ∈ K s.t. W (u) � k,

0 otherwise.

See [17] to better understand the concept in detail, and [14] and [16] help readers
understand the division property. In this paper, the division property for (Fn

2 )m

is referred to as Dnm

K
for the simplicity3. If there are k ∈ K and k′ ∈ K satisfying

k � k′ in the division property Dn1,n2,...,nm

K
, k can be removed from K because

the vector k is redundant.

Propagation Rules of Division Property. Some propagation rules for the
division property are proven in [17], and the rules are summarized in [16] as
follows.

3 In [17], the division property was referred to as Dn,m
K

.
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Rule 1 (Substitution). Let F be a function that consists of m S-boxes, where
the bit length and the algebraic degree of the ith S-box is ni bits and di,
respectively. The input and output take a value of (Fn1

2 × F
n2
2 × · · · × F

nm
2 ),

and X and Y denote the input multiset and output multiset, respectively.
Assuming that the multiset X has the division property Dn1,n2,...,nm

K
, the

division property of the multiset Y is Dn1,n2,...,nm

K′ as

K
′ ←

(⌈
k1
d1

⌉
,

⌈
k2
d2

⌉
, . . . ,

⌈
km

dm

⌉)
, ∀k ∈ K.

Here, when the ith S-box is bijective and ki = ni, the ith element of the
propagated property becomes ni not 
ni/di�.

Rule 2 (Copy). Let F be a copy function, where the input x takes a value of
F

n
2 and the output is calculated as (y1, y2) = (x, x). Let X and Y be the input

multiset and output multiset, respectively. Assuming that the multiset X has
the division property Dn

k , the division property of the multiset Y is Dn,n
K′ as

K
′ ← (k − i, i), for 0 ≤ i ≤ k.

Rule 3 (Compression by XOR). Let F be a function compressed by an
XOR, where the input (x1, x2) takes a value of (Fn

2 × F
n
2 ) and the output is

calculated as y = x1 ⊕ x2. Let X and Y be the input multiset and output
multiset, respectively. Assuming that the multiset X has the division property
Dn,n

K
, the division property of the multiset Y is Dn

k′ as

k′ = min
(k1,k2)∈K

{k1 + k2}.

Here, if the minimum value of k′ is larger than n, the propagation character-
istic of the division property is aborted. Namely, a value of ⊕y∈Yπv(y) is 0
for all v ∈ F

n
2 .

Rule 4 (Split). Let F be a split function, where the input x takes a value of
F

n
2 and the output is calculated as x = y1‖y2, where (y1, y2) takes a value

of (Fn1
2 × F

n−n1
2 ). Let X and Y be the input multiset and output multiset,

respectively. Assuming that the multiset X has the division property Dn
k , the

division property of the multiset Y is Dn1,n−n1
K′ as

K
′ ← (k − i, i), for 0 ≤ i ≤ k.

Here, (k − i) is less than or equal to n1, and i is less than or equal to n − n1.
Rule 5 (Concatenation). Let F be a concatenation function, where the input

(x1, x2) takes a value of (Fn1
2 ×F

n2
2 ) and the output is calculated as y = x1‖x2.

Let X and Y be the input multiset and output multiset, respectively. Assuming
that the multiset X has the division property Dn1,n2

K
, the division property of

the multiset Y is Dn1+n2
k′ as

k′ = min
(k1,k2)∈K

{k1 + k2}.
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2.4 Simon Family

The Simon family is a lightweight block cipher family [3] based on the Feistel
construction. Let Simon2n be the Simon block ciphers with 2n-bit block length,
where n is chosen from 16, 24, 32, 48, and 64. Moreover, Simon2n with mn-bit
secret key is referred to as Simon2n/mn. Since we only care about integral
characteristics on the Simon family, this paper only uses Simon2n.

Li-1 Ri-1

Li Ri

ki

1

8

2

n

Fig. 1. Round function of Simon2n

The output of the ith round function is denoted by (Li, Ri) and is calculated
as

(Li, Ri) = (L≪1
i−1 ∧ L≪8

i−1 ) ⊕ L≪2
i−1 ⊕ Ri−1 ⊕ ki, Li−1),

where L≪j denotes the j-bit left rotation of L, and ki denotes the ith round
key. Moreover, (L0, R0) denotes a plaintext. The round function consists of and,
rotation, and xor, and Fig. 1 shows the round function. For more details, please
refer to [3].

2.5 Known Integral Characteristic on Simon Family

It is difficult to find effective integral characteristics on ciphers which consist of
and, rotation, and xor. In [18], authors experimentally showed that Simon32
has the 15-round integral characteristic with 231 chosen plaintexts. Since their
characteristic is confirmed under 213 secret keys, they expected that the success
probability of this characteristic is at least 1 − 2−13. Therefore, this approach
does not guarantee that the characteristic works for all secret keys. Moreover,
it is practically infeasible to find integral characteristics of other Simon family
members because the block length is too large for proceeding to an experimental
evaluation.

Integral characteristics proved under all secret keys are shown in [17], but in
this approach the round function of Simon2n is seen as any n-bit function of
degree 2. Therefore, the detailed structure of the round function is not exploited.
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As a result, it shows that Simon32, 48, 64, 96, and 128 has 9-, 11-, 11-, 13-, and
13-round integral characteristic, respectively. Since the round key is XORed after
the round function, we can trivially get one-round extended integral characteris-
tics using the same technique in [18]. Therefore, 10-, 12-, 12-, 14-, and 14-round
integral characteristics are proved in Simon32, 48, 64, 96, and 128, respectively.
Thus, there is a 5-round gap between the proved characteristic and experimental
one.

3 Conventional Bit-Based Division Property

This paper introduces a bit-based division property. When n-bit block ciphers
are analyzed, the conventional division property uses D�1,�2,...,�m

K
, where �i and

m are chosen by attackers in the range of n =
∑m

i=1 �i. This section considers
the conventional bit-based division property, i.e., D1n

K
. Since it is not against

the definition of the conventional division property, we can directly use the five
propagation rules shown in Sect. 2.3.

x1

w1

w2 w4
w5w3

x2 x3 x4

y1 y2 y3 y4

Fig. 2. Core operation of the Simon family.

3.1 Comparison Between Conventional Bit-Based Division Property
and Solving Algebraic Equations

Before the introduction of the conventional bit-based division property, we
roughly show the relation between the bit-based division property and the reso-
lution of algebraic equations by brute force. When entire ciphers are represented
by algebraic equations, such equations involve both the plaintext and secret
key. Therefore, if we solve such equations for an n-bit block cipher with a k-bit
secret key, this roughly requires 2k+n complexity. On the other hand, XORing
with a constant value does not change the conventional bit-based division prop-
erty because such XORing is a linear function [16]. Therefore, the propagation
of the conventional bit-based division property does not involve the secret key.
It may miss some useful cryptographic properties, but it dramatically reduces
the complexity.
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3.2 Propagation for Core Operation of Simon

As an example, we analyze Simon2n by using the conventional bit-based division
property. We focus on only one bit of the right half in Simon2n. The core
operation of the round function is represented by Fig. 2. Since the input and
output bit length is 4 bits, we use the division property D14

K
.

We consider the propagation characteristic. For instance, let assume that the
input multiset has D14

[k1,k2,k3,1], where ki denotes any value, i.e., 0 or 1. Then, if

the multiset of (y1, y2, y3, w5, x4) has D15

[∗,∗,∗,1,1], where ∗ is propagated values,
the propagation always abort in the XOR, x4 ⊕ w5. Consequently, the bit-based
division property of (y1, y2, y3, y4) is the same as that of (x1, x2, x3, x4). On
the other hand, assuming that the input multiset has D14

[k1,k2,k3,0], the output
property is different from the input one.

Let D14

K
and D14

K′ be the division property of the input and output, respec-
tively. When we get K

′ from K, we first independently calculate vectors belonging
to K

′ by evaluating the propagation from every vector in K. Then, K
′ is rep-

resented as the union of all calculated vectors. Finally, if there are k ∈ K
′ and

k′ ∈ K
′ such that k � k′, k is removed from K

′ because the vector is redundant.
Table 3 summarizes the propagation characteristics from D14

k to D14

K
. The

round function of Simon2n repeats the core operation for all n-bit values in the
right half. Therefore, we use D12n

K
. In every core operation, we only focus on four

bits and evaluate the propagation independent of other (2n − 4) bits.

Table 3. Propagation of the conventional bit-based division property for the core
operation in the Simon family

Input D14

k Output D14

K

k = [0, 0, 0, 0] K = {[0, 0, 0, 0]}
k = [1, 0, 0, 0] K = {[1, 0, 0, 0], [0, 0, 0, 1]}
k = [0, 1, 0, 0] K = {[0, 1, 0, 0], [0, 0, 0, 1]}
k = [1, 1, 0, 0] K = {[1, 1, 0, 0], [0, 0, 0, 1]}
k = [0, 0, 1, 0] K = {[0, 0, 1, 0], [0, 0, 0, 1]}
k = [1, 0, 1, 0] K = {[1, 0, 1, 0], [0, 0, 1, 1], [1, 0, 0, 1]}
k = [0, 1, 1, 0] K = {[0, 1, 1, 0], [0, 0, 1, 1], [0, 1, 0, 1]}
k = [1, 1, 1, 0] K = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 1, 0, 1]}
k = [k1, k2, k3, 1] K = {[k1, k2, k3, 1]}

Table 4. Size of K in D132

K for the integral characteristic on Simon32

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|K| 1 1 3 11 65 774 18165 587692 5191387 1595164 95768 5894 682 136 32
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3.3 Application to Simon32

We evaluate the propagation characteristic of the conventional bit-based division
property on Simon32. We prepare chosen plaintexts such that the first bit is
constant and the others are active. Then, the set of chosen plaintexts has the
division property D132

K
, where K = {[0, 1, 1, . . . , 1]}. Table 4 shows |K|, which is

the number of vectors, in every round, where we perfectly remove redundant
vectors from K. The output of the 14th round function has the division property
D132

K
, where K has 32 distinct vectors whose Hamming weight is one. Therefore,

the conventional bit-based division property cannot show whether or not the
output of the 14th round function is balanced. On the other hand, the output of
the 13th round function has the division property D132

K
, where K is represented

as 16 vectors, whose Hamming weight of the left half is 1 and that of the right
half is 0, and 120 (=

(
16
2

)
) vectors, whose Hamming weight of the left half is 0

and that of the right half is 2. This division property means that the output of
the 13th round function takes the following integral property

(????,????,????,????, bbbb,bbbb,bbbb,bbbb),

where balanced and unknown bits are labeled as b and ?, respectively. In the
Simon family, since round keys are XORed with the right half only after the
round function is applied to the left half, we can easily get a 14-round integral
characteristic from the 13-round one. The same technique is used in [18]. There-
fore, we conclude that 14-round Simon32 has the integral characteristic with 231

chosen plaintexts.

4 Bit-Based Division Property Using Three Subsets

4.1 Motivation

The conventional bit-based division property proved the existence of the 14-
round integral characteristic of Simon32. However, the experimental charac-
teristic covers 15 rounds [18], and there is still a one-round gap between the
experiment and proof. In [18], the authors experimentally confirm the character-
istic by randomly choosing 213 secret keys. Therefore, they concluded that the
success probability of the characteristic is at least 1 − 2−13. Thus, we consider
that this gap derives from either the experimental result does not work for all
keys or the conventional bit-based division property cannot find the accurate
characteristic.

We first show that the conventional bit-based division property is insufficient
to find integral characteristics on Simon32, and we then introduce a new variant
of the bit-based division property. The conventional bit-based division property
focuses on that the parity

⊕
x∈X

πu(x) is 0 or unknown. On the other hand, the
new variant focuses on that the parity

⊕
x∈X

πu(x) is 0, 1, or unknown. Therefore
we call the new variant the bit-based division property using three subsets. The
new variant can find more accurate integral characteristics and prove that the
experimental characteristic shown in [18] works for all keys.
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4.2 Characteristic that Conventional Bit-Based Division Property
Cannot Find

The conventional division property divides the set of u according to whether
the parity becomes 0 or unknown [17]. However, it sometimes overlooks useful
characteristics. We show it by using a simple example.

We again evaluate the propagation of the conventional bit-based division
property for the circuit in Fig. 2, and F : F

4
2 → F

4
2 denotes the circuit. Moreover,

let X and Y be the input and output multiset, respectively. Assuming that X has
D14

{[1,1,0,0],[0,0,1,0]},
⊕

x∈X
π[1,1,0,0](x) and

⊕
x∈X

π[0,0,1,0](x) are unknown. Then,

the output multiset Y has D14

{[1,1,0,0],[0,0,1,0],[0,0,0,1]} from Table 3.
Let us assume that both

⊕
x∈X

π[1,1,0,0](x) and
⊕

x∈X
π[0,0,1,0](x) are 1.

Even if we know the parity is always one, the division property of X is
D14

{[1,1,0,0],[0,0,1,0]}. However, we can get the following equation.

⊕

x∈X

π[0,0,0,1](F (x)) =
⊕

x∈X

(x1x2 ⊕ x3 ⊕ x4)

=
⊕

x∈X

(x1x2)
⊕

x∈X

(x3)
⊕

x∈X

(x4)

=
⊕

x∈X

π[1,1,0,0](x)
⊕

x∈X

π[0,0,1,0](x)
⊕

x∈X

π[0,0,0,1](x)

= 1 ⊕ 1 ⊕ 0 = 0.

Therefore, ⊕x∈Xπ[0,0,0,1](F (x)) is always 0 not unknown, and the division prop-
erty of Y becomes D14

{[1,1,0,0],[0,0,1,0],[0,1,0,1],[1,0,0,1]} not D14

{[1,1,0,0],[0,0,1,0],[0,0,0,1]}.
Since the conventional division property focuses on the case the parity

becomes 0, it cannot find characteristics that appear by cancelling like the above
example. Therefore, we newly introduce a variant of the bit-based division prop-
erty to exploit this fact. The variant divides the set of u into three subsets, i.e.,
0, 1, and unknown.

4.3 Definition of Bit-Based Division Property Using Three Subsets

The conventional division property uses the set K to represent the subset of u such
that

⊕
x∈X

πu(x) is unknown. The bit-based division property using three subsets
needs to represent not only the subset of u such that

⊕
x∈X

πu(x) is unknown but
also the subset of u such that

⊕
x∈X

πu(x) is one. Therefore, we use the set K to
represent the subset of u such that

⊕
x∈X

πu(x) is unknown, and we also use the
set L to represent the subset of u such that

⊕
x∈X

πu(x) is one.

Definition 2 (Bit-based Division Property Using Three Subsets). Let X

be a multiset whose elements take a value of (F2)m, and k is an m-dimensional
vector whose ith element takes 0 or 1. When the multiset X has the bit-based
division property using three subsets D1m

K,L, it fulfils the following conditions:
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⊕

x∈X

πu(x) =

⎧
⎪⎨

⎪⎩

unknown if there are k ∈ K s.t. W (u) � k,

1 else if there is � ∈ L s.t. W (u) = �,

0 otherwise.

If there are k ∈ K and k′ ∈ K satisfying k � k′, k can be removed from K because
the vector k is redundant. Moreover, when there is k ∈ K satisfying W (u) � k,⊕

x∈X
πu(x) is unknown even if there is � ∈ L satisfying W (u) = �. Therefore,

if there are � ∈ L and k ∈ K satisfying � � k, the vector � is redundant. Notice
that redundant vectors in K and L do not affect whether

⊕
x∈X

πu(x) becomes
0, 1, or unknown for any u.

Example 1. Let X be a multiset whose elements take a value of (F2)4.
Assume the multiset X has the bit-based division property D14

K,L, where K =
{[0, 0, 0, 1], [0, 1, 1, 0]} and L = {[1, 0, 0, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 1]}. Then,
every parity satisfies the following, where the value of u is represented as
hexadecimal notation of (u1‖u2‖u3‖u4).

u 0× 0 0× 1 0× 2 0× 3 0× 4 0× 5 0× 6 0× 7 0× 8 0× 9 0xA 0xB 0xC 0xD 0xE 0xF

Parity 0 ? 1 ? 0 ? ? ? 1 ? 1 ? 0 ? ? ?

Notice that the parity of π[0,0,1,1](x) over all x ∈ X is unknown because there
is [0, 0, 0, 1] ∈ K and W ([0, 0, 1, 1]) � W ([0, 0, 0, 1]). Thus, [0, 0, 1, 1] ∈ L is
redundant.

4.4 Propagation Rules

We show propagation rules for the bit-based division property using three sub-
sets. There rules are very similar to those of the conventional division property.
Here, we show three rules, “Copy,” “Compression by AND,” and “Compression
by XOR,” because any Boolean function can be evaluated by using these three
rules. We omit the proof of three propagation rules in this paper because of the
page limit, and please see the full version of this paper.

Rule 1 (Copy). Let F be a copy function, where the input (x1, x2, . . . , xm) takes
values of (F2)m, and the output is calculated as (x1, x1, x2, x3, . . . , xm). Let
X and Y be the input multiset and output multiset, respectively. Assuming
that X has D1m

K,L, Y has D1m+1

K′,L′ , where K
′ and L

′ are computed as

K
′ ←

{
(0, 0, k2, . . . , km), if k1 = 0
(1, 0, k2, . . . , km), (0, 1, k2, . . . , km), if k1 = 1

,

L
′ ←

{
(0, 0, �2, . . . , �m), if �1 = 0
(1, 0, �2, . . . , �m), (0, 1, �2, . . . , �m), (1, 1, �2, . . . , �m) if �1 = 1

.

from all k ∈ K and all � ∈ L, respectively.
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Rule 2 (Compression by AND). Let F be a function compressed by an
AND, where the input (x1, x2, . . . , xm) takes values of (F2)m, and the output
is calculated as (x1 ∧ x2, x3, . . . , xm). Let X and Y be the input multiset and
output multiset, respectively. Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where
K

′ is computed from all k ∈ K as

K
′ ←

(⌈
k1 + k2

2

⌉
, k3, k4, . . . , km

)
.

Moreover, L
′ is computed from all � ∈ L s.t. (�1, �2) = (0, 0) or (1, 1) as

L
′ ←

(⌈
�1 + �2

2

⌉
, �3, �4, . . . , �m

)
.

Rule 3 (Compression by XOR). Let F be a function compressed by an
XOR, where the input (x1, x2, . . . , xm) takes values of (F2)m, and the output
is calculated as (x1 ⊕ x2, x3, . . . , xm). Let X and Y be the input multiset and
output multiset, respectively. Assuming that X has D1m

K,L, Y has D1m−1

K′,L′ , where
K

′ is computed from all k ∈ K s.t. (k1, k2) = (0, 0), (1, 0), or (0, 1) as

K
′ ← (k1 + k2, k3, k4, . . . , km).

Moreover, L
′ is computed from all � ∈ L s.t. (�1, �2) = (0, 0), (1, 0), or (0, 1)

as

L
′ x←− (�1 + �2, �3, �4, . . . , �m) .

4.5 Dependencies Between K and L

Propagation for Public Function. In the propagation rules shown in
Sect. 4.4, K

′ and L
′ are computed from K and L, respectively. Therefore, we

can evaluate the propagation from K and that from L independently. However,
independent propagations generate many redundant vectors in K

′ and L
′. Note

that redundant vectors in K
′ and L

′ do not affect whether the parity becomes
0, 1, or unknown for any u. Therefore, when we consider the propagation for
public functions, we do not need to care about the dependencies between K and
L. On the other hand, if there are many redundant vectors, the propagation
requires much time complexity. Therefore, we should remove redundant vectors
if possible because of the reason of only complexity.

XORing with Secret Round Key. For the public function, the propagation
from K and that from L are independently evaluated. However, if the secret
round key is XORed, every vector in L affects K.

Let X and Y be the input and output multiset, respectively. Then, y ∈ Y is
computed as y = x ⊕ rk for x ∈ X, where rk is the secret round key. Moreover,
let D1m

K,L and D1m

K′,L′ be the bit-based division property using three subsets on X
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and Y, respectively. We want to get K
′ and L

′ from K and L. We cannot know
the secret round key. Therefore, the parity

⊕
x∈X

πv(x ⊕ rk) satisfying v � �
becomes unknown because the parity depends on the secret round key.

In many ciphers, round keys are XORed with a part of entire bits. Assuming
a round key is XORed with the ith bit, K

′ is computed as

K
′ ← (�1, �2, . . . , �i ∨ 1, . . . , �m)

for all � ∈ L satisfying �i = 0.

4.6 Propagation for Core Operation of Simon

We search for integral characteristics on Simon32 by the bit-based division prop-
erty using three subsets. Similar to the conventional bit-based division property,
we focus on only one bit of the right half and consider the core operation of the
Simon family (see Fig. 2).

The core operation is a public function and it does not involve any secret
information. Therefore, we can evaluate the propagation from K and that from L

independently. Table 5 summarizes the propagation characteristics from D14

K,{�}
to D14

K′,L′ , where the propagation from K to K
′ is the same as that in Table 3.

Next, the propagation on the round function can be evaluated by repeating for
all bits of the right half. Finally, when round keys are XORed with the right
half, new vectors are generated from L, and the new vectors are inserted into K.

Table 5. Propagation of the bit-based division property using three subsets for the
core operation in the Simon family

Input D14

K,{�} Output D14

K′,L′

� = [0, 0, 0, 0] L
′ = {[0, 0, 0, 0]}

� = [1, 0, 0, 0] L
′ = {[1, 0, 0, 0]}

� = [0, 1, 0, 0] L
′ = {[0, 1, 0, 0]}

� = [1, 1, 0, 0] L
′ = {[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [1, 1, 0, 1]}

� = [0, 0, 1, 0] L
′ = {[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 1]}

� = [1, 0, 1, 0] L
′ = {[1, 0, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1]}

� = [0, 1, 1, 0] L
′ = {[0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]}

� = [1, 1, 1, 0] L
′ = {[1, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [1, 1, 0, 1]}

� = [�1, �2, �3, 1] L
′ = {[�1, �2, �3, 1]}

Table 6. Sizes of K and L in D132

K,L for the integral characteristic on Simon32

Round 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|L| 1 1 5 19 138 2236 89878 4485379 47149981 2453101 20360 168 8 0 0 0

|K| 1 1 1 6 43 722 23321 996837 9849735 2524718 130724 7483 852 181 32 32
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4.7 Application to Simon32

We evaluate the propagation characteristic of the bit-based division property
using three subsets on Simon32. We prepare chosen plaintexts such that the
first bit is constant and the others are active, and the set of chosen plaintexts
has D132

{[1,1,1,...,1]},{[0,1,1,...,1]}.
Table 6 shows |K| and |L| in every round, where we perfectly remove redun-

dant vectors from K and L. As a result, the output of the 14th round function
has D132

K,φ, where vector in K are represented by hexadecimal notation as

(0001 0000)(0002 0000)(0004 0000)(0008 0000)(0010 0000)(0020 0000)(0040 0000)(0080 0000)
(0100 0000)(0200 0000)(0400 0000)(0800 0000)(1000 0000)(2000 0000)(4000 0000)(8000 0000)
(0000 0002)(0000 0004)(0000 0008)(0000 0010)(0000 0020)(0000 0040)(0000 0081)(0000 0100)
(0000 0200)(0000 0400)(0000 0800)(0000 1000)(0000 2000)(0000 4001)(0000 4080)(0000 8000),

and φ denotes the empty set. This division property means that the output of
the 14th round function takes the following integral property

(????,????,????,????, ?b??,????,b???,???b),

where balanced and unknown bits are labeled as b and ?, respectively. In the
Simon family, we can easily get a 15-round integral characteristic from the 14-
round one, and this proved integral characteristic is completely the same as the
experimental one. Therefore, we conclude that the experimental characteristic
is not probabilistic characteristic, and it works for all keys.

4.8 Application to Simeck32

Simeck was recently proposed in [19], and its round function is very similar to
that of Simon. Let (Li, Ri) be the output of the ith round function, and it is
calculated as

(Li, Ri) = (Li−1 ∧ L≪5
i−1 ) ⊕ L≪1

i−1 ⊕ Ri−1 ⊕ ki, Li−1).

The rotation number is changed from (1, 8, 2) to (0,5,1). Similar to Simon,
Simeck has different parameters according to the block length. Let Simeck2n
be the Simeck block ciphers with 2n-bit block length, where n is chosen from 16,
24, and 32.

We also evaluated the propagation of the bit-based division property using
three subsets against Simeck32. As a result, the output of the 14th round function
has D132

K,φ, where vectors in K are represented by hexadecimal notation as

(0001 0000)(0002 0000)(0004 0000)(0008 0000)(0010 0000)(0020 0000)(0040 0000)(0080 0000)
(0100 0000)(0200 0000)(0400 0000)(0800 0000)(1000 0000)(2000 0000)(4000 0000)(8000 0000)
(0000 0002)(0000 0004)(0000 0008)(0000 0011)(0000 0021)(0000 0030)(0000 0040)(0000 0080)
(0000 0100)(0000 0201)(0000 0210)(0000 0220)(0000 0401)(0000 0410)(0000 0420)(0000 0600)
(0000 0800)(0000 1000)(0000 2000)(0000 4001)(0000 4010)(0000 4020)(0000 4200)(0000 4400)
(0000 8001)(0000 8010)(0000 8020)(0000 8200)(0000 8400)(0000 C000).

This division property means that the output of the 14th round function takes
the following integral property

(????,????,????,????, bb??,?bb?,??bb,???b).
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Since round keys are XORed after the round function in Simeck, we can triv-
ially get the 15-round integral characteristic. Here, 231 plaintexts are chosen as
(L0, F (L0)⊕R0), where the first bit of R0 is constant and the others are active.

5 Provable Security Against Integral Cryptanalysis

We introduced the bit-based division property using three subsets in Sect. 4, and
we proved that this method can find more accurate integral characteristics than
those found by the conventional division property. In particular, we showed that
the new method can discover the tight characteristic on Simon32. However, a
problem is left about the feasibility, i.e., the propagation of the division property
requires much time and memory complexity. For instance, if we want to evaluate
the propagation of the division property Dnm

K
, the time and memory complexity

is upper-bounded by (n+1)m. Therefore, if the upper bound is too large, e.g., (n+
1)m � 232, it is difficult to evaluate the propagation 4. In the bit-based division
property, the time and memory complexity is upper-bounded by 2n, where n
denotes the block length. Moreover, the bit-based division property using three
subsets requires more complexity than that using two subsets. Therefore, we
cannot apply the bit-based division property to the Simon family except for
Simon32.

5.1 Provable Security for Designers

We cannot apply the bit-based division property to the Simon family except for
Simon32, but we can show the “provable security” alternatively. When we design
new symmetric-key primitives, we have to guarantee the security against several
cryptanalyses. Provable security has been discussed in detail for differential and
linear cryptanalyses [12,13], but such tools do not exist for integral cryptanalysis.

Let D1m

Ki,Li
denotes the division property of the output set of the ith round

function. We want to find R-round integral characteristics. Then, for any u with
w(u) = 1, we have to evaluate that there are not k ∈ KR satisfying W (u) � k
and � ∈ LR satisfying W (u) = �. Therefore, we have to get all vectors in KR

and LR, and such vectors are searched by an algorithm like breadth-first search.
On the other hand, we want to show that an R-round integral characteristic
cannot exist. Then, it is enough to show that KR has m distinct vectors whose
Hamming weight is one, i.e., there is not balanced bits, and such vectors are
searched by an algorithm like depth-first search. In our provable security, we
aim to get such number of rounds efficiently, and a lazy propagation is useful to
find such number of rounds.

4 In [16], the propagation for MISTY1 was evaluated, and the division property
D7,2,7,7,2,7,7,2,7,7,2,7

K
was used. Then, |K| is upper bounded by 88×34 = 1358954496 ≈

230.3, and it is feasible.
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Table 7. Accurate propagations up to six rounds

#rounds Simon48 Simon64 Simon96 Simon128

minw(L) minw(K) minw(L) minw(K) minw(L) minw(K) minw(L) minw(K)

0 47 48 63 64 95 96 127 128

1 47 48 63 64 95 96 127 128

2 46 47 62 63 94 96 126 128

3 45 46 61 62 93 94 125 126

4 43 44 59 60 91 92 123 124

5 40 41 56 57 88 89 120 121

6 35 36 51 52 83 84 115 116

Definition 3 (Lazy Propagation). Let D1m

Ki−1,Li−1
be the bit-based division

property of the input set of the ith round function. The ith round function is
applied, and let D1m

K̄i,L̄i
be the bit-based division property from the lazy propaga-

tion. Then, K̄i is computed from only a part of vectors in Ki−1, and L̄i always
becomes the empty set φ.

The lazy propagation first removes all vectors from Li−1. Moreover, it only eval-
uates the propagation from vectors with low Hamming weight in Ki−1 because
such vectors are more close to unknown. Therefore, it is more efficiently evalu-
ated than the accurate propagation.

Let us consider the meaning of the lazy propagation. Assuming the input set
of the (i − 1)th round function has D1m

Ki−1,Li−1
, we get D1m

Ki,Li
and D1m

K̄i,φ
by the

accurate propagation and the lazy propagation, respectively. Then, the set of u
that the parity is unknown is represented as

SK := {u ∈ (F2)m | there are k ∈ Ki satisfying W (u) � k} .

On the other hand, SK̄i
cannot completely represent the set of u that the parity

is unknown. However, SK̄i
⊆ SKi

always holds.
Next, we repeat the lazy propagation, and we assume that D1m

K̄i+1,φ
is prop-

agated from D1m

K̄i,φ
by the lazy propagation. Similarly, assuming that D1m

Ki+1,Li+1

is the division property from D1m

Ki,Li
by the accurate propagation, SK̄i+1

⊆ SKi+1

always holds because SK̄i
⊆ SKi

. Therefore, if the lazy propagation creates D1m

K̄R,φ
,

where K̄R has m distinct vectors whose Hamming weight is one, the accurate
propagation also creates the same m distinct vectors in the same round.

5.2 Application to Simon Family

We evaluate the lazy propagation of the bit-based division property on Simon48,
Simon64, Simon96, and Simon128. Here, we only evaluate integral characteris-
tics when they use chosen plaintexts that only one bit of the left half is constant
and the other bits are active. We calculate the accurate propagation up to 6
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Table 8. Lazy propagation of the bit-based division property for the Simon family

#rounds Simon48 Simon64 Simon96 Simon128

minw(K) Limit minw(K) Limit minw(K) Limit minw(K) Limit

7 30 33 46 61 78 81 110 113

8 20 23 35 38 68 71 100 103

9 11 14 23 26 55 57 87 88

10 7 10 13 15 40 41 71 71

11 5 8 9 10 27 28 59 59

12 3 8 6 8 17 17 42 42

13 2 5 4 7 11 11 32 32

14 2 3 3 7 8 9 21 21

15 1 2 2 7 5 6 15 15

16 1(u) 1 2 4 4 6 10 10

17 1 3 3 6 8 8

18 1 1 2 6 5 6

19 1(u) 1 2 6 4 6

20 1 6 3 6

21 1 6 2 6

22 1 6 2 6

23 1 1 2 6

24 1(u) 1 1 6

25 1 6

26 1 6

27 1 6

28 1(u) 1

rounds5 Table 7 shows minw(L) and minw(K) in the accurate propagation of
D12n

K,L up to 6 rounds, where minw(L) and minw(K) are calculated as

minw(K) = min
k∈K

(
2n∑

i=1

w(ki)

)

, minw(L) = max
�∈L

(
2n∑

i=1

w(�i)

)

.

From the 7th round function, we repeat the lazy propagation. We first remove
all vectors from L, and then the bit-based division property is represented as
D12n

K,φ, where φ denotes the empty set. Moreover, we remove vectors with high

5 In our implementation, we could not calculate the accurate propagation up to 7
rounds because of the limitation of the memory size.
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Hamming weight from K. Table 8 shows the lazy propagation of the bit-based
division property D12n

K,φ, where we only store vectors k ∈ K satisfying

minw(K) ≤
2n∑

i=1

w(ki) ≤ Limit.

Here, u means that the K has 2n distinct vectors whose Hamming weight is one,
and then, we simply say that the propagation reaches the unknown.

Even if there is a vector k ∈ K satisfying Limit <
∑2n

i=1 w(ki), we do not
evaluate the propagation from the k. Therefore, if the propagation from the
removed vector k immediately reaches the unknown, there is a gap between the
accurate propagation and the lazy propagation. However, if the lazy propagation
reaches the unknown in a specific number of rounds, the accurate propagation
at least reaches the unknown in the same number of rounds. Therefore, the lazy
propagation is not useful for attackers, but it guarantees the number of rounds
that the bit-based division property cannot find integral characteristics.

As a result, the lazy propagation shows that 16-, 19-, 24-, and 28-round
Simon48, 64, 96, and 128 probably do not have integral characteristics, respec-
tively. However, we can get (r + 1)-round integral characteristics from r-round
integral characteristics because round keys are XORed after the round function.
Therefore, we expect that 17-, 20-, 25-, and 29-round Simon48, 64, 96, and 128
probably do not have integral characteristics, respectively.

5.3 Characteristics that Bit-Based Division Property Cannot Find

We consider characteristics that the bit-based division property cannot find. Our
provable security supposes that all round keys are randomly and secretly chosen.
However, practical ciphers generate round keys from the secret key using the key
scheduling algorithm. Therefore, our provable security does not suppose integral
characteristics that exploit the key scheduling algorithm.

The bit-based division property using three subsets focuses on the parity⊕
x∈X

πu(x), and divide the set of u into three subsets. Then, the propaga-
tion simply regard

⊕
x∈X

πu1(x)⊕πu2(x) as unknown if either
⊕

x∈X
πu1(x) or⊕

x∈X
πu2(x) is unknown. For instance, if

⊕
x∈X

πu1(x) ⊕ πu2(x) is always 0 or
1 although

⊕
x∈X

πu1(x) and
⊕

x∈X
πu2(x) are unknown, the bit-based division

property cannot exploit such property.

6 Conclusions

The division property is a useful technique to find integral characteristics, but it
has not been applied to non-S-box-based ciphers effectively. This paper focused
on the bit-based division property. More precisely, this paper proposed a new
variant using three subsets. The conventional bit-based division property divides
the set of u into two subsets, but the new variant divides the set of u into three
subsets. The bit-based division property using three subsets can prove that the
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experimental integral characteristic for Simon32 shown in [18] works for all
keys. Moreover, we focused on the propagation of the division property. Then,
we showed that the lazy propagation is useful to guarantee the security against
integral cryptanalyses using the division property. As a result, we showed that
17-, 20-, 25-, and 29-round Simon48, 64, 96, and 128 probably do not have
integral characteristics, respectively.

Acknowledgments. The authors would like to thank the anonymous referees for their
helpful comments.
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Abstract. We introduce the high-degree indicator matrix (HDIM), an
object closely related with both the linear approximation table and the
algebraic normal form (ANF) of a permutation. We show that the HDIM
of a Feistel Network contains very specific patterns depending on the
degree of the Feistel functions, the number of rounds and whether the
Feistel functions are 1-to-1 or not. We exploit these patterns to distin-
guish Feistel Networks, even if the Feistel Network is whitened using
unknown affine layers. We also present a new type of structural attack
exploiting monomials that cannot be present at round r−1 to recover the
ANF of the last Feistel function of a r-round Feistel Network. Finally, we
discuss the relations between our findings, integral attacks, cube attacks,
Todo’s division property and the congruence modulo 4 of the Linear
Approximation Table.

Keywords: High-degree indicator matrix · Feistel network · ANF · Lin-
ear approximation table/walsh spectrum · Division property · Integral
attack

1 Introduction

While the importance of attacks targeting actual primitives is obvious, structural
attacks can also lead to interesting development. In fact, the last few years have
seen the publications of several such attacks. For example, the attack targeting
the SASAS construction has been recently extended to larger constructions [1].
The ASASA structure, which might look weaker at first glance due to its lower
number of non-linear layers, has actually proved to be a challenging target; it was
even proposed as the basis for public key encryption and white-box scheme [2].
Attacking this generic structure requires sophisticated methods presented in [3]
and [4]. Feistel Networks have also been the target of generic attacks in two
different settings. If the Feistel functions are completely secret, attacks up to
5-rounds are presented in [5]. If the Feistel functions consist in public functions
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preceded by the addition of a secret key, powerful attacks with very low data
complexity are presented in [6].

As illustrated by the usage of the ASASA structure, generic constructions can
be applied in white-box cryptography where the aim is to prevent an attacker
from having access to some of the inner components of the algorithm to perform
some computations. Thus, structural attacks are important in this context. They
can also be used to reverse-engineer the secret structure of an S-Box, allowing for
example an attacker to enjoy the benefits of a lightweight implementation known
a priori only by the designer of the S-Box. The use of small Feistel Networks
for lightweight S-Box design is investigated in [7] and, in fact, a secret hardware
efficient decomposition1 was recently discovered for the S-Box of the last Russian
standards [8] using such reverse-engineering.

Our Contribution. Our results are based on the high-degree indicator matrix
(HDIM), a new object we introduce. We associate to any n-bit permutation F
a n × n Boolean matrix Ĥ(F ) which can be computed in time O(n2n−1) using
the full code-book and which is related all at once to the LAT/Walsh spectrum
of F , to its algebraic normal form and to the existence of integral distinguishers.

The HDIM provides new attack directions which we illustrate by analysing
some generic constructions based on Feistel Networks. In particular, we show
the existence of some patterns in the HDIM of 2n-bit Feistel Networks with r
rounds and Feistel functions with degree d depending on θ(d, r) with

θ(d, r) = d�r/2�−1 + d�r/2�−1.

These patterns provide efficient distinguishers for such structures. When the
round functions are bijective, such patterns always exist in Feistel Networks
with up to at least 5 round. We also show that these distinguishers can be inter-
preted as particular integral distinguishers and describe some relations between
our results and Todo’s division property [9]. Due to their integral nature, our
distinguishers are extremely memory efficient: we only need to store a block
containing the sum studied. In contrast, the impossible differential for 5-round
Feistel Network [10] and the yoyo-game [5] are the best known distinguishers for
5-rounds FN with bijective Feistel functions and require respectively O(2n) and
O(22n) blocks of memory.

We also present a new type of recovery attack against Feistel Networks with
secret round functions which rebuilds the last Feistel function by exploiting the
predictable absence of some monomials in the algebraic normal form of the
permutation without its last round.

Outline. We first describe the definitions and notations that we shall use
throughout the paper in Sect. 2. Then, we investigate in Sect. 3 the relation
between the different rows and columns of a table containing the congruence
modulo 4 of the biases in the LAT of some n-bit permutation and, in doing so,
introduce and study the high-degree indicator matrix (HDIM). Section 4 shows
1 Whether this hidden structure serves another purpose is still an open problem.
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Table 1. Structural attacks against Feistel Networks. n is the branch size, d is the
degree of the Feistel functions.

R Type Power Restrictions Time Data Ref.

5 Differential Distinguisher Non bij. round func. 2n 2n [11]

Imp. diff. Distinguisher Bij. round func. 22n 2n [10]

SAT-based Full recovery n ≤ 7 Practical 22n [12]

Yoyo Full recovery – 22n 22n [5]

Integral Full recovery f1 or f3 bij. 22.81n 22n [5]

Guess & Det. Full recovery – 2n23n/4
22n [5]

HDIM-based Distinguisher Bij. round func. 22n−1 22n−1 Sect. 6.1

Imp. monom. Full recovery Bij. round func. 23n 22n Sect. 5.2

r HDIM-based Distinguisher Bij. round func., θ(d, r − 1) < 2n 22n−1 22n−1 Sect. 6.1

HDIM-based Distinguisher Non bij. round func., θ(d, r) < 2n 22n−1 22n−1 Sect. 6.1

Imp. monom. Full recovery dr−3 < n 23n 22n Sect. 5.3

Table 2. Structural attacks against Feistel Networks whitened with unknown affine
layers. The attacks recover parts of the unknown affine layers. n is the branch size, d
is the degree of the Feistel functions.

Structure Restrictions Time Data Ref.

AF4A Bij. round func. 26n 24n [8]

AFrA Bij. round func., θ(d, r − 1) < 2n n22n 22n Sect. 4.2

Non bij. round func., θ(d, r) < 2n n22n 22n Sect. 4.2

AFrA−1 Bij. round func., θ(d, r) < 2n n22n 22n Sect. 4.2

Non bij. round func., θ(d, r + 1) < 2n n22n 22n Sect. 4.2

that the HDIM of a Feistel Network exhibits very strong patterns depending on
the number of rounds, the algebraic degree of the Feistel functions and whether
these are bijective or not. We also describe attacks relying on these patterns
targeting both Feistel Networks and Feistel Networks whitened using affine lay-
ers. In fact, in Sect. 5, we introduce a new kind of attack rebuilding efficiently
the algebraic normal form of secret Feistel functions which exploits the pre-
dictable absence of some monomials in the ANF of round-reduced Feistel Net-
works. Finally, we discuss in Sect. 6 how our findings can fit in the framework of
integral attacks.

2 Notations and Boolean Functions Basics

In this section, we introduce the notations and concepts that will be used
throughout the paper. A thorough introduction to Boolean functions can be
found in [13]. First, let us define some sets and simple operations:

– F2 denotes the finite field of size 2,
– the exclusive-OR (or XOR) is denoted ⊕,
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– the logical AND is denoted ∧,
– the hamming weight hw(x) of a vector x of Fn

2 is the number of ones in x,
– |S| and #S denote the size of a set S,
– the scalar product of two elements x = (x0, ..., xn−1) and y = (y0, ..., yn−1) of
F

n
2 is denoted “·” and is equal to x · y =

⊕n−1
i=0 xi ∧ yi,

– if x = (x0, ..., xn−1) and u = (u0, ..., un−1) are two elements of Fn
2 then xu =∏n−1

i=0 xui
i , and

– if x = (x0, ..., xn−1) and u = (u0, ..., un−1) are two elements of Fn
2 then x � u

is true if and only if (ui = 0 =⇒ xi = 0) is true for all i in [0, n − 1]. We say
that u “covers” x.

We now define some of the key components used in our analysis.

Definition 1 (Boolean Function). We call Boolean function a function map-
ping F

n
2 to F2. A function mapping F

n
2 to F

m
2 is a vectorial Boolean function and

its restrictions to each output bit are its coordinates. Finally, for a vectorial
Boolean function F , the Boolean functions x �→ c · F (x) are its components.

Note that a coordinate of a Boolean function is one of its components but
that the converse is not necessarily true. Let us then introduce the concept of
balanced-ness.

Definition 2 (Balanced Boolean Function). A (vectorial) Boolean function
F mapping F

n
2 to F

m
2 is said to be balanced if the size of the preimages of all

elements of Fm
2 are equal.

A Boolean function is balanced if and only if all of its components are balanced.
We also recall the definition of the Algebraic Normal Form of a Boolean

function.

Definition 3 (Algebraic Normal Form (ANF)). Any Boolean function f
mapping n bits to 1 can be decomposed into

f(x) =
⊕

u∈Fn
2

auxu with au =
⊕

x�u

f(x),

in a unique fashion which is called the Algebraic Normal Form (ANF) of f .
The coefficients au can be obtained using the so-called Möbius transform. For
vectorial Boolean functions, the ANF is the ANF of each of the coordinates.

Definition 4 (Algebraic Degree). The algebraic degree of a Boolean function
is the largest number of variables in a single term of its ANF, i.e. the maximum
hamming weight of all u of F

n
2 such that au �= 0. The algebraic degree of a

vectorial Boolean function is the maximum algebraic degree of its coordinates.
The algebraic degree of a (vectorial) Boolean function f is denoted deg(F ).

We observe that the algebraic degree of a permutation of n bits is at most equal
to n − 1.

Our analysis will involve the LAT or Fourier Transform (related to the Walsh
spectrum by a constant multiplication) of a Boolean function. These almost
identical concepts are introduced below.
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Definition 5 (LAT, Fourier Transform, Walsh Spectrum). The Linear
Approximation Table of a function f mapping n bits to m is a 2n × 2m matrix
L where L[a, b] = #{x ∈ F

n
2 , a ·x = b · f(x)}− 2n−1. We note that the coefficient

L[a, b] can equivalently be expressed as follows:

L[a, b] = −
∑

x∈Fn
2

(
b · f(x)

)
× (−1)a·x = − 1

2

∑

x∈Fn
2

(−1)a·x⊕b·f(x),

where the first sum corresponds to the Fourier transform of x �→ b · f(x) and the
second to its Walsh spectrum. Furthermore, the coefficient L[a, b] of a LAT L
is called bias of the approximation (a � b).

Remark 1. If F is an n-bit permutation then, for all (a, b) in (Fn
2 )2, we have

L[a, b] ≡ 0 mod 2.

When a Boolean function μ mapping n bits to m is linear, we use μ to
represent both the function itself and its matrix representation. The transpose
of a matrix μ is denoted μt. Finally, we state the following well-known remark
regarding the algebraic degree of a (vectorial) Boolean function.

Remark 2. If F is a (vectorial) Boolean function and V is a vector space of Fn
2

such that |V| > 2deg(F ), then
⊕

v∈V F (v) = 0.

3 Patterns in Biases Modulo 4 and HDIM

Our initial goal was to identify new generic attacks against Feistel Networks. As
suggested in [12], we looked at a visual representation of the Linear Approxima-
tion Table of such permutations. We identified some patterns which turned out
to be byproducts of a strong structure in the congruence modulo 4 of the biases.
Figure 1a and b show the “Pollock representation” of the LAT modulo 4 of a 4-
and a 5-round 6-bit Feistel Networks for some bijective Feistel functions picked
uniformly at random.

(a) r = 4 (b) r = 5

Fig. 1. LAT of r-round Feistel Networks (modulo 4).
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As we can see, the congruence of the biases is constant in each square of
dimensions 8 × 8 for the 4-round Feistel Networks. Furthermore, there seems to
be linear patterns for the 5-round structure: if we divide the LAT into 8 × 8
squares as before then we find that each square at position (i, j) is the sum of
the squares at positions (i, 0) and (0, j) and a square-wise constant.

The reason behind these patterns is two-fold. The first aspect is a generic
observation about the linearity (in some sense) of the construction of the LAT
modulo 4. Indeed, we show in this section that the function (a, b) �→ (L[a, b]
mod 4) for the LAT L of a permutation is a bilinear form and that its matrix
representation has interesting properties. The second aspect of the justification
for the patterns is the probability 1 presence of zeroes in some positions which
is discussed later in Sect. 4.

3.1 The High-Degree Indicator Matrix

We first re-write the congruence modulo 4 of the biases in the LAT of a permu-
tation using Boolean functions.

Lemma 1 (LAT modulo 4). Let F be a permutation of n bits (n > 2) and let
L be its LAT. Then L[a, b] is such that L[a, b] ≡ 2×

(⊕
x∈Fn

2

(
b · F (x)

)(
a · x

))

mod 4 or, equivalently,

L[a, b]
2

≡
⊕

x∈Fn
2

(
b · F (x)

)(
a · x

)
mod 2.

Proof. Since (−1)z = 1 − 2z (for z in {0, 1}), the coefficient L[a, b] is equal to

L[a, b] = −
∑

x∈Fn
2

(
b · F (x)

)
+ 2

( ∑

x∈Fn
2

(
b · F (x)

)(
a · x

))
.

The first term in this sum is equal to 2n−1 as every component of a permutation
is balanced.2 Thus, if we look at the congruence modulo 4 of L[a, b], we obtain
the following (for any n > 2):

L[a, b] ≡ 2
( ∑

x∈Fn
2

(
b · F (x)

)(
a · x

))
mod 4,

from which we deduce that

L[a, b]
2

≡
∑

x∈Fn
2

(
b · F (x)

)(
a · x

)
mod 2

As sum and XOR are equivalent modulo 2, this proves the lemma. 
�

2 If F is not a permutation but some function with degree at most n − 1, then this
term a priori does not go away when taking the modulo 4 of the expression.
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This lemma has several consequences regarding the congruence modulo 4 of
the LAT coefficients of F (or, alternatively, the congruence modulo 2 of their
half). First, we define L4 to be a 2n × 2n matrix such that L4[a, b] ≡ L[a, b]
mod 4 and L4[a, b] ∈ 0, 2. Using this, we define B(L) to be a 2n × 2n Boolean
matrix with B(L)[a, b] = L4[a, b]/2. This matrix has the following property:

B(L)[a ⊕ a′, b ⊕ b′] = B(L)[a, b] ⊕ B(L)[a, b′] ⊕ B(L)[a′, b] ⊕ B(L)[a′, b′].

As consequence, the function (a, b) �→ B(L)[a, b] is a bilinear form and can be
represented using an n × n matrix Ĥ(F ).

Definition 6 (High-Degree Indicator Matrix (HDIM)). Let F be an n-
bit permutation and let B(L) be the Boolean matrix representing the congruence
modulo 4 of its LAT (as described above). We define the High-Degree Indicator
Matrix Ĥ(F ) of F to be the n × n matrix such that

Ĥ(F )[i, j] =
⊕

x∈Fn
2

(
ei · F (x)

)(
ej · x

)
,

where ek is an all zero n-bit vector with a single 1 at position k. This matrix is
such that

B(L)[a, b] = bt × Ĥ(F ) × a.

Lemma 2. The coefficients of Ĥ(F ) indicate the presence of the highest degree
terms in the coordinates of F . More precisely, Ĥ(F )[i, j] = 1 if and only if the
ANF of Fi contains the monomial

∏
k �=j xk (which has degree n − 1).

Proof. Let F be an n-bit permutation. As Ĥ(F )[i, j] is the sum over of space of
size 2n of the Boolean function x �→

(
ei ·F (x)

)(
ej ·x

)
= Fi(x) ·xj , it is equal to 0

unless this Boolean function has algebraic degree n. As F has degree n − 1, this
occurs if and only if Fi contains

∏
k �=j xk. Indeed, in this case (and in this case

only), the ANF of xj ·Fi(x) contains the only possible degree n term
∏n−1

k=0 xk. 
�

This lemma is the reason behind the name “high-degree indicator matrix”.
Indeed, the HDIM coefficients simply state whether each of the n possible n − 1
degree terms appear in each coordinate of F or not.

We finally note that the HDIM of a function can be computed much more
efficiently than the LAT or the difference distribution table. Indeed, we can com-
pute a column of the HDIM by summing the function over a cube of dimension
n − 1 (see Sect. 6.1). The complexity for all n columns is therefore n2n−1.

3.2 Some Properties of the High-Degree Indicator Matrix

Let us investigate the effect of some simple transformations on the HDIM. First,
we point out that due to the fact that the LAT of the inverse of a permutation
F is the transpose of the LAT of F , the HDIM of F−1 is the transpose of the
HDIM of F .
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We now show that the HDIM of η ◦ f ◦ μ can easily be deduced from that of
f when η and μ are n-bit linear permutations. The corresponding theorem will
be used in Sect. 4.2 to attack Feistel Networks whitened using affine layers.

Theorem 1. Let μ, η be linear n-bit mappings, F be an n-bit permutation and
let G = η ◦ F ◦ μ. Furthermore, let Ĥ(F ) be the HDIM of f and Ĥ(G) be that
of G. Then it holds that

Ĥ(G) = η × Ĥ(F ) × (μt)−1.

Proof. We prove this result in two steps. First, the fact that Ĥ(F ◦μ) = Ĥ(F )×
(μ−1)t can be derived as follows:

Ĥ(F ◦ μ)[i, j] =
⊕

x∈Fn
2

(
ei · F (μ(x))

)(
ej · x

)
=

⊕

y∈Fn
2

(
ei · F (y)

)(
ej · μ−1(y)

)

=
⊕

y∈Fn
2

(
ei · F (y)

)(
(μt)−1(ej) · y

)
.

We then note that Ĥ(η ◦ F ) = Ĥ(F−1 ◦ η−1)t which, using what we just found,
is equal to (Ĥ(F−1) × ηt)t = (Ĥ(F )t × ηt)t, so that Ĥ(η ◦ F ) = η × Ĥ(F ). This
concludes the proof. 
�

The ANF and the LAT of an n-bit permutation are connected in the sense
that it is possible to determine the congruence modulo 4 of the LAT L of an n-
bit permutation F given parts of its ANF. Indeed, as we describe in this section,
this congruence only depends on the terms of degree n − 1 in the ANF of the
coordinates of F .

4 The High-Degree Indicator Matrix of Feistel Networks

In what follows, we denote Fr
d an r-round FN with bijective Feistel function of

algebraic degree at most d. The structure of a sample is given Fig. 2. It is possible
to use the HDIM to analyse such generic structures.

f0⊕

f1⊕

f2⊕

Fig. 2. A sample F3
d structure, where deg(fi) ≤ d.
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4.1 Artifacts in the HDIM of Feistel Networks

The HDIM of a Feistel Network may yield interesting patterns depending on the
degree of its Feistel functions, whether they are bijections or not and its number
of rounds. These are formalized by Theorem 2 and its corollary (Corollary 1).
These results link the maximum degree d of the Feistel functions, the number of
rounds r and the presence or not of some patterns using the function θ : Z2 → Z

defined by
θ(d, r) = d�r/2�−1 + d�r/2�−1,

where 2k� = 2k + 1� = 2k and �2k� = �2k − 1� = 2k.

Theorem 2. Let F be a 2n-bit Fr
d. Then the HDIM of F is such that

Ĥ(F )[i, j] = 0 if i < n or j < n under the following conditions:

– if the Feistel functions are bijections and θ(d, r) < 2n, or
– if the Feistel functions are not bijections and θ(d, r + 1) < 2n.

The general idea of the proof is to express the sum corresponding to coeffi-
cient Ĥ(F )[i, j] using well-chosen variables (α, β) located in the middle of the
encryption. The value of F (x) is then a function of degree d�r/2�−1 of (α, β) and
that of x is a function of degree d�r/2�−1. The coefficients can thus be written as

Ĥ(F )[i, j] =
⊕

(α,β)∈(Fn
2 )2

(
ei · F (x(α, β))

)(
ej · x(α, β)

)

and the result is equal to 0 if θ(d, r) = d�r/2�−1 + d�r/2�−1 < 2n. If the Feistel
functions are not bijective then a “trick” used to slightly decrease the degree in
(α, β) of the output cannot be used, hence the small discrepancy in this case.
The complete formal proof of this theorem is given in the full version of this
paper [14].

Corollary 1. Let F be a 2n-bit Fr
d. The HDIM of F is such that Ĥ(F )[i, j] = 0

if i < n and j < n under the following conditions:

– if the Feistel functions are bijections and θ(d, r − 1) < 2n, or
– if the Feistel functions are not bijections and θ(d, r) < 2n.

Proof. Let r and d be such that Fr−1
d fits the hypothesis of Theorem 2. The

right word of the output of a Fr
d structure is the left word output by a Fr−1

d

structure. As each line of the HDIM corresponds to one output bit, the top n
rows of the HDIM of the r-round FN are equal to the bottom n rows of the same
permutation reduced to (r − 1)-round. Because of Theorem 2, this bottom half
is such that the first n columns are all 0. Thus, the first n columns of the first
n rows of the HDIM of a Fr

d are all equal to 0. 
�

To illustrate these theorems, we give the HDIM of the 4- and 5-round Feistel
with 3-bit bijective Feistel functions picked uniformly at random whose LAT
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modulo 4 were given in Fig. 1a and b. The Feistel functions must have an alge-
braic degree at most equal to 2. Since θ(2, 4) = 21 + 21 = 4 < 6, these HDIM
must exhibit the patterns described in the theorems above. It is the case, as we
can see below. The zeroes caused by Theorem 2 and Corrolary 1 are represented
in grey:

Ĥ(F4) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Ĥ(F5) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 1 1 0 1 0
1 0 0 0 0 0
0 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (1)

Even though a Fr
d structure has an algebraic degree of 2n − 1 in the conditions

of Theorem 2, the way in which this high degree is achieved is very structured:
only half of the output bits actually have a maximum degree and the monomials
of degree 2n − 1 can not contain the product of n − 1 bits from the right side
of the input. Thus, a simple analysis of the algebraic degree can be made more
sophisticated by also investigating the possible structure of the monomials of
highest degree.

These patterns lead to the existence of distinguishers as long as the conditions
necessary for Corollary 1 are satisfied. Table 3 shows the value of the number of
rounds for which the conditions of Corollary 1 are satisfied for different values
of d, r and n in both the 1-to-1 case and the case where collisions in the Feistel
functions are allowed. If real ciphers correspond to these parameters, we specify
them. Note that the rotation applied to one of the branches in the round function
of LBlock [15] does not change anything. The key-dependent linear FL layers in
MISTY1 [16] do not protect from our distinguisher as well and may be included
from any side for free.

Table 3. If r = rmax(d, 2n) then the 2n-bit permutation Fr
d exhibits an artifact of size

n2 in its HDIM.

(d, 2n) Feistel functions rmax(d, n) Instance

(2, 32) 1-to-1 10 —

collisions 9 SIMON-32 [17]

(5, 64) 1-to-1 7 —

collisions 6 DES [18]

(31, 64) 1-to-1 5 MISTY1/KASUMI [16]

collisions 4 —

(n − 1, 2n) 1-to-1 5 —

collisions 4 —
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4.2 Bypassing Affine Whitening

In the context of component reverse-engineering/white-box cryptography, it may
not be sufficient to be able to attack generic Feistel structure. Indeed, simply
whitening a generic structure with secret affine layers can prevent many attacks
from succeeding at small cost for the designer. For example, applying affine layers
before and after a 5-round Feistel Network would prevent the yoyo-game used
in [5] to be exploitable. Similarly, the recent attacks against ASASA [3,4] are
much more sophisticated than the attack against SASAS proposed by Biryukov
et al. in the first place [19]. We also note that the secret structure of the S-Box
of the last Russian standard primitives recently recovered was indeed whitened
with seemingly random linear layers [8].

As a consequence, we study the generic construction denoted AFr
dA consisting

in a Fr
d construction with secret Feistel functions preceded and followed by the

application of independent and secret linear layers3. This structure has already
been studied in [8] but our attacks are significantly more efficient. Note also that
one of the S-Box of ZUC [20] has this structure: it is a 3-round Feistel Network
composed with a bit rotation. Let us show how the HDIM and its artifacts we
identified in the previous section can be used to attack permutations with AFr

dA
structures.

f0

f3

⊕

⊕

μ1,1 μ0,1 μ1,0 μ0,0

⊕ ⊕

η1,1 η0,1 η1,0 η0,0

⊕ ⊕

μ
F

η

(a) G = η ◦ F ◦ μ.

f0

f3

⊕

⊕

a

b c d

⊕

⊕

a′

b′ c′ d′

⊕
⊕

μ
F F

′

η

(b) G (alt. representation).

f ′
0

f ′
3

⊕

⊕

T

B

(c) F ′ (alt. representation).

Fig. 3. The target of our attack, its result and its alternative representation. In Fig. 3c,
f ′
i is affine equivalent to fi.

Our attack works for a subset of all possible linear layers. We define G =
η ◦ F ◦ μ where F has a Fr

d structure satisfying the conditions of Theorem 2 and

3 We note that adding constants to make the layers affine is equivalent to replacing
the Feistel functions by other ones with identical properties.
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μ and η are linear layers. The layer applied first must have a decomposition as
follows:

μ =
[

μ0,0 μ0,1

μ1,0 μ1,1

]
=

[
d 0
c b

]
×

[
I a
0 I

]
=

[
d d × a
c b + c × a

]
,

and the layer applied last must have a similar one:

η =
[

η0,0 η0,1

η1,0 η1,1

]
=

[
I a′

0 I

]
×

[
d′ 0
c′ b′

]
=

[
d′ + a′ × c′ a′ × b′

c′ b′

]
.

It is sufficient for such a decomposition of the first layer to exist that μ0,0 is
invertible. Indeed, we can then simply set d = μ0,0, c = μ1,0, a = d−1 × μ0,1 and
b = μ1,1 − c × a. Note that b has to be invertible since μ is invertible. Similarly,
it is sufficient that η1,1 is invertible to decompose the final layer. We define F ′

using these decompositions so that G is equal to:

G =
[

I a′

0 I

]
◦

[
d′ 0
c′ b′

]
◦ F ◦

[
d 0
c b

]
◦

[
I a
0 I

]
=

[
I a′

0 I

]
◦ F ′ ◦

[
I a
0 I

]
.

A graphical representation of the relation between F , F ′ and G is provided in
Fig. 3a and b. As F satisfies the condition of Theorem 2, its HDIM is such that
Ĥ(F )[i, j] = 0 if i < n or j < n. Applying Theorem 1 gives us that the HDIM
of F ′ is equal to

Ĥ(F ′) =
[

d′ 0
c′ b′

]
× Ĥ(F ) ×

[
d c
0 b

]−1

=
[

0 0
0 h′

]
with h′ = b′ × h × b−1,

h being the bottom-right part of Ĥ(F ). Like in Ĥ(F ), it holds that Ĥ(F ′)[i, j] =
0 if i < n or j < n. Another way to see why this holds is shown in Fig. 3c. Indeed,
F ′ can be written as a Fr

d structure, like F , where n-bit linear permutations are
applied only on two branches and where the Feistel functions f ′

i are obtained
from compositions of b, b′, d, d′ and fi, as well as the addition of c and c′ for the
first and last rounds. We deduce that if G indeed has a AFr

dA structure satisfying
the conditions for Theorem 2, then the following equation with unknowns the
n × n binary matrices a and a′ must have at least one solution:

[
I a′

0 I

]
× Ĥ(G) ×

[
I 0
a I

]
=

[
0 0
0 h1,1

]
,

where h1,1 is the bottom right corner of Ĥ(G). This system has 2n2 unknowns
and 3n2 equations, meaning that it is unlikely to have solutions if G is a random
permutation. However, if it does have a solution then we deduce both that G has
an AFr

dA structure and the expression of parts of the linear layers. We summarize
these results in the following attack.

Attack 1 (Partial Recovery Against AFr
dA). Let G be a 2n-bit permutation.

It is necessary for G to be in AFr
dA for some (r, d) satisfying Theorem 2 that the

equation [
I a′

0 I

]
× Ĥ(G) ×

[
I 0
a I

]
=

[
0 0
0 h1,1

]
,
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where h is an unknown n × n matrix, has at least one solution. The unknowns
are the coefficients of the n×n matrices a and a′, so that 2n2 Boolean variables
must satisfy 3n2 equations corresponding to the zeroes in the right hand side.

This distinguisher requires the full code-book and as much time as is needed to
compute the HDIM and solve a system of equations. Since the system is small,
the bottle-neck is the computation of the HDIM which can be done in time
O(n22n) where n is the branch size.

We can use the exact same reasoning to attack one more round if the decom-
position of η and μ involve the same “linear Feistel function” a. This happens in
particular if η = μ−1. In this case, we can use the distinguisher obtained from
the following attack.

Attack 2 (Partial Recovery Against A−1Fd
r+1A). Let G be a 2n-bit permu-

tation. In order for G to be in AFr
dA for some (r, d) satisfying Corollary 1 in

such a way that the linear layers are the inverse of one another, it is necessary
that the equation

[
I a
0 I

]
× Ĥ(G) ×

[
I 0
a I

]
=

[
0 h0,1

h1,0 h1,1

]
,

where h0,1, h1,0 and h1,1 are unknown n × n matrices, has at least one solution.
The unknowns are the coefficients of the n × n matrices a, so that n2 Boolean
variables must satisfy n2 equations corresponding to the zero in the right hand
side.

Note that if there is a single whitening affine layer applied at some side, we
have a similar system with n2 unknowns. If we consider one more round, we will
have n2 equations as well. Therefore we can attack Fr

dA, where r is the maximum
number of rounds satisfying Corollary 1. Another view on this attack is given in
Sect. 5.3.

5 The Impossible Monomials Attack

In the previous sections we used absent terms of highest degree to recover whiten-
ing linear layers from Feistel Networks. In this section we generalize this method
to terms of lower degree and, as a result, we present an attack recovering a secret
round function from a 5-round Feistel Network with bijections. Furthermore, we
generalize this attack to more rounds if the degrees of the round functions are
small.

5.1 Impossible Monomials in Feistel Networks

Let F be a 2n-bit F4
n−1 and let Fi be the ith output bit of F (F0 is the leftmost

bit of F ). We will denote by L = {0, . . . , n − 1} and R = {n, . . . , 2n − 1} the
indices from the left and right halves respectively, and FL and FR the truncations
of the function F to the left and right half respectively. Consider the ANF of Fi:
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Fi(xl||xr) =
⊕

ul,ur∈Fn
2

aFi

ul||ur
xul

l xur
r , (2)

where xl and xr are vectors of input variables from the left and right halves
respectively. We will now show that some monomials are impossible, that is,
aFi

ul||ur
= 0 for some ul, ur independently of the choice of the Feistel functions.

To prove it, we will need the following lemmas.

Lemma 3. Let a, b ∈ F
n
2 be some vectors of variables and let f : Fn

2 → F2 be a
Boolean function of degree at most d. Then if some term in the ANF of f(a⊕ b)
has degree da on variables from a, then it has degree at most d − da on variables
from b. In particular, there are no terms of degree d on a and non-zero degree
on b.

Proof. Let s(a, b) = a ⊕ b. Then deg s = 1 and deg (f ◦ s) ≤ d. Hence a term
containing da variables from a contains at most d − da variables from b.

Lemma 4. Let π : Fn
2 → F

n
2 be a permutation and let f : Fn

2 → F2 be some
Boolean function of degree at most n − 1. Then deg (f ◦ π) ≤ n − 1.

Proof. By the Möbius transform, the term of degree n is present in the ANF of
f ◦π if and only if the sum of f ◦π over Fn

2 is equal to 1. Since π is a permutation,
we have that

∑
x∈Fn

2
f(π(x)) =

∑
x∈Fn

2
f(x). But this last sum is equal to zero

because deg f ≤ n − 1. Therefore, there is no term of degree n in the ANF of
f ◦ π and we conclude that deg (f ◦ π) ≤ n − 1.

We now formally describe classes of impossible monomials using the following
theorem.

Theorem 3. Let F and its ANF be as defined before. Then aFi

ul||ur
= 0 if one

of the following holds:

1. i ∈ R and hw(ul) = n;
2. i ∈ R and hw(ul) = n − 1, hw(ur) = n − 1;
3. i ∈ R and hw(ul) = n − 1, hw(ur) = n;
4. i ∈ L and hw(ul) = n, hw(ur) = n − 1.

Proof. Points 3–4 are part of Theorem 2 and are presented here for the sake of
completeness. It is left to prove points 1 and 2.

1. Consider the 4-round integral characteristic from Fig. 4. Let C be any cube
which contains the whole left part. From the integral characteristic it follows
that the sum of F over the cube C has zero on the right side. Therefore by
the Möbius transform the corresponding ANF coefficients are zero.

2. Let f0, f1, f2, f3 : Fn
2 → F

n
2 be the round functions of F . The equation for the

right half of the output is then given by:

FR(l||r) = l ⊕ f0(r) ⊕ f2(r ⊕ f1(l ⊕ f0(r))). (3)
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f0⊕

f1⊕

f2⊕

f3⊕

Fig. 4. The 4-round integral characteristic: words taking all values are represented in
bold red and balanced words are represented in dashed blue. (Color figure online)

Clearly, the first two terms do not contain any monomial of degree n− 1 on l
and n − 1 on r. Consider the expression f2(r ⊕ f1(l ⊕ f0(r))). Assume that a
term with degree n−1 on both l and r is present in the ANF of the expression.
Then the term is present in the expansion of some product of at most n − 1
bits, where the bits are output bits of the expression (r)⊕f1(l⊕f0(r)), i.e. in
the term each of the n−1 factors is either a bit from (r) or from f1(l⊕f0(r)).
Note that the term may not be generated by choosing bits only from (r),
because in that case there will be no variables from l in it. Therefore there
are at most n − 2 bits taken from the outer (r); n − 1 variable from l and at
least one variable ri are taken from f1(l ⊕ f0(r)). It means that there exists a
monomial function π such that π ◦ f1(l ⊕ f0(r)) contains term of degree n− 1
on l and degree at least 1 on r. By Lemma 4, π ◦ f1 has degree at most n − 1
and by Lemma 3 there can not be such term in π ◦ f1(l ⊕ f0(r)).

5.2 An Attack on 5-Round Feistel Network

In this section we use the impossible monomials to attack 5-round Feistel Net-
work built from permutations. The key idea is to observe the presence of some
4-round impossible monomials in the 5-round network and extract some infor-
mation about the last round function. Consider some monomial xu which is
impossible at the right side of a 4-round Feistel Network. We now add the 5th
round. If we observe xu on the left side, then we know that this monomial has
come from the last round function. Otherwise, we know that it has not come
from the last round function and it gives us some information as well. Using
these observations we build a system of linear equations where the unknowns
are the ANF coefficients of the coordinates of the last round function. By solving
the system we recover the ANF coefficients and hence the function itself. Note
that in order to compute the ANF, we have to obtain the full codebook.

Let F 5 be a 2n-bit F5
d, F 4 be its first 4 rounds and f be the last round

function. Let ag
u be the coefficient of term xu in the ANF of the Boolean function

g. Consider the equation of the ith bit of F 5 for i ∈ L:
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F 5
i (x) = F 4

i+n(x) ⊕ fi(F 5
R(x)) =

⊕

u∈F2n
2

a
F 4

i+n
u xu ⊕

⊕

u∈F2n
2

afi
u (F 5

R(x))u.

The ANF of F 5
i with i ∈ L contains some monomial from the first or the

second group from Theorem 3 if and only if the ANF of fi ◦ F 5
R does. Since

we can compute the ANF of F 5
R, we can check which possible terms from the

ANF of fi generate the impossible monomial. Then from the presence of the
impossible monomial in the ANF of F 5

i+n we deduce if the number of such terms
in the ANF of fi is odd or even. This gives us a linear equation over F2 where
the unknowns are the ANF coefficients of fi. For an illustration see Fig. 5.

Note that the 4-round impossible monomials which are still impossible in a
5-round Feistel Network do not leak any information about f . For example, since
Feistel Network is a bijection, the monomial of degree 2n is impossible for any
number of rounds but it can not be used in the attack. However it is the only
such monomial. Therefore we can use 2n −1 impossible monomials from the first
group of Theorem 3 and n2 ones from the second group. Each such monomial
yields an equation per each bit of f . There are 2n unknown coefficients in the
ANF of fi so the number of equations will be enough to recover fi for all i and
hence f with high probability. Note that we can recover f only up to xor with a
constant because the constant may propagate through the Feistel Network and
merge with other round functions (see the introduction of [5] for a more detailed
explanation of this phenomenon).

The complexity of the attack is O(23n) and is dominated by generating the
equation matrix, which is the same for all output bits (the only difference is the
target vector). For each of the 2n possible terms in the ANF of fi we compute
the ANF of the term applied after F in time O(22n) and then we check if this
term generates the impossible monomials. The next step is to solve the systems.
Since the equation matrix is the same for all output bits, we can do some pre-
computation (for example the LU-decomposition) once and solve all n systems

au = 0

au = 1/0 au = 1/0

F5 F2 F1 F0

f0

f1

f2

Fig. 5. Impossible monomials in the last round of a 5-round FN with 3-bit branches.
The wire with 4-round impossible monomials is in dashed blue, the path of the observed
monomials is highlighted with bold red. au is the ANF coefficient of some 4-round
impossible monomial.(Color figure online)
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of equations very fast. Computing the target vectors is dominated by computing
the ANF of F 5

i for i ∈ L which takes total time of O(n22n).
As a consequence of the algebraic nature of the attack, if the round function

has lower degree, then the complexity decreases. Indeed, there are less unknowns
and therefore both steps of generating the equation matrix and solving the sys-
tems take less time. As an edge case, consider the F 5A structure where the affine
layer can be seen as the 6th round with a function of degree 1. The complexity
of recovering the affine round is O(n22n), as was shown in Sect. 4.2.

Note that the attack can be run in the reverse direction as well, so that we
recover the first round function instead of the last one.

We have implemented the attack in Sage [21]. We successfully attacked a
5-round Feistel Network with bijections and branch size of up to 9 bits and
recovered the outer secret round functions in a few minutes on a modern laptop.

5.3 A Generalization of the Attack on Feistel Networks with Low
Degree Round Functions

When the round functions in a Feistel Network have low degree, the degree
deficiency is decreasing slowly and as a result impossible monomials may exist
for more than 5 rounds. Moreover, since there are less unknowns to recover, we
need less impossible monomials to mount the attack.

In the following theorem we give a lower bound on the maximum number
of Feistel rounds for which the large class of monomials is impossible. Namely,
this class is point 1 from Theorem 3. The size of the class is 2n, which is enough
to recover a round function of full degree. Therefore this is the lower bound
on maximum number of rounds that can be attacked using the ANF recovery
technique from Sect. 5.2.

Theorem 4. Let F be a 2n-bit Fr
d with arbitrary functions and let its ANF be

as in the Eq. 2. Then aFi

ul||ur
= 0 if dr−2 < n, i ∈ R and hw(ul) = n.

Proof. Let l||r be the input to F . Consider the degrees on the variables from l
at the intermediate states. Initially, the degrees are 1 on the left and 0 on the
right. After the first round the degrees are the same, because input to the round
function has no variables from l. Now if we have the respective degrees d1, d2

at some point and we add a swap and xor with the round function, the degrees
become max(d2, d · d1), d1. Then for 2 rounds the degrees are d, 1, for 3 rounds
- d2, d, and, in general, for r rounds the degrees are dr−1, dr−2. Therefore, when
dr−2 < n, the r-round Feistel Network has no monomials with degree n on l in
the right branch of the output.

As a corollary of the theorem, we can attack a 2n-bit Fr
d if dr−3 < n. Note that

for the 5-round Feistel with bijections which we attacked in the previous section
this bound is not satisfied (for n ≥ 3): d5−3 = (n − 1)2 > n, i.e. we attacked
more rounds than we could attack by Theorem 4. Though we expect that the
bound is tight for the specified class of monomials in FN with non-bijective round
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functions, there are another classes of impossible monomials for Feistel Networks
with more rounds. Moreover, if the degree is low, there are less ANF coefficients
to recover and, therefore, smaller classes of impossible monomials may be enough
for attack. As an edge case, consider an additional round function of degree 1 (a
linear function). The impossible monomials of degree 2n−1 from Corollary 1 can
be used to recover such round function, as was shown in attacks from Sect. 4.2.
The maximal number of rounds (without the last linear one) for this attack is
given by the condition θ(d, r) = d�r/2�−1 + d�r/2�−1 < 2n (or 1 more round if
the Feistel functions are bijections). In general case, if the Feistel functions are
bijections, we can attack 5 normal rounds plus 1 linear round.

6 Relationship Between Our Results and Other Attacks

6.1 Integral Attacks

The HDIM has a simple integral interpretation. Indeed, its coefficients corre-
spond to the presence or not of some monomials in the ANF of its coordinates.
They thus correspond to coefficients in said ANF which can be computed using
the Möbius transform:

Ĥ(F )[i, j] =
⊕

x�ej

Fi(x)

where ej is the vector where all elements are equal to 1 except in position j.
This has two consequences.

1. we can compute the HDIM of an n-bit permutation in time O(n2n−1), and
2. zeroes in column j imply the existence of an integral distinguisher.

In light of this, we state the following corollary of Corollary 1.

Corollary 2 (Integral Distinguisher for Fr
d). Let F be a 2n-bit Fr

d and
suppose that one of the following conditions holds:

– the Feistel functions are bijections and θ(d, r − 1) < 2n, or
– the Feistel functions are not bijections and θ(d, r) < 2n.

Then there exists an integral distinguisher with data and time complexity 22n−1

for this structure, namely
⊕

x�ej

(
ei · F (x)

)
= 0

for all i < n and j < n. In other words, the sum of the right words of F (x) is
equal to 0 over a cube where one bit of the input right word is fixed to 0.

We notice a relation between our attacks and the so-called division property.
This tool for finding integral attacks was introduced by Todo in [9] and later
used by the same author to attack the full MISTY1 [22]. In his seminal paper,
Todo gives some integral distinguishers against Feistel Network for various block
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sizes, number of rounds, degree of the Feistel functions for both bijective and
non-bijective Feistel functions. Interestingly, his results are extremely similar to
ours! Indeed, while there is no generic formula in Todo’s paper, the application
of his algorithm shows the existence of cubes of size 2n−1 whose sum is equal to
0 for a number of rounds identical to the ones we predicted. In fact, results about
the division property of the output of a Feistel Network can be extracted from
its HDIM. To explain this, we first recall the definition of the division property.

Definition 7 (Division Property). Let X be a multiset of F
n
2 and k be an

integer of [0, n]. We say that X has the division property Dn
k if, for all u in F

n
2

such that hw(u) ≤ k,
⊕

x∈X
xu = 0.

This property is further generalized into the vectorial division property which
we define in the particular case of a Feistel Network.

Definition 8 (Vectorial Division Property (for Feistel Networks)). Let
X be a multiset of (Fn

2 )2 and kL, kR be integers of [0, n]. We say that X has the
collective division property Dn

(kL,kR) if, for all u, v in F
n
2 such that hw(u) ≤ kL

and hw(v) ≤ kR,
⊕

(x,y)∈X
xuyv = 0.

In particular, Todo applied his technique to 2n-bit Fr
d. The integral distin-

guisher against the highest number of rounds correspond to integrals over cubes
of size 2n − 1 were the constant bit has to be on the left side.4 As we have seen,
summing over such a cube is equivalent to computing half of the lines of the
HDIM of the function.

Let F be a 2n-bit Fr
d, x denote the left input bits, y denote the right ones

and FL and FR denote its left and right output halves so that F (x||y) =
FL(x||y)||FR(x||y). Suppose that the top left corner of the HDIM of F is all
zero. We deduce that the following holds for any cube Ck of dimension 2n − 1
where the bit at index k ≤ n is fixed and for any i ≤ n:

⊕
x∈Ck

F (x) · ei(x) = 0.
This can also be written as

⊕

x∈Ck

(FL(x))ui (FR(x))0 =
⊕

x∈Ck

(FL(x))ui = 0,

where ui is the element of Fn
2 equal to 0 except at position i where it is equal to

1. In other words, for all u in F
n
2 , hw(u) ≤ 1 implies that

⊕
x∈Ck

(FL(x))u = 0,
which means that the image of Ck has vectorial division property Dn

1,0. The
HDIM of Feistel Networks can thus be interpreted as describing the vectorial
division property of each output half!

The relation between the ANF and integral attacks is further stressed by
the attack we described in Sect. 5. Indeed, the complexity of this attack is very
similar to that of the integral attack against 5-round FN with bijective Feistel
functions described in [5].

4 It is actually on the right side in Todo’s paper. Unlike in our paper, the Feistel
function is XORed in the right branch in his case.
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7 Conclusion

Investigating surprising visual patterns in the LAT of Feistel Network lead us
to interesting results. To explain them, we introduced the high-degree indica-
tor matrix (HDIM). It causes a form of linearity of the LAT modulo 4 and is
related to the presence (or lack thereof) of some monomials in the ANF of the
permutation. We identified patterns in the distribution of these monomials for
Feistel Networks and provided theorems allowing us to predict the existence of
these patterns (Theorem 2 and Corollary 1). More generally, we showed how the
predictable absence of some monomials can be leveraged to attack a Feistel Net-
work in an impossible monomial attack. We also drew some connections between
our results and integral distinguisher.
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Abstract. Integral attacks form a powerful class of cryptanalytic tech-
niques that have been widely used in the security analysis of block
ciphers. The integral distinguishers are based on balanced properties
holding with probability one. To obtain a distinguisher covering more
rounds, an attacker will normally increase the data complexity by iter-
ating through more plaintexts with a given structure under the strict
limitation of the full codebook. On the other hand, an integral property
can only be deterministically verified if the plaintexts cover all possible
values of a bit selection. These circumstances have somehow restrained
the applications of integral cryptanalysis.

In this paper, we aim to address these limitations and propose a novel
statistical integral distinguisher where only a part of value sets for these
input bit selections are taken into consideration instead of all possible
values. This enables us to achieve significantly lower data complexities
for our statistical integral distinguisher as compared to those of tradi-
tional integral distinguisher. As an illustration, we successfully attack the
full-round Skipjack-BABABABA for the first time, which is the variant
of NSA’s Skipjack block cipher.

Keywords: Block cipher · Statistical integral · Integral attack ·
Skipjack-BABABABA

1 Introduction

Integral attack is an important cryptanalytic technique for symmetric-key
ciphers, which was originally proposed by Knudsen as a dedicated attack against
Square cipher [7]. Later, Knudsen and Wagner unified it as integral attack [11].
The integral distinguisher of this attack makes use of the balanced property where
one fixes a part of plaintext bits and takes all possible values for the other plain-
text bits such that a specific part of the corresponding ciphertext gets balanced,
i.e., each possible partial value for the ciphertext occurs exactly the same num-
ber of times. If one additional linear layer after this distinguisher is considered,
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 399–415, 2016.
DOI: 10.1007/978-3-662-52993-5 20
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the property will be that the XOR of all possible values of the specific part of
ciphertext becomes zero, referred to as zero-sum property [1] throughout this
paper1. Being variants of the original integral distinguisher, saturation distin-
guisher [15] and multiset distinguisher [3] also use the same balanced property
or zero-sum property with probability one as integral distinguisher.

Statistical saturation attack is different from integral attack, as proposed by
Collard and Standaert in [6]. Here by choosing a plaintext set with some bits fixed
while the others vary randomly, the statistical saturation distinguisher tracks the
evolution of a non-uniform plaintext distribution through the cipher instead of
observing the evolution of the plaintext bits in the integral distinguisher. In
other words, the statistical saturation distinguisher requires the same inputs as
the integral distinguisher, but uses the different property on the output side to
distinguish between the right or wrong key guesses. As Leander showed that
the statistical saturation distinguisher is identical to multidimensional linear
distinguisher on average in [13], the statistical saturation distinguisher makes
use of the advantage (bias or capacity) while the balanced property used in
the integral distinguisher has no bias. The first publication of statistical satura-
tion distinguisher came without a method to estimate its complexity. However,
this complexity was demonstrated to be inverse proportional to the capacity or
square of the capacity for the output under the chosen input set [4,13]. Block
ciphers such as PRESENT and PUFFIN are natural targets for such statistical
saturation attacks as well as linear cryptanalysis, but the integral cryptanaly-
sis has not been proven efficient for them [21,22]. This highlights the difference
between the integral distinguisher and statistical saturation distinguisher.

Integral attack has been widely used for many other block ciphers. In order
to reduce the time complexity of integral attack, Moriai et al. gave a method to
improve the time complexity against low degree round function for higher order
differential attacks including integral attacks in [16]. Ferguson et al. proposed the
partial-sum technique in [8]. Sasaki and Wang presented the meet-in-the-middle
technique for integral attack on Feistel ciphers in [17].

So far the data complexity for a given integral has been determined by tak-
ing all values of a bit selection at the input of the balanced property. However,
there are cases where it is possible or even desirable to shift the tradeoff from
data towards time. Often it is the data requirements that exceeds the restric-
tion while the time complexity budget of an attack is far from being exhausted.
Therefore, in these cases, it is of paramount importance to reduce the data
complexity of an attack to make it applicable. An interesting example of this
behaviour is constituted by NSA’s Skipjack variant Skipjack-BABABABA stud-
ied at ASIACRYPT’12 [5]. It has been attacked for 31 rounds with an integral
distinguisher, whereas the data complexity prohibits the attack to apply to the
full 32 rounds. In this paper, we aim to remove this restriction by proposing a
novel type of integral distinguisher that features a lower data complexity with
non-balanced output bits that are still distinguishable from random.

1 Although the common sense of balanced property refers to as zero-sum property, the
balanced property used in this paper is active or ALL property.
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1.1 Our Contributions

Integrals Go Statistical. We propose a new statistical integral distinguisher
that consists in applying a statistical technique on top of the original integral
distinguisher with the balanced property. The proposed statistical integral dis-
tinguisher requires less data than the original integral distinguisher. Although
the balanced property does not strictly hold in the statistical integral distin-
guisher, we prove that the distribution of output values for a cipher can be
distinguished from the distribution of output values which originate from a ran-
dom permutation. This allows us to distinguish between the two distributions
and to construct our statistical integral distinguisher. To quantify the advantage,
let s be the number of input bits that take all possible values at some bits of the
input while the other input bits are fixed. Furthermore, let t be the number of
the output bits that are balanced. Then, for the original integral distinguisher,
the data complexity is O(2s). At the same time, by deploying our new statistical
integral distinguisher, the data complexity is reduced to O(2s− t

2 ).
In summary, statistical integral attacks we propose have lower data com-

plexity than traditional integral attacks. From [5,19], the traditional integral
distinguisher with the balanced property can be converted to a zero-correlation
integral distinguisher, so our proposed statistical integral attacks can be regarded
as chosen-plaintext multidimensional zero-correlation attacks.

Note that the statistical integral attack is different from the statistical satura-
tion attack as they use different distinguishers and the statistical integral attack
is efficient for word-wise ciphers but the statistical saturation attack seems to
be valid for bitwise ciphers.

The effectiveness of our proposed statistical integral distinguisher is well pre-
sented with the key-recovery attack the full-round Skipjack-BABABABA.

Key Recovery Attack on Full-Round Skipjack’s Variants. Using the
statistical integral cryptanalysis, we propose a first-time cryptanalysis on
the full-round Skipjack-BABABABA — a variant of Skipjack suggested by
Knudsen et al. [10,12] to strengthen its resistance against impossible differential
attacks. Skipjack-BABABABA has been shown to withstand truncated differ-
entials (which implies that the impossible differentials are also thwarted). At
ASIACRYPT’12, Bogdanov et al. [5] attacked 31-round Skipjack-BABABABA
by utilizing a 30-round integral distinguisher. Built upon their work, we achieves
the full-round attack of Skipjack-BABABABA by taking advantage of the statis-
tical integral technique. To the best of our knowledge, this is the first full-round
cryptanalysis against Skipjack-BABABABA. Moreover, we improved the pre-
vious attack on 31-round Skipjack-BABABABA in [5] with the new statistical
integral distinguisher. The results are summarized in Table 1.

Outline. The new statistical integral distinguisher is established in Sect. 2.
Section 3 presents the attack on the full-round Skipjack-BABABABA and
the improved attack on 31-round Skipjack-BABABABA. Finally the paper is
concluded in Sect. 4.
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Table 1. Summary of attacks on Skipjack-BABABABA

Attack Rounds Data Time Memory Ref.

Integral ZC 31 248CP 249 233 bytes [5]

Statistical integral 31 246.8CP 248 226.6 bytes Sect. 3

Statistical integral 32 261.7CP 278.1 265.7 bytes Sect. 3

CP: Chosen Plaintext.

2 Statistical Integral Distinguisher

2.1 Integral Distinguisher

In this section, we give some notions and results about the integral distinguisher
with balanced property, following the description in [5]. Assume that H : Fn

2 →
F

n
2 is a part of a block cipher. To be convenient and without loss of generality,

we split the inputs and outputs into two parts each.

H : Fr
2 × F

s
2 → F

t
2 × F

u
2 , H(x, y) =

(
H1(x, y)
H2(x, y)

)
.

Then we use Tλ to denote the function H where the first r bits of its input are
fixed to the value λ and only the first t bits of the output are considered:

Tλ : Fs
2 → F

t
2, Tλ(y) = H1(λ, y).

For an integral distinguisher, if y in the above notation iterates all possi-
ble values of F

s
2, then the output value Tλ(y) is uniformly distributed where

n > s ≥ t to ensure the balanced property on the t-bit. However, this uniform
distribution cannot be obtained if the attacker chooses some random values
(other than iterating all possible values) for y. The good side is that when con-
siderable quantity of values of y are chosen, the distribution of Tλ(y) can be
distinguished from a random variable’s distribution. In this case, Tλ(y) obeys
multivariate hypergeometric distribution while t-bit value chosen randomly from
an uniform distribution obeys multinomial distribution. These two distributions
can be distinguishable from each other as they have different parameters for
large number of input-output pairs N .

2.2 Statistical Integral Distinguisher

Assume that we need N different values of y to distinguish the above two dis-
tributions. A t-bit value Tλ(y) ∈ F

t
2 is computed for each y and we allocate a

counter vector V [Tλ(y)], Tλ(y) ∈ F
t
2 and initialize these counters to zero. These

counters are used to keep track of the number of each value Tλ(y). Usually t is
far from block size n.
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It is easy to construct a simple distinguisher which can be described as
follows:

– If there is one or more values of Tλ[y] satisfying V [Tλ(y)] > 2s−t, then output
random permutation.

– If there is no value of Tλ[y] satisfying V [Tλ(y)] > 2s−t, then output actual
cipher.

However, for a random permutation, the probability satisfying V [Tλ(y)] > 2s−t is
too low to distinguish from the cipher. For example, if s = 16, t = 8 and N = 212

values of y are involved. For some fixed z, 0 ≤ z ≤ 2t − 1, the probability that
Tλ(y) = z is p = 2−8. Then V [z] follows a binomial distribution,

V [z] ∼ B(N, p),

which approximately follows a normal distribution φ(Np,Np(1− p)). The prob-
ability that V [z] > 2s−t = 28 for some fixed z is computed as follows,

1 − Φ(
2s−t − Np

√
Np(1 − p)

) ≈ 1 − Φ(60.12) ≈ 1.1 × 10−787.

As a result, the probability that any V [z] is greater than 28 is upper bounded
by 256×1.1×10−787, which is too low to be detected. Thus such a distinguisher
only using single counter value is invalid.

Now we will construct an efficient distinguisher by investigating the distrib-
ution of the following statistic

C =
2t−1∑

Tλ(y)=0

(V [Tλ(y)] − N · 2−t)2

N · 2−t
. (1)

This statistic is widely used in probability theory. It was also used in [20] for the
χ2 cryptanalysis on DES.

This statistic C follows different distributions determined by whether we are
dealing with an actual cipher (right key guess) or a random permutation (wrong
key guess).

Proposition 1. For sufficiently large N and t, the statistic 2s−1
2s−N Ccipher

(Ccipher is the statistic C for cipher) follows a χ2-distribution with degree of
freedom 2t − 1, which means that Ccipher approximately follows a normal distri-
bution with mean and variance

μ0 = Exp(Ccipher) = (2t − 1)
2s − N

2s − 1
and σ2

0 = V ar(Ccipher) = 2(2t − 1)(
2s − N

2s − 1
)2.

The statistic Crandom (Crandom is the statistic C for randomly drawn permuta-
tion) follows a χ2-distribution with degree of freedom 2t − 1, which means that
Crandom approximately follows a normal distribution with mean and variance

μ1 = Exp(Crandom) = 2t − 1 and σ2
1 = V ar(Crandom) = 2(2t − 1).
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Proof. For a randomly drawn permutation, the values of V [Tλ(y)] are obtained
by counting the occurrences of Tλ(y) when the values are chosen uniformly at
random, which follows the multinomial distribution with parameter N and p =
(p0, . . . , p2t−1), pi = 2−t (0 ≤ i = Tλ(y) < 2t).

The well-known Pearson’s χ2 statistical result is that
∑k

i=1
(Xi−npi)

2

npi
fol-

lows a χ2-distribution with degree of freedom k − 1, where the vector X =
(X1, . . . , Xk) follows a multinomial distribution with parameters n and p, where
p = (p1, . . . , pk). We give a short proof for Pearson’s χ2 statistic in Appendix A.1
based on [9,14].

Thus we get the statistic for the randomly drawn permutation

Crandom =
2t−1∑

i=Tλ(y)=0

(V [Tλ(y)] − Npi)2

Npi
=

2t−1∑

i=Tλ(y)=0

(V [Tλ(y)] − N · 2−t)2

N · 2−t
,

which follows a χ2-distribution with degrees of freedom 2t − 1. Then for suffi-
ciently large N and t, Crandom approximately follows a normal distribution with
the expected value and variance:

Exp(Crandom) = 2t − 1 and V ar(Crandom) = 2(2t − 1).

For the cipher, the values of V [Tλ(y)] follows a multivariate hypergeometric
distribution with parameters (K, 2s, N), where K = (2s−t, . . . , 2s−t).

If the vector X = (X1, . . . , Xk) follows a multivariate hypergeometric distri-
bution with parameters (K,m, n), where K = (K1, . . . , Kk) with

∑k
i=1 Ki = m,

the statistic m−1
m−n

∑k
i=1

(Xi−npi)
2

npi
follows a χ2-distribution with degree of free-

dom k − 1, which is proved in Appendix A.2.
So the statistic for the cipher

2s − 1
2s − N

2t−1∑

Tλ(y)=0

(V [Tλ(y)] − N · 2−t)2

N · 2−t
=

2s − 1
2s − N

Ccipher

follows a χ2-distribution with degrees of freedom 2t − 1. For sufficiently large
N and t, we get Ccipher approximately follows a normal distribution with the
expected value and variance:

Exp(Ccipher) = (2t − 1)
2s − N

2s − 1
and V ar(Ccipher) = 2(2t − 1)(

2s − N

2s − 1
)2.

�	

To distinguish these two normal distributions with different means and vari-
ances, one can compute the data complexity required as follows, given error
probabilities.

Corollary 1 (Data Complexity). Under the assumption of Proposition 1, for
type-I error probability α0 (the probability to wrongfully discard the cipher), type-
II error probability α1 (the probability to wrongfully accept a randomly chosen
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permutation as the cipher), to distinguish a cipher and a randomly chosen per-
mutation based on t-bit outputs when fixing r-bit inputs and randomly choosing
values for s-bit inputs, the data complexity can be approximated by

N =
(2s − 1)(q1−α0 + q1−α1)√

(2t − 1)/2 + q1−α0

+ 1, (2)

where q1−α0 and q1−α1 are the respective quantiles of the standard normal dis-
tribution.

Note that this statistic test is based on the decision threshold τ = μ0 +
σ0q1−α0 = μ1 − σ1q1−α1 : if C ≤ τ , the test outputs ‘cipher’. Otherwise, if the
statistic C > τ , the test outputs ‘random’.

As the integral distinguisher with the balanced property is equivalent
to the multidimensional zero-correlation distinguisher [5], the statistical inte-
gral attacks can be regarded as the chosen-plaintext multidimensional zero-
correlation attacks which require lower data complexity than the known-
plaintext multidimensional zero-correlation attacks.

2.3 Experiment Results

In order to verify the theoretical model of statistical integral distinguisher, we
implement a distinguishing attack on a mini variant of AES with the block size
64-bit denoted as AES* here. The round function of AES* is similar to that
of AES, including four operations, i.e., SB, SR,MC and AK. 64-bit block is
partitioned into 16 nibbles and SB uses S-box S0 in LBlock. SR is similar as
that of AES, and the matrix used in MC is

M =

⎛

⎜
⎜
⎝

1 1 4 9
9 1 1 4
4 9 1 1
1 4 9 1

⎞

⎟
⎟
⎠ ,

which is defined over GF (24). For the multiplication, each nibble and value in
M are considered as a polynomial over GF (2) and then the nibble is multiplied
modulo x4 + x + 1 by the value in M . The addition is simply XOR operation.
The subkeys are XORed with the nibbles in AK operation.

The distinguisher is shown in Fig. 1, where (Ai
1, A

i
2, A

i
3, A

i
4), i = 1, 2, 3, 4

denotes that these special 16 bits are balanced in the integral. Note that the
state after SB operation in round 3 takes all 216 values in each row, and 24 val-
ues in each column. However, after SR operation the state takes all 216 values
in each column. We consider the distributions of the 8-bit values of the output
including the first nibble in the first row and the last nibble in the second row,
which are colored in red in Fig. 1, so s = 16, t = 8 here. If we set α0 = 0.2 and
different values for N , α1 and τ can be computed using Eq. (2), thus we proceed
the experiment to compute the statistic C for AES* and random permutations.
With 1000 times of experiment, we can obtain the empirical error probabilities
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Fig. 1. Integral property for 4-round AES* (The MC operation in the last round is
omitted.)

α̂0 and α̂1. The experiment results for α̂0 and α̂1 are compared with the theo-
retical values α0 and α1 in Fig. 2, which shows that the test results for the error
probabilities are in good accordance with those for theoretical model.

3 Statistical Integral Attack on Skipjack-BABABABA

3.1 Skipjack and Its Variant Skipjack-BABABABA

Before SIMON and SPECK were proposed in 2013, Skipjack [18] was the only
block cipher known to be designed by NSA (declassified in 1998). Skipjack is
a 64-bit block cipher with 80-bit key adopting an unbalanced Feistel network
with 32 rounds of two types, namely Rule A and Rule B. The 64-bit block
of Skipjack is divided into four 16-bit words and each round is described in
the form of a linear feedback shift register with additional non-linear keyed G
permutation. The keyed G permutation G : F32

2 × F
16
2 → F

16
2 consists of a 4-

round Feistel structure whose internal function F : F8
2 → F

8
2 is an 8 × 8 S-box.

Skipjack applies eight rounds of Rule A, followed by eight rounds of Rule B and
once again eight rounds of Rule A and finally eight rounds of Rule B. The key
schedule of Skipjack takes 10 bytes secret key and uses four bytes at a time to
key each G permutation, thus Skipjack’s key schedule has a periodicity of five
rounds. In this section, we use k0, k1, . . . , k9 to denote the ten bytes secret key.
This original Skipjack is often referred to as Skipjack-AABBAABB, where A
denotes 4-round Rule A and B denotes 4-round Rule B. A variant of Skipjack,
namely Skipjack-BABABABA consisting of four iterations of four-round Rule
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Fig. 2. Experimental results for AES* considering four input nibbles

B followed by four-round Rule A, is also discussed. This variant has the same
number of rounds and key schedule as Skipjack-AABBAABB.

Since its declassification, Skipjack-AABBAABB has sparked numerous secu-
rity analysis. Among which, the best known cryptanalytic result against
Skipjack-AABBAABB was reported more than one decade ago by Biham et al.
[2] at EUROCRYPT’99, where a 24-round impossible differential was revealed
and with which an attack against 31-round Skipjack-AABBAABB was mounted.
Besides the considerable security analysis, Skipjack’s structure was also studied
to discuss variants of Skipjack to improve its strength. In [10,12], Knudsen et al.
suggested that putting Rule B before Rule A, for example, the earlier mentioned
Skipjack-BABABABA, might facilitate the resistance to truncated differential
attacks. Till now, the only security analysis against Skipjack-BABABABA was
reported by Bogdanov et al. [5] at ASIACRYPT’12, where an integral distin-
guisher over 30-round Skipjack-BABABABA was utilized to attack a 31-round
version.

3.2 Integral Distinguisher of Skipjack-BABABABA

To attack full-round Skipjack-BABABABA, we are going to use the 30-round
integral distinguisher proposed at ASIACRYPT’12 [5]. The 30-round integral
distinguisher can be described as: when we take all 248 possible values for the
input of round 2 (α2, β2, γ2, δ2) with δ2 = α2, the set of all corresponding values
for the output of round 31 β32 ⊕ γ32 is balanced.

3.3 Key Recovery Attack on 32-Round Skipjack-BABABABA

As the integral distinguisher starts at the input of round 2 and ends at the output
of round 31, to attack full-round Skipjack-BABABABA we add one round (Rule
B) before and append one round (Rule A) after the distinguisher, illustrated in
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Fig. 3. Note that in Fig. 3, the internal details of the keyed G permutation are
also illustrated. To be more clear, several 8-bit variables a, b, c, d are employed
in the attack procedure, see Fig. 3.

Fig. 3. Key recovery attack on full-round Skipjack-BABABABA

We consider only the integral property of the right 8 bits of β32⊕γ32, namely
β32

R ⊕ γ32
R , making t = 8 in Eq. (2). And according to the 30-round integral

distinguisher, to guarantee the integral property with probability one, we need
to iterate through all possible values of (α2, β2, γ2, δ2 = α2). In other words, s in
Eq. (2) is 48. Set α0 = 2−2.7 and α1 = 2−4 (the values of α0 and α1 can be chosen
appropriately to balance the data complexity, success rate and time complexity
in exhaustive phase), we have q1−α0 ≈ 1.02 and q1−α1 ≈ 1.53. Thus we need
about 245.7 values of (α2, β2, γ2, δ2 = α2) and the threshold value τ ≈ 221.6. We
can traverse through all possible values of α1 and β1 and randomly choose 213.7

values for γ1 and guess the value of k0, k1, k2, k3 to compute α2, β2, γ2 and set
δ2 = α2. In this way, 245.7 values of (α2, β2, γ2, δ2 = α2) could be produced under
any key value of (k0, k1, k2, k3). The key can be recovered following Algorithm 1,
where β33

R and β33
L denote the right 8-bit and left 8-bit of β33 respectively, and

so as γ33
R .

Complexity Estimation. In Step 8 and Step 9, the time complexity is 261.7 ·
2 = 262.7 memory accesses which is equivalent to 262.7 encryptions. Next, Step 15
needs about 232 · 216 = 248 times of G computation equivalent to 248 · 1

32 = 243

encryptions. Suppose that one memory access to an array of size 224 and of
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Algorithm 1. Key recovery attack on full-round Skipjack-BABABABA
1 Allocate two counter vector V0[] and V ′

0 [] with size 261.7 and initialize them to
zero.

2 Allocate a counter a and initialize a to zero.
3 Take 213.7 random values of γ1 and store them in set S.
4 for all 216 values of α1 do
5 for all 216 values of β1 do
6 for all 216 values of δ1 do
7 for 213.7 values of γ1 in set S do
8 Ask the ciphertext (α33, β33, γ33, δ33) for the plaintext

(α1, β1, γ1, δ1).
9 V0[a] = (α1, β1, γ1, δ1), V ′

0 [a] = (α33, β33, γ33, δ33).
10 Increase a by one.

11 Allocate a counter vector V1[β
33||γ33

R ].
12 for all 232 values of k0, k1, k2, k3 do
13 Initialize the counter vector V1[β

33||γ33
R ] to zero.

14 for all 216 values of α1 do
15 Compute α2 and set δ1 = α2.
16 for all 216 values of β1 and 213.7 values of γ1 in set S do

// Till here, we have 245.7 values of (α2, β2, γ2, δ2 = α2).
17 Access V0[a] with (α1, β1, γ1, δ1) and get the index a, then access

V ′
0 [a] to get the corresponding ciphertext (α33, β33, γ33, δ33).

18 Increase the corresponding counter V1[β
33||γ33

R ] by one.

// β32
R = a ⊕ γ33

R = b ⊕ c ⊕ γ33
R

19 Allocate a counter vector V2[d||c ⊕ γ33
R ].

20 for all 216 values of k7 and k6 do
21 Initialize the counter vector V2[d||c ⊕ γ33

R ] to zero.
22 for all 224 values of β33||γ33

R do
23 Compute c = F (β33

L ⊕ k7) ⊕ β33
R , d = F (c ⊕ k6) ⊕ β33

L .
24 Compute c ⊕ γ33

R , update V2 by V2[d||c ⊕ γ33
R ]+ = V1[β

33||γ33
R ].

25 Allocate a counter vector V3[β
32
R ⊕ γ32

R ].
26 for all 28 values of k5 do
27 Initialize the counter vector V3[β

32
R ⊕ γ32

R ] to zero.
28 for all 216 values of d||c ⊕ γ33

R do
29 Compute b = F (d ⊕ k5) and β32

R ⊕ γ32
R = b ⊕ c ⊕ γ33

R .
30 Update counter vector V3 by V3[β

32
R ⊕ γ32

R ]+ = V2[d||c ⊕ γ33
R ].

31 Compute C from V3 according to Eq. (1).
32 if C ≤ τ then
33 Exhaustively search all right key candidates compatible with

this key value.
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size 261.7 are equivalent to one round encryption and full cipher encryption
respectively, then Step 17 and 18 need about 232 ·216 ·216 ·213.7 · (1+ 1

32 ) ≈ 277.7

encryptions. The operations done in Step 23 and Step 24 are comparable to half-
round encryption, which are about 232 · 216 · 224 · 1

2 · 1
32 = 266 encryptions. In the

same way, we regard the operations in Step 29 and Step 30 also as half-round
encryption, then the time complexity of these two steps is about 232·216·28·216· 12 ·
1
32 = 266 encryptions. As we set the wrong key guess filteration ratio as α1 = 2−4,
thus in Step 33, we need to exhaustively search about 280−4 = 276 key values to
find the right key. To summarize, the time complexity of our key recovery attack
on full-round Skipjack-BABABABA is about 262.7+243+277.7+266+266+276 ≈
278.1 encryptions. About the data complexity, in Step 6, all possible values of δ1

will be iterated through. Thus our attack needs about 261.7 chosen plaintexts.
The dominant memory requirements occur to store the plaintext/ciphertext pairs
in Step 1, which needs about 2 × 261.7 × 8 = 265.7 bytes.

3.4 Improved Integral Attack on 31-Round Skipjack

With the statistical integral model, we can improve the integral attack on 31-
round Skipjack [5] by appending one round after the 30-round distinguisher
above, too. In Fig. 3, we attack from the second round to the 32nd round. In order
to reduce the time complexity, we consider the statistical integral property of
β32

R ⊕γ32
R and β32

L ⊕γ32
L respectively, so t = 8 in Eq. (2). According to the 30-round

integral distinguisher, to guarantee the integral property to hold with probability
one, we should iterate through all possible values of (α2, β2, γ2, δ2 = α2). In other
words, s in Eq. (2) is 48. Set α0 = 2−3.7 and α1 = 2−16, we have q1−α0 ≈ 1.43 and
q1−α1 ≈ 4.17. Thus we need about 246.8 values of (α2, β2, γ2, δ2 = α2) and the
threshold value τ ≈ 160.84. The key recovery attack is described in Algorithm 2.

Complexity Estimation. Assume that one memory access is equivalent to one
round encryption, Step 3 and 4 need about 246.8 × 1

31 ≈ 241.8 encryptions. Then
the operations in Step 9 and 10 are about 216 ×224 × 1

2 × 1
31 ≈ 234.0 encryptions.

Step 15 and 16 need about 216 × 28 × 216 × 1
2 × 1

31 ≈ 234.0 encryptions. As
we set the wrong key guess filteration ratio as 2−16, the numbers of remained
key (k5, k6, k7) are about 224−16 = 28 in Step 19. Until now, we exploit the
integral property of β32

R ⊕γ32
R to filter most wrong keys. Next, we use the integral

property of β32
L ⊕γ32

L to filter all wrong keys of (k4, k5, k6, k7). Step 25 needs about
28 × 28 × 224 × 1

31 ≈ 235.0 encryptions. Finally, by setting α1 = 2−16 we need to
exhaustively search about 280−16−16 = 248 key values in Step 28 to find the right
key. In total the time complexity is about 241.8 +234.0 +234.0 +235.0 +248 ≈ 248

encryptions. The dominant memory complexity is required in Step 1 which is
about 2 × 224 × 3 ≈ 227.6 bytes which happen.

4 Conclusion

In this paper, we propose the statistical integral attack where we use the statistic
technique to deal with the original integral distinguisher with balanced property.
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Algorithm 2. Key recovery attack on 31-round Skipjack-BABABABA
1 Allocate counter vectors V0[β

33||γ33
L ] and V1[β

33||γ33
R ], then initialize them to

zero.
2 for 246.8 random values of (α2, β2, γ2, δ2 = α2) do
3 Ask for the corresponding ciphertext (α33, β33, γ33, δ33).
4 Increase V0[β

33||γ33
L ] and V1[β

33||γ33
R ] by one respectively.

// β32
R = a ⊕ γ33

R = b ⊕ c ⊕ γ33
R

5 Allocate a counter vector V2[d||c ⊕ γ33
R ] and a list V4[·].

6 for all 216 values of k7 and k6 do
7 Initialize the counter vector V2[d||c ⊕ γ33

R ] to zero.
8 for all 224 values of β33||γ33

R do
9 Compute c = F (β33

L ⊕ k7) ⊕ β33
R , d = F (c ⊕ k6) ⊕ β33

L .
10 Compute c ⊕ γ33

R , update V2 by V2[d||c ⊕ γ33
R ]+ = V1[β

33||γ33
R ].

11 Allocate a counter vector V3[β
32
R ⊕ γ32

R ].
12 for all 28 values of k5 do
13 Initialize the counter vector V3[β

32
R ⊕ γ32

R ] to zero.
14 for all 216 values of d||c ⊕ γ33

R do
15 Compute b = F (d ⊕ k5) and β32

R ⊕ γ32
R = b ⊕ c ⊕ γ33

R .
16 Update counter vector V3 by V3[β

32
R ⊕ γ32

R ]+ = V2[d||c ⊕ γ33
R ].

17 Compute C from V3 according to Eq. (1).
18 if C ≤ τ then
19 Store the (k5, k6, k7) in the list V4[·].

// Since α1 = 2−16, about 28 keys in V4.

20 Allocate a counter vector V5[β
32
L ⊕ γ32

L ].
21 for all values of (k5, k6, k7) in V4[·] do
22 for all 28 values of k4 do
23 Initialize the counter vector V5[β

32
L ⊕ γ32

L ] to zero.
24 for all 224 values of β33||γ33

L do
25 Compute β32

L , update counter vector V5 by
V5[β

32
L ⊕ γ32

L ]+ = V0[β
33||γ33

L ].

26 Compute C from V5 according to Eq. (1).
27 if C ≤ τ then
28 Exhaustively search all right key candidates compatible with this

key value.

The new integral attack has the lower data complexity than that of the original
one. Our experiment for mini version of AES shows that the experimental results
are in good accordance with the theoretic results. What’ more, with this new
distinguisher we can improve the previous integral attack on 31-round Skipjack-
BABABABA and achieve the full-round attack of Skipjack-BABABABA. In the
future, we will apply the statistical integral model to many other block ciphers
which are vulnerable to integral attack.
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A Appendix

A.1 Pearson’s χ2 Statistic from the Multinomial Distribution

In this subsection, we describe Pearson’s χ2 statistic deduced from multinomial
distribution and provide a short proof based on [9,14] the asymptotic distribution
of the χ2 expression.

A fundamental result about Pearson’s χ2 statistic is that the following expres-
sion follows a χ2-distribution with degree of freedom k − 1

k∑

i=1

(Xi − npi)2

npi
,

where the random vector X = (X1, . . . , Xk) follows a multinomial distribution
with parameters n and p, where p = (p1, . . . , pk) with

∑k
i=1 pi = 1.

Now we will give a short proof based on [9,14] in the following.
In probability theory, the multinomial distribution is a generalization of the

binomial distribution. For n independent trials each of which leads to a success
for exact one of k categories, with each category i (1 ≤ i ≤ k) having a given
fixed success probability pi satisfying

∑k
i=1 pi = 1. Then if the random variable

Xi indicates that the number of times outcome number i is observed over the
n trials, the vector X = (X1, . . . , Xk) follows a multinomial distribution with
parameters n and p = (p1, . . . , pk). Note that while the trials are independent,
k outcomes are dependent because they must be summed to n.

Since the variance of Xj is npj(1− pj) and Cov(Xj ,Xl) = −npjpl, j �= l, the
random vector X with (k − 1) dimensions has covariance matrix

Σ =

⎛

⎜
⎜
⎜
⎝

np1(1 − p1) −np1p2 . . . −np1pk−1

−np1p2 np2(1 − p2) . . . −np2pk−1

...
...

. . .
...

−np1pk−1 −np2pk−1 . . . npk−1(1 − pk−1)

⎞

⎟
⎟
⎟
⎠

.

So we can denote Σ as follows,

Σ = n(D − p′p),

where p = (p1, p2, . . . , pk−1) and p′ is its transposition, D is a (k − 1) × (k − 1)
diagonal matrix and

D =

⎛

⎜
⎜
⎜
⎝

p1
p2

. . .
pk−1

⎞

⎟
⎟
⎟
⎠

.
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Thus, one can show

Σ−1 =
1
n

(
D−1 +

D−1p′pD−1

1 − pD−1p′

)
=

1
n

(
D−1 +

E

pk

)
,

where E is a (k − 1) × (k − 1) matrix where all entries are equal to one.
We only consider k − 1 dimensions here, since using all k dimensions would

make the variance singular. The first k−1 dimensions have all of the information
needed anyway, so there’s no problem in doing this.

There is a fact: for any d-dimensional normal X with nonsingular covariance
matrix, the statistic (X − μ)′Σ−1(X − μ) follows a χ2-distribution with degree
of freedom d.

Thus, in the above case we concern (k − 1)-dimensional normal X:

(X − μ)′Σ−1(X − μ) = (X − np)′
(

1
n

(
D−1 +

E

pk

))
(X − np)

=
1
n

(X − np)′D−1(X − np) +
1

npk
(X − np)′E(X − np)

=
k−1∑

i=1

(Xi − npi)2

npi
+

1
npk

(
k−1∑

i=1

(Xi − npi)

)2

=
k∑

i=1

(Xi − npi)2

npi
+

1
npk

((n − xk) − n(1 − pk))2

=
k∑

i=1

(Xi − npi)2

npi
.

That is,
∑k

i=1
(Xi−npi)

2

npi
has an approximation to χ2-distribution with degree

of freedom k − 1 for large enough n.

A.2 Extend Pearson’s χ2 Statistic to Multivariate Hypergeometric
Distribution

In this subsection, we will extend Pearson’s χ2 statistic to multivariate hyperge-
ometric distribution based on the proof of the above subsection and prove that
the following expression follows a χ2-distribution with degree of freedom k − 1

m − 1
m − n

k∑

i=1

(Xi − npi)2

npi
,

where the random vector X = (X1, . . . , Xk) follows a multivariate hyperge-
ometric distribution with parameters (K,m, n) where K = K1, . . . , Kk with∑k

i=1 Ki = m.
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The multivariate hypergeometric distribution is a generalization of the hyper-
geometric distribution. For n dependent trials each of which leads to a success for
exact one of k categories, with each category i (1 ≤ i ≤ k) having a given fixed
success probability (p1, p2, . . . , pk). The multivariate hypergeometric distribution
gives the probability of any particular combination of numbers of successes for
the various categories.

Then if the random variables Xi indicates that the number of times outcome
number i is observed over the n trials, the vector X = (X1, . . . , Xk) follows a
multivariate hypergeometric distribution with parameters (K,m, n).

As the mean for Xj is npj and the variance of Xj is npj(1−pj)m−n
m−1 and since

Cov(Xj ,Xl) = −npjpl
m−n
m−1 , j �= l, the random vector X with k − 1 dimension

has covariance matrix

Υ = n
m − n

m − 1
(D − p′p)

and

Υ−1 =
1
n

m − 1
m − n

(
D−1 +

D−1p′pD−1

1 − pD−1p′

)
=

1
n

m − 1
m − n

(
D−1 +

E

pk

)
.

With the similar trick as the above subsection, for the (k − 1)-dimensional
normal X, it is easy to show that

(X − μ)′Υ−1(X − μ) = (X − np)′
(

1
n

m − 1
m − n

(
D−1 +

E

pk

))
(X − np)

=
m − 1
m − n

k∑

i=1

(Xi − npi)2

npi
,

which means that m−1
m−n

∑k
i=1

(Xi−npi)
2

npi
has an approximation to χ2-distribution

with degree of freedom k − 1 for large enough n.
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Abstract. While impossible differential cryptanalysis is a well-known
and popular cryptanalytic method, errors in the analysis are often dis-
covered and many papers in the literature present flaws. Wishing to solve
that, Boura et al. [1] presented at ASIACRYPT’14 a generic vision of
impossible differential attacks with the aim of simplifying and helping
the construction and verification of this type of cryptanalysis. In partic-
ular, they gave generic complexity analysis formulas for mounting such
attacks and develop new ideas for optimizing them.

In this paper we carefully study this generic formula and show impossi-
ble differential attacks for which the real time complexity is much higher
than estimated by it. In particular, we show that the impossible dif-
ferential attack against 25-round TWINE-128, presented at FSE’15 by
Biryukov et al. [2], actually has a complexity higher than the natural
bound of exhaustive search.

Keywords: Truncated impossible differential · Cryptanalysis · Block
cipher · TWINE · Complexity

1 Introduction

Impossible differential cryptanalysis, which was independently introduced by
Knudsen [3] and Biham et al. [4], is well-known and popular cryptanalytic
method. Unlike differential attacks [5] that exploit differential characteristics
of high probability, the aim of impossible differential cryptanalysis is to use dif-
ferentials that have a probability of zero to occur in order to eliminate the key
candidates leading to such impossible transitions. The first step to mount an
impossible differential attack is to find an impossible differential covering a large
number of rounds. This is a procedure that has been extensively studied and
several approaches have been proposed to derive such impossible transitions effi-
ciently [6–8]. Once an impossible differential has been chosen and placed, one
uses it to restrict the possible values of some key bits involved in outer rounds.
Indeed, if a candidate key partially encrypts/decrypts a given pair to the impos-
sible differential, then this key is wrong. In this way, we discard as many wrong
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keys as possible and exhaustively search the rest of the keys. Organizing the
attack is usually done with the early abort technique [9], introduced by Lu et al.
at CT-RSA 2008, originally to improve impossible differential attacks against
Camellia and MISTY1. With this technique, one does not guess all the involved
key material at once but step by step, discarding unwished pairs as soon as
possible to reduce the time complexity of the whole procedure.

While the attack principle is rather clear, errors in the analysis are often
discovered and many papers in the literature present flaws [9–12]. These flaws
include errors in the computation of the time or the data complexity, in the analy-
sis of the memory requirements or of the complexity of some intermediate steps of
the attacks. Wishing to solve that, Boura et al. [1] presented at ASIACRYPT’14
a generic vision of impossible differential attacks with the aim of simplifying and
helping the construction and verification of this type of cryptanalysis. In partic-
ular, they gave generic complexity analysis formulas for mounting such attacks
and develop new ideas for optimizing them. These advances led to the improve-
ment of previous attacks against well known ciphers such as CLEFIA-128 and
Camellia, while also to new attacks against 23-round LBlock and all members
of the Simon family.

Our Contribution. In this paper we carefully study the early abort technique
from Lu et al. and the generic formula given by Boura et al.. In particular we
build impossible differential attacks against a toy cipher for which the real time
complexity is much higher than estimated by the formula. Then we describe an
algorithm looking for optimal complexity of impossible differential attacks under
the early abort technique. We finally apply it on an attack of Biryukov et al. [2]
presented at FSE’15 against round-reduced TWINE-128 [13] and show that its
complexity is higher than the natural bound of the exhaustive search.

Organization of the Paper. In Sect. 2 we introduce the notations and give
the formula of Boura et al.. In Sect. 3 we highlight the computational problem
behind the early abort technique and provide simple examples for which the real
complexity is far from the one given by the formula. Finally, in Sect. 4 we describe
the algorithm we used to show that the complexity of the impossible differential
attack against 25-round TWINE-128 from Biryukov et al. was underestimated
and actually higher than 2128.

2 Preliminaries

2.1 Impossible Differential Attacks

We first briefly remain how an impossible differential attack is constructed and
introduce our notations (for sake of simplicity we use the exact same ones than
in [1]).

Mounting an impossible differential attack starts by splitting the cipher E in
three parts E = E3 ◦E2 ◦E1 and by finding an impossible differential transition
(ΔX � ΔY ) through E2. Then ΔX (resp. ΔY ) is propagated through E−1

1

(resp. E3) with probability 1 to obtain Δin (resp. Δout). We denote by cin and



418 P. Derbez

cout the log2 of the probability of the transitions Δin → ΔX and Δout → ΔY

respectively. Finally we denote by kin and kout the key materials involved in
those transitions. All in all the attack consists in discarding the keys k for which
at least one pair follows the characteristic through E1 and E3 and in exhausting
the remaining ones.

2.2 A Generic Formula

At ASIACRYPT’14, Boura et al. proposed a generic vision of impossible dif-
ferential attacks with the aim of simplifying and helping the construction and
verification of this type of cryptanalysis. In particular, they provided a formula to
compute the complexity of such an attack according to its parameters. According
to notations introduced Sect. 2.1, their formula is:

– data: CNα

– memory: Nα

– time: CNα
+

(
1 + 2|kin∪kout|−cin−cout

)
NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα = 2−α, CNα
is the number of chosen

plaintexts required to generate Nα pairs satisfying (Δin,Δout), |k| is the key size
and CE′ is the ratio of the cost of partial encryption to the full encryption.

This formula was given without proof but authors claimed that “it approxi-
mates really well the actual time complexity, as it can be seen in the applications,
and in particular, in the tight correspondence shown between the LBlock estima-
tion and the exact calculation from [14]”.

3 Counter-Examples

3.1 The Problem

Computing the time complexity of an impossible differential attack based on the
early abort technique [9] is actually an optimization problem. Using notations
introduced in Sect. 2.1, and introducing k1, k2, . . . , kb as the key bits of the key
material kin ∪ kout involved in the attack, the best complexity reached with the
early abort technique is the minimal complexity of the following procedure over
all the permutations of {1, 2, . . . , b}:

0. Discard pairs which cannot follow the impossible differential.
1. Guess kσ(1)

(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.

2. Guess kσ(2)

(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.

...
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b. Guess kσ(b)

(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.
(c) if all pairs have been discarded then perform an exhaustive search over

remaining key bits.

Let rσ
i be the log2 of the number of pairs discarded after step i. Without taking

into account the exhaustive search part, the complexity of the procedure is
∑

1≤i≤b

2|kσ(1)∪...∪kσ(i)|−
∑

0≤j<i rσ
j · NαCE′ .

As we see, computing a generic formula for such a problem is far from being
trivial.

3.2 A Simple Counter-Example

To highlight the main issue of the generic formula given in [1], let consider a toy
block cipher E defined as follows:

E = E′ ◦ MC ◦ SR ◦ SB ◦ AK,

where E′ is a 128-bit block cipher and where AK, SB, SR and MC respectively
are the AddRoundKey, SubBytes, ShriftRows and MixColumns operations from
the AES [15]:

– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible Sbox S 16 times in

parallel on each byte of the state,
– ShriftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by M ×C

where M is a constant 4×4 maximum distance separable matrix over GF (28).

We remind that in the AES, the 128-bit internal state is seen as a 4 × 4 matrix
of bytes where each byte is seen as an element of the finite field GF (28).

Now, let us assume the existence of an impossible transition ΔX �−→ ΔY

over E′ where ΔX has only one active byte as depicted on Fig. 1. We use this
impossible transition to mount an impossible differential against our toy cipher
E. We will show that, depending on the key schedule we choose, we are able to
make the real complexity of the attack non-marginally higher than the estimated
complexity obtained from the generic formula of Boura et al..

Independent Key Bytes. As a well-known fact, the probability of the transi-
tion Δin −→ ΔX is 2−24 and exactly four key bytes are involved in the attack:
k0, k5, k10 and k15. For now let us assume those key bytes are independent.
As a consequence, and according to the generic formula, the complexity of the
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p = 2−24

P

Δin

x y z w

E′

ΔX � −→

C

ΔY = Δout

k

Fig. 1. Impossible differential attack against the toy cipher E.

impossible attack (without taking into account the pairs generation process and
the exhaustive search part) is:

(1 + 2|kin|−cin) · N · C ′
E = (1 + 232−24) · N · C ′

E = 257 · N · C ′
E ,

where N is the number of pairs available and C ′
E is the ratio of the cost of partial

encryption to the full encryption. A common practice is to take for C ′
E the ratio

between the active Sboxes during a partial encryption and the total number of
Sboxes (say SE). Hence, the approximated complexity is 4 · 257 · N · S−1

E .
Let us now compute the real complexity of the attack. Here the order in

which key bytes are guessed does not impact the resulting complexity so the best
procedure is as follows:

1. Guess k0
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.

2. Guess k5
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.

3. Guess k10
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.

4. Guess k15
(a) partially encrypt/decrypt pairs
(b) discard pairs which cannot follow the impossible differential.

After performing step 1(a), for each pair the differences in the three state vari-
ables y5, y10 and y15 are known. Indeed, as the MixColumn matrix is MDS, they
are fully determined by the value of Δy0. As a consequence Δx5, Δx10 and Δx15

can assume only 27 values each and thus only 2−3 · N pairs remains after step
1(b). Then, each of steps 2(b), 3(b) and 4(b) decreases the number of pairs by
a factor 27. As a result, the complexity of this procedure is:

(28 + 28+8−3 + 28+8+8−3−7 + 28+8+8+8−3−7−7) · N · S−1
E = 57600 · N · S−1

E .
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All in all the real complexity is higher than the estimated one by a factor
57600/1028 ≈ 25.8. This factor is non-negligible, especially when compared to
involved complexities.

Related Key Bytes. Let now study cases where k0, k5, k10 and k15 are related
by one linear equation, so they can assume only 224 values instead of 232. In that
case the generic formula estimates the complexity to (1 + 224−24) · N · S−1

E =
2 · N · S−1

E , independently of the linear relation.
We first consider the case where the equation is k0 = k5. Thanks to

the symmetry in the problem we only have six orders to try: [k0, k5, k10,
k15], [k0, k10, k5, k15], [k0, k10, k15, k5], [k10, k0, k5, k15], [k10, k0, k15, k5] and
[k10, k15, k0, k5]. The corresponding complexities are respectively:

– (28 + 28−3 + 28+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 28.9 · N · S−1

E

– (28 + 28+8−3 + 28+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 213.1 · N · S−1

E

– (28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 214.6 · N · S−1

E

– (28 + 28+8−3 + 28+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 213.1 · N · S−1

E

– (28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 214.6 · N · S−1

E

– (28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 214.6 · N · S−1

E

As we can see the first order is much better than the other ones, as it leads to a
much smaller complexity. Thus the real complexity of the attack is 28.9 ·N ·S−1

E ,
higher than the estimated one by a factor 27.9. We note that the deviation from
the expected complexity is bigger than in the independent subkey bytes case.

We now consider the case where the equation is k0 ⊕ k5 ⊕ k10 ⊕ k15 = 0,
or more generally, the case where the knowledge of three key bytes leads to the
knowledge of the fourth one but where there is no relation involving only three
key bytes. The real complexity of the attack becomes:

(28 + 28+8−3 + 28+8+8−3−7 + 28+8+8−3−7−7) · N · S−1
E ≈ 214.6 · N · S−1

E ,

which is higher than for the equation k0 = k5 by a factor 25.7, increasing again
the deviation from the expected complexity.

A Trick. One may note that after performing step 1b), we could directly retrieve
for each pair the 2 × 2 × 2 = 8 values of (k5, k10, k15) for which it follows the
impossible differential. This would be done at the low cost of 3 memory accesses
to a precomputed table. But only the values of (k5, k10, k15) for which no pair
follows the impossible differential matter. Thus we would have to make the list
of the 224 possible values of (k5, k10, k15) before to discard reached values. As a
consequence, the resulting complexity of this procedure is:

(28 · N + 28 · 224 + 8 · 28−3 · 2|k0∪k5∪k10∪k15|−32 · N) · S−1
E .

As the number of pairs N should be at least close to 224, this procedure is better
than the basic early abort technique. If there is no equation between the four
key bytes then the complexity is very close to the one given by Boura et al ’s
formula. On the other hand, if there is at least one equation then the complexity
is higher than expected due to the two first terms of the above formula.
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3.3 Remarks

Those results highlight some issues with the generic formula of Boura et al..
Firstly, there exist impossible differential attacks for which the estimated time
complexity is too optimistic and thus attacks with estimated time complexity
close to the natural bound may actually not be faster than exhaustive search.
Secondly, the formula only takes into account the number of equations between
involved key bits while we showed that different equations may lead to different
time complexities. In particular, the correct sequence of guesses has to take into
account the fastest filtering first. It seems Boura et al. make the assumption
that the order of key guesses/filtering does not matter as all key bits are equally
filtering. But this is far from being correct, especially in the context of ARX
constructions.

4 Application to TWINE

At FSE’15, Biryukov et al. [2] used Boura et al. formula to compute the com-
plexity of their impossible differential attack against 25-round TWINE-128 [13].
The attack involves 52 key nibbles which can assume only 2124 values instead
of 2208 thanks to the key schedule and the resulting time complexity is 2124.5

encryptions, very close to the natural bound of the exhaustive search. As a con-
sequence, and according to remarks of the previous section, it seems probable
for the actual time complexity of this attack to be higher than 2128, making it a
non-valid attack.

4.1 Description of TWINE

This block cipher uses 16 branches of 4-bits and has a very simple round func-
tion: the Feistel function consists in a xor of a sub-key and a call to a unique
Sbox based on the inverse function in GF (24). Then, the branches are shuffled
using a sophisticated nibble permutation ensuring faster diffusion than a simple
shift [16]. One version of TWINE uses an 80 bits key, another uses a 128 bits key
and we denote these versions as TWINE-80 and TWINE-128. They only differ
by their key-schedule and both have 36 rounds. Both key schedules are sparse
GFN’s using only 2 Sbox calls per round for TWINE-80 and 3 for TWINE-128.
At each round, some fixed nibbles of the key-state are used as round keys for
the block cipher. One round of TWINE is depicted on Fig. 2.

Keyschedule. The keyschedule produces the 36 round keys from the master
key K. It is a variant of GFN with few application of the Sbox used in the round
function of TWINE. Two key lengths are available: 80 and 128 bits. In both cases,
the subkey WK0 is first initialized to K and then next subkeys are generated
using round constants and the same round function: WKi+1 = F (WKi, CON i),
for 0 ≤ i ≤ 35. Finally the round key RKi is obtained by extracting 8 nibbles
from WKi. The function F used for 128-bit keys is depicted on Fig. 3. We refer
the reader to [13] for the 80-bit version of the keyschedule.
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S S S S S S S S

RKr

xr[0..15]

xr+1[0..15]

Fig. 2. The round function of TWINE.
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Fig. 3. Keyschedule of TWINE-128.

4.2 Biryukov et al. impossible differential attack

Biryukov et al. found a truncated impossible characteristic through 13 rounds of
TWINE that they extended by 4 rounds at the start and by 8 rounds at the end
in order to attack 25 rounds of the cipher. Their attack is depicted on Fig. 4.

The difference in the plaintexts has to be zero in 11 nibbles such that cin +
cout = 16+60 = 76. The key material kin∪kout is composed of 7+45 = 52 round-
key nibbles which can assume only 2124 thanks to the keyschedule of TWINE-128
as they all can be computed from the whole subkey WK24 except nibble 1.

As a consequence, and according to formula of Boura et al., the complexity
of their attack is D = α · 275.5−39 · 220 = α · 256.5, M = α · 275.5 and T ≈
α ·2123.5 ·CE′ +2128−α, complexity parametrized by α. As they estimate the ratio
CE′ to 52/200 ≈ 2−1.9, the value of α minimizing the overall complexity is 5.87.

4.3 Real Complexity of the Attack

Computing the real complexity of Biryukov et al. attack seems impossible due to
the huge number of involved key nibbles. Indeed, there are 52 key nibbles leading
to 52! ≈ 2225 orders for the early abort technique. Thus a naive approach would
fail and a clever one has to be used.



424 P. Derbez

P x1 x2 x3 x4

p = 2−16

x17 x18 x19 x20 x21 x22 x23 x24 C

p = 2−60

Fig. 4. Impossible differential attack on 25 rounds. No difference in white nibbles.

Pruning Strategy. We note that for the early abort technique, if between two
guesses no pairs are discarded then the order in which they are guessed does
not matter. Thus key nibbles can be grouped so that at each step pairs are
discarded. So now the question becomes when do pairs are discarded? As saw
with our simple example this is related to knowing differences before and/or
after an Sbox. Since TWINE is a Feistel network things are a bit different and
only one case has to be considered. Equations involved to describe round funtion
of TWINE all have the following shape:

y ⊕ z = S(x ⊕ k),

where x, y and z are state variables while k is a round-key variable. We are
interested in the case where both Δx and Δy are known (obtained by partially
encrypting plaintexts (resp. decrypting ciphertexts)) and such that Δz = 0.
In that case half of the pairs are discarded since the transition Δx −→ Δy
is possible with probability 2−1. Then if the actual value of x is obtained by
partially encrypting/decrypting plaintexts or ciphertexts then guessing k will
allow to reduce the number of pairs by a factor 23. So we only have to consider
groups of round key nibbles required to compute Δx and Δy, and the ones
required to compute x ⊕ k. Finally, as we are only looking for the fastest attack
we can adopt a branch-and-bound strategy to accelerate the search.

Practice. For the considered attack there are 19 tuples (x, y, z) as expected.
Determining the corresponding groups of round key nibbles is an easy task.
However, computing the number of values those groups (and their unions) can
assume is more complicated while essential to the computation of the complex-
ity. To solve this we used the same approach Derbez et al. [17] used to exhaust
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a particular kind of meet-in-the-middle attacks against the AES in a paper pre-
sented at FSE’13. Indeed, they provided a tool which takes as input a system
of equations E in variable X and a subset Y ⊆ X and gives as output a list of
optimal algorithms enumerating all the possible values of Y under constraint of
E with predictable time and memory complexities. The system of equations has
to be composed of equations with the following shape:

∑
αixi ⊕

∑
βjS(xj) ⊕ γ = 0,

where ai’s, βj ’s and γ are constant from a finite field GF (2q) and S is an q-bit
Sbox. As the key schedule of TWINE is naturally described by such equations
we were able to use this tool. Note that the output of their tool is a list because
the number of possible values of Y enumerated by considered algorithms is not
necessary constant and if an algorithm is slower than an other but finds less
possible values for Y than it then they had to study both of them. But in
our case we only care about the fastest algorithm, even if it enumerates more
solutions.

Our algorithm was able to find the optimal permutation (see AppendixA)
for the early abort technique in about 1 h on a personal computer. As a result
we found that for all permutation σ:

∑

1≤i≤38

2|kσ(1)∪...∪kσ(i)|−
∑

0≤j<i rσ
j · NαCE′ > 254 · NαCE′ .

As Nα = α · 275.5, the time complexity of the whole attack is higher than:

CNα
+ α · 2127.6 + 2128−α,

where 2128−α corresponds to time complexity of performing an exhaustive search
on the remaining keys. Hence, if only based on the early abort technique, the
attack is actually slower than an exhaustive search for all value α > 0.

5 Conclusion

In this paper we have shown that the generic complexity analysis formula
presented by Boura et al. at ASIACRYPT’14 does not always give a right esti-
mation of the time complexity of impossible differential attacks. As proof we con-
structed simple counter-examples for which the real complexity is much higher
than expected, one reaching a deviation of 213.6 from the formula. As a conse-
quence the formula is to use with caution, in particular when time complexity
is close to the natural bound of the exhaustive search.

While we searched for, we were unable to find an impossible differential
attack for which the real time complexity would be lower than the estimated
one. Finding such an attack or proving that the formula provides a lower bound
on the complexity would be an interesting future work.

Finally we also showed that, if using only the early abort technique, the time
complexity of the impossible differential attack against 25-round TWINE-128,
presented at FSE’15 by Biryulov et al., is higher than expected, and in particular,
higher than 2128.
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A Optimal Sequence

We found the following permutation to be optimal for the early abort technique
applied to the 25-round impossible differential attack:

1. Δx0[2], Δx0[3]
2. Δx0[6], Δx0[7]
3. Δx1[2], Δx1[3]
4. Δx2[0], Δx2[1]
5. y0[2]
6. Δx23[12], Δx24[10]
7. y23[12]
8. Δx22[12], Δx23[10]
9. y22[12]

10. Δx22[6], Δx23[8]
11. y22[6]
12. Δx22[2], Δx23[4]
13. y22[2]
14. y0[6]
15. y1[2]
16. Δx21[10], Δx22[2]
17. y21[10]
18. Δx20[10], Δx21[2]
19. y20[10]

20. Δx21[2], Δx22[4]
21. y21[2]
22. Δx21[0], Δx22[0]
23. Δx20[0], Δx21[0]
24. y20[0]
25. Δx19[0], Δx20[0]
26. Δx21[12], Δx22[10]
27. y19[0]
28. y2[0]
29. Δx19[12], Δx20[10]
30. y19[12]
31. y21[12]
32. y21[0]
33. Δx18[0], Δx19[0]
34. Δx20[12], Δx21[10]
35. Δx17[0], Δx18[0]
36. y20[12]
37. y18[0]
38. y17[0]

Each item v has to be understood as guess the key material required to com-
pute v from the plaintexts/ciphertexts and yr[2i] = xr[2i] ⊕ kr[i].

References

1. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to clefia, camellia, lblock and simon. In: Proceed-
ings, Part I, Advances in Cryptology - ASIACRYPT 2014–20th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., 7–11 December 2014, pp. 179–199 (2014)

2. Biryukov, A., Derbez, P., Perrin, L.: Differential analysis and meet-in-the-middle
attack against round-reduced TWINE. In: Leander, G. (ed.) FSE 2015. LNCS,
vol. 9054, pp. 3–27. Springer, Heidelberg (2015)

3. Knudsen, L.R.: Deal - a 128-bit block cipher. Technical report, Department of
Informatics (1998)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
CRYPTO 1991 (1991)



Note on Impossible Differential Attacks 427

6. Kim, J.-S., Hong, S.H., Sung, J., Lee, S.-J., Lim, J.-I., Sung, S.H.: Impossible
differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra,
S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg
(2003)

7. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible differ-
entials of block cipher structures. Inf. Sci. 263, 211–220 (2014)

8. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-
oriented block ciphers. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 283–302. Springer, Heidelberg (2012)

9. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the efficiency of impossible
differential cryptanalysis of reduced camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

10. Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against
22 rounds of the lightweight block cipher lblock. Inf. Process. Lett. 112(16),
624–629 (2012)

11. Wu, W., Zhang, L., Zhang, W.: Improved impossible differential cryptanalysis of
reduced-round camellia. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 442–456. Springer, Heidelberg (2009)

12. Zhang, W., Han, J.: Impossible differential analysis of reduced round CLEFIA.
In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008. LNCS, vol. 5487, pp. 181–191.
Springer, Heidelberg (2009)

13. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: 19th International Conference Selected
Areas in Cryptography, SAC 2012, Windsor, ON, Canada, 15–16 August 2012,
Revised Selected Papers, pp. 339–354 (2012)

14. Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved impossible dif-
ferential attacks against round-reduced lblock. IACR Cryptol. ePrint Arch. 2014,
279 (2014)

15. NIST: Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST,
November 2001

16. Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

17. Derbez, P., Fouque, P.: Exhausting demirci-selçuk meet-in-the-middle attacks
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Abstract. Simon is a lightweight block cipher family proposed by NSA
in 2013. It has drawn many cryptanalysts’ attention and varieties of
cryptanalysis results have been published, including differential, linear,
impossible differential, integral cryptanalysis and so on. In this paper, we
give the improved linear attacks on all reduced versions of Simon with
dynamic key-guessing technique, which was proposed to improve the dif-
ferential attack on Simon recently. By establishing the boolean function
of parity bit in the linear hull distinguisher and reducing the function
according to the property of AND operation, we can guess different sub-
keys (or equivalent subkeys) for different situations, which decrease the
number of key bits involved in the attack and decrease the time com-
plexity in a further step. As a result, 23-round Simon32/64, 24-round
Simon48/72, 25-round Simon48/96, 30-round Simon64/96, 31-round
Simon64/128, 37-round Simon96/96, 38-round Simon96/144, 49-round
Simon128/128, 51-round Simon128/192 and 53-round Simon128/256
can be attacked. As far as we know, our attacks on most reduced ver-
sions of Simon are the best compared with the previous cryptanalysis
results. However, this does not shake the security of Simon family with
full rounds.

1 Introduction

In 2013, NSA proposed a new family of lightweight block cipher with Feistel
structure, named as Simon, which is tuned for optimal performance in hard-
ware applications [7]. The Simon family consists of various block and key sizes
to match different application requirements. There is no S-box in the round func-
tion. The round function consists of AND, rotation and Xor (ARX structure),
leading to a low-area hardware requirement.

Related Works. Simon family has attracted a lot of cryptanalysts’ attention
since its proposition. Many cryptanalysis results on various versions of Simon
were published. For differential attack, Alkhzaimi and Lauridsen [5] gave the first
differential attacks on all versions of Simon. The attacks cover 16, 18, 24, 29,
40 rounds for the versions with block size 32, 48, 64, 96 and 128 respectively.
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 428–449, 2016.
DOI: 10.1007/978-3-662-52993-5 22
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At FSE 2014, Abed et al. [3] gave differential attack on variants of Simon reduced
to 18, 19, 26, 35, 46 rounds with respective block size 32, 48, 64, 96 and 128.
At the same time, Biryukov et al. [9] gave differential attack on several versions
of Simon independently. And 19-round Simon32, 20-round Simon48, 26-round
Simon64 were attacked. Then Wang et al. [20] proposed better differential attacks
with existing differentials, using dynamic key-guessing techniques. As a result,
21-round Simon32/64, 23-round Simon48/72, 24-round Simon48/96, 28-round
Simon64/96, 29-round Simon64/128, 37-round Simon96/96, 37-
roundSimon96/144, 49-roundSimon128/128, 49-roundSimon128/192, 50-round
Simon128/256 were attacked.

For the earlier linear cryptanalysis, 11, 14, 16, 20, 23-round key recovery attacks
onSimonwith block size 32, 48, 64, 96, 128 were presented in [2]. Then, Alizadeh et
al. [4] improved the linear attacks on 13-round Simon32, 15-round Simon48, 19-
round Simon64, 28-round Simon96, 35-round Simon128. Recently, Abdelraheem
et al. [1] took advantage of the links between linear characteirstics and dif-
ferential characteristics for Simon and found some linear distinguishers using
differential characteristics found earlier. They presented various linear attacks
on Simon with linear, multiple linear, linear hull cryptanalysis. The linear hull
cryptanalysis has better attack results, which can attack 21-round Simon32/64,
20-round Simon48/72, 21-round Simon48/96, 27-round Simon64/96, 29-round
Simon64/128, 36-round Simon96/144, 48-round Simon128/192 and 50-round
Simon128/256. Then, with the Mixed-integer Linear Programming based tech-
nique, Shi et al. [17] searched new linear trails and linear hulls, and 21, 21, 29
rounds for Simon32/64, Simon48/96, Simon64/128 were attacked respectively.
Also, Sun et al. [18] found a 16-round linear hull distinguisher of Simon48, with
which he attacked 23-roundSimon48/96. Ashur [6] introduced a new way to calcu-
late the correlations of short linear hulls and provided a more accurate estimation
for some previously published linear trails. He gave multiple linear cryptanalysis
on24-roundSimon32/64, 23-roundSimon48/72, 24-roundSimon48/96, 24-round
Simon64/96 and 25-roundSimon64/128. However, it uses the correlation when all
the subkeysare zeroas the expected correlationunder randomkey situations,which
is not exact. Moreover, if the potential of each linear hull of the cipher is smaller
than that of random permutations, then the combination of these linear hulls can
not distinguish between the cipher and a random permutation.

Also, there are some results with other attack models, such as impossible dif-
ferential cryptanalysis [4,10,12,21], zero-correlation cryptanalysis [21] and inte-
gral cryptanalysis [21].

Our Contributions. In this paper, we give the improved linear hull attacks
on all reduced versions of Simon family with dynamic key-guessing technique,
which was proposed initially to improve the differential attack on Simon [20],
using existing linear hull distinguishers. In linear attack, one important point
is to compute the empirical correlations (bias) of the parity bit, which derives
from the Xor-sum of the active bits at both sides of the linear hull distinguisher,
under some key guess. Our attack on Simon improves this procedure efficiently.
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Table 1. Summary of Linear Hull Attacks on Simon

Cipher Attacked rounds Data Time Reference

Simon32/64 21 230.56 255.56 [1]

21 - - [17]

23 231.19 261.84A + 256.3E Sect. 4.2

Simon48/72 20 244.11 270.61 [1]

24 247.92 267.89A + 265.34E Sect. 4.3

Simon48/96 21 244.11 270.61 [1]

21 - - [17]

23 247.92 292.92 [18]

25 247.92 289.89A + 288.28E Sect. 4.3

Simon64/96 27 262.53 288.53 [1]

30 263.53 293.62A + 288.13E Sect. 4.3

Simon64/128 29 262.53 2123.53 [1]

29 - - [17]

31 263.53 2119.62A + 2120.00E Sect. 4.3

Simon96/96 37 295.2 267.94A + 288E Sect. 4.3

Simon96/144 36 294.2 2123.5 [1]

38 295.2 298.94A + 2136.00E Sect. 4.3

Simon128/128 49 2127.6 287.77A + 2120E Sect. 4.3

Simon128/192 48 2126.6 2187.6 [1]

51 2127.6 2155.77A + 2184.00E Sect. 4.3

Simon128/256 50 2126.6 2242.6 [1]

53 2127.6 2239.77A + 2248.01E Sect. 4.3

* ‘-’ means not given; A means addition; E means encryption;

The non-linear part in the round function of Simon is mainly derived
from the bitwise AND (&) operation while it has a significant feature. For
details, if one of the two elements is equal to zero, the result of their AND
will be zero, no matter what value the other element takes. For a function
f = f1(x1, k1)&f2(x2, k2), if we GUESS k1 at first, and SPLIT the all x = x1||x2

into two cases: case 1, f1(x1, k1) = 0; case 2, f1(x1, k1) = 1, there is no need to
guess the key bits k2 in case 1, since f = 0 holds for any value of f2 in case 1.
Then, we can compute the correlations in each case with less time and at last,
we COMBINE the two correlations together for corresponding key k = k1||k2.

At first, we give the boolean representations for the parity bit in the linear
distinguisher of Simon. And then we apply the GUESS, SPLIT and COM-
BINE technique in the calculation of the empirical correlations, which mainly
exploits the dynamic key-guessing idea to reduce the number of subkey bits
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guessed significantly. For example, in the attack on 21-round Simon32, 32 sub-
key bits are involved. With above technique, we can only guess 12.5 bits from
the total 32-bit subkey on average to compute the correlations.

As a result, the improved attack results are shown as follows. We can
attack 23-round Simon32/64, 24-round Simon48/72, 25-round Simon48/96, 30-
round Simon64/96, 31-round Simon64/128, 37-round Simon96/96, 38-round
Simon96/144, 49-round Simon128/128, 51-round Simon128/192 and 53-round
Simon128/256. This improves the linear attack results for all versions. From
the point of number of rounds attacked, the results on most versions are best
up to now. The existing and new linear hull attack results on Simon are sum-
marized in Table 1. Also, we implement the 21-round attack on Simon32. In the
attack, we can decrease the 32 subkey bits involved in the attack by 8 bits. The
experiments show that the attack success probability is about 27.7% using 231.19

plaintext-ciphertext pairs.
The paper is organised as follows. In Sect. 2, we introduce the linear (hull)

cryptanalysis and give the description of Simon family. Section 3 gives the
dynamic key-guessing technique used in the linear cryptanalysis. Then the
improved attacks on Simon32/64 and all other variants are given in Sect. 4.
Finally, we conclude in Sect. 5. AppendixA gives the time complexities to cal-
culate the empirical correlations in some simple situations.

2 Preliminaries

2.1 Linear Cryptanalysis and Linear Hull

F2 denotes the field with two elements and F
n
2 is the n-dimensional vector space

of F2. Let g : Fn
2 → F2 be a Boolean function. Let B(g) =

∑
x∈Fn

2
(−1)g(x). The

correlation c(g) of g and 0 (in the following paper, when we say the correlation
of a function, it means the correlation of this function and 0) is defined by

c(g) = 2−n
∑

x∈Fn
2

(−1)g(x) = 2−nB(g). (1)

(In some situations of the remainder of this paper, we regard B(g) as the cor-
relation for simplicity of description.) The bias of g is defined by half of c(g),
which is represented as ε(g) = 1

2c(g).
Linear cryptanalysis [13] is a powerful cryptanalytic method proposed in 1993

to cryptanalysis DES. At first, one tries to find a good linear approximation
involving some plaintext bits, ciphertext bits and the subkey bits as follows

α · P ⊕ β · C = γ · K, (2)

where α, β, γ are masks and P,C,K represent the plaintext, ciphertext and
keys. ‘good’ means that the probability of the linear approximations is far
away from 1/2, which is the probability in random situations. In other words,
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higher absolute of bias ε(α · P ⊕ β · C ⊕ γ · K) leads to better linear crypanalysis
result in general. Algorithms 1 and 2 in [13] are two attack models exploiting
the linear approximation as distinguisher. O( 1

ε2 ) known plaintexts are needed in
the key-recovery attacks.

Then in 1994, Nyberg [15] studied the linear approximations with same input
mask α and output mask β, and denoted them as linear hull. The potential of a
linear hull is defined as

ALH(α, β) =
∑

γ

ε2(α · P ⊕ β · C ⊕ γ · K) = ε̄2. (3)

The effect of linear hull is that the final bias ε̄ may become significantly higher
than that of any individual linear trail. Then the linear attacks with linear hull
require less known plaintexts, i.e., O( 1

ε̄2 ).
Selçuk and Biçak [16] gave the estimation of success probability in linear

attack for achieving a desired advantage level. The advantage is the complexity
reduction over the exhaustive search. For example, if m-bit key is attacked and
the right key is ranked t-th among all 2m candidates, the advantage of this attack
is m − log2(t). Theorem 2 in [16] described the relation between success rate,
advantage and number of data samples.

Theorem 1 (Theorem 2 in [16]). Let PS be the probability that a linear attack,
as defined by Algorithm-2 in [13], where all candidates are tried for an m-bit sub-
key, in an approximation of probability p, with N known plaintext blocks, deliv-
ers an a-bit or higher advantage. Assuming that the approximation’s probablity
is independent for each key tried and is equal to 1/2 for all wrong keys, we have,
for sufficiently large m and N ,

PS =
∫ ∞

−2
√

N |p−1/2|+Φ−1(1−2−a−1)

φ(x)dx, (4)

independent of m.

2.2 Description of SIMON

Simon is a family of lightweight block cipher with Feistel structure designed
by NSA, which is tuned for optimal performance in hardware applications [7].
The Simon block cipher with an n-bit word (hence 2n-bit block) is denoted
Simon2n, where n is limited to be 16, 24, 32, 48 or 64. The key length is required
to be mn where m takes value from 2, 3 and 4. Simon2n with m-word key is
referred to Simon2n/mn. There are ten versions in the Simon family and the
detailed parameters are listed in Table 2. Before introducing the round functions
of Simon, we give some notations of symbols used throughout this paper.
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Xr 2n-bit output of round r (input of round r + 1)

Xr
L left half n-bit of Xr

Xr
R right half n-bit of Xr

Kr subkey used in round r + 1

xi the i-th bit of x, begin with bit 0 from right (e.g., Xr
L,0 is the LSB of Xr

L )

xi1,...,it the XOR-sum of xi for i = i1, i2, . . . , it (e.g., x0,1 = x0 ⊕ x1)

x ≪ i left circulant shift by i bits of x

⊕ bitwise XOR

& bitwise AND

F (x) F (x) = ((x ≪ 1)&(x ≪ 8)) ⊕ (x ≪ 2)

The r-th round function of Simon2n is a Feistel map

FKr−1 : Fn
2 × F

n
2 → F

n
2 × F

n
2 ,

(Xr−1
L ,Xr−1

R ) → (Xr
L,Xr

R)

where Xr
R = Xr−1

L and Xr
L = F (Xr−1

L ) ⊕ Xr−1
R ⊕ Kr−1. The round function

of Simon is depicted in Fig. 1. Suppose the number of rounds is T , the whole
encryption of Simon is the composition FKT−1 ◦· · ·◦FK1 ◦FK0 . The subkeys are
derived from the master key. The key schedules are a little different depending
on the key size. However, the master key can be derived from any m consecutive
subkeys. Please refer to [7] for more details.

Table 2. The Simon Family Block Ciphers

block size (2n) key size (mn) rounds

32 (n = 16) 64 (m = 4) 32

48 (n = 24) 72 (m = 3) 36

96 (m = 4) 36

64 (n = 32) 96 (m = 3) 42

128 (m = 4) 44

96 (n = 48) 96 (m = 2) 52

144 (m = 3) 54

128 (n = 64) 128 (m = 2) 68

192 (m = 3) 69

256 (m = 4) 72

Xr−1
L Xr−1

R

≪ 8

≪ 1

≪ 2

&
⊕ ⊕ Kr−1

Xr
L Xr

R

Fig. 1. Round Function of Simon

3 Time Reduction in Linear Cryptanalysis
for Bit-Oriented Block Cipher

For bit-oriented block cipher, such as Simon, the operations of round function
can be seen as the concatenation of some boolean functions. For example, in
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Simon32, the 0-th bit of Xr
L is a boolean function of some bits of Xr−1 and

subkeys as follows,

Xr
L,0 = (Xr−1

L,15&Xr−1
L,8 ) ⊕ Xr−1

L,14 ⊕ Xr−1
R,0 ⊕ Kr−1

0 . (5)

Other bits in Xr
L have similar boolean representations and the bits in Xr

R are
same with the bits in Xr−1

L . The boolean representation of one bit can be
extended to multiple rounds.

3.1 Linear Compression

In Matsui’s improved linear cryptanalysis [14], the attacker can pre-construct
a table to store the plaintexts and ciphertexts. We call this pre-construction
procedure as linear compression, since the purpose is to reduce the size of efficient
states by compressing the linear part. The detail of the compression is as follows.

Suppose x is a l1-bit value derived from the n-bit plaintext or ciphertext and
k is a l2-bit value derived from the subkey. y ∈ F2 is a boolean function of x
and k, y = f(x, k). Let V [x] stores the count number of x. We define Bk(y) with
counter vector V and function y = f(x, k) for k as

Bk(y) =
∑

x

(−1)f(x,k)V [x]. (6)

So, Bk(y) is the correlation of y with x under key guess k. One needs to do
2l1+l2 computations of function f to calculate the correlations of y for all k with
a straight-forward method at most. If y is linear with some bits of x and k, the
time can be decreased.

For simplicity, let x = x′||x0, k = k′||k0 and y = x0 ⊕ k0 ⊕ f1(x′, k′), where
both x0 and k0 are single bits. The correlation of y under some k is

Bk(y) = (−1)k0
∑

x′
(−1)f1(x

′,k′)(V [x′||0] − V [x′||1]). (7)

It is obvious the correlations of y under same k′ and different k0 have same
absolute value, and they are different just in the sign. So if we compress the
x0 bit at first according to V ′[x′] = V [x′||0] − V [x′||1], Bk′

(y′) with counter
vertor V ′ and function y′ = g′(x′, k′) for k′ can be computed with 2l1+l2−2

calculations of f1. And the correlation Bk(y) can be derived directly from
Bk(y) = (−1)k0Bk′

(y′). We define k0 the related bit. If the absolute correla-
tions are desired, the related bit k0 can be omitted directly, since it has no effect
on the absolute values.

If y is linear with multiple bits of x and k, the linear bits can be combined
at first, then above linear compression can be applied. For example, y = (x0 ⊕
k0) ⊕ · · · ⊕ (xt ⊕ kt) ⊕ ft(x′′, k′′) where x′′, k′′ are the other bits of x and k
respectively. We can initialize a new counter vector V ′[x′′||x′

0] where x′
0 is 1-bit

value of the xor sum of x0, x1, . . . , xt. We set V ′[x′′||x′
0] =

∑
x0⊕···⊕xt=x′

0
V [x].

Let k′
0 = k0 ⊕ · · · ⊕ kt. The target value y becomes y = x′

0 ⊕ k′
0 ⊕ ft(x′′, k′′) with

counter vector V ′[x′′||x′
0], which is the case discussed above.
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3.2 Dynamic Key-Guessing in Linear Attack: Guess, Split
and Combination

Suppose one want to compute Bk(y) with counter vector V and boolean function
y = f(x, k), along with the definitions in the above section. With a straight-
forward method, the time to compute Bk(y) is 2l1+l2 . If for different values of
x, different key bits of k are involved in function f(x, k), the time to calculate
Bk(y) can be decreased.

y = f(x, k) KG fA(x, kA||kC)

fB(x, kB ||kC)SA

SBy = f(x, k) KG fA(x, kA||kC)

fB(x, kB ||kC)SA

SBGuess

Fig. 2. When kG is known, the set of x can be splitted to two sets. f is independent
of kB in set SA and independent of kA in set SB .

For simplicity, let k = kG||kA||kB ||kC , where kG, kA, kB , kC are lG2 , lA2 , lB2 and
lC2 bits (lG2 + lA2 + lB2 + lC2 = l2) respectively. Suppose when kG is known, the
all x can be splitted into two sets, i.e. SA with NA elements and SB with NB

elements (NA + NB = 2l1). And when x ∈ SA, f(x, k) = fA(x, kA||kC) which is
independent of kB ; when x ∈ SB, f(x, k) = fB(x, kB ||kC) which is independent
of kA (See Fig. 2). Then, Bk(y) can be obtained from the following combination

Bk(y) =
∑

x∈SA

(−1)fA(x,kA||kC)V [x] +
∑

x∈SB

(−1)fB(x,kB ||kC)V [x] (8)

for some guessed kG. The time to compute
∑

(−1)fA(x,kA||kC)V [x] for the x ∈ SA

needs NA2lG2 +lA2 +lC2 calculations, while
∑

(−1)fB(x,kB ||kC)V [x] for x ∈ SB needs
NB2lG2 +lB2 +lC2 . The combination needs 2l2 additions. So the time complexity
in total is about

NA2lG2 +lA2 +lC2 + NB2lG2 +lB2 +lC2 + 2l2

which improves the time complexity compared with 2l1+l2 .
The AND operation in Simon will generate the situations discussed above.

Let x, k ∈ F
2
2 and y = f(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1). V [x] denotes the count

number of x. With a straight-forward method, the calculation of correlations for
all k need time 22+2 = 24. If one side of the AND in f(x, k) is 0, y would be
0 without knowing the value in the other side. Exploiting this property, we can
improve the time complxity for calculating the correlations. At first, we guess one
bit of k, e.g. k0. Then we split the x into two sets and compute the correlations
in each set. At last, we combine the correlations according to the keys guessed.

– GUESS k0 and SPLIT the x into two sets
• For the x with x0 = k0, initialize a counter T0 and set T0 = V [0||x0] +

V [1||x0]
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• For the x with x0 = k0 ⊕ 1, initialize a counter T1 and set T1 = V [0||x0]−
V [1||x0] (Linear compression)

• COMBINE B(y) = T0 + (−1)k1T1 (k1 is a related bit)

So in total, it needs 2(1 + 1 + 2) = 23 additions to compute the correlations for
all the k, which improves the time complexity compared to the straight-forward
method. Although there are 2 bits of k involved in the attack, we guess only
one bit and make some computations while another bit is just involved in the
final combination. This can be viewed as that we reduce the number of key bits
guessed from 2 to 1. Morever, this technique adapts to some complicated boolean
functions and more key (or equivalent key) bits can be reduced significantly.
Some cases have been discussed in Appendix A.

4 Linear Cryptanalysis on SIMON

In this section, we will give the improved procedure of linear attack on Simon
using existing linear hull distinguishers for all versions of Simon

4.1 Linear Hulls of SIMON

Some linear hulls have been proposed recently in [1,17,18], and they are displayed
in Table 3. Abdelraheem et al. [1] took advantage of the connection between
linear- and differential- characteristics for Simon and transformed the differen-
tial characteristics proposed in [2,9] to linear characteristics directly. Similarly,
differentials can be transformed to the linear hulls. Also, they found a new 14-
round linear hull for Simon32/64, by constructing squared correlation matrix
to compute the average squared correlation. Shi et al. [17] searched the linear
characteristics with same input and output masks using the Mixed-integer Lin-
ear Programming modelling, which was investigated to search the differential
characteristics for bit-oriented block cipher [19] and then extended to search the
linear characteristics (hull) later [18].

Table 3. Linear Hulls for Simon

BS Input Active Bits Output Active Bits ALH #R Ref

32 Xi
L,6 Xi+13

R,14 2−31.69 13 [1]

Xi
L,5 Xi+13

R,13 2−30.19 13 [17]

Xi
L,0 Xi+14

L,8 , Xi+14
R,6 2−32.56 14 [1]

48 Xi
L,7, X

i
L,11, X

i
L,19, X

i
R,9, X

i
R,17 Xi+15

L,5 , Xi+15
R,3 , Xi+15

R,7 , Xi+15
R,11 , Xi+15

R,19 2−44.11 15 [1]

Xi
L,6, X

i
L,14, X

i
L,18, X

i
L,22, X

i
R,16 Xi+15

L,4 , Xi+15
L,20 , Xi+15

R,6 , Xi+15
R,18 , Xi+15

R,20 , Xi+15
R,22 2−42.28 15 [17]

Xi
L,1, X

i
L,5, X

i
L,21, X

i
R,23 Xi+16

L,1 , Xi+16
L,5 , Xi+16

R,23 2−44.92 16 [18]

64 Xi
L,20, X

i
L,24, X

i
R,22 Xi+21

L,22 , Xi+21
R,20 , Xi+21

R,24 2−62.53 21 [1]

Xi
L,6 Xi+21

L,0 , Xi+21
R,2 , Xi+21

R,6 , Xi+21
R,30 2−60.72 21 [17]

Xi
L,3, X

i
L,27, X

i
L,31, X

i
R,29 Xi+22

L,3 , Xi+22
R,1 , Xi+22

R,2 2−63.83 22 [17]

96 Xi
L,2, X

i
L,34, X

i
L,38, X

i
L,42, X

i
R,36 Xi+30

L,2 , Xi+30
L,42 , Xi+30

L,46 , Xi+30
R,0 , Xi+30

R,40 2−94.2 30 [1]

128 Xi
L,2, X

i
L,58, X

i
L,62, X

i
R,60 Xi+41

L,60 , Xi+41
R,0 , Xi+41

R,2 , Xi+41
R,58 , Xi+41

R,62 2−126.6 41 [1]

* BS means the block size of Simon; #R means the number of rounds for the linear hull
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Similar to the rotational property of integral distinguishers and zero-
correlation linear hull shown in [21], more linear hulls can be constructed as
follows.

Property 1. Assume that Xi
L,j0

0
, . . . , Xi

L,j0
t0

,Xi
R,j1

0
, . . . , Xi

R,j1
t1

→ Xi+r
L,j2

0
, . . . ,

Xi+r
L,j2

t2
, Xi+r

R,j3
0
, . . . , Xi+r

R,j3
t3

is a r-round linear hull with potential ε̄2 for Simon2n,

where j0
0 , . . . , j0

t0 , j
1
0 , . . . , j1

t1 , j
2
0 , . . . , j2

t2 , j
3
0 , . . . , j3

t3 ∈ {0, . . . , n − 1}. Let jp,s
q =

(jp
q + s) mod n,

where p = 0, . . . , 3, q = 0, . . . , tp, then for 0 ≤ s ≤ n − 1, we have that the
potential of the r-round linear hull Xi

L,j0,s
0

, . . . , Xi
L,j0,s

t0

,Xi
R,j1,s

0
, . . . , Xi

R,j1,s
t1

→
Xi+r

L,j2,s
0

, . . . , Xi+r

L,j2,s
t2

,Xi+r

R,j3,s
0

, . . . , Xi+r

R,j3,s
t3

for Simon2n is also ε̄2.

Observe the two 13-round linear hulls of Simon32 in Table 3 and we can find
they are in fact the rotations of same linear hull. The potential of Xi

L,6 → Xi+13
L,14

is estimated as 2−31.69 in [1] while that of Xi
L,5 → Xi+13

L,13 is estimated as 2−30.19

in [17]. The difference may come from the different search methods and different
linear trails found. Since Simon32 has small block size, we can test the bias
(potential) of the 13-round linear hull experimentally. In the experimentation,
we choose 600 keys randomly, and compute the corresponding bias from the
whole plaintexts space. The results are shown in the following table.

Table 4. Experimental bias for the 13-round linear hull of Simon32

ε2 = |p − 1/2|2 Number Number/600

ε2 ≥ 2−27.19 7 0.012

227.19 > ε2 ≥ 2−28.19 21 0.035

228.19 > ε2 ≥ 2−29.19 58 0.097

229.19 > ε2 ≥ 2−30.19 72 0.12

230.19 > ε2 ≥ 2−31.19 104 0.173

ε2 < 2−31.19 338 0.563

From the table, we know that about 26.4% of the keys have ε2 ≥ 2−30.19.
So 230.19 is a little optimistic for the other 73.6% keys. However, this linear hull
distinguisher is interesting and in the following, we will give the key recovery
procedure using this linear hull. Also, we implement the 21-round attack on
Simon32 and the results shows that we can decrease the candidate key space by
8 bits when the potential under the real key is large.

4.2 Improved Key Recovery Attack on SIMON32/64

We exploit the 13-round linear hull proposed in [17] to make key recovery attack
on round-reduced Simon32. The linear hull is

Xi
L,5 → Xi+13

R,13 .
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Table 5. 4 rounds before Xi
L,5 for Simon32

x Representation of xi k Representation of ki

x0 Xi−4
L,13 ⊕ (Xi−4

L,14&Xi−4
L,7 ) ⊕ Xi−4

R,15 ⊕ Xi−4
L,1 k0 Ki−4

15 ⊕ Ki−3
1 ⊕ Ki−3

5 ⊕ Ki−2
3

⊕Xi−4
L,5 ⊕Ki−1

5

x1 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 ) ⊕ Xi−4

R,0 k1 Ki−4
0

x2 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 ) ⊕ Xi−4

R,9 k2 Ki−4
9

x3 Xi−4
L,2 ⊕ (Xi−4

L,3 &Xi−4
L,12) ⊕ Xi−4

R,4 k3 Ki−4
4

x4 Xi−4
L,11 ⊕ (Xi−4

L,12&Xi−4
L,5 ) ⊕ Xi−4

R,13 k4 Ki−4
13

x5 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 ) ⊕ Xi−4

R,0 ⊕ Xi−4
L,2 k5 Ki−4

0 ⊕ Ki−3
2

x6 Xi−4
L,15 ⊕ (Xi−4

L,0 &Xi−4
L,9 ) ⊕ Xi−4

R,1 k6 Ki−4
1

x7 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 ) ⊕ Xi−4

R,10 k7 Ki−4
10

x8 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 ) ⊕ Xi−4

R,9 ⊕ Xi−4
L,11 k8 Ki−4

9 ⊕ Ki−3
11

x9 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,11) ⊕ Xi−4

R,3 k9 Ki−4
3

x10 Xi−4
L,14 ⊕ (Xi−4

L,15&Xi−4
L,8 ) ⊕ Xi−4

R,0 k10 Ki−4
0 ⊕ Ki−3

2 ⊕ Ki−4
4 ⊕ Ki−2

4

⊕(Xi−4
L,3 &Xi−4

L,12) ⊕ Xi−4
R,4

x11 Xi−4
L,15 ⊕ (Xi−4

L,0 &Xi−4
L,9 ) ⊕ Xi−4

R,1 ⊕ Xi−4
L,3 k11 Ki−4

1 ⊕ Ki−3
3

x12 Xi−4
L,0 ⊕ (Xi−4

L,1 &Xi−4
L,10) ⊕ Xi−4

R,2 k12 Ki−4
2

x13 Xi−4
L,9 ⊕ (Xi−4

L,10&Xi−4
L,3 ) ⊕ Xi−4

R,11 k13 Ki−4
11

x14 Xi−4
L,8 ⊕ (Xi−4

L,9 &Xi−4
L,2 ) ⊕ Xi−4

R,10 ⊕ Xi−4
L,12 k14 Ki−4

10 ⊕ Ki−3
12

x15 Xi−4
L,7 ⊕ (Xi−4

L,8 &Xi−4
L,1 ) ⊕ Xi−4

R,9 k15 Ki−4
9 ⊕ Ki−3

11 ⊕ Ki−4
13 ⊕ Ki−2

13

⊕(Xi−4
L,12&Xi−4

L,5 ) ⊕ Xi−4
R,13

x16 Xi−4
L,1 ⊕ (Xi−4

L,2 &Xi−4
L,11) ⊕ Xi−4

R,3 ⊕ Xi−4
L,5 k16 Ki−4

3 ⊕ Ki−3
5

a Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8
b Xi−4 is the plaintext P , Ki−4, . . . , Ki−1 are the subkeys used in the initial four
rounds, i.e. KP
c In the description of the paper, xP = x = (x0, . . . , x16), kP = k = (k0, . . . , k16)

We mount a key recovery attack on 21-round Simon32/64 by adding four rounds
before and appending four rounds after the distinguisher. Here let P = Xi−4

be the plaintext and C = Xi+17 be the corresponding ciphertext. Suppose the
subkeys involved in the first four rounds are KP and those in the last four rounds
are KC . Then Xi

L,5 is a function of P and KP , Xi
L,5 = E(P,KP ). Similarly,

Xi+13
R,13 = D(C,KC) is a function of C and KC . Let S be the set of N plaintext-

ciphertext pairs obtained, the empirical correlation under some key KP ,KC is

c̄KP ,KC
=

1
N

∑

P,C∈S
(−1)E(P,KP )⊕D(C,KC). (9)
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Table 6. 4 rounds after Xi+13
R,13 for Simon32

x Representation of xi k Representation of ki

x0 Xi+17
R,5 ⊕ (Xi+17

R,6 &Xi+17
R,15 ) ⊕ Xi+17

L,7 ⊕ Xi+17
R,9

⊕Xi+17
R,13

k0 Ki+16
7 ⊕ Ki+15

9 ⊕ Ki+15
13 ⊕ Ki+14

11 ⊕Ki+13
13

x1 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 ) ⊕ Xi+17

L,8 k1 Ki+16
8

x2 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 ) ⊕ Xi+17

L,1 k2 Ki+16
1

x3 Xi+17
R,10 ⊕ (Xi+17

R,11&Xi+17
R,4 ) ⊕ Xi+17

L,12 k3 Ki+16
12

x4 Xi+17
R,3 ⊕ (Xi+17

R,4 &Xi+17
R,13 ) ⊕ Xi+17

L,5 k4 Ki+16
5

x5 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 ) ⊕ Xi+17

L,8 ⊕ Xi+17
R,10 k5 Ki+16

8 ⊕ Ki+15
10

x6 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 ) ⊕ Xi+17

L,9 k6 Ki+16
9

x7 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 ) ⊕ Xi+17

L,2 k7 Ki+16
2

x8 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 ) ⊕ Xi+17

L,1 ⊕ Xi+17
R,3 k8 Ki+16

1 ⊕ Ki+15
3

x9 Xi+17
R,9 ⊕ (Xi+17

R,10&Xi+17
R,3 ) ⊕ Xi+17

L,11 k9 Ki+16
11

x10 Xi+17
R,6 ⊕ (Xi+17

R,7 &Xi+17
R,0 ) ⊕ Xi+17

L,8

⊕(Xi+17
R,11&Xi+17

R,4 ) ⊕ Xi+17
L,12

k10 Ki+16
8 ⊕ Ki+15

10 ⊕ Ki+16
12 ⊕ Ki+14

12

x11 Xi+17
R,7 ⊕ (Xi+17

R,8 &Xi+17
R,1 ) ⊕ Xi+17

L,9 ⊕ Xi+17
R,11 k11 Ki+16

9 ⊕ Ki+15
11

x12 Xi+17
R,8 ⊕ (Xi+17

R,9 &Xi+17
R,2 ) ⊕ Xi+17

L,10 k12 Ki+16
10

x13 Xi+17
R,1 ⊕ (Xi+17

R,2 &Xi+17
R,11 ) ⊕ Xi+17

L,3 k13 Ki+16
3

x14 Xi+17
R,0 ⊕ (Xi+17

R,1 &Xi+17
R,10 ) ⊕ Xi+17

L,2 ⊕ Xi+17
R,4 k14 Ki+16

2 ⊕ Ki+15
4

x15 Xi+17
R,15 ⊕ (Xi+17

R,0 &Xi+17
R,9 ) ⊕ Xi+17

L,1

⊕(Xi+17
R,4 &Xi+17

R,13 ) ⊕ Xi+17
L,5

k15 Ki+16
1 ⊕ Ki+15

3 ⊕ Ki+16
5 ⊕ Ki+14

5

x16 Xi+17
R,9 ⊕ (Xi+17

R,10&Xi+17
R,3 ) ⊕ Xi+17

L,11 ⊕ Xi+17
R,13 k16 Ki+16

11 ⊕ Ki+15
13

a Notice: x10 = x3 ⊕ x5, x15 = x4 ⊕ x8
b Xi+17 is the ciphertext C, Ki+13, . . . , Ki+16 are the subkeys used in the last four rounds, i.e. KC
c In the description of the paper, xC = x = (x0, . . . , x16), kC = k = (k0, . . . , k16)

In a further step, Xi
L,5 can be represented as Xi

L,5 = f(x, k) where

f(x, k) = x0 ⊕ k0 ⊕ ((x1 ⊕ k1)&(x2 ⊕ k2)) ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4))⊕
[(x5 ⊕ k5 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7)))&(x8 ⊕ k8 ⊕ ((x9 ⊕ k9)&(x7 ⊕ k7)))]⊕
{(x10 ⊕ k10 ⊕ ((x6 ⊕ k6)&(x7 ⊕ k7))⊕
[(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x14 ⊕ k14 ⊕ ((x3 ⊕ k3)&(x13 ⊕ k13)))])&

(x15 ⊕ k15 ⊕ ((x7 ⊕ k7)&(x9 ⊕ k9))⊕
[(x14 ⊕ k14 ⊕ ((x13 ⊕ k13)&(x3 ⊕ k3)))&(x16 ⊕ k16 ⊕ ((x3 ⊕ k3)&(x4 ⊕ k4)))])}

where the representation of x and k are 17-bit value shown in Table 5. With
the same way, Xi+13

R,13 can also be represented as f(x, k) where the corresponding
x and k are described in Table 6. To distinguish them, let xP , kP be the x, k
described in Table 5 and xC , kC be the x, k described in Table 6. The N plaintext-
ciphertext pairs in S can be compressed into a counter vector V [xP , xC ], which
stores the number of xP , xC . Then there is

c̄kP ,kC
=

1
N

∑

xP ,xC

(−1)f(xP ,kP )⊕f(xC ,kC)V [xP , xC ]. (10)

Notice that f(x, k) is linear with x0 ⊕ k0. According to the linear compression
technique, the 0-th bit of xP and xC could be compressed initially. Suppose
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that x′
P is the 16-bit value of xP without the 0-th bit (same representations for

x′
C , k′

P , k′
C). Initialize a new counter vector V1 which has values

V1[x′
P , x′

C ] =
∑

xP,0,xC,0

(−1)xP,0⊕xC,0V [xP , xC ]. (11)

Then the correlation becomes

c̄k′
P ,k′

C
=

1
N

∑

x′
P ,x′

C

(−1)f ′(x′
P ,k′

P )⊕f ′(x′
C ,k′

C)V1[x′
P , x′

C ]

=
1
N

∑

x′
C

(−1)f ′(x′
C ,k′

C)
∑

x′
P

(−1)f ′(x′
P ,k′

P )V1[x′
P , x′

C ], (12)

where f ′ is part of f , i.e. f(x, k) = x0 ⊕ k0 ⊕ f ′(x′, k′), x′ = (x1, . . . , x16), k′ =
(k1, . . . , k16).

So we can guess k′
P (16-bit) at first and compress the plaintexts into a counter.

Then guess k′
C (16-bit) to decrypt the appending rounds, to achieve the final

correlations. In the following, we introduce the attack procedure in the forward
rounds in detail. The procedure to compute

∑
x′
P
(−1)f ′(x′

P ,k′
P )V1[x′

P , x′
C ] for each

x′
C is same with the procedure to compute Bk′

(y) with some counter vector V ′
1 [x′]

and boolean function f ′. Counter vector V ′
1 is part of counter vector V1. For each

specific x′
C ,

V ′
1 [x′] = V1[x′, x′

C ],
which means V ′

1 [x′] takes value of V1[x′
P , x′

C ] where x′
P = x′ and x′

C is fixed.
Morever, there are relations that x10 = x3 ⊕ x5, x15 = x4 ⊕ x8 in Tables 5 and 6,
which means there are only 14 independent bits for x′ (x′

P or x′
C).

Compute Bk′
(y) with counter vector V ′

1 [x
′] and Boolean function f ′.

(For simplicity, we define this procedure as Procedure A.) Although x′ is a 16-bit
value, there are only 214 possible values for x′ as explained above. We use the guess,
split and combination technique todecrease the time complexity to computeBk′

(y)
with counter vector V ′

1 [x′] and boolean function y = f ′, for 216 key vaules k′.

1. Guess k1, k3, k7 and split the plaintexts into 8 sets according to the value
(x1 ⊕k1, x3 ⊕k3, x7 ⊕k7). The simplification for f ′(x′, k′) after guessing some
keys are shown in Table 7.
The representation of fij are as follows,

f00 =((x5 ⊕ k5)&(x8 ⊕ k8)) ⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))

&(x14 ⊕ k14)])&(x15 ⊕ k15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},
f01 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9)) ⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)

&(x13 ⊕ k13)))&(x14 ⊕ k14)])&(x9,15 ⊕ k9,15 ⊕ [(x14 ⊕ k14)&(x16 ⊕ k16)])},
f10 =((x5 ⊕ k5)&(x8 ⊕ k8)) ⊕ {(x10 ⊕ k10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))

&(x13,14 ⊕ k13,14)])&(x15 ⊕ k15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])},
f11 =((x5,6 ⊕ k5,6)&(x8,9 ⊕ k8,9)) ⊕ {(x6,10 ⊕ k6,10 ⊕ [(x11 ⊕ k11 ⊕ ((x12 ⊕ k12)&(x13

⊕ k13)))&(x13,14 ⊕ k13,14)])&(x9,15 ⊕ k9,15 ⊕ [(x13,14 ⊕ k13,14)&(x4,16 ⊕ k4,16)])}.
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Table 7. Simplification for f ′(x′, k′) after guessing k1, k3, k7

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit

k1, k3, k7 0,0,0 f00

0,0,1 f01

0,1,0 f10 k4

0,1,1 f11 k4

1,0,0 f00 k2

1,0,1 f01 k2

1,1,0 f10 k2,4

1,1,1 f11 k2,4

Table 8. Simplification for f00 after guessing k5, k14

Guess Value f00 Related Bit

k5, k14 0,0 (x10 ⊕ k10)&(x15 ⊕ k15)

0,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16)

1,0 (x10 ⊕ k10)&(x15 ⊕ k15) k8

1,1 (x10,11 ⊕ k10,11 ⊕ ((x12 ⊕ k12)&(x13 ⊕ k13)))&(x15,16 ⊕ k15,16) k8

The counter vectors for x′ can be compressed in a further step according to the
new representations of f ′. For example, if (x1⊕k1, x3⊕k3, x7⊕k7) = (0, 0, 0),
f ′ will be equal to the formula f00, which is independent of x2, x4, x6, x9. So
we compress the corresponding counters into a new counter V000, and

V000[x5, x8, x10 − x16] =
∑

x1=k1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

V ′
1 [x′].

Notice x10 = x3 ⊕ x5, so there are 8 independent x bits for x5, x8, x10 − x16.
Notice x15 = x4 ⊕ x8, for some fixed value of x5, x8, x10 − x16, there are 7
times addition in above equation. So generating this new counter vector needs
28 × 7 additions.

We give another example to illustrate the situations with related key bit.
If (x1 ⊕k1, x3 ⊕k3, x7 ⊕k7) = (1, 0, 0), there is f ′ = (x2 ⊕k2)⊕ f00. Notice in
this subset, f ′ is linear with x2 ⊕ k2 and x2 can be compressed into the new
counters with related key k2. So the new counter vector V100 is as follows,

V100[x5, x8, x10 − x16] =
∑

x1=k1⊕1,x3=k3,x7=k7,x2∈F2,x4∈F2,x6∈F2,x9∈F2

(−1)x2V ′
1 [x′].

Also, there are 8 independent x bits for x5, x8, x10 − x16. For each fixed
x5, x8, x10 −x16, the new counter can be obtained with 7 additions according
to above equation.

The procedures to generate the new counter vectors for other cases are
similar as that of case (x1⊕k1, x3⊕k3, x7⊕k7) = (0, 0, 0) or (1, 0, 0). Morever,
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the time complexity to split the plaintexts and construct new counter vectors
is same for each case. Observing the four functions f00, f01, f10 and f11, we
know that they are with same form. In the following step, we explain the
attack procedure of case (x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7) = (0, 0, 0) in detail and
the others can be obtained in the same way.

Note that, there are 9 subkey bits in each function of f00, f01, f10 and f11

after guessing k1, k3, k7. So this can be viewed as that 3 + 9 = 12 subkey bits
are involved in the attack while there are 16 subkey bits are involved initially
in f ′. In the following, the number of key bits can be reduced in a further
step.

2. For f00, guess k5, k14 and split the plaintexts into 4 sets according to the
value (x5 ⊕ k5, x14 ⊕ k14). The simplification for f00 after guessing some keys
are shown in Table 8.
The time complexity of computing the counters’ value Bk5,k8,k10−k16(y) with
counter vector V000 and function f00 is as follows:
(a) Guess k5, k14 and split the states into four parts

i. (x5 ⊕ k5, x14 ⊕ k14) = (0, 0)
A. Since x10 = x3⊕x5, x5 = k5 and x3 = k3 (the first case in Table 7),

so the x10 here is fixed. There is one variable bit x15 to store. Let
V 00

000[x10, x15] store the number of (x10, x15). There is

V 00
000[x10, x15] =

∑

x5=k5,x14=k14

V000[x5, x8, x10 − x16].

There are two possible values for (x10, x15) here and for each
value, the above sum needs 25 − 1 additions (5 variable bits
(x8, x11, x12, x13, x16)). So generating the new counter vector needs
2 × (25 − 1) = 26 − 2 additions.

B. Computing Bk10,k15
00 (y) with new function (the first case in

Table 8) and vector V 00
000:

If k10 = x10, Bk10,k15
00 (y) = V 00

000[x10, 0] + V 00
000[x10, 1];

if k10 = x10 ⊕ 1, Bk10,k15
00 (y) = (−1)k15(V 00

000[x10, 0] − V 00
000[x10, 1]).

So in total there are no more than 22 additions.
ii. (x5 ⊕ k5, x14 ⊕ k14) = (0, 1)

A. There are 4 variable bits (x10,11, x12, x13, x15,16) to store.
Let V 01

000[x10,11, x12, x13, x15,16] store the counter number of
(x10,11, x12, x13, x15,16). There is

V 01
000[x10,11, x12, x13, x15,16] =

∑
x5=k5,x14=k14⊕1

V000[x5, x8, x10 − x16].

For each possible value of (x10,11, x12, x13, x15,16), the above sum
needs 22 − 1 additions (2 free variables (x8, x15), x10 is fixed,
x11 = x10 ⊕ x10,11, x16 = x15 ⊕ x15,16). So generating the new
counter vector needs: 24 × (22 − 1) = 26 − 24 additions.

B. Partial B
k10,11,k12,k13,k15,16
01 (y) with new function and vector V 01

000:
25.64 additions. (See f3 in Appendix A)
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iii. (x5 ⊕ k5, x14 ⊕ k14) = (1, 0)
A. Similar to the first case in Step (2(a)i), let V 10

000[x10, x15] store the
number of (x10, x15). There is

V 10
000[x10, x15] =

∑

x5=k5,x14=k14

V000(−1)x8 [x5, x8, x10 − x16].

So generating the new counter vector also needs 2 × (25 − 1) =
26 − 2 additions. k8 becomes a related bit.

B. Partial Bk10,k15
10 (y) with new function and vector V 10

000: 22 additions
(same with case (0, 0)).

iv. (x5 ⊕ k5, x14 ⊕ k14) = (1, 1)
A. Similar to the second case in Step (2(a)ii), let V 11

000[x10,11, x12, x13,
x15,16] store the counter number of (x10,11, x12, x13, x15,16).
There is

V 11
000[x10,11, x12, x13, x15,16]

=
∑

x5=k5,x14=k14⊕1

(−1)x8V000[x5, x8, x10 − x16].

So generating the new counter vector needs: 24×(22−1) = 26−24

additions. k8 becomes a related bit.
B. Partial B

k10,11,k12,k13,k15,16
11 (y) with new function and vector V 11

000:
25.64 additions. (See f3 in Appendix A)

(b) For each of 29 keys involved in f00, partial Bk5,k8,k10−k16(y) with function
y = f00 and counter vector V000 under key guess k5, k14 is

Bk5,k8,k10−k16(y) = (Bk10,k15
00 (y) + B

k10,11,k12,k13,k15,16
01 (y))

+ (−1)k8 (Bk10,k15
10 (y) + B

k10,11,k12,k13,k15,16
01 (y)).

We can add Bk10,k15
00 (y) and B

k10,11,k12,k13,k15,16
01 (y) at first, then add

Bk10,k15
10 (y) and B

k10,11,k12,k13,k15,16
01 (y), at last add the two parts according

to the index value and k8. The combination phase needs 26 +26 +27 = 28

additions in total when k5, k14 are fixed.
(c) In total, there are

22 × ((26 − 2 + 22 + 26 − 24 + 25.64) × 2 + 28) ≈ 211.19

additions to compute Bk5,k8,k10−k16(y) for all 29 possible key values.
Note that, about 1 subkey bit is guessed in the first (or third) step of
step 2a. In the second (or forth) step of step 2a, 1.5 subkey bits are
guessed on average. So, although there are 9 subkey bits in total, only
2+(1+1+1.5+1.5)/4=3.25 bits on average are guessed with dynamic key-
guessing technique.
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3. The time of computing Bk′
(y) with counter vector V ′

1 [x′] and boolean function
f ′ is shown in Table 9. T1 denotes the time of seperation of the plaintexts
according to the guessed bit of k. T2 denotes the time of computation in the
inner part. T3 is the time in the combination phase. When k1, k3, k7 are fixed,
in each case, T1 = 28 × 7 as explainted in Step 1. T2 is 211.19 as explained in
Step 2. There are 13 bits for k′ except k1, k3, k7, leading to T3 = 213 × 7. For
all guesses of k1, k3, k7, the total time is about 219.46 additions.

In Step 1, 3 key bits are guessed and the plaintexts are splitted into 8 situations.
For each situation, 3.25 key bits are guessed as explained above. So on average,
about 3 + 3.25 = 6.25 subkey bits are guessed in this procedure, while there are
16 subkey bits involved.

Table 9. Time Complexity of computing Bk′
(y) with counter vector V ′

1 [x′] and boolean
function f ′

Guess x1 ⊕ k1, x3 ⊕ k3, x7 ⊕ k7 f ′ Related Bit Time

T1 T2 T3

k1, k3, k7 0,0,0 f00 28 × 7 211.19 213 × 7

0,0,1 f01 28 × 7 211.19

0,1,0 f10 k4 28 × 7 211.19

0,1,1 f11 k4 28 × 7 211.19

1,0,0 f00 k2 28 × 7 211.19

1,0,1 f01 k2 28 × 7 211.19

1,1,0 f10 k2,4 28 × 7 211.19

1,1,1 f11 k2,4 28 × 7 211.19

Total Time ((28 × 7 + 211.19) × 8 + 213 × 7) × 23 = 219.46

21-Round Attack on SIMON 32/64. Adding four rounds and appending four
rounds after the 13-round linear hull distinguisher, we give the 21-round linear
attack on Simon32/64. The estimated potential of the linear hull is ε̄2 ≈ 2−30.19

in [17], which is a little optimistic for more than half of keys. In the attack, we
use N = 231.19 plaintext-ciphertext pairs. According to Theorem 1, the relation
between the bias and success probability is shown in Table 10 when using 231.19

Table 10. Relation between bias and success probability using 231.19 data and setting
advantage a = 8

ε2 = 227.19 p0 ≈ 1.000

ε2 = 228.19 p1 ≈ 0.997

ε2 = 229.19 p2 ≈ 0.864

ε2 = 230.19 p3 ≈ 0.477

ε2 = 231.19 p4 ≈ 0.188
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plaintext-ciphertext pairs. So according to Tables 4 and 10, the expected success
probability of the attack is larger than

0.012 ∗ p0 + 0.035 ∗ p1 + 0.097 ∗ p2 + 0.12 ∗ p3 + 0.173 ∗ p4 ≈ 0.22,

and it is smaller than

(0.012 + 0.035) ∗ p0 + 0.097 ∗ p1 + 0.12 ∗ p2 + 0.173 ∗ p3 ≈ 0.33.

There are 32 subkey bits involved in this attack. With our attack method,
only about 6.25 + 6.25 = 12.5 bits are guessed on average, which reduces the
number of key bits greatly.

Attack:

1. Compress the N plaintext-ciphertext pairs into the counter vector V1[x′
P , x′

C ]
of size 214+14.

2. For each of 214 x′
C

(a) Call Procedure A. Store the counters according to x′
C and k′

P
3. For each k′

P of 216 possible values.
(a) Call procedure A. Store the counters according to k′

P and k′
C .

4. The keys with counter values ranked in the largest 232−8 = 224 values would
be the right subkey candidates. Exploiting the key schedule and guessing
some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1)N = 231.19 times compression (2) 214 × 219.46 = 233.46 additions.
(3)216 × 219.46 = 235.46 additions. So the time to compute the empirical bias
for the subkeys involved is about 235.84 while that given in [1] with similar lin-
ear hull is 263.69. The time is improved significantly. Step (4) is to recovery the
master key, which needs 264−8 = 256 21-round encryptions. However, [1] does
not give this step.

Also we implemented the 21-round attack on Simon32 using 231.19 plaintext-
ciphertext pairs. (The exhaustive search part of the attack is not included since
it would take about 264−8 = 256 encryptions, which takes too much time.) In
the implementation, we set the main key randomly and collect 231.19 plaintext-
ciphertext pairs (data collection part), then use the dynamic key-guessing tech-
niques to recover 8-bit key information for the 32 subkey bits (recovery part). We
store the 232−8 = 224 keys with large bias in set S as the right key candidates,
then compute the real 32 subkey bits from the main key and check whether it is
in S. In the implementation, about 5GB memory is needed. The data collection
part (231.19 encryptions) takes about 11 minutes and the recovery part takes
about 11 minutes too (using Intel(R) Xeon(R) CPU E5-2620, 2.00GHz). 1000
experiments were done and 277 of them were successful. This derives that the
experimental success probability is about 27.7%, which is consistent with the
expected success probability.

22-Round Attack on SIMON32/64. Add one more round before the 21-
round attack, we can attack 22-round of Simon32/64. There are 13 active
key bits involved in round i − 5, which is κ1 = (Ki−5

0 − Ki−5
3 ,Ki−5

5 ,Ki−5
7 −

Ki−5
12 ,Ki−5

14 ,Ki−5
15 ), to obtain the x represented in Table 5.
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Attack:

1. Guess each of 213 κ1

(a) Encrypt the plaintexts by one round.
(b) Do as the first three steps in the 21-round attack

2. The keys with counter values ranked in the largest 232+13−8 = 237 values
would be the right subkey candidates. Exploiting the key schedule and guess-
ing some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1.a)213 × N = 244.19 one-round encryptions. (1.b) 213 × 235.84 = 248.84

additions. (2) Exhaustive phase needs about 264−8 = 256 22-round encryptions.
So the total time is about 256 22-round encryptions and 248.84 additions.

23-round attack on SIMON32/64. Add one more round before and one round
after the 21-round attack, we can attack 23-round of SIMON32/64. There are
13 active key bits involved in round i+17, which is κ2 = (Ki+17

0 −Ki+17
3 ,Ki+17

5 ,
Ki+17

7 − Ki+17
12 ,Ki+17

14 ,Ki+17
15 ), to obtain the x represented in Table 6.

Attack:

1. Guess each of 213+13 κ1||κ2

(a) Encrypt the plaintexts by one round and decrypt the ciphertexts by one
round.

(b) Do as the first three steps in the 21-round attack
2. The keys with counter values ranked in the largest 232+26−8 = 250 values

would be the right subkey candidates. Exploiting the key schedule and guess-
ing some other bits, use two plaintex-ciphertext pairs to check the right key.

Time: (1.a)226 × N = 257.19 two-round encryptions. (1.b) 226 × 235.84 = 261.84

additions. (2) Exhaustive phase needs about 264−8 = 256 23-round encryptions.
So the total time complexity is about 256.3 23-round encryptions and 261.84

additions.

4.3 Improved Key Recovery Attack on Other Variants of SIMON

With the dynamic key-guessing technique shown in above attack, we can also
improve the linear hull attacks on all other variants of Simon. The linear hulls
used are displayed in Table 3. For Simon48, we exploit the 22-round linear hull
proposed in [18], which covers most rounds up to date. For Simon64, the 21-
round linear hull with potential 2−62.53 proposed in [1] is used in the attack.
Also, the 31-round (resp. 40-round) linear hull for Simon96 (resp. Simon128) in
[1] are used to attack corresponding variant. Due to limited space, we do not give
the detail of the attacks (please refer to the full version [11] of this paper for the
details). However, the improved results for these variants are listed in Table 1.

4.4 Multiple Linear Hull Attack on SIMON

Combining multiple linear cryptanalysis [8] and linear hull together, one can
make multiple linear hull attack with improved data complexity. Our attack
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technique can be used in the multiple linear hull attack of Simon well. According
to the rotational property, Property 1, of Simon, lots of linear hulls with high
potential can be found. For example, the two 13-round linear hulls for Simon32
in Table 3 are rotations of same linear hull.

Suppose that the time to compute the bias for one linear hull is T1 and data
complexity is N . If m linear hulls with same bias are used in the multiple linear
hull attack, the data complexity would be decreased to N/m. But the time com-
plexity would increase to mT1 +2K, where K is the size of the independent key bits
involved in all m linear hull attacks. For example, there are 32 independent key
bits involved in the 21-round attack of Simon32 with linear hull Xi

L,5 → Xi+13
R,13 .

The data complexity is 231.19 known plaintext-ciphertext pairs and the time needs
about 235.84 additions to get the bias. When another linear hull Xi

L,6 → Xi+13
R,14 is

taken in to make a multiple linear hull attack, the data size will decrease to 230.19.
There are also 32 independent key bits involved in this linear hull attack. But, the
total independent key size of both linear hulls is 48. So the time to compute the bias
for the multiple linear hull attack with above two linear hulls needs about 236.84

additions and 248 combinations.

5 Conclusion

In this paper, we gave the improved linear attacks on all the reduced versions of
Simon family with dynamic key-guessing techniques. By establishing the boolean
function of parity bit in the linear hull distinguisher and reducing the expressions
of function according to the property of AND operation, we decrease the number
of key bits involved in the attack and decrease the attack complexity in a further
step. As a result, we can attack 23-round Simon32/64, 24-round Simon48/72,
25-round Simon48/96, 30-round Simon64/96, 31-round Simon64/128, 37-
round Simon96/96, 38-round Simon96/144, 49-round Simon128/128, 51-round
Simon128/192 and 53-round Simon128/256. The differential attack in [20] and
our linear hull attack are bit-level cryptanalysis results, which provide the more
efficient and precise security estimation results on Simon. It is mentioned that,
the bit-level cryptanalysis combining with dynamic key-guessing techniques are
applicable to more light-weight block ciphers and hash functions etc.
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Science Foundation of China (Grant No. 61133013), also supported by National Key
Basic Research Program of China (Grant No. 2013CB834205).

A Time Complexity in Some Situations

In this section, we give the time complexities of computing the counters Bk(y) for
some simple functions of y = f(x, k). This would be the deepest layer’s operation
in the linear attack to Simon. Notice in the following, ‘Guess’ denotes the bits
guessed at first. The second column xi ⊕ki denotes the value of xi which is used
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in the splitting phase. The third column denotes the new representation of the
target function according to the value of xi ⊕ ki. ‘RB’ is the related bit (defined
in Sect. 3). T1 denotes the time of seperation of the plaintexts according to the
guessed bit of k. T2 denotes the time of computation in the inner part. T3 is the
time in the combination phase. Total Time is the final time complexity, which
is twice of the sum of all T1, T2 and T3. Notice that T1, T2 and T3 represent the
number of addition operations. For simplicity, we denote f∗ the function with
same form of f . For example, if f1 = (x0⊕k0)&(x1⊕k1) and f ′

1 = (x0⊕k0)&(x3⊕
k3), we say f ′

1 is with form f1∗. The calculation of B(y) for the functions with
same form have same procedures and time complexties.

1. f1 = (x0 ⊕ k0)&(x1 ⊕ k1)

Guess x0 ⊕ k0 f1 RB T1 T2 T3

k0
0 0 1 21 0 k1 1

Total Time 2 × (1 + 1 + 2) = 23

2. f2 = (x0 ⊕ k0) ⊕ (x1 ⊕ k1)&(x2 ⊕ k2)

Guess x0 f2 RB T1 T2 T3

f1∗ k0 22 × 1 23 23

Total Time 22 + 23 + 23 = 24.32

3. f3 = (x0 ⊕ k0)&((x1 ⊕ k1) ⊕ (x2 ⊕ k2)&(x3 ⊕ k3))

Guess x0 ⊕ k0 f3 RB T1 T2 T3

k0
0 0 23 − 1 23

1 f2∗ 24.32

Total Time 2 × (23 − 1 + 24.32 + 23) = 25.64

The detail of case 1, where f1(x, k) = (x0 ⊕ k0)&(x1 ⊕ k1), has been given in
Sect. 3.2. The other cases are derived similarly. For example, in case 2, linear
compression is done before any key guessing, leading to the compression of bit
x0 and generation of related bit k0.
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Abstract. In recent work, Bellare, Hoang, and Keelveedhi (CRYPTO
2013) introduced a new abstraction called Universal Computational
Extractors (UCEs), and showed how they can replace random oracles
(ROs) across a wide range of cryptosystems. We formulate a new frame-
work, called Interactive Computational Extractors (ICEs), that extends
UCEs by viewing them as models of ROs under unpredictable (aka.
high-entropy) queries. We overcome a number of limitations of UCEs
in the new framework, and in particular prove the adaptive RKA and
semi-adaptive KDM securities of a highly efficient symmetric encryption
scheme using ICEs under key offsets.

We show both negative and positive feasibility results for ICEs. On
the negative side, we demonstrate ICE attacks on the HMAC and NMAC
constructions. On the positive side we show that: (1) ROs are indeed
ICE secure, thereby confirming the structural soundness of our defini-
tion and enabling a finer layered approach to protocol design in the RO
model; and (2) a modified version of Liskov’s Zipper Hash is ICE secure
with respect to an underlying fixed-input-length RO, for appropriately
restricted classes of adversaries. This brings the first result closer to prac-
tice by moving away from variable-input-length ROs. Our security proofs
employ techniques from indifferentiability in multi-stage settings.

Keywords: Random oracle · Unpredictability · UCE · RKA security ·
KDM security · Zipper Hash · Indifferentiability · Multi-stage security

1 Introduction

1.1 Background

Since their formal introduction by Bellare and Rogaway [BR93], random ora-
cles (ROs) have found many applications across a wide range of cryptographic
protocols. However, due to an uninstantiability result of Canetti et al. [CGH98],
which shows that certain (artificial) protocols become insecure as soon as the
random oracle is replaced by any concrete hash function, reliance on ROs has
also become somewhat debatable.
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Two lines of research have been directed at dealing with such uninstantia-
bility results. One is to construct standard-model counterparts of cryptographic
primitives designed in the RO model (ROM). This approach comes with the
drawback that the resulting cryptosystems often tend to be complex and achieve
a lower level of security and/or efficiency. A second, more modular, approach
aims to formulate abstractions of the proof-centric properties of random oracles
such as extractability, programability, or non-malleability [Can97,CD09,Nie02,
CD08,BCFW09]. Assuming that a hash function meets the introduced model,
one proceeds to show that it can safely replace the random oracle in a protocol.
These formalizations, however, have only been successful to a limited extent, and
the question of finding a flexible and general framework that could be applied
across a broad range of security goals and protocols remained open until recently.

1.2 UCE Security

Bellare, Hoang, and Keelveedhi (BHK) [BHK13a] revisit the above questions and
present a powerful framework called Universal Computational Extractors (UCEs)
that allow to securely instantiate random oracles in an interesting and diverse set
of applications. These include, among other things, security under key-dependent-
message (KDM) attacks, security under related-key attacks (RKAs), simulta-
neous hard-core bits, point function obfuscators, garbling schemes, proofs of
storage, deterministic encryption, and message-locked encryption, thereby going
far beyond what was previously possible.

Behind UCEs lies a new way to model the indistinguishability of a keyed hash
function from a random oracle. Indeed, there are two direct ways to (incorrectly)
model the security of a hash function:

(1) Provide the adversary with the hash key and ask it to distinguish an oracle
implementing the hash function from one implementing the random oracle.
This approach immediately fails as this game can be trivially won with the
knowledge of the hash key by computing a hash value and checking the
answer against the oracle’s answer for the same query.

(2) Adopt the above approach, but now hide the hash key. This leads to PRF
security—for which feasibility results are known—but is not useful in the
context of hashing as the hash key is typically publicly known.

BHK overcome the above shortcomings by splitting the attacker into two
parts and constraining the communication between the two. The first UCE
attacker does not get to see the hash key, but has oracle access to either the
hash function under a random key or the random oracle according to a random
bit. The second attacker, on the other hand, does get to see the hash key, but
can no longer access the oracle, and it has to guess the bit; see Fig. 1 (left).
The two stages of the adversary can communicate only in restricted ways since
arbitrary communication would lead to an attack similar to that given above for
formulation (1).

More formally, for a keyed hash function H, UCE security is defined via a
two-stage game consisting of algorithms S and D, called the source and the
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distinguisher respectively, as follows. In the first stage, the source is given access
to an oracle Hash that depending on a random bit b implements either the
random oracle or the concrete hash function H under a random hash key hk. The
source terminates by outputting some leakage L, which is then communicated to
the second-stage distinguisher D. In addition to leakage L, the distinguisher also
gets the hash key hk as input. The distinguisher’s task is to guess b, i.e., guess
whether the source was talking to the random oracle or the hash function. The
UCE advantage of the pair (S,D) is defined as usual to be the probability of
correctly guessing the bit b scaled away from one-half. We refer the reader to the
original work [BHK13b] for an excellent overview of this approach to modeling
hash-function security.

To see that without further restrictions UCE security cannot be achieved,
consider a source that leaks one of its oracle queries together with the cor-
responding oracle answer to the distinguisher. The distinguisher then simply
recomputes the hash value on the queried point—the distinguisher knows the
hash key—and compares it to the leaked value.

In their original work, BHK [BHK13a] define two restrictions on sources:
computational unpredictability and computational reset security. In the compu-
tational unpredictability game, it is required that when the source is run with
a random oracle its leakage does not computationally reveal any of its queries.
This is formalized by requiring that the probability of any efficient predictor P
in guessing a query of S when given L is negligible.

The class of computationally unpredictable sources is denoted by Scup, and
the resulting UCE security UCE[Scup] (aka. UCE1) of a hash function is defined
by requiring the advantage of any efficient pair (S,D) with an unpredictable
S ∈ Scup in the UCE game to be negligible. Reset security imposes a weaker
restriction on the source class and leads to the stronger UCE2 notion.

UCE security has been the subject of many recent studies. Brzuska, Farshim,
and Mittelbach (BFM) [BFM14] show that, under new cryptographic assump-
tions, these restrictions are insufficient for a feasible definition. More precisely,
assuming the existence of indistinguishability obfuscators [BGI+01,GGH+13],
BFM show that the UCE[Scup] security of any hash function can be broken in
polynomial time. To overcome this attack, BFM [BFM14] (and subsequently
BHK in an updated version of their paper [BHK13b]) propose a statistical
notion of unpredictability whereby the predictor can even run in unbounded
time. Following the attack, BHK also refine the UCE notions based on com-
putational unpredictability and introduce the classes of bounded parallel and
split sources.1 BFM show that security against bounded parallel source is also
infeasible [BFM14], and recently attacks against split sources have also been
shown [BST15].

On the positive side, Brzuska and Mittelbach [BM14b,BM15] show how to
construct UCEs for the class of strongly unpredictable and statistically unpre-
dictable sources for bounded number of queries. Bellare et al. [BHK14] develop

1 Such computational UCE notions are intrinsically needed for applications such as
simultaneous had-core bits and deterministic PKEs.
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domain extenders for UCEs, and Bellare and Hoang [BH15] construct determin-
istic PKEs from UCEs for statistically unpredictable sources and lossy trapdoor
functions. BFM [BFM14] have shown that the existence of obfuscation-based
attacks against statistically unpredictable sources violates well-known impossi-
bility results. A number of recent works have shown how to use UCEs as RO
replacements in other protocols [MH14,BK15,DGG+15].

Despite the above advances, and irrespective of the restrictions imposed on
sources, the UCE framework is intrinsically limited in a number of aspects:
it only allows the source to place Hash queries which are independent of the
hash key; after leakage is communicated from the source to the distinguisher no
further Hash oracle queries can be made, and hence hash queries are inherently
non-adaptive; UCEs cannot model unkeyed hash functions nor hash functions
with weak keys where the key does not come from the uniform distribution.
Motivated by these shortcomings, and the ultimate goal of basing the security
of highly efficient and practical protocols on well-defined and feasible properties
of random oracles, we set out to formalize an enhanced framework for the study
ROM protocols.

D(hk)S(1λ)

Hashb(hk, ·)

D2(1λ)D1(1λ)
b′

Hashb(·, ·)

Fig. 1. The interactions in the UCE game (left) and the ICE game (right).

1.3 Interactive Computational Extractors

Given the development of UCEs, defining an extended model which meets the
above-mentioned specifications is an intricate task. Indeed, well before the emer-
gence of obfuscation-based attacks, BHK [BHK13b, p. 9] warned that extending
UCEs to an interactive setting is “a dangerous path to tread.” As an exam-
ple, assume that we introduce a bi-directional communication channel between
the distinguisher and the source so that our adaptivity targets are met. This
extension can be shown to fall prey to somewhat non-trivial attacks that utilize
general-purpose multi-party computation (MPC) protocols. Suppose the source
S holds a random input x whose hash is y, and D holds hk. The two parties
then run an MPC protocol to compute the Boolean value y = H(hk, x). The
distinguisher finally returns this value as its guess. This attack would meet any
reasonable notion of computational unpredictability since the security of the
MPC protocol would ensure that the parties learn no more than what can be
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deduced from their individual private inputs.2 Allowing hash queries to depend
on the hash key hk is also challenging since similarly to approach (1) above
access to both hk and the hash oracle would trivialize the notion. For similar
reasons, formulating a UCE-like model for unkeyed hash functions is also non-
trivial. As we shall see, other forms of attacks also arise that should be ruled out
for a feasible model.

The ICE framework. Let us call an input (hk, x), consisting of the hash key
hk and a domain point x, to a hash function a full input. One way to view
UCEs is that they adopt the indistinguishability-based approach (1) above, but
restrict hash queries so that full inputs remain hidden from the attacker(s).
It is clear that such hidden queries are not meaningful in the presence of a
single adversary—any adversary knows its own queries—and hence UCEs come
with two adversaries. Unpredictability together with denial of oracle access to
D ensures that the x components of full inputs remain hidden from D. On the
other hand, the hk components of full inputs remain hidden from S as the source
is denied access to hk (and no communication from D to S is allowed). As a
result, full inputs (hk, x) remain hidden from both parties involved in a UCE
attack.

This perspective allows us to build on UCEs and extend them as follows. In
our new framework, which we call Interactive Computational Extractors (ICEs),3

a general mechanism for the joint generation of full inputs is enabled and adver-
sarial restrictions that formalize what it means for full hash inputs to have high
entropy are imposed.

We let two distinguishers (D1,D2) to take part in an attack, and allow them
to communicate via a bi-directional channel. Both distinguishers get access to a
challenge hash oracle, which depending on a challenge bit implements either the
real hash function or a (keyed) random oracle. To enable the two parties to make
hidden queries, we introduce a shared write-only tape that both D1 and D2 can
write onto. When a distinguisher queries the hash oracle, the (real or ideal) hash
of the full contents of the tape is returned. In contrast to UCEs, D1 or D2 can
generate a hash key and perhaps modify it throughout the attack. This attack
scenario is symmetric for D1 and D2 and, without loss of generality, the game
terminates by D2 outputting with a bit. (Our formal definition, however, comes
with a slightly more general return statement.) For a class C of distinguishers,
we define ICE[C] security by demanding that the probability of guessing the
challenge bit for any D = (D1,D2) ∈ C is negligibly close to 1/2. See Fig. 1
(right) for a summary of this interaction.

Entropic queries. Similarly to UCEs, the ICE notion cannot be achieved with-
out constraining the way the two distinguishers communicate. The main restric-
tion that we introduce is analogous to statistical unpredictability for UCEs:

2 This can be viewed as an interactive analogue of BFM’s attack [BFM14].
3 In UCEs, “universal” refers to the fact that extraction should work with respect to

universal (i.e., all admissible) sources. Analogously, “interactive” in ICEs refers to
the fact that extraction should work for sources that can interact.
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we demand the statistical unpredictability of full inputs to the hash func-
tion, including the hash key hk, from each distinguisher’s point of view. We
choose a statistical, rather than a computational, notion so that our definitions
do not become subject to the interactive versions of the attacks highlighted
in [BFM14].4 More precisely, we require that when the hash oracle implements
a keyed random oracle, no (possibly unbounded) predictor can guess a full input
(hk, x) used to compute a hash value when it is provided with a distinguisher’s
view consisting of its inputs, random coins, and all incoming messages and oracle
responses.

Since our framework allows oracle access to both parties, unlike UCEs the two
distinguishers can implicitly communicate via hash patterns as follows. Suppose
D2 wants to leak a bit d to D1. Algorithm D2 starts by writing a random string
onto the second half of the input and hands over the attack to D1. Algorithm
D1 writes a random value to the first half of the input, calls Hash to receive
a first hash value h1, and hands over the attack back to D2. Now algorithm
D2, according to the value of d, either modifies the contents of the second half
of the input tape or leaves them unchanged. D1 can recover d by obtaining a
second hash value h2 and checking if (h1 = h2). The two distinguishers can also
communicate via a bit-fixing attack: D2 samples many (unpredictable) random
values x conditioned on its hash value beginning with bit d, which D1 can then
recover via a hash query.

In our unpredictability definition the predictor gets to see all hash responses,
and hence if there are any repetitions they will be seen by the predictor.
Unpredictability will therefore ensure that such repetition patterns will not
leak any of the queries. Sometimes, however, we need to explicitly disallow any
repeat queries to enable a security proof to go through. In such a scenario, we
can ensure that there is no leakage via hash patterns either. Repeat-freeness
appears in other related settings such as related-key attacks or correlated-input
hashing [BK03,GOR11].

1.4 Applications

BHK [BHK13a] use UCEs to show that the encryption scheme of Black, Rog-
away, and Shrimpton (BRS) [BRS03] is secure under related-key attacks (RKAs)
and key-dependent-message (KDM) attacks as long as the related keys/key-
dependent messages are derived non-adaptively at the onset and without access
to the hash key or previous ciphertexts.5

As we shall see, ICE encompasses UCE as a special case, and the BRS scheme
can also be instantiated under the above models using ICEs. We can however
also obtain feasibility results that are outside the reach of UCEs. A practically

4 This is also motivated by impossibility results for statistically secure two-party
protocols.

5 Recall that in RKA security the adversary can see encryptions of messages under
keys φ(K) for a random K and functions φ of its choice. In KDM security the
adversary can see encryptions of φ(K), under a random key K, for φ’s of its choice.
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relevant and desirable level of RKA security is that corresponding to key offsets
(the so-called xor-RKA security [LRW02,BK09]). We show that ICEs are suffi-
cient to prove the full xor-RKA security of the BRS scheme. Our formal result is
more general and applies to the larger class of split functions that take the form
φ(K1‖K2) = φ1(K1)‖φ2(K2). (Such functions have been used to build RKA-
secure PRFs [BC10], and also appear in other related contexts [CG14,LL12].)
In addition to achieving stronger security guarantees, ICEs allow instantiating
the BRS scheme using unkeyed hash functions, which is arguably closer to the
original formulation of BRS.6

We also strengthen the attainable KDM security guarantees for BRS by
showing that adversaries can choose key-dependent messages adaptively based
on the hash key and also semi-adaptively depending on previous ciphertexts.
We prove that ICEs are adaptively correlated-input secure [GOR11] and that
they relate well to other standard security properties of random oracles, such
as pseudorandomness, randomness extraction, and one-way security (see full
version). We leave it as open questions to see if full RKA beyond xor offsets or
full KDM security can be established using extractor-like notaions.

1.5 Instantiations

BHK show that random oracles fulfill their strongest proposed UCE notion,
namely UCE security with respect to computationally unpredictable sources.7

We prove that random oracles are also ICE secure. The significance of these
results are twofold [BHK13a]: (1) there are no generic attacks on ICEs and the
model is structurally sound; and (2) a layered approach to security analysis
can be enabled, whereby one first proves the security of a scheme under an ICE
assumption and then applies the RO model feasibility result. The latter is akin to
security analyses carried out in the generic group model.

Practical hash functions, however, are not monolithic objects and often follow
an iterative procedure to convert a fixed-input-length random oracle (FIL-RO)
into a variable-input-length random oracle (VIL-RO). This, in turn, raises the
question whether or not the above result can be brought closer to practice by
demonstrating positive feasibility results for VIL-ICEs in the FIL-RO model.
A seemingly immediate way to establish this result would be to start with a
hash function that is known to be indifferentiable from a VIL RO (e.g., the
HMAC or the NMAC construction), and then apply the RO feasibility result
above to conclude. This argument, however, fails as the ICE game is multi-
staged and indifferentiability does not necessarily guarantee composition in such
settings [RSS11].

Motivated by the above observations, we show both positive and negative
feasibility results for ICEs. On the negative side, we show that the indifferen-
tiable HMAC and NMAC constructions are provably ICE insecure in the FIL-RO
6 BRS [BRS03] analyze their scheme in the unkeyed RO model, which translates to

unkeyed instantiations in practice.
7 Note that this does not contradict the BFM attack as ROs do not have succinct

descriptions.
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model. On the positive side, and building on Mittelbach’s techniques [Mit14], we
prove that a keyed version of Liskov’s Zipper Hash [Lis07] is ICE secure (as a VIL
hash function) under the assumption that the underlying compression function
is a FIL-RO. Zipper Hash can be seen as a variant of the classical Merkle–
Damg̊ard [Dam90,Mer90] construction where the message blocks are processed
twice in the forward and backward directions. Hence our results strengthen the
VIL-RO feasibility result above, and also provide formal evidence for the (intu-
itive) added security guarantees that multi-pass hash functions seem to offer
over their single-pass counterparts. For instance, combined with our RKA and
KDM results, we may conclude that Zipper Hash can be safely used within the
BRS scheme with no adverse affects on its security.

The above analysis can be further strengthened in at least two directions.
First, one can weaken the underlying assumption and assume that the compres-
sion function underlying Zipper Hash is only a FIL-ICE (rather than a FIL-
RO). To this end, BHK [BHK14] give domain extenders for UCEs. Second,
and motivated by the standard-model realizations of ICEs and UCEs, we ask if
these primitives can be based on plausible hardness assumptions. Brzuska and
Mittelbach [BM14a,BM15] have recently shown positive results for UCEs with
respect to restricted classes of sources.

2 Notation

We denote the security parameter by λ ∈ N, which is implicitly given to all
algorithms (if not explicitly stated so) in the unary representation 1λ. By {0, 1}�

we denote the set of all bit strings of length � and {0, 1}∗ is the set of all finite-
length bit strings. For x, y ∈ {0, 1}∗ we denote their concatenation by x‖y,
the length of x by |x|, the ith bit of x by x[i], and the substring of x formed
using bits i to j by x[i..j]. We denote the empty string by ε. For X a finite
set, |X| denotes its cardinality, and x ←$ X denotes the action of sampling x
uniformly at random from X. If Q is a list and x a string then Q : x denotes
the list obtained by appending x to Q. Similarly, If Q1 and Q2 are lists, then
Q1 : Q2 denotes the concatenated list. Unless stated otherwise, algorithms are
assumed to be randomized. We call an algorithm efficient or PPT if it runs in
time polynomial in the security parameter. By y ← A(x; r) we denote that y
was output by algorithm A on input x and randomness r. If A is randomized
and no randomness is specified, then we assume that A is run with freshly
sampled uniform random coins, and write y ←$ A(x). We use Coins[A] to denote
the polynomially long string of random coins r used by a PPT machine A. We
say a function negl(λ) is negligible if negl(λ) ∈ λ−ω(1).

Hash functions. In the line with [BHK13a], we consider the following (sim-
plified) formalization of hash functions. A hash function consists of five PPT
algorithms H := (H.Kg, H.Ev, H.kl, H.il, H.ol) as follows. The key-generation
algorithm H.Kg gets the security parameter 1λ as input and outputs a key
hk ∈ {0, 1}H.kl(λ), where H.kl(λ) is the key-length function. Algorithm H.il(λ)
outputs the length of admissible inputs, which could take the special value ∗
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denoting the variable-length input space {0, 1}∗. Algorithm H.ol(λ) outputs the
length of admissible outputs, which we assumed to be a fixed polynomial function
of the security parameter. The deterministic evaluation algorithm H.Ev takes as
input the security parameter 1λ, a key hk, a point x ∈ {0, 1}H.il(λ), and generates
a hash value H.Ev(1λ, hk, x) ∈ {0, 1}H.ol(λ). To ease notation, we often suppress
the security parameter and simply write H.Ev(hk, x).

3 The ICE Framework

In this section we precisely define the ICE framework. We refer the reader to the
introduction for a high-level overview of the model.

Main ICED
H (λ)

1 : b ←$ {0, 1};L1 ← 1λ

2 : while b1 = ⊥ ∨ b2 = ⊥ do

3 : (b1, L2) ←$DWrite,Hash
1 (L1)

4 : (b2, L1) ←$DWrite,Hash
2 (L2)

5 : return (b1 ⊕ b2 = b)

Write(j, v)

(hk, x)[j..j + |v| − 1] ← v

Hash()

if b = 1 then T [hk, x] ← H.Ev(hk, x)

elseif T [hk, x] = ⊥ then

T [hk, x] ←$ {0, 1}H.ol(λ)

return T [hk, x]

Fig. 2. The ICE game with respect to hash function H and distinguishers D = (D1, D2).
We have omitted the initialization of various variables for readability.

The ICE game. Let H = (H.Kg,H.Ev,H.kl,H.il,H.ol) be a hash function and
let D = (D1,D2) be a pair of algorithms. We define the ICE advantage of D
against H as

Advice
H,D(λ) := 2 · Pr

[
ICED

H (λ)
]
− 1,

where game ICED
H (λ) is shown in Fig. 2. As mentioned in the introduction, we

may assume, without loss of generality, that the game termites by D2 outputting
a bit. However, in order to preserve the symmetry of the definition (which will
simplify our adversarial restrictions later on) and for added generality, we let
the distinguishers jointly guess the challenge bit by computing b1 ⊕ b2, where bi

is Di’s guess. The interaction terminates when both distinguishers return non-⊥
values for b1 and b2. For a class C of distinguishers, we define ICE[C] security
by requiring the advantage of any adversary D ∈ C to be negligible in the ICE
game.

We require (D1,D2) not to leave any superfluous blank spaces on the joint
tape. That is, a Write call must ensure that before the Hash oracle is called
there do not exist indices i < j such that x[i] = ε �= x[j] or hk[i] = ε �= hk[j].
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We also demand that the full inputs (hk, x) are valid in the sense that prior to
a Hash call hk ∈ {0, 1}H.kl(λ) and x ∈ {0, 1}H.il(λ). Although the distinguishers
D1 and D2 are in general stateful algorithms, we omit the explicit handling of
state values from the inputs and outputs of Di.

Restrictions. As discussed in the introduction, the ICE model is not feasible
unless additional restrictions on the distinguishers are imposed. We formulate our
restrictions as joint properties of (D1,D2). Before presenting our main restric-
tions corresponding to high-entropy queries, we give a set of basic classes that
will be useful in studying ICEs. As an example, for polynomials w, q, and r we
define Cw,q,r

i to be the set of all (D1,D2) such that when (D1,D2) is run in the
ICE game conditioned on b = 0 (i.e., with respect to the random oracle), the
distinguisher Di places at most w(λ) queries to Write, at most q(λ) queries to
Hash, and terminates after at most r(λ) invocations. We formalize a number of
other notions below and omit the preamble “The set of all (D1,D2) such that
when (D1,D2) is run in ICE with b = 0, we have with overwhelming probability
that” from their definitions. Note that the classes below depend on i ∈ {1, 2}.
For classes Clabel

i we define Clabel := Clabel
1 ∩ Clabel

2 . In the following table we
present several restrictions that we will be using throughout this paper.

Class Description

Cw,q,r
i Di places at most w(λ) queries to Write, at most q(λ) queries to Hash,

and terminates after at most r(λ) invocations
Cpoly

i Di makes polynomially many oracle queries
Cppt

i Di runs in polynomial time on each invocation and terminates after a
polynomial number of rounds

C0
i Di sets bi := 0 in all invocations

Cε
i Di sets L3−i := ε in all invocations

C0-hk
i Di never writes onto the hk part of the tape

C1-hk
i On its first invocation, Di writes a random hk onto the hk-part of the

tape. In subsequent invocations, Di never writes onto the hk-part of
the tape

Cdist
i Di makes distinct queries to Hash. That is, for lists Q1 and Q2 defined

in Fig. 3, the combined list Q1 : Q2 is repetition-free. Note that Cdist
i =

Cdist
3−i = Cdist

Csup
i The probability that any (possibly unbounded) predictor P can guess

a full query of Di is negligible. We call this the class of statistically
unpredictable Di. See Fig. 3 for the formal definition. Class Ccup

i is the
computational analogue, where P is restricted to be ppt

An example: UCE within ICE. We describe how UCEs can be captured
within the ICE framework. Since ICE is more expressive a framework, we need
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to (drastically) restrict the distinguishers. In modeling UCEs, we identify the
UCE distinguisher with D1 and the UCE source with D2. All parties typically
run in polynomial time and hence we restrict to Cppt := Cppt

1 ∩ Cppt
2 . In UCEs,

the source queries Hash on an unknown hash key. The distinguisher, on the
other hand, gets to see the hash key. Thus, we let D1 (which represents the
distinguisher) write a random hk to the joint input and then hand the attack
to D2 on the first invocation, i.e., D ∈ C1-hk

1 . We further restrict to Cε
1 , as a

UCE distinguisher does not leak. Since the UCE game only has a single round,
we also restrict to C1,0,2

1 (one round is used to write the hk). Finally, the source
does not take part in decision making and cannot modify the hash key: UCEs
are modeled by ICE[Cuce] where

Cuce := Cppt ∩ C1-hk
1 ∩ Cε

1 ∩ C1,0,2
1 ∩ C0

2 ∩ C0-hk
2 .

Note that the above models UCEs without any additional restrictions on
the source classes. Such requirements can be added on top by appropriately
restricting Cuce.

Unpredictability. We now formally define what we mean by a D that has
unpredictable (aka. high-entropy) queries. We focus on a statistical notion of
unpredictability [BFM14,BST15].8 We say D = (D1,D2) is statistically unpre-
dictable for the distinguisher i, and write D ∈ Csup

i , if the advantage of any
unbounded predictor P defined by

Advpred
i,D,P (λ) := Pr

[
PredP

i,D(λ)
]
,

is negligible, where game PredP
i,D(λ) is shown in Fig. 3.

Main PredP
i,D(λ)

1 : L1 ← 1λ

2 : while b1 = ⊥ ∨ b2 = ⊥ do

3 : k←1; (b1, L2) ←$DWrite,Hash
1 (L1)

4 : Lki ← Lki : Li

5 : k←2; (b2, L1) ←$DWrite,Hash
2 (L2)

6 : (hk, x) ←$P (Coins[Di],Ai, Lki)

7 : return (hk, x) ∈ Q1 : Q2

Write(j, v)

(hk, x)[j..j + |v| − 1] ← v

Hash()

if T [hk, x] = ⊥ then

T [hk, x] ←$ {0, 1}H.ol(λ)

Qk ← Qk : (hk, x)

Ak ← Ak : T [hk, x]

return T [hk, x]

Fig. 3. The unpredictability game.

8 We emphasize that computational notions are still valuable as combined with our
feasibility results, they would enable easier and more modular security proofs in the
RO model.
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Note that the predicator only gets to see the hash responses for distinguisher
Di—these are within Di’s view—and has to guess a query made by either dis-
tinguisher in the concatenated list Q1 : Q2. It is easy to check that UCE security
with respect to statistically unpredictable sources is equivalent to ICE[Cuce∩Csup]
security.

Remark. Since predictor P receives the full view of a distinguisher Di, it can
perfectly simulate a run of Di in the ICE game with respect to a random imple-
mentation of the hash oracle, without any need to see the view of the partner
distinguisher D3−i. We will rely on this observation in our proofs.

4 Example Applications

In this section we demonstrate two example use cases of ICEs. Further appli-
cations are given in the full version and summarized in Table 1 below. These
applications serve to demonstrate that many properties of random oracles that
are useful in analyses of ROM cryptosystems can be modeled in a unified way
within the ICE framework.

Table 1. Distinguisher classes used (above) and shown feasibility for (below). Here
C∗ := Cppt ∩ Cdist ∩ C1-hk

1 ∩ C0-hk
2 ∩ Cε

2 .

Goal/Model Class used/Achieved

Split RKA C∗ ∩ Csup ∩ C0
2

Split KDM C∗ ∩ Csup ∩ C0
1

Split/claw-free CIH C∗ ∩ Csup ∩ C0
2

Extractor C∗ ∩ Csup ∩ C0
1 ∩ Cε ∩ C1,1,2

Weak PRF C∗ ∩ Csup ∩ C0
1 ∩ Cε ∩ Cpoly,poly,1

poly-regular OWF C∗ ∩ Csup ∩ C0
1 ∩ C1,1,1

VIL-ROM Cppt ∩ Ccup and Cpoly ∩ Csup; both contain C∗ ∩ Csup

FIL-ROM C∗ ∩ Ccup, which contains C∗ ∩ Csup

4.1 Split RKA Security

We show that the symmetric encryption scheme proposed by Black, Rogaway,
and Shrimpton (BRS) [BRS03] is secure against related-key attacks (RKAs)
when instantiated with an ICE-secure hash function. The encryption algorithm
of the BRS scheme is implemented via EncH(K,M ;R) := (R,M ⊕ H(K‖R)),
for a hash function H, randomness R and key K. Recall that in an RKA, an
adversary can obtain encryptions of messages of its choice under correlated keys
(e.g., under K and K ⊕ 1).
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Split related-key derivation (RKD) functions φ decompose into two sub-RKD
functions φ1 and φ2 that are applied in parallel to two (fixed) sub-strings of the
key: φ(K1‖K2) = φ1(K1)‖φ2(K2).9 Split functions capture many RKA cases of
interest including the case of xoring constants into keys. Without the minimal
assumption that φ’s have unpredictable outputs (i.e., the guessing probability of
the outputs of φ(K) over randomly chosen K is negligible) RKA security is not
achievable [BK03]. In our proof, we will require a slightly stronger condition that
the sub-RKD functions φ1(K1) and φ2(K2) are individually unpredictable. Note
that offsetting keys via xor enjoys this property as xor induces a permutation
over the two halves of the key.

BHK [BHK13a], by interpreting encryption randomness as hash keys, show
that BRS is selectively RKA secure using a multi-key extension of UCE[Scup].
In contrast, the adversary in our model retains its capability to adaptively query
RKD functions of its choice depending both on the hash key and the ciphertexts
that it has previously seen. For this result, although ICE[Cppt∩Csup] is sufficient,
the assumption can be fine-tuned to ICE[C] where

C := Cppt ∩ Csup ∩ Cdist ∩ C1-hk
1 ∩ C0-hk

2 ∩ C0
2 ∩ Cε

2 .

We defer the formal proof to the full version and give a detailed outline here.

The ICE adversary. Given an RKA adversary A, we construct an ICE adver-
sary (D1,D2), where D1 handles the left components of A’s RKA queries and
D2 handles the right components as follows.

D1(L1): On initial invocation, generate a hash key hk, a random K1, and a ran-
dom bit b. Store these values and write hk onto the hk-part of the tape. Run
A(hk) to get an RKA query ((φ1, φ2),M0,M1). Output (b1, L2) := (⊥, φ2).
Proceed as follows in subsequent invocations. Generate and store a random R
and write φ1(K1) onto the 1st segment (out of three segments) of the x-part
of the tape and R onto its 3rd segment. Query Hash to get H. Recover R
and resume A on (R,H ⊕ Mb) to get a new RKA query ((φ1, φ2),M0,M1),
or a bit b′. If A outputs a bit b′, return (b1, L2) := (b = b′, ε) and terminate.
Else output (b1, L2) := (⊥, φ2).

D2(L2): When initially invoked, generate a random K2 and store it. In all
invocations (including the first), recover φ2 from L2. If φ2 = ε, return
(b2, L1) := (0, ε) and terminate. Else write φ2(K2) onto the 2nd segment
of the x-part of the tape. Output (b2, L1) := (0, ε).

Unpredictability. We show that D ∈ C for class C as defined above. To
this end, we only prove membership in Csup ∩ Cdist as other cases follow via
syntactic checks. This follows from the following two observations: (1) The Hash
queries are distinct with overwhelming probability since before each query a fresh
random value R is written onto the joint tape. (2) The functions φ1 and φ2 are

9 For simplicity we assume that these are just the left and right halves of the key. Our
proof will however also apply to any two substrings of super-logarithmic lengths.



466 P. Farshim and A. Mittelbach

run on independently chosen substrings of the key. Since they are assumed to be
individually statistically unpredictable, D1 observing independently generated
random strings corresponding to hash values never gets to know the contents of
the tape written by D2, and vice versa, D2 never gets to know what is written
on to the tape by D1.

4.2 KDM Security

When the random oracle in the BRS scheme is instantiated with an ICE-secure
hash function, we are able to show that the BRS scheme resists a partially adap-
tive form of KDM security for split key-dependent-message derivation (KDMD)
functions φ. As for RKD functions, such KDMD functions consist of sub-KDMD
functions φ1 and φ2 of the form φ(K1‖K2) := φ1(K1)‖φ2(K2). The adaptivity
level that we can tolerate is as follows. In an initial phase of the attack, the
adversary can fully adaptively query split KDMD functions that do not depend
on K2. That is, for these functions φ2(K2) is constant and independent of K2

and its value can be predicted. In a second phase of the attack, the adversary can
query split KDMD functions of its choice as long as either φ1(K1) is constant or
φ1(K1) was used in the first phase. (We emphasize that these functions are not
required to be unpredictable.) This model is strong enough to imply IND-CPA
security (without any restrictions), a case that could not be treated using UCEs.

The ICE adversary. Let A be a KDM adversary against the BRS scheme
in the model above. Our ICE[Cppt ∩ Csup ∩ Cdist] adversary corresponding to A
is as follows, where for simplicity we have assumed the lengths of keys, ran-
domness and messages are all �. (The ICE class can be further restricted as is
shown in Table 1.) In this reduction, D1 faithfully runs the first stage of the
attack, while D2 runs its second stage. To answer KDM queries, D2 relies on the
“homomorphic” property that H ⊕ (x1‖x2) = H ⊕ (x1‖0|x2|) ⊕ (0|x1|‖x2).

D1(L1): When initially invoked, generate a random hk, K1 and b and store them.
Write hk to the hk-part and K1 to the 1st (out of three) segments of the x-
part of the tape. (The segments are of lengths �/2, �/2 and � corresponding
to K1, K2 and R respectively.) Output (⊥, ε). On the second invocation, run
A(hk) and answer its KDM queries ((φ0

1, φ
0
2), (φ

1
1, φ

1
2)) as follows. Write a fresh

random value R onto the 3rd segment of the x-part of the tape. Call Hash
to get H, and resume A on (R,H ⊕ (φ1(K1)‖M∗

2 )), where M∗
2 := φ2(0�/2)

is the right K2-independent part of the message. Continue this process until
A decides to proceed to its second stage. Let stA denote A’s state. Generate
sufficiently many copies (R1, C

′
1), . . . , (Rq, C

′
q) of each of the KDM queries

made in the first phase. Let List1 denote the corresponding list of queried φb
1.

Return (0, (b, stA, (R1, C
′
1), . . . , (Rq, C

′
q), List1)) and terminate.

D2(L2): When initially invoked, generate a random K2, store it, and write it to
the 2nd segment of the x-part of the tape. Hand the attack back to D1, by
outputting (⊥, ε). On the second invocation, parse L2 appropriately as above.
Resume A on stA and answer its KDM queries ((φ0

1, φ
0
2), (φ

1
1, φ

1
2)) as follows.
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If φb
1 ∈ List1 pick a fresh ciphertext (R,C ′) corresponding to φb

1 and complete
the ciphertext preparation by setting C ← C ⊕ (0�/2‖φb

2(K2)). Otherwise
generate a random R, write it onto the 3rd segment of the x-part of the
tape, query Hash to get H, and set C ← H ⊕ (φb

1(0
�/2)‖φb

2(K2)). Resume A
on (R,C; stA) and continue in this manner until A outputs a bit b′. Return
(b = b′, ε) and terminate.

Unpredictability. D’s queries are distinct with overwhelming probability as
fresh randomness R is written on the tape before each query. Throughout the
attack, and when the hash oracle implements a random function, K2 remains
hidden from D1 as D1 only sees distinct random values as hash responses. Key
K1 also remains hidden from D2 as the (incomplete) ciphertext components
received from D1 are random strings. Hence D ∈ Cppt ∩ Csup ∩ Cdist.

5 Feasibility

In this section we start by showing that random oracles are ICE secure with
respect to interesting distinguisher classes (in particular, with respect to the
restrictions needed for the presented applications). We then consider the ICE
security of practical hash constructions built from fix-input-length (FIL) ROs.
In particular, we look at a keyed variant of Liskov’s Zipper Hash [Lis07] and
show that it achieves ICE security in the FIL-RO model. Interestingly, we show
that both HMAC and NMAC constructions [BCK96], which were recently shown
to be UCE secure in FIL-ROM [Mit14], fail to be ICE secure. This result yields
a natural counterexample to the composability of HMAC in multi-stage set-
tings, similarly to that given by Ristenpart, Shacham, and Shrimpton in [RSS11].
Furthermore, it provides a separation between ICE and UCE. Our results also
demonstrate that Zipper Hash can provide a higher level of security compared
to HMAC when used in multi-stage settings.

5.1 ICEs from Random Oracles

BHK [BHK13b] show that UCE-secure hash functions can be provably con-
structed in the RO model. The philosophical justifications of this result are
that there are no structural weaknesses in the definitional framework, and more
importantly, a layered approach to protocol design in the RO model can be
enabled [BHK13b]. We show that ICEs also enjoy RO feasibility.

Let H.kl(·) and H.ol(·) be two arbitrary functions as in the syntax of a
hash function. Let R be a family of variable-input-length (VIL) ROs (i.e., with
domain {0, 1}∗) and range {0, 1}H.ol(λ). We construct the required hash func-
tion HR by defining the key-generation algorithm H.Kg(1λ) to return a random
hk ←$ {0, 1}H.kl(λ) and the evaluation algorithm H.EvR(hk, x) to return R(hk‖x).
Our first feasibility result is as follows.
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Theorem 1 (ICE feasibility in ROM). The VIL hash function HR con-
structed above is ICE[C] secure in the VIL-RO model for R for the following
(incomparable) classes of adversaries:

C := Cpoly ∩ Csup and C := Cppt ∩ Ccup.

The proof of this theorem is similar to the proof of [BHK13b, Theorem 6.1]
for UCEs, and we give the details in the full version. Intuitively, we rely on
unpredictability of queries to simulate the random oracles used in the construc-
tion and implicit in the ICE game independently. Interestingly, distinctness of
queries will not be needed in this proof and we do not restrict the classes to Cdist.
We note that the above classes include all those needed for the applications, as
listed in Table 1. We also note that this theorem generalizes the feasibility of
UCEs for unpredictable sources in ROM [BHK13b] as it can be easily verified
that

Cuce ∩ Ccup
2 ⊆ Cppt ∩ Ccup and Cuce ∩ Csup

2 ⊆ Cppt ∩ Csup.

5.2 VIL-ICEs from Ideal Compression

Practical variable-input-length (VIL) hash functions are not monolithic objects.
They often follow iterative modes of chaining that convert a fix-input-length
(FIL) compression function to one that accepts variable-length inputs. This
design principle has been successfully validated via the indifferentiability frame-
work of Maurer et al. [MRH04,CDMP05], whereby an indifferentiable hash-
function construction is shown to securely compose when used in place of a
random oracle. As pointed out in [RSS11], the indifferentiability framework only
guarantees composition in single-stage environments. The ICE and UCE games,
however, are inherently multi-staged and lie outside the reach of (plain) indiffer-
entiability. Mittelbach [Mit14] develops new techniques to extend the reach of
(plain) indifferentiability to certain classes of multi-stage games. In particular,
he shows that the HMAC and NMAC constructions are UCE secure. Interest-
ingly, we show that these results do not carry over to the ICE model: HMAC
and NMAC provably fail to be ICE secure. On the other hand, we build on Mit-
telbach’s techniques to prove that a variant of Zipper Hash [Lis07] is provably
ICE secure.

Attacks on HMAC and NMAC. The HMAC and NMAC constructions are shown
in Fig. 4. If we denote the iterated compression function used in HMAC by h, then
it is easily seen that key hk is only used on the “outer” h-evaluations. Consider
an ICE distinguisher D1 which holds hk, computes the values

y1 := h(hk ⊕ ipad, IV) and y2 := h(hk ⊕ opad, IV)

and sends them to distinguisher D2. Given (y1, y2), distinguisher D2 can compute
the HMAC values for any x ∈ {0, 1}∗ under hk. Thus, in order to win the ICE
game, D2 simply chooses a random x and writes it on the input tape, and calls
Hash to receive a value y. It then locally recomputes H.Evh(hk, x) using the
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hk ⊕ ipad

h

m1

h

m2

h

m�

h

h

IV

h
hk ⊕ opad

IV
H.Evh(hk, m)

replaced by k1 for NMAC

replaced by k2 for NMAC

Fig. 4. The HMAC construction. If the dashed boxes are exchanged for independent
keys k1 and k2, we obtain NMAC. Here we are ignoring padding.

compression function h and values (y1, y2). If the results match, it outputs 1, and
else it outputs 0. It is easily seen that this adversary wins ICE with overwhelming
probability. Furthermore, given (y1, y2), the hash key hk remains statistically
hidden from D2 (as the number of h queries is bounded by a polynomial). Value
x, being random, also remains statistically hidden from D1. Formally, this attack
breaks ICE[C] for

C := Cppt ∩ Csup ∩ C1,1,1 ∩ C1-hk
1 ∩ C0

1 ∩ C0-hk
2 ∩ Cε

2 .

Zipper Hash. The above attack raises the question if any iterative hash func-
tion can be ICE[C] secure for a meaningful class of distinguishers C. We show
that a hybrid construction of a keyed version of Liskov’s Zipper Hash construc-
tion [Lis07] and chopped Merkle–Damg̊ard (chop-MD) of Coron et al. [CDMP05]
is ICE secure. Zipper Hash can be regarded as a basic Merkle–Damg̊ard scheme
where the message is processed twice, the second time in reversed block order.
chop-MD refers to the construction where a hash value consists only of the first
half of the output bits of the final compression function. Our hybrid construction
results from adding the chop step to Zipper Hash. Furthermore, we consider a
keyed variant of Zipper Hash by prepending the hash key to the message. We
assume that key length matches block length, which means that the first and last
evaluations of the compression function operate on the hash key. We denote this
keyed variant of Zipper Hash by chop-KZIP. Figure 5 shows a schematic diagram
of the construction.

Theorem 2 (Zipper Hash’s ICE security). The VIL hash function
chop-KZIPh constructed above is ICE[C] secure in the FIL-RO model for h :
{0, 1}μ × {0, 1}n −→ {0, 1}n for the class

C := Cpoly ∩ Csup ∩ Cdist ∩ C1-hk
1 ∩ C0

1 ∩ C0-hk
2 ∩ Cε

2 .

An analogous result holds for polynomial-time distinguishers that are only com-
putationally unpredictable.

In the full version, we give the proof, where we also present a self-contained
introduction to the unsplittability technique [Mit14].
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hk

hIV

m1

h

m�

h

m�

h

m1

h

hk

h g H.Ev(hk, m)

Fig. 5. The Zipper Hash construction merged with chop-MD [CDMP05] and keyed
with hk. The final node g corresponds to the projection to the first half of the output
of h.

Note that class C above contains that class used to attack HMAC and hence
chop-KZIPh provably achieves a higher level of security in multi-stage games.
We note that the reach of the above feasibility result includes all applications
scenarios listed in Table 1. In particular, chop-KZIPh can security replace the
random oracle in these applications. For this also note that we can easily drop
C0
1 by requesting that in the last round D1 outputs a guess for b which D2 echoes.

With the other restrictions present this change is without loss of generality.
This result cannot be strengthened for the (large) adversarial classes that

were used in Theorem 1. To see this, consider two distinguishers that engage in
a distributed computation of chop-KZIPh hash values as follows. Distinguisher
D1 knows hk and m1 and D2 knows m2, where message m := m1‖m2 is being
hashed. Distinguisher D1 computes an intermediate hash digest using (hk,m1)
and forwards it to D2. Distinguisher D2 now computes another iteration of the
hash using m2 and forwards the result to D1. Distinguisher D1 can now complete
the hash computation using its knowledge of (hk,m1) and the intermediate hash
digest that it receives.

A straightforward generalization of this attack also rules out multi-pass vari-
ants of chop-KZIPh (where messages are processed multiple times in the forward
and backward directions), including those whose number of passes is not fixed a
priori and can depend on the number of message blocks. This is due to the fact
that the number of rounds in an ICE attack is not fixed. This, in turn, raises
the question if ICE[Cpoly ∩ Csup] is feasible in the FIL-RO model. We conclude
the paper with a candidate construction that we conjecture to reach this level
of security.

Mix Hash. Let h : {0, 1}n × {0, 1}n −→ {0, 1}n be a compression function.
Let m := m1‖ · · · ‖m� ∈ ({0, 1}n)� be a message with � blocks of length n each.
Let Mixh(m) denote the transformation that maps m to M := ‖i‖jMi,j where
Mi,j := h(mi,mj) for 1 ≤ i < j ≤ �. (Therefore M has �(� − 1)/2 blocks.) Now
let hk ∈ {0, 1}n be a hash key and define

MixHashh(hk,m) := HMACh(0n,Mixh(hk‖m)).

Note that MixHashh places Θ(�2) calls to its compression function h.10 The design
rationale behind MixHashh is as follows. All intermediate digests values Mi,j are

10 Indeed, MixHash is a (highly) offline function: for α ∈ [0, 1], it requires space roughly
n�

√
1 − α bits after a fraction α of the n�(� + 1)/2 bits are processed.
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needed in order to successfully compute a hash value. These values, however,
consist of all pairs (mi,mj) compressed through h. Since h is a monolithic object,
Mi,j cannot be computed in a distributed way, a strategy that was used in all
previous attacks. In other words, one of the distinguishers has to know (hk,m)
in full and hence will violate unpredictability. To see this, suppose D1 does not
know mj in full and D2 does not know mi in full for some i < j. Then there is no
way for these parties to learn Mi,j := h(mi,mj) without one of them explicitly
quarrying h on (mi,mj). This however means that both mi and mj are known to
the quarrying party, which leads to a contradiction. We leave a formal analysis
of MixHashh in the FIL-RO model for h as future work.
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Abstract. In an order-preserving encryption scheme, the encryption
algorithm produces ciphertexts that preserve the order of their plain-
texts. Order-preserving encryption schemes have been studied intensely
in the last decade, and yet not much is known about the security of
these schemes. Very recently, Boneh et al. (Eurocrypt 2015) introduced
a generalization of order-preserving encryption, called order-revealing
encryption, and presented a construction which achieves this notion with
best-possible security. Because their construction relies on multilinear
maps, it is too impractical for most applications and therefore remains
a theoretical result.

In this work, we build efficiently implementable order-revealing
encryption from pseudorandom functions. We present the first efficient
order-revealing encryption scheme which achieves a simulation-based
security notion with respect to a leakage function that precisely quan-
tifies what is leaked by the scheme. In fact, ciphertexts in our scheme
are only about 1.6 times longer than their plaintexts. Moreover, we show
how composing our construction with existing order-preserving encryp-
tion schemes results in order-revealing encryption that is strictly more
secure than all preceding order-preserving encryption schemes.

1 Introduction

A symmetric encryption scheme is order-preserving if the ciphertexts pre-
serve the numeric ordering of their underlying plaintexts. The notion of order-
preserving encryption (OPE) was introduced by Agrawal et al. [1] who showed
how it could be used to efficiently answer range queries over encrypted data,
as well as sorting queries, searching queries, and more. Indeed, existing OPE
solutions have been implemented in practice [43,46] for these exact purposes.
Since the introduction of OPE, there has been a plethora of work on analyzing
the security of various OPE schemes, found both in the cryptography commu-
nity and the database community. However, it is troubling that in spite of the
numerous practical applications of OPE, the security of the best candidate OPE
schemes is still not well understood.

Prior Work. The first OPE construction by Agrawal et al. [1] relied on heuris-
tics and lacked a formal security analysis. Subsequently, Boldyreva et al. [7] gave
c© International Association for Cryptologic Research 2016
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the first formal security definitions for OPE schemes. Boldyreva et al. introduced
two primary notions for security of an OPE scheme. The first notion of secu-
rity for an OPE scheme is called indistinguishability under an ordered chosen
plaintext attack (IND-OCPA). The IND-OCPA definition can be viewed as a
generalization of semantic security [31], and effectively says that encryptions of
a sequence of messages should reveal nothing about the underlying messages
other than their ordering. However, in the same work, Boldyreva et al. showed
that no efficient order-preserving encryption scheme can be IND-OCPA secure,
even in settings where the size of the ciphertext space is exponentially larger
than the size of the plaintext space.

In light of this lower bound for OPE schemes that satisfy IND-OCPA security,
Boldyreva et al. introduced a weaker notion of security (POPF-CCA security)
where the encryption function for the OPE scheme is compared to a random
order-preserving function—that is, the encryption algorithm for an OPE scheme
behaves like a truly random order-preserving function. Under this definition, an
OPE scheme inherits the properties of a random order-preserving function.1 In
the same work, Boldyreva et al. gave an explicit construction of an OPE scheme
that satisfies POPF-CCA security. However, the POPF-CCA security definition
does not precisely specify the information that is leaked by an OPE scheme that
achieves this definition. In fact, a scheme that achieves this notion of security
does not even satisfy semantic security for a single encryption, and indeed, in
subsequent work, Boldyreva et al. [8] showed that ciphertexts in their OPE
scheme leak approximately the first half of the bits of the underlying plaintexts.
In addition, they introduce several new security definitions in order to better
quantify the information leakage of OPE schemes that are POPF-CCA secure.

Recently, Boneh et al. [9] proposed a generalization of OPE called order-
revealing encryption (ORE). In an OPE scheme, the ciphertexts are numeric-
valued, and the ordering of the underlying plaintexts is determined by
numerically comparing the ciphertexts. In contrast, in an ORE scheme, the
ciphertexts are not constrained to any particular form, and instead, there is
a publicly computable comparison function which takes two ciphertexts and
outputs the numeric ordering of the underlying plaintexts2. Although this gen-
eralization may at first seem subtle, Boneh et al. constructed an ORE scheme
from multilinear maps that achieves the “best-possible” notion of security, which
is equivalent to the IND-OCPA security notion for order-preserving encryption.

The main drawback of the Boneh et al. ORE construction is that it relies
on complicated tools and strong assumptions on these tools, and as such, is
currently impractical to implement.

1 This definition is inspired by the similar definition for PRF security [28], which
compares the output of a keyed function to that of a truly random function.

2 This application was also observed and independently achieved by Goldwasser et al.
[29] using indistinguishability obfuscation.
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1.1 Our Contributions

We now summarize the main contributions of this work, which include a new
simulation-based security notion for ORE, along with a practical construction of
an ORE scheme which achieves this security notion. We also show how our new
construction can be used to achieve a strictly stronger notion of security com-
pared to other stateless and efficiently implementable (e.g., constructions that do
not rely on powerful primitives such as multilinear maps and indistinguishability
obfuscation) OPE and ORE encryption schemes.

Security Model. In our work, we take the general approach of Boneh et al. in
constructing an ORE scheme, except we take a more efficient route. Our first
contribution is a new security definition for order-revealing encryption schemes
that both allows for and explicitly models the leakage in the scheme. Our design
goals for introducing this new security model are twofold: first, the security model
should enable constructions that are efficiently implementable, and second, it
should provide a precise quantification of any information leaked by the scheme.
The two primary notions of security, IND-OCPA and POPF-CCA, introduced by
Boldyreva et al. [7] each satisfy one of these two properties. In particular, all non-
interactive, stateless3 ORE schemes that achieve IND-OCPA security require
strong cryptographic primitives such as multilinear maps or indistinguishability
obfuscation [9,29], and thus, are not efficiently implementable today. At the other
end of the spectrum, it is difficult to precisely quantify the leakage of schemes
that satisfy POPF-CCA security. The work by Boldyreva et al. [8] provides some
concrete lower and upper bounds for the leakage under the strong assumption
that the plaintexts are drawn from a uniform distribution. For more general
distributions, the leakage remains unclear.

In our work, we give a simulation-based definition of security for ORE with
respect to a leakage function L. In other words, our definition states that
whatever an adversary is able to deduce from seeing encryptions of messages
m1, . . . , mt, it could also deduce given only the leakage L(m1, . . . , mt). The
“best-possible” security for ORE would correspond to the case where the leak-
age function simply outputs whether mi < mj for all pairs of messages mi

and mj . By allowing for the possibility of additional leakage, it becomes possi-
ble to construct practical ORE schemes from standard assumptions. Thus, our
constructions provide a concrete trade-off between security and efficiency. Our
security definitions are similar to the simulation-based definitions that have been
considered previously in the searchable symmetric encryption literature [14,22].

Constructions. In our main construction, we show how to construct an ORE
scheme from one-way functions (more precisely, from pseudorandom functions
(PRFs) [28]). This particular ORE scheme reveals slightly more information
than just the ordering of the underlying messages. Specifically, two ciphertexts
encrypting messages m1 and m2 also reveal the index of the first bit in m1 and
3 There are “mutable” order-preserving encryption schemes [35,36,42] that do satisfy

IND-OCPA, but they require stateful encryption, and oftentimes, an interactive
protocol to “update” ciphertexts. We survey some of these constructions in Sect. 1.2.
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m2 that differ. In other words, our ORE scheme leaks some information about
the relative distance between the underlying messages.

We give a brief overview of our PRF-based construction. The secret key in our
scheme consists of a PRF key k. The output space of the PRF is the set {0, 1, 2}.
Each ciphertext consists of the bits of the message blinded by the outputs of the
PRF evaluated on the prefixes of the message. More precisely, to encrypt an
n-bit message m = m1m2 · · · mn, the encryption algorithm effectively computes
the following for each i ∈ [n]:

ui = F (k,m1m2 · · · mi−1) + mi (mod 3).

Note that to support variable-length PRF inputs, we simply pad the input. We
describe our construction in greater detail in Sect. 3. The ciphertext is then the
tuple ct = (u1, . . . , un) of blinded values.

To compare encryptions ct = (u1, . . . , un) and ct′ = (u′
1, . . . , u

′
n) of messages

m and m′, the evaluator first finds the first index i for which ui �= u′
i. Since ui

and u′
i are functions of just the first i bits of m and m′, respectively, the first

index i for which ui �= u′
i is the first bit of m and m′ that differ. After identifying

the ith bit that differs, the evaluator uses ui and u′
i to determine which message

has 0 as the ith bit and which message has 14. Conversely, if ui = u′
i for all i,

then cti = ct′i, and so m = m′. Security of this construction follows from the
security of the PRF (Theorem 3.2).

Ciphertexts in our candidate scheme are �n · log2 3� ≈ �1.6n� bits, where n is
the bit-length of the message. As a point of comparison, ciphertexts in the OPE
scheme of Boldyreva et al. [7] are only n + 1 bits long. While the ciphertexts in
our scheme are longer (by a multiplicative factor log2 3), the authors of [8] note
that even if the size of the ciphertext space is increased beyond n + 1 bits in the
Boldyreva et al. scheme, the security of their construction does not improve by
any noticeable amount.

We then explain in Sect. 3.2 how to convert our ORE scheme into an OPE
scheme, at the expense of longer ciphertexts. This is useful for applications where
it is more convenient to have a numeric ciphertext space and for order relations
to be computable without a “custom” comparison function. The transformation
we describe is natural and does not reduce the security of the original ORE
scheme. In particular, we note that the resulting OPE scheme does not behave
like a random order-preserving function (the ideal object from the POPF-CCA
security notion). Thus, the scheme is able to achieve stronger security than the
Boldyreva et al. OPE scheme.

Comparison with Existing Schemes. First, we note in Sect. 2.3 that the
security of any OPE scheme can be “augmented” by applying ORE encryption
on top of OPE encryption. The resulting scheme is at least as secure as the
underlying OPE scheme, and moreover, inherits the security properties of the
ORE scheme. Hence, by composing our ORE construction with existing OPE
constructions, we obtain ORE schemes that are at least as secure.
4 Either ui +1 = u′

i (mod 3), in which case m < m′, or ui−1 = u′
i (mod 3), in which

case m > m′.
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While composing an OPE scheme with an ORE scheme yields a scheme that
is at least as secure as the underlying OPE scheme, we show that even without
this composition, our basic ORE scheme still achieves stronger security guaran-
tees according to the one-wayness metrics introduced by Boldyreva et al. [8] for
analyzing the leakage of random order-preserving functions (and by extension,
any OPE scheme that is POPF-CCA secure). In our work, we introduce two
generalized one-wayness notions and show that under a uniform plaintext distri-
bution,5 our basic ORE scheme achieves strictly stronger security compared to
OPE schemes that are POPF-CCA secure. Specifically, Boldyreva et al. [8] show
that a random order-preserving function leaks half of the most-significant bits
of the messages with probability close to 1. In contrast, under the same settings,
we can show that our basic ORE scheme will not leak any constant fraction of
the message bits with overwhelming probability.

1.2 Related Work

In recent years, there have been numerous works on order-preserving encryption
and related notions [1,7,8,35,36,38,41,42,44,47]. In this section, we survey some
of these works.

Security Definitions. Though the POPF-CCA security definition introduced
by Boldyreva et al. [7] is similar in flavor to PRF security, it is not immediately
evident what kind of information the output of a random order-preserving func-
tion leaks about its input. In a follow-up work [8], Boldyreva et al. introduce
several notions (based on definitions of one-wayness [27] for one-way functions)
to capture the information leakage in schemes that are POPF-CCA secure. They
show that a random order-preserving function leaks at least half of the bits in
each message.

Teranishi et al. [47] also introduce a stronger indistinguishability-based
notion (stronger than the one-wayness definitions from [8], but weaker than
IND-OCPA) for OPE schemes, as well as a construction that achieves these
stronger notions. Notably, their definition ensures that under a uniform message
distribution, any fraction of the low-order bits of the messages being encrypted
are hidden.

Recently, Naveed et al. [40] analyzed the information leaked by order-
preserving encryption used in practical scenarios.

Modular OPE. Boldyreva et al. also introduced the notion of modular OPE
as a possible extension of standard OPE [8]. In modular OPE, a modular shift
is applied to each plaintext before applying OPE—so the scheme is not order-
preserving, but naturally supports “wrap-around” range queries. Their modular
OPE scheme adds an extra layer of security to vanilla OPE, but it is worth
noting that leakage of a small amount of information (say, a single plaintext-
ciphertext pair) reveals the shift value and nullifies this added security. Subse-

5 This is the only distribution for which we have concrete analysis of the leakage in
any POPF-CCA secure scheme.
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quently, Mavroforakis et al. [38] designed several protocols to avoid leaking the
shift value while using modular OPE schemes in practice.

Mutable OPE. Popa et al. [42] introduced a related notion of a mutable order-
preserving encoding scheme which can be viewed as a two-party protocol that
allows a user to insert and store encrypted values in a database such that the
database is able to perform comparisons and range queries on the encrypted
values without learning anything more about the values. Their construction is
interactive and leverages stateful encryption. By working in this setting, the
authors are able to circumvent the Boldyreva et al. [7] lower bound for order-
preserving encryption and show that their scheme is IND-OCPA secure.

In subsequent work, Kerschbaum and Schröpfer [36] improved on the commu-
nication complexity of the Popa et al. construction at the expense of increasing
the amount of client-side state. Specifically, in their construction, the amount
of persistent state the client has to maintain increases linearly in the number of
elements inserted into the database. More recently, Kerschbaum [35] introduced
a new notion of frequency-hiding OPE that introduces additional randomness to
hide whether multiple ciphertexts encrypt the same value. Their notions provide
a strictly stronger guarantee than IND-OCPA.

Very recently, Roche et al. [44] introduced the notion of partial order-
preserving encodings, which optimizes for the setting where there are a huge
number of insertion queries but only a moderate number of range queries. Their
protocol improves upon the round-complexity for insertions compared to the
Popa et al. protocol [42], and requires the client to maintain less state than
the Kerschbaum-Schröpfer construction [36]. All of the schemes described here
require stateful encryption and employ an interactive encryption procedure.

ORE. Order-revealing encryption schemes, as introduced by Boneh et al. [9] pro-
vide another method of circumventing the Boldyreva et al. lower bound [7]. In an
ORE scheme, the public comparison operation is not required to correspond to
numerically comparing the ciphertexts, and in fact, the ciphertexts themselves
need not be elements of a numeric, well-ordered set. This type of relaxation was
previously considered by Pandey and Rouselakis [41] in the context of property-
preserving encryption. In a property-preserving encryption scheme, there is a
publicly computable function that can be evaluated on ciphertexts to deter-
mine the value of some property on the underlying plaintexts. Order-revealing
encryption can thus be viewed as a property-preserving encryption scheme for
the comparison operation. Pandey and Rouselakis introduce and explore several
indistinguishability-based notions of security for property-preserving encryption;
however, they do not construct an order-revealing encryption scheme.

To the best of our knowledge, all existing ORE schemes that provide IND-
OCPA security either rely on very strong (and currently impractical) crypto-
graphic primitives such as indistinguishability obfuscation [29] and cryptographic
multilinear maps [9], or only achieve a weaker notion of security [3,12] when
instantiated with simple cryptographic primitives such as public key cryptogra-
phy. For the constructions based on indistinguishability obfuscation or multilin-
ear maps [9,29], security of the ORE scheme is conditional on the conjectured
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security of cryptographic multilinear maps [2,10,20,21,23,26,37]6. However, in
the last few months, numerous attacks [11,16–19,33,39] on these multilinear
maps have emerged, raising some doubts about the security of constructions
that leverage them.

To avoid multilinear maps in favor of more well-studied number-theoretic or
lattice-based assumptions, one can apply arity-amplification techniques [3,12] to
a single-input functional encryption scheme based on simpler assumptions such
as learning with errors [30] or semantically-secure public-key encryption [32,45].
However, due to limitations of the underlying functional encryption schemes,
the resulting ORE scheme only provides “bounded-message” security—that is,
security only holds if there is an a priori (polynomial) bound on the maximum
number of messages that will be encrypted. Moreover, the length of the cipher-
texts in this scheme grows polynomially in the bound on the number of messages
that will be encrypted. These constraints severely limit the practicality of the
resulting ORE scheme. To obtain full semantic security, it would be necessary
to apply the arity-amplification transformation to a more powerful functional
encryption scheme, but to date, the only known candidates of such schemes rely
again on indistinguishability obfuscation [24] or multilinear maps [25].

Recently, Bun and Zhandry [13] investigated the connection between order-
revealing encryption and problems in learning theory.

Other schemes. Numerous ad hoc or heuristic order-preserving encryption
schemes [6,34,48] have been proposed in the literature, but most lack formal
security analysis.

2 Order-Revealing Encryption

In this section, we establish and review some conventions that we use in this
work, and also formally define our security notions for our encryption schemes.

Preliminaries. For n ∈ N, we write [n] to denote the set of integers {1, . . . , n},
and Zn to denote the additive group of integers modulo n. If P(x) is a predicate
on x, we write 1(P(x)) to denote the indicator function for P: that is, 1(P(x)) =
1 if and only if P(x) = 1, and 0 otherwise. If x, y ∈ {0, 1}∗ are bit-strings, we
write x‖y to denote the concatenation of x and y. For a finite set S, we write
Unif(S) to denote the uniform distribution on S. We say a function f(λ) is
negligible in a security parameter λ if f = o(1/λc) for all c ∈ N. We write
negl(λ) to denote a negligible function in λ and poly(λ) to denote a polynomial
in λ. We say an event occurs with negligible probability if the probability of the
event is negl(λ), and it occurs with overwhelming probability if the complement
of the event occurs with negligible probability. Finally, we review the definition
of a pseudorandom function (PRF) [28]. Let Funs[D,R] denote the set of all
functions from a domain D to a range R. In this paper, we specialize the domain
of our PRFs to {0, 1}n.
6 To date, the only concrete instantiations of indistinguishability obfuscation [4,5,24,

49] leverage multilinear maps.
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Definition 2.1 (Pseudorandom Function [28]). Fix a security parameter
λ. A PRF F : K × {0, 1}n → R with key space K, domain {0, 1}n, and range R
is secure if for all efficient adversaries A,

∣
∣
∣ Pr

[
k

r←− K : AF (k,·)(1λ) = 1
]
−

Pr
[
f

r←− Funs[{0, 1}n,R] : Af(·)(1λ) = 1
]∣∣
∣ = negl(λ).

2.1 Order-Revealing Encryption

An order-revealing encryption (ORE) scheme is a tuple of algorithms Π =
(ORE.Setup,ORE.Encrypt,ORE.Compare) defined over a well-ordered domain D
with the following properties:

– ORE.Setup(1λ) → sk. On input a security parameter λ, the setup algorithm
ORE.Setup outputs a secret key sk.

– ORE.Encrypt(sk,m) → ct. On input the secret key sk and a message m ∈ D,
the encrypt algorithm ORE.Encrypt outputs a ciphertext ct.

– ORE.Compare(ct1, ct2) → b. On input two ciphertexts ct1, ct2, the compare
algorithm ORE.Compare outputs a bit b ∈ {0, 1}.

Remark 2.2 (Public Parameters). In general, the setup algorithm of an
ORE scheme can also output public parameters pp which are then passed as
an additional input to the comparison algorithm, as is done in Boneh et al. [9].
However, none of our constructions require these public parameters, so we omit
them in this work for simplicity.

Remark 2.3 (Support for Decryption). As described, our definition of an
order-revealing encryption scheme does not include a “decryption” function.
However, this omission is without loss of generality. To decrypt a message, the
holder of the secret key can use the secret key to encrypt messages of her choos-
ing, apply the comparison algorithm, and perform binary search to recover the
message. An alternative method that avoids the need for binary search is to
augment each ORE encryption of a message m with an encryption of m under
a CPA-secure symmetric encryption scheme. The secret key of the ORE scheme
would also include the key for the symmetric encryption scheme. As long as the
underlying encryption scheme is CPA-secure, including this additional cipher-
text does not compromise security. For the remainder of this work, we use the
schema described above that does not explicitly specify a decryption function.

Correctness. Fix a security parameter λ. An ORE scheme Π = (ORE.Setup,
ORE.Encrypt,ORE.Compare) over a well-ordered domain D is correct if for sk ←
ORE.Setup(1λ), and all messages m1,m2 ∈ D,

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1 − negl(λ),

where ct1 ← ORE.Encrypt(sk,m1) and ct2 ← ORE.Encrypt(sk,m2), and the
probability is taken over the random coins in ORE.Setup and ORE.Encrypt.
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Security. We now give our simulation-based notion of security for an ORE
scheme. As described in Sect. 1.1, our security definition is parameterized by a
leakage function L, which exactly specifies what is leaked by an ORE scheme.

Definition 2.4 (Security of ORE with Leakage). Fix a security parameter
λ ∈ N. Let Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare) be an ORE scheme.
Let A = (A1, . . . ,Aq) be an adversary for some q ∈ N. Let S = (S0,S1, . . . ,Sq)
be a simulator, and let L(·) be a leakage function. We define the experiments
REALoreA (λ) and SIMore

A,S,L(λ) as follows:

REALoreA (λ):
1. sk ← ORE.Setup(1λ)
2. (m1, stA) ← A1(1λ)
3. c1 ← ORE.Encrypt(sk,m1)
4. for 2 ≤ i ≤ q:

(a) (mi, stA) ← Ai(stA, c1, . . . , ci−1)
(b) ci ← ORE.Encrypt(sk,mi)

5. output (c1, . . . , cq) and stA

SIMore
A,S,L(λ):

1. stS ← S0(1λ)
2. (m1, stA) ← A1(1λ)
3. (c1, stS) ← S1(stS ,L(m1))
4. for 2 ≤ i ≤ q:

(a) (mi, stA) ← Ai(stA, c1, . . . , ci−1)
(b) (ci, stS) ← Si(stS ,L(m1, . . . , mi))

5. output (c1, . . . , cq) and stA

We say that Πore is a secure ORE scheme with leakage function L(·) if for all
polynomial-size adversaries A = (A1, . . . ,Aq) where q = poly(λ), there exists
a polynomial-size simulator S = (S0,S1, . . . ,Sq) such that the outputs of the two
distributions REALoreA (λ) and SIMore

A,S,L(λ) are computationally indistinguishable.

Remark 2.5 (IND-OCPA Security). We briefly note how the IND-OCPA
definition of security is captured by this definition. Let L be the following leakage
function:

L(m1, . . . , mt) = {1(mi < mj) : 1 ≤ i < j ≤ t} .

If an ORE scheme is secure with leakage L, then it is IND-OCPA secure.

2.2 Order-Preserving Encryption (OPE)

An OPE scheme [1,7] is a special case of an ORE scheme, where the cipher-
text space is required to be a well-ordered range R and moreover, for two
ciphertexts ct1, ct2 ∈ R, the comparison algorithm outputs 1 if ct1 < ct2.
For simplicity, we can write an OPE scheme as a tuple of algorithms Π =
(OPE.Setup,OPE.Encrypt) defined over a well-ordered domain D and well-
ordered range R with the following properties:

– ORE.Setup(1λ) → sk. On input a security parameter λ, the setup algorithm
ORE.Setup outputs a secret key sk.

– ORE.Encrypt(sk,m) → ct. On input the secret key sk and a message m ∈ D,
the encrypt algorithm OPE.Encrypt outputs a ciphertext ct ∈ R.
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Correctness. An OPE scheme Π = (OPE.Setup,OPE.Encrypt) over a well-
ordered domain D and well-ordered range R is correct if sk ← OPE.Setup(1λ),
and all messages m1,m2 ∈ D,

m1 < m2 ⇐⇒ OPE.Encrypt(sk,m1) < OPE.Encrypt(sk,m2)

with overwhelming probability.

2.3 Composing OPE with ORE

By composing an ORE scheme with an OPE scheme, we obtain an ORE
scheme whose security is at least as strong as the security of the underlying
OPE scheme. Let Πope = (OPE.Setup,OPE.Encrypt) be an OPE scheme and
Π in

ore = (OREin.Setup,OREin.Encrypt,OREin.Compare) be an ORE scheme. Con-
sider the following composed construction Πore = (ORE.Setup,ORE.Encrypt,
ORE.Compare) of an ORE scheme with an OPE scheme:

– ORE.Setup(1λ). The setup algorithm runs sk1 ← OPE.Setup(1λ) and sk2 ←
OREin.Setup(1λ). The secret key is sk = (sk1, sk2).

– ORE.Encrypt(sk,m). The encryption algorithm outputs OREin.Encrypt(sk2,
OPE.Encrypt(sk1,m)).

– ORE.Compare(ct1, ct2). The compare algorithm computes and outputs the
value OREin.Compare(ct1, ct2).

Correctness of Πore follows immediately from the correctness of Π in
ore and Πope.

Furthermore, we note that under our simulation-based definition of security, the
composed scheme Πore is at least as secure as Πope. This intuition is formalized
in the following remark, whose proof follows immediately by construction.

Remark 2.6 (Security of Composed Scheme). For any leakage function
L(·), if the OPE scheme Πope is secure with leakage function L(·), then the ORE
scheme Πore is also secure with leakage function L(·).

3 Main Construction

In this section, we give a construction of an ORE scheme for the set of n-bit
positive integers with the following leakage function:

Lf(m1, . . . , mt) := {(inddiff(mi,mj), 1(mi < mj)) : 1 ≤ i < j ≤ t}, (3.1)

where inddiff(x, y) gives the index of the first bit where x and y differ. If x = y,
we set inddiff(x, y) = n + 1. In other words, for x �= y, if x = x1 · · · xn and
y = y1 · · · yn, then inddiff(x, y) is the smallest index � ∈ [n] for which x� �= y�.

Construction. Fix a security parameter λ ∈ N, and take an integer M ≥ 3. Let
F : K × ([n] × {0, 1}n−1) → ZM be a secure PRF. We define our ORE scheme
Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare) as follows:
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– ORE.Setup(1λ). The setup algorithm chooses a uniformly random PRF key k
for F . The secret key is sk = k.

– ORE.Encrypt(sk,m). Let b1 · · · bn be the binary representation of m and let
sk = k. For each i ∈ [n], the encryption algorithm computes

ui = F (k, (i, b1b2 · · · bi−1‖0n−i)) + bi (mod M),

and outputs the tuple (u1, u2 . . . , un).
– ORE.Compare(ct1, ct2). The compare algorithm first parses

ct1 = (u1, u2, . . . , un)
ct2 = (u′

1, u
′
2, . . . , un),

where u1, . . . , un, u′
1, . . . , u

′
n ∈ ZM . Let i be the smallest index where ui �= u′

i.
If no such index exists, output 0. If such an index exists, output 1 if u′

i = ui+1
(mod M), and 0 otherwise.

3.1 Correctness and Security

We now show that the above ORE scheme Πore is correct and secure against the
leakage function Lf from Eq. (3.1). We give the proof of the following theorem
in the full version of this paper [15].

Theorem 3.1 The ORE scheme Πore is correct.

Next, we state and prove the security theorem for Πore.

Theorem 3.2 The order-revealing encryption scheme Πore is secure with respect
to leakage function Lf (Definition 2.4) under the PRF security of F .

Proof. Fix a security parameter λ and let A = (A1, . . . ,Aq) where q = poly(λ)
be an efficient adversary for the ORE security game (Definition 2.4). To prove
security, we give an efficient simulator S = (S0, . . . ,Sq) for which the outputs
of the distributions REALoreA (λ) and SIMore

A,S,Lf
(λ) are computationally indistin-

guishable.
We use a hybrid argument. We begin by defining the hybrid experiments:

– Hybrid H0: This is the real experiment REALoreA (λ).
– Hybrid H1: Same as H0, except during ORE.Setup, a random function f

r←−
Funs[([n] × {0, 1}n−1),ZM ] is chosen. In all invocations of ORE.Encrypt, the
function F (k, ·) is replaced by f(·).

Hybrids H0 and H1 are computationally indistinguishable under the PRF secu-
rity of F . Thus, it suffices to show that there exists a simulator S such that
the distribution of outputs in H1 is computationally indistinguishable from
SIMore

A,S,Lf
(λ).

Description of the Simulator. We now describe the simulator S =
(S0, . . . ,Sq). First, S0 initializes an empty lookup tables L : [q] × [n] → ZM .
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It then outputs stS = L. Then, for each t ∈ [q], after the adversary outputs
a query mt, the simulation algorithm St is invoked on input stS = L and
Lf(m1, . . . , mt). In particular, Lf(m1, . . . , mt) contains the values 1(mj < mt)
and inddiff(mj ,mt) for all j ∈ [t−1], where inddiff(mj ,mt) is the index of the first
bit in mj and mt that differ. For each s ∈ [n], there are three cases to consider:

– Case 1: There exists a j ∈ [t − 1] such that inddiff(mj ,mt) > s. If there are
multiple j for which inddiff(mj ,mt) > s, let j be the smallest one. Then, the
simulator sets us = L(j, s).

– Case 2: For each � ∈ [t−1], inddiff(m�,mt) ≤ s, and there exists a j ∈ [t−1] for
which inddiff(mj ,mt) = s. If there are multiple j for which inddiff(mj ,mt) = s,
let j be the smallest one. Then, the simulator sets us = L(j, s)−(1−2·1(mj <
mt)) (mod M).

– Case 3: For each � ∈ [t − 1], inddiff(m�,mt) < s. In this case, the simulator
samples y

r←− ZM and sets us = y.

For each s ∈ [n], the simulator adds the mapping (t, s) �→ us to L. Finally, the
simulator St outputs the ciphertext ctt = (u1, u2, . . . , un) and the updated state
stS = L. This completes the description of the simulator S.

Correctness of the Simulation. We show that the simulator S = (S0, . . . ,Sq)
perfectly simulates the distribution in hybrid H2. Let (ct1, . . . , ctq) be the joint
distribution of the ciphertexts output in hybrid H2, and let (ct1, . . . , ctq) be
the joint distribution of the ciphertexts output by the simulator. We proceed
inductively in the number of queries q. The base case (q = 0) follows trivially.

Suppose now that (ct1, . . . , ctt−1) ≡ (ct1, . . . , ctt−1) for some t ∈ [q]. We
show that the statement holds for t + 1. Consider the distributions of ctt and
ctt. First, for any j ∈ [t], write ciphertext ctj as (uj,1, uj,2, . . . , uj,n) and ctj as
(uj,1, uj,2, . . . , uj,n). In addition, for j ∈ [t], we write bj,s to denote the sth bit of
mj . For each s ∈ [n], we consider three cases:

– Case 1: There exists a j ∈ [t − 1] such that inddiff(mj ,mt) > s. If there are
multiple j for which inddiff(mj ,mt) > s, let j be the smallest one. This means
that mj and mt share a prefix of length at least s. Let p ∈ {0, 1}s−1 be the
first s − 1 bits of this common prefix. Then, in hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s = uj,s.

In the simulation, ut,s = L(j, s) = uj,s. Since j < t, we conclude from the
induction hypothesis that ut,s and ut,s are identically distributed.

– Case 2: For each � ∈ [t − 1], inddiff(m�,mt) ≤ s, and there exists a j ∈ [t − 1]
such that inddiff(mj ,mt) = s. If there are multiple j for which inddiff(mj ,mt) =
s, let j be the smallest one. This means that mj and mt share a prefix
p ∈ {0, 1}s−1 of length s − 1. Then, in hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod M).

In the simulation,

ut,s = L(j, s)− (1− 2 ·1(mj < mt)) = uj,s − (1− 2 ·1(mj < mt)) (mod M).
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In hybrid H2, uj,s = f(s, p‖0n−s)+ bj,s. By assumption, bj,s �= bt,s, so we can
write bt,s = bj,s − (1 − 2 · 1(mj < mt)). Thus, in hybrid H2, we have

ut,s = f(s, p‖0n−s+1) + bt,s = uj,s − (1 − 2 · 1(mj < mt)) (mod M).

By the inductive hypothesis, uj,s and uj,s are identically distributed, so we
conclude that ut,s and ut,s are identically distributed.

– Case 3: For each � ∈ [t−1], inddiff(m�,mt) < s. Let p ∈ {0, 1}s−1 be the first
s − 1 bits of mt. In hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod M),

while in the simulation ut,s is a uniformly random string. By assumption,
none of the messages m1, . . . , mt−1 begin with the prefix p. Since f is a truly
random function, the value of f(s, p‖0n−s) is uniform in ZM and independent
of all other ciphertexts. Thus, ut,s and ut,s are identically distributed.

We conclude that for all s ∈ [n], ut,s ≡ ut,s. Since the components of each
ciphertext are constructed independently in both hybrid H1 and in the simula-
tion, this suffices to show that ctt and ctt are identically distributed. The claim
then follows by induction on t. ��

Space usage. The order-revealing encryption scheme Πore on n-bit inputs pro-
duces encryptions of size �n · log2 M�. By setting M = 3, an encryption of an
n-bit message under Πore consists of only �n · log2 3� ≈ 1.59n bits. In the full
version, we describe a “d-ary” generalization of Πore that further reduces the
size of the ciphertexts in the ORE scheme, but with a slight loss in security.
Specifically, we construct an ORE scheme where an encryption of an n-bit mes-
sage has length approximately n · logd(2d − 1) for any integer d ≥ 2. Since
logd(2d − 1) is a monotonically decreasing function in d, larger values of d yield
shorter ciphertexts, but increased leakage.

3.2 Conversion to OPE

In this section, we explain how to convert Πore, an ORE scheme, into an OPE
scheme. This means that ciphertexts of the resulting OPE scheme can be com-
pared using the normal comparison function on numbers. To do this, we apply
a simple transformation of any ciphertext ct of Πore into a number c that lies in
the range [0,Mn − 1] for which direct numeric comparisons of two numbers c1
and c2 reveal the order relation of the underlying plaintexts.

Recall that in Πore, ciphertexts are of the form ct = (u1, u2 . . . , un), where
for each i ∈ [n], ui lies in the range ZM . The ciphertext in the resulting OPE
scheme is taken to be the �n · log2 M�-bit number

c =
n∑

i=1

ui · Mn−i ∈ [0,Mn − 1]. (3.2)
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Intuitively, we view u1u2 · · · un as a base-M representation of the OPE cipher-
text. Correctness follows similarly to Πore, except here, there is a non-zero prob-
ability of error (as opposed to Πore where correctness held with probability 1).
We claim that for any two messages m1,m2 ∈ [0, 2n − 1],

m1 < m2 ⇐⇒ c1 < c2,

with probability 1−1/M , where c1, c2 ∈ [0,Mn −1] are the ciphertexts obtained
by first invoking ORE.Encrypt on m1,m2, respectively, and then applying the
transformation in Eq. (3.2). To see this, let i ∈ [n] be the first bit position
on which m1 and m2 differ. Observe that the numeric comparison of the OPE
ciphertexts behaves identically as the ORE comparison procedure, except when
the output of the PRF on the first i−1 bits of the messages is the value M −17.
However, by PRF security, this event happens with probability 1/M , and thus,
correctness holds with probability 1 − 1/M . For instance, if M = 2λ (that is, λ
bits), correctness holds with overwhelming probability. For practical scenarios,
it may be suitable to only take M ≈ 240 (the failure probability in this case
is 2−40).

Security of the resulting OPE scheme follows identically from security of Πore,
as the transformation from ciphertexts ct to numbers c is bijective. We note that
while this scheme is order-preserving, it does not behave like a random order-
preserving function, and thus, does not inherit the security limitations associated
with such OPE schemes [8]. In fact, our simulation-based security model and
associated security theorem (Theorem 3.1) enables us to precisely specify the
information leakage in this order-preserving encryption scheme.

In the full version, we describe a “d-ary” generalization of Πore. While this
generalization does not reduce the size of the resulting ciphertexts in the ORE
scheme, it does yield shorter ciphertexts in the OPE instantiation (by approxi-
mately a log2 d multiplicative factor), with a slight loss in security. Correctness
in this generalized scheme holds with probability 1 − d/M .

4 Comparison to Existing OPE Schemes

We now compare the leakage of our order-revealing encryption scheme to that
of existing order-preserving encryption schemes by Boldyreva et al. [7,8]. As
explained in Sect. 2.3, composing any existing OPE scheme with an ORE scheme
results in a new ORE scheme which is at least as secure as the underlying
OPE scheme8. In this section, we show that even without the composition, our
construction still achieves stronger security according to the metrics proposed
by Boldyreva et al.
7 If no reduction modulo M occurs in the ORE.Encrypt encryption, then numerically

comparing the transformed ciphertexts is identical to evaluating the ORE.Compare
procedure (since all relations hold over the integers).

8 In most cases, the security of the composed scheme is strictly greater than that of
the base OPE scheme since our ORE construction provides semantic security for a
single ciphertext, whereas existing OPE schemes generally do not.
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The security definition achieved by an order-preserving encryption scheme
is that the encryption function behaves like a random order-preserving function
(ROPF) from the plaintext space to the ciphertext space. While this definition
has the same flavor as that for PRFs, the behavior of a truly random function
is very different from that of a random order-preserving function. In particular,
the output of an order-preserving function is not independent of its input, and
thus, reveals some information about the input. It turns out that quantifying
the exact information leakage is a non-trivial task in general. However, under
certain assumptions (for example, if the messages are drawn from a uniform
distribution), it is possible to obtain concrete upper bounds on the information
leakage [8]. In particular, Boldyreva et al. propose two security notions, window
one-wayness and window distance one-wayness, to analyze the security of an
OPE scheme. In our setting, the nature of our security definition allows us to
analyze the construction under a more generalized set of definitions compared to
[8]. We present our analysis for window one-wayness here, and defer the analysis
of window distance one-wayness to the full version.

4.1 One-Wayness

One of the most basic requirements of an encryption scheme is that it is one-
way. Given a ciphertext, an adversary that does not have the secret key should
not be able to recover the underlying message. In the standard definition of
one-wayness [27], the adversary is given the encryption of a random message,
and its goal is to guess the message. This is a very weak notion of security, and
even if an encryption is one-way, the adversary might still be able to deduce
nontrivial information about the message given only the ciphertext. To address
this, Boldyreva et al. [7] introduce a more general notion of one-wayness where
the adversary is allowed to guess a contiguous interval (a window) in the one-
wayness challenge. The adversary succeeds if the message is contained within
the interval. Moreover, the adversary is given multiple encryptions (of random
messages) and succeeds if it outputs an interval that contains at least one of the
messages.

The notion of window one-wayness is useful for arguing that an adversary
does not learn many of the most significant bits of the message, but if all bits of
the message are equally sensitive, then this definition is less useful. In our work,
we present a more general definition of one-wayness, where instead of outputting
an interval, the adversary is allowed to specify a set of guesses. To allow the
adversary to specify a super-polynomially-sized set of guesses, we instead require
the adversary to submit a circuit C that encodes its set (C(x) = 1 if and only if
x is in the set). By requiring that the circuit encodes a contiguous interval, we
recover the window one-wayness definition by Boldyreva et al. [8]. We now give
our generalized definition.
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Definition 4.1 (Generalized One-Wayness). Fix a plaintext space D and
let Π = (ORE.Setup,ORE.Encrypt,ORE.Compare) be an ORE over D. The (r, z)-
generalized one-wayness advantage of an adversary A against Π is given by

Advgow
r,z,Π(A) def= Pr[Exptgow

r,z,Π,A(1λ) = 1],

where the (r, z)-generalized one-wayness experiment Exptgow
r,z,Π,A(1λ) is defined as

follows:

Experiment Exptgow
r,z,Π,A(1λ):

1. sk ← ORE.Setup(1λ)
2. sample m1, . . . , mz uniformly from D without replacement
3. for i ∈ [z], cti ← ORE.Encrypt(sk,mi)
4. C ← A(ct1, . . . , ctz), where C : D → {0, 1} is a circuit of size poly(λ)
5. output 1 if C(mi) = 1 for some i ∈ [z] and |{x ∈ D : C(x) = 1}| ≤ r;

otherwise, output 0

Remark 4.2 (Comparison with Existing One-Wayness Notions). By
restricting the parameters (r, z) and the classes of circuits the adversary is
allowed to output, Definition 4.1 captures many existing notions of one-wayness.
For example, when r = z = 1, we recover the usual notion of one-wayness [27].
When the underlying plaintext space is the ring ZM for some integer M and we
require that the circuit output by the adversary encodes a contiguous interval
of length at most r in ZM , our definition corresponds to the notion of window
one-wayness introduced by Boldyreva et al. [8].

We now state our security theorem, but defer the proof to the full version.

Theorem 4.3 Fix a security parameter λ and a plaintext space {0, 1}n where
n = ω(log λ). Let Πore be the ORE scheme given at the beginning of Sect. 3. Then,
for any constant ε ∈ (0, 1], any z = poly(λ), and all efficient adversaries A,

Advgow
r,z,Πore,A(1λ) = negl(λ),

where r = 2n(1−ε).

Comparison to existing schemes. When discussing the notion of one-
wayness, we will always assume that the message-space is super-polynomial in
the security parameter. Otherwise, the trivial adversary that just guesses a ran-
dom point in the message space will succeed with non-negligible probability.

In [8], Boldyreva et al. give an upper bound on the one-wayness advantage of
any (possibly computationally unbounded) adversary A against a random order-
preserving function ROPF. This corresponds to setting r = 1 in our definition.
They show [8, Theorem 4.1] that for z = poly(λ), Advgow

1,z,ROPF,A = negl(λ).
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The same statement holds for our ORE construction assuming a computationally
bounded adversary: simply instantiate Theorem 4.3 with ε = 1.

In addition to giving an upper bound on an adversary’s ability to guess the
plaintext from the ciphertext, Boldyreva et al. also give a lower bound on the
advantage for the case when r is large. In particular, they exhibit an efficient
adversary A against an ROPF such that Advgow

r,z,ROPF,A(1λ) = 1 − 2e−b2/2 for a
constant b when r = O(

√
2n) and for any z [8, Theorem 4.2]9. In other words,

the authors describe a concrete adversary that is able to break the generalized
one-wayness of any POPF-CCA-secure scheme (with probability close to 1) if
the adversary is allowed to specify a set with r = O(

√
2n) elements, even when

z = 1. An intuitive way to understand this result is that given the output of an
ROPF, an adversary can deduce roughly half of the bits of the associated input.
In contrast, in our ORE scheme, if the adversary only sees a polynomial number
of ciphertexts (z = poly(λ)), then invoking Theorem 4.3 with ε = 1/2, we have
that for all efficient adversaries A, Advgow

r,z,Πore,A(1λ) = negl(λ) where r =
√

2n. In
fact, as Theorem 4.3 demonstrates, the adversary’s advantage remains negligible
even if we further increase the size of the sets the adversary is allowed to submit.

Intuitively, our results show that if the adversary only sees a polynomial
number of ciphertexts, then it does not learn any constant fraction ε of the bits
in the underlying plaintext from each ciphertext. In contrast, with an ROPF,
and correspondingly, any OPE scheme that realizes a ROPF, each ciphertext
alone leaks half of the most-significant bits of the underlying plaintext.

Similarly, while the OPE scheme by Teranishi et al. [47] can be shown to
hide any constant fraction of the least significant bits of the plaintext, no such
guarantee exists for the other bits of the plaintext. Note though that the security
notion proposed in [47] is indistinguishability-based and hence, stronger than the
one-wayness security notions. In fact, our basic ORE construction (by itself) does
not achieve their indistinguishability-based definition. However, by composing
our ORE construction with their OPE construction, we obtain a resulting ORE
scheme which is strictly more secure, since it inherits the security properties of
the underlying OPE scheme as well as semantic security for a single ciphertext
(Sect. 2.3, Remark 2.6).

5 Conclusions

In this work, we introduced a new notion of security for order-preserving, and
more generally, order-revealing encryption. Our simulation-based security notion
is defined with respect to a leakage function which precisely characterizes what
the ciphertexts in the scheme leak about the underlying messages. We then
give a practical order-revealing encryption scheme which achieves this security
notion for a specific leakage function. By composing our ORE construction with

9 Strictly speaking, the adversary they describe is for the window one-wayness exper-
iment, but any adversary that succeeds in the window one-wayness experiment also
succeeds in the generalized one-wayness experiment (Definition 4.1).
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existing OPE schemes, we obtain an ORE scheme with increased security. It is
our hope that having a concrete leakage model will enable practitioners to make
better-informed decisions on whether an ORE scheme is appropriate for their
particular application. We conclude with several open problems:

1. Can we construct a practical ORE scheme with stronger security guarantees?
2. Can we reduce the ciphertext length of our ORE scheme while still maintain-

ing a similar level of security?
3. Is it possible to build a practical ORE scheme with best-possible security

from standard assumptions?
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Abstract. We reconsider the formalization of known-key attacks
against ideal primitive-based block ciphers. This was previously tackled
by Andreeva, Bogdanov, and Mennink (FSE 2013), who introduced the
notion of known-key indifferentiability. Our starting point is the obser-
vation, previously made by Cogliati and Seurin (EUROCRYPT 2015),
that this notion, which considers only a single known key available to the
attacker, is too weak in some settings to fully capture what one might
expect from a block cipher informally deemed resistant to known-key
attacks. Hence, we introduce a stronger variant of known-key indiffer-
entiability, where the adversary is given multiple known keys to “play”
with, the informal goal being that the block cipher construction must
behave as an independent random permutation for each of these known
keys. Our main result is that the 9-round iterated Even-Mansour con-
struction (with the trivial key-schedule, i.e., the same round key xored
between permutations) achieves our new “multiple” known-keys indiffer-
entiability notion, which contrasts with the previous result of Andreeva
et al. that one single round is sufficient when only a single known key
is considered. We also show that the 3-round iterated Even-Mansour
construction achieves the weaker notion of multiple known-keys sequen-
tial indifferentiability, which implies in particular that it is correlation
intractable with respect to relations involving any (polynomial) number
of known keys.

Keywords: Block cipher · Ideal cipher · Known-key attacks · Iterated
Even-Mansour cipher · Key-alternating cipher · Indifferentiability · Cor-
relation intractability

1 Introduction

BackgroundonKnown-KeyAttacks. Informally, aknown-keyattackagainst
a block cipherE consists in the following: the adversary is given a key k from the key
space of E, and must find a “non-trivial” property of the permutation Ek associ-
atedwithk faster thanwhat itwould cost given only black-box access to a truly ran-
dom permutation. An example of such a non-trivial property would be a plaintext/
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ciphertext pair (x, y) under the key k such that, say, the first half of x and the first
half of y seen as bit strings are both zero (for a random permutation P over n-bit
strings, it is easy to see that this requires roughly 2n/2 queries to P ). Known-key
attacks against block ciphers were first introduced by Knudsen and Rijmen [18],
who exhibited such attacks against a reduced-round version of AES and against
certain kinds of Feistel ciphers. These attacks were extended in a number of follow-
up papers, e.g. [14,15,23,24,28].

Even though the informal idea underlying known-key security might intu-
itively seem clear (given a key k, the permutation Ek associated with k must
“look random”), how to put known-key attacks on theoretical sound grounds
has remained elusive. Indeed, any attempt to rigorously formalize what is a
known-attack against a fixed block cipher runs into impossibility results similar
to those undermining a sound definition of what a “good” hash function should
be [4]. In particular, seeing a block cipher as a family of permutations indexed
by the key, the fact that the key-length is similar to the input-length of the
permutations (i.e., the block-length of the block cipher) leads to the following
“diagonal” problem: consider the set of pairs (k,Ek(k)) for k ranging over the
key space (we assume that the block-length and the key-length are equal for ease
of exposition); then it is hard, given oracle access to a random permutation, to
find an input/output pair in this set, whereas given any key k for E it is very
easy to find an input/output pair for Ek in this set.

A way to circumvent these impossibilities is to consider block cipher con-
structions based on some ideal primitive (for example, a Feistel cipher based
on public random round functions or (iterated) Even-Mansour ciphers based on
public permutations). In that case, even though the adversary is given the known
key, it only has oracle access to the underlying primitive, which effectively acts as
an (exponentially long) seed indexing the permutation associated with the key. A
first step towards formalizing known-key attacks for ideal primitive-based block
ciphers was taken by Andreeva, Bogdanov, and Mennink (ABM) [2] through
what they called known-key indifferentiability (KK-indifferentiability for short),
a variant of the standard indifferentiability notion [22]. A block cipher construc-
tion CF from some underlying primitive F is said indifferentiable from an ideal
cipher E if there exists an efficient simulator S with black box access to E such
that the two pairs of oracles (CF , F ) and (E,SE) are indistinguishable. Hence
the simulator must make E “look like” CF by returning answers that are coher-
ent with the distinguisher’s queries to E (without, in general, knowing these
E-queries) and that are statistically close to answers of a real F oracle.

The KK-indifferentiability notion of ABM modifies the security experiment
as follows: a key k is drawn at random and made available to the distinguisher
and the simulator; the distinguisher is then allowed to query its left oracle (con-
struction/ideal cipher) only for this specific key k. Hence the simulator’s job
is somehow made simpler since it has a “hint” about which queries the distin-
guisher can make to its left oracle. Note that in the ideal (simulated) world, the
distinguisher effectively has access to a single random permutation (since an ideal
cipher behaves as an independent random permutation for each key). Hence this
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KK-indifferentiability notion intuitively captures the requirement that for each
key k, the block cipher construction CF must “look like” a random permutation.
In contrast, the standard indifferentiability notion is related with chosen-key
attacks, since the distinguisher is allowed to freely choose the keys it examines.

Shortcoming of the ABM Security Notion. The starting point of this
paper is an observation, previously made by Cogliati and Seurin (Appendix C of
the full version of [7]) that the ABM security notion might be too restrictive in
some situations because it considers one single known-key. This might be prob-
lematic in some cryptosystems where intuitively resistance to known-key attacks
should be sufficient to provide security, but where the ABM security notion fails
because the cryptosystem uses multiple known keys. Think for example of the
permutation-based hashed functions by Rogaway and Steinberger [26,27]: these
constructions are based on a few (typically 3 to 6) public permutations, which
would typically be instantiated by a block cipher used with distinct publicly
known keys. A crucial requirement for the security proof of these constructions
to hold (in the ideal permutation model) is that the permutations are indepen-
dent. Since this is not ensured by the ABM security notion, it is not applicable
here, even though one would like to say that a block cipher which is secure against
known-key attacks can safely be used in the Rogaway-Steinberger constructions.
(Jumping ahead, our new KK-indifferentiability notion will be sufficient to safely
instantiate the block cipher in the same constructions.)

To better emphasize this gap between a single known-key notion and a
multiple known-key notion, consider the case of the 1-round Even-Mansour
(EM) [11,12] construction based on a permutation P on {0, 1}n, which maps
a key k ∈ {0, 1}n and a plaintext x ∈ {0, 1}n to the ciphertext defined as

EMP (k, x) = k ⊕ P (k ⊕ x).

ABM showed that when the permutation P is ideal, this construction is KK-
indifferentiable from an ideal cipher in the single known-key setting. However,
if the adversary is given any pair of distinct keys (k1, k2), it can pick any
x1 ∈ {0, 1}n, define x2 = x1 ⊕ k1 ⊕ k2, and compute y1 = EMP

k1
(x1) and y2 =

EMP
k2

(x2). Then one can easily check that x1 ⊕ x2 = y1 ⊕ y2. Yet for an ideal
cipher E, given two distinct keys k1 �= k2, finding two pairs (x1, y1) and (x2, y2)
such that Ek1(x1) = y1, Ek2(x2) = y2, and x1 ⊕ x2 = y1 ⊕ y2 can be shown to
be hard: more precisely, an adversary making at most q queries to E can find
such pairs with probability at most O( q2

2n ). In other words, the permutations
associated with distinct keys for the 1-round EM construction do not “behave”
independently.

Our Contribution. Our first contribution is definitional: in order to remedy
the limitation that we just pointed out, we extend and strengthen the known-key
security definition of [2], by allowing the distinguisher to be given multiple known
keys. Our new notion is parameterized by an integer μ, the number of known
keys that the adversary is given. For μ = 1, one recovers the ABM definition. If
one lets μ = |K|, where K is the key space of the block cipher, one recovers the
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standard indifferentiability notion. In fact, our KK-indifferentiability notion will
emerge as a special case of a more general notion that we name restricted-input-
indifferentiability, which might be of independent interest. We also formulate
our KK-indifferentiability notion in a “worst-case” fashion (it must hold for any
subset of keys of size μ), whereas the ABM notion was in the “average-case”
style (the known key being randomly drawn). In addition, we define a weaker
“sequential” variant [7,21] of our new μ-KK-indifferentiability notion, called
μ-KK-seq-indifferentiability, where the adversary must query its two oracles in
a specific order. This notion is useful since it implies the weaker notion of cor-
relation intractability.

Our second contribution is about constructions: we show that KK-indifferen-
tiability is a meaningful notion by proving that the iterated Even-Mansour (IEM)
construction with nine rounds is μ-KK-indifferentiable from an ideal cipher for
any μ = poly(n) (where n is a security parameter indexing the construction),
which contrasts with the fact that one round is sufficient when considering one
single known-key, and also with the best number of rounds known to be sufficient
to achieve full indifferentiability from an ideal cipher, namely twelve [20]. We
also show that three rounds are necessary and sufficient to achieve the weaker
μ-KK-seq-indifferentiability notion, which again contrast with the fact that four
rounds are necessary and sufficient to achieve (full) seq-indifferentiability from
an ideal cipher [7]. See Table 1 for a summary of known results on the IEM
construction.

More Related Work. A number of papers have studied the indifferentiability
of variants of the IEM construction. In particular, Andreeva et al. [1] have studied
the case where the key-schedule is modeled as a random oracle, and Guo and Lin
have studied the case of Even-Mansour ciphers with two interleaved keys [16]
and of key-alternating Feistel ciphers [17].

Organization. We start with some general definitions in Sect. 2. Then we define
precisely our strengthened KK-indifferentiability notion (as well as the more gen-
eral notion of restricted-input-indifferentiability, of which KK-indifferentiability
is a special case) in Sect. 3. In Sect. 4, we give a known-key attack (using two
known keys) against the 2-round IEM construction. Finally, we prove that the
3-round, resp. 9-round, IEM construction achieves μ-KK-seq-indifferentiability,
resp. μ-KK-indifferentiability, in Sects. 5 and 6.

2 Preliminaries

General Notation. In all the following, we fix an integer n ≥ 1 and denote
N = 2n. Given a non-empty set M, the set of all permutations of M will be
denoted Perm(M). We simply denote Perm(n) the set of all permutations over
{0, 1}n. A block cipher with key space K and message space M is a mapping
E : K×M → M such that for any key k ∈ K, x �→ E(k, x) is a permutation. We
interchangeably use the notations E(k, x) and Ek(x). We denote BC(K,M) the
set of all block ciphers with key space K and message space M, and BC(n, n)
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Table 1. Summary of provable security results for the iterated Even-Mansour cipher
with independent inner permutations and the trivial key-schedule. The first two notions
are secret-key notions, the other ones are indifferentiability-based.

Sec. notion # rounds Sec. bound Sim. complexity (query/time) Ref.

Single-key (pseudorandomness) 1 q2/2n — [11,12]

2 q3/2/2n — [5]

XOR related-key 3 q2/2n — [7,13]

1-KK-indiff. 1 0 q / q [2]

μ-KK-seq-indiff., μ > 1 3 μ2q2/2n μq / μq This paper

Full seq-indiff. 4 q4/2n q2 / q2 [7]

μ-KK-indiff., μ > 1 9 μ6q6/2n μ2q / μ2q This paper

Full indiff. 12 q12/2n q4 / q6 [20]

the set of block ciphers with key space and message space {0, 1}n. For integers
1 ≤ s ≤ t, we will write (t)s = t(t − 1) · · · (t − s + 1) and (t)0 = 1 by convention.

Ideal Primitives. An ideal primitive F is a triplet (F.Dom,F.Rng,F.Inst): the
domain F.Dom and the range F.Rng are two non-empty sets, and the instance
space F.Inst is a set of functions F : F.Dom → F.Rng.

The two main ideal primitives we will be interested in are ideal permutations
and ideal ciphers. Given a non-empty set M, the ideal permutation P over M
is defined as follows. Let P.Dom = {+,−} × M and P.Rng = M, and define

P.Inst
def=

{
P : ∃π ∈ Perm(M), P (+, x) = π(x) and P (−, y) = π−1(y)

}
.

Clearly, there is a one-to-one correspondence between P.Inst and Perm(M).
Similarly, given two non-empty sets K and M, the ideal cipher with key space

K and message space M is defined as follows. Let E.Dom = {+,−} × K × M,
E.Rng = M, and define

E.Inst
def=

{
E : ∃η ∈ BC(K,M), E(+, k, x) = ηk(x) and E(−, k, y) = η−1

k (y)
}

.

Again, there is a one-to-one correspondence between E.Inst and BC(K,M).

The Iterated Even-Mansour Cipher. Fix integers n, r ≥ 1. Let f =
(f0, . . . , fr) be a (r + 1)-tuple of permutations of {0, 1}n. The r-round iter-
ated Even-Mansour construction EM[n, r, f ] specifies, from any r-tuple P =
(P1, . . . , Pr) of permutations of {0, 1}n, a block cipher with n-bit keys and n-
bit messages, simply denoted EMP in all the following (parameters [n, r, f ] will
always be clear from the context), which maps a plaintext x ∈ {0, 1}n and a key
k ∈ {0, 1}n to the ciphertext defined by (see Fig. 1):

EMP(k, x) = fr(k) ⊕ Pr(fr−1(k) ⊕ Pr−1(· · · P2(f1(k) ⊕ P1(f0(k) ⊕ x)) · · · )).

We say that the key-schedule is trivial when all fi’s are the identity.
While the pseudorandomness of the IEM cipher was mostly studied with

independent round keys [3,6,19] (with the notable exception of [5]), it is well
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known that independent round keys cannot, in general, provide any security in
the setting where the adversary has some control over the master key (related-,
known-, or chosen-key attacks) [20]. Hence, in this paper, we focus on the case
where the round keys are derived from an n-bit master key (actually, all our
results deal with the case of the trivial key-schedule).

Fig. 1. The r-round iterated Even-Mansour cipher.

3 Restricted-Input Indifferentiability and Variants

We introduce the notion of restricted-input indifferentiability (RI-indifferentia-
bility), and explain how known-key indifferentiability is a special case of it. Let
E and F be two ideal primitives.1 A construction implementing E from F is a
deterministic algorithm C with oracle access to an instance F of F, which we
denote CF , such that for any F ∈ F.Inst, CF ∈ E.Inst. A simulator for F is a
randomized algorithm with oracle access to an instance E of E, which we denote
SE , such that for any E ∈ E.Inst, SE : F.Dom → F.Rng. A distinguisher D is
a deterministic2 algorithm with oracle access to two oracles, the first one with
signature E.Dom → E.Rng, the second one with signature F.Dom → F.Rng, and
which returns a bit b, which we denote D(O1,O2) = b. We will call O1 the left
oracle and O2 the right oracle. Following [21], we define the total oracle query cost
of D as the maximum, over F ∈ F.Inst, of the total number of queries received by
F (from D or C) when D interacts with (CF , F ). The indifferentiability advantage
of D against (C,S) is defined by

Advindiff
C,S (D) =

∣
∣
∣ Pr

[
E ←$ E.Inst : D(E,SE) = 1

]

− Pr
[
F ←$ F.Inst : D(CF , F ) = 1

] ∣
∣
∣. (1)

(Note that the first probability is also taken over the randomness of S).
For any subset of X of E.Dom, D is said X-restricted if it only makes queries

to its left oracle (E or CF ) from the set X.
1 This might be any ideal primitives, in particular E might not be an ideal cipher.
2 Since we will consider computationally unbounded distinguishers, this is without

loss of generality.
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Definition 1 (Restricted-Input Indifferentiability). Let E and F be two
ideal primitives and C be a construction implementing E from F. Let q, σ, t ∈ N

and ε ∈ R
+. Let X be a family of subsets of E.Dom. Construction C is said

(X , q, σ, t, ε)-RI-indifferentiable from E if for any X ∈ X , there exists a simulator
S such that for any X-restricted distinguisher D of total oracle query cost at most
q, S makes at most σ oracle queries, runs in time at most t, and

Advindiff
C,S (D) ≤ ε.

Informally, we simply say that C is X -RI-indifferentiable from E if it is
(X , q, σ, t, ε)-RI-indifferentiable for “reasonable” values of σ, t, and ε expressed
as functions of q (in particular, when C is indexed by some security parameter
n ∈ N, if σ, t ∈ poly(n) and ε ∈ negl(n) for any q ∈ poly(n)).

As is standard in works on indifferentiability, this definition is information-
theoretic, i.e., the distinguisher is allowed to be computationally unbounded (this
is sometimes called statistical indifferentiability), and demands the existence of
a universal simulator which does not depend on the distinguisher (this is some-
times called strong indifferentiability; when the simulator is allowed to depend
on the distinguisher, this is called weak indifferentiability).

Note also the following points:

– by letting X = {E.Dom} in the definition above, one recovers the standard
definition of indifferentiability [22];

– when X = {X} is reduced to a single subset of E.Dom, the definition is
equivalent to the standard definition of indifferentiability of the restriction of
CF to X from the restriction of E to X; hence this definition is only “new”
when considering at least two distinct subsets X and X ′ such that X � X ′ and
X ′

� X (since a X-restricted distinguisher is also a X ′-restricted distinguisher
when X ⊆ X ′), and can be equivalently rephrased as the indifferentiability of
the family of restrictions of C to sets in X , with a uniform upper bound on
the simulator’s complexity and the distinguisher’s advantage;

– the simulator is allowed to depend on the specific set X ∈ X considered;
– the upper bound on the advantage of the distinguisher must hold for any

X ∈ X (not, say, on average on the random draw of X from X ).

The RI version of indifferentiability can be combined with other flavors of
indifferentiability, in particular with public indifferentiability [10,29] and sequen-
tial indifferentiability [7,21]. Let us elaborate for the case of sequential indiffer-
entiability. A distinguisher is called sequential if after its first query to its left
(E/CF ) oracle, it does not make any query to its right (SE/F ) oracle any more.
In other words, it works in two phases: first it only queries its right oracle, and
then only its left oracle. Then we can define RI-seq-indifferentiability exactly
as in Definition 1, except that we quantify over X-restricted sequential distin-
guishers only. (Hence this is a weaker definition since for each subset X ∈ X ,
the simulator has to be effective only against a smaller class of distinguishers,
namely sequential ones.)
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Composition Theorem. The meaningfulness of the indifferentiability notion
comes from the following composition theorem [22]: if a cryptosystem is proven
secure when implemented with ideal primitive E, then it remains provably secure
when E is replaced with C based on ideal primitive F, assuming C is indifferen-
tiable from E. (For this theorem to hold, the security of the cryptosystem must
be defined with respect to a class of adversaries which “supports” the simulator
used to prove that C is indifferentiable from E [9,25].) This theorem straight-
forwardly translates to X -RI-indifferentiability as follows: if a cryptosystem is
proven secure when implemented with ideal primitive E and if for any adversary
A, there is X ∈ X such that the challenger of the security game only queries E on
inputs x ∈ X when interacting with A, then it remains provably secure when E
is replaced with C based on ideal primitive F, assuming C is X -RI-indifferentiable
from E. The short proof is as follows: denote Γ the challenger for the security
game, which has access to an instance of E, and fix an adversary A against the
cryptosystem implemented with CF (hence A has oracle access to the instance F
of the ideal primitive F); see the combination of Γ and A as a single X-restricted
distinguisher D; by the X -RI-indifferentiability assumption, there is a simulator
S such that (CF , F ) cannot be distinguished from (E,SE); then the combina-
tion of A and S constitutes an attacker against the cryptosystem implemented
with E, and the winning probability of A′ is small by the assumption that the
cryptosystem is secure when implemented with E; hence the winning probability
of A is small as well.

Known-Key Indifferentiability. We now explain how to formalize resis-
tance to known-key attacks using RI-indifferentiability. Fix non-empty sets K
and M, and let E be the ideal cipher with key space K and message space M.
Recall that E.Dom = {+,−} × K × M. For any integer 1 ≤ μ ≤ |K|, let Xµ be
the family of subsets of E.Dom consisting of queries whose key is in K′, for K′

ranging over all subsets of K of size μ; more formally,

Xµ = {{(+, k, x) : k ∈ K′} ∪ {(−, k, y) : k ∈ K′} : K′ ⊆ K, |K′| = μ}.

Note that X|K| = {E.Dom}.

Definition 2 (μ-Known-Key Indifferentiability). Let C be a construction
of a block cipher with key space K and message space M from an ideal primitive
F. Let μ, q, σ, t ∈ N and ε ∈ R

+. Construction C is said to be (μ, q, σ, t, ε)-
KK-indifferentiable from an ideal cipher if and only if it is (Xµ, q, σ, t, ε)-RI-
indifferentiable from an ideal cipher, with Xµ defined as above.

Unfolding the definition, this is equivalent to the following: for any subset
K′ ⊆ K of size μ, there exists a simulator S such that for any distinguisher D
whose queries to its first (construction/ideal cipher) oracle use only keys k ∈ K′

and of total oracle query cost at most q, S makes at most σ oracle queries, runs
in time at most t, and

Advindiff
C,S (D) ≤ ε.

The KK-indifferentiability notion of Andreeva et al. [2] corresponds to the
definition above for μ = 1. In fact, this is slightly more subtle. Their variant
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is rather an “average” version of this definition over the random draw of the
known key, resulting from the following changes: the security experiment starts
by drawing a random key k which is given as input to both the distinguisher
and the simulator, and the two probabilities involved in the Definition (1) of
the advantage of the distinguisher are also taken over the random draw of the
challenge key k ←$ K. It is not hard to see that our “worst-case” variant of the
definition is stronger (i.e., implies) the average-case version (the average-case
simulator simply has a copy of each worst-case simulator SK′ for each possible
subset K′ ⊆ K of size μ, and on input the challenge subset of keys runs the
corresponding worst-case simulator).

The standard indifferentiability notion [22] is recovered by letting μ = |K|
in the definition above. The composition theorem specializes to the case of
μ-KK-indifferentiability as follows: if a cryptosystem is proven secure when
implemented with an ideal cipher E with key space K and if for any adver-
sary A, there is a subset of keys K′ of size μ such that the challenger of the
security game only queries E with keys k ∈ K′ when interacting with A, then it
remains provably secure when E is replaced with C based on ideal primitive F,
assuming C is μ-KK-indifferentiable from an ideal cipher.

Fig. 2. Various flavors of the indifferentiability notion. For full indifferentiability, the
queries of the distinguisher are completely unrestricted. For μ-known-key indifferentia-
bility, queries to the left oracle (ideal cipher/construction) can only be made for keys
k ∈ K′ for some subset K′ of size μ of the key space K (the simulator being allowed
to depend on K′). For sequential indifferentiability, the numbers next to query arrows
indicate in which order the distinguisher accesses both oracles. After its first query to
the left oracle, the distinguisher cannot query the right oracle any more. Combining
the two constraints results in the KK-seq-indifferentiability notion.

Known-Key Correlation Intractability. As for the general notion of
RI-indifferentiability, KK-indifferentiability can be combined with the notion of
sequential indifferentiability. Hence, if we restrict Definition 2 by quantifying only
over sequential distinguishers, we obtain the notion of KK-seq-indifferentiability
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(see also Fig. 2). This notion is interesting because it implies the (arguably more
natural) notion of known-key correlation intractability, as we explain now.

For this, we first recall the concept of evasive relation and correlation
intractability [4,7,21]. Let E be an ideal primitive. For an integer m ≥ 1, an
m-ary relation R (for E) is simply a subset R ⊂ (E.Dom)m × (E.Rng)m. Infor-
mally, a relation is evasive with respect to E if it is hard, on average, for an
adversary with oracle access to a random instance E of E to find a tuple of
inputs (α1, . . . , αm) such that ((α1, . . . , αm), (E(α1), . . . , E(αm))) satisfies this
relation. The definition below is very general and applies to any ideal primitive.

Definition 3 (Evasive Relation). Let E be an ideal primitive. An m-ary rela-
tion R for E is said (q, ε)-evasive if for any adversary A with oracle access to
an instance E of E, making at most q oracle queries, one has

Pr
[
E ←$ E.Inst, (α1, . . . , αm) ← AE :

((α1, . . . , αm), (E(α1), . . . , E(αm))) ∈ R
]

≤ ε,

where the probability is taken over the random draw of E and the random coins
of A.

Recall that the domain and the range of an ideal cipher E with key space K
and message space M are E.Dom = {+,−} × K × M and E.Rng = M so that,
if we particularize the definition above for an ideal cipher, each αi is a triplet in
E.Dom, and E(αi) ∈ M.

If we now consider a construction C implementing E from some other ideal
primitive F, a natural thing to ask is that any relation which is evasive with
respect to E remains hard to find for CF , on average over the random draw of
F , for any adversary with oracle access to F . This is formalized by the following
definition.

Definition 4 (Correlation Intractability). Let E and F be two ideal prim-
itives, and let C be a construction implementing E from F. Let R be an m-ary
relation for E. Then C is said to be (q, ε)-correlation intractable with respect to
R if for any adversary A with oracle access to an instance of F, making at most
q oracle queries, one has

Pr
[
F ←$ F.Inst, (α1, . . . , αm) ← AF :

((α1, . . . , αm), (CF (α1), . . . , CF (αm))) ∈ R
]

≤ ε,

where the probability is taken over the random draw of F and the random coins
of A.

A theorem by Mandal et al. [21] (see also [7, Theorem 4]) establishes that
seq-indifferentiability allows, for any relation R, to “reduce” the correlation
intractability of C with respect to R to the evasiveness of R (with respect to E).
More precisely, if C is seq-indifferentiable from E and if a relation R is (q, ε)-
evasive with respect to E, then C is (q′, ε′)-correlation intractable with respect
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to R, and the “degradation” of security parameters (q′, ε′) compared with (q, ε)
depends on the seq-indifferentiability parameters. In other words, if C is seq-
indifferentiable from E, then any relation which is hard to find for E remains
hard to find for CF (on average over the random draw of F ).

This result can be straightforwardly declined for the case of KK-seq-indif-
ferentiability (and more generally RI-seq-indifferentiability): if C is X -RI-seq-
indifferentiable from E for some family X of subsets of E.Dom, then a similar
result holds, but only for relations R such that all inputs involved in R belong
to some subset X ∈ X ; similarly, if C is μ-KK-seq-indifferentiable from an ideal
cipher E with key space K, then the result holds for relations R such that all
inputs involved in R use the same μ keys.

Concretely we have the following theorem. The proof is similar to the proof
of [7, Theorem 4] and therefore deferred to the full version of the paper [8]. First
we give two preliminary definitions. Let E be an ideal primitive, and X be a
subset of E.Dom; then an m-ary relation R for E is said X-restricted if

∀((α1, . . . , αm), (β1, . . . , βm)) ∈ R, ∀i = 1, . . . , m, αi ∈ X.

Similarly, let E be an ideal cipher with key space K, and μ ≥ 1; then an m-ary
relation R for E is said μ-restricted if there exists a subset K′ of K of size μ such
that

∀((δi, ki, zi), . . . , (δm, km, zm)), (z′
1, . . . , z

′
m)) ∈ R, ∀i = 1, . . . , m, ki ∈ K′.

Theorem 1. Let E and F be two ideal primitives, and let C be a construction
implementing E from F such that C makes at most c queries to its oracle on
any input. Let X be a family of subsets of E.Dom. Assume that C is (X , q +
cm, σ, t, ε)-RI-seq-indifferentiable from E. Then for any m-ary relation R which
is X-restricted for some X ∈ X , if R is (σ + m, εR)-evasive with respect to E,
then C is (q, ε + εR)-correlation intractable with respect to R.

In particular, let E be an ideal cipher with key space K, and assume that C is
(μ, q + cm, σ, t, ε)-KK-seq-indifferentiable from E. Then for any μ-restricted m-
ary relation R, if R is (σ+m, εR)-evasive with respect to E, then C is (q, ε+εR)-
correlation intractable with respect to R.

Remark 1. We need to dispel some confusion that might be created by the fol-
lowing observation (this will also help illustrate all definitions above with a con-
crete example): Lampe and Seurin [20] have exhibited an attacker against the
3-round IEM construction which, given oracle access to the inner permutations,
finds four tuples (ki, xi, yi), i = 1, . . . , 4, satisfying the following evasive relation:

⎧
⎨

⎩

k1 ⊕ k2 ⊕ k3 ⊕ k4 = 0
x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0
y1 ⊕ y2 ⊕ y3 ⊕ y4 = 0.

Since we will later prove that the 3-round IEM construction is μ-KK-seq-
indifferentiable from an ideal cipher for any polynomial μ, this might seem con-
tradictory with Theorem1. The catch is that two of the four keys involved in the
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relation and obtained at the end of the attack are not controlled by the adversary
and in fact range over the entire key space when the inner permutations range
over Perm(n). Hence, the evasive relation actually involves keys from the entire
key space (not just a small subset of it).

4 KK-Attack on the Two-Round IEM Construction

We explained in Sect. 1 that the 1-round EM construction is not resistant to
μ-known-key attacks for μ ≥ 2. We show here that this extends to the 2-round
IEM construction (with independent inner permutations and the trivial key-
schedule), more formally, that this construction is not μ-KK-seq-indifferentiable
from an ideal cipher for μ ≥ 2. Our attack shares some similarities with the
related-key attack against the same construction of [7]. Formally, we prove the
following theorem.

Theorem 2. The 2-round IEM construction EM[n, 2, f ] with independent inner
permutations and the trivial key schedule3 f is not 2-KK-seq-indifferentiable from
an ideal cipher. More precisely, for any pair of distinct keys (k1, k2), there is an
adversary which distinguishes the construction from an ideal cipher with advan-
tage close to 1 by making only queries to its left (construction/ideal cipher)
oracle involving these two keys. The adversary makes no queries to its right
(inner permutations/simulator) oracle.

Proof. We denote generically (E,F ) the oracles to which the adversary has
access and (k1, k2) two distinct keys the attacker is allowed to use. Consider
the following distinguisher (see Fig. 3 for a diagram of the attack):

(1) choose an arbitrary value x1 ∈ {0, 1}n, and query y1 := E(+, k1, x1);
(2) compute x2 := x1 ⊕ k2 ⊕ k1, and query y2 := E(+, k2, x2);
(3) compute y3 := y1 ⊕ k1 ⊕ k2, and query x3 := E(−, k2, y3);
(4) compute y4 := y2 ⊕ k2 ⊕ k1, and query x4 := E(−, k1, y4);
(5) check whether x4 = x3 ⊕ k1 ⊕ k2.

When the distinguisher is interacting with an ideal cipher E, two cases can occur.
Either y4 = y1, or y4 �= y1. In the first case, this means that y1 ⊕ y2 = k1 ⊕ k2,
which happens with probability 2−n since x1 and x2 are the first queries to
the uniformly random and independent permutations Ek1 and Ek2 . If y4 �= y1,
then y4 is the second query to the uniformly random permutation Ek1 , thus
x4 is uniformly random and this equality happens with probability at most
1/(2n − 1). Moreover one has y2 �= y1 ⊕ k1 ⊕ k2 which happens with probability
1−2−n since x2 is the first query to Ek2 . Since E is a uniformly randomly drawn
blockcipher, Ek1 and Ek2 are independent permutations and this case happens
with probability at most 2−n. Overall, when E is an ideal cipher, this relation
is satisfied with a probability at most 2n−1.

3 In fact, the attack applies whenever the key-schedule is linear.
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Now we show that when the distinguisher is interacting with the two round
Even-Mansour construction, it always returns 1, independently of k, and the
inner permutations, which we denote P1 and P2. Noting that, by definition,
x2 = x1 ⊕ k2 ⊕ k1, we denote u1 the common value

u1
def= x1 ⊕ k1 = x2 ⊕ k2,

and we denote v1 = P1(u1). We also denote

u2 = v1 ⊕ k1

v2 = P2(u2) (2)
u′

2 = v1 ⊕ k2 (3)
v′
2 = P2(u′

2).

Hence, one has

y1 = v2 ⊕ k1 (4)
y2 = v′

2 ⊕ k2. (5)

Since y3 = y1 ⊕ k1 ⊕ k2, we can see, using (4), that

y3 ⊕ k2 = y1 ⊕ k1 = v2.

Define

v′
1 = u2 ⊕ k2 (6)

u′
1 = P−1

1 (v′
1).

This implies that
x3 = u′

1 ⊕ k2. (7)

Since y4 = y2 ⊕ k2 ⊕ k1, we see by (5) that

y4 ⊕ k1 = y2 ⊕ k2 = v′
2.

Moreover, we have

u′
2 ⊕ k1 = u′

2 ⊕ k2 ⊕ k1 ⊕ k2

= v1 ⊕ k1 ⊕ k2 by (3)
= u2 ⊕ k2 by (2)
= v′

1 by (6).

This finally implies by (7) that

x4 ⊕ k1 = u′
1 = x3 ⊕ k2,

which concludes the proof. ��
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Fig. 3. A 2-known-key attack on the iterated Even-Mansour cipher with two rounds
and the trivial key-schedule.

5 KK-Seq-Indifferentiability for Three Rounds

We have just given a 2-known-keys attack against the 2-round IEM cipher. This
implies that the 2-round IEM construction cannot be μ-KK-seq-indifferentiable
from an ideal cipher as soon as μ ≥ 2. (Remember on the other hand that the
1-round EM construction is 1-KK-indifferentiable from an ideal cipher [2].)
Hence, at least three rounds are necessary (and, as we will see now, sufficient)
to achieve μ-KK-seq-indifferentiability from an ideal cipher for μ ≥ 2.

Concretely, the main result of this section regarding the KK-seq-indifferen-
tiability of the 3-round IEM cipher is as follows.

Theorem 3. Let N = 2n. For any integers μ and q such that μq ≤ N/4, the
3-round IEM construction EM[n, 3, f ] with independent permutations and the
trivial key-schedule f is (μ, q, σ, t, ε)-KK-seq-indifferentiable from an ideal cipher
with n-bit blocks and n-bit keys, with

σ = μq, t = O(μq), and ε =
57μ2q2

N
.

As a corollary, we obtain from Theorem 1 that for any m-ary relation R which
is μ-restricted and (μq, ε)-evasive w.r.t. an ideal cipher (and assuming q is large
compared with c = 3 and m), the 3-round IEM cipher is

(
q, ε + O

(
μ2q2/2n

))
-

correlation intractable with respect to R.
It is also known [21] that for stateless ideal primitives (i.e., primitives

whose answers do not depend on the order of the queries it receives), seq-
indifferentiability implies public indifferentiability [10,29], a variant of indiffer-
entiability where the simulator gets to know all queries of the distinguisher to
the ideal primitive E. Since an ideal cipher is stateless, Theorem 3 implies that
the 3-round IEM construction is also KK-publicly indifferentiable from an ideal
cipher.

Proof Idea. The proof of Theorem 3 is very similar to the proof of (full,
not KK) seq-indifferentiability for the 4-round IEM construction of [7]. The
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Fig. 4. Detection and adaptations zones used by the simulator for proving KK-seq-
indifferentiability of the 3-round iterated Even-Mansour construction from an ideal
cipher.

main difference in the simulation strategy is the following: in the full seq-
indifferentiability setting, the simulator has no hint about which key(s) the
adversary is using to try to distinguish the real world from the ideal (simu-
lated) world. Hence, it uses a 2-round “detection” zone in the middle made of
permutations P2 and P3, which allows, given a query to P2 (say, P2(u2) = v2)
and a query to P3 (say, P3(u3) = v3), to deduce the key associated to this
“chain” of queries (namely, k = v2 ⊕u3). Permutations P1 and P4 are then used
to “adapt” these detected chains and make them match the ideal cipher E. In
the KK-setting, the simulator knows the set K′ of keys that the distinguisher
is allowed to use in its ideal cipher queries. Hence, the detection zone can be
reduced to one single round (the middle one, i.e. P2 for the 3-round IEM): each
time the distinguisher makes a query to P2, the simulator completes the μ chains
corresponding to this query and each key k ∈ K′, again using extremal round
P1 and P3 to adapt the chains (see Fig. 4).

We only give an informal description of the simulator here and defer the for-
mal description in pseudocode and the full proof of Theorem3 to the full version
of the paper [8]. The simulator is given the subset K′ of keys that the distin-
guisher is bound to use. It offers an interface Query(i, δ, w) to the distinguisher
for querying the internal permutations, where i ∈ {1, 2, 3} names the permuta-
tion, δ ∈ {+,−} indicates whether this a direct or inverse query, and w ∈ {0, 1}n
is the actual value queried. For each i = 1, . . . , 3, the simulator internally main-
tains a table Πi reflecting which values have been already internally set for
each simulated permutation. Each table maps entries (δ, w) ∈ {+,−} × {0, 1}n
to values w′ ∈ {0, 1}n, initially undefined for all entries. We denote Π+

i , resp.
Π−

i , the (time-dependent) sets of strings w ∈ {0, 1}n such that Πi(+, w), resp.
Πi(−, w), is defined. When the simulator receives a query (i, δ, w), it checks in
table Πi whether the corresponding answer Πi(δ, w) is already defined. When
this is the case, it returns the answer to the distinguisher and waits for the
next query. Otherwise, it randomly draws an answer w′ ∈ {0, 1}n and defines
Πi(δ, w) := w′ as well as the answer to the opposite query Πi(δ̄, w′) := w. The
randomness used by the simulator is made explicit through a tuple of random
permutations P = (P1, P2, P3) with Pi := {+,−} × {0, 1}n → {0, 1}n, and for
any u, v ∈ {0, 1}n, Pi(+, u) = v ⇔ Pi(−, v) = u. We assume that the tuple
(P1, P2, P3) is drawn uniformly at random at the beginning of the experiment,
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but we note that S could equivalently lazily sample these permutations through-
out its execution. Then w′ is simply defined by the simulator as w′ := Pi(δ, w).4

Before returning w′ to the distinguisher, the simulator takes additional steps
to ensure that the whole IEM construction matches the ideal cipher E by running
a chain completion mechanism. Namely, if the distinguisher called Query(i, δ, w)
with i = 2, the simulator completes the “chains” for each known key k ∈ K′ by
executing a procedure CompleteChain(u2, v2, k, �), where � indicates where the
chain will be “adapted” and (u2, v2) is the pair of values that was just added to
Π2. For example, assume that the distinguisher called Query(2,+, u2) and that
the answer randomly chosen by the simulator was v2. Then for each k ∈ K′,
the simulator computes the corresponding value u3 = v2 ⊕ k, and evaluates
the IEM construction backward, letting v1 := u2 ⊕ k, u1 := Π1(−, v1) (setting
this value at random in case it was not in Π1), x := u1 ⊕ k, y := E(+, k, x)
(hence making a query to E to “wrap around”), and v3 := y ⊕ k, until the
corresponding input/output values (u3, v3) for the third permutation are defined.
It then “adapts” (rather than setting randomly) table Π3 by calling procedure
ForceVal(u3, v3, 3) which sets Π3(+, u3) := v3 and Π3(−, v3) := u3 in order to
ensure consistency of the simulated IEM construction with E. (A crucial point
of the proof will be to show that this does not cause an overwrite, i.e., that these
two values are undefined before the adaptation occurs.) In case the query was
to Query(2,−, ·), the behavior of the simulator is symmetric, namely adaptation
of the chain takes place in table Π1.

6 KK-Indifferentiability for Nine Rounds

In this section, we show that nine rounds of the IEM construction are sufficient
to achieve μ-KK-indifferentiability from an ideal cipher. Note that this is less
than what is currently known to be sufficient to achieve full indifferentiability
from an ideal cipher, namely twelve rounds, as shown by Lampe and Seurin [20].
We conjecture that four rounds are actually sufficient.

We use the same technique as in Sect. 5 for going from four rounds for seq-
indifferentiability to three rounds for KK-seq-indifferentiability: we start from
the 12-round simulator of [20], and shorten the detection zones using the fact
that the simulator knows the subset of keys used by the distinguisher.

We only give an informal description of the simulator and sketch how to
modify the indifferentiability proof of [20], so that the result should rather be
considered as a (substantiated) conjecture. (Given that nine is unlikely to be the
minimal number of rounds needed to achieve μ-KK-indifferentiability, and that
we already known that twelve rounds are sufficient to achieve full indifferentiabil-
ity and hence μ-KK-indifferentiability, the benefit of writing down the full proof
is rather low.) The high-level principle of how the simulator works is similar to

4 Note that for i = 1 and i = 3, this is not equivalent to letting w′ ←$ {0, 1}n \ Π δ̄
i

since the simulator sometimes “adapts” the value of these tables, so that the tables
Πi and the permutations Pi will differ (with overwhelming probability) on adapted
entries.
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Fig. 5. Detection and adaptation zones used by the simulator for proving KK-
indifferentiability of the 9-round iterated Even-Mansour construction from an ideal
cipher.

Sect. 5 except that there are now additional detection zones besides the middle
one preventing the distinguisher from creating “wrap around” chains (remem-
ber that the distinguisher is not bound to be sequential here, so it can make an
ideal cipher query y := E(+, k, x) and evaluate the IEM construction from both
extremities by making permutation queries until the simulator is trapped into a
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contradiction). Moreover, since the simulator can now recurse (i.e., completing a
chain can create new chains to be completed), it uses a queue of chains detected
and to be completed as in [20].

As before, the simulator reacts on any query to P5, and completes the chains
for any key k ∈ K′ by adapting at P7 if this is a direct query and adapting at P3

if this is an inverse query. Moreover, the simulator also reacts on direct queries to
P1 or inverse queries to P9. Let us consider the case of a query P1(+, u1). Then
for each key k ∈ K′, the simulator computes x := u1 ⊕k, queries y := E(+, k, x),
lets v9 := y ⊕ k, and checks if v9 ∈ Π−

9 . If this is the case, then the chain (u1, k)
is enqueued to be completed and adapted at P3. For an inverse query to P9,
adaptation takes place at P7. As in [20], the four “buffer” rounds P2, P4, P6

and P8 surrounding adaptation rounds ensure that no collision can occur when
adapting distinct chains.

The analysis of this simulator then follows the same lines as in [20]. Its
complexity can be upper bounded as follows: first, one applies the standard
argument that the number of wrap-around chains that will be detected is upper
bounded (with very high probability) by the number of ideal cipher queries of
the distinguisher, hence by q. This implies that the size of table Π5 is always
at most 2q (since it increases only because of a distinguisher’s query or when
completing a wrap-around chain). It follows that the number of middle chains
completed is at most 2μq, and the size of all tables Πi for i �= 5 is at most
q + q + 2μq = 2(μ + 1)q. Also, the number of calls made by the simulator to the
ideal cipher can be upper bounded by 2μq (number of middle chains that are
completed), plus 4μ(μ + 1)q (number of wrap-around chains that are checked),
hence it is O(μ2q) (the running time is similar).

Finally, proving a rigorous upper bound on the distinguishing advantage
is a cumbersome task that remains to be done. A rough estimation following
the lines of [20] would be that bad events that would make the simulator to
overwrite a value when adapting chains (which is what dominates the security
bound) happen with probability at most (max |Πi|)6/2n, hence O(μ6q6).
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1 Introduction

Universal Hash Functions. Ever since introduced by Carter and
Wegman [15,52] in the design of message authentication code (MAC), uni-
versal hash functions (UHFs) have become common components in numerous
cryptographic constructions, especially in modes of operation, to provide secu-
rity services as confidentiality, authenticity or both. A universal hash function
(UHF) is a family of functions indexed by keys. Unlike other components such
as block ciphers, keyed hash functions and permutations, which are often used
as pseudorandom permutations (PRPs), pseudorandom functions (PRFs) and
public random permutations respectively, UHFs have no cryptographic strength
such as pseudorandomness. So UHFs usually come along with other primitives,
such as PRPs, PRFs, etc., to set up cryptographic schemes. The basic property
of UHF is that the collision probability of hash values from any two different
messages is small when the key is uniformly random.

One of examples is the polynomial evaluation hash function [8] in which
the variable is the key and the coefficients consist of message blocks, such as:
Poly : {0, 1}n × {0, 1}nm → {0, 1}n,

PolyK(M) = M1K
m ⊕ M2K

m−1 ⊕ · · · ⊕ MmK (1)

where M = M1‖M2|| · · · ‖Mm ∈ {0, 1}nm, Mi ∈ {0, 1}n, i = 1, 2, · · · ,m and
all the operations are in the finite field GF (2n). This kind of UHF appears in
GCM [37], XCB [29], HCTR [50], HCH [16,17], COBRA [2], Enchilada [27],
POET [1] and many other constructions. For any M �= M ′, PolyK(M) ⊕
PolyK(M ′) is a polynomial in K whose degree is nonzero and no more than
m, so there are at most m keys leading to PolyK(M) = PolyK(M ′), that is the
collision probability is at most m/2n when K is uniformly random. We say that
this hash function is m/2n-almost-universal (AU). Obviously the probability of
PolyK(M) ⊕ PolyK(M ′) = C is also at most m/2n for any M �= M ′ and C.
That is another commonly used concept: almost XOR universal (AXU) hash
functions. Poly is also m/2n-AXU.

A direct application of UHFs is in message authentication codes (MACs)
in which the message is hashed by the UHF into a short digest which then
encrypted into a tag. MACs of this kind have been standardized in ISO/IEC
9797-3:2011 [31] which includes UMAC [13], Badger [14], Poly1305-AES [6]
and GMAC [37]. UHFs are also used in tweakable block ciphers (TBCs) [36]
and tweakable enciphering schemes (TESes), e.g. XTS-AES in IEEE Std 1619-
2007 [28] and NIST SP 800-38E [40], XCB in IEEE Std 1619.2-2010 [29],
HCTR [50] and HCH [16,17], etc. The third application of UHF is in authenti-
cated encryption (AE) schemes, e.g. the most widely used AE scheme GCM [37]
standardized in ISO/IEC-19772:2009 [30] and NIST SP 800-38D [39]. In the
recent CAESAR competition, several UHF-based AE schemes were proposed,
e.g. COBRA [2], Enchilada [27] and POET [1], etc. In the security proofs of
all these schemes, a crucial point is the collision probability about the inputs
to other primitives. The property of UHF guarantees that the collision seldom
happens.
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Related-Key Attacks. Related-key attack (RKA) was firstly introduced by
Biham [10] against block ciphers [12,22,48] and then extended to other cryp-
tographic algorithms such as stream ciphers [18], MACs [41], TESes [49], AE
schemes [21], etc. Bellare and Kohno [5] firstly gave a theoretical study of related-
key security of block cipher, modeling the concept of pseudorandom permutation
in the RKA setting (RKA-PRP) and pseudorandom function in the RKA set-
ting (RKA-PRF). Applebaum et al. [3] gave the related-key security definition of
encryption. Bhattacharyya and Roy [9] gave the related-key security definition of
MAC. Related-key security has become an important criteria for cryptographic
constructions.

In the RKA setting, the adversary does not know the secret key as in the
usual invariable-key setting, but can apply related-key-deriving (RKD) transfor-
mations to change the secret key and observe outputs under the related keys. Let
Φ be a RKD set which consists of transformations on the key space K = {0, 1}k.
There are two canonical RKD sets: Φ⊕ = {XORΔ : K �→ K ⊕ Δ,Δ ∈ K} and
Φ+ = {ADDδ : K �→ K + δ mod 2k, δ ∈ K}. In the following, we use Φ⊕ as the
default RKD set unless specified otherwise.

The related-key security requires that the queries under the related keys do
not threaten the security under the original key, as the definition of related-key
unforgeability in [9]. Or more strictly, for different related keys, the corresponding
algorithms are secure independently, as the definition of RKA-PRP in [5] and [3].

Motivations. How to guarantee the related-key security? An intuition is that if
the underlying components are related-key secure, the upper constructions should
be related-key secure. This is true for most of block cipher modes of operation,
especially for those one-key modes whose key is also that of the underlying block
cipher, including CBC, OFB, CFB, CTR, CMAC, OCB, etc. But for the UHF-
based schemes, it is not the case. Although almost all the UHF-based schemes
have security proofs in the usual invariable-key setting, there are a lot of examples
showing that some of them can not resist related-key attacks.

Let’s first check UHF-based MACs, in which a typical construction is to
encrypt the hash value into a tag by one-time-pad encryption. This method
originates from Carter and Wegman [15,52] and dominates the usages of UHF
in MACs [31]. Consider a simple example: MACK,K′(N,M) = PolyK(M) ⊕
FK′(N) where M = M1‖M2 ∈ {0, 1}2n, PolyK(M1‖M2) = M1K

2 ⊕ M2K, F is
a function often instantiated by a block cipher and N is a nonce. It has been
proved that [7,44] if F is a PRF and Poly is almost XOR universal, MAC is
secure.

But if we query with A‖A under the related key (K ⊕0n−11,K ′), the answer
is T = (A(K ⊕ 0n−11)2 ⊕ A(K ⊕ 0n−11)) ⊕ FK′(N) = (AK2 ⊕ AK)) ⊕ FK′(N).
Therefore we can predict that the tag of A‖A under the original key is also T . So
(N,A‖A, T ) is a successful forgery which breaks the RKA security of the MAC.
A similar attack can apply to Poly1305-AES [6] in ISO/IEC 9797-3:2011 [31].

In AppendixB, we give more RKA examples against TBC, TES and AE
schemes using Poly as UHF components. In all these examples, the key of UHF
is a part of the key of whole scheme, so that the adversary can derive the related
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key of UHF and get input collisions to other primitives such as PRPs or PRFs.
The collision in the MAC example is PolyK⊕0n−11(A‖A) = PolyK(A‖A). We
stress that all these attacks only use the properties of UHF in the RKA setting
and have nothing to do with other underlying primitives, whether it is RKA
secure or not. In other words, the related-key weaknesses of the UHF alone results
in related-key attacks against the schemes.

Definitions. In order to prevent the above attacks, we propose a new concept
of related-key almost universal hash function which can ensure that the above
collisions seldom happen. The new concept is a natural extension to almost uni-
versal hash function in the RKA setting. We define related-key almost universal
(RKA-AU) hash function and related-key almost XOR universal (RKA-AXU)
hash function. We will show that these definitions solve the above problems
for some RKD set. Unfortunately almost all the existing UHFs do not satisfy
the new definitions, including Poly mentioned in the above, MMH [26], Square
Hash [23], NMH [26] and NH [13], etc. See Appendix C for details.

Constructions. We construct one fixed-input-length universal hash function
named RH1 and two variable-input-length universal hash functions named RH2
and RH3. We prove that RH1 and RH2 are both RKA-AXU, and RH3 is RKA-
AU for the RKD set Φ⊕. Furthermore, RH1, RH2 and RH3 are almost as efficient
as previous constructions.

Applications. If we replace the universal hash functions in the examples of
Sect. 1 with our constructions, the problems about related-key attacks for some
RKD set can be solved. More specifically, we give four concrete examples in
MACs and TBCs.

2 Definitions

For a finite set S, x
$←− S means selecting an element x uniformly at random

from the set X. For a string M , |M | denotes the bit length of M . For b ∈ {0, 1},
bm denotes m bits of b. AO ⇒ b denotes that the algorithm A with an oracle O
outputs b.

For a function H : K × D → R, when K ∈ K is a key, we write H(K,M)
as HK(M), where (K,M) ∈ K × D. The following are the usual definitions of
UHF.

Definition 1 (AU [46]). H is an ε-almost-universal (ε-AU) hash function, if
for any M,M ′ ∈ D, M �= M ′,

Pr[K $←− K : HK(M) = HK(M ′)] ≤ ε.

When ε is negligible we say that H is AU.
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Definition 2 (AXU [34]). Let (R,⊕) be an abelian group1. H is an ε-almost-
XOR-universal (ε-AXU), if for any M,M ′ ∈ D, M �= M ′, and C ∈ R,

Pr[K $←− K : HK(M) ⊕ HK(M ′) = C] ≤ ε.

When ε is negligible we say that H is AXU.

Clearly, if H is ε-AXU, it is also ε-AU, for ε-AU is a special case of ε-AXU when
C = 0.

RKA-AU and RKA-AXU. In the following, we extend the above definitions
in the RKA setting. Let Φ be a RKD set.

Definition 3 (RKA-AU). H is an ε-related-key-almost-universal (ε-RKA-
AU) hash function for the RKD set Φ, if for any φ, φ′ ∈ Φ, M,M ′ ∈ D,
(φ,M) �= (φ′,M ′),

Pr[K $←− K : Hφ(K)(M) = Hφ′(K)(M ′)] ≤ ε.

When ε is negligible we say that H is RKA-AU for Φ.

Definition 4 (RKA-AXU). Let (R,⊕) be an abelian group. H is an ε-related-
key-almost-universal (ε-RKA-AXU) hash function for the RKD set Φ, if for any
φ, φ′ ∈ Φ, M,M ′ ∈ D, (φ,M) �= (φ′,M ′), and C ∈ R,

Pr[K $←− K : Hφ(K)(M) ⊕ Hφ′(K)(M ′) = C] ≤ ε.

When ε is negligible we say that H is RKA-AXU for Φ.

For φ, φ′ ∈ Φ, φ �= φ′ means there exists a key K ∈ K such that φ(K) �= φ′(K).

Restricting RKD Sets. As in the discussion of RKA-PRP [5], the related-key
properties of UHF are relevant to the choice of RKD set. For some RKD sets the
related-key almost universal hash function may not exist. It is necessary that
the RKD set is both output unpredictable and collision resistant. We must put
some restrictions on the RKD set.

(1) Output unpredictability. A φ ∈ Φ that has predictable outputs if there exists
a constant S such that the probability of φ(K) = S is high. If it hap-
pens, then for any function H the probability of Hφ(K)(M) ⊕ Hφ(K)(M ′) =
HS(M)⊕HS(M ′) is also high for any two distinct M and M ′. So the RKA-
AXU function is not available for the RKD set which has predictable trans-
formations. We define OU(Φ) = maxφ∈Φ,SPr[K $←− K : φ(K) = S]. If OU(Φ)
is negligible, we say that Φ is output unpredictable.

1 For arbitrary abelian groups a generalized notion is almost Delta universal (AΔU)
hash function [47]. In the following when we say AXU we may sometimes refer to
AΔU.
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(2) Collision resistance. Two distinct φ, φ′ ∈ Φ have high collision probability
if the probability of φ(K) = φ′(K) is hight. If it happens, then for any
function H the probability of Hφ(K)(M) ⊕ Hφ′(K)(M) = 0 is also high
for any M . So neither the RKA-AXU nor RKA-AU function is available
for the RKD set which has high collision probability. We define CR(Φ) =

maxφ,φ′∈Φ,φ�=φ′Pr[K $←− K : φ(K) = φ′(K)]. If CR(Φ) is negligible, we say
that Φ is collision resistant. More strictly, if for any two distinct φ, φ′ ∈ Φ
and any key K, we have φ(K) �= φ′(K), or in other words CR(Φ) = 0, we
say that Φ is claw-free.

We note that Φ⊕ and Φ+ are output unpredictable, collision resistant and
claw-free. The example in Sect. 1 shows that Poly is not RKA-AXU for the
RKD set Φ⊕. If we choose the message M to be 0mn, PolyK(M) will always be
0n. Therefore for any φ, φ′ ∈ Φ, we have Polyφ(K)(0mn) = Polyφ′(K)(0mn). So
Poly is not RKA-AU either. If we look at the other existing UHFs, unfortunately
almost all of them do not satisfy the new definitions, including MMH [26], Square
Hash [23], NMH [26] and NH [13], etc. See Appendix C for more details.

3 Constructions

We construct two types of related-key almost universal hash functions: one fixed-
input-length (FIL) UHF named RH1 and two variable-input-length (VIL) UHFs
named RH2 and RH3. We prove that RH1 and RH2 are both RKA-AXU, and
RH3 is RKA-AU, for the RKD set Φ⊕.

For a function F : K×D → R, we define a new function F ′ : K×(K×D) → R

F ′
K(Δ,M) = FK⊕Δ(M).

It is easy to see that F is RKA-AU (RKA-AXU) for the RKD set Φ⊕ if and
only if F ′ is AU (AXU). All the constructions are based on the polynomial
evaluation function Poly. From the above observation, our main idea is to modify
PolyK(M) into FK(M) such that FK⊕Δ(M) is still an almost (XOR) universal
hash function.

FIL Constructions. We first construct a function based on PolyK(M) = MK
by adding a new term K3.

Construction 1. RH1 : {0, 1}n × {0, 1}n → {0, 1}n,

RH1K(M) = MK ⊕ K3. (2)

Theorem 1. RH1 is 2/2n-RKA-AXU for the RKD set Φ⊕.

Proof. We prove that for any M,M ′,Δ1,Δ2 ∈ {0, 1}n, (Δ1,M) �= (Δ2,M
′), and

C ∈ GF (2n), Pr[K $←− {0, 1}n : F (K) = C] ≤ ε, where F (K) = RH1K⊕Δ1(M)⊕
RH1K⊕Δ2(M

′). We have

F (K) = (Δ1 ⊕ Δ2)K2 ⊕ (Δ2
1 ⊕ Δ2

2 ⊕ M ⊕ M ′)K ⊕ (Δ3
1 ⊕ Δ3

2 ⊕ MΔ1 ⊕ M ′Δ2).
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If Δ2 �= Δ1, F (K) = C has two roots at most. If Δ1 = Δ2, then M �= M ′. The
degree of F (K) is 1 and F (K) = C has one root. Therefore RH1 is 2/2n-RKA-
AXU. ��

Remark 1. As one of reviewers points out that RH1 is RKA-AXU for the RKD
set Φ⊕, but is not RKA-AXU or even RKA-AU for a RKD set containing just
containing two transformation: Φ = {id, fα} where id is the identity transfor-
mation and fα(K) = αK, α3 = 1. It is easy to verify that RH1fα(K)(α−1M) =
RH1K(M).

Remark 2. More generally we consider polynomial Hi,j
K (M) = MKi + Kj over

the finite field GF (2n) or GF (p) where i, j are integers and p is a prime. We
show the results when 1 ≤ i, j ≤ 4 in Table 1.

Table 1. For Hi,j
K (M) = MKi + Kj , “11” means it is RKA-AU and RKA-AXU for

the RKD set Φ⊕, “10” means it is RKA-AU but not RKA-AXU, and “00” means it is
neither RKA-AU nor RKA-AXU.

(i, j) (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)

GF (2n) 00 00 11 00 00 00 11 00 10 10 00 10 00 00 11 00

GF (p) 00 00 11 11 10 00 10 11 00 11 00 11 10 11 11 00

VIL Constructions. Poly does not support variable input length. For any
message M ∈ {0, 1}∗, a general padding method as in [37] is to firstly pad
minimum zeroes to make the length multiple of the block length and then pad
the bit length of M as the last block:

pad(M) = M‖0i‖|M |.

Then PolyK(pad(M)) is variable-input-length AXU hash function but still is
not RKA-AU (RKA-AXU). Following the above method we add some term Ki

in order to get the RKA-AXU property.

Construction 2. RH2 : {0, 1}n × {0, 1}∗ → {0, 1}n,

RH2K(M) =

{
Kl+2 ⊕ PolyK(pad(M)), l is odd

Kl+3 ⊕ PolyK(pad(M))K, l is even
(3)

where l = |M |/n� + 1 is the number of blocks in pad(M).

Theorem 2. RH2 is (lmax +3)/2n-RKA-AXU for the RKD set Φ⊕, where lmax

is the maximum block number of messages after padding.

Proof. For any message M , suppose pad(M) = M1‖M2‖ · · · ‖Ml. When l is odd

RH2K(M) = Kl+2 ⊕ M1K
l ⊕ · · · ⊕ MlK.
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When l is even

RH2K(M) = Kl+3 ⊕ M1K
l+1 ⊕ · · · ⊕ MlK

2.

We prove that for any M,M ′ ∈ {0, 1}∗, Δ1,Δ2, C ∈ {0, 1}n, (Δ1,M) �=
(Δ2,M

′), Pr[F (K) = C] ≤ ε, where F (K) = RH2K⊕Δ1(M) ⊕ RH2K⊕Δ2(M
′).

We only need to show the degree of F (K) is nonzero. Suppose pad(M) =
M1‖M2‖ · · · ‖Ml and pad(M ′) = M ′

1‖M ′
2‖ · · · ‖M ′

l′ . Consider F (K) in the fol-
lowing two cases.

Case 1. Δ1 �= Δ2. Suppose the degrees of RH2K⊕Δ1(M) and RH2K⊕Δ2(M
′)

are d and d′ respectively, which are both odd.
When d = d′, the coefficient of Kd−1 in F (K) is Δ1 ⊕ Δ2 which is nonzero.
When d �= d′, suppose d > d′ w.l.o.g. the coefficient of Kd in F (K) is 1.

Case 2. Δ1 = Δ2. We treat K ⊕ Δ1 as a new key, so without loss of generality,
we only consider Δ1 = Δ2 = 0 in the following.

When l = l′, there exists 1 ≤ j ≤ l s.t. Mj �= M ′
j . So the coefficient of Kl+1−j

(if l is odd) or Kl+2−j (if l is even) in F (K) is Mj ⊕ M ′
j which is nonzero.

When l′ �= l and are both odd, the coefficient of K is |M | ⊕ |M ′| which is
nonzero.

When l′ �= l and are both even, the coefficient of K2 is |M | ⊕ |M ′| which is
nonzero.

When l′ �= l, one is odd and one is even, the coefficient of K is |M | or |M ′|
which are both nonzero.

Therefore the degree of F (K) is nonzero. ��

Since RH2 is RKA-AXU, it is also RKA-AU. But sometimes we only need
RKA-AU functions. We can improve the efficiency of RKA-AU construction by
one less multiplication in finite field if replace Poly in RH2 with the following
Poly′:

Poly′
K(M) = M1K

m−1 ⊕ M2K
m−2 ⊕ · · · ⊕ Mm

where M = M1‖M2|| · · · ‖Mm ∈ {0, 1}nm. Poly′ is AU but not AXU. We have
the following construction and the proof is similar to that of Theorem2.

Construction 3. RH3 : {0, 1}n × {0, 1}∗ → {0, 1}n,

RH3K(M) =

{
Kl+2 ⊕ Poly′

K(pad(M)), l is odd
Kl+3 ⊕ Poly′

K(pad(M))K, l is even
(4)

where l = |M |/n� + 1 is the number of blocks in pad(M).

Theorem 3. RH3 is (lmax + 3)/2n-RKA-AU for the RKD set Φ⊕, where lmax

is the maximum number of blocks in messages after padding.

Efficiency of Constructions. We analyze the efficiency of RH1, RH2 and RH3
compared with previous similar constructions.
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Table 2. Computation of RH2K(M) and PolyK(pad(M)) by Horner’s rule.

RH2K(M) :
T ← K2

for i = 1 to l
T ← (T ⊕ Mi)K

if l is even
T ← TK

return T

PolyK(pad(M)) :
T ← 0
for i = 1 to l

T ← (T ⊕ Mi)K

return T

(1) RH1. Compared with PolyK(M) = MK, in RH1K(M) = MK ⊕ K3

the monomial K3 can be pre-computed. So RH1 needs extra one pre-
computation and one XOR operation.

(2) RH2. The polynomial T = M1K
m ⊕ M2K

m−1 ⊕ · · · ⊕ MmK is usually
evaluated by Horner’s rule: T ← 0, T ← (T ⊕ Mi)K for 1 ≤ i ≤ m. Assume
that pad(M) = M1‖M2‖ · · · ‖Ml, Table 2 shows the computation processes
of RH2K(M) and PolyK(pad(M)) by Horner’s rule respectively. We can
see that compared with PolyK(pad(M)), RH2 needs one additional pre-
computation of K2, and one more multiplication if l is even.

(3) RH3. Similar to the analysis of RH2, RH3 needs one additional pre-
computation of K2, and one more multiplication if l is even, compared with
Poly′

K(pad(M)).

In brief, RH1, RH2 and RH3 are almost as efficient as previous similar
constructions.

4 Applications

RKA-AU (RKA-AXU) hash functions can be used as components, along with
other primitives such as RKA-PRPs and RKA-PRFs, in the design of related-
key secure cryptographic schemes. If we replace the UHFs in the cryptographic
schemes in Sect. 1 with our corresponding constructions, the issues about related-
key attacks can be solved for some RKD set. Informally speaking, if the UHF
is RKA-AU or RKA-AXU for the RKD set Φ1 and the underlying primitive is
RKA-PRP or RKA-PRF for the RKD set Φ2, the scheme is related-key secure
for the RKD set Φ1 × Φ2.

In the following, we give four concrete applications of RKA-AU and RKA-
AXU in related-key secure MACs and TBCs. In the analyses of these schemes,
we mainly give intuitive interpretations by establishing the relationship between
the RKA setting and the invariable-key setting and the detailed proofs will
be given in the full paper [51]. Then the remaining proof is similar to that in
the invariable-key setting. Let RKA-PRF be PRF against related-key attacks.
We define a chosen-ciphertext attack (CCA) secure tweakable block cipher as
a strongly tweakable pseudorandom permutation (STPRP, SPRP if it has no
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tweak). If it is also related-key secure we denote it as RKA-STPRP (RKA-SPRP
if it has no tweak). The detailed definitions are in Appendix A.

For simplicity we only consider the claw-free RKD set Φ in which for any
φ1, φ1 ∈ Φ and any key K we have φ1(K) �= φ2(K). The relationships are based
on three observations on the underlying components when we regard the RKD
transformation as an additional input.

Observation 1. For a function F : K ×D → R and a claw-free RKD set Φ on K.
We define a new function F ′ : K × (Φ × D) → R, F ′

K(φ,M) = Fφ(K)(M). It is
directly derived from the definition that F is ε-RKA-AU (ε-RKA-AXU) for the
RKD set Φ if and only if F ′ is ε-AU (ε-AXU).

Observation 2. Furthermore, we have that F is a RKA-PRF for the RKD set Φ
if and only if F ′ is a PRF.

Observation 3. For a block cipher E : K × {0, 1}n → {0, 1}n and a claw-free
RKD set Φ on K, define a tweakable block cipher E′ : K×Φ×{0, 1}n → {0, 1}n,
E′

K(φ,M) = Eφ(K)(M). E is a RKA-SPRP for the RKD set Φ, if and only if E′

is a STPRP.

4.1 Related-Key Secure MACs

Beside the Carter-Wegman scheme to construct MAC [52]

MAC1K,K′(N,M) = HK(M) ⊕ FK′(N) (5)

the other method [45] is

MAC2K,K′(M) = FK′(HK(M)) (6)

where H : K1 × D → {0, 1}n and F : K2 × {0, 1}n → {0, 1}n are two keyed
functions, M is a message and N is a nonce. We show that the two schemes are
both related-key secure by the following two theorems.

Theorem 4. If H is ε-RKA-AXU for the RKD set Φ1 and F is a RKA-PRF
for the RKD set Φ2, then MAC1 is related-key unforgable (RKA-UF) for the
RKD set Φ1 × Φ2. More specifically,

Advrka−uf
MAC1 (q, t) ≤ Advrka−prf

F (q, t′) + ε

where the adversary makes q queries to MAC1 and t′ = t + O(q).

From Observation 1, H ′
K(φ1,M) = Hφ1(K)(M) is AXU; from Observation 2,

F ′
K′(φ2, N) = Fφ2(K′)(N) is a PRF. If we look φ1 as a part of the message and

φ2 as a part of the nonce, we only need to prove that GK,K′(φ2, N, φ1,M) =
H ′

K(φ1,M)⊕F ′
K′(φ2, N) is unforgeable in the invariable-key setting. The remain-

ing proof is similar to that in [34].



524 P. Wang et al.

Theorem 5. If H is ε-RKA-AU for the RKD set Φ1 and F is a RKA-PRF for
the RKD set Φ2, then MAC2 is a RKA-PRF for the RKD set Φ1 × Φ2. More
specifically,

Advrka−prf
MAC2 (q, t) ≤ Advrka−prf

F (q, t′) + εq2/2

where the adversary makes q queries to MAC2 and t′ = t + O(q).

From Observation 1, H ′
K(φ1,M) = Hφ1(K)(M) is AXU; from Observation 2,

F ′
K′(φ2,M) = Fφ2(K′)(M) is a PRF. If we look φ1 and φ2 as a part of the

message, we only need to prove that GK,K′(φ1, φ2,M) = F ′
K′(φ2,H

′
K(φ1,M))

is a PRF in the invariable-key setting. The remaining proof is similar to that
in [45].

4.2 Related-Key Secure TBCs

Block Cipher Based Schemes. In [36] Liskov et al. gave a construction of
tweakable block cipher (TBC) from a block cipher and a universal hash function:

TBC1K,K′(T,M) = EK′(M ⊕ HK(T )) ⊕ HK(T ) (7)

where H : K1×D → {0, 1}n is the universal hash function and E : K2×{0, 1}n →
{0, 1}n is the block cipher. In AppendixB we show that TBC1 is not related-
key secure if HK(T ) = TK. But if H is RKA-AXU, we show that TBC1 is
related-key secure for some RKD set in Theorem 6.

Theorem 6. If H is ε-RKA-AXU for the RKD set Φ1 and E is RKA-SPRP
for the RKD set Φ2, then TBC1 is a RKA-STPRP for the RKD set Φ1 × Φ2.
More specifically,

Advrka−stprp
TBC1 (q, t) ≤ Advrka−sprp

E (q, t′) + 3εq2

where the adversary makes q queries to TBC1 or TBC1−1 and t′ = t + O(q).

From Observation 1, H ′
K(φ1,M) = Hφ1(K)(M) is AXU; from Observation 3,

E′
K′(φ2,M) = Eφ2(K′)(M) is a STPRP. If we consider φ1 and φ2 as a part

of the tweak, we only need to prove that ẼK,K′(φ1, φ2, T,M) = E′
K′(φ2,M ⊕

H ′
K(φ1, T ))⊕H ′

K(φ1, T ) is a STPRP in the invariable-key setting. The remaining
proof is similar to that in [36].

Permutation Based Schemes. If we replace the block cipher in TBC1 as a
permutation, we get

TBC2K(T,M) = π(M ⊕ HK(T )) ⊕ HK(T ) (8)

where π is the permutation from {0, 1}m to {0, 1}m, n ≤ m. For A ∈ {0, 1}n,
B ∈ {0, 1}m, when n < m, A ⊕ B is defined as (A‖0m−n) ⊕ B. We show the
related-key security of TBC2 in Theorem 7. We need that H is both RKA-AXU
and related-key almost uniform. H is δ-related-key-almost-uniform means for
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any φ ∈ Φ, M ∈ D and C ∈ {0, 1}n, Pr[K $←− K : Hφ(K)(M) = C] ≤ δ.
When H is also ε-RKA-AXU, we say that it is (ε, δ)-RKA-AXU. For example,
RH1 = MK ⊕ K3 is (2/2n, 3/2n)-RKA-AXU.

TBC2 is a one-round tweakable Even-Mansour cipher. How to add tweak
and retain related-key security of the Even-Mansour cipher is a popular topic in
recent years [19,20,24,25,38]. Compared with previous constructions in [25,38]
we only need one permutation invocation (two in [25,38] ).

Theorem 7. If H is (ε, δ)-RKA-AXU for the RKD set Φ and π is public random
permutation, then TBC2 is a RK-TSPRP for the RKD set Φ. More specifically,

Advrka−stprp
TBC2 (q0, q1) ≤ q20ε + 2q0q1δ + 2−m(q20 + 2q0q1)

where the adversary makes q0 queries to TBC2 or TBC2−1and q1 queries to π
or π−1.

From Observation 1, H ′
K(φ,M) = Hφ(K)(M) is AXU. If we look φ as a part of the

nonce, we only need to prove that ẼK(φ, T,M) = π(M ⊕H ′
K(φ, T ))⊕H ′

K(φ, T )
is a STPRP in the invariable-key setting. The remaining proof is similar to that
in [35] or [19].

5 Conclusions

In this paper we mainly focus on two-key schemes, e.g. one key for the UHF
and the other key for the block cipher. In order to resist related-key attacks, we
define a new concept of related-key almost universal hash function, which is a
natural extension to almost universal hash function in the RKA setting.

Not every UHF-based scheme suffers from related-key attacks. For example
GCM [37] has only one key which is also the key of the underlying block cipher.
The key of UHF is derived from the master key K as EK(0128). GCM has been
proved to be secure in the invariable-key setting [32] given that E is a PRP. If
E is a RKA-PRP, for each φ ∈ Φ, Eφ(K) is an independent PRP. So GCM is
secure independently for each related key, and thus GCM is also secure in the
RKA setting. In this roughly reasoning, we only require that the UHF is AXU
but not RKA-AXU. Therefore it is possible that the upper scheme “inherit” the
related-key security only from the underlying block cipher. It is also true to some
other one-key schemes such as XCB [29], POET [1], etc. We can even modify the
vulnerable schemes in this paper into related-key secure ones without the notion
of RKA-AXU or RKA-AU by generating the keys in the schemes as Ki = EK(i),
i = 1, 2, · · · where K is the master key. But there are still a lot of two-key schemes
such as Poly1305-AES [6], HCTR [50], HCHp and HCHfp [16,17]. Furthermore, if
we regard related-key attacks as a class of side-channel attacks, the attacker may
have the ability to change a stored key via tampering or fault injection [4,11].
The key of UHF stored somewhere, no matter whether it is a part of the master
key or derived from the master key, can be changed in this scenario.
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We also give several efficient constructions named RH1, RH2 and RH3 which
are nearly as efficient as previous similar ones. RKA-AU (RKA-AXU) hash func-
tions can be used as components, along with other primitives such as RKA-PRPs
and RKA-PRFs etc., in the design of related-key secure cryptographic schemes.
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A Related-Key Security of MAC, TBC, TES
and AE Schemes

(1) RKA-PRF. For a function F : K×D → R, the adversary A can make related-
key oracle queries (φ,M) ∈ Φ × D and is responded with Fφ(K)(M) where K
is the secret key. Let ρ be a uniformly random function from K × D to R. The
advantage of A is defined as

Advrka−prf
F (A) = Pr[AF·(K)(·) ⇒ 1] − Pr[Aρ·(K)(·) ⇒ 1].

For all adversaries with computation time at most t, oracle queries at most q,
we denote Advrka−prf

F (q, t) = maxAAdvrka−prf
F (A). When the advantage is

negligible, we say that F is a RKA-PRF for Φ.
(2) RKA-UF. A message authentication code (MAC) is a function F : K × N ×
M → {0, 1}n, where K, N , M and {0, 1}n are spaces of key, nonce, message and
tag respectively. The nonce space can be an empty set N = ∅. For a RKD set Φ,
the adversary A queries the MAC algorithm with (φ,N,M) ∈ Φ × N × M but
never repeats N , and gets T = Fφ(K)(N,M). After several queries A returns a
quadruple (φ′, N ′,M ′, T ′) which never appear before in the queries. We define
the probability of T ′ = Fφ′(K)(N ′,M ′) as the advantage of A and write it as:

Advrka−uf
F (A) = Pr[AF·(K)(·,·)forges].

For all adversaries with computation time at most t, oracle queries at most
q, we denote Advrka−uf

F (q, t) = maxAAdvrka−uf
F (A). When the advantage is

negligible, we say that F is related-key unforgeable (RKA-UF) or related-key
unpredictable for Φ.
(3) RKA-STPRP and RKA-SPRP. A tweakable block cipher consists of two algo-
rithms S = (E,D). The encryption algorithm E : K × T × {0, 1}n → {0, 1}n,
where K, T and {0, 1}n are spaces of key, tweak, plaintext/ciphertext respec-
tively. For input (K,T, P ) ∈ K ×T ×{0, 1}n, we write the result as C = ET

K(P )
The decryption algorithm D : K × T × {0, 1}n → {0, 1}n. We require that for
any (K,T ) ∈ K×T , ET

K(·) and DT
K(·) are permutations, and DT

K(ET
K(P )) = P .
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For a RKD set Φ, an adversary A queries E with (φ, T, P ) ∈ Φ × T × {0, 1}n or
queries D with (φ, T,C) ∈ Φ×T ×{0, 1}n. A tries to distinguish S from an ideal
TBC, where for any (K,T ) ∈ K × T , πT

K is an independent uniformly random
permutation. Without loss of generality we assume that the adversary never
make pointless queries that the adversary “knows” the answer. For example, if
the adversary query (φ, T, P ) to the encryption oracle and get the answer C, he
will never query (φ, T,C) to the decryption oracle. We define the advantage as

Advrka−stprp
S (A) = Pr[AE·

·(K)(·),D·
·(K)(·) ⇒ 1] − Pr[Aπ·

·(K)(·),π−1·
·(K)(·) ⇒ 1].

For all adversaries with computation time at most t, oracle queries at most q,
we denote Advrka−stprp

S (q, t) = maxAAdvrka−stprp
S (A). When the advantage

is negligible, we say that S is a related-key strongly tweakable pseudorandom
permutation (RKA-STPRP) for Φ. When the tweak space T is a empty set E
becomes a block cipher. The corresponding security notion is related-key strongly
pseudorandom permutation (RKA-SPRP). Tweakable enciphering schemes are
TBCs with large or variable input length. The definition is the same as that of
TBC.
(4) RKA-AE. An authenticated encryption scheme consists of two algorithms
SE = (E,D). The encryption E : K ×N ×A×P → C, where K, N , A, P and C
are spaces of key, nonce, associated data, plaintext and ciphertext respectively.
For input (K,N,A, P ) ∈ K×N ×A×P, we write the result as C = EK(N,A, P ).
The decryption algorithm D : K × N × A × C → P ∪ {⊥}. We require that
DK(N,A,EK(N,A, P )) = P . For a RKD set Φ, an adversary A queries the E
with (φ,N,A, P ) ∈ Φ × N × A × P but never repeats (φ,N), or queries the
D with (φ,N,A,C). A tries to distinguish SE from an ideal AE scheme($,⊥),
where for any query $ returns a random string and ⊥ always returns ⊥. We
define the advantage as

Advrka−ae
SE (A) = Pr[AE·(K)(·,·,·),D·(K)(·,·,·) ⇒ 1] − Pr[A$(·,·,·,·),⊥(·,·,·,·) ⇒ 1].

For all adversaries with computation time at most t, oracle queries at most q, we
denote Advrka−ae

SE (q, t) = maxAAdvrk−ae
SE (A). When the advantage is negligible,

we say that SE is related-key secure for Φ.

B More Examples of Related-Key Attacks Against
UHF-based Schemes

(1) TBC. A tweakable block cipher (TBC) is a generalized block cipher with an
extra input called tweak. TBCs were first formalized by Liskov et al. [36] and
found applications largely in modes of operation [42]. In their seminal paper,
Liskov et al. gave a construction of TBC from a block cipher: TBCK,K′(T,M) =
EK′(M ⊕ HK(T )) ⊕ HK(T ) where E is the block cipher, H is a universal hash
function and T is the tweak. They proved that when E is a PRP against cho-
sen ciphertext attacks (CCAs) and H is almost XOR universal, TBC is secure
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against CCA attacks. If we use PolyK(T ) = TK as the underlying UHF, the fol-
lowing is an attack. First we query with (T,M) under the derived key (K⊕Δ,K ′)
where Δ �= 0, then the answer is C = EK′(M ⊕ T (K ⊕ Δ)) ⊕ T (K ⊕ Δ) =
EK′((M ⊕ TΔ) ⊕ TK) ⊕ TK ⊕ TΔ. So we can predict that the ciphertext of
(T, (M ⊕ TΔ)) under the original key is C ⊕ TΔ. Therefore it does not resist
related-key attack.
(2) TES. A tweakable enciphering scheme is a generalized TBC with large or
variable input length, suitable for disk sector encryption. Recently Sun et al. [49]
show that HCTR [50], HCHp and HCHfp [16,17] suffer related-key attacks. All
these TESes use the polynomial evaluation hash function as the underlying UHF.
(3) AE scheme. An authenticated encryption scheme achieves both confidential-
ity and authenticity. One of AE schemes OCB [42,43] following from IAPM [33],
encrypts the message blocks using independent PRPs into ciphertext blocks
and encrypts the XOR of the message blocks into a tag using another indepen-
dent PRP. Kurosawa [35] proposed a modified IAPM, the encryption of message
blocks is

Ci = EK′(Mi ⊕ PolyK(IV ‖(2i − 1))) ⊕ PolyK(IV ‖(2i − 1))

where Mi is the i-th message block, E is the block cipher and the key of the
scheme is (K,K ′). Kurosawa proved that this modified IAPM is secure even if
the underlying block cipher is publicly accessible. But if we query with (IV,M)
under the derived key (K⊕0n−11,K ′), the first ciphertext block C1 = EK′((Mi⊕
IV ⊕ 0n−11) ⊕ (PolyK(IV ‖0n−11)) ⊕ PolyK(IV ‖0n−11) ⊕ IV ⊕ 0n−11. We can
predict that the first ciphertext block of (IV,M ′) under the original key is C1 ⊕
IV ⊕ 0n−11, where M ′ is changed from M by changing the first block into
M1 ⊕ IV ⊕ 0n−11. If we define the confidentiality as the indistinguishability
between ciphertexts and uniformly random bits, this scheme does not resist the
related-key attack.

In the above examples, the key of UHF is a part of the key of whole scheme, so
that the adversary can derive the related key of UHF and get the input collision
to other primitives such as PRPs or PRFs. The collisions in the above attacks
are listed as following.

(1) PolyK⊕Δ(T ) ⊕ PolyK(T ) = ΔT used in the TBC example;
(2) PolyK⊕Δ(A‖B) ⊕ PolyK(A‖B) = AΔ2 ⊕ BΔ used in the TES and AE

scheme examples.

C Existing UHFs that Are Not RKA-AXU (RKA-AU)

The following universal hash functions are proved to be AXU (AΔU).

(1) MMH [26]: HK(M) = (((
∑t

i=1 MiKi) mod 264) mod p) mod 232,
Mi,Ki ∈ Z232 and p = 232 + 15;

(2) Square Hash [23]: HK(M) =
∑t

i=1(Mi + Ki)2 mod p, Mi,Ki ∈ Zp;
(3) NMH [26]: HK(M) = (

∑t/2
i=1(M2i−1 +K2i−1)(M2i +K2i)) mod p, Mi,Ki ∈

Z232 , p = 232 + 15;
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(4) NH [13]: HK(M) = (
∑t/2

i=1((M2i−1 + K2i−1) mod 2w)((M2i + K2i)
mod 2w)) mod 22w, Mi,Ki ∈ Z2w .

In (1) we set t = 1, then HK(M) = (MK mod 232 + 15) mod 232. If M =
M ′ = Δ′ = 1, Δ = 0, then HK(M) = K, HK+Δ′(M ′) = K + 1 mod 232,
therefore HK(M)+1 = HK+Δ′(M ′), MMH is not RK-AΔU. (2), (3) and (4) all
have the term M1 + K1. From M1 + K1 = (M1 − 1) + (K1 + 1) we know that
they are all not RKA-AU.
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Abstract. In this paper, we propose a guess and determine attack
against some variants of the π-Cipher family of authenticated ciphers.
This family of ciphers is a second-round candidate of the CAESAR com-
petition. More precisely, we show a key recovery attack with time com-
plexity little higher than 24ω, and low data complexity, against variants
of the cipher with ω-bit words, when the internal permutation is reduced
to 2.5 rounds.

In particular, this gives an attack with time complexity 272 against the
variant π16-Cipher096 (using 16-bit words) reduced to 2.5 rounds, while
the authors claim 96 bits of security with 3 rounds in their second-round
submission. Therefore, the security margin for this variant of π-Cipher
is very limited.

The attack can also be applied to lightweight variants that are not
included in the CAESAR proposal, and use only two rounds. The light-
weight variants π16-Cipher096 and π16-Cipher128 claim 96 bits and 128
bits of security respectively, but our attack can break the full 2 rounds
with complexity 272.

Finally, the attack can be applied to reduced versions of two more
variants of π-Cipher that were proposed in the first-round submission
with 4 rounds: π16-Cipher128 (using 16-bit words) and π32-Cipher256
(using 32-bit words). The attack on 2.5 rounds has complexity 272 and
2137 respectively, while the security claim for 4 rounds are 128 bits and
256 bits of security.
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1 Introduction

Authenticated encryption is a rapidly growing field of cryptography that has
wide applications in diverse industries. Even though some efforts over the past
few years have been devoted to the design and analysis of authenticated encryp-
tion schemes, a well-studied design with the desirable level of security and per-
formance is not yet available. Lack of secure and efficient authenticated ciphers
led to devastating attacks in extensive applications like TLS and OpenSSL [1,4].
To address this challenge, an international contest called CAESAR, funded by
the NIST, plans to hold a multi-year effort to identify a promising new portfolio
of authenticated ciphers, suitable for widespread applications [3]. The CAESAR
competition, launched in 2014, follows the long tradition of contests in secret
key cryptography and aims at selecting a portfolio of authenticated ciphers that
offer perceptible advantages over AES-GCM and that can be recommended for
widespread use. There were 57 proposals accepted for the first round of the com-
petition and recently, 30 ciphers among these proposals were selected to continue
in the second round.

The π-Cipher [7] family of authenticated ciphers, designed by Gligoroski
et al., is one of the 30 second-round candidates. It is a special case of encrypt-
then-MAC designs and makes use, as all such CAESAR candidates, of a nonce
and process associated data.

One of the most important design goals of this family of cryptographic func-
tions is the possibility of parallel computations. Other goals, as claimed by the
designers, are a better security than AES-GCM in the case of a nonce reuse,
and better resistance for producing second-preimage tags. Although the cipher’s
mode of operation is inspired by the sponge construction [2], and is based on a
permutation called the π-function, it has been largely modified by Gligoroski et
al. in order to permit parallel computations.

In the initial submission, the authors proposed six different variants of the
cipher, where each variant offered a particular level of security and used words of
a particular size. More precisely, the level of targeted security, corresponding to
the size of the secret key, ranges from 96 to 256 bits, and each variant uses words
of 16, 32, or 64 bits. For the second round of the competition, only four variants
were kept. Another decision taken by the designers for the second-round version
of the cipher, was to decrease the number of rounds of the π-function from 4 to 3.
In addition, at NIST’s lightweight cryptography workshop, a lightweight version
of the π-Cipher [10] was proposed. The lightweight proposal is composed of two
variants, both using 16-bit words. Since lightweight ciphers must be as small and
power-efficient as possible, the number of rounds in the internal permutation is
further reduced to 2 in the lightweight version. An overview of the different
variants is given in Table 1.

Our Results. In this work, we present a key recovery attack against several
variants of the π-Cipher, when the π-function is reduced to 2.5 rounds. This
shows that the decision to decrease the number of rounds was precarious. Indeed,
the lightweight version is completely broken, and the affected variant that is still
in the second round submission offers only very limited security margin.
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More precisely, the time complexity of our attack is 272 for the 16-bit word
variants and 2137 for the 32-bit word variants, while the data complexity remains
very low (a single known plaintext with at least 256 blocks for 16-bit word
variants, and 512 blocks for the 32-bit word variants). The attack is faster than
exhaustive search of the key for the following variants (reduced to 2.5 rounds):

π16-Cipher096 with 16-bit words and 96-bit key.
This variant was proposed with 4 rounds in version 1, 3 rounds in version 2,
and 2 rounds in the lightweight version.

π16-Cipher128 with 16-bit words and 128-bit key.
This variant was proposed with 4 rounds in version 1, and 2 rounds in the
lightweight version.

π32-Cipher256 with 32-bit words and 256-bit key.
This variant was proposed with 4 rounds in version 1.

Our cryptanalysis is a guess and determine attack exploiting a weakness in
the high-level structure of the π-function. Indeed, we show that by knowing two
out of the four output chunks of the π-function and by guessing a third one, we
can easily recover one of the four input chunks of the permutation. This permits
us to recover the internal state and gives us the possibility to recover the secret
key by some very simple operations. Note that our attacks work in the case
when no secret message number is processed. However, the attacks can be easily
extended in cases when a secret message number is used, if one supposes that
the secret message number is known together with the plaintext.

Cryptographic algorithms should be designed with enough security margin to
thwart classical attacks but also to resist to new and unknown vulnerabilities.
Surplus security cannot be obtained for free, since it has impacts on the perfor-
mance of the ciphers. In particular, due to a number of important limitations in
the resources of pervasive devices, it is of utmost importance to analyze light-
weight cryptographic designs that allow reduction of superfluous margins. Our
attack shows that the security margin offered by these three members of the
π-Cipher family is too small and that these variants are much less secure than
expected. This kind of analysis is very important for the progress of the CAE-
SAR competition, as the final portfolio of the selected authenticated ciphers
should offer a high level of security. Thus, evaluating the security of the remain-
ing candidates, leads to a more clear overview of which candidates are robust
and which should be eliminated.

Outline. The rest of the paper is organised as follows. In Sect. 2 we briefly pro-
vide the specifications of π-Cipher. Then, we present our attack on 2.5 round
π-Cipher in Sect. 3 and we discuss how to mount a full-round attack on the light-
weight version of π-Cipher in Sect. 4. Finally, we perform a complexity analysis
of our attacks in Sect. 5 and conclude.

2 π-Cipher Specifications

There exist different variants of π-Cipher, depending on the bit-length of the
words used and the expected level of security expressed in bits. Therefore,
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πω-Ciphern represents a variant defined with ω-bit words and offering n-bit
security. The six variants of π-Cipher submitted to the first round of the compe-
tition, together with the corresponding parameters, are summarized in Table 1.
The first four rows in the table represent the only four variants conserved for
the second round. Furthermore, the two variants of the recently presented light-
weight π-Cipher proposal [10], are described in the last two rows of Table 1.

Table 1. π-Cipher variants. The first four rows represent the four variants kept for
the second round of the CAESAR competition. The last two rows describe the two
lightweight variants proposed in [10]. PMN and SMN are the two parts of the nonce
and stand for Public Message Number and Secret Message Number respectively. All the
parameters are given in bits. For variants both in version 1 and 2, there are 4 rounds
in v1 and 3 rounds in v2.

Version Variant Word PMN SMN Rate Tag Key Rounds

size ω r size t length

v1 & v2 π16-Cipher096 16 32 0 or 128 128 128 96 3

π32-Cipher128 32 128 0 or 256 256 256 128 3

π64-Cipher128 64 128 0 or 512 512 512 128 3

π64-Cipher256 64 128 0 or 512 512 512 256 3

v1 π16-Cipher128 16 32 0 or 128 128 128 128 4

π32-Cipher256 32 128 0 or 256 256 256 256 4

Lightweight π16-Cipher096 16 32 0 or 128 128 128 96 2

π16-Cipher128 16 32 0 or 128 128 128 128 2

2.1 Authenticated Encryption

The encryption/authentication function accepts as input a triplet (K,AD,M),
where K is a secret key, AD is a string of associated data of a blocks, and M is a
message composed of m blocks of size r bits each. The main building block of the
authenticated encryption procedure is a construction that the authors call the
e-triplex component and which is depicted in Fig. 1. The encryption procedure
starts by initializing the internal state with the string K||PMN ||10∗, where the
number of 0’s appended should be such that the length of the concatenated
string equals the size of the state of the π-function. This internal state is then
updated by applying the π-function. The result is called the Common Internal
State (CIS) and is used as the initial state for the first parallel computations:

CIS ← π(K||PMN ||10∗).

By following the same notation as in the sponge construction, we can see
each internal state, say IS, as the concatenation of a rate part and a capac-
ity part: IS = IScapacity||ISrate. In particular, each internal state IS of the
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counter

π function

plaintext

ciphertext

π function

tag

Fig. 1. The e-triplex component of π-Cipher.

procedure is the concatenation of four 4ω-bit chunks, that we will denote
as IS = IS1||IS2||IS3||IS4. From the specification of π-Cipher, the capacity
part of the state is IScapacity = IS2||IS4, and the rate part of the state is
ISrate = IS1||IS3. The counter, denoted by ctr, is then initialized by extracting
the first 64 bits of CIScapacity. This procedure is depicted at the top left part of
Fig. 2.

The next step in the authenticated encryption procedure is the process of the
associated data. The associated data AD is cut into equal-sized blocks: AD =
AD1|| . . . ||ADa. All blocks are treated in parallel by the e-triplex component.
The input to the e-triplex component for the block i is CIS, ctr + i and ADi,
and the output is an intermediate tag t′i. The way that each block of associated
data is processed can be observed in Fig. 2. At the end of this procedure a tag
for the associated data T ′ is computed as

T ′ = t′1 �d · · · �d t′a,

where �d is a component-wise addition of vectors of dimension d, where d is
the number of ω-bit words in the rate part (d = 8 for all proposed variants of
π-Cipher). Finally, the internal state is updated in the following way to create
a new internal state that we will denote by CIS′:

CIS′ ← π(CIScapacity||CISrate ⊕ T ′).

After this first phase, the secret message number SMN , if any, is processed.
This procedure is depicted in Fig. 2 and described by the following expressions:

IS ← π(CIS′
capacity||CIS′

rate ⊕ (ctr + a + 1)),
CIS′′ ← π(IScapacity||ISrate ⊕ SMN).

The new state CIS′′ will be used as the common state for the parallel process
of the message blocks. The tag produced during this phase is

T ′′ = T ′ �d t0,
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Fig. 2. π-Cipher encryption structure.

where t0 is the output tag of the last call to the e-triplex component after
absorbing the SMN . If no secret message number is used, then the above steps
are ignored. The authenticated encryption procedure without SMN is depicted
in Fig. 4.

In the last phase, the message blocks are treated. As for the associated data,
the message M is cut into blocks M = M1|| . . . ||Mm and each block is processed
in parallel by the e-triplex construction. Note that the length of each message
block, as well as of each ciphertext block is equal to the bitrate, i.e. r bits (e.g.
r = 128 in the case of π16-Cipher096). A unique block counter is associated
with each message block. The counter for the message block Mj is computed as
ctr+a+j if the secret message number is empty, and as ctr+a+1+j otherwise.

During encryption, each e-triplex component takes as input the common state
CIS′′, the counter ctr and a message block Mj and outputs a pair (Cj , tj), where
Cj is a ciphertext block and tj is a partial tag. The final tag T is computed as

T = T ′′ �d t1 · · · �d tm.
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� � � �

� � � �s1
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Fig. 3. One round of the π-function.

2.2 The π-Function

The core of π-Cipher is an ARX-based permutation called the π-function. This
permutation somehow uses similar operations as the hash function Edon-R [8].
We denote the size of the permutation in bits by b and the number of rounds
by R. For the first version of the cipher, R was fixed to 4, however the authors
decided to reduce this number to 3 for the second round of the competition.
The internal state (IS) of the π-function can be seen as a concatenation of four
chunks of four words, so that b = 4 × 4 × ω bits. The π-function is mainly based
on an operation that will be denoted by �. However, as our attack does not
take advantage of the internal structure of � we omit here its description. The
only important thing to know about this operation in order to understand the
attack is that it is a 2-input 1-output operation (in Fig. 3, the two outputs of a
� operation are equal) that is invertible with respect to each of its inputs. Its
full specifications can be found in [7]. A round of the π-function is depicted in
Fig. 3, where S1 and S2 are constants.

2.3 Previous Cryptanalysis Results

In [6], Fuhr and Leurent showed that forgeries can be computed for the first
round variants of π-Cipher due to a weakness in the padding algorithm. More
precisely, they noticed that the padding used for both the associated data and
the plaintext was not injective. This observation permitted to mount a forgery
attack by producing valid tags and forced the designers to modify the padding
rule for the second round of the competition.

One of the advertised features of π-Cipher is tag second-preimage resistance,
meaning that it should be hard to generate a message with a given tag, even
for the legitimate key holder. However, Leurent demonstrated in [9] that prac-
tical tag second-preimage attacks could be mounted against π-Cipher by using
Wagner’s generalized birthday attack. More specifically, Leurent showed that
tag second-preimages can be computed with optimal complexities ranging from
222 to 245 depending on the word size ω.

The best attack mentioned by the designers [7, Sect. 3.3] is a distinguisher
on reduced versions with 1 round, using a guess and determine technique.
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Their attack has complexity about 24ω (time and memory); in particular, it
is applicable to the same variants as our attack. Our attack actually uses similar
ideas, but reaches 2.5 rounds, and a full key recovery.

3 Key Recovery Attack Against 2.5-Round π-Cipher

We describe in this section our key recovery attack against reduced-round
variants of π-Cipher when no secret message number (SMN) is used. The
authenticated-encryption procedure for this case is described in Fig. 4. Note that
if no SMN is used then the intermediate tags T ′ and T ′′ are equal and that the
state CIS′′ of Fig. 2 is equal to the state CIS′. In order to be consistent with the
notation of Sect. 2, we will keep denoting the common state for processing the
message blocks as CIS′′ even if this is exactly the same as CIS′ in the empty
SMN case.
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Fig. 4. π-Cipher encryption procedure when no secret message number is used.
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We consider an m-block message M = M1|| · · · ||Mm and an a-block string
of associated data, with the corresponding ciphertext C = C1|| · · · ||Cm. The
message should have at least 16ω blocks, i.e. 256 blocks when ω = 16, and 512
blocks when ω = 32.

We denote the input and output states of the first π-function for processing
the message block Mi by Ii = Ii

1||Ii
2||Ii

3||Ii
4 and Oi = Oi

1||Oi
2||Oi

3||Oi
4 respectively,

where each chunk Ii
j , Oi

j , for 1 ≤ j ≤ 4, is of size 4ω bits.
In our attack, we deploy a guess and determine technique for recovering the

secret key for three variants of the π-Cipher family, where the π-function is
reduced to 2.5 rounds. Our attack targets the first π-function of the message
processing phase, for 16ω consecutive blocks of plaintext. We provide now the
main observations that the attack takes advantage of.

3.1 Observations on the π-Cipher Structure

The first observation concerns the nature of the inner operation �, that takes
two chunks of size 4ω bits as input and outputs a single chunk of the same size.
This operation is the core of the π-function. It has the property, that when fixing
one of the two input chunks to a constant and letting the other chunk take all
possible values, then the output chunk equally takes all possible values (it defines
a quasi-group).

Observation 1. Both �(a, .) and �(., b) are invertible for all a, b ∈ F
4ω
2 and

if �(a, b) = c, then the knowledge of any two chunks among a, b and c can
determine the third one.

The next observation is in the core of the guess and determine technique and
exploits a weakness in the high-level structure of the π-function. It shows, that
when the function is reduced to 2.5 rounds, the knowledge of 3 output chunks
of 4 words each, can completely determine an input chunk. This observation
demonstrates that the inverse π-function has a limited diffusion when the number
of rounds is reduced to 2.5, as we can see that in this case an input word does
not depend on all the output words.

Observation 2. Let, I = I1||I2||I3||I4 and O = O1||O2||O3||O4 be the input
and the output state respectively of the π-function reduced to 2.5 rounds. Then
the knowledge of O1, O3 and a guess of O2 can determine I1.

Proof. This claim can be proven by the following guess and determine steps
described below. The pictorial description of the steps is given in Fig. 5. In
the figure the green boxes denote the determined chunks Di, 1 ≤ i ≤ 9, the
orange boxes denote the guessed chunk i.e. O2 and the chunks denoted by K1,
K2 corresponding to O1 and O3 respectively are known. At the end of this
procedure, one computes D9 which corresponds exactly to I1. Note that each
step of the below procedure makes use of Observation 1.
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1. Use K1, S1 and G to determine D1 and D2.
2. Use K2 and G to determine D3.
3. Use D1 and D2 to determine D4.
4. Use D2 and D3 to determine D5 and D4, S1 to determine D6.
5. Use D4 and D5 to determine D7.
6. Use D6 and D7 to determine D8.
7. Use D8 and S1 to determine D9. ��

Fig. 5. Guess and determine steps for the first π-function. (Color figure online)

The last observation aims at showing that the knowledge of the input state of
the π-function for several message blocks can be used to determine the common
state CIS′′.

Observation 3. The message processing phase uses the same common internal
state, CIS′′ = CIS′′

1 ||CIS′′
2 ||CIS′′

3 ||CIS′′
4 , to process each of the message blocks

Mi, 1 ≤ i ≤ m. Then, the input to the first π-function is Ii = Ii
1||Ii

2||Ii
3||Ii

4 =
CIS′′

1 ⊕ (ctr + a + i)||CIS′′
2 ||CIS′′

3 ||CIS′′
4 for each block.

3.2 High Level Description of the Attack

This section provides a high level description of our attack. As already men-
tioned, the attack requires a single known plaintext message, with at least 16ω
blocks. The attack can be seen as the succession of the five main steps that we
describe below:
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1. Guess and determine step. In this first part of the attack, we target the
first computation of the π-function in the message processing part. Two of
the output chunks are known to the attacker as they only depend on the
plaintext and ciphertext blocks (i.e. Oi

1||Oi
3 = Mi ⊕ Ci). Then by guessing a

third output chunk, namely Oi
2, we are able to determine one input chunk,

Ii
1. We repeat this procedure for all message blocks. This step is described

in more details in Subsect. 3.3. At the end of this part we are left with a
collection of lists of candidates for one input chunk. We recover the right
value by treating the lists in the way described in the next step.

2. Computation of the intersection of the created lists. During this phase,
detailed in Subsect. 3.4, we show how to treat the created lists in order to
recover the right value of the common part for the first input chunk of the
π-function, or more precisely, of the value CIS′′

1 ⊕(ctr+a) from Observation 3.
3. Recovery of the intermediate Ii state. This step shows the procedure to recover

a list of candidates for the state Ii and is described by the Recover-IS
Algorithm in Subsect. 3.5.

4. Recovery of the common internal state CIS. We show here how one can
compute the state CIS, once the intermediate state I1 has been com-
pletely identified. This phase is described by the Recover-CIS Algorithm in
Subsect. 3.6.

5. Computation of the secret key. This phase is pretty straightforward
once we have recovered CIS, since, as already mentioned in Sect. 2.1,
CIS = π(K||PMN ||10∗) and π-function is a known permutation.

The high level description of the attack is furnished in Algorithm1.

Algorithm 1. Overview of the attack.
Input: 1 Known Plaintext-Ciphertext Pair (M = M1|| · · · ||M16ω, C = C1|| · · · ||C16ω)
Output: Master Key K
1: for all 1 ≤ i ≤ 16ω do
2: Li ← Guess-Determine(Mi, Ci) � Subsect. 3.3

3: for all 1 ≤ j ≤ 8ω do
4: S ← ⋂0≤k<8ω Lj+k ⊕ k � Subsect. 3.4
5: if S �= ∅ then
6: L′

0 ← Recover-IS(Mj , Cj , 0, S) � Subsect. 3.5
7: L′

1 ← Recover-IS(Mj+1, Cj+1, 1, S)
8: Ij , Ij+1 ← {I, J ∈ L′

0 × L′
1 | I2‖I3‖I4 = J2‖J3‖J4} � Single value expected

9: for all ctr, s.t. ctr + a + j ≡ 0 mod 8ω do � Subsect. 3.6
10: CIS′′ ← Ij ⊕ (ctr + a + j)
11: CIS ← Recover-CIS(CIS′′)
12: if ctr = first 64 bits of CIScapacity then
13: K||PMN ||10∗ ← π−1(CIS)
14: return K
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3.3 Guess and Determine

This section describes the guess and determine phase, which recovers the input
chunk Ii

1 of the first π-function for the ith block for the plaintext-ciphertext pair
(M = M1|| · · · Mi · · · ||Mm, C = C1|| · · · Ci . . . ||Cm). Note that we can compute
Oi

1||Oi
3 = Mi ⊕ Ci. Then by making a guess on the value of Oi

2, we can compute
Ii
1 independently of Oi

4, following Observation 2. In particular, we can compute
it as I1 = π−1(O1‖O2‖O3‖〈0〉).

We compute all candidates for Ii
1 corresponding to the 24ω choices of Oi

2,
and store them in a list Li. The guess and determine phase is described in
Algorithm 2.

Note that there will be less than 24ω different values of Ii
1 in a list Li as

the π-function is a permutation of the four chunks and not a permutation from
one chunk (Oi

2) to one chunk (Ii
1). In the following, we assume that the function

from Oi
2 to Ii

1 behaves as a random function, so that the expected size of Li is
(1−e−1)×24ω (see [5, Theorem 2]). In the next part, we describe how to compute
the intersection and filter out the correct value of Ii

1 for some 1 ≤ i ≤ 16ω.

Algorithm 2. Build the list of candidates for the first input chunk of the first
π-function.
Input: Plaintext-ciphertext block M, C
Output: List L of possible candidates for I1
1: function Guess-Determine(M, C)
2: L ← ∅

3: O1||O3 ← M ⊕ C
4: for all O2 do
5: I1 ← π−1(O1||O2||O3||〈0〉) � Following Observation 2
6: L ← L ∪ {I1}
7: return L

3.4 Intersecting the Lists

In this phase, we compare the list of candidates for Ii
1 for each message block,

using the fact that they are all derived from a common state CIS′′. More pre-
cisely, the first input chunk to the first π-function of each block is computed
as:

Ii
1 = CIS′′

1 ⊕ (ctr + a + i), for 1 ≤ i ≤ 16ω.

By construction of the lists Li, we have that:

CIS′′
1 ⊕ (ctr + a + i) ∈ Li, for 1 ≤ i ≤ 16ω.

Let j ∈ {1, . . . , 8ω} be such that ctr + a + j ≡ 0 mod 8ω (i.e. j ≡ −(ctr +
a) mod 8ω). In other words, with ω = 16, j is the first message block such that
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the 7 least significant bits of ctr + a + j are equal to zero (and similarly, 8 bits
when ω = 32). This implies:

(ctr + a + j) + k = (ctr + a + j) ⊕ k for 0 ≤ k < 8ω

CIS′′
1 ⊕ (ctr + a + j) ⊕ k ∈ Lj+k for 0 ≤ k < 8ω

CIS′′
1 ⊕ (ctr + a + j) ∈ Lj+k ⊕ k for 0 ≤ k < 8ω

Thus,

CIS′′
1 ⊕ (ctr + a + j) ∈

8ω−1⋂

k=0

(Lj+k ⊕ k).

We will compute this intersection for all guesses of j ∈ {1, . . . , 8ω}. We are
interested now in determining the size of the intersection of the 8ω lists. Each
list has about (1 − e−1)24ω elements. If the guess of j is wrong, we assume that
the lists are independent; an element is a part of all the 8ω lists with probability
(1 − e−1)8ω. As there is a total of 24ω elements, the probability that there is no
element in the intersection is (1 − (1 − e−1)8ω)2

4ω

. This probability is very close
to one:

(
1 −

(
1 − e−1

)8ω
)24ω

= exp
(
24ω ln(1 −

(
1 − e−1)8ω

))

≥ 1 + 24ω ln
(
1 −

(
1 − e−1

)8ω
)

≈ 1 − 24ω
(
1 − e−1

)8ω

≈ 1 − 0.98ω

In particular, it is about 1 − 2−20 for ω = 16.
On the contrary, if the guess is right, the intersection contains 1 element.

With high probability, the test at line 5 of Algorithm 1 will succeed only for the
correct value of j, and the corresponding set S will contain a single value.

3.5 Recovering the Intermediate State

So far, we have recovered the value CIS′′
1 ⊕ ctr + a + j, that is to say the first

chunk Ij
1 of the input of the first π-function. In addition, the least significant

bits of ctr + a + j are known to be zero, so that we can compute Ij+k
1 = Ij

1 ⊕ k
for 0 ≤ k < 8ω (adjusting the effect of the counter).

From this, we can build a small list of candidates for any Oj+k
2 . We just have

to try all 24ω values Oj+k
2 , recompute Ij+k

1 , and compare the result to the known
value. We know that there will be at least one remaining value, and there can
be a few false positives.

Now we make a guess of Oj+k
4 and use the invertibility of the π-function to

built a list L′
k of all potential values of the full input Ij+k of the permutation.
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This second phase of guess and determine through the π-function is demon-
strated in Fig. 6. The list L′

k contains about 24ω values. This step is described
in Algorithm 3.

In order to identify the correct value in the list, we build the lists L′
0 and

L′
1, and we use the way Ij and Ij+1 are derived from CIS′′. In particular, we

have Ij
2‖Ij

3‖Ij
4 = Ij+1

2 ‖Ij+1
3 ‖Ij+1

4 . This allows us to recover the correct value Ij

and Ij+1.

Fig. 6. Guessing O4 after I1 has been determined (Color figure online)

3.6 Recovering the Common Internal State CIS

In this section we show how to recover the common internal states CIS′′ and
CIS. We remind once again, that the state CIS′ is equal to CIS′′. From the
previous sections, the input state of the first π-function for message block j, Ij

has been recovered. Note that

Ij = Ij
1 ||I

j
2 ||I

j
3 ||I

j
4 = CIS′′

1 ⊕ (ctr + a + j)||CIS′′
2 ||CIS′′

3 ||CIS′′
4 .

By making a guess for the value of the counter ctr, we can compute the value of
CIS′′ which equals CIS′.

The next step is to retrieve the tag T ′′ and therefore T ′ (since both tags are
equal) by computing T ′′ = T �d t1 �d · · ·�d t16ω, where each tag ti, 1 ≤ i ≤ 16ω
can be recovered from the knowledge of CIS′′, ctr and the message blocks.
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Algorithm 3. Build the list of candidates for the full input of the first π-
function, knowing the first input chunk.
Input: Plaintext-ciphertext block M, C; index k; list of I1 candidates S
Output: List L of candidates for I2||I3||I4
1: function Recover-IS(M, C, k, S)
2: L ← ∅

3: O1||O3 ← M ⊕ C
4: for all O2 do
5: I ← π−1(O1||O2||O3||〈0〉)
6: if I1 ⊕ k ∈ S then � Only one candidate expected
7: for all O4 do
8: I ← π−1(O1||O2||O3||O4)
9: L ← L ∪ {I2||I3||I4}

10: return L

Once this step is done, the recovery of the common internal state CIS is
immediate, as one can compute it as CIS = π−1(CIS′) ⊕ T ′. Note that, at this
point, we can easily verify if the guess of ctr was correct, since ctr corresponds to
64 bits extracted directly from the initial state CIS (as described in Sect. 2.1).
The above procedure is described by Algorithm 4.

Algorithm 4. Recover the initial state CIS.
Input: Common Internal State CIS′′, corresponding message M
Output: Common Internal State CIS
1: function recover-CIS(CIS′′, M)
2: for 1 ≤ i ≤ 16ω do
3: Compute ti from CIS′′ and Mi

4: T ′ = T �d t1 �d · · · �d t16ω

5: CIS ← π−1(CIS′)capacity||π−1(CIS′)rate ⊕ T ′

6: return CIS

3.7 Key Recovery

Once the internal state CIS has been successfully recovered, one can retrieve
the master key K by simply inverting the π-function, as described by Line 13 of
Algorithm 1.

3.8 About the use of SMN

The above described analysis supposes that no secret message number is used.
This is a legitimate assumption, as |SMN | = 0 is a valid scenario mentioned in
the cipher’s proposal. Our attack can be easily extended to the case when an
SMN is used if one supposes that this number is known to the attacker together
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with the plaintext. In the case that the knowledge of SMN is not available to
the attacker, our analysis fails. However, it is still possible to mount a forgery
attack in this case.

More precisely (see Fig. 2), if one is given an m-block message M with asso-
ciated data AD and the corresponding tag T , one can easily construct a forgery
as follows. Suppose that the new message Mforged has (m + 1) blocks where
the first m blocks are identical to the first m blocks of M (i.e., M is a prefix
of Mforged) and the last block of Mforged is any fixed value. We follow the
steps of Algorithm 1 with message M up to Step 8. At this point we intend to
recover ctr. However, we cannot follow the same strategy as the one followed in
Algorithm 1 since CIS cannot be recovered without the knowledge of SMN . But
we can use the value of Cs which is the output of the SMN processing branch
(see Fig. 2). So basically we guess ctr to determine CIS′′ as before. Subsequently,
we ascertain the value ctr by exploiting the relation (π−1(CIS′′))rate = Cs. Since
at this point, ctr is known, we can easily compute tm+1 and thus, the new tag
T forged will be given by T � tm+1.

4 Key Recovery Attack Against Full Round Lightweight
Version of π-Cipher

We argue here that the previously presented attack against various versions of
the π-Cipher CAESAR candidate, completely breaks the lightweight version [10]
of the same cipher, where the number of rounds is reduced to 2.

Fig. 7. Guess and determine phases for the attack on lightweight π-Cipher variants.
(Color figure online)
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The only difference with the previous attack is that, as the number of rounds
is reduced, the guess and determine part of the attack is slightly modified to fit
this reduction. This part, depicted at the left part of Fig. 7 is described by the
following steps:

1. Use K1 and G to determine D1.
2. Use K2 and G to determine D2.
3. Use D1 and S1 to determine D3.
4. Use D1 and D2 to determine D4.
5. Use D3 and D4 to determine D5.
6. Use D5 and S1 to determine D6.

After the chunk I1 has been determined, the other chunks I2, I3 and I4
can be derived by further guessing the value of O4, as shown at the right part
of Fig. 7. The other steps of the attack remain unchanged, thus we ignore their
full description.

5 Complexity Analysis

Time complexity. The two steps of the attack with the highest time complexity
are the guess and determine step, and the intersection of lists. The guess and
determine step involves 16ω lists and we evaluate the π-function 24ω times for
each list. This gives a time complexity of 16ω×24ω evaluations of the π-function.

Each list will be stored as a bit-field: we use an array of 24ω bits, where a
bit b is set to one if and only if the value b is in the list. This allows to compute
the intersection of two lists efficiently, with only 24ω bit-operations. We have to
compute 64ω2 list intersections at Line 4 of Algorithm 1. This amounts to a total
complexity of 64ω2 × 24ω bit-operations.

Since a computation of the π-function obviously requires more than 4ω bit-
operations, we will neglect the time complexity of lists intersection, and the
total complexity is 16ω × 24ω evaluations of the π-function. This leads to a time
complexity of 272 when ω = 16 and 2137 when ω = 32.

Memory complexity. The memory complexity of the attack comes from the stor-
age of lists. As explained above, each list Li takes only 24ω bits, for a total
storage of 16ω × 24ω bits. On the other hand, lists L′

0 and L′
1 contain 24ω values

of 16ω bits, so we must store the full values. We can store a single list, and
compute the intersections with the second list on the fly, so that this step also
requires 16ω × 24ω bits of storage.

For ω = 16 this leads to a memory complexity of 269 bytes, while for ω = 32,
we need to store 2134 bytes.

Table 2 presents a summary of our attacks on different variants of π-Cipher.
The last three columns of this table contain the time, data and memory
complexities of the attacks.
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Table 2. Summary of our attacks against different variants of π-Cipher. The data
complexity is counted as the number of known plaintexts. The minimal number of
blocks of each plaintext is denoted in the parentheses.

Version Variant Word Security # Rounds Time Data Memory

size ω Claim Attacked (# KP) (bytes)

v1 & v2 π16-Cipher096 16 96 2.5/3 272 1 (256 B) 269

v1 π16-Cipher128 16 128 2.5/4 272 1 (256 B) 269

π32-Cipher256 32 256 2.5/4 2137 1 (512 B) 2134

Lightweight π16-Cipher096 16 96 2/2 272 1 (256 B) 269

π16-Cipher128 16 128 2/2 272 1 (256 B) 269

6 Conclusion

In this work we provided an analysis of the security level offered by the π-Cipher
family of authenticated ciphers. The designers of π-Cipher decided to decrease
the number of rounds of the π-function from 4 to 3 for the second round of the
CAESAR competition and to consider only 2 rounds for the recently proposed
lightweight version. However, when reducing the number of rounds, special care
must be taken, as this can lead to a dangerous reduction of the security margin
offered by the new variants.

Our results indicate that π-Cipher, whose round function is reduced to 2.5
rounds, is vulnerable against guess and determine attacks. More precisely, we
manage to recover the secret key in three reduced-round versions of the π-Cipher
as well as in the two lightweight variants of the cipher. Taken together, these
results suggest that the decision taken by the designers to reduce the number of
rounds for the candidates of the second round of the CAESAR competition as
well as for the lightweight version was risky.

In this work, we focused on the application of deterministic guess and deter-
mine properties. As a possible direction for future research, one can explore
other guess and determine methods for breaking the full version of the cipher.
Alternatively, it would be also challenging to see if the analysis of the proper-
ties of the � operation could lead to the extension of our attack to an extra
half round. Furthermore, a question that naturally arises after this analysis is
whether increasing the number of rounds of the cipher is the only remedy to
resist to our attack, or whether there is another tweak that could be applied to
render the cipher immune against such type of cryptanalysis.
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Abstract. NORX is a second round candidate of the ongoing CAESAR
competition for authenticated encryption. It is a nonce based authenti-
cated encryption scheme based on the sponge construction. Its two vari-
ants denoted by NORX32 and NORX64 provide a security level of 128
and 256 bits, respectively. In this paper, we present a state/key recovery
attack for both variants with the number of rounds of the core permuta-
tion reduced to 2 (out of 4) rounds. The time and data complexities of
the attack for NORX32 are 2119 and 266 respectively, and for NORX64
are 2234 and 2132 respectively, while the memory complexity is negligi-
ble. Furthermore, we show a state recovery attack against NORX in the
parallel mode using an internal differential attack for 2 rounds of the
permutation. The data, time and memory complexities of the attack for
NORX32 are 27.3, 2124.3 and 2115 respectively and for NORX64 are 26.2,
2232.8 and 2225 respectively. Finally, we present a practical distinguisher
for the keystream of NORX64 based on two rounds of the permutation
in the parallel mode using an internal differential-linear attack. To the
best of our knowledge, our results are the best known results for NORX
in nonce respecting manner.

Keywords: Authenticated encryption · CAESAR · NORX · Guess and
determine · Internal differential attack · State recovery · Nonce respect

1 Introduction

Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness (CAESAR) [1] is a competition for designing authenticated encryption
schemes. 57 algorithms were submitted to the first round of this competition.
After over a year of analysis, the CAESAR committee announced 29 schemes
as the second round candidates. NORX [2,5] is one of them. It is a sponge
based scheme which uses a permutation as its core, supports associated date
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and does not allow nonce to be repeated (known as nonce respecting). To pro-
vide efficiency in wide range of platforms, the only operations used in the core
permutation of NORX are AND, XOR, rotation and shift. NORX consists of two
variants denoted by NORX32 and NORX64. NORX32 provides 128-bit security
and NORX64 provides 256-bit security. An interesting feature of NORX, com-
pared to some other sponge based candidates of CAESAR such as for instance
Ascon [13] and Keyak [8], is its level of parallelism. More precisely, NORX’s
designers proposed a parallel mode that enables users to process several mes-
sage blocks in parallel. This feature could be interesting in applications that
need high throughput, e.g. video streaming.

Among the second round candidates of CAESAR, NORX is one of the
fastest [16] and uses simple bitwise operations which makes it a good candidate
for a wide range of platforms, assuming that it provides the desired security.
On the other hand, no previous security analysis of NORX as a full AEAD,
e.g. integrity and confidentiality, is known and the only known results [4,11]
more dedicated to the permutation of NORX rather than the application of the
permutation in the mode.

Related Work. In [4], Aumasson et al. analysed the differential property of
the core permutation of NORX. They provided upper bounds on the differential
probability for the reduced permutation. More precisely, by assuming that an
attacker can only modify the nonce during initialisation, any single round differ-
ential characteristic has probabilities of less than 2−60 (for NORX32) and 2−53

(for NORX64). They extended their results to full (four) round permutation and
showed that the best characteristics for four rounds have probabilities of 2−584

and 2−836 for NORX32 and NORX64, respectively.
In [11], Das et al. analysed the higher order differential properties of the

core permutation of NORX. These results cover more rounds compared to the
first order differential analysis provided in [4]. More precisely, they identified the
higher order differential properties that allow practical distinguisher of the full
round permutation of NORX64 and 3.5-round permutation of NORX32. The
used approach is similar to zero-sum distinguishers [6], but it is probabilistic.

Although the results in [4,11] can reach full rounds, it seems hard to exploit
them to break integrity or confidentiality of NORX. In particular, the attacker’s
ability to control difference for the core permutation is significantly limited in
the nonce respecting setting.

Our Contribution. In this paper, we present several cryptanalysis against
reduced-round NORX with respect to security notions claimed by the designers;
recovering key or breaking confidentiality in the nonce respecting setting. We
discuss two different types of attacks; guess and determine attack and internal
differential attack. The attack results are summarised in Table 1.

Guess and determine attack is a widely used technique in analyzing stream
ciphers and authenticated encryption schemes. The attack by Dinur and Jean [12]
against authenticated encryption FIDES [10] is an example. The attacker first
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Table 1. Summary of our attacks. “KR” represents “key recovery” and “KD” repre-
sents “keystream distinguisher”.

Approach Goal Target Rounds Data Time Memory Ref.

Guess and determine KR NORX64 2/4 2132 2234 negl Sect. 4

Guess and determine KR NORX32 2/4 266 2119 negl. Sect. 4

Internal difference KR NORX64 2/4 74 2232.8 2225 Sect. 5.2

Internal difference KR NORX32 2/4 158 2124.3 2115 Sect. 5.2

Internal differential-linear KD NORX64 2/4 90 negl negl Sect. 5.3

learns a part of the internal state values leaked from a plaintext-ciphertext pair.
Then he partially guesses the hidden part of the state and recovers as many other
state bits as possible. Since the NORX core permutation is invertible, recovering
the internal state immediately allows to recover the secret key. We first describe
a simple guess and determine attack that works up to 1.5 (out of 4) rounds of
NORX. Then we show how to extend the attack to 2 rounds with the method
of solving linear equations. Our attacks works for both NORX32 and NORX64.

While differential cryptanalysis [9] is generally difficult to apply in the nonce
respecting setting, Jean et al. [14] have recently showed that difference between
two parallel computations under the same nonce, could be exploited by the
attacker and have applied it to fully parallelizable block cipher based scheme
Silver [17]. The approach is called internal differential attack [18]. On the other
hand, sponge based schemes generally have the serial structure, thus internal
difference does not exist. However, it is still possible to introduce parallel com-
putation to the sponge based schemes, and NORX is one of such designs. Hence,
we mount an attack by exploiting the difference between two computations in
the parallel mode of NORX. In the parallel mode, the same internal state is
first duplicated, and the counter value, 0, 1, 2, · · · , is XORed to each state to
make them distinct. Here, we focus on the very low Hamming wight difference
caused by the counter values, which leads to high probability multiple differen-
tials for 1 round. Using these differentials the internal state of the NORX with
the permutation reduced to two rounds can be recovered. Moreover, we use the
slow diffusion property of the NORX round function to present a practical dis-
tinguisher for the keystream of NORX64 with a permutation reduced to two
rounds in parallel mode. This attack employs a deterministic truncated differen-
tial in forward direction for 1.5 round of the NORX64’s permutation, followed
by a probabilistic linear attack for a halve round of the permutation in backward
direction.

Outline. The rest of the paper is organized as follows: in Sect. 2 we provide
the required notations and also describe NORX as much as necessary for our
analysis. In Sect. 3, we list several useful properties of the core permutation. In
Sect. 4 we present a guess and determine attack. Our internal differential attack
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is described in Sect. 5. We present our distinguisher for NORX64 in Sect. 5.3.
Finally, we provide closing remarks in Sect. 6.

2 Preliminaries

2.1 Notation

In this paper we mostly follow the notation used by the designer of NORX [5].
Depends on the context, a word is either a 32-bit or a 64-bit bit-string. The state
of NORX is generally denoted by S. Each state includes 16 words and we denote
the i-th word of S by si, for 0 ≤ i ≤ 15. If we specify the state right after round
j of the permutation, we denote it by Sj and denote its i-th word by sji and the
z-th bit of that word by sji [z]. In the parallel mode of NORX, there are more
than one lanes to process message blocks. In this case we denote the state of all
lanes by S̄ and we denote the state of the i-th lane by S̄i and the j-th word of
the i-th lane by s̄i,j . In general, we denote truncation of bit-string x from the
i-th bit toward least significant bit (LSB) and up to the j-th bit toward most
significant bit (MSB) by x[j ∼ i]. The i-th bit of x is denoted by x[i].

To denote bitwise AND, OR and XOR we use ∧, ∨ and ⊕ respectively. By
x � n, x � n, x ≪ n and x ≫ n we denote left-shift, right-shift, left-rotate
and right-rotate of bit-string x by n bits.

We use Δx to denote the difference in bit-string x and x′, i.e. Δx = x ⊕ x′.
By Mi and Ci we denote the i-th block of plaintext (message) and ciphertext.

The nonce and the secret key are denoted by N and K respectively and their
i-th words are denoted by ni and ki, respectively.

2.2 Specification of NORX

NORX [5] is a monkeyDuplex construction [7] based AEAD. It uses a 16w-bit
to 16w-bit permutation, parameterized by a word size w ∈ {32, 64}. It has two
variants denoted by NORX32 (where w = 32) and NORX64 (where w = 64).
NORX is also parameterized by a parallelism degree 0 ≤ p ≤ 255, number of
rounds 0 ≤ l ≤ 63 and a tag size t ≤ 4w and is denoted as NORXw-l-p-t. A
high level representation of the NORX construction for p = 1 (serial mode of
operation) and p = 2 (parallel mode of operation with two parallel lanes) are
represented in Figs. 1 and 2 respectively. In these figures we have not considered
the processes related to any auxiliary data, e.g. associated data.

The state S of NORXw consists of sixteen words s0, . . . , s15, each of size w
bits. The state’s words s0, . . . , s11 are called the rate words and the state’s words
s12, . . . , s15 are called the capacity words. In each iteration of the permutation
a block of message or associated data is XORed with the rate fraction of the
state and a domain septation constant is XORed with the capacity fraction of the
state (more details can be found in [5]). NORXw initiates the state by predefined
constant U = u0‖ . . . ‖u9, the nonce N = n0‖n1 and the key K = k0‖ . . . ‖k3.
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Fig. 1. The layout of NORX construction for p = 1 (fully serial) [5], where Fl denotes
an l-round permutation of NORX.
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Fig. 2. The layout of NORX construction for p = 2 (include two parallel lanes) [5].

The matrix representation of S and the rule of assigning the words of constants,
nonce and key in the initialization phase are as follows:

⎡

⎢
⎢
⎣

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

n0 n1 u0 u1

k0 k1 k2 k3
u2 u3 u4 u5

u6 u4 u8 u9

⎤

⎥
⎥
⎦

More details on the constants can be found in [2] but it does not affect our
results. Each round of the permutation, called F, includes the application of a
function called G to each column of state followed by applying it to each diagonal
of state. Hence F(s0, . . . , s15) consists of column steps as follows:

G(s0, s4, s8, s12),G(s1, s5, s9, s13),G(s2, s6, s10, s14),G(s3, s7, s11, s15),

followed by the following diagonal steps:

G(s0, s5, s10, s15),G(s1, s6, s11, s12),G(s2, s7, s8, s13),G(s3, s4, s9, s14).
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The function G(a, b, c, d) computes the following 8 operations:

1. a = H(a, b), 2. d = (a ⊕ d) ≫ r0, 3. c = H(c, d), 4. b = (b ⊕ c) ≫ r1,

5. a = H(a, b), 6. d = (a ⊕ d) ≫ r2, 7. c = H(c, d), 8. b = (b ⊕ c) ≫ r3,

where H(x, y) = (x ⊕ y) ⊕
(
(x ∧ y) � 1

)
. The rotation offsets (r0, r1, r2, r3) are

(8, 11, 16, 31) for NORX32 and (8, 19, 40, 63) for NORX64.
It must be noted, to enhance the performance, compared to NORX V1 orig-

inally submitted to CAESAR [3], designers have excluded s10 and s11 from
capacity words and appended them to the rate words in NORX V2.0 tweaked
for the second round [5]. This tweak has not changed the security claim. The
security claims for both of integrity and confidentiality are 128 bits for NORX32
and 256 bits for NORX64 [5, Table 3.1].

Parallel Mode of NORX. As depicted in Fig. 2 NORX supports parallel
message processing, p > 1. In this case the state S is extended to a multi-state
vector S̄, where S̄i indicates the input sate of the i-th lane. To ensure that the
input state to each lane is a unique string, a counter i which indicates the lane
number updates s̄i,13 to s̄i,13 ⊕ i. Among 5 recommended parameters by the
designers [5], only 1 parameter, NORX64-4-4-256 supports the parallel mode.

3 Properties of Round Function

In this section, we show several properties of round function G that allow us to
exploit relatively slow diffusion in backward direction, i.e. G−1.

Computing G−1. We begin with the observation that G−1 cannot be computed
trivially. To compute G−1, it is necessary to find x for a given pair of H(x, y) and
y. We argue that this can be efficiently computed bit-by-bit from the LSB. Con-
sidering � 1, computation for the LSB is a simple XOR, thus x[0] is computed
by H(x, y)[0] ⊕ y[0]. After x[0] is fixed, x[1] can be computed similarly, and then
the entire x is eventually computed. The cost of G−1 should be higher than G.
For the sake of simplicity, we assume that the cost for G and G−1 are identical.

Computing G−1 with Partially Known State. For sponge-based AE
schemes the rate words can be in general be recovered from a plaintext-ciphertext
pair. For NORX, s0 to s11 are known and s12 to s15 are secret. This motivates
us to consider tracing known bit positions of (a, b, c, d) ← G−1(a′, b′, c′, d′) when
three words of a′, b′, c′, d′ are known.

– b can be computed from given b′, c′, d′ by G−1.
– c can be computed from given a′, c′, d′ by G−1.

These simple properties can be extended so that several bits of the unknown
word is known. This corresponds to the situation that attackers guess several
bits of s12 to s15 during the attack. We again begin with analyzing H−1 with
partially known x′ = H(x, y) and y.
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Property 1. From all bits of x′ and t consecutive bits of y, the corresponding t
bits of x can be computed with a cost of 1-bit guess. Moreover, the guess is not
necessary when t consecutive bits start from the LSB.

The property is depicted in Fig. 3. Attackers need to guess 1 bit of (x ∧ y) � 1
which is the lowest bit of consecutive t bits in y. Based on the guess, t consecutive
bits of y can be recovered bit-by-bit. When t consecutive bits of x′ are located
in the LSB, t bits of x can be computed uniquely without guess.

Fig. 3. Computing H−1

with partially known y.
Fig. 4. Computing H−1

with partially known x′.
Fig. 5. Computing H−1 with
partially known x′ and y.

Property 2. From t consecutive bits of x′ and all bits of y, the corresponding t
bits of x can be computed with a cost of 1-bit guess. Moreover, the guess is not
necessary when t consecutive bits start from the LSB.

Property 3. Suppose that t1 consecutive bits of x′ and t2 consecutive bits of y are
known. Then, the corresponding x in overlapped bit positions can be computed
with a cost of 1-bit guess.

Properties 2 and 3 are depicted in Fig. 4 and 5, respectively. The mechanism is
the same as Property 1. In Property 3, attackers need to guess 1 bit of (x∧y) � 1,
which is the lowest bit of overlapped bit positions. Then the other overlapped
bits can be computed bit-by-bit.

Based on those properties of H−1, we analyze the known bit positions of
(a, b, c, d) ← G−1(a′, b′, c′, d′) when three words are fully known and t bits of the
last word are also known. In the property below, we assume t > r2.

Property 4. Suppose that a′, b′, c′ are fully known and t bits of d′ are known.
Then, t bits of a, t bits of b, t−r2 bits of c, and t bits of d can be computed with
a cost of 3-bit guess. Moreover, the guess is reduced to 1-bit when t consecutive
bits of d′ start from the LSB.

The property is depicted in Fig. 6. Numbers in red color represent the number
of known bits and numbers in blue color [n1 ∼ n2] represent known bit positions.
In Fig. 6, four H−1 functions are computed from the end to the beginning. The
first H−1 is the case of Property 1. t bits of word c are computed with 1-bit guess,
and the guess can be omitted if the known bits start from the LSB. No difficulty
exists in the second H−1. The third H−1 is the case of Property 3. The number
of known bits depends on r2. Note that d′ ≪ r2 is computed instead of d′ ≫ r2
during G−1. The fourth H−1 is again the case of Property 1. The 1-bit guess can
be omitted for the LSB case.
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Fig. 6. Property 4: G−1 with partially known d′.

Property 5. Suppose that a′, b′, d′ are fully known and t bits of c′ are known.
Then, t − r1 bits of a, t − r1 bits of b, t bits of c, and t bits of d can be
computed with a cost of 4-bit guess. Moreover, the guess is reduced to 1-bit
when t consecutive bits of c′ start from the LSB.

Property 6. Suppose that a′, c′, d′ are fully known and t bits of b′ are known.
Then, t − r1 bits of a, t bits of b, all bits of c, and t bits of d can be computed
with a cost of 2-bit guess.

Property 7. Suppose that b′, c′, d′ are fully known and t bits of a′ are known.
Then, t bits of a, all bits of b, t bits of c, and t − r0 bits of d can be computed
with a cost of 3-bit guess. Moreover, the guess can be omitted when t consecutive
bits of a′ start from the LSB.

Extending Properties 4 to 7. The number of overlapped bits in Properties 4
to 7 can be generalized more. For example, in Property 4, t − r2 bits of c can be
replaced with t3 bits of c, where t3 takes one of the following 4 values depending
on the relation of t, r2 and the word size w.

t3 = 0, when t − 1 < r2 and r2 + t ≤ w,

t3 = t − r2, when t − 1 ≥ r2 and r2 + t ≤ w,

t3 = 2t − w, when t − 1 ≥ r2 and r2 + t > w,

t3 = r2 + t − w, when t − 1 < r2 and r2 + t > w.

Note that the third case is the combination of t−r2 consecutive bits and r2+t−w
consecutive bits instead of 2t−w consecutive known bits. Thus to preserve 2t−w
bit vales, the cost is 2-bit guess per H−1. Also note that even with the third case,
preserving either of t − r2 or r2 + t − w with the cost of 1-bit guess per H−1 is
possible, and this is actually the case of Property 4 assuming t > r2.

The similar extension can be applied to Properties 5 to 7. To avoid redun-
dancy, we omit the details. Those extension may be useful for future analysis.
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Recovering the Input/Output Words of G. If 4 or more words among the
8 words (a, b, c, d, a′, b′, c′, d′) of the input/output of G are known, it is possible
to recover all of the other words for certain cases.

Property 8. Suppose that a, b, c, b′, c′ are fully known. Then, all the other words
in the input/output of G can be recovered with a cost of single G−1 function.

Property 9. Suppose that a, a′, b′, c′ are fully known. Then, all the other words
in the input/output of G can be recovered with a cost of single G−1 function.

Property 10. Suppose that d, a′, b′, c′ are fully known. Then, all the other words
in the input/output of G can be recovered with a cost of single G−1 function.

4 Guess and Determine Attack

The encryption part of NORX leaks a large portion of the internal state, which
may be exploited using a guess and determine attack. In this section, we will
describe a simple guess and determine attack on 1.5 rounds NORX and then
show how to extend it to 2 rounds with the method of solving linear equations.

4.1 Attack on 1.5 Rounds NORX

The 1.5 rounds NORX permutation involves four frames of internal states: the
initial state, the state after the first column step, the state after the first diagonal
step and the state after the second column step (the final state), which are
denoted as S0, S0.5, S1, and S1.5 respectively. Thus, we refer to any bit in the
computation with the notation sxy [z], where x is the frame index, y is the word
index ranged from 0 to 15, and z is the bit index ranged from 0 to w − 1.

In the latest version of NORX [5], s00, . . . , s
0
11 and s1.50 , . . . , s1.511 can be easily

obtained by an adversary in a known plaintext scenario. Assuming those words
are known at the input and output of the permutation by querying messages with
at least two blocks, then we can exploit the slow backward diffusion of round
function G of NORX by guessing 3 of the 4 unknown words of the state S1.5

and propagating the information backward to recover the full internal state. The
procedure of the guess and determine attack is given below, and is also depicted
in Fig. 7.

1. Guess the words s1.512 , s1.513 , s1.514 in S1.5. With the other known state words of
S1.5, recover s10, s

1
1, s

1
2, s

1
4, s

1
5, s

1
6, s

1
8, s

1
9, s

1
10, s

1
12, s

1
13, s

1
14.

2. With the known values of s14, s
1
9, s

1
14 and using Property 7, recover s0.54 . With

the known values of s12, s
1
8, s

1
13 and using Property 6, recover s0.58 .

3. Using Property 8, recover s012, s
0.5
0 , s0.512 from s00, s

0
4, s

0
8, s

0.5
4 , s0.58 .

4. Using Property 9, recover s115 from s0.50 , s10, s
1
5, s

1
10.

5. Using Property 10, recover s1.515 from s115, s
1.5
0 , s1.55 , s1.510 .



Cryptanalysis of Reduced NORX 563

Fig. 7. Guess and determine attack on 1.5 rounds NORX. The order of
known/recovered words is green(1)→blue(2)→yellow(3)→red(4). (Color figure online)

Thus, the full state of S1.5 is recovered. We can compute backward to verify if
the guessed words are correct. We want to note that this 1.5 rounds attack works
for both NORX32 and NORX64 as all the operations are performed on the word
level. We estimate that one guess and to determine the trail require roughly 2
NORX operations, the time complexity of the attack is 297 for NORX32 and
2193 for NORX64.

4.2 Attack on 2 Rounds NORX

Now we will show how to extend the guess and determine attack to 2 rounds of
NORX. The additional 0.5 round does not allow to establish the relation of S0

and S0.5 using the previous strategy, i.e. guessed words. Hence, we need to guess
more bits and analyze the information propagation at bit level.

Overview of the Attack. Suppose that the five state frames of 2 rounds NORX
are denoted by S0, S0.5, S1, S1.5, S2 and the words s00, . . . , s

0
11, s20, . . . , s

2
11 are

known. In addition to guess s212, s213, s214, we further guess parts of the word s215.
Next, we set all the unknown bits in S0 as linear bits which related to them-

selves. With the forward computation of the NORX operations, any state bit
can be classified into one of the three categories: known bits, linear bits and non-
linear bits, such that a known bit can be computed with the known bits in S0;
a linear bit can be expressed as a linear combination of the unknown bits in S0

XORed with some constant; and a non-linear bit can be expressed as non-linear
combinations of the unknown bits in S0 XORed with some constant. In this
paper, We use ′u′, ′k′, ′l′, ′n′ to denote the unknown bits, known bits and linear
bits, non-linear bits respectively.

Then, we do the same for the the bits in S2 (assuming the guessed bits are
known) and propagate backward.

If a bit in the internal state is linear/known in the forward computation while
linear/known in the backward computation, we can establish a linear relation
between the guessed/known bits in S0 and the known bits in S2. If there are
enough linear equations, then we can solve the unknown bits in S2, and thus
recover the full internal state of S2.

To establish more linear equations, we use a trick to increase the number
of linear bits in the backward computation. In the H function, if a bit-relation
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x′
i = xi ⊕ yi ⊕ (xi−1 ∧ yi−1) is computed, with x′

i = ′k′, xi = ′u′, yi = ′l′, xi−1 =
′k′ and yi−1 = ′k′. Then, if x′

i = 1 ⊕ (xi−1 ∧ yi−1), we have xi ∧ yi = 0, which
is the non-linear term in computing x′

i+1. Note that we can control the value of
any known bit by collecting more data and choose the needed ones. Hence, we
can eliminate the non-linear part of the H function in many cases at the cost of
increasing data complexity.

Since NORX64 and NORX32 have different word sizes, we will describe the
attacks on NORX64 and NORX32 separately.

Attack on NORX64. For NORX64, we experimentally tested different choices
of the guessed bits numbers and positions in s215. To minimize the time complex-
ity, the optimal choice we found is to guess s215[0, . . . , 40].

We start the attack by building the linear system. Set the bits in s00, . . . , s
0
11,

s20, . . . , s
2
14 and s215[0, . . . , 40] as known bits. Set all the other unknown bits in

S0 and S2 as linear bits. Then propagate the bit relations of S0 forward and
bit relations of S2 backward. In the backward propagation, we control certain
values of known bits to increase the number of linear bits with the technique
mentioned previously.

Two linear equations can be established on bits s010[0] and s011[0], as those bits
are known in the forward direction while linear in the backward direction. The
rest of the equations can be derived from the last column of S0.5, see Table 2.

Table 2. Bit patterns of the last column of S0.5. Red bits are used to establish linear
equations.

The reason of choosing this column is that only the unknown bits in s015 and
s215 are involved. At this point, the number of linear equations is still less than
the unknown variables. To obtain more equations we make use of Property 2. By
guessing s011[18] to be 0, the bits s015[27, . . . , 43] can be recovered. This is derived
from the known bits in s03, s07, s011 and the partially recovered bits s0.53 [0, . . . , 16].
The bit patterns are updated as Table 3.

There are 69 matched bits in the last column of S0.5. Together with the two
linear equations from bits s010[0] and s011[0], there are 71 linear equations can be
established. On the other hand, there are 70 unknown bits involved in the linear
system, after the 17 derived bits s015[27, . . . , 43] are excluded. We verified the
coefficient matrix of the linear system to confirm that it has rank 70. Hence, a
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Table 3. Updated bit patterns of the last column of S0.5 for NORX64. Red bits are
used to establish linear equations.

unique solution can be derived from the linear system. Note that the linear bits
in the backward direction computation require certain value of 131 known bits.
The attack can be summarized as follows.

1. Find an output of NORX encryption satisfied the conditions on the known
bits. There are 131 conditions on the output bits and 1 condition on the input
bits.

2. Guess the bits s212, s213, s214, s215[0, . . . , 40]. So totally 233 bits are guessed.
3. Determine the bits s215[41, . . . , 63] using the solutions of linear equations which

have been derived.
4. Compute backward and verify the solution with the known bits in S0.

We estimate that one guess and to determine trail require roughly 2 NORX
operations. Then, the estimated time complexity of this attack is 2234 NORX
operations. We expect to query for 2132 blocks to find a suitable input/output
pair. So the data complexity is 2132 and memory complexity is negligible.

Attack on NORX32. Similar approach can be applied to attack reduced
NORX32. In this case, we will first guess the bits s212, s213, s214, s215[0, . . . , 21].
By setting the value of bit s011[10] to 0, the bits s015[19, . . . , 24] can be recovered.
The bit patterns of the last column of S0.5 are given in Table 4. Here, we control
65 conditions on the output bits to increase the number of linear bits.

39 linear equations can be established from the last column of S0.5. After
excluded the derived bits, the number of unknown bits is 36. We computed the
rank of the coefficient matrix which turned out to be 36. After further dropping
the bits s27[1] and s211[0] from the system (to reduce the linear bits needed), a
unique solution can be derived from the linear system with 37 equations.

The attack procedure is similar to NORX64, so we omit the details here.
Since we guess a total number of 118 bits in the attack, the estimated time
complexity is 2119, and data complexity is 266.
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Table 4. Updated bit patterns of the last column of S0.5 for NORX32. ‘l’, ‘n’ and ‘k’
represent linear bit, non-linear bit and known bit, respectively. Red bits are used to
establish linear equations.

5 Internal Differential Attack

5.1 Basic Key Recovery with Internal Differential Attack

This section explains the key recovery attack on the NORX reduced to 2 rounds
with differential cryptanalysis in the nonce-respect setting.

Overall Strategy. To exploit the difference under the same nonce, we exploit
the parallel mode of NORX shown in Fig. 2, and focus on the difference between
two lanes. As shown in Fig. 2, the state is duplicated and the lane number is
XORed. For p = 2, lane numbers 0 and 1 make 1-bit difference in the state (LSB
of s13). This difference expands in the subsequent permutation F. Here, we build
a high probability differential characteristic for the first 1 round.

Attackers only can observe the value of the rate words (s0 to s11) in each
lane after 2 rounds. Hence, we perform some backward computation for the last
1 round with guessing capacity words (s12 to s15). The number of secret bits
in the state is 4w, and the number of security bits claimed is also 4w. Here,
the difficulty is that the 4w-bit secret value is completely different for the first
lane and the second lane. Thus, we need to analyze 8w-bit secret bits in a pair.
This setting is quite different from conventional differential attack against block
ciphers in which secret exists in the key and is common for both values in a pair.

To overcome this problem, we adopt the meet-in-the-middle approach.
Namely, we guess up to 4w bits of the secret in the first lane, and recover sev-
eral bits of the state after 1 backward round as the guess-and-determine attack
in Sect. 4. The results are stored in a table with memory size up to 4w bits.
Then, we do the same computation for the second lane, and compare the results
of two lanes for picking up pairs satisfying the differential characteristic after
1 round. Suppose that the number of matched bits is 4w. Then, among up to
24w · 24w = 28w pairs, only up to 28w/24w = 24w pairs will remain as the candi-
dates satisfying the differential characteristic. Finally, for each of the remaining
candidate, we exhaustive guess the unguessed bits, and identify the correct state
value.
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Table 5. 1-Round Differential Characteristic. ‘0’ and ‘1’ represent inactive bit and
active bit, respectively. After 1 round, we only need the difference of 8 words. ‘?’
represents that difference is not specified in that bit.

Initial difference

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000001 0000000000000000 0000000000000000

Difference after 0.5 round (column step)

0000000000000000 0000002000000000 0000000000000000 0000000000000000

0000000000000000 4200004000020000 0000000000000000 0000000000000000

0000000000000000 2100000000010000 0000000000000000 0000000000000000

0000000000000000 2000000000010000 0000000000000000 0000000000000000

Difference after 1 round (diagonal step)

???????????????? 0000002000000400 0020000400000000 ????????????????

???????????????? ???????????????? 4040000840000800 0800000a00000200

0420000100000100 ???????????????? ???????????????? 2020000420000000

2020000400000000 0400000100000000 ???????????????? ????????????????

We first discuss a simple attack against NORX64 in Sect. 5.1, and then show
several optimization techniques and application to NORX32 in Sect. 5.2.

1-Round Differential Characteristic. Lane number 0 and lane number
1 make 1-bit difference in the LSB of s13. We trace the propagation of this
difference.

Construction of differential characteristic is simple. The only non-linear com-
ponent is the AND operation in H. We set 1-bit condition for each active bit to
control its output difference. Because of the small number of rounds, we found
that the probability of the characteristic is maximized by setting output differ-
ence of all active bits to 0. The obtained characteristic is shown in Table 5. To
keep the probability of the characteristic high, we only specify the difference of
8 words in 2 diagonals, i.e. (Δs1,Δs2,Δs6,Δs7,Δs8,Δs11,Δs12,Δs13).

The characteristic in Table 5 includes 5 active bits in the first 0.5 round
and 16 active bits in the next 0.5 round, in total 21 active bits. Therefore, the
characteristic can be satisfied with probability at least 2−21.

1-Round Backward Computation. For a plaintext-ciphertext pair for each
lane, we recover the value of the rate words, i.e. s̄0,0 to s̄0,11 and s̄1,0 to s̄1,11.
Then for the first lane, we exhaustively guess all bits of (s̄0,12, s̄0,14, s̄0,15) and
t LSBs of s̄0,13, where the value of t will be determined later. For each guess,
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we can compute 1 round in backwards with the properties introduced in Sect. 3.
The 1-round backward computation is depicted in Fig. 8.

Fig. 8. Backward computation. all, t, tL and t−L represent that all bits are known, t
middle bits are known, t LSBs are known and t − 24 LSBs are known, respectively.

For the first 0.5-round backward computation, 3 diagonals are fully known,
which can be inverted easily. The remaining diagonal, (s̄0,2, s̄0,7, s̄0,8, s̄0,13) ←
G−1(s̄′

0,2, s̄
′
0,7, s̄

′
0,8, s̄

′
0,13), is the case of Property 4 with t LSBs in d′. Here, given

that r2 = 40 for NORX64, we replace “≫ r2” with “≪ (64 − r2)” to make the
analysis simpler. The overlapped bit positions becomes t − 24 bits starting from
the LSB. In the end, we obtain t LSBs of s̄0,2 and s̄0,7, t − (64 − r2) = t − 24
LSBs of s̄0,8, and t middle bits of s̄0,13. Because all partially known bits start
from the LSB in H−1, we do not need additional bit guess.

The next 0.5-round can be computed with Properties 4 to 7 as follows.

– The first column is the case of Property 5, in which we know t − 24 LSBs of
s̄′
0,8. Different from Property 5, we only compute 2 words; s̄0,8 and s̄0,12. This

can avoid 1-bit guess, and thus t − 24 bits of s̄0,8 and s̄0,12 can be computed
without any guess.

– The second column is the case of Property 4 in which the consecutive t bits
start from middle bits. Property 4 requires 3-bit guess to recover 4 input
variables. Here, we only need to recover 2 input variables, a and d in Fig. 6,
and this saves us to guess 1 bit. As a result, we need 2-bit guess to compute
the corresponding t bits of s̄0,1 and s̄0,13.

– The third column is the case of Property 7. t bits of s̄0,2 and all bits of s̄0,6
can be computed without guess.

– The fourth column is the case of Property 6, which requires 2-bit guess to
recover 4 input variables. Here, we only need to recover 2 input variables, b
and c and this can be done without guess. Hence, t bits of s̄0,7 and all bits of
s̄0,11 can be computed without guess.

In summary, we guess 192 bits of s̄0,12, s̄0,14, s̄0,15, t bits of s̄0,13 after round 2
and 2 bits in the middle, which leads to 2(t−24)+2t+(t+64)+(t+64) = 6t+80
bits of (s̄0,1, s̄0,2, s̄0,6, s̄0,7, s̄0,8, s̄0,11, s̄0,12, s̄0,13) after round 1. Those are stored
in a table with a memory of size 2194+t.
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After the computation of the first lane, we apply the same computation for
the second lane, i.e. for state S̄1, with 194 + t-bit guess. For each result, we
XOR the difference in two diagonals specified by the characteristic, and check
the match with the table generated for the first lane. If the match is found, we
guess the remaining 64 − t bits of s̄0,13 for the first lane, and compute back to
the initial value (IV) of NORX64. Only if the pair satisfies the characteristic and
the guess is correct, the IV appears, which recovers the key simultaneously.

Attack Procedure. Associated data is irrelevant. Hereafter, we set A to be
empty. The attack procedure is described in Algorithm 1. Due to the probability
of the characteristic, 221 pairs are analyzed, which corresponds to 221 iterations
in Step 1. The 1-round backward computation is performed for each of 221 pairs.

Algorithm 1. 2-round key recovery with internal-differential attack.
1 Input: characteristic with probability 2−21, 194 + t guessed-bit positions
2 Output: K

1: for i = 0, 1, . . . , 221 − 1 do
2: Randomly choose a nonce N i and a 2-block message M i

0‖M i
1.

3: Query (N i,M i
0‖M i

1) in the parallel mode to obtain (Ci
0‖Ci

1).
4: Compute s̄0,0, . . . , s̄0,11 ← M i

0 ⊕ Ci
0 and s̄1,0, . . . , s̄1,11 ← M i

1 ⊕ Ci
1.

5: for 192 + t bits of s̄0,12, s̄0,13, s̄0,14, s̄0,15 and 2 bits in the middle do
6: Obtain 6t + 80 bits of s̄0 after round 1 and store them in a table T0.
7: end for
8: for 192 + t bits of s̄1,12, s̄1,13, s̄1,14, s̄1,15 and 2 bits in the middle do
9: Obtain 6t + 80 bits of s̄1 after round 1 and xor the difference in Table 5.

10: Check the match with T0. If the match is found, go to the next step.
11: for the remaining 64 − t bits of s̄0,13 do
12: Compute back to the initial value of NORX64.
13: if the result satisfies the form of

(u0, n0, n1, u1, k0, k1, k2, k3, u2, u3, u4, u5, u6, u7, u8, u9) then
14: return K = (k0, k1, k2, k3).
15: end if
16: end for
17: end for
18: end for

Complexity Evaluation and Choice of t. In Algorithm 1, for each of i in
Step 1, Step 6 requires 2194+t G computations and Step 9 requires 2194+t G
computations. After the match in Step 10, 22(194+t)−(6t+80) = 2308−4t pairs will
remain. Then, Step 12 requires 2308−4t+64−t = 2372−5t NORX64 operations.
Those are iterated 221 times for the iteration in Step 1. Hence, time complexity
is less than 221(2194+t+2194+t+2372−5t) NORX64 operations. This is optimized
when t = 30, which leads to 2246.2 NORX64 operations.
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Data complexity is only caused by Step 3. Two message blocks are queried
in each iteration of Step 1. Thus, data complexity is 222 message blocks.

Memory complexity is dominated by Step 6, which stores the result of 2194+t

computations. Thus, memory complexity is 2224 when t = 30.

5.2 Optimized Key Recovery with Internal Differential Attack

Differential. The probability of the characteristic in Sect. 5.1 was 2−21. This
can be improved by using the differential instead of a single characteristic. Rig-
orously evaluating the probability of the differential is hard. However, thanks to
the high probability of the characteristic, we can evaluate it experimentally.

We chose 224 pairs at uniformly random, and 6937 pairs could satisfy the
output difference with respect to the 6t+80 bits computed during the backward
computation. Thus, the probability of the differential is 6937/224 ≈ 2−11.23,
which improves the complexity of Algorithm1 by roughly 10 bits.

Multiple Lanes. NORX64-4-4-256 supports 4 parallel lanes. When a 4-block
message is processed, lane numbers XORed to the duplicated states is 0, 1, 2
and 3. Thus, we can make the pair with ΔS̄13 = 0x1 between lane 0 and lane
1 and between lane 2 and lane 3. Besides, we can also consider the internal
difference between lane 0 and lane 2 and between lane 1 and lane 3, which
makes ΔS̄13 = 0x02. The best characteristic for this difference is obtained by
rotating Table 5 by 1 bit. We also experimentally verified the probability of
the differential, which is 7532/224 ≈ 2−11.12, slightly better than the case with
ΔS̄13 = 0x01. The average probability for two cases is 2−11.18.

In summary, we can make 4 pairs per 4-block message query, which halves
the data complexity evaluation in Sect. 5.1.

Multiple Differentials. While the characteristic in Table 5, 2−21, is optimized,
we found that there are 25 characteristics having the same probability.

Recall the complexity evaluation in Sect. 5.1. Let Npair, Tmitm, and Tveri be
number of pairs to analyze, time complexity for the meet-in-the-middle match
per pair, and time complexity for verifying matched candidates, respectively.
Roughly, the total complexity is given by Npair(Tmitm + Tveri). Now, suppose
that there are D characteristics with the same probability and we aim to find a
pair satisfying any of D choices. This reduces the number of pairs to Npair/D,
while the number of valid candidates after the match becomes D times, thus the
cost for verification becomes D∗Tveri. The essence of this technique is that the 1-
round backward computation with a cost of Tmitm is independent of D choice of
characteristics, thus one computation can be reused for testing D characteristics.

To derive such characteristics, we focus on the differential propagation in the
last H function (during round 0.5 to round 1). There are 4 active bits during
the last H function in (Δs′

1,Δs′
6,Δs′

11,Δs′
12) ← G(Δs1,Δs6,Δs11,Δs12). The

characteristic in Table 5 was derived by setting the output difference of those 4
bits to 0, which causes the probability drop by 2−4. However, the differences from
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those bits only linearly related to the output of the entire characteristic, thus
any combination of 0 or 1 for the output difference from those 4 bits generates
24 distinct characteristics with exactly the same probability.

The same occurs in the other diagonal G(Δs2,Δs7,Δs8,Δs13). 4 bits in
positions 8, 32, 53 and 58 are active in the last H, while only bit position 8 will be
later used for the meet-in-the-middle match. As a result, 2 distinct characteristics
can be considered in bit position 8. Along with 24 choices for the other diagonal,
we have D = 25 characteristics with the same probability.

The discussion above is about the multiple characteristics. It can easily be
extended to multiple differentials. We experimentally tested the probability of
25 differentials, and confirmed that all of them has almost the same probability.

Strictly speaking, matching multiple differentials during the meet-in-the-
middle match in Step 10 of Algorithm1 is a so-called 3-list problem, which
requires more cost than the 2-list case. We observe that 25 differentials only
differ in 10 bits, that is, all of them have the same difference in the other 6t+70
bits. Thus, we first apply the filter in 6t − 70 bits, then check the details for 10
bits. Matching 6t − 70 bits reduces the number of candidates sufficiently small,
thus using multiple differentials gives negligible impacts to the complexity.

Optimized Complexity for NORX64. To satisfy one of the 25 differentials
with probability 2−11.18, 26.18 pairs need to be analyzed. The number of iter-
ations of Step 1 in Algorithm1 becomes i = 26.18. By exploiting four lanes,
26.18 message-block queries are sufficient to construct 26.18 pairs. Thus the data
complexity is 26.18 message blocks.

The usage of the multiple differentials slightly changes the balance between
Tmitm and Tveri, i.e. higher Tmitm and lower Tveri offers the best balanced com-
plexity. We found that t = 31 instead of t = 30 yields the best complexity, which
is 211.18

25

(
2∗2194+t +25 ∗2372−5t

)
= 2232.8. The memory complexity increases due

to the increase of t, which is 2194+t = 2225.

Application to NORX32. Because NORX32 does not formally support the
parallel mode, we only explain it briefly. The attack on NORX32 is harder than
the one for NORX64 with respect to the following two points.

– The probability of the multiple differential becomes relatively smaller to the
word size (32 instead of 64).

– The rotation number r2 = 16 is exactly a half of the word size, which generates
less number of overlapped bits during the backward computation (r2 = 40 in
NORX64).

Those make the advantage of the attack smaller than the case of NORX64. The
attack strategy is the same as NORX64 and all the optimization techniques can
also be applied. We experimentally verified that the probability of the differential
is 2−12.25 and there are 25 differentials with the same probability. We choose
t = 17 for the number of partially guessed bits. In the end, the best attack
complexity is 27.25, 2124.25 and 2115 in data, time and memory, respectively.
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Table 6. 1.5-round internal differential-linear distinguisher. ‘0’ and ‘1’ represent unaf-
fected bits and bits that maybe affected by the internal difference, respectively. After
1.5 round 8 bits of the rate will never be affected by the internal difference in S13.

Initial difference

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000001 0000000000000000 0000000000000000

Unaffected bits after 0.5 round, i.e. S0.5

0000000000000000 000000e000000000 0000000000000000 0000000000000000

0000000000000000 ce0000c000060001 0000000000000000 0000000000000000

0000000000000000 e700000000030000 0000000000000000 0000000000000000

0000000000000000 e000000000010000 0000000000000000 0000000000000000

Unaffected bits after 1 round, i.e. S1

bfc07bffc03ef807 000003e00000fc00 00e0007c00000000 e0003fe000000000

fe003bc003de00ff fffcffff1ffff9ff c7c003ffc000f80f ff80007e00038e01

ffe000030001c700 df00000001ef007f fffe7fffcfffbcff e3e001ffe0000007

e1e000fc00000003 7c0000010000c000 e000000000e0003f ff803efe07bf9e7b

Unaffected bits after 1.5 round, i.e. S1.5

ffffffffffffffff ffffffffffffffff ffffffffffffffff fffffffff0ffff87

ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff

ffffffffffffffff ffffffffffffffff ffffffffffffffff fffcffff9fffffff

5.3 Distinguisher with Internal Differential-Linear Attack

In this section, we present an internal differential-linear attack on round-reduced
NORX. In more detail, we show an efficient distinguisher for NORX64 with p ≥ 2
for up to 2 rounds. As shown in Table 6, the internal difference in the LSB of
s13, i.e. s13[0], does not affect 8 bits in the rate part of the NORX64 state
after 1.5 rounds, i.e. s1.53 [3, 4, 5, 6, 24, 25, 26, 27]. This property leads to a trivial
distinguisher for the keystream of NORX64 reduced to 1.5 rounds in the parallel
mode.

Unfortunately, by adding 0.5 rounds all bits of the rate are affected by the
internal difference and no significant bias can be observed with practical com-
plexity (240 experiments). However, using Property 4 described in Sect. 3, all the
bits at the output of the first H(a, b) in each G function in the last half-round
can be derived from the rate part of the output. This significantly improves
the attack leading to an efficient distinguisher for 2 rounds of NORX64 in the
parallel mode. We can observe significant biases in several of the 256 bits. For
instance bit 175 has a bias of −0.15. If an adversary aims to distinguish the
keystream related to NORX64-4-4-256 based on this bit, it proceeds as follows:
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1. Query 1
0.152 2-block messages for NORX64-4-4-256 and receive the corre-

sponding ciphertexts.
2. Partially decrypt each ciphertext up to the output of the first H(a, b) in the

last half-round.
3. Verify the matching for each ciphertext pair and output the total amount of

the matching in bit 175 for all ciphertext pairs, N .
4. Output NORX64 if N ≥ 1

2×0.152 .

The data complexity of this attack is about 90 message blocks, while the success
probability is 97.7 % [15].

6 Conclusion

In this paper, we present the first cryptanalysis of NORX in the nonce-respecting
setting. Our attack exploits the slow diffusion of NORX’s round function espe-
cially in backward direction. We investigate several attacks against NORX and
all of them cover two rounds of the permutation. On the other hand, while the
presented guess and determine attack covers two rounds of NORX’s variants yet
it may be possible to be extended to more rounds by employing advanced equa-
tion solving techniques. We do not think it can be extended to the full 4-round
NORX. However, the results of this paper can be considered as a starting point
for future analysis in this direction.

Additionally, we presented a practical distinguisher for 2-round NORX64
encryption in parallel mode that could not be applied to NORX32 or serial-
NORX64. This observation may be considered as a lower diffusion in NORX64
compared to the NORX32, for the same number of rounds. In addition, this
attack along with the given internal differential attack could be considered as
evidences that parallel mode of NORX has lower security bound, compared to
serial mode.
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Abstract. The hash function Kupyna was recently published as the
Ukrainian standard DSTU 7564:2014. It is structurally very similar to
the SHA-3 finalist Grøstl, but differs in details of the round transfor-
mations. Most notably, some of the round constants are added with
a modular addition, rather than bitwise xor. This change prevents a
straightforward application of some recent attacks, in particular of the
rebound attacks on the compression function of similar AES-like hash
constructions. However, we show that it is actually possible to mount
rebound attacks, despite the presence of modular constant additions.
More specifically, we describe collision attacks on the compression func-
tion for 6 (out of 10) rounds of Kupyna-256 with an attack complexity of
270, and for 7 rounds with complexity 2125.8. In addition, we can use the
rebound attack for creating collisions for the round-reduced hash func-
tion itself. This is possible for 4 rounds of Kupyna-256 with complexity
267 and for 5 rounds with complexity 2120.

Keywords: Hash functions · Cryptanalysis · Collisions · Free-start col-
lisions · Kupyna · Rebound attack

1 Introduction

Recently, Oliynykov et al. [12] published an English specification of the new
Ukrainian hash standard DSTU 7564:2014, also known as Kupyna. In contrast
to the previous standard GOST 34.311-95, the new hash standard facilitates
more effective software implementations. Of course, it is also intended to offer
improved security compared to the old GOST standard, which has shown weak-
nesses against collision attacks [8]. As Kupyna is a national standard, it is likely
to find wide-spread adoption in the Ukraine. Thus, comprehensive third-party
analysis is necessary to evaluate the resistance of Kupyna against cryptanalytic
attacks.

The Kupyna design aims to achieve a high level of security by relying on well-
known and well-analyzed building blocks. It shares a notable similarity with the
SHA-3 finalist Grøstl [3]. Kupyna’s mode of operation, in particular its com-
pression function, is nearly identical to the one used in Grøstl, and its permu-
tations – though different – follow very similar design ideas. One of Kupyna’s
two permutations employs the wide-trail design strategy [2] of AES. Therefore,
this permutation shares a common basis with Grøstl’s permutations, although
c© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 575–590, 2016.
DOI: 10.1007/978-3-662-52993-5 29
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Kupyna uses other constants, S-boxes, rotation values, and a different MDS
matrix. The second Kupyna permutation differs from the first in the constant
addition, which applies addition modulo 264 rather than bitwise xor. This modu-
lar addition serves to differentiate the two permutations, but can also be seen as
a measure to complicate algebraic cryptanalysis. Furthermore, it implies addi-
tional relations over byte boundaries. As a consequence, the modular addition
leads to a weaker alignment for differential trails, making statements about the
minimum number of active S-boxes in a differential trail more complicated, since
the linear layer no longer achieves an optimal branch number.

Our Contribution. In this paper, we provide the first third-party analysis of
the new Ukrainian hash standard Kupyna. We present collision attacks on round-
reduced variants of Kupyna-256 for up to 5 out of 10 rounds, and collisions for
the compression function of Kupyna-256 for up to 7 rounds. A summary of our
results can be found in Table 1.

Table 1. Overview of collision attacks on Kupyna-256.

Hash function Target Rounds Complexity Reference

Kupyna-256 Compression function 6 270 Sect. 3

7 2125.8

Hash function 4 267 Sect. 4

5 2120

Our attacks make use of the capability of rebound attacks [9] to efficiently
generate pairs of values which follow a given truncated differential trail. The
core idea of such a rebound attack is to create many solutions with a low com-
plexity per solution during the inbound phase, and propagate those solutions in
a probabilistic manner during the so-called outbound phase.

To create solutions with a low average complexity during the inbound phase,
the rebound attack takes advantage of the strong alignment of truncated differen-
tial trails and the underlying independence of parts of the cipher. As mentioned
before, one of the two permutations of Kupyna does not provide such a strong
alignment. Hence, it is not trivial to perform the rebound attack for this per-
mutation. However, in this work, we show how to deal with modular constant
additions during the inbound and the outbound phase to be able to perform
rebound attacks on such constructions.

Related Work. Due to the high similarity of Kupyna with Grøstl, the funda-
ment of our attacks is the analysis of Grøstl. For Grøstl, the best attacks are
based on the rebound attack and its improvements [4,6,7]. Distinguishers for
round-reduced variants of the Grøstl permutation were published in [5]. Rebound
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attacks leading to collisions for the highest number of rounds for the compres-
sion function of Grøstl were shown in [10]. An efficient collision attack covering
5 rounds of the hash function Grøstl itself was published in [11].

In the meantime, Zou and Dong [14] independently analyzed the Kupyna
hash function, and observed the applicability of some of the attacks on Grøstl to
Kupyna. They present pseudo-preimage attacks on 6 rounds of Kupyna-256 and
8 rounds of Kupyna-512 with time complexities 2250.33 and 2498.33, respectively,
which are essentially identical to the original Grøstl attacks [13]. Additionally,
they also noted the hash function attack on 5 rounds very similar to Sect. 4 of
this paper.

Outline. The remainder of the paper is organized as follows. First, we start with
a short description of Kupyna in Sect. 2. Next, we show how to apply the rebound
attack on round-reduced versions of the compression function of Kupyna-256, to
create semi-free-start collisions for 6 and 7 rounds, in Sect. 3. Then, we apply a
collision attack for 4 and 5 rounds of Kupyna-256 in Sect. 4. Finally, we conclude
in Sect. 5.

2 Description of Kupyna

Kupyna [12] is a family of iterated hash functions defined in the Ukrainian
standard DSTU 7564:2014. The design principles of Kupyna are very similar to
the SHA-3 finalist Grøstl [3]. As in Grøstl, the compression function of Kupyna
is built from two distinct permutations T⊕ and T+, which are both based (to a
certain degree) on the AES design principles. In the following, we describe the
components of the hash function in more detail.

2.1 The Hash Function

The Ukrainian standard DSTU 7564:2014 defines two main variants, Kupyna-256
and Kupyna-512, which produce a hash output size of n = 256 and n = 512
bits, respectively (the third recommendation, Kupyna-384, is simply a truncated
version of Kupyna-512). The hash function first pads the input message M and
splits the message into blocks m1,m2, . . . , mt of � bits each, with � = 512 for
Kupyna-256 and � = 1024 for Kupyna-512. The message blocks are processed via
the compression function f(hi−1,mi), which updates the internal �-bit chaining
value hi, and an output transformation Ω(ht) to produce the final hash value h:

h0 = IV
hi = f(hi−1,mi) for 1 ≤ i ≤ t

h = Ω(ht).

The compression function f is based on two �-bit permutations T⊕ and T+ and
is defined as follows (see also Fig. 1):

f(hi−1,mi) = T⊕(hi−1 ⊕ mi) ⊕ T+(mi) ⊕ hi−1.
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T+

T⊕

mi

hi−1 hi⊕ ⊕

Fig. 1. The compression function hi = f(hi−1, mi) of the Kupyna hash function, using
�-bit permutations T ⊕ and T+.

The output transformation Ω is applied to ht to give the final hash value h
of size n, where truncn(x) discards all but the most significant n bits of x:

Ω(ht) = truncn(T⊕(ht) ⊕ ht).

2.2 The Permutations T⊕ and T+

In the remaining document, we focus our analysis on Kupyna-256. The structure
of the two permutations T⊕ and T+ of Kupyna is very similar to the ones of
Grøstl. As in Grøstl-256, each Kupyna-256 permutation updates an 8 × 8 state
of 64 bytes in 10 rounds. In each round, the round transformation updates the
state by means of the sequence of transformations

MixBytes ◦ RotateBytes ◦ SubBytes ◦ AddConstant.

In the following, we briefly describe the round transformations of T⊕ and T+ in
more detail. Note that the Kupyna specification [12] refers to the transforma-
tions as ψ, τ (�), π′, and κ

(�)
i /η

(�)
i , respectively, but we use the more commonly

understood AES-like transformation names in the remaining document.

AddConstant (AC). In this transformation, the state is modified by combining
it with a round constant. This is the only transformation where the two permu-
tations differ. While T⊕ combines the round constant with each column with
bitwise xor (⊕), T+ applies column-wise modular addition mod 264 (+). The
round constants for T⊕ are defined as follows for round r, 1 ≤ r ≤ 10, and
column j, 0 ≤ j < 8:

ω
(r)
j = ((j � 4) ⊕ r, 00, 00, 00, 00, 00, 00, 00)�.

The (round-independent) round constants for T+ for column j are given by:

ζ
(r)
j = (F3, F0, F0, F0, F0, F0, F0, (7 − j) � 4)�,

where the first byte F3 and the first row of the state serve as the least significant
bytes for the addition. This modular addition performed in T+ is also the main
difference of Kupyna compared to Grøstl from a cryptanalytic point of view.
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Note that this modular addition destroys the columnwise optimal branch number
of the linear layer. We give an example with only 6 (rather than 9) active S-boxes
over 2 rounds in Appendix A.

SubBytes (SB). The SubBytes transformation is the same for T⊕ and T+. It is
a permutation consisting of S-boxes applied to each byte of the state (with 4
different S-boxes, depending on the row index). The 8-bit S-boxes are designed
to provide good cryptographic properties against differential and linear attacks.
For a detailed description of the S-boxes, we refer to the specification [12]. Note
that the SubBytes transformation is the only non-linear transformation of the
permutation T⊕.

RotateBytes (RB). The RotateBytes transformation is a byte transposition that
cyclically shifts the bytes of each state row by different offsets: row j is shifted
rightwards by j byte positions, 0 ≤ j < 8. This transformation is the same
for both permutations T⊕ and T+. This is also in contrast to Grøstl, where
two different sets of rotation constants are defined for the two permutations,
in order to diversify between the two. In Kupyna, this role is solely played by
AddConstant.

MixBytes (MB). The MixBytes transformation is a permutation operating on the
state column by column. To be more precise, it is a left-multiplication by an 8×8
circulant MDS matrix over F28 . The coefficients of the matrix are determined
in such a way that the branch number of MixBytes (the smallest nonzero sum
of active input and output bytes of each column) is 9, which is the maximum
possible for a transformation with these dimensions. This transformation is the
same for both permutations T⊕ and T+.

3 Semi-free-start Collisions for 6 and 7 Rounds

In this section, we mount a collision attack on 6 rounds of the compression func-
tion of the Kupyna-256 hash function. The attack described here is based on
the rebound attacks on Grøstl [10] using SuperBox matches [4,6,7]. Hence, the
high-level attack strategy to create pairs following differential truncated trails
stays the same. Due to the round-constant addition modulo 264 in the permuta-
tion T+, a straightforward application of the Grøstl attack is not possible, and
some additional considerations are required.

Finally, in Sect. 3.5, we also show how to extend the collision attack to 7
rounds of the compression function, also based on rebound attacks on Grøstl [10].

3.1 Attack Strategy

We target differential trails similar to those in [10]. The core idea of this attack
is to use the same truncated differential trail in both permutations T⊕ and T+.
If the differences at the input and the output match, we get a semi-free-start
collision. Note that the differences are introduced by the message block mi,
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mi

hi−1 hi⊕ ⊕

Fig. 2. Collision attack on 6 rounds of the Kupyna-256 compression function.

whereas the chaining value hi−1 is free of differences, but can also be chosen
arbitrarily. A high-level view of this attack is illustrated in Fig. 2.

To find matching trails, we use the rebound attack strategy introduced in [10].
This strategy consists of an inbound and an outbound phase. During the inbound
phase, solutions for the core of the trail are deterministically created with a com-
plexity close to 1 per solution, whereas the propagation through the outbound
phase is done in a probabilistic manner. This, combined with the fact that we
have to match the input and output differences of the independently created
trails for T⊕ and T+, suggests a truncated differential target trail which is dense
in the middle and gets sparse towards the ends, with the following numbers of
active bytes (S-boxes):

8 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 8 r6−→ 64. (1)

3.2 Finding Pairs for T⊕

The permutation T⊕ follows the wide-trail design strategy. Even though T⊕

uses different SubBytes, RotateBytes and MixBytes layers than Grøstl, the differ-
ential behaviour on byte level is almost identical, so those changes have a very
limited influence on the way a rebound attack is applied (e.g., due to the differ-
ent rotation constants, slightly different truncated trails are used). Hence, the
rebound attack on T⊕ can be done very similarly to the Grøstl permutation [10].
Below, we repeat the essential parts of this attack. We use the same notation
to denote intermediate states: S0 is the initial state, Si denotes the state after
round i (1 ≤ i ≤ r), and the intermediate states after AddConstant, SubBytes,
RotateBytes, and MixBytes of round i are labelled SAC

i , SSB
i , SRB

i , and SMB
i = Si,

respectively.

The Inbound Phase. For the inbound phase, we use the SuperBox based
technique described by Mendel et al. [10]. This phase covers the round transfor-
mations of 2.5 rounds, beginning with MixBytes of round 2 (input state SRB

2 ),
and ending with MixBytes of round 4 (output state S4). The detailed truncated
differential trail for the inbound phase is shown in Fig. 3. The attack works as
follows:
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1. First, we start backwards from state S4, which has 8 active bytes. We enumer-
ate all 28·8 possible bitwise difference patterns at S4, and deterministically
propagate them backwards through the linear MixBytes ◦RotateBytes to SSB

4 .
The resulting 264 difference patterns for SSB

4 are stored in a table D1.
2. Next, we choose a random difference pattern for state SRB

2 and deterministi-
cally propagate forward through MixBytes to state S2.

3. Finally, we have to connect the inputs of 8 S-boxes of state S2 belonging to
one SuperBox to its corresponding output in state SSB

4 . We can do this for
each of the 8 SuperBoxes independently in the following way:
(a) Enumerate all possible 264 value pairs for the SuperBox at state S2 and

propagate forward to state SSB
4 .

(b) Store the resulting 264 value pairs at state SSB
4 in a table D2.

(c) To find solutions for this SuperBox, filter D2 with the possible differences
in table D1.

SRB
2

MB

S2
AC

SAC
3

SB
RB
MB

S3
AC

SAC
4

SB

SSB
4

RB
MB

S4

step 1step 2 step 3

Fig. 3. Inbound phase for T ⊕, SuperBox in black

Now we have to determine how many solutions we get for the inbound phase.
From a high-level point of view, we have generated 264·8 pairs of values at state
S2. All those pairs are filtered with the truncated differential of state S4. Here,
56 bytes need to be zero. Thus, we expect 264·8−56·8 = 264 valid solutions (pairs)
for the inbound phase. The computational complexity for the inbound phase is
264 round function calls for creating these 264 solutions with a complexity of
264 in memory for storing the tables. The inbound phase can be repeated up to
264 times with other difference patterns at state SRB

2 , leading to a maximum of
2128 solutions with 2128 complexity in time. Hence, the amortized complexity of
finding one solution in the inbound phase is 1.

The Outbound Phase. During the outbound phase, the created solutions from
the inbound phase have to be probabilistically propagated, first from state SRB

2

back to S0 and then from S4 to S6. Both times, they have to follow the pattern of
the truncated trail: 8 r1←− 8

r2′←−− 8 (r2′ = RB◦SB◦AC) in the backward direction,
and 8 r5−→ 8 r6−→ 64 in the forward direction. Since both trails have a probability
very close to one, this phase has only negligible influence on the complexity.
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3.3 Finding Pairs for T+

As for T⊕, we also need to find pairs of values for T+ which follow the given trun-
cated differential trail. However, the modular constant addition of T+ on each
column of the state can cause difference propagations between bytes, which are
impossible in T⊕. Therefore, we cannot rely on the byte alignment of the trun-
cated differential trails anymore. In the following, we show how to handle such
uncertainties and how to apply the rebound attack on T+, although its trails are
not strongly aligned. Note that we still target the same truncated trail for T⊕ and
T+ (Fig. 2), and the input/outbound phases cover the same steps (Fig. 3).

The Inbound Phase. The round transformations covered by the inbound
phase (states SRB

2 to S4) include two constant additions AC: one between state
S2 and SAC

3 , and one between S3 and SAC
4 , both corresponding to step 3 of this

phase (see Fig. 3). The other steps 1 and 2 are not influenced by the constant
additions and thus, our considerations do not change for them.

The constant addition between S3 and SAC
4 is aligned with each SuperBox.

Hence, it only influences each of the 8 SuperBoxes individually. Therefore, the
constant addition taking place between state S3 and SAC

4 can be integrated into
the SuperBoxes and does not influence our considerations negatively. Unfortu-
nately, this is not the case for the second constant addition.

During step 3, we want to propagate values and differences per SuperBox
from its inputs to its outputs. At state SAC

3 , the inputs of the SuperBox are
represented by bytes in the diagonals of the state. Hence, we cannot integrate
the column-wise constant addition that happens before SAC

3 into our SuperBoxes
anymore. Unfortunately, this constant addition creates a dependence between
the 8 SuperBoxes via the carry. To be able to treat the SuperBoxes independently
again, we only start with values at state S2 so that the addition of one of these
values with the constant definitely results in a carry for the next byte. By doing
so, we can always expect a carry at the input of the bytes for the constant
addition (except for the LSB, of course). In this way, we can treat every SuperBox
separately and the rest of the attack works as described for T⊕.

Since we have restricted the number of possible values in step 3 to values that
generate a carry, we have to determine how many solutions we get. First consider
the least significant byte (byte 0), corresponding to constant F3 and an element
x from the first state row. To generate the carry, we require that x+F3 > FF, so
243 (out of 256) values for x are valid. For the following bytes 1–6, we assume an
input carry, so we require that x+1+F0 > FF, which has 241 solutions. Finally,
for byte 7, we have no requirements. If we assume that the required bitwise
difference for a value pair is uniformly random, then the expected number of
valid value pairs for byte 0 is 256 · (1 − 2 · 13

256 + ( 13
256 )2) ≈ 230.6. Similarly,

for bytes 1–6, the expected number of valid pairs is ≈ 226.8. The results are
summarized in Table 2.

By using the numbers of Table 2, we see that on average, the number of
valid pairs we can create per SuperBox is (230.6) · (226.8)6 · 256 ≈ 262.8. As we
have the same filter criterion as for T⊕, we can create 262.8·8−56·8 = 254.4 valid
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Table 2. Number of byte values and average number of value pairs (for fixed bitwise
difference) that produce a carry on modular addition with Kupyna’s round constants.

Byte position Valid values Valid pairs (average)

Byte 0 243 230.6

Byte 1–6 241 226.8

Byte 7 256 256

solutions for the inbound phase. These solutions are obtained with a complexity
of 243 · 2416 · 256 = 263.4, since only this is the number of values per SuperBox
that result in carries per byte. We can repeat the inbound phase 264 times to
create up to 2118.4 pairs with a complexity of 2127.4. In other words, finding one
solution in the inbound phase has an amortized complexity of 29.

The Outbound Phase. In the outbound phase, the pairs created during the
inbound phase are propagated in a probabilistic manner. Since we have to con-
sider the effects of the modular constant addition, the success probability of this
phase is reduced compared to T⊕.

First, we want to consider the propagation from state SRB
2 back to S0. Here,

we have to follow the truncated trail 8 r1←− 8
r2′←−− 8, where r2′ = RB ◦ SB ◦ AC.

For the first constant addition between state S1 and SAC
2 , the 8 active bytes lie

within one column. Thus, the constant addition will not change the activeness of
the bytes with overwhelming probability. The second constant addition occurs
between state S0 and SAC

1 , where the active bytes are on the diagonal of the
state. Therefore, the constant addition may lead to difference propagation from
an active byte to a formerly inactive byte (if one value of the pair produces a
carry and the other value does not). Assuming that none of the active bytes
receives an input carry (worst case), the probability that none of the 8 active
bytes propagates a difference to its neighbouring byte is (1−2 · 13

256 · 243
256 ) · (1−2 ·

16
256 · 240

256 )6 · 1 ≈ 2−1.225. Summarizing, the probability that a value pair follows
the differential trail from SRB

2 to S0 is about 2−1.225.
For the propagation from state S4 to S6, we have another two constant

additions, one of which is aligned with the SuperBox. Again, the probability
that a pair follows this truncated differential is 2−1.225. So the probability that a
pair created during the inbound phase follows the truncated differentials implied
by the outbound phase is 2−2.45. Combining the inbound and the outbound
phase, we can create 254.4−2.45 = 251.95 pairs that follow the 6-round truncated
differential trail with a complexity of 263.4. Hence, one solution that follows the
truncated trail for T+ can be constructed with an amortized complexity of 211.45.

3.4 Results for 6 Rounds

In the last two subsections, we have discussed how to create valid pairs that
follow the truncated differential trails for permutations T+ and T⊕. To get a
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collision for the compression function, we have to find pairs of values for T+

and T⊕ such that the input differences and the output differences match. At the
input, we have 8 active bytes and therefore 64 bitwise conditions to match. At the
output, we can match the state before the linear MixBytes operation, resulting in
another 64 bitwise conditions. Due to the birthday paradox, we expect a match
on these 128 conditions after creating 264 pairs for T+ and for T⊕.

The complexity for creating 264 pairs that follow the truncated trail in T⊕ is
264. Creating 264.95 pairs which follow the trail in T+ has a complexity of 276.4,
settling the total complexity of the attack. A better attack complexity can be
achieved by applying an unbalanced birthday attack. Creating 270 pairs for T⊕

with complexity 270 and 258.55 pairs for T+ with complexity 270 allows us to find
a semi-free-start collision for 6 rounds with a total attack complexity of about
270 (time and memory).

Overall, the introduction of the modular addition only increased the attack
complexity from 264 to 270 (compared to a variant where T+ and T⊕ are essen-
tially identical. Thus, this approach is significantly less effective at preventing
this type of rebound attacks than that of Grøstl, namely, using different rotation
values in T+ and T⊕ to prevent this type of truncated trails from matching at
the ends. Note that the low increase of complexity is also due to the special
choice of round constants in Kupyna. In particular, our experiments show that
if the round constant bytes of ζ

(r)
j were randomly selected, the probability that

this kind of attack could succeed with complexity 270 or less is less than 1 in
10 000 (if the constants are still the same for all rounds and columns, as is the
case for Kupyna – otherwise, even less).

3.5 Extending the Attack to 7 Rounds

We now extend the previous collision attack from 6 to 7 rounds of the compres-
sion function. The attack is based on a closely related truncated differential trail
with the following sequence of active S-boxes:

8 r1−→ 8 r2−→ 64 r3−→ 64 r4−→ 8 r5−→ 1 r6−→ 8 r7−→ 64. (2)

Up to round 5 (state S4 in Fig. 4), this trail is identical to the 6-round attack.
Consequently, the whole inbound phase works identically as before, and we only
need to adapt the outbound phase in the attack on 7 rounds.

First, we want to determine the probability that a solution created during
the inbound phase follows the truncated differential trail for permutation T⊕.
The outbound phase from state SRB

2 back to S0 is the same as for 6 rounds and
thus works with a probability of 1. The target trail from state S4 to S7 has
8 r5−→ 1 r6−→ 8 r7−→ 64 active S-boxes. The transitions of 1 r6−→ 8 and 8 r7−→ 64
active S-boxes have a probability close to 1. The transition of 8 r5−→ 1 active
S-boxes has a probability of 2−56, which also determines the total probability of
the outbound phase for T⊕.

For the permutation T+, we have to consider the additional probability that
the constant addition does not change the pattern of the truncated differential
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Fig. 4. Collision attack on 7 rounds of the Kupyna-256 compression function.

trail. The probability that the patterns stay the same is 2−1.225 for the constant
addition after S0 and S4, and 1 for the constant addition after S1, S5 (active
byte at the MSB of the constant addition), and S6. Thus, the probability that
the trail during the outbound phase is followed is 2−58.45 for T+.

By repeating the attack on T⊕ 2s times, s ≤ 64, we are able to generate up to
2s+64−56 = 2s+8 pairs following the truncated differential trails for T⊕ with a
complexity of 2s+64, and with 2t repetitions for T+, up to 2t+54.4−58.45 = 2t−4.05

pairs with a complexity of 2t+63.4. Additionally, we still have to match an 8-byte
condition at the input of the permutations and an 8-byte condition at the output
of the permutation. In total, an unbalanced birthday attack with s ≈ 61.8 and
t ≈ 62.4 gives the best complexity. For T⊕, we generate 269.8 solutions with
a complexity of 2125.8, and for T+ 258.35 solutions with a complexity of 2125.8.
Since 269.8 · 258.35 > 2128, we expect a match with high probability. This results
in a semi-free-start collision over 7 rounds with a total complexity of about 2125.8

and 270 memory.

4 Collision Attacks on the Reduced Hash Function

In this section, we describe collision attacks on Kupyna-256 reduced to 4 and
5 rounds. The attacks are a straight-forward application of the rebound attack
on the reduced Grøstl-256 hash function [11] to Kupyna-256. To simplify the
description of the attack, we use the alternative description of the hash function,
similar to the attacks on round-reduced Grøstl in [11].

4.1 Alternative Description of Kupyna

Let T̂⊕ and T̂+ denote the permutations T⊕ and T+ without the final application
of MixBytes. Consider the following alternative description of Kupyna:

ĥ0 = MB−1(IV)

ĥi = T̂⊕(MB(ĥi−1) ⊕ mi) ⊕ T̂+(mi) ⊕ ĥi−1 for 1 ≤ i ≤ t

h = Ω(MB(ĥt))

This description of Kupyna is equivalent to the original one by letting hi be
MB(ĥi). Just the final MixBytes transformation of the permutations changes
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place with the xor operation of the feed-forward. With this modified description,
the limited set of differences at the output of the compression function becomes
more clearly visible in the attack.

4.2 Attack Strategy

The essential idea of the hash function attack on reduced Kupyna-256 is to have
a multi-block attack, but such that all message blocks except the first have no
differences. This way, we can concentrate on the trails through T̂⊕, and use the
freedom of the message blocks to successively cancel all differences in the internal
chaining values.

The first message block can be selected arbitrarily, we only require a differ-
ence in the message. This way, we start from some arbitrary difference in the
chaining variable for the second block, and want to convert it into an output dif-
ference equal to zero after 8 more compression function calls. The corresponding
8 message blocks are fully controlled by the attacker and must not contain any
differences. Then, each of the 8 message blocks is used to cancel one eighth of
the differences at the output of the compression function to result in a collision
at the end (see Fig. 5).

The trails used in our collision attack on 4 and 5 rounds start from a fully
active input state and map it to 8 active bytes at the output of T̂⊕:

4-round collision: 64 r1−→ 64 r2−→ 8 r3−→ 8 r4−→ 8, (3)

5-round collision: 64 r1−→ 64 r2−→ 8 r3−→ 1 r4−→ 8 r5−→ 8. (4)

The trails for T̂⊕ are similar to the trails used in Sect. 3 and 3.5, though this
time, just covering the inbound phase and the outbound phase computed in
forward direction. Hence, valid pairs can be created using the same methods.
For a given input difference, we can construct 264 or 28 pairs following trail (3)
or trail (4), respectively, with a complexity of 264 using the rebound attack.

4-Round Collision Attack. As shown in Fig. 5, the idea of this attack is to
cancel the differences in 8 bytes in each iteration. The probability that 8 bytes
match is 2−64, and so 264 pairs following the truncated differential trail for a
given input difference have to be generated. The 4-round attack then works as
follows:

1. Choose arbitrary message blocks m1,m
∗
1 such that ĥ1 is fully active.

2. Use a right pair of message blocks m2,m
∗
2 for the trail of (3) to cancel 8

bytes of the difference in the state ĥ2 (see Fig. 5).
3.–9. Repeat step 2 for message blocks mi,m

∗
i , 3 ≤ i ≤ 9, with rotated variants

of the trail to cancel another 8 bytes each (see Fig. 5), so that we finally
get a full collision in ĥ9.
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ĥ0 ĥ1
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Fig. 5. Hash collision for 4 rounds.

With the help of the rebound attack, the construction of a right pair for
one T̂⊕ has a complexity of 264. The differences have to be canceled iteratively
8 times starting from ĥ2 to ĥ9. Thus, the overall attack complexity for the
collision for 4-round Kupyna-256 is 8 times constructing one right pair, which is
8 · 264 = 267.
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5-Round Collision Attack. To extend the attack to 5 rounds, we use the
truncated differential trail in (4). However, for this trail, we can construct only
28 pairs following the trail, and thus each step of the attack on 5 rounds succeeds
only with a probability of 2−56. Luckily, this can be compensated by using more
message blocks in each step of the attack, as already pointed out in [11]. To
cancel 8 bytes of differences in one step, 256 additional blocks (new starting
points) are needed. This leads to an attack complexity of 8 · 264+56 = 2123 and a
length of 8 · 256 = 259 blocks for the colliding message. However, as discussed in
[11], the length of the colliding message pair can be significantly reduced again to
65 message blocks, by using a tree-based approach. Furthermore, the complexity
of the attack can be slightly reduced to 2120.

5 Conclusion

In this work, we evaluated the security of Kupyna-256 against rebound attacks.
Based on rebound attacks on Grøstl, we mounted collision attacks for up to
5 rounds of the Kupyna-256 hash function and for up to 7 rounds of the
Kupyna-256 compression function. This was possible despite the presence of
modular constant additions in one of the permutations. These constant addi-
tions break the strong alignment of differential trails, leading to more confu-
sion in the propagation of differences. Nevertheless, we were able to adapt the
inbound phase of the rebound attack to create a sufficient amount of valid pairs
to perform a collision attack. Surprisingly, our results show that the modular
constant addition in one permutation does not provide much additional security
against rebound attacks, it just complicates the analysis. In the case of Kupyna,
the unfortunate choice of round constants for modular addition further decreases
the effectivity of the additions. Combined with the lack of other countermeasures
(such as different rotation constants), this makes Kupyna an easier target for
rebound attacks than the otherwise similar Grøstl hash function. Moreover, the
weak alignment of differential trails introduced by the modular constant addition
makes it more complicated to bound the minimum number of active S-boxes and
might introduce new attack paths. This analysis shows that modular additions
inside the permutation are not an optimal choice to diversify similar building
blocks, and introduce new problems of their own.
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A Observation on the Branch Number

Kupyna was clearly designed with the wide-trail strategy in mind. It features the
classic AES-like construction with the linear MixBytes function that multiplies
each column of the state with an MDS matrix. This function has a differential
branch number of 9, meaning that any input column with a > 0 active bytes
is mapped to an output with at least 9 − a active bytes. Though the Kupyna
specification features no proofs, this property is usually used to derive bounds
on the minimum number of active S-boxes for the primitive.

The other linear functions of each round – in particular the constant and/or
subkey xor-addition – do not change this property in AES-like designs. With
the modular addition of Kupyna, however, this is no longer true. In particular,
this modular addition can lead to carry propagation across byte borders, which
also allows propagation of differences across byte borders. This means that the
number of active S-boxes over 2 rounds is no longer lower-bounded by 9.

Consider the following example, illustrated in Fig. 6. We investigate the num-
ber of active S-boxes over 2 rounds of T+. For simplicity, we only state the value
pair (x1, x2) for the first column of state SRB

1 through SAC
2 ; all other columns have

zero difference (and RotateBytes does not change the number of active S-boxes).
Using the MixBytes matrix M ∈ F

8×8
256 and AddConstant constant ζ

(0)
0 ∈ Z264 ,

M =

⎛
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⎜
⎜
⎜
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⎜
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,

we get

x1: (00 00 00 00 00 00 00 00)�
MB
−−→(00 00 00 00 00 00 00 00)� AC
−−→(F3 F0 F0 F0 F0 F0 F0 70)�,

x2: (00 00 00 00 00 00 00 FF)�
MB
−−→(DB C7 38 AB FF 24 FF FF)� AC
−−→(CE B8 29 9C F0 15 F0 70)�,

Δ: (00 00 00 00 00 00 00 FF)� MB
−−→(DB C7 38 AB FF 24 FF FF)� AC
−−→(3D 48 D9 6C 00 E5 00 00)�.
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Fig. 6. Example with 6 instead of 9 active S-boxes over 2 rounds of T+.
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