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Preface

The 23rd International Conference on Fast Software Encryption (FSE 2016) was held
at Bochum, Germany, during March 20-23, 2016. The conference was organized by
Ruhr University Bochum with Gregor Leander serving as the general chair in col-
laboration with the International Association for Cryptologic Research (IACR). The
conference had about 150 registered participants from 28 different countries. FSE 2016
received 91 submissions. The 25 members of the Program Committee were assisted by
more than 80 external reviewers. In total, they delivered 304 reviews, with each sub-
mission being reviewed by at least three Program Committee members, five in the case
of a submission co-authored by members of the Program Committee. The review
process was double-blind, and conflicts of interest were handled carefully. It was
managed through an online review system that supported discussions among Program
Committee members. Eventually, the Program Committee selected 29 papers from 16
countries (a 31.9 % acceptance rate) for publication in the proceedings.

Besides the 29 selected talks, the program included one invited talk by Henri Gilbert
from ANSSI, France, on white-box cryptography. The workshop also featured a rump
session, chaired by Dan Bernstein and Tanja Lange, with several short informal
presentations.

As in previous FSE events, the Program Committee identified the best submissions
of the conference for their scientific quality, their originality, and their clarity. The FSE
2016 Best Paper Award went to José Bacelar Almeida, Manuel Barbosa, Gilles Barthe,
and Frangois Dupressoir, for their paper “Verifiable Side-Channel Security of Cryp-
tographic Implementations: Constant-Time MEE-CBC.” This paper, along with the
article “Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext
Compression” by Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancréde Lepoint,
Maria Naya-Plasencia, Pascal Paillier, and Renaud Sirdey received a special invitation
for submission to the Journal of Cryptology.

Many people contributed to FSE 2016. I would like to thank the authors for con-
tributing their excellent research, but also the Program Committee members and their
external reviewers, who spent a lot time and effort reading and analyzing the numerous
submissions. I really enjoyed the discussions during the selection phase and I am
particularly grateful to Alex Biryukov, Christina Boura, Svetla Nikova, Yu Sasaki,
Francois-Xavier Standaert, and Marc Stevens for accepting to shepherd papers. Finally,
I sincerely thank Gregor Leander, the general chair, and his organization team, who
worked so hard for the conference to be pleasant for all attendees. Their smooth
organization made the event a big success.

I was extremely honored to serve as Program Chair of FSE 2016. The program
contained a wide spectrum of the latest research in symmetric cryptography, ranging
from cryptanalysis to security proofs, practical implementation aspects to foundations,
and considering various primitives such as block ciphers, stream ciphers, hash func-
tions, authenticated encryption, MAC, etc. I hope the selected papers will consolidate
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our knowledge in symmetric cryptography, but also open new directions to continue
making symmetric cryptography a vibrant research community.

May 2016 Thomas Peyrin
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New Bounds for Keyed Sponges
with Extendable Output: Independence Between
Capacity and Message Length

Yusuke Naito!®) and Kan Yasuda2

! Mitsubishi Electric Corporation, Kanagawa, Japan
naito.yusuke@ce.mitsubishielectric.co.jp
2 NTT Secure Platform Laboratories, Tokyo, Japan
yasuda.kan@lab.ntt.co. jp

Abstract. We provide new bounds for the pseudo-random function
security of keyed sponge constructions. For the case ¢ < b/2 (c the capac-
ity and b the permutation size), our result improves over all previously-
known bounds. A remarkable aspect of our bound is that dependence
between capacity and message length is removed, partially solving the
open problem posed by Gazi et al. at CRYPTO 2015. Our bound is essen-
tially tight, matching the two types of attacks pointed out by Gazi et al.
For the case ¢ > b/2, Gazi et al.’s bound remains the best for the case of
single-block output, but for keyed sponges with extendable outputs, our
result partly (when query complexity is relatively large) provides better
security than Mennink et al.’s bound presented at ASTACRYPT 2015.

Keywords: PRF - XOF - Game playing - Coefficient H technique -
Lazy sampling - Multi-collision - Stirling’s approximation

1 Introduction

The sponge construction today, though being originally introduced as a mode
for keyless hash functions [7], is drawing more and more attention in the secret-
key setting. The primary reason seems to lie in the flexibility: the keyed sponge
construction has been modified in a variety of ways such as duplexing [6], par-
allelism [3] and full-state (i.e. the rate being equal to the permutation size)
absorption [9,19]. However, one of the reasons why the sponge construction was
so attractive in the first place was that it inherently possessed the capability of
extendable output.

FIPS 202 [17] standardizes two sorts of extendable output functions (XOFs):
SHAKE128 and SHAKE256, which have a permutation size of b = 1600 bits and
capacity values of ¢ = 256,512 bits, respectively. FIPS 202 states:

XOFs are a powerful new kind of cryptographic primitive that offers the
flexibility to produce outputs with any desired length. ... In practice, the
use of an XOF as a key derivation function (KDF) could preclude the

© International Association for Cryptologic Research 2016
T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 3-22, 2016.
DOI: 10.1007/978-3-662-52993-5_1



4 Y. Naito and K. Yasuda

possibility of related outputs, by incorporating the length and/or type of the
derived key into the message input to the KDF. In that case, a disagreement
or misunderstanding between two users of the KDF' about the type or length
of the key they are deriving would almost certainly not lead to related
outputs.

To confirm the above statement in a more formal way, we need to investigate
the security of the KDF as a pseudo-random function (PRF).

Previous PRF Bounds. Several different types of PRF bounds are known for
keyed sponges. Security parameters of keyed sponges include the permutation
size b, the capacity c, the rate r := b — ¢, and the key length k. The main focus
remains on the capacity value ¢, because usually it is this parameter that defines
a dominant term in a bound. Nevertheless, none of the previous bounds has been
shown to be strictly tight in relation to parameter ¢, as explained below.

The PRF security of keyed sponges can be derived from the indifferentiability
of the sponge construction. The indifferentiability of the sponge construction [7]
crucially depends on the capacity ¢, and hence so does the derived PRF bound.
Roughly, the indifferentiability-based PRF bound has a dominant term of the
form (£q + Q)?/2¢, where parameter ¢ is the maximum length of an adversarial
query, parameter ¢ the maximum number of construction (online) queries to the
keyed sponge C, and parameter ) the maximum number of primitive (offline)
queries to the underlying permutation P.

Note that we are working in the ideal model [1,13,16] where the underlying
permutation P is regarded as a random permutation. In practice, P is a fixed
permutation; hence ) corresponds to the time complexity of the adversary, mea-
suring how many times the adversary could perform offline computation of P.

The above indifferentiability-based PRF bound is rather loose, and the
actual PRF security of keyed sponges should be much higher, as first noticed
by Bertoni et al. [8]. Later, Andreeva et al. [1] successfully removed the term
QQ?/2¢ and obtained a bound which was basically ((Eq)2 + MQ) /2¢. Here, p is an
adversarial parameter called “multiplicity” and lies somewhere between 2¢q/2"
and 2/q.

Concurrently, Gazi et al. [13] provided a “nearly tight” bound [16] which was
roughly of the form (¢ + ¢q + qQ)/2¢. Gazi et al. also pointed out two attacks
matching ¢2/2¢ and ¢Q/2¢, respectively. They observed that their bound “only
mildly depends on the length” when ¢ is sufficiently small [13] but left it open
whether their bound was tight for all cases, especially when ¢ is large. It should
be noted that Gazi et al. [13] only treated the case of single-block output, and
their method did not seem to be easily extendable to the case of multiple-block
output [16].

For the case of extendable output, recently Mennink et al. [16] has provided
another bound which is essentially (£¢® + uQ)/2¢. While definitely improving
Andreeva et al.’s ((¢q)* + pQ)/2¢, Mennink et al.’s bound does not come close
to Gazi et al.’s (¢® + £q + qQ)/2¢, at least for the case of single-block output.
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Table 1. Comparison of target keyed sponge constructions

Key Extendable
Inner | Outer | output
Bertoni et al. [§] — v v
Chang et al. [11] v v v
Andreeva et al. [1] |V v v
Gazi et al. [13]* — v —
Mennink et al. [16]° | v/ — v
This paper v v v

*Gazi et al. [13] treat the case where the
rate values are different between absorbing
and squeezing phases. Only the rate r for the
squeezing phase appears in the bound; the rate
for absorbing phase does not affect security in
their analysis.

"Mennink et al. [16] study the case of full-state
absorption, i.e. the rate for absorbing phase is
equal to the permutation size except for the first
call of the underlying permutation.

Consequently, it seems that there is still room for improvement. It might be
possible to come up with a tighter PRF bound for keyed sponges, especially for
the case of extendable output.

Inner- and Outer-Keying. There are two ways of keying the sponge con-
struction. The difference between the two methods is analogous to the one
between NMAC and HMAC [4]. The first method, which is like NMAC, is
called the inner-keyed sponge [1]. This replaces (part of) the inner IV with a
secret key K € {0,1}*, so that k < c. The inner-keyed sponge was proposed by
Chang et al. [11] who showed that it has a certain advantage in the standard-
model security.

The second method, which is like HMAC, is called the outer-keyed sponge [1].
This is nothing but the sponge construction itself that processes the input K ||M
(i.e. a message prefixed by a secret key K) and hence does not have a limita-
tion on the key size k. A first analysis of the outer-keyed sponge was given by
Bertoni et al. [8]. The obvious advantage of this method, besides key length, is
that we can make use of existing sponge constructions that have been already
implemented as hash functions.

Our Contributions. We provide new PRF bounds for keyed sponges with
extendable output, under the condition that the rate and capacity remain the
same for absorbing and squeezing phases. We treat both inner- and outer-keyed
sponges (cf. Table1). Previous PRF bounds and our results are summarized in
Table 2.
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— Case ¢ < b/2. This case includes SHAKE128 and SHAKE256. In this case,
our bound improves over all previously-known PRF bounds. For the inner-
keyed sponge, our bound is qualitatively better than the previous two bounds
by Andreeva et al. [1] and by Mennink et al. [16]. For example, if k = ¢ (which
is the case that provides the highest security for the inner-keyed sponge), then
the previous bounds contained (£g+puQ)/2¢, whereas our bound only contains
(bg+q*+qQ)/2¢. On the other hand, for the outer-keyed sponge, observe that
the term related to capacity in our bound becomes roughly (¢%+4¢Q)/2¢, which
is dominant in many scenarios. Note the absence of fq here; we remove the
dependence between capacity ¢ and message length ¢, partially answering the
open question posed by Gazi et al. [13]. Together with the two attacks pointed
out by Gazi et al. [13] whose complexities were roughly ¢2/2¢ and q@Q/2¢, we see
that our bound is strictly tight in terms of parameters ¢ and @. Furthermore,
for the outer-keyed sponge, the remaining parameter £ is restricted only by the
term £2¢? /2%, whereas previous bounds contained £q/2¢ or £2¢?/2¢. Hence, our
bound has a qualitatively weaker restriction on £, under the condition ¢ < b/2.

— Case ¢ > b/2. This is the case for lightweight hash functions, such as
QUARK [2], SPONGENT [10] and PHOTON [14]. In this case, our contribution is
more subtle. For single-block output, Gazi et al.’s bound [13] remains the best,
beating our bound as well as Mennink et al.’s [16]. However, for multiple-block
output, our result improves over Mennink et al.’s [16] which has been the best
known bound for extendable output. The two bounds are incomparable due to
the parameter p, but roughly speaking, we see that our bound becomes better
when query complexity is relatively large. For simplicity, assume k& = ¢ and
put x4 = 2¢q. Then Mennink et al.’s bound becomes roughly (£ + ¢qQ)/2¢,

whereas our bound has a dominant term of ((Eq2 + EqQ)/?b) 1z, By compari-
son, our bound becomes smaller when £¢? + £gQ > 27",

For our proofs we take an approach different from previous work. We first
make use of the game-playing technique, introducing just one intermediate game
between the real and ideal worlds. Our transition between the games heavily
relies on the coefficient H technique of Patarin [18]. To evaluate probabilities of
“bad” events, we make extensive use of lazy sampling. As pointed out by Bellare
and Rogaway [5], the lazy sampling of random functions with many constraints
can be tricky. We show how to carefully lazy-sample input/output points for
underlying permutations with certain restrictions. Lastly, we adopt techniques
developed by Jovanovic et al. [15] for bounding the size of multi-collisions and
for finally optimizing the bound (or “balancing” the terms).

2 Preliminaries

Notation. Let {0,1}* be the set of all bit strings, and for an integer d > 0,
let {0,1}% be a set of d-bit strings. Let 0¢ denotes the bit string of d-bit zeroes.
For a bit string z € {0,1}%, let [i, j] be the substring of = from i-th bit to j-th

bit, where 1 < i < j < d. For a finite set X, = S x means that an element is
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Table 2. Comparison of PRF bounds for keyed sponges. In the bounds, parameter & is
key length in blocks, i.e. k := k/r; parameter p is the multiplicity, i.e. 2£q/2" < u < 24g;
parameter ¢t > 1 can be arbitrary; the number e is Napier’s constant 2.71828 - - - ; the
function A is defined as A(z) := /2% if Kk = 1 and A(z) := min{e1, 2} if & > 2, where
€1 = (x?2/2°TY) + (z/2%) and ez := (1/2°) + x(12b/27)"/2.

Inner-keyed (k < ¢)

Andreeva et al. [1] (EQLCV + ’;7?
Mennink et al. [16] 25(612 l;i? 2(53)2
This paper (¢ < b/2) 3¢* + 4@ ;27“(q +Q) | +Q 3+ 32e22:—2)£2q2
1/2
This paper (c > b/2) (%@) / N 3¢° + qQ ;21“((1 +Q)
lg+Q  30%¢°
ok 20
Indifferentiability [7] W + éQk
Andreeva et al. [1] (&])227_';2!@ 4 QSTQ +A(Q)
Gazi et al. [13] 6bg” + qu +4Q  (6t+ 17)@22: T64Q +2q
600" AT g+ @)
This paper (¢ < b/2) 3¢° + QQQ; 2r(g+ Q)
LB5+ 3262r—2)£22bq2 +20Q+26Q | oy
This paper (c > b/2) (%@) 1/2 N 3¢ + 2qQ; 2r(q+ Q)
+3.5€2q2 +22qu + 2kQ Q)

randomly drawn from X and is set to x. For a set X, Perm(X) is the set of all
permutations on X. For sets X and Y, Func(X,Y) is the set of all functions:
X — Y. We denote by () an empty set. For sets X and Y, X < Y means that

set Y is assigned to set X, and X &Y means X «— X UY.

PRF-Security. Through this paper, a distinguisher D is a computationally
unbounded probabilistic algorithm. It is given query access to one or more oracles
O, denoted D?. Its complexity is solely measured by the number of queries made
to its oracles. For integers k > 0 and 7 > 0, let Fx : {0,1}* — {0,1}" be a keyed
hash function based on a permutation having keys K € {0,1}*. The security
proof will be done in the ideal model, regarding the underlying permutation as

a random permutation P & Perm({0, 1}?) for an integer b > 0. We denote by
P~ its inverse.
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Fig. 1. IKSponge Construction

The PRF-security of Fg is defined in terms of indistinguishability between
the real world and the ideal world. In the real world, D has query access to Fx, P,

and P~! for a key K & {0,1}* and P & Perm ({0, 1}°). In the ideal world, it has
query access to a random function R, P, and P~ 1, for R & Func({0,1}*,{0,1}7)

and P & Perm({0, 1}?). After D’s interaction, it outputs y € {0,1}. The event
is denoted by D = y. Then the advantage function is defined as

AdvY (D) = Pr[D7« PP = 1] - PrDRPP T = ).

We call queries to Fx/R “online queries” and queries to (P,P~1) “offline
queries.” Though this paper, without loss of generality, assume that D is deter-
ministic and makes no repeated query.

3 Inner Keyed Sponge and the PRF-Security

3.1 Inner Keyed Sponge Construction

The inner keyed sponge construction uses the sponge function as the underlying
function. By IKSponge we denote the construction.

First we explain the sponge function. The sponge function is a permutation-
based one. For an integer b > 0, let P € Perm({0,1}*) be the underlying permu-
tation. By Sponge’’, we denote the sponge function using P. For integers r > 0
and ¢ > 0 with r + ¢ = b, r is a bit length so-called rate and c is a bit length
so-called capacity. For an input m € {0,1}*, the output Sponge’(m) = z is
calculated as follows. Firstly, a bit string pad(|m|) is appended to the suffix of
m such that the bit length of m||pad(|m|) becomes a multiple of r and the last
r-bit block is not 0". The example of the padded string is m/|/pad(|m|) = m|/1]|0*,
which means that 1 and the minimum number of zeroes so that the bit length
becomes a multiple of r. Secondly, the padded bit string is partitioned into r-bit
blocks my, ..., m;, where m; # 0". Thirdly, b-bit internal state s is updated by
the following procedure.

s+ 0% fori=1,...1do s < P(m;[0°® s)
Finally, the £y, X m-bit string z is produced by the following procedure.

z—s[l,r]; fori=1,... Loy — 1 do s — P(s);z « z||s[1,7]
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Next we explain the IKSponge construction. For an integer k with 0 < k < ¢,
let K € {0,1}* be a secret key. By IKSpongek , we denote IKSponge with P
having K. IKSponge equals Sponge with the initial value 0°~%||K. Concretely,
for a message m, the response IKSpongeZ. (m) = z is denoted as follows, and the
Fig. 1 shows the procedure.

1. Partition m||pad(|m|) into r-bit blocks mq, ..., m,

2. 59« 0" 7F|| K

3. Fori=1,...,ndot; <« m||0° P s;_1; s; — P(t;)

4.z sp[1,7]

5. Fori=1,...,lous — 1 do tpyi < Spqi1; Snyi « Pltngi); 2 < 2[[sngi[l, 7]
6. Return z

3.2 PRF-Security of the IKSponge Construction
We show the PRF-security of IKSponge in the ideal permutation model.

Theorem 1. Let D be a distinguisher which makes q online queries of r-bit
block length at most li, and @ offline queries. Then, for any parameter p, we

2 2 2 P
have Adv%r(fSponge(D) < éq2+kQ 4 34 +qQ-2+C2p(q+Q) n 342bq JoorHl (%) , where

U ="Vlin 4+ louwy — 1 and e = 2.71828 - - - is Napier’s constant.

Corollary 1. We assume ¢ < b/2. Then, we put p = r, and without loss of
generality, assume r > 2 (otherwise r = ¢ =1 and b=2). Since r > b/2, we have

2 2. —2\p2 2
Adv%r(fSponge(D) < 3q +qQ;rC2T(q+Q) + (3+32e2rb g + Zq;—kQ'
1/2
We assume ¢ > b/2, and put p = max {n (%) } Then we have
1/2 2 2 2
AdV%r(fsPonge(D) < (32dq2(;1+62)) 4 34 +qQ;-027”(q+Q) n 362bq + ZqQJrk

4 Proof of Theorem 1

We prove the PRF-security of IKSpongeI?} via three games. We denote these
games by Game 1, Game 2, and Game 3. For i € {1,2,3}, we let G; :=
(L;,P,P~1) to which D has query access in Game i. Note that in each game,

P is independently drawn as P < Perm({0, 1}%). We let L; := IKSponge’ and
L3 := R. Hence we have

Adv™

IKSponge

2
(D) =) (Pr[DY = 1] - Pr[DY+ = 1]). (1)
i=1

Hereafter, we upper-bound Pr[D¢ = 1] — Pr[D%+! = 1] for i € {1,2}. Note
that we define Ly before Pr[D¢ = 1] — Pr[D%2 = 1] is evaluated.

In the following proof, for a € {1,...,Q}, we denote an a-th offline query by
% or y®, and the response by y® or 2%, where y® = P(z®) or 2% = P~1(y%).
For a € {1,...,q}, we denote an a-th online query by m® and the response
by z%. We also use superscripts for other values defined by online queries, e.g.,
nl,t%,s%,nz,tf,s%, etc.
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4.1 Upper-Bound of Pr[D% = 1] — Pr[D%2 = 1]

We start by defining L. Let Gi,Ga,...,G¢ & Func({0,1}%,{0,1}*) be random

functions. Let K < {0,1}* be a secret key. For an online query m € {0,1}*, the
response Lo(m) = z is defined as follows.

1. Partition m|/pad(|m]|) into r-bit blocks my,...,m,

2. sg «— 0" K| K

3. Fori=1,...,ndot; < m;]|0° ® s;_1; s; — Gi(t;)

4. z — sp[1,7]

5. Fori=1,... Loy —1dotpyi < Snti=1; Snti < Gnti(tnyi); 2 — 2[[Snti[1,7]
6. Return 2

Transcript. Let 7, = {(m',z'), ..., (m%, 27)} be the set of query-response pairs
defined by online queries and 70 = {(z!,4'),..., (29, y?)} be the set of query-
response pairs defined by oﬁ:line queries. Additionally, we define sets 7, ..., 7.
For i € {1,...,£}, let 7, = [JZ_,{(t%, s)} be the set of all input-output pairs

at the i-th block defined by onhne queries. Note that for a € {1,...,q},i €
{1,...,¢} if (£, %) is not defined then {(¢$, s)} is an empty set.

ThlS proof permits D to obtain these sets and a secret key K after D’s
interaction but before it outputs a result. We let 7., = UZ 1 Ti- Then D’s

transcript is summarized as 7 = {7, 7p, 1.0, K }.

Let T; be the transcript in Game 1 obtained by sampling K & {0,1}* and
P Perm({0,1}?). Let T be the transcript in Game 2 obtained by sampling
K & 10,135, P & Perm({0,117), G1, Go, ..., Ge <> Func({0,1}", {0,1}?). We call
7 wvalid if an interaction with their oracles could render this transcript, namely,
Pr[T, = 7] > 0 for i € {1,2}. Then Pr[D% = 1] — Pr[D% = 1] is upper-
bounded by the statistical distance of transcripts, i.e.,

Pr[DS = 1] — Pr[D* = 1] < SD(Ty, Ty) = Z|Pr Ti=7]-Pr[To=1] ,

where the sum is over all valid transcripts.

Coefficient H Technique. We upper-bound the statistical distance by using the
coefficient H technique [12,18]. In this technique, firstly, we need to partition
valid transcripts into good transcripts Zgooq and bad transcripts Zpag. Then we
can upper-bound the statistical distance SD(T1, T2) by the following lemma.

Lemma 1 (Coefficient H Technique). Let 0 < & < 1 be such that for all
7 € Tyood, 12;{1; T} > 1—c. Then, SD(Ty,Ts) < & + Pr[Ty € Tpad.

The proof of the lemma is given in [12]. Hence, we can upper-bound Pr[D% =
1] — Pr[D%2 = 1] by defining good and bad transcripts and by evaluating e and
PT[TQ S %ad].
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Good and Bad Transcripts. We define 7p,g that satisfies one of the following
conditions.

— hitsy © 3(t,s) €Ty, (T, y) ETPpst.t=2Vs=y
— hity & E"L,j S {1, R ,é} with ¢ #] s.t. E(tl,sz) € T, (tj,Sj) S s.t. t; = tj
— hits & 3(t,s), (t', s empst. t £t ANs=5

Tgo0d is defined such that the above conditions are not satisfied.

Upper-Bound of Pr[Ta € Tpad]. We start by defining additional conditions
mcollp, mcollg, and colly. Firstly, we define mcollr and mcollg which are
(¢ + p)- and p-multi-collision conditions for sets T and S, respectively. Here,
T keeps all inputs to Go,...,Gy, and S keeps all outputs of Gy, ...,Gy, where
T = Ul Ur e eed and S = J2_, Ur, T {s¥}. Note that sets T
and S do not keep duplex elements, and T" does not keep inputs to G;. Then the
conditions are defined as

meolly & W t@ 1@+ e T st tW[1, 0] = tP[1,r] = ... = t0F[1, 7]
meollg & 35 5@ s e § st sV[1,r] = sP[1,7] = = sP[1, 7]
where p is a free parameter which was described in Theorem 1. We let mcoll :=
mcoll7 V mcollg. Secondly, we define colli; which is a collision condition for inputs
to a random function in L,. The condition is defined as follows.
colly 3o, B € {1,...,q} with a # 8,5 € {2,... ,min{no‘,nﬂ} + lous — 1}
st t0 A0 At =1t

Then we have

Pr[TQ (S 7—bad} S Pr[hittx’sy V hittt V h|tss]
< Prlhitss] + Pr[collyt] + Pr[mcollg] + Pr[mcollz|—colly]
+ Prlhity sy [omcoll] 4+ Prlhite A —(colly V mcoll)] . (2)

» We upper-bound Prihits]. Note that |71 ¢| < ¢q holds, and for all (¢,s) € 714

s is randomly drawn from {0, 1}*. Hence we have Prlhits] < (ézq) X o = 0'5§fq2.

» We upper-bound Prfhity s,|7mcoll]. Note that hity s, implies that

Jae{l,...,qie{l,... n* +low—1},8€{1,...,Q} st. t& =2 v s =47

We then consider the following cases.

Case 1& hity oy AT = P ANi=1:
Note that ¢ has the form t§ = m$||0°@0°~*|| K. Since K is randomly drawn
from {0, 1}*, the probability that Case 1 holds is at most é%
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Fig. 2. Procedures for and prefix; o

Case 2& hityoy At =27 Ni # 1
By —mcollp, the number of elements in 7" whose first  bits are equal to
xP[1,7] is at most ¢ + p. We note that for some r-bit block M®, t* has
the form t§ = M®||0° @ s ;, where M® is 0" or a message block. Since
s [r + 1,0] is randomly drawn from {0,1}¢, the probability that Case 2

holds is at most (qu )Q

Case 3¢ hity ey A 5§ = y'@
By —mcollg, the number of elements in S whose first r bits are equal to
yP[1,7] is at most p. Since s@[r + 1,b] is randomly drawn from {0, 1}¢, the

Hence we have Prlhity sy |—(hityxwy V mcoll)] < Q + (q+2p)Q

» We upper-bound Pr[mcollg]. Fix s € {0,1}" and s, s(?) ... 5(P) € S. Since
they are randomly drawn from {0, 1}?, the probability that s(V[1,7] = s[1,7] =
- = s(P[1,7] = s holds is at most (5)”. By s € {0,1}" and |S| < {q, we have

p
Pr[mcollg] < 2" x (E’f) X (2%)[) <27 x (eeq X Q—T) , using Stirling’s approximation
(x! > (x/e)” for any z).

» We upper-bound Pr[mcollr|—colly]. First we partition set 7' into two sets
Ty and T5. Roughly speaking, T} keeps all inputs to random functions whose
first r bits can be controlled by message blocks. The Fig.2 (with the boxed
statement) depicts the procedure of Lo corresponding with 77, which considers
~-th and a-th online queries with v < o and n? < n® (n” and n® are the query
lengths in blocks at the 7-th and a-th online queries, respectively) such that
these message blocks satisfy the condition: 3j* € {n” +1,. n’V + lout — 1} s.t.
m$ =mj,mg =mj,...,my, =my,,my, =0",... mh 1= ,m$. # 07. We
call the condition between the a-th and ~-th onhne querles preﬁx condltlon
In this case, t$. becomes an element of T7. Since s%._; = s}._; holds and
before the a-th online query a distinguisher can find 33’_1 [1,r] which is the part
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Fig. 3. Lazy sampling random functions in Case 2, where black boxes represent out-
puts defined at the [-th query and gray boxes represent outputs defined after D’s
interaction.

of output blocks at the 7-th online query, he can assign any value to ¢7. [1,7] by
using the message block mf.. We call the input ¢3. “controllable input,” and Ty
keeps all controllable inputs. The definitions of these sets are given as follows.

Ty :z{t?‘* ET:(ae{2,...,q})/\(Elfye{l,...,a—l} st. (n” <n®)
/\(Vje{1,...,n7}:m;*:m])/\(3j*E{n7+1,...,n7+éout—1} s.t.
(Vje{n"+1,...,j*—1}:m§“:Or)/\(m?*750’”)))} ,

and Ty := T\T;. Note that for any aq,as,...,a; € {1,...,q} with a1 < as <
- < «ay and with the prefix relations, the number of controllable inputs is
at most i — 1, because set T} does not keep duplex elements. Hence, we have
|Ty| < g — 1, and thereby Pr[mcollr|—colly] is upper-bounded by the proba-
bility that a p-multi-collision occurs in T, under the condition —colly, that is,
FW @) e Ty st tW[1,r] = tP)[1,r] = --- = tP)[1,7]. Hereafter, we
upper-bound the p-multi-collision probability under the condition —colly;.
Fixt € {0,1}" and ¢t € To with « € {1,...,q} and i € {2,...,n%+Lou — 1}.
We upper-bound the probability that ¢¢[1,7] = ¢ holds under the condition
—colly;. We consider the following cases.

Case 1< (t[1, 7] =t) A(n* +1 <1i):
By n®* +1 < i, t¥ = s ; holds, where s ; = G,_1(t3 ;). By —colly, s& 4
is randomly drawn from at least 2° — ¢ values. Thus, the probability that
Case 1 holds is at most Qb%
Case 2& (t2[1,7r] =t) A (2 <i < n%):
In the evaluation, we lazy sample random functions G, ..., G, that is con-
sistent with the condition —colli;. The procedure is shown bellow.
— At the $-th online query with 8 € {1,..., ¢}, the following procedure is
performed.
eForjec {nf ... nP4+lou—1}, sf[l, r] is randomly drawn from {0,1}".
— After D’s interaction, the following procedure is performed.
eForall 3¢ {1,...,q}and j € {1,...,n% —1}, iftf is a new input to G;

then sf is randomly drawn from {0, 1}’, keeping the condition —coll;.

e Forall 3 € {1,...,q} and j € {n?,....n% + lou — 1}, sf[r—i— 1,b] is
randomly drawn from {0, 1}, keeping the condition —colly.
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The Fig. 3 depicts the above procedure. Without loss of generality, assume that
q < 2° (If ¢ > 2¢ then the advantage of Theorem 1 becomes 1 or more). Note
that for each random function, there are at most ¢ inputs, and for a € {0,1}",
there are 2¢ elements in {0,1}® whose first 7 bits are equal to a. Thus, for all
Be{l,....;q}and j € {n?, ... 0P + lou — 1}, sf[r + 1,b] can be defined such
that it is consistent with the condition —colli;. Thus, the above procedure realizes
random functions Gy, ..., G, that are consistent with the condition —colly;.

For 2 < i < n®, t@ has the form ¢ = m||0°® s ;. By the above procedure,
s¢ , is randomly drawn from at least 2° — ¢ values after D’s interaction (i.e.,

after m¢ is determined). Hence, the probability that t¥[1,r] = ¢ holds is at most
2C

2b—q*
We next fix tM),¢2) . t) € Ty and t € {0,1}". By the above evalua-
tions, the probability that tM[1,7] = tZ)[1,r] = --- = t)[1,7] = ¢ holds is at
N
most (2377(1) < (£)”, assuming ¢ < 2°7'. By t € {0,1}" and |T3| < {g, we

p
have Pr[mcolly|~colly] < 27 x (epq) X (2%)‘) < 2" x (d% X 2%) , using Stirling’s

approximation (z! > (z/e)” for any ).

» We upper-bound Pr[coll;]. We denote by colly; the condition where at the a-th
online query colly; holds. Then we have
Pr(colly] < 327 _, Pricoll A =collg™ 1] < 327, Pricoll}|—colld ™).

Next we fix o € {2,...,q}, and upper-bound Pr[coll% |-coll§ '], which is the
probability that colly; holds at the a-th online query when it does not hold up to
the (o —1)-th online query. In order to upper-bound the probability, we consider
two cases with respect to the following condition.

prefix_o <3y € {1,...,a — 1} s.t. (n'y < na) A (Vj e{l,...,n"}: m;.y = m}l)
A (Elj* e{n”+1,...,n7 + loys — 1} s.t.

o _nr o . nr o r
Moy =07 .. ,mG 4 =0",mj. #0 )

We call such ~-th online query “prefix online query” of the a-th query, and
such j* “distinct point.” The Fig.2 (without the boxed statement) depicts the
procedures of Lo corresponding with the condition. In this evaluation, similar
to Case 2 of Pr[mcolly|—colly], we lazy sample random functions Gy, ..., G that
are consistent with the condition —coll: ™. The procedure is shown bellow.

— At the $-th online query with 8 € {1,...,a — 1}, the following procedure is
performed.
o Forallj € {n?, ... nf+loy—1}, s?[l, r] is randomly drawn from {0,1}".
— At the a-th online query, the following procedure is performed.
e Forall se{1,...,a—1},
* forallj € {1,...,n"—1},if tf is a new input to G; then the response
?
* forall j € {n?,... ;0 +Llou —1}, sf [r+1,b] is randomly drawn from

57 is randomly drawn from {0, 1}", keeping the condition —coll% ™,

{0,1}¢, keeping the condition —\collf‘tfl.
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Bth query (B<a) mf mb )
________ | Ui{lﬁ@ﬁ@
WK
o~th query my om5  omE e . 7%

y-thquery mf{ my  mLy ... | ...... > 77
Il H+
o~th query 0" me me,,
IB %ﬂ%ﬂ %ﬂ ________

(j*-1)-th block j"~th block

Fig. 4. Lazy sampling random functions in the evaluation of Pr[coll%|—collE™!], where
black boxes represent outputs defined up to the (o — 1)-th query and gray boxes
represent outputs defined at the a-th query.

e Forj e {1,...,n%+/Lou — 1}, if t§ is a new input to G; then the response

s¢ is randomly drawn from {0, 1}

The top (resp., the bottom) of the Fig. 4 depicts the above procedure under
the condition prefix, o (resp., —prefix o). Then we evaluate the probability
Pr[coll%|=colls ™! as follows.

Case 1< colly; under the condition ﬁcollﬁfl A —prefix o
For i € {2,...,n% + Loy — 1}, let collgy” be the condition where collg; holds
at the i-th block of the a-th online query, and let coll3** ! = coll®?
coll® v oo v coll™ 1. Note that for i € {2,...,n% + Lo — 1}, colld’ A
—|co||<°‘ =1 is the condition where coll& holds at the i-th block of the a-th

online query for the first time. (i.e., colly; does not hold up to the (i — 1)-

Cous—1 i <a,i—1 2
th block) and thus collg < \/7_, “ e (coll% A —coll 771, where coll$? A
1, 2
151 = coll®
<o¢z 1

—col . In the following, for ¢ € {2,...,n%+ oy — 1}, we assume
that collg does not hold, and thus upper-bound the probability that
coll* hO]db under the condition =colld™! A =coll$* ™ A —prefix.. By D1
we denote the probability. Note that for some r-bit string M t§* has the form

= M®||0° @ s ;, where M* is a message block or 0". By the condition

<ai—1 . . .
—|co|| @=L 4o s anew input to G;_1, and thereby s® | is randomly drawn

from {0, 1}? after M is determined. Hence, we have p; ; < (o —1) X 55, and
thereby Pr[Case 1] < ¢ x (o — 1) x 55

1
20>
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Case 24 coll? under the condition —colld ™" A prefix;..

In this analysis, we use the conditions coll"" and coll3**~" defined above.
For i € {2,...,n% 4 lous — 1}, we assume that coll3*"~* does not hold,
and thus upper-bound the probability that coll®* holds under the condition
—colld ™1 A —coll3* ™1 A prefix;,.. By p2,i, we denote the probability. We
assume that the ~-th online query (v € {1,...,a — 1}) is the prefix online
query of the a-th online query, and j* is the distinct point. If there are two
or more prefix online queries of the a-th online query then we consider the
prefix online query such that the distinct point is maximum.

— Firstly, we consider the case of i € {2,...,5* — 1}. By prefix,,

holds. By the condition —coll ™" A —coll3** !, we have py; = 0
— Secondly, we consider the case of 1 = j7*. Note that tar+1,b] = s§_q[r+

1, b] holds, and by the lazy sampled random functions, §7+_q is randomly
27
20 —q
— Finally, we consider the case of i € {j*+1,...,n%+4 oyt — 1}. In this case,
for some r-bit string M®, t& has the form t§ = M*||0° & s{ ;, where
M* is a message block or 0". Since j* is maximum and by the condition
—coll™ 1 ¢ | is a new input to Gi_;, s* , is randomly drawn from
{0, 1}b after M is determined. Hence, we have py; < (o — 1) X o

2
Hence, we have Pr[Case 2] < (o — 1) x (23:(1 + Eg—;)

:ﬁ

mesy Vg 7

drawn from at least 2° — ¢ values. Thus we have ps; < (a — 1) x

Finally, we assume that ¢ < 2b=1 We then have
r 2 2
Prlcolly] < 0l — 1) x max { £, (2 + i) } < % + 052,

» We upper-bound Prfhite A =(collys V meoll)]. We start by defining the following
condition.

hitg < Ja € {1,...,q¢},i €{2,...,n% + lous — 1} s.t. t2[r + 1,b] = 0°7F| K
Then we have
Pr[hittt AN _'(CO”tt \Y mCO”)] S Pr[hltK] + Pr[hittt AN _|(CO|Itt \Y mCO”) A _‘hltK] .

Since K is randomly drawn from {0,1}*, we have Prfhity] < gg.

Next, we upper-bound Prlhityy A —(collyy V mcoll) A —hitk]. Note that hity
implies that
o, Be{1,....qh i€ {1, ..., n" + Loy — 1}, 5 € {1,..., 0P + Loy — 1}
stoi A AL =t

For aw € {1,...,q}, we define a condition where hity holds up to the a-th online
query. The concrete definition is given bellow.

hity, <:>Hﬁ,ye{1,...,a},z’e{1,...,n5+€0ut—1},je{l,...,n7+£0ut—1}
st.oiA At =t).
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Then the following inequation holds.

Pr[hittt A\ “(CO”tt V mCO”) A\ hltK]
q
<> Prfhitg A =hity ™" A =(mcoll V collee) A —hit]

[e3

Il
-

Pr[hit A —hitd ™ A =mcoll A =hitg|=colly] -

B

<

I
-

[

First fix o € {1,...,¢q}, and upper-bound the probability Pr[hit% A =hit ™ A
—mcoll A =hitg|-colly]. In this evaluation, we lazy sample random functions
Gi,...,G; by the similar way to the evaluation of Pr[colly]. The procedure is
shown bellow, and the Fig. 4 depicts the procedure.

— At the §-th online query with 8 € {1,...,a — 1}, the following procedure is
performed.
e Forallj € {nf,... . nf4loy—1}, sf[l, r] is randomly drawn from {0, 1}".
— At the a-th online query, the following procedure is performed.
e Forall pe {1,...,a—1},
* forallj € {1,...,n% -1}, if tf is a new input to G; then the response

sjﬁ» is randomly drawn from {0, 1}*, keeping the condition —colly,

* forall j € {n®, ... nP+ Loy —1}, sf [r+1,b] is randomly drawn from
{0,1}¢, keeping the condition —colly.
e Forj € {1,...,n%+ /Loy — 1}, if £} is a new input to G; then the response
s¢ is randomly drawn from {0,1}®, keeping the condition —colly.

In this evaluation, we consider two cases with respect to the condition prefix,, o
which was defined in the analysis of Pr[colly]. In addition, the following analyses
use the terms “prefix online query” and “distinct point.”

Case 1 hit A—hitg ™" A—=mcoll A—hitx under the condition —collg A —prefix;,o:
Fori € {1,...,n% + lou — 1}, let hityy" be the condition where hit;; holds at
the i-th block of the a-th online query, that is,

hity! (3B e {1,...,a—1} e {l,....n% +low — 1} st i £ j ALY =17)
AEje(L,. .. i—1} st 8 =12).

Then hitg = \/7, "L hit%". In the following, for i € {1,...,n% + Lo —1},

we upper-bound the probability that hitf‘t’i A —\hiti’t'_1 A =mcoll A —hitg holds

under the condition —colly A —prefix_ .. By p1;, we denote the probability.

— Firstly, we consider the case of ¢ = 1. In addition to the condition
—collyy A —prefix;, ., we assume that hitx does not hold, and don’t
consider the condition —\hitg_1 A —mcoll. Since t¢ has the form t¢ =
(m$|0°) @ (0°%||K), the probability that hity’" holds under the condi-
tion —colly A —prefix o A —hitg is 0 and thus we have p; 1 = 0.
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— Secondly, we consider the case of ¢ > 2. In this case, we don’t consider the
condition =hita ' A =mcoll A =hitg. Note that for an r-bit string M, t&
has the form ¢t§ = M*||0°®s{_;, where M is a message block or 0". Since
s¢ , is randomly drawn from at least 2° — ¢ values after M is defined,

the probability that hit®* holds under the condition —colly A —prefix;, o

(Z—l)(oéb—_lgl-‘r(i—l) < (g;i)qa7 and thus we have pri < (g;i)qa

Hence, we have Pr[Case 1] < (¢ — 1) x %
q

Case 2% hitd A —hitd ' A —=mcoll A =hite under the condition —colly A prefix;,o:
In this analysis, we use the condition hitgy” for i € {1,...,n% + Loy — 1},
defined in Case 1. We let hitg®* ™' = hit2™ > v hitd! v -« v hitd 1
where hitg® := hit?"!. Then the following holds: hitd A —hitd™ ' =
\/?:fzc’“rl(hitﬁ’i A =hits®* 1), In this evaluation, we don’t consider the
condition —hitg, and thus for i € {1,...,n* 4+ fous — 1}, upper-bound
the probability that hit®* A —hits*"~' A =mcoll holds under the condition
—colly A prefix;,«. By p2;, we denote the probability. We assume that the
~-th online query (v € {1,...,a — 1}) is the prefix online query of the a-th
online query, and j* is the distinct point. If there are two or more prefix
online queries of the a-th online query then we consider the prefix online
query such that the distinct point is maximum.

— Firstly, we consider the case of 4 < j*. In this case, we don’t consider the
condition —mcoll, and assume that hittStD"%1 does not hold in addition
to the condition —colly A prefix;, o. By prefix; o, t& = ¢] holds, and by
—hitS**~!, hit, does not hold. Hence, hity’ does not hold under the
condition —colly A prefix; o A hittgta”fl, and thus we have p,; = 0.

— Secondly, we consider the case of i = j*. In this analysis, we don’t consider
the condition ﬁhittgta’zfl, and assume that mcoll does not hold in addition
to the condition —colly A prefix,,.. Note that since j* is the maximum
distinct point, ¢7. is a new input to G;«. By —mcolly, the number of
inputs to random functions whose first r bits are equal to ¢7. [1,r] is at
most (¢ + p). Note that ¢5.[r + 1,b] = sf. _4[r + 1,b], and s§._[r + 1,0]
is randomly drawn from at least 2° — ¢ values. Hence, the probability
that hitg* holds under the condition —colly A prefix,. o A—mcoll is at most

92 and thus we have py; < L2

is at most

2¢—q — 2¢—q"
— Finally, we consider the case of i > j*. In this analysis, we don’t consider
the conditions —hit5** "' and =mcolly. Note that for an r-bit string M,

t¢ has the form t& = M“||0° @ s, where M® is a message block or 0.
By —colly, s ; is randomly drawn from at least 20 — ¢ values after M

is defined. We thus have py; < (l;;f)qa.

Hence, we have Pr[Case 2] < 52 + (£ — 2) x (g%)qa.
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Hence, we have

(—-1)2%a q+p +(€—2)2a}

Prlhit; A =(coll V meoll) A =hitg] < Z max{ — et T,

2 2
< 2(q+p)q+f q

< 5c TR assuming q < gc— 1,

Finally, we have Pr[hity A =(collyy V meoll)] < % + W + G

» We put the above bounds to the inequation (2). Then we have

22 2 20242 2¢lq\ "
€q+Q+ @ +qQ + p(q+Q)+ (2q +2r+1x<p€2€:1>

Upper-Bound of €. Let T € Tgoo4. Let all; be the set of all oracles in Game ¢ for
i = 1,2. Let comp,(7) be the set of oracles compatible with 7 in Game i for

i=1,2. Then Pr[T; = 7] = 7‘C°r‘nﬁ1(7)| and Pr[Ty = 7] = 7‘Coﬁﬁz?7)l.

Firstly, we evaluate |all;|. Since K € {0,1}* and P € Perm({0,1}"), we have
|ally | = 2k - 201,
Secondly, we evaluate |ally|. Since K € {0,1}¥, P € Perm({0,1}"), and
l
G1,Ga,..,Gs € Func({0,1}%,{0,1}?), we have [ally| = 2% (2°1) - ((2°)") .
Thirdly, we evaluate |comp,(7)|. For ¢ € {1,...,¢}, let 7; be the number of

pairs in 7;. Let yp be the numbers of pairs in 7p. Let v = vp + Ele ;. Since

T1,...,T¢ and 7p are defined so that they do not overlap each other, we have
|comp, (7)| = (2° =)l

Fourthly, we evaluate |compy(7)|. Here, ~1,...7¢, and vp are analogously

defined. Then we have |comps(7)] = (20 — vp)! - [['_;(20)2 7 = (26 — vp)! -

(Qb)f2b*"/+’¥7>'

Finally, we have

PrTi=7] _ Jeompy(r)| = lalla] _ (2 —)! 2k . (201) - (20

Pr[To=7] |l [compy (1) 28 (28) T (20 — )l (20)12" e
_ @2
" @ (@)

and thus ¢ = 0.

Upper-Bound of Pr[D%: = 1] — Pr[D%2 = 1]. Finally, by Lemma 1, the
upper-bound of Pr[Te € T,a4] and ¢ yield the following bound.

=1,

Pr[DY = 1] — Pr[D% = 1]
22 9 2022 2lq\"
S&HQJr ¢ +qQ+2p(q+ Q) 207 +2r+1x< eﬁq)

2k 2¢ T 02

3)
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4.2 Upper-Bound of Pr[D%2 = 1] — Pr[D%: = 1]
Firstly, we prove the following lemma.

Lemma 2. G5 and G3 are indistinguishable unless the following condition holds
in Game 2.1

coll &3a, B € {1,...,q},i € {max{n®, nP},... min{n® n’} + lou, — 1}
stoa#BAtE =10,

Proof. If coll does not hold then all blocks in outputs of Lo are independently
drawn by random functions. Hence the above lemma holds. O

By the above lemma, Pr[D% = 1|-coll] = Pr[D% = 1] holds. Then we have
Pr[D% = 1] — Pr[D% = 1] < Pr[coll] .

Hereafter, we upper-bound Pr[coll]. In this evaluation, we use the condition
coll: given in Subsect.4.1. Then we have Pr[coll] < Pr[colly] + Pr[coll|=colly]

where the upper-bound of Pr[colly] is given in Subsect. 4.1: Pr{colly] < g—iJrog—ff’Q.
We thus upper-bound Pr[coll|=colly]. First fix , 8 € {1,...,q} with a # [,
and upper-bound the probability that by the a-th and (-th online queries, coll

holds. We consider the following cases.

Case 1< n® = n”: Since m® # mP, there exists j* € {1,...,n%} such that
t% # .. By =colly, for all j € {j*+1,...,n®+¢—1}, t& # ¢ holds. Hence,
in this case, coll does not hold.

Case 2& n® # nf: Without loss of generality, assume that n® > nf. By
m&. # 0" and m® # m”, there exists j* € {1,...,n°} such that 15 # tf*
holds. By —colly, for all j € {j*+1,...,n*+ £ — 1}, 5 #+ t? holds. Hence,
in this case, coll does not hold.

By the above evaluations, we have Pr[coll|—=colly] = 0.
Finally, we have

2 2
Pr[DG2 =1] - Pr[DG3 = 1] < Prcoll] < % + O'Zfiq .

4.3 Upper-Bound of the Advantage

We put the upper-bounds (3) and (4) into the inequation (1). Then we have

(D) < lg+@Q 3¢% +qQ + 2p(q + Q) N 30242 gy <2e£q>p'
p2"

prf
AdVIKSponge — ok 2¢c 20
1 Note that in this condition we consider a collision at the same position for two online
queries, where in the position the outputs of the queries are produced. Hence, the

first point of 4 is max{n®,n”} and the last point is min{n®, n’} + fous — 1.
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5 Outer Keyed Sponge and the PRF-Security

By OKSponge we denote the outer keyed sponge construction, and by 0KSponge£.,
denote 0KSponge with P having K. For a message m € {0,1}*, the response is
defined as OKSpongeZX (m) := Sponge® (K*|/m), where K* is defined by append-
ing some bit string to the suffix of K such that the bit length is a multiple
of r, e.g., a zero string is appended. So the difference between 0KSponge and
IKSponge is the procedure to define the value sg. In 0KSpongel’, s¢ is defined
as follows, where k := |K*|/r.

1. Partition K* into r-bit blocks K1, ..., Kx;

Partition m| pad(|K*||m|) into r-bit blocks myq, ..., my,
2. wg « 0% Fori=1,...,k do u; «— K;||0°® w;_1; w; — P(u;)
3. Sg — Wy

Basically, we can prove the PRF-security of 0KSponge by the similar proof but
need to consider the structural difference: sp = 0°~%|| K in IKSponge and so = w,
in OKSponge. If D does not know w,, that is, D does not make an offline query
P(u) and P~ (w,) then w, becomes a secret random value of b bits. Therefore,
the upper-bound of the PRF-security of OKSponge can be obtained from that of
IKSponge, where the probability for K, Zq;kQ, is replaced with the probability
for the “bad” event where D knows w,. The probability for the bad event was
considered in [1,13], and we use their bound. The concrete upper-bound is given

as follows, where the probability for the bad event is A(Q) + 2';19 .

Theorem 2. Let D be a distinguisher which makes q online queries of r-
bit block length at most iy, and Q offline queries. Then for any p, we have

f 2 20Q+3.502¢2 | 3¢°+2¢Q+2 2elq\”
AdVEsonge (D) < NQ) + 228 4 2005500 | 30 4200 820(04Q) 4 or+1 (;2:1) :

where £ = lin + lous — 1, € = 2.71828 - - - is Napier’s constant, and \(Q) = é% if

2
:ZC S r, (lTLd A(Q) = min {Z?H + %, 2% + (1_10;2(3}))_1)]6} Otherwise.
2 2 27 T

Corollary 2. We assume ¢ < b/2. Then, we put p = r, and without loss of
generality, assume r > 2 (otherwise r = ¢ =1 and b=2). Since r > b/2, we have

2 2,.—2\p2 2
Advg}r(fSponge(D) < 3q +2qQ2-;2T(q+Q) + (3.5+32¢7r );bq +29Q+2kQ +MQ).

1/2
We assume ¢ > b/2 and put p = max{r, (#ﬁ@) } Then we have

1/2 2 2 2
Advglr(fSponge(D) < (18eéq2(bq+Q)) + 34 +2qQ2t2r(q+Q) 4 3.50% +22qu+2nQ +A(Q).
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Abstract. Typical AE schemes are supposed to be secure when used
as specified. However, they can — and often do — fail miserably when
used improperly. As a partial remedy, Rogaway and Shrimpton proposed
(nonce-)misuse-resistant AE (MRAE) and the first MRAE scheme SIV
(“Synthetic Initialization Vector”). This paper proposes RIV (“Robust
Initialization Vector”), which extends the generic SIV construction by
an additional call to the internal PRF. RIV inherits the full security
assurance from SIV, but unlike SIV and other MRAE schemes, RIV is
also provably secure when releasing unverified plaintexts. This follows a
recent line of research on “Robust Authenticated Encryption”, similar to
the CAESAR candidate AEZ.

An AES-based instantiation of RIV runs at less than 1.5 cpb on
current x64 processors. Unlike the proposed instantiation of AEZ, which
gains speed by relying on reduced-round AES, our instantiation of RIV
is provably secure under the single assumption of the AES being secure.

Keywords: Robustness *+ Subtle authenticated encryption * Provable
security

1 Introduction

Authenticated Encryption. A secure authenticated encryption (AE) scheme
generates ciphertexts that can not be efficiently distinguished from random bit-
strings of the same length as the ciphertext and are infeasible to forge. Typical
AFE schemes are nonce-based [45], i.e., the user is responsible to supply an addi-
tional input that must be unique for every encryption. If a nonce ever repeats,
the scheme’s security may fully forfeit. While the concept of unique nonces is
simple in theory, it is hard to ensure in practice [19], which led to severe secu-
rity breaches in the past. Rogaway and Shrimpton [46] defined (nonce-)misuse-
resistant AE (MRAE) as notion with the goal of providing full authenticity, and
privacy up to the detection of repeated encryptions of the same associated data
and message under the same nonce and key. Since then, the topic received signif-
icant attention by the community, resulting in a large corpus of MRAE schemes,
e.g., [6,10,16,20,22,27-30,33,43,46].
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Robustness aspects of AE are not limited to nonce reuse. “One shortcoming
of AE as commonly understood is its idealized, all-or-nothing decryption” [7].
Leaking any information about the message before its authentication has been
verified breaks this assumption. At least five noteworthy recent works strength-
ened the existing security definitions of robustness.! Boldyreva et al. [15] (BDPS)
studied the effects when multiple distinct error messages are distinguishable in
probabilistic or stateful schemes. Andreeva et al. [4] formalized notions that cap-
ture the remaining security under release of unverified plaintexts (RUP). Hoang
et al. [24] defined robust AE (RAE) as a notion for the best achievable security
of an AE scheme with a user-chosen ciphertext expansion. Badertscher et al. [5]
investigated RAE with the frameworks by Maurer and Renner [38,39]. Barwell
et al. [7] defined subtle AE (SAE) as a reference framework for the BDPS, RUP,
and RAE notions. The SAE definitions comprise leakage beyond information
about the invalid plaintext, which allows to model leakage as a property of the
decryption implementation rather than as a property of the scheme.

Previous Robust AE Schemes. In spite of so much progress regarding stricter
security definitions, the portfolio of dedicated robust AE schemes remains still
modest. Among the 57 CAESAR submissions, only four candidates consider
robustness against leakage of invalid plaintexts: Julius [6] lacks a security proof;
POET [1] and APE [3] concern on-line confidentiality, which cannot provide
nonce-misuse resistance in the strong sense of Rogaway and Shrimpton, as has
been criticized, e.g., by [25]. Only AEZ [24] provides robust AE. Though, AEZ
follows a “proof-then-prune” approach: while the security proof assumes a strong
block cipher, the performant instantiation employs four-round AES instead.
Since AEZ also defines a key schedule, it appears more as a primitive of its
own right than as a block-cipher-based AE scheme.

Beyond CAESAR, Bertoni et al. [12] proposed MR. MONSTER BURRITO,
a four-round Feistel network with the round-reduced KECCAK-f permuta-
tion in duplex-wrap mode, and the sponge in counter mode for encryption.
Shrimpton and Terashima [47] proposed Protected IV (PIV), a framework of
strong tweakable ciphers (STPRPs), which generalized the ¥3 construction by
Coron et al. [17]. PIV is fast (comparable with the construction proposed in
this work); though, it requires the block-cipher inverse for decryption. Note that
theoretically, more robust AE schemes could be constructed. Hoang et al. [24]
showed that the well-known Encode-then-Encipher (EtE) [9] approach achieves
RAE security when (a hash of) nonce and associated data are used as tweak.
In theory, this implies that a secure STPRP can be transformed into a robust
AE scheme, which allows to choose from the schemes that have been developed
over the previous decade, e.g., in the domains of full-disk and format-preserving
encryption.

Contribution. This work proposes a modular framework, called Robust IV
(RIV), which provides provable SAE security. RIV is an extension of SIV [26,46]

! By robustness, we mean resistance against both nonce misuse and decryption leakage
beyond the single error information.
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that inherits both the simplicity and the naturally strong security properties of
SIV and adds robustness against leakage of invalid plaintexts. We propose an
instantiation which runs at less than 1.5 clock cycles per byte (cpb) on current
x64 processors.

Outline. The remainder of this work is structured as follows: after Sect. 2 recalls
the preliminaries, Sect. 3 describes the generic RIV framework. Section 4 recalls
the relevant notions. Section 5 summarizes our formal security analysis. Section 6
details our instantiation, and Sect.7 concludes this work.

2 Preliminaries

We use lowercase letters x,y for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X', ) for sets. By
€ we denote the empty string. We denote the concatenation of binary strings X
and Y by X ||Y and the result of their bitwise XOR by X @ Y. We indicate
the length of X in bits by |X]|, and write X; for the i-th block, X[i] for the
i-th most significant bit of X, and X[i..j] for the bit sequence X[i],..., X[j].
X « X denotes that X is chosen uniformly at random from the set X. We
define two sets of particular interest: Perm(X’) be the set of all permutations
on X and Func(X,)) the set of all functions F' : X — Y. A uniform random
function p : X — Y with domain X and range ) is a random variable uniformly
distributed over Func(X,)). We define by X,..., X; &£ X the injective splitting
of the string X into x-bit blocks such that X = X; || --- || X, with | X;| = z for
1<i<j—1,and | X;| <z

For an event E, we denote by Pr[E] the probability of E. We write (z),,
for the binary m-bit-string representation of an integer x and (z) for the binary
n-bit-string representation of z for an integer n that is clear from the context.
If not stated otherwise, we assume representations to be encoded in big-endian
manner, i.e., the decimal (135) is encoded to the n-bit string 000..010000111.

Universal Hashing. Universal hash functions are well-known components for
compressing a message while guaranteeing maximal probabilities about output
relations. We briefly recall the definitions that are relevant in this work.

Definition 1 (e-Almost-(XOR-)Universal Hash Functions). Let X', C
{0,1}*. Let H={H | H : X — Y} denote a family of hash functions. H is called
e-almost-universal (e-AU) iff for all distinct elements X, X' € X, it holds that
Prgn [H(X)=H(X")] < e. H is called e-almost-XOR-universal (e-AXU) iff
for all distinct elements X, X' € X and Y € Y, it holds that Pry.n[H(X) &
H(X')=Y] <e.

Theorem 1 (Theorem 3 from [14]). Let X, C {0,1}*. Further, let H =
{H|H : X — Y} be a family of e-AXU hash functions. Then, the family H' =
(H'|H : X xY — Y} with H'(X,Y) := H(X) @Y, is e-AU.
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Nonce-Based Encryption Schemes. A nonce-based encryption scheme [45]
is a tuple I = (£,D) of deterministic encryption and decryption algorithms
EKXNXM—CandD: K xN xC— M, with associated non-empty key
space K, non-empty nonce space A/, and M,C C {0,1}* denoting message and
ciphertext space, respectively. We often write EX (M) and DY (C) as short forms
of E(K,N, M) and D(K,N,C). An adversary that never repeats a nonce over
its encryption queries is called nonce-respecting, and nonce-ignoring otherwise.
We assume for all K € K, N e N, M € M, and C € C length-preservation,
ie., |EX(M)| = |M]|, correctness, i.e., DX(EN(M)) = M, and tidiness, i.e.,
EN(DY(C)) = C. We call a nonce-based encryption scheme IT = (€, D) nonce-
keystream-based iff its encryption algorithm derives a keystream sy C {0,1}*,
with |ky| = |M], from the given nonce N and computes the ciphertext as C' «—
kN @ M. Naturally, the decryption algorithm of such an encryption scheme is
identical to its encryption algorithm, i.e., EN (M) = DX (M) for all K € K,
NeN,and M € M.

Nonce-Based AE Schemes. A nonce-based authenticated encryption scheme
(with associated data) [44] is a tuple IT = (£,D) of a deterministic encryption
algorithm E:KxNxHxM — CxT,and a deterministic decryption algorithm
D:KxNxHxCxT — MU{L}, with associated non-empty key space K, non-
empty nonce space N/, and H, M, C C {0,1}* denote the header, message, and
ciphertext space, respectively. We define a tag space 7 = {0, 1}" for a fixed 7 > 0.
We often write ggH(M) and ﬁg’H(C, T) as short forms of (K, N, H, M) and
5([(, N,H,C,T). If a given tuple (N, H,C,T) is valid, 5?{7’11(6’, T) returns the
corresponding plaintext M, and L otherwise. We assume that for all K € K, N €
N, H e H, and M € M holds stretch-preservation: if 5;(V’H(M) = (C,T), then
|C| = |M]| and |T| = 7, correctness: if gII(VH(M) = (C,T), then 1511\(7’}[(0, T) =
M, and tidiness: if 5%’H(C7 T) = M # 1, then ggH(M) = (C,T), for all
C € Cand T € 7. Note that some notions (e.g., [41]) regard an authenticated
ciphertext C' with |C| = |M| + 7 instead of an explicitly separated tuple (C,T).

Subtle AE Schemes. Barwell et al. defined a subtle AE scheme II = (£, D, A)
as a tuple of deterministic encryption and decryption algorithms & and D as
above?, and an additional deterministic leakage algorithm A : K x A x H x
Cx7T — {T}UL, with a non-empty leakage space £ and a symbol T ¢ L to
indicate a valid input. This means, for all K € K, N e N, H € H, C € C, and
T € T holds: if A%’H(C, T) =T, then DQ’H(C, T) # 1; moreover, it holds that
it AR (C,T) # T, then Dy™(C,T) = L.

3 Definition of RIV

Definition 2 (RIV). Let d,n,7 > 1. Let K1, Ko, and K = K1 x Ko be non-
empty key sets, N' a mon-empty monce space, {O,l}d the non-empty domain

2 Though, their definitions denote the authenticated ciphertext (C,T) as C.
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1: function 5}(1,;{2 (N,H, M)
2t IV « Fj, (N,H, M)

3 C+«+ Ek,(IV, M)

4 T+ F (N,H,C)aIV
FL B 5. return (C,T)

11: function 5K1,K2(N, H,C,T)
122 IV« Fg (N,H,C)&T

13: M < Dk, (IV,C)

Enzy 1V 14: IV’<—F}(1(N,H,]W)

15:  if IV = IV’ then return M
16: return L

M [N o]

S 21: function Ak, x,(N,H,C,T)
Fk, D 22: IV « F% (N,H,C)®T
23: M « Di,(IV,C)

24: IV’ «+ Fi (N,H, M)

25: if IV = IV’ then return T
[ ¢ ] [T ] 2o roturn 1

Fig. 1. Left: Schematic illustration of the encryption of RIVg 7 with a PRF F and
a nonce-based encryption scheme II = (£€,D). Right: Definition of encryption and
decryption algorithms of RIVp, 7, and definition of a plaintext-leaking oracle A that
will be used in our security analysis.

space, and H,M,C C {0,1}* header, message, and ciphertext spaces, respec-
tively, and T = {0,1}7 a tag space. Let further F : Ky x {0, 1} x N'x H x M —
{0,1}" be a function and IT = (€, D) a nonce-based encryption scheme with asso-
ciated key space Ko and nonce space {0,1}7. Let Fi(-,-,-) denote Fg ({i)a,-,",").
Then, we define the AE scheme RIVp = (g, 75) with encryption algorithm
EKXNXxHxM — CxT and decryption algorithm D : K x N x HxCxT —
MU{L}, as given in Fig. 1.

Definition 3 (ﬁﬁ/) We define the SAE scheme F{I\VF’U = (£,D, A) with an
additional deterministic leakage algorithm A : K X N X HXC X T — M x {T},
as given in Fig. 1.

Feistel Structure and Encode-then-Encipher (EtE). RIV can be seen as
an application of the EtE [9] approach by Bellare et al. EtE can generically be
used for constructing a robust AE scheme from a tweakable cipher, assuming its
enciphering resists chosen-plaintext and chosen-ciphertext attacks [24]. The RIV
cipher, however, is essentially an unbalanced three-round Feistel-network.? It is
well-known that such ciphers are secure against chosen-plaintext, but vulnerable
to chosen-ciphertext attacks [35] (see also [2,36,42]). RIV is robust in spite of
its weak enciphering scheme, because its encoding operation has been chosen to
specifically cover this weakness.

3 If the used encryption scheme IT = (€, D) is nonce-keystream-based, the RIV cipher
is a three-round Feistel network.
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4 Security Notions

Adversaries and Advantages. An adversary A is an efficient Turing machine
that interacts with a given set of oracles that appear as black boxes to A. We
use the notation A for the class of all computationally bounded adversaries
and A© for the output of A after interacting with some oracle ©. We write
AA(OL;0F) = suppe, | Pr[AoL = 1] - Pr[AoR = 1]| for the advantage of
A to distinguish between oracles O and OF. All probabilities are defined over
the random coins of the oracles and those of the adversary, if any. We write
Adv3 (g, 0,t) = maxaca{Advy (A)} to refer to the maximal advantage over all
X-adversaries A on a given function F that run in time at most ¢ and pose at
most g queries consisting of at most ¢ blocks in total to the available oracles. If A
shall distinguish between two sets of oracles (OF, ..., OF) and (OF,... , OF), we
refer to the i-th oracle that A interacts with by O; € {OF, OF}. By 0; — 0;,
we denote that A first queries O; and later O; with the output of ©;. Wlog.,
we assume that A never asks queries to which it already knows the answer. In
the case when A has access to multiple oracles Oy, ..., O, we denote by ¢; the
number of queries and by ¢; the maximal number of blocks that A poses at most
to oracle O0;, 1 <i < k.

If O; and Oj represent a family of algorithms indexed by inputs, the indices
must match, e.g., when ggH(M ) and 5?(”{(6’) represent encryption and decryp-
tion algorithms with a fixed key K and indexed by N and H, then Ex — Dg
says that A first queries EQ’H(M) and later DZ’H(C).

We define 1, when in place of an oracle, to always return the invalid
symbol L. We denote by $© an oracle that, given an input X, computes
Y — O(X), chooses uniformly at random a value Y’ from the space of all
possible outputs with |Y’| = |Y|, and returns Y’. We assume that $© performs
lazy sampling, i.e., $©(X) returns the same value when queried with the same

input X. We often omit the key for brevity, e.g., $5(X) will be short for $5x (X).

4.1 Security Definitions for Encryption Schemes

Definition 4 (PRF Advantage). Let F': K x X — Y be a function with non-
empty key space K, and A a computationally bounded adversary with access to
an oracle, where K « K and p « Func(X,Y). Then, the PRF advantage of A
on F is defined as AdvERT (A) := Aa(Fk;p).

Definition 5 (PRP Advantage). Let n,k > 1 be fized. Let E : {0,1}* x
{0,1}™ — {0,1}" be a block cipher and A a computationally bounded adversary
with access to an oracle. Further, let K « {0,1}* and 7 « Perm({0,1}"). Then,
the PRP advantage of A on E is defined as Advy™ (A) := Aa(Ex;m).

Stinson [48] showed that one can construct an (e; + €2)-AU family of hash
functions from the consecutive application of an €;-AU and an e3-AU family of
hash functions. From that we can derive the following theorem.
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Theorem 2. Let X, Y, Z C {0,1}* and let K be a non-empty set. Further, let
H={H:X — Y} be a family of e-AU hash functions and let G : KxY — Z be a
function. Then, we can define Fx(X) := Gx(H (X)), with independent K « K
and H « H. Let A be a PRF adversary on F that asks at most q queries of
at most £ blocks in total, and runs in time at most t. Then, there exists a PRF
adversary Ay on G that asks at most q queries and runs in time O(t) such that

AdviRF(A) < AdvERT(AL) +€-¢2/2.

Theorem 2 follows from the fact, that the PRF advantage of F' is upper
bounded by the maximal PRF advantage on G plus the maximal probability of
output collisions of the form H(X) = H(X') over g queries.

Definition 6 (nE Advantage [41]). Let II = (£, D) be a nonce-based encryp-
tion scheme and K « K. Let A be a nonce-respecting adversary with access to
an oracle. Then, the NE advantage of A on II is defined as Adv?jE(A) =
AA (5}(; $£)

We adapt the definition of indistinguishability from random bits from [23]
for nonce-based encryption schemes. Note that we strengthen it to adversaries
that do not repeat nonces over all encryption and decryption queries.

Definition 7 (SRND Advantage). Let be I = (£,D) a nonce-based encryp-
tion scheme and K « K. Let A be a nonce-respecting adversary with access to
two oracles O1 and Oz, s.t. A never asks for O1 — Oy and never repeats a

nonce over all its encryption and decryption queries. Then, we define the SRND
advantage of A on II as Advir P (A) := Aa(Ek, Dk; $¢,$7).

4.2 Security Definitions for Nonce-Based AE Schemes

For this subsection, let II = (5 , 5) be a nonce-based AE scheme, K « K, and
A be a computationally bounded adversary on I1.

Definition 8 (IND-CPA Advantage). Let A have access to an encryption
oracle. Then, the IND-CPA advantage of A with respect to II is defined as
AdvEPCPA(A) == AN (Ek; $9).

Definition 9 (INT-CTXT Advantage). Let A have access to two oracles Oy
and Os such that A never queries O — Os. Theq, t@e INT-CTXT advantage
of A on I is defined as Adv%\IT‘CTXT (A) := Pr[AfxPx forges], where “forges”
means that Dy returns anything other than L for a query of A.

Definition 10 (nAE Advantage [41]). Let A have access to two oracles O
and Oy such that A never queries O; < Os. Then, the NAE advantage of A on
11 is defined as Adv*"(A) := Aa(Ex, D $°, 1).

Bellare and Namprempre showed for probabilistic AE that chosen-ciphertext
security results from IND-CPA and INT-CTXT security [8]. Fleischmann
et al. proved in [19] a generalized theorem for nonce-based AE.
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Theorem 3 (Theorem 1 in [19]). Let A be a computationally bounded NAE
adversary on IT with access to two oracles 01 and Oy such that A never queries
01 — Oz; A makes at most g queries of total length of at most £ blocks and
runs in time at most ¢. Then, there exist an IND-CPA adversary A; on IT and
an INT-CTXT adversary As on IT, both making at most g queries of at most
¢ blocks and running in time O(t) each, such that

AdvEE(A) < AdvEPOPA(AL) + AdviETOTT(A).

4.3 Security Definitions for Subtle AE Schemes

Subtle AE (SAE) defines a compound security notion that provides guarantees
for privacy and authenticity under the existence of a leakage oracle. It comprises
the notions IND-CPA, INT-CTXT, and an additional notion ERR-CCA.

For this subsection, let IT = (£,D,A) be an SAE scheme, K, K’ « K x K
independent keys, and A a deterministic adversary with access to three oracles
01,05, and O3 such that A neither queries O; < Oy nor 07 — Os.

Definition 11 (ERR-CCA Advantage). The ERR-CCA advantage of A
on II is defined as Adv%RR"CCA(A) = Aa(€x, Dk, Ak; €k, Di, Ar).

Definition 12 (SAE Advantage). The SAE advantage of A on I is defined

as Adv%AE(A) = AA(gNK,ﬁKvAK§$gaJ-aAK’)'

In the full version of [7], Barwell et al. prove a statement equivalent to
Theorem 4. We apply Theorem 3 to decompose their AE security advantage
term into the separate advantages for IND-CPA and INT-CTXT.

Theorem 4. Let A run in time at most t and ask at most q queries of at most £
blocks to its respective oracles. Then, there exist computationally bounded IND-
CPA, INT-CTXT, and ERR-CCA adversaries Ay, Az, and Az, respectively,
on II such that

Adv%AE(A) < Adv%\TDfCPA(Al) + Adv%\TT—CTXT(Az) + AdV%RRfCCA (Ag),

where Ay, As, and Az each make at most q queries of at most £ blocks and run
in time O(t) each.

Since [4] omitted a compound notion for their security under release of unver-
ified plaintexts, Barwell et al. defined RUPAE as AA(gK,YSK, Vi; $5,25K/, 1)
[7, Theorem 3, Corollary 2]. They showed that the maximal SAE advantage on an
AE scheme IT is, with a reduction term, also equivalent to the maximal RUPAE
advantage. Moreover, they showed that — again with a reduction term - it is also
equivalent to the maximal robust-AE advantage on II with fixed stretch .
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5 Security Results for Generic RIV

This section summarizes our security results. For the remainder of this section,
let d,n,7 > 1 be integers, K1, K2 be non-empty key spaces, and K, Ko «
K1 x Ko be independent keys, F : K1 x {0,1}4 x N' x H x M — {0,1}", and
IT = (£,D) be a nonce-based encryption scheme with associated key space Ka.

Theorem 5. Let A be a computationally bounded SAE adversary on P{I\Vpﬂ
which asks at most q queries of at most £ blocks in total and runs in time at
most t. Then, there exists a computationally bounded PRF adversary A; on F
that asks at most 2q queries of at most 2(d + nt) bits and runs in time O(t),
and a computationally bounded SRND adversary Ao on II that asks at most q
queries of at most £ blocks in total and runs in time O(t) such that

2
< 8q” + 3¢q

SAE
AdVES  (A) < =0

RIV 1 +4- (AdVEﬂRF(Aﬂ + Adv%RND(A2)> .

Due to space limitations, the proof can be found in the full version of this
paper®. We can derive the following corollary for the NAE advantage on RIV g ;1
in the absence of a plaintext-leaking oracle.

Corollary 1. Let A be a computationally bounded NAE adversary on RIV g 1
which asks at most q queries of at most £ blocks in total and runs in time at
most t. Then, there exist a computationally bounded PRF adversary Ay on F
that asks at most 2q queries of at most 2(d + nl) bits and runs in time O(t),
and a computationally bounded SRND adversary As on II that asks at most q
queries of at most £ blocks in total and runs in time O(t), such that

2 2
AdviAE (A) < 2 +ta

<L +2-(AdngF(A1)+Adv§YRND(A2)).

The proof can be found can be found in the full version of this paper.

Proof Ideas. The intuition of our proofs is the following: in encryption direction,
for every fresh tuple of nonce, header, and message, I’ will produce a fresh
IV «— FL(N, H, M) that has not occurred before with overwhelming probability.
Since IT is SRND-secure, £ will produce a randomly chosen ciphertext. The
second invocation of F' with a fresh ciphertext then produces a random tag.
To determine the privacy advantage of the scheme, we have to bound only the
PRF-advantage on F', the SRND-security of £, and the probabilities of random
collisions of IV's from the birthday paradox.

In decryption direction, whenever the nonce, header, or ciphertext changes,
IV «— F%(N, H,C) will be a random value up to the birthday bound. Since I7 is
SRND-secure, a fresh IV (regarded over all encryption and decryption queries)
will produce a fresh pseudorandom plaintext. Thus, even when the adversary
learns the decrypted (invalid) message, M will provide it with no information

4 The full version of this paper will soon appear on ePrint.
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about other plaintexts as long as the IV does not repeat. When an adversary
changes N, H, or C and manages to cancel the difference by a fresh tag, the
second call to Fj (N, H, M) will yield a random IV’ that differs from IV with
probability close to 1/2™. Thus, a similar argumentation as for the encryption
also applies to the inverse direction. Finally, the domain separation from the
first parameter to F' protects against choices of (N, H, M) = (N, H,C).

6 Instantiation

Pseudo-Dot-Product Hashing. Let n,m > 1 with even m and let X =
UZ/12{071}2M. Given a set of m pair-wise independent key words K =
(K1, ..., Kpn) and an m-word input M = (My, ..., M,,), with M;, K; € {0,1}",
1 < i < m, a pseudo-dot-product (PDP) family of hash functions H = {H :
X x X — {0,1}?"} is defined as

m/2

Hi (M) := (Mai_y + Kai_1) - (Ma; + K;).

i=1

Bernstein [11] credits it to Winograd [51] and classifies it as (m, [m/2])-design,
i.e., it requires m independent key words and [m /2] multiplications to process m
message words. If modular additions and multiplications are performed within
the rings Zon and Zgzn, the construction is known as NH, to be 1/2"-AU, and
is used in variants in UMAC [13], VMAC [18,32], and HS1 [33]. All these con-
structions employ a multi-stage hashing process: the input is first compressed
with NH, before the results are used as inputs in a usual polynomial hash (and
optionally further processed by an inner-product hash). To obtain a slightly
higher security margin and efficiency, we consider a recently proposed variant,
called CLHASH.

6.1 CLHASH

CLHASH [34] is a family of multi-stage hash functions that produces 64-bit
hashes and employs a PDP family of hash functions CLNH, which resembles
NH, but replaces modular additions and multiplications with XORs and carry-
less multiplications in GF(25%)/p(x) with the irreducible polynomial p(x) = x%4+
x* +x% 4+ x + 1. Therefore, CLNH can exploit the vpclmulqdq instruction for
64-bit carry-less multiplication which was originally introduced for boosting the
performance of GCM [21].

CLHASH[m)] splits a given message M into (64m)-bit blocks (M, ..., Ms),
and pads the final block with zeroes such that its length becomes a multiple of
128 bits. Each block M; is compressed with CLNH to a 128-bit value A;. If
the message consists of only a single block, the message length |M]| is multiplied
with an independent key K € {0,1}%* and XORed to the result; the result is
reduced to a 64-bit value modulo p(x) = x5 + x* + x3 + x + 1 and returned.
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Algorithm 1. Definition of CLHASH' [m, t] with a hash length of 64t bits, a
block length of m/8 bytes, and ¢ Toeplitz iterations.

101: function CLHASH" [m, t]x (M) 301: function KEYGEN(K)
102: (Kn,Kp,Ka,Kr) — KEYGEN(K) 3020 &k« 64(m+ 2t — 2)
103: s« max([64-|M|/m],1) 303: Ky «— KJ[1..K]
104: (M, ..., M,) S oar 304: Kp «— K[(k+1)..(k + 128t)]
105:  Ms « PAD12s(M5) 305: K« k+ 128t
106: for i« 1tot do 306:  Ka — K[(k+1)..(k + 1281)]
107: for j < 1 to s do 307: Kk« K+ 128t
108: K; — KN(@i-1).m+26i-1) 308: K «— K[(k+1)..(k + 64t)]
109: A; « CLNH[m]x, (M;) 309:  return (Kn,Kp,Ka, K1)
110: if s =1 then 401: function PoLyk, (A1,...,As)
111: Hy — Ay 402: return @S, A; - Kp'
112: else 403: mod(2128 +4+2)
113: Kp; < Kp; mod 2'%° 501: function HASHLENg, (H;,|M|)
114: Oi — PoLYkp, (A1, ..., As) 502: return (H; ® (K - |M]))
115: Hi — CLNH[Q]KAi (Ol) 503: mod(264 + 27)
116: Hi « HasHLENk,; (Hs, |M]) 601: function PAD,(X)
117: return (Hy | --- || He) 602: if (|]X| mod n =0) then
201: function CLNH[m]x, (M) 603: return X

: . n—|X| mod n
202: return ;- (Mj2i71 P Kj2i—1) 604: return X ||0
203: '(MjQi@KjQi)

For longer messages, the values A; are processed by a polynomial hash with
an independent key Kp € {0,1}!?® and reduced modulo ¢(x) = x'?7 + x + 1.
For efficiency, the two most significant bits of Kp are fixed to zero, and a lazy
reduction modulo x'28 + x2 + x is used instead without affecting security.

The 128-bit result of the polynomial hash is then reduced to a 64-bit value
by another application of CLNH with two further independent key words
Ka,,Ka, € {0,1}54. The result H is finally XORed with the hashed length
to account for inputs of variable lengths, and is reduced to a 64-bit value.

In [34], the authors show that CLHASH is XOR-universal for messages of
up to b = 8m bytes, and e-AXU for messages of up to N bytes.

Theorem 6 (Lemma 9 in [34]). Let N > 1 denote the mazimal message
length in bytes, m > 2 be even, and b = 8m the key size of CLNH. Then,
CLHASH as defined above is e-AXU with

1 N/b—1 1
€ < €CLNH[m] + €Pory + €CLNH[2] < 561 + —oiz6 T e

where the terms stem from the facts that CLNH[m] is an ecinupm)-AU, and the
polynomial hash an epoy-AXU family of hash functions.

The recommended values N < 24 and b = 1024 yield € < 2.004/27%4. The
construction requires b+ 40 bytes of key material: b bytes for CLNH, a 16-byte
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value Kp for the polynomial hash, two eight-byte values K4[1], K 4[2] for the
final call to CLNH, and an eight-byte value K, for hashing the input length.

Toeplitz Extension. To obtain a hash function with 128-bit security, one can
process the same message twice under independent keys and concatenate the
results. Doubling the key lengths of Kp, K4, and K, increases their keys to 80
bytes. Since doubling the key length for CLNH would absurdly increase the key
material, we use the Toeplitz extension [31,37] instead. Let K; ; be short for
K;,...,K;,1<i<j. Given an e-AU family of hash functions H : {0,1}"" x
{0,1}™" — {0, 1}™ which compresses an m-word input with an m-word key, one
can derive a hash function H*: {0,1}(m+2t=2n » {0, 1} — {0,1}'™ by

H;(L.(,,,#zf,m (M) = HK1..m (M) ” HK&,(erz) (M) ” T ” HK(2£—1),.(7VL+2t72) (M)

So, the i-th call to H employs the key shifted by 2i—2 words. In total, the key size
increases slightly from m to m 4 2(t — 1) words. We refer to the Toeplitz version
of CLNH by CLNH[m,], and to that of CLHASH[m] by CLHASH [m, t].
Algorithm 1 provides a specification. In total, CLHASH' [m, t] requires (8m +
56t — 16) bytes of key material, which corresponds to (8m + 96) bytes for ¢ = 2.

Definition 13 (Toeplitz CLHASH). Letn = 64, ¢t > 1, m > 2 be even.
Let X = 20, 1}2m Let further Ky = {0,1}64m+1280=1) ", — {0, 1}128¢

Ka = {0, 1}128t ={0,1}% and K = Ky x Kp x K4 x K. The family
of keyed hash functions CLHASH [m,t] : K x X — {0,1}%% is defined in
Algorithm 1.

Theorem 7. For any fized n,t > 1, and even m > 2, CLNHT[m,t] is 27M-AU
on equal-length strings.

The proof of Theorem 7 can be found in the full version of this paper.

Theorem 8. Let N < 254 be the mazimal message length in bytes, t > 1, m > 2
be even, and b = 8m the key length for CLNH in bytes. Then, CLHASH[m, 1]
is an €' -AXU family of hash functions with

1 NWb-1 1 _ 3
€ < €cLNH[m] T €Powy F €cLNn) = 57 515 T 5e1 = e

The proof of Theorem 8 follows from Theorem 7 and the fact that the keys for
the individual iterations of polynomial, inner-product, and length hashing steps
are chosen uniformly from their respective spaces and pairwise independently
for each iteration. We can derive that CLHASH[m, 2] is e-AXU for € < 9/2'28
when m > 2.

6.2 Constructing a PRF

Let n,d > 1, and A, H, M be as in Sect.3. For brevity, we define ) :=
{0,1}4 x N x H x M. Let ENCODE : J) — {0,1}* define an injective encod-
ing function. Then, we can construct a PRF from the composition of ENCODE,
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Algorithm 2. Encryption of nonce-based XOR-CTR, instantiated with a block
cipher E : {0,1}* x {0,1}" — {0,1}", with n,k > 1.

1: function XOR-CTR[E].EX (M)
2: IV « Ex(N)

3: m o [|[M]|/n]
4.
5

k= Ex(IV o (O) [ - | Ex(IV & (m — 1))
return C — M @ klfirst | M| bits]

a family of e-AU hash functions H' = {H'|H’ : {0,1}* — {0,1}"}, and a block
cipher E : K3 x {0,1}"™ — {0,1}", with independent keys K; € K; determin-
ing the hash function, and Ks € K5 for the cipher. We call the construction
EHE[ENCODE, H', E] : Y — {0,1}" (for Encode-Hash-Encrypt) and define it as

EHE[ENCODE, H', E]k, k,(D,N,H,M) := Eg,(H, (ENCODE(D, N, H, M))).

We write EHE[H', E] or even EHE as short forms of EHE[ENCODE, H’, E]
when the components are clear from the context. The injective encoding excludes
collisions between distinct inputs. From Theorem 2, and applying the PRF/PRP
switching lemma, we can derive the following theorem.

Theorem 9. Let m « Perm({0,1}"). Further, let EHE[ENCODE, H', 7|, H’,
and ENCODE be defined as above. Let A be a computationally bounded adversary
that asks at most q queries of at most £ blocks and runs in time at most t. Then

q 1
AdVEEE[ENC()DE,'H’,ﬂ] (A) < <2> ’ (2" + 6) :

6.3 Encryption

When starting counter-mode encryption from a random value and incrementing
by modular addition, one has to either consider potential carry bits or to reduce
the security by fixing a maximal message length. Wang et al. [50] proposed
to replace modular addition by XOR, which avoids the need for concerning
carry bits. Let E : {0,1}* x {0,1}" — {0,1}" be a block cipher. We define
XOR-CTRIE] = (€, D) as the nonce-based encryption scheme with encryption
algorithm XOR-CTRIE].E : {0,1}F x N x {0,1}* — {0,1}* and associated
non-empty nonce-space N, as defined in Algorithm 2.

We denote by XOR-CTR|r,n’] a version of XOR-CTR with two indepen-
dent n-bit permutations 7 and 7', where 7 is used for encrypting the nonce
and 7’ for producing the keystream. Then, XOR-CTR|[r,n’] is almost identi-
cal to the CTR2[r, 7] construction in [45], with the difference that the former
replaces the addition of IV and counter modulo 2" by XOR. Since this change
does not affect the probability of block-cipher inputs to repeat, the NE advan-
tage of XOR-CTR is given by Theorem 10, which adapts Theorem 3 in [45].
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Theorem 10. Let m, 7' « Perm({0,1}") x Perm({0,1}"™) be independent per-
mutations and A be a nonce-respecting NE adversary, which runs in time at
most t and poses at most q queries to its oracles with at most £ blocks. Then

EQ
Advg{%R—CTR[w,ﬂ’](A) < on”

From the fact that encryption and decryption of XOR-CTR|[r, '] are iden-
tical operations, we can derive the following theorem.

Theorem 11. There exists a reduction of a nonce-respecting SRND adversary
A with access to two oracles on XOR-CTRI[m, 7] to a nonce-respecting NE
adversary A’ on XOR-CTR[m, 7'] such that
SR
AdvYOReTRpr ) (A) < AAVXOR oTRir ] (AT),
where both A and A’ ask at most q queries of at most £ blocks to their available
oracle(s) and run in time O(t).

6.4 Instantiation of RIV

We instantiate RIV r ;7 with EHE[ENCODE, H’, E] for F, with CLHASH [m, 2]
as family of universal hash functions H’, and XOR-CTR[E] for II, with the
AES-128 as E. Algorithm 3 provides a specification. Our instantiation RIV g 17
expects a 128-bit user-supplied secret key SK, from which the remaining key
material is derived by calling Es (+) iteratively in counter mode. The secret key
is not used further. RIV uses n = 7 = 128, i.e., n-bit tags, and n-bit IV's for the
counter mode. Moreover, the nonce space is fixed to 128 bits: N' = {0,1}". For
F, it employs a four-bit domain separation, i.e., d = 4, and an injective encoding
function ENCODE : {0,1}¢ x N x H x M — {0,1}*, as defined in Algorithm 3.
Header and message lengths are restricted to multiple of eight bits. The maximal
number of header and message bytes to be encrypted under the same key are
260 bytes each. So, the maximal number of bytes for RIV is less than 262 bytes.
We recommend that at most 2°° bytes be encrypted under the same key.

Using a Single Key for the Block Cipher. There are four uses of the block
cipher E in RIV: in the first invocation of EHE, for encrypting the IV, for
generating the keystream in XOR-CTRI[E], and in the second invocation of
EHE. If four more calls to the AES key schedule would be tolerable, one could
use four independent keys. Alternatively, we use a single key for the uses of F,
and have to consider the security impact in the following theorem. Its proof can
be found in the full version of this paper.

Theorem 12. Let RIV g 1 be defined as in Algorithm 3. Let K1, Ky « K be
independent keys. We replace the calls to E by independent random permutations
71,2, T3, s « Perm({0,1}™)%. Let A be a computationally bounded adversary
that has access to three oracles O1, Oz, and O3z for encryption, decryption, and
leakage, respectively. A shall distinguish between a real setting of RIVp iz as
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Algorithm 3. Definition of our instantiation RIV g ;. Message and header
lengths are restricted to multiple of eight bits, and nonces/IVs/tags are 128
bits: n = 7 = 128, and d = 4. Here, we leave the key size of CLHASH [m, 2],
m, as a parameter to study its impact on performance later.

101: function ESK(N, H, M) 501: function ﬁSK(N, H,C,T)
102: (K., K2) — KEYGEN(SK) 502: (K1, K32) «— KEYGEN(SK)
103: IV « EHEj, g, (N, H, M) 503: IV « EHE%, x,(N,H,C) &

T
104: C «— XOR-CTR[E].€k,(IV,M) 504: M «— XOR-CTR[E].Dk,(IV,C)
105: T« EHE%, k,(N,H,C)® 1V  505: IV'«— EHEj, r,(N,H, M)
106: return (C,T) 506: if (JV =1IV’) then

201: function KEYGEN(SK) 507: return M
202:  Ks «— Esk({0)) 508: return L

203: K — (8m + 96)/16 601: function EncODE(D, N, H, X)
204: K1« Esx({(1)) || -+ || Esx((x)) 002 H — PAD12s(H)
205: return (K, K3) 603: X < PAD12g(X)

604: L (D)all{|H|/8)60 |l (|X]/8)6s

. . D —L==_ 1
301: function EHER x, (N, H, X) 605: return (H | N||X|I)

302: Y <« ENcopg(D, N, H, X) ,
303: return Ex,(H, (Y)) 701: function M, (X)

. 702: return CLHASH[m, 2]k, (X)
401: function PAD,(X)

402: if (|X| mod n = 0) then 801: function Ei, (X)
403: return X 802: return AES-128k, (X)

404: return X || on—IX| mod n

above with a single-keyed block cipher E, and RIV g which uses four indepen-

dent uniformly chosen permutations w*, 7%, 73, 74 « Perm({0,1}") with m! used

in EHE', 72 used in EHE?, and 7°, n* used for XOR-CTR[x?,7%]. A asks
at most q queries of at most £ blocks and runs in time at most t. Then, we can
upper bound the distinguishing advantage of A by

16.5¢% - max {e,1/2"} + AdvY (0 + 3¢, O(t)).

Theorem 13. Let d =4, n =7 =128, and m > 2 be even. Let RIVE 1 be as
given in Algorithm 3 and let A1, As, Az be computationally bounded IND-CPA,
INT-CTXT, and ERR-CCA adversaries on RIV g 17, respectively, which run
each in time at most t and ask at most q queries of at most £ blocks in total.
Then, it holds that

2 g2
<2q +/
- 271/

2 2
<2q +q+L
N

2 2
qu +§g+2€

Adviiy, n(A) + ¢+ g,

AdviNVEIXT(A) +q’e+ 0,
Adviys (oM (A) +2¢%e + 65,

where g = 16.50% - € + Advi, " (£ + 3¢, O(t)) and e < 9/2'28.
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The proof follows from Theorems 5, 8, 9, and 11, and those of the lemmata
from Sect. 5 that can be found in the full version of this paper.

6.5 Performance of RIV

We implemented reference and optimized versions of RIV in C.? Since the
default key length for one iteration CLNH of b = 1024 bytes (which corre-
sponds to CLHASHT[128,2]) appeared high, we tested also a variant with a
smaller key size of b = 256 bytes for CLNH (CLHASH'[32,2]). Table 1 sum-
marizes the results of our benchmarks. Our code was compiled using gecc v4.9.3
with options -03 -maes -mavx2 -mpclmul -march=native, and run on (1) an
Intel Core i5-4200M (Haswell) at 2.50 GHz, and (2) on an Intel i5-5200 (Broad-
well) at 2.20 GHz, both with the TurboBoost, SpeedStep, and HyperThreading
technologies disabled. For measuring, we used the median of 10000 encryptions,
omitting the cost for key setup, using the rdtsc instruction.

Our results show that RIV can run at less than 1.5 cpb on Haswell. Interest-
ingly, a SIV-like reduced version of RIV, which is an easily obtained byproduct
that simply omits the second call to F', represents a performant MRAE scheme
with < 1.04 cpb. This is slightly faster than the 4867/4096 ~ 1.17 c¢pb reported
for the manually assembly-optimized AES-GCM-SIV [22] and 1.06 cpb for the
version of MRO with four-round BLAKE2b in [20], concerning messages of at
least four KiB length on Haswell. Clearly, the reported performance of AEZv4
of about 0.7 ¢pb is unrivaled. Though, our construction provides a slightly higher
security margin. Moreover, the security of AEZv4 bases on heuristic assump-
tions on four-round AES.

Table 1. Performance results on Intel Haswell and Broadwell, respectively, in cycles
per byte for the encryption with optimized implementations of RIV and a reduced
version, which omits the second call to F'. b denotes the key length for CLNH in bytes.
Details regarding our setup are provided in the text.

Message length (bytes)

Platform |Instance b 128 | 256 | 512 1024|2048 | 4096 | 8192 | 16384
Haswell | RIV 256(3.812.782.14/1.81 |1.62 ' 1.48 |1.40 |1.37
RIV 1024 13.53|2.13|1.81|1.49 |1.37 |1.29 |1.25 ' 1.22

RIV (2-pass)| 256 |1.71|1.40|1.26 1.14 |1.08 | 1.04 | 1.01 | 0.99
RIV (2-pass) | 1024 | 2.20 | 1.60 | 1.17|1.08 | 1.01 | 0.97 | 0.94 | 0.92
Broadwell | RIV 256{3.16]2.41/1.84/1.49 |1.38 | 1.26 |1.20 |1.15
RIV 1024 13.13|2.11|1.56|1.34 |1.16 |1.09 |1.04 '1.02
RIV (2-pass)| 256 |2.16 |1.67|1.301.09 |1.03 | 0.95 | 0.92 | 0.90
RIV (2-pass) | 1024 2.191.50|1.14 | 1.01 1 0.92 | 0.86 |0.84 | 0.82

5 Our code is open to the public domain: https://github.com/medsec/riv.
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7 Conclusion

This work described a modular framework RIV for the construction of provably
secure subtle AE schemes by extending the SIV framework from two to three
passes. The obvious strength of RIV resides in the simplicity of its structure: it
allows a straight-forward transformation of existing SIV-based constructions into
subtle AE schemes. We proved the security in the standard model under notions
that strive for ideal security goals; a further step could be to prove achievable
security in the RAE setting with fixed stretch. Moreover, since the generic RIV
construction bases only on PRF assumptions, this leaves open the possibility
for proofs in the indifferentiability setting [40]. RIV is slightly less efficient than
earlier STPRP constructions, i.e., it employs three additional calls to an n-bit
PRP, compared to e.g., a single call in HCTR-based [50] constructions. Since
the use of a nonce-based encryption scheme (£, D) poses only the requirement on
the I'V to be a nonce, it might look to be sufficient to have two calls to universal
hash functions instead of to calls to a PRF F. Yet, at least the outputs from
the first invocation of F, F}(1(~, -,+) must be unpredictable in order to prevent
leaking information about the message in the tag. A potential future work can
be to further study reductions of the design to target even higher efficiency.
Nevertheless, we proposed an instantiation that is highly efficient on current x64
platforms and avoids the weak-key issues that were reported for GHASH-based
polynomials in HCTR instantiations [49].
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Abstract. Lightweight cryptography strives to protect communication
in constrained environments without sacrificing security. However, secu-
rity often conflicts with efficiency, shown by the fact that many new
lightweight block cipher designs have block sizes as low as 64 or 32
bits. Such low block sizes lead to impractical limits on how much data
a mode of operation can process per key. MAC (message authentica-
tion code) modes of operation frequently have bounds which degrade
with both the number of messages queried and the message length. We
present a MAC mode of operation, Light MAC, where the message length
has no effect on the security bound, allowing an order of magnitude
more data to be processed per key. Furthermore, Light MAC is incredibly
simple, has almost no overhead over the block cipher, and is paralleliz-
able. As a result, Light MAC not only offers compact authentication for
resource-constrained platforms, but also allows high-performance parallel
implementations. We highlight this in a comprehensive implementation
study, instantiating Light MAC with PRESENT and the AES. Moreover,
Light MAC allows flexible trade-offs between rate and maximum message
length. Unlike PMAC and its many derivatives, Light MAC is not cov-
ered by patents. Altogether, this makes it a promising authentication
primitive for a wide range of platforms and use cases.

Keywords: Lightweight - MAC - LightMAC - Message length -
Birthday bound - Integrity - Verification

1 Introduction

With the rise of the Internet of Things, connected devices are being placed every-
where, resulting in a wide variety of efficiency, robustness, and feature require-
ments for communication. Securing the communcation remains important, and
as a result, many block ciphers have been created to work efficiently in con-
strained environments. These block ciphers offer a range of block and key sizes,
from 128 to 32 bits; see Table 1 for a sample.
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The key size is often chosen carefully to ensure a sufficiently high security
level, resulting in the block size becoming the dominant factor in determining
security. As is well known, reducing block size can increase the chance of an
inner state collision when block ciphers are used in so-called modes of operation:
constructions which repeatedly apply a block cipher to achieve functionality
beyond what a block cipher offers.

Consider MAC (Message Authentication Code) modes of operation, which
aim to provide data authenticity for long messages. Common MAC modes, such
as CBC-MAC [5], OMAC [24], and PMAC [10] have security bounds which
degrade relative to both the number of messages tagged, ¢, and the length of
the messages measured in blocks, ¢; see Table2 for a list of modes with their
dependence on ¢. For many modes, an adversary which is able to tag ¢ messages
of length ¢ blocks will have a success probability of roughly

2y
TR (1)

where n is the block size of the underlying block cipher. With a 32 bit block size

and a guarantee that adversaries do not forge with probability more than one in
a million, one gets a restriction of the form

q*l

2 12
ﬁgﬁ or ¢4 <2, (2)

meaning 64 one-block messages can be tagged under the same key. But what
if the messages are longer than one block? With conventional MACs only 32
four-block messages can be tagged, corresponding to 32-22-32 = 2!2 bits, or 512
Bytes of data per key. If the messages are sixteen blocks long, only 16 messages
can be tagged, which is 16 - 2¢ - 32 = 213 bits, or 1 KiB of data per key. Figure 1
displays how much data the various modes from Table2 can process per key,
when the threshold success probability is set to 1/220.

1.1 Contributions

We present a MAC mode, Light MAC, which enables one to tag much longer mes-
sages than typically possible. Light MAC is depicted in Fig. 2 and Algorithm 1.
The security upper bound for Light MAC is

7 1

(]. + 6) . 277 WhereE e O (271/2_1) , (3)
which is independent of the message length (see Sect.4). In other words, with a
32 bit block size, and setting the message-length parameter s to 16, roughly 64
messages can be tagged with length up to 2'® blocks. Note that keys are used
most efficiently when the messages are as long as possible: up to 64-2°.32 = 226
bits, or 8 MiB of data can be tagged per key. Light MAC uses two independent
keys, but even after normalizing by the number of keys, the amount of data
processed per key is still 4 MiB, a significant improvement over 1 KiB.
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Table 1. Supported block sizes are often small, and can be as low as 32 bits.

Block size (bits) 32 48 64 80 96 128 256
AES [15] X
CLEFIA [38] x
DESLX [27] X

Fantomas [19] X
HIGHT [23]
ITUbee [26] X
KLEIN [18]

KATAN [13] X X
LBlock [42]

LED [21]

LEA [22] X
mCrypton [28]

X X X X X

X

Mysterion [25] X X
Noekeon [14] X
Piccolo [37]
PRESENT [11]
PRIDE [1]
PRINCE [12]

RC5 [36] X
Rectangle [48]
RoadRunneR [2]
Robin [19] X
SEA [39] X
SIMECK [43]
Simon [3]
Speck [3]
TWINE [40]
XTEA [33]
Zorro [17] X

X X X X X X X

X

X X X X X

Figure 1 compares Light MAC to the other published modes from Table 2. The
figure shows that LightMAC starts with a factor 2* improvement over many of
the modes, which grows to roughly 2'° as the number of queries increases. Modes
such as PMAC with Parity and PMACX were designed to handle long message
lengths and offer competitive bounds, at the cost of increased design complexity.
LightMAC’s advantage over these modes is its simplicity and low overhead.
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Table 2. The table below contains the coefficients of the powers of £ contained in the
security bounds for adversaries making g queries of length ¢, with block size n bits.
References are to papers proving the bounds. In the bound for EMAC, the function
d'(¢) has been replaced by £.

Mode 1 ¢ 02 03 /4
309 [47 Z+® 8% F &
CBC-MAC [6] 12¢* o1g®
EMAC [6] z s2°
OMAC [31] 5" 5
PMAC [32] 732-7§q2 52%2

PMAC_Plus [45] 39 22723:"
%, ) sl 4 ooC Sel g

PMAC with Parity [46] & ra

Sum of CBCs [44] 124%

22n

Like PMAC [10], Light MAC allows block cipher calls to be made in parallel,
but unlike PMAC, Light MAC is based on Bernstein’s protected counter sum [8],
and hence should not suffer from patent issues.

A disadvantage of Light MAC is that its rate is low. In order to tag mes-
sages of length up to 27/2~1 blocks, n/2 bits of the block must be sacrificed
for a counter, hence two block cipher calls must be called per block of data.
However, the rate can be improved: if the maximum message length that will
be communicated is known to be less than 2°(n — s) bits, then the rate can be
set to (n — s)/n blocks per block cipher call. For example, using a 32 bit block
cipher, if the message lengths are less than 2° blocks, then the rate can be set
to 2/3 blocks per call. Therefore, unlike other modes, Light MAC can be opti-
mized according to the application: the shorter the messages, the more efficient
LightMAC is, while allowing the same number of message to be queried. Section 5
presents implementation results for LightMAC instantiated with the AES [15]
and PRESENT [11], and discusses Light MAC’s efficiency in more detail.

1.2 Related Work

In 1995, Bellare et al. [4] described the XOR MACSs, which XORed together
finite-input-length pseudorandom functions (PRF) to create stateful and ran-
domized MACs. In 1999, Bernstein [8] introduced the protected counter sum,
which composes an XOR MAC with an independent PRF call to create a
stateless, deterministic MAC. In 2012, Yasuda [46] explained the basic idea for
LightMAC in his paper’s introduction, which can be viewed as an adaptation of
Bernstein’s protected counter sum using block ciphers.
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222

219

" Light MAC

213

PMAC with Parit
210
PMACX
27

Sum of CBCs

Message Block Length Per Key — ¢/# keys

1
2 | CBC-MA Mk PMAC |
1 10 20 30 40 50 60 64

Number of queries — ¢

Fig. 1. A plot of message block lengths per key versus the number of queries that can
be made in order to achieve the threshold success probability of 272°. In other words,
if (x,y) is a point on the graph, then z - y represents the number of blocks that can be
processed per key. The blocksize is set to 32 bits.

Another MAC algorithm designed for lightweight use is Chaskey [30]. The
Chaskey paper includes a block cipher and a permutation mode, but both have
bounds which deteriorate quadratically with respect to message length.

In certain cases the bounds in Table2 can be improved. For example, for
¢ < 273 and ¢ > ¢?, EMAC’s bound becomes 15—32 + mggﬁ as shown by
Pietrzak [34]. For the sum of CBCs, Yasuda [44] also showed that if £ < 227/5,

L 400348
the advantage becomes 57

2 Preliminaries

The set {0,1}" represents all bit-strings of length n; the set {0,1}=" is all bit-
strings of length less than or equal to n. For two bit-strings A and B, we write
A||B and AB interchangeably for the concatenation of A and B. Let r be an
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integer, then M[1]M[2]--- M[€] <~ M represents splitting M into 7-bit blocks
with the length of the last block, M[¢], being anywhere from zero to r — 1 bits.

A block cipher is a function E : {0,1}* x {0,1}" — {0,1}" where E(K,)
defines a permutation for all K € {0, 1}k. The integer n is the block length of E
and we write Ex(X) to mean E(K, X). Given a block length n, concatenation
of 10* to a string means appending a one followed by the minimum number of
zeros to make the total string length a multiple of n bits.

The symbol 0™ represents the n-bit string consisting of only zeros. Given
a string A of length n, and an integer ¢ < n, then |A|; denotes the t least
significant bits of A.

For an integer 1 < i < 2%, i, represents some s-bit constant with the prop-
erty that if 1 < ¢ < j < 2% then i5s # js. For example, i5 could be an s-bit
representation of the integer i, or the ith s-bit Gray code.

3 LightMAC

Let E : {0,1}* x {0,1}" — {0,1}" be a block cipher. Let s and ¢ be integers
not greater than n/2 and n, respectively, and fix some representation for i
(see Sect. 2). LightMAC accepts two independent and uniformly generated keys
Ki and K, from {0,1}*, and a message M of length at most 25(n — s) bits.
Light MAC produces an output of length ¢ bits. Figure 2 and Algorithm 1 depict
how the output is produced.

Light MAC can be used as either a pseudorandom function (PRF) or a MAC
(see Sects. 4.2 and 4.3 for definitions). When used as a PRF, Light MAC is fully
described by Algorithm 1. When used as a MAC, tags are generated using Algo-
rithm 1, and verification of a message-tag pair (M,T) is done by comparing
LightMAC (M) with T: if the two are equal, verification succeeds, otherwise
not.

The parameters of Light MAC are the integers s and ¢, the representation of
is, and the block cipher E, which implicity fixes k and n. The parameters must
be agreed upon before a session starts, and remain constant during.

1. M1 2. M[2] 3.M[3]  M[4]10*
Ex, Ex, Ex,
() () B
® ® %
Fig. 2. LightMAC evaluated on a message M[1] M[2] M[3] M[4] <“—> M. The rounded

squares represent block cipher calls and the trapezium is truncation to ¢ bits.
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Algorithm 1. LightMAC gk, x, (M)

Input: Ky, K € {0,1}*, M € {0,1}% (")
Output: T € {0,1}'
V0" e {0,1}"
MM[2]--- M[f] &= M
fori=1to/—1do
| V — V& Exg, (is M[i])
end
V Vo (M[]107)
T — |Ex,(V)]:
return T

=

N O A W N

4 Security

Although Bellare, Guérin, and Rogaway [4] describe how to instantiate an
XOR MAC using the Data Encryption Standard, they only provide proofs for
pseudorandom functions, not pseudorandom permutations. Hence, even though
the XOR MACs were proven to have bounds with no message length depen-
dence, subsequent application of the PRP-PRF switching lemma would estab-
lish quadratic message length dependence. A similar explanation applies to the
protected counter sum’s security bound. Therefore a direct security proof is nec-
essary for Light MAC.

The XOR MACs and protected counter sum did not exhibit any message
length dependence because the XOR, of independent, uniformly distributed ran-
dom variables is still uniformly distributed. In this section we use the fact that
roughly the same applies to the XOR of distinct block cipher outputs to achieve
message length independence for Light MAC.

4.1 Block Cipher Security

The security of Light MAC is reduced to that of its underlying block cipher, that
is, if an attack is found against LightMAC, then the attack can be reduced to
an attack against the block cipher. The quality of the reduction is measured by
the security bounds computed in Theorems 1 and 2.

The statements of the theorems include terms describing the quality of the
underlying block cipher, which is measured as follows.

Definition 1. Let E : K x X — X be a block cipher, and let m be a uniformly
distributed random permutation over the set of permutations on X. Then the
PRP-advantage against E of adversaries A making q queries and running in
time T is
PRP(q,7) := sup |P [AEK =1]-P[A" =1]|, (4)
AcA
where A =1 is the event that A outputs 1 when given access to oracle O, and
K is uniformly distributed over K.
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4.2 LightMAC as a PRF

A PRF & : Kx M — T is a construction which should be computationally
indistinguishable from a uniformly distributed random function (URF), that is,
a uniformly distributed random variable over the set of all functions from M to
T. The quality of the PRF is measured via the PRF-advantage of adversaries.

Definition 2. The PRF-advantage of an adversary A in distinguishing the PRF
&:KxM—=T fromthe URF$: M —T is

[P [a% 1] - P [4° =1]], (5)

where A =1 is the event that A outputs 1 when given access to oracle O, and
K is uniformly distributed over K.

Theorem 1. The PRF-advantage against Light MAC of any adversary running
in time T and making at most q queries of length at most 2°(n—s) bits is bounded
above by

1 1 q>
1 L L PRP(g-(2°—1 PRP 6
( + 2n/2 -1 + 2(2n/2 _ 1)2) on + (q ( )77—1) + (q77-2)a ( )

where n s the block size in bits, m € T+ O(g- (2° — 1)), and 72 € T+ O(q).

Proof. Let A be a PRF-adversary against LightMAC running in time 7 and
making at most ¢ queries of length at most 2°(n — s) bits. Construct the PRP
adversary B against Ex, as follows: By simulates Ex, by uniformly randomly
choosing key K5, runs A, and responds to A’s queries using a combination of its
own oracle and the simulated Ek,; B; forwards A’s response as its own. Con-
struct the PRP adversary Bs against Fk, similarly. Then A’s PRF-advantage
against Light MAC is bounded above by

a+ PRP(¢-(2° = 1),71) + PRP(q, 72), (7)

where « is A’s PRF-advantage against Light MAC with its Fx, and Eg, calls
replaced with m; and 7o calls, respectively, where 71 and s are independent,
uniformly distributed random permutations.

We replace m with a uniformly distributed random function ¢ using the
PRP-PRF switching lemma, at a cost of ¢?/2"! in advantage. The PRF we are
left with is

-1
P(M) = ¢ <M[€]10* ® @m(isM[iD> : (8)

which is Light MAC instantiated with m; and ¢, and

2

’ q
a<o + o )

where o is A’s PRF-advantage against &.
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Let F' denote the function contained in the call to ¢ in Eq.8. Then, as
long as F’s outputs are distinct, each input to ¢ is unique, meaning ¢ will be
indistinguishable from $. In other words,

o' < S PIF(M;) = F(M)] < L max PF(M;)=F(M;)],  (10)

i<j ¥

where M; for i = 1,...,q are the messages queried by A. The maximum on the
right hand side is computed in Sect. 4.4, resulting in the bound

1

q2
/

S
R B T Ty

(11)

Therefore, using the fact that s < n/2, we have

2 2

q q 1

« S 2n+1 + 3 ’ o _ 2$+1 + 1 (12)
2
q 1 1

<—11 13
—2n< +271/2_1+2<2n/2_1)2>’ (13)
giving us our desired bound. O

4.3 LightMAC as a MAC

A MAC consists of a tagging and a verification algorithm. The tagging algorithm
accepts messages from some message set M and produces tags from a tag set
T. The verification algorithm receives message-tag pairs (M,T) as input, and
outputs 1 if the pair (M,T) is valid, and 0 otherwise. The insecurity of a MAC
is measured as follows.

Definition 3. Let A be an adversary with access to a MAC. The advantage of
A in breaking the MAC is the probability that A is able to produce a message-tag
pair (M, T) for which the verification algorithm outputs 1, where M has not been
previously queried to the tagging algorithm.

Theorem 2. The MAC-advantage against Light MAC' of any adversary running
in time T and making at most q tagging queries and v verification queries of
length at most 2°(n — s) bits, is bounded above by

1 2 1 q? v
Tor 1t o)\ )T

PRP(q-(2° —1),7) + PRP(q, ) + PRP(v2°, 73), (14)

where n is the block size in bits, 1 € T+ O(q- (2° — 1)), 2 € 7+ O(q), and
T3 € T+ O(v2°).
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Proof. We apply the same reduction as in the proof of Theorem 1 to replace
LightMAC’s Ek, and Fk, calls with m; and 79 calls, respectively. As a MAC,
LightMAC follows the hash-then-encrypt paradigm as described by Dodis and
Pietrzak [16], with the function F from Sect. 4.4 as the “hash” part, hence apply-
ing Proposition 1 from their paper we get an upper bound of

2 1 q? v
(gt mn) (£42) -

a

4.4 Collision Probability of F

Proposition 1. Let m = 2%(n — s). Let M[1]M][2]--- M[¢] <= M for M €
{0,1}=", and define F to be

F(M) = M[{]10* @ @w(is M[i)), (16)

where 7 is a uniformly distributed random permutation over {0,1}", then the
probability that two distinct messages My, M € {0, l}gm collide is

P [F(My) = F(M2)] < WI—EQH’ (17)
where £; is the length of M; in (n — s)-bit blocks rounded up.
Proof. The equation F'(M7) = F(Ms) can be rewritten as
£y
B (i Mi]) @ @ (isMsli]) = My[01]10% @& My [¢2]10*. (18)
i=1

Since M # My there are two cases:

1. él = 427 Ml[él]lo* # Mg[gg]lo* and Ml[ } MQ[ ] for all ’L or
2. either ¢1 # {5 or there exists an i such that M;[i] # Ms[i].

In the first case there is no collision, hence we focus on the second case. Without
loss of generality we can assume that M [i] # Ms[é] for all 4, and we can simplify
the problem to calculating the probability that

¢
@ﬂ(mi) =c, (19)

i=1

where ¢ = {1 + {2, ¢ = M;[(1]10* & M3[¢2]10%, and z; # x; for i # j.
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{y17"'7yN

By Lemma 1 we have that the probability is bounded above by N!/(N — ¢+ 1),
giving us our desired result. a

Let N = 2", then P [@f L (@) = c} equals

1

N!

¢
@yizcandyi#yjfori#jH. (20)

i=1

Lemma 1. Let ¢ € {0,1}" and let N = 2". The number of sequences
(Y1, 92, - - yn) € ({0, 13N with y; # y; for i # j such that

@yl =, (21)

is not greater than N!/(N — £+ 1).

Proof. We start by fixing 1, for which there are N possibilities. Since y5 cannot
equal yp, there are N — 1 possibilities for yo. Continuing this way, we have that
there are N — ¢ possibilities for 3,11, with ¢ < £ — 2. For y, there is at most one
possibility, namely c® y1 @ y2 ® - - - ye—1. All y; for j > ¢ must be distinct from
all preceding y;, hence in total there are at most

N!

N.(N_l).....(N—ﬁ—FZ)'(N—e)!:m

(22)

possible sequences. O

5 Implementation

In this section, we discuss the implementation characteristics of Light MAC
and compare it to the serial two-key CBC-MAC with last block encryption,
EMAC [6], and to PMAC with Parity (PMAC/P) [46], which provides a paral-
lelizable rate 2/3 construction and can be considered its main competitor.

5.1 Implementation Characteristics of Light MAC

LightMAC is a mode with very low overhead: besides the block cipher calls,
it only requires an s-bit counter generator and one additional n-bit state for
summing the block cipher outputs.

This means that the code size (for embedded software or microcontrollers)
and area requirements (for hardware implementations) of Light MAC can be
estimated as roughly equivalent to CBC-MAC with encryption of the last block
by a second key. Compared to PMAC with Parity, LightMAC uses only two
keys instead of four. In comparison to all PMAC variants, the absence of finite
field doubling further improves its implementation characteristics on embedded
platforms or hardware.
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In terms of throughput, a compact serial implementation of Light MAC will
give a performance of about n/(n — s) block cipher call equivalents per message
block of n — s bits, which means that the serial performance of LightMAC on
a given platform can readily be evaluated based on the performance of the best
available implementation of the chosen underlying block cipher. Except for very
short messages, the overhead imposed by the final block cipher call is negligible.

Like PMAC and its derivatives, Light MAC has the advantage that the indi-
vidual block cipher calls can be parallelized. While this is typically less important
on lightweight platforms, where compactness and power/energy consumption are
the prime concerns, this property enables high-performance implementations for
the server side: since exactly the same lightweight algorithms used on small
devices will also have to be used by the servers communicating with them, they
should ideally also have good implementation characteristics in high-performance
software environments. The importance of this was for instance pointed out
in [29]. Many lightweight algorithms and modes of operation are inherently ser-
ial in nature and therefore inefficient in software. Our implementation study
therefore focuses on this scenario.

5.2 The Setting

We explore the high-performance parallel software implementation possibilities
for LightMAC, with the following choices regarding platform and instantiation
parameters:

Underlying Block Ciphers. We use the block ciphers PRESENT [11] and
AES [15] for our implementations. PRESENT is a lightweight 64-bit block cipher
that was recently standardised by ISO, and AES serves as a baseline.

Choice of s and t. We always use full tag lengths ¢ = n, meaning 64-bit tags
for PRESENT and 128-bit tags for AES. We furthermore instantiate Light MAC
with the following values of s:

1. s = n/2 for the maximum supported message length (and correspondingly
lowest rate 1/2);

2. s =n/3, rounded to the nearest multiple of 8, for a mode with rate 2/3;

3. s =8, for a short maximum message length with the highest rate (1 — 8/n).

Altogether, these parameter choices illustrate a wide spectrum of use cases.

Platform. We implement LightMAC on Intel’s recent Skylake microarchitec-
ture, using the 256-bit AVX2 instruction set. PRESENT was implemented in a
bitsliced fashion processing 8 blocks in parallel. Other implementation strategies
are known to yield a significantly lower performance, see [7] for a comprehen-
sive study. For the AES, the AES-NI instruction set [20] was used. The key
scheduling was precomputed for both ciphers. Since byte-aligned s-bit addition
is inexpensive on this platform, the counters i; are implemented as the s-bit
representation of the integer .
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Message Lengths. We provide performance data for all message lengths of
¢ = 2% bytes, with 7 < b < 13, wherever 8/ < 2°(n — s).

5.3 Performance Measurements

All measurements were taken on a single core of an Intel Core i7-6700 CPU at
3.4 GHz with Turbo Boost disabled, and averaged over 200000 repetitions. The
performance of the block ciphers AES and PRESENT, both in serial and parallel
implementations, is provided as a reference point in Table 3. Our findings on the
performance of LightMAC and related MACs are summarised in Table4. All
performance numbers are given in cycles per byte (cpb).

Table 3. Baseline performance of ciphers PRESENT and AES on Skylake (AVX2,
AES-NI).

Block cipher Encryption [cycles/byte] Key schedule [cycles]
PRESENT (table-based) 57.83 353
PRESENT (8 blocks bitsliced) 11.23 790
AES (AES-NI, serial) 2.57 116
AES (AES-NI, pipelined) 0.63 116

Table 4. Software performance of LightMAC, EMAC and PMAC with Parity
(PMAC/P), instantiated with PRESENT and AES on the Intel Skylake platform
(AVX2, AES-NI). All numbers are given in cycles per byte (cpb). Data is provided
for message lengths smaller than 2°(n — s) bits.

Message length (bytes)

Algorithm s Rate 128 256 512 1024 2048 4096 8192
EMAC-PRESENT -1 63.02 61.21 60.28 59.80 59.57 59.41 59.32
PMAC/P-PRESENT - 2/3  39.62 32.44 28.82 27.07 26.48 26.14 26.00

Light MAC-PRESENT 32 1/2  25.50 23.67 22.75 22.32 22.08 21.97 21.92
Light MAC-PRESENT 24 2/3  25.70 21.21 20.17 19.03 18.09 17.80 17.80
Light MAC-PRESENT 8 7/8  20.31 18.34 14.65 13.48 — - -

EMAC-AES -1 342 319 3.03 291 274 268 2.67
PMAC/P-AES - 2/3 153 1.48 1.33 1.24 1.17 1.15 1.14
LightMAC-AES 64 1/2 1.33 1.29 1.27 1.26 1.26 1.26 1.25
Light MAC-AES 40 2/3 1.37 1.31 1.12 1.04 0.95 0.95 0.92
LightMAC-AES 8 15/16 1.38 1.00 0.82 0.80 0.72 - -

Discussion. One can observe that with both PRESENT and the AES as the
underlying block ciphers, LightMAC provides a performance of about the inverse
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of its rate times the baseline block cipher speed. This confirms that Light MAC
imposes very low overhead in addition to the block cipher invocations.

In contrast to the serial EMAC, LightMAC provides significantly greater
performance despite featuring a smaller rate. This demonstrates the advantage
of parallelisability over a sequential algorithm.

Comparing the Light MAC instantiations with rate 2/3 to PMAC with Par-
ity (PMAC/P), we note that the use of the same key throughout the message
processing (as opposed to three different keys in PMAC/P) significantly improves
the performance for the PRESENT-based implementation: Light MAC is consis-
tently around 50 % faster. This is largely due to the fact that the parts of each
subkey of PMAC/P’s three bitsliced keys have to be interleaved in an appropriate
way. The effect is less pronounced for the AES where no conversion to bitsliced
format is needed, and due to the AES-NI instructions which freely accept both
registers and memory locations for the subkeys. Still, Light MAC is about 20 %
faster, while additionally providing a flexible range of trade-offs between rate
and maximum message length.

6 Conclusions

We proposed Light MAC, a new MAC mode of operation specifically suited to
lightweight applications. Its security bound was shown in Sect. 4 to not depend
on the message length, allowing an order of magnitude more data to be processed
per key.

Featuring a simple design with very low overhead over the block cipher, it
not only offers compact authentication for resource-constrained platforms, but
also allows high-performance parallel implementations, as demonstrated by the
implementation study of LightMAC instantiated with PRESENT and the AES
in Sect.5. Furthermore, the implementation results show how the s-parameter
translates directly to a trade-off between rate and maximum message length.

Unlike PMAC and its many derivatives, Light MAC is not covered by patents.
Altogether, this makes it a promising authentication solution for a wide range
of platforms and use cases.
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Abstract. Spritz is a stream cipher proposed by Rivest and Schuldt at
the rump session of CRYPTO 2014. It is intended to be a replacement of
the popular RC4 stream cipher. In this paper we propose distinguishing
attacks on the full Spritz, based on a short-term bias in the first two bytes
of a keystream and a long-term bias in the first two bytes of every cycle
of N keystream bytes, where N is the size of the internal permutation.
Our attacks are able to distinguish a keystream of the full Spritz from
a random sequence with samples of first two bytes produced by 2%*8
multiple key-IV pairs or 2°0-% keystream bytes produced by a single key-
IV pair. These biases are also useful in the event of plaintext recovery in
a broadcast attack. In the second part of the paper, we look at a state
recovery attack on Spritz, in a special situation when the cipher enters a
class of weak states. We determine the probability of encountering such a
state, and demonstrate a state recovery algorithm that betters the 21400
step algorithm of Ankele et al. at Latincrypt 2015.

Keywords: RC4 - Spritz - Stream cipher - Short-term bias - Long-term
bias - Distinguishing attack - Plaintext recovery attack + State recovery
attack

1 Introduction

RC4, designed by Rivest in 1987, is still one of most widely used stream ciphers
in the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. After the
disclosure of its algorithm in 1994, RC4 has attracted intensive cryptanalytic
efforts over past 20 years. Finally, in 2013, practical plaintext recovery attacks
on RC4 in SSL/TLS were proposed by AlFardan et al. [1] and Isobe et al. [9]. In
the response to these results, usage of RC4 has drastically decreased, especially
in TLS, and major companies such as Google, Microsoft, and Mozilla announced
that they will officially remove the RC4 from web browsers by early 2016.

At the same time, there has been extensive research in recent years to come
up with RC4-like stream ciphers that while marginally slower in software, would
wipe out the known shortcomings of RC4. Many such ciphers like RC4A [17],
© International Association for Cryptologic Research 2016
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NGG [14], GGHN [8], Quad-RC4 [16], RC4+ [10] and VMPC [24] have been proposed
to fulfil this objective. However, all the aforementioned ciphers have had distin-
guishing attacks reported against them [3-5,12,18,20,21]. Spritz [19] is a stream
cipher proposed by Rivest and Schuldt at the rump session of CRYPTO 2014.
The authors intended Spritz to be a replacement for RC4, and hence the design
for Spritz was chosen meticulously, with special attention given to the fact that
known weaknesses of RC4 [11,13] do not carry over. The authors automati-
cally examined many thousands of candidates to obtain cryptographically secure
update functions and an estimated 5 “core-months” of CPU time were used in
the statistical experiments performed by them. Their experiments suggested that
28! samples were required to distinguish the output of Spritz from random.

1.1 Description of Spritz

Spritz consists of a permutation S over the set {0,1,2,..., N —1} (default value
of N is 256) and six pointers i, j, k, w, a, z, where 1, j, k are index pointers, w gives
the step distance for i, a is a nibble counter, and z stores the output byte. The
design specifies a number of modules that are executed for producing a keystream
as defined in Fig. 1. The authors specify a number of modes of operation using
the Spritz structure like a stream cipher, hash function, MAC etc. In the stream
cipher mode of operation the keystream is produced in the following manner.
First the permutation is initialized using the INITIALIZESTATE(N) routine. The
secret key K is then absorbed into the state using the ABSORB(XK) module.
Additionally, if an IV is to be used, then the ABSORBSTOP() module is invoked
and the IV is absorbed by calling the ABSORB(IV') function. Thereafter, the
SQUEEZE module is invoked to produce keystream bytes.

1.2 Previous Work

The only published work on cryptanalysis of Spritz is presented in [2]. The
authors tackle the problem of state recovery using three different approaches. The
best algorithm they propose theoretically recovers the internal permutation used
in Spritz in 21490 steps. Additionally, in [23], the author proposed a distinguisher
for a scaled down version of Spritz (N = 8). It was observed that the event
Z; = Z;+o was biased. However, the bias was not theoretically proven and no
analogous result for the full Spritz (N = 256) was proposed.

1.3 Our Contribution and Organization

In this paper, we first show a short-term bias which is present in the first two
bytes of a keystream and a long-term bias which appears in the first two bytes of
every cycle of N keystream bytes. We theoretically prove that these biases exist
in a keystream of Spritz regardless of the value of N. Based on these biases,
we propose distinguishing attacks on the full Spritz (N = 256). Our attacks
are able to distinguish a keystream of the full Spritz from a random sequence
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INITIALIZESTATE(N) WHIP(r)
1Z=]=k=a=Z:O,w=1 1. forv—0tor—1
2. forv—=0to N -1 UPDATE()

Sv] =v 2. dow=w+1

until ged(w, N) =1

ABSORB(T)
CRUSH()
1. for v — 0 to I.length — 1
ABSORBBYTE(I[v]) 1. for v — 0 to |[N/2] —1
if S[v] > S[N —1 —1]
SWAP(S[v], S[N —1—1])

ABSORBBYTE(b)
1. ABSORBNIBBLE(low(b)) SQUEEZE(r)
2. ABSORBNIBBLE(high(b))
1. ifa >0
SHUFFLE()
ABSORBNIBBLE(x) 2. P = Array.New(r)

3. forv—0tor—1
. _|N
1 ifa=|5] Plv] = DRIP()
SHUFFLE() 4. return P
2. SWAP(Sa], S[|N/2] + z])
3.a=a+1
DRIP()
ABSORBSTOP() L ifa>0
SHUFFLE()
. _ N
1"f§ﬁ'ﬁﬁﬂg 2. UPDATE()
U 0 3. return OUTPUT()
2. a=a+1
SHUFFLE() UFDATE(
l.i=14w
1. WHIP(2N ; j '
2 cmﬁﬁo) 2.5 =k+ 5[+ Spl]
- CRUSHO. 3. k=i+k+S[j]
3. (2N) 4. SWAP(S[i], S[j])
4. CRUSH()
5. WHIP(2N)
6 a=0 OUTPUT()

1. 2= S[j+ S[i+ S[z+ k]|
2. return z

Fig. 1. Modules for Spritz. When N is a power of 2, the last two lines of WHIP are
equivalent to w = w + 2.
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Table 1. Summary of results on Spritz

Type of attack Complexity | Reference
1 | Distinguishing attack on scaled down version (N = 8) 2219 outputs | [23]
2 | Distinguishing attack on full Spritz in multiple key-IV setting | 244-® outputs | Sect. 2
3 | Distinguishing attack on full Spritz in single key-IV setting 260-8 sutputs | Sect. 2
4 | State recovery attack 21400 gteps 2]
21247 steps Sect. 3

244.8 260.8

with samples of first two bytes produced by multiple key-IV pairs or
keystream bytes produced by a single key-IV pair. These biases are applicable
to a plaintext recovery attack in a broadcast setting and multi-session setting in
SSL/TLS.

Thereafter we show that under certain conditions, Spritz enters a weak class
of states, during which, the odd and even elements of the permutation are never
swapped with each other. In this case, the sequence constructed with the last bit
of every keystream byte becomes periodic with period equal to 4. We show that
in such an event, a state recovery attack on Spritz is more efficient and improves
upon the 2490 step algorithm proposed in [2]. Table 1 shows the summary of our
results.

In Sect.2, we will present the distinguisher on Spritz and study a few of
its implications. In Sect. 3, we will present our state recovery attack on Spritz.
Section 4 concludes the paper.

2 Distinguishing Attacks on Spritz

Before we proceed to outline the details of the distinguisher, let us present a few
observations on how the various index pointers are used when Spritz is operated
in the stream cipher mode. Note that when Spritz is used in the stream cipher
mode: the sequence of execution of modules is

A. ABSORB(K)
B. ABSORBSTOP(), ABSORB(IV) (optional, only if IV is used)
C. SQUEEZE().

1. In the ABSORB(K) (and also ABSORB(IV)) phase, the internal permutation
is swapped according to the nibble values of the key (IV). During this phase
the index a is used only to keep track of the number of nibbles currently
absorbed in the permutation. After the ABSORB phase, the index a plays
no further role in the SQUEEZE phase when the cipher starts producing
keystream bytes.

2. The index w, which is used to increment the index i, is constant during the
SQUEEZE phase. The value of this index does not depend on the secret key,
and hence is not secret. Its value can be deduced from the length of the secret
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key and IV. If the length of key is limited to | N/4| bytes, and no IV is used,
then the SHUFFLE procedure is executed only once. In that case, the value
of w during the SQUEEZE phase is 7.

3. If the length of the Key is more than |N/4] bytes the value of w can be
deduced by examining the number of times the SHUFFLE module has been
called during the ABSORB phases. For example, if N = 256, and a Key of
size 80 bytes, the SHUFFLE procedure gets called twice, at the end of the
64th byte and at the beginning of SQUEEZE. Each SHUFFLE call increases
the value of w by 6 and so the value of w during the keystream generation is
1+46+6=13.

4. The value of the index i at the beginning of the SQUEEZE phase is always
0, whatever be the the size of the Key and IV used in the ABSORB phases.
This is because whenever | N/4| bytes get absorbed, the value of the pointers
i,j,k are altered by call to the SHUFFLE module. Each SHUFFLE module
calls the WHIP(2N) module thrice. Each WHIP module in turn updates i
using the rule ¢ = ¢ + w a total of 2N times. Whatever be the actual value
of w, at the end of the any call to the WHIP module, the updated value of
i =0+2wN = 0mod N. And so the value of i remains 0 going in and out of
the WHIP executions and hence also the SHUFFLE module.

5. The only indices that change during the SQUEEZE phase is i, j, k, z.

6. The sequence of updates during the SQUEEZE phase is therefore given as:
(a) i=i4+w
(b) j =k =+ 5[+ S[

(c) k=Fk+i+ S[j]
(d) SWAP (S[i], STj])
(e) return z = S[j + S[i + S[z + k]]]

2.1 Bias in First Two Output Bytes of a Keystream

We first prove that the first two output bytes produced by the Spritz stream
cipher are biased towards the tuple (—w, —w). For example, if N = 256, and if
a 64 byte key is used, then w = 7, and then the first 2 bytes are biased towards
the value (249, 249).

Theorem 1. The first two output bytes Z1 and Zs produced by the Spritz stream
cipher are biased towards (—w,—w). The probability of this event is given by
PF[Zl = ZQ = 711}} = # + %.

Proof. We outline three mutually exclusive events I, IT and III, each of which
occurs with probability ﬁ, that guarantees that the first two output bytes
produced by the cipher are both equal to —w. Each of the three events are
denoted by the states of the permutation and the values of the index pointers
before the beginning of the SQUEEZE phase.

I. Sw]=-w, S2w]=0,k=0,5j —w] =2w
II. k=2w, S[j+ S[w]] = 2w, S[2w] =w, S[0] = —w
ITIL. k + S[j — w] = 2w, k+ S[2w] =0, Sjw—k] =0, Sw] =—-w
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For example, when I occurs in the first round we have the following changes:
lLi—it+w=w

2.5 — 0+ 5[+ Sw]] =Sl —w] =2w

3 k—k+i+S}jl=0+w+S2uw|=04+w+0=w

4. Sw] < 0, S[2w] «— —w after SWAP

5.z« S[j+S[i+S[z+k]]] = S[2w+ S[w+ S[w]]] = S[2w+ S[w]] = S[2w] = —w

Similarly in the second round we have the following changes:

1.7 — 14+ w = 2w,

2. j —w+ S2w+ S[2w]] = w+ S[w] =

3 k—k+i+Syl=w+2w+ Sw =3w+0=3w

4. Slw] — —w, S[2w] < 0 after SWAP

5.z «— S[w+ S[2w + S[3w — w]]] = S[w + S[2w + S[2w]]] = S[w] = —w

We get similar results when we analyze II and III. Let us now denote by E
the union of the events I, IT and IIL. We have Pr[E] = 3%, and Pr[Z; = Z, =
—wl|E] = 1. We assume that when E does not occur Pr[Z; = Zy = —w|E°] = Ni,
and is more or less uniformly random. We were able to verify the assumption by
running computer simulations. Therefore by Bayes theorem, we have:

PI’[Zl = Z2 = —w} = PI’[Zl = Zg —w|E} [ ] + PI’[Zl Z2 = —w\EC] . PF[EC]
3 18] 13
T Nt T N2 N4 T N2 T N4 O

Experimental Results: By performing extensive computer simulations with
(a) one billion random keys, and (b) a fixed key with one billion random IVs,
the probability Pr[Z; = Zs = —w] was found to be around N2 + NZ for N =16
and N = 32. In Figs. 2 and 3, we plot [Pr[(Z1, Z2) = 2] — 5] - N* for all values
of x when N = 16 and 32 respectively with w = 7. The x-axis is marked as
NZ1+Z5. We can see a sharp peak at the x-axis mark corresponding to (—7,—7)
(ie. 9%x16+9 = 153 for N = 16 and 25 x 32 4+ 25 = 825 for N = 32). The plot is
not uniform and there seems to be some bias for other values of x too, but the
most significant bias exists at the point corresponding to (—w, —w).

2.2 Distinguishing Attack with Multiple Key-IV Pairs
Based on a Short-Term Bias

We now state the following theorem from [11], which outlines the number of
output samples required to distinguish two distributions X and Y.

Theorem 2. (Mantin-Shamir [11]) Let X,Y be distributions, and suppose that
the event e happens in X with probability p and in 'Y with probability p(1 + q).
Then for small p and q, O (ﬁ) samples suffice to distinguish X from Y with
a constant probability of success.
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Let X be the probability distribution of Z; and Z5 in an ideal random stream,
and let Y be the probability distribution of Z; and Zs in streams produced by

Spritz for randomly chosen keys Let the event e denote Z; = Z5 =
occurs with probability of

<L in X and N2+N4:

—w, which
ﬁ . (1 + %) in Y. By using

the Theorem 2 with p = %z and ¢ = ]32, we can conclude that we need about

1 _ N® 9448
pg> — 9 T

output samples to reliably distinguish the two distributions.
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Therefore, we can mount a distinguishing attack with multiple key-IV pairs,
if output samples of Z; and Z, produced by 2%4#® distinct key-IV pairs are
available. In the single key setting, it requires samples of first two bytes Z; and
Z, generated by 2448 different IVs.

2.3 Distinguishing Attack with a Single Key-IV Pair
Based on a Long-Term Bias

The distinguishing attack on Spritz described in Theorem 1 requires that i and
z are both zero at the beginning of the SQUEEZE phase. In general, during the
production of a single stream of keystream bytes from any key or key/IV pair ¢
and z are not both zero at the beginning of each round. This is why although the
result in Theorem 1, holds for distinguishing the first 2 output bytes produced
by multiple key/IV pairs, the same result can not be translated for a single
keystream byte sequence using the event Z; = 7,11 = —w.

However i becomes 0 after every N rounds, and so in order to distinguish
a single sequence of keystream bytes, one could look at the event Z,,ny1 =
ZmnN+2 = —w (for all integers m > 0) i.e. the first two of every cycle of N
keystream bytes. However we still need Z,,5y = 0 for the initial conditions of the
distinguisher to be fulfilled and so we should really look at the event Pr[Z,,ny+1 =

ZmN+2 = —w|Zmn = 0]. For the reasons outlined in Theorem 1, we also have
1 3
Pr[ZmN+1 = ZmN+2 = 7w|ZmN = 0] — m + ﬁ

where the probability this time is calculated over several integral values of m.
Note that we will need T' = O(NTS) ~ 248 samples to reliably distinguish the
stream. However for this we need T - N cycle of keystream bytes (as Z,,y =0
will on average occur once every N cycle) and hence T - N? = (’)(NTS) ~ 2608
keystream bytes. The distinguishing attack was verified for 100 random keys for
N = 16,32.

2.4 Plaintext Recovery Attacks in the Broadcast Setting

These short- and long-term biases are also used for plaintext recovery attacks
in the broadcast setting where the same plaintext is encrypted with different
keys or/and IV in the same manner of previous attacks [1,9,11,15]. Note that
the broadcast setting is converted into the multi-session setting where the target
plaintext block are repeatedly sent in the same position in the plaintexts in
multiple SSL/TLS sessions. According to Theorem 2, given # ciphertexts, we
can distinguish the distribution of correct candidates of plaintext bytes (the
biased distribution) from the distribution of wrong candidates of plaintext bytes
(a random distribution) with a constant probability. It can be considered as the
lower bound of the required number of ciphertexts for recovering biased bytes
of a plaintext in this setting as mentioned in [11]. Recent statistical methods
to detect a correct plaintext e.g. likelihood calculations of techniques [1,22] and
Bayesian analysis [7] might help to reduce the required number of ciphertexts
when mounting an actual attack.
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3 State Recovery Attack on Spritz

We first look at a class of special states of the Spritz stream cipher that occurs
just before the beginning of the SQUEEZE phase.

Definition 1. Define a Spritz state as the 3-tuple (S, j, k) just at the beginning
of the SQUEEZE phase. A Spritz state is called a SPECIAL state if all the fol-
lowing conditions hold simultaneously.

1. S[t}=0mod 2, if t =1 mod 2,
2. S[t}]=1mod 2, ift =0 mod 2,
3. j=0mod 2 and k = 0 mod 2

In other words a SPECIAL state occurs when all the even indexed positions of
the S array hold odd values, all the odd indexed positions hold even values and
additionally j and k are even. We will now show that if the state at the beginning
of the SQUEEZE phase is a SPECIAL state, then the sequence Z; mod 2, t =
0,1,2,3,... is periodic with period equal to 4.

Lemma 1. If the state at the beginning of the SQUEEZE phase is a SPECIAL
state then the following hold (assuming N is even):

(a) The state after every four iterations is a SPECIAL state.

(b) In every iteration, the updated values of i and j are equal modulo 2. Hence
no SWAP between odd and even values occur. And so, even and odd indexed
positions of the S array will continue to hold odd and even values respectively.

(c) Zy = Ziyq mod 2, for all values of t.

Proof. Note that ¢ and z are 0 at the beginning of the SQUEEZE phase and so
both are even to begin with. If IV is even, the design of the WHIP module ensures
that the value of w is odd, whatever be the length of key /TV. Thereafter, all the
above claims can be verified by running four iterations of the UPDATE function.
We summarize the modulo 2 values of the various indices over 4 iterations in
Table 2. Note that the updated values of 7, j in each round is either both odd or
both even, which means that the odd and even values are never swapped during
the SQUEEZE phase. At the end of round 4, 4, j, k, z become even again and so
the modulo values of the above indices will repeat every 4 cycles. And therefore,
the sequence of the modulo 2 values of the keystream byte z becomes periodic
with period 4: 0,1,1,0, 0,1,1,0, 0,1,1,0... O

Probability of a SPECIAL state: Combinatorially, it is easy to see that the
total number of SPECIAL states is (%)2 : [(%)']2 Therefore, if carry out the
key/IV Setup operation with different keys/ single key and different IVs, then
the probability that the state at the beginning of the SQUEEZE state is SPECIAL
is given by , ,
G
N2.(N))
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Table 2. The modulo 2 values of the various indices through 4 iterations. The ones
marked with * are used in the State recovery process in Algorithm 1

1 2

I
w
I
>

Index

3k

t =
i=i4+w" 1
j+ S[” 0
j=k+S[j+S[E” 1
k=k+i+S[ 1

1

1

1

0

z+ k"

i+ S[z+ k]
J+S[i+S[z+k]"
z=S[j+ S[i+ S[z+ k]

t =
0
0
0
0
0
1
0
1

|| OO =W N
—lololorRr R O~
olRrOoO|lRr OC|lO|OC|O|

For N = 256, p ~ 272537, So if one employs an IV of length more than 254 bits,
it is likely that a SPECIAL state will be encountered in p—! attempts. Using this,
a state recovery attack can be mounted in a Multiple IV mode as follows:

1. For a fixed key, and Multiple IVs collect keystream of around 10 * N bytes
and inspect the sequence Z; mod 2.

2. If the sequence is 0,1,1,0, 0,1,1,0, 0,1,1,0... i.e. periodic with period 4,
then the attacker can conclude with high probability that he has encountered
a SPECIAL state and he proceeds according to Algorithm 1.

3. The above technique is likely to succeed once in p~! attempts.

3.1 State Recovery of SPECIAL states

Once the attacker is sure that he has encountered a SPECIAL state, he has the
task of recovering a much simpler state and he proceeds in the same manner as
in [2, Algorithm 1]. However, there a few differences as given in Algorithm 1.

The algorithm can be summarized in the following words: In each round, the
attacker guesses the value of some of the elements of the internal permutation
to determine the value of all the five indices required in the state update oper-
ation, each time making sure that odd indices get even values and vice versa.
He then inspects the keystream byte produced in the round and tries to deter-
mine if the intermediate guessed permutation is consistent with the keystream
byte observed. The attacker computes the index d = j + S[i + S[z + k]| with
the guessed values of the permutation and then performs the Verification step:
Depending on the comparison between S[d] and the current keystream byte Z,
he makes the following transitions:

If S[d=NULLand Z, ¢S — Assign S[d] = Z,,Go to next round r + 1

[d]
If S[d]=NULL and Z, € S — Contradiction!! Try another assignment
If S[d] # NULL and Z, # S[d] — Contradiction!! Try another assignment
If S[d] # NULL and Z, = S[d] — Go to next round r + 1
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Input: Keystream bytes Z; for t = 0 to 10 * N;
Output: Permutation S at the beginning of SQUEEZE stage;

S[t] < NULL for t =0 to N — 1;
Run StateRecovery(S, 1, j, k,0);

StateRecovery(S, i, j, k,r);
inezt — 'L + 'U),
if Slinest] = NULL Awy is not in S A ui Z inest mod 2 then

| Assign S[inest] < u1 /* for u; «— 0 to N —1 x/
end

a :]+S[7«nezt]1

if S[a] = NULL A w2 is not in S Auz Z a mod 2 then

| Assign S[a] < us /* for us «— 0 to N —1 x/
end

jneact — ] + S[CL];
if S[jnest] = NULL A wug is not in S A ug Z jnest mod 2 then

| Assign S[jneat] < us /* for uz 0 to N —1 %/
end

kneat < Kk + ineat + S[jne:ct];
SWAP  (S[inext], Slinext]);
b — erl + knezt;
if S[b] = NULL A w4 is not in S A us #Z b mod 2 then
| Assign S[b] < ua /* for ug <0 to N —1 %/
end

€+ lnext + S[bL
if S[c] = NULL Aws is not in S A us # ¢ mod 2 then

| Assign S[c] < us /* for us <0 to N—1 %/
end

d«— jnea:t + S[C]§
if S[d] is NULL AZ, is not in S then
Assign S[d] — Zr;
State Recovery(S, inest, jnewt, knewt, 7 + 1);
end
if S[d] is NULL AZ, is in S then
| Contradiction /*Try another assignment */;
end
if S[d] is not NULL AS[d] # Z, then
| Contradiction /*Try another assignment */;
end
if S[d] is not NULL AS[d] = Z, then
| StateRecovery(S, inest, jnewts kneat, ” + 1);
end

Algorithm 1. State recovery algorithm for SPECIAL states
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3.2 Complexity of the Algorithm

The complexity is given by the number of guesses or assignments made, until a
solution is found. As in [2], we compute the complexity by splitting the algorithm
in several cases ¢;(x) to which we assign probabilities according to the occurrence
of each case. Note that we can view the above internal state recovery algorithm,
as two modules each working to recover exactly one half of the elements of the
permutation. This is true since, the odd and the even indices never swap among
each other. Let us denote by 77,75 as the average number of assignments that
would made in recovering the odd/even indexed elements of the permutation, if
they were operating independent of the other. Since for every assignment in 73
we would need 75 assignments to verify the correctness of the solution, the total
complexity of our algorithm is 7 = 77 - 7.

To estimate 77, we have to note the parity of the the odd indices assigned in
every cycle. We already know that the parity of all the indices will repeat after
every 4 rounds, so observing the first 4 cycles is sufficient. As per Algorithm 1, the
five indices that are used in the assignment process are i,ezt, @, jnest, 0, ¢, and the
index used in the verification process is d. It is easy to see that these correspond
to 4,5 + S[il, 4,2 + k,i + S[z + k] and j + S[i + S[z + k]] respectively. A quick
look at Table 2, tells us four of the assignment indices and the only verification
index are odd in the first round. Thereafter the second and third rounds have
one and two assignment indices odd. The fourth round has one assignment and
one verification index odd. This means that there are four assignments followed
by a verification, which is followed by another cycle of four assignments and a
verification. Therefore in total we have 10 stages of assignment /verification. Let
¢ilr] (1 < ¢ < 10) denote the average complexity associated with each stage,
assuming that = elements of the N/2 odd-indexed positions are already filled,
then we have

~73 “Cit1z] + (1 — NL/Z) (¥ =) cipalz+1], for i € [1,10] \ {5, 10}
bl = (77)" - conlzl + (1= §5)* ez + 1, for i = 5,10
/*c11 denotes ci*/.

In the above equation, when 4 € [1,10]\ {5, 10}, it denotes an assignment phase,
when ¢ = 5,10, it denotes a verification phase. During an assignment, if x ele-
ments are already present in the permutation, then with probability Ni/27 the
index to be assigned would be already filled, and in this case the algorithm
would move on to stage i+ 1 without assignment. Alternatively with probability
1-— NL/Q’ the index is empty and there are exactly % — x ways to assign it, after
which it moves to stage i + 1. During verification stage the analysis is as follows:

a. With probability NL/W the verification index d is already filled.

b. Therefore with probability NL/Q (1 - NL/Q), the index is already filled by a

value other than Z,.. In this case the path is terminated.

c. With probability ( N9;2)2 the index is filled with Z, and the algorithm moves
to the next phase.

d. With probability (1 — NL/Q) the verification index d is empty.
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e. Therefore with probability (1 — NL/Q) - (NL/Q) it happens that Z, exists in some
other index of the permutation. In this case too the path is terminated.
f. With probability (1— NL/2)2’ Z, is not present in the permutation, and so after

assigning S[d] «+ Z, it moves to the next stage.

The complexity 7; can be estimated as ¢;[0], with the boundary conditions
cl[% — 1] = 1. The above recurrence can be solved by a dynamic program-
ming approach to find an estimate for ¢1[0]. A similar recurrence relation
can be deduced for estimating 75 by keeping track of the even valued assign-
ment/verification indices. We write the recurrence relation below for the benefit

of the reader.
w7z - Cirifr] + (1= §55) - (5 — @) - cipafe + 1], for i € [1,14] \ {6,10}

cile] = (373)7  cimalz] + (1= §5)" - cifz + 1, for i = 6,10

/*c15 denotes ci1*/.

Experimental Results: We performed the state recovery for N = 14,16, 18, 20
for 100 random permutations. The algorithm was always able to recover the
permutation. In Fig. 4, we plot the base 2 logarithm of the theoretical estimate
7T with the base 2 logarithm of the experimentally obtained average number
of steps, for different even values of N. We can see that the theoretical value
always overestimates the experimentally obtained complexity. For N = 256,
the theoretical estimate for 7 =~ 2233, And so the estimated complexity of

state recovery is given as T - (%)2 ~ 2247 (taking into account the additional
complexity of guessing the values of j, k at the beginning of the SQUEEZE phase).

So the total complexity consists of p~! encryptions plus 7 - (%)2 assignments

which again comes to approximately 21247,
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Fig. 4. Experimental and theoretical estimates of log, T (Color figure online)
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4 Conclusion

In this paper, we analyzed the security of the stream cipher Spritz. We first
proposed distinguishing attacks based on the short-term and the long-term biases
in the keystream of Spritz. The distinguisher can be used both for distinguishing
keystreams produced by multiple key-IVs and for distinguishing a keystream
produced by a single key-IV pair. In the second half of the paper we looked at
the state recovery attack on Spritz (in the multiple IV setting), in the situation
when the cipher has entered a special class of SPECIAL states. We calculated
the probability of such an event happening, and went on to outline an algorithm
to recover the internal permutation. Our estimates suggest that in this case we
need approximately 2'247 assignments to recover the internal state which is an
improvement on the 21490 step algorithm proposed in [2].

Acknowledgements. The authors would like to thank the anonymous reviewers who
helped improve the quality of this paper.
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Abstract. Filter generators are vulnerable to several attacks which have
led to well-known design criteria on the Boolean filtering function. How-
ever, Rgnjom and Cid have observed that a change of the primitive root
defining the LFSR leads to several equivalent generators. They usually
offer different security levels since they involve filtering functions of the
form F(z*) where k is coprime to (2" — 1) and n denotes the LFSR
length. It is proved here that this monomial equivalence does not affect
the resistance of the generator against algebraic attacks, while it usually
impacts the resistance to correlation attacks. Most importantly, a more
efficient attack can often be mounted by considering non-bijective mono-
mial mappings. In this setting, a divide-and-conquer strategy applies
based on a search within a multiplicative subgroup of F3». Moreover, if
the LFSR length n is not a prime, a fast correlation involving a shorter
LFSR can be performed.

Keywords: Stream ciphers - Correlation attacks - LFSR - Filter gen-
erator - Nonlinear equivalence - Monomials

1 Introduction

The running-key used in a stream cipher is produced by a pseudo-random gen-
erator whose initialization is the secret key shared by the users. Linear feedback
shift registers (LFSR) are building-blocks used in many keystream generators
since they are appropriate to low-cost implementations, produce sequences with
good statistical properties and have a simple mathematical description. While
basic LFSR-based generators, like combination generators or filter generators,
are not used directly as keystream generators in modern stream ciphers, they are
still widely used either as a part of the generator or in modified form [13]. This
situation then motivates an in-depth evaluation of the security of LFSR-based
generators. Actually, several modern ciphers have been analyzed by enhanced
variants of attacks, which were first dedicated to simple LFSR-based generators
(e.g. [26,29,34)).
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At this aim, our work investigates the security of the so-called filter gener-
ator, which consists of a single LFSR whose content is filtered by a nonlinear
Boolean function. These generators have been extensively studied and are known
to be vulnerable to several types of attacks, mainly algebraic attacks and their
variants [9,10,17,38] and (fast) correlation attacks [32]. These attacks have led
to the definition of design criteria, especially related to the choice of the filtering
function, and they have initiated a whole line of research on the constructions
of appropriate filtering functions. However, it has been observed more recently
by Regnjom and Cid [36] that a simple change of the primitive characteristic
polynomial of the LFSR (i.e., a change of the primitive root of the underly-
ing finite field), may lead to an equivalent generator whose filtering function
corresponds to the composition of a monomial permutation with the original fil-
tering function, = — F(z*) for some k coprime to (2" — 1) where n is the LFSR
length. This observation opens the door to new weaknesses since the main secu-
rity criteria, like the nonlinearity, the degree or the algebraic immunity of the
filtering function, are not invariant under this nonlinear equivalence. Hence, this
raises many open questions about the relevance of the usual criteria, as noted by
Rgnjom and Cid. In this context, the objective of our paper is to answer most
of these questions by evaluating the minimal security offered by all generators
derived by monomial equivalence, and to further investigate the possibilities to
transform the constituent LESR by applying a monomial mapping, especially a
non-bijective monomial mapping.

Our contributions. Our contributions are then two-fold: first, we show that, even
if the degree and the algebraic-immunity of a Boolean function may highly vary
within an equivalence class, the monomial equivalence defined by Rgnjom and
Cid has no impact on the resistance of a filter generator against algebraic attacks
and their variants. The reason is that the degree and the algebraic immunity are
not the relevant parameters for estimating the security of a filter generator as
shown in [17,20,28]. Instead, the complexities of these attacks are determined
by the linear complexity and the spectral immunity of the filtering function,
which are derived from the univariate representation of the function and are
therefore invariant under monomial equivalence. On the other hand, the sec-
ond family of attacks, namely (fast) correlation attacks, are highly affected by
monomial equivalence, implying that the associated criterion must be the gen-
eralized nonlinearity of the filtering function as defined in [41]. But we show
that the non-bijective monomial mappings also play a very important role, usu-
ally much more important than monomial permutations, because the LFSR can
then be transformed into an LFSR producing a sequence with smaller period 7. A
divide-and-conquer attack can then be mounted exploiting this property, where
the number of values to be examined decreases from (2" — 1) to 7. Moreover, if
the LFSR length n is not a prime, the new LFSR involved in the attack may be
shorter than the original one, leading to a much more efficient fast correlation
attack.
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Organization of the paper. We first introduce the monomial equivalence between
filter generators as described by Rgnjom and Cid [36] and show that the uni-
variate representation of both the LFSR and the filtering function is well-suited
for analyzing its impact. Section 3 then focuses on algebraic attacks and proves
that all filter generators obtained by monomial equivalence have the same behav-
iour with respect to this family of attacks. Section 4 then investigates correlation
attacks and their variants, and shows that the situation is very different. Also, we
describe a new setting for (fast) correlation attacks where non-bijective monomi-
als are used. Two types of attacks are then presented: fast correlation involving a
shorter LFSR which can be mounted when the LFSR length is not a prime, and
correlation attacks based on FFT which recover log, 7 bits of the initial state
where 7 is a divisor of (2" — 1).

2 Equivalence Between Filtered LFSR

2.1 Filtered LFSRs

In the following, we focus on binary filtered LFSRs. The binary LFSR, of length n
with characteristic polynomial, P(X) = X™ + Y. " ¢; X" € Fo[X], is the finite-
state automaton which produces the binary sequences s = (s;)¢>0, satisfying the
linear recurrence relation
n—1
St4n = Z CiStti, VE2>0.
i=0

In this paper, we implicitly assume that the LFSRs we consider are non-singular,
i.e., the constant term ¢ in the characteristic polynomial does not vanish. Other-
wise the transition function of the LFSR is not bijective, leading to a possible loss
of entropy of the internal state, which is clearly not suitable in cryptographic
applications. Also, the characteristic polynomial is assumed to be irreducible,
which guarantees that, for any nonzero initial state of the LFSR, the generated
sequence cannot be produced by a shorter LFSR [42]. In other words, the linear
complexity of any sequence generated by the LFSR from a nonzero initial state
is equal to the LFSR length. A well-known property of LFSR sequences is that
any sequence produced by an LFSR with an irreducible characteristic polyno-
mial P (and a nonzero initial state) is periodic and its least period is equal to
the order of P, i.e., to the smallest positive integer r for which P(X) divides
X" + 1. Hence, the characteristic polynomials of LFSRs used in practical appli-
cations are chosen primitive. More details on the properties of LESR sequences
can be found e.g. in [19,25].

In this context, a filter generator (aka filtered LFSR), is a keystream genera-
tor composed of a single binary LFSR, of length n whose content is filtered by a
nonlinear Boolean function of n variables. More precisely, the output sequence
(s¢)e>0 of the filter generator is given by

St = f(ut+n—laut+n—27 e ,’Ut), vt Z 0 5

where (u;)¢>0 denotes the sequence generated by the LFSR.
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It is worth noticing that, in most practical proposals, the filtering function
does not depend on all n bits of the internal state. For obvious implementation
reasons, f is usually chosen in such a way that it depends on m < n variables
only. It can then be equivalently described by an m-variable Boolean function f’
and a decreasing sequence (7;)1<i<m, with 1 <~; < n, such that for any n-tuple
(T1,...,2p),

f@r,.oozn) = @y, xy,) .

Here, unless explicitly mentioned, the filtering function will be defined as a func-
tion of n variables, where n is the LFSR length, even if some (or most) of these
variables are not involved in the evaluation of the function.

2.2 Univariate Representation of Filtered LFSRs

Filter generators have been extensively studied and are known to be vulnera-
ble to several types of attacks which have led to the definition of some security
criteria on the tapping sequence (v;)i<i<m [14] and on the Boolean filtering
function (see e.g. [4] for a survey). For instance, it is well-known that f must
have a high algebraic degree in order to generate a keystream sequence with a
high linear complexity [39], a high algebraic-immunity in order to resist alge-
braic attacks [10,31] and a high nonlinearity in order to resist fast correlation
attacks [32]. These design criteria on the filtering function must be considered
up to some equivalence in the sense that several filtered LFSR may generate the
same set of sequences. This equivalence between filtered LFSR can be simply
described by defining the LFSR next-state function over the finite field with
2™ elements instead of the vector space Fg.

In this field-oriented description, we will use the following classical notation.
The finite field with 2™ elements is denoted by Fon. The multiplicative order of
a nonzero element « in a finite field, ord(«), is the smallest positive integer r
such that a” = 1. The trace function from Fa» into Fy is denoted by Tr™, i.e.,

n—1

Tr"(z) = Z 2?2

i=0
The index n will omitted if it is clear from the context.
Proposition 1 (Theorem 9.2 in [30]). Let P be an irreducible polynomial in

Fo[X] with degree n. Let o € Fan be a root of P and {By,...,Bn-1} denote the
dual basis of {1,c,...,a" 1}, i.e.,

@) = {1 i

Then, the content of the LESR with characteristic polynomial P at time (t+ 1)
1s equal to its content at time t multiplied by «, where these vectors are identified
with elements in the field Fon decomposed on the basis {Bo, ..., 0n-1}-



82 A. Canteaut and Y. Rotella

With the notation of the previous proposition, we consider the isomorphism ¢
from F% into Fa» defined by the basis {fo, ..., Bn—1}. Then, the internal state
at time ¢t of the LFSR initialized by Xy = ¢(ug,...,un—1) corresponds to

X, = Xoot
and the keystream bit at time ¢ is given by
sg=fo gofl(Xoat) .

Therefore, any filter generator has an equivalent wunivariate representation
defined by a root a € Fon of the LFSR characteristic polynomial, and a function
F from Fy» into Fy. This generator produces from any initial state Xy € Fan
the sequence s; = F/(Xoat). For the sake of clarity, univariate functions defined
over Fon will be denoted by capital letters, while small letters will be used for
multivariate functions over Fy. Clearly, the multivariate representation of a fil-
ter generator, (P, f), can be recovered from its univariate representation («, F):
since P is irreducible, it corresponds to the minimal polynomial of o and f
is equal to F o ¢ where ¢ is the isomorphism associated to the dual basis of
{1,a,02,...,a" 1}, Conversely, a given multivariate representation (P, f) cor-
responds to n univariate representations («, F') since there are several possible
values for a corresponding to the conjugate roots of P, i.e., a, a2, a22, cee a2
The univariate filtering functions F' associated to the different choices for «
are then linearly equivalent because they only differ from the composition with
the Frobenius map. However, composing F' with a linear permutation does not
change its cryptographic properties (see the next section for details).

As a function from Fan into Fon, F' can be written as a univariate polyno-
mial in Fon[X] and the coefficients of this polynomial are computed from the
values of F' by the discrete Fourier Transform (DFT) of F' (aka Mattson-Solomon
transform) (see e.g. [2,15,27]).

Proposition 2 (Discrete Fourier Transform of a Function). Let F be a
function from Fon into Fon. Then, there exists a unique univariate polynomial
in Faon [ X]/(X?" + X) such that

2" —1
F(X)= > AX'.
=0

Moreover, Ag = F(0), Agn—1 = > cp,, F(x) and the coefficients A;, 1 < i <
2" — 2, are given by the discrete Fourier transform of the values of F at all
nonzero inputs, namely

where 7y is a primitive element in Fon.
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It is worth noticing that, in our context, the value of F(0) does not affect the
security of the filter generator: this value is only involved when the LFSR internal
state vanishes, which is obviously always avoided since the sequence generated
from the all-zero state is constant. Therefore, we will always consider in the
following that the coefficient of degree (2" — 1) in the univariate form of F
is equal to zero. In other words, the univariate form of F is identified with
(Ao, ..., Aan_o) which is the DFT of the values of F. In our situation also,
F takes its values in Fa, implying that Ag; = A? for any 1 < i < 2" — 2.
In this case, the coefficients A; for all i in the same cyclotomic coset modulo
(2" — 1), C(i) = {i,2i mod (2" — 1),2% mod (2" — 1),...,2" Y mod (2" — 1)}
can be gathered, leading to the so-called trace representation:

F(X) =) T (AX"),
kel

where I' is a set of representatives of all cyclotomic cosets modulo (2" — 1), ng
denotes the size of the cyclotomic coset of k and Ay € Fony,.

2.3 Monomial Equivalence Between Filtered LFSR

Using the univariate representation, it is easy to observe that, for any nonzero A €
Fan, the sequence generated by the filtered LFSR with characteristic polynomial
P and filtering function F' from the initial state Xy € Fan is the same as the
sequence obtained by filtering the same LFSR with G(z) = F(A\x) from the
initial state Yy = A7!X,. It follows that not only F but also any function
G(xz) = F(Az) can be attacked when cryptanalyzing the generator. But, this
equivalence does not affect the security of filter generators since all design criteria
are known to be invariant under linear equivalence, i.e., under the composition
of the filtering function by an Fs-linear permutation of Fan.

However, Rgnjom and Cid [36] exhibited some nonlinear equivalence relations
between filtered LFSR when the LFSR characteristic polynomial P is primitive.
This equivalence relation boils down to changing the primitive root of Fon in
the univariate representation of the generator. Let us consider two primitive
elements in Fon, namely a and 3, implying that 3 = o for some integer k
with ged(k,2” — 1) = 1. Let P, and P denote their minimal polynomials.
Then, we observe that, at any time t > 0, the internal state X; of the LFSR
with characteristic polynomial P, and the internal state Y; of the LFSR with
characteristic polynomial Py initialized with Yy = XF satisfy

Y, = Yo' = (Xoa)* = XF .

This implies that the set of all sequences obtained by filtering by F' the LFSR
defined by « corresponds to the sequences generated by filtering by G(z) = F(z")
the LFSR defined by 3 = o where rk = 1 mod (2" — 1). From now on, this
equivalence between filter generators will be named monomial equivalence'. It

! Note that, among all monomials, only the permutations of Fan, ie., X — X* with
ged(k,2™ — 1) = 1 provide an equivalence relation.
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follows that there exist w monomial transformations which are not linearly
equivalent and nevertheless provide equivalent filtering LFSR, where @ is the
Euler’s totient function. Any attack against one among these 2@ -1 generators
then provides an attack against the whole class. Most notably, an initial-state
recovery attack against the generator defined by 3 enables the attacker to recover
the initial state X of the LEFSR defined by a by using that Xy = Y{. Therefore,
the security level offered by a filter generator is clearly the minimal security
among all generators in its equivalence class.

3 Monomial Equivalence and Algebraic Attacks

Determining the cryptographic properties of a Boolean function up to any change
of the primitive element seems rather complicated, since the major properties
of the function, like its degree or its nonlinearity, are not invariant under these
nonlinear transformations (see e.g. [36, Appendix A]). However, the recent works
by Gong et al. [17,20,37,38] point out that this difficulty mainly comes from the
fact that the multivariate representation of the function is usually not relevant
for evaluating its security level. Instead, the univariate representation provides a
much more powerful tool which allows to directly determine the security offered
by a generator against algebraic attacks (and its variants). Indeed, the action
of the monomial equivalence can be described in a much simpler way when the
univariate expression of the function is considered: the class of all filtering func-

tions in the equivalence class of F' consists of all functions G = 212;; *B; X'
whose univariate representation (By, ..., Ban_2) is obtained by decimating the

univariate representation of F' by some integer k coprime to (2" — 1), i.e.,
Bi = Ajk mod (2n—1)- Using this simple transformation, it becomes possible to
determine how the complexity of algebraic-type attacks varies within the equiv-
alence class of a filtering function.

3.1 Linear Complexity

The simplest algebraic attack consists in writing the Boolean equations defining
the successive keystream bits. We then obtain a multivariate system depending
on n binary unknowns, which are the bits of the initial state. The degree of
each equation is equal to the degree of the filtering function f, which tends to
show that the complexity for solving this algebraic system highly depends on
the degree of f. Instead of linearizing the system of degree deg(f) derived from
f, another strategy consists in exploiting the fact that the keystream sequence
produced by a filter generator can also be seen as the output of a single LFSR.
The length of the shortest LFSR generating the sequence is its linear complexity
A. Tt determines the complexity of solving the smallest linear system expressing
each output bit of the generator as a linear function of its initial state. It is widely
believed that, exactly as for the combination generator, the linear complexity of
a filter generator increases with the degree of the filtering function (see e.g. [24,
39]). For instance, it has been shown by Rueppel that, when the LFSR length n
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is a large prime, A > (Z) for most functions f of degree d [39, Chapter 5].
However, as explained in [28], the well-known Blahut’s theorem [2] implies that
A is entirely determined by the univariate form of the filtering function, F(X) =
St AX

A=#{0<i<2"—2 : A; #£0}.

Then, it clearly appears from this formula that the linear complexity of the filter
generator is invariant under monomial equivalence since decimating the vector
(Ag, ..., Aan_5) by some k coprime to (2" — 1) does not modify the number of
its nonzero terms.

A major observation due to Rgnjom and Helleseth [38] is that the linear
complexity is always smaller than or equal to the number of unknowns we expect
in a linearized version of the system of equations derived from the multivariate
representation. Indeed, the resulting linear system considers as unknowns all
monomials of degree at most deg(f) in the bits of the initial state, i.e. roughly

deg f
A= AF)2 Z <7Z> unknowns.

i=1

Using that the multivariate degree of the univariate monomial X* is the number
of ones in the binary representation of k, which is identified with wg (k), we get
that all coefficients Ay with wg (k) > deg f vanish. Therefore, the linear com-
plexity A of the generator, i.e., the number of nonzero Ay, is at most the number
of k such that wg (k) < deg(f), which corresponds to the number of unknowns
in the multivariate linear system. Therefore, for any filter generator obtained
by monomial equivalence, the best basic algebraic attack has data complexity
O(A). The on-line step of the attack has time complexity O(A) (since the knowl-
edge of A keystream bits determines the initial state of the equivalent LFSR and
the whole output sequence). The precomputation step consists in computing the
linear complexity and the minimal polynomial of the keystream. This can be
done by applying Berlekamp-Massey algorithm to the filter generator initialized
by any chosen value, with time complexity O(A?). This can also be done by
inverting a A x A Vandermonde matrix, with time complexity O(Alog® A) as
noticed in [17,35,38]. Another equivalent point of view, which yields the same
complexity, is the so-called selective discrete Fourier spectra attack [16,17]. The
complexities of all variants of this attack are then invariant under monomial
equivalence.

3.2 Algebraic Attacks

The fact that algebraic attacks can be applied to any generator obtained by
monomial equivalence has led Rgnjom and Cid to define the general algebraic
immunity of a filtering function F' [36, Definition 6] as the smallest algebraic
immunity for a function in the monomial equivalence class of F. But, exactly as
algebraic attacks allow to decrease the degree of the equations below the degree
of the filtering function by considering an annihilator g of f [10], the same
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idea can be used for improving the previously described attack based on the
univariate approach [17]. Then, the complexity of the best attack is determined
by the smallest linear complexity for an annihilator of F'. This quantity has been
named the spectral immunity of F [17, Definition 1]. As we discussed before, for
any function G, including any annihilator of F

deg G n
0¥ ()
(& ; .
implying that this attack based on the univariate approach is always faster than
the usual algebraic attack.

Suppose now that the previously described attack is applied to some equiva-
lent filter generator involving the filtering function F’ defined as F'(x) = F(x*),
for some k with ged(k,2™ — 1) = 1. The attack then exploits the linear com-
plexity of an annihilator G’ of F’. But, it can be observed that a function G’ is
an annihilator of F” if and only if G(z) = G’(2") is an annihilator of F' where
rk = 1mod (2" — 1). Then, the linear complexity of G’ is then equal to the
linear complexity of G, the corresponding annihilator of F'. It follows that the
attack applied to F’ has the same complexity as the attack against the original
filter generator. In other words, the spectral immunity of a filtering function F
is invariant under monomial equivalence.

Therefore, it appears that the monomial equivalence does not affect the com-
plexity of algebraic attacks since the optimal versions of these attacks are based
on the univariate representation and involve the number of nonzero coefficients
in this representation which is invariant under monomial equivalence.

4 Univariate Correlation Attacks

4.1 Correlation-Like Attacks on Filtered LFSR

Another type of attacks against LFSR-based stream ciphers is the correlation
attack and its variants. For generators using many LFSR combined by a Boolean
function, a divide-and-conquer technique can be used by exploiting an approxi-
mation of the combining function f by a function g with fewer variables [40]. The
attack then consists in performing an exhaustive search for the internal state of
the small generator (called the target generator) composed of fewer LFSR com-
bined by g, and in deciding which one of the states gives an output sequence
having the expected correlation with the keystream. A well-known improved
variant, named fast correlation attack [32] applies when g is linear. It identifies
the problem with a decoding problem. Then an exhaustive search for the ini-
tial state of the target generator is not required anymore. Instead, a decoding
algorithm for a linear code is used, for instance an algorithm exploiting sparse
parity-check relations [6,8,32]. In the case of filtered LFSR, the situation is dif-
ferent since the only relevant target generator producing sequences correlated to
the keystream, consists of an LFSR of the same size as the original generator
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Fig. 1. Generalized correlation attack where ged(k,2™ —1) = 1 and G(z) = Tr*(Az").

filtered by a linear approximation of f. In this situation, the classical correlation
attack cannot be faster than a brute-force attack, implying that only fast cor-
relation attacks are relevant on filtered LFSR. To avoid these attacks, filtering
functions must have a high nonlinearity.

Rgnjom and Cid [36, Sect.6.2] have then pointed out that the monomial
equivalence requires extending the nonlinearity criterion. As the nonlinearity of
a Boolean function f is the distance of f to all affine functions, the distance
to all monomial functions with an exponent coprime to (2™ — 1) must also be
taken into account. Indeed, the fast correlation attack can be generalized as
follows. Let us consider an LFSR of size n, of primitive root o and of initial
state Xy, filtered by a Boolean function F. We suppose now that there exist
A € Fan\{0} and k coprime to (2" — 1) such that the function F' is highly
correlated to G(z) = Tr"(Az¥). Because k is coprime to (2" — 1), the monomial
equivalence can be applied to the LFSR filtered by G, as depicted on Fig. 1.
Then we can perform a fast correlation attack and recover the initial state of the
LFSR defined by a*, which corresponds to X¥. As k is coprime to (2" — 1), we
then recover Xy. In other words, a fast correlation attack can be mounted even
if the approximation G of F' is nonlinear but has a trace representation with a
single term, Tr"(Az*) with ged(k, 2" —1) = 1. The corresponding design criterion
is that the filtering function F' must have a high generalized nonlinearity. This
notion has been first introduced by Youssef and Gong in 2001 [41], but was not
motivated by any attack.

Definition 1 (Extended Walsh-Transform [41]). Let F' a function from Fan
into Fo, then its extended Walsh transform is
PO = 3 (s
r€Fan
where X € Fon and ged(k,2™ — 1) = 1. Then, the generalized nonlinearity :
1 ~
NLG(F)=2""1— = F
G(F) 5 jmax |[F(AK)
k:ged(k,2™"—1)=1

1s the distance of F' to the components of all monomial permutations of Fan.
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4.2 A More Efficient Correlation Attack

The previously described attack applies when F' is correlated with a monomial
function whose exponent k is coprime to (2" —1). However, the exponents k with
ged(k, 2™ —1) > 1 must also be taken into account even if they do not provide an
equivalence relation. Let us now consider some k which is not coprime to (2" —1)
and some Boolean function H such that F is correlated to G : x +— H(x").
We can then also apply some monomial transformation to the target generator
which is composed of the LFSR defined by « filtered by G. Indeed, the LFSR
internal state at time t is Xpa!, implying that the sequence produced by the
target generator is oy = G(Xoa!) = H(XFak?) for all t > 0. On the other hand,
the LFSR with characteristic polynomial P, . generates the successive internal
states (Yoakt)tzo, implying that o can also be generated by the LFSR defined by
o filtered by H. In other words, the two generators produce exactly the same
sequence if the initial state of the LFSR defined by o* satisfies Yy = Xk, as
depicted on Fig. 2. It is important to notice that the least period of the sequence
generated by the LFSR defined by oF is

2n -1

=ord(a®) = —————— .
7 = ord(a®) ged(k, 27 — 1)

We will see that this quantity plays a major role in the attack.

Xo| |P.H @
1 ot
=

Xo| |PatH F

Fig. 2. Generalized correlation attack where ged(k,2" — 1) > 1.

Firstly, the number of possible values for an initial state of the target LFSR
of the form Y, = X(’)C is 7. As previously mentioned, the classical correlation
attack described by Siegenthaler is not relevant against filter generators because
it requires an exhaustive search over all possible initial states of the constituent
LFSR, leading to a time complexity higher than or equal to the cost of a brute-
force attack. But, in our new setting, the attacker needs to perform an exhaustive
search over a set of size 7, < 2", implying that this exhaustive search may be
faster than the brute-force attack. More precisely, the data complexity required
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for applying the optimal hypothesis test (i.e., defined by the Neyman-Pearson
Lemma) and determining the correct initialization out of 74, possibilities is

where € is the correlation between F' and G (see e.g. [18, Sect.4.1]). The time
complexity of Siegenthaler’s Algorithm is

Time = 0 (1)

e

The counter-part of this attack compared to the case where k is coprime to
(2™ — 1) is that the knowledge of the quantity recovered in the attack, X(’f, does
not enable us to determine the whole initial state X since k is no longer coprime
to (2™ — 1). However, we get some information on Xjp.

Lemma 1. The knowledge of X} gives logy(73) bits of information on X where
T = (2" — 1)/ ged(k, 2™ — 1).

Proof. Let Xy be a non-zero element in the field Fon and « a primitive root.
There is a unique i € [0,2" — 2] such that X = o*. Then, r = i mod 7, satisfies

X(/Jc _ aqkaaTk — ark

by definition of 7. Moreover, r is the unique integer in [0,7; — 1] such that
X(’f = o*. Indeed, if there exist 7 and ro, r1 > 7o such that a™* = a”2* then
a(m=r2)k — 1 Then, (r1 — 7o) is a multiple of 75, which is the order of o. This
is impossible since ro — 1 € [0, 7, — 1]. Therefore, for X = o', the knowledge of
XF gives the value of the remainder of the Euclidean division of i by 7. It then
provides log, (1) bits of information on Xj. O

4.3 Recovering the Remaining Bits of the Initial State

Once X} has been recovered, the remaining (n—log(7x)) bits of X, can be found
by an exhaustive search with time complexity proportional to

2" —1
Tk

= ged(k,2" —1).

Another method consists in combining several correlation attacks in a divide-
and-conquer approach, exactly as against combination generators. Suppose that
there exist two integers k; and ko such that the two distinct correlation attacks
can be performed in order to successively recover X¢* and X¥2. This means that
we have found

r1 =% mod 7, and 72 =% mod 7y,.

By the Chinese remainder theorem, this leads to the value of the remainder of
the Euclidean division of ¢ by lem(7k,, Tk, ). The best situation for the attacker
is obviously the case where 7, and 7, are coprime, otherwise there is some
redundancy between the information retrieved by the two distinct attacks.
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4.4 Fast Correlation Attack When H is Linear

In the correlation attack, the target generator is composed of the LFSR defined
by o filtered by a Boolean function H, and it generates sequences o with period
T < (2™ —1). Then, as noticed in the pioneer work by Meier and Staffelbach [32],
any N-bit portion of o can be seen as a codeword in a code of length N and
size 7. Therefore, recovering the initial state of the target generator boils down
to decoding the corresponding n-bit keystream with respect to this code since
the keystream can be identified with the result of the transmission of ¢ through
a binary symmetric channel with error-probability (1 — &) where ¢ is the cor-
relation between the two sequences.

In the specific case where the function H defining G(z) = H(«*) is linear, i.e.,
H(z) = Tr(Az) for some A € Fan, the involved code is a linear code. Some decod-
ing algorithms dedicated to linear codes can then be used. These algorithms are
faster than the exhaustive search (which corresponds to a maximum-likelihood
decoding), at the price of a higher data complexity. The corresponding attack is
then named fast correlation attack [32]. Obviously, a major parameter affecting
the complexity of the decoding procedure is the dimension of the involved code.
This dimension is the degree of the minimal polynomial of o, which may be
smaller than n: it corresponds to the size ny of the cyclotomic class of k. Equiv-
alently, ny is the smallest integer m such that 2™ = 1 mod 7. In other words,
if a* belongs to a subfield Fom of Fan, then the fast correlation attack consists
in decoding a linear code of dimension m, instead of a code of dimension n.
This may enable the attacker to recover log,(7) bits of the initial state with a
lower complexity than the fast correlation attack involving the original LFSR of
length n. The optimal situation which maximizes the number of bits recovered
by the attacker for a given complexity is then when 7, = 2" — 1 for some divisor
m of n, i.e., when k is such that ged(k, 2" —1) = (2" —1)/(2™—1). Several decod-
ing algorithms have been proposed in this context [6-8,21,22,32,33] which offer
different trade-offs between the dimension of the code and the error probability
(see [1] for a recent survey).

Ezxample 1. Let us consider an LFSR of size 10 with primitive characteristic
polynomial P(X) = X0+ X9+ X7+ X6 4 X54 X4 4 X34 X2+ 1. We then use
as a filtering function a balanced function of 10 variables with a high nonlinearity
obtained by Dobbertin’s construction [12]. As described by Dobbertin, we start
from a bent function which is constant on a subspace of dimension % and replace
this constant restriction by a balanced function in order to make the whole
function balanced. Here we start from Tr(ax33) where a is a root of P since
this function is bent, and modify it as in [12]. It is worth noticing that this
modification makes the function much more complex. In particular, it increases
its degree and its linear complexity, at the price of a very small degradation of
its nonlinearity. We construct this way a balanced function F' of 10 variables
with nonlinearity 481 and algebraic immunity 3. By computing its univariate
representation, we get that the linear complexity of the keystream is equal to 992.
Therefore, this filtering function meets all design criteria related to algebraic-
like attacks and to fast correlation attacks. However, by construction, our filtered
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function F is very close to the Boolean function G(z) = Tr(az3?). This means
that the keystream is highly correlated to the output of the LFSR defined by a33.
Indeed, the correlation between the two sequences equals ¢ = 1 —279%y(F,G) =
0.96. We can mount a fast correlation attack on an LFSR of size 5, and we recover
almost 5 bits of the internal state of the generator. This attack is obviously much
faster than the usual fast correlation attack: in our new setting, the involved
correlation is € = 0.96 and the code dimension is ng3 = 5, while the usual fast
correlation attack corresponds to a correlation e’ = 1—-481x 279 = 0.06 and code
dimension n = 10. The remaining 5 bits of the initial state can be determined
by an exhaustive search over 33 possible values.

The previous example was rather specific since the filtering function is
designed from a component of a monomial mapping z* with k of the form
k = % However, a similar situation may happen for many other filter-
ing functions which do not have any such specific structure. In order to quantify
the advantage of this new setting, we first need a closer look at the complexity
of fast correlation attacks. The decoding algorithms used in this context include
some methods exploiting the existence of low-weight parity-check relations for
the LFSR sequence [6,8,21,32]. These relations are derived from sparse multiples
of the LFSR characteristic polynomial, implying that the data complexity which
corresponds the degree of these multiples grows very fast with the LFSR length
(unless the LFSR characteristic polynomial is very sparse). Once these relations
have been found in a precomputation step, the attack consists in applying an
iterative decoding algorithm. For instance, the complexity of the original attack
based on parity-check relations with 3 terms is estimated by [6]:

1 . . 0N’ .
Data=0O (- x22 ) and Time=0O -] x22 | .
€ €

Using parity-check relations with a higher weight w decreases the influence of
the LFSR length by replacing 2"/2 by 2"/(®=1) at the price of a higher influence
of the correlation, i.e., in the data complexity e is replaced by g2(w=2)/(w—1)
The time complexity can be improved by different techniques, but the data

complexity of most of these algorithms has a similar behaviour.

Ezample 2. Let us consider the same LFSR of size 10 as in Example 1, but now
filtered by a Boolean function which is not constructed from a monomial func-
tion. We choose as a filtering function the following function of 6 variables:
f(@o, o1, T2, 23,4, T5) = ToXT1T2T3T4 + ToT1T2L3T5 + ToL1T224T5 + ToT1T2T4 +
TOT1T2 + ToT1T3L4 + ToT1T3 + ToT1T4 + ToT1T5 + ToT1 + TX2T3T4 + ToT2T3T5 +
LTI 45 + ToLoT4 + oI -+ ToL3T4 + o4 + i) + L1X2T3X4Ts + T1XXL3T4 +
T1ToT3T5 + T1X2T3 + T1T2Xy + 1T + T1X3T5 + T1X3 + 124 + 125 + 1 +
ToX3X4X5 + LoX3Xy + LoX3Ls + ToX3z + Lo + T3Ly + a5 + T4

and the inputs of f are given by the following tapping sequence (v1,...,76) =
(9,8,6,3,1,0). The corresponding 10-variable function has nonlinearity 352,
algebraic immunity 3 and the linear complexity of the generated keystream
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is 637. But there exists a function G of the form G(x) = Tr(Az3?) at distance
456 from F'. The correlation between the keystream and the output of a non-
filtered LFSR of size n33 = 5 is then equal to ¢ = 0.11. A fast correlation attack
in this setting appears to be more efficient than the usual fast correlation attack,
which has parameters n = 10 and & = 0.31. For instance, if the iterative algo-
rithm with parity-check relations of weight 3 is used, the ratio between the data
complexities of the two attacks is given by

Dat / nag—n
Data, - (5> x 255 = 0,498
ata 3

4.5 Correlation Attack Using a Fast Fourier Transform When H is
Nonlinear

In the general case, i.e., when H is nonlinear, the correlation attack, as originally
described in [40] corresponds to an exhaustive search over all initial states of the
target generator of the form Yy = XJ. For each of these Yy, the first N bits of
the corresponding output sequence o are generated and the correlation between
o and the keystream is computed, namely

N-1

> (et (1)

t=0

where N is the number of keystream bits we need to be able to detect the bias,

ie, N = 21%(;’“) where ¢ is the expected correlation. The time complexity of this

algorithm is therefore proportional to
T X N = w .

€
We will now show that this time complexity can be improved by using a fast
Fourier transform even when H is nonlinear?. A similar technique has been
described in [5,34] but in an attack against combination generators. We now
prove that it also applies in our context.

Let (o) denote the multiplicative subgroup of F3. generated by oF, i.e.,
the set with 75, elements {1,a*, a?* ... a(™~D*} This set is composed of all
possible internal states Yy = X(’)C which must be examined in the attack. Then,
the attacker aims at finding the initial state Yy € (a*) which maximizes the
correlation given by (1) where o; = H(Ypa**). For any Y, € (aF), we compute

N-1 A
Z(Yo) = Z (st Dot) = Z Z (Sqryotr ® 0Or)
t=0 =0  q=0

2 The use of a fast Fourier transform for computing the correlation in the linear case
has been pointed out by several authors including [8,26].
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since for any ¢, oy = o¢y-,. We then deduce

TE—1 ’—Nﬂ'izr-‘_l TE—1 N ’—1\{%’;]_1
—-r
Z(Yb) = Z (UT‘ ®1) Z Sqr+r | + Z Or " p —‘ - Z Sqri+r
r=0 q=0 r=0 k q=0
For any 0 < r < 73, we set
NT;r]_l
S(T) = Z Sqri+r
q=0
Then, we have
T —1 T —1 N —
Z(Yo) =Y (e, @ )S()+ Y o, U |- S(r))
r=0 r=0 Tk
kal
1rN —r N
- —0er (Sir) — ,[ W N
> (- (s00-5[*=11) +3

It follows that
N-1 =1 N —r
> (1)) = N =22 (30) = Y (1700 (A0 - asin)
t=0 r=0
We need to compute this value for Yy = a®* for every 0 < i < 73. But,
oi(a™) = H(a™a™) = H(a""F) = 0,14(1) .
In other words, we search for the integer 7, 0 < ¢ < 73 which maximizes the value

Tkz_%l(_l)ngrimod e (1) GNT; TW _ 28(7-)) ’

r=

which corresponds to the convolution product of two vectors of length 74, namely
(0¢(1))o<t<r, and (S(t))o<t<r,- This can be done efficiently with a fast Fourier
transform with time complexity O(7log i) (see e.g. [3] or [23, p. 299]). The
memory complexity of the attack is then O(7g) and the overall time complexity
(including the computation of all S(¢)) is then roughly

2 ln(Tk) '

Time = 1 log 7% + 5
€

Ezample 3. Let us consider the LFSR of size 12 with characteristic polynomial
PX)=X2+ X104+ X9+ X8+ X7+ X5+ X4+ X3+ X2+ X +1 and
filtered by the same 6-variable function as in Example 2, but where the inputs
of F are now defined by the tapping sequence (vy1,...,7s) = (11,10,7,5,2,0).
Then, the correlation between F' and any function of the form G = Tr(\z")
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with k = 522,::11 and ged(¢,2™ — 1) = 1 is too low for improving on the classical
correlation attack. However, we can use k = 45 which satisfies ord(a*) = 91.
In this case, we are able to get a higher correlation since we allow all possible
functions H, not only the linear ones. Here, the best approximation by a function
of the form G(z) = H(z*) gives us a correlation equal to 0.125. With an FFT,
the attack requires roughly (592 + 574) = 1166 operations, and 574 keystream
bits. The whole initial state can then be recovered by an exhaustive search.

4.6 Approximation of the Filtering Function by H(z*)

All previous correlation attacks exploit the existence of a function G of the
form G(x) = H(z*) for some k with ged(k,2™ — 1) > 1, which provides a good
approximation of F'. In particular, the fast correlation attacks involving a shorter
LFSR point out that the notion of generalized nonlinearity as defined in [41] must
be extended in order to capture these new attacks: it appears that the distance
of the filtering function to all Tr(Az*) with k = £ x 2:;’1 where m is a divisor
of n and ged(¢,2™ — 1) = 1 is a much more relevant quantity than its distance
to the components of monomial permutations.

Moreover, even if such a fast correlation attack is not feasible, for instance
if n is a prime, an efficient correlation attack may be possible based on the
approximation of F' by G(x) = H(z") for some k with ged(k,2" — 1) > 1. As
observed in the previous example, the fact that H can be nonlinear usually yields
a higher correlation. The best approximation of the form G(z) = H(x*) can be
computed from F' as follows. For the sake of simplicity, we now suppose that k
is a divisor of (2™ — 1), or equivalently that 7 = (2" — 1)/k (otherwise, we get
similar results by replacing k by ged(k, 2™ —1)). Let (o) be the cyclic subgroup
of Fon of order k. Then, by shifting this cyclic subgroup, we obtain the sets
E; = a(a"), for 0 < i < 7 which provide the partition

T—1
Fon = U E;
i=0

where all sets F;, for 0 < i < 7, are disjoint. It follows that G is constant on any
set F; since, for z = o* X a?7, we have

G(z) = H((a'a?™)*) = H(a™).
The correlation between F' and G can therefore be expressed as follows:

F(l)+H(VL ) F(l V4+H (z*)
(-1 =1+

xEFyn £E]F2n
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If ged(k, 7) = 1, all values a'*, for 0 < i < 7 belong to different sets E;. Hence,
the function H which maximizes this correlation is the function defined by

; 0if Y cp (=DF® >0
iky yeE;
H(a™) {1 it Y cp (~1)F® <0

In other words, H(a*) = 1 if and only if the Hamming weight of the restriction
of F to F; is strictly greater than k/2. It can be observed that H is uniquely
determined because the weight of the restriction of F' cannot be equal to k/2
since k is odd. This also implies that, for the optimal choice of H, we obtain

Z (_1)F(x)+H(g;’“) -1 _’_i‘ Z (_1)F(y)

TEFon i=0 yek;

>147

since each term in the sum is at least 1. Therefore, for any F', we can always find
a function H such that the correlation between F' and G(z) = H(x") is at least
(1+7)27" ~ k=1 Tt is worth noticing that this lower bound on the correlation
does not decrease when the LFSR length n increases.

In the case where ged(k, 7) = d > 1, we have that o’ and a(*+2)* belong to
the same set E;. Indeed, o7 € (a™). Equation (2) can then be rewritten as

a— d—1
Z (_1)F(< JFH (@) 1 4 Z(_l)H( ) Z Z (-1)FW
x€EFon =0 7=0 yGEi+j§

In this case, the value of H at point o'* is defined by the weight of the restriction
of F' to the set Uj;é E;};z. Using again that this set has an odd cardinality, we
get that the correlation between F and G(z) = H(z") is at least (1 + 5)27".

While in usual (fast) correlation attacks, choosing a filtering function with
a high nonlinearity guarantees that the attack will be infeasible, this is not the
case here. For instance, some bent functions in the so-called class PS™ [11] are
constant on all sets A(a7) for 7 = 2"/2 41, while they have the best nonlinearity.

The previous results enable us to find the best approximation of F' by a
function of the form H(x*). However, improving the complexity of this search
when n grows and F depends on a few inputs only remains an open issue.
Indeed, it seems difficult to use this property of F' to simplify the search for the
optimal H. Another open problem is to be able to find in an efficient way the
best approximation of the form G(z) = Tr(Az").

5 Conclusions

While the monomial equivalence introduced by Rgnjom and Cid does not affect
the security of filter generators regarding algebraic attacks, it usually allows to
decrease the complexity of correlation attacks and their variants. Most impor-
tantly, considering a non-bijective monomial mapping enables the attacker to
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mount a divide-and-conquer attack by decomposing the set of all nonzero initial
states with respect to some multiplicative subgroup having a smaller order. If
the LFSR length is not a prime, the involved subgroup may be a subfield and
this divide-and-conquer attack can be further improved as in fast correlation
attacks. A counter-measure to avoid these attacks then consists in choosing for
the LFSR length a Mersenne prime, i.e. both n and (2" — 1) are prime.
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Abstract. In this article, we analyze the circulant structure of general-
ized circulant matrices to reduce the search space for finding lightweight
MDS matrices. We first show that the implementation of circulant matri-
ces can be serialized and can achieve similar area requirement and clock
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1 Introduction

In the designing of symmetric-key ciphers, there are two fundamental concepts
required for the overall security of the cipher—the confusion and diffusion prop-
erties described by Shannon [21]. Informally, the latter is to spread the internal
dependencies as much as possible [22]. The diffusion layer of a cipher is often
achieved by a linear diffusion matrix that transforms an input vector to some
output vector through linear operations. For the choice of the diffusion layer,
there can be a trade-off between the security and computation efficiency. Sev-
eral designs compromise the diffusion power for a faster diffusion layer, while
another trend is to maximize the diffusion power with maximum distance sepa-
rable (MDS) matrices. The diffusion power of a matrix is often quantified by the
branch number of the matrix, and an MDS matrix achieves maximum branch
number, also known as perfect diffusion property. MDS matrices are widely used
in many ciphers like AES [9], LED [11], SQUARE [8]. However, very often the price
for having strong diffusion property is the heavy implementation cost, in either
software or hardware implementations. Therefore, there is a need to reduce the
implementation cost when perfect diffusion property is desired.

Recently, the designing and improving of hardware efficiency become a major
trend. Several lightweight block ciphers [5,7,11,24] and lightweight hash func-
tions [2,6,10] are designed to minimize the implementation cost. Notably in the
hash function PHOTON [10], a new type of MDS matrices that can be computed
recursively were proposed, so-called serial matrices, where a serial matrix A of
order k is raised to power k and the resultant matrix A* is MDS. In compar-
ison to round-based implementation, serial-based implementation trades more
clock cycles for lesser hardware area requirement. Such matrices were later used
in block ciphers like LED [11] and more recently in authentication encryption
scheme like the PRIMATEs [1].

In a nutshell, a round-based implementation computes the entire diffusion
matrix of order k& and applies the diffusion layer in one clock cycle. Hence, it is
necessary to have all, if not most, of the k2 entries of the diffusion matrix to be
lightweight. On the other hand, a serial-based implementation computes the non-
trivial row of a serial matrix', and applies it for k times recursively. Therefore,
the primary implementation cost is the k entries of the non-trivial row and the
computation time takes k clock cycles. Although it is natural to perceive that
these two implementations require very different matrices, there are a type of
matrices that can achieve the best of both worlds—circulant matrices.

Circulant matrices are a common type of matrices for the diffusion layer, a
typical example of which is the AES diffusion matrix. They have a simple struc-
ture that every row is a right-shift of the previous row. Hence, a circulant matrix
can be defined by its first row of k entries. In addition, it is known that an MDS
circulant matrix can contain repeated lightweight entries. For instance in the AES
diffusion matrix, there are two 1’s which practically has no implementation cost

1A serial matrix of order k consists of k — 1 rows with a single 1 and k — 1 many 0’s
and a row with non-trivial entries.
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for multiplication. In comparison to Hadamard matrices, another common type
of matrices for the diffusion layer [3,4], which must contain & distinct entries to be
MDS, circulant matrices tend to achieve lower implementation cost in a round-
based implementation. Although circulant matrices cannot be directly used in
a serial-based implementation, their circulant structure can be implemented in
a serialized manner and achieve similar performance as the serial-based imple-
mentation. In short, using a circulant matrix in the diffusion layer gives the
flexibility to do a trade-off between the area requirement and the clock cycle,
whereas most of the other matrix types are suitable for either one but not both
implementations.

One approach to build lightweight MDS matrices from some matrix type
is to focus on some subclass of such matrices that are MDS, based on some
pre-defined metric for lightweight, then pick the lightest MDS matrices from
this subclass. In [13,16], the authors chose to maximise the number of 1’s for
better efficiency and constructed circulant-like matrices that are MDS with as
many 1’s as possible, then searched for the lightest MDS circulant-like matri-
ces. In another work [12], the authors quantified lightweight with low Hamming
weight and focused on involutory (self-inverse) matrices, they proposed the con-
struction of Hadamard-Cauchy matrices that are MDS and can be involutory,
then minimized the Hamming weight of a few entries of the Hadamard-Cauchy
matrices. Although this approach is efficient for finding lightweight MDS matri-
ces, the matrices found are optimal among the subclasses rather than the whole
population of the matrix type.

Another approach is to pick the lightest matrix from some matrix type and
check for MDS, and extend the search to the next lightest matrix if it is not MDS.
This approach, also often regarded as exhaustive search, can be seen in [17,22].
The clear advantage of the exhaustive search over the previous approach is that
it guarantees optimal for the given matrix type. In addition, it has the freedom
to change the metric for lightweight when necessary. Despite the advantages,
this approach suffers from the large search space. In [22], the authors tackled
this problem by introducing the concept of the equivalence classes of Hadamard
matrices to significantly reduce the search space for finding lightweight involutory
MDS (IMDS) matrices. However, the equivalence relation for circulant matrices
has not yet been discovered in the literatures.

There are two main challenges in the second approach. Given a set of light-
weight coefficients, the first challenge in finding MDS circulant matrices with
these coeflicients would be the large search space due to the necessity of check-
ing the MDS property for all possible permutations. The second challenge is
that MDS circulant matrices can have repeated entries which makes the search
space larger than other types of matrices, for instance Hadamard matrices, of
the same order. Perhaps due to these challenges, the existing work on circulant
matrix used either the first approach to find lightweight MDS circulant matrix
of order 8 from some subclass of circulant matrices [13,14], or the second app-
roach but could not complete the search for lightweight MDS circulant matrix
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of order 8 [17]. Therefore, this paper is devoted to tackle these problems and
reduce the search space for finding generic lightweight MDS circulant matrices
through analyzing the circulant structure.

Contributions. In Sect. 2.3, we illustrate how circulant matrices can have a
trade-off between the area requirement and clock cycle in hardware implementa-
tion. This shows that using circulant matrix in a diffusion layer gives the designer
the flexibility to choose the implementation between lower area requirement and
faster computation according to the needs. In Sect. 3, we tackle both challenges
faced when using the second approach for finding lightweight MDS circulant
matrices. In Sect. 3.1, we prove the existence of equivalence classes for circulant
matrices in terms of the branch number. Since the circulant matrices within an
equivalence class have the same branch number, it is sufficient to check one rep-
resentative from each equivalence class and hence reduce the search space. In
Sect. 3.2, we show that there are at most 5 types of MDS circulant matrices for
order k < 8, namely circulant matrices whose first row has k distinct entries, 1,
2 or 3 pairs of repeated entries, or 3 repeated entries. This allows us to complete
the search for lightweight MDS circulant matrix of order 8 which previously was
not achievable by [17]. In Sect. 4, we generalize the circulant structure and pro-
pose a new type of matrices—cyclic matrices, which preserve the benefits and
advantages of circulant matrices. Using group theory, we prove that, in terms
of branch number, cyclic matrices are equivalent to circulant matrices. This
greatly simplifies the understanding and analysis on the branch number of the
cyclic matrices. In Sect. b, we present the lightest MDS left-circulant matrices
(where each row is a left rotation instead of right), for order k < 8, based on the
same metric used in [17,22]. In addition, we overcome the constraint that circu-
lant matrix cannot be involutory and MDS simultaneously, and also present the
lightest involutory MDS left-circulant matrices. To the best of our knowledge,
the latter matrices are the first of its kind. We would like to emphasize that all
the techniques and most results presented in this paper are independent of the
metric for lightweight. In other words, one can choose another metric and apply
our techniques to reduce the search space for finding the desired matrices.

2 Preliminary

In this section, we first state some notations that will be frequently used for the
rest of the paper. Next, we formally define what branch number of a matrix is,
and provide two propositions that will be useful in the later proofs. Lastly, we
give an introduction to circulant matrix, the advantages of using it and how the
implementation of circulant matrix can be serialized. In this paper, we assume
that the matrices are square matrices unless otherwise stated.
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2.1 Notations

n : Dimension of the finite field
GF(2") : Finite field of order 2"
0x : Prefix for hexadecimal, common notation for expressing
binary polynomial coefficients or n-bit strings
k : Order of the square matrix
MTi, j] : (i,5)-entry of the matrix M, where 4,5 € {0,1,....k — 1}
wt(v) : Number of nonzero components of the vector v

2.2 Branch Number of the Diffusion Layer

Recall that the diffusion power of the diffusion layer is often quantified by the
branch number of the diffusion matrix.

Definition 1. The branch number of a matrix M of order k over finite field
GF(2™) is the minimum number of nonzero components in the input vector v
and output vector u = M -v as we range over all nonzero v € [GF(2™)]*. Le.,
the branching number of matriz M is By = min,zo{wt(v) + wt(Mv)}.

That is to say, for any nonzero input and output pair of a diffusion matrix,
the number of nonzero components will be at least the branch number of the
diffusion matrix. This is essential for protecting against the cryptanalysis like
differential attack that exploits the differential patterns between the plaintext
and the ciphertext. As the sum of nonzero components is lower bounded by
the branch number, having a high branch number implies that a small input
difference will inevitably lead to a large output difference, and to achieve a small
output difference would require a large input difference.

Definition 2 [23]. A mazimum distance separable (MDS) matriz of order k is
a matriz that attains the optimal branch number k + 1.

When there is a single difference in the input vector, the best possible diffu-
sion is to spread the difference to all £ components of the output vector, hence
the largest possible branch number is k+1. For instance, the AES diffusion matrix
has order 4 and a branch number 5, hence it is MDS.

The following propositions are simple yet crucial building blocks for the
results in this paper.

Proposition 1 [19, p. 321, Theorem8]. A matriz is MDS if and only if its
square submatrices are all nonsingular.

Proposition 2. For any permutation matrices P and Q, the branch numbers
of these two matrices M and PMQ are the same.

Proof. Since P and @) are permutation matrices, there can be bijection map-
pings between the input vectors (resp. output vectors) of M and PMQ where
the vectors differ by some permutation, hence the minimum number of nonzero
components in the input and output pairs remains the same and they have the
same branch number. O
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2.3 Circulant Matrices and Its Implementation

Circulant Matrices. Here, let us formally define circulant matrices and related
notations.

Definition 3. A circulant matriz C of order k is a matriz where each sub-
sequent row s a right rotation of the previous row. We denote the matrixz as
cire(co, €1, ..., Ck—1), where ¢;’s are the entries of the first row of the matriz. The
(i,7)-entry of C' can be expressed as Cli, j] = ¢(j—i) mod k-

There are several advantages of using circulant matrix in a diffusion layer:

1. It has a higher probability of finding an MDS matrix as compared to a ran-
domized square matrix [8].

2. It has at most k distinct entries, and in addition it can be MDS and contain
repeated lightweight entries, which tends to have lower implementation cost
as compared to matrices like Hadamard and Cauchy matrices that must have
at least k distinct entries in order to be MDS.

3. It has the flexibility to be implemented in both round-based and serialized
implementations.

However, it was shown in [15] that involutory MDS (IMDS) circulant matri-
ces of order 4 do not exist, and was further proved in [13] that IMDS circulant
matrices of any order do not exist. To preserve the benefits of circulant matri-
ces, we generalize the circulant structure in Sect.4 and find lightweight IMDS
matrices that are presented in Sect. 5.

Serialized Implementation of Circulant Matrices. First, let us illus-
trate the round-based implementation using an arbitrary circulant matrix
circ(a, b, ¢,d) of order 4, and an arbitrary input vector (w,z,y, z), we compute
the output vector as follows,

abcecd w aw +br +cy +dz
dabc x| |dwH4ax+by+cz
cdabd y| | cw+dz+ay+bz
bcda z bw+cx +dy+ az

The entire diffusion matrix is implemented and the output components can be
computed in parallel and in one clock cycle.

On the other hand, one clock cycle of a serial-based implementation is com-
puted as follows,

0100 w T

0010 x| Y

0001 y | z ’
abced z aw + br + cy + dz
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where the output is fed back to the input and this process is repeated for
another 3 times to get the final output. Excluding the control logics and memo-
ries required, serial-based implementation requires implementing one row of the
matrix and takes k clock cycles to compute the output vector.

Clearly a circulant matrix can be implemented in the round-based manner.
Although it is not in a form of a serial matrix that is required for serial-based
implementation, implementation of a circulant matrix can still be serialized.
The key observation is that the same permutation is applied to obtain each
subsequent row. For a circulant matrix, the permutation is a right rotation. To
serialize the implementation of circulant matrix, we implement the first row of
the circulant matrix and compute the first output component.

abced aw +br + cy + dz

w
T
Y
z

Next, we update the input vector by applying the inverse permutation to obtain
(z,y,z,w) and apply the first row of the matrix again,

abcd
ax + by + cz + dw

SERSESI )

and we obtain the second component of the output vector. We repeat the process
to obtain the entire output vector in 4 clock cycles. Thus, similar to serial-based
implementation, we only need to implement one row of the matrix and it takes
k clock cycles to compute the output vector.

In fact, one can even achieve other area requirement and clock cycle trade-offs
that are between the round-based and serial-based implementation performance.
In the previous example, one can also implement 2 rows of the circulant matrix
and compute 2 output components in parallel, this will take 2 clock cycles to com-
plete the diffusion layer computation. More generally, we can have t-serialized
implementation when we are using circulant matrices, where ¢ divides k. The
estimated implementation costs and clock cycles required for the implementa-
tions are summarized in Table 1. Note that this does not include the memory
costs and control logics required for different implementations. From Table 1, it
is clear that the round-based and serialized implementations are special case of
t-serialized implementation where t = 1 and ¢t = k respectively.

Circulant matrices are not the only matrix type that can be serialized. In
fact, if the same permutation, not necessarily being a right rotation, is applied
to obtain each subsequent row, we can still serialize the implementation. This
observation leads us to generalize the circulant matrices to cyclic matrices, see
also Sect. 4, which can be serialized too.
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Table 1. Estimated implementation costs and clock cycles for various implementations

Type of implementation | Matrix implementation (no. of entries) | Clock cycle
Round-based k2 1
Serial-based k k
Serialized k k
t-serialized K/t t

3 Properties of Circulant Matrices

There are mainly two challenges in the method of picking the lightest circulant
matrix and checking the MDS property. Firstly, for a generic (not considering the
values of the entries) circulant matrix of order k, circ(cg, ¢1, ...,cx—1), there are
k! ways to permute the entries, which can quickly be intractable. Secondly, the
choice of the k lightweight nonzero entries need not be distinct, which potentially
cause the search space to be much larger than just choosing k distinct entries
and permuting them.

In Sect.3.1, we first introduce an equivalence relation to partition the k!
circulant matrices into equivalence classes, where circulant matrices within an
equivalence class share the same branch number. This allows us to reduce the
search space by checking the MDS property for one representative from each
equivalence class. Next in Sect. 3.2, we analyze the circulant structure and show
that for order k < 8, there are at most 5 types of MDS circulant matrices,
namely circulant matrices whose first row has k distinct entries, 1, 2 or 3 pairs
of repeated entries, or 3 repeated entries. This shows that any MDS circulant
matrix must belong to one of these 5 types.

3.1 Compact Equivalence Classes of Circulant Matrices

For the ease of our discussion on the permutation of the entries, we focus on the
permutation of the index of the elements.

Definition 4. An index permutation o on an ordered set {cg,c1,...,Ck—1} is a
permutation that permutes the index of the elements.

Ezample 1. Let o be an index permutation on an ordered set {co, 1, ca,c3,ca}
where o (i) = 4 — 4, the resultant ordered set will be {cy4, ¢3,¢2,¢1,¢0}-

Definition 5. Given a matrix M of order k that is defined by its first row under
a rule, we denote by M the matriz generated under the same rule by the first
row of M modified by applying an index permutation o.

Definition 6. Two matrices M and M’ are called permutation-equivalent,
denoted by M ~g M’', if there exist two permutation matrices P and Q such
that M' = PMQ).
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It is easy to verify that ~p is a well-defined equivalence relation. By Proposi-
tion 2, we know that the permutation-equivalent matrices have the same branch
number. Using this equivalence relation, we partition the k! possible circulant
matrices into equivalence classes with respect to their branch number.

Definition 7. An equivalence class of circulant matrices is a set of circulant
matrices satisfying the equivalence relation ~p.

We first analyze what index permutation satisfies the relation, then we deduce
the number of equivalence classes of circulant matrices.

Lemma 1. Given two circulant matrices C and C?, C ~g C? if and only if o
is some index permutation satisfying o(i) = (bi+a)mod k, Vi € {0,1, ...,k — 1},
where a,b € Zy, and ged(b, k) = 1.

Proof. The “if” direction is immediate once we have proven the “only if” direc-
tion. Assume that C ~g C?. By Definition 6, there exists permutation matrices
P and @ such that C? = PCQ, where P (resp. Q) is in fact a row (resp. column)
permutation on C. Since C'is circulant, one can observe that if C7 = PC, then
the first row of C7 is some row of C' and thus corresponds to some rotation of
the first row of C, which shows that the index permutation ¢ can be expressed
as m,(41) = (i + a) mod k. That is, 7, corresponds to a row permutation P,.
Therefore, for any C? such that C? = PC(Q, we can always apply some index
permutation m_, to fix the first element ¢y and accordingly pre-multiply C? by
a corresponding row permutation P_,, which gives C™-+°? = P_, PC'(), where
m_q(c(0)) =0.

Next, we consider index permutation that fixes 0. Note that this implies that
the row and column permutations on C fix the first row and column. Suppose
that C? = PCQ, ¢,(0) = 0 and ¢,(1) = b, then the column permutation Q
maps column b of C' to column 1 of C?, and similarly the row permutation P
maps row k — b of C' to row k — 1 of C?. By definition of circulant matrices, we
know that cg, (2), which is the third entry of C?, can be written as C?*[0,2] =
C?[(k—1),1]. Since the pre-image of row k—1 and column 1 of C?® are row k—b
and column b of C, we can express that entry of C? as an entry of C, that is
C?[(k—1),1] = C[(k —b),b]. And again by definition of circulant matrices, the
entry Cp—(k—b) mod k = C2b mod k- Lhat is to say, by defining ¢;(1) = b, we have
restricted the permutation of the next index to be ¢,(2) = 2b mod k. Following
the same argument, we can conclude that ¢,(i) = bi mod k. In addition, we
must have ged(b, k) = 1 so that ¢ is a permutation on {0,1, ...,k — 1}.

Finally, we can see that if C' ~p C” then o = 7, o ¢, that is, (i) = (bi + a)
mod k. O

For simplicity, we call the permutations satisfying Lemmal the C-
permutations. That is to say, C ~p C? if and only if ¢ is a C-permutation.
We show in the full version of this paper [18] how to generate one representative
for each equivalence class.
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Theorem 1. There are (l;?kl))l equivalence classes of circulant matrices of

order k, where o(k) is the Euler’s totient function.

Proof. Tt is clear that the cardinality of each equivalence class is the number of
possible index permutation o. By Lemma 1, we know that o (i) = (bi + a) mod
k, where a,b € Zj, and ged(b, k) = 1. Since there are k possible values for a
and b has to be coprime with k, there are (k) possible values for b, and each
equivalence class has cardinality of & - p(k). Hence the number of equivalence

okl (k=1)!
classes is ol = ol O

Note that the “only if” direction of the Lemma 1 implies that this is the most
compact equivalence classes for generic circulant matrices in terms of branch
number. In [22], the authors presented equivalence classes of Hadamard matrices
to reduce the search space for checking the MDS property. But whether there
exists larger (more compact) equivalence classes to further reduce the search
space remains an open question. Observing its similarity with our work, we
analyze the equivalence classes of Hadamard matrices in [22] and find that it
is already the most compact equivalence class. The proof is included in the full
version of this paper [18].

3.2 Types of MDS Circulant Matrices of Order k < 8
In short, this section proves the following theorem.

Theorem 2. For order k < 8, there are at most 5 types of MDS circulant
matrices, namely circulant matrices whose first row has:

Type 0: k distinct entries;

Type 1: 1 pair of repeated entries;
Type 2: 2 pairs of repeated entries;
Type 3: 3 pairs of repeated entries;
Type 4: or 3 repeated entries.

Given an ordered multi-set of entries {cg,ci,...,cxk—1}, suppose that two
entries of them are the same, denoted by ¢; = ¢(j1d) mod r for some i,d €
{0,1,...,k — 1}. From Sect.3.1, we see that any rotation of the entries are
permutation-equivalent. Hence, for any d > LgJ, it is equivalent to considering
C(i—d) mod k = C(i—d)+d which is equal to Ci4(k—d) mod k = Ci; where k —d < ng .
Without loss of generality, we assume i +d <k —1and d < |%£].

First, we state two lemmas that will help us in proving Theorem 2.

Lemma 2. An MDS circulant matriz of even order k does not have ¢; = ¢; & .

Proof. Suppose that there exists ¢; = ¢; . k- Considering the submatrix of order

2 by taking row 0 and g, and column 4 and i + %, we have

C; CiJr%
c(ifg) mod k& Ci
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Since 7 — % =i+ % (mod k), we have a singular submatrix and by Proposition 1,
there is a contradiction. O

Lemma 3. An MDS circulant matriz does not have ¢; = ¢i4q and ¢; = Cjid,
where i % j.

Proof. Suppose that there exist ¢; = ¢;4.4 and ¢; = ¢j4q4, where ¢ < j. Consider
the submatrix of order 2 by taking row 0 and (¢ — 7) mod k, and column 4 and

i+ d, we have
Ci Citd
)
Cj Cj+d

Since these two columns are identical, we have a singular submatrix and by
Proposition 1, there is a contradiction. a

From Lemmas?2 and 3, we can conclude that an MDS circulant matrix of
order k allows at most Lkglj possible distinct distances and thus has at least
f%] distinct elements. Specially for order & = 8, it allows 3 possible distinct
distances and thus there are at most 3 pairs of repeated entries. If some entry
has multiplicity 3, say ¢; = ¢;+4, = Ci+d,, then the three distances di,ds, ds —dy
are pairwise distinct. It also implies that any higher multiplicity is impossible
for an MDS circulant matrix of order 8 as the number of pairwise equalities is
more than 3 (a similar property that an MDS matrix of order 8 has at most
24 ones was proved in [16]). Similarly, for order k < 8, there are also at most
3 possible distances. Therefore, we obtain Theorem 2 that any MDS circulant
matrix of order k£ < 8 is one of the 5 matrix types.

In Table 2, we list all the possible types of MDS circulant matrices for order
k < 8. These results can also be extended to higher order circulant matrices.
Note that this is a necessary condition for an MDS circulant matrix, it does not
guarantee the existence of MDS circulant matrix for any of the circulant matrix
type. For k = 8, we check that there are MDS matrices of each type, see also
Sect. 5.

Table 2. Possible types of MDS circulant matrices of order £ < 8

Order | Possible d | k distinct | 1 pair | 2 pairs | 3 pairs | 3 repeated
{1}
{1}
{1,2}
{1,2}
{1,2,3}
{1,2,3}

AN
AN

|| O | U | W
ANENENENENEN
SNENENENENEN
NENENEN
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4 Cyclic Matrices

In this section, we generalize the circulant matrix structure and introduce a new
type of matrices, we call them the cyclic matrices. Despite that cyclic matrices
capture the essential requirement to have t-serialized implementation, analyzing
all cyclic matrices is not feasible. Using results from elementary group theory,
we can relate cyclic matrices to circulant matrices in terms of branch number.
This allows us to apply the results on circulant matrices in Sect. 3 to the cyclic
matrices as well.

Generalized Circulant Matrices. Recall from Sect. 2.3 that to serialize the
implementation of a matrix, the same permutation is applied to obtain each
subsequent row. Hence, we generalize the circulant structure by considering other
permutations beside the right rotation.

Definition 8. A cyclic matriz C, of order k is a matriz where each subsequent
row is some permutation p of the previous row, where p is a cycle of length k. We
denote the matriz as cycp(co,cl7 .y Ck—1), where ¢;’s are the entries of the first

row of the matrizv. The (i, j)-entry of C, can be expressed as Cpli, j] = cyi(j)-

For example, the permutation of the circulant matrix structure can be
expressed as a cycle (0 1 2 ... k— 1), where p = (ip 41 %2 ... ig—1) means
p(ij) = i—1) moa k for 0 < j < k — 1. In the definition of cyclic matrix, we
require the permutation to be a cycle of length k to avoid repeated rows and
repeating elements in a column (which will not satisfy the property of MDS).

Since there are (k — 1)! cycles of length k, it is infeasible to analyze every
single the cyclic structures. However, using Proposition 2 and elementary group
theory, we can elegantly reduce the problem to simply analyzing the circulant
matrices. First, observe that the permutation p is an element of the symmetric
group Sk, and the collection of the permutations of the k rows of the matrix
forms a cyclic group, hence the name cyclic matrices.

Ezample 2. Considering the cycle permutation p = (0 2 1 3), we can express
cye,(a, b, c,d) as follows

(a,b,c,d) abcd
pla,bye,d) |  [dcabd
p*(a,b,e,d) | ~ | badel’
p3(a,b,c,d) cdba

where the collection of the permutations of each row forms a cyclic group of
order 4, (0 2 1 3))={(),(0 2 1 3),(0 1)(2 3),(0 3 1 2)}.

Relation to Circulant Matrices. Next, we show that any cyclic matrix is
permutation-equivalent to some circulant matrix. More preciously, there is a
bijection between the cyclic and circulant matrices satisfying ~5. To prove this,
we use the following proposition from elementary group theory.
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Proposition 3 [20, Chap. 5.3]. Any two permutations p, T which have the same
cycle type are conjugate in Sy.

That is to say, there exists permutation ¢ € Sy such that op = 70. In the
nutshell, ¢ can be computed by placing one permutation above the other and
view it as a Cauchy’s 2-line notation for permutation.

Ezample 8. Let p=(0 2 1 3)and 7= (0 1 2 3), viewing it as a Cauchy’s

2-line notation, we have
0213
0123)’

from which we see that 0 and 3 are fixed while 1 and 2 are swapped. Therefore,
we obtain o = (1 2) and we can verify that op = 70.

Theorem 3. Given an ordered set S with k elements and some cyclic matriz
structure, there exists a bijection between the cyclic matrices and the circulant
matrices satisfying the relation ~p, where both sets of matrices are generated by
some index permutation on S.

Proof. Let the permutation of some cyclic matrix be p and circulant matrix be
7=(0 1 2...k—1). By Proposition 3, there exist some permutation o such that
op = 7o. Hence for any row i € {0,1,....,k — 1}, we have op’ = 7%c. In the form
of a matrix, the permutation for each row of the matrices can be expressed as

o(S) a(S)
o0 p(S) Too(5)
gop?(S) | | 1200(S)

oo pk;l(S) k=1 éCT(S)

where o in the cyclic matrix can be viewed as a column permutation, while in the
circulant matrix it is a index permutation on S. Therefore by Proposition 2, the
cyclic matrix has the same branch number as a circulant matrix that undergoes
index permutation o.

Lastly, one can easily infer that for any index permutation 7 on the cyclic
matrix, it corresponds to a circulant matrix that undergoes index permutation
oOoT. O

Ezxample 4. Consider a cyclic matrix of order 4 with the row permutation p =
(0 2 1 3), while the circulant matrix is 7 = (0 1 2 3). From Example 3, we
have o = (1 2) that satisfies op = 7o. Applying column permutation o on the
cyclic matrix and index permutation o on circulant matrix, we obtain the same
matrix as follows

abed acbd abed
dcabd col perm o dachbh index perm o dabec
badc bdac cdabd

cdba cbda becda
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This theorem shows that for any cyclic matrix, we have some column permu-
tation o that transforms it into a circulant matrix (or any other cyclic matrix)
while preserving the branch number. However, the involution property of circu-
lant matrix may not hold true for the cyclic matrices, which gives us an insight
that there might exist IMDS cyclic matrices while it is not the case for the cir-
culant matrices. And we indeed find IMDS cyclic matrices which are presented
in Sect. 5.

Corollary 1. Any cyclic matriz corresponds to some circulant matriz preserv-
ing the coefficients and the branch number.

This is immediate from Theorem 3 and the fact that their entries are the
same up to some permutation. In addition, we can draw the following corollary
immediately from Theorems2 and 3.

Corollary 2. For order k < 8, there are at most 5 types of MDS cyclic matrices,
namely cyclic matrices whose first row has:

Type 0: k distinct entries;

Type 1: 1 pair of repeated entries;
Type 2: 2 pairs of repeated entries;
Type 3: 3 pairs of repeated entries;
Type 4: or 3 repeated entries.

5 Results on Lightest (Involutory) MDS Matrices

There are different ways to define lightweight /efficient. For instance in AES, the
diffusion matrix entries were chosen for its simplicity and low Hamming weight,
while [14,16] defined efficiency by the number of 1’s in the matrix. In hardware
implementation, it is common to consider the area required and a simplified
metric is to count the number of XOR gates needed for implementation. In [16,
17,22], the authors evaluate the number of XOR gates needed to implement the
multiplication of the diffusion matrices. Detailed description of the XOR count
can be found in [16,17,22]. In this paper, we quantify the weight of a diffusion
matrix by the sum of XOR counts in its first row?.

In this section, we mainly focus on a special case of cyclic matrices, called left-
circulant matrices. First, we provide a strategy to search for MDS left-circulant
matrices by exploiting the properties of the matrices, including the permutation-
equivalence relationship. Then, we show that, though no circulant matrices are
IMDS, there are IMDS left-circulant matrices. We also provide a strategy to
search for such IMDS matrices. The experimental results show that all the light-
est MDS matrices and IMDS matrices can be confirmed for 3 < k < 8, by using
our strategies.

2 This is adapted from [17], in which the number of XOR counts of one row is given
by Zle v + (£ — 1) - n, where 7; is the XOR count of the i-th entry and £ is the
number of nonzero coefficients in the row. Since the latter term is fixed for any MDS
matrix of order k over GF(2"), we are only interested in the sum of the XOR counts
of the coefficients in a row.
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5.1 Lightweight MDS Left-Circulant Matrices
The definition of left-circulant matrices is given as follows.

Definition 9. A left-circulant matriz L of order k is a matriz where each sub-
sequent row is a left rotation of the previous row. We denote the matriz as
L-cire(co, 1,y .., Ci—1), where ¢;’s are the entries of the first row of the matriz.
The (i, j)-entry of L can be expressed as L[i, j] = C(it) mod k-

It is infeasible to exhaust all the possible MDS left-circulant matrices
over GF(2%) for k = 8. Notice that the permutation-equivalence relationship
(Lemma1) of circulant matrices also applies to left-circulant matrices. Com-
bining Corollary 2 and permutation-equivalence relationship, we can exhaust all
the possible MDS left-circulant matrices over GF(2") with small XOR count for
n < 8and k < 8.

To efficiently determine whether a left-circulant matrix is MDS, we collect in
advance the symbolic expressions of all determinants of its submatrices, and use
them to compute the values of determinants. Once detecting that a determinant
has value 0, the matrix is confirmed to be not MDS; otherwise, it is MDS.
Using this method, the detection of MDS left-circulant matrices is speeded up
(by dozens of times for 5 < k < 8) since a lot of submatrices have the same
determinants in terms of symbolic expressions.

We show in Table3 our experimental results on MDS left-circulant & x k
matrices over GF(2") with smallest XOR count for n = 4,8 and 3 < k < 8. All
the provided matrices are optimal among the MDS cyclic matrices in terms of
the metric as used in [17,22]. We also exhaust all the left-circulant matrices over
GF(2%) for k = 7,8, and the results show that no such matrices are MDS. It was
also noted in [17] that there do not exist circulant 8times8 matrices over GF(2*4).

Table 3. Lightest MDS left-circulant matrices of order 3 < k < 8

k ‘ Polynomial ‘ Left-circulant matrices XOR count
GF(2%)

3| 0x1c3 (0x1, 0x1, 0x2)

4 | 0x1c3 (0x1, 0x1, 0x2, 0x91) 8
5 0x1c3 (0x1, Ox1, 0x2, 0x91, 0x2) 11
6 | Ox1c3 (0x1, 0x2, Oxel, 0x91, Ox1, 0x8) 18
7 | 0x1c3 (0x1, 0x1, 0x91, 0x2, Ox4, 0x2, 0x91) 21
8 | 0x1c3 (0x1, 0x1, 0x2, Oxel, 0x8, Oxe0, Ox1, 0xa9) | 30
GF(2%)

3 0x13 (0x1, 0x1, 0x2)

4 0x13 (Ox1, Ox1, 0x9, Ox4) 3
5| 0x13 (0x2, 0x2, 0x9, 0x1, 0x9)

6 | 0x13 (0x1, 0x1, 0x9, Oxc, 0x9, 0x3) 12
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We list in Table4 the lightest 8x8 MDS matrices for each type of left-
circulant matrices as well as the lightest ones under the two commonly used
irreducible polynomials, 0x11b and 0x11d, which are respectively adopted in AES
and WHIRLPOOL, and we compare them with the WHIRLPOOL matrix and the MDS
Hadamard matrix found in [22]. From this table, we can see that the lightest
MDS left-circulant matrices of all types except Type 0 (in which all the coef-
ficients are distinct) have XOR count smaller than the known best ones. For
WHIRLPOOL, we also provide an MDS left-circulant matrix which has smaller
XOR count using the same irreducible polynomial as in WHIRLPOOL.

We also compare in Table5 our candidates with the previous lightweight
MDS matrices for n < 8. It shows that all our candidates have the minimum
XOR count, though some of them have the same XOR, count as the known ones.

Table 4. Comparison of 8x8 MDS matrices

| Type | Polynomial | Matrices |XOR count|
4 0x1c3 (0x1, Ox1, 0x2, Oxel, 0x8, Oxe0, Ox1, Oxa9) 30
3 0x1c3 (0x1, 0x1, 0x91, 0x2, Ox4, 0x2, 0x12, 0x91) 32
2 0x1c3 (0x1, Ox1, Ox4, 0x2, 0xa9, 0x91, 0x2, 0x3) 33
1 Ox1c3 (0x1, Ox1, 0x2, Oxe0, Ox6, Oxel, 0x91, Ox4) 35
0 0x1c3 (0x1, 0x2, 0x91, 0x8, Ox4, 0x6, Oxel, 0x3) 42
4 Ox11b (0x1, 0x1, 0x2, Ox1, 0x74, 0x8d, 0x46, 0x4) 35
4 Ox11d (0x1, Ox1, 0x2, 0x8e, 0x47, 0x10, Ox1, 0x46) 34
4 0Ox11d WHIRLPOOL 49
- 0x1c3 Hadamard [22] 40

5.2 Lightweight IMDS Left-Circulant Matrices

In this section, we first describe the involutory MDS left-circulant matrices and
then show our experimental results.

Before showing our main results, we provide some useful properties for left-
circulant matrices. It is known that the product of two circulant matrices is a
circulant matrix. For left-circulant matrices, a similar property can be obtained.
To simplify the presentation of the proofs, we omit “modulo &” from the indexes
but it is expected that modulo & is applied when necessary.

Proposition 4. The product of two left-circulant matrices is a circulant matriz.
Proof. Let A = (-circ(ag, ay, ..., ar—1) and B = {-circ(bg, by, ..., by—1) be two left-
circulant matrices. Then the (4, j)-entry of their product is Zf:_ol Ali, t]-Blt, j] =
Zf;ol ity = Zf;ol atbyy(j—iy, which completes the proof. O

It is shown in [14] that C2* = (Zfial ¢)2'T and det(C) = (Zigl ¢;)%" for

any 29x 24 circulant matrix C' = circ(c, ¢1, ..., ca_1) over GF(2"). Thus we have
the following result for left-circulant matrices.
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Table 5. Comparison of MDS matrices of order k < 8

‘ k ‘ Polynomial | Matrices ‘ Matrix form |XOR count

GF(2%)
4 0x1c3 [22] Hadamard 13
4 Ox11d [17] serial /circulant 9
4 0x1c3 this paper | left-circulant 8
6 Ox11b PHOTON Pags serial 23
6 0x1c3 this paper | left-circulant 18

GF(2%)
4 0x13 [22] Hadamard 5
4 0x13 LED serial 4
4 0x13 [17] serial/circulant 3
4 0x13 this paper | left-circulant 3
5 0x13 PHOTON Pioo serial 4
5 0x13 this paper | left-circulant 4
6 0x13 PHOTON P44 serial 14
6 0x13 this paper | left-circulant 12

Proposition 5. For 2¢ x 2¢ matriz L = (-circ(cy,c1, ..., Coa_1) over GF(2™),
d+1 291 d+1 24 _1 d
L* =3, ) " Tanddet(L) = (>, ).

Proof. By the proof of Propostion4, we know L? is a circulant matrix with

.o d_ _ 9d

(i, 7)-entry Zfzolctc“r(j,i), and thus (LQ)2 (Zz 1Zt 0 tht+z> I =
d

(( 5261 ct)Q)QdI, which also implies det(L) = (Z?:gl ci)zd. O

Proposition 6. For matm'a: L = {-cire(cg, ¢, ...y cip—1) over GF(2™), L is invo-
lutory if and only if Zl o Ci =1 and Zf:_ol ciCirj =0 foralll <j< L%J

Proof. Since the (i, j)-entry of L? is Zf;ol CtCi4(j—i), L is involutory if and only

if Zf;ol ¢ =1 and Zf;ol CtCiq(j—i) = 0 for j # i. The proof is completed by the
k—1 k—1 k—1

facts that ), — cicry(j—iy = Dy CtCit(i—j) and > ;o ¢t¢yy = 0 for even k. O

A left-circulant matrix is symmetric and thus an involutory left-circulant
matrix is orthogonal. It was shown in [14] that a circulant matrix is not IMDS
and an orthogonal circulant 2¢ x 2¢ matrix is not MDS. Similarly, we can prove
that an involutory (orthogonal) left-circulant 2¢ x 2¢ matrix is not MDS.

Theorem 4. If L is a 2¢ x 2% left-circulant matriz over GF(2"), then L is not
IMDS.

Proof. Tt is sufficient to prove that if L is involutory then L is not MDS.

Assume that L = {l-circ(co,cq,...,c0a_1) is involutory. By Propostion 6,
d

it holds that 22 —1 cchgtH = 0 for 0 < ¢t < 292 — 1 and thus

2d-1_ 29721 291
( +=0 C?t)(Zt 0 Cgt+1) = t=0 Zi:O CiCi42¢t4+1 = 0. Note that
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{-circ(cg, Co, ...y Coa_s) and f-circ(cy,cs, ..., Coa_q) are two submatrices of L.
Therefore, according to Proposition 5, at least one of the determinants of these
two submatrices equals 0, which shows L is not MDS. O

Our computations also show that there are no IMDS cyclic matrices for
k = 4,8. Nevertheless, there are IMDS left-circulant matrices for k = 3,5,6, 7.

Next we explain how to search for IMDS left-circulant matrices. Notice that
an IMDS left-circulant matrix must satisfy the L%j equations mentioned in
Proposition 6. Theoretically, we can solve the equations and then check whether
the solutions satisfy the MDS property. However, it is unclear how to efficiently
solve the equations in a straightforward way. Solving the equations over GF(2")
using Grobner basis is very slow for n = 8 and is slow even for n = 4. To find the
solutions faster, we first guess the values of about L%J out of the k coeflicients,
then solve the equations. For n = 4, we guess all the possible values. For n = 8,
we only guess some of the lightest elements. Our experiments show that it is
sufficient to guess the lightest 9 elements to find the lightest IMDS left-circulant
matrix.

We can check by Lemma 1 and Proposition 6 that if a left-circulant matrix
is involutory then all its permutation-equivalent matrices are involutory. Thus
we can use permutation-equivalence relationship to reduce the search space. In
other words, once obtain an upper bound of the minimum XOR count, we can
exhaust all the possible IMDS left-circulant matrices less than the threshold,
and confirm the lightest one, as done for MDS left-circulant matrices.

We provide our results in Table 6. As shown in the table, there are no IMDS
left-circulant matrices over GF(2%) for k£ = 6. All the listed matrices have been

confirmed to achieve the smallest XOR count.

Table 6. Lightest IMDS left-circulant matrices of order 3 < k < 7

k ‘ Polynomial ‘ Matrices ‘ XOR count
GF(2%)

3/0x169 | (0x5a, Oxa, 0x51) 30
4]-

5| 0x165 (0x1, 0x2, 0xb3, Oxbb, 0xa) 46
6 | 0x165 (0x1, 0x1, Oxb3, 0x2c, Ox4, 0x9a) 46
7 | 0x165 (0x1, 0x2, Ox5c, 0xb2, Oxa4, 0x10, 0x58) | 68
7 | 0x139 (Ox1, Ox1, 0x8, 0x96, 0x21, 0x98, 0x26) | 68
GF(2%)

3 Ox1f | (0x2, Oxf, Oxc) 12
4]-

5 0x13 | (0x1, Ox2, 0x5, 0x4, 0x3) 14
61 -
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6 Conclusion

In this paper, we have presented a series of theory on generalized circulant matri-
ces, so-called cyclic matrices, and also exploited the technique to successfully
find the lightest MDS and involutory MDS matrices among this class of matri-
ces with small orders. On one hand, cyclic matrices maintain the characteristics
of circulant matrices, such as compact and flexible implementations in hardware
and branch number in diffusion layer. On the other hand, they possess some
advantages that circulant matrices cannot provide, for instance, the existence
of involutory MDS matrices. The discovery of properties and constructions of
MDS cyclic matrices may provide practical significance as well as theory value.
Before this work, searching for the lightest MDS circulant matrices of order 8
are widely believed to be infeasible. Our results demonstrate an opposite view
on this—we make it feasible under a credible metric—despite no guarantee of
general case. As such, we can find the lightest MDS circulant matrices of order
8 which have less XOR count than the previously known ones in the literatures.
Specially for the hash function WHIRLPOOL, we also provide a better MDS matrix
which has smaller XOR count under the same setting. Although it is proven that
IMDS left-circulant matrix of order 2¢ does not exist, we find IMDS matrices
for the other orders which forms a complement to the work in [22], where there
exist only IMDS Hadamard matrices of order 2¢. All in all, we have found new
lightweight MDS matrices that are flexible in hardware implementation and also
a complete set of lightweight IMDS matrices for order k£ < 8.

Acknowledgements. The authors would like to thank Jian Guo, Gregor Leander,
Thomas Peyrin, Yu Sasaki and the anonymous reviewers for their valuable suggestions.
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Abstract. In the present paper, we investigate the problem of con-
structing MDS matrices with as few bit XOR operations as possible.
The key contribution of the present paper is constructing MDS matrices
with entries in the set of m X m non-singular matrices over Fy directly,
and the linear transformations we used to construct MDS matrices are
not assumed pairwise commutative. With this method, it is shown that
circulant involutory MDS matrices, which have been proved do not exist
over the finite field Fom, can be constructed by using non-commutative
entries. Some constructions of 4 x 4 and 5 x 5 circulant involutory MDS
matrices are given when m = 4, 8. To the best of our knowledge, it is the
first time that circulant involutory MDS matrices have been constructed.
Furthermore, some lower bounds on XORs that required to evaluate one
row of circulant and Hadamard MDS matrices of order 4 are given when
m = 4, 8. Some constructions achieving the bound are also given, which
have fewer XORs than previous constructions.

Keywords: MDS matrix + Circulant involutory matrix - Hadamard
matrix - Lightweight

1 Introduction

Linear diffusion layer is an important component of symmetric cryptography
which provides internal dependency for symmetric cryptography algorithms. The
performance of a diffusion layer is measured by branch number. Using a diffusion
layer with bigger branch number in cryptography provides better resistance to
differential and linear attack. As for lightweight cryptography, which is aiming
to provide security in a limited resource environment, the cost of implementing
an linear diffusion layer is also of importance. With the rapid development of
lightweight cryptography, it is of particular interest to investigate the problem
of constructing lightweight linear diffusion with bigger branch number.

A linear diffusion layer is a linear transformation over (F5*)™, where m is
the bit length of an S-box and n is the number of S-boxes that the linear diffu-
sion layer acts on. Note that every linear transformation can be represented by a
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matrix, then a linear diffusion layer is often represented by a nxn matrix and the
entries can be viewed as linear transformations over F5*. The maximum branch
number of a n X n matrix over (F5*)™ is n+ 1. A linear diffusion layer with max-
imum branch number is called a perfect diffusion layers or a Maximal Distance
Separable (MDS) matrix. An MDS matrix is a linear multipermutation [22].

A common way to construct MDS matrices is using MDS codes over finite
fields. Multiplication with elements in finite fields is a basic operation in the
evaluation of a matrix over finite fields. Usually, this operation is heavy in imple-
mentation. To improve its implementation efficiency, it is often constructing a
matrix with fewer different elements of finite fields and choosing elements of finite
fields with lower Hamming weight. Therefore, some matrices can be defined by
fewer elements are preferred, such as circulant matrix and Hadamard matrix.
The diffusion layer of AES is an typical example of this construction method. It
is a 4 x 4 circulant MDS matrix over Fas.

Another main method to construct lightweight MDS matrices is recursive
construction. The main idea is that firstly constructing a linear transformation
which is sparse and compact in implementation, and then composing it several
times to get an MDS matrix. This method is first used in the design of Pho-
ton lightweight hash family [10] and LED lightweight block cipher [9], and then
attracted lots of attentions. The method is extended by using linear transfor-
mations instead of multiplications of elements in finite fields in [20]. Then the
work is improved by using linear transformations with fewer XORs in [23], where
some extreme lightweight MDS matrices are given. A method is given to get rid
of expensive symbolic computations of the above method for constructing larger
recursive MDS matrices in [1]. The method is also further investigated in [12].
The construction of recursive MDS matrices also has a relation with coding the-
ory. It is shown that recursive MDS matrices can be constructed from Gabidulin
codes [4], and also can be obtained directly from shortened MDS cyclic codes [2].

However, a recursive MDS matrix may leads to high latency since it has to run
several rounds to get outputs. Then how to construct lightweight MDS matrices
without using recursive construction is an interesting problem needs further study.
Some works revisit the method of constructing MDS matrices over finite fields by
choosing elements whose multiplication’s implementation efficiency can be further
improved. Recently, it is shown that the choice of the irreducible polynomial used
to compute multiplication with elements over finite fields has a great influence of
the efficiency [19]. This property is further investigated in [21], where algorithms
are designed to search lightweight MDS matrices with few XORs that required
to evaluate one row of the corresponding matrix. Several constructions and their
comparisons with previous constructions are also given in [21].

Our Contributions. In the present paper, we investigate the problem of con-
structing MDS matrices with as few bit XOR, operations as possible. Note that
multiplication with elements of the finite field Fom is only a special type of linear
transformations over F5*. Moreover, there exist many other linear transforma-
tions over F5* which can not be represented by multiplication with elements over
Fom. Therefore, constructing matrices over the space of linear transformations
over FJ' may leads to new constructions of lightweight MDS matrices.
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In previous constructions, the entries used to construct MDS matrices are
pairwise commutative, such as MDS matrices over finite fields, or assumed pair-
wise commutative, such as recursive MDS matrices with elements being linear
transformations [20,23]. Note that a matrix over a commutative ring is non-
singular if and only if its determinant is a unity in the ring, then the assumption
is convenient for charactering MDS matrices since the determinants of square
sub-matrices can be computed.

However, the restriction of choosing commutative linear transformations may
lose MDS matrices with fewer XORs. Then we do not assume the linear transfor-
mations over F5* that used to construct MDS matrices are pairwise commutative
in the present paper.

The strategy we used to determine whether a construction is MDS is com-
puting all its square sub-matrices’ rank. Then it is too complex to construct
MDS matrices with larger order. In symmetric cryptography algorithms, the
most often used S-boxes are 4-bit and 8-bit S-boxes, and it is often use diffusion
layers of order 4. Therefore, we focus on constructing 4 x 4 MDS matrices with
entries in the space of linear transformations over IF3 and F§ in the present paper.

The first result is that circulant involutory MDS matrices can be constructed
with our method. Circulant involutory MDS matrices can be implemented effi-
ciently and the same circuit can be used both in encryption and decryption.
However, it has been proved in [13,16] that there do not exist circulant invo-
lutory MDS matrices over the finite field Fom. In fact, the proof is only valid
when the entries of the matrix are pairwise commute. This property is satisfied
by previous construction methods but not our method.

We show that there exist circulant involutory MDS matrices over the space of
linear transformations over F5*. Some constructions are also given. To the best of
our knowledge, it is the first time that circulant involutory MDS matrices have
been constructed. For 4 x 4 circulant involutory MDS matrices constructed in
the present paper, the fewest sum of XORs of one row’s entries is m+1,m = 4, 8.
Moreover, we also construct 4 x 4 orthogonal circulant MDS matrix, which is
also proved do not exist over finite fields [13].

Lower bounds on XORs that required to evaluate one row of circulant (non-
involution) MDS matrices, involutory Hadamard MDS matrices and Hadamard
(noninvolution) MDS matrices are also investigated. We show that for circulant
MDS matrices with the first row’s entries are [I, I, A, B], the fewest sum of XORs
of A and B is 3. For involutory Hadamard MDS matrices, the fewest sum (the
fewest sum we get) of the XORs of entries in the first row is m + 2 for m = 4
(m = 8). For Hadamard MDS matrices, the fewest sum of XORs of one row’s
entries is 4 for m = 4 and the fewest sum we get of XORs of one row’s entries is
5 for m = 8. Lower bounds on the entries of “optimal” 4 x 4 MDS matrices is
also characterized.

Outline of This Paper. The present paper is organized as follows. In Sect. 2,
we give some preliminaries. A general bound on XORs that required to evalu-
ate one row of circulant and Hadamard MDS matrices is also given. In Sect. 3,
we investigate the construction of lightweight involutory, non-involutory and
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orthogonal circulant MDS matrices. In Sect. 4, we investigate the construction
of lightweight involutory and non-involutory Hadamard MDS matrices. Compar-
isons with previous constructions are given at the end of the section. In Sect. 5,
we investigate the construction of lightweight “optimal” 4 x 4 MDS matrices. A
short conclusion is given in Sect. 6.

2 Preliminaries and a General Bound

A map A : FJ* — FJ is called linear if A(z +y) = A(x) + A(y) for z,y € Fy".
Fixed a basis of F5* over o, a linear map over F3' can be represented by an
m X m matrix over Fo, which is also denoted by A. Then A(zx) = A -z, where
x = (21,...,Tm) € F5 is viewed as a column vector throughout this paper. A
linear map is a permutation over 3" if and only if its matrix representation is
non-singular. The notation GL(m, S) denotes the set of all m x m non-singular
matrices with entries in S.

For a,b € Fo, a+ b is called the bit XOR operation. For A € GL(m,Fy), #A
denotes the number of XOR operations that required to evaluate A - x directly,
where x € FJ', and we call A has #A XOR operations. It is easy to see that #A
equals the number of XORs in A(z) and hence

#A =3 (@Al ~ 1),

where w(A[i]) means the number of nonzero entries in the i-th row of A. For A €
GL(m,Fs), a simplified representation of A is given by extracting the nonzero
positions in each row of A. For example, [2, 3, 4, [1,4]] is the representation of
the following matrix.

—o oo
co o~
cor~ o
——_ o o

and it is a matrix with 1 XOR, operation.
Every linear diffusion can be represented by a matrix as follows

Lig Lip - Lign
Loy Lop -+ Loy
L - . . . 9
Ln,l Ln,2 T Ln,n
where L, ; is an m x m matrix over Fy for 1 <4,j <n. For X = (z1,...,2,) €

(FzH)", .
L(X) = (Z Ly i(xi), ..., Z Ly,i(z4)),
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where L; j(zy) = L;j - g, for 1 < 4,5 < n,1 <k < m. A linear diffusion L
defined as above is called involutory if L o L(X) = X for all X € (F3*)™, which
is equivalent to that L? is the identity matrix of order mn.

For X = (x1,...,2,) € (F5")", the bundle weight of X, which is denoted by
wp(X), is defined as the number of nonzero entries of X. This means

wp(X) = {x; : 2 #0,1 <i <n}.
The branch number of L is defined as
min{w,(X) + wp(L(X)) | X € (FF)", X # 0}.

The upper bound on the branch number of L is n + 1, and a matrix achieved
the bound is called an MDS matrix.
Square sub-matrices of L of order ¢ means the following matrices

L(J,K) = (Ljjx,, 1 <l,p<t)

where J = [j1,...,Jt] and K = [k1,...,k:] are two sequence of length ¢, and
1<ji<...<ji <n,1<ky....,k <n.Note that L(J,K) - (x1,...,2¢) =0
does not have nonzero solutions if and only if L(J, K) is of full rank. Then the
following result holds, which is proved in [5].

Theorem 1. Let L = (L;;),1 < i,j < n, and the entries of L are m x m
matrices over Fo. Then L is an MDS matriz if and only if all square sub-matrices
of L of order t are of full rank for 1 <t <mn.

According to Theorem 1, the computation would be complicated when n is
large. Then in the present paper we focus on 4 X 4 matrices, which are widely
used in cryptography. More precisely, we construct lightweight MDS matrices
using circulant matrix and Hadamard matrix. Both of them can be defined by
the first row’s entries and hence can be implemented efficiently.

2.1 A General Bound

In this subsection, we give a general bound of XORs on circulant and Hadamard
MDS matrices.

A matrix is called circulant if each row is rotated to the right of the preceding
row by one entry. Then for a 4 x 4 circulant matrix, we means

Circ(A,B,C,D) =

Qo
QU W
OemQ
=AU

where A, B,C, D € GL(m,F,).
A 2F % 2F matrix H is called a Hadamard matrix if it can be represented as

Hy, Hp
HQaHl ’
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where Hq, Hy are two 28~1 x 281 Hadamard matrices. Then for a 4x4 Hadamard
matrix, we means

A B, C,D
Had(A, B,C, D) = ?gf}g,
D.C, B, A

where A, B,C,D € GL(m,Fs).

Remember that our aim is constructing MDS matrices with as few XOR
operations as possible. Then we prefer linear transformations with no XORs.
However, the following results limits the amounts of such linear transformations
used in our constructions.

Ly, Ly

Lemma 1. Let L = <L3, Ly

> , Ly € GL(m,Fy),1 < i < 4. If rank(L) = 2m,

4
then > #L; > 1.

=1

Proof. Assume #L; = 0,1 < ¢ < 4. Then for 1 < i < 4, each row and each
column of L; has exactly one entry equals 1 since L; are non-singular. This

m 2m
means every entry of > L;[j] equals to 1. Therefore, every entry of > L[i]

j=1 i=1
equals to 0, which means rank(L) < 2m and we complete the proof. a

Then we have the following result.

Theorem 2. 1. Let L = Circ(A,B,C, D) be a circulant MDS matriz, where
A, B,C,D € GL(m,Fy). Then #A+ #B + #C + #D > 2.

2. Let L = Had(A,B,C, D) be a Hadamard MDS matriz, where A,B,C,D €
GL(m,Fs). Then #A+ #B+ #C + #D > 3.

Proof. Let L = Circ(A, B,C, D) be a circulant MDS matrix. Assume
#A+#B+#C+#D < 1.

Then there are at least 3 entries with 0 XORs in the first row. Without loss of
generality, we suppose #A = #B = #C = 0. Then according to Lemma 1, it
holds

rank(L([1,2],[2,3])) = rank((ﬁ :g)) < 2m.

This is a contradiction since L is an MDS matrix. The other cases can be proved
similarly.
Let L = Had(A, B,C, D) be a Hadamard MDS matrix. Assume

#A+#B +#C +#D < 2.



On the Construction of Lightweight Circulant Involutory MDS Matrices 127

Then there are at least 2 entries with 0 XORs in the first row. Without loss of
generality, we suppose #A = #C = 0. Then according to Lemma 1, it holds

rank(L([1, 3], [1,3])) = rank((é :i)) < 2m.

This is a contradiction since L is an MDS matrix. The other cases can be proved
similarly. a

The above result means that there are at most two entries with no XORs in
one row of a circulant MDS matrix, and there are at most one entry with no
XORs in one row of a Hadamard MDS matrix. We suppose L[1,1] = I in our
constructions, where I denotes the identity matrix throughout this paper.

3 Lightweight Circulant M DS Matrices

In this section, we investigate the construction of lightweight circulant involutory,
non-involutory and orthogonal MDS matrices respectively.

3.1 Constructing Circulant Involutory MDS Matrices
First, we have the following result.

Lemma 2. Let L = Cire(I, A, B,C) be a circulant matriz, where A,B,C €
GL(m,Fs). Then L is an involution if and only if the following equalities hold:

AB = BA,BC = CB, A% = C? AC + CA = B?.
Proof. By matrix multiplication, it can be checked that

L? = Circ(I, A, B,C) - Cire(I, A, B,C)
= Circ(I + AC+ CA+ B?, BC +CB, A% + C? AB + BA).

On the other hand, L is an involution if and only if L? = Circ(I,0,0,0). There-
fore, L is an involution if and only if

AB = BA,BC =CB,A%> =C? AC + CA = B>
hold simultaneously. |

We give a general construction of circulant involutory matrix in the follow-
ing result. For A € GL(m,Fs), the multiplication order of A is defined as the
minimum positive integer d such that A% = I.

Lemma 3. Suppose A,C € GL(m,Fy) with A> = C? = I, and the multiplica-
tion order of A+C' equals 4k—2 for some integer k with k > 1. Let B = (A+C)?k.
Then the matriz Circ(I, A, B, C) is an involution.



128 Y. Li and M. Wang

Proof. Let B = (A + C)?*. Note that
A2 =C%=1,

then according to Lemma 2, we only need to prove that A, B, C satisfy the fol-
lowing equalities

AB = BA,BC = CB,AC + CA = B
First, it is easy to see that
(A+C)? =A+AC+CA+C? = AC + CA.

Then we have

B = (A+C)% = (AC + CA)*.

Therefore,

AB = A(AC + CA)*

A(AC + CA)(AC + CA)F1
(A2C 4+ ACA)(AC 4 CA)+-1

= (CA2 + ACA)(AC + CA)F1

= (CA+ AC)A(AC 4 CA)F1

— (AC + CA)kA
— BA.

Similarly, it can be checked that
BC =CB.
Note that (A + C)*~2 = I, then we have
B?=(A+C)* = (A+0)* = AC + CA.
According to Lemma 2, we have Circ(I, A, (A + C)?¢,C) is an involution. O

Remark 1. If k = 1, then the multiplication order of A+C equals 2 and B = (A+
C)? = I. In this case, L = Circ(I, A, I, C) constructed as above is also a circulant
involution. However, it is not an MDS matrix since rank(L([1, 3], [1, 3])) < 2m.
Then we always suppose k > 1 since we want to construct circulant involutory
MDS matrices.

Using above results, our searching strategy is as follows. Firstly, we get the
set .S which contains all involutory matrix from the set which we want to search.
Then for each pair of (4,C) € S x S, we compute the multiplication order
dof A+ C. If dmod 4 = 2, then let B = (A+ C)2t! and test whether
Circ(I, A, B,C) is MDS by Theorem 1.

When m = 4, we search A,C over GL(4,F3). There exist A,C such that
Circ(I, A, B,C) is MDS. The fewest sum of XORs of one rows’ entries of an
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MDS involutory Cire(I, A, B,C) constructed as above is 5. There are 48 pairs
of A,C with this property. These 48 matrices are of the type Circ(I, A, B,C)
and Circ(I,C, B, A) for 24 different pairs of A, C.

When m = 8, we search A, C over all 8 x 8 non-singular matrices over Fo with
less than or equal to 3 bit XOR operations. The fewest sum of XORs of one rows’
entries of an MDS Circ(I, A, B,C) constructed as above is 9. There are 40320
pairs of A, C satisfy this property. For all these pairs of A,C, Cire(1,C, B, A)
are also circulant involutory MDS matrices.

Theorem 3. Their exist A, B,C € GL(m,Fs), m = 4,8, such that Circ(I, A,
B, C) is an involutory MDS matriz. Furthermore, the following statements hold.

1. When m = 4, circulant involutory MDS matrices constructed with the above
method satisfy #A + #B + #C > 5.

2. When m = 8, if #A < 3 and #C < 3, then circulant involutory MDS
matrices constructed with the above method satisfy #A + #B + #C > 9.

Ezample 1. Examples of A, B,C such that Cire(I, A, B,C) are circulant invo-
lutory MDS matrices with #A + #B +#C =m + 1.}

(1) m =4, A =[1,2,[1,3],[1,2,4]], C = [4,3,2,1], B = (A+ C)* = [2,[1,2],
(3, 4], 3].
(2) m=28, A=11,2,] ,4],6,5,8,7], C = [5,8,[2,6],7,1,[3,8],4,2], and

2 ;
,7,03,8],12,4],[1,4], 6, 5].

We further investigate the construction of 5 x 5 circulant involutory MDS
matrices. In order to simplify our characterization, we investigate 5 x 5 circulant
matrices of the type Circe(I, A, B, B, A), where A, B € GL(m,F3). Concerning
the property of involutory of Circ(I, A, B, B, (), it is easy to prove the following
result.

Lemma 4. Let L = Circ(I, A, B,B,A) be a circulant matriz, where A, B €
GL(m,Fy). Then L is an involution if and only if A> = AB + BA = B2.

We give constructions by exhaustive searching for A, B with the following
method. The method is often used hereafter in the paper, and we give a detailed
general description here.

The following result is helpful. It can be proved via elementary linear algebra
and we omit the proof here.

Lemma 5. Suppose A,B,C € GL(m,F3) are m x m non-singular matrices
over Fo. Then the following statements hold.

(1) (é é) is of full rank if and only if rank(BA + C) = m
(2) (g’ é) is of full rank if and only if rank(CA + B) =

! More examples of circulant involutory MDS matrices with #A+#B+#C =m+1
are given in the appendix of the extended version of the paper [14].
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3 4, B is of full rank if and only if rank(AC + B) = m.
I, C

4 A, B s of full rank if and only if rank(BC + A) = m.
c, I

Let L = Cire(1, A, B, B, A). According to Theorem 1, if L is MDS, then all
its square sub-matrices are of full rank. According to Lemma5, we have the
following fact by investigating all square sub-matrices of order 2. If L is MDS,
then the following matrices are non-singular:

A+1,A>+1,B+1,B>+1,A*>+ B,A+ B* A+ B.

Note that A2 + I is non-singular if and only if A + I is non-singular. Then the
conditions can be simplified as the following matrices are non-singular:

A+I,B+I,A+B* A>+B,A+B

Based on the above observations, we have the following searching strategy.
First, note that both A and B should satisfy rank(X + 1) = m, X = A, B. The
equalities that both A and B satisfied are called general rules. Then we can
select the candidate set of A and B from the set we want to search over by using
general rules, which means

Sap:={X:X € Ssearcn | rank(X 4+ I) = m}.

The for A € S4 p, we can get the candidate set of B by using the other conditions
that should be satisfied, which means

Sp:={B:B € Sap|rank(A+ B) = m Arank(A®? 4+ B) = m Arank(A + B?) =m
ANA%? = AB + BAA A% = B?}.

At last, for B € Sp, we test whether L is MDS by Theorem 1.

When m = 4, we search A, B over GL(4,F3). The fewest XORs of one row’s
entries of an involutory MDS Cire(I, A, B, B, A) is 4. There are 24 pairs of
A, B such that Circ(I, A, B, B, A) are involutory circulant MDS matrices with
#A + #B = 2. These 24 MDS matrices are of the type Circ(I, A, AT, AT A)
and Circ(I, AT A, A, AT) for 12 different A.

When m = 8, we search A, B over GL(8,F3) with #A4 + #B < 3. No involu-
tory MDS matrix returns. Therefore, if Cire(I, A, B, B, A) is an involutory MDS
matrix, then #A + #B > 4.

Then we have the following result.

Theorem 4. Their exist A, B € GL(m,F3), m = 4,8, such that Circ(I, A, B,
B, A) is an 5 x 5 tnvolutory MDS matriz. Furthermore, if Cire(I, A, B, B, A) is
an involutory MDS matriz, then #A + #B > .

Similar as the method “Subfield construction”that used in [6,19,21], it is
easy to construct involutory MDS Circ(I, A, B, B, A) over F§ with #A+ #B =
4, since we have constructed involutory MDS Circ(I, A, B, B, A) over F4 with
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#A+#B =2 Let X € GL(4,F,), #X =1 and Circ(I, X, X7, X7 X) is an
involutory MDS matrix. Then Circ(I, A, AT, AT, A) is also an involutory MDS
matrix, where A € GL(8,F3) of the following form

X, 0
A= ’ .
%]
Then we can construct 24 circulant involutory MDS by using the above method
and the searching result when m = 4.
In order to get more circulant involutory MDS matrices, we searching A over

GL(8,Fy) with #A4 = 2. We get 20160 A such that Circ(I, A, AT, AT A) are
involutory MDS matrices and #A + #AT = 4.

Ezample 2. Examples of A, B such that Cire(I, A, B, B, A) are circulant invo-
lutory MDS matrices with #A + #B =2

(1) m=4, A=[2,3,4,]1,3]], B=AT = [4,1,[2,4],3].
@) m=8 X =1234[L3), A= |~ 0| = 234,[1,3,6,7.8,[5.7], B =

. X
AT =[4,1,[2,4],3,8,5,[6,8],7].
(3) m=8,A=[35],81,3,4,2,6,(2,7], B=A" = [3,[6,8],[1.4],5,1,7,8,2].

It is interesting that 5 x 5 circulant involutory MDS matrices can be con-
structed with only 3 different entries. We have tried some other methods to
construct circulant involutory MDS matrices with higher order. However, we do
not get an circulant involutory MDS matrix with order large than or equal to 6
until present. We leave it as an open problem.

Problem 1. Construct n x n circulant involutory MDS matrices over GL(m,Fs)
or prove that they do not exist, where n > 6, m =4, 8.

3.2 Constructing Circulant Non-involutory MDS Matrices

In this subsection, we want to construct non-involutory MDS matrices with as
few XORs as possible. We consider circulant matrices of the type

Cire(1,1,A, B),

since it has the most many entries with no XORs in one row.
The searching strategy is similar as previous subsection. If Circ(I,1, A, B)
is MDS, then the following matrices are non-singular:

A+I,B+I,A+B,AB+1,A%>+ B, A+ B>

When m = 4, we search A, B over GL(4,F3). The fewest XORs of one row’s
entries of an MDS Cire(1,1, A, B) is 3. Their are 48 pair of (A4, B) such that
Cire(1,1,A, B) are MDS matrices with #A + #B = 3. These 48 matrices are
of the type Circ(I,I,A, A=2) and Circ(I, I, A=2, A) for 24 different A.
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When m = 8, we search A, B over all 8 X 8 non-singular matrices over Fs
with 1 bit XOR. No MDS matrix returns. This means if Circ(I,I, A, B) is an
MDS matrix over GL(8,F3), then either A or B has at least 2 XORs, and hence
#A + #B > 3. Therefore, the following result hold.

Theorem 5. Let L = Circ(I,1, A, B), where A,B € GL(m,F3), m =4,8. If L
1s an MDS matriz, then #A + #B > 3.

In order to get circulant MDS matrix with the above equality holds when
m = 8, we let B = A~2 and search A over all 8 x 8 non-singular matrices over Fo
with 1 bit XOR. At last, we get 80640 A such that Circ(I, 1, A, A=2) are MDS
matrices with #A4 + #A~2 = 3. Furthermore, Circ(l, I, A=2, A) are also MDS
matrices for all these A.

Ezample 3. Examples of A, B such that Cire(I,1, A, B) and Circ(I,I, B, A) are
MDS matrices with #A + #B = 3.

(1) m=4, A=12,3,4,[1,4]], B= A2 =[2,3],[3,4], 1, 2].
(2) m=8, A=2,3,4,5,6,7,8,[1,3]], B=A"2=[1,7],[2,8],1,2,3,4,5,6].

3.3 Constructing Circulant Orthogonal MDS Matrices

A square matrix L is called orthogonal if L=! = LT where L” is the transpose
of L. It is proven in [13] there do not exist 2¢ x 2¢ circulant orthogonal MDS
matrix over finite fields. In this subsection, we show that 4 x 4 circulant orthog-
onal MDS matrices can also be constructed with non-commutative entries.

Firstly, note that for L = Circ(I, A, B,C), where A, B,C € Fam, it holds
LT = Circ(I,CT, BT AT). This means one have to implement new entries
AT BT CT in decryption circuit when L is orthogonal. In order to simplify
implementation, we let A, B,C € GL(m,Fy) are symmetric matrices, which
means A = AT, B = BT, C = C”T. Then it holds

LT = Circ(I,0", BT AT) = Circ(I,C, B, A),
and it is easy to prove the following result.

Lemma 6. Let L = Cire(I, A, B,C) be a circulant matriz, where A, B,C €
GL(m,Fs) are symmetric matrices. Then L is orthogonal if and only if the fol-
lowing equalities hold:

A2+ B2 =C? AC=CA/A+C=BA+CB,A+C = AB + BC.
If L = Circ(I, A, B,C) is MDS, then the following matrices are non-singular:
B+I,B+A* B+ C? AC+1,AB +C.

When m = 4, we search symmetric A, B, C over GL(4,F5). The fewest XORs
of one row’s entries of an orthogonal MDS Circ(I, A, B,C) is 8. Their are 24
triples of A, B, C such that Circ(I, A, B,C) are orthogonal MDS matrices with
#A+ #B + #C = 8. Then we have the following result.
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Theorem 6. There exist symmetric A, B,C € GL(4,F3) such that Cire(1, A,
B,C) is an orthogonal MDS matriz. Furthermore, if Circ(I,A,B,C) is an
orthogonal MDS matriz, then #A + #B + #C > 8.

Ezample 4. Example of A, B, C such that Circe(I, A, B,C) is an orthogonal cir-
culant MDS matrix #A + #B + #C = 2m.

(1) m =4, A = [1,2,4,3,4]], B = [[1,4],[2.3,4],[2,3],[1,2,4]], C = [2,[1,2],
3,4].

_ _ |41, 0 _[B1, 0 _[cy, 0
(2) m=38, A= 0. A , B = [07 BJ,C— [0’ C,J,where Aq,Bq,Cq

are the A, B, C in the above item.

4 Lightweight Hadamard MDS Matrices

In this section, we investigate the construction of lightweight Hadamard involu-
tory and non-involutory MDS matrices respectively.

4.1 Constructing Hadamard Involutory MDS Matrices

In the case of a,b, ¢ are elements of finite fields, Had(1,a,b,¢) is an involution
if and only if a® + b? = c%. In the case of A, B,C € GL(m,F,), we have the
following result.

Lemma 7. Let A, B,C € GL(m,F3). Then L = Had(I, A, B,C) is an involu-
tion if and only if A, B,C are pairwise commutative and A? + B = C2.

Proof. By matrix multiplication, it can be checked that

L? = Had(I, A, B,C) - Had(I, A, B,C)
= Had(I + A%+ B>+ C? BC + CB, AC + CA, AB + BA).

Therefore, L is an involution if and only if L? = Had(I,0,0,0), which is equiv-
alent to
AB = BA,BC =CB,AC = CA, A? + B> = C?

hold simultaneously. O

When m = 4, we search A, B, C' over GL(4,Fs) as previous. The fewest XORs
of one row’s entries of an involutory MDS Had(I, A, B,C) is 6. There are 144
triples of A, B, C such that Had(I, A, B, C) are involutory MDS matrices with
#A+ #B + #C = 6. These 144 matrices are of the type Had(I, A1, As, As),
where (A1, As, A3) is a permutation of (A, A™!, A + A1) for 24 different A.
When m = 8, we also consider Hadamard matrix of the type

L=Had(I,AJA " A+ A™Y),

where A € GL(m,Fs). According to the above lemma, L is an involution. We
use the method in [20,23] to characterize whether L is MDS. By computing the
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determinants of all the square sub-matrices of L and factorizing these polyno-
mials, we get that L is an MDS matrix if and only if all the following matrices
are non-singular:

AA+T A2+ A+ T A2+ A+, A3+ A%+ 1.

Then we search A over GL(8,F;) with #A < 3. The fewest XORs of one
row’s entries of an involutory MDS Had(I, A, A=, A+ A~1) is 10. We get 80640
A such that Had(I, A, A=1, A+ A=) are involutory MDS matrices with #A4 +
#AT +#(A+ A7) = 10.

We also have searched some other types of Hadamard matrices. However, we
do not get a Hadamard involutory matrix with one row’s XORs less then 10
until present.

Theorem 7. 1. Let A,B,C € GL(4,F3). If L = Had(I, A, B,C) is an MDS
involution matriz, then #A + #B + #C > 6.

2. Let A € GL(8,Fy) with #A < 3. If L= Had(I,A, A=Y, A+ A=) is an MDS
involution matriz, then #A + #A™1 + #(A+ A7) > 10.

Ezample 5. Examples of A, B, C such that Had(I, A, B, C) are involutory MDS
matrices with #A + #B + #C =m + 2.

(1) m=4,A=1[2,(1,3],4,[2,3]], B= A"t =[[1,2,4],1,[1,4],3],C = A+ A~ =
[1,4],3,1,2].

(2) m=38, A=123,4,56,7,8,[1,3]], B= A" =1[2,28],1,2,3,4,5,6,7], C =

A+ At =[8,[1,3],[2,4],[3,5], [4,6],[5,7],6,8],[1,3, 7]

4.2 Constructing Non-involutory Hadamard MDS Matrices

In this subsection, we want to construct non-involutory Hadamard MDS matrix
with as few XORs as possible. The searching strategy is similar as previous. If
Had(I, A, B,C) is MDS, then the following matrices are non-singular:

A+1,B+1,C+I1,AB+C,AC+B,BA+C,BC+A,CB+A,CA+B.

When m = 4, we search A, B,C over GL(4,F3). The fewest XORs of one
rows’ entries of an MDS Had(I, A, B,C) is 4. There are 72 triples of A, B,C
such that Had(I, A, B, C) are MDS matrices with #A+#B+#C = 4. These 72
matrices are of the type Had(I, A1, Aa, As), where (A7, A, A3) is a permutation
of (A, AT, A+ AT) for 12 different A.

When m = 8, we search A over GL(8,Fz) with #A4 < 2. The fewest XORs
of one rows’ entries of an MDS Had(I, A, AT, A+ AT) is 8.

In order to get Hadamard MDS matrices with fewer XORs in one row, we
investigate Hadamard matrices of the type Had(I, A, AT, B). According to our
searching, if #A4 < 1 and #B < 2, then there are no MDS Had(I, A, AT, B).
Then we have the following result.

Theorem 8. . Let A,B,C € GL(4,Fs). If L = Had(I, A, B,C) is an MDS
matriz, then #A + #B + #C > 4.
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2. Let A,B € GL(8,Fy). If L =
HA+H#AT + #B > 5.

In order to get MDS Had(I, A, AT, B) with #A+#AT +#B = 5, we choose
A with #A = 2 and rank(A + I) = 8 randomly, and then test whether there
exist B with #B = 1 such that Had(I, A, AT, B) is MDS. We repeat the process
several times and get 622 pairs of A, B € GL(8,F5), such that Had(I, A, AT, B)
is MDS and #A + #AT +#B = 5.

Had(I,A, AT, B) is an MDS matriz, then

Ezample 6. Examples of A, B,C such that Had(I, A, B,C) are MDS matrices
with the bounds in the above theorem hold.

(1) m =4, A = [2,3,4,[1,3]], B = AT
12.41,11,3),2,1].
(2) m=8, A= [ 3,4,

C: [[ ]7 Y ’8’ 77

[4,1,[2,4,3], C = A+ AT =

1,5],8,7,5,[3,6]], B = AT = [4,
,2,3].

[ 1,[2,8],3,[4,7],8,6,5],
1

Table 1. Comparisons with previous constructions of non-involutory MDS matrices

Matrix type Elements The first row XOR count Ref.
Circulant GL(8,F3) [I,I,A,B] 3+3x8=27 Subsect. 3.2
Circulant ]Fzg/OX 11b | (0x 02, 0x03,0x01,0x01) |14+ 3 x8=38 AES [8]
Hadamard GL(8,F2) 1, A, AT, B] 54+3x8=29 Subsect. 4.2
Hadamard F,5/0 x 1c3 | (0x 01, 0 x 02, 0x 04, 0 x 91) | 13 + 3 x 8 = 37 [21]
Subfield-Hadamard | Fy4 /0 X 13 | (0X 1, 0% 2, 0 X 8, 0 X 9) 2% (5+3x4)=34][21]

Table 2. Comparisons with previous constructions of involutory MDS matrices

Matrix type Elements The first row XOR count Ref.

Circulant GL(8,F2) | [I,A,B,C] 9+3x8=33 Subsect. 3.1

Hadamard GL(8,F2) [I,A, A1 A4+ A7 104+ 3 x 8 =34 Subsect. 4.1

Subfield-Hadamard | Fp4 /0 X 13 | (0x 1, 0x 4, 0 X 9, Oxd) 2% (643 x4)=36|[21]

Hadamard F,s/0 % 165 | (0 x 01, 0 x 02, 0xb0, 0xb2) | 16 +3 X 8 = 40 [21]

Hadamard F,s/0 x 11d | (0 x 01, 0 x 02, 0 x 04, 0 X 06) | 22 + 3 X 8 = 46 13]

Compact Cauchy | F,g/0 x 11b | (0x 01, 0x 12, 0 x 04, 0 X 16) | 54 + 3 x 8 = 78 7]

Hadamard-Cauchy | F,s/0 x 11b | (0 X 01, 0 x 02, Oxfc, Oxfe) 7443 x 8 =98 [11]

Table 3. Comparisons of MDS matrices over F4 and Fo4

Matrix type Elements | The first row XOR count Ref.
Circulant GL(4,F2) |[I,I,A,B] 3+ 3 x4 =15 | Subsect. 3.2
Involutory circulant | GL(4,F2) |[I,A, B,C]| 5+ 3 x4 =17 Subsect. 3.1
Hadamard GL(4,F2) |[I,A, B,C] 4+ 3 x4 =16 | Subsect. 4.2
Hadamard Fpi/0x 13 (0x1,0x2,0%x8 0x9)|5+3x4=17][21]
Involutory Hadamard | GL(4,F2) | [I,A,A71, A+ A71] 6+ 3 x 4 =18 | Subsect. 4.1
Involutory Hadamard | Fys/0x 13 | (0x1,0x4,0x9,0xd) |6+3x4=18[15,21]
Involutory Hadamard | Fqa/0%x 19| (0x1,0%x2,0x6,0x4)|6+3x4=18[18]
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We give comparisons of our constructions with previous constructions in
Tables 1, 2 and 3 respectively.

The lower bounds on XORs of circulant and Hadamard MDS matrices given
in Sects.3 and 4 are under the supposition L[1,1] = I. Therefore, it is possible
to improve the previous lower bounds when L[1,1] # I. However, we have the
following result with searching, which shows that the lower bounds can not be
improved when m = 4.

4

Theorem 9. Let A; € GL(4,F3), and A = > #A;. Then the following state-
i=1

ments hold. '

If Circ(Aq, Ag, Ag, Ag) is a circulant MDS matriz, then A > 3.

If Circ(Ay, As, Az, Ay) is a circulant involutory MDS matriz, then A > 5.
If Had(Aq, As, As, Ay) is a Hadamard MDS matriz, then A > 4.
( )

B oo~

If Had(Aq, As, A3, Ay) is a Hadamard involutory MDS matriz, then A > 6.

(914

Lightweight “Optimal” 4 x 4 MDS Matrices

It is proven in [17] that the highest possible number of 1 and the lowest possible
number of different entries for a 4 x 4 MDS matrix over finite fields are 9 and 3
respectively. The matrix with the two properties hold simultaneously are called
“optimal” in their presentation slides. The following matrix

— = = Q
S
Q = o
—_ o =

is an example of “optimal” matrix which is given in [17]. Similarly as above, we
investigate the following special matrix,

A

)

o~ o~

I
A
B
1

W~

I
I
1

where A, B € GL(m,F3y) are m x m non-singular matrices over Fo.
If L is MDS, then the following matrices are non-singular:

A4+I,B+I,A+B,A+B* A>+ B, AB + 1.

When m = 4, we search A, B over GL(4,F3), which is the set of all 4 x 4
non-singular matrices over Fy. The fewest XORs of “optimal” MDS matrices
is 13. There are 24 pairs of A, B € GL(m,F3) such that the corresponding
constructions are MDS matrices with 4#A 4 3#B = 13. All these pairs satisfy
B=A"2,
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When m = 8, we search A, B over the set of all 8 x 8 non-singular matrices
over Fo with 1 bit XOR operation. No MDS matrix returns. This means if L is a
“optimal” MDS matrix over GL(8,F53), then either A or B has at least 2 XORs,
and hence #L > 10.

Then we have the following result.

Theorem 10. Let L be a matriz constructed as above, where A, B € GL(m,Fy),
m = 4,8. If L is an MDS matriz, then

13, m—4;
A+ 3B 2 {10, m=8.

In order to get “optimal” matrices over GL(8,Fy) with 10 XORs, we let
B = A2 and search A over all 8 x 8 non-singular matrices over Fy with 1
bit XOR operation. We get 40320 A € GL(8,F3) such that the corresponding
constructions are “optimal” MDS matrices with 10 XORs.

It is interesting that “optimal” 4 x 4 MDS matrices over GL(8,F3) has fewer
XORs than “optimal” 4 x 4 MDS matrices over GL(4,F3).

Ezxample 7. Examples of A, B such that L are “optimal” MDS matrices with the
bounds in the above result hold.

(1) Let A =[[2,3],4,2,1], B= A"2 = [2,[1,3],[1,3,4],3]. Then L constructed
as above is an MDS matrix with 44 A + 3#B = 13.

(2) Let A = [4,5,6,8,3,[4,7],1,2], B = A2 = [[1,6],4,2,7,8,5,[3,7],1]. Then
L constructed as above is an MDS matrix with 4#A + 3#B = 10.

6 Conclusion

In the present paper, we mainly investigate the construction of 4 x 4 lightweight
MDS matrices with entries in the set of m x m non-singular matrices over Fs.
With this method, circulant, Hadamard and involutory Hadamard MDS matrices
with fewer XORs than previous constructions are given. Moreover, circulant
involutory MDS matrices are also constructed with our method. Constructing
lightweight MDS matrices of large order with the method of the present paper
is an interesting problem need further study.
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Abstract. We explore the feasibility of applying SAT solvers to opti-
mizing implementations of small functions such as S-boxes for multi-
ple optimization criteria, e.g., the number of nonlinear gates and the
number of gates. We provide optimized implementations for the S-boxes
used in Ascon, ICEPOLE, Joltik/Piccolo, Keccak/Ketje/Keyak, LAC,
Minalpher, PRIMATESs, Prgst, and RECTANGLE, most of which are
candidates in the secound round of the CAESAR competition. We then
suggest a new method to optimize for circuit depth and we make tooling
publicly available to find efficient implementations for several criteria.
Furthermore, we illustrate with the 5-bit S-box of PRIMATESs how mul-
tiple optimization criteria can be combined.

Keywords: S-box + SAT solvers - Implementation optimization - Multi-
plicative complexity + Circuit depth complexity - Shortest linear straight-
line program

1 Introduction

Implementations of cryptographic algorithms are typically optimized for one
or multiple criteria, such as latency, throughput, power consumption, memory
consumption, etc., but also criteria such as the cost of adding masking counter-
measures to protect against side-channel attacks. It is worthwhile to spend time
on this optimization, as the implementations are typically used many times. It
is usually a hard problem to find an implementation that is actually theoreti-
cally minimal with respect to the criteria, e.g., general circuit minimization is
Zg—complete [10]. However, for small functions this is still possible, using, for
instance, SAT solvers. Especially for building blocks that can be used in multiple
cryptographic algorithms, such as S-boxes, it is useful to look at methods for
finding minimal implementations with respect to some given criteria.

In Sect. 2, we first discuss the simpler problem of finding minimal implemen-
tations of linear functions. We give a brief overview of methods for finding the
shortest linear straight-line program.
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We then move towards S-boxes and in Sect.3 we consider known methods
[13,20] that manage to find minimal implementations for the relevant optimiza-
tion criteria of multiplicative complexity [9], bitslice gate complexity [12], and
gate complexity. The definitions of these criteria are given in Sect.3. We study
how feasible the methods actually are by applying them to S-boxes that are used
in recent cryptographic algorithms, such as several candidates in the CAESAR
competition and lightweight block ciphers. Additionally, we provide tools that
allow anyone to conveniently do the same to other small S-boxes.

Then we look at another optimization criterion: the circuit depth complexity.
This is relevant in hardware implementations to decrease the delay and to be
able to increase the clock frequency. We suggest a new method for encoding the
circuit depth complexity decision problem in SAT and we show how feasible this
method is in practice by providing efficient low-depth S-box implementations for
Joltik [17], Piccolo [22], LAC [23], Prgst [18], and RECTANGLE [24] in Sect. 3.5.

Finally, in Sect. 4 it is discussed how several optimization criteria can be com-
bined, by first optimizing the S-box used by the PRIMATEs [2] for multiplicative
complexity and then for gate complexity. This is done by taking the intermediate
result after optimizing for multiplicative complexity, identifying the linear parts
of this, and by treating these as instances of the shortest linear straight-line
program problem.

Contributions of This Paper. To summarize, the contributions of this paper
are

— implementations of the S-boxes in Ascon, ICEPOLE, Joltik/Piccolo,
Keccak/Ketje/Keyak, LAC, Minalpher, Prgst, and RECTANGLE with a
provably minimal number of nonlinear gates;

— a new method for encoding the circuit depth complexity decision problem as
an instance of SAT;

— optimized and sometimes even provably minimal implementations of the
S-boxes in Joltik/Piccolo, LAC, Prgst, and RECTANGLE with respect to
bitslice gate complexity, gate complexity, and circuit depth complexity;

— a method to combine multiple optimization criteria;

— an implementation of the S-box used by the PRIMATESs that is first optimized
for multiplicative complexity and then for (bitslice) gate complexity;

— tools and documentation to optimize implementations of small nonlinear func-
tions such as S-boxes using SAT solvers, with respect to multiplicative com-
plexity, bitslice gate complexity, gate complexity, or circuit depth complexity,
are put into the public domain. These tools are available online.

2 The Shortest Linear Straight-Line Program Problem

Before tackling the optimization of S-boxes, let us restrict ourselves to linear
functions and let us consider the Shortest Linear Program (SLP) problem over
GF(2). Let A be an m x n matrix of constants over GF(2) and let  be a vector
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of n variables over GF(2). The SLP problem is to find the program with the
smallest number of lines that computes Ax, where every program line is of a
certain form.

Let Z be a set of variables over GF(2), that initially contains the input
variables {zg,...,z,—1}. Let z;, zj € Z. Then every program line is of the form

2=z + zj.

After executing this program line, the new variable 2’ is added to the set, Z :=
ZU{#'}. The new variable z’ can therefore be used in the next program line. The
program is said to compute Az when 3(21,...,2m) € Z" {Ax = (21,...,2m)7}
holds.

Being able to find the shortest straight-line linear program has obvious appli-
cations to cryptology. Solving the SLP over GF(2) is equivalent to finding the
shortest circuit to compute a function using only XOR gates. Optimizing imple-
mentations of linear operations, such as MixColumns in AES and the linear
transformation in certain implementations of SubBytes, can therefore be seen
as instances of the SLP problem over GF(2). However, this method does not
apply to nonlinear operations such as S-boxes. We show in Sect. 3 what kind of
methods can be used in such cases.

Solving the SLP Problem. Boyar, Matthews, and Peralta showed in [7] that
the SLP problem over GF(2) is NP-hard. Off-the-shelf SAT solvers can be used
to find solutions for small instances of this problem. Fuhs and Schneider-Kamp
presented a method [16] to encode the SLP problem as an instance of SAT and
they show how this can be used to optimize the affine transformation of AES’s
SubBytes [15,16].

For larger instances, exact methods will quickly become infeasible. Alterna-
tively, Boyar and Peralta published an approach to solve the SLP problem over
GF(2) based on a heuristic [8]. In short, the heuristic method uses a base vector
set .9, initialized with unit vectors for all variables in x, and a distance vector
Dist]] that keeps track of the minimal Hamming distance to S for each row in
A. Repeatedly, the sum of the pair of base vectors in S that minimizes the sum
of Dist[] is added to S and Dist[] is updated, until Dist[] is the all-zero vector.
If there is a tie between two pairs of base vectors, the pair that maximizes the
Euclidean length of the new Dist[] vector is chosen. This algorithm makes it
possible to find solutions to larger instances of the SLP problem.

3 Optimizing S-Box Implementations using SAT-Solvers

For nonlinear functions such as S-boxes, known approaches based on heuristics [§]
all exploit additional algebraic structure that may be available, e.g., as for the
S-box of AES. However, in general this additional structure may not exist and
one may need to fall back to generic methods such as SAT solvers.
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S-box implementations in both software and hardware can be optimized with
SAT solvers according to several criteria. In this paper we consider the following
optimization goals:

Multiplicative complexity. The multiplicative complexity of a function [9]
is defined as the smallest number of nonlinear gates with fan-in 2 required
to compute this function. If we restrict our S-box implementations to the
{AND, OR, XOR, NOT} operations, we only need to consider the number of ANDs
and ORs. Optimizing for this goal is useful in the case of protecting against
side-channel attacks using random masks, where nonlinear gates are typ-
ically more expensive to mask. There are also applications in multi-party
computation and fully homomorphic encryption, where the cost of nonlinear
operations is even more significant [1].

Bitslice gate complexity. The bitslice gate complexity of a function [12] is
defined as the smallest number of operations in {AND, OR, XOR, NOT} required
to compute this function. This translates directly to efficient bitsliced soft-
ware implementations, as on most common CPU architectures, there are no
instructions for computing NAND, NOR, or XNOR immediately.

Gate complexity. The gate complexity of a function is defined as the smallest
number of logic gates required to compute this function. Unlike for bitslice gate
complexity, NAND, NOR, and XNOR gates are now also allowed. This translates
to efficient hardware implementations, although the different amounts of area
required by these types of gates and the different delays still need to be taken
into account. Note that we only consider gates with a fan-in of at most 2.

Circuit depth complexity. The depth of a circuit is defined as the length
of the longest paths from an input gate to an output gate. Every function
can be computed by a circuit with depth 2, e.g., by expressing the function
in conjunctive or disjunctive normal form. However, this can lead to very
wide circuits with a lot of gates, which is typically not desirable. There is
somewhat of a trade-off between circuit depth and number of gates. Still,
optimizing for this goal is useful in the case of hardware implementations, to
be able to decrease the total delay and therefore to be able to increase the
clock frequency. Again, only gates with a fan-in of at most 2 are considered.

These criteria come with corresponding decision problems. For example,
given a function f and some positive integer k, the multiplicative complexity
decision problem is defined as:

“Is there a circuit that implements f and that uses at most k& nonlinear
operations?”

The decision problems for the other three optimization goals can be defined anal-
ogously. Off-the-shelf SAT solvers can be used to solve these decision problems.
When a SAT solver successfully finds a circuit for some value k& but outputs
UNSAT for k— 1, it is proven that k is the minimum value. Note that when a SAT
solver outputs SAT for some value k, it also provides a satisfying valuation that
can be used to reconstruct an implementation of f.
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In order to use SAT solvers to solve these decision problems, the problems
first have to be encoded in logical formulas in conjunctive normal form (CNF),
because that is the input format that the SAT solver requires.

3.1 Notation

For the encoding, we use the notation of [20]. We consider systems of multivariate
equations over GF(2). In these equations, let:

— x; be variables representing S-box inputs;

— y; be variables representing S-box outputs;

— ¢; be variables representing gate inputs;

t; be variables representing gate outputs;

— a; be variables representing wiring between gates;

— b; be variables representing wiring ‘inside’ gates. This will become more clear
when they are first used in Sect. 3.3.

In the implementations the logical connectives are used to denote the types
of operations, i.e., let A, V, @&, - denote AND, OR, XOR, NOT, respectively, and let
T, |, <> denote NAND, NOR, XNOR, respectively.

3.2 Optimizing for Multiplicative Complexity

Courtois, Mourouzis and Hulme [13,20] suggested a method to encode the mul-
tiplicative complexity decision problem. Let f : F§ — F5* be an S-box and let
k be the multiplicative complexity that we want to test for. Then first create a
set of equations C' in ANF consisting of:

- Vie{0,....,k—1}: t; = q2; - q2i+1, to encode the k AND gates.
. n— -1
- vie{0,....2k—1} g =ar+ (Zj:Ol Altj+1 '%‘) + (Z;Lfg At ntjt1 'tj>v

where [ = i(n + 1) + {E#J, to encode that the inputs of the AND gates

can be any linear combination of S-box inputs and previous AND gate outputs.
The single a represents an optional NOT gate.
. n—1 k—1
- Vie{0,....m—1}y; = (Z;:O Astj ~mj> + (Ej:O Astnti -tj), where s =
2k(n+1) + k(k — 1) +i(n+ k), to encode that the S-box outputs can be any
linear combination of S-box inputs and AND gate outputs.

For example, when n = m = 4 and k = 3, this leads to the following set of
equations C:
go=aop+ a1 -To+az -x1+az3 -T2+ as-T3
g1 =as+a¢ " To+ar-r1+ag- -T2+ ag- T3
to=4qo-q
g2 = a10 + Q11 - To + Q12 - T1 + Q13 - T2 + Q14 - T3 + a15 - Lo
g3 = a16 + @17 - To + Q18 - T1 + Q19 - T2 + az0 - T3 + a21 - {o

t1 =q2-q3
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Qs = a2 + a23 - To + G24 - T1 + Q25 - T2 + age - T3 + az7 - to + ags -ty

G5 = G29 + G30 - To + G31 - T1 + a32 - T2 + a3z - T3+ azq - o+ ass - 11
lo=qa- G5

Yo = ase - To + a3y - T1 + ass - To2 + aszg - T3 + a4o - to + a41 - t1 + aqz - ta
Y1 = 43 - To + Q44 - T1 + Q45 - T2 + A46 - T3 + aq7 - o + ags - t1 + Qg9 - t2
Y2 = G50 - To + G511+ Q52 - T2 + a53 - T3 + a54 - to + a55 - L1 + ase - T2

Ys = as7 - To + as8 - T1 + as9 - T2 + ago - T3 + ag1 - to + ag2 - L1 + ags - L2

This set of equations does not depend on f yet, but only on the values of
n and m. The equations in C' have to be satisfied for all possible S-box inputs.
An equation set C” is created that contains 2™ copies of the equations in C, in
which all z;,¥;,q;,t; are renumbered, but in which all a;,b; remain the same.
f is ‘bound’ to the problem description by adding its truth table as 2™(n + m)
constant equations, i.e., one for every bit in both the S-box input and the S-box
output, to C’.

(' is in ANF. The method by Bard, Courtois, and Jefferson [3] for converting
sparse systems of low-degree multivariate polynomials over GF(2) is used to
convert C’ to CNF, such that it is understood by the SAT solver.

Results. This method makes it feasible to find the multiplicative complexity
of several 4-bit and 5-bit S-boxes. Finding the multiplicative complexity comes
with an actual implementation that uses this minimal number of nonlinear gates.
After Courtois, Hulme, and Mourouzis applied this method to the S-boxes of
PRESENT and GOST [12], we show that we can also find results for more
recently introduced 4-bit and 5-bit S-boxes.

We consider the S-boxes, and if applicable, their inverses (denoted by ~1), in
Ascon [14], ICEPOLE [19], Keccak [4]/Ketje [5]/Keyak [6], all PRIMATESs [2],
Joltik [17]/Piccolo [22], LAC [23], Minalpher [21], Prgst [18], and RECTAN-
GLE [24]. Minalpher’s and Prgst’s S-boxes are involutory, which is why their
inverses are not listed separately. The inverse S-boxes in Ascon, ICEPOLE,
Keccak, Ketje, and Keyak are not actually used in decryption and are there-
fore not considered.

For all S-boxes except the one used by the PRIMATESs we are able to prove
the multiplicative complexity. The results are summarized in Table 1. The actual
implementations can be found in Appendix A, but note that these should not
be used by themselves as we are being very generous with X0R gates. The linear
parts should be optimized separately, as we will demonstrate in Sect. 4.

These and subsequent results are obtained using MINISAT 2.2.0' and CRYP-
TOMINISAT 2.9.102 using default parameters on a single core of an Intel Xeon
E7-4870 v2 running at 2.30 GHz.

! http://www.minisat.se/MiniSat.html.
2 http://www.msoos.org/cryptominisat2/.
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Table 1. Multiplicative complexity of S-boxes

S-box Size n X m | Multiplicative complexity
Ascon 5x5 5

ICEPOLE 5x5 6
Keccak/Ketje/Keyak | 5 x 5 5

PRIMATESs 5x5 € {6,7}
PRIMATEs ™! 5x5 € {6,7,8,9,10}
Joltik /Piccolo 4x4 4

Joltik™! /Piccolo™" |4 x 4 4

LAC 4x4 4

Minalpher 4x4 5

Prost 4 x4 4
RECTANGLE 4x4 4
RECTANGLE™! 4 x4 4

For the PRIMATESs S-box and inverse S-box, we find solutions for £ = 7 and
k = 10, respectively. Furthermore, we find for both S-boxes that the case for
k = 5 yields UNSAT. We have started several attempts to find a decisive answer
for £ = 6, including

reducing the CNF, e.g., using NICESAT [11];

— fine-tuning SAT solver parameters;

— trying other SAT solvers;

trying other SAT solvers that can run in parallel on many cores, such as
PLINGELING and TREENGELING?; and

letting all of this run for several months on a machine with 120 cores and 3
TB of RAM.

Unfortunately, none of these attempts resulted in an answer as no solver
instance has terminated yet. As these SAT solvers typically have much more
difficulty with proving the UNSAT case than proving the SAT case, and as the
SAT proof for k = 7 was found in less than 40 hours, we expect the k = 6 case
to yield UNSAT and we therefore conjecture the multiplicative complexity of the
PRIMATESs S-box to be 7. In Sect.4 we go into more detail on optimizing the
PRIMATESs S-box. For the inverse S-box, we did not manage to find solutions
for k € {6,7,8,9}.

3.3 Optimizing for Bitslice Gate Complexity

In [13,20], a method is also given to optimize for bitslice gate complexity. How-
ever, it is only applied on the small CTC2 toy cipher and therefore it remains
unclear how practical this method is for real-world ciphers. We investigate this
by applying the method to the same S-boxes as in the previous section.

3 http://fmv.jku.at /lingeling/.
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The encoding scheme for the bitslice gate complexity decision problem is
slightly different compared to the multiplicative complexity decision problem.
Let f : F — 3 again be an S-box and let & now be the bitslice gate complexity
that we want to test for. Then our first set of equations C' in ANF consists of:

—Vie{0,...,k=1}:t; = b3i-q2i-q2it1+b3i4+1-G2i +03i11-G2it1+ 3542 +b3i42- 2,
to encode the k£ AND, OR, XOR or NOT gates. The b; determine what kind of gate
this will represent, as can be seen in Table 2.

- Vie{0,...,k—1}: 0 =bg; - by;r2 and 0 = b3;41 - b3; 2, to make sure that the
gate is either a unary NOT or a binary AND/OR/XOR, but not the XOR of them.
This excludes NAND/NOR/XNOR gates.

- Vi € {0, .o .,2]€ - 1}2 q; — (Z;l;ol Qp4j - ZL’j) + <Z]|‘2(J)1 Al4n4j ° tj>, where

l=in+ sz#} to encode that the inputs of the gates can be any S-box
input bit or any previously computed bit. 4

- Vie{0,...,2k—1},Vj e {l,....l+n+ 2] -2} Vu € {j+1,....l+n+|5] -1}
0 = a; - ay, to encode an ‘at most one’ constraint on the gate inputs.

-Vie{0,....m—1}:y; = (Z;:Ol Qs 'xj) + (Zf;é Astntj ~tj), where s =
2kn + k(k — 1) + i(n + k), to encode that the S-box output bit can be any
S-box input bit or any gate output.

-Vie{0,...,m—1},Vje{s,....,s+n+k—-2},Vue {j+1,...,s+n+k—1}:
0 = a; - ay, to encode an ‘at most one’ constraint on the S-box outputs.

Table 2. Encoding of different types of gates (bitslice gate complexity)

b3ibsit+1bsit+2 | Gate t; function

000 0

001 Q2

010 q2i D g2i+1

011 Prevented by constraint on bsz; o
100 q2i N G2i41

101 Prevented by constraint on b3;42
110 q2i V q2i+1

111 Prevented by constraint on bs; 2

Converting C' to C’ and then to CNF is the same process as with the multi-
plicative complexity decision problem. Note that the ‘constraint equations’ on a;
and b; do not have to be duplicated 2" times for C’, as they are not renumbered.
This saves a lot of redundant clauses.

Results. As the amount of CNF clauses that is necessary to describe the bit-
slice gate complexity decision problem becomes much larger compared to the
multiplicative complexity decision problem, it can take much more time for a
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SAT solver to actually solve a problem instance. Still, for some 4-bit and 5-bit
S-boxes results can be obtained within minutes or within a few hours. Table 3
contains some examples. If a bitslice gate complexity is listed as < k, a solution
was found for k, but we were unable to prove that this is the minimum because
the SAT solver did not terminate within a reasonable amount of time for k — 1.
The actual implementations with the given number of operations can be found
in Appendix A.

Table 3. Bitslice gate complexity of S-boxes

S-box Size n X m | Bitslice gate complexity | Implementation
Keccak/Ketje/Keyak | 5 x 5 <13 3 AND, 2 OR, 5 XOR, 3 NOT
Joltik /Piccolo 4x4 10 1 AND, 3 OR, 4 XOR, 2 NOT
Joltik—! /Piccolo™ |4 x 4 10 1 AND, 3 OR, 4 XOR, 2 NOT
LAC 4x4 11 2 AND, 2 OR, 6 XOR, 1 NOT
Minalpher 4x4 >11

Prost 4 x4 8 4 AND, 4 XOR
RECTANGLE 4x4 € {11,12} 1 AND, 3 OR, 7 XOR, 1 NOT
RECTANGLE! 4x4 € {10,11,12} 4 OR, 7 XOR, 1 NOT

For Prgst and the (forward) S-box of RECTANGLE, it is interesting to note
that the SAT solvers are able to find the same implementations as the corre-
sponding authors already suggested. We have proven that their bitsliced imple-
mentations are indeed minimal.

3.4 Optimizing for Gate Complexity

A method to encode the gate complexity decision problem was also provided
in [13,20], but again, actual results were only given for the CTC2 toy cipher.
We show that it is feasible to compute the gate complexity for real-world 4-bit
S-boxes as well.

The encoding is very similar to the bitslice gate complexity decision problem.
The first set of equations C' in ANF only differs in two places:

— Instead of the previous rule for ¢;, the gates are encoded differently:
Vi€ {0,...,k —1}: t; = bsi - q2i - q2i+1 + D3it1 - @20 + b3it1 - @2it1 + b3ig2, tO
encode the k gates. The b; determine what kind of gate this will represent, as
can be seen in Table4.

— The additional constraints on the b; are completely omitted.

Converting C' to C” and then to CNF is similar to the previous optimization
goals.
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Table 4. Encoding of different types of gates (gate complexity)

b3ibsi+1b3i+2 | Gate t; function
000 0

001 1

010 q2; D q2it+1

011 g2 < q2i+1

100 q2i N\ q2i4+1

101 q2: T q2it1

110 q2i V q2i+1

111 q2i | q2it1

Results. Our results on real-world 4-bit S-boxes are summarized in Table 5.
The full implementations can be found in Appendix A. For our 5-bit S-boxes
we did not manage to retrieve results. Note that all types of logic gates are
considered equally expensive. There is no type of gate that is preferred over
the other, because information such as differences in area consumption or time
delay are not taken into account. The implementations found by the SAT solver
should therefore not be used directly for hardware implementations. However,
they serve as an optimal starting point from where to swap ‘expensive’ gates
for cheaper ones, depending on the specific technology that is to be used. For
example, the designers of Piccolo suggested a hardware implementation [22] of
their S-box that may or may not be more efficient than the implementation given
here, depending on the specific technology.

Table 5. Gate complexity of S-boxes

S-box Gate complexity | Implementation

Joltik/Piccolo 8 2 OR, 1 XOR, 2 NOR, 3 XNOR

Joltik ™! /Piccolo™ | 8 2 OR, 1 XOR, 2 NOR, 3 XNOR

LAC 10 1 AND, 3 OR, 2 XOR, 4 XNOR

Prgst 8 4 AND, 4 XOR

RECTANGLE € {10,11} 1 AND, 1 OR, 2 XOR, 1 NAND, 1 NOR, 5 XNOR
RECTANGLE™! |e {10,11} 1 AND, 1 OR, 6 XOR, 1 NAND, 1 NOR, 1 XNOR

3.5 Optimizing for Depth Complexity

There are many situations in high-speed hardware implementations where the
implementer wants to keep the depth of the circuit as low as possible, in order
to be able to increase the clock frequency, without having to use significantly
more gates. We provide a novel method to find low-depth implementations of
small functions such as S-boxes using SAT solvers. This method is inspired by
the encoding of the gate complexity decision problem, but modified in some
important ways.
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In the encoding of the gate complexity decision problem, we expressed that
every gate can use the S-box input and the outputs of previous gates as its input.
The key idea here is to divide the circuit into depth layers and to encode the
notion that a gate can only use the S-box input and the output of gates in the
previous layers as its input. This is made more precise later.

First we note that it is necessary to limit the potential increase of the number
of gates when reducing the depth of a circuit. We introduce a fixed maximum
layer width w to address this, so we allow at most w gates to be executed in
parallel. For some function f, we want to be able to answer questions such as:
“is there a circuit implementing f with depth k£ and with at most w gates on
each depth layer?”.

Using this fixed maximum layer width, we make our encoding method more
precise by once more creating a set C' of multivariate equations over GF(2) in
ANF that consists of:

=~ Vie{0,... . kw—1}:t; = bgi - q2i - qaig1 + b3it1 - q2i + b3iv1 - Gaig1 + b3ita, to
encode the kw gates. The b; determine what kind of gate this will represent,
as can be seen in Table4.

- Vi e {0,...,2kw — 1}: ¢; = (Z;’;Ol it .xj) + (Z;’;S I .tj), where
v=|5=|wand | =in+v(i—v—w), to encode that the inputs of the gates
can be any S-box input bit or any previously computed bit.

-vie{0,...,2kw—1}Vje{l,....,l4n+v-2},Vu e {j+1,...,I+n+v—1}:

0 = a; - ay, to encode an ‘at most one’ constraint on the gate inputs.

- Vi e {0,....,m— 1} y; = <Z;;01 Astj -xj) + (Zf:gl Asgntj -tj>, where
s = kw(2n 4+ kw — w) + i(n + kw), to encode that the S-box output bit can
be any S-box input bit or any gate output.

- Vie{0,....,m—1},Vj € {s,...,s+n+kw—-2},Vu € {j+1,...,s+n+kw—1}:
0 =a; - ay, to encode an ‘at most one’ constraint on the S-box outputs.

Converting C to C’ and subsequently expressing this in CNF is again the
same process as before.

Results. Using our method, we are able to find low-depth implementations for
our 4-bit S-boxes. The results are summarized in Table 6 and the corresponding
implementations can be found in Appendix A. The last column in Table6 lists
scenarios that yield UNSAT, to show boundaries on what is possible. The trade-off
between circuit depth and the number of gates is made here in such a way that
reducing the depth by 1 would imply the implementation to have at least twice
as many gates as is required by the gate complexity.

4 Combining Criteria: Optimizing the PRIMATEs S-Box

So far, we have seen how to optimize for one specific goal. However, a result that
is optimized for multiplicative complexity may contain more XOR gates than is
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Table 6. Depth complexity of S-boxes

S-box Depth complexity | w | Implementation UNSAT boundaries
Joltik /Piccolo 4 2 | 2 OR, 1 XOR, k=4,w=1

2 NOR, 3 XNOR k=3w=10
Joltik—! /Piccolo~? | 4 3 | 3 OR, 5 XOR, k=4,w=2

1 NOR, 3 XNOR k=3 w=10
LAC 3 6 | 3 OR, 4 XOR, k=3, w=4

4 NAND, 4 XNOR k=2,w=10
Prost 4 3 |4 AND, 1 OR, 4 XOR, |k=4,w =2

1 NAND, 1 XNOR k=3, w=10
RECTANGLE 3 6 | 2 AND, 3 OR, 5 XOR, |k =3,w =

1 NAND, 1 NOR, 3 XNOR | k = 2,w = 10
RECTANGLE—! |3 6 | 1 OR, 8 XOR, k=3 w=4

3 NAND, 2 NOR, 2 XNOR | k = 2, w = 10

desired, and a result that is optimized for gate complexity may contain more
nonlinear gates than is desired for a masked implementation. Here we show how
multiple optimization goals can be combined by looking at the 5-bit PRIMATES
S-box. We first optimize for multiplicative complexity to have a minimal number
of nonlinear gates, and subsequently we minimize the number of linear gates. The
result is an implementation that has 4 AND, 3 OR, 31 XOR, and 5 NOT gates.

The PRIMATES S-box is an almost bent permutation with a maximum linear
and differential probability of 27%. It is chosen because of its low area consump-
tion in hardware implementations.

When the optimization method for multiplicative complexity is applied, we
find a solution with multiplicative complexity 7 as follows:

go =20 D T3 g9 = T2 B to D ls

G =1 ta =qs N @y

lo=qVaq qi0 = o D 3 D x4

q2 = ~(z1 @ 3) q11 = (2o © x4)

g3 = To D T2 ts = qio V qu1

t1=q2/Ngs 12 ="(x1 Dxo Do Dta Dtz dty)

Ga =20 D1 D4 q13 = 22 B T3

s =To D T2 D3 te = qu2 N\ q13

lo=qs/Ngs Yo =21 Dx3 Dt Dtz D5 Dig

g6 = (20 © T2 ® 3 B 74) Y=o DT Dt Dty Dtz Dty D5 Do
qr =21 D T2 D2y Y=21 02204 Dt Dils Dty D5

ls =q6 V g7 Y3=20D12B 3D 1 Dl3Dla Dl D s

G=T0 DT DT2Dr3DTs  Ys= (12Dt Dt Dtz Dty s Dig)
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It is not hard to see that there are a lot of redundant XOR operations in this
implementation. We distinguish between XOR operations before the nonlinear
gates (on z;) and XOR operations after the nonlinear gates (on ¢;). It is possible
to see them as two straight-line linear programs, where the first describes the
linear part of the S-box approached from the input and the second describes the
linear part approached from the S-box output.

The shortest linear straight-line program problem A;x; can be given by

q0
q1
q2
q3
q4
qs
(]
qr

qs
Ai = g

Zo
Z1
T2
T3
T4

q10
q11
q12
q13
Yo
Y1
Y2
Ys
Ya

o R O P OO0 O O O+, P R~ OOR
SO O = O = O = O O O = = O O = O = = O
_ = = O O OO R B B =B+ OO oo
O R, O O B B O O Kk, OO OO O
S = = =B O O O = = O = = = O = O oo o O©

8

=

\

The shortest linear straight-line program problem Asxo can be given by

g (1 001000 .
2|1 011100 iy
wloo 11011 £

A2=9 |0 1 1 1 1 1 1 z2 = |13
w0 101110 Zl
ys O 001 1 11 iy
wa \1 01 1 1 1 1

We are able to find a minimal straight-line program computing Asx2 using
SAT solvers. We use the method suggested by Fuhs and Schneider-Kamp [16]
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to encode the SLP problem as a SAT instance in CNF. This yields a result
that is incorporated in our implementation of the PRIMATEs S-box. Finding
a minimal straight-line program computing A;x; turned out to be infeasible
using SAT solvers within a reasonable amount of time. Therefore, we apply the
heuristic approach as suggested by Boyar and Peralta [8]. This does provide us
with a short straight-line program. We combine both results and amend the orig-
inal PRIMATEs S-box implementation to get the more efficient implementation
below, where z; represent helper variables.

z20 = To © 24 g7 =24 D 21 z5 =12 ® 24
21 = x1 D x2 t3 =q6 Vq7 z6 =t1 Dtg
Z9 = X2 ® T3 G8 = G4 D 22 27 =14D 25
o =20 D3 zg =1to B3 zg =11 @ 27
to=qo V1 Gy =22 D 29 z10 = to © 27
G2 =1 D w3 la=qsN\gy 211 =14 D 24
q3 = (20 © 2) q10 = ~(23 @ 20) zZ12 = 26 @ 211
1 =q2Vqs ts = qi0 N\ 20 Yo = —(q2 @ 25)
ga =21 D 20 qi2 = (21 D 29 D2 D ty) Y1 =20 D zg
g5 = To P 22 te = qua N\ 22 Y2 = q7 D 212
lo=qa/Ngs z3 =15 Bl Y3 = g6 D 211
g6 = (74 ® g5) Zg =13 23 Ya = 22 D 210

We are able to decrease the previous result of 58 XOR gates to only 31 XOR
gates.

Tools. We provide tools to generate C' in ANF for all discussed optimization
goals and to convert a SAT solver solution back to an S-box implementation. We
place those tools into the public domain. They and additional documentation
are available online at https://github.com/Ko- /sboxoptimization.

5 Conclusion

SAT solvers can be used to find minimal implementations for small functions
such as S-boxes with respect to criteria as the multiplicative complexity, bitslice
gate complexity, gate complexity, and circuit depth complexity. We have shown
how this can be done and how multiple criteria can be combined. However, for
8-bit S-boxes and larger functions these methods quickly become infeasible. One
will then have to resort to approaches based on heuristics.

A Optimized S-Box Implementations

For all given implementations, zy and yo denote the most significant bit of the
S-box input = and the S-box output y, respectively.
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A.1 Optimized for Multiplicative Complexity

Only implementations that do not reach the minimal number of nonlinear oper-
ations when optimizing for other criteria are listed here. The implementations
below serve as a demonstration of what kind of output can be expected from SAT
solvers when optimizing for multiplicative complexity. To increase the amount
of solutions and therefore the likelihood that we will find one fast, we do not
put restrictions on the number of linear gates, which is why the implementations
below are not very efficient. The number of linear gates can be reduced further
as shown in Sect. 4.

Ascon g2 = (12 © x4)
k=5 3 =22 D w3 Dxy
Qo = (23 © 74) l1=¢qNgs
=" qs = T2 Dto Dt
lo=¢q Nq1 s =20 D T2 DrsDxg Dy
Q2 =20 Dx2 DXy to=qu A Qs
q3 = T1 Qs =0 Dx1 Dy
1 =q2/Ngs g7 =21 D x4
Ga = Lo DTy DTy ls =q6 Nqr
4 =T s =11 D2 Dty Dt Do
o =qa/Ngs qo=ToDr1 Dty Dt1 D2
I = T3 D T4 ta =qs N qo
a7 = To gro = "(x2 B t1 B3 Bta)
i3 = q6 N Q7 qi1 = ~(z0 D ty)
s =23 Dt1 Dt ts = qi0 N q11
@9 = 21D T2 Yo =T Dto Dt Bty D5
ta=qs N o YN =To BT DL DTz DTa Dby D+
Yo =2ToDx1 Dx2 D3 Dty Bl Dty Dt
Y1 =20 DT D T3 DTy Dla Yo=T0 DT3Pt Dty Dtz Bty D5
Y2 =11 D12 D r3Dlo Ys =T DT DIz DT Do Dt D ---
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LCEPOLE PRIMATES
k=7
Go =20 D T3 D x4 See Sect. 4.

q1 = X9 D x3
to=qo Nq1
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PRIMATEs!
k=10

qo = 2o D xr2 D3
@ = (x2 D xg)

lo=q Nq
q2 = Zo

q3 = I1
t1=q2Ngs
qa=z2d 23D Yo
qs = %1
to=aqsNgs

gs =11 D1 Do

Q7 = X2 D x4

t3 =dq6 N Q7

qg = T2 Dty D ta D t3

qo=To D3 DTs Dt Do D3

la=qsN\qy

Qo =20 D22 D3 Dt Dla D3

q11 =x1 Dx3 Dty Dl

ts = q10 N\ q11

q12 =20 D x4

q13 =10 D ts Dty D5

te = q12 N\ q13

quu="(20DT1 BT DL Dty ® - -
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q15 =T D T3 Dto Dty Dla Dty Dis

7 =qua N\Nq15

qi6 = (T2 D w3 Dtr B ts)

qrr="(T0® 21 BTs Pl Bt B -
Y )

ls = q16 N 17

Q18 =24 Dl Bts Dl Dig

qi9 = (o D21 B 24 Bty Dtr B tg)
tg = q1s N\ q19

Yo =20 D1 DloDte Dilr Do
=1t dlsdts

Y2 =t3 B l5 D lg Di7

ys =t1 Dta D iy

Yo =o1 Dlo Dty Dlg

Minalpher
k=5

Go =11 Dx2DT3
q1 =T

lo=q ANq1

G2 =x0Dr DT3
g3 =21 Dx2 Dt

1 =q2/Ngs
qs = To D 1o
s =0 D11 D w2 Do
lo=qaN\gs

g6 = (o ® 1 D x2 B Lo B t2)

qr = (2o D w1 D t1)

ts = q6 N g7

s =T0DraDr3 Dty Dt Dty D is
q9 =11 B T2 Dlog Dy D3

ta =g N\ gy
Yo = T2 Dy
y1=20Dx2d 1
Y2 = 1o D13

Yz =11 D ita D3
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A.2 Optimized for Bitslice Gate Complexity

Keccak/Ketje/Keyak ¢, = -z RECTANGLE
k=13 by = 11 Mg k=12
to = o Y2 =la D3 to = x3 V
t1 =tg A T3 ty =20 VY2 ti=x1 Dto
Yy =11 D xy Y1 =22D 1y Y1 =22 D1
t3 = x4 6 =Yy2 VU t3 = a3 ANty
ty =t3 Ao Yo = te D lo ty =20 D3
Y3 = w3 Dty ts =YV Y2=y1 Dl
te = x3 V t3 ys =1t D11 te = 23 D x
y2 =1to D s tr =~y
tg = 2 i“icll ts =tr Vit
to = y1 Vo to = T3 @ To Yo =18 Do
tip = tg Ny t =2 V 20 tio =17 VYo
Yo =19 D s ys = t1 @ to ys =1l ©
Ya = 14 D l1o ts = 21 A ys
ty = —23 RECTANGLE!
Joltik /Piccolo ts =ty B ts k=12
k=10 Y2 =t5 D xo to = ~T2
to =29 V 21 tr =15 N\ ys t1 =z Vi
1 =10 ® 3 s =y3Vys lo =23t
Yo = Tty Y1 =1tr D xy Yo =t Dy
ts =22 VYo Yo =18 D T tg =to Vis
Y2 =1t3 D2y ts = o Dty
ts =21 V o EIZDS; Y3 =1t5 D Yo
te = t5 ® o tr =t2Vys
to = x2 AN xq
ty = t1 Ntg tg =t7 D ts
y1 =to D3 _
ys =22 Dy ty = 2o Ay Yo =13 D x2
y1 = (tg) ti0 = Yo vV 3
Yo =2 Otz y1 =t10 D2
la =19 NYo
Joltik—! /Piccolo! Yo = 20 @ 4
k=10 te = Y1 N Y2
to =~y ys =1 Dl
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A.3 Optimized for Gate Complexity

Joltik /Piccolo t =1 Ato o= ®to
k=8 ta =t1 3 ta = w2 — T
to =x1 Vo yo = 0 < to Y1 =t < o
t1 =x1 | w2 ta =x0 Va1 ta =11 Nt
Yo =3 < 1o ys =tg < 1o ts =y1 < x3
y1 =11 Dxo te =13 Vys te =t1 VI3
ta =y1 Vyo t7 =x9 Vig Y2 =to D itg
ts =yo | z2 yo =te ® zo ts =y2 Tts
Y2 =ts < x1 Y1 =x1 <t Y3 =11 < tg
Y3z = 1tg < T2 Yo =t5 < ty4
Prgst
Joltik—1 /Piccolo! k=8 .
k=8 RECTANGLE~
L to =x2 A1 k=11
to=z1 ] ®o
Y1 =to D x3
Y2 =to D x3 to = x3 Va2
to =x0 N1
ta =y2 | wo t1 =x0 @ to
Yo = x2 D t2
Y1 = T2 < t2 ta=1t1 |
ta =y1 Nyo
ta =y1 Vy2 t3 =t2 @ w3
Y2 = xo D ta
Yo =t = x1 y1 =x2 D13
te = Y1 N Y2
te = yo VY1 ts =11 @ T2
y3 =1 Dis
Y3 =te <> To ys =ts D1
tr=vy1Ty3
LAC RECTANGLE
k=11 tg =ysA\t1
k=10 -
yo=1tr <t
tO:.’L‘2<—>.’L‘3 t():([gllvo yzitg@tg

A.4 Optimized for Depth Complexity

The extra whitespace separates the different depth layers.

Joltik /Piccolo Yo =t < T Yo = I3 < Lo
k=4,w=2 Y3 = tg < T2 ts =10 D11
to =1V xg _

B Joltik—1/Piccolo—? (6 =1 115
tr =1 | 22 kK—4,w=3 lr=y2Vih
Yo = x3 < 1o to =21 Vxg ls = y2 V 2o
ylitl@ﬂfo t1:I2<_’x0 ylz.’I}Q@tS
ta=y1 VYo b =3 &1 Y3 = xo D e

ts = yo | T2 ts =ty B to Yo =13 < tr
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LAC ty =t B a1 RECTANGLE!
k=3,w=6 Yo = 2 Bt k=3, w=6
to =20 T 21 te =yo T 11 to = xo © 11
i1 =23 ® 20 tr = y1 A 29 tr =20 T 2
lg = X3 < T3 tg =14 V ity t2 =23 > T2
ts = 9 ® o v = 70 o f i3 =12 | x3
ty = x2 V 20 ———— ta =122® 11
ts = x1 V 2o ts =x1 V 2o
ys = t5 — to RECTANGLE te = t3 D T2
tr =t o ts k=3,w=6 tr=ts | a1
ts =t5 | x3 to=wo | 3 ts =10 T t2
to = t3 T to b=z 022 to=ts Dt
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tii=x1 1 t2 ts = xo A 11 t11 =1t Dts
ty =11 N2
Y1 =t10 D t7 te = 21 @ 20 y1=1t7Stn
Y2 =t11 © Y2 =tg D x3
Yo =tg < tg to =14 V2 ys =to < te
tr=x31t5 Yo = t10 D ts
tg =ty O3
Prast to=t1 V5
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Abstract. We provide further evidence that implementing software
countermeasures against timing attacks is a non-trivial task and requires
domain-specific software development processes: we report an imple-
mentation bug in the s2n library, recently released by AWS Labs.
This bug (now fixed) allowed bypassing the balancing countermeasures
against timing attacks deployed in the implementation of the MAC-then-
Encode-then-CBC-Encrypt (MEE-CBC) component, creating a timing
side-channel similar to that exploited by Lucky 13.

Although such an attack could only be launched when the MEE-CBC
component is used in isolation — Albrecht and Paterson recently con-
firmed in independent work that s2n’s second line of defence, once rein-
forced, provides adequate mitigation against current adversary capabili-
ties — its existence serves as further evidence to the fact that conventional
software validation processes are not effective in the study and valida-
tion of security properties. To solve this problem, we define a method-
ology for proving security of implementations in the presence of timing
attackers: first, prove black-box security of an algorithmic description of
a cryptographic construction; then, establish functional correctness of an
implementation with respect to the algorithmic description; and finally,
prove that the implementation is leakage secure.

We present a proof-of-concept application of our methodology to
MEE-CBC, bringing together three different formal verification tools to
produce an assembly implementation of this construction that is ver-
ifiably secure against adversaries with access to some timing leakage.
Our methodology subsumes previous work connecting provable security
and side-channel analysis at the implementation level, and supports the
verification of a much larger case study. Our case study itself provides
the first provable security validation of complex timing countermeasures
deployed, for example, in OpenSSL.
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1 Introduction

There is an uncomfortable gap between provable security and practical imple-
mentations. Provable security gives strong guarantees that a cryptographic con-
struction is secure against efficient black-box adversaries. Yet, implementations
of provably secure constructions may be vulnerable to practical attacks, due to
implementation errors or side-channels. The tension between provable security
and cryptographic engineering is illustrated by examples such as the MAC-then-
Encode-then-CBC-Encrypt construction (MEE-CBC), which is well-understood
from the perspective of provable security [22,26], but whose implementation has
been the source of several practical attacks in SSL or TLS implementations.
These security breaks are, in the case of MEE-CBC, due to vulnerable imple-
mentations providing the adversary with padding oracles, either through error
messages [29], or through observable non-functional behaviours such as execu-
tion time [2,16]. These examples illustrate two shortcomings of provable security
when it comes to dealing with implementations. First, the algorithmic descrip-
tions used in proofs elide many potentially critical details; these details must be
filled by implementors, who may not have the specialist knowledge required to
make the right decision. Second, attackers targeting real-world platforms may
break a system by exploiting side-channel leakage, which is absent in the black-
box abstractions in which proofs are obtained.

These shortcomings are addressed independently by real-world cryptography
and secure coding methodologies, both of which have their own limitations. Real-
world cryptography [18] is a branch of provable security that incorporates lower-
level system features in security notions and proofs (for example, precise error
messages or message fragmentation). Real-world cryptography is a valuable tool
for analyzing the security of real-world protocols such as TLS or SSH, but is only
now starting to address side-channels [8,15] and, until now, has stayed short of
considering actual implementations. Secure coding methodologies effectively mit-
igate side-channel leakage; for instance, the constant-time methodology [13,21]
is consensual among practitioners as a means to ensure a good level of protec-
tion against timing and cache-timing attacks. However, a rigorous justification
of such techniques and their application is lacking and they are disconnected
from provable security, leaving room for subtle undetected vulnerabilities even
in carefully tailored implementations.

In this paper we show how the real-world cryptography approach can be
extended — with computer-aided support — to formally capture the guarantees
that implementors empirically pursue using secure coding techniques.

1.1 Owur Contributions

Recent high-visibility attacks such as Lucky 13 [2] have shown that timing leak-
age can be exploited in practice to break the security of pervasively used proto-
cols such as TLS, and have led practitioners to pay renewed attention to software
countermeasures against timing attacks. Two prominent examples of this are
the recent reimplementation of MEE-CBC decryption in OpenSSL [23], which
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enforces a constant-time coding policy as mitigation for the Lucky 13 attack,
and the defense in depth mitigation strategy adopted by Amazon Web Services
Labs (AWS Labs) in a new implementation of TLS called s2n, where various
fuzzing- and balancing-based timing countermeasures are combined to reduce
the amount of information leaked through timing. However, the secure-coding
efforts of cryptography practitioners are validated using standard software engi-
neering techniques such as testing and code reviews, which are not well-suited
to reasoning about non-functional behaviours or cryptography.

As a first contribution and motivation for our work, we provide new evidence
of this latent problem by recounting the story of Amazon’s recently released s2n
library, to which we add a new chapter.

NEW EVIDENCE IN $2N. In June 2015, AWS-Labs made public a new open-source
implementation of the TLS protocol, called s2n [28] and designed to be “small,
fast, with simplicity as a priority”. By excluding rarely used options and exten-
sions, the implementation can remain small, with only around 6 K lines of code.
Its authors also report extensive validation, including three external security
evaluations and penetration tests. The library’s source code and documentation
are publicly available.!

Recently, Albrecht and Paterson [1] presented a detailed analysis of the coun-
termeasures against timing attacks in the original release of s2n, in light of the
lessons learned in the aftermath of Lucky 13 [2]. In their study, they found that
the implementation of the MEE-CBC component was not properly balanced, and
exposed a timing attack vector that was exploitable using Lucky 13-like tech-
niques. Furthermore, they found that the second layer of countermeasures that
randomizes error reporting delays was insufficient to remove the attack vector.
Intuitively, the granularity of the randomized delays was large enough in com-
parison to the data-dependent timing variations generated by the MEE-CBC
component that they could be ‘filtered out’ leaving an exploitable side-channel.
As a response to these findings, the s2n implementation was patched,? and both
layers of countermeasures were improved to remove the attack vector.?

Unfortunately, this is not the end of the story. In this paper we report an
implementation bug in this “fixed” version of the library, as well as a timing
attack akin to Lucky 13 that bypasses once more the branch-balancing timing
countermeasures deployed in the s2n implementation of MEE-CBC. This imple-
mentation bug was subtly hidden in the implementation of the timing counter-
measures themselves, which were added as mitigation for the attack reported

! https://github.com /awslabs/s2n.

2 See the details of the applied fixes in https://github.com/awslabs/s2n/commit/
4d3729.

3 We note that the delay randomization countermeasure was further improved since
the attacks we describe to sampling the delay between 10s and 30s (https://github.
com/awslabs/s2n/commit/731e7d). Further, measures were added to prevent care-
less or rogue application code from forcing s2n to signal decryption failures to the
adversary before that delay had passed (https://github.com/awslabs/s2n/commit/
f8al155).
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by Albrecht and Paterson [1]. We show that the bug rendered the countermea-
sure code in the MEE-CBC component totally ineffective by presenting a timing
attack that breaks the MEE-CBC implementation when no additional timing
countermeasures were present. Due to space constraints, details of the attack
are given in the full version of the paper.*

Disclosure Timeline and Recommendations. The implementation bug and tim-
ing attack were reported to AWS Labs on September 4, 2015. The problem
was promptly acknowledged and the current head revision of the official s2n
repository no longer exhibits the bug and potential attack vector from the
MEE-CBC implementation. Subsequent discussions with Albrecht and Pater-
son and AWS Labs lead us to believe that s2n’s second line of defence (the finer
grained error reporting delay randomization mechanism validated by Albrecht
and Paterson [1]) is currently sufficient to thwart potential exploits of the timing
side-channel created by the bug. Therefore, systems relying on unpatched but
complete versions of the library are safe. On the other hand, any system relying
directly on the unpatched MEE-CBC implementation, without the global ran-
domized delay layer, will be vulnerable and should upgrade to the latest version.

THE NEED FOR FORMAL VALIDATION. The sequence of events reported above®
shows that timing countermeasures are extremely hard to get right and very hard
to validate. Our view is that implementors currently designing and deploying
countermeasures against side-channel attacks face similar problems to those that
were faced by the designers of cryptographic primitives and protocols before
the emergence of provable security. On the one hand, we lack a methodology
to rigorously characterize and prove the soundness of existing designs such as
the ones deployed, e.g., in OpenSSL; on the other hand, we have no way of
assessing the soundness of new designs, such as those adopted in s2n, except via
empirical validation and trial-and-error. This leads us to the following question:
can we bring the mathematical guarantees of provable security to cryptographic
implementations? We take two steps towards answering this question.

A Case Stupy: CONSTANT-TIME MEE-CBC. Our second and main con-
tribution is the first formal and machine-checked proof of security for an x86
implementation of MEE-CBC in an attack model that includes control-flow and
cache-timing channels. In particular, our case study validates the style of coun-
termeasures against timing attacks currently deployed in the OpenSSL imple-
mentation of MEE-CBC. We achieve this result by combining three state-of-
the-art formal verification tools: i. we rely on EasyCrypt [6,7] to formalize a
specification of MEE-CBC and some of the known provable security results for

* https://eprint.iacr.org/2015/1241.

5 The very interesting blog post in http://blogs.aws.amazon.com/security/post/
TxLZP6HNAYWBQ6/s2n-and-Lucky-13 analyses these events from the perspective
of the AWS Labs development team.
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this construction;® ii. we use Frama-C to establish a functional equivalence result
between EasyCrypt specifications and C implementations; and iii. we apply the
CompCert certified compiler [24] and the certified information-flow type-system
from [4] to guarantee that the compiled implementation does not leak secret
information through the channels considered, and that the compiled x86 code is
correct with respect to the EasyCrypt specification proved secure initially.

A FRAMEWORK FOR IMPLEMENTATION SECURITY. To tie these verification
results together, we introduce — as our third contribution — a framework of
definitions and theorems that abstracts the details of the case study. This frame-
work yields a general methodology for proving security properties of low-level
implementations in the presence of adversaries that may observe leakage. This
methodology relies on separating three different concerns: i. black-box specifi-
cation security, which establishes the computational security of a functional
specification (here one can adopt the real-world cryptography approach); ii.
implementation correctness, which establishes that the considered implemen-
tation behaves, as a black-box, exactly like its functional specification; and iii.
leakage security, which establishes that the leakage due to the execution of the
implementation code in some given leakage model is independent from its secret
inputs. Our main theorem, which is proven using the previous methodology,
establishes that our x86 implementation retains the black-box security proper-
ties of the MEE-CBC specification, i.e., it is a secure authenticated encryption
scheme, even in the presence of a strong timing attacker, and based on standard
black-box cryptographic assumptions.

We insist that we do not claim to formally or empirically justify the validity
of any particular leakage model: for this we rely on the wisdom of practitioners.
What we do provide is a means to take a well-accepted leakage model, and sepa-
rately and formally verify, through leakage security, that a concrete deployment
of a particular countermeasure in a given implementation does in fact guarantee
the absence of any leakage that would weaken a particular security property in
the chosen leakage model.

Outline. In Sect. 2, we describe the MEE-CBC construction and informally dis-
cuss its security at specification- and implementation-level. We then present the
definitions for implementation-level security notions and the statement of our
main theorem (Sect. 3). In Sect. 4, we introduce our methodology, before detail-
ing its application to MEE-CBC in Sect. 5. We then present and discuss some
benchmarking results in Sect. 6. Finally, we discuss potential extensions to our
framework not illustrated by our case study (Sect.7). We conclude the paper
and discuss directions for future work in Sect.8. A long version of this paper,

5 Formalizing all known results for MEE-CBC would be beyond the scope of this
paper, and we assume that our EasyCrypt specification of the construction inherits
all the security properties that have been proved in the literature. In other words, in
addition to the properties we formalize, we assume that our MEE-CBC specification
satisfies the standard notions of security for authenticated encryption as proved, e.g.,
by Paterson, Ristenpart and Shrimpton [26].
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with appendices including code snippets, formal definitions of standard black-
box specification-level security notions, and a discussion of further related work
appears on the IACR eprint server.”

2 Case Study: MEE-CBC

MAC-then-Encode-then-CBC-Encrypt (MEE-CBC) is an instance of the MAC-
then-Encrypt generic construction that combines a block cipher used in CBC
mode with some padding and a MAC scheme in order to obtain an authenticated
encryption scheme. We consider the specific instantiation of the construction
that is currently most widely used within TLS: i. A MAC tag of length tlen
is computed over the TLS record header hdr, a sequence number seq and the
payload pld. The length of the authenticated string is therefore the length of
the payload plus a small and fixed number of bytes. Several MAC schemes can
be used to authenticate this message, but we only consider HMAC-SHA256. ii.
The CBC-encrypted message m comprises the payload pld concatenated with the
MAC tag (the sequence number is not transmitted and the header is transmitted
in the clear). iii. The padding added to m comprises plen bytes of value plen — 1,
where plen may be any value in the range [1..256], such that plen 4+ |m| is a
multiple of the cipher’s block size. iv. We use AES-128 as block cipher, which
fixes a 16-byte block size.
At the high level, the HMAC construction computes

H{((keymac © opad) [| H((keymac @ ipad) || hdr|[seq [ pld)) .

We consider a hash function such as SHA-256, which follows the Merkle-
Damgard paradigm: a compression function is iterated to gradually combine
the already computed hash value with a new 64-byte message block (hash values
are tlen bytes long).

INFORMAL SECURITY DISCUSSION. The theoretical security of MEE-CBC has
received a lot of attention in the past, due to its high-profile usage in the
SSL/TLS protocol. Although it is well-known that the MAC-then-Encrypt con-
struction does not generically yield a secure authenticated encryption scheme [9],
the particular instantiation used in TLS has been proven secure [22,25,26]. The
most relevant result for this paper is that by Paterson, Ristenpart and Shrimp-
ton [26]. Crucially, their high-level proof explicitly clarifies the need for the
implementation to not reveal, in any way, which of the padding or MAC check
failed on decryption failures. This is exactly the kind of padding oracles exploited
in practical attacks against MEE-CBC such as Lucky 13 [2].

After the disclosure of the Lucky 13 attack [2], significant effort was invested
into identifying all potential sources of timing leakage in the MEE-CBC decryp-
tion algorithm. The implementation subsequently incorporated into OpenSSL,
for example, deploys constant-time countermeasures that guarantee the following

7 https://eprint.iacr.org/2015/1241.
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behaviours [23]: i. removing the padding and checking its well-formedness occurs
in constant-time; ii. the MAC of the unpadded message is always computed, even
for bad padding; iii. the MAC computation involves the same number of calls
to the underlying compression function regardless of the number of hash input
blocks in the decoded message, and regardless of the length of the final hash
block (which may cause an additional block to be computed due to the internal
Merkle-Damgard length padding); and iv. the transmitted MAC is compared to
the computed MAC in constant-time (the transmitted MAC’s location in mem-
ory, which may be leaked through the timing of memory accesses, depends on
the plaintext length). Constant-time, here and in the rest of this paper, is used to
mean that the trace of program points and memory addresses accessed during
the execution is independent from the initial value of secret inputs. In particu-
lar, we note that the OpenSSL MEE-CBC implementation is not constant time
following this definition: the underlying AES implementation uses look-up table
optimizations that make secret-dependent data memory accesses and may open
the way to cache-timing attacks.

OUR IMPLEMENTATION. The main result of this paper is a security theorem
for an x86 assembly implementation of MEE-CBC (MEE-CBC,sg). The imple-
mentation is compiled using CompCert from standard C code that replicates the
countermeasures against timing attacks currently implemented in the OpenSSL
library [23]. We do not use the OpenSSL code directly because the code style of
the library (and in particular its lack of modularity) makes it a difficult target for
verification. Furthermore, we wish to fully prove constant-time security, which
we have noted is not achieved by OpenSSL. However, a large part of the code we
verify is existing code, taken from the NaCl library [14] without change (for AES,
SHA256 and CBC mode), or modified to include the necessary countermeasures
(HMAC, padding and MEE composition). Our C code is composed of the fol-
lowing modules, explicitly named for later reference: i. AES128p,c) contains the
NaCl implementation of AES128; ii. HMACSHA256p,¢ contains a version of the
NaCl implementation of HMAC-SHA256 extended with timing countermeasures
mimicking those described in [23]; and iii. MEE-CBC¢ contains an implementa-
tion of MEE-CBC using AES128y,ci and HMACSHA256y,¢c1. We do not include
the code in the paper due to space constraints.

As we prove later in the paper, a strict adherence to the coding style adopted
in OpenSSL is indeed sufficient to guarantee security against attackers that, in
addition to input/output interaction with the MEE-CBC implementation, also
obtain full traces of program counter and memory accesses performed by the
implementation. However, not all TLS implementations have adopted a strict
adherence to constant-time coding policies in the aftermath of the Lucky 13
attack. We now briefly present the case of Amazon’s s2n library, discussing their
choice of countermeasures, and describing a bug in their implementation that
leads to an attack. A more detailed discussion can be found in the long version
of this paper.
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BREAKING THE MEE-CBC IMPLEMENTATION IN $2N. Although parts of the
s2n code for MEE-CBC are written in the constant-time style, there are many
(intentional) deviations from a strict constant-time coding policy. For example,
no attempt is made to de-correlate memory accesses from the padding length
value that is recovered from the decrypted (but not yet validated) plaintext. As
an alternative, the code includes countermeasures that intend to balance the
execution time of secret-dependent conditional branches that might lead to sig-
nificant variability in the execution time. Roughly, the goal of these countermea-
sures is to ensure that the total number of calls to the hash compression function
is always the same, independently of the actual padding length or validity.

The bug we found resides in a special routine that aims to guarantee that
a dummy compression function computation is performed whenever particular
padding patterns might lead to shorter execution times. An off-by-one error
in the checking of a boundary condition implied that the dummy compression
function would be invoked unnecessarily for some padding values (more precisely,
there are exactly 4 such padding values, which are easily deduced from the
(public) length of the encrypted record).

The leakage the bug produces is similar in size to that exploited by AlFardan
and Paterson [2] to recover plaintexts. We have implemented a padding-oracle-
style attack on the MEE-CBC decryption routine to recover single plaintext
bytes from a ciphertext: one simply measures the decryption time to check if
the recovered padding length causes the bug to activate and proceeds by trial
and error.® The attack can be extended to full plaintext recovery using the same
techniques reported in [2].

We already discussed the real-world impact of our attack and our disclosure
interaction with AWS Labs in the introduction of this paper. However, we insist
that for the purpose of this paper it is not the real-world impact of our attack
that matters, but the software bug that gave rise to it in the first place. Indeed
the existence of such a programming bug and the fact that it remained unde-
tected through AWS Labs’ code validation process (and in particular despite unit
testing specifically designed to detect timing side-channels) reveal that there is
a need for a formal framework in which to rigorously prove that an implemen-
tation is secure against timing attacks. This is what we set out to do in the rest
of the paper.

3 Security Definitions and Main Theorem

After a brief reminder of the syntax and security notions for secret key encryp-
tion relevant to our case study, we introduce and discuss the corresponding
implementation-level security notions for the constant-time leakage model and
state our main theorem. Cryptographic implementations are often hardwired at
a particular security level, which means that asymptotic security notions are not
adequate to capture the security guarantees provided by software. We therefore

8 Plaintext recovery is easier than in Lucky 13, since leakage occurs whether or not
the padding string is correct.
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omit the security parameter in all our definitions. For simplicity we also keep the
running time of algorithms implicit in our notations, although we take care to
account for it in our security proofs and to show that there is no hidden slackness
in our reductions.

3.1 Secret Key Encryption

We recall that a secret-key encryption scheme M = (Gen, Enc, Dec) is specified
as three algorithms: i. a probabilistic key generation algorithm Gen(;r) that
returns a secret key SK on input some random coins r; ii. a probabilistic encryp-
tion algorithm Enc(m,SK;r) that returns a ciphertext ¢ on input a message m,
the secret key SK, and some random coins r; and iii. a deterministic decryption
algorithm Dec(c, SK) that returns either a message m or a failure symbol L on
input a ciphertext ¢ and secret key SK. We denote the set of valid messages with
MsgSp and adopt standard notions of correctness, confidentiality (IND$-CPA)
and integrity (INT-PTXT and INT-CTXT) for authenticated symmetric encryp-
tion schemes.

Our goal in the rest of this section is to adapt these standard notions to
formally capture implementation-level security. In particular, we wish to give
the adversary the ability to observe the leakage produced by the computation of
its oracle queries. We first give generic definitions for some core concepts.

3.2 Implementation: Languages, Leakage and Generation

For the sake of generality, our definitions abstract the concrete implementation
languages and leakage models adopted in our case study. We later instantiate
these definitions with a black-box security model for C implementations and a
timing leakage model for x86 assembly implementations.

LANGUAGE, LEAKAGE AND MACHINE. Given an implementation language L,
we consider a machine M that animates its semantics. Such a machine takes
as input a program P written in £, an input ¢ for P, and some randomness r
and outputs both the result o of evaluating P with ¢ and r, and the leakage ¢
produced by the evaluation. We use the following notation for this operation
0 «— M(P,4;r).s s . We make the assumption that the machine is deterministic,
so that all randomness required to execute programs is given by the input r.
However, our security experiments are probabilistic, and we write o«—s M(P, ). ¢
to denote the probabilistic computation that first samples the random coins r
that must be passed as randomness input of P, and then runs M(P,4;r). This
approach agrees with the view that the problem of randomness generation is
orthogonal to the one of secure implementation [14]. We discuss this further in
Sect. 7.

We note that the definition of M makes three implicit assumptions. First, the
semantics of a program must always be defined, since M always returns a result;
termination issues can be resolved easily by aborting computations after a fixed
number of steps. Second, our view of M does not allow an adversary to influence
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a program’s execution other than through its queries. Finally, our model implies
that the semantics of £ can be equipped with meaningful notions of leakage. In
the context of our use case, we adopt the common view of practical cryptography
that timing leakage can be captured via the code-memory and data-memory
accesses performed while executing a program. These can be sensibly formalized
over assembly implementations, but not over higher-level implementations (e.g.,
over C implementations), not least because there is no guarantee that optimizing
compilers do not introduce leakage. For this reason, in our case study, we consider
the following two implementation models:

— a C-level model using a machine M% (or simply M) that animates the C
language semantics with no leakage;

— an assembly-level model using a machine M%Js that animates (a subset of)
the x86 assembly language, and produces leakage traces in the constant-time
leakage model as detailed below.

In both languages, we adopt the semantic definitions as formalized in the Com-
pCert certified compiler.

CONSTANT-TIME LEAKAGE TRACES. Formally, we capture the constant-time
leakage model by assuming that each semantic step extends the (initially empty)
leakage trace with a pair containing: i. the program point corresponding to the
statement being executed; and ii. the (ordered) sequence of memory accesses
performed during the execution step. We specify when this particular leakage
model is used by annotating the corresponding notion with the symbol CT.

3.3 Authenticated Encryption in the Implementation Model

Given a language £ and a (potentially leaking) machine M animating its seman-
tics, we now define M-correctness, M-IND$-CPA and M-INT-PTXT security for
L-implementations of SKE schemes in the leakage model defined by M. In what
follows, we let M* = (Gen™, Enc*, Dec™) be an SKE implementation in language L.

SKE IMPLEMENTATION CORRECTNESS. We say that 1" is M-correct if, for all
m € MsgSp, random coins rgen, fenc, and SK = M(Gen™; rgen), we have that

M(Dec*, M(Enc*, m, SK; renc), SK) = m.
SKE IMPLEMENTATION SECURITY. The M-IND$-CPA advantage of an adversary

A against * and public length function ¢ is defined as the following (concrete)
difference

Adv® = [Pr [ MEINDS-CPAR. , (Real) = true

)

~ Pr| MEINDS-CPAR. , (Ideal) = true |

where implementation-level game M-IND$-CPA is shown in Fig. 1. Here, public
length function ¢ is used to capture the fact that SKEs may partially hide the
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Game M-IND$-CPA|-|A* () proc. RoR(m): proc. Dec(c):

SK s M(Gen™) .z, c«s M(Enc*, m,SK)_.p, m «— M(Dec*, ¢, SK) .,
b s ARCR.Dec(y If (b = Ideal) Then ¢ s {0, 1}#(™D Return (L, £4)

Return (b" = b) Return (c, £¢)

Fig. 1. M-IND$-CPA experiment.

Game M-INT-PTXTZ\ : proc. Enc(m): proc. Ver(c):

List < [J; win «— L c«—s$ M(Enc™, m,SK) ., m «— M(Dec™, c, SK)wgd

SK s M(Gen™) .z, List < m : List win < win V (m # L A m ¢ List)
AEne,Ver g Return (c, £.) Return (m # L, £44)

Return win

Fig. 2. M-INT-PTXT experiment.

length of a message. If ¢ is the identity function or is efficiently invertible, then
the message length is trivially leaked by the ciphertext. In the case of our MEE-
CBC specification, for example, the message length is revealed only up to AES
block alignment.

We observe that in this refinement of the IND$-CPA security notion for imple-
mentations, the adversary may learn information about the secrets via the leak-
age produced by the decryption oracle Dec*, even if its functional input-output
behaviour reveals nothing. In particular, in a black-box adversary model where
leakage traces are always empty, the Dec oracle can be perfectly implemented by
the procedure that ignores its argument and returns (L, €), and the RoR oracle
can be simulated without any dependency on m in the ldeal world; this allows
us to recover the standard computational security experiment for IND$-CPA. On
the other hand, in models where leakage traces are not always empty, the adver-
sary is given the ability to use the decryption oracle with invalid ciphertexts and
recover information through its leakage output.

We extend standard INT-PTXT security in a similar way and define the
M-INT-PTXT advantage of an adversary A against M* as the following (con-
crete) probability:

AdviT P = Pr | MANT-PTXTR. () = true |

where implementation-level game M-INT-PTXT is shown in Fig. 2.

We similarly “lift” INT-CTXT, PRP (pseudorandomness of a permutation)
and UF-CMA (existential MAC unforgeability) security experiments and advan-
tages to implementations. This allows us to state our main theorem.

3.4 Main Theorem

The proof of Theorem 1 is fully machine-checked. However, foregoing machine-
checking of the specification’s security theorems allows us to strengthen the
results we obtain on the final implementations. We discuss this further after we
present our proof strategy.
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Theorem 1 (CT security of MEE-CBC,g5). MEE-CBC,g¢ is MS3g-correct and
provides M&3s-IND$-CPA and MSs-INT-PTXT security if the underlying com-
ponents AES128nac) and HMACSHA256,¢) are black-box secure as a PRP and
a MAC, respectively. More precisely, let ¢(i) = [(i +1)/16] + 3, then

~ For any M%s-IND$-CPA adversary A that makes at most q queries to
its RoR oracle, each of length at most n octets, there exists an (explicitly
constructed) M2-IND$-CPA adversary B that makes at most q-[(n+1)/16]+
2 queries to its forward oracle and such that

(¢ ("5 1+2)°
2128 '

M)C(T -ind$-cpa M2 -prp

AdVIEE CBC, 5.6, 4% = AAVagsizgy,q mme T2

— For any Mﬁé%-lNT-PTXT adversary AP™t that makes at most qg queries to

its Enc oracle and qy queries to ils Ver oracle, there exists an (explicitly

constructed) MQC)-U F-CMA adversary B<™ that makes at most qg queries to
its Tag oracle and qy queries to its Ver oracle and such that

Mg;s -int-ptxt M? -uf-cma
AdVMEE—CBCXgG,APm < AdVHMACSHA256Nac|,B°’“a'

In addition, the running time of our constructed adversaries is essentially
that of running the original adversary plus the time it takes to emulate the
leakage of the x86 implementations using dummy executions in machine Mygg.
Under reasonable assumptions on the efficiency of Mygg, this will correspond to
an overhead that is linear in the combined inputs provided by an adversary to
its oracles (the implementations are proven to run in constant time under the
semantics of £ when these inputs are fixed).

Note that the security assumptions we make are on C implementations of
AES (AES128y,¢i) and HMAC-SHA256 (HMACSHA256,¢i). More importantly,
they are made in a black-boxr model of security where the adversary gets empty
leakage traces.

The proof of Theorem 1 is detailed in Sect. 5 and relies on the general frame-
work we now introduce. Rather than reasoning directly on the semantics of the
executable x86 program (and placing our assumptions on objects that may not
be amenable to inspection), we choose to prove complex security properties on
a clear and simple functional specification, and show that each of the refinement
steps on the way to an x86 assembly executable preserves this property, or even
augments it in some way.

4 Formal Framework and Connection to PL Techniques

Our formal proof of implementation security follows from a set of conditions
on the software development process. We therefore introduce the notion of an
implementation generation procedure.

IMPLEMENTATION CGENERATION. An implementation generation procedure
C*1—£2 is a mapping from specifications in language £; to implementations in
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Game Corrﬁyn,c(): proc. Eval(k,i,r):

bad « false o« N[k](i;r)

M —c(m o' — M(M*[k],4;1) e
AEval () If 0 # o then bad = true
Return — bad

Fig. 3. Game defining correct implementation generation. For compactness, we use
notation MM[k] (resp. M*[k]) for k € {1,2,3} to denote the k-th algorithm in scheme
M (resp. implementation M*), corresponding to key generation (1), encryption (2) and
decryption (3).

language Lo. For example, in our use case, the top-level specification language
is the expression language Lgc of EasyCrypt (a polymorphic and higher-order
A-calculus) and the overall implementation generation procedure CXEc—£xs6 g
performed by a verified manual refinement of the specification into C followed
by compilation to x86 assembly using CompCert (here, Lyg6 is the subset of x86
assembly supported by CompCert).

We now introduce two key notions for proving our main result: correct imple-
mentation generation and leakage security, which we relate to standard notions
in the domain of programming language theory. This enables us to rely on exist-
ing formal verification methods and tools to derive intermediate results that are
sufficient to prove our main theorem. In our definitions we consider two arbitrary
languages £ and Lo, a (potentially leaking) machine M animating the seman-
tics of the latter, and an implementation generation procedure C%*—#2. In this
section, £1 and Ly are omitted when denoting the implementation generation
procedure (simply writing C instead). In the rest of the paper, we also omit them
when clear from context.

CORRECT IMPLEMENTATION GENERATION. Intuitively, the minimum require-
ment for an implementation generation procedure is that it preserves the input-
output functionality of the specification. We capture this in the following
definition.

Definition 1 (Correct implementation generation). The implementation
generation procedure C is correct if, for every adversary A and primitive speci-
fication T, the game in Fig. 3 always returns true.

For the programming languages we are considering (deterministic, I/O-free
languages) this notion of implementation generation correctness is equivalent
to the standard language-based notion of simulation, and its specialization
as semantic preservation when associated with general-purpose compilers. A
notable case of this is CompCert [24] for which this property is formally proven
in Coq. Similarly, as we discuss in Sect. 5, a manual refinement process can be
turned into a correct implementation generation procedure by requiring a total
functional correctness proof. This is sufficient to guarantee black-box implemen-
tation security. However, it is not sufficient in general to guarantee implementa-
tion security in the presence of leakage.
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LEAKAGE SECURITY. In order to relate the security of implementations to that
of black-box specifications, we establish that leakage does not depend on secret
inputs. We capture this intuition via the notion of leakage security, which imposes
that all the leakage produced by the machine M for an implementation is benign.
Interestingly from the point of view of formal verification, leakage security is
naturally related to the standard notion of non-interference [19]. In its simplest
form, non-interference is formulated by partitioning the memory of a program
into high-security (or secret) and low-security (or public) parts and stating that
two executions that start in states that agree on their low-security partitions
end in states that agree on their low-security partitions.

We define what the public part of the input means by specifying a function
7 that parametrizes our definition of leakage security. For the case of symmetric
encryption, for example, 7 is defined to tag as public the inputs to the algorithms
an attacker has control over through its various oracle interfaces (in IND$-CPA,
INT-PTXT and INT-CTXT). More precisely, we define a specific projection func-
tion Tske as follows:

Tske(Gen) = € 7ske(Enc, key, m) = (|key|, |m|) Tske(Dec, key, c) = (|key|, c)

Our definition of leakage security then consists in constraining the information-
flow into the leakage due to each algorithm, via the following non-interference
notion.”

Definition 2 ((M, 7)-non-interference). Let P be a program in Lo and T be
a projection function on P’s inputs. Then, P is (M, T)-non-interferent if, for
any two executions o «— M(P,i;r).. ¢ and o' «— M(P,';t") ¢, we have 7(P,i) =
T(Pi) = (=1

Intuitively, (M, 7)-non-interference labels the leakage ¢ as a public output (which
must be proved independent of secret information), whereas 7 is used to specify
which inputs of P are considered public. By extension, those inputs that are not
revealed by 7 are considered secret, and are not constrained in any way during
either executions. Note that the leakage produced by a (M, 7)-non-interferent
program for some input ¢ can be predicted given only the public information
revealed by 7(P,): one can simply choose the remaining part of the input arbi-
trarily, constructing some input ¢’ such that 7(P,i) = 7(P,4'). In this case,
(M, 7)-non-interference guarantees that the leakage traces produced by M when
executing P on ¢ and ¢’ are equal.

We can now specialize this notion of leakage security to symmetric
encryption.

Definition 3 (Leakage-secure implementation generation for SKE).
An implementation generation procedure C produces M-leakage-secure implemen-
tations for SKE if, for all SKE specifications II written in L1, we have that
the generated Lo implementation (Gen™, Enc*,Dec®) = C(II) is (M, Tskg)-non-
interferent.

9 For simplicity, the length of random inputs is assumed to be fixed by the algorithm
itself.
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PUTTING THE PIECES TOGETHER. The following lemma, shows that applying a
correct and leakage secure implementation generation procedure to a black-box
secure SKE specification is sufficient to guarantee implementation security.

Theorem 2. Let C be correct and produce M-leakage-secure implementations.
Then, for all SKE scheme I that is correct, IND$-CPA-, INT-PTXT- and
INT-CTXT-secure, the implementation M* = C(MN) is M-correct, M-IND$-CPA-,
M-INT-PTXT- and M-INT-CTXT-secure with the same advantages.

Proof. Correctness of IT* follows directly from that of C and [. The security
proofs are direct reductions. We only detail the proof of M-IND$-CPA, but note
that a similar proof can be constructed for M-INT-PTXT and M-INT-CTXT.
Given an implementation adversary A, we construct an adversary B against Il
as follows. Adversary B runs Gen® on an arbitrary randomness of appropriate
size to obtain the leakage fgen associated with key generation and runs adversary
A on lge,. Oracle queries made by A are simulated by using B’s specification
oracles to obtain outputs, and the same leakage simulation strategy to present
a perfect view of the implementation leakage to A. When A outputs its guess,
B forwards it as its own guess. We now argue that B’s simulation is perfect.
The first part of the argument relies on the correctness of the implementation
generation procedure, which guarantees that the values obtained by B from its
oracles in the CPA-game are identically distributed to those that A would have
received in the implementation game. The second part of the argument relies
on the fact that leakage-secure implementation generation guarantees that B
knows enough about the (unknown) inputs to the black-box algorithms (the
information specified by 7skg) to predict the exact leakage that such inputs
would produce in the implementation model. Observe for example that, in the
case of decryption leakage, the adversary B only needs the input ciphertext ¢ to
be able to exactly reproduce the leakage /pec. Finally, note that the running time
of the constructed adversary B is that of adversary A where each oracle query
A introduces an overhead of one execution of the implementation in machine M
(which can reasonably be assumed to be close to that of the specification). O

5 Implementation Security of MEE-CBC

We now return to our case study, and explain how to use the methodology from
Sect. 4, instantiated with existing verification and compilation tools, to derive
assembly-level correctness and security properties for MEE-CBCysgg.

PROOF STRATEGY. We first go briefly over each of the steps in our proof strategy,
and then detail each of them in turn in the remainder of this section. In the
first step, we specify and verify the correctness and black-box computational
security of the MEE-CBC construction using EasyCrypt. In a second step, we
use Frama-C to prove the functional correctness of program MEE-CBC¢ with
respect to the EasyCrypt specification. Finally, we focus on the x86 assembly code
generated by CompCert (MEE-CBC,g6), and prove: i. its functional correctness
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with respect to the C code (and thus the top-level EasyCrypt specification); and
ii. its leakage security. An instantiation of Theorem 2 allows us to conclude the
proof of Theorem 1.

BLACK-BOX SPECIFICATION SECURITY. We use EasyCrypt to prove that the
MEE-CBC construction provides IND$-CPA security (when used with freshly
and uniformly sampled IVs for each query) and INT-PTXT security.

Lemma 1 (Machine-checked MEE-CBC security). The following two
results hold:

— For all legitimate IND$-CPA adversary AP? that makes at most q queries,
each of length at most n octets, to its RoR oracle, there exists an explicitly
constructed PRP adversary BP™P that makes q-[(n+ 1) / X] +2 queries to its
forward oracle and such that:

ntl

Advii P < AdVBD o, + 2 (@[5 + 2" %5 1 £2) 7
where ¢(i) = [(i + 1) / N\]+3 reveals only the number of blocks in the plaintext
(and adds to it the fixed number of blocks due to IV and MAC tag).

— For all PTXT adversary A that makes qy queries to its Dec oracle, there
exists an explicitly constructed SUF-CMA adversary B™ that makes exactly
qv queries to its Ver oracle and such that:

int-ptxt uf-cma
Advp 17 < Advyacems -

Our EasyCrypt specification relies on abstract algorithms for the primitives.
More precisely, it is parameterized by an abstract, stateless and deterministic
block cipher Perm with block size A\ octets, and by an abstract, stateless and
deterministic MAC scheme Mac producing tags of length 2-\.!° The proofs, for-
malized in EasyCrypt, are fairly standard and account for all details of padding
and message formatting in order to obtain the weak length-hiding property
shown in this lemma. Running times for BPP and B“™ are as usual.

We note that, although we have not formalized in EasyCrypt the proof of
INT-CTXT security (this would imply a significant increase in interactive theo-
rem proving effort) the known security results for MEE-CBC also apply to this
specification and, in particular, it follows from [26] that it also achieves this
stronger level of security when the underlying MAC and cipher satisfy slightly
stronger security requirements.

IMPLEMENTATION GENERATION. Using Frama-C, a verification platform for C
programs,'! we prove functional equivalence between the EasyCrypt specification
and our C implementation. Specifically, we use the deductive verification (WP)
plugin to check that our C code fully and faithfully implements a functionality

described in the ANSI/ISO C Specification Language (ACSL). To make sure

10 This is only for convenience in these definitions.
" http://frama-c.com/.
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that the ACSL specification precisely corresponds to the EasyCrypt specification
on which black-box security is formally proved, we rely on Frama-C’s ability to
link ACSL logical constructs at the C annotation level to specific operators in
underlying Why3 theories, which we formally relate to those used in the Easy-
Crypt proof. This closes the gap between the tools by allowing us to refer to a
common specification. Note that, since the abstract block cipher Perm and MAC
scheme Mac are concretely instantiated in the C implementation, we instantiate
A = 16 (the AES block length in bytes) in this common specification and lift the
assumptions on Perm and Mac to the C implementation of their chosen instan-
tiation. We then use the CompCert certified compiler [24] to produce our final
x86 assembly implementation.

To prove leakage security, we use the certifying information-flow type sys-
tem for x86 built on top of CompCert [4], marking as public those inputs that
correspond to values revealed by 7skg. Obtaining this proof does not put any
additional burden on the user—except for marking program inputs as secret
or public. However, the original C code must satisfy a number of restrictions in
order to be analyzed using the dataflow analysis from [4]. Our C implementations
were constructed to meet these restrictions, and lifting them to permit a wider
applicability of our techniques is an important challenge for further work."?

PROOF OF THEOREM 1. Let us denote by Ce¢—*86 the implementation gener-
ation procedure that consists of hand-crafting a C implementation (annotated
with 7ske consistent security types), equivalence-checking it with an EasyCrypt
specification using Frama-C, and then compiling it to assembly using CompCert
(accepting only assembly implementations that type-check under the embedded
secure information-flow type system), as we have done for our use case. We
formalize the guarantees provided by this procedure in the following lemma.

Lemma 2 (Implementation generation). C*ec—*6 jg o M -correct imple-
mentation generation procedure that produces M), -leakage secure SKE implemen-
tations.

Proof. Correctness follows from the combination of the Frama-C functional cor-
rectness proof and the semantic preservation guarantees provided by CompCert.
CompCert’s semantics preservation theorem implies that the I/O behaviour of
the assembly program exactly matches that of the C program. Functional equiv-
alence checking using Frama-C yields that the C implementation has an 1/0
behaviour that is consistent with that of the EasyCrypt specification (under the
C semantics adopted by Frama-C). Finally, under the reasonable assumption that

'2 Tn a recent development in this direction, Almeida et al. [3] describe a method, based
on limited product programs, for verifying constant-time properties of LLVM code.
Their method and the implementation they describe can deal with many examples
that the type system from [4] cannot handle, including a less ad hoc version of our
code and some of the OpenSSL code for MEE-CBC, whilst preserving a high degree
of automation. In addition, their construction easily extends to situations where
public outputs are needed to simulate the leakage trace.
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the CompCert semantics of C are a sound refinement of those used in Frama-C,
we obtain functional correctness of the assembly implementation with respect
to the EasyCrypt specification. For leakage security, we rely on the fact that the
information-flow type system of [4] enforces 7skg-non-interference and hence only
accepts (MS$Js, Tske)-leakage secure implementations. O

Theorem 1 follows immediately from the application of Theorem 2 instan-
tiated with Lemmas 1 and 2. Furthermore, foregoing machine-checking of the
black-box specification security proof and simply accepting known results on
MEE-TLS-CBC [26], we can also show that MEE-CBC,gs is MSJ,-INT-CTXT-
secure under slightly stronger black-box assumptions on AES128y,c; and
HMACSHA256p,(.

6 Performance Comparison

We now characterize the different assurance/performance trade-offs of the tim-
ing mitigation strategies discussed in this paper. Figure 4 shows the time taken
by 5 different implementations of MEE-CBC (one of them compiled in differ-
ent ways) when decrypting a 1.5KB TLS1.2 record using the AES128-SHA256
ciphersuite.'® More specifically, we consider code from s2n (#1) and OpenSSL
(#2), and five different compilations of our formally verified MEE-CBC imple-
mentation (#3-7), focusing on raw invocations of MEE-CBC. It is clear that
the s2n code (#1) benefits from its less strict timing countermeasures, gaining
roughly 1.8% performance over OpenSSL’s (semi-)constant-time implementation
approach (#2). The figures for our verified implementation of MEE-CBC show
both the cost of formal verification and the cost of full constant-time guarantees.
Indeed, the least efficient results are obtained when imposing full code and data
memory access independence from secret data (#4-6).

# | Implementation Compiler Clock Cycles | Time
1 |s2n GCC x86-64 -02 14K Sus
2 | OpenSSL GCC x86-64 -02 23K Ous
3 | MEE-CBCc (AES-NI) | CompCert x86-32 51K 21pus
4 | MEE-CBCc GCC x86-64 -02 59M 25ms
5 | MEE-CBCc GCC x86-64 -O1 62M 26ms
6 | MEE-CBCys6 CompCert x86-32 101M 42ms
7 | MEE-CBCc GCC x86-64 -O0 237M 99ms

Fig. 4. Performance comparison of various MEE-CBC implementations. (Median over
500 runs.)

13 The numbers were obtained in a virtualized Intel x86-64 Linux machine with 4 GB
RAM.
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The assembly implementation produced using the constant-time version of
CompCert (#6), is roughly 8400x slower than s2n, but still over twice as fast as
unoptimized GCC. However, the fact that the same C code compiled with GCC
-02 (#4) is only 1.7x faster'® than the fully verified CompCert-generated code
shows that the bottleneck does not reside in verification, but in the constant-
time countermeasures. Indeed, profiling reveals that NaCl’s constant-time AES
accounts for 97 % of the execution time. These results confirm the observations
made in [12] as to the difficulties of reconciling resistance against cache attacks
and efficiency in AES implementations. To further illustrate this point, we also
include measurements corresponding to a modification of our MEE-CBC imple-
mentation that uses hardware-backed AES (#3). This cannot, in fairness, be
compared to the other implementations, but it does demonstrate that, with cur-
rent verification technology, the performance cost of a fully verified constant-time
MEE-CBC implementation is not prohibitive.

7 Discussions

ON RANDOMNESS. Restricting our study to deterministic programs with an argu-
ment containing random coins does not exclude the analysis of real-world sys-
tems. There, randomness is typically scarce and pseudorandom generators are
used to expand short raw high-entropy bitstrings into larger random-looking
strings that are fed to deterministic algorithms, and it is common to assume
that the small original seed comes from an ideal randomness source, as is done
in this paper. Our approach could therefore be used to analyze the entire pseudo-
random generation implementation, including potential leakage-related vulner-
abilities therein.

ON LENGTH-HIDING SECURITY. Existing implementations of MEE-TLS-CBC
(and indeed our own implementation of MEE-CBC) are not length-hiding as
defined in [26] in the presence of leakage. Indeed, the constant-time countermea-
sures are only applied in the decryption oracle and precise information about
plaintext lengths may be leaked during the execution of the encryption ora-
cle. Carrying length-hiding properties down to the level of those implementa-
tions may therefore require, either the implementation to be modified (and the
Frama-C equivalence proof adapted accordingly), or the specification of imple-
mentation security to more closely reflect particular scenarios—such as the TLS
record layer—where it may be difficult for the adversary to make chosen-plaintext
queries, but easy to make padding and verification oracle queries. In any case,
Lemma 1 does capture the length-hiding property given by our choice of min-
imal padding, and could be adapted to capture the more general length-hiding
property of Paterson, Ristenpart and Shrimpton [26] by making padding length
a public choice.

14 This is in line with general CompCert benchmarks.
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LEAKAGE SIMULATION AND WEAKER NON-INTERFERENCE NOTIONS. Qur use
of leakage security in proving that leakage is not useful to an adversary natu-
rally generalizes to a notion of leakage simulation, whereby an implementation
is secure as long as its leakage can be efficiently and perfectly simulated from
its public I/O behaviour, including its public outputs. For example, an imple-
mentation of Encrypt-then-MAC that aborts as soon as MAC verification fails,
but is otherwise fully constant-time should naturally be considered secure,'®
since the information gained through the leakage traces is less than that gained
by observing the output of the Ver oracle. The more general notion of leakage
simulation informally described here would capture this and can be related to
weaker notions of non-interference, where equality on low outputs is only required
on traces that agree on the value of public outputs. Theorem 2 can be modi-
fied to replace leakage security with the (potentially weaker) leakage simulation
hypothesis.

8 Conclusions and Directions for Future Work

Our proposed methodology allows the derivation of strong security guarantees
on assembly implementations from more focused and tractable verification tasks.
Each of these more specialized tasks additionally carries its own challenges.

Proving security in lower-level leakage models for assembly involves consid-
ering architectural details such as memory management, scheduling and data-
dependent and stateful leakage sources. Automatically relating source and exist-
ing assembly implementations requires developing innovative methods for check-
ing (possibly conditional or approximate) equivalences between low-level prob-
abilistic programs. Finally, obtaining formal proofs of computational security
and functional correctness in general remain important bottlenecks in the proof
process, requiring high expertise and effort. However, combining formal and
generic composition principles (such as those used in our case study) with tech-
niques that automate these two tasks for restricted application domains [5,11,20]
should enable the formal verification of extensive cryptographic libraries, in the
presence of leakage. We believe that this goal is now within reach.

On the cryptographic side, the study of computational security notions that
allow the adversary to tamper with the oracle implementation [10] may lead
to relaxed functional correctness requirements that may be easier to check, for
example by testing. Extensions of our framework to settings where the adversary
has the ability to tamper with the execution of the oracle are possible, and would
allow it to capture recent formal treatments of countermeasures against fault
injection attacks [27].

5 Some anonymity properties, such as untraceability, may require the cause of decryp-
tion failure to remain secret in the black-box model, in which case leakage must not
reveal it either [17].
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Abstract. Implementations of white-box cryptography aim to protect
a secret key in a white-box environment in which an adversary has full
control over the execution process and the entire environment. Its funda-
mental principle is the map of the cryptographic architecture, including
the secret key, to a number of encoded tables that shall resist the inspec-
tion and decomposition of an attacker. In a gray-box scenario, however,
the property of hiding required implementation details from the attacker
could be used as a promising mitigation strategy against side-channel
attacks (SCA). In this work, we present a first white-box implemen-
tation of AES on reconfigurable hardware for which we evaluate this
approach assuming a gray-box attacker. We show that — unfortunately —
such an implementation does not provide sufficient protection against an
SCA attacker. We continue our evaluations by a thorough analysis of the
source of the observed leakage, and present additional results which can
be used to build stronger white-box designs.

1 Introduction

Initially the field of white-box cryptography was mainly motivated by applica-
tions of the field of Digital Rights Management (DRM) that aims to protect
a secret key in a white-box environment, where an adversary has full control
over the execution process and the environment of a cryptographic implementa-
tion. However, with the widespread emerging of embedded and pervasive com-
puting devices implementing cryptographic functions and primitives, the threat
of white-box adversaries is no longer limited to cryptographic software imple-
mentations. Although, an adversary might be limited by the gray-box model
in practice (i.e., he cannot control the execution process and the environment
entirely), Side-Channel Analysis (SCA) attacks are well-known to be used to
exploit information leakage related to the device internals e.g., by analyzing
power consumption or electromagnetic radiations (EM). Still, for successfully
mounting such physical attacks, the attacker requires at least some knowledge
about the internals in order to build adequate hypotheses that can be used, for
example, for key extraction. In this context the nature of white-box cryptogra-
phy that effectively disguising all internals and the secret key from the attacker
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T. Peyrin (Ed.): FSE 2016, LNCS 9783, pp. 185-203, 2016.
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by encoding them into tables, seems to yield some inherent resistance against
such physical attacks.

Previous Works: In 2002, first white-box implementations for DES [9] and
AES [10] were proposed by Chow et al. in order to protect a secret key within
a cryptographic implementation in presence of a white-box adversary. However,
these seminal proposals and their implementations were soon shown to be vul-
nerable to differential cryptanalysis [13,22] as well as algebraic cryptanalytic
attacks [3,16,17]. This led to some new proposals for white-box implementa-
tions of AES. In 2009, Xiao et al. in [23] proposed a variant of the design of
Chow et al. using larger linear encodings, for which again a vulnerability against
algebraic cryptanalytic attacks was identified in [20]. Other approaches suggest
to build white-box AES implementations using pertubations [7] (which was bro-
ken in [21]) or based on the concept of dual-ciphers [14].

Recent work in [2] aims to generalize and formalize notions for white-box
cryptography and related attacks for any SLT cipher presenting general attack
strategies and upper bounds for their complexity. Besides the vulnerabilities
against differential and algebraic cryptanalysis, Bos et al. in [4] showed that
secret keys of existing white-box implementations can be extracted by observing
the addresses which are accessed during the execution if the external encodings
are known to the adversary. The underlying so-called Differential Computational
Analysis (DCA) applies the concept of Differential Power Analysis (DPA) [15]
on eavesdropped address bits.

A first white-box implementation in hardware has been proposed for the
NOEKEON cipher in [6,8] using 1-bit linear nibble encodings (i.e. masking with
deterministic masks).

Our Contribution: In this work we propose a white-box implementation of
AES dedicated to reconfigurable hardware. Although the white-box implemen-
tation of Chow et al. initially was proposed for software implementations, we
show that the implementation can be mapped to existing reconfigurable hard-
ware architectures. Note that only recent generations of reconfigurable hardware
devices provide adequate amounts of resources to cope with the large memory
requirements of white-box implementations.

For this hardware implementation we next examine the vulnerability to SCA
attacks assuming a gray-box adversary model. These results, obtained from an
FPGA platform extend the observation by Bos et al. (in [4]). We show that SCA
attacks such as classical DPA can reveal the secrets in hardware implementations
applying white-box cryptography even in gray-box settings.

Finally, we perform a thorough mathematical investigation and analysis of
the construction of look-up tables used in white-box cryptography. We explain
and verify the reason behind the success of such (DCA and DPA) attacks what
has not been addressed in the seminal work of Bos et al.. Our results give a
better understanding of the mathematical foundations of these attacks which
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can pave the way for improved future white-box designs and implementations
that are resistant against such analyses and threats.

Outline: The remainder of this article is organized as follows: Sect. 2 introduces
the basic concept of white-box cryptography and gives a detailed explanation of
the white-box implementation of Chow et al. including design and construction
approach and known attacks and vulnerabilities. The process of transforming this
white-box implementation into a hardware architecture (realized on an FPGA)
is described in Sect.3. In Sect.4 we deal with gray-box adversary model and
SCA attacks. We recap the concept of DCA and pinpoint the source of leakage
of the given AES white-box implementation before we conclude in Sect. 5.

2 Background

This section introduces the basic concept of white-box cryptography and gives
a detailed description of the seminal AES white-box implementation of Chow
et al.

2.1 White-Box Cryptography

Cryptographic algorithms are designed to enable a secure communication even
in the presence of an attacker. Nowadays, cryptographers differentiates between
three common attacker models which try to estimate and model the capabilities
of an adversary. Usually, modern cryptographic algorithms and their implemen-
tations are analyzed within such attacker models in order to deduce and estimate
their security.

The traditional security and attacker model is the so-called black-box model
which assumes a trusted execution environment and secure communication end-
points. In this model, cryptographic implementations are considered as black-box
where an adversary can only observe the input and output behavior.

Since the development and deployment of embedded systems for security
purposes the black-box model has been superseded by the gray-box model. This
model includes the black-box settings but in addition assumes some expanded
capabilities of a possible attacker. Cryptographic implementations are no longer
considered as black-box but instead an adversary has limited access to the imple-
mentation internals which can be used to break the implementation. Note that
gray-box attacks (e.g., SCA attacks) usually focus and target cryptographic
implementations rather than cryptographic algorithms which still should be
secure under the assumption of the black-box model.

However, another attacker model called white-box model has been intro-
duced in particular for software implementations of cryptographic algorithms.
For this model, the capabilities of an adversary are virtually unlimited since the
attacker is assumed to have full control over the implementation and its exe-
cution environment. Aim of any implementation considered to be secure under
the white-box model is to behave as a virtual black-box to any kind of attacker
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such that even a white-box attacker should not have any additional advantage
over black-box attackers. The ideal white-box implementation would consists
of a single look-up table mapping a plaintext to its specific ciphertext already
including a (hidden) secret key. Obviously this is impractical for modern ciphers
with block and key sizes of 128 bits or more. An alternative approach is to trans-
form the cryptographic primitive into a functionally-equivalent implementation
using a series of smaller look-up tables. In a further step, secret and invertible
encodings are applied to each look-up table individually in order to protect and
hide secret key materials.

In general, the strategy for the design of white-box implementations of a
round-based symmetric block cipher can be depicted as:

(f(’”“l))*1 oE"of"0---0 (f(s))fl oE?0f%0 (1:(2))71 oEl'of!
table table table

= (fr+D)) 16 ET 6. 0 E2 0 El o f! = (FU+1) 1 0 B o f1,

where E?€{1--7} is a single round instance of the block cipher and f! respectively
(fr+1)~1 are considered as external input and output encoding of the white-box
implementation (in order to prevent Code Lifting attacks [11]).

The white-box model has initially been proposed by Chow et al. [9] in 2002
when focusing on a fixed key implementation of the DES algorithm, and shortly
afterwards a white-box implementation of the AES algorithm was presented [10].
In the following, we first introduce this seminal AES white-box implementation
and discuss the design principles and known attacks and vulnerabilities under
the white-box model before we show how to implement this design in hardware.

2.2 White-Box Implementation of AES

The architecture presented in [10] is a fixed key implementation with a fully
unrolled design merging the atomic operations into a series of look-up tables.
Basic design goals of this construction are to hide the key and algorithm structure
through implementing the algorithm as a network of randomized look-up tables.
Each look-up table is encoded and protected individually using random linear
and non-linear bijections. Since a detailed discussion of the design would exceed
the scope of this work we refer the interested reader to [19] and restrict the
discussion of the white-box implementation to its basic design principle and
construction.

Design and Construction: The transformation of an unprotected AES imple-
mentation (independently of the used key size) into a white-box protected fixed
key implementation according to the scheme of Chow et al. can be achieved
in two phases: first, the AES algorithm has to be rewritten and translated as
a series of look-up tables and second, secret but invertible encodings have to
be applied to all look-up tables in order to build a white-box implementation.
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The following section will describe this process exemplary for the case of AES-
128 as presented in [10], but again subdividing each phase into two steps.

In the following, we use the lower-case letter x for single bytes of the inter-
mediate round state, k for a single byte of a round key, a raising index " for the
current round and lowering indices (; ;) for the current byte position in the state
matrix, where ¢ denotes the row index and j the column index. Functions are
represented with sans serif fonts. The AES S-box is denoted with S(.) and the
matrix of the MixzColumns operation is denoted by MC.

Step 1: Partial Evaluation. In the first step, the S-box computation is combined
with the preceding addition of the round key. Merging both operations yields
into a single look-up table defined as T-box:

T;(x) =S(z @ k) for0<i,j<3and1<r<9
10 — 7.10 111 P
Ti@) =S@Eok;_ ;) ®k; for 0 <4,5 <3

This step results in 160 different key-dependent T-boxes. It should be noted,
that the T-boxes of the last round incorporate two bytes of two different round
keys. This is due to the missing MizColumns operation and the final post-
whitening key addition.

Step 2: Matriz Partitioning. A well-known implementation technique for the
MixColumns operation is to decompose it into four different 8 x 32-bit look-
up tables using the matrix partitioning strategy. Eventually, four 32-bit table
outputs are added, resulting in the original MizColumns transformation. Apply-
ing this approach to our previously constructed T-boxes gives us a new set of
different TMC tables, where MC; denotes the i-th column of the MC matrix:

TMC; ;(x) = MC; o T} () for0<i4,j<3and1<r<9

Finally, this results in 144 different 8 x 32-bit TMC look-up tables and
additionally 16 different 8 x 8-bit T-boxes for the last round. Since all look-
up tables comprise a small portion of the secret key, they have to be pro-
tected against attackers aiming at extracting the secret. For a better illus-
tration, the key-dependent tables can be seen as miniature block ciphers that
have to be enhanced by well-known techniques such as diffusion and confusion
for protection purposes. Before applying randomly chosen invertible non-linear
white-box encodings to the key-dependent tables in order to achieve confusion,
diffusion is achieved through the application of linear transformations® called
mixing bijections.

Step 8: Mizing Bijections. To add diffusion to each key-dependent table, two
different linear transformations are necessary: an 8 x 8-bit linear transformations

! Note that originally affine and non-affine transformations were considered. However,
since the constant of any affine transformation can be combined with the non-affine
mapping, this eventually behaves as linear transformations.
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L7 ; is inserted before TMC; ;, and a 32 x 32-bit transformation R is applied
afterwards. In order to cancel out the effect of the transformation R} after the
addition of the TMC output values, another untwist table is introduced after
each TMC table. This untwist table takes care of canceling the effect of the
transformation R} and applying new 8 x 8-bit transformations (L%l)_1 to keep
the encryption process consistent during all rounds. These transformations can
be found by randomly creating linear matrices and checking for invertibility.

Step 4: Nibble Encodings. Eventually, non-linear white-box encodings are applied
to all table inputs and outputs. For the sake of efficiency, concatenation of 4-bit
nibble encodings were chosen rather than 8-bit byte encodings. Since these non-
linear encodings avoid linear operation over the TMC table outputs, dedicated
tables for the XOR operations have to be introduced. These nibble encodings
can be found by constructing random 4-bit permutations. All in all, this design
strategy results in five different look-up tables that are defined as follows:

L-Ia: Nout o R} o TMC}J o (Fm-)f1 (8 x 32-bit)
L-Ib: GijoTi%oLi%o(Niy)™? (8 x 8-bit)
L-II: Nous © R} 0 TMC] ;0 Li ;o (N;p) 1 (8 x 32-bit)
L-TIT: Noyeo (L7317 o (RF) ™o (Nj) ™ (8 x 32-bit)
L-1V: Nin 0 La 0 (Ngyut) ™t (8 x 4-bit)

Combining these tables in their designated way (a single round is depicted
in Fig. 1) results in an encoded fixed-key white-box AES instantiation

AES) = Go AESi o F1,

where F~! and G are responsible for external input and output encodings respec-
tively.

Known Attacks and Vulnerabilities: Below we briefly outline the known
attacks and vulnerabilities of the above presented white-box AES implementa-
tion. Some of the threats were already considered during its design. For those, we
additionally explain how the attacks were targeted and how the countermeasures
were integrated.

Code Lifting Attacks. Since the secret key is hidden and integrated into the
white-box implementation, the goal of an attacker is obviously to extract
the secret key. However, such fixed-key white-box implementations suffer from
another kind of threat where an attacker is not interested in extracting the
secret key but instead cloning the entire white-box implementation in order to
use it at another place. This threat is known as “‘Code Lifting”’ where the
entire white-box application is seen as a single key that is cloned and misused
by an attacker to encrypt and decrypt data without being in possession of the
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Fig. 1. White-box implementation of a quarter AES round

secret key. To avoid such kind of attacks, external encodings (F and G) are intro-
duced, turning an white-box implementation Ejx into an obfuscated encryption
function E = G o Ex o F~! with hidden external encodings. By pushing the
white-box implementation boundaries, the attacker is no longer able to misuse
the white-box implementation as long as the external encodings are unknown.

White-Box Inversion. Besides cloning the white-box implementation through
Code Lifting, inverting the encryption (or decryption) function is another prac-
tical issue in particular for white-box implementations of AES. Since the entire
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algorithm is implemented through look-up tables, any white-box attacker would
be able to extract the tables and compute the inverses of all rounds. This allows
to turn any implemented encryption (respectively decryption) function into an
decryption (respectively encryption) without knowing the secret key. In fact,
this issue cannot be prevented but mitigated by external encodings since it pre-
vents the attacker to use the inverted function in a meaningful way. In particular
the application of non-invertible external encodings can prevent the inversion of
white-box implementations ensuring the property of one-wayness.

Stripping of Non-Linear Encodings. A first algebraic analysis of the above-
explained white-box AES implementation has been presented by Billet et al.
[3] which revealed serious vulnerabilities of this design approach by stripping of
the non-linear encodings of the look-up tables and allowing a white-box attacker
to efficiently extract the embedded secret key. Later, Michiels et al. [17] gener-
alized this attack for any cipher following the substitution-linear transformation
(SLT) approach. In general, Billet et al.’s approach considers a quarter of the
AES round function (depicted in Fig.1) as a single 32 x 32-bit function rather
than a decomposition into a series of look-up tables. Following this strategy, the
influence of the mixing bijection R} and any other internal (non-linear) encoding
are canceled out.

It was observed, that with moderate computational effort, the non-linear
encodings at the beginning and end of each quarter AES round can be removed,
so that only some (unknown) affine transformation will remain. Applying this
technique to three subsequent rounds, thus removing the non-linear encodings
up to an affine part, the secret key eventually can be retrieved with a complexity
of at maximum 23 (cf. [3]). Note, however, that this attack is only possible in
the setting of white-box adversaries, since an attacker needs to have full access
to the tables and control over their inputs and outputs.

3 FPGA Implementation

This section briefly introduces modern reconfigurable hardware architectures
exemplary considering Xilinx FPGAs and describes necessary hardware resources
to implement white-box cryptography efficiently in reconfigurable hardware.
Afterwards, the approach of transforming the white-box AES implementation
of Chow et al. into an efficient hardware architecture for recent Xilinx Kintex-
7 FPGAs is outlined. Finally, we give performance and implementation results on
the area and throughput efficiency of the proposed architecture.

3.1 Hardware Resources

Modern FPGAs consist of a sea of general-purpose logic resources that can
implement arbitrary circuits of Boolean functions using small look-up tables.
The logic resources are arranged in an extremely regular array-like structure
and enhanced by special purpose units e.g., Digital Signal Processors (DSPs) or
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Block Memories (BRAMs). The reconfigurable devices are programmed using a
configuration file called bitstream that contains all configuration information for
implemented hardware resources, i.e., the programmable interconnections, the
general purpose logic and the special purpose resources.

General Purpose Logic Resources: Xilinx decided to cluster several general
purpose logic resources as Configurable Logic Blocks (CLBs) and arrange them
in a grid-like structure of rows and columns. Starting with the Virtex-5 family of
Xilinx devices, each CLB constitutes two slices each equipped with four 6-input
Look-Up Tables (LUTSs) and eight adjacent Flip-Flops (FFs) to implement any
circuit of Boolean functions. Starting with the newer 7-series devices, only two
different types of slices (Slice-L and Slice-M) were implemented which only differ
in capabilities of using LUTs as distributed memory instead of function genera-
tors. Both, Slice-L and Slice-M instances, provide some wide multiplexers that
allow to connect the outputs of the LUTSs in order to implement any 8 x 1-bit
Boolean function efficiently into a single slice.

Dedicated Block Memory Resources: Besides general purpose logic that
can also serve as (distributed) memory, modern FPGAs provide larger amounts
of data storage in terms of dedicated BRAMSs. These flexible, low-power memory
units can be configured by the user and provide between 16-Kbits to 32-Kbits
accessible in single or dual port mode (additionally, 2-Kbits respectively 4-Kbits
memory for parity check purposes are available). In dual port mode, two fully
independent ports providing read and write access (even with different clocks)
can be used to access or manipulate data that is stored in memory. In addition,
each BRAM can be configured individually and used in different configurations
considering port width and memory depth, ranging from 32K x 1-bit to 1K x
32-bit entries.

3.2 White-Box Architecture in Hardware

White-box cryptography was initially proposed to protect software implemen-
tations. In this context we like to remark that bitstream configuration files of
FPGA designs are digital binary files that are stored in external memory (that
are accessible for an attacker) and thus exposed to very similar threats. Further,
the basic idea of white-box implementations is to transform a cryptographic
implementation into a series of look-up tables. This perfectly fits the regular
structure of FPGAs implementing arrays of look-up tables with programmable
interconnections. Hence we can conclude that FPGAs seem to be a very good
fit for cryptographic white-box implementations in hardware.

However, since every individual look-up table of the white-box implementa-
tion is different (due to different round keys and randomly chosen encodings),
we cannot implement any area-efficient round-based or serialized architecture
of the AES algorithm nor reuse any of the look-up tables. Instead, we have to
implement an entirely unrolled implementation with every round instantiated
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separately. Due to the application of BRAM primitives, which have a latency of
a single clock cycle, this causes an initial latency of 19 clock cycles (due to 19
stages of 16 parallel look-up tables in the proposed white-box implementation)
but in order to increase the throughput it is possible to operate the encryption
architecture in a pipeline fashion providing ciphertexts at each clock cycle (after
the initial latency).

Mapping Tables into CLBs: Besides the implementation of the key depend-
ing TMC-Tables and T-boxes, the encoded look-up tables to perform the XOR
operations consume a large part of the required storage. Although modern
FPGAs provide large amounts of general purpose data storage in terms of
BRAM, implementing all look-up tables using these dedicated memory prim-
itives is still not feasible. Therefore, some tables have to be transferred to the
general purpose logic in order to fit the design into an FPGA. Since any 8 x 1-
bit Boolean function can be implemented efficiently into a single slice and each
XOR operation and its corresponding look-up table can be decomposed into four
different 8 x 1-bit functions, it is a natural choice to implement these tables in
general purpose logic. In total, each XOR-table can be implemented using four
slices equipped with 4 LUTSs each, thus in total 16 LUT instances are required
(this equals 1024-bit memory). Fortunately, the last round can do without XOR
operations, so we only have to implement these tables for 9 rounds. As depicted
in Fig. 1, a quarter round of the AES white-box implementation implements 48
XOR-tables which results in 192 tables per full round and 1728 tables in total.

Mapping Tables into Block Memory: The remaining look-up tables can be
implemented in BRAM primitives. Most of the tables, except for the T-boxes
of the last round, 8 x 32-bit functions are implemented which requires 8192-
bit of memory. Since we can use the BRAM in dual port mode, two tables
can be implemented in a single BRAM which allows us to entirely use the 16-
Kbit BRAMs resulting in a very dense and efficient implementation. In total,
as depicted in Fig.1, 8 different look-up tables with 32-bit output values are
implemented in a quarter AES round, thus 32 tables are necessary to build a
full round function (except for the last round). In total, 176 different such tables
have to be instantiated along with 16 different 8 x 8-bit T-boxes for the last
round. Note, that all BRAM tables have a similar shape except for the first and
last round.

3.3 Performance Evaluation

Table 1 provides the memory consumption of our white-box implementation of
AES-128 broken down to different look-up table types and their implementation
size (resources and memory). In total, 536 KB of memory are required to imple-
ment this white-box implementation on an FPGA, whereby 41 % of the memory
is required for tables of type £-IV implemented in logic and the remaining 59 %
of memory is necessary to store tables of type £-I to £-III in BRAMs.
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Table 1. Area and memory consumption of different table types

Look-up tables Resources Memory
No. Type Size LUT BRAM | Byte

16 L-TIa | (8 x 32-bit) | - 8 16 384
16 | L-Ib | (s x s-bit) |- 8 4096
144 | L-IT | (8 x 32-bit) |- 72 147 456
144 | L-III | (8 x 32-bit) |- 72 147 456
1728 | L-IV | (s x a-bit) | 27648 |- 221184
Total 27648160 | 536576
Utilization (for xc7x160T) | 28 % |46 % |40 %

As mentioned before, the design has an initial latency of 19 clock cycles intro-
duced by the BRAM stages. If operated in pipelined mode, this architecture can
return one ciphertext per clock cycle after the initial 19 clock cycles. Due to the
pipelined architecture and small critical paths, the entire design can operate at a
maximum frequency of 100 MHz, resulting in a final throughput of 12.8 Gbit/s.
Implementing this on a recent Xilinx Kintex-7 XC7K160T, this design occupies
roughly 28 % of the available slices and 46 % of provided BRAM ressources.

4 Side-Channel Analysis

4.1 Differential Computational Analysis Attack

Recently, Bos et al. introduced a new analysis methodology for cryptographic
white-box implementations in [4] which requires neither knowledge or possession
of the implemented and used look-up tables nor reverse-engineering the tables
during the attack process. The following section briefly introduces the method-
ology of the DCA attack in order to extract secret keys from unknown white-box
implementations.

Methodology: DCA primarily targets software-based white-box implementa-
tions. In order to successfully perform a key-recovery attack the following two
conditions have to be fulfilled:

1. The attacker is able to execute the white-box implementation several times,
with different (randomly chosen) plaintexts.
2. Either input- or output external encodings are known to the attacker.

In particular the second requirement is of major importance since it already
implies that this attack can be prevented if external encodings are applied and
kept secret. However, in practice, at least one encoding (either the initial encod-
ing or the final decoding) usually is known by the user in order to allow a
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meaningful application of the encryption (or decryption) function. If both afore-
mentioned conditions are fulfilled, assuming that the underlying cryptographic
algorithm is known to the attacker, the following three steps can be followed to
perform a DCA attack.

Step 1: Record Multiple Measurements. It is assumed, that the adversary can
execute the white-box implementation in a fully controlled environment. During
multiple execution of the encryption algorithm with randomly chosen plaintexts,
all accessed memory addresses and any data written to or read from memory
are recorded.

Step 2: Conwversion to Ideal Traces. A certain type of information is extracted
from the recorded data. Common examples of promising information are data
read from memory (corresponding to the look-up table outputs), data written
to stack (intermediate values of the encryption process) or parts of memory
addresses (corresponding to inputs of the look-up tables). The extracted data
is converted to a format that can be used by common DPA tools. The authors
proposed to serialize the recorded data into a binary string and append the
results according to their temporal occurrence. This final binary string is handled
as a kind of side-channel trace that we denote to as Ideal Trace since it refers to
the result of a fully noise-free probing process.

Step 3: Perform DPA Attack. Following the concept of classical DPA, by guess-
ing a key byte k* and knowing the corresponding plaintext bytes p, the output
bits of the S-box, i.e., S(p@k™*), are predicted. Using these models (8 for each key
byte) DPA attacks are performed on the Ideal Traces to distinguish the correct
key guess amongst the others.

Although the authors of [4] reported successful key recoveries, the reason
behind such a success has not be clearly stated. Below we first address our
observations from an SCA adversary point of view, and later deal with the
leakage source.

4.2 Differential Power Analysis Attack

In this scenario we supposed a gray-box adversary model, where the underly-
ing cryptographic algorithm (e.g., AES) is known, but no information about
the type of the implementation and its structure (e.g., white-box or ordinary
design) is known to the attacker. Further, we suppose that there is no external
encoding in the design, e.g., the gray-box seen by the attacker performs stan-
dard AES encryption (or decryption). However, the adversary is able to observe
side-channel information (e.g., power consumption) of the implementation while
it is operated.

Measurement Setup. We made use of a SAKURA-X FPGA board [1] equipped
with a Kintex-7 XC7K160T FPGA to practically examine the vulnerability of
our white-box design with respect to such an SCA adversary. By means of a
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digital oscilloscope, the side-channel traces have been collected by measuring
the voltage drop over a 1) resistor in the Vyy path of the FPGA during the
operation of the design. The sampling was performed at a rate of 500 MS/s and
a bandwidth limit of 20 MHz while the design was running at a stable, jitter-free,
but low clock frequency of 3 MHz to mitigate the noise. During the measurement
phase, our hardware implementation of white-box AES was provided by fully
random plaintexts. A sample power trace, where the rounds (19 clock cycles)
are clearly distinguishable, is shown in Fig. 2.
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Fig. 2. A sample power trace.

Evaluation. We have collected 10 million power traces of encryptions while the
plaintexts were selected randomly. In fact, we have applied several different vari-
ants of power analysis attacks including CPA [5], DPA [15] and collision ones [18]
with different hypothetical models. The best result has been achieved by means
of the classical DPA, which is the same as CPA with single-bit power model.
Similar to the case of DCA, for each key byte candidate k£* the output bits of
the S-box at the first round, i.e., S(p ® k*), have been predicted and correlated
to the power traces. The results of such 8 different CPA attacks on each bit of
one of the S-box outputs are shown in Fig. 3. As shown by the graphics, only one
of the attacks (bit 2) is able to recover the secret. We have performed the same
attacks on all 16 S-boxes of the first round. Although the attacks on different
S-boxes did not show identical results, at least one of the output bits of each
S-box led to a successful key recovery, hence full 128-bit key could be recovered.

We would like to note that DCA [4] is indeed a CPA with single-bit power
model, assuming the identity function as the actual leakage model of the device
and noise-free measurements. Hence, we have shown that the attack is still fea-
sible in case of imperfect (i.e., noisy) measurements and a more complex side-
channel leakage function.

4.3 Mathematical Foundations

In order to discuss about the reason behind such a leakage, we first need to give
the following definitions.
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Fig. 3. CPA results, S-box output bit model, 10 million traces

Definition 1. Let © =< 21, ..., 2, >, w =< w1, ...,w, > be elements of {0,1}"
and - w = 1wy D ... B Tpwy. Let f(x) be a Boolean function of n variables.
Then the Walsh transform of the function f(x) is a real valued function over
{0,1}™ that can be defined as Wy(w) = Zme{()’l}n(—l)f(x)@x"”.

Definition 2. Iff the Walsh transform Wy of a Boolean function f(z1, ..., Tys)
satisfies Wr(w) = 0, for 0 < HW(w) < m, it is called a balanced m-th order
correlation immune (CI) function or an m-resilient function, where HW stands
for Hamming weight.

For the sake of simplicity, we consider Fig.4 as one of the 8-to-32 bit £-Ia
look-up tables used at the first round of our white-box implementation. As stated
before, it is supposed that no external encodings exist in the design (or they are
known to the adversary), hence we did not draw them in the figure. Let us denote
the output of the S-box by z and the combination of MC and linear encoding
R and non-linear 4-to-4 bit encodings by 32 Boolean functions ficqi,.. 32} (2) :
{0,1}® — {0,1}. The results of CPA and DCA indicate that at least one of these
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Fig. 4. Detailed representation of an Fig. 5. Walsh transforms for all 32 func-
8 x 32 look-up table at the first round tions ficqa,...,323 (-) with HW(w) = 1.
of our white-box design

functions f;(-) is not first-order correlation immune. In order to investigate this,
we calculated the Walsh transform of all these functions for all w € {0,1}®. The
results for 8 cases, where HW (w) = 1, are shown in Fig. 5.
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Fig. 6. Walsh transforms for all 32 functions fie(i,....323(-) with HW (w) = 1 for all
key candidates k* € {0, 1}®.

As shown by the graphics, Walsh transform of a couple of functions for two
particular w show an extreme imbalance. However, this fact does not guaran-
tee that a CPA or DPA leads to a successful key recovery. To clarify this fact,
we suppose that the linear encoding R and non-linear 4-to-4 bit encodings are
unknown, and for each key candidate k* we derive fic(1, . 321 () by 32-bit output

of L'-Ia(p =Stx)® k:*) For each key candidate k* € {0,1}® we again calcu-
lated the Walsh transforms for all w € {0,1}%. Figure 6 represents the results of
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each w; HW (w) = 1 over all key candidates. As shown by the figures, for w = 2
the extreme imbalance of some functions fic(1,... 321(-) for the correct key can
be detected amongst that for other key candidates. This indeed justifies why
DCA and CPA led to successful key recoveries as this observation perfectly fits
to the result of CPA on the same key byte (as shown in Fig. 3), where similarly
only second bit of the S-box output (compatible with w = 2) led to successful
key recovery. It is noteworthy that we have similarly examined all other look-up
tables of the first cipher round, and for each of them the Walsh transform of at
least one w; HW(w) = 1 for the correct key showed extremely high imbalance
(compared to that for other key candidates). We should stress that all linear and
non-linear encodings used in our design have been randomly generated as stated
in Step 3 and Step 4 of Sect. 2.2.

4.4 How to Avoid Such Attacks

At the first glance, it can be concluded that if any imbalances is avoided in
functions ficq1,...323(+), i.e., all f; to be first-order correlation immune, DPA
and DCA can be avoided. However, it should be noted that such a correlation
immunity is valid only in case of classical DPA. In other words, if any of the
functions f; has an extremely high imbalance for any w € {0,1}%, that makes
it recognizable compared to other key candidates, there exists an attack which
can recover the correct key. Such an attack can make use of a power model
(or distinguisher) corresponding to that w. Alternatively, those power analysis
attacks which consider the distribution of the leakages, e.g., Mutual Information
Analysis [12] which relaxes the power model, can be applied.
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Fig. 7. Sum of all imbalances Ay, for all key candidates.

In contrary, if many of the functions f; are m-correlation immune (for any
arbitrary m), this opens another door to recover the key. Suppose that for all
key candidates k* and for all w we calculated the Walsh transforms Wy,. If we
sum up all the imbalances for each key candidate as

Apeporys = >, Y, ’Wf,-(w)
32

Vwe{0,1}8i=1,...,

kT =k
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the Ay for the correct key candidate might be distinguishable (though mini-
mum). In case of our design (the same look-up table which have been considered
above), Fig.7 shows Ay for all key candidates, where the correct key is obvi-
ously distinguishable. In fact, these results indicate that the linear and non-linear
encodings cannot be arbitrary (randomly) selected. Otherwise, the key can be
easily revealed by the above explained procedure. This raises a question as what
should be the characteristics of such random encodings in such a way that these
attacks are not applicable. At least, it can be said that Vw the distribution of
Walsh transforms of all f; should be not distinguishable from that of other key
candidates. But how to define the corresponding characteristics to fulfill such a
property is considered as future works.

5 Conclusion

In this paper, we presented the first white-box implementation of AES realized in
reconfigurable hardware. Assuming a gray-box adversary model, we have prac-
tically examined the resistance of our architecture against side-channel attacks.
Unfortunately, we were able to successfully perform attacks using classical DPA.
However, our observations approve previous results on software-based white-
box implementations and extend these results to hardware implementations and
physical side-channel attacks. Finally, we provide a to-date missing thorough
mathematical analysis of the underlying reasons that enable attacks on such
white-box implementations even assuming a gray-box model in case of a lack of
unknown external encodings.

Directions for future works include (i) specifying the requirements of lin-
ear and non-linear encodings in such a way that the tables cannot be analyzed
through their imbalances and (ii) developing designs of new white-box implemen-
tations to provide resistance against side-channel attacks. In practice, a conceiv-
able approach to avoid vulnerabilities of white-box implementations in a gray-
box adversary model might be a dynamic update of intermediate encodings. In
particular for reconfigurable devices, which offer partial reconfiguration abilities,
this might be an interesting approach to make side-channel attacks practically
infeasible.
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of Walsh transform.
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Abstract. Masking is a popular countermeasure to thwart side-channel
attacks on embedded systems. Many proposed masking schemes, even
carrying “security proofs”, are eventually broken because they are flawed
by design. The security validation process is nowadays a lengthy, tedious
and manual process. In this paper, we report on a method to verify the
soundness of a masking scheme before implementing it on a device. We
show that by instrumenting a high-level implementation of the masking
scheme and by applying leakage detection techniques, a system designer
can quickly assess at design time whether the masking scheme is flawed
or not, and to what extent. Our method requires not more than working
high-level source code and is based on simulation. Thus, our method
can be used already in the very early stages of design. We validate our
approach by spotting in an automated fashion first-, second- and third-
order flaws in recently published state-of-the-art schemes in a matter
of seconds with limited computational resources. We also present a new
second-order flaw on a table recomputation scheme, and show that the
approach is useful when designing a hardware masked implementation.

1 Introduction

Since Kocher published the seminal paper on side-channel attacks [Koc96], cryp-
tographic embedded systems have been broken using some auxiliary timing infor-
mation [Koc96], the instantaneous power consumption of the device [KJJ99] or
the EM radiation [AARRO02], among others. An attack technique of particu-
lar interest, due to its inherent simplicity, robustness and efficiency to recover
secrets (such as cryptographic keys or passwords) on embedded devices is Dif-
ferential Power Analysis (DPA), introduced in [KJJ99]. DPA relies on the fact
that the instantaneous power consumption of a device running a cryptographic
implementation is somehow dependent on the intermediate values occurring dur-
ing the execution of the implementation. An especially popular countermeasure
to thwart power analysis attacks, including DPA, is masking [CJRR99,GP99].
Masking works by splitting every sensitive variable appearing during the compu-
tation of a cryptographic primitive into several shares, so that any proper subset
of shares is independent of any sensitive variable. This, in turn, implies that the
instantaneous power consumption of the device is independent of any sensitive
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variable, and thus vanilla DPA cannot be mounted. In theory, a (d + 1)-order
DPA attack can still be mounted against a d-th order masked implementation;
however, in practice higher order DPA attacks are exponentially more difficult
to carry out [CJRR99).

Crucially, in many cases the attacker is not required to perform a higher
order attack because the masking is imperfect and thus does not provide the
claimed security guarantees. The causes of the imperfections can be manifold:
from implementation mistakes to more fundamental flaws stemming from the
masking scheme itself. There are many examples in the literature of such flawed
schemes: a “provably secure” scheme published in 2006 [PGAO06] based on FFT
and broken two years later [CGPROS], a scheme published in 2006 [SP06] and
broken one year later [CPR07], another “provably secure” scheme published in
2010 [RP10] and (academically) broken three years later [CPRR13]; a scheme
published in 2012 [BFGV12] and broken in 2014 [PRR14].

The verification process of a masking scheme is nowadays a very lengthy
manual task, and the findings are published in solid papers involving convoluted
probability arguments at leading venues, some years later after the scheme is
published. Some even won a best paper award as [CPR07]. From the stand point
of a system designer, it is often not acceptable to wait for a public scrutiny of
the scheme or invest resources in a lengthy, expensive, evaluation.

Our Contribution. In this paper we provide an automated method to test
whether the masking scheme is sound or not, and to what extent. The method is
conceptually very simple, yet powerful and practically relevant. We give experi-
mental evidence that the technique works by reproducing state-of-the-art first-,
second- and third-order flaws of masking schemes with very limited computa-
tional resources. Our approach is fundamentally different from previously pro-
posed methodologies and is based on sampling and leakage detection techniques.

2 Leakage Detection for Masked Schemes in Simulation

Core Idea. In a nutshell, our approach to detect flawed masking schemes is
to simulate power consumption traces from a high-level implementation of the
masking scheme and then perform leakage detection tests on the simulated traces
to verify the first- and higher-order security claims of the masking scheme.

Input and Output of the Tool. The practitioner only ought to provide working
source code of the masked implementation. The tool instruments the code, per-
forms leakage detection tests and outputs whether the scheme meets its security
goals or not. In addition, should a problem be detected, the tool pinpoints the
variables causing the flaw and quantifies the magnitude of the statistical bias.

Security Claims of Masking Schemes. We use in this paper the conventional
notions for expressing the security claim of a masking scheme. Namely, a mask-
ing scheme provides first-order security if the expected value of each single inter-
mediate does not depend on the key. More generally, a masking scheme provides
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k-order security if the k-th order statistical moment of any combination of k
intermediates does not depend on the key. This formulation is convenient since
leakage detection tests are designed specifically to test these claims.

Three Steps. Our tool has three main ingredients: trace generation, trace pre-
processing and leakage detection. We describe each one in detail in the sequel.

2.1 Trace Generation

The first step of our approach is to generate simulated power traces in a noise-free
environment.

Implementation. To accomplish this, the masking scheme is typically imple-
mented in a high-level software language. The implementation is meant to gener-
ically reproduce the intermediate values present in the masking scheme, and can
be typically written from the pseudo-code description of the masking scheme.
(Alternatively, the description of the masking scheme can be tailored to a specific
software or hardware implementation and incorporate details from those.)

Ezecution. This implementation is executed many times, and during each execu-
tion, the instrumentation environment observes each variable V' that the imple-
mentation handles at time n. At the end of each execution, the environment
emits a leakage trace c[n]. Each time sample n within this trace consists of
leakage L(V) of the variable V' handled at time n. The leakage function L is
predefined; typical instantiations are the Hamming weight, the least significant
bit, the so-called zero-value model or the identity function.

Randomness. The high-level implementation may consume random numbers (for
example, for remasking.) This randomness is provided by a PRNG.

2.2 Trace Pre-processing

This step is only executed if the masking scheme claims higher-order security.
The approach is similar to higher-order DPA attacks [CJRR99] and higher-order
leakage detection [SM15]. Suppose the scheme claims security at order k. We pre-
processes each simulated trace c[n] to yield ¢[nq,...,n] through a combination

function as
i=k

Ay, .. ong] = H(C[nl] — e[ni)). (1)
i=1
The result is a preprocessed trace ¢’. The length of the trace is expanded
from N to (]Z ) unique time samples. (It is normally convenient to treat ¢’ as a
uni-dimensional trace.)
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2.3 Leakage Detection

The next step of our approach is to perform a leakage detection test on the
(potentially pre-processed) simulated traces. In its simplest form, a leakage
detection test [CKN00,CNK04,GJJR11,CDG+13,SM15] tries to locate and
potentially quantify information leakage within power traces, by detecting sta-
tistical dependencies between sensitive data and power consumption. In our con-
text, if the test detects information leakage on the simulated traces, this means
that the masking scheme fails to provide the promised security guarantees.

Procedure. The instrumentation environment performs a fixed-vs-fixed leakage
detection test using the T-test distinguisher [CDG+13].

The process begins by simulating a set of power traces with fixed unmasked
intermediate z = zg and another set of traces with different unmasked interme-
diate value z = z;. Typical choices for the intermediate z are the full unmasked
state or parts of it. Then, a statistical hypothesis test (in this case, T-test) is
performed per time sample for the equality of means. The T-test [Stu08, Wel47]
first computes the following statistic

o] = ] @

N0+N1

where m;[n], s?[n], N; are respectively the sample mean, variance and number
of traces of population i € {0,1} and n is the time index. This statistic t[n]
is compared against a predefined threshold C'. A common choice is C = +4.5,
corresponding to a very high statistical significance level of & = 0.001. If the sta-
tistic t[n] surpasses the threshold C, the test determines that the means of the
two distributions are significantly different, and thus the mean power consump-
tion of (potentially pre-processed) simulated power traces carry information on
the intermediate z. In this case, we say that the masking scheme exhibits leak-
age at time sample n and flunks the test. Otherwise, if no leakage is detected,
another test run is executed with different specific values for zg and z;. The test
is passed only if no leakage is detected for any value of zo and z;. (Typically,
there are only a couple dozen of (zg, z1) pairs if the optimizations described in
the next section are applied.) Note that a time sample n may correspond to a
single variable (first-order leakage) or a combination of variables (higher-order
leakage), if a pre-processing step is executed.

On Fized-vs-Fized. Using fixed-vs-fixed instead of fixed-vs-random has the
advantage of faster convergence of the statistic (at the expense of leakage behav-
ior assumptions that are benign in our context). (This has been previously
observed by Durvaux and Standaert [DS15] in a slightly different context.) One
could also use a fix-vs-random test. This usually results in a more generic eval-
uation.
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2.4 Optimizations

We note that the following “engineering” optimizations allow to lower the com-
putational complexity so that it is becomes very fast to test relevant masking
schemes.

Online Algorithms. There is certainly no need to keep in memory the complete
set of simulated power traces. For the computation of the T-test as Eq.2, one
can use online formulas to compute means and variances present in the formula.
These algorithms traverse only once through each trace, so that a simulated
power consumption trace can be generated, processed and thrown away. This
makes the memory consumption of the approach independent of the number
of traces used. More number of traces would require just more computational
time, but not more memory. We note that the same is possible in higher-order
scenarios. Lengthy but straightforward calculations show that a T-test on pre-
processed traces can be computed online using well-known online formulae for
(mixed) higher-order moments [P08]. (This was previously reported by Schneider
and Moradi [SM15].)

Scale Down the Masking Scheme. It is usually possible to extrapolate the mask-
ing scheme to analogous, trimmed down, cryptographic operations that work
with smaller bit-widths or smaller finite fields. For example, when masking the
AES sbox, many masking schemes [RP10,CPRR13] rely on masked arithmetic
(masked multiplication and addition blocks) in GF(2%) to carry out the inver-
sion in GF(2%). It is often convenient to scale down the circuit to work on, say,
GF(2*%) for testing purposes —since the masking approach normally does not rely
on the specific choice of field size, any flaw exhibited in the smaller GF(2%) ver-
sion is likely to be exhibited in the GF(2®) version of the algorithm (and vice
versa). By experience we have observed that statistical biases tend to be more
pronounced in smaller field sizes, and thus are more easily detectable. (See for
instance [PRR14].) We suggest the use of this heuristic whenever possible for an
early alert of potential problems.

Reduce the Number of Rounds. There is little sense to check for a first-order
leak in more than a single round of an iterative cryptographic primitive, such
as AES. If the implementation is iterative, any first-order flaw is likely to show
up in all rounds. When testing for higher order security, however, one should
take into account that the flaw may appear from the combination of variables
belonging to different rounds.

Judiciously Select the Components to Check. For first-order security it is suffi-
cient to check each component of the masking scheme one by one in isolation.
The situation is slightly different in the multivariate scenario, where multiple
components can interfere in a way that degrades security. Still, the practitioner
can apply some heuristics to accelerate the search, such as testing for second-
order leakage first only in contiguous components. For example, second-order
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leakage is likely to appear earlier between two variables within the same round
or belonging to two consecutive rounds.

Deactivate Portions of the Plaintext. To accelerate the leakage search, a sub-
stantial portion of the plaintext can be deactivated, that is, fixed to a constant
value or even directly taken out from the algorithm. For example, in the case of
AES-128 one could deactivate 3 columns of the state, test only 4 active plaintext
bytes and still test for the security of all the components within one round.

Carefully Fix the Secret Intermediate Values. As we described, the framework
fixes two values zg, z; for the unmasked sensitive intermediate, and then com-
pares the simulated traces distributions conditioned on zy and z;. Depending on
the algorithm, concrete choices for z; (such as fixed points of the function being
masked) can produce “special” leakage. For example, in AES if we choose z;
such that the input to the inversion is 0 x 00, we can hit faster zero-value type
flaws.

3 Results

In this section we provide experimental results. We first begin by testing the
first-order security claim of two schemes, one that fails the claim (Sect. 3.1) and
another that fulfills it (Sect. 3.2). Then we will focus on second- and third- order
claims (Sects. 3.3 and 3.4 respectively). We point out a new second-order flaw
in Sect. 3.5, we elaborate on how previously published flaws were discovered in
Sect. 3.6. Finally in Sect.3.7 we report on the use of the tool when designing
masked circuits.

3.1 Smoke Test: Reproducing a First-Order Flaw

As afirst test, we test the first-order security of the scheme published in [BFGV12].
We will refer to this scheme as IP in the sequel. We focus on reproducing the results
from [PRR14],

Test Fizture. We study first the IPRefresh procedure. This procedure performs
a refreshing operation on the input IP shares. We scale down the scheme to
work in GF(2?) following Sect.2.4. The instrumentation framework finds 141
intermediate variables within a single execution of IPRefresh. The chosen leak-
age function is Hamming weight, and there is no pre-processing involved.

Leakage Detection. We ran the (3) = 6 possible fixed-vs-fixed tests covering all
possible combinations of pairs of different unshared input values (z1, zg). (Here
z; is the input to IPRefresh.) For each test, the maximum absolute t-value,
across all time samples, is plotted in the y-axis of Fig.1 as a function of the
number of simulated traces (x-axis). A threshold for the T-test at 4.5 is also
plotted as a dotted line. This threshold divides the graph into two regions: a
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Fig. 1. T-statistic (absolute values) Fig. 2. T-statistic (absolute values)
of the IP masking scheme, under a applied to the Coron table recomputa-
HW leakage model. Deemed insecure tion masking scheme, under an Iden-
(clearly exceeds the threshold at ¢t = tity leakage model. First order test.
4.5.) (Color figure online) Deemed secure (no value beyond the

threshold at ¢t = 4.5.)

t-statistic greater than |C| = 4.5 (in red) means that the implementation fails
the test, while a t-statistic below 4.5 (area in green) does not provide enough
evidence to reject the hypothesis that the scheme is secure. We can see that 5
out of 6 tests clearly fail in Fig. 1, since they attain t-values around 100 greater
than C. Thus, the IPRefresh block is deemed insecure. (Similar observations
apply to the IPAdd procedure.)

It is also possible to appreciate the nature of the T-test statistic: the t-
statistic grows with the number of traces N as of v/N in the cases that the
implementation fails the test (note that the y-axis is in logarithmic scale.) This
can be interpreted as follows: as we have more measurements, we build more
confidence to reject the null hypothesis (in our context being that the masking
is effective.) If the number of simulated traces is large enough and no significant
t-value has been observed, the practitioner can gain confidence on the scheme
not being flawed. We will find this situation in the next subsection and elaborate
on this point.

3.2 A First-Order Secure Implementation

We tested the table recomputation scheme of Coron [Corl4]. This scheme passes
all fixed-vs-fixed tests with the identity leakage model. The results are plotted in
Fig.2. We can observe that the t-statistic never crosses the threshold of 4.5 for
any test, and thus we cannot reject the null hypothesis that the implementation
is secure (i.e., the implementation is deemed secure, “on the strength of the
evidence presented” [CKNO00]). Although it is theoretically possible that the
masking scheme exhibits a small bias that would only be detectable when using
more than 10% traces, that flaw would be negligible from a practical point of
view when using < 10% traces, and definitely impossible to exploit in a noisy
environment if it is not even detectable at a given trace count, in a noiseless
scenario.
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70 void MaskRefresh(u8 *s) {

71 u8 r;

72 for (int i = 1; i < number_shares; i++) {
73 r =rnd ();

74 s[0] "= r;

75 s[i] "= r;

76}

77 }

110 void SecMult (u8 *out, u8 *a, u8 *b) {
111 u8 aibj,ajbi;

114 for (int i = 0; i < number_shares; i++) {
115 for (int j = i + 1; j < number_shares; j++) {

119 aibj

= mult(alil, b[j1);
120 ajbi = mult(aljl, bl[il);
$ /oo

entering fixed_vs_fixed(00,01)
> leakage detected with 1.20k traces
higher order leakage between
line 74 and
line 120
with tvalue of -7.03

Fig. 3. Excerpts of the code and output of the leakage detection for the RP scheme.

3.3 Reproducing a Second-Order Flaw

To show that our proposed tool can also detect higher-order flaws, we imple-
mented the scheme of Rivain and Prouff (RP) from [RP10]. For the allegedly
second-order secure version of this scheme, there is a second-order flaw as spot-
ted by Coron et al. in [CPRR13] between two building blocks: MaskRefresh and
SecMult. We will see that we can easily spot this flaw with the methodology
proposed in this paper.

Text Fizture. We implemented the second-order masked inversion z — z~! in
GF(2") as per [RP10] with n = 3. This inversion uses the MaskRefresh and
SecMult procedures. In this case, we enable second-order pre-processing (on the
fly), expanding 135 time samples to (135) = 9045 time samples. Some excerpts
of the implementation are shown in Fig. 3.

Results. The instrumentation frameworks takes less than 5s to determine that
there is a second order leakage between the variable handled at line 74 (inside
MaskRefresh) and 120 (inside SecMult), as Fig. 3, bottom, shows. Note that it
is trivial to backtrack to which variables corresponds a leaking time sample, and
thus determine the exact lines that leak jointly.
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Fig. 4. Two MaskRefresh concatenated. As explained in the text, the second refresh
can be optimized to reduce the randomness requirements yet still achieving second
order security. (Color figure online)

Fizing the Second-Order Flaw. The folklore solution to fix the previous second-
order flaw is to substitute each MaskRefresh module by two consecutive
MaskRefresh invocations, as shown in Fig.4. Applying the leakage detection
tests to this new construction shows that the leak is effectively gone. However,
it is quite reasonable to suspect that this solution is not optimal in terms of
randomness requirements. We can progressively strip down this design by elim-
inating some of the randomness of the second refreshing and check if the design
is still secure. We verified in this very simple test fixture that if we omit the last
randomness call (that is, we only keep the dotted red box instead of the second
dashed box in Fig. 4), the higher-order leaks are no longer present.

3.4 Reproducing a Third Order Flaw

Schramm and Paar published at CT-RSA 2006 [SP06] a masked table lookup
method for Boolean masking claiming higher-order security. This countermea-
sure was found to be flawed by Coron et al. at CHES 2007. Coron et al. found
a third-order flaw irrespective of the security parameter of the original scheme.
We reproduced their results by setting & = 3 when preprocessing the traces
as in Eq.1. The flaw of [CPRO7] was detected in less than one second, which
demonstrates that the tool is also useful to test the higher-order security claims
of masking schemes.

3.5 Schramm—Paar Second-Order Leak

Here we report on a new second-order flaw that we found with the presented
tool in the masked table recomputation method of Schramm and Paar when
used with unbalanced sboxes.

Schramm~—Paar Method. The goal of the masked table recomputation is to
determine the sbox output shares Ny, Ni,..., Ny from the sbox input shares

My, My, ..., My. Schramm-Paar proceed as follows (we borrow the notation
from [CPRO7]):
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1. Draw d output shares Ny,..., Ng at random
2. Compute from Ny, ..., Ny a table S* such that

d d
s*(@s(m@Mi) o PN (3)

3. Set NO = S*(Mo)

We set here d = 2, and aim at second-order security. An important part of
the procedure is to build the table S* in a way that the higher-order security
claims are fulfilled. [SP06] proposes several methods. However, for the purposes
of this paper the details of the recomputation method are not important.

Test Fizture. Following the guidelines of Sect. 2.4, we implement a very stripped
down version of the table recomputation method. We fix the simplest unbalanced
sbox S = (0,0,0,1) (an AND gate), and work with 2-bit inputs and outputs
leaking Hamming weights. In a couple of seconds the tool outputs 4 different
bivariate second-order leakages, corresponding to the pairs (S*(i), Ny) for each
¢ in the domain of S*. Here S*(¢) is the i-th entry on the S* table, and Ny is
one output mask.

Once these leaks are located, proving them becomes an easy task. And also
it becomes easy to generalize and see that the flaw appears whenever S is unbal-
anced. (We verified that second-order attacks using the leakage of S*(0) and N
work as expected.)

3.6 Higher-Order Threshold Implementations

Here we report on how the observations from [RBN+15] regarding the security
of higher-order threshold implementations [BGN+-14] were found. The results of
this section are obviously not new; the focus here is on the methodology carried
out to find those.

Intuition. The first suspicion stems from the fact that higher-order threshold
implementations originally claimed that the composition of sharings provides
higher-order security, if the sharings satisfy some property, namely uniformity.
This is a very surprising result, since it would imply that there is no need to
inject fresh randomness during the computation, minimizing overheads. In con-
trast, all other previously published higher-order masking schemes need to inject
randomness from time to time as the computation progresses. For example, the
security proof of private circuits (one of the earliest masking schemes) [[ISW03]
critically relies on the fresh randomness to provide security.

Test Fixture. The hypothesis is that the previous security claim does not hold,
that is, the concatenation of uniform sharings do not provide higher-order secu-
rity. To test this, we design a minimal working test fixture consisting of a 32-
round Feistel cipher with a blocksize of 4 bits. For more details see [RBN+15].
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Fig. 5. Pairs of rounds with [¢| > 80 Fig. 6. Pairs of rounds with [t|] > 5
(Color figure online) (Color figure online)

The shared version aims at providing second-order security, and shares each
native bit into 5 shares. The traces consist of 225 “timesamples” (each one com-
prising one leaked bit, including initialization.) This spans to 25650 timesamples
after second-order pre-processing.

Cranking it up. We run the simulation for a night (about 8 h), having simulated
200 million traces. We performed a fixed-vs-fixed test with unshared initial state
0000 and 1111. (There is no key in this cipher, the initial state is considered
to be the secret.) (This is grossly unoptimized code.) The results of the leakage
detection test is drawn in Fig. 5. We plot on the x- and y-axes the round index,
and each pixel in red if the ¢ statistic surpasses the value 80, green otherwise. We
can see that many pairs of rounds leak jointly, in contradiction with the security
claims of the scheme. In Fig. 6 the same information is plotted but changing the
threshold to [t| > 5. We can see, surprisingly, that almost all pairs of rounds
lead to second-order leakage. A bit of manual mechanical effort is required to
prove this, but not more than taking a covariance.

3.7 Refreshing in Higher-Order Threshold AES Sbox

The designers from [CBR+15] had access to the tool presented in this paper.
They performed several design iterations, and verified the design on each itera-
tion. The final evaluation was performed on an FPGA.

Text Fizture. We implemented the whole sbox, with no downscaling of the com-
ponents to work in smaller fields. We leak register bits and the input value
(identity leakage function) to combinatorial logic blocks. (This is to account for
glitches as will be explained below.)
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—> 8-bit
—> 4-bit
— |-bit . GF(2Y) GF(2*)
b4 S.5C. mult.
—
GF(2¢)
mult.
Stage 1 Stage 3 Stage 4 Stage 5 Stage 6

Fig. 7. Higher-order masked AES sbox from de Cnudde et al.

First-Order Leaks. Within one day, a first-order leak was identified due to a
design mistake. This design error considered the concatenation of two values
al|b as input to the next stage; each value a and b considered independently is
a uniform sharing but its concatenation al|b is not, and hence the first order
leak. This first-order leak disappears if a refresh is applied to the inputs of one
GF(2?) multiplier using 4 units of randomness (here 1 unit = 1 random field
element = 2 bits). This refresh block is similar to the 2010 Rivain—Prouff refresh
block [RP10], we remind it uses n — 1 units of randomness to refresh n shares (in
our particular case here n = 5). We will see later that this refresh is problematic
in the higher-order setting.

Second-Order Leaks. Subsequently, two second-order bivariate leaks were identi-
fied between register values. This was solved by placing a refresh block between
stage 2 and 3 from Fig.7 (taken from [CBR+15]).

In addition, many second-order bivariate leaks were identified between input
values to combinatorial logic blocks. In theory, hardware glitches could express
these leakages. Those disappear if one uses a “full refresh” using 5 units of
randomness. This effect was previously observed [BBD+15,RBN+15] and is a
reminiscent of [CPRR13].

Other Uses. We also used a preliminary version of this tool in [RRVV15].

4 Discussion

4.1 Implementing the Framework

We implemented the instrumentation framework on top of clang-LLVM. The
whole implementation (including leakage detection code) takes around 700 lines
of C++ code, which shows the inherent simplicity of our approach. It is easy to
audit and maintain.
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4.2 Time to Discover Flaw, Computational Complexity and Scaling

The computational requirements of the proposed approach are very low. In Fig. 8
we write the elapsed execution times required to spot the flaws from Sects. 3.1,
3.3 and 3.4. We can see that the flaws were identified in a matter of seconds on
a standard computer. All the experiments on this paper were carried out on a
modest 1.6 GHz laptop with 2 GB of RAM.

Bottlenecks. The main bottleneck on the running time of the methodology is
the first step: trace generation. The RP scheme is the one that took longer to
detect the flaw (5s), presumably because of two reasons: (a) the scheme is more
inherently complex and thus it takes more time to simulate each trace and (b) the
bias exhibited in the scheme is smaller than the bias of other schemes, and thus
more traces are required to detect such a bias. We note that no special effort
on optimizing the implementations was made, yet, an average throughput of
5k trace per second (including instrumentation) was achieved. The overhead of
instrumentation in the running time was estimated to make the implementation
on average =~ X 1.6 slower.

Time to Pass. The time it takes to discover a flaw is normally less than the
time it takes to deem a masking scheme secure. For example, to assess that the
patch of Sect. 3.3 is indeed correct, it took about 6 min to perform a fix-vs-fix
test with up to 1 million traces (no leakage was detected). All possible 6 tests
take around 37 min. (The threshold of 1 million traces was chosen arbitrarily in
this example.)

Parallelization. We remark that this methodology is embarrassing parallel. Thus,
it is much easier to parallelize to several cores or machines than other approaches
based on SAT.

Memory. The memory requirements for this method are also negligible, taking
less than 4.5 MB of RAM on average. More interestingly, memory requirements
are constant and do not increase with the number of simulated traces, thanks
to online algorithms.

Scheme Flaw order Field size Time Traces needed

1P 1 4 0.04s 1k
RP 2 4 5s 14k
SP 3 4 0.2s 2k

Fig. 8. Running time to discover flaw in the studied schemes, and number of traces
needed to detect the bias.
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Scaling. The execution time of our approach scales linearly with the number of
intermediates when testing for first-order leakage, quadratically when testing for
second-order leakage and so on. This scaling property is exactly the same as for
DPA attacks. We could benefit from performance improvements that are typi-
cally used to mitigate scaling issues in DPA attacks such as trace compression,
but did not implemented those yet.

4.3 Limitations

Risk of False Negatives. Our tool should not be taken as the only test when
assessing a masked implementation, and is not meant to substitute practical
evaluation with actual measurements. Our tool provides an early warning that
the masking scheme may be structurally flawed, “by design”. However, even
when the masking scheme is theoretically secure, it is still possible to implement
it in an insecure way. This will not be detected with the proposed tool. For exam-
ple, in the case of a first-order masked software implementation, an unfortunate
choice of register allocation may cause distance leakage between shares, leading
to first-order leakage. Without register allocation information, our tool will not
detect this issue. One could provide this kind of extra information to our tool.
We left this as future work.

4.4 Related Works

There are already some publications that address the problem of automatic
verification of power analysis countermeasure.

SAT-based. Sleuth [BRNI13] is a SAT-based methodology that outputs a hard
yes/no answer to the question of whether the countermeasures are effective or
not. A limitation of [BRNI13] is that it does not attempt to quantify the degree
of (in)security. A first approximation to the problem was tackled in [EWTS14,
ABMP13].

MiniCrypt-based. Barthe et al. [BBD+15] use program verification techniques
to build a method prints a proof of security for a given masking scheme. It is
very hard to compare our tool with theirs since they are fundamentally different.
The goal is also different: while our results are probabilistic, the goal of Barth
et al. is to categorically prove the security of the scheme. Depending on the
context, one might be preferrable over the other. The two approaches are also
very different. Barthe et al. base their approach on EasyCrypt, a sophisticated
“toolset for reasoning about relational properties of probabilistic computations
with adversarial code.”

Considerations Related to Other Approaches. While our approach does certainly
not carry the beauty of proofs and formal methods, it offers a very practice-
oriented methodology to test the soundness of masking schemes. Our approach
is in nature statistical, and is a necessary condition for a masked scheme to
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be sound. It can be thought of a worst-case scenario, where the adversary has
access to noiseless and synchronized traces. A more formal study can then be
performed with the methods of Barthe et al. to gain higher confidence, since the
output of the tool of Barthe et al. is a hard proof.

4.5 Which Leakage Function to Select?

In previous Sect.2 we mentioned that the practitioner has to choose a leakage
function to generate the simulated traces. It turns out that the specific choice
of leakage function seems not to be crucial —any reasonable choice will work.
Figure9 compares different leakage functions: Hamming weight, identity, least-
significant bit and zero-value. The test fixture is the same one as in Sect. 3.1. For
each leakage function, we performed all possible fixed-vs-fixed tests. Figure9 is
composed of 4 plots, one per leakage function. We can see that for any leakage
function, there is at least one fixed-vs-fixed test that fails. For the identity leakage
function, all tests fail. Thus, it is often convenient to use it to detect flaws faster
(more fixed-vs-fixed tests fail.) We speculate that this behavior may depend on
the concrete masking method used, and leave a detailed study as future work.

Glitches and Identity Leakage. We note that we can include the effect of hard-
ware glitches in our tool. Note that the information leaked by a combinatorial
logic block F' on input x due to glitches is contained already in the input x.
Thus, we can simulate the information leaked by hardware glitches, even if we
do not have a precise timing model of the logic function, by leaking the whole
input value = (that is, using the identity leakage model.)

This would correspond to an extremely glitchy implementation of F' where
glitches would allow to observe the complete input. This is certainly a worst-case
scenario. Crucially, glitches would not reveal more information than x. This trick
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Fig. 9. Influence of leakage function.
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of using the identity leakage model on inputs of combinatorial blocks is helpful
when evaluating, for example, masked threshold implementations.

Another alternate approach is to add a detailed gate-level timing model to
simulate glitches. If such timing model is available, the detection quality can be
substantially enhanced.

5 Conclusion

We described a methodology to test in an automated way the soundness of a
masking scheme. Our methodology enjoys several attractive properties: simplic-
ity, speed and scalability. Our methodology is based on established and well-
understood tools (leakage detection). We demonstrated the usefulness of the
tool by detecting state-of-the-art flaws of modern masking designs in a matter
of seconds with modest computational resources. In addition, we showed how
the tool can assist the design process of masked implementations.
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Sect. 3.5, Francgois-Xavier Standaert for extensive comments and Ingrid Verbauwhede.
The author is funded by a PhD fellowship of the Fund for Scientific Research - Flan-
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G.00130.13N, Hercules Foundation AKUL/11/19, and through the Horizon 2020
research and innovation programme under grant agreement 644052 HECTOR.

Auxiliary Supporting Material
A MATLAB Code

This code prints the distribution of Z = S(M @& My) @ S(M) for a fixed M and
varying M.

% the sbox

S=[0 0 0 1];

% number of samples
N=10000;

% the sbox input
for M=0:3
MO=floor(4.*rand(1,N));
Z =bitxor(S(bitxor(M,M0)+1),S(M+1));

for i=0:1
fprintf (’ p(Z=)dIM=%d) = %1.2f\n’, i, M, sum(Z==1i)./length(Z))
end
fprintf(’\n’)
end
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B Examplary Output

This is the distribution of Z when the secret M takes different values. We can see that
the expected value of Z is different when conditioned on M = 0 than when M = 3.
This means that there is a second-order information leak between (S*(0), No) and the

secret M.

p(Z=0|M=0) = 0.75
p(Z=1|M=0) = 0.25

p(Z=0|M=1) = 0.75
p(z=1|M=1) = 0.25

p(Z=0|M=2) = 0.75
p(z=1|M=2) = 0.25

p(Z=0|M=3) = 0.25
p(z=1|M=3) = 0.75
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Abstract. Side-channel attacks are an important concern for the secu-
rity of cryptographic algorithms. To counteract it, a recent line of
research has investigated the use of software encoding functions such
as dual-rail rather than the well known masking countermeasure. The
core idea consists in encoding the sensitive data with a fixed Hamming
weight value and perform all operations following this fashion. This new
set of countermeasures applies to all devices that leak a function of the
Hamming weight of the internal variables. However when the leakage
model deviates from this idealized model, the claimed security guar-
antee vanishes. In this work, we introduce a framework that aims at
building customized encoding functions according to the precise leakage
model based on stochastic profiling. We specifically investigate how to
take advantage of adversary’s knowledge of the physical leakage to select
the corresponding optimal encoding. Our solution has been evaluated
within several security metrics, proving its efficiency against side-channel
attacks in realistic scenarios. A concrete experimentation of our proposal
to protect the PRESENT Sbox confirms its practicability. In a realistic
scenario, our new custom encoding achieves a hundredfold reduction in
leakage compared to the dual-rail, although using the same code length.

Keywords: Constant weight countermeasures - Stochastic characteri-
zation + Customized encoding function - Security metrics - Information
theoretic analysis - Side-channel analysis

1 Introduction

Side-Channel Attacks. Side-Channel attacks (SCA) are nowadays well known
and most designers of secure embedded systems are aware of them. Since the first
public reporting of these threats [15], a lot of effort has been devoted towards the
research about side-channel attacks and the development of corresponding coun-
termeasures. Side-channel attacks exploit information leaked from the physical
implementations of cryptographic algorithms. Since, this leakage (e.g. the power
consumption or the electromagnetic emanations) depends on the internally used
secret key, the adversary may perform an efficient key-recovery attack to reveal
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this sensitive data. As this property can be exploited with relatively cheap equip-
ment, these attacks pose a serious practical threat to cryptographic embedded
systems. Amongst the side-channel attacks, two classes may be distinguished:

— The set of so-called profiling SCA: is the most powerful kind of SCA attacks
and consists of two steps. First, the adversary procures a copy of the target
device and uses it to characterize the physical leakage. Second, he performs a
key-recovery attack on the target device. This set of profiled attacks includes
Template attacks [5] and Stochastic models (a.k.a. Linear Regression Analy-
sis) [10,22,23].

— The set of so-called non-profiling SCA: corresponds to a much weaker adver-
sary who has only access to the physical leakage captured on the target device.
To recover the secret key used, he performs some statistical analyses to detect
the dependency between the leakage measurements and this sensitive vari-
able. This set of non-profiled attacks includes Differential Power Analysis
(DPA) [15], Correlation Power Analysis (CPA) [3] and Mutual Information
Analysis (MIA) [13].

Side-Channel Countermeasures. A deep look at the state-of-the-art shows
that several countermeasures have been published to deal with side-channel
attacks. Amongst SCA countermeasures, two classes may be distinguished [18]:

— The set of so-called masking countermeasures: the core principle of masking
is to ensure that every sensitive variable is randomly split into at least two
shares so that the knowledge of a strict sub-part of the shares does not give
information on the shared variable itself. Masking can be characterized by
the number of random masks used per sensitive variable. So, it is possible
to give a general definition for a d*"-order masking scheme: every sensitive
variable Z is randomly split into d + 1 shares My, --, My in such a way
that the relation My L --- 1L My = Z is satisfied for a group operation |
(e.g. the XOR operation used in the Boolean masking, denoted as @) and no
tuple of strictly less than d+ 1 shares depends on Z. In the literature, several
provably secure higher-order masking schemes have been proposed, see for
instance [9,12,21].

— The set of so-called hiding countermeasures: the core idea consists in making
the activity of the physical implementation constant by either adding com-
plementary logic to the existing logic [7] (in a hardware setting) or by using a
specific encoding of the sensitive data [6,14,24] (in a software setting). There-
fore, making this activity constant would theoretically remove the correlation
between the leakage measurements and the secret key.

Constant Weight Countermeasures. A recent line of works has investigated
possibilities to protect block ciphers in software implementations using constant
weight coding rather than using masking techniques. It is a specific encoding that
has the particularity that all its codewords have a constant Hamming weight.
More precisely, Hoogvorst et al. in [14] have presented a dual-rail implementation
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of PRESENT [2]. The idea was straightforwardly taken from existing dual-rail
hardware, and consists in encoding one bit s.t. the logical value 0 is represented
as 01 and the logical value 1 is represented as 10 (or the inverse). Another idea
derived from dual-rail can be found in a work by Chen et al. [6]. Several encodings
are used, by reordering the bits and their complements in a word, in order to
ensure constant Hamming weight and distance leakage for all operations of the
block cipher PRINCE.

Recently, at CARDIS 2014, Servant et al. in [24] have proposed a new con-
stant weight implementation of the AES extending the idea of the software dual-
rail countermeasure proposed by Hoogvorst et al. in [14]. The core idea consists
in encoding efficiently the sensitive data as a whole (i.e. not bit per bit) with a
fixed Hamming weight value and then performing the AES internal operations
following this fashion. When assuming a Hamming weight leakage model, the
authors proved that their proposal is a leak-free countermeasure. However real
world devices do not fit this model, as explained hereafter.

Stochastic Characterization of the Leakage. It is often assumed that a
device leaks information based on the Hamming weight of the processed data.
This assumption is quite realistic and many security analyses in the literature
have been conducted following this model [3,19]. However, this assumption is not
complete in real hardware [28], due to small load imbalances, process variations,
routing, etc. For instance, authors in [16] have characterized, using a stochastic
approach, the leakage of four AES Sbox outputs when implemented in three
different devices. The obtained results prove that the leakage is very unbalanced
for each Sbox output and hence, the Hamming weight assumption is unsound
in practice. This imbalance always leaks some information that can be exploited
by a SCA adversary. Hence, the security guarantee claimed by constant weight
countermeasures does not necessarily hold in real world.

Our Contribution. In this paper, we refine the notion of data encoding as a
countermeasure to thwart side-channel attacks. In fact, we try to bridge the gap
between the physical leakage characteristics and the optimal encoding which bal-
ances at best the data leakage. This work exposes a method based on a first pre-
cise stochastic characterization of the target device, followed by the generation
of a specific encoding according to this model. To do so, we propose an algorithm
to select the best encoding function according to the physical leakage charac-
terized on the target device. Our experiments show that the proposed encoding
framework is more efficient than the existing constant weight countermeasures.
We theoretically prove that our proposal reduces the Signal-to-Noise Ratio and
hence, an adversary requires more traces to disclose the secret key than on the
existing constant weight countermeasures. Furthermore, the security evaluation
conducted illustrates that the leaked information is minimal and the efficiency
of stochastic attack in exploiting this leakage is reduced drastically. Finally, the
practical assessment of our proposal confirms its practicability to protect cryp-
tographic operations. When device registers leak roughly the same function, our
proposal could be applied to fully protect a block cipher. This assumption is
not fully realistic, meanwhile, our work is a first step towards protecting block
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ciphers by involving customized encoding. If registers happen to leak vastly dif-
ferently, then we need different encodings for each register and code conversions
between memory accesses to protect a whole block cipher.

Paper Outline. The paper is organized as follows. In Sect. 2, we first detail
two published constant weight implementations to protect a block cipher in
a software setting. Then, we describe our new encoding framework in Sect. 3
and provide a theoretical analysis of it in Sect. 4. Furthermore, an information
theoretic analysis and a security evaluation are conducted in Sect. 5. This is
followed by some practical experiments applied on real devices in Sect. 6. Finally,
Sect. 7 draws general conclusions and opens some perspectives for future work.

2 Existing Works on Leakage Balancing by Involving
Encoding Functions

This principle of data internal encodings has already been proposed by Chow
et al. in [8] in the context of white-box cryptography. Since then, several counter-
measures have been proposed aiming at balancing the leakage by using some con-
stant Hamming weight encodings in a grey-box context!. For instance, Hoogvorst
et al. [14] have adapted the hardware dual-rail countermeasure to protect a soft-
ware implementation of PRESENT. To do so, the authors suggest to duplicate
the bit values representation, i.e. to use two bits to represent the logical value
of one bit. For instance, one can encode the logical value 0 as 01 and the logical
value 1 as 10 (or the inverse). When applying such an encoding to protect a n-bit
variable, all codewords generated have a constant Hamming weight of n. Hence,
assuming a Hamming weight leakage model, the power consumption provides no
sensitive information. In the sequel, it will be referred as the dual-rail code.

The dual-rail representation is a specific case of this class of constant weight
codes, but it is not the only option one should consider in a software setting. As
a first example, authors of [6] propose a variation of the dual-rail applied to the
block cipher PRINCE. Another example is [24], in which the authors propose
a new balancing strategy based on the use of a code with the smallest cardinal
available to encode the sensitive data. To protect a 4-bit variable, one can use 16
codewords of 6-bit length, each with a constant Hamming weight of 3. This code
will be referred as the (3,6)-code in the rest of this paper. The security analysis
conducted in [24] proves that this constant weight implementation is a leak-free
countermeasure under a Hamming weight leakage model assumption. However,
when the leakage function deviates from this idealized model, the security guar-
antee provided by this countermeasure vanish as discussed in [24].

To sum up, all these investigations on how to balance the physical leakage
were conducted under the Hamming weight leakage model and with no prior
characterization of the target device to incorporate the precise leakage model.
Moreover, the choice of the code is made independently of the real bit leakage

! The adversary has access to the inputs and outputs of the cryptographic algorithm
plus extra side-channel information.
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(for example, in dual-rail representation, the logical value 1 is usually encoded
as 10). Therefore, the claimed security level of these countermeasures could not
be obtained in practice, where the bits may leak differently [16].

In the following section, we propose a framework for protecting sensitive data
by using specific encoding. It is aimed to bridge the physical leakage character-
istics to the choice of an optimal encoding function.

3 Towards a New Encoding Procedure for Leakage
Balancing

Unlike previous works in which the Hamming weight model is often assumed,
our solution is essentially based on harnessing the leakage characteristics and
building a customized encoding accordingly to obtain the best balanced leakage.
So, our framework is composed of two steps detailed in the following subsections.

3.1 First Step: Stochastic Characterization of the Leakage Function

A primordial step in our proposed framework is to take advantage of the adver-
sary’s knowledge of the target device during a stochastic characterization phase,
a.k.a. leakage profiling.

Let Z be a sensitive variable defined over F5, then a stochastic characteriza-
tion assumes that the leakage function £(Z) can be expressed as the sum of two
mutually independent parts:

— a deterministic part D(Z): a function representing the power consumption
during the processing of the sensitive variable Z and,
— arandom part R: a Gaussian noise with null mean and standard deviation o.

Hence, the leakage function can be rewritten: L£(Z) = D(Z) + R =
S @i6i(Z)+N(0,0), where a; are some weighting coefficients and §; are some
well chosen basis functions. Besides, we stress the fact that the basis choice is
essential since it directly impacts the profiling efficiency.

For the sake of simplicity, in this work, we assume a linear basis. This choice
is also motivated by the fact that higher-order basis functions are playing a
minor role despite their better representation of the reality [10]. Moreover, the
deterministic part of the leakage in practice is very close to the value of the linear
part as discussed in [10]. So, our goal here is to characterize the leakage func-
tion when its deterministic part deviates from the Hamming weight model, but
keeps the same degree. The study of higher-order basis functions (e.g. quadratic,
cubic,. ..) is out of the scope of this paper.

This implies that every bit of the sensitive variable leaks independently.
This assumption is often used in SCA context to characterize the perceived
device leakage and sometimes referred as Independent Bit Leakage (IBL) assump-
tion [10]. We recall hereafter this assumption.
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Assumption 1 (IBL Assumption). Let Z be a sensitive variable defined over
F%, then the deterministic part of the leakage function can be rewritten: D(Z) =
S @i Z[i], where Z[i] denotes the i'" bit of the sensitive variable Z.

Under Assumption 1, the leakage function can be rewritten:

Zaz [i] + N(0,0) . (1)

So to recover the leakage function, one can apply a linear regression [10,16]
to obtain a precise estimation of the «; coefficients under the IBL assumption.

3.2 Second Step: Encoding Function Selection

Once the leakage function is characterized, the second step of our framework
consists in applying Algorithm 1 to obtain the optimal encoding function w.r.t.
the profiled leakage.

Algorithm 1. Selection of the optimal encoding function
Input: m: the codeword bit-length, n: the sensitive variable bit-length and «;: the
leakage bit weights, where 7 in [1,m]
Output: 2" codewords of m-bit length
1: for X in [0,2™ — 1] do

2: Compute the power consumption for each codeword X and store the result in
table D: D[X Z o X[i

3: Store the correspondlng value of the codeword in the index table I: I[X] =

4: end for

5: Sort the power consumption stored in table D and the index table I accordingly

6: for j in [0,2™ — 2"] do

7 Find the argmin of |D[j] — D[j + 2"]|

8: end for

9: return 2" codewords corresponding to [I[argmin], I[argmin + 2"]]

Our Algorithm 1 takes as inputs: the length in bits of respectively the code-
words and the sensitive data and, for each bit, the corresponding leakage weight
obtained during a stochastic profiling as explained in the previous subsection.
Then, it outputs 2" codewords such that the delta consumption is the lowest
among all subsets of 2" codewords. Since the bit weights are unbalanced in prac-
tice, we argue that finding a code that guarantees a perfectly constant leakage
remains an unreachable goal in most of cases.

Given the output codewords length, we compute the expected power con-
sumption for each codeword and we store the result and the codeword value in
table D and table I respectively (c.f. the first loop from Line 1 to Line 4 in
Algorithm 1). Then, we sort table D (in ascending or descending order) and the
index table I accordingly (c.f. Line 5 in Algorithm 1). Finally, since our goal is
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to choose a subset of 2" codewords such that the delta consumption is the lowest
one, we compute the delta of consumption for each subset of 2" elements (c.f.
the last loop from Line 6 to Line 8 in Algorithm 1) and later we select 2™ indexes
from table I that minimize this delta. Thus, we obtain a code that ensures the
best balancing of the leakage w.r.t. the stochastic profiling result.

A clustering Algorithm [1] would also give good results for this problem, but
we explain hereafter why we chose this algorithm which is somewhat simpler to
analyze. Let d be the maximum distance between two elements of a set .S of n
elements. One can show that Var(S) < n.d?, so that intuitively, minimizing this
distance d gives a subset with one of the lowest variances (and hence, one of the
lowest SNR). There might be a set S’ with lower variance but higher distance
d’, but in that case it would be easier to distinguish the two extreme values of
this set. Some attacks might use this fact to improve the success rate.

Our framework consequently helps building properly encoding function cus-
tomized for the physically observable leakage. It acts as an interface between the
adversary’s knowledge of the physical leakage and the optimal encoding to be
used accordingly. We stress the fact that our Algorithm 1 is still applicable if
the IBL assumption is not respected. To do so, one should inject the obtained
leakage function in Line 2 and execute the algorithm to carry out the code.

4 Theoretical Analysis of the New Customized Encoding

In what follows, we provide a theoretical analysis of our solution. Namely, we will
show that to succeed a first-order univariate correlation attack on our proposal,
an adversary requires much more traces than on the existing constant weight
countermeasures. This is due to the fact that the selected subset of codewords
has a close-to-lowest power consumption variance among all possible subsets.

Let us start our analysis by exhibiting the explicit relationship between two
security metrics: the Minimum number of Traces to Disclose the key with a
given percentage of success rate (MTD), and the Signal-to-Noise Ratio (SNR).
This link has already been demonstrated by Mangard in [17] for unprotected
implementation. Our purpose is to provide the link between these two security
metrics for encoding-based countermeasures.

To do so, we first recall how the number of traces to disclose the key is
connected to the Correlation Power Analysis (CPA).

4.1 Analytical Derivation of the Security Level for Correlation
Attacks

The CPA attack [3] is based on the computation of the Pearson correlation
coefficient between the leakage function £(Z) and a prediction function f(Z)
chosen according to some assumptions on the device leakage model (e.g. the
Hamming weight function). Hence, the Pearson correlation coefficient can be
rewritten:

_ Cov[£(2): £(2)]

9L(2)91(2)

plL(2); f(Z)]
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where Covl[.;.] is the covariance and o, (z) and oy z) are respectively the
standard deviation of the physical leakage and the prediction leakage function.
Besides, in [17] the author demonstrated that the number of curves required to
break a cryptographic implementation by CPA is equal to:

2

Zi_
Ni_g=3+8 22| | (2)
In (if—g)

where Z;_g is a quantile of a normal distribution for the 2-sided confidence
interval with error 1 — 3.

We introduce hereafter the optimal correlation function and exhibit its rela-
tionship to the SNR security metric. Then, we deduce the explicit link between
the number of traces to disclose the key and the SNR.

4.2 From Optimal Correlation Function to the SNR

The optimal correlation function is defined as the function that maximizes the
correlation p[L£(Z); f(Z)] and can be obtained from Corollary 8 in [20]:

_ [VarlEle(2) | 2 =2)
Popt = \/ Var[£(Z)] ’ 3)

where E[.] and Var[.] denote the mean and the variance function respectively.
Based on this definition, we introduce the following proposition.

Proposition 1. Let L(Z) satisfies Eq. (1). Then, the optimal correlation func-

tion satisfies:
1
Popt =4[ T 1 > (4)
1+ ong

where the SNR can be rewritten:

SNR = (Var[z aiZ[i]]> Jo? . (5)

As a direct consequence of Proposition 1, one can inject Eq. (4) into Eq. (2)
to find the number of traces required by a CPA attack to succeed according to
the SNR. Thus, assuming p is small?, it yields the number of traces to achieve
a success rate of 90 %, denoted Nggg;:

2

Zoow \ Z90% 2Z30,
N, ~ 8 ~8 | ——=—— =2 L 6
i~ (22 ) ©)
1+SNR

2 In fact, we can approximate In (H'—Z) =In(l1+p) —In(l —p) = p— (—p) = 2p.

1—
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From Eq. (6) one can conclude that the smaller the SNR is, the more traces
are required to achieve a success rate of 90 % for a CPA attack. As a direct
consequence, if we decrease the SNR by a factor X, then the required number
of traces to succeed the CPA attack will be multiplied by X.

In the next subsection, we evaluate our proposal by computing the SNR and
then deducing the Nggg.

4.3 Evaluation of Our Proposal Within the SNR and the Nyqgo
Security Metrics

We recall that the deterministic part of the leakage function, defined under
the IBL assumption, satisfies D(Z) = Y"1 | o; Z[i]. In the sequel, we make an
additional assumption on the statistical distribution of the bit leakage weights
«;. In fact, for the sake of simplicity, the distribution of the «; coefficients can
fairly be approximated by a Gaussian law. This assumption that we shall call
Gaussian Bit Leakage Weight (GBLW) assumption is formalized hereafter.

Assumption 2 (GBLW Assumption). The bit leakage weights «; are mutu-
ally independent random variables drawn from a Gaussian distribution with unity
mean and standard deviation .

Under Assumption 2, the leakage function can be rewritten £(Z) = o+ Z +
N (0, 0), where (-) denotes the scalar product operation and a = [y, ag, . . ., ]
denotes the bit leakage weight vector such that for every ¢ in [1,n] we have
a; ~ N(1,0,). Let C be a (n,m)-function, i.e. C : F} — F5" s.t. n < m,
denoting the encoding operation used to protect a sensitive variable Z in 7.
Then, the leakage function can be expressed as:

L(Z)=a-C(Z)+N(0,0)= ZaiC(Z)[i} + N(0,0). (7)

In the next proposition, we give an explicit formula of the SNR when an
encoding function is involved to thwart SCA attacks.

Proposition 2. Let £(Z) satisfy Eq. (7). Then, for every Z in FY, the Signal-
to-Noise Ratio satisfies:

SNR = Z EIC(Z)HIC(2)[7]] + (04 +1) Y EC(2)[i]] - <Z E[C(Z)[iﬂ> fo®.
l;J;é:Jl i=1 i

Using the result of Proposition 2 and Eq. (6), one can evaluate the amount
of traces required to reach a 90 % of success rate when an encoding is applied
to protect a sensitive data. For the sake of comparison, we will also evaluate
this metric for some well known countermeasures. We list hereafter the leakage
functions we consider:
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— Unprotected: Lunpro(Z) = @Cunpro(Z) +N (0, o), where Cynpro is the identity
function.

— Software dual-rail [14]: Lgua(Z) = & - Cqual(Z) + N (0, 0), where Cqyua is the
dual-rail code.

— Software constant weight [24]: Lestpw (Z) = a - Cessnw (Z) + N (0, o), where
Cestrw 1s the (3,6)-code.

— Our proposed customized encoding: £(Z)eust = @ - Ceust (Z) + N (0, o), where
Ceust 1s the code generated using Algorithm 1 for different codeword lengths.

In the sequel, we consider that the sensitive variable Z is a 4-bit variable,
(i.e. n = 4). Then, for each of the above described leakage functions, we have
computed the SNR over a set of 5.000 independent experiments using the result
of Proposition 2. The standard deviation of the bit leakage weights o, was fixed
at 0.25 and 0.5. Finally, we have deduced the Ngygy, using Eq. (6).

In Fig.1, we plot the number of traces to achieve a success rate of 90 %
according to the noise standard deviation o. For our customized encoding func-
tions, we show the results for different codewords lengths, i.e. Ceust : IF‘Q1 —
with m in [5, 10].
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Fig. 1. Evolution of the number of traces to achieve a success rate of 90 % (y-axis)
according to an increasing noise standard deviation o (x-axis in log scale base 2). Left:
for oo = 0.25. Right: for o, = 0.5.

From Fig. 1, the following observations could be emphasized:

— As expected the constant weight encoding countermeasures are less efficient
than our customized encoding functions. For instance, when the noise stan-
dard deviation equals 16, about 10.000 and 2.000 are sufficient to reach a
success rate of 90 % when o, equals 0.25 and 0.5 respectively. This is due to
the fact that these codes are generated independently of the physical leakage
by simply assuming a Hamming weight leakage model.
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— The longer the code is, the more resistant the countermeasure is. In fact, our
Algorithm 1 generates an encoding function such that the delta consumption
of the selected codewords, the corresponding physical leakage variance, and
the SNR are the lowest among all the subsets of codewords. So, the longer the
code is, the more efficient our proposed algorithm is in selecting an encoding
function that minimizes further the SNR. For instance, when o, = 0.25 and
o = 2, the SNR decreases from about 0.032 for the (3, 6)-code to 7.8 x 107>
for the customized code of length 10.

— For a fixed noise standard deviation, one can notice that if o, increases, the
adversary will need less traces to achieve a success rate of 90 %. For instance,
when o = 8 and the customized encoding of length 6 is used, the Nggy; equals
approximately 10.000 and 8.000 traces when o, varies from 0.25 to 0.5 as
shown in Fig. 1. This observation is in-line with Eq. (8). In fact, when o,
increases, the SNR increases accordingly and hence the Nggy, decreases. To
sum up, the degree of randomness of the leakage function has a noticeable
impact on the amount of traces required by an adversary to achieve a success
rate of 90 %. So, the higher o, is, the longer encoding function a designer
should use.

— It is noteworthy that the code of length 5 is less efficient than the state-
of-the-art countermeasures when o, = 0.25. However, when o, = 0.5, this
customized code achieves a better result than the dual-rail and the (3, 6)-code.

To conclude, our proposed encodings bring an overwhelming gain in terms
of number of traces to succeed the CPA attack. For instance, to break the code
of length 7, an adversary requires about 12 and 50 times more traces to achieve
a CPA success rate of 90 % compared to the dual-rail countermeasure when o,
equals 0.25 and 0.5 respectively.

5 Security Evaluation of the New Customized Encoding

As argued on the evaluation framework introduced in [25], the robustness of a
countermeasure encompasses two dimensions: its amount of leakage irrespective
of any attack strategy and its resistance to specific attacks. So, the evaluation
of protected implementations should hold in two steps. First, an information
theoretic analysis determines the actual information leakage. Second, a security
analysis determines the efficiency of various attacks in exploiting this leakage.

Following this evaluation framework, we start with an information theoretic
analysis in the following subsection.

5.1 Information Theoretic Analysis

To evaluate the information revealed by our proposed encoding functions, we
compute the Mutual Information Metric (MIM) between the sensitive variable
7 and the leakage function: 1[Leust(Z); Z] = H[Leust (Z2)] —H[Leust (Z) | Z], where
H[.] denotes the entropy function. For the sake of comparison, we evaluate the
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MIM for the leakage functions listed in Sect. 4.3 as well. Besides, we compute
this metric also for a first-order masking leakage function:

Limask(Z) = (a1 - (Z® M)) X (a2 - M)+ N(0,0) , 9)

where M denotes a random mask defined over F3 and (a1, az) are respectively
the bit leakage weight vector of the masked data (Z @ M) and the mask (M)
such that a; # ap. Put differently, we assume that the masked data bits and the
mask bits leak independently®. From Eq. (9), one can conclude that for masking
we consider a bivariate leakage, i.e. a product combination of the two leakages
(the masked data and the mask) is exploited by the adversary.

For each leakage function, the MIM was computed for several standard devi-
ations of the bit leakage weights (o, in {0.05,0.25,0.75,1}) and over a set of
200 independent experiments. The MIM is computed via numerical integration
(Sect. 4.1.b of [10]). This method is accurate when the leakage is mathematically
generated to perform simulations. The obtained results are shown in Table 1.

Table 1. Evolution of the MIM (y-axis in log scale base 2) according to an increasing
noise standard deviation o (x-axis in log scale base 2).
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3 Our goal here is to analyze the masking countermeasure in the worst case scenario
(i.e. the mask register and the masked data register have different leakage functions).
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From Table 1, the following observations can be emphasized:

— Interestingly, all MIM curves are parallel and have the same slope (—2). In
fact, it has been demonstrated that the mutual information is proportional
to o(=24 for large enough noises, where d denotes the order of the smallest
statistical moment in the leakage distribution depending on the secret key
and corresponds also to the number of shares used to represent the sensitive
data [4,11,26]. Since for all the considered leakage functions the sensitive data
is represented with a single share (i.e. d=1)*, then the corresponding mutual
information decrease exponentially following a curve with slope (—2) when
the noise standard deviation o increases. As expected, this confirms that the
unprotected implementation and the encoding-based countermeasures lead to
first-order univariate weaknesses and that the masking countermeasure leads
to first-order bivariate weakness.

— Despite having the same gradient, the amount of information leaked differs
from a leakage function to another. For instance, one can see that whatever
the o, value is, our proposed encoding functions of length superior to 6 leak
less than the other encoding countermeasures and the first-order masking.
This result is in-line with that of Sect. 4.3. In fact, the longer the code is,
the less information is leaked, the lowest the SNR is, and the more traces are
needed to break the implementation.

— For o, < 0.25, our customized code of length 5 performs worse since it leaks
more than the dual-rail and the (3,6)-code. This result is also in-line with
that shown in Fig. 1. In fact, an adversary requires less traces to break the
optimal code of length 5 than the (3,6)-code. This could be simply explained
by the fact that for small o, the best code is a constant weight one and no
such a code exists for length 5 to generate 16 codewords.

— It is noteworthy that the first-order masking performs worse when o, > 0.75.
It leaks slightly more information than an unprotected implementation. This
result can be explained by the fact that when the bits of the two shares (the
masked data and the mask) leak “very” differently, the countermeasure is
doubly impacted (i.e. unbalance of the masked data leakage and unbalance
of the mask leakage). This implies that the security guarantee by masking
vanish in such a scenario. This result is in-line with that obtained in [11],
where the MIM has been evaluated when the masking and the unprotected
leakage functions radically deviate from the idealized Hamming weight model.

— It appears also that the degree of the deviation from the Hamming weight
model (i.e. 0,) has a noticeable influence on the amount of information
leaked. In fact, for a fixed noise standard deviation o, the higher o, the
larger the leakage. The same observation has been pinpointed in [11], i.e.
the quantity of information leaked is strongly affected by the degree of ran-
domness of the leakage function. Moreover, this result is in-line with that

4 For the masking leakage function, we stress the fact that we have used one share
which corresponds to the product combination of the masked data share and the
mask share (i.e. a second-order analysis of the first-order masking).
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discussed in Sect. 4.3, i.e. the higher o, the less number of traces are needed
to achieve a 90 % of success rate.

5.2 Side-Channel Security Analysis

To complete the security evaluation of our proposal, we conduct in this subsec-
tion a security analysis to evaluate its resistance to thwart SCA attacks. Namely,
we perform a security evaluation of the stochastic attacks, for which a strong
consistency with the previous security metrics analyses (i.e. the information the-
oretic analysis, the SNR and the MTD) should hold. To do so, we detail hereafter
the attack simulation setup.

Simulation Setup. The leakage measurements have been simulated as samples
of all the leakage functions listed in Sect. 4.3 and that detailed in Eq. (9) for
the first-order masking countermeasure. Moreover, the sensitive variable Z was
chosen to be a PRESENT Sbox output of the form S(X @ k), where X represents
a varying 4-bit plaintext and k represents the key nibble to recover.

Attack Scenarios. For our simulation attacks, we focus on two scenarios:

— The best-case scenario: we consider a powerful adversary who has access to the
bit leakage weights and the characteristics of the optimal used code (i.e. the
code length and the subset of the codewords). Then, he performs a stochastic
attack by targeting the protected variable C(S(X @ k)).

— The worst-case scenario: we consider a more realistic (and much weaker)
adversary who has only the control on the target device to characterize the
physical leakage. However, the characteristics of the used code are unknown.
So, the adversary performs a linear regression over a 4-bit variable, i.e. the
PRESENT Sbox output S(X & k).

For each scenario and for each leakage function, we compute the success rate
of the stochastic attack [16] over 200 independent experiments. Moreover, this
security metric was computed for several standard deviations of the bit leakage
weights (o, in {0.05,0.25,0.75,1}). The noise standard deviation was fixed at
o = 0.25. The simulation results in the best-case scenario are plotted in Table 2.

Simulation Results. For the best-case scenario, the results shown in Table 2
are in-line with those obtained during the information theoretic evaluation. In
fact, when the o, < 0.25, the optimal code of length 5 performs worse since
an adversary requires less traces to achieve a 100 % of success rate than the
constant weight countermeasures. Besides, we conclude again that the longer
the code is, the more resistant the implementation is. Moreover, the higher the
standard deviation of the bit leakage weights is, the less efficient the encoding
function is.

For the worst-case scenario, as expected, the stochastic attack performs worse
since the adversary does not have the control on the code length and the subset
of codewords used for the protection. So, the profiling phase outputs an imprecise
leakage model which impacts the attack efficiency. These simulation results also
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Table 2. Stochastic attack results in the best-case scenario for a noise standard devi-
ation o = 0.25.
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