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Abstract. We consider an extension of propositional Gödel logic by an
unary operator that enables the addition of a positive real to truth values.
We provide a suitable calculus of relations and show completeness and
cut elimination.
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1 Introduction

Propositional Gödel logic is an extension of intuitionistic logic that takes truth
values in the set [0, 1]. We consider an extension of Gödel logic by a unary
operator ◦ that adds a positive constant to truth values. This logic can be con-
sidered as a logic extending Gödel logic by properties of �Lukasiewicz logic that
themselves imply the non-recursive-enumerability of the first-order analog. The
propositional fragment of this extension can be axiomatized by adding to an
axiomatization of Gödel logic the following two simple formulae [2]:

1. A ≺ ◦A, and
2. ◦(A → B) ↔ (◦A → ◦B).

We construct an analytic sequents-of-relations calculus based on the relations
< and ≤, where ≤ corresponds to implication (A → B) and < corresponds to the
connective ≺, where A ≺ B is defined as (B → A) → B. In Sect. 4, we prove cut
elimination of the calculus using a Gentzen-style argument based on inductive
decomposition of formulae. This calculus is surprisingly more closely related to
usual sequent calculi than to the only known analytic calculus for �Lukasiewicz
propositional logic (see [3,4]). Although it is very simple, its cut elimination is
not that straightforward due to the asymmetry of the new operator ◦. Indeed,
we make use of two technical tools that are not otherwise required: the first one
is Avron’s communication rule; the second one is the following artificial-looking
cut:

A < A

1 < A

This rule is eliminated together with the other cuts.
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2 Preliminaries

Definition 1. We consider the language L of propositional logic, augmented
with a unary operator ◦. A propositional Gödel ◦-valuation I is a function from
the set of propositional variables into [0, 1] with I(⊥) = 0 and I(�) = 1, together
with a real number c ∈ (0, 1]. This valuation can be extended to a function
mapping formulas from L into [0, 1] as follows:

I(A ∧ B) = min{I(A),I(B)},

I(A ∨ B) = max{I(A),I(B)},

I(A → B) =

{
I(B) if I(A) > I(B),
1 if I(A) ≤ I(B),

I(◦A) = min{I(A) + c, 1}.

We define ¬A by A → ⊥ and A ≺ B by (B → A) → B. Thus, we get

I(¬A) =

{
0 if I(A) > 0,

1 otherwise,

I(A ≺ B) =

{
1 if I(A) < I(B),
I(B) if I(A) ≥ I(B).

Note, in particular, that I(A ≺ B) = 1 if I(A) = I(B) = 1. A formula is
called valid if it is mapped to 1 for all valuations. The set of all formulas which
are valid is called the ◦-propositional Gödel logic and will be denoted by G◦.

Proposition 2. A Hilbert-type axiom system for G◦ is given by the following
axioms and rules:

I1 ⊥ → A I8 (A → B) → [(C → A) → (C → B)]
I2 A → (B → A) I9 [A → (C → B)] → [C → (A → B)]
I3 (A ∧ B) → A I10 (A → C) ∧ (B → C) → ((A ∨ B) → C)
I4 (A ∧ B) → B I11 (C → A) ∧ (C → B) → (C → (A ∧ B))
I5 A → (B → (A ∧ B)) I12 (A → (B → C)) → (A ∧ B → C)
I6 A → (A ∨ B) I13 [A → (A → B)] → (A → B)
I7 B → (A ∨ B) I14 A ≺ �

R1 A ≺ ◦A R2 ◦ (A → B) ↔ (◦A → ◦B)

G1 (A → B) ∨ (B → A) MP
A A → B

B

Proof (Soundness). The axioms (I1)–(I14), as well as G1 and MP, are well known
to be sound for any extension of Gödel Logic. If I(◦A) = 1, then A ≺ ◦A holds. If
I(◦A) < 1, then I(A) < I(◦A), whence A ≺ ◦A holds as well. Hence, R1 is valid.
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To show validity of R2, we distinguish two cases: (i) if I(A) ≤ I(B), then
I(◦A) ≤ I(◦B), whereby 1 = I(◦(A → B)) = I(◦B). Hence, R2 holds. (ii) If
I(A) > I(B), then I(A → B) = I(B), and so I(◦(A → B)) = I(◦B). Thus,
◦(A → B) → (◦A → ◦B). Now, either I(◦A) ≤ I(◦B) holds, whence 1 =
I(◦B) = I(◦A) follows, or I(◦A) > I(◦B) holds, whence I(◦A → ◦B) = I(◦B).
In any case, R2 holds.

(Completeness). In [2, Theorem 3, (c)], it was shown that the axiom system
obtained by replacing R1 by the two axioms

1. (⊥ ≺ ◦⊥) → (A ≺ ◦A),
2. (⊥ ↔ ◦⊥) → (A ↔ ◦A),

is complete for G◦+, a variation of G◦ where c could be taken to be zero. (⊥ ≺
◦⊥) is an instance of R1 and therefore R1 and R2 are sufficient to derive 1 and
2 above if c is not zero. �
We remark that the deduction theorem holds for the axiom system given by
Proposition 2 because it holds for its restriction without the operator ◦.

3 The Calculi RG−
◦ and RG◦

We will define a sequents-of-relations calculus RG◦, as well as a fragment thereof,
called RG−

◦ . As we show, the calculus RG−
◦ is already sound and complete

(Proposition 4). Moreover, RG◦ admits cut elimination. This is proved in Sect. 4.
Herein a sequent is a finite set of components of the form A < B or A ≤ B

for formulae A, B. We denote sequents by expressions of the form

A1 �1 B1| . . . |An �n Bn,

where the sign �i is either < or ≤ and plays a role similar to the sequent arrow
in traditional sequent calculi. By ‘component,’ we always mean ‘an occurrence
of the component,’ e.g., the sequent A < B|A < B has two components.

We say a component A < B is satisfied by an interpretation I if I(A ≺ B) = 1
and a component A ≤ B is satisfied by an interpretation I if I(A → B) = 1. A
sequent Σ is satisfied by I if I satisfies at least one of its components. Thus, the
separation sign “|” is interpreted as disjunction at the meta-level. A sequent Σ
is valid if it is satisfied by all interpretations.

The axioms of RG−
◦ are:

A1. A ≤ A A2. 0 ≤ A A3. A < 1.

The external structural rules are1:

H|A < B|A < B

H|A < B
c1

H|A ≤ B|A ≤ B

H|A ≤ B
c2

1 c stands for ‘contraction’; w stands for ‘weakening’; com stands for ‘communication.’
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H
H|A < B

w1
H|A �1 B H|C �3 D

H|A �3 D|C �4 B
com

where either �1 = �2 =≤ and {�3,�4} = {<,≤}, or < ∈ {�1,�2} and
�3 = �4 =<. The internal structural rules are

H|A < B

H|A ≤ B
w2

H|A ≤ B

H|A < C|C ≤ B
w3

H|A ≤ B

H|A ≤ C|C < B
w4

H|A < B

H|A < C|C < B
w5

H|A < B H|B < C

H|A < C
cut1

H|A < B H|B ≤ C

H|A < C
cut2

H|A ≤ B H|B < C

H|A < C
cut3

H|A ≤ B H|B ≤ C

H|A ≤ C
cut4

We proceed to logical inferences. The rules for conjunction and disjunction
are obtained by replacing � by < or ≤ in the following rules:

H|C � A H|C � B

H|C � (A ∧ B)
∧�
1

H|A � C|B � C

H|(A ∧ B) � C
∧�
2

H|C � A|C � B

H|C � (A ∨ B)
∨�
1

H|A � C H|B � C

H|(A ∨ B) � C
∨�
2

The rules for implication are:

H|A ≤ B | C < B

H|C < (A → B)
→1

H|1 < C|B < A H|B < C

H|(A → B) < C
→2

H|A ≤ B | C ≤ B

H|C ≤ (A → B)
→3

H|1 ≤ C | B < A H|B ≤ C

H|(A → B) ≤ C
→4

Finally, the rules for the operator ◦ are as follows:

H|A ≤ B

H|A < ◦B
◦1 H|A ≤ B

H| ◦ A ≤ ◦B
◦2

The rule w1 is an internal weakening. By external weakening we mean one
of w2–w5. The critical components of an inference are those displayed above,
i.e., all components not in H. We say a component is introduced by an inference
if it appears in its conclusion but is not among its premises. The concept of a
formula being introduced by an inference is defined analogously. An end-segment
of a proof π is a downwards-closed subset of π taken as a tree.

Lemma 3

1. Modus ponens, i.e., the sequent A ≤ B|A → B ≤ B, is derivable in RG−
◦ .

2. RG−
◦ derives 1 ≤ A → B if, and only if, it derives A ≤ B.

3. RG−
◦ derives 1 < A ≺ B if, and only if, it derives A < B.
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4. RG−
◦ derives 1 ≤ A ∨ B if, and only if, it derives 1 ≤ A|1 ≤ B. RG−

◦ derives
1 < A ∨ B if, and only if, it derives 1 < A|1 < B.

Proof. 1. Modus ponens is derived as follows:

A ≤ A

A ≤ B|B < A
w3

A ≤ B|1 ≤ B|B < A
w1 + w2

A ≤ B|A → B ≤ B
→4

2. From A ≤ B, we derive 1 ≤ A → B by w1 and →3. Assume 1 ≤ A → B
is derivable. The following computation, starting from modus ponens, shows
A ≤ B is derivable:

A < 1
A ≤ 1

w2
1 ≤ A → B A → B ≤ B|A ≤ B

1 ≤ B|A ≤ B
cut4

A ≤ B
cut4

3. Proceed as follows, where (*) as is obtained from 1 ≤ (B → A) → B as in 2:

A < 1
(∗)B → A ≤ B

B ≤ B

B ≤ A|A < B
w4

1 ≤ A|B ≤ A|A < B
w1 + w2

1 ≤ B → A|A < B
→3

1 ≤ B|A < B
cut4

A < B|A < B
cut2

A < B
c2

4. We deal only with ≤. The other case is analogous. One implication is
obtained immediately by applying ∨�

1 . For the converse:

1 ≤ A ∨ B

A ≤ A

B ≤ B

B ≤ A|A ≤ B
w3 + w2

A ∨ B ≤ A|A ≤ B
∨2

B ≤ B

A ∨ B ≤ A|A ∨ B ≤ B
∨2

1 ≤ A|A ∨ B ≤ B
cut4 1 ≤ A ∨ B

1 ≤ A|1 ≤ B
cut4

�
Proposition 4. The calculus RG−

◦ is sound and complete for the intended inter-
pretation.

Proof (Soundness). The proof relies on a sequents-of-relations calculus for Gödel
Logic formulated in [1]. Therein < is interpreted in such a way that A < B is
satisfied if and only if I(A) < I(B). All axioms and rules coincide under both
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interpretations of < except for rule (→2) and axiom A3. Axiom A3 is clearly
sound. To verify that rule (→2) is valid, note that A → B < C is equivalent to
(A ≤ B ∧ 1 < C) ∨ (B < A ∧ B < C). By distributing, we see that it is also
equivalent to the formula

(A ≤ B ∨ B < A) ∧ (A ≤ B ∨ B < C) ∧ (1 < C ∨ B < A) ∧ (1 < C ∨ B < C).

The first conjunct is a tautology. As 1 < C implies B < C, the fourth conjunct
reduces to B < C, which subsumes the second one. This gives the validity of the
rule. Finally, axioms ◦1 and ◦2 are clearly sound.

(Completeness). It suffices to note that any cut-free proof in the complete cal-
culus in [1] can be simulated by the axioms and rules of RG−

◦ using axioms and
weakening rules to obtain the axioms of the former. Any proof of 1 ≤ A, where
A is a formula already valid in Gödel Logic can be simulated in RG−

◦ . The only
rule in [1] which is different to the corresponding rule in RG−

◦ has premises which
are weakenings of the premises of the original rule. Thus, it suffices to verify that
the axioms involving ◦ are derivable in RG−

◦ . Axiom (R1) can be derived directly
by rule ◦1. Axiom (R2) can be derived from modus ponens by the following two
inferences:

A ≤ A

A ≤ B|B ≤ A
w3 + w2

A ≤ B|1 ≤ B|B < A
w1 + w2

1 ≤ A → B|B < A
→3

1 ≤ ◦(A → B)|B < A
◦1

1 ≤ ◦(A → B)| ◦ B < ◦A
◦2

B ≤ B

B ≤ A|A ≤ B
w3 + w2

B ≤ A → B
→3

1 ≤ A → B|B ≤ A → B
w1 + w2

1 ≤ ◦(A → B)|B ≤ A → B
◦1

1 ≤ ◦(A → B)| ◦ B ≤ ◦(A → B)
◦2

◦A → ◦B ≤ ◦(A → B)|1 ≤ ◦(A → B)
→4

1 ≤ (◦A → ◦B) → ◦(A → B)
→3

A ≤ B|A → B ≤ B

A ≤ B| ◦ (A → B) ≤ ◦B
◦2

◦A ≤ ◦B| ◦ (A → B) ≤ ◦B
◦2

◦(A → B) ≤ (◦A → ◦B)
→3

◦(A → B) ≤ (◦A → ◦B)|1 ≤ ◦A → ◦B
w1 + w2

1 ≤ ◦(A → B) → (◦A → ◦B)
→3

Since we can derive 1 ≤ A for all instances of any axiom, as well as modus
ponens, we can use rule cut4 to obtain 1 ≤ A for any formula derivable in the
Hilbert-style calculus given by Proposition 2. �
Corollary 5. All true sequents are derivable in RG−

◦ .

Proof. Assume A1 � B1|...|An � Bn is a true sequent, where each occurrence of
� is either < or ≤. By Proposition 4, the sequent 1 ≤ ∨

i Ai � Bi is derivable,
where each occurrence of � is either → or ≺, as appropriate. By Lemma 3.4,



42 J.P. Aguilera and M. Baaz

the sequent 1 � A1 � B1|...|1 � An � Bn is derivable. Finally, by Lemmas 3.2
and 3.3, A1 � B1|...|An � Bn is derivable, as desired. �
Proposition 6. Compound axioms are derivable in RG−

◦ from atomic axioms.

Proof. We consider only the axiom F ≤ F for simplicity. The others are similar.
Proceed by induction:

1. F = A ∧ B:
A ≤ A

A ∧ B ≤ A
∧1

B ≤ B

A ∧ B ≤ B
∧1

A ∧ B ≤ A ∧ B
∧2

2. F = A ∨ B:
A ≤ A

B ≤ A ∨ B
∨1

B ≤ B

A ≤ A ∨ B
∨1

A ∨ B ≤ A ∨ B
∨2

3. F = A → B:

A ≤ A

A ≤ B|B < A
w4

1 ≤ B|A ≤ B|B < A
w1 + w2

1 ≤ A → B|B < A
→4

B ≤ B

A ≤ B|B ≤ B
w1 + w2

B ≤ A → B
→3

A → B ≤ A → B
→4

4. F = ◦A:
A ≤ A

◦A ≤ ◦A
◦2 �

3.1 An Extension

We consider an auxiliary extension of RG−
◦ by the following self-cut rule:

H|A < A

H|1 < A
m

It is easy to see that this rule is valid.

Definition 7. The calculus RG◦ is the extension of RG−
◦ resulting by the addi-

tion of the self-cut rule.

In the following section, we show that RG◦ admits cut elimination. By a cut,
we mean either any instance of cut1–cut4, or an instance of m. This addition
corresponds operationally to the extension of LK or LJ by the mix rule.
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4 Cut Elimination

The following is the main theorem:

Theorem 8. RG◦ admits cut elimination; hence, so too does RG−
◦ .

To prove Theorem 8, we need a few auxiliary lemmata. We state and prove
them now. As the reader will notice, we will sometimes omit cases and/or labeling
of rules if we deem it harmless.

Lemma 9. If there exists a cut-free proof of a sequent H, then there exists a cut-
free proof of H where all instances of w3–w5 are such that the formula introduced
in the critical components is either atomic or of the form ◦C.

Proof. This can be checked by induction on the size of the introduced formula.
We consider the inference w5. The others are taken care of analogously. For
example, a weakening introducing A ∧ B, can be replaced as follows:

C < D
C < A|A < D

w5
C < D

C < B|B < D
w5

C < A ∧ B|A < D|B < D

C < A ∧ B|A ∧ B < D|B < D

C < A ∧ B|A ∧ B < D|A ∧ B < D

C < A ∧ B|A ∧ B < D

If the introduced formula is of the form A → B, then consider the following
derivation:

A ≤ A

A ≤ B|B < A
w5

A ≤ B|B < A|1 ≤ D
C < D

C < B|B < D
w5

C < B|A ≤ B|A → B < D

C < A → B|A → B < D|B < D

The other cases are treated similarly. �
Lemma 10. For any proof π ending with an instance of m cutting an atomic A
and otherwise cut-free, there exists a proof agreeing with π up to that inference,
with no instances of m, and such that all cuts have A as cut formula.

Proof. We proceed by going upwards through π up to the point where A < A
was introduced and modifying π as follows:

1. If the inference is some weakening, say w3, of the form

H|A ≤ B

H|A < A|A ≤ B
w3

then modify π by omitting this inference. At the end of the proof, add an
instance of w1 as follows:

H
H|1 < A

w1
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2. If the inference is an instance of com, say

H|A < B H|C < A

H|A < A|C < B
com

Replace this inference with appropriate instances of cut1 and w1.
3. If the inference is a contraction, apply these three steps to each of the two

occurrences of A < A.

The resulting proof is as required.
�

Lemma 11. If π is an otherwise-cut-free proof of H whose last inference is an
atomic instance of one of cut1–cut4, then there is a cut-free proof of H.

Proof. Suppose for definiteness that the last inference is an atomic instance of
cut4. Consider the end-segment of the proof of the form

G|C < A

...ρ
H|C < A H|A < D

H|C < D

where G|C < A is the sequent that introduces the indicated instance of C < A.
We proceed by cases according to how C < A was inferred. Repeatedly apply
any of the following steps until the proof is as desired:

1. If the inference is an instance of w5 of the form

G′|C < B

G′|C < A|A < B
w5

we apply an instance of communication as follows:

G′|C < B H|A < D

G′|H|C < D|A < B
com

but then the lower hypersequent is simply G|H|C < D. Repeat the proof ρ
below this hypersequent to obtain H|C < D.

2. If the inference is an instance of w1, instead, weaken to introduce the sequent
C < D and apply ρ to arrive at H|C < D.

3. If the inference is an instance of com, say,

G′|B < A G′|C < E

G′|C < A|B < E
com

we apply the cut rule before this instance of communication as follows:

G′|B < A H|A < D

G′|H|B < D
cut1 G′|C < E

G′|H|C < D|B < E
com
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4. If the inference is a contraction, then apply the four steps at the inference
where each of the two instances of C < A is introduced.

5. A remaining possibility is that the cut formula A is the constant 1 introduced
via an axiom in the left-hand side. In this case, the component 1 < D on the
right-hand side can only be introduced either via an external weakening, in
which case we proceed as in case 1, or via an internal weakening, in which
case we replace the inference by an instance of com. �

Lemma 12. Suppose π is a cut-free proof of H|◦A ≤ B. Then there is a cut-free
proof of H|A < B.

Proof. We proceed according as how the sequent ◦A ≤ B is inferred. There are
three cases. (i) If ◦A ≤ B is inferred by an instance of w1, then simply apply w1

to infer A < B. Else, either (ii) ◦A ≤ B is the critical sequent of an inference

H|A ≤ C

H| ◦ A ≤ ◦C
◦2 (1)

in which case we replace (1) by

H|A ≤ C

H|A < ◦C
◦1

or (iii) the sequent is obtained through a weakening:

H|C ≤ D

H|C < ◦A| ◦ A ≤ D

If so, we replace this inference as follows:

H|C ≤ D

H|C ≤ A|A < D

H|C < ◦A|A < D
◦1 �

Lemma 13. For any proof π ending with an instance of m cutting a formula ◦A
and otherwise cut-free, there exists a proof agreeing with π up to that inference,
with no instances of m, and such that all cuts have A as cut formula.

Proof. As before, let G|◦A < ◦A be the hypersequent where ◦A < ◦A is inferred.
If G| ◦ A < ◦A is the lower sequent of an inference ◦1, then apply Lemma 12 to
obtain a cut-free proof of G|A < A and infer G|1 < A by m. Apply Lemma 10
to obtain a proof agreeing with π up to this point and where all cuts have A as
cut formula and infer G|1 < ◦A using ◦1. Finally, adjoin to the resulting proof
the second half of π.

If G| ◦ A < ◦A is the lower sequent of an inference

G′|C < ◦A G′| ◦ A < D

G′| ◦ A < ◦A|C < D
com
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then replace this inference with an instance of cut1 and w1 to obtain G′|C <
D|1 < ◦A.

Finally, if G| ◦ A < ◦A is the lower sequent of an instance of an internal
weakening, say,

G′| ◦ A ≤ D

G′| ◦ A < ◦A| ◦ A ≤ D

then simply replace this weakening with an external weakening w1 with critical
formula 1 < ◦A. �
Lemma 14. If π is an otherwise cut-free proof of H whose last inference is an
instance of cut1–cut4 with cut formula ◦A, then there is a proof of H whose only
cuts have A as cut formula.

The proof of Lemma 14 may be found in the Appendix. With this, we can
proceed to:

Proof of Theorem 8. We proceed by going downwards through the proof. By
induction, assume we are given a proof whose only cut is the last inference I.
We proceed by a simultaneous induction on the complexity of the cut formula
and the type of cut. Specifically, we successively transform the proof to obtain
one of the following:

1. a proof whose only cuts have as cut formula a proper subformula of the initial
cut formula, provided I is an instance of one of cut1–cut4;

2. if I is an instance of m, then we obtain either a proof whose only cuts are
instances of cut1–cut4 with the same cut formula as I, or a proof whose only
cut is an instance of m and with a proper subformula of the initial cut formula
as cut formula.

If the cut formula is atomic (including the case where it is the constant 1),
proceed by applying Lemma 10 or Lemma 11, as appropriate. If it is of the
form ◦A, apply Lemma 13 or Lemma 14. We consider only one more case—
implication. For example, suppose there is an end-segment of the proof of the
form F|A < B|C < B

F|C < A → B

...ρ1
H|C < A → B

G|1 < D|B < A G|B < D

G|A → B < D

...ρ2
H|A → B < D

H|C < D
cut1
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Replace the end-segment of the proof with

H|C < 1

H|A < B|C < B H|1 < D|B < A

H|B < B|C < B|1 < D
cut1

H|1 < B|C < B|1 < D
m

H|C < B|C < B|1 < D
cut1 H|C < 1

H|C < B|C < B|C < D
cut1

H|C < B|C < D
c1 H|B < D

H|C < D|C < D
cut1

H|C < D
c1

Suppose the last inference is an instance of m with cut formula A → B. Since
both the left-hand and right-hand sides of the component must be introduced, we
can assume by Lemma 9 that they are introduced by a logical inference. Hence,
the proof must have an end-segment with one of the following forms:

1. F|A ≤ B|1 < A → B F|A ≤ B|B < B

F|A ≤ B|A → B < B
→2

...ρ1
G|A ≤ B|A → B < B

G|A → B < A → B
→1

...ρ2
H|A → B < A → B

H|1 < A → B
m

2.

G|1 < A → B|B < A

F|A ≤ B|B < B

F|B < A → B
→1

...ρ1
G|B < A → B

G|A → B < A → B
→2

...ρ2
H|A → B < A → B

H|1 < A → B
m

In this case, replace the end-segment with the following:

F|A ≤ B|B < B

...ρ1, ρ2
H|A ≤ B|B < B

H|A ≤ B|1 < B
m

H|1 < A → B
→1 �
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As a consequence of the cut-elimination theorem, we obtain the following
result. Say a rule A/B is strongly sound if under every interpretation I, I(A) = 1
implies I(B) = 1.

Corollary 15. Every strongly sound rule can be eliminated.

Proof. As the deduction theorem holds for the Hilbert-style calculus, every
strongly sound rule can be eliminated by the addition of a valid formula and
cuts. The valid formula can be proved and the cuts eliminated. �

5 Conclusion

It is not clear whether the communication rule is actually essential for the proof.
It remains open whether it can be eliminated from the cut-free calculus. If this
were the case, then one could arrive at a Maehara-style proof of interpolation,
i.e., construct interpolants by induction on the depth of cut-free proofs (see [5]
for the classical and intuitionistic formulation of the lemma).

Appendix

Proof of Lemma 14. The end-segment of the proof will be of the form

G|C < ◦A

...ρ1
H|C < ◦A

F| ◦ A < D

...ρ2
H| ◦ A < D

H|C < D

where C < ◦A and ◦A < D are inferred, respectively, at the hypersequents
G|C < ◦A and F| ◦ A < D. We proceed according to which inferences were used
above G|C < ◦A and F| ◦ A < D.

1. If the inferences were respectively ◦1 or ◦2, so that the proof is

G|C ≤ A

G|C < ◦A

...ρ1
H|C < ◦A

F|A ≤ E

F| ◦ A ≤ ◦E

...ρ2
H| ◦ A < ◦E

H|C < ◦E
cut

then replace it with

G|C ≤ A F|A ≤ E

G|F|C ≤ E
cut

...ρ1, ρ2
H|C ≤ E

H|C < ◦E
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2. If the inferences were both ◦2, so that the proof is

G|C ≤ A

G| ◦ C ≤ ◦A

...ρ1
H| ◦ C ≤ ◦A

F|A ≤ E

F| ◦ A ≤ ◦E

...ρ2
H| ◦ A ≤ ◦E

H| ◦ C ≤ ◦E
cut

then replace it with

G|C ≤ A F|A ≤ E

G|F|C ≤ E
cut

...ρ1, ρ2
H|C ≤ E

H| ◦ C ≤ ◦E

3. If the inference on the left-hand side is ◦1 and the inference on the right-hand
side is an internal weakening, the proof will be of the form

G|B ≤ A

G|B < ◦A

...ρ1
H|B < ◦A

F|B ≤ C

F|B ≤ ◦A| ◦ A < C

...ρ2
H|B ≤ ◦A| ◦ A < C

H|B ≤ A|B < C
cut

Replace it with

G|B ≤ A

F|B ≤ C

F|B ≤ A|A < C

F|B < ◦A|A < C

F|G|B < ◦A|B < C
cut

...ρ1, ρ2
H|B < ◦A|B < C

H|B ≤ ◦A|B < C

4. If the inference on the left-hand side is ◦2 and the inference on the right-hand
side is an internal weakening, the proof will be of the form

G|B ≤ A

G| ◦ B ≤ ◦A

...ρ1
H| ◦ B ≤ ◦A

F|B ≤ C

F|B ≤ ◦A| ◦ A < C

...ρ2
H|B ≤ ◦A| ◦ A < C

H| ◦ B ≤ A|B < C
cut
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Replace it with

G|B ≤ A

F|B ≤ C

F|B ≤ C|A < C

F|G|B ≤ A|B < C
cut

F|G|B < ◦A|B < C

...ρ1, ρ2
H|B < ◦A|B < C

H|B ≤ ◦A|B < C

5. If the inference on the right-hand side is ◦2 and the inference on the left-hand
side is an internal weakening, the proof will be of the form

F|B ≤ D

F|B ≤ ◦A| ◦ A < D

...ρ2
H|B ≤ ◦A| ◦ A < D

G|A ≤ C

G| ◦ A ≤ ◦C

...ρ1
H| ◦ A ≤ ◦C

H|B ≤ ◦C| ◦ A < D
cut

Replace it with

F|B ≤ D

G|A ≤ C

G| ◦ A ≤ ◦C

F|G|B ≤ ◦C| ◦ A < D
com

...ρ1, ρ2
H|B ≤ ◦C| ◦ A < D

6. The final case is that both inferences are internal weakenings:

F|B ≤ D

F|B ≤ ◦A| ◦ A < D

...ρ1
H|B ≤ ◦A| ◦ A < D

G|E ≤ F

G|E ≤ ◦A| ◦ A < F

...ρ2
H|E ≤ ◦A| ◦ A < F

H|B < F | ◦ A < D|E ≤ ◦A
cut

Replace it with

F|B ≤ D G|E ≤ F

F|G|B ≤ F |E ≤ D
com

...ρ1, ρ2
H|B < F |E < D

A ≤ A

◦A ≤ ◦A

H|B < F | ◦ A < D|E ≤ ◦A
com

�
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