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Abstract. RS-frames were introduced by Gehrke as relational semantics for sub-
structural logics. They are two-sorted structures, based on RS-polarities with
additional relations used to interpret modalities. We propose an intuitive, epis-
temic interpretation of RS-frames for modal logic, in terms of categorization
systems and agents’ subjective interpretations of these systems. Categorization
systems are a key to any decision-making process and are widely studied in the
social and management sciences.

A set of objects together with a set of properties and an incidence relation con-
necting objects with their properties forms a polarity which can be ‘pruned’ into
an RS-polarity. Potential categories emerge as the Galois-stable sets of this polar-
ity, just like the concepts of Formal Concept Analysis. An agent’s beliefs about
objects and their properties (which might be partial) is modelled by a relation
which gives rise to a normal modal operator expressing the agent’s beliefs about
category membership. Fixed-points of the iterations of the belief modalities of all
agents are used to model categories constructed through social interaction.

Keywords: Lattice-based modal logic · RS-frames · Categorization theory ·
Epistemic logic · Formal concept analysis

1 Introduction

Relational semantic frameworks for logics algebraically captured by varieties of nor-
mal lattice expansions1 have been intensely investigated for more than three decades

1 A normal lattice expansion is a bounded lattice endowed with operations of finite arity, each
coordinate of which is either positive (i.e. order-preserving) or negative (i.e. order-reversing).
Moreover, these operations are either finitely join-preserving (resp. meet-reversing) in their
positive (resp. negative) coordinates, or are finitely meet-preserving (resp. join-reversing) in
their positive (resp. negative) coordinates.
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[3,15,17,19,22,25,27,30,31,33,34,39,40]. However, none of these frameworks has
gained the same pre-eminence and success as Kripke semantics. Indeed, the extant pro-
posals are regarded as significantly less intuitive than Kripke structures, especially w.r.t.
their possibility to support the various established interpretations of modal operators
(e.g. epistemic, temporal, dynamic), and hence doubts have been raised as to the suit-
ability of these logics for applications. Various directions have been explored to try and
cope with these difficulties, such as: (a) attempts to provide a conceptual justification
to some of the distinctive features of these semantics (for instance, in [25], a concep-
tual motivation has been given for the ‘two-sortedness’ of the relational semantics for
substructural logics introduced in the same paper in terms of a duality between states
and information quanta); (b) recapturing the usual definition of the interpretation clause
of modal operators in a generalized context [27,28]; (c) improving the modularity of
mathematical theories such as correspondence theory, to facilitate the transfer of results
across different semantic settings. The latter direction has been implemented specifi-
cally for lattice-based logics in [6,9,10], and pursued more in general in [4,5,7,8,11–
14,21,26,37,38].

The contribution of the present paper pertains to direction (a): we propose catego-
rization theory in management science as a concrete frame of reference for understand-
ing the RS-semantics of lattice-based modal logic, and we argue that, when understood
in this light, a natural epistemic interpretation can be given to the modal operators,
which captures e.g. the factivity and positive introspection of knowledge.

Our starting point is the connection, mentioned also in [25], between RS-semantics
and Formal Concept Analysis (FCA) [24]. Namely, RS-frames for normal lattice-based
modal logics are based on polarities, that is, tuples (A, X,⊥) such that A and X are sets,
and ⊥⊆ A × X. In FCA, polarities can be understood as formal contexts, consisting of
objects (the elements of A) and properties (the elements of X) with the relation ⊥ indi-
cating which object satisfies which property. It is well known that any polarity induces
a Galois connection between the powersets of A and X, the stable sets of which form
a complete lattice, and in fact, any complete lattice is isomorphic to one arising from
some polarity. This representation theory for general lattices, due to Birkhoff, provides
the polarity-to-lattice direction of the duality developed in [25], and is also at the heart
of FCA. Indeed, the Galois-stable sets arising from formal contexts can be interpreted
as formal concepts. One of the most felicitous insights of FCA is that concepts are
endowed by construction with a double interpretation: an extensional one, specified by
the objects which are instances of the formal concept, and an intensional one, specified
by the properties shared by any object belonging to the concept.

The second key step is the arguably natural idea that categories and classification
systems, as studied in social sciences and management science, are a very concrete
setting of application of the insights of FCA.

Indeed, in social science and management science, categories are understood as
types of collective identities for broad classes e.g. of market products, organizations or
individuals. Categorization theory recognizes categories as a key aspect of any decision-
making process, in that they structure the space of options by defining the boundaries of
meaningful comparisons between the available alternatives [29,32,42]. Also, categories
function as cognitive sieves, filtering out those features which are redundant or less
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essential to the decision-making, thus contributing to minimize the agents’ cognitive
efforts. Examples of categories are musical genres, which are widely applied as tools
to compress and convey relevant information about a musical product to its potential
audience. Structuring information and decision-making along the faultlines of genres
is so established a practice in the creative industries that genres have become the main
way to structure competition as well as to create consumer group identity.

An aspect of categories which is very much highlighted in the categorization the-
ory literature is that they never occur in isolation; rather, they arise in the context of
categorization systems (e.g. taxonomies), which are typically organized in hierarchies
of super- (i.e. less specified) and sub- (i.e. more specified) categories. This observation
agrees with the FCA treatment, according to which concepts arise embedded in their
concept lattice.

One of the open challenges in the extant literature is how to reconcile the view on
categories which defines them in terms of the objects (e.g. products) belonging to that
category with another view which defines categories in terms of the features enjoyed by
its members. The intensional and extensional perspectives on concepts brought about
by FCA provide an elegant reconciliation of the two views on categories, which gives a
second clue that the FCA perspective on categorization theory can be fruitful.

In recent years, a substantial research stream in social and management science
explores the dynamic aspects of categorization [29,35]. For instance, category emer-
gence investigates how new categories are created, either ex nihilo or through the
recombination of existing ones, and how the interaction of relevant groups of agents,
such as the media or the reviewers, plays a role in this process. The aspect of social
interaction is essential to understand how categories arise and are put to use: although
they can be seen to arise from factual pieces of information about the world (e.g., the
products available in a given market and their features), a critical component of their
nature cannot be reduced to factual information. In other words, categories are social
artifacts, and reasoning about them requires a peculiar combination of factual truth,
individual perception and social interaction.

The main point of interest and the conceptual contribution of the present proposal
concerns precisely the formalization of the subjective and social aspects of this emer-
gence. Namely, we observe that the agents’ subjective perspective on products and
features can be naturally modelled by associating each agent with a binary relation
R ⊆ A × X on the database (A, X,⊥), which represents the subjective filters superim-
posed by each agent on the information of the database. That is, for every product a ∈ A
and every feature x ∈ X, we read aRx as ‘product a has feature x according to the
agent’. By general order-theoretic facts, these relations2 induce normal modal opera-
tors on the categorization system associated with the database. These modal operators
enrich the basic propositional logic of the categorization systems. In this enriched log-
ical language, it is easy to distinguish between ‘objective’ information (stored in the
database), encoded in the formulas of the modal-free fragment of the language, and the
agents’ subjective interpretation of the ‘objective’ information, encoded in formulas in
which modal operators occur. This language is expressive enough to encode agents’
beliefs/perceptions regarding other agents’ beliefs/perceptions, and so on. Again, this

2 Actually, those which are RS-compatible, cf. Definition 4.
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makes it possible to define fixed points of these regressions, similarly to the way in
which common knowledge is defined in classical epistemic logic [20]. Intuitively, these
fixed points represent the stabilization of a process of social interaction; for instance,
the consensus reached by a group of agents regarding a given category. Clearly, mar-
ket dynamics are bound to create further destabilization, necessitating a new round of
interaction in order to establish a new equilibrium. Further directions will be to gener-
alize the framework of dynamic epistemic logic [2] to the setting outlined in the present
paper, and further develop the theory of lattice-based mu-calculus initiated in [6].

Structure of the Paper. In Sect. 2, we collect the necessary definitions and basic facts
about RS-semantics. In Sect. 3, we discuss how the mathematical environment intro-
duced in the previous section can be understood using categories and categorization
systems as the framework of reference. In particular, we show how normal modal oper-
ators on lattices can support an epistemic interpretation. In Sect. 4, we build on the
epistemic interpretation of the modal operators, and introduce a common knowledge-
type construction to account for a view of categories as the outcome of social interac-
tion. In Sect. 5 we collect our conclusions. More technical background is relegated to
Appendix A, while the proofs of some technical lemmas can be found in Appendix B.

2 Preliminaries

In this section we recall some preliminaries on perfect lattices, RS-polarities, general-
ized Kripke frames and formal concept analysis. We will assume familiarity with the
basics of lattice theory (see e.g. [16]).

2.1 Perfect Lattices

A bounded lattice L = (L,∧,∨, 0, 1) is complete if all subsets S ⊆ L have both a
supremum

∨
S and an infimum

∧
S . An element a in L is completely join-irreducible

if, for any S ⊆ L, a =
∨

S implies a ∈ S . Complete meet-irreducibility is defined order-
dually. The sets of completely join- and meet-irreducible elements of L are denoted by
J∞(L) and M∞(L), respectively.

A complete lattice L is called perfect if it is join-generated by its completely join-
irreducibles, and meet-generated by its completely meet-irreducibles. That is, L is per-
fect if for any u ∈ L, we have

∨{ j ∈ J∞(L) | j ≤ u} = u =
∧{m ∈ M∞(L) | u ≤ m}.

2.2 Polarities and Birkhoff’s Representation Theorem

Definition 1. A polarity is a triple P = (A, X,⊥) where A and X are sets, and⊥ ⊆ A×X
is a relation. For every polarity P, we define the functions (·)↑ (upper) and (·)↓ (lower)3
between the posets (P(A),⊆) and (P(X),⊆), as follows:

f or U ∈ P(A), letU↑ := {x ∈ X | ∀a(a ∈ U → a ⊥ x)},
f or V ∈ P(X), letV↓ := {a ∈ A | ∀x(x ∈ V → a ⊥ x)}.

3 In what follows, we abuse notation and write a↑ for {a}↑ and x↓ for {x}↓ for every a ∈ A and
x ∈ X.
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The maps (·)↑ and (·)↓ form a Galois connection between (P(A),⊆) and (P(X),⊆),
i.e. V ⊆ U↑ iff U ⊆ V↓ for all U ∈ P(A) and V ∈ P(X). Well-known consequences of
this fact are: the composition maps (·)↑↓ := (·)↓ ◦ (·)↑ and (·)↓↑ := (·)↑ ◦ (·)↓ are closure
operators on (P(A),⊆) and (P(X),⊆), respectively;4 The set of all Galois-stable subsets
of A (i.e. those U ∈ P(A) such that U↑↓ = U) forms a complete sub-semilattice of
(P(A),

⋂
), which we denote by P+;5 since it is complete, the semilattice P+ is in fact a

lattice, where meet is set-theoretic intersection and join is the closure of the set-theoretic
union. If fact, Birkhoff showed that every complete lattice is isomorphic to P+ for some
polarity P. This lattice can be identified with the lattice of concepts arising from P (this
terminology comes from Formal Concept Analysis), i.e. tuples (C,D) s.t. C ⊆ A, D ⊆ X
and D↓ = C and C↑ = D.6 Concepts (resp. Galois stable subsets of X and of A) can be
characterized as (members of) tuples (U↑↓,U↑) and (V↓,V↓↑) for any U ⊆ A and V ⊆ X.

Let us conclude the present subsection by introducing some notation and showing
some useful facts. Polarities (A, X,⊥) induce ‘specialization pre-orders’ on A and X
defined as follows: x ≤ y iff ∀a(a ⊥ x → a ⊥ y) for all x, y ∈ X, and a ≤ b iff
∀x(b ⊥ x → a ⊥ x) for all a, b ∈ A. Clearly, ≤ ◦ ⊥ ◦ ≤⊆⊥. For every b ∈ A and z ∈ X,
let z↑ := {x | z ≤ x}, and b↓ := {a | a ≤ b}. The proofs of the following lemma and
corollary can be found in Appendix B.

Lemma 1. z↑ and b↓ are Galois-stable for all b ∈ A and z ∈ X.
Corollary 1. z↓↑ = z↑ and b↑↓ = b↓ for all b ∈ A and z ∈ X.
Summing up, the concepts generated by each a ∈ A and x ∈ X are (a↓, a↑) and (x↓, x↑)
respectively.

2.3 RS-polarities and Dual Correspondence for Perfect Lattices

As mentioned early on, every complete lattice is isomorphic to P+ for some polarity P.
When specializing to distributive lattices and Boolean algebras, the well-known dual-
ities obtain between set-theoretic structures and perfect algebras. In particular, perfect
distributive lattices are dual to posets, and perfect (i.e. complete and atomic) Boolean
algebras are dual to sets. The question then arises: which polarities are dual to perfect
lattices? The answer was given by Gehrke in [25], where the so-called reduced and sep-
arated polarities, or RS-polarities, have been characterized as duals to perfect lattices,
by rephrasing in a model-theoretic way the duality for perfect lattices given in [18]. In
what follows, we will recall what it means for a polarity to be reduced and separated,
and briefly explain how these two properties guarantee the perfection of the dual lattice.
First, the route from perfect lattices to polarities is given by the following definition:

4 Recall that a closure operator on a poset (S ,≤) is a map f : S → S which is extensive
(∀a ∈ S [a ≤ f (a)]), monotone (∀a, b ∈ S [a ≤ b ⇒ f (a) ≤ f (b)]) and idempotent (∀a ∈
S [ f (a) = f ( f (a))]).

5 Likewise, The set of all Galois-stable subsets of X (i.e. those V ∈ P(X) such that V↓↑ = V)
forms a complete sub-semilattice of (P(X),

⋂
).

6 SometimesC and D are referred to as the extension and the intension of a concept, respectively.
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Definition 2. For every perfect lattice L, the polarity associated with L is the triple
L+ := (J∞(L),M∞(L),⊥+) where⊥+ is the lattice order ≤L restricted to J∞(L)×M∞(L).

Definition 3 (cf. [25, Definitions 2.3 and 2.12]). A polarity P = (A, X,⊥) is:

1. separating if the following conditions are satisfied:
(s1) for all a, b ∈ A, if a � b then a↑ � b↑, and
(s2) for all x, y ∈ Y, if x � y then x↓ � y↓.

2. reduced if the following conditions are satisfied:
(r1) for every a ∈ A, some x ∈ X exists s.t. a is ≤-minimal in {b ∈ A | b �⊥ x}.
(r2) for every x ∈ X, some a ∈ A exists s.t. x is ≤-maximal in {y ∈ X | x �⊥ a}.

3. an RS-polarity7 if it is separating and reduced.

If P is separating, then, denoting S := {b | b ∈ A and b < a} = a↓\{a} for each a ∈ A,
notice that a↓ is completely join-irreducible in P+ iff

∨
b∈S b↓ � a↓ iff a↑ �

⋂
b∈S b↑,

i.e. some x ∈ X exists such that b ⊥ x for all b ∈ S and a �⊥ x, which is condition (r1).
Similarly, (r2) dually characterizes the condition that, for every x ∈ X, the subset x↑ is
completely meet-irreducible in P+, represented as a sub meet-semilattice of P(X).

Proposition 1 (cf. [25, Remark 2.13] and [18, Proposition 4.7, Corollary 4.9]). For
every perfect lattice L and RS-polarity P,

1. L+ is an RS-polarity and (L+)+ � L.
2. P+ is a perfect lattice and (P+)+ � P.

2.4 RS-frames and Models

In the present section, we report on the definition of a relational semantics, based on RS-
polarities, for an expansionL of the basic lattice language with a unary normal box-type
connective. We also give semantics for a further expansion of L with a unary normal
diamond-type connective �, and with two special sorts of variables i, j called nominals,
and m,n called co-nominals. This semantics is the outcome of a dual characterization
which is discussed in detail and in full generality in [9, Sect. 2], and is reported on in
the appendix for the part directly relevant to this paper. The most peculiar feature of this
semantics is that formulas are satisfied at a ∈ A and co-satisfied (refuted) at x ∈ X.

Definition 4. An RS-frame for L is a structure F = (P,R) where P = (A, X,⊥) is an
RS-polarity, and R ⊆ A × X such that the images and pre-images of singletons under R
are Galois-closed, i.e. for every x ∈ X and a ∈ A,

R−1[x]↑↓ ⊆ R−1[x] and R[a]↓↑ ⊆ R[a].

Relations R which satisfy this condition are called RS-compatible.

7 In [25], RS-polarities are referred to as RS-frames. Here we reserve the term RS-frame for RS-
polarities endowed with extra relations used to interpret the operations of the lattice expansion.
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The additional conditions on R are compatibility conditions guaranteeing that the fol-
lowing assignments respectively define the operations � and � associated with R on the
lattice P+: for every U ∈ P+,

�U :=
⋂
{R−1[x] | U ⊆ x↓} and �U :=

∨
{R[a] | a↑↓ ⊆ U}.

Definition 5. For every RS-frame F = (P,R), its complex algebra is the lattice expan-
sion F+ := (P+,�) where � is defined as above.

Lemma 2. ≤ ◦ R ◦ ≤ ⊆ R for every RS-frame F = (P,R).

An RS-model for L on F is a structureM = (F, v) such that F is an RS-frame for L and
v is a variable assignment mapping each p ∈ PROP to a pair (V1(p),V2(p)) of Galois-
stable sets in P(A) and P(X) respectively. In a model for the expanded language with
�, nominals and conominals, variable assignments also map nominals j to ( j↑↓, j↑) for
some j in A and co-nominals m to (m↓,m↓↑) for some m in X.

The following table reports the recursive definition of the satisfaction and co-
satisfaction relations onM:

M, a � 0 never M, x � 0 always
M, a � 1 always M, x � 1 never
M, a � p iff a ∈ V1(p) M, x � p iff x ∈ V2(p)
M, a � i iff a ∈ V1(i) M, x � i iff x ∈ V2(i)
M, a � m iff a ∈ V1(m) M, x � m iff x ∈ V2(m)
M, a � φ ∧ ψ iff M, a � φ andM, a � ψ
M, x � φ ∧ ψ iff for all a ∈ A, ifM, a � φ ∧ ψ, then a ⊥ x
M, a � φ ∨ ψ iff for all x ∈ X, ifM, x � φ ∨ ψ, then a ⊥ x
M, x � φ ∨ ψ iff M, x � φ andM, x � ψ
M, a � �φ iff for all x ∈ X, ifM, x � φ, then aRx
M, x � �φ iff for all a ∈ A, ifM, a � �φ, then a ⊥ x
M, a � �φ iff for all x ∈ X, ifM, x � �φ, then a ⊥ x
M, x � �φ iff for all a ∈ A, ifM, a � φ, then aRx.

The following lemma is proven easily by simultaneous induction on φ and ψ using the
truth definitions above. The base cases for 0 and 1 use conditions (r1) and (r2) and those
for proposition letters, nominals and co-nominals follow from the way valuations are
defined.

Lemma 3. For all formulas φ and ψ it holds that

1. M, a � φ iff for all x ∈ X, ifM, x � φ then a ⊥ x, and
2. M, x � ψ iff for all a ∈ A, ifM, a � ψ then a ⊥ x.

An inequality φ ≤ ψ is true inM, denotedM � φ ≤ ψ, if for all a ∈ A and all x ∈ X, if
M, a � φ andM, x � ψ then a ⊥ x.

Remark 1. It follows from Lemma 3 that M � φ ≤ ψ iff for all a ∈ A, if M, a � φ then
M, a � ψ. It also follows that M � φ ≤ ψ iff for all x ∈ X, if M, x � ψ then M, x � φ.
We will find these equivalent characterizations of truth in a model useful when treating
examples.
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2.5 Standard Translation on RS-frames

As in the Boolean case, each RS-model M for L can be seen as a first-order structure,
albeit two-sorted. Accordingly, we define correspondence languages as follows.

Let L1 be the two-sorted first-order language with equality built over the denumer-
able and disjoint sets of individual variables A and X, with binary relation symbol ⊥, R,
and two unary predicate symbols P1, P2 for each p ∈ PROP.8

We will further assume that L1 contains denumerably many individual variables
i, j, . . . corresponding to the nominals i, j, . . . ∈ NOM and n,m, . . . corresponding to the
co-nominals n,m ∈ CO-NOM. Let L0 be the sub-language which does not contain the
unary predicate symbols corresponding to the propositional variables. Let us now define
the standard translation of L+ into L1 recursively:9

STa(0) := a � a STx(0) := x = x
STa(1) := a = a STx(1) := x � x
STa(p) := P1(a) STx(p) := P2(x)
STa(j) := a ≤ j STx(j) := j ⊥ x
STa(m) := a ⊥ m STx(m) := m ≤ x
STa(φ ∨ ψ) := ∀x[STx(φ ∨ ψ)→ a ⊥ x] STx(φ ∨ ψ) := STx(φ) ∧ STx(ψ)
STa(φ ∧ ψ) := STa(φ) ∧ STa(ψ) STx(φ ∧ ψ) := ∀a[STa(φ ∧ ψ)→ a ⊥ x]
STa(�φ) := ∀x[STx(φ)→ aRx] STx(�φ) := ∀a[STa(�φ)→ a ⊥ x]
STa(�φ) := ∀x[STx(�φ)→ a ⊥ x] STx(�φ) := ∀a[STa(φ)→ aRx]

The following is a variant of [9, Lemma 2.5].

Lemma 4. For any L-modelM and any L+-inequality φ ≤ ψ, it holds thatM � φ ≤ ψ
iff M |= ∀a∀x[STa(φ) ∧ STx(ψ)→ a ⊥ x] iff M |= ∀a[STa(φ)→ STa(ψ)] iff
M |= ∀x[STx(ψ)→ STx(φ)].

2.6 Examples

So far we have seen that the environment of RS-frames provides a mathematically moti-
vated generalization of the correspondence theory which was key to the success of clas-
sical normal modal logic as a formal framework in multiple settings. The focus of this
paper is to try and understand whether and how this generalized environment can retain
some of the intuition which made Kripke semantics and modal logic so appealing. Let
us start with the inequality �0 ≤ 0, which corresponds on Kripke frames to the condi-
tion that every state has a successor.

�0 ≤ 0 iff ∀a[STa(�0)→ ∀x(STx(0)→ a ⊥ x)]
iff ∀a[∀y(y = y→ aRy)→ ∀x(x = x→ a ⊥ x)]
iff ∀a[∀y(aRy)→ ∀x(a ⊥ x)]
iff ∀a∃y(¬(aRy))

8 The intended interpretation links P1 and P2 in the way suggested by the definition of L-
valuations. Indeed, every p ∈ PROP is mapped to a pair (V1(p),V2(p)) of Galois-stable sets
as indicated in Subsect. 2.4. Accordingly, the interpretation of pairs (P1, P2) of predicate sym-
bols is restricted to such pairs of Galois-stable sets, and hence the interpretation of universal
second-order quantification is also restricted to range over such sets.

9 Recall that a ≤ j abbreviates ∀x( j ⊥ x→ a ⊥ x) and m ≤ x abbreviates ∀a(a ⊥ m→ a ⊥ x).
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To justify the last equivalence, notice that by definition, in RS-polarities no object a
verifies ∀x(a ⊥ x). Hence the condition in the penultimate line is true precisely when
the premise of the implication is false. This condition says that every state is not R-
related to some co-state; the condition on Kripke frames is recognizable modulo suitable
insertion of negations. Next, let us consider the inequality �p ≤ p, which corresponds
on Kripke frames to the condition that R is reflexive.

∀p(�p ≤ p) iff ∀m(�m ≤ m)
iff ∀a∀m[STa(�m)→ STa(m)]
iff ∀a∀m(aRm→ a ⊥ m),

since by definition, STa(m) = a ⊥ m, and STa(�m) = ∀y(m ≤ y → aRy) can
be rewritten as m↑ ⊆ R[a], which is equivalent to aRm, since R ◦ ≤ ⊆ R (cf.
Lemma 2). To recognize the connection with the usual reflexivity condition, observe
that ∀a∀m(aRm → a ⊥ m) is equivalent to R ⊆⊥, and the reflexivity of a relation
R ⊆ A × A can be written as Id ⊆ R, which is equivalent to Rc ⊆ Idc.

Clearly, �p ≤ p implies ��p ≤ �p. Let us consider the converse inequality, which
in the classical setting corresponds to transitivity:

∀p(�p ≤ ��p) iff ∀m(�m ≤ ��m)
iff ∀a∀m(STa(�m)→ STa(��m))
iff ∀a∀m(aRm→ R−1[m]↑ ⊆ R[a]),

where

STa(��m) = ∀y[STy(�m)→ aRy]
= ∀y[∀b(STb(�m)→ b ⊥ y)→ aRy]
= ∀y[∀b(bRm→ b ⊥ y)→ aRy] (∗∗)
= R−1[m]↑ ⊆ R[a].

While, again, with a bit of work it is possible to retrieve the transitivity condition in
this new interpretation, already with a relatively simple inequality such as �p ≤ ��p
this game is not really useful for the purpose of gaining a better intuitive understanding
of this semantics, since it requires jumping through too many hoops (the accessibility
relation on states is here encoded into a ‘non unaccessibility’ relation between states
and co-states), and quickly becomes awkward and unintuitive. In the next section, we
will argue that better results can be achieved by taking it as primitive, rather than as the
generalization of some other semantics.

3 Conceptualizing RS-semantics via Categorization Theory

In the present section, we propose a conceptualization of the notions introduced in the
previous section based on ideas from categorization theory in management science.
The starting point of this conceptualization is the very well known idea, core to Formal
Concept Analysis, that polarities (A, X,⊥) are abstract representations of databases, in
which A and X are sets of objects and properties respectively, and ⊥ encodes infor-
mation about whether a given object satisfies a given property. More specifically, we
propose to think of a given polarity P = (A, X,⊥) as a database such that A is the set of
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all products in a given market at a certain moment (e.g. all models of cars, or models
of togas on sale in the Netherlands in a given year), and X all the relevant observable
features of these products. The specialization pre-order a ≤ b on objects (a has at least
all the features that b has) can then be read as ‘product a is at least as specified (i.e. rich
in features) as product b’ and the one on features x ≤ y (any product having x has also
y) as ‘feature y is more generic than feature x’. The RS-conditions on the database can
then be understood as follows:

(s1): Any two distinct products can be told apart by some feature;
(s2): For any two distinct features there is a product having one but not the other;
(r1): For any product a, if there are strictly more specified products than a in the market,

then they all share some feature x which a does not have;
(r2): For any feature x, if there are strictly more generic features than x, then some

product a exists which has all of them but not x.

The separation conditions (s1) and (s2) seem rather intuitive and do not require much
explanation; (r1) can be enforced by suitably adding ‘artificial’ features to the database,
and (r2) can be enforced by removing features from the database which are the exact
intersection of two or more generic features.10 Clearly, removing such features can
always be done without loss of descriptive power. We can always enforce the separation
and reduction conditions, since the finite polarities we consider are a subclass of the so-
called doubly founded polarities, for which this is always possible, see [23].

Arguably, the reformulation of the RS-conditions in terms of products and features
makes them easier to grasp.

Further, we propose to understand the lattice P+ as the collection of ‘candidate cate-
gories’. That is, each element of P+ is a set of products which is completely identified by
the set of features common to its elements. That is, any product with all these features is
a member of the ‘candidate category’. We refer to these categories as ‘candidate’ since
they are purely implicit in the database, and not necessarily the target of any social
construction. In particular, only a restricted subset of candidate categories will support
the interpretation of socially meaningful categories (which have labels such as western,
opera, bossa-nova, SUV, smart phone etc.). Labels of socially meaningful categories can
be assigned to ‘candidate categories’ in the usual way, namely, by means of an assign-
ment v which associates each atomic category label p ∈ PROP to a category viewed
both extensionally as V1(p) ⊆ X and intensionally as V2(p) ⊆ A.11 Notice the perfect
match between the encoding of the meaning of atomic propositions on Kripke models
and of atomic category labels on RS-models: the meaning of atomic proposition p is
given as the set of states at which p holds true; the meaning of atomic category label p
is given as the set of products which are the members of p, and the set of features which
describe p. In what follows, we will refer to the intension of a category (cf. Footnote 6)
as its description, and we say that a feature describes a category if it belongs to its
description.

10 For instance, consider the following features of a soft drink: x: = ‘with vitamin A’, y: = ‘with
vitamin C’, z: = ‘with vitamin A and C’. Clearly, a database with these features would violate
(r2). This can be remedied by removing z from the set X of the database.

11 Recall that for such an assignment, V1(p) = V2(p)↓ and V2(p) = V1(p)↑.
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Given such an assignment,12 the database is endowed with a structure of anL-model
M, in such a way that, for every formula (category label) φ ∈ L, any a ∈ A and x ∈ X,
the symbols M, a � φ and M, x � φ can be understood as ‘object a is a member of
category φ’, and ‘feature x describes category φ’. One immediately apparent advantage
of this conceptualization is that it provides an intuitive way to understand � from first
principles rather than as the negative counterpart of �.

The other advantage concerns the understanding of the connectives ∧ and ∨ in the
general lattice environment. The issue is that their standard interpretation as conjunction
and disjunction does not seem completely right, since distributivity seems hardwired in
the way we understand ‘and’ and ‘or’ in natural language. The satisfaction clauses for
∧ and ∨ formulas read:

M, a � φ ∧ ψ iff M, a � φ andM, a � ψ
M, x � φ ∧ ψ iff for all a ∈ A, ifM, a � φ ∧ ψ, then a ⊥ x
M, a � φ ∨ ψ iff for all x ∈ X, ifM, x � φ ∨ ψ, then a ⊥ x
M, x � φ ∨ ψ iff M, x � φ andM, x � ψ

These clauses say that the category φ ∧ ψ is the one whose members are members of
both categories φ and ψ; hence, these products will satisfy at least both the description
of φ and of ψ, and hence the description of φ ∧ ψ contains at least the union of these
descriptions. The category φ ∨ ψ is described by the intersection of the descriptions of
φ and of ψ. Hence, membership in φ ∨ ψ only requires products to satisfy this smaller
set of features, and typically includes much more than the union of the members of
the two categories. So for instance, bird ∨ cat would exclude reptiles, insects and fish,
but include vertebrate homeothermic species such as the platypus. This interpretation
of ∧ and ∨ makes it possible to understand intuitively why distributivity fails. Indeed,
a member of (phone ∨ smartphone) ∧ (kettle ∨ smartphone) is guaranteed to have all
the features in the description of phone (and in fact, kettle ∨ smartphone is so general
that can be assumed to not add any feature that phone does not have already). However,
this might be not enough for it to be a member of (phone∧kettle)∨smartphone, given
that the category phone ∧ kettle has no members (hence its description consists of all
features), and so the members of (phone ∧ kettle) ∨ smartphone must have at least all
the features in the description of smartphone.

Now that we have a working understanding of � and �, we can recognize the normal
box-type operator on P+ as the perspective of a single agent on categories. Accordingly,
M, a � �φ and M, x � �φ can be understood as ‘object a is a member of category φ
according to the agent’, and ‘feature x describes category φ according to the agent’. The
normality conditions �� = � and �(φ∧ψ) = �φ∧�ψ can be understood as rationality
requirements: that is, the agent correctly recognizes the ‘uninformative’ category � as
such, and her understanding/perception of the greatest common subcategory of any two
categories φ and ψ is the greatest common subcategory of the categories she understands
as φ and ψ.

On the side of the database, the agent is modelled as a relation R ⊆ A × X. Hence,
aRx intuitively reads ‘object a has feature x according to the agent’. Unsurprisingly, the
additional properties of R (cf. Lemma 2) can be also understood as rationality require-
ments: if aRx then aRy for every y ≥ x says that if the agent attributes feature x to
12 Empirically, there are many ways to generate such an assignment [36].
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product a, then the agent will attribute to a also all the features which are ‘implied’ by
x. Likewise, if aRx then bRx for every b ≤ a says that if the agent attributes feature
x to product a, then the agent will attribute x also to all the products which are ‘more
specified’ than a.

Like in the classical case, two modal operators, � and �, are associated with the
same relation R. However, these operations are not dual to each other, in the sense of
e.g. � := ¬�¬, but are rather adjoints to each other, that is, for all u, v ∈ P+,

�u ≤ v iff u ≤ �v.
In fact, rather than encoding the dual perspective on the subjectivity of the agent that
� encodes, the operation � encodes the same perspective that � encodes, only geared
towards objects while � is geared towards features. Indeed, for every object j and every
feature m, denoting by j and m the categories respectively generated by j and m,

�j ≤ m iff jRm iff j ≤ �m.

Thus, the information jRm (‘the agent attributes feature m to object j’) is encoded on
the side of the categories both by saying that m describes the category �j (the one the
agent understands as the category generated by j), and by saying that j is a member of
the category �m (the one the agent understands as the category generated by m). As to
the defining clauses of the recursive definition of � and �, by definition, M, a � �φ is
the case iff for all features x, if M, x � φ, then aRx. That is, product a is recognized
by the agent as member of category φ iff the agent attributes to a all the features that
belong to the description of φ.

Moreover, by definition, M, x � �φ iff for all a ∈ A, if M, a � �φ, then a ⊥ x.
That is, feature x pertains to the description of category φ according to the agent iff x is
verified by each object a that the agent recognizes as a member of φ.

Two modal axioms commonly considered in epistemic logic are ‘reflexivity’ �p ≤ p
and ‘transitivity’ (�p ≤ ��p). The axiom �p ≤ p is interpreted epistemically as
the factivity of knowledge (‘if the agent knows that p then p is true’). The first-
order correspondent of the factivity axiom on RS-frames is ∀a∀x(aRx → a ⊥ x),
which indeed expresses a form of factivity, in that it requires that whenever the agent
attributes any feature x to any product a, then it is indeed the case that x is a feature
of a. The axiom �p ≤ ��p is interpreted epistemically as the positive introspection
of knowledge (‘if the agent knows that p, then the agent knows that she knows that
p’). The first-order correspondent of the positive introspection axiom on RS-frames is
∀a∀m(aRm → R−1[m]↑ ⊆ R[a]), expressing the condition that if an agent attributes
feature m to product a, then she will attribute to a all the features which are shared by
the products to which she attributes m. To understand the link between this condition
and positive introspection, consider the category �m, i.e. the category which the agent
understands as the one generated by a given feature m.13 This category can be identi-
fied with the tuple (R−1[m],R−1[m]↑). That is, the members of �m are the products to
which the agent attributes m (recall that R−1[m] is a Galois-stable set by Definition 4)
and the description of �m is the set of the features which the products in R−1[m] have

13 In fact, the same argument would hold more in general for any category �φ.
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in common. By definition, b ⊥ z for every b ∈ R−1[m] and z ∈ R−1[m]↑. The first-order
correspondent of �p ≤ ��p requires that bRz for such b and z. So, while factivity corre-
sponds to R ⊆⊥, positive introspection gives the reverse inclusion restricted to products
and features pertaining to ‘boxed categories’. That is, the agent must be aware of the
features of the products of the categories that she knows.

4 Categories as Social Constructs

In the present section, we introduce a formal account of the emergence of categories as
the outcome of a process of social interaction. We consider for the sake of simplicity
a setting of two agents. Accordingly, we consider the bi-modal logic L which is the
axiomatic extension of the basic normal LE-logic for two unary normal box-type modal
operators, 1 and 2, with the axioms ip ≤ p and ip ≤ iip for 1 ≤ i ≤ 2. Models for this
logic are structures (P,R1,R2, v) such that P = (X, A,⊥) is an RS-polarity, Ri ⊆ A × X
for 1 ≤ i ≤ 2, such that the following conditions hold:

1. ∀x(R−1
i [x]↑↓ ⊆ R−1

i [x]);
2. ∀a(Ri[a]↓↑ ⊆ Ri[a]);
3. Ri ⊆⊥;
4. ∀a∀x(aRix→ R−1

i [x]↑ ⊆ Ri[a]),

and v is an assignment which associates each p ∈ PROP to an element of P+ viewed
both extensionally as V1(p) ⊆ A and intensionally as V2(p) ⊆ X in such a way that
V1(p) = V2(p)↓ and V2(p) = V1(p)↑.

In this setting, a common knowledge-type construction can be performed which
yields an expansion, denoted LC , of the bi-modal LE-logic above with a normal box-
type operator C, the interpretation of which on P+, given the additional axioms, is given
as follows: for any u ∈ P+,

C(u) :=
∧

s∈S su,

where S is the set of all compound modalities of the forms (i j)n and i( ji)n, for 1 ≤ i �
j ≤ 2 and for some n ∈ N.

Lemma 5. C(u) ≤ u and C(u) ≤ C(C(u)) for any u ∈ P+.
Let RC ,Rs ⊆ A×X for any s ∈ S be defined as follows: aRsx iff a ≤ sx and aRCx iff a ≤
C(x). Clearly, RC =

⋂
s∈S Rs. In the standard setting of epistemic logic, the accessibility

relations associated with agents do not directly encode the agents’ knowledge but rather
their uncertainty. Hence, on the relational side, the relation associated with the common
knowledge operator is defined as the reflexive transitive closure of the union of the
relations associated with individual agents, which is typically much bigger than those
associated with individual agents. In the present setting, relations associated with agents
directly encode what agents positively know rather than their uncertainty. Consequently,
the common knowledge relation RC is the intersection of the relations Rs encoding the
finite iterations, which is typically much smaller.

As both C and every s ∈ S are compositions of normal box-operators, they are
themselves normal box-operators. Hence the relations RC and Rs they give rise to
are RS-compatible (cf. Definition 4). Thus, the correspondence reductions discussed
in Sect. 2.6 apply to C and RC , yielding:
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Lemma 6. The relation RC defined above verifies the following conditions:

1. RC ⊆⊥;
2. ∀a∀x(aRCx→ R−1

C [x]↑ ⊆ RC[a]).

For any given category label φ, the category C(φ) =
∧{C(m) | φP+ ≤ m}. For this

reason, in what follows we restrict our attention to categories C(m) for some feature
m ∈ X. The members of C(m) are the products in the set R−1

C [m] = (
⋂

s∈S Rs)−1[m],
and the description of C(m) is R−1

C [m]↑ = ((
⋂

s∈S Rs)−1[m])↑. These can be understood
as the socially constructed categories, the membership and description of which are
socially agreed upon. Clearly, there are many less of them than candidate categories,
which agrees with our intuition.

5 Conclusion and Further Research

In this paper we have proposed an interpretation of RS-semantics in terms of agents’
reasoning about objects, their properties and the categories induced by the accompa-
nying relation. We have argued that this semantics is particularly well adapted to this
interpretation and, conversely, that through this interpretation one could gain an intu-
itive understanding of the semantics.

Our proposal has a distinctly epistemic character, but one which differs from stan-
dard epistemic logic in at least two respects: firstly, the relations used to interpret the
epistemic operators are intended to capture positive knowledge, rather than uncertainty;
secondly, these relations relate objects to features rather than possible worlds to one
another. We considered two classical principles of epistemic logic, namely factivity and
positive introspection. By applying the correspondence theory of [9] we computed the
relational properties corresponding to these principles, i.e. necessary and sufficient con-
ditions on an agent’s incidence relation between objects and properties for her knowl-
edge of categories to verify these epistemic principles. Various questions for further
investigation remain open here: what is the meaning of other classical epistemic prin-
ciples, like e.g. negative introspection, in this setting? Are there other principles that
should be included in a minimal logic of categorization? Of course, all of this depends
on the reasoning abilities and level of access to reality we wish to attribute to agents.
Moreover, most standard logical questions remain open: axiomatizations, proof sys-
tems, decidability, complexity, etc.

This paper is a first assay in using RS-semantics for reasoning about categoriza-
tion and, as such, remains quite general in its assumptions. To be of more immediate
practical relevance, the considerations here should be specialized to particular fields of
enquiry where categorization plays or could play a prominent role. Below we briefly
consider three such fields.

Natural Language Semantics. We have seen that the assignments of RS-models support
a notion of meaning that is different from the one in classical modal logic, but is recog-
nizably what the meaning of category labels should be: namely, a semantic category
specified as the set of its members and the set of features describing it. In natural lan-
guage semantics, linguistic utterances are assigned a meaning in the same spirit, which
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generalizes the truth-based semantics of sentences. More generally, categories or con-
cepts are fundamental to the construction of meaning in natural language, since each
noun is naturally associated with a category. Exploring systematic connections between
categories and natural language semantics is a promising direction for further research.

Knowledge Representation and Formal Ontologies. Categories are central to any form
of knowledge representation. Description logics [1] are one of the dominant paradigms
for logical reasoning in this context. Our formalism represents a different and possibly
complementary perspective on the formal ontologies, classification systems, and tax-
onomies studied there. In particular, the non-distributive nature of category formation
and the two-level separation between objects and features are foreign to the descrip-
tion logics paradigm. It is natural to ask to what degree the various expressive features
of description logic (like uniqueness quantification, qualified cardinality restrictions
etc.) could be accommodated in our framework, and future extensions will study this
question.

Categorization Theory in Management Science. As already indicated, this was one of
our main sources of inspiration for the proposals of the present paper. Our formalism
is a first step in the direction of a formal logical account of the real world phenom-
ena studied by categorization theorists. There are various considerations that make it an
attractive framework in which to study categorization and in which to formulate empir-
ically testable hypotheses. We mention two of these reasons: Firstly, it allows one to
study the effects of adding or removing objects with new properties and/or properties
already associated with other categories, thus allowing for a fine grained analysis of the
likely changes in a classification system resulting from innovations of different kinds.

Secondly, our approach gives us all potential categories “automatically”, while only
some of them are real, socially agreed upon categories for economic decision-makers.
It can therefore serve as a powerful instrument to better study and understand the causes
and consequences of the selection of real categories from the broader set of potential
ones. To start with, different real world domains could be compared with respect to the
ratios of real to potential categories present in them. One reasonable conjecture seems
to be that these ratios will depend a lot on competitive dynamics and the matureness of
categories, while also having an effect on them. One could the go on to study changes
over time in these ratios as well as the differences in ratios—and their changes—among
different audiences espousing different classifications.

Extensions and Variations. In closing, we mention two of the many possible extensions
of the present framework: category membership does not need to be absolute, as prod-
ucts can simultaneously have different grades of membership in different categories.
This calls for quantitative, possibly many-valued versions of our semantics. Also, the
categories in a given market do not need to be static, but can evolve and change over
time as new products with new features or new combinations of existing features enter
the market [41,42]. Dynamic versions of our formalism would be suitable to deal with
such continuously evolving categorization systems.
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A Relational Semantics via Dual Characterization

The dual correspondence between perfect lattices and RS-polarities serves as a base
to generalize the Kripkean semantics of modal logic to logics with possibly non-
distributive propositional base. Analogous to the dual correspondence between Kripke
frames and complete and atomic Boolean algebras with operators, one would want
a dual correspondence between perfect normal lattice expansions and RS-polarities
endowed with additional relations. In [9, Sect. 2], a method for computing the defin-
ition of the relations dually corresponding to normal modal operators was discussed
and illustrated for a certain modal signature consisting of unary and binary modal oper-
ators.

In this subsection we will report on this method, for an expansion L of the basic
lattice language with a unary box-modality, canonically interpreted on lattices endowed
with a completely meet-preserving operation. Moreover, we will derive, by means of a
dual characterization argument, its interpretation on expanded RS-polarities.

We take the connection between the satisfaction relation � in Kripke frames and the
interpretation of modal formulas in BAOs as our guideline: let F = (W,R) be a Kripke
frame. From the satisfaction relation �⊆ W × L between states of F and formulas, an
interpretation v : L → F+ into the complex algebra of F can be defined, which is an L-
homomorphism, and is obtained as the unique homomorphic extension of the equivalent
functional representation of the relation � as a map v : PROP → F+, defined as v(p) =
�−1[p]14. In this way, interpretations can be derived from satisfaction relations, so that
for any a ∈ J∞(F+) and any formula φ,

a � φ iff a ≤ v(φ), (1)

where, on the left-hand side, a ∈ J∞(F+) is identified with a state of F via the iso-
morphism F � (F+)+. Conversely, consider a perfect lattice with completely meet-
preserving operation C = (L,�), and a homomorphic assignment v : L → C, and
recall that the complete lattice L can be identified with the lattice P+ arising from
some RS-polarity P = (A, X,⊥). We want to define a suitable relation R = R� and
satisfaction relation �v satisfying the condition (1). The method we are going to illus-
trate hinges on the dual characterization of v as a pair of relations (�v,�v) such that
�v ⊆ J∞(L) × L � A × L and �v ⊆ M∞(L) × L � X × L. This dual characterization is
established by induction on formulas.

14 Notice that in order for this equivalent functional representation to be well defined, we need
to assume that the relation � is F+-compatible, i.e. that �−1[p] ∈ F+ for every p ∈ PROP.
In the Boolean case, every relation from W to LML is clearly F+-compatible, but already in
the distributive case this is not so: indeed �−1[p] needs to be an upward- or downward-closed
subset of F. This gives rise to the persistency condition, e.g. in the relational semantics of
intuitionistic logic.
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The base of the induction is clear: for every a ∈ J∞(P+) and every p ∈ PROP∪{0, 1},
we define

a �v p iff a ≤ v(p). (2)

Now let us turn to the inductive step for the box. Since v : L → P+ is a homomor-
phism, v(�φ) = �P

+

v(φ). Suppose that (1) holds for φ.
Since P+ is perfect, v(φ) =

∧{x ∈ M∞(L) | v(φ) ≤ x}. Thus,

a ≤ v(�φ) iff a ≤ �P+v(φ)
iff a ≤ �P+ ∧{x ∈ M∞(P+) | v(φ) ≤ x}
iff a ≤ ∧{�P+ x | x ∈ M∞(P+) and v(φ) ≤ x}
iff ∀x[(x ∈ M∞(L) & v(φ) ≤ x)→ a ≤ �P+ x]

Notice that, at the end of this chain of equivalence, we have equivalently reduced the
whole information on � to the information whether a ≤ �P+ x for each a and x. So this
can be taken as the definition of the relation R ⊆ A × X: we let aRx iff a ≤ �P+y.

To turn the last clause above into a satisfaction clause for �, we firstly replace
M∞(L) with X, which we identify via the isomorphism P � (P+)+. Secondly, we need
to recall the second relation �v between elements of X and formulas, obeying the fol-
lowing condition, which is to be defined by induction on the structure of the formulas
in such a way that the following condition holds, analogously to (1):

x � φ iff v(φ) ≤ x. (3)

These considerations produce the following satisfaction clause for �:

a �v �φ iff a ≤ v(�φ) iff ∀x[(x ∈ X & x � φ)→ aR�x]

The co-satisfaction relation � deserves some further comment: in the Boolean and dis-
tributive settings, � is completely determined by �, and is hence not mentioned explic-
itly there. Here, in the non-distributive setting, the relation needs to be defined along
with �. Equation (3) determines the base case:

y � v(p) iff v(p) ≤ y. (4)

Specializing the clause above to powerset algebras P(W), we would have y �V p
iff V(p) ≤ y iff V(p) ⊆ W/{x} for some x ∈ W iff {x} � V(p) iff x � V(p) iff x � p,
which shows that the relation � can be regarded as an upside-down description of the
satisfaction relation �, namely a co-satisfaction, or refutation.

The inductive step for the derivation of the co-satisfaction clause for � goes as
follows:

v(�φ) ≤ x iff
∨{a ∈ J∞(L) | a ≤ v(�φ)} ≤ x

iff ∀a[(a ∈ J∞(L) & a ≤ v(�φ))→ a ≤ x]
iff ∀a[(a ∈ A & a � �φ)→ a ⊥ x].

The last line follows from Eq. (1) for �φ, and the identification, via the isomorphism
P � (P+)+, of J∞(L) with A, and of the lattice order ≤ (restricted to J∞(L) × M∞(L))
with the incidence relation ⊥ of the polarity.
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B Proofs of Technical Lemmas

Proof (Lemma 1). We only prove the part concerning z. Let x ∈ z↑↓↑, and let us show
that z ≤ x. That is, let us fix a such that a ⊥ z, and show that a ⊥ x. Since ⊥ ◦ ≤⊆⊥,
from a ⊥ z it follows that ∀y(z ≤ y → a ⊥ y), which means that a ∈ z↑↓. Since by
assumption x ∈ z↑↓↑, this implies that a ⊥ x, as required.

Proof (Corollary 1). Since z↑ is Galois-stable and contains z and, by definition, z↓↑ is
the smallest such set, z↓↑ ⊆ z↑. For the converse inclusion, let z ≤ y and a ⊥ z. As
⊥ ◦ ≤⊆ ⊥, this implies a ⊥ y, which shows that y ∈ z↓↑, as required.

Proof (Lemma 2). Assume that aRz and z ≤ y. To show that y ∈ R[a], by the second
compatibility condition, it is enough to show that y ∈ R[a]↓↑. That is, let us fix b ∈ R[a]↓
and show that b ⊥ y. From b ∈ R[a]↓ and aRz it follows that b ⊥ z. This and z ≤ y imply
that b ⊥ y, given that ⊥ ◦ ≤⊆ ⊥. The remaining part is proven similarly.

Proof (Lemma 5). Clearly, C(u) ≤ 1u ≤ u, which proves the first inequality.

C(C(u)) =
∧

s∈S sC(u) =
∧

s∈S s(
∧

t∈S tu) =
∧

s∈S
∧

t∈S stu ≥
∧

s′∈S s′u = C(u).
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