Jouko Viidninen - Asa Hirvonen
Ruy de Queiroz (Eds.)

Logic, Language,
Information,
and Computation

23rd International Workshop, WoLLIC 2016
Puebla, Mexico, August 16-19th, 2016
Proceedings

LNCS 9803

@ Springer

Lecture Notes in Computer Science 9803
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

FoLLI Publications on Logic, Language and Information

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark
Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Utrecht University, The Netherlands

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France

Gerhard Jager, University of Tiibingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, University of Maryland, USA

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jouko Viininen - Asa Hirvonen
Ruy de Queiroz (Eds.)

Logic, Language,
Information,
and Computation

23rd International Workshop, WoLLLIC 2016
Puebla, Mexico, August 16—19th, 2016
Proceedings

@ Springer

Editors

Jouko Viénédnen Ruy de Queiroz
Department of Mathematics and Statistics Centro de Informatica
University of Helsinki Recife, Pernambuco
Helsinki Brazil

Finland

Asa Hirvonen
Department of Mathematics and Statistics
University of Helsinki

Helsinki

Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-662-52920-1 ISBN 978-3-662-52921-8 (eBook)

DOI 10.1007/978-3-662-52921-8

Library of Congress Control Number: 2016944475
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

This volume contains the papers presented at the 23rd Workshop on Logic, Language,
Information and Computation (WoLLIC 2016) held during August 1619, 2016, at the
Department of Computer Science, Benemérita Universidad Autéonoma de Puebla,
Puebla, Mexico. The WoLLIC series of workshops started in 1994 with the aim of
fostering interdisciplinary research in pure and applied logic. The idea is to have a
forum that is large enough in the number of possible interactions between logic and the
sciences related to information and computation, and yet is small enough to allow for
concrete and useful interaction among participants.

There were 41 submissions this year. Each submission was reviewed by at least
three Program Committee members. The committee decided to accept 23 papers. The
program also included six invited lectures by Pablo Barceld (Universidad de Chile,
Chile), Dana BartoSova (University of Sdo Paulo, Brazil), Johann A. Makowsky
(Technion - Israel Institute of Technology, Israel), Alessandra Palmigiano (TU Dellft,
The Netherlands), Sonja Smets (University of Amsterdam, The Netherlands), and
Andrés Villaveces (Universidad Nacional de Colombia, Colombia). There were also
five tutorials given by Barceld, Makowsky, Palmigiano, Smets, and Villaveces.

As a tribute to a recent breakthrough in mathematics, there was also a screening of
Csicsery’s “Counting from Infinity: Yitang Zhang and the Twin Prime Conjecture”
(2015), which centers on the life and work of Yitang Zhang in the celebrated twin
prime conjecture, his result being that there are infinitely many pairs of primes sepa-
rated by at most 70 million.

We would very much like to thank all Program Committee members and external
reviewers for the work they put into reviewing the submissions. The help provided by
the EasyChair system created by Andrei Vorokonkov is gratefully acknowledged.
Finally, we would like to acknowledge the generous financial support by the Bene-
mérita Universidad Auténoma de Puebla’s Department of Computer Science, and the
scientific sponsorship of the following organizations: Interest Group in Pure and
Applied Logics (IGPL), The Association for Logic, Language and Information
(FoLLI), Association for Symbolic Logic (ASL), European Association for Theoretical
Computer Science (EATCS), European Association for Computer Science Logic
(EACSL), Sociedade Brasileira de Computacdo (SBC), and Sociedade Brasileira de
Logica (SBL).

May 2016 Asa Hirvonen
Ruy de Queiroz
Jouko Viénénen

Program Committee

Samson Abramsky
Dietmar Berwanger
Guram Bezhanishvili
Ruy de Queiroz

Arnaud Durand
Pietro Galliani
Nina Gierasimczuk
Jeroen Groenendijk
Lauri Hella
Wesley Holliday
Juha Kontinen
Larry Moss

Andre Nies

Aarne Ranta
Mehrnoosh Sadrzadeh
Norma Short
Rineke Verbrugge
Heribert Vollmer
Jouko Viidninen

Dag Westerstahl

Organization

Oxford University, UK

CNRS and Université Paris-Saclay, France

New Mexico State University, USA

Centro de Informatica, Universidade Federal
de Pernambuco, Brazil

Université Paris 7, France

University of Sussex, UK

University of Amsterdam, The Netherlands

University of Amsterdam, The Netherlands

University of Tampere, Finland

University of California, USA

University of Helsinki, Finland

Indiana University, USA

University of Auckland, New Zealand

University of Gothenburg, Sweden

Queen Mary University of London, UK

Aix en Provence, France

University of Groningen, The Netherlands

Leibniz Universitdt Hannover, Germany

University of Helsinki and University of Amsterdam,
Finland and The Netherlands

University of Stockholm, Sweden

Tutorial/Abstracts

Ultrafilters in Dynamics and Ramsey Theory

Dana BartoSova

Department of Mathematics, University of Toronto, Toronto, Canada
dana.bartosova@mail .utoronto.ca

Abstract. I will recall some famous Ramsey-type statements that admit a simple
proof with the use of ultrafilter on discrete semigroups. Gowers’ Ramsey the-
orem will be an example that up-to-date does not posses an ultrafilter-free proof.
Stepping up from discrete (semi)groups to groups of automorphisms of homo-
geneous structures, I will show how their dynamics connects with structural
Ramsey theory and how combinatorics on ultrafilters is relevant to dynamical
problems. This is partially a joint work with Andrew Zucker (Carnegie Mellon
University).

Whenis Pyy = NPy over Arbitrary Structures 2?
(A tutorial)

J.A. Makowsky

Department of Computer Science, Technion - Israel Institute of Technology,
Haifa, Israel
janos@cs.technion.ac.il

Abstract. In a series of lectures we review the complexity theory for compu-
tations over arbitrary relational and algebraic structures 21.

We will cover the following topics:

(i) Register machines over arbitrary relational and algebraic structures 2. Some
history, H. Friedman’s work of the 1970 ties, [FM92]. The Blum-Shub-Smale
approach to complexity, [BCSS96, BCSS98].

(i) What do we expect from a theory of computability over the reals? Critical
evaluations, [Fefl5, BC06, Mam14].

(iii) The role of quantifier elimination: B. Poizat’s characterization of P = NP over 2,
[Poi95, Pru06].

(iv) Proving quantifier elimination. Presburger arithmetic and the field of complex
numbers. Shoenfield’s quantifier elimination theorem, [KK67, Hod93].

(v) Disproving quantifier elimination. The missing predicates.

(vi) For which structures 2 can we prove Py = NPy ? Abelian groups and boolean
algebras, [Pru02, Pru03]

(vii) The logical content of the P = NP problem. Fast quantifier elimination vs.
descriptive complexity, [Lib04].

Similar courses were given:

2013: At the Computer Science Department of the Technion-Israel Institute of
Technology as Graduate Seminar 238900 under the title The millennium question P =
NP over the real numbers.
2014: At the 5th Indian School of Logic and Applications (ISLA-2014) at Tezpur
University, Assam, India, under the title P =, NP over arbitrary structures.
2014: At the 26th European Summer School in Logic, Language and Information
(ESSLLI 2014) in an enlarged form together with K. Meer, also under the title P =, NP
over arbitrary structures.

See www.cs.technion.ac.il/ ~ janos/#invitations.

Partially supported by a grant of Technion Research Authority. Work done in part while the au-
thor was visiting the Simons Institute for the Theory of Computing in Spring 2016.

http://www.cs.technion.ac.il/~janos/#invitations

When is Pgy = NPy over Arbitrary Structures 20? XI

References

[BCO6]

[BCSS96]

[BCSS98]
[Fef15]
[FM92]
[Hod93]
[KK67]

[Lib04]
[Mam14]

[Poi95]
[Pru02]
[Pru03]

[Pru06]

Braverman, M., Cook, S.: Computing over the reals: foundations for scientific
computing. Not. AMS 53(3), 318-329 (2006)

Blum, L., Cucker, F., Shub, M., Smale, S.: Algebraic settings for the problem “P #
NP?”. In: The Mathematics of Numerical Analysis, Number 32 in Lectures in
Applied Mathematics, pp. 125-144. Amer. Math. Soc. (1996)

Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer (1998)

Feferman, S.: Theses for computation and recursion on concrete and abstract
structures. In: Turing’s Revolution, pp. 105-126. Springer (2015)

Friedman, H., Mansfield, R.: Algorithmic procedures. Trans. Am. Math. Soc. 297-
312 (1992)

Hodges, W.: Model theory, vol. 42. In: Encyclopedia of Mathematics and its
Applications. Cambridge University Press (1993)

Kreisel, G., Krivine, J.L.: Elements of Mathematical Logic: Model Theory. North
Holland (1967)

Libkin, L.: Elements of Finite Model Theory. Springer (2004)

Mamino, M.: On the computing power of +, —, and X. In: Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), p. 68. ACM (2014)

Poizat, B.: Les Petits Cailloux: Une Approche Modéle-Théorique De L algorithmie.
Aléas, Paris (1995)

Prunescu, M.: A model-theoretic proof for p # np over all infinite abelian
group. J. Symbolic Logic 67(01), 235-238 (2002)

Prunescu, M.: P # np for all infinite Boolean algebras. Math. Logic Q. 49(2), 210-
213 (2003)

Prunescu, M.: Fast quantifier elimination means p = np. In: Logical Approaches to
Computational Barriers, pp. 459-470. Springer (20006)

Proof Systems for the Logics
for Social Behaviour

Alessandra Palmigiano

Technical University of Delft, Delft, The Netherlands

The range of ‘logics for social behaviour’ (by which I mean those logics aimed at
capturing aspects such as agency and information flow) is rapidly expanding, and their
theory is being intensively investigated, especially w.r.t. their semantic aspects.
However, these logics typically lack a comparable proof-theoretic development. More
often than not, the hurdles preventing their standard proof-theoretic development are
due to the very features which make them capture essential aspects of the real world,
such as their not being closed under uniform substitution, or the presence of certain
extralinguistic labels and devices encoding key interactions between logical connec-
tives [5].

In this talk I will focus on multi-type calculi, a methodology introduced in [3, 4, 7]
to provide DEL and PDL with analytic calculi, and pursued also in [1, 2, 6].

Multi-type languages allow the upgrade of actions, agents, coalitions, etc. from
parameters in the generation of formulas, to ferms. Like formulas, they thus become
first-class citizens of the framework, endowed with their corresponding structural
connectives and rules. In this richer environment, many features which were insur-
mountable hurdles to the standard treatment can be understood as symptoms of the
original languages of these logics lacking the necessary expressivity to encode certain
key interactions within the language. The success of the multi-type methodology in
defining analytic calculi for logics as proof-theoretically impervious as DEL lies in its
providing a mathematical environment in which the expressivity problems can be
clearly identified.

I will argue that multi-type calculi can provide a platform for a uniform
proof-theoretic account of the logics for social behaviour.

References

1. Bilkova, M., Greco, G., Palmigiano, A., Tzimoulis, A., Wijnberg, N.: Logic of resources and
capabilities (In preparation, 2016)

2. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: Structural multi-type sequent calculus for
inquisitive logic. In: Proceedings of the WoLLIC 2016 (2016). arXiv:1604.00936v1

3. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for propositional
dynamic logic. J. Logic Comput. (2014). Special Issue on Substructural Logic and Infor-
mation Dynamics

http://arxiv.org/abs/1604.00936v1

Proof Systems for the Logics for Social Behaviour XIII

. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimi¢, V.: A multi-type display calculus
for dynamic epistemic logic. J. Logic Comput. (2014). Special Issue on Substructural Logic
and Information Dynamics

. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimi¢, V.: A proof-theoretic semantic
analysis of dynamic epistemic logic. J. Logic Comput. (2014). Special Issue on Substructural
Logic and Information Dynamics

. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimi¢, V.: Multi-type sequent calculi. In:
Proceedings of the Trends in Logic, vol. XIII, pp. 81-93 (2014)

. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. Logic, rationality
and interaction. In: Proceedings of the Fourth International Workshop. LORI 2013

Sahlqvist Correspondence via Duality
and Its Applications

Alessandra Palmigiano

Technical University of Delft, Delft, The Netherlands

Since the 1970s, correspondence theory has been one of the most important items in the
toolkit of modal logicians. Unified correspondence [6] is a very recent approach, which
has imported techniques from duality, algebra and formal topology [10] and exported
the state of the art of correspondence theory well beyond normal modal logic, to a wide
range of logics including, among others, intuitionistic and distributive lattice-based
(normal modal) logics [8], non-normal (regular) modal logics [18], substructural logics
[5, 7, 9], hybrid logics [13], and mu-calculus [2, 3, 4].

The breadth of this work has stimulated many and varied applications. Some are
closely related to the core concerns of the theory itself, such as the understanding of the
relationship between different methodologies for obtaining canonicity results [7, 17], or
of the phenomenon of pseudo-correspondence [11]. Other, possibly surprising appli-
cations include the dual characterizations of classes of finite lattices [14], the identi-
fication of the syntactic shape of axioms which can be translated into analytic rules of
proper display and Gentzen calculi [15, 16], and the design of display-type calculi for
the logics of resources and capabilities, and their applications to the logical modelling
of business organizations [1]. Finally, the insights of unified correspondence theory
have made it possible to determine the extent to which the Sahlqvist theory of classes
of normal DLEs can be reduced to the Sahlqvist theory of normal Boolean expansions,
by means of Godel-type translations [12].

The most important technical tools in unified correspondence are: (a) a very general
syntactic definition of the class of Sahlqvist formulas, which applies uniformly to each
logical signature and is given purely in terms of the order-theoretic properties of the
algebraic interpretations of the logical connectives; (b) the algorithm ALBA, which
effectively computes first-order correspondents of input term-inequalities, and is
guaranteed to succeed on a wide class of inequalities (the so-called inductive
inequalities) which, like the Sahlqvist class, can be defined uniformly in each men-
tioned signature, and which properly and significantly extends the Sahlqvist class.

In this tutorial, the fundamental principles and conceptual insights underlying these
developments will be illustrated in the setting of Boolean algebras with operators [10].

References

1. Bilkova, M., Greco, G., Palmigiano, A., Tzimoulis, A., Wijnberg, N.: The logic of resources
and capabilities (In preparation, 2016)

2. Conradie, W., Craig, A.: Canonicity results for mu-calculi: an algorithmic approach. J. Logic
Comput. (forthcoming). arXiv:1408.6367 (arXiv Preprint)

http://arxiv.org/abs/1408.6367

10.

11.

12.

13.

14.

15.

16.

17.

18.

Sahlqvist Correspondence via Duality and Its Applications XV

. Conradie, W., Craig, A., Palmigiano, A., Zhao, Z.: Constructive canonicity for lattice-based

fixed point logics (Submitted). arXiv:1603.06547 (arXiv preprint)

. Conradie, W., Fomatati, Y., Palmigiano, A., Sourabh, S.: Algorithmic correspondence for

intuitionistic modal mu-calculus. Theoret. Comput. Sci. 564, 30-62 (2015)

. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg, N.: Cat-

egories: how I learned to stop worrying and love two sorts (Submitted). arXiv:1604.00777
(arXiv preprint)

. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets,

S. (eds.) Johan van Benthem on Logic and Information Dynamics. Outstanding Contribu-
tions to Logic, vol. 5, pp. 933-975. Springer International Publishing (2014)

. Conradie, W., Palmigiano, A.: Constructive canonicity of inductive inequalities (Submitted).

arXiv:1603.08341 (arXiv preprint)

. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for distributive

modal logic. Annals Pure Applied Logic 163(3), 338-376 (2012)

. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for

non-distributive logics. J. Logic Comput. (forthcoming). arXiv:1603.08515 (arXiv preprint)
Conradie, W., Palmigiano, A., Sourabh, S.: Algebraic modal correspondence: Sahlqvist and
beyond (Submitted)

Conradie, W., Palmigiano, A., Sourabh, S., Zhao, Z.: Canonicity and relativized canonicity
via pseudo-correspondence: an application of ALBA (Submitted). arXiv:1511.04271 (arxiv
preprint)

Conradie, W., Palmigiano, A., Zhao, Z.: Sahlqvist via translation (Submitted). arXiv:1603.
08220 (arXiv preprint)

Conradie, W., Robinson, C.: On Sahlqvist theory for hybrid logic. J. Logic Comput.
doi:10.1093/logcom/exv045

Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via
correspondence theory for monotone modal logic. J. Logic Comput. (forthcoming). arXiv:
1408.1843 (arXiv preprint)

Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a
proof-theoretic tool. J. Logic Comput. (forthcoming). arXiv:1603.08204 (arXiv preprint)
Ma, M., Zhao, Z.: Unified correspondence and proof theory for strict implication. J. Logic
Comput. (forthcoming). arXiv:1604.08822 (arXiv preprint)

Palmigiano, A., Sourabh, S., Zhao, Z.: Jonsson-style canonicity for ALBA-inequalities.
J. Logic Comput. doi:10.1093/logcom/exv041

Palmigiano, A., Sourabh, S., Zhao, Z.: Sahlqvist theory for impossible worlds. J. Logic
Comput. (forthcoming). arXiv:1603.08202 (arXiv preprint)

http://arxiv.org/abs/1603.06547
http://arxiv.org/abs/1604.00777
http://arxiv.org/abs/1603.08341
http://arxiv.org/abs/1603.08515
http://arxiv.org/abs/1511.04271
http://arxiv.org/abs/1603.08220
http://arxiv.org/abs/1603.08220
http://arxiv.org/abs/1408.1843
http://arxiv.org/abs/1408.1843
http://arxiv.org/abs/1603.08204
http://arxiv.org/abs/1604.08822
http://arxiv.org/abs/1603.08202

Informational Cascades:
A Test for Rationality?

Sonja Smets

Institute for Logic, Language and Computation,
University of Amsterdam, Amsterdam, The Netherlands

Abstract. I report on joint work with A. Baltag, Z. Christoff and J.U. Hansen in
[3], based on our investigation of the decision processes of individuals that lead
to the social herding phenomenon known as informational cascades. The
question we address in our paper deals with whether rational agents who use
their higher-order reasoning powers and who can reflect on the fact that they are
part of an informational cascade, can ultimately stop the cascade from hap-
pening. To answer this question we use dynamic epistemic logic to give a
complete analysis of the information flow in an informational cascade, capturing
the agent’s observations, their communication and their higher-order reasoning
power. Our models show that individual rationality isn’t always a cure that can
help us to stop a cascade. However, other factors that deal with the underlying
communication protocol or that focus on the reliability of agents in the group,
give rise to conditions that can be imposed to prevent or stop an informational
cascade from happening in certain scenarios.

Informational cascades are social herding phenomena in which individual agents in a
sequence decide to follow the decisions of their predecessors while simply ignoring
their own private evidence. In such situations, individuals are given information about
their predecessors’ decisions but not about the reasons or the evidence on which these
decisions are based. So when the first agents in the sequence made a correct decision,
their followers will all get it right. However, the opposite can easily happen and when
everyone gets it wrong we end up with a potential social-epistemic catastrophe. Such
phenomena can illustrate a clear case of when social features interfere with agent’s
truth-tracking abilities. Hence not all situations involving communication and rational
deliberation seem to be epistemically beneficial at the group level.

In this context we study the logical mechanism behind such informational cascades.
It is important to note that we are looking at situations in which the total sum of private
information should in principle be enough for the group to track the truth, yet in an
informational cascade the group fails to do so. To gain a better understanding of this
phenomenon, it is our aim to check whether this failure to track the truth can be due to
any form of irrationality present when agents form or aggregate their beliefs. Our
investigation is driven by questions such as: are rational and introspective agents, who
reflect upon their own knowledge and beliefs and who can reason about the knowledge
and beliefs of their predecessors, able to stop or prevent a cascade? Even more, are
agents with unboundedly rational powers, and who are aware of the dangers of the

Informational Cascades: A Test for Rationality? XvIl

sequential deliberation protocol that they are part of, able to block a cascade? Indeed, in
some cases a cascade can be prevented by making agents aware of it. However, as is
shown in [3] this is not always the case.

There are examples of informational cascades in which no amount of higher-order
reasoning is enough to stop an informational cascade. Our argument is based on a
model of examples of informational cascades in [3], allowing us to represent the
individual reasoning of each agent involved. Formally, we use the tools of dynamic
epistemic logic [4, 5, 6, 9]. On the one hand we use a probabilistic dynamic epistemic
logic to represent agents who apply probabilistic conditioning. On the other hand we
also model the situation in which agents do not use sophisticated probabilistic tools but
rather apply a simply non-Bayesian form of heuristic reasoning. We note that a full
syntactic encoding of an informational cascade in the presence of a common knowl-
edge operator, is offered in [2] based on a logic that combines a variant of the Logic of
Communication and Change from [7] and a variant of Probabilistic Dynamic Epistemic
Logic in [8].

Based on our logical analysis in [3], we conclude that cascades cannot always be
avoided by rational means. Our model of unboundedly rational agents, equipped with
full higher-order reasoning powers, shows that these agents (irrespective of whether
they adopt Bayesian reasoning or another non-Bayesian heuristic) still end up in a
cascade. Even more, the group’s inability to track the truth may actually be a direct
consequence of each agent’s rational attempt to track the truth individually.

Investigations of different cascade scenarios point out that changes in the under-
lying communication protocol can make a difference. In most cascade scenarios, agents
announce their decisions to their followers, i.e. they communicate about their opinions
and beliefs but not about the reasons for their beliefs. Following [3], one can argue that
exactly the fact that this communication protocol is based on the exchange of partial
information, is the problem. Indeed allowing for more communication in which agents
can share not only their beliefs but also their justifications, may stop the cascade. In
ideal cases, when total communication can be achieved and agents share all their
evidence, reasons, beliefs, etc., we can effectively stop a cascade. It is interesting to
investigate different types of communication protocols and their effect on the formation
of cascades. An analysis in which such protocols are formalised as strategies in a game
theoretic setting, is provided in [1]. Further investigations point out that other social
factors can similarly affect the outcome of an informational cascade. For instance the
level of trust among agents in a group can make a difference. In [10] the results of an
experiment are shown which indicates that agent’s perceived reliability of their pre-
decessors can affect the formation of a cascade.

Acknowledgement. Sonja Smets’ research on this topic is funded by the European
Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013)/ERC Grant agreement no. 283963.

XVIII Informational Cascades: A Test for Rationality?

References

10.

. Achimescu, A.: Games and Logics for Informational Cascades. Master’s thesis, ILLC

University of Amsterdam, master of Logic Thesis, MoL-2014-04 (2014)

. Achimescu, A., Baltag, A., Sack, J.: The probabilistic logic of communication and change.

J. Logic Comput. (2016)

. Baltag, A., Christoff, Z., Hansen, J.U., Smets, S.: Logical models of informational cascades.

In: van Benthem, J., Lui, F. (eds.) Logic across the University: Foundations and Applica-
tions, pp. 405-432. Studies in Logic, College Publications (2013)

. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 139, 165-224 (2004)
. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common knowledge

and private suspicions. In: Proceedings of TARK 1998 (Seventh Conference on Theoretical
Aspects of Rationality and Knowledge), pp. 43—56. Morgan Kaufmann Publishers (1998)

. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University

Press (2011)

. van Benthem, J., Eijck, J., Kooi, B.: Logics of communication and change. Inf. Commun.

204, 16201662 (2006)

. van Benthem, J., Gerbrandy, J., Kooi, B.: Dynamic update with probabilities. Stud. Logica.

93, 67-96 (2009)

. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic epistemic logic, vol. 337. In:

Synthese Library, Springer, The Netherlands (2008)

van Weegen, L.: Informational cascades under variable reliability assessments. A formal and
empirical investigation. Master’s thesis, ILLC University of Amsterdam, master of Logic
Thesis, MoL-2014-21 (2014)

Belief Dynamics in a Social Context

Sonja Smets

University of Amsterdam, Amsterdam, The Netherlands

This tutorial is addressed to researchers and students who are interested in the
logical/philosophical study of notions of belief and knowledge, including group
beliefs and collective “knowledge”. We are interested both in the representation
of these different types of attitudes as well as in their dynamics, i.e. how these
attitudes change in communities of interconnected agents capable of reflection,
communication, reasoning, argumentation etc. I will start by introducing the
basic concepts and models, using standard techniques from Dynamic Epistemic
Logic and their adaptations for dealing with belief revision. I will further focus
on characterizing a group’s “epistemic potential” and I touch on cases in which a
group’s ability to track the truth is higher than that of each of its members. This
tutorial paves the way for my invited lecture in which I focus on situations in
which the group’s dynamics leads to informational distortions (i.e. the “madness
of the crowds”, in particular the phenomenon of informational cascades). This
tutorial is based on a number of recent papers that make use of a variety of
formal tools ranging over dynamic epistemic logics, game theory and network
theory.

Generalized Amalgamation Classes
and Limit Models: Implicit Logics

Andrés Villaveces

Departamento de Matematicas, Universidad Nacional de Colombia
Bogota 111321, Colombia
avillavecesn@unal.edu.co

Abstract. This is a two-hour tutorial on two kinds of (generalized) amalga-
mation classes and the emergence of language (implicit logic) from their
semantical properties: abstract elementary classes and sheaves of structures.
I will provide definitions, examples and a description of the emergence of logic
from their purely semantical properties.

— Amalgamation classes. Ordered and controlled by topologies. Examples and
problems.

— Examples: sheaves of structures and abstract elementary classes with amal-
gamation. Orbital (Galois) types and language.

— Implicit language from semantics. The Presentation Theorem.

— Interpolation in AECs: comparing languages.

Contents

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus. . .

Beniamino Accattoli

Compactness in Infinitary Godel Logics.

Juan P. Aguilera

Cut Elimination for Goédel Logic with an Operator Adding a Constant.

Juan P. Aguilera and Matthias Baaz

A Classical Propositional Logic for Reasoning About Reversible Logic

CIrCUILS o e

Holger Bock Axelsen, Robert Gliick, and Robin Kaarsgaard

Foundations of Mathematics: Reliability and Clarity: The Explanatory Role

of Mathematical Induction

John T. Baldwin

Justified Belief and the Topology of Evidence

Alexandru Baltag, Nick Bezhanishvili, Aybiike Ozgiin, and Sonja Smets

Semantic Acyclicity for Conjunctive Queries: Approximations and

CoONSIaINtSttt e e e e

Pablo Barcelo

Expressivity of Many-Valued Modal Logics, Coalgebraically

Marta Bilkova and Matéj Dostal

Second-Order False-Belief Tasks: Analysis and Formalization

Torben Braiiner, Patrick Blackburn, and Irina Polyanskaya

Categories: How I Learned to Stop Worrying and Love Two Sorts

Willem Conradie, Sabine Frittella, Alessandra Palmigiano,
Michele Piazzai, Apostolos Tzimoulis, and Nachoem M. Wijnberg

A Logical Approach to Context-Specific Independence

Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar,
and Jouko Viddndnen

Descriptive Complexity of Graph Spectra.

Anuj Dawar, Simone Severini, and Octavio Zapata

Causality in Bounded Petri Nets is MSO Definable.

Mateus de Oliveira Oliveira

22

36

52

68

83

http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1007/978-3-662-52921-8_2
http://dx.doi.org/10.1007/978-3-662-52921-8_3
http://dx.doi.org/10.1007/978-3-662-52921-8_4
http://dx.doi.org/10.1007/978-3-662-52921-8_4
http://dx.doi.org/10.1007/978-3-662-52921-8_5
http://dx.doi.org/10.1007/978-3-662-52921-8_5
http://dx.doi.org/10.1007/978-3-662-52921-8_6
http://dx.doi.org/10.1007/978-3-662-52921-8_7
http://dx.doi.org/10.1007/978-3-662-52921-8_7
http://dx.doi.org/10.1007/978-3-662-52921-8_8
http://dx.doi.org/10.1007/978-3-662-52921-8_9
http://dx.doi.org/10.1007/978-3-662-52921-8_10
http://dx.doi.org/10.1007/978-3-662-52921-8_11
http://dx.doi.org/10.1007/978-3-662-52921-8_12
http://dx.doi.org/10.1007/978-3-662-52921-8_13

XXII Contents

A Multi-type Calculus for Inquisitive Logic
Sabine Frittella, Giuseppe Greco, Alessandra Palmigiano,
and Fan Yang

A Model-Theoretic Characterization of Constant-Depth Arithmetic Circuits . . .

Anselm Haak and Heribert Vollmer

True Concurrency of Deep Inference Proofs.
Ozan Kahramanogullari

On the Complexity of the Equational Theory of Residuated Boolean
Algebras
Zhe Lin and Minghui Ma

Semantic Equivalence of Graph Polynomials Definable
in Second Order Logic.
Johann A. Makowsky and Elena V. Ravve

Sheaves of Metric StruCtures oottt e
Maicol A. Ochoa and Andrés Villaveces

A Curry—Howard View of Basic Justification Logic
Konstantinos Pouliasis

On the Formalization of Some Results of Context-Free Language Theory . . .
Marcus Vinicius Midena Ramos, Ruy J.G.B. de Queiroz, Nelma Moreira,
and José Carlos Bacelar Almeida

The Semantics of COrrections. oot i it e e e e
Deniz Rudin, Karl DeVries, Karen Duek, Kelsey Kraus,
and Adrian Brasoveanu

The Expressive Power of k-ary Exclusion Logic
Raine Ronnholm

Characterizing Relative Frame Definability in Team Semantics
via the Universal Modality. i
Katsuhiko Sano and Jonni Virtema

Negation and Partial Axiomatizations of Dependence and Independence
Logic Revisited. o
Fan Yang

Anaphors and Quantifiers. L L
R. Zuber

Author Index e

http://dx.doi.org/10.1007/978-3-662-52921-8_14
http://dx.doi.org/10.1007/978-3-662-52921-8_15
http://dx.doi.org/10.1007/978-3-662-52921-8_16
http://dx.doi.org/10.1007/978-3-662-52921-8_17
http://dx.doi.org/10.1007/978-3-662-52921-8_17
http://dx.doi.org/10.1007/978-3-662-52921-8_18
http://dx.doi.org/10.1007/978-3-662-52921-8_18
http://dx.doi.org/10.1007/978-3-662-52921-8_19
http://dx.doi.org/10.1007/978-3-662-52921-8_20
http://dx.doi.org/10.1007/978-3-662-52921-8_21
http://dx.doi.org/10.1007/978-3-662-52921-8_22
http://dx.doi.org/10.1007/978-3-662-52921-8_23
http://dx.doi.org/10.1007/978-3-662-52921-8_24
http://dx.doi.org/10.1007/978-3-662-52921-8_24
http://dx.doi.org/10.1007/978-3-662-52921-8_25
http://dx.doi.org/10.1007/978-3-662-52921-8_25
http://dx.doi.org/10.1007/978-3-662-52921-8_26

The Useful MAM, a Reasonable Implementation
of the Strong A-Calculus

Beniamino Accattoli®9

INRIA and LIX, Ecole Polytechnique, Palaiseau, France
beniamino.accattoli@inria.fr

Abstract. It has been a long-standing open problem whether the strong
A-calculus is a reasonable computational model, i.e. whether it can be
implemented within a polynomial overhead with respect to the number of
[B-steps on models like Turing machines or RAM. Recently, Accattoli and
Dal Lago solved the problem by means of a new form of sharing, called
useful sharing, and realised via a calculus with explicit substitutions. This
paper presents a new abstract machine for the strong A-calculus based
on useful sharing, the Useful Milner Abstract Machine, and proves that it
reasonably implements leftmost-outermost evaluation. It provides both
an alternative proof that the A-calculus is reasonable and an improve-
ment on the technology for implementing strong evaluation.

1 Introduction

The higher-order computational model of reference is the A-calculus, that comes
in two variants, weak or strong. Introduced at the inception of computer sci-
ence as a mathematical approach to computation, it later found applications in
the theoretical modelling of programming languages and, more recently, proof
assistants. The weak A-calculus is the backbone of functional languages such as
LISP, Scheme, OCAML, or Haskell. It is weak because evaluation does not enter
function bodies and, usually, terms are assumed to be closed. By removing these
restrictions one obtains the strong A-calculus, that underlies proof assistants like
Coq, Isabelle, and Twelf, or higher-order logic programming languages such as
A-prolog or the Edinburgh Logical Framework. Higher-order features nowadays
are also part of mainstream programming languages like Java or Python.

The abstract, mathematical character is both the advantage and the draw-
back of the higher-order approach. The advantage is that it enhances the modu-
larity and the conciseness of the code, allowing to forget about low-level details at
the same time. The drawback is that the distance from low-level details makes its
complexity harder to analyse, in particular its main computational rule, called 3-
reduction, at first sight is not an atomic operation. In particular, 8 can be nasty,
and make the program grow at an exponential rate. The number of (-steps,
then, does not even account for the time to write down the result, suggesting
that it is not a reasonable cost model. This is the size-explosion problem [6], and
affects both the weak and the strong A-calculus.

© Springer-Verlag Berlin Heidelberg 2016
J. Vdananen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 1-21, 2016.
DOI: 10.1007/978-3-662-52921-8_1

2 B. Accattoli

The A-Calculus is Reasonable, Indeed. A cornerstone of the theory is that,
nonetheless, in the weak A-calculus the number of §-steps is a reasonable cost
model for time complexity analyses [9,14,25], where reasonable formally means
that it is polynomially related to the cost model of RAM or Turing machines.

For the strong A-calculus, the techniques developed for the weak one do not
work, as wilder forms of size-explosion are possible. A natural candidate cost
model from the theory of A-calculus is the number of (Lévy) optimal parallel
steps, but it has been shown by Asperti and Mairson that such a cost model is
not reasonable [8].

It is only very recently that the strong case has been solved by Accattoli and
Dal Lago [6], who showed that the number of leftmost-outermost S-steps to full
normal form is a reasonable cost model. The proof of this result relies on two
theoretical tools. First, the Linear Substitution Calculus (LSC), an expressive
and simple decomposition of the A-calculus via linear logic and rewriting theory,
developed by Accattoli and Kesner [3] as a variation over a calculus by Robin
Milner [24]. Second, useful sharing, a new form of shared evaluation introduced
by Accattoli and Dal Lago on top of the LSC. Roughly, the LSC is a calculus
where the meta-level operation of substitution used by -reduction is internalised
and decomposed in micro steps, i.e. it is what is usually called a calculus with
explicit substitutions. The further step is to realise that some of these micro
substitution steps are useless: they do not lead to the creation of other G-redexes,
their only aim is to unshare the result and provide the full normal form. Useful
evaluation then performs only those substitution steps that are useful, i.e. not
useless. By avoiding useless unsharing steps, it computes a shared representation
of the normal form of size linear in the number of steps, whose unsharing may
cause an exponential blow up in size. This is how the size-explosion problem is
circumvented, see [6] for more explanations.

This Paper. In this paper we provide an alternative proof that the strong A-
calculus is reasonable (actually only of the hard half, that is the simulation of
A-calculus on RAM, the other half being much easier, see [5]), by replacing the
LSC with the Useful Milner Abstract Machine. The aim of the paper is threefold:

1. Getting Closer To Implementations: the LSC decomposes f-reduction in
micro-steps but omits details about the search for the next redex to reduce.
Moreover, in [6] useful sharing is used as a sort of black box on top of the LSC.
Switching to abstract machines provides a solution closer to implementations
and internalises useful sharing.

2. The First Reasonable Strong Abstract Machine: the literature on abstract
machines for strong evaluation is scarce (see below) and none of the machines
in the literature is reasonable. This work thus provides an improvement of
the technology for implementing strong evaluation.

3. Alternative Proof: the technical development in [6] is sophisticated, because a
second aim of that paper is to connect some of the used tools (namely useful
sharing and the subterm property) with the seemingly unrelated notion of
standardisation from rewriting theory. Here we provide a more basic, down-
to-earth approach, not relying on advanced rewriting theory.

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 3

The Useful MAM. The Milner Abstract Machine (MAM) is a variant with just
one global environment of the Krivine Abstract Machine (KAM), introduced
in [1] by Accattoli, Barenbaum, and Mazza. The same authors introduce in [2]
the Strong MAM, i.e. the extension of the MAM to strong evaluation, that
is a version with just one global environment of Cregut’s Strong KAM [13],
essentially the only other abstract machine for strong (call-by-name) evaluation
in the literature. Both are not reasonable. The problem is that these machines
do not distinguish between useful and useless steps.

The Useful MAM introduced in this paper improves the situation, by refining
the Strong MAM. The principle is quite basic, let us sketch it. Whenever a
[B-redex (Ax.t)u is encountered, the Strong MAM adds an entry [z<u] to the
environment F. The Useful MAM, additionally, executes an auxiliary machine on
u—the Checking Abstract Machine (Checking AM)—to establish its usefulness.
The result of this check is a label I that is attached to the entry [z«u]'. Later
on, when an occurrence of x is found, the Useful MAM replaces x with u only if
the label on [z+u]! says that it is useful. Otherwise the machine backtracks, to
search for the next redex to reduce.

The two results of the paper are:

1. Qualitative (Theorem 2): the Useful MAM correctly and completely imple-
ments leftmost-outermost (LO for short) 8-evaluation—formally, the two are
weakly bisimilar.

2. Quantitative (Theorem 5): the Useful MAM is a reasonable implementation,
i.e. the work done by both the Useful MAM and the Checking AM is poly-
nomial in the number of LO S-steps and in the size of the initial term.

Related Work. Beyond Crégut’s [12,13] and Accattoli, Barenbaum, and Mazza’s
[2], we are aware of only two other works on strong abstract machines, Garcia-
Pérez, Nogueira and Moreno-Navarro’s [22] (2013), and Smith’s [27] (unpub-
lished, 2014). Two further studies, de Carvalho’s [11] and Ehrhard and Regnier’s
[19], introduce strong versions of the KAM but for theoretical purposes; in par-
ticular, their design choices are not tuned towards implementations (e.g. rely on
a naive parallel exploration of the term). Semi-strong machines for call-by-value
(i.e. dealing with weak evaluation but on open terms) are studied by Grégoire
and Leroy [23] and in a recent work by Accattoli and Sacerdoti Coen [4] (see
[4] for a comparison with [23]). More recent work by Dénés [18] and Boutiller
[10] appeared in the context of term evaluation in Coq. None of the machines for
strong evaluation in the literature is reasonable, in the sense of being polynomial
in the number of (-steps. The machines developed by Accattoli and Sacerdoti
Coen in [4] are reasonable, but they are developed in a semi-strong setting only.
Another difference between [4] and this work is that call-by-value simplifies the
treatment of usefulness because it allows to compute the labels for usefulness
while evaluating the term, that is not possible in call-by-name.

Global environments are explored by Ferndndez and Siafakas in [20], and used
in a minority of works, e.g. [17,25]. Here we use the terminology for abstract
machines coming from the distillation technique in [1], related to the refocusing

4 B. Accattoli

semantics of Danvy and Nielsen [16] and introduced to revisit the relationship
between the KAM and weak linear head reduction pointed out by Danos and
Regnier [15]. We do not, however, employ the distillation technique itself.

Proofs. All proofs have been omitted. Those of the main lemmas and theorems
concerning the Useful MAM can be found in the appendix. The other ones can
be found in the longer version on the author’s web page.

2 A-Calculus and Leftmost-Outermost Evaluation
The syntax of the A-calculus is given by the following grammar for terms:

A — TERMS t,u,w,r n=x | Azt | tu.

We use t{x<u} for the usual (meta-level) notion of substitution. An abstrac-
tion Az.t binds x in ¢, and we silently work modulo a-equivalence of bound
variables, e.g. (Ay.(zy)){z<y} = Az.(yz). We use fv(t) for the set of free vari-
ables of t.

Contexts. One-hole contexts C' and the plugging C(t) of a term t into a
context C' are defined by:

CONTEXTS PLUGGING
. (M) =t (Cu)(t) = C{t)u
Cu= O AeCICHC OV = AeCl) (wC) L) == uC ()

As usual, plugging in a context can capture variables, e.g. (Ay.({-)y))(y) =
Ay.(yy). The plugging C(C") of a context C’ into a context C' is deﬁned analo-
gously. A context C is applicative if C' = C'{{-)u) for some C’ and .

We define B-reduction — 4 as follows:

RULE AT Topr LEVEL CONTEXTUAL CLOSURE
(Az.t)u —g t{z—u} C(t) =g C{uy ift—gu

A term t is a normal form, or simply normal, if there is no u such that ¢t —3 u,
and it is neutral if it is normal and it is not of the form Azx.u (i.e. it is not an
abstraction). The position of a f-redex C(t) —3 C(u) is the context C' in which
it takes place. To ease the language, we will identify a redex with its position.
A derivation d : t —* u is a finite, possibly empty, sequence of reduction steps.
We write || for the size of ¢t and |d| for the length of d.

Leftmost-Outermost Derivations. The left-to-right outside-in order on redexes
is expressed as an order on positions, i.e. contexts.

Definition 1 (Left-to-Right Outside-In Order).

1. The outside-in order:
(a) Root: (-) <o C for every context C # (-);
(b) Contextual closure: If C' <o C' then C"(C) <o C"(C") for any C".

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 5

2. The left-to-right order: C <, C' is defined by:

(a) Application: If C' <, t and C" <, u then Cu <, tC’;

(b) Contextual closure: If C' <y, C' then C"'{(C) <1, C"{C") for any C".
3. The left-to-right outside-in order: C' <o C" if C <o C' or C <y C':

The following are a few examples. For every context C| it holds that (-) A, C.
Moreover (Az.(-))t <o (Az.({-)u))t and ({-)t)u <1 (wt)(-).

Definition 2 (LO S-Reduction). Let t be a A-term and C a redex of t. C
is the leftmost-outermost S-redex (LO (for short) of t if C <po C' for every
other B-redex C' of t. We write t —10p u if a step reduces the LO (-redex.

The next immediate lemma guarantees that we defined a total order.

Lemma 1 (Totality of <10). If C <, t and C' <, t then either C <0 C’ or
C’" <po C or C =C". Therefore, —10g is deterministic.

LO Contexts. For the technical development of the paper we need two character-
isations of when a context is the position of the LO B-redex. The first, following
one, is used in the proofs of Lemma5.2 and Lemma 6.4.

Definition 3 (LO Contexts). A context C is LO if

1. Right Application: whenever C' = C'(tC") then t is neutral, and
2. Left Application: whenever C = C'{C"t) then C" # Ax.C"".

The second characterisation is inductive, and it used to prove Lemma 10.3

Definition 4 (iLO Context). Inductive LO (3 (or iLO) contexts are defined
by induction as follows:

() isiLO Ct is iLO

(@1-iLO)

C s ilO (A\-iLO) t is neutral C s iLO (@r-iLO)
Ax.C is iLO tC is iLO
As expected,

Lemma 2 (—pgg-steps and Contexts). Lett be a A-term and C' a redex in t.
C isthe LO B redex int iff C' is LO iff C is iLO.

3 Preliminaries on Abstract Machines

We study two abstract machines, the Useful MAM (Fig.4) and an auxiliary
machine called the Checking AM (Fig. 2).

The Useful MAM is meant to implement LO g-reduction strategy via a decod-
ing function - mapping machine states to A-terms. Machine states s are given
by a code t, that is a A\-term ¢ not considered up to a-equivalence (which is why

6 B. Accattoli

it is over-lined), and some data-structures like stacks, frames, and environments.
The data-structures are used to implement the search for the next LO-redex and
a form of micro-steps substitution, and they decode to evaluation contexts for
—1os. Every state s decodes to a term s, having the shape C,(t), where ¢ is the
code currently under evaluation and Cj is the evaluation context given by the
data-structures.

The Checking AM tests the usefulness of a term (with respect to a given
environment) and outputs a label with the result of the test. It uses the same
states and data-structures of the Useful MAM.

The Data-Structures. First of all, our machines are executed on well-named
terms, that are those a-representants where all variables (both bound and free)
have distinct names. Then, the data-structures used by the machines are defined
in Fig. 1, namely:

— Stack m: it contains the arguments of the current code;

— Frame F: a second stack, that together with 7 is used to walk through the
term and search for the next redex to reduce. The items ¢ of a frame are
of two kinds. A variable x is pushed on the frame F' whenever the machines
starts evaluating under an abstraction Axz. A head argument context tOw is
pushed every time evaluation enters in the right subterm @ of an application
tu. The entry saves the left part ¢ of the application and the current stack ,
to restore them when the evaluation of the right subterm w is over.

— Global Environment E: it is used to implement micro-step evaluation (i.e. the
substitution on a variable occurrence at the time), storing the arguments of (-
redexes that have been encountered so far. Most of the literature on abstract
machines uses local environments and closures. Having just one global envi-
ronment F removes the need for closures and simplifies the machine. On the
other hand, it forces to use explicit a-renamings (the operation t“ in ~erod
and ~-.,,, in Fig.4), but this does not affect the overall complexity, as it
speeds up other operations, see [1]. The entries of E are of the form [z+#]',
1.e. they carry a label [used to implement usefulness, to be explained later on
in this section. We write E(x) = [z+7]' when E contains [z+7]' and E(z) = L
when in F there are no entries of the form [z«]'.

The Decoding. Every state s decodes to a term s (see Fig. 3), having the shape
Cy(t],), where

- ﬂE is a A-term, roughly obtained by applying to the code the substitution
induced by the global environment E. More precisely, the operation ¢, is
called unfolding and it is properly defined at the end of this section.

— (5 is a context, that will be shown to be a LO context, obtained by decoding
the stack 7 and the dump F and applying the unfolding. Note that, to improve
readability, 7 is decoded in postfix notation for plugging.

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 7

Frames Fu=e|F:¢ Stacks Tu=c¢|t:mw
Frame Items ¢ =107 |z Phases =V |A
Labels l:=abs | (red,n € N) | neu Environments FE :=¢|[zf]': E

Fig. 1. Grammars.

Frame | Code | Stack | Env | Ph Frame | Code | Stack | Env PN
F tu ™ E | vV —yg F t u:w | E |V
F At |uw:m | E | v —4 output (red,1)
F .t € E vV —y, F:z ‘ t ‘ € ‘ E ‘ v
F x ™ E | v —, output(red,n+1)
if B(x) = [zet)med™)
F ‘ T ‘ T ‘ E ‘ v —,, output (red,2)
if B(z) = [z1]*
F ‘ T ‘ T ‘ E ‘ Vo vy, F ‘ T ‘ T ‘ E ‘ A
if B(z) = L or E(z) = [z<1]"" or (E(x) = [z=#]*** and © = ¢)
F:z t € E A —uc, F Azt € E A
F:t0m| @ € E | A —uc F tu ™ E | a
F t u:T E A —u F 0w u € E v
€ tu € E A —, output new
K € Azt € FE A —,, output abs J

Fig. 2. The Checking Abstract Machine (Checking AM).

e:=() Cs = F(m)|, B
:m = (()u)mr s = F((t)m) |, = Cs(tly)
P 80m = F{(E()))
F:x:=Fx.()) where s = (F,t, 7, E)

Fig. 3. Decoding.

The Transitions. According to the distillation approach of [1] we distinguish
different kinds of transitions, whose names reflect a proof-theoretical view, as
machine transitions can be seen as cut-elimination steps [1,7]:

— Multiplicatives ~~y: they fire a O-redex, except that if the argument is not a
variable then it is not substituted but added to the environment;

— FEzxponentials ~~: they perform a clashing-avoiding substitution from the envi-
ronment on the single variable occurrence represented by the current code.
They implement micro-step substitution.

— Commutatives ~».: they locate and expose the next redex according to the
LO evaluation strategy, by rearranging the data-structures.

Both exponential and commutative transitions are invisible on the A-calculus.
Garbage collection is here simply ignored, or, more precisely, it is encapsulated
at the meta-level, in the decoding function.

8 B. Accattoli

Labels for Useful Sharing. A label [for a code in the environment can be of
three kinds. Roughly, they are:

— Neutral, or | = neu: it marks a neutral term, that is always useless as it
is f-normal and its substitution cannot create a redex, because it is not an
abstraction;

— Abstraction, or [= abs: it marks an abstraction, that is a term that is at
times useful to substitute. If the variable that it is meant to replace is applied,
indeed, the substitution of the abstraction creates a -redex. But if it is not
applied, it is useless.

— Redex, or | = red: it marks a term that contains a (-redex. It is always useful
to substitute these terms.

Actually, the explanation we just gave is oversimplified, but it provides a first
intuition about labels. In fact in an environment [z+f]' : E it is not really #
that has the property mentioned by its label, rather the term |, obtained by
unfolding the rest of the environment on 7. The idea is that [x«%]"°? states that
it is useful to substitute ¢ to later on obtain a redex inside it (by potential
further substitutions on its variables coming from E). The precise meaning of
the labels will be given by Definition 6, and the properties they encode will be
made explicit by Lemma 11.

A further subtlety is that the label red for redexes is refined as a pair (red, n),
where n is the number of substitutions in E that are needed to obtain the LO
redex in ﬂE. Our machines never inspect these numbers, they are only used for
the complexity analysis of Sect. 5.2.

Grafting and Unfoldings. The unfolding of the environment F on a code ¢ is
defined as the recursive capture-allowing substitution (called grafting) of the
entries of E on .

Definition 5 (Grafting and Environment Unfolding). The operation of
grafting t{{x<u}} is defined by

(wr){{zcul} = wi{zupfr{{z-u}} (ywo){{zcu}} = dyw{{ru}t}
e{{r-ul} =w y{zut} =y

Given an environment E we define the unfolding of E on a code t as follows:
ﬂe =1 ﬂ[m—ﬂ]l:E = f{{xEH}}lE
or equivalently as:

(@0)|p = Tlp0ly Ty gp = g
(Ax.a)|

g = A, xl[yé_ﬁ],,:E, =zl T| =T

For instance, (Az.y) = Az.(zx). The unfolding is extended to contexts

hyeaapres
as expected (i.e. recursively propagating the unfolding and setting (-) |, = E).

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 9

Let us explain the need for grafting. In [2], the Strong MAM is decoded to
the LSC, that is a calculus with explicit substitutions, i.e. a calculus able to
represent the environment of the Strong MAM. Matching the representation of
the environment on the Strong MAM and on the LSC does not need grafting
but it is, however, a quite technical affair. Useful sharing adds many further
complications in establishing such a matching, because useful evaluation com-
putes a shared representation of the normal form and forces some of the explicit
substitutions to stay under abstractions. The difficulty is such, in fact, that we
found much easier to decode directly to the A-calculus rather than to the LSC.
Such an alternative solution, however, has to push the substitution induced by
the environment through abstractions, which is why we use grafting.

Lemma 3 (Properties of Grafting and Unfolding).

1. If the bound names of t do not appear free in u then t{x<u} = t{{x<u}}.
2. If moreover they do not appear free in E then t| {ru|,} = t{zeu}|,.

4 The Checking Abstract Machine

The Checking Abstract Machine (Checking AM) is defined in Fig. 2. It starts exe-
cutions on states of the form (e, ¢, ¢, E, ¥), with the aim of checking the usefulness
of ¢ with respect to the environment E, i.e. it walks through ¢ and whenever it
encounters a variable x it looks up its usefulness in E.

The Checking AM has six commutative transitions, noted —., with i =
1,..,6, used to walk through the term, and five output transitions, noted —,,
with j = 1,..,5, that produce the value of the test for usefulness, to be later
used by the Useful MAM. The exploration is done in two alternating phases,
evaluation ¥ and backtracking A. Evaluation explores the current code towards
the head, storing in the stack and in the frame the parts of the code that it
leaves behind. Backtracking comes back to an argument that was stored in the
frame, when the current head has already been checked. Note that the Checking
AM never modifies the environment, it only looks it up.

Let us explain the transitions. First the commutative ones:

— —y¢,: the code is an application tu and the machine starts exploring the left
subterm ¢, storing on top of the stack .

— —yc,: the code is an abstraction Az.t and the machine goes under the abstrac-
tion, storing x on top of the frame F.

— —yc,: the machine finds a variable x that either has no associated entry in the
environment (if F(x) = L) or its associated entry [z+f]' in the environment is
useless. This can happen if either | = neu, i.e. substituting ¢ would only lead
to a neutral term, or [= abs, i.e. substituting ¢ would provide an abstraction,
but the stack is empty, and so it is useless to substitute the abstraction
because no [-redexes will be obtained. Thus the machine switches to the
backtracking phase (A), whose aim is to undo the frame to obtain a new
subterm to explore.

10 B. Accattoli

— —c,: it is the inverse of —y,, it puts back on the code an abstraction that
was previously stored in the frame.

— — s backtracking from the evaluation of an argument w, it restores the
application tu and the stack 7 that were previously stored in the frame.

— — ¢ backtracking from the evaluation of the left subterm ¢ of an application
tu, the machine starts evaluating the right subterm (by switching to the
evaluation phase ¥) with an empty stack e, storing on the frame the pair tQ7
of the left subterm and the previous stack .

Then the output transitions:

— —,,: the machine finds a f-redex, namely (Ax.t)u and thus outputs a label
saying that it requires only one substitution step (namely substituting the
term the machine was executed on) to eventually find a S-redex.

— —,,: the machine finds a variable 2 whose associated entry [z+#]("*%™) in the
environment is labeled with (red,n), and so outputs a label saying that it
takes n 4+ 1 substitution steps to eventually find a G-redex (n plus 1 for the
term the machine was executed on).

~ —,,: the machine finds a variable whose associated entry [z«#]*** in the
environment is labeled with abs, so t is an abstraction, and the stack is non-
empty. Since substituting the abstraction will create a g-redex, the machine
outputs a label saying that it takes two substitution steps to obtain a G-redex,
one for the term the machine was executed on and one for the abstraction t.

— —,,: the machine went through the whole term, that is an application, and
found no redex, nor any redex that can be obtained by substituting from
the environment. Thus that term is neutral and so the machine outputs the
corresponding label.

— —,,: as for the previous transition, except that the term is an abstraction,
and so the output is the abs label.

The fact that commutative transitions only walk through the code, without
changing anything, is formalised by the following lemma, that is crucial for the
proof of correctness of the Checking AM (forthcoming Theorem 1).

Lemma 4 (Commutative Transparency).
Let s = (F,u,m,E,) ~c, 54446 (F 0,7, E,¢') =5". Then

1. Decoding Without Unfolding: F((uw)x) = F’((@’)x’), and
2. Decoding With Unfolding: s =s'.

For the analysis of the properties of the Checking AM we need a notion
of well-labeled environment, i.e. of environment where the labels are consis-
tent with their intended meaning. It is a technical notion also providing enough
information to perform the complexity analysis, later on. Moreover, it includes
two structural properties of environments: (1) in [z«]' the code cannot be a
variable, and (2) there cannot be two entries associated to the same variables.

Definition 6 (Well-Labeled Environments). Well-labeled global environ-
ments F are defined by

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 11

1. Empty: € is well-labeled;
2. Inductive: [x«#]' : E is well-labeled if E' is well-labeled, x is fresh with respect
tot and E', and
(a) Abstractions: if | = abs then t and t|,, are normal abstractions;
(b) Neutral Terms: if [= neu then t is an application and t|, is neutral.
(c) Redexes: if | = (red,n) then t is not a variable, t|,, contains a 3-redex.
Moreover, t = C{u) with C a LO context and
—ifn=1 then u is a B-redez,
—ifn>1thenu=x and E' = E" : [y<u]' : E" with
o ifn>2thenl=(red,n—1)
o ifn=2thenl = (red,1) or (I = abs and C is applicative).

Remark 1. Note that by the definition it immediately follows that if £ = E’ :
[zt](redm) . B is well-labeled then the length of E”, and thus of E, is at least n.
This fact is used in the proof of Theorem 3.1

The study of the Checking AM requires some terminology and two invariants.
A state s is initial if it is of the form (¢, ¢, ¢, F,) with F well-labeled and it is
reachable if there are an initial state s’ and a Checking AM execution p : 8’ —=* s.
Both invariants are used to prove the correctness of the Checking AM: the normal
form invariant to guarantee that codes labeled with neu and abs are indeed
normal or neutral, while the decoding invariant is used for the redex labels.

Lemma 5 (Checking AM Invariants). Let s = F |u | 7w | E | ¢ be a
Checking AM reachable state and E be a well-labeled environment.

1. Normal Form:
(a) Backtracking Code: if o = A, then |, is normal, and if 7 is non-empty,
then |, is neutral;
(b) Frame: if F' = F':wOn' : F”, then W], is neutral.
2. Decoding: Cs is a LO context.

Finally, we can prove the main properties of the Checking AM, i.e. that when
executed on ¢ and F it provides a label [to extend E with a consistent entry
for # (i.e. such that [z+7]! : E is well-labeled), and that such an execution takes
time linear in the size of t.

Theorem 1 (Checking AM Properties). Let ¢t be a code and E a global
environment.

1. Determinism and Progress: the Checking AM is deterministic and there
always is a transition that applies;

2. Termination and Complexity: the execution of the Checking AM on t and E
always terminates, taking O(|t]) steps, moreover

3. Correctness: if E is well-labeled, x is fresh with respect to E and t, and | is
the output then [z+t)' : E is well-labeled.

12

5

B. Accattoli

The Useful Milner Abstract Machine

The Useful MAM is defined in Fig.4. It is very similar to the Checking AM,
in particular it has exactly the same commutative transitions, and the same
organisation in evaluating and backtracking phases. The difference with respect
to the Useful MAM is that the output transitions are replaced by micro-step
computational rules that reduce B-redexes and implement useful substitutions.
Let us explain them:

Multiplicative Transition ~y,: when the argument of the S-redex (Az.t)y is a
variable y then it is immediately substituted in ¢. This happens because (1)
such substitution are not costly and (2) because in this way the environment
stays compact, see also Remark 2 at the end of the paper.

Multiplicative Transition ~-y,: if the argument % is not a variable then the
entry [z+]! is added to the environment. The label [is obtained by running
the Checking AM on © and E.

Exponential Transition ~».__,: the environment entry associated to z is
labeled with (red, n) thus it is useful to substitute ¢. The idea is that in at most
n additional substitution steps (shuffled with commutative steps) a (-redex
will be obtained. To avoid variable clashes the substitution a-renames ¢.
Exponential Transition ~,,,.: the environment associates an abstraction to
x and the stack is non empty, so it is useful to substitute the abstraction
(again, a-renaming to avoid variable clashes). Note that if the stack is empty
the machine rather backtracks using ~~ye,.

ﬁrame Code | Stack | Env | Ph Frame | Code |Stack| Env %

F tu T E |V oy F t [T E v

F Mt | y:m | E | ¥ o F Hoey}t | = E v

F et |wim | E |V o~ F t ™ [zea])' - E| Vv

if @ is not a variable and [is the output of the Checking AM on w and F

F Ax.t € E | vV oy, F:x t € E v

F x ™ E |V ~ . F “ ™ E v

if B(z) = [zt]"ed™)

F | o |a:m| E |V e, F | ™ |u:n| E | v

if B(x) = [vet]*b®

F ‘ T ‘ ™ ‘ E ‘ ¥V ~oveg F ‘ T ‘ ™ ‘ E ‘ A

if B(z) = L or B(z) = [z<1]"" or (E(z) = [z<1]** and 7 = ¢)

F:x t € E A g, F Azt € E A

F tOrm u € E A ~ac F tu T E A
\ F t u:mw | E A ~~a, F 0T u € E ﬂ

7o

wh

is any code a-equivalent to t such that it is well-named and its bound names are fresh with
respect to those in the other machine components.

Fig. 4. The Useful Milner Abstract Machine (Useful MAM).

The Useful MAM starts executions on initial states of the form (e,¢,¢€,€),
ere t is such that any two variables (bound or free) have distinct names, and

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 13

any other component is empty. A state s is reachable if there are an initial state
s" and a Useful MAM execution p : s’ ~* s, and it is final if no transitions apply.

5.1 Qualitative Analysis

The results of this subsection are the correctness and completeness of the Useful
MAM. Four invariants are required. The normal form and decoding invariants
are exactly those of the Checking AM (and the proof for the commutative transi-
tions is the same). The environment labels invariant follows from the correctness
of the Checking AM (Theorem 1.2. The name invariant is used in the proof of
Lemma 7.

Lemma 6 (Useful MAM Qualitative Invariants). Lets=F |u |7 | E | ¢
be a state reachable from an initial term to. Then:

1. Environment Labels: E is well-labeled.
2. Normal Form:
(a) Backtracking Code: if p = A, then |, is normal, and if w is non-empty,
then |, is neutral;
(b) Frame: if F' = F' :wQn' : ", then W], is neutral.
3. Name:
(a) Substitutions: if E = E' : [x<t] : E” then x is fresh wrt t and E";
(b) Abstractions and Evaluation: if ¢ = ¥ and Az.t is a subterm of u, 7, or
7 (if F = F' :wQr’ : F") then x may occur only in t;
(c) Abstractions and Backtracking: if ¢ = A and Azt is a subterm of w or
7 (if F=F :wQr' : F") then x may occur only in t.
4. Decoding: Cs is a LO context.

We can now show how every single transition projects on the A-calculus, and
in particular that multiplicative transitions project to LO (-steps.

Lemma 7 (One-Step Weak Simulation, Proof at Page 17). Let s be a
reachable state.

o , .
1. Commutative: if s ~¢, ,,, 5, 8 then s =s';

ol / — -
2. Exponential: if s ~¢ _, e.,. S’ then s =s';

3. Multiplicative: if s ~op, n, §' then s —10g 8.
We also need to show that the Useful MAM computes S-normal forms.

Lemma 8 (Progress, Proof at Page 18). Let s be a reachable final state.
Then s is B-normal.

The theorem of correctness and completeness of the machine with respect
to —1gp follows. The bisimulation is weak because transitions other than ~-, are
invisible on the A-calculus. For a machine execution p we denote with |p| (resp.
|plx) the number of transitions (resp. x-transitions for x € {m, e, c,...}) in p.

14 B. Accattoli

Theorem 2 (Weak Bisimulation, Proof at Page 18). Let s be an initial
Useful MAM state of code t.

1. Simulation: for every execution p : s ~* s’ there exists a derivation d: s —los
s’ such that |d| = |p|u;

2. Reverse Simulation: for every derivation d: t —1gp U there is an execution
p:s~*s such that 8 =u and |d| = |pla.

5.2 Quantitative Analysis

The complexity analyses of this section rely on two additional invariants of the
Useful MAM, the subterm and the environment size invariants.

The subterm invariant bounds the size of the duplicated subterms and it is
crucial. For us, @ is a subterm of ¢ if it does so up to variable names, both free
and bound. More precisely: define ¢~ as ¢ in which all variables (including those
appearing in binders) are replaced by a fixed symbol *. Then, we will consider u
to be a subterm of ¢t whenever u™~ is a subterm of £~ in the usual sense. The key
property ensured by this definition is that the size |u| of u is bounded by [¢].

Lemma 9 (Useful MAM Quantitative Invariants). Let s = F | @ | 7 |
E | ¢ be a state reachable by the execution p from the initial code ty.

1. Subterm: environment, which is a subterm of the initial term by
(a) Evaluating Code: if ¢ = V, then u is a subterm of to;
(b) Stack: any code in the stack w is a subterm of to;
(c) Frame: if F = F' :wQn' : F”, then any code in ' is a subterm of to;
(d) Global Environment: if E = E' : [z<w]' : E”, then W is a subterm of to;
2. Environment Size: the length of the global environment E is bound by |p|a.

The proof of the polynomial bound of the overhead is in three steps. First,
we bound the number |p|. of exponential transitions of an execution p using the
number |p|, of multiplicative transitions of p, that by Theorem 2 corresponds to
the number of LO fS-steps on the A-calculus. Second, we bound the number |p|.
of commutative transitions of p by using the number of exponential transitions
and the size of the initial term. Third, we put everything together.

Multiplicative vs Exponential Analysis. This step requires two auxiliary lemmas.
The first one essentially states that commutative transitions eat normal and
neutral terms, as well as LO contexts.

Lemma 10. Let s=F |t |7 | E |V be a state and E be well-labeled. Then

1. Ift|, is a normal term and m =€ then s ~% F' |t |7 | E| A.

2. If t|,, is a neutral term then s ~3 F |t |7 | E | A.

3. If t = C(u) with C|, a LO context then there exist F' and 7' such that
s~EF lu|n|E|V;

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 15

The second lemma uses Lemma 10 and the environment labels invariant
(Lemma 6.1 to show that the exponential transitions of the Useful MAM are
indeed useful, as they head towards a multiplicative transition, that is towards
(-redexes.

Lemma 11 (Useful Exponentials Lead to Multiplicatives). Let s be a

reachable state such that s ~~ s'.

€(red,n)
1. If n =1 then 8’ ~k~y s”;

2. If n =2 then §' ~%i~e,,.

3. If n > 1 then s ~%~

1 ! * ",
~om 8 or 8 i s
s".

€(red,1)

€(red,n—1)

Finally, using the environment size invariant (Lemma9.2) we obtain the local
boundedness property, that is used to infer a quadratic bound via a standard
reasoning (already employed in [6]).

Theorem 3 (Exponentials vs Multiplicatives, Proof at Page 19). Let
s be an initial Useful MAM state and p : s ~* s,

1. Local Boundedness: if o : 8" ~* s" and |o|, = 0 then |ole < |p|n;
2. Exponentials are Quadratic in the Multiplicatives: |p|e € O(|p|2).

Commutative vs Fxponential Analysis. The second step is to bound the number
of commutative transitions. Since the commutative part of the Useful MAM is
essentially the same as the commutative part of the Strong MAM of [2], the
proof of such bound is essentially the same as in [2]. It relies on the subterm
invariant (Lemma9.1).

Theorem 4 (Commutatives vs Exponentials, Proof at Page 20). Let
p:s~*s" be a Useful MAM execution from an initial state of code t. Then:

1. Commutative Evaluation Steps are Bilinear: |p|yc < (14 |ple) - [t]-
2. Commutative Evaluation Bounds Backtracking: |plac < 2 |p|ye-
3. Commutative Transitions are Bilinear: |p|l. <3 (1 + |ple) - [t].

The Main Theorem. Putting together the matching between LO [(-steps and
multiplicative transitions (Theorem 2), the quadratic bound on the exponentials
via the multiplicatives (Theorem 3.2) and the bilinear bound on the commuta-
tives (Theorem 4.3) we obtain that the number of the Useful MAM transitions to
implement a LO (-derivation d is at most quadratic in the length of d and linear
in the size of . Moreover, the subterm invariant (Lemma9.1) and the analysis
of the Checking AM (Theorem 1.2) allow to bound the cost of implementing the
execution on RAM.

Theorem 5 (Useful MAM Overhead Bound, Proof at Page 20). Let
d :t —iys u be a leftmost-outermost derivation and p be the Useful MAM
execution simulating d given by Theorem 2.2. Then:

16 B. Accattoli

1. Length: [p| = O((1 + |d|?) - |¢])-
2. Cost: p is implementable on RAM in O((1+ |d|?) - |t|) steps.

Remark 2. Our bound is quadratic in the number of the LO [-steps but we
believe that it is not tight. In fact, our transition ~+,, is a standard optimisation,
used for instance in Wand’s [28] (Sect.2), Friedman et al.’s [21] (Sect.4), and
Sestoft’s [26] (Sect. 4), and motivated as an optimization about space. In Sands,
Gustavsson, and Moran’s [25], however, it is shown that it lowers the overhead
for time from quadratic to linear (with respect to the number of S-steps) for
call-by-name evaluation in a weak setting. Unfortunately, the simple proof used
in [25] does not scale up to our setting, nor we have an alternative proof that
the overhead is linear. We conjecture, however, that it does.

Proofs of the Main Lemmas and Theorems

Proof of One-Step Weak Bisimulation Lemma (Lemma 7, p. 13)

1. Commutative: the proof is exactly as the one for the Checking AM
(Lemma4.2), that can be found in the longer version of this paper on the
author’s webpage.

2. Fxponential:

— Cases = (F,z,m,E,V) ~vg Ft* 7, E,¥V) = s with F(z) =
red
[xZ](¢4") Then E = E' : [xt]("e4™) . E" for some environments E’,
and E”. Remember that terms are considered up to a-equivalence.

s = CS’<:ClE> =Cy <¥lEH> =Cy <¥lE> =5

In the chain of equalities we can replace ﬂE,, with ﬂE because by well-
labeledness the variables bound by E’ are fresh with respect to t.
~ Case s = (F,x,T : 7, E,V) ~,, (F,1%,7: 7 E,V) =5 with E(z) =
[z+]*** The proof that s = s’ is exactly as in the previous case.
3. Multiplicative:

— Case s = (F\\z.t,y : m,E,¥) ~y, (F,t{z<y}, 7, E,¥) = s’ Note that
Cs = F(m)|, is LO by the decoding invariant (Lemma6.4). Note also

that by the name invariant (Lemma6.3b) = can only occur in ¢. Then:

(F,\et,y:m, E, V) = E((Ax.tyy:m) |,

= F{{(Az.D)y)T) |5
= Cs’ <£)‘xtlE)ylE>
—L0gB Cs <El5{x<_ylE}>
=1.6.3b&L. 3.2 Cs'gt{x‘—y}lﬁ
= (F t{x<y},m, E, V)

~ Case s = (F,\e.t,u : 7, E,V) ~p, (F,t, 7, [z<0) : E,V) = s’ with u
not a variable. Note that Cy = F((-)m) |, = F|({")7]|;) is LO by the

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 17

decoding invariant (Lemma6.4). Note also that by the name invariant
(Lemma 6.3b) x can only occur in ¢. Then:

(F i, a:m, E, V) = Hu:)|,

F((\)
E({Qa W),

—L0A E<<tlE{x‘_“lE}>7TlE>
=r.6.30&L.3.2 | p(H{zeu} | p)m]g)

= F<<§{$<—u}> ™) lpg
=r.6.30&L.3.1 F{({{{{z<u}t})r >lE
=L.6.3b E(Om){{z<ul}|,

_ FB) Ly o

Ft,« [sm—u]l E)v) O

—~

Proof of the Progress Lemma (Lemma 8, p. 13)

A simple inspection of the machine transitions shows that final states have the
form (¢,Z,¢, E,A). Then by the normal form invariant (Lemma6.2a) s = |, is
(B-normal. O

Proof of the Weak Bisimulation Theorem (Theorem 2, p. 13)

1. By induction on the length |p| of p, using the one-step weak simulation lemma
(Lemma 7). If p is empty then the empty derivation satisfies the statement.
If p is given by o : s ~* s” followed by s” ~» s’ then by i.h. there exists
e:8 =g 8" st |e] = |o|n. Cases of s” ~ s":

(a) Commutative or Ezponential. Then s” = s’ by Lemmas 7.1 and 7.2, and
the statement holds taking d := e because |d| = |e| =;.1. |0|a = |p|a-

(b) Multiplicative. Then s” —195 s’ by Lemma 7.3 and defining d as e followed
by such a step we obtain |d| = |e|+ 1 =4 |0la+ 1= |p|a-

2. We use nfe.(s) to denote the normal form of s with respect to exponential
and commutative transitions, that exists and is unique because ~». U ~>g
terminates (termination is given by forthcoming Theorems 3 and 4, that are
postponed because they actually give precise complexity bounds, not just
termination) and the machine is deterministic (as it can be seen by an easy
inspection of the transitions). The proof is by induction on the length of d. If
d is empty then the empty execution satisfies the statement.

If d is given by e : ¢ —1gp w followed by w —ios u then by i.h. there
is an execution o : s ~* ¢’ st. w = §” and |o|y, = |e|]. Note that since
exponential and commutative transitions are mapped on equalities, o can be
extended as o' 1 s w7 8" D L ase Dfec(s”) With nfec(s”) = w
and |o’|, = |e|]. By the progress property (Lemma8) nf..(s”) cannot be a
final state, otherwise w = nf..(s”) could not reduce. Then nfe.(s”) ~>y s
(the transition is necessarily multiplicative because nfe.(s”) is normal with
respect to the other transitions). By the one-step weak simulation lemma

18 B. Accattoli

(Lemma 7.3) nfec(s”) = w —rop s and by determinism of —103 (Lemmal)
s’ = u. Then the execution p defined as ¢’ followed by nfec(s”) ~y s’ satisfy
the statement, as |[pln = [0'ln +1=|ola +1=|e] +1=d|. |

Proof of the Exponentials vs Multiplicatives Theorem (Theorem 3,
p. 15)

1. We prove that |o]. < |E|. The statement follows from the environment size
invariant (Lemma9.2), for which |E| < |p|a.

If |o]le = 0 it is immediate. Then assume |o|e > 0, so that there is a first
exponential transition in o, i.e. o has a prefix s’ ~>*~, s followed by an
execution 7 : s ~»* §” such that |7|, = 0. Cases of the first exponential
transition ~-¢:
— Case ~»,,,.: the next transition is necessarily multiplicative, and so 7 is
empty. Then |o]|. = 1. Since the environment is non-empty (otherwise
~e.,. could not apply), |ole < |E| holds.

— Case ~,, ,,* We prove by induction on n that |0 < n, that gives what
we want because n < |E| by Remark 1. Cases:
e n = 1) Then 7 has the form s ~~% s” by Lemma 11.1, and so |o|e = 1.
e n =2) Then 7 is a prefix of ~»i~vg O ~i~e by Lemma 11.2.
In both cases |o|o < 2.
en > 2) Then by Lemmall.3 7 is either shorter or equal to
e e ean—1ys A 50 [0fe < 2, or it is longer than ~X~e -, e
it writes as ~~* followed by an execution 7/ starting with ~~
By i.h. |7'| <n —1 and so |o| < n.

2. This is a standard reasoning: since by local boundedness (the previous point)
m-free sequences have a number of e-transitions that are bound by the number
of preceding m-transitions, the sum of all e-transitions is bound by the square
of m-transitions. It is analogous to the proof of Theorem 7.2.3 in [6]. O

€(red,1)

€(red,n—1)"

Proof of Commutatives vs Exponentials Theorem (Theorem4, p. 15)

1. We prove a slightly stronger statement, namely |p|yc + |pla < (1 + |ple) - |t];

by means of the following notion of size for stacks/frames/states:

_lel=0 |z Fl = |F
o ftemle= Tt 40 |EOm Bl = || + | F
(F b, m, BV = |F+ x|+ [t] (Bt B, A)] = [F| + |7

By direct inspection of the rules of the machine it can be checked that:

— Exponentials Increase the Size: if s ~+, s’ is an exponential transition,
then |s'| < |s| + |t| where |¢| is the size of the initial term; this is a
consequence of the fact that exponential steps retrieve a piece of code from
the environment, which is a subterm of the initial term by Lemma9.1;

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 19

— Non-Ezponential Evaluation Transitions Decrease the Size: if s ~~, &
with a € {m;,my, ¥c1, ¥co, ¥e3} then |s'| < |s| (for ¥ec3 because the
transition switches to backtracking, and thus the size of the code is no
longer taken into account);

— Backtracking Transitions do not Change the Size: if s ~», s’ with a €
{Acy, Acs, Acg} then |§'| = [s].

Then a straightforward induction on |p| shows that

'] < [s| + ple - [t] = |plve = |pln

i.e. that [ply + [pla < |s| + ple - [t] - |s'].

Now note that | - | is always non-negative and that since s is initial we have
|s| = |t|. We can then conclude with

[plve + [l < |s| +[ple - [¢] = ||
< sl + lple - [¢] = [tl+lple - [t] = (1 +lple) - 2]

2. We have to estimate |plac = |placy + |Placs + |p|acs- Note that
(@) |placy < |plves, @8 ~>ac, POPs variables from F, pushed only by ~>yc,;
(b) [placs < |places 88 ~>acs pOPS pairs tOm from F, pushed only by ~>4¢.;
(€) |place < |plvess 88 ~>ac, ends backtracking phases, started only by ~>ye,.
Then |plac < [plve, +2[plves < 2|plve.

3. We have |plc = [plve + [plac <p2 [plve +2|plve <pa3-(1+ple) - [t]. O

Proof of the Useful MAM Overhead Bound Theorem (Theorem 5, p.
15)

1. By definition, the length of the execution p simulating d is given by |p| = |pla+
|ple +|ple- Now, by Theorem 3.2 we have |p|. = O(|p|2) and by Theorem 4.3 we
have [pl. = O((1+ |ple) - 1)) = O((1+p[2) - It]). Therefore, |o] = O((1+ |ple) -
t)) = O((1+19I2)- ¢]). By Theorem 2.2 |y — [d], and so |p| = O((1+d[2)-]¢]).
2. The cost of implementing p is the sum of the costs of implementing the multi-
plicative, exponential, and commutative transitions. Remember that the idea
is that variables are implemented as references, so that environment can be
accessed in constant time (i.e. they do not need to be accessed sequentially):
(a) Commutative: every commutative transition evidently takes constant
time. At the previous point we bounded their number with O((1+|d|?)-|t|),
which is then also the cost of all the commutative transitions together.

(b) Multiplicative: a ~y, transition costs O(]t|) because it requires to rename
the current code, whose size is bound by the size of the initial term by
the subterm invariant (Lemma9.1a). A ~»,, transition also costs O([t|)
because executing the Checking AM on @ takes O(|u|) commutative steps
(Theorem 1.2), commutative steps take constant time, and the size of
is bound by |t| by the subterm invariant (Lemma9.1b). Therefore, all
together the multiplicative transitions cost O(|d| - |¢]).

20

B. Accattoli

(¢) Ezponential: At the previous point we bounded their number with |p|. =
O(|d|?). Each exponential step copies a term from the environment, that
by the subterm invariant (Lemma9.1d) costs at most O(]t|), and so their
full cost is O((1 4 |d|) - |t|°) (note that this is exactly the cost of the
commutative transitions, but it is obtained in a different way).

Then implementing p on RAM takes O((1 + |d|) - [¢|*) steps. |
References
1. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

2014, pp. 363-376 (2014)

Accattoli, B., Barenbaum, P., Mazza, D.: A strong distillery. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 231-250. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-26529-2_13

Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: POPL, pp. 659-670 (2014)

Accattoli, B., Coen, C.S.: On the relative usefulness of fireballs. In: LICS 2015, pp.
141-155 (2015)

Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head
reduction. In: RTA, pp. 22-37 (2012)

Accattoli, B., Lago, U.D.: (Leftmost-Outermost) Beta reduction is invariant,
indeed. Logical Methods Comput. Sci. 12(1), 1-46 (2016)

Ariola, Z.M., Bohannon, A.; Sabry, A.: Sequent calculi and abstract machines.
ACM Trans. Program. Lang. Syst. 31(4), 13:1-13:48 (2009)

Asperti, A., Mairson, H.G.: Parallel beta reduction is not elementary recursive. In:
POPL, pp. 303-315 (1998)

Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In:
FPCA, pp. 226-237 (1995)

Boutiller, P.: De nouveaus outils pour manipuler les inductif en Coq. Ph.D. thesis,
Université Paris Diderot, Paris 7 (2014)

de Carvalho, D.: Execution time of lambda-terms via denotational semantics and
intersection types (2009). CoRR abs/0905.4251

Crégut, P.: An abstract machine for lambda-terms normalization. In: LISP and
Functional Programming, pp. 333-340 (1990)

Crégut, P.: Strongly reducing variants of the Krivine abstract machine. Higher
Order Symbol. Comput. 20(3), 209230 (2007)

Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theoret. Comput. Sci. 398(1-3), 32-50 (2008)

Danos, V., Regnier, L.: Head linear reduction. Technical report (2004)

Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Technical report RS-
04-26, BRICS (2004)

Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.
In: PPDP, pp. 97-108 (2013)

Dénes, M.: Etude formelle d’algorithmes efficaces en algebre linéaire. Ph.D. thesis,
Université de Nice - Sophia Antipolis (2013)

Ehrhard, T., Regnier, L..: Bohm trees, Krivine’s machine and the Taylor expansion
of lambda-terms. In: Beckmann, A., Berger, U., Lowe, B., Tucker, J.V. (eds.) CiE
2006. LNCS, vol. 3988, pp. 186-197. Springer, Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-319-26529-2_13

20.

21.

22.

23.

24.

25.

26.

27.

28.

The Useful MAM, a Reasonable Implementation of the Strong A-Calculus 21

Fernandez, M., Siafakas, N.: New developments in environment machines. Electron.
Notes Theoret. Comput. Sci. 237, 57-73 (2009)

Friedman, D.P., Ghuloum, A., Siek, J.G., Winebarger, O.L.: Improving the lazy
Krivine machine. Higher Order Symbol. Comput. 20(3), 271-293 (2007)
Garcia-Pérez, A., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
Krivine machine from the small-step operational semantics of normal order. In:
PPDP, pp. 85-96 (2013)

Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP
2002, pp. 235—246 (2002)

Milner, R.: Local bigraphs and confluence: two conjectures. Electron. Notes The-
oret. Comput. Sci. 175(3), 65-73 (2007)

Sands, D., Gustavsson, J., Moran, A.: Lambda calculi and linear speedups. In:
Mogensen, T.&., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Compu-
tation. LNCS, vol. 2566, pp. 60-82. Springer, Heidelberg (2002)

Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231-264
(1997)

Smith, C.: Abstract machines for higher-order term sharing. Presented at IFL 2014
(2014)

Wand, M.: On the correctness of the Krivine machine. Higher Order Symbol. Com-
put. 20(3), 231-235 (2007)

Compactness in Infinitary Godel Logics

Juan P. Aguilera®™)

Vienna University of Technology, 1040 Vienna, Austria
aguilera@logic.at

Abstract. We outline some model-building procedures for infinitary
Godel logics, including a suitable ultrapower construction. As an appli-
cation, we provide two proofs of the fact that the usual characteriza-
tions of cardinals x such that the Compactness and Weak Compactness
Theorems hold for the infinitary language L, . are also valid for the
corresponding Gadel logics.

Keywords: Godel logic - Infinitary logic - Compactness

1 Introduction

Infinitary logics, or logics with infinitely long expressions, were first studied by
Scott and Tarski [7,8]. Specifically, let k and A be cardinal numbers and consider
a language L, » consisting of the following non-logical symbols:

1. finitary predicate symbols,
2. finitary function symbols,
3. constants,

and the following logical symbols:

4. a set of variables of size k,
5. conjunctions \,_s A, and disjunctions \/
6. implication and negation,
7. quantifier chains V,.sx, and 3,5z, for § < .

w5 Ay for 6 < s,

Note, in particular, that we do not necessarily include equality in the language.
We give ourselves as much notational freedom as the context allows. For example,
we might write VZ or A A, if the precise length of the connective is not important.
Infinitary languages quickly gathered interest due to their rich model-
theoretic properties and expressive power. For example, the following formula
separates the standard model of arithmetic from non-standard models:

vV \/n>x.

n<w

Partially supported by FWF grants P-26976-N25, [-1897-N25, 1-2671-N35, and
W1255-N23.
© Springer-Verlag Berlin Heidelberg 2016

J. Vdananen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 22-35, 2016.
DOI: 10.1007/978-3-662-52921-8 2

Compactness in Infinitary Godel Logics 23

As is well known, the usual finitary logic (£, ., in this notation) is compact.
The natural question arose as to whether the languages £, » could satisfy suit-
able analogs of compactness. Recall that a cardinal x is weakly compact if, and
only if, it is inaccessible and satisfies the tree property, i.e., any tree of size x such
that every level has < k nodes has a branch B of length . If so, we say B is a
branch through the tree. A filter' U on some set is x-complete if the intersection
of less than k-many sets in U is also in U. A cardinal & is strongly compact if
any x-complete filter on any set can be extended to a k-complete ultrafilter. If
U is an ultrafilter and X € U, we say X has measure one with respect to U (and
X has measure zero if X € U). Let

P.A={SCA:|5] <k}
We say an ultrafilter on P, A is a fine measure if it contains all sets of the form
At ={SeP,A: ACS}.

It is well known (see, for example, [4,5]) that a cardinal & is strongly compact
if, and only if, for every cardinal A, there exists a fine measure on P, \. By results
of Keisler and Tarski [6] and Hanf [3], the languages L., and L , satisfy a
strong (resp. weak) analog of the usual compactness theory for classical logic
if, and only if, k is a strongly (resp. weakly) compact cardinal. Specifically,
whenever X is an arbitrary set (resp. a set where at most x-many non-logical
symbols appear) of formulae such that every subset of X of cardinality < k has a
model, then X' has a model. We show that, in a sense made precise below, this is
also true when the underlying logic is replaced by any first-order Godel logic. As
we will see, although the proofs are essentially as in the classical case, we need
to circumvent a few minor technicalities that arise. In particular, we will need to
introduce the notion of coherent models for Godel logics and prove Los’s Theorem
for a suitable ultrapower construction. It has a similar flavor to the analog in
continuous model theory (for example, see [2]). An important difference is that,
of course, not all logical connectives in Godel logics are continuous.

2 Godel Logics

Definition 1. Let U be a set and* V C [0,1] be closed and containing 0 and 1.
A valuation [-] of Lg x for U and V' consists of

1. For each variable v, a value [[v] € U;
2. For each function symbol f of arity n, a function [f]: U™ — U
3. Similarly, for each predicate symbol, a function [P]: U™ — V;

A model (or V-model, if we want to be precise) is a structure (U, []).

! Recall that a (proper) filter U # p(X) on a set X is a collection of subsets of X
that is closed under binary intersections and supersets.
2 As unfortunate as it is, ‘V’ is the usual notation for this.

24 J.P. Aguilera

In this paper, the term’model’ is used both as in Definition 1 and in the
classical sense. The meaning shall always be clear from the context. Also, V' will
always denote a closed subset of [0, 1] containing 0 and 1. Valuations are naturally
extended to map any term ¢ to an element [[t] € U and any £, x-formula to a
truth value r € V:

[N\ A =inf{[A]: e < 6};

<9

[[\/ A, =sup{[A.]: c < d};

L<0
_J[B] it [A] > [BI,
A= B = {1 if [A] < [B];
[V.<sz, A(Z)] = inf{[A(@)]: u, € U for each ¢ < §};
[B.<sz, A(Z)] = sup{[A(@)]: uw, € U for each ¢ < 6}.

We will also sometimes abuse terminology by making statements about ‘all
@ C U,” when in reality we mean ‘all & C U of the appropriate length.” Hence,
the last line of the above definition could have been written as

[B.<sz, A(Z)] = sup{[A(@)]: © C U}.
Negation is defined by -A = A — 1, so that

_)0 if [A] >0,
A= {1 if [A] = 0; M

in particular:

0 if[A] =0,
[==Al = {1 if TA] > 0. @

If I' is a set of formulae, we define [I'] = inf{[B]: B € I'}. We say that a
set I' of £,; y-formulae 1-entails A, and write I' = A, if 1 = [I'] implies 1 = [A]
for any valuation [-]. Given a language £, » and a truth-value set V', we can
formally define the Gédel logic Gy as the set of pairs (I') A) such that I' = A.

Indeed, a notion of entailment is usually taken as the central semantic notion
for Godel logics, instead of that of satisfiability. This is due to the fact that
satisfiability can in general be defined from entailment, but not conversely (for
a general treatment of first-order Gédel logics, see [1]).

Suppose I is a set of L, y-sentences. We say that a set S C I" of cardinality
< k is a k-reduction for (I A) if I' = A implies S |= A. The following is the
main definition:

Definition 2.

— We say that L, » satisfies the Weak Compactness Theorem for Gy if every
pair (I'yA) where at most k-many non-logical symbols appear has a k-
reduction.

Compactness in Infinitary Godel Logics 25

— We say that L, satisfies the Compactness Theorem for Gy if every pair
(I',A) has a k-reduction.

The first-order language £ under consideration is not important for the previous
definition. It should rather be regarded as a statement about , A, and/or V.

2.1 Models Coherent with an Enumeration

Note that our valuations include both interpretations and variable assignments.
Hence, we might find two morally equal models that differ only in this regard.
To remedy this, we consider the following notion:

Definition 3. Let 4 = (U, []) and 20 = (U, () be models over the same lan-
guage. We say 3 and 2J are equivalent if they coincide except perhaps for the
values of variables, i.e., [P(@)] = (P(%)) and [f(@)] = (f(@)) for each @ C U,
each predicate symbol P and each function symbol f.

We denote by 7 (L,) the set of all terms in the language £, ... In the future,
we might be tempted to assume that the set of £, .-formulae has cardinality x.
This occurs, e.g., if K = k<" and only k-many non-logical symbols appear in
Ly x, as this implies that the set of £, ,-formulae has cardinality x<".

Under this assumption, we shall describe a procedure to replace a Gy -model
by an equivalent one where quantified formulae are nicely witnessed. Although it
is tailored for our purposes, it can easily be adapted to different contexts. This
procedure and its kin will usually be used as Skolemnization supplements for
Godel logics. Let F(Ly) = {F,: ¢ < k} be an enumeration of all £ .-formulae
and {y>%: £,1 < k,i < w} be a set of distinguished variables whose complement
has size k.

We say an occurrence of a formula F, in F(L) is irregular if ¢ is of the
form v + k with ~ limit, 0 < k < w, & are free variables in F, and F,, = VT F, or
F, = 37 F,. We say an occurrence of a formula is regular if it is not irregular.

Lemma 4. If k is uncountable and the set of Ly, ,-formulae has cardinality &,
then there is an enumeration F(Ly ;) of Ly, such that:

1. each formula appears unboundedly often;

2. each formula appears reqularly at least once;

3.y~ does not appear in {F,: v <} for any v,€,i;

4. whenever F, = Vecste F(xg)ecs or F, = Fecswe F(xe)ecs appears regularly
for the first time in the sequence, then F,; = F(y? ’i)5<5 for each 0 < i < w.

Proof. Assign a formula to each limit ordinal < k in such a way that conditions
1 and 3 are verified. Condition 2 is verified automatically, as a formula can only
be irregular at a successor stage. If F, is a regular-for-the-first-time occurrence of
a formula whose outermost symbol is a chain of quantifiers, define F,; for i < w
in such a way that condition 4 is witnessed to hold; otherwise, set F,; = F, for
1< w. O

26 J.P. Aguilera

We say an enumeration F (L,) = {F,: ¢ < k} is suitable if either k = Ry or
F(Ly,) satisfies conditions 1-4 in the statement of Lemma 4.

Definition 5. We say a model (U, [-]) is F (L,)-coherent if F (L,) is suitable
and whenever a formula F, = Vecsxe F(x¢)es or F, = Jecsxe Fxe)e<s appears
reqularly for the first time in the sequence, then

[F] = lim [F] 3)

Proposition 6. Suppose the set of L ,-formulae has cardinality k. Let F =
F(Ly,x) be a suitable enumeration and 8 = (U, [-]). Then, there exists an F-
coherent model 20 = (U, () equivalent to 4.

Proof. This is clear if kK = Rg. Suppose X; < k and partition the set of variables
in the language into Y = {y%%: ¢,1 < k,i < w} and its complement, Y’ and fix
a bijection g from Y’ onto the set of all variables. We define the valuation ()
to be equal to [-] except for the values of variables. Set (v) = [g(v)] whenever
v € Y’. It remains to define (-) at Y. Let ug be an arbitrary, fixed element of U
such that [v] = ug for some variable v.

Suppose A is a formula with a chain (or a block of chains) of quantlﬁers as
outermost symbol, e.g., A = V& F/(Z). We have that [VZ F'(Z)] = inf{F(t):tc
U}. Let = Ih(f). Fix an w-sequence of n-sequences {f; C U: i < w} such that
lim; ., F(t;) = [VZ F(Z)]. Let F, be the first regular occurrence of V# F(Z) in F.

We define
(]yg,il) _ (ti)i if&<n
t U otherwise.

By construction, clearly (3) holds whenever F, has a chain (or a block of
chains) of quantifiers as outermost symbol and appears regularly for the first
time. Moreover, [B(u)] and (B(@)) coincide for every formula B and every
uCU. O

2.2 Ultraproducts

Let U be an ultrafilter on some set I and let {4l,: ¢ € I} be a family of models
in the language £, x. We define the ultraproduct of {{f,: ¢ € I} in the obvious
way, namely, by setting U = [],.; U,/ =, where

f=gif, and only if, {v: f(v) =g(¢)} € U.
For a function symbol F', we set
FIf] = [g] if, and only if, {0: F(£()) = g()} € U.
For a predicate symbol P, we define [P[f]] = r if, and only if,
for every € > 0, {¢: |P(f(v)) —r|<e} eU.

The ultraproduct is well-defined:

Compactness in Infinitary Godel Logics 27

Lemma 7. Assume P is atomic. Then {¢: |P(f(¢)) — 7| < e} € U for exactly
one r € [0,1], so that the ultraproduct is well-defined. Moreover, if U is (280)*-
complete, then [P[f]] = if, and only if, {v: P(f(¢))=r} € U.

Proof. Suppose that for no r is it the case that {v: |P(f(+)) —r| < e} € U for
every e. For each r, choose €, > 0 witnessing this. By (topological) compactness
of V, finitely-many intervals (r —e,,r+¢,) cover V. However, by finite additivity
of the ultrafilter, not all of the sets

{e: [P(f(1) = 7] <&}

can have measure zero—a contradiction. Similarly, let rg and r; be distinct and
e <|rg —r1|/2. Then A; = {v: |[P(f(¢)) — r;| < £} cannot have measure one for
both i =0and ¢t =1, as AgN A; = . A similar argument shows that if U is
(2%0)*-complete, then

{t: P(f(1))=r} €U
for exactly one r € V. a

We now show that Los’s Theorem holds in most cases of interest:

Proposition 8. Assume U is a (k + Ry)-complete ultrafilter on I. Let 4 =
(W, -] be the ultraproduct of {ih,: v € I} by U. Then, Los’s Theorem holds for
Lz, €., for any formula ¢ € L,; »,

[olfle<s] =7 if, and only if, for every e >0, {v: [[p(f(1))e<s] —7| <} € U. (4)

Moreover, if 2% < k, then

[olfle<s] =7 if, and only if, {v: [p(f(1))e<s] =7} € U. ()

Proof. To spare the reader from an otherwise unreadable proof, we will some-
times identify formulae with their truth values and assume predicates are
monadic. The proof is by a straightforward induction as usual.

() Let o[f] = A, @y[f]- Write r = [\, o [f]] = inf, [, [f]] and [[f]] =75
Let € > 0. The induction hypothesis gives that for every -,

Ay = {13 Loy (F0) = o] < /3} €U,
By k-completeness, A := (]7 A, € U. Pick 7y such that 7., —r < /3. Since
lp(f () = [< [o(f (1)) = @y0 (F (1))
+ |<)070(f(‘)) - T'Y(J| + |T"/0 - T|7

it suffices to show that [¢(f(¢)) — ¢, (f(¢))] < €/3 in some measure-one set.
Suppose not, so that for every ¢ in some A’ € U, there is some ~y(¢) such
that @, (f(¢)) > @) (f()) +¢/3. Since U is r-complete and the set of all

28 J.P. Aguilera

possible v has cardinality < &, then v(¢) must take a constant value, say v*,
in a measure-one subset of A’. We apply the induction hypothesis to ., to
obtain a refinement A” of A’ such that

A" = A O {0t oy (F(0)) = 1] < £/6} € T, (6)

and once more to obtain a further refinement of A” that witnesses the analog
of (6) for v*. From this follows that ¢+ «[f] < ¢4, [f] — /3. Hence, r =
inf, r, <r,- <r,, —e/3; a contradiction.

Conversely, if ¢[f] = 7’ # r, then by the argument above,

{e: lo(f() =r[<" =r|/2} £ U.

(V) Let r = [Vecsze p(we)e<s] = [VZo(Z)] = inf 7{[[f]]}. Choose a sequence
of (sequences of) terms {f;: i < w} such that o(f;) converges to r and let
i = [¢lfi]]- From the induction hypothesis follows that for any i < w, and
any € > 0, .
{e:lo(fi()) =i <e} €U.

In fact, RXj-completeness gives that for any ¢ > 0,
A= {u: |o(fi(1)) — 74| < & for every i} € U.
Hence, VZ ¢(Z) < r in a measure-one set. We show that for every ¢ > 0,

{t:r = VZpZ(1) <e} € U.

Suppose towards a contradiction that for some 0 < £* < 1/2, we have
VZp(T) + e* < r in a measure-one subset of A. Define § € (I],¢; UL)(S by

setting

- some sequence of terms 7 such that [p(£)], +*/2 <7 if it exists
L) =
some arbitrary term otherwise.

We claim that §(¢) is defined using the first clause in a measure-one set.
This follows from the fact that A" := {v: [VZo(Z)], + &* < r} € U. Indeed,
for each ¢ € A’, there must exist some sequence of terms ¢, such that 0 <
[e(t)]. — [VZp(Z)], < €*/2. But then [¢(f,)], + £*/2 < r. Hence the claim
follows.

Let " < r be such that for all € > 0, {¢: |0(g(¢)) — | < ¢} € U. We must
necessarily have 7' +¢*/2 < r. We apply the induction hypothesis to obtain,
say, ¢[g] +€*/3 < r, which contradicts r = inff{go[ﬂ}.

To obtain the converse implication, we use the one we just proved as in the
first case to show that if VZ (&) =1’ # r, then

{v: VZ(Z()) — 7| < |r' —r|/2} € U.

Compactness in Infinitary Godel Logics 29

(—) Let r = A[f] — B[f], s = A[f], and t = BJ[f]. First suppose s < ¢ so that
r=1,and let 0 < € < (t — s)/2. By induction hypothesis,

{t: JA(f(v)) — s| <eand |B(f(1) —t| <e} e, (7)
so that A(f(¢)) — B(f(¢+)) = 1 on a measure-one set. Now suppose s > ¢, so
that r =tand 0 <e < (t—) /2. As above, the induction hypothesis gives (7)
and so A(f(¢)) — B(f(¢)) =t on a measure-one set. The converse is obtained

as before.

The remaining cases are similar. Finally, if 2% < x, then (5) holds for atomic
formulae by Lemma 7 and the same inductive argument goes through. a

Corollary 9. Los’s Theorem holds for the language L., ., and the logic Gy for
ultraproducts by countably complete ultrafilters.

Also, from the proof of Proposition 8 follows that:

Corollary 10. Los’s Theorem holds for the language L, ., and the logic Gy
whenever V is finite.

3 Compactness Theorems

3.1 Weak Compactness
Theorem 11. Let k be an uncountable cardinal.

1. If L, . satisfies the Weak Compactness Theorem for Gy, then k is weakly
compact;

2. If K 1is weakly compact, then L, . satisfies the Weak Compactness Theorem
for Gy .

Proof. 1. We only need the seemingly weaker assumption that L, ., satisfies the
Weak Compactness Theorem. Assume L, ., contains a unary predicate symbol
P and a set of constant symbols {c,: @ < £}. To see that is inaccessible, note
that if {ka: o < A} were a sequence of length A < x cofinal in &, then there
would be no k-reduction for (I', L), where I" is the set consisting of the sentences

- \/a<)\ \/L<,<;Cy P(cb)’

— =P(¢,) for ¢ < k.

Clearly S £ L for any proper subset S of I'—a model witnessing this is provided
by interpreting ¢, as ¢ and setting [P](¢) = 1 for each ¢ € {{ < k: =P(ce) € I'}
and [P](c) = 0 for all other ¢ (if it is in I', \V/, .\ V, . P(c,) is witnessed to be
true by any ¢ such that —=P(c,) & I'); while I" = L vacuously. Hence, k is regular.

If kK were not a strong limit, so that 2* > k for some A < k, then there would
be no k-reduction for (I, L) if I" is the set consisting of the formulae

= N\~ @P(ey), for f1 A -2, (8)
a<

30 J.P. Aguilera

where =" has the obvious meaning. Indeed, if S is a proper subset of I, then
let g: A — 2 be such that the corresponding instance of (8) does not belong
to S. Interpret each ¢, as o and set [P](«) to be 0 or 1 according as g(«) equals
0 or 1. Then [-'*f(®P(¢,)] = 1 for each a < A if, and only if, f = g, and
[-1+/()P(c,)] = 0 for some a otherwise (negated formulae only take values 0
and 1 by (1)), so that (8) takes value 1 if, and only if, f # g; in particular,
[S] = 1. However, I = L vacuously as [I'] = 1 is impossible, for the function g
on \ defined by g(a) = [-—P(c,)] must be distinct from each f: A — 2. To see
this, notice that for any such f, we must have by (8) that [-!*/(®)P(c,)] = 0
for some «, but
[~ e e, = 1

for each o < A. To see this, notice that it follows by (2) we have:

I+ [=Plea)lp(e)] = [=P(ca)] if [P(ca)] =0,
: Plca)] {[[ﬁ—'P(ca)]} if [P(ca)] > 0.

The claim then follows by (1) and (2). Hence, & is inaccessible.

It remains to show k has the tree property. Let T be a tree of size k such that
each level has cardinality < . Denote by I(«) the ath level of T. We consider
the set of sentences I' consisting of

— 2(P(ca) AP(cp)), for every o and 3 that are T-incomparable, and
= Veei(a) Plce), for every .

For any subset S of I' of cardinality < k, there is a model witnessing S [~
L; namely, choose a large-enough downwards-closed fragment of T" as universe,
assign «a to the constant c, and have P take value 1 along a sufficiently-large
well-ordered set and 0 everywhere else. By the Weak Compactness Theorem,
there is also a model witnessing I" [~ L. For each T-incomparable a and [,

[=(P(ca) AP(cg))] =1
o either [P(cq)] = 0 or [P(cg)] = 0.

In particular, all points lying on the same level are incomparable, so that

[V Ple]=1

§€l(a)

implies that P must evaluate to 1 on one point in each level. The ordinals «
such that [P(c,)] = 1 determine a branch through 7. Therefore, T has the tree

property.

2. Let I" be a set of L, ,-formulae of cardinality x. Suppose x is a weakly
compact cardinal and S £ A for every S C I' of cardinality < x. We will assume
all symbols in L, ,, appear in I', so that there are only x-many L, ,-formulae,

Compactness in Infinitary Godel Logics 31

and construct a model (U, [-]) such that [B] = 1 for each B € I" and [4] < 1.
The assumption that all symbols in L, ,, appear in I" results in no loss of general-
ity, for any symbol not appearing in I" can be evaluated arbitrarily by the model
while preserving the conclusion. Fix some T = 7(L,,), and some suitable (in
the sense of Sect. 2.1) enumeration F = F(Ly;).

Let T be the subtree of V<" consisting of all ¢: v — V such that v < x and
there exists an F-coherent model (W, (-)) fulfilling the following three conditions:

1. (F,) = t(e) for all ¢ < ;
2. t() =1if F, € T
3. t(1) < 1if F, = A

By hypothesis and Proposition 6, there is one such t for each subset of I
of cardinality < k. Additionally, each level of T has size |V| and & has the tree
property, whereby there exists a branch B through 7. This branch assigns a
unique value in V to each formula in F. For each initial segment ¢ of B, there
exists a model agreeing with ¢ on all valuations.

Define a relation = to hold between two terms r,s € 7 whenever for each
atomic P(x), there exists ¢ < & such that P(r) and P(s) appear before F, in
F and are assigned the same value by the branch. We let the universe U of the
model to be equal to 7/ =. For each atomic formula F, € F, we set

[F.] = r if, and only if, t(¢) = r for some ¢ € B. (9)

This is well-defined, by the definition of =. In order to finish the proof, it
remains to check that Eq. (9) holds true for arbitrary formulae. If so, then we
will have a model where [I'] = 1 and [A] < 1. We will check that the following
properties hold:

. [B—=C]=[C] i [B] >[C], and [B — C] = 1 otherwise.
- [V, 5 B.] = sup{[B].: ¢ < d}.

- [Aics B.] = inf{[B],: ¢ < 6}.

. Vicsz, B(Z)] = inf{[B(@)]: w, € T for each + < d}.

. [Bicsz, B(Z)] = sup{[B(@)]: u, € T for each ¢ < §}.

Tk LW N~

Notice that B evaluates all validities to 1 and respects entailment: if ¢(:) = 1
and F, = Fg, then ¢(€) = 1. The following observation will be used repeatedly:
if t(t) =1 and F, = B — C, then [B] < [C]. This follows from the fact that
in every model where (B — C) = 1, we must have (B) < (C). This already
gives one half of property (1). Conversely, assume ¢(¢) < 1 and F, = B — C.
Let £ be large enough so that both B and C appear before F¢. In any model
agreeing with B up to &, necessarily (B — C) < 1, whence (B — C)) = (C) and
so [B — C] =[C].

For property (2), notice that Be — \/,_5 B, is valid and thus [\/,_ s B.] >
sup{[B].: ¢ < ¢}. Conversely, let t* be an ordinal such that all B, appear before
F,~. Since any model must evaluate \/, B, to the infimum of the values of the B,
and there exists a model agreeing with B up to ¢*, it follows that [\/, s B.] =
sup{[B].: ¢ < ¢}. Property (3) is proved analogously.

32 J.P. Aguilera

We show (4): clearly [V,<sz, B(Z)] < [B(u)] for any sequence of terms o
in 7, as V,<sz, B(Z) — B(#) is valid. To see that equality holds, it suffices to
notice that, if F) is the first regular occurrence of V,«sx, B(Z), since there exists
an F-coherent model agreeing with B up to level t+w, then [F,] = lim;«,, [F,]

As for property (5), we clearly have [3,<s5x, B(Z)] > [B(@)] for any sequence
of terms @. Suppose [D] > [B(@)] for any sequence of terms « and some
formula D. Then we have [B(@) — D] = 1 by property (1). This implies
[VZ(B(Z) — D)] = 1 by property (4), whereby also [3Z B(Z¥) — D] = 1, for

VZ#(B(Z) — D) = 3% B(Z) — D.

This yields [3Z B(Z)] < [D] as desired and finishes the proof. O

3.2 Strong Compactness
Theorem 12. Let k be a cardinal.

1. If L, , satisfies the Compactness Theorem for Gy, then k is strongly compact;
2. If K is strongly compact, then L, . satisfies the Compactness Theorem for

Gy.

Proof. 1. The classical proof goes through. As before, we only suppose for the
first claim that L, , satisfies the Compactness Theorem for Gy. Let F be a
k-complete filter on some set I. Assume L, contains a unary predicate S for
every subset S of I and a constant c. Let I" be the set of

— (extension) sentences S(c) for every S € F;

— all sentences true in the (classical) structure (I,{S}scr), in particular:
— (monotonicity) S(c) — 8'(c) for every S C S’ C I,

— (k-completeness) A\, _58.(c) — S(c), for 6 < x and S = J
— (maximality) S(c) V =8(c) for every S C I.

L<5

For every subset A of I' of cardinality < k, there is a model witnessing A }= L.
In fact, there is a model that takes only values 0 and 1 obtained by taking I
as universe and interpreting S as S for each predicate S appearing in A and ¢
as some element belonging to (gc 4 S, which exists by x-completeness. By the
Compactness Theorem, there is a model (U, [-], {S*}scr,c) witnessing I" }= L.
Define

S € F* if, and only if, [S(c)] = 1.

Clearly, F'* extends F, as S(c) € I for every S € F, whence [S(c)] = 1. Also,
F* is a k-complete filter: suppose S € F™*, so that [S(c)] = 1, and S" D S. Since
S(c) — 8'(c) € T, then [S(c) — 8'(¢)] = 1, which implies [S(c)] = [S'(¢)] = 1.

Suppose S, € F* for every ¢ < § and § < k. It follows that [S,(¢)] = 1 for
each ¢ < 6. Letting S =, 5., we have that A, _;8,(c) — S(c) € I', whence
[S(c)] = 1. Hence, F* is a x-complete filter. In fact, F* is an ultrafilter, for
S(c) V =S(c) € I', so that if S ¢ F*, then [S(¢)] < 1, and so the fact that
[S(c) vV =8(c)] = 1 implies that [-S(c)] = 1.

Compactness in Infinitary Godel Logics 33

2. Conversely, suppose that x is a strongly compact cardinal and that for
any S C I of cardinality I', we have S £ A, as witnessed by a model g =
(Us, []s)- Consider the ultraproduct & = (U, [-]) by a fine measure on P,I". By
Proposition 8 and the fact that £ > (2%)* (k is inaccessible), the ultraproduct
satisfies (5), i.e., for any formula p(x¢)e<s,

lelfle<s] = r if, and only if, {S € P.I": [¢(f(S))e<s] = r} has measure one.

Fineness of the measure implies that {¢} T={S € P.I": {¢} C S} has measure
one for any ¢ € I'. Moreover, [¢]s = 1 for any S € {¢} T, and so [¢] = 1.
Similarly, [A] < 1, because [A]s < 1 for all S € P.I". O

4 An Alternative Proof

(The proofs of) Theorems 11 and 12 are evidence that, sufficiently high up Can-
tor’s realm, the influence of logics’ size on their behavior becomes progressively
more prevalent, and, that of other traits, progressively less. An example of this
is the fact that, for Godel logics, the truth-value set V seems to play no role
whatsoever, in clear contrast to usual finitary first-order logics.

This should not be surprising. Indeed, large cardinalities allow us to diffuse
otherwise-characteristic properties of logics by means of codings. Herein, a key
ingredient is the regularity of the models Proposition 6 yields. This provides
us with alternative proofs of 11.2 and 12.2. These proofs are somewhat more
extensive than the ones provided originally, although they do have the clear
advantage that with little or no effort, they can be adapted into other contexts.
For definiteness, we focus on weak compactness in the following.

Another proof of 11.2 Suppose k is a weakly compact cardinal and S = A
for every S C I' of cardinality < k. As before, without loss of generality, we
assume all symbols in L, ,; appear in I'. Define a first-order infinitary language
L, . consisting of

— the same set of variables Var as L, .,

— the same set of function and constant symbols as L,; ,,

— a predicate PY (&) for every r € V whenever C(7) is a L, ,-formula,

— predicates S B(&,¢) and W B(F,) whenever C(F) and B(y) are L .-
formulae.

Only k-many non-logical symbols appear in L, ,; thus, the set of L, .-
formulae has cardinality . Consequently, only x-many non-logical symbols
appear in L . We will interpret the infinitary Gy-logic over Ly , in classical
logic. The intended interpretation of P (%) is ‘C(%) has truth value r.” Simi-
larly, the intended interpretations of S (%, 7) and W B (&, i) are, respectively,
‘C(%) has a (strictly) smaller truth value than B(%).” Let F(Ly) = {F,: ¢ < Kk}
be a suitable enumeration of all £,; ,.-formulae with distinguished set of variables
{Y6": &0 < ki <w}. If C = VecszeF(ve)ecs or C = Jecsze F(xe)e<s and F,

34 J.P. Aguilera

is the first regular appearance of C' in F, we denote by Var(F, (x¢)e<s) the set
{yb': € < 6,i <w}.

We use the fact that if x is weakly compact, then £, , satisfies the Weak
Compactness Theorem for classical logic, as recalled in Sect. 1. Let X consist of
all sentences of one of the following forms:

1. V,cy PE(7), for each C(Z) € Ly ;

2. P TCE:Z"’) —PC (%), for each C(%F) € L, ,, and each r # s in V;

3. 89B(Z7) < V,ev Vievae (PY(z)/\PB(7)), for each C(Z), B(j) €
L‘H,n;

4. WOB(Z,§) < V,ov Vievap (P(Z) A PE(Y)), for each C(&), B(¥) €
Ly

5. W/\,<sc Ce((Z,)1<s, Te) for each € < § < k and each C(Z) € Ly x;

6. PT/\L<a (G ies = Newo \/5<§ Vtevm[r,r+e] Pt ¢ (ge), for each sequence of for-
mulae C’L(?ﬁ) S [-"K,,K;
7. WOVics O (Fe, (4,),<5) for each € < § < w and each C(Z) € Ly x;

8. Py (G)e<s < Neso Vews Vievap—en P (e), for each sequence of for-
mulae C,(9,) € Ly ;
9. WYEC.C (i) for each C(§) € Ly.n;
VZC (% = - SN
10. YD) o Moo Vicvarem Vievapasg PCE), for each C(Z.7) €
ﬁn,nQ
11. W&3C () for each C(§) € Ly x;
3EC(F) | S o o
12. ,]CDT ()<y) < NAeso \/ZGVar(C,f) \/tGVﬁ[Tfe,T] PE(Z,9), for each C(2,7) €
13. WOB(%,4) — PE—B (&, 7)), for every C(), B(ij) € L.
14. (SBC(&,§) A PB(7)) — PC~B(Z,), for every C(&), B(§) € Ly,
15. /\TGVﬁ[O 1) Pr)
16. PE(Z), for every B(¥) € I'.

The first two conditions above state that each formula has exactly one truth
value. Conditions 3 and 4 define the predicates S (&,) and WB (&, 7).
Conditions 5-14 define how truth values should behave in nonatomic formu-
lae. Specifically, conditions 5-8 define conjunctions and disjunctions, conditions
9-12 define quantifiers, and conditions 13 and 14 define implication.

The restriction of the domain of the conjunction in conditions 10 and 12 is
necessary in order to avoid a conjunction of length x. The last two conditions
state that any formula in I" must have truth value 1 and A must not.

Let A be a subset of X' of cardinality < x and

AQ—{BE;&KN EA}

By hypothesis, there is a Gy-model witnessing Ag = A. The key point is that,
by Proposition 6, we can find an F-coherent model 20 = (U, [-]) witnessing
Ay = A. We define a (classical) model U for A with the same universe:

— For any function symbol f, we set

U= f(Z) =y if, and only if, [f](Z) = y. (10)

Compactness in Infinitary Godel Logics 35

— For any atomic formula C', we set
U = PC(a@) if, and only if, [C(@)] = - (11)

Any F € A of the form 1-16 is satisfied: one verifies by induction that (11)
holds for arbitrary formulae C(a@). For example, if F is of the form 10 or 12, then
M= F because 20 is F-coherent.

Hence, any subset of X of cardinality < x has a classical model, whereby the
Weak Compactness Theorem for classical logic yields a model of X, say, L. Let
U be the universe of this model. We define a Gy -model with universe U via (10)
and (11).

The classical model 4 satisfies sentences 1-16. Since it satisfies 1 and 2, each
formula is assigned exactly one truth value in the Gy -model. One verifies—once
more by induction—that (11) holds for arbitrary formulae C(@). For example,
suppose C' = VzF(x). Let r = [VaF(z)] and 7, = [F(u)], so that r = inf,c7 ry.
By induction hypothesis, { = Pi(“) for each u. By Egs. 1, 2, 4, and 9, 4
PY @) for some s < r. But necessarily s = r, for {ru: u € Var(C,)} converges
to r by 10. The other cases are treated similarly. Finally, the model witnesses
I' £ A by 15 and 16. O

References

1. Baaz, M., Preining, N., Zach, R.: First-order Godel logics. Ann. Pure Appl. Logic
147, 23-47 (2008)

2. Yaacov, I.B., Berenstein, A., Henson, C.W., Usvyatsov, A.: Model theory for metric
structures. In: Lecture Notes Series of the London Mathematical Society, vol. 350,
pp- 315-427 (2008)

3. Hanf, W.P.: On a problem of Erdoés and Tarski. Fundamenta Mathematicae 53,
325-334 (1964)

4. Jech, T.: Set Theory. Springer, New York (2003)

5. Kanamori, A.: The Higher Infinite. Springer, New York (2009)

6. Keisler, H.J., Tarski, A.: From accessible to inaccessible cardinals. Fundamenta
Mathematicae 53, 225-308 (1964)

7. Scott, D., Tarski, A.: The sentential calculus with infinitely long expressions. Col-
loquium Mathematicum 16, 166-170 (1958)

8. Tarski, A.: Remarks on predicate logic with infinitely long expressions. Colloquium
Mathematicum 16, 171-176 (1958)

Cut Elimination for Godel Logic
with an Operator Adding a Constant

Juan P. Aguilera®) and Matthias Baaz

Vienna University of Technology, 1040 Vienna, Austria
aguilera@logic.at

Abstract. We consider an extension of propositional Godel logic by an
unary operator that enables the addition of a positive real to truth values.
We provide a suitable calculus of relations and show completeness and
cut elimination.

Keywords: Godel logic - Cut elimination - Calculus of relations

1 Introduction

Propositional Godel logic is an extension of intuitionistic logic that takes truth
values in the set [0,1]. We consider an extension of Godel logic by a unary
operator o that adds a positive constant to truth values. This logic can be con-
sidered as a logic extending Godel logic by properties of Lukasiewicz logic that
themselves imply the non-recursive-enumerability of the first-order analog. The
propositional fragment of this extension can be axiomatized by adding to an
axiomatization of Godel logic the following two simple formulae [2]:

1. A< oA, and
2. o(A — B) < (0A — oB).

We construct an analytic sequents-of-relations calculus based on the relations
< and <, where < corresponds to implication (A — B) and < corresponds to the
connective <, where A < B is defined as (B — A) — B. In Sect. 4, we prove cut
elimination of the calculus using a Gentzen-style argument based on inductive
decomposition of formulae. This calculus is surprisingly more closely related to
usual sequent calculi than to the only known analytic calculus for Lukasiewicz
propositional logic (see [3,4]). Although it is very simple, its cut elimination is
not that straightforward due to the asymmetry of the new operator o. Indeed,
we make use of two technical tools that are not otherwise required: the first one
is Avron’s communication rule; the second one is the following artificial-looking

cut:
A< A

1< A
This rule is eliminated together with the other cuts.

Partially supported by FWF grants P-26976-N25, [-1897-N25, 1-2671-N35, and
W1255-N23.
© Springer-Verlag Berlin Heidelberg 2016

J. Vdananen et al. (Eds.): WoLLIC 2016, LNCS 9803, pp. 36-51, 2016.
DOI: 10.1007/978-3-662-52921-8_3

Cut Elimination for Gédel Logic with an Operator Adding a Constant 37

2 Preliminaries

Definition 1. We consider the language L of propositional logic, augmented
with a unary operator o. A propositional Géddel o-valuation J is a function from
the set of propositional variables into [0,1] with I(L) =0 and I(T) = 1, together
with a real number ¢ € (0,1]. This valuation can be extended to a function
mapping formulas from L into [0,1] as follows:

J(A A B) = min{3(A),3(B)},
J(AV B) =max{J(A),3(B)},
~ _)IB) if 3(A)>13(B),
A= B)= {1 if 3(A) <3(B),

J(0A) = min{J(A) + ¢, 1}.

We define =A by A — 1 and A < B by (B — A) — B. Thus, we get

if J(A
S(od) = {0 it 3(4) >0,
1 otherwise,
1 if J(A
J(A<B) = if5(4) <
3(B) it 3(A) >

Note, in particular, that J(A < B) = 1 if J(A) = 3(B) = 1. A formula is
called walid if it is mapped to 1 for all valuations. The set of all formulas which
are valid is called the o-propositional Godel logic and will be denoted by G,.

Proposition 2. A Hilbert-type axiom system for G is given by the following
axioms and rules:

n r—A4 I8 (A—-B)—[(C— A)— (C— B)
12 A—-(B—A) 19 [A—(C— B)]—[C— (A— B)]
I3 (AANB)— A I A-C)An(B—-0C)—(AvB)—C)
4 (ANB)— B I (C—-AANC—B)—(C—(AAB))
Ih A-(B—(AAB)) 112 (A—-(B—C))— (AAB—=C)
16 A— (AVB) I3 [A— (A— B)] - (A— B)
17 B— (AVB) 4 A<T
Rl A<oA R2 o(A— B) < (cA— oB)

A A—B

Gl (A= B)V(B— A) MP 5
Proof (Soundness). The axioms (I1)—(I14), as well as G1 and MP, are well known
to be sound for any extension of Godel Logic. If J(0A) = 1, then A < oA holds. If
J(0A) < 1, then J(A) < J(oA), whence A < oA holds as well. Hence, R1 is valid.

38 J.P. Aguilera and M. Baaz

To show validity of R2, we distinguish two cases: (i) if J(A) < J(B), then
J(oA) < J(oB), whereby 1 = J(o(A — B)) = J(oB). Hence, R2 holds. (ii) If
J(A) > 3(B), then J(A — B) = J(B), and so J(o(A — B)) = J(oB). Thus,

(A — B) — (0cA — oB). Now, either J(0cA) < J(oB) holds, whence 1 =
J(oB) = J(oA) follows, or J(oA) > J(oB) holds, whence J(cA — oB) = J(oB).
In any case, R2 holds.

o

(Completeness). In [2, Theorem 3, (c)], it was shown that the axiom system
obtained by replacing R1 by the two axioms

1. (L <ol)— (A =<o0A4),
2. (Leool)— (A< oA,

is complete for G, T, a variation of G, where ¢ could be taken to be zero. (L=<
ol) is an instance of R1 and therefore R1 and R2 are sufficient to derive 1 and
2 above if ¢ is not zero. a

We remark that the deduction theorem holds for the axiom system given by
Proposition 2 because it holds for its restriction without the operator o.

3 The Calculi RG] and RG,

We will define a sequents-of-relations calculus RG,, as well as a fragment thereof,
called RG,. As we show, the calculus RG_ is already sound and complete
(Proposition 4). Moreover, RG, admits cut elimination. This is proved in Sect. 4.

Herein a sequent is a finite set of components of the form A < Bor A < B
for formulae A, B. We denote sequents by expressions of the form

Ay <y Bl||An <y Bn,

where the sign <; is either < or < and plays a role similar to the sequent arrow
in traditional sequent calculi. By ‘component,” we always mean ‘an occurrence
of the component,’ e.g., the sequent A < B|A < B has two components.

We say a component A < B is satisfied by an interpretation Jif J(A < B) =1
and a component A < B is satisfied by an interpretation J if J(A — B) = 1. A
sequent Y is satisfied by J if J satisfies at least one of its components. Thus, the
separation sign “|” is interpreted as disjunction at the meta-level. A sequent X
is walid if it is satisfied by all interpretations.

The axioms of RG, are:

Al. A<A A2, 0<A A3. A<

The external structural rules are!:

MIA<B|[A<B HA<B|A<B
HA<B HIA< B

C2

! ¢ stands for ‘contraction’; w stands for ‘weakening’; com stands for ‘communication.’

Cut Elimination for Gédel Logic with an Operator Adding a Constant 39

H w H|A <1 B H‘C <3 D com
HA<B ' H|A <3 D|C <4 B
where either <3 = <9 =< and {3, <4} = {<, <}, or < € {<1,<2} and

<3 = <y = <. The internal structural rules are

HA<B HA<B
HA<B ° H[A<C|C<B °

HIA<B HIA< B
HA<C|IC<B"™ HA<ClC<B"®
H|A< B H|IB<C H|A< B H|B<LC

t t

HIA< C cun HIA < C cutz
HA<B HB<C = HA<B HB<C .
HIA < C cits HIA< C cHta

We proceed to logical inferences. The rules for conjunction and disjunction
are obtained by replacing <1 by < or < in the following rules:
HIC<A HIC<B MA<QB<CA<
HIC < (AAB) " HI(AAB)<C "2

7—[\C'<1A\C<1Bv(d HIA<C H|B<10v<
H|IC < (AVB) ! H|(AV B)«C 2

The rules for implication are:

H|A§B|C<B_> H1<CIB< A H|B<C
HIC<(A—B) ' H|(A— B)<C 2
HIA<B|C<B H1I<C|B<A ’H|B§C’_}
HC<(A—B) ° H|(A— B)<C *
Finally, the rules for the operator o are as follows:
H|A<B . HIA< B .
H|A<oB ' HloA<oB '’

The rule wy is an internal weakening. By external weakening we mean one
of wo—ws. The critical components of an inference are those displayed above,
i.e., all components not in H. We say a component is introduced by an inference
if it appears in its conclusion but is not among its premises. The concept of a
formula being introduced by an inference is defined analogously. An end-segment
of a proof 7 is a downwards-closed subset of 7 taken as a tree.

Lemma 3

1. Modus ponens, i.e., the sequent A < B|A — B < B, is derwable in RG; .
2. RG, derives 1 < A — B if, and only if, it derives A < B.
8. RGy derives 1 < A < B if, and only if, it derives A < B.

40 J.P. Aguilera and M. Baaz

4. RGJ derives 1 < AV B if, and only if, it derives 1 < A|1 < B. RG] derives
1 < AV B if, and only if, it derives 1 < A|l < B.

Proof. 1. Modus ponens is derived as follows:

A<A w
A<B|B< A
A<BII<B|IB< A
A<B|A—- B<B

3

w1 + we

—y

2. From A < B, we derive 1 < A — B by w; and —3. Assume 1 < A — B
is derivable. The following computation, starting from modus ponens, shows
A < B is derivable:

A< 1<A—B A— B<BJA<B
Wo cut4
A<1 1<B|A<B

A<B

cuty

3. Proceed as follows, where (*) as is obtained from 1 < (B — A) — Basin2:

B<B w
B<AJA<B
I<AB<AA<B "
(x) B—A<B 1<B-—AlA<B
A<1 1<B|A<B
A< B|A<B
A< B

4

cuty

cuto

C2

4. We deal only with <. The other case is analogous. One implication is
obtained immediately by applying V{I. For the converse:

B<B
A<A B<AA<B
AVB<AlA<B B<B
1<AVB AVB<AJAVB<B
1<A[AVB<B

w3 + Wy

¢
cuta 1<AVB

cut
1<A1<B *

O

Proposition 4. The calculus RG, is sound and complete for the intended inter-
pretation.

Proof (Soundness). The proof relies on a sequents-of-relations calculus for Godel
Logic formulated in [1]. Therein < is interpreted in such a way that A < B is
satisfied if and only if J(4) < J(B). All axioms and rules coincide under both

Cut Elimination for Godel Logic with an Operator Adding a Constant 41

interpretations of < except for rule (—3) and axiom A3. Axiom A3 is clearly
sound. To verify that rule (—2) is valid, note that A — B < C' is equivalent to
(A< BA1<C(C)V (B < AAB < C). By distributing, we see that it is also
equivalent to the formula

(AKBVB<ANMALSBVB<C)A(l<CVB<AAN1<CVB<(O).

The first conjunct is a tautology. As 1 < C implies B < C, the fourth conjunct
reduces to B < (', which subsumes the second one. This gives the validity of the
rule. Finally, axioms oy and oy are clearly sound.

(Completeness). Tt suffices to note that any cut-free proof in the complete cal-
culus in [1] can be simulated by the axioms and rules of RG, using axioms and
weakening rules to obtain the axioms of the former. Any proof of 1 < A, where
A is a formula already valid in Gédel Logic can be simulated in RG_ . The only
rule in [1] which is different to the corresponding rule in RG, has premises which
are weakenings of the premises of the original rule. Thus, it suffices to verify that
the axioms involving o are derivable in RG, . Axiom (R1) can be derived directly
by rule o;. Axiom (R2) can be derived from modus ponens by the following two
inferences:

A< A <
A<BB<aA T %wﬁw
A<Bi<BB<A4 "™ B<A=B °
I<ABB<4 _° I<A-BB<A—B """
I<o(A—-BJB<A . I<o(A-BJB<A-B '
1<o(A— B)[oB<oA - 1< o(A— B)[oB < o(A— B) j4
0A — oB < o(A — B)|1 <o(A— B) .
1< (0A —oB)—o(A— B)
A<BA—-B<B
A< B|o(A— B)<oB .
oA <oBlo(A— B)<oB .
o(A— B) < (0cA — oB)
wy + w2

O(A—>B)§(OA—>OB)‘].SOA—)OB N
1<0o(A— B)— (0cA — oB) 3

Since we can derive 1 < A for all instances of any axiom, as well as modus
ponens, we can use rule cuty to obtain 1 < A for any formula derivable in the
Hilbert-style calculus given by Proposition 2. a

Corollary 5. All true sequents are derivable in RG, .

Proof. Assume Ay < By]...|A, < B, is a true sequent, where each occurrence of
< is either < or <. By Proposition4, the sequent 1 < \/, A; > B; is derivable,
where each occurrence of > is either — or <, as appropriate. By Lemma 3.4,

42 J.P. Aguilera and M. Baaz

the sequent 1 <1 Ay > By|...|]1 < A,, > B, is derivable. Finally, by Lemmas 3.2
and 3.3, Ay < By|...|]A,, < B, is derivable, as desired. O

Proposition 6. Compound axioms are derivable in RGJ from atomic axioms.

Proof. We consider only the axiom F' < F' for simplicity. The others are similar.
Proceed by induction:

1. F=AAB:
A<A B<B

ANB<A 1AAB§321
ANB<AAB 2

2. F=AVB:
A<A B<B

B<AVB ' A<AVB
AVB<AVB

Vi
Vo

3. F=A— B:

A<A .
B<B

A<BB<A
1§MA§MB<Afjw2A§BB§BwHM2
1<A—-B|B<A B<A-—B

A—B<A—B

-3

—4

4. I = oA:

3.1 An Extension
We consider an auxiliary extension of RG, by the following self-cut rule:

HA<A
HI1< A

It is easy to see that this rule is valid.

Definition 7. The calculus RG, is the extension of RG_ resulting by the addi-
tion of the self-cut rule.

In the following section, we show that RG, admits cut elimination. By a cut,
we mean either any instance of cut;—cuts, or an instance of m. This addition
corresponds operationally to the extension of LK or LJ by the mix rule.

Cut Elimination for Gédel Logic with an Operator Adding a Constant 43

4 Cut Elimination

The following is the main theorem:
Theorem 8. RG, admits cut elimination; hence, so too does RG .

To prove Theorem 8, we need a few auxiliary lemmata. We state and prove
them now. As the reader will notice, we will sometimes omit cases and/or labeling
of rules if we deem it harmless.

Lemma 9. If there exists a cut-free proof of a sequent H, then there exists a cut-
free proof of H where all instances of ws—ws are such that the formula introduced
in the critical components is either atomic or of the form oC.

Proof. This can be checked by induction on the size of the introduced formula.
We consider the inference ws. The others are taken care of analogously. For
example, a weakening introducing A A B, can be replaced as follows:

Cc<D W Cc<D
C<AA<D C<B|B<D
C<AANB|A<D|B<D
C<AANBIANB<D|B<D
C<AANBIANB<D|AANB<D
C<AANB|ANB<D

Ws

If the introduced formula is of the form A — B, then consider the following
derivation:

A<A ws
A<B|IB<A C<D ws
A<B|B<Al1<D C(C<BB<D
C<B|A<B|A—B<D
C<A—-B|A—-B<D|B<D
The other cases are treated similarly. O

Lemma 10. For any proof m ending with an instance of m cutting an atomic A
and otherwise cut-free, there exists a proof agreeing with ™ up to that inference,
with no instances of m, and such that all cuts have A as cut formula.

Proof. We proceed by going upwards through 7 up to the point where A < A
was introduced and modifying 7 as follows:

1. If the inference is some weakening, say ws, of the form
HIA<B
T4 - A Ao pws
H|A< A|JA<B

then modify 7 by omitting this inference. At the end of the proof, add an
instance of w; as follows:

",
Hl<A '

44 J.P. Aguilera and M. Baaz

2. If the inference is an instance of com, say

HIA<B HIC<A
HIA < A|IC < B

com

Replace this inference with appropriate instances of cut; and w;.
3. If the inference is a contraction, apply these three steps to each of the two
occurrences of A < A.

The resulting proof is as required.
O

Lemma 11. If 7 is an otherwise-cut-free proof of H whose last inference is an
atomic instance of one of cuty—cuty, then there is a cut-free proof of H.

Proof. Suppose for definiteness that the last inference is an atomic instance of
cuty. Consider the end-segment of the proof of the form

gIC <A
p

HIC<A H|A<D
H|C < D

where G|C < A is the sequent that introduces the indicated instance of C' < A.
We proceed by cases according to how C < A was inferred. Repeatedly apply
any of the following steps until the proof is as desired:

1. If the inference is an instance of wg of the form

g|C<B
G'C<AA<B"™

we apply an instance of communication as follows:

g'lC<B H|A<D
G'|HIC < DA< B

com

but then the lower hypersequent is simply G|H|C < D. Repeat the proof p
below this hypersequent to obtain H|C < D.

2. If the inference is an instance of w1y, instead, weaken to introduce the sequent
C < D and apply p to arrive at H|C' < D.

3. If the inference is an instance of com, say,

G|B<A G|C<E
G'C<AB<E

com

we apply the cut rule before this instance of communication as follows:

GB<A HIA<D .
GHB<D ' glo<E
G'[H|IC < DB < E

com

Cut Elimination for Gédel Logic with an Operator Adding a Constant 45

4. If the inference is a contraction, then apply the four steps at the inference
where each of the two instances of C' < A is introduced.

5. A remaining possibility is that the cut formula A is the constant 1 introduced
via an axiom in the left-hand side. In this case, the component 1 < D on the
right-hand side can only be introduced either via an external weakening, in
which case we proceed as in casel, or via an internal weakening, in which
case we replace the inference by an instance of com. O

Lemma 12. Suppose 7 is a cut-free proof of H|o A < B. Then there is a cut-free
proof of H|A < B.

Proof. We proceed according as how the sequent oA < B is inferred. There are
three cases. (i) If oA < B is inferred by an instance of wy, then simply apply w;
to infer A < B. Else, either (ii) oA < B is the critical sequent of an inference

HIALC 3
H|0A§OCO2 (

in which case we replace (1) by

HA<C
H|A < oC '

or (iii) the sequent is obtained through a weakening:

H|C < D
H|C <0A|lo A<D

If so, we replace this inference as follows:
H|C <D
H|C < A|[A< D .
H|C <oAlA<D 0

Lemma 13. For any proof m ending with an instance of m cutting a formula oA
and otherwise cut-free, there exists a proof agreeing with ™ up to that inference,
with no instances of m, and such that all cuts have A as cut formula.

Proof. As before, let Glo A < oA be the hypersequent where oA < oA is inferred.
If G| o A < oA is the lower sequent of an inference o1, then apply Lemma 12 to
obtain a cut-free proof of G|A < A and infer G|1 < A by m. Apply Lemma 10
to obtain a proof agreeing with 7 up to this point and where all cuts have A as
cut formula and infer G|1 < oA using o;. Finally, adjoin to the resulting proof
the second half of 7.

If G| o A < 0A is the lower sequent of an inference

G'|C <o0A G'loA<D
G'loA<oA|IC <D

com

46 J.P. Aguilera and M. Baaz

then replace this inference with an instance of cut; and w; to obtain G'|C <
D|1 < oA.
Finally, if G| o A < oA is the lower sequent of an instance of an internal
weakening, say,
G'loA<D
G'loA<o0Aloc A<D

then simply replace this weakening with an external weakening w; with critical
formula 1 < oA. O

Lemma 14. If 7 is an otherwise cut-free proof of H whose last inference is an
instance of cuti—cuty with cut formula oA, then there is a proof of H whose only
cuts have A as cut formula.

The proof of Lemma 14 may be found in the Appendix. With this, we can
proceed to:

Proof of Theorem 8. We proceed by going downwards through the proof. By
induction, assume we are given a proof whose only cut is the last inference I.
We proceed by a simultaneous induction on the complexity of the cut formula
and the type of cut. Specifically, we successively transform the proof to obtain
one of the following:

1. a proof whose only cuts have as cut formula a proper subformula of the initial
cut formula, provided I is an instance of one of cut;—cuty;

2. if I is an instance of m, then we obtain either a proof whose only cuts are
instances of cuti—cuty with the same cut formula as I, or a proof whose only
cut is an instance of m and with a proper subformula of the initial cut formula
as cut formula.

If the cut formula is atomic (including the case where it is the constant 1),
proceed by applying Lemmal0 or Lemmall, as appropriate. If it is of the
form oA, apply Lemma13 or Lemma14. We consider only one more case—
implication. For example, suppose there is an end-segment of the proof of the
form

FIA<B|C<B Gl1<DB<A GB<D

FIC<A—B GIA— B<D
EP1 EPz
HIC<A— B H|A—B<D
cut1

H|C < D

Cut Elimination for Gédel Logic with an Operator Adding a Constant 47

Replace the end-segment of the proof with
HIA<B|C<B H|[I<DB<A

cutq
H|B < B|C < B|]1<D
H|C < 1 H1<BIC<B1l<D
H|C < BIC < B[L< D cuty H|C <1
H|C < B|C < B|C < D o cuty
‘H|C < B|C < D ‘H|B < D
H|C < D|IC <D . cuty
H|C < D

Suppose the last inference is an instance of m with cut formula A — B. Since
both the left-hand and right-hand sides of the component must be introduced, we
can assume by Lemma9 that they are introduced by a logical inference. Hence,
the proof must have an end-segment with one of the following forms:

1.
FIA<Bl<A—~B FIA<BB<B _
FIA<B|A—B<B ?

E/?1
GIA<B|[A— B<B .
GIA— B<A—B

1

Ef02
HIA—-B<A—B
H1<A— B

FIA<BIB<B _
FIB<A—B

1

E/’1
Gl<A—BB<A (GB<A—DB |
GIA— B<A—B

2

EP2
HIA—-B<A—B
H|1<A—>B

m

In this case, replace the end-segment with the following:

FIA<B|B<B

p1, po
HIA<B|B<B
m
HIA< Bl <B
—_——— 1
H|l<A— B a

48 J.P. Aguilera and M. Baaz

As a consequence of the cut-elimination theorem, we obtain the following
result. Say a rule A/B is strongly sound if under every interpretation J, J(A) = 1
implies J(B) = 1.

Corollary 15. Fvery strongly sound rule can be eliminated.

Proof. As the deduction theorem holds for the Hilbert-style calculus, every
strongly sound rule can be eliminated by the addition of a valid formula and
cuts. The valid formula can be proved and the cuts eliminated. g

5 Conclusion

It is not clear whether the communication rule is actually essential for the proof.
It remains open whether it can be eliminated from the cut-free calculus. If this
were the case, then one could arrive at a Maehara-style proof of interpolation,
i.e., construct interpolants by induction on the depth of cut-free proofs (see [5]
for the classical and intuitionistic formulation of the lemma).

Appendix
Proof of Lemma 14. The end-segment of the proof will be of the form
G|C <oA FloA<D

EP1 Epz
HIC <0A H|oA<D
H|C < D
where C' < oA and oA < D are inferred, respectively, at the hypersequents

G|C < oA and F|o A < D. We proceed according to which inferences were used
above G|C < oA and F|o A< D.

1. If the inferences were respectively oy or oy, so that the proof is

GIC <A FIA<E
GIC <o0A F|loA<oFE

,01 pz
H|C <0A H|oA<oE
H|C < oFE

cut

then replace it with

GIC<A FIA<E
GIFIC<E

cut

Ep17p2
H|C < E
H|C < oF

Cut Elimination for Gédel Logic with an Operator Adding a Constant 49

2. If the inferences were both o5, so that the proof is

GIC <A FIA<E
g|oC§oA }"‘oAgoE

p1 P2
H|oC <o0A H|loA<oE
H|oC < oF

cut

then replace it with

GIC<A FIA<E
GFIC<E

cut

Epla P2
HIC<E
H|oC <oF
3. If the inference on the left-hand side is o; and the inference on the right-hand
side is an internal weakening, the proof will be of the form
GIB< A FIB<LC
G|B<oA F|B<oA|locA<C(C

p1 p2

H|B <o0A H|B<oAlocA<(C .
HB<AB<C “u
Replace it with
FIB<LC
FIB<AA<C
GIB<A F|B<oAlA<C
cut

FIGIB < 0AB < C

p1, p2
H|B <0A|B<C

H|B <o0A|B<C

4. If the inference on the left-hand side is o5 and the inference on the right-hand
side is an internal weakening, the proof will be of the form

GIB< A FIB<C
GloB<oA F|IB<oA|loA<C(C

p1 ,02
H|oB<o0A H|B<oA|loA<C
H|oB<AB<C

cut

50 J.P. Aguilera and M. Baaz

Replace it with
FIBLC

GIB<A FIB<C|A<C
F|IGIB<AB<C
FIGIB < 0A|B < C

cut

1, P2
HB <oA|B<C
H|B <oA|B<C

5. If the inference on the right-hand side is o5 and the inference on the left-hand
side is an internal weakening, the proof will be of the form
FIB<D GlA<C
F|B<oAloA<D GloA<oC

P2 1
H|B<oAloA<D H|oA<oC
H|B<oCloA<D

cut

Replace it with
glA<C

FIB<D G|oA<oC
F|G|B <oCloA< D

com

£P17p2
H|IB<o(CloA<D

6. The final case is that both inferences are internal weakenings:

FIB<D GIE<F
FIB<oAlocA<D GIE<o0A|ocA<F

1 P2

H|B<oAloA<D H|E<oAlocA<F
HB< F|loA<D|E <oA cut
Replace it with
FIB<D GE<F
com
FIGIB< FIE<D
EPlaPQ A < A
H|B< FIE<D oA < oA
com

H|B< F|oA<D|E<o0A

Cut Elimination for Gédel Logic with an Operator Adding a Constant 51

References

1. Baaz, M., Ciabattoni, A., Fermiiller, C.G.: Cut-elimination in a sequents-of-relations
calculus for Godel logic. In: Proceedings of The International Symposium on
Multiple-Valued Logic, pp. 181-186 (2001)

2. Baaz, M., Fasching, O.: Monotone operators on Goédel logic. Arch. Math. Logic 53,
261-284 (2014)

3. Gabbay, D.M., Metcalfe, G., Olivetti, N.: Analytic sequent calculi for Abelian and
Lukasiewicz logics. In: Egly, U., Fermiller, C. (eds.) TABLEAUX 2002. LNCS
(LNAI), vol. 2381, pp. 191-205. Springer, Heidelberg (2002)

4. Gabbay, D., Metcalfe, G., Olivetti, N.: Proof Theory for Fuzzy Logics. Applied
Logic, vol. 36. Springer, Netherlands (2008)

5. Takeuti, G.: Proof Theory. North-Holland, Amsterdam (1987)

A Classical Propositional Logic for Reasoning
About Reversible Logic Circuits

Holger Bock Axelsen, Robert Gliick, and Robin Kaarsgaard®)

DIKU, Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark
{funkstar,glueck,robin}@di.ku.dk

Abstract. We propose a syntactic representation of reversible logic cir-
cuits in their entirety, based on Feynman’s control interpretation of Tof-
foli’s reversible gate set. A pair of interacting proof calculi for reasoning
about these circuits is presented, based on classical propositional logic
and monoidal structure, and a natural order-theoretic structure is devel-
oped, demonstrated equivalent to Boolean algebras, and extended cat-
egorically to form a sound and complete semantics for this system. We
show that all strong equivalences of reversible logic circuits are prov-
able in the system, derive an equivalent equational theory, and describe
its main applications in the verification of both reversible circuits and
template-based reversible circuit rewriting systems.

1 Introduction

Reversible computing—the study of computing models deterministic in both the
forward and backward directions—is primarily motivated by a potential to reduce
the power consumption of computing processes, but has also seen applications
in topics such as static average-case program analysis [17], unified descriptions
of parsers and pretty-printers [16], and quantum computing [6]. The potential
energy reduction was first theorized by Rolf Landauer in the early 1960s [12], and
has more recently seen experimental verification [2,14]. Reaping these potential
benefits in energy consumption, however, requires the use of a specialized gate
set guaranteeing reversibility, when applied at the level of logic circuits.
Boolean logic circuits correspond immediately to propositions in classical
propositional logic (CPL): This is done by identifying input lines with proposi-
tional atoms, and logic gates with propositional connectives, reducing the prob-
lem of reasoning about circuits to that of reasoning about arbitrary propositions
in a classical setting. However, although Toffoli’s gate set for reversible circuit
logic is equivalent to the Boolean one in terms of what can be computed [22],
it falls short of this immediate and pleasant correspondence. This article seeks

The authors acknowledge support from the Danish Council for Independent
Research | Natural Sciences under the Foundations of Reversible Computing project,
and partial support from COST Action 1C1405 Reversible Comput