
Chapter 7
Practical Reliability Analysis of Slope
Stability by Advanced Monte Carlo
Simulations in a Spreadsheet

7.1 Introduction

The previous chapters developed several probabilistic approaches for geotechnical
site characterization. These probabilistic approaches provide probabilistic charac-
terization of soil properties and underground stratigraphy and account rationally for
inherent spatial variability of soils and various uncertainties (i.e., statistical uncer-
tainties, measurement errors, and transformation uncertainties) that arise during site
characterization. The uncertainties (including inherent spatial variability of soils)
obviously affect probabilistic estimations of soil properties and underground
stratigraphy, which are key input information in probabilistic analysis and/or designs
of geotechnical structures. Therefore, the uncertainties subsequently influence
probabilistic analysis and/or designs of geotechnical structures. Consider, for
example, probabilistic slope stability analysis. Various uncertainties can be taken
into account rationally in probabilistic slope stability analysis through Monte Carlo
simulation (MCS). MCS method provides a robust and conceptually simple way to
estimate the “reliability index” b or slope failure probability Pf (e.g., El-Ramly et al.
2002; Griffiths and Fenton 2004; El-Ramly et al. 2005). Direct MCS, however,
suffers from a lack of efficiency and resolution at small probability levels that are of
great interest to geotechnical practitioners (see Chap. 2).

In addition, it has been recognized that a slope may fail along an unlimited
number of potential slip surfaces, although evaluating the total failure probability
along all potential slip surfaces is considered a mathematically formidable task
(El-Ramly et al. 2002). The value of b for slope stability therefore is frequently
determined only for one or a limited number of slip surfaces (e.g., Tang et al. 1976;
Hassan and Wolff 1999; El-Ramly et al. 2002). A few exceptions are the recent
work by Griffiths and Fenton (2004), Xu and Low (2006), and Hong and Roh
(2008) that utilize direct MCS and finite element analysis to search for the critical
slip surfaces. Nevertheless, the effect of critical slip surface uncertainty has not been
explored systematically.
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This chapter presents a practical approach of slope stability–reliability analysis
that implements an advanced MCS method called “subset simulation” in a
spreadsheet environment for improving the efficiency and resolution of MCS at
relatively small probability levels and for exploring the effect of critical slip surface
uncertainty. MCS and subset simulation are operationally decoupled from deter-
ministic slope stability analysis and implemented using a commonly available
spreadsheet software, Microsoft Excel. The proposed methodology is illustrated
through application to a cohesive slope and validated against results from other
reliability solution methods and commercial software. With the aid of improved
computational efficiency and resolution at relatively small probability levels offered
by the proposed methodology, the effects of inherent spatial variability of soil
property and critical slip surface uncertainty will be explored.

7.2 Monte Carlo Simulation of Slope Stability

Figure 7.1 shows a flowchart for MCS of slope stability analysis schematically.
The MCS starts with characterization of probability distributions of uncertainties
concerned, as well as slope geometry and other necessary information, followed by
the generation of nMC sets of random samples according to the prescribed proba-
bility distributions. Note that the input information required (e.g., probability dis-
tributions of soil properties) in MCS can be obtained from probabilistic approaches
developed for geotechnical site characterization in the previous four chapters. For
each set of random samples, limit equilibrium methods are utilized, and the critical
slip surface is searched for obtaining the minimum FS, resulting in totally nMC sets
of minimum FS. Then, statistical analysis is performed to estimate Pf or b, with the
slope failure defined as the minimum FS < 1. To ensure a desired level of accuracy
in Pf, the number of samples in direct MCS should be at least ten times greater than
the reciprocal of the probability level of interest (Robert and Casella 2004). For a Pf

level of 0.001 that corresponds to an expected performance level of “above aver-
age” (see Table 2.7 in Chap. 2), the sample sizes of direct MCS should be greater
than 10,000. As the deterministic slope stability analysis explicitly searches a wide
range of potential slip surfaces to obtain the minimum FS, direct MCS takes
considerable amount of time. This further calls for improvement of computational
efficiency via advanced Monte Carlo procedures as presented in the following
section.

7.3 Subset Simulation

Subset simulation (Au and Beck 2001, 2003) stems from the idea that a small
failure probability can be expressed as a product of larger conditional failure
probabilities for some intermediate failure events, thereby converting a rare event
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(small probability levels) simulation problem into a sequence of more frequent
ones. Consider the slope stability problem where FS is the critical response and the
probability of FS smaller than a given value “fs” (i.e., PðFS \fsÞ) is of interest. Let
fs = fsm \fsm�1 \ � � � fs2 \fs1 be an increasing sequence of m intermediate
threshold values. By sequentially conditioning on the event fFi ¼ FS \fsi;
i ¼ 1; 2; . . .; mg, the probability PðFS \fsÞ can be written as
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Fig. 7.1 Flowchart for Monte Carlo simulation of slope stability analysis (after Wang et al. 2011)
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PðFS \fsÞ = PðFS \fs1ÞPðFS \fs2 FS \fs1Þ� � � � �PðFS \fsmj jFS \fsm�1Þ
ð7:1Þ

In implementation, fs1; . . .; fsm are determined adaptively based on the statistical
analysis of simulation output (as shown by the dashed-line items in Fig. 7.1) so that
the sample estimates of PðFS \fs1Þ and {PðFS \fsijFS \fsi�1Þ, i = 2; . . .;m}
always correspond to a common specified value of the conditional probability p0
(p0 = 0.1 is found to be a good choice) (Au et al. 2009 and 2010).

The efficient generation of conditional samples is pivotal in the success of subset
simulation, and it is made possible through the machinery of Markov Chain Monte
Carlo simulation (MCMCS). MCMCS uses a modified version of the Metropolis
algorithm (Metropolis et al. 1953) that is applicable for high-dimensional problems.
Successive samples are generated from a specially designed Markov Chain whose
limiting stationary distribution tends to the target probability distribution function
(PDF) as the length of the Markov Chain increases. Details of the modified
Metropolis algorithm of MCMCS are referred to Au and Beck (2001 and 2003) and
Au et al. (2007).

7.4 Implementation of Subset Simulation in a Spreadsheet
Environment

The subset simulation described above has been implemented in a commonly
available spreadsheet environment by a package of worksheets and
functions/Add-In in Excel with the aid of Visual Basic for Application (VBA) (Au
et al. 2009; Au et al. 2010; Wang et al. 2011). It is of particular interest to decouple
the development of Excel worksheets and VBA functions/Add-In for deterministic
slope stability analysis and those for reliability analysis (e.g., random sample
generations and statistical analysis) so that the reliability analysis can proceed as an
extension of deterministic analysis in a non-intrusive manner. This allows the
deterministic analysis of slope stability and reliability analysis to be performed
separately by personnel with different expertise and in a parallel fashion. This
alleviates the geotechnical practitioners from performing reliability computational
algorithms so that they can focus on the slope stability problem itself. The software
package developed in this chapter therefore is divided into three parts: deterministic
model worksheet for deterministic analysis of slope stability, uncertainty model
worksheet for generating random samples, and subset simulation Add-In for
uncertainty propagation, which are described in the following three subsections,
respectively.

150 7 Practical Reliability Analysis of Slope Stability …



7.4.1 Deterministic Model Worksheet

For a slope stability problem, deterministic model analysis is the process of cal-
culating factor of safety (i.e., FS) for a given nominal set of values of system
parameters. The system parameters include the geometry information of the slope
and the slip surface, soil properties, and profile of soil layers. In this chapter, limit
equilibrium methods (e.g., Swedish circle method, simplified Bishop method, and
Spencer method) (Duncan and Wright 2005) are employed to calculate the factor of
safety for the critical slip surface. The calculation process of deterministic analysis
is implemented in a series of worksheets assisted by some VBA functions/Add-In.
Figure 7.2 illustrates an example of deterministic model worksheet which is
modified after Low (2003) and uses Ordinary Method of Slices. The worksheet is

Fig. 7.2 Deterministic model worksheet for slope stability analysis (after Au et al. 2010)
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divided into three parts: slope geometry and FS calculation (i.e., Rows 1–13), soil
property profiles (Rows 14–17), and calculation details for each slice (Rows 18–
70). For a given slip surface defined by radius (i.e., Cell M5) and center coordinates
(i.e., Cell N5 and Cell O5), a FS (i.e., Cell L10) can be calculated accordingly.
A wide range of combinations of slip surface radius and center coordinates are then
searched explicitly to obtain the minimum FS and its corresponding critical slip
surface. From an input–output perspective, the deterministic analysis worksheets
take a given set of values (e.g., Row 16 in Fig. 7.2) as input, calculate the factor of
safety, and return the factor of safety as an output.

7.4.2 Uncertainty Model Worksheet

An uncertainty model worksheet is developed to generate random samples of
uncertain system parameters that are treated as random variables in the analysis.
The uncertain worksheet includes detailed information of random variables, such as
statistics, distribution type, and correlation information. The generation of random
samples starts with an Excel built-in function “RAND()” for generating uniform
random samples, which are then transformed to random samples of the target
distribution type (e.g., normal distribution or lognormal distribution). If the random
variables are considered correlated, Cholesky factorization of the correlation matrix
is performed to obtain a lower triangular matrix, which is used in the transformation
to generate correlated random samples. Figure 7.3 shows an example of uncertainty
model worksheet, which consists of three parts: a variable description zone (i.e.,
Rows 2–5), a random sample generation zone (i.e., Rows 6–13), and a zone
showing a lower triangular matrix obtained from Cholesky factorization of the
correlation matrix (i.e., Rows 14–54). From the input–output perspective, the
uncertainty model worksheet takes no input but returns a set of random samples
(e.g., Row 13 in Fig. 7.3) of the uncertain system parameters as its output.

When deterministic model worksheet and uncertainty model worksheet are
developed, they are linked together through their input/output cells (e.g., Row 16 in
Fig. 7.2 and Row 13 in Fig. 7.3) to execute probabilistic analysis of slope stability.
The connection is carried out by simply setting the cell references for nominal
values of uncertain parameters in deterministic model worksheet to be the cell
references for the random samples in the uncertainty model worksheet in Excel.
After this task, the values of uncertain system parameters shown in the deterministic
model worksheet are equal to that generated in the uncertainty model worksheet,
and so the values of the safety factor calculated in the deterministic model work-
sheet are random.
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7.4.3 Subset Simulation Add-In

When the deterministic analysis and uncertainty model worksheets are completed
and linked together, subset simulation procedure is invoked for uncertainty prop-
agation. In this chapter, subset simulation is implemented as an Add-In in Excel
(Au et al. 2009, 2010). The userform of the Add-In is shown in Fig. 7.4. The upper
four input fields of the userform (i.e., number of subset simulation runs, number of
samples per level N, conditional probability from one level to next p0, and the
highest subset simulation level m) control the number of samples generated by
subset simulation. The total number of samples per subset simulation run is equal to
N + mN (1 − p0). The lower four input fields of the userform record the cell
references of the random variables, their PDF values, and the cell references of the
system response (e.g., Y = 1/FS) and other variables V (e.g., random samples) of
interest, respectively.

After each simulation run, the Add-In provides the complementary cumulative
density function (CDF) of the driving variable versus the threshold level, i.e.,

Fig. 7.3 Uncertainty model worksheet (after Au et al. 2010)

7.4 Implementation of Subset Simulation in a Spreadsheet Environment 153



estimate for P(Y > 1/fs) versus 1/fs, into a new spreadsheet and produces a plot of it.
Then, the CDF, histograms, or conditional counterparts of uncertain parameters of
interest can be calculated using the output information obtained.

7.5 Illustrative Example

The proposed methodology and Excel spreadsheet package developed are applied
to assess the reliability of short-term stability of a cohesive soil slope as shown in
Fig. 7.5. The cohesive soil slope has a height H = 10 m and slope angle of 26.6º,
corresponding to an inclination ratio of 1:2. The cohesive soil is underlain by a firm
stratum at 20 m below top of the slope. Short-term shear strength of the cohesive
soil is characterized by undrained shear strength Su, and the saturated unit weight of
soil is csat. Short-term stability of the slope is assessed using Ordinary Method of
Slices under undrained condition (Duncan and Wright 2005). The factor of safety
FS is defined as the minimum ratio of resisting moment over the overturning
moment, and the slip surface is assumed to be a circular arc centered at coordinate
ðxc; ycÞ and with radius r. As shown in Fig. 7.5, the soil mass above the slip surface
is divided into a number of vertical slices, each of which has a weight Wi, circular
slip segment length Dli, undrained shear strength Sui along the slip segment, and an
angle ai between the base of the slice and the horizontal. The FS is then given by

Fig. 7.4 The userform of
subset simulation Add-In
(after Au et al. 2010; Wang
and Cao 2013)
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FS = min
xc;yc;r

P
SuiDliP

Wi sin ai
ð7:2Þ

where the minimum is taken over all possible slip circles, i.e., all possible choices
of ðxc; ycÞ and r. Note that Δli, Wi, and ai change as ðxc,ycÞ and/or r change (i.e.,
geometry of the ith slice changes). In addition, the Wi is a function of the soil
saturated unit weight csat. FS therefore depends on geometry of slip surface (i.e.,
ðxc; ycÞ and r) and soil properties (i.e., Su and csat), and Sui and csat are key input
variables as described in the following subsection.

7.5.1 Input Variables

The undrained shear strength Su of soil is modeled by a one-dimensional random
field spatially varying along the vertical direction. The value of Su at the same depth
is assumed to be fully correlated. The inherent spatial variability with depth is
modeled by a homogeneous lognormal random field with an exponentially
decaying correlation structure. Let SuðDiÞ be the value of undrained shear strength
at depth Di. The correlation Rij between ln½SuðDiÞ� and ln½SuðDjÞ� at respective
depths Di and Dj is given by

Rij = expð�2 Di�Dj
�� ��/kÞ ð7:3Þ

where k is the effective correlation length. As implied by this correlation function,
when Di � Dj

�� ��� k, ln½SuðDiÞ� and ln½SuðDjÞ� are effectively uncorrelated
(Vanmarcke 1977, 1983). When Di�Dj

�� �� is much smaller than k, ln½SuðDiÞ� and
ln½SuðDjÞ� are highly correlated. In this example, the value of k varies from 0.5 m to
infinity for consideration of different spatial correlations. As shown in Fig. 7.5, the
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Fig. 7.5 A cohesive soil slope example (after Wang et al. 2011)
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20-m-thick cohesive soil layer is divided into forty 0.5-m-thick sublayers, and Su at
each sublayer is represented by an entry in a Su vector with a length of 40.
Table 7.1 summarizes the material parameters and their variability used in the
analysis. The mean and standard deviation of Su are approximately equal to 40 and
10 kPa (i.e., 25 % coefficient of variation (COV)), respectively. The saturated unit
weight of cohesive soil csat is taken as deterministic with a value of 20 kN/m3. As a
reference, the nominal value of FS that corresponds to the case where all Su values
equal to their mean values of 40 kPa is equal to 1.178.

7.5.2 Simulation Results

Table 7.2 summarizes the results of both direct MCS and subset simulation for
k = +∞ and 0.5 m, respectively. When k = +∞, all 40 entries in the Su vector are
fully correlated, and they are equivalent to a single random variable. Both direct
MCS and subset simulation provide a consistent Pf value of about 30 %, which
compares well with the Pf value given by Griffiths and Fenton (2004) for cohesive
slopes with similar geometry and soil properties. When k = 0.5 m, all 40 entries in
the Su vector can be approximated as 40 independent and identically distributed
random variables. Direct MCS and subset simulation provide a consistent Pf value
of about 0.9 %, which is significantly smaller than the one for k = +∞. This is

Table 7.1 The values and distributions of the input variables (after Wang et al. 2011)

Variable Distribution Statistics

Su Lognormal (a vector with a length of 40) Mean = 40 kPa
COVa = 25 %
k varies from 0.5 m to +∞

csat Deterministic 20 kN/m3

a “COV” stands for coefficient of variation

Table 7.2 Summary of simulation results (after Wang et al. 2011)

Effective correlation
length k (m)

Simulation
method

Number of samples Reliability
index ba

Probability of
failure Pf (%)

+∞ Direct
MCS

1000 0.52 30

+∞ Subset
simulation

200 + 180 + 180 = 560 0.55 29

0.5 Direct
MCS

2000 2.35 0.95

0.5 Subset
simulation

500 + 450 + 450 = 1400 2.36 0.92

aEquivalent reliability index b = U−1(1 − Pf) where U = standard normal cumulative distribution
function
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consistent with the observation by Hong and Roh (2008) that Pf decreases if spatial
correlation is ignored (i.e., as k decreases). The effect of inherent spatial variability
is discussed further in a later section of this chapter.

As the value of Pf decreases to a relatively small level (e.g., around 0.9 % for
k = 0.5 m), the number of samples required in direct MCS increases significantly
and efficiency of direct MCS decreases dramatically. Figure 7.6 shows a histogram
of the FS from 2000 direct MCS samples, among which 19 samples have a FS < 1.
The efficiency of simulating failure events (i.e., FS < 1) is relatively low. The
resolution of Pf is 1/2000 = 0.05 %, and this resolution might not be sufficient for a
Pf value of 0.95 %.

In contrast, Fig. 7.7 shows histograms of the FS from three levels of subset
simulation with a p0 value of 0.1. The first level of subset simulation is equivalent
to a direct MCS with a sample number of 500, and only 2 samples have a FS < 1,
as shown in Fig. 7.7a. All 500 FS values are then sorted in a decreasing order, and
50 samples (i.e., 10 % (or p0 ¼ 0:1) of 500 samples) with the lowest FS are used to
generate 450 samples in the second level of subset simulation, as illustrated by the
dashed-line items in Fig. 7.1. As shown in Fig. 7.7b, the samples at the second
level fall into the region of FS < 1.06 and have relatively small FS values.
Forty-four samples out of 450 samples have a FS < 1, and the efficiency of sim-
ulating failure events improves significantly when compared with direct MCS. As
shown in Fig. 7.7c, the samples at the third level move further to the lower FS
region, and 413 samples out of 450 samples have a FS < 1. The Pf is calculated as
0.1 � 0.1 � 413/450 = 0.92 %, and the resolution of Pf is 0.1 � 0.1 � 1/450 =
0.002 %. Subset simulation significantly improves efficiency and resolution of
simulations at small probability levels. Such improvement becomes increasingly
substantial and necessary as the probability level of interest decreases (e.g., Pf

further decreases to 0.1 % or 0.003 % for expected performance levels of “above
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average” or “good” (see Table 2.7 in Chap. 2), respectively, as direct MCS is
increasingly inefficient).

7.5.3 Comparison with Other Reliability Analysis Methods

The analysis results are compared with those from other reliability analysis meth-
ods, including the first-order second-moment method (FOSM), first-order reliability
method (FORM), and direct MCS using commercial software Slope/W
(GEO-SLOPE International Ltd. 2008). Table 7.3 summarizes analysis results
from different reliability methods with k =+∞. The value of Pf varies from about 27
to 30 % with a maximum relative difference of 10 % among difference methods.
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The results from direct MCS or subset simulations compare favorably with those
from FOSM, FORM, or direct MCS using Slope/W. Table 7.4 summarizes similar
results for k = 0.5 m. The value of Pf varies from 0.26 to 0.95 %, which is sig-
nificantly smaller than those for k =+∞. The maximum relative difference among
different methods for k = 0.5 m is about 73 %, which is significantly larger than
that for k =+∞. These differences can be attributed to calculation details of each
reliability analysis method, inherent spatial variability of soil property, and critical
slip surface uncertainty, which are discussed in the following several sections.

7.6 Calculation Details of Other Reliability Analysis
Methods

7.6.1 First-Order Second-Moment Method (FOSM)

FOSM uses the first-order terms of a Taylor series expansion of FS with respect to
the random variables, and it is frequently performed with a fixed critical slip surface
(e.g., Ang and Tang 1984; Tang et al. 1976; Wu 2008). Consistent with the pre-
vious studies, the critical slip surface here is determined by setting all Su values

Table 7.3 Summary of analysis results from different reliability methods (k =+∞) (after Wang
et al. 2011)

Reliability method Reliability
index b

Probability of failure Pf

(%)
Relative difference in Pf

(%)

FOSM 0.61 27 −10

FORM 0.55 29 −3

Direct MCS with
Slope/W

0.55 29 −3

Direct MCS with Excel 0.52 30 N/A

Subset simulation with
Excel

0.55 29 −3

Table 7.4 Summary of analysis results from different reliability methods (k = 0.5 m) (after Wang
et al. 2011)

Reliability method Reliability
index b

Probability of failure Pf

(%)
Relative difference in Pf

(%)

FOSM 2.53 0.57 −40

FORM 2.61 0.45 −53

Direct MCS with
Slope/W

2.80 0.26 −73

Direct MCS with Excel 2.35 0.95 N/A

Subset simulation with
Excel

2.36 0.92 −3
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equal to their mean values of 40 kPa and searching for the minimum FS. The
resulting critical slip surface has an r = 29.2 m and (xc, yc) = (10.0 m, 19.2 m), and
the corresponding FS is 1.178. The mean and standard deviation of FS are then
estimated for both cases of k =+∞ and k = 0.5 m. Note that, when k =+∞, all 40
entries in the Su vector are fully correlated, and all Sui behave as a single random
variable Su. Equation (7.2) then can be rewritten as

FS = min
xc;yc;r

P
SuiDliP

Wi sin ai
= min

xc;yc;r

Su
P

DliP
Wi sin ai

= Su min
xc;yc;r

P
DliP

Wi sin ai
ð7:4Þ

As the geometry and soil unit weight are considered deterministic, min
xc;yc;r

P
DliP

Wi sin ai

is deterministic. Equation (7.4) implies that when k = +∞ (i.e., inherent spatial
variability is ignored or perfect correlation), location of critical slip surface (i.e., xc,
yc, and r) is independent of the value of Su, although the value of minimum FS does
vary as the Su value changes. In this case, it is theoretically appropriate that FOSM
method only uses a given slip surface in the analysis. In contrast, when k = 0.5 m
(i.e., inherent spatial variability is considered), all 40 Sui are random variables.
Critical slip surface (i.e., xc, yc, and r) varies spatially and is uncertain, depending
on the value of Sui. Using only one given critical slip surface in FOSM method
therefore underestimates the uncertainty of failure. This results in significant
increase of relative difference in Pf between FOSM method and direct MCS with
Excel from Table 7.3 (i.e., −10 % for k = +∞) to Table 7.4 (i.e., −40 % for
k = 0.5 m). The effect of critical slip surface uncertainty is discussed further under
the Sect. 7.8 “Effect of Critical Slip Surface Uncertainty”.

7.6.2 First-Order Reliability Method (FORM)

The reliability index b for FORM in Tables 7.3 and 7.4 is calculated using an Excel
spreadsheet with its built-in optimization tool “Solver” to obtain the minimum
distance of interest as b (Low and Tang 2007; Low 2003). Although this FORM
approach is mathematically sound, its successful application relies on a robust
optimization algorithm for multidimensional minimization. Similar to other opti-
mization algorithm, the generalized reduced gradient algorithm used in the Excel
“Solver” might not result in a global minimum but a local minimum, particularly
when the function of interest is complex and dimension of the space is high. One
frequently used heuristic for checking if the global minimum is obtained is simply
repeating the optimization with widely varying starting points. The b values for
FORM in Tables 7.3 and 7.4 are obtained with a starting point that corresponds to
the critical slip surface obtained from a deterministic slope stability analysis with all
soil properties equal to their respective mean values (Low 2003). When the opti-
mization is repeated with a slightly different starting point (e.g., different slip
surface parameters or soil properties), the Excel “Solver” gives significantly
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different b value, or even fails to converge. The value of b given by the Excel
“Solver” should, therefore, be treated with caution, and it may correspond to a local
minimum that is larger than the global minimum (i.e., the true b value). In other
words, the FORM overestimates the b value or underestimates the Pf value, which
is unconservative and undesirable. This observation is consistent with the results
summarized in Tables 7.3 and 7.4. The b values for both cases of k = +∞ and
k = 0.5 m are larger than those from direct MCS with Excel. Note that FORM’s
overestimation of b is not unique for slope stability problem. Similar observations
are also reported by Ching et al. (2009) for consolidation problem.

7.6.3 Monte Carlo Simulations Using Commercial Software
Slope/W

The commercial software Slope/W (GEO-SLOPE International Ltd. 2008) is first
used to perform a deterministic slope stability analysis with all Su values equal to
their mean values of 40 kPa. The resulting minimum FS (i.e., 1.178) and critical
slip surface (i.e., r = 29.0 m and (xc, yc) = (9.9 m, 19.0 m)) are virtually identical
to those obtained from the Excel spreadsheet. Monte Carlo simulations are then
performed using Slope/W for both cases of k = +∞ and k = 0.5 m. When k = +∞,
the relative difference in Pf between direct MCS from Slope/W and Excel is within
3 % (see Table 7.3). When k decreases to 0.5 m, the relative difference in Pf

increases to 73 % (see Table 7.4). The relatively large difference can be attributed
to the way that Slope/W handles the critical slip surface in direct MCS. Slope/W
uses only one given critical slip surface in direct MCS, and the given slip surface is
determined based on a deterministic slope stability analysis with all random vari-
ables equal to their respective mean values. Figure 7.8 shows the critical slip sur-
face obtained in Slope/W using the mean values of Su. As discussed under the
Sect. 7.6.1 “first-order second-moment method (FOSM),” when k = +∞ (i.e.,
inherent spatial variability is ignored), it is theoretically appropriate to use only one
given critical slip surface. The direct MCS in Slope/W therefore gives reasonable
result, and the relative difference in Pf between direct MCS from Slope/W and
Excel is small. When k = 0.5 m (i.e., inherent spatial variability is considered), the
critical slip surface itself varies spatially. Using only one given critical slip surface
in direct MCS with Slope/W therefore underestimates the Pf, and the relative dif-
ference in Pf between direct MCS from Slope/W and Excel increases significantly
(see Table 7.4). The effects of inherent spatial variability of soil property and
critical slip surface uncertainty are discussed in two following sections,
respectively.
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7.7 Effect of Inherent Spatial Variability of Soil Property

A series of direct MCS and subset simulations with different k values are performed
using the Excel spreadsheet package developed in this chapter. Figure 7.9 sum-
marizes the results in a plot of Pf versus normalized correlation length (k/H). As k/
H increases from 0.05 to 1 (or k increases from 0.5 to 10 m for H = 10 m), the
value of Pf increases significantly from about 0.9 to 26 %. When k/H > 1 or k is
larger than the slope height H, the effect of k on Pf begins to diminish, and Pf varies
slightly as k/H further increases. If the soil properties (e.g., Su) are characterized by
a single random variable or the inherent spatial variability is ignored, the value of Pf

is overestimated significantly, particularly when the effective correlation length is
smaller than the slope height.

Note that FS is defined as the minimum ratio of summation of resisting moments
over the summation of overturning moments (see Eq. (7.2)) and slope failure occurs
when FS < 1. Let MR be a summation of nR resisting moments DliSui (i.e.,
MR =

PnR
i¼1 DliSui) and variance of MR then can be expressed as

VarðMRÞ =
XnR

i¼1

Dl2i r
2
Sui +

XnR

i;j¼1

XnR

i6¼j

qijDliDljrSuirSuj ð7:5Þ

where r2Sui is variance of Sui and qij is correlation coefficient between Sui and Suj.
The effect of inherent spatial variability is reflected by the variation of qij (i.e.,
between 0 and 1) and the second term at the right-hand side of Eq. (7.5), i.e.,PnR

i;j¼1

PnR
i 6¼j qijDliDljrSuirSuj . When Sui and Suj are uncorrelated, qij = 0 and

Fig. 7.8 Critical slip surface in Slope/W (after Wang et al. 2011)
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VarðMRÞ is equal to
PnR

i¼1 Dl
2
i r

2
Sui . When the inherent spatial variability is ignored

by assuming perfect correlation, qij = 1 and VarðMRÞ is equal to
PnR

i¼1 Dl
2
i r

2
Sui +

PnR
i;j¼1

PnR

i 6¼j
DliDljrSuirSuj . This leads to overestimation of VarðMRÞ and,

hence, overestimation of the FS variance.
It is important to note that overestimation of the FS variance may result in either

overestimation (conservative) or underestimation (unconservative) of Pf (i.e.,
probability of FS < 1). If FS = 1 occurs at the lower tail of the FS probability
distribution, overestimation of the FS variance leads to overestimation of Pf, and it
is therefore conservative. Figure 7.9 illustrates such case, and similar results have
also been reported by Sivakumar Babu and Mukesh (2004) and Hong and Roh
(2008). If the location of FS = 1 approaches the center, or even the upper tail, of the
FS probability distribution (i.e., FS is relatively low), overestimation of the FS
variance leads to underestimation of Pf, and it is therefore unconservative. Griffiths
and Fenton (2004) reported that when FS is relatively low and the inherent spatial
variability is ignored by assuming perfect correlation, the value of Pf is underes-
timated and unconservative. Depending on the location of FS = 1 in the FS
probability distribution, the overestimation of FS variance may result in contra-
dicting results, as reported in the literature.

7.8 Effect of Critical Slip Surface Uncertainty

The discussions above show that different reliability methods deal with the critical
slip surface differently. FOSM and direct MCS with Slope/W use a given slip
surface and do not account for critical slip surface uncertainty. The FORM pro-
posed by Low (2003) includes center coordinates and radius of slip surface as
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additional optimization variables, and variation of potential critical slip surfaces is
implicitly factored in the analysis. However, because of limitation of the opti-
mization tool used, it tends to overestimate b and underestimate Pf.

The direct MCS and subset simulation with Excel package developed in this
chapter explicitly search a wide range of potential slip surfaces for obtaining the
minimum FS in each random sample of Su. Figure 7.10 shows examples of different
critical slip surfaces obtained from different random samples of Su when k = 0.5 m.
It is obvious that the critical slip surface varies spatially as the spatial distribution of
Su changes among different random samples. As a reference, the critical slip surface
highlighted by a thick line in Fig. 7.10 is the one used in the FOSM method and
direct MCS with Slope/W. Table 7.5 summarizes ranges of (xc, yc) and r for critical
slip surfaces obtained from direct MCS with Excel. The r varies from 21.0 to
29.8 m and has a range of 8.8 m. When inherent spatial variability of soil property
and critical slip surface uncertainty are considered explicitly in the simulation, the
value of Pf from direct MCS and subset simulation with Excel is about 40–70 %
larger than that from FOSM and direct MCS with Slope/W which use only one
given critical slip surface.

To further illustrate the effect of critical slip surface uncertainty on Pf, direct
MCS and subset simulation are also performed in Excel with the fixed critical slip
surface highlighted by thick line in Fig. 7.10, which is the same one used in the
direct MCS with Slope/W. As shown in Table 7.6, the resulting Pf value decreases
to 0.1–0.2 % and compares well with that from Slope/W which uses the same
critical slip surface. The comparison summarized in Table 7.6 confirms that when

y(m)

x(m)
-20 0 20 40

-10

-20

20

10

Critical Slip Surface from 
deterministic analysis:

r(m)    xc (m)   yc(m)

29.2     10.0      19.2

FS

1.178

y(m)

x(m)
-20 0 20 40

-10

-20

20

10

Critical Slip Surface from 
deterministic analysis:

r(m)    xc (m)   yc(m)

29.2     10.0      19.2

FS

1.178

FS

1.178

Fig. 7.10 Examples of critical slip surfaces obtained from direct MSC with Excel (after Wang
et al. 2011)
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inherent spatial variability of soil property is considered, the substantial difference
among Pf from different reliability methods is mainly attributed to the effect of
critical slip surface uncertainty, and using only one given critical slip surface results
in underestimation (or unconservative) of Pf. Thus, when inherent spatial variability
of soil property is considered, the critical slip surface uncertainty should be properly
accounted for.

7.9 Summary and Conclusions

This chapter developed a Monte Carlo simulation (MCS)-based practical reliability
analysis approach for slope stability problem and implemented an advanced MCS
method called subset simulation in a commonly available spreadsheet environment,
Microsoft Excel. The Excel spreadsheet package developed was used to assess
reliability of short-term stability of a cohesive soil slope, followed by a comparative
study on different reliability methods, including the FOSM, FORM, direct MCS
using commercial software Slope/W, and direct MCS and subset simulation using
the Excel package. Subset simulation was shown to significantly improve efficiency
and resolution of simulations at small probability levels. Such improvement

Table 7.5 Ranges of center coordinates and radius of critical slip surfaces obtained from MCS
with Excel (after Wang et al. 2011)

Parameter Minimum Maximum Range

Coordinate xc (m) 8.0 10.4 2.4

Coordinate yc (m) 17.6 22.0 4.4

Radius r (m) 21.0 29.8 8.8

Table 7.6 Comparison of simulation results with different critical slip surfaces (after Wang et al.
2011)

Reliability method Reliability
index b

Probability of
failure Pf (%)

Relative
difference in Pf

(%)

MCS with Slope/W and fixed critical
slip surface

2.80 0.26 −73

MCS with Excel and fixed critical slip
surface

2.95 0.16 −83

Subset simulation with Excel and
fixed critical slip surface

3.00 0.13 −86

MCS with Excel and changing critical
slip surface

2.35 0.95 N/A

Subset simulation with Excel and
changing critical slip surface

2.36 0.92 −3
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becomes increasingly substantial and necessary as the probability level of interest
decreases (e.g., the failure probability further decreases to 0.1 % or 0.003 % for
expected performance levels of “above average” or “good,” respectively, as direct
MCS is increasingly inefficient).

Effect of inherent spatial variability of soil property was explored using the
Excel spreadsheet package developed in this chapter. It is found that when inherent
spatial variability of soil property is ignored by assuming perfect correlation, the
variance of FS is overestimated. However, the overestimation of the FS variance
may result in either overestimation (conservative) or underestimation (unconser-
vative) of Pf. If FS = 1 occurs at the lower tail of the FS probability distribution,
overestimation of the FS variance leads to overestimation of Pf, and it is therefore
conservative. If the location of FS = 1 approaches the center, or even the upper tail,
of the FS probability distribution (i.e., FS is relatively low), overestimation of the
FS variance leads to underestimation of Pf, and it is therefore unconservative.

The effect of critical slip surface uncertainty was also examined. When the
inherent spatial variability of soil property is ignored or soil property is charac-
terized by a single random variable, the location of critical slip surface is deter-
ministic. It is therefore theoretically appropriate to use only one given slip surface
in the analysis, as what FOSM method or direct MCS with Slope/W does. When the
inherent spatial variability of soil property is considered, the critical slip surface
varies spatially. Using only one given critical slip surface significantly underesti-
mates Pf, and it is unconservative. Thus, when the inherent spatial variability of soil
property is considered, the critical slip surface uncertainty should be properly
accounted for.

It is worthwhile to note that although the proposed practical reliability analysis
approach was illustrated through a cohesive soil slope example with Ordinary
Method of Slices, the approach is general and can be readily adapted to frictional
slopes and more sophisticated limit equilibrium methods (e.g., Spencer,
Morgenstern, and Price methods). Usage of these more sophisticated methods may
be more appropriate for general slopes, although their FS equations and associated
discussions may not be as explicit as those (e.g., Eq. (7.4) and its relevant dis-
cussions) shown in the chapter.
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