
Chapter 4
Quantification of Prior Knowledge
Through Subjective Probability
Assessment

4.1 Introduction

Prior distribution is an essential component of the Bayesian framework developed
in the previous chapter, and it reflects the prior knowledge (including the existing
information collected from various sources and engineers’ expertise) obtained
during preliminary stages (e.g., desk study or site reconnaissance) of geotechnical
site characterization. When only a typical range of a soil parameter concerned is
available as the prior knowledge, a uniform prior distribution of the soil parameter
that covers the typical range can be used in the Bayesian framework. As the
information provided by prior knowledge improves, a more sophisticated and
informative prior distribution can be estimated from prior knowledge. Based on the
prior knowledge obtained from desk study and/or site reconnaissance, a subjective
probability assessment framework (SPAF) is proposed in this chapter to assist
engineers in quantifying the information provided by prior knowledge and esti-
mating the prior distribution from prior knowledge.

This chapter starts with brief description of uncertainties in prior knowledge,
followed by development of the SPAF based on a stage cognitive model of engi-
neers’ cognitive process. Each stage of the cognitive process is implemented in the
proposed SPAF, and several suggestions are provided for each stage to assist
engineers in utilizing prior knowledge in a relatively rational way and reducing
effects of cognitive biases and limitations mentioned in Chap. 2. The proposed
SPAF is applied to characterize probabilistically the sand effective friction angle at
a US National Geotechnical Experimentation Site (NGES) at Texas A&M
University, and it is illustrated under two scenarios: one with sparse prior knowl-
edge and the other with a reasonable amount of prior knowledge.
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4.2 Uncertainties in Prior Knowledge

Prior knowledge includes the existing information (e.g., geological information,
geotechnical problems and properties, and groundwater conditions) about a specific
site collected from various sources (see Table 2.1 in Chap. 2) during desk study
and site reconnaissance and engineers’ expertise (Clayton et al. 1995; Mayne et al.
2002). The collected information contains various uncertainties, such as inherent
variability of soil properties, measurement errors, statistical uncertainty incorpo-
rated in historical data, and transformation uncertainty associated with regression
models used to interpret the historical data. In addition, the quantity and quality of
the expertise of an individual engineer depend on various external factors (e.g.,
educational background and career experience) and internal factors (e.g., personal
attributes and individual cognitive process) (Vick 2002). Variations of such external
and internal factors lead to uncertainties in engineers’ expertise. Because of
uncertainties in the existing information and engineers’ expertise, estimates of soil
properties and their statistics from prior knowledge are uncertain results rather than
cut-and-dried conclusions. Such uncertain estimates are, therefore, referred to as
“prior uncertain estimates” in this book.

The plausibility of prior uncertain estimates reflects the confidence level (or
degrees-of-belief) of prior knowledge on such estimates, and it can be evaluated
intuitively and qualitatively through engineering judgments (including various
cognitive heuristics discussed in Chap. 2, such as availability heuristic, representa-
tive heuristic, and anchoring and adjustment heuristic). Because of various cognitive
biases and limitations (see Chap. 2), outcomes from such intuitive and qualitative
evaluations might deviate from the actual beliefs of engineers and be inconsistent
with basic probability axioms (Vick 2002). The next section presents a subjective
probability assessment framework (SPAF), in which subjective probability is applied
to quantify the plausibility of prior uncertain estimates of statistics H ¼
½h1; h2; . . .; hnm � (e.g., the mean, standard deviation, and correlation length) of the soil
property x concerned and to express engineering judgments on x and its statisticsH in
a probabilistic manner. By this means, the plausibility of prior uncertain estimates of
H is quantified by the probability distribution of H, which can be taken as the prior
distribution of H in the Bayesian framework developed in Chap. 3.

4.3 Subjective Probability Assessment Framework (SPAF)

Engineers formulate subjective probability through a series of internal cognitive
activities (i.e., cognitive process). These cognitive activities can be divided into
several stages and be described by a stage cognitive model. Consider, for example,
the stage cognitive model presented by Vick (2002), as shown in Fig. 4.1. Based on
the stage cognitive model, a subjective probability assessment framework (SPAF) is
developed in this section, which is shown in Fig. 4.1.
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The SPAF starts with specification of assessment objectives (e.g., determining
the soil property x and its statistics H of interest), followed by collection of relevant
information and making prior uncertain estimates on the assessment objectives.
A piece of relevant information, a prior uncertain estimate obtained from this piece
of relevant information, and the correlations between the relevant information and
the prior uncertain estimate are collectively referred to as “a piece of evidence” in
this chapter, as shown in Fig. 4.2. The third step (i.e., synthesis of the evidence)
deals cautiously with the evidence collected in the second step. In this step,
uncertainties associated with each evidence are evaluated, and engineering judg-
ments are formulated internally based on the evidence. After that, the fourth step
(i.e., numerical assignment) is to express the engineering judgments through
numerical values (i.e., subjective probability values and probability distributions of
H). The final step (i.e., confirmation) aims to check whether or not the outcomes
(e.g., probability distributions of H) obtained from the SPAF are consistent with
probability axioms and reality and reflect engineers’ actual beliefs on assessment
objectives.

It is worthwhile to point out that the first four steps of the proposed SPAF
correspond to the four stages of the cognitive model of engineers’ cognitive process
(see Fig. 4.1), respectively. This allows engineers to formulate the subjective
probability (or engineering judgments) on assessment objectives by following their
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cognitive process naturally. These five steps of the SPAF are introduced in detail in
the following five sections, respectively. Several suggestions are also provided for
each step of the SPAF to assist engineers in utilizing prior knowledge in a relatively
rational way and reducing effects of cognitive biases and limitations (e.g., avail-
ability bias, representativeness bias, insufficient adjustment, and limited capacity of
processing information) (see Chap. 2).

4.4 Specification of Assessment Objectives

If assessment objectives are misunderstood, inappropriate information might be
collected and utilized in subjective probability assessment. This subsequently
results in various cognitive biases (e.g., availability bias and insufficient adjustment)
in subjective probability assessment. Therefore, it is of great significance to define
and understand assessment objectives clearly at the beginning of the subjective
probability assessment. Several suggestions are provided herein to assist engineers
in specifying and understanding the assessment objectives properly, such as

(1) Write down the soil property x of interest and define a general assessment
objective. For example, the general assessment objective can be “probabilistic
characterization of the soil property x”;

(2) Decompose the general objective into several sub-objectives. Each
sub-objectives is corresponding to a statistic hi; i ¼ 1; 2; . . .; nm, of x. The
statistics H ¼ ½h1; h2; . . .; hnm � of interest depend on the probability theory that
is applied to model the inherent variability of x in the Bayesian framework
developed in Chap. 3. For example, when using random field theory to model
inherent spatial variability of x within a statistically homogenous soil layer, the
statistics of interest are model parameters of the random field, i.e., mean l,
standard deviation r, and correlation length k of x. In other words, H consists
of three random variables: l, r, and k, i.e., H ¼ ½l; r; k�. Hence, the
sub-objectives can be defined as “evaluating probability of the mean l of x,”
“evaluating probability of the standard deviation r of x,” and “evaluating
probability of the correlation length k of x”;

(3) Identify probability terms (including statistics of x) that engineers are not
familiar with. For engineers, training in probability theory and statistics is
usually limited to basic information during their early years of education
(El-Ramly et al. 2002). They might be unfamiliar with some probability terms,
e.g., correlation length k. These probability terms should be written down;
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(4) Try to understand physically probability terms that engineers are not familiar
with. Physical interpretation of probability terms helps engineers understand
these terms with relative ease. For example, the correlation length k of x is a
separate distance in which the soil property x shows relatively strong corre-
lation from point to point (Vanmarcke 1977, 1983). By this definition, the
correlation length is understood with relative ease.

Decomposition of the general assessment objective and physical interpretations
of probabilistic terms assist engineers in clearly understanding the assessment
objectives. This helps engineers collect properly information related to the
assessment objectives (including the general assessment objective and
sub-objectives), as discussed in the next section.

4.5 Collection of Relevant Information and Preliminary
Estimation

The next step is to assemble the relevant information on assessment objectives from
the prior knowledge (i.e., the collected existing information and engineers’
expertise). A piece of relevant information might result in several prior uncertain
estimates of the soil property x and/or its statistics H using available correlations
(e.g., empirical regressions or theoretical correlations) or intuitive inference.
Subsequently, it provides several pieces of evidence on assessment objectives.
Evidence can be divided into two types: supportive evidence and disconfirming
evidence (Vick 2002). Supportive evidence provides information that is consistent
with the preconceived view of the assessor (e.g., engineers) about the soil property
x, while disconfirming evidence contradicts with the preconceived view of the
assessor. Examination of relevant information in prior knowledge eventually pro-
vides an evidence list. A relatively comprehensive evidence list includes both
supportive evidence and disconfirming evidence collected from the existing
information and engineers’ expertise. It helps engineers reduce the availability bias
arising from missing some useful evidence, the representativeness bias resulted
from overemphasis on one particular type of information, and the confirmation bias
due to overlooking disconfirming evidence (Vick 2002). Several suggestions are
provided to assist engineers in acquiring a relatively comprehensive evidence list
from prior knowledge.

As shown in Table 2.1 in Chap. 2, there are seven types of existing information,
i.e., geological information, geotechnical problems and properties, site topography,
groundwater conditions, meteorological conditions, existing construction and ser-
vices, and previous land use. Engineers are suggested to cautiously search for
relevant information and/or evidence in each type of existing information and the
corresponding expertise. For each type of existing information, this can be per-
formed through the following three steps:
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(1) Identify the possible sources (including sources of the existing information
(see Table 2.1) and engineers’ expertise) of relevant information pertaining to
this type of existing information;

(2) Assemble the relevant information from each possible source, and write it
down;

(3) Evaluate the correlations between each piece of relevant information and the
soil property x and its statistics H ¼ ½l; r; k�; and write down the possible
outcomes (i.e., prior uncertain estimates). Prior uncertain estimates of x and its
statistics H can be obtained from the relevant information by correlations
(including empirical and theoretical relationships and/or intuitive inference)
and/or by conventional statistical equations. The mean and standard deviation
of a random variable X (e.g., x or hi; i ¼ 1; 2; . . .; nm) can be calculated as (e.g.,
Baecher and Christian 2003)

X ¼
PnX

i¼1
Xi

nX
ð4:1Þ

wX ¼
PnX

i¼1
ðXi � XÞ2

nX � 1
ð4:2Þ

in which X = the mean of X; wX = the standard deviation of X; Xi, i = 1, 2,… nx, are
samples of X; nx is the number of samples of X. When only a range of X from the
minimum Xmin to the maximum Xmax is available, the mean value X and standard
deviation wX can be estimated as (e.g., Duncan 2000; Baecher and Christian 2003)

X ¼ Xmax þXmin

2
ð4:3Þ

wX ¼ Xmax � Xmin

6
ð4:4Þ

Outcomes of the three steps are suggested to be written down clearly, including
the types, sources, contents of relevant information, the prior uncertain estimates of
x andH, and the correlations used to obtain the prior uncertain estimates. After that,
an evidence list is obtained. Diligent attempts to search for relevant information
and/or evidence in prior knowledge lead to a relatively comprehensive evidence list,
which helps engineers reduce effects of cognitive biases (Vick 2002). In addition,
writing down the relevant information and/or evidence in a list allows engineers to
carefully think about each piece of relevant information and/or evidence. This helps
engineers overcome the limitation of human information-processing capacity (Vick
2002).
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4.6 Synthesis of the Evidence

Engineers utilize the collected evidence to formulate internally engineering judg-
ments on the soil property x and its statistics H. The evidence has two essential
cognitive properties: strength and weight (Griffin and Tversky 1992; Vick 2002).
The strength means the forcefulness or extremeness (i.e., how convincingly or
persuasively the evidence argues for a proposition) of the evidence; and the weight
indicates the quality (i.e., how reliable it is) and quantity (i.e., how much of it) of
the evidence (Griffin and Tversky 1992; Vick 2002). Because of the limitation of
information-processing capacity, engineers consider the two properties of the evi-
dence separately and tend to focus more on the strength of the evidence and to
underestimate the effect of the weight (Vick 2002). This, sometimes, makes engi-
neers overly confident of strong but unreliable evidence and underemphasize (or
ignore) the relatively weak evidence with high weight (e.g., good quality and large
quantity), and subsequently leads to overconfidence bias, representativeness bias,
and insufficient adjustment (Vick 2002). To reduce effects of the cognitive biases,
there is a need to properly balance the effects of strength and weight of the evidence
and to synthesize the evidence further for subjective probability assessment. This
can, for example, be carried out through the following four steps: (1) evaluating the
strength of the evidence; (2) evaluating the weight of the evidence; (3) assembling
the evidence and statistical analysis; and (4) reassembling the relevant evidence for
each sub-objective, as discussed in the following four subsections, respectively.

4.6.1 Evaluation of the Strength of Evidence

A piece of evidence consists of a piece of relevant information, a prior uncertain
estimate, and correlations between the relevant information and the estimate (see
Fig. 4.2). The prior uncertain estimate in the evidence can be obtained from the-
oretical and/or empirical correlations or be inferred intuitively according to the
expertise of engineers. Correlations in the evidence can be, therefore, categorized
into two types: theoretical/empirical correlation and intuitive inference. Based on
the type of correlations used in the evidence, the strength of the evidence can be
divided into three levels: weak, moderate, and strong. If only the intuitive inference
is used in the evidence, the strength of the evidence is weak. If only
theoretical/empirical correlations (e.g., theories of probability and soil mechanics,
empirical regressions) are used in the evidence, the strength of the evidence is
strong. When both intuitive inference and theoretical/empirical correlations are
required to obtain the prior uncertain estimate in the evidence and they are used
sequentially, the strength of the evidence is moderate. In addition, when the relevant
information is completely equivalent to the prior uncertain estimate and there is no
need of correlations, the relevant information totally supports the prior uncertain
estimate in the evidence. In such cases, the strength of the evidence is strong.

4.6 Synthesis of the Evidence 69



After the strength of all the evidence in the evidence list is obtained, engineers
are suggested to check the strength intuitively. This can be implemented by intu-
itively evaluating how convincingly the relevant information supports the corre-
sponding prior uncertain estimate according to the correlations used in the evidence.
The intuitive evaluation outcomes can also be categorized into three possible levels:
highly, moderately, and lowly persuasive, which are corresponding to strong,
moderate, and weak strength, respectively. If the strength of a piece of evidence
obtained from intuitive judgment is inconsistent with the strength of the evidence
obtained previously, engineers are suggested to cautiously think about the incon-
sistency and try to find out the reasons for the inconsistency. The strength of
evidence, sometimes, needs to be properly adjusted according to the causes that
lead to the inconsistency.

4.6.2 Evaluation of the Weight of Evidence

The weight of the evidence depends on several factors, including the source of the
relevant information, quantity of the relevant information (e.g., the number of
existing in-situ test data), and accuracy of the analysis method used to obtain the
prior uncertain estimate in the evidence. The weight of the evidence can be evaluated
according to the three factors. This can, for example, be performed in two steps:

(1) Evaluate the weight of the relevant information based on its source. The
relevant information might have been collected from four types of sources:
official publications (e.g., geotechnical reports, peer-reviewed academic
journals, textbooks, and geological maps) on the site concerned, official
publications on another site, informal sources on the site concerned, and
informal sources on another site. By the source of the relevant information, the
weight of relevant information can be divided into three levels: high, mod-
erate, and low. Relevant information obtained from official publications on the
site concerned has high weight. Relevant information obtained from informal
sources on the site concerned or official publications on another site has
moderate weight. Information collected from informal sources on another site
has low weight.

(2) Adjust the weight of the relevant information to the weight of the evidence
according to the accuracy of the analysis method used in the evidence. The
analysis method used to obtain the prior uncertain estimate in the evidence can
be categorized into two types: qualitative analysis and quantitative analysis.
The accuracy of qualitative analysis is considered relatively poor compared
with that of quantitative analysis. When qualitative analysis is used in the
evidence, the weight of the evidence is obtained by decreasing the weight of
the corresponding relevant information by one level. When quantitative
analysis is used in the evidence, adjustment of the weight of the relevant
information depends on the quantity of data used in the analysis. If there is a
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relatively large number of data used in the analysis, the weight of the evidence
is obtained by increasing the weight of the corresponding relevant information
by one level. If there are relatively limited data, the weight of the evidence is
obtained by decreasing the weight of the corresponding relevant information
by one level.

For the evidence in which the relevant information is completely equivalent to
the prior uncertain estimate, the weight of the evidence is determined by adjusting
the weight of the relevant information according to the quantity of data contained in
the relevant information. Note that when the weight of the relevant information is
already high and there exists a need of increasing it to obtain the weight of the
evidence, the weight of the evidence is still high. Similarly, when weight of the
relevant information is already low and there exists a need of decreasing it to obtain
the weight of the evidence, the weight of the evidence is still low.

When the weight of all the evidence in the evidence list is determined, engineers
are suggested to intuitively check the weight of all the evidence in the list. This can
be implemented by intuitively thinking about how reliable the evidence is. The
outcomes of intuitively weighing the evidence can be divided into three levels:
highly, moderately, and lowly reliable, which are corresponding to high, moderate,
and low weight, respectively. If the weight of the evidence obtained from intuitively
weighing the evidence is inconsistent with the weight of the evidence obtained
previously, engineers are suggested to cautiously examine the inconsistency and try
to find out the reasons resulting in the inconsistency. The weight of the evidence,
sometimes, needs to be properly adjusted according to the causes that lead to the
inconsistency.

4.6.3 Assembling the Evidence and Statistical Analysis

After the strength and weight of all the evidence are obtained, the next step is to
assemble the evidence about the same variable X (i.e., x or hi; i ¼ 1; 2; . . .; nm)
together. For each variable X, the evidence can be categorized into several groups
by strength and weight, and the evidence in each group has the same strength and
weight. Because both strength and weight have three possible levels (see
Sects. 4.6.1 and 4.6.2), there are 9 possible evidence groups: (1) group with weak
strength and low weight; (2) group with weak strength and moderate weight;
(3) group with weak strength and high weight; (4) group with moderate strength
and low weight; (5) group with moderate strength and moderate weight; (6) group
with moderate strength and high weight; (7) group with strong strength and low
weight; (8) group with strong strength and moderate weight; and (9) group with
strong strength and high weight. For each evidence group, conventional statistical
equations (e.g., Eqs. (4.1)–(4.4)) can be used to analyze the information on the
variable X (i.e., x or hi; i ¼ 1; 2; . . .; nm) provided by the evidence. By this means,
some estimates of statistics of X are obtained. The procedure described above is
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repeatedly performed for each variable involved in the subjective probability
assessment objectives, including x in the general assessment objective and
hi; i ¼ 1; 2; . . .; nm, in sub-objectives.

4.6.4 Reassembling the Relevant Evidence for Each
Sub-objective

Evidence with regard to the soil property x provides information on different
statistics hi; i ¼ 1; 2; . . .; nm, of x. In other words, estimates from the evidence on
x might be related to different sub-objectives since each sub-objective involves only
one statistic of x. For the convenience of subjective probability assessment, the
relevant evidence (or evidence groups) about the same sub-objective shall be
assembled together and be written down with the strength and weight of the evi-
dence. After that, engineers can examine cautiously the relevant evidence on each
sub-objective and make their engineering judgments on the sub-objective internally
based on the evidence.

It is worthwhile to point out that the evidence group with limited evidence shall
be used with caution when formulating engineering judgments. In addition, when
using the relevant evidence to make engineering judgments on a sub-objective, the
strength and weight of the evidence need to be considered. The relevant evidence
with strong strength and high weight is more persuasive and reliable than that with
relatively weak strength and relatively low weight. Convincingness and reliability
of the evidence decrease as the levels of strength and weight decrease.

Based on the relevant evidence, engineers have formulated their engineering
judgments on statistics hi; i ¼ 1; 2; . . .; nm, in sub-objectives internally. The next
step is to elicit engineering judgments on hi; i ¼ 1; 2; . . .; nm, from engineers and to
express the engineering judgments through numerical values. Engineers are,
however, not used to thinking in terms of probability due to relatively limited
training in probability theory and statistics (El-Ramly et al. 2002; Vick 2002;
Baecher and Christian 2003). In the next section, the equivalent lottery method and
verbal descriptors of the likelihood (or plausibility) are used to assist engineers in
assigning numerical values (i.e., subjective probability) to their engineering judg-
ments on hi; i ¼ 1; 2; . . .; nm, in sub-objectives.

4.7 Numerical Assignment

4.7.1 Equivalent Lottery Method

Equivalent lottery method (e.g., Clemen 1996; Vick 2002) assists engineers in
making decisions by comparing two lotteries. One of the two lotteries involves the
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event of interest, and the other one is designed as reference lottery in which the
probability information is contained as a reference. The plausibility of the event
concerned is equal to the probability in the reference lottery when indifference
between two lotteries is achieved by adjusting one of them. For example, two
lotteries are used to determine the median value of the statistic hi; i ¼ 1; 2; . . .; nm,
for a given range from the minimum hi;min to the maximum hi;max, which are given
by

Lottery 1:

Win a prize if hi;min � hi � as occurs, where as is a possible value of hi falling within
the range ½hi;min; hi;max�:
Win nothing if as\hi � hi;max occurs.

Lottery 2:

Win a prize with known probability p = 0.5.
Win nothing with probability 1 − p = 0.5.

The second lottery (i.e., lottery 2) is the reference lottery. Engineers can adjust
the value of as between the minimum and maximum (i.e., hi;min and hi;max) of hi
until they are indifferent between the two lotteries according to the previously
obtained relevant evidence on hi. The indifference indicates that engineers believe
that the two lotteries are equivalent to each other. Since occurrence probabilities of
the two choices in lottery 2 are fixed at 0.5, engineers believe that occurrence
probabilities of the two choices in lottery 1 are also 0.5 after the indifference is
reached. Therefore, when the indifference is reached, engineers believe that the
probability of hi;min � hi � as for a given range from hi;min to hi;max is equal to that of
as\hi � hi;max, and both of them are equal to 0.5. In other words, as is the median
value of hi for the given range from hi;min to hi;max after the indifference is reached.

The equivalent lottery method described above requires a range of hi, i.e.,
½hi;min; hi;max�; as input. Using different ranges of hi in the equivalent lottery method
leads to different median values. For example, using the range from 1 % percentile
(i.e., hi;0:01) of hi to 99 % percentile (i.e., hi;0:99) of hi in the equivalent lottery
method leads to a median value of hi equivalent to its 50 % percentile (i.e., hi;0:5).
Subsequently, using the range from hi;0:01 to hi;0:5 (i.e., ½hi;0:01; hi;0:5�Þ in the
equivalent lottery method results in a median value of hi equivalent to its 25 %
percentile (i.e., hi;0:25). Similarly, using the range from hi;0:5 to hi;0:99 (i.e.,
½hi;0:5; hi;0:99�Þ in the equivalent lottery method results in a median value of hi
equivalent to its 75 % percentile (i.e., hi;0:75). Then, using ranges of ½hi;0:01; hi;0:25�;
½hi;0:25; hi;0:5�; ½hi;0:5; hi;0:75�; and ½hi;0:75; hi;0:99� in the equivalent lottery method leads
to the median values equivalent to its 12.5 % (i.e., hi;0:125), 37.5 % (i.e., hi;0:375),
62.5 % (i.e., hi;0:625), and 87.5 % (i.e., hi;0:875) percentiles, respectively.
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4.7.2 Verbal Descriptors of the Likelihood

To start the equivalent lottery method described above, 1 % and 99 % percentiles
(i.e., hi;0:01 and hi;0:99) of hi should be determined first. Direct elicitation of
numerical values of probability from engineers might lead to unstable and inco-
herent results because engineers are not used to thinking in terms of numerical
values of probability (e.g., Baecher and Christian 2003). On the other hand,
engineers prefer to express their engineering judgments using words that indicate
the likelihood, namely verbal descriptors of the likelihood (Vick 2002). Verbal
descriptors can be mapped to numerical values of probability by transformation
conventions. For example, Table 4.1 shows a transformation convention between
verbal descriptors and numerical values of probability (Vick 2002). By this con-
vention, the words “virtually impossible,” “very unlikely,” “equally likely,” “very
likely,” and “virtually certain” are equivalent to the probability of 0.01, 0.1, 0.5,
0.9, and 0.99, respectively. Note that in this convention the probability value ranges
from 0.01 to 0.99 (see Table 4.1), which happens to be the valid cognitive dis-
crimination range (i.e., from 0.01 to 0.99) of subjective probability (Fischhoff et al.
1977; Hogarth 1975; Vick 1997, 2002).

The probability value in the transformation convention increases from 0.01 to
0.99 monotonically (see Table 4.1). Therefore, the transformation convention
corresponds to the cumulative distribution function (CDF) of the variable hi con-
cerned, and the words “virtually impossible” and “virtually certain” can be used to
determine the 1 % and 99 % percentiles of hi, respectively. 1 % and 99 % per-
centiles are located at the lower and upper tails of probability density function
(PDF), respectively. They can be considered as the minimum and maximum pos-
sible values of hi, respectively. Therefore, in the convention shown in Table 4.1, the
words “virtually impossible” and “virtually certain” are actually used to determine
the minimum and maximum possible values of hi in terms of PDF, respectively. In
this chapter, the words “minimum” and “maximum” are directly used to determine
the 1 % and 99 % percentiles, respectively. The 1 % and 99 % percentiles of hi are
then determined by asking “What is the minimum possible value of hi?” and “What
is the maximum possible value of hi?”, respectively.

It is also worthwhile to note that the verbal descriptor “equally likely” is
equivalent to the probability of 0.5 (see Table 4.1). By this convention, the two
lotteries proposed in the previous subsection can be rewritten as follows:

Table 4.1 Verbal descriptors
and their probability
equivalents (After Vick 2002)

Verbal descriptor Probability equivalent Percentile

Virtually impossible 0.01 hi;0:01
Very unlikely 0.10 hi;0:1
Equally likely 0.50 hi;0:5
Very likely 0.90 hi;0:9
Virtually certain 0.99 hi;0:99
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Lottery 1:

Win a prize if hi;min � hi � as occurs, where as is a possible value of hi falling within
the range ½hi;min; hi;max�:
Win nothing if as\hi � hi;max occurs.

Lottery 2:

Win a prize or nothing equally likely.

4.7.3 Implementation of the Equivalent Lottery Method

Using the two lotteries and verbal descriptors, the percentiles of hi in each
sub-objective can be determined accordingly. A questionnaire is designed in this
chapter to implement the equivalent lottery method, as shown in Appendix 4.1.
When answering the questions in the questionnaire, engineers might revisit the
relevant evidence on hi collected before.

The questionnaire starts with a question (i.e., Q1) that is used to determine a
reference prize for the lottery 1, followed by the second and third questions (i.e., Q2
and Q3) for determining hi;0:01 and hi;0:99, respectively. Then, the equivalent lottery
method can be used to estimate the median value (i.e., hi;0:5) for the given range
from hi;0:01 and hi;0:99 in Q4 if there is sufficient information provided by the
relevant evidence on hi. Such a procedure can be repeatedly performed to determine
the percentiles of hi progressively using different ranges of hi in the equivalent
lottery method, as described in Sect. 4.7.1. The questionnaire shall be stopped when
engineers believe that there is no sufficient information on hi to balance the two
lotteries in the equivalent lottery method for a given range of hi.

For example, if the information on hi is very sparse, it might be too difficult for
engineers to estimate 50 %, 25 %, 75 %, 12.5 %, 37.5 %, 62.5 %, and 87.5 %
percentiles (i.e., hi;0:5; hi;0:25; hi;0:75; hi;0:125; hi;0:375; hi;0:625, and hi;0:875) of hi. In such
cases, the questionnaire is stopped after hi;0:01 and hi;0:99 are obtained from Q2 and
Q3. On the other hand, if there is a large number of information on hi, the ques-
tionnaire can be continued to obtain more percentiles of hi after 12.5 %, 37.5 %,
62.5 %, and 87.5 % percentiles are obtained.

The questionnaire is repeated nm times for the nm sub-objectives. After that, the
percentiles of the statistics hi; i ¼ 1; 2; . . .; nm, of x are obtained. The prior distri-
bution of hi is then estimated from its percentiles, as discussed in the next
subsection.
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4.7.4 Prior Distribution

After the percentiles of hi are obtained, its cumulative distribution function
(CDF) and probability density function (PDF) can be estimated from its percentiles
through two methods: a simplified method and a least squares regression method.

4.7.4.1 A Simplified Method

The range of hi from hi;0:01 to hi;0:99 is divided into several intervals by its per-
centiles. Consider, for example, that hi is uniformly distributed within each interval.
Then, an empirical CDF of hi is obtained by plotting a line through the points at
percentiles (i.e., data pairs of the percentiles of hi and their respective cumulative
probability levels, such as (hi;0:01, 1 %), (hi;0:5, 50 %), and (hi;0:99, 99 %)). The PDF
of hi is estimated by constructing a histogram with bins equal to the intervals of hi
between adjacent percentiles. In each bin, the PDF value of hi is calculated as the
ratio of the increase in cumulative probability level in this bin over the length of the
bin. For example, the PDF value of hi in the bin from hi;0:5 to hi;0:625 is calculated as
ð0:625� 0:5Þ=ðhi;0:625 � hi;0:5Þ. The PDF of hi is then taken as the prior distribution
of hi in the Bayesian framework formulated in Chap. 3.

4.7.4.2 A Least Squares Regression Method

The CDF of hi can also be obtained by fitting a probability distribution with assess-
ment results (i.e., data pairs of the percentiles of hi and their respective cumulative
probability levels) using the least squares regression method (e.g., Baecher and
Christian 2003; Ang and Tang 2007). The least squares regression method requires a
probability distribution as the model function for data fitting. Consider, for example,
the Gaussian CDF as the model function. The least squares regression method pro-
vides a Gaussian CDF of hi as the best fit of the assessment results and, simultane-
ously, gives the values of the mean and standard deviation of the Gaussian
distribution. Using the mean and standard deviation, the PDF of hi is determined,
which is then taken as the prior distribution of hi in the Bayesian framework formu-
lated in Chap. 3. Note that the least squares regression method can be achieved using
commercial software packages. For example, MATLAB (Mathworks Inc. 2010)
provides a built-in function “nlinfit” for the least squares regression method.

4.8 Confirmation of Assessment Outcomes

Because of cognitive biases and limitations, the assessment outcomes (e.g., the
percentiles and probability distributions of hi; i ¼ 1; 2; . . .; nm) might violate the
basic probability axioms and deviate from the actual beliefs of engineers (Vick
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2002). Several suggestions are provided herein to help engineers check the
assessment outcomes, such as

(1) Check the coherence between the assessment outcomes and the basic proba-
bility axioms (e.g., probability falls within the range from 0 to 1, and inte-
gration on a PDF is equal to unity) (e.g., Ang and Tang 2007; Ross 2007). The
assessment outcomes (the percentiles and probability distributions of
hi; i ¼ 1; 2; . . .; nm) obtained from the proposed SPAF have to conform to the
basic probability axioms.

(2) Examine biases arising from cognitive heuristics. This can be carried out by
reviewing all the evidence carefully and checking that “is there any evidence
that is overlooked or underemphasized” and “is there any evidence that is
overemphasized”. The careful examination of the evidence reduces the over-
confidence bias arising from overemphasis on the supportive evidence and
ignorance of disconfirming evidence (Vick 2002). In addition, the attempts to
find out the evidence that is overlooked or underemphasized reduce the
availability bias.

(3) Engineers are suggested to interpret the assessment outcomes to check whe-
ther or not the outcomes are reasonable in reality according to their expertise
and reflect their actual beliefs.

If there is any inconsistency or any evidence that is misused, engineers need to
adjust properly the percentiles obtained from the SPAF and to reevaluate the prior
distributions accordingly, and they are suggested to write down the reasons for the
adjustment. This provides an opportunity to examine the adjustment and to reduce
the hindsight bias (Vick 2002). The confirmation-reevaluation process might be
iterated several times until engineers believe that the assessment outcomes are
reasonable in reality and reflect their actual beliefs according to the prior knowl-
edge, and all the evidence has been taken into account properly. After the final
confirmation of the assessment outcomes, probability distributions of
hi; i ¼ 1; 2; . . .; nm, quantify their respective plausibility according to the prior
knowledge. In the next section, the proposed SPAF is applied to characterize
probabilistically soil properties at the sand site of US NGES at Texas A&M
University (TAMU) (Briaud 2000), and it is illustrated under two scenarios: sce-
nario I with uninformative prior knowledge and scenario II with a reasonable
amount of prior knowledge, as discussed in the following two sections.

4.9 Scenario I: Uninformative Prior Knowledge

4.9.1 Assessment Objectives

The sand site of US National Geotechnical Experimentation Site (NGES) at Texas
A&M University is comprised of a top layer of sands to about 12.5 m deep and a
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stiff clay layer thereafter (see Fig. 2.5 in Chap. 2). Consider, for example, the sand
effective friction angle /′ of interest, i.e., x = /′. The general assessment objective
is, therefore, defined as “probabilistic characterization of effective friction angle /′
at the sand site.” The sand effective friction angle /′ within a statistically
homogenous soil layer can be probabilistically characterized by the random field
theory (Vanmarcke 1977, 1983), in which three model parameters are required, i.e.,
mean l, standard deviation r, and correlation length k of /′. The statistics of
interest are l, r, and k, i.e., H ¼ ½l; r; k�. The general assessment objective is then
decomposed into three sub-objectives: “evaluating probability of l,” “evaluating
probability of r,” and “evaluating probability of k.”

4.9.2 Relevant Information and Prior Uncertain Estimates

For illustration, suppose that only one piece of relevant information is obtained
according to previous engineering experience at this site (e.g., Briaud 2000), and it
indicates that the site is underlain by sand layers. The piece of relevant information
leads to three pieces of evidence, as shown in Table 4.2. For sands, the typical
value of /′ falls within the range from 27.5° to 50.0° by Terzaghi and Peck (1967)
and Kulhawy and Mayne (1990) (see Table 2.11), i.e., evidence (1). The respective
typical ranges of r and k are from 3.7° to 5.5° (i.e., evidence (2)) and from 2.0 m to
6.0 m (i.e., evidence (3)) by Phoon and Kulhawy (1999a, 1999b).

4.9.3 Strength and Weight of the Evidence and Statistical
Analysis

4.9.3.1 Strength and Weight of the Evidence

Table 4.3 summarizes the strength (i.e., Column 6) and weight (i.e., Column 7) of
the 3 pieces of evidence and the procedure of evaluating their strength and weight,
including source of the information (i.e., Column 2), procedure of estimation (i.e.,
Column 3), type of analysis (i.e., Column 4), and type of correlation (i.e., Column 5).

Table 4.2 Summary of relevant information and prior uncertain estimates for scenario I

Type Relevant
information

Correlations Prior uncertain
estimates

No. of
evidence

Geotechnical
properties

Sands
(Briaud 2000)

Table 2.11 after Kulhawy and
Mayne (1990)

/′ 27.5°–50.0° (1)

Phoon and Kulhawy (1999b) r 3.7°–5.5° (2)

Phoon and Kulhawy (1999a) k 2.0–6.0 m (3)

78 4 Quantification of Prior Knowledge …

http://dx.doi.org/10.1007/978-3-662-52914-0_2
http://dx.doi.org/10.1007/978-3-662-52914-0_2
http://dx.doi.org/10.1007/978-3-662-52914-0_2


In evidence (1), the range of /′ is estimated from the relevant information (i.e.,
the site is underlain by sands) by an empirical correlation (Kulhawy and Mayne
1990). Thus, evidence (1) has a strong strength. The relevant information is
obtained from an official report (Briaud 2000). Thus, the weight of the information
is high. The range of /′ in evidence (1) is qualitatively estimated from the relevant
information, so that the weight of the evidence is obtained through decreasing the
level of the weight of the relevant information by one level, i.e., moderate.

In evidence (2), the relevant information is related to the range of r by an
empirical correlation (Phoon and Kulhawy 1999b). Thus, evidence (2) has a strong
strength. The information is obtained from an official report of the sand site (Briaud
2000). Thus, the weight of the relevant information is high. The range of r is
qualitatively estimated from the relevant information, so that the weight of the
evidence is obtained through decreasing the level of the weight of the relevant
information by one level, i.e., moderate.

In evidence (3), the relevant information is related to the correlation length of
soil properties by an empirical correlation (Phoon and Kulhawy 1999b). The
empirical correlation does not directly give the range of correlation length k of /′,
but provides the correlation length of other soil properties (e.g., standard penetra-
tion test (SPT) N-value, cone tip resistance obtained from cone penetration test
(CPT)) of sands. The range of k of /′ is intuitively inferred from the range of
correlation length of other soil properties (e.g., SPT N-value) of sands. The
empirical correlation and intuitive inference are sequentially used in evidence (3).
Therefore, the strength of the evidence is moderate. The relevant information in
evidence (3) is collected from an official report of the sand site (Briaud 2000). Thus,
the weight of the relevant information is high. The range of k is qualitatively
estimated from the relevant information, so the weight of the evidence is obtained
through decreasing the level of the weight of the relevant information by one level,
i.e., moderate. However, the assessor believes that the intuitive inference on the
correlation length k of /′ from that of other soil properties is not very reliable. Thus,
the weight of the evidence is further decreased to the third level, i.e., low.

Table 4.3 Summary of strength and weight of the evidence for scenario I

No. of
evidence

Source of
information

Procedure
of
estimation

Type of
analysis

Type of
correlation

Strength Weight

(1) An official
report of the
sand site

Soil type
—range of
/′

Qualitative
analysis

Empirical
correlation

Strong Moderate

(2) An official
report of the
sand site

Soil type
—range of
r

Qualitative
analysis

Empirical
correlation

Strong Moderate

(3) An official
report of the
sand site

Soil type
—range of
k

Qualitative
analysis

Empirical
correlation and
Intuitive inference

Moderate Low
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4.9.3.2 Assembling Evidence and Statistical Analysis

There are only three pieces of evidence available. Evidence (1) gives a possible
range of /′ with strong strength and moderate weight. The range of /′ in evidence
(1) provides some information on the mean l of /′. Evidence (2) gives a possible
range of r with strong strength and moderate weight. Evidence (3) gives a possible
range of k with moderate strength and low weight. For each sub-objective, there is
only one piece of evidence available, i.e., evidence (1) for evaluating the probability
of l, evidence (2) for evaluating the probability of r, and evidence (3) for evalu-
ating the probability of k.

4.9.4 Results of Subjective Probability Assessment

Based on the evidence on each sub-objective, the percentiles of l, r, and k are
elicited from the assessor using the questionnaire shown in Appendix 4.1. Because
there is only one piece of evidence for each sub-objective, only the 1 % and 99 %
percentiles of l, r, and k are evaluated (i.e., only Q1 to Q3 in the questionnaire (see
Appendix 4.1) are answered). As shown in Table 4.4, the 1 % and 99 % percentiles
of l, r, and k are l0:01 ¼ 27:5�; l0:99 ¼ 50:0�; r0:01 ¼ 3:7�; r0:99 ¼ 5:5�; k0:01 ¼
2:0m; and k0:99 ¼ 6:0m: Using the simplified method described in Sect. 4.7.4.1,
prior distributions of l, r, and k are obtained from their respective percentiles, as
discussed in the following three subsections.

4.9.4.1 Prior Distribution of the Mean l

Figure 4.3a shows the CDF of l obtained from the simplified method by a solid line
with open circles. The CDF value of l increases linearly from 0.01 to 0.99 as l
increases from 27.5° to 50.0°. Figure 4.3b shows the PDF of l obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 27.5° to 50.0°), and the PDF value of l is about 0.044. The
uniform PDF of l (see Fig. 4.3b) can be taken as the prior distribution of l in the
Bayesian framework developed in Chap. 3.

Table 4.4 Summary of percentiles of the mean, standard deviation, and correlation length for
scenario I

Cumulative probability 0.01 0.99

Mean l (°) 27.5 50

Standard deviation r (°) 3.7 5.5

Correlation length k (m) 2.0 6.0
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4.9.4.2 Prior Distribution of the Standard Deviation r

Figure 4.4a shows the CDF of r obtained from the simplified method by a solid line
with open circles. The CDF value of r increases linearly from 0.01 to 0.99 as r
increases from 3.7° to 5.5°. Figure 4.4b shows the PDF of r obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 3.7° to 5.5°), and the PDF value of r is about 0.54. The uniform
PDF of r (see Fig. 4.4b) can be taken as the prior distribution of r in the Bayesian
framework developed in Chap. 3.
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4.9.4.3 Prior Distribution of the Correlation Length k

Figure 4.5a shows the CDF of k obtained from the simplified method by a solid line
with open circles. The CDF value of k increases linearly from 0.01 to 0.99 as k
increases from 2.0 to 6.0 m. Figure 4.5b shows the PDF of k obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 2.0 to 6.0 m), and the PDF value of k is about 0.25. The uniform
PDF of k (see Fig. 4.5b) can be taken as the prior distribution of k in the Bayesian
framework developed in Chap. 3.
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4.9.5 Final Confirmation

All the areas under the respective PDFs (see Figs. 4.3b, 4.4b, and 4.5b) of l, r, and
k are summed up to unity. This is consistent with the basic probability axiom that
integration on a PDF is unity. The prior distributions of l, r, and k are consistent
with the information on them provided by evidence (1), (2), and (3), respectively.
All the three pieces of evidence are taken into account properly. Because the
information on l, r, and k is very sparse in this scenario, the prior distributions of
l, r, and k obtained from the SPAF are uninformative (i.e., uniform distributions).
The prior distributions of l, r, and k reflect properly the prior knowledge. The
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assessment outcomes are then confirmed. In the next section, the proposed SPAF is
further illustrated under another scenario that has a reasonable amount of prior
knowledge.

4.10 Scenario II: Informative Prior Knowledge

4.10.1 Assessment Objectives

The sand effective friction angle /′ at the sand site of NGES at Texas A&M
university is still of interest under this scenario. The general assessment objective
remains unchanged, i.e., “probabilistic characterization of effective friction angle /′
at the sand site.” Similar to scenario I, it is then decomposed into three
sub-objectives: “evaluating probability of l,” “evaluating probability of r,” and
“evaluating probability of k.”

4.10.2 Relevant Information and Prior Uncertain Estimates

In this scenario, geological information and soil classification information are
obtained from Briaud (2000). Table 4.5 summarizes the relevant information (i.e.,
Column 2) on geology and soil classification, available correlations (i.e., Column 3)
between the geology and soil classification information and /′, l, r, and k; their
prior uncertain estimates (i.e., Column 4). As shown in Table 4.5, a total of 11
pieces of evidence are obtained from geological information and soil classification
information.

Evidence (1), (2), and (3) are obtained from geological information. The sand
site is underlain by fluvial and overbank deposits (Briaud 2000), which can be
categorized as alluvium deposits (Heim 1990). Alluvium deposits usually have
relatively low in-situ densities (e.g., loose or medium) (Heim 1990). For loose and
medium sands, /′ varies from 28° to 40° (i.e., evidence (1)) or varies from 30° to
40° (i.e., evidence (2)) (Kulhawy and Mayne 1990). In addition, a textbook
(Rollings and Rollings 1996) provides consistent values (i.e., from 30° to 40°) of /′
of alluvium deposits, i.e., evidence (3).

The sands underlying the site include silty sand, clean sand, and clayey sand
(Briaud 2000). Two peer-reviewed academic papers (i.e., Phoon and Kulhawy
1999a, 1999b) provided six pieces of evidence (i.e., evidence (4)–(9)) on /′, l, r,
and k of sands. Evidence (4) and (5) give the two possible ranges of /′, i.e., from
35° to 41° and from 33° to 43° (Phoon and Kulhawy 1999a), respectively. Evidence
(6) and (7) provide two possible values of l, i.e., 37.6° or 36.7° (Phoon and
Kulhawy 1999a), respectively. Evidence (8) and (9) provide the respective ranges
of r (i.e., from 3.7° to 5.5°) and k (i.e., from 2 to 6 m) (Phoon and Kulhawy 1999a).
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Note that evidence (8) and (9) in this scenario are the same as evidence (2) and
(3) in scenario I (see Table 4.2), respectively. In addition, the dry unit weight of
sands usually varies from 13.3 to 21.7 kN/m3, and it is also related to /′ (Kulhawy

Table 4.5 Summary of relevant information and prior uncertain estimates for scenario II

Type Relevant
information

Correlations Prior
uncertain
estimates

No. of
evidence

Geology Fluvial and
overbank
deposits
(Briaud 2000)

Alluvium deposit—
relatively low
in-situ density:
loose or medium
sand (Heim 1990)

Table 2.8
after
Kulhawy
and
Mayne
(1990)

/′ 28°–40° (1)

Table 2.9
after
Kulhawy
and
Mayne
(1990)

/′ 30°–40° (2)

Alluvium Deposit
(Heim 1990)

Rollings
and
Rollings
(1996)

/′ 30°–40° (3)

Geotechnical
properties

Classification:
silty sand, clean
sand, and
clayey sand
(Briaud 2000)

Sand Phoon
and
Kulhawy
(1999a)

/′ 35°–41° (4)

33°–43° (5)

l 37.6° (6)

36.7° (7)

Phoon
and
Kulhawy
(1999b)

r 3.7°–
5.5°

(8)

Phoon
and
Kulhawy
(1999a)

k 2–6 m (9)

Dry unit weight:
13.3–21.7 kN/m3

(Table 2.10 after
Kulhawy and
Mayne (1990))

Figure 2.
7 after
Kulhawy
and
Mayne
(1990)

/′ 27.0°–
37.0°

(10)

Sand or silty sand Table 2.
11 after
Kulhawy
and
Mayne
(1990)

/′ 28°–45° (11)
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and Mayne 1990). This leads to evidence (10), i.e., a possible range of /′ from
27.0° to 37.0°. Kulhawy and Mayne (1990) also reported that the effective friction
angle of sand or silty sand ranges from 28° to 45°, i.e., evidence (11).

4.10.3 Strength and Weight of the Evidence and Statistical
Analysis

4.10.3.1 Strength and Weight of the Evidence

Table 4.6 summarizes the strength (i.e., Column 7) and weight (i.e., Column 8) of
the 11 pieces of evidence and the procedure of evaluating their strength and weight,
including source of the information (i.e., Column 2), quantity of data (i.e., Column
3), procedure of estimation (i.e., Column 4), type of analysis (i.e., Column 5), and
type of correlation (i.e., Column 6). As mentioned above, evidence (8) and (9) in
this scenario are the same as evidence (2) and (3) in scenario I (see Table 4.2),
respectively, and the procedures of evaluating their strength and weight have been
described in Sect. 4.9.3.1. For further illustration, procedures of evaluating the
strength and weight of evidence (3) and (11) in this scenario are described below.

In evidence (3), the type of deposits underlying the sand site is intuitively
inferred from the geological information, and the range of /′ is then intuitively
estimated from the deposit type. Only the intuitive inference is used to estimate the
range of /′ in evidence (3). Thus, the strength of the evidence is weak. The
geological information in evidence (3) is obtained from an official report of the sand
site (Briaud 2000). Thus, the weight of the geological information is high. The
range of /′ in evidence (3) is qualitatively estimated from the geological infor-
mation, so that the weight of the evidence is obtained through decreasing the level
of the weight of the relevant information by one level, i.e., moderate.

In evidence (11), the range of /′ is estimated from the soil classification
information by an empirical correlation (Kulhawy and Mayne 1990). Thus, the
strength of the evidence is strong. The soil classification information in evidence
(11) is obtained from an official report of the sand site (Briaud 2000). Thus, the
weight of the soil classification information is high. The range of /′ in evidence
(11) is qualitatively estimated from the geological information, so the weight of the
evidence is obtained through decreasing the level of the weight of the relevant
information by one level, i.e., moderate.

4.10.3.2 Assembling Evidence and Statistical Analysis

Table 4.7 summarizes the strength and weight of evidence with regard to /′, l, r,
and k, respectively. Six evidence groups (i.e., evidence groups (I)–(VI)) are
obtained with their respective strength and weight.
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For /′, there are in total 7 pieces of relevant evidence that are assembled into
evidence groups (I)–(III) by their strength and weight. Evidence group (I) has one
piece of evidence with weak strength and moderate weight, i.e., evidence (3).
Evidence group (II) consists of 3 pieces of evidence with moderate strength and
moderate weight, i.e., evidence (1), (2), and (10). Evidence group (III) is comprised
of 3 pieces of evidence with strong strength and moderate weight, i.e., evidence (4),
(5), and (11).

Using Eqs. (4.3) and (4.4), the range of /′ from 30° to 40° in evidence (3) (i.e.,
evidence group (I)) leads to l = 35.0° and r ¼ 1:7�, respectively. In evidence group
(II), the 3 possible ranges of /′ (i.e., evidence (1), (2), and (10)) provide 3 possible
values of l (i.e., 34.0°, 35.0°, and 32.0°) and r (i.e., 2.0°, 1.7°, and 1.7°) by
Eqs. (4.3) and (4.4), respectively. In evidence group (III), the 3 possible ranges of /′
(i.e., evidence (4), (5), and (11)) provide 3 possible values of l (i.e., 38.0°, 38.0°, and
36.5°) and r (i.e., 1.0°, 1.7°, and 2.8°) by Eqs. (4.3) and (4.4), respectively. Note that
each range of /′ in evidence group (I), (II), and (III) leads to a pair of estimates of l
and r. These estimates of l and r should be used with caution during subjective
probability assessment since they are obtained from only one piece of evidence.

There are 2 pieces of evidence (i.e., evidence (6) and (7)) about the mean value l
of /′ in the evidence list, which suggest that l is equal to 37.6° or 36.7°, i.e.,
evidence group (IV). For the standard deviation r of /′, there is a possible range
(i.e., from 3.7° to 5.5° in evidence (8)) in the evidence list. In addition, there is a
possible range (i.e., from 2.0 to 6.0 m in evidence (9)) of k in the evidence list.

4.10.3.3 Reassembling the Relevant Evidence for Each sub-objective

Table 4.8 summarizes the relevant evidence (i.e., Column 3) for each assessment
sub-objective (i.e., Column 1) together with the strength (i.e., Column 4) and

Table 4.7 Summary of the evidence for scenario II

Variable No. of
evidence

Prior uncertain
estimates

Strength Weight No. of evidence
group

/′ (3) 30°–40° Weak Moderate (I)

(1) 28°–40° Moderate Moderate (II)

(2) 30°–40° Moderate Moderate

(10) 27°–37° Moderate Moderate

(4) 35°–41° Strong Moderate (III)

(5) 33°–43° Strong Moderate

(11) 28°–45° Strong Moderate

l (6) 37.6° Strong Moderate (IV)

(7) 36.7° Strong Moderate

r (8) 3.7°–5.5° Strong Moderate (V)

k (9) 2–6 m Moderate Low (VI)
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weight (i.e., Column 5) of the evidence. There are a total of 9 pieces of evidence on
evaluating probability of l, including evidence (3) with weak strength and mod-
erate weight, evidence (1), (2), and (10) with moderate strength and moderate
weight, and evidence (4), (5), (6), (7), and (11) with strong strength and moderate
weight. 8 pieces of evidence are obtained for evaluating probability of r, including
evidence (3) with weak strength and moderate weight, evidence (1), (2), and
(10) with moderate strength and moderate weight, and evidence (4), (5), (8), and
(11) with strong strength and moderate weight. Only one piece of evidence is
obtained for evaluating probability of k, i.e., evidence (9), with moderate strength
and low weight.

4.10.4 Results of Subjective Probability Assessment

Based on the relevant evidence on each sub-objective (see Tables 4.7 and 4.8),
percentiles of l, r, and k are elicited from the assessor using the equivalent lottery
method with the aid of the questionnaire shown in Appendix 4.1. Table 4.9 sum-
marizes the percentiles of l, r, and k obtained from the equivalent lottery method in
Rows 2, 3, and 4, respectively. For the mean l, 1 %, 25 %, 50 %, 75 % and 99 %
percentiles are obtained from the equivalent lottery method according to the nine
pieces of evidence shown in Table 4.8, and they are l0:01 ¼ 28:0�; l0:25 ¼
33:0�; l0:5 ¼ 36:0�; l0:75 ¼ 38:0�; and l0:99 ¼ 45:0�. For the standard deviation r,
1 %, 50 %, and 99 % percentiles are evaluated using the eight pieces of evidence
shown in Table 4.8, and they are r0:01 ¼ 1:0�; r0:5 ¼ 2:5�; and r0:99 ¼ 5:5�. The
information on k is much less than that of l and r (see Table 4.8). Therefore, only

Table 4.8 Summary of relevant evidence for each sub-objective of scenario II

sub-objective No. of evidence
group

No. of
Evidence

Strength of the
evidence

Weight of the
evidence

Evaluating
probability of l

(I) (3) Weak Moderate

(II) (1), (2), (10) Moderate Moderate

(III) (4), (5), (11) Strong Moderate

(IV) (6), (7) Strong Moderate

Evaluating
probability of r

(I) (3) Weak Moderate

(II) (1), (2), (10) Moderate Moderate

(III) (4), (5), (11) Strong Moderate

(V) (8) Strong Moderate

Evaluating
probability of k

(VI) (9) Moderate Low
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1 % and 99 % percentiles of k are evaluated, and they are l0:01 ¼ 2:0m and
l0:99 ¼ 6:0m: Using the simplified method and the least squares regression method
described in Sect. 4.7.4.1, prior distributions of l, r, and k are obtained from their
respective percentiles, as discussed in the following three subsections.

4.10.4.1 Prior Distribution of the Mean l

Figure 4.6a shows the CDF of l obtained from the simplified method and the least
squares regression method by a solid line with open circles and a dark solid line,
respectively. By the simplified method, the CDF of l increases linearly between the
adjacent percentiles (i.e., adjacent open circles). By the least squares regression
method, a Gaussian CDF with a mean of 35.7° and standard deviation of 3.7° is
obtained, and it is in good agreement with the CDF (i.e., the line with open circles)
obtained from the simplified method. Figure 4.6a also includes the 95 % confidence
interval of the CDF obtained from the least squares regression method by dashed
lines. The five percentiles of l obtained from the SPAF fall within the 95 %
confidence interval of the Gaussian CDF. Therefore, the Gaussian CDF represents
the assessment outcomes (i.e., percentiles of l) from the SPAF reasonably well.
Figure 4.6b shows the PDF of l obtained from the simplified method and the least
squares regression method by a histogram with four bins and a dark solid line,
respectively. The Gaussian PDF of l obtained from the least squares regression
method compares favorably with the histogram of l obtained from the simplified
method. Both can be used as the prior distribution of l in the Bayesian framework
developed in Chap. 3.

4.10.4.2 Prior Distribution of the Standard Deviation r

Figure 4.7a shows the CDF of r obtained from the simplified method by a solid line
with open circles. The CDF value of r increases linearly from 0.01 to 0.5 as r
increases from 1.0° to 2.5° and then increases linearly from 0.5 to 0.99 as r
increases from 2.5° to 5.0°. Figure 4.7b shows the PDF of r obtained from the
simplified method by a histogram with two bins (i.e., from 1.0° to 2.5° and from
2.5° to 5.5°), and the PDF values of r in the two bins are about 0.33 and 0.16,

Table 4.9 Summary of percentiles of the mean, standard deviation, and correlation length for
scenario II

Cumulative probability 0.01 0.25 0.5 0.75 0.99

Mean l (°) 28.0 33.0 36.0 38.0 45.0

Standard deviation r (°) 1.0 N/A 2.5 N/A 5.5

Correlation length k (m) 2.0 N/A N/A N/A 6.0
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respectively. The PDF of r (see Fig. 4.7b) can be taken as the prior distribution of r
in the Bayesian framework developed in Chap. 3.

4.10.4.3 Prior Distribution of the Correlation Length k

Figure 4.8a shows the CDF of k obtained from the simplified method by a solid line
with open circles. The CDF value of k increases linearly from 0.01 to 0.99 as k
increases from 2.0 to 6.0 m. Figure 4.8b shows the PDF of k obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 2.0 to 6.0 m), and the PDF value of k is about 0.25. The
probability distribution of k obtained in this scenario remains the same as that
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obtained in scenario I. It is not surprising to see this because the same information
(i.e., a possible range of k from 2.0 to 6.0 m) on k is used in both scenarios. Similar
to scenario I, the uniform PDF of k (see Fig. 4.8b) can be taken as the prior
distribution of k in the Bayesian framework developed in Chap. 3.

4.10.5 Final Confirmation

All the areas under the respective PDFs (see Figs. 4.6b, 4.7b, and 4.8b) of l, r, and k
are summed up to unity. This is consistent with the basic probability axiom that the
integration on a PDF is unity. The PDF value of l in the bin from 36.0° to 38.0° is
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greater than that of l in the other bins, as shown in Fig. 4.6b. This is consistent with
the information provided by evidence groups (III) and (IV) (see Tables 4.7 and 4.8),
both of which have strong strength and moderate weight. Although the information
provided by evidence groups (I) and (II) suggests that l is 35.0° or varies from 32.0°
to 35.0° (see Sect. 4.10.3.2), they have relatively weak strength (i.e., weak and
moderate) compared with evidence groups (III) and (IV) (see Table 4.8). The PDF of
l reflects properly the information provided by prior knowledge.

The PDF value of r in the bin from 1.0° to 2.5° is greater than that of r in the bin
from 2.5° to 5.5°. This is consistent with the information provided by evidence
groups (I), (II), and (III) (see Sect. 4.10.3.2). Although the evidence group
(V) suggests strongly that r varies from 3.7° to 5.5°, the evidence group (V) only
contains one piece of evidence (see Table 4.7) and should not be overemphasized.
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The PDF of r reflects properly the information provided by prior knowledge.
Examination of the evidence is performed cautiously. It is found that no evidence is
overlooked or overemphasized and the weight and strength of the evidence are
properly taken into account when determining the percentiles of l, r, and k.

It is also noted that the prior distributions of l and r (Figs. 4.6 and 4.7) obtained
in this scenario are more informative than those obtained in scenario I (Figs. 4.3
and 4.4). This is reasonable in the sense that more information on l and r is used in
this scenario (see Tables 4.7 and 4.8). In addition, the ranges of l (i.e., from 28.0°
to 45.0°), r (i.e., from 1.0° to 5.5°), and k (i.e., from 2.0 to 6.0 m) obtained from the
SPAF are generally consistent with the actual belief of the assessor. The outcomes
obtained from the SPAF are then confirmed. The probability distributions (see
Figs. 4.6, 4.7 and 4.8) of l, r, and k reflect the confidence levels of prior
knowledge on them, respectively, and quantify properly the information provided
by the prior knowledge.

4.11 Summary and Conclusions

This chapter proposed a subjective probability assessment framework (SPAF) based
on a stage cognitive model of engineers’ cognitive process. The SPAF assists
engineers in utilizing prior knowledge in a relatively rational way and expressing
quantitatively their engineering judgments in a probabilistic manner. The assess-
ment outcomes (e.g., probability distributions) obtained from the SPAF are then
taken as the prior distribution in the Bayesian framework developed in Chap. 3.

The SPAF consists of five steps: specification of assessment objectives (i.e., the
soil property and its statistics of interest), collection of relevant information and
preliminary estimation, synthesis of the evidence, numerical assignment, and
confirmation of assessment outcomes. The steps of the proposed SPAF are corre-
sponding to the stages of cognitive process of engineers. By this means, engineers
can formulate their engineering judgments naturally using prior knowledge and
express quantitatively the engineering judgments using subjective probability with
relative ease. Several suggestions were provided for each step to assist engineers in
utilizing prior knowledge in a relatively rational way and reducing the effects of
cognitive biases and limitations during subjective probability assessment.

The proposed SPAF is applied to characterize probabilistically the sand effective
friction angle at a US National Geotechnical Experimentation Site (NGES) at Texas
A&M University, and it is illustrated under two scenarios: one with sparse prior
knowledge and the other with a reasonable amount of prior knowledge. It is shown
that the SPAF is applicable for both scenarios. When the prior knowledge is sparse,
the prior distribution obtained from the proposed approach is relatively uninfor-
mative (e.g., uniform distributions). As the information provided by the prior
knowledge improves, the proposed approach provides informative prior
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distribution. The prior distribution obtained from the SPAF quantifies properly the
information provided by the prior knowledge.

Appendix 4.1: Questionnaire for Implementing
the Equivalent Lottery Method

This appendix provides a questionnaire for implementing the equivalent lottery
method. The questionnaire starts with a question (i.e., Q1), that is used to determine a
reference prize for the equivalent lottery method, followed by the second and third
questions (i.e., Q2 and Q3) for determining 1 % and 99 % percentiles (i.e., hi;0:01 and
hi;0:99) of the variable hi concerned, respectively. Then, the fourth question (i.e., Q4)
can be used to estimate the 50 % percentile (i.e., hi;0:5) of hi if sufficient information
on hi is available. The questionnaire can be continued to determine percentiles of hi
progressively until engineers believe that there is no sufficient information on hi to
balance the two lotteries in the equivalent lottery method for a given range of hi.

Questionnaire

Q1: What is the prize that you want recently? Please write it down.
Answer: A1

Q2: What is the minimum possible value of hi?
Answer: A2

Q3: What is the maximum possible value of hi?
Answer: A3

Q4: There are two lotteries as follows.

Lottery 1:

Win A1 if A2 � hi � as occurs.
Win nothing if as\hi �A3 occurs.

Lottery 2:

Win A1 or nothing equally likely.

Please adjust the value as fromA3 toA2 gradually until you feel indifferent between
the two lotteries. Please write down the resulting value of as and denote it by A4.

Note that the questionnaire shall be continued to determine percentiles of hi
progressively using different ranges of hi in the equivalent lottery method if there is
sufficient information on hi to balance the two lotteries for a given range of hi.
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