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Preface

In the last few decades, reliability-based design (RBD) approaches/codes and
probabilistic analysis methods, such as probabilistic slope stability analysis with
Monte Carlo simulation (MCS), have been developed for geotechnical structures to
deal rationally with various uncertainties (e.g., inherent spatial variability of soils
and uncertainties arising during geotechnical site characterization) in geotechnical
engineering. Applications of the RBD approaches/codes and probabilistic analysis
methods in turn call for the needs of probabilistic site characterization, which
describes probabilistically soil properties and underground stratigraphy based on
both prior knowledge (i.e., site information available prior to the project) and
project-specific test results. How to combine systematically prior knowledge and
project-specific test results in a probabilistic manner, however, is a challenging task.
This problem is further complicated by the inherent spatial variability of soils,
uncertainties arising during site characterization and the fact that geotechnical site
characterization generally only provides a limited number of project-specific test
data.

This book focuses on probabilistic characterization of uncertainties in geotech-
nical properties and their propagation in slope stability analysis using MCS. Several
probabilistic approaches are developed and presented in this book for probabilistic
site characterization and reliability analysis of slope stability. These approaches
effectively tackle the following unresolved issues in geotechnical risk and relia-
bility, which hamper the applications of probabilistic analysis and design approach
in geotechnical practice:

1. How to determine project-specific statistics and probability distributions of
geotechnical properties based on both prior knowledge and a limited number of
project-specific test data obtained during geotechnical site characterization?
(Chaps. 3–6)

2. How to express engineering judgments in a quantitative and transparent manner
during geotechnical site characterization? (Chap. 4)
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3. How to delineate underground stratigraphy (including number and boundaries
of soil layers) probabilistically using a limited number of site observation data?
(Chap. 6)

4. How to efficiently incorporate various geotechnical-related uncertainties (e.g.,
uncertainties in geotechnical properties) into slope stability analysis using
MCS? (Chap. 7)

5. How to shed light on the relative contributions of various uncertainties to slope
failure probability based on MCS? (Chap. 8)

6. How to make MCS-based probabilistic analysis approach of slope stability
accessible to geotechnical practitioners who are usually unfamiliar with prob-
ability theory and statistics? (Chaps. 7 and 8)

As far as the authors are aware, this is the first book to revisit geotechnical site
characterization from a probabilistic point of view and provide rational tools to
probabilistically characterize geotechnical properties and underground stratigraphy
using limited information obtained from a specific site. This book also develops
efficient MCS approaches for slope stability analysis and implements these
approaches in a commonly available spreadsheet environment by a package of
worksheets and functions/add-in in Excel. These approaches and the software
packages are readily available to geotechnical practitioners and alleviate them from
reliability computational algorithms. The authors gratefully acknowledge the
financial support by the National Science Fund for Distinguished Young Scholars
(Project No. 51225903), the National Natural Science Foundation of China (Project
Nos. 51329901, 51409196, 51579190, 51528901), the National Program on Key
Research Project (2016YFC0800208), and the Natural Science Foundation of
Hubei Province of China (Project No. 2014CFA001).

The authors would like to express my heartfelt gratitude toward many colleagues
who give invaluable advice and insightful comments on this book. We would also
thank Miss Shuo Zheng for her assistance in word processing of the manuscript and
Mr. Fuping Zhang, Mr. Jian He, Mr. Xin Liu, and Ms. Mi Tian for their help on the
proofread of the manuscript. Last but not least, the authors’ deep gratitude goes to
their families for their loving consideration and continuous support to encourage us
to finish this book.

Wuhan, China Zijun Cao
Hong Kong, China Yu Wang
Wuhan, China Dianqing Li
March 2016
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Chapter 1
Introduction

1.1 Background

1.1.1 Uncertainties in Soil Properties

Geotechnical materials are natural materials, and their properties are affected by
various factors during their formation process, such as properties of their parent
materials, weathering and erosion processes, transportation agents, and conditions
of sedimentation (e.g., Vanmarcke 1977; Jaksa 1995; Phoon and Kulhawy 1999a;
Baecher and Christian 2003; Mitchell and Soga 2005). Properties of geotechnical
materials, therefore, vary spatially, which is usually known as “inherent spatial
variability” (e.g., Vanmarcke 1977, 1983). In addition to inherent spatial variability
of soils, various uncertainties are also incorporated into the estimated soil properties
during geotechnical site characterization (e.g., Christian et al. 1994; Kulhawy 1996;
Phoon and Kulhawy 1999a), including measurement errors arising from imperfect
test equipments and/or procedural–operator errors, statistical uncertainty resulted
from insufficient number of tests, and transformation uncertainty associated with the
transformation models that are used to interpret test results. The inherent spatial
variability and uncertainties that arise during geotechnical site characterization
affect the estimations of soil properties and underground stratigraphy. This subse-
quently influences the analysis and/or designs of geotechnical structures.

1.1.2 Probabilistic Analysis of Geotechnical Structures

The uncertainties (including inherent spatial variability of soils) in soil properties
can be rationally incorporated into geotechnical analysis and/or designs using
probability theory and statistics. In the context of probability theory and statistics,
the performance of geotechnical structures is assessed probabilistically and is
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frequently measured by reliability index, b, and probability of failure, Pf, which is
defined as the probability of the performance requirements (e.g., requirements of
ultimate limit state (ULS) and serviceability limit state (SLS)) not being satisfied.

In the last few decades, several probabilistic analysis methods have been
developed to estimate the b and Pf of geotechnical structures, such as the first-order
second-moment method (FOSM) (e.g., Tang et al. 1976; Christian et al. 1994;
Hassan and Wolff 1999), first-order reliability method (FORM, also referred to as
Hasofer-Lind method) (e.g., Low and Tang 1997; Low et al. 1998; Low 2003), and
direct Monte Carlo simulation (MCS) method (e.g., El-Ramly et al. 2002; Griffiths
and Fenton 2004; El-Ramly et al. 2005). These probabilistic analysis methods use
probabilistic estimations (e.g., statistics and probability distributions) of soil
properties and underground stratigraphy as input and return b and/or Pf of a pre-
defined design of geotechnical structures as output.

Among these probabilistic analysis methods, the direct MCS method is gaining
popularity in probabilistic analysis of geotechnical structures because of its
robustness and conceptual simplicity. Consider, for example, using direct MCS
method to estimate slope failure probability. Direct MCS method takes slope
geometry, probabilistic estimations of soil properties and underground stratigraphy,
and other necessary information as inputs and generates nMC sets of random
samples of uncertain system parameters from their respective prescribed probability
distributions. Using a given deterministic model (e.g., limit equilibrium methods) of
slope stability analysis and the nMC sets of random samples, nMC possible values of
factor of safety (FS) are obtained. Then, statistical analysis is performed to estimate
slope failure probability according to a predefined failure criterion (e.g., FS < 1).
To ensure a desired level of the accuracy of failure probability Pf estimated from
direct MCS, a rule-of-thumb criterion is commonly adopted that the number nMC of
direct MCS samples should be at least ten times greater than the reciprocal of the
probability level of interest, i.e., nMC > 10/Pf (e.g., Robert and Casella 2004; Wang
2011; Wang et al. 2011). As the probability level of interest decreases, the required
number of direct MCS samples increases rapidly. Direct MCS, therefore, suffers
from a lack of efficiency and resolution at small probability levels that are generally
of great interest to geotechnical practitioners (e.g., U.S. Army Corps of Engineers
1997). In addition, as pointed out by Baecher and Christian (2003), direct MCS
does not offer insights into relative contributions of various uncertainties to the
failure probability.

1.1.3 Reliability-Based Design of Geotechnical Structures

In contrast to probabilistic analysis of geotechnical structures, reliability-based
design (RBD) aims to determine an optimal design of geotechnical structures (e.g.,
Wang 2011, Wang et al. 2011), which satisfies predefined performance require-
ments (e.g., target degrees of reliability defined by target reliability index or target
failure probability). During the past two decades, several RBD codes have been
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developed and implemented around the world, such as the Eurocode 7 (BSI 2010)
in Europe, the load and resistance factor design (LRFD) or the multiple resistance
factor design (MRFD) for foundations (Barker et al. 1991; Phoon et al. 1995; Phoon
et al. 2003a, b; Paikowsky et al. 2004; Paikowsky et al. 2010) in the USA, the
National Building Code (NBC) for foundations (Becker 1996) in Canada, and the
Geocode 21 (i.e., JGS4001 (Japanese Geotechnical Society 2006; Honjo et al.
2010)) in Japan. These RBD codes use the probability theory to address various
uncertainties in design practice, such as uncertainties in soil properties.
A characteristic (or nominal) value of soil properties is used in the design codes,
and it is typically defined as a prespecified percentile (e.g., mean or lower 5 %
percentile) of the probability distribution of soil properties.

Note that both the probabilistic analysis methods (e.g., FOSM, FORM, and
MCS) and RBD codes (e.g., Eurocode 7, LRFD, MRFD, NBC, and Geocode 21)
require probabilistic estimations (e.g., statistics and probability distributions) of soil
properties and underground stratigraphy as input. Therefore, applications of these
probabilistic analysis methods and RBD codes in turn call for the needs of prob-
abilistic site characterization, which interprets the site characterization results in a
probabilistic manner and describes soil properties and underground stratigraphy
probabilistically. Such probabilistic site characterization, however, has been a
challenging task, as discussed in the next subsection.

1.1.4 Geotechnical Site Characterization

In general, geotechnical site characterization is a multi-step process that consists of
desk study, site reconnaissance, in situ investigation, laboratory testing, interpre-
tation of site observation data, and inferring soil properties and underground
stratigraphy (Clayton et al. 1995; Mayne et al. 2002). Desk study and site recon-
naissance provide prior knowledge about the site (i.e., site information available
prior to the project, such as engineering experience and engineering judgments).
After desk study and site reconnaissance, project-specific test results (i.e., site
observation data) can be obtained from in situ investigation work (e.g., in situ
boring and testing) and/or laboratory testing. Then, transformation models (e.g.,
empirical regressions) between the measured property and the design property are
used to interpret site observation data (e.g., Kulhawy and Mayne 1990; Phoon and
Kulhawy and Trautmann 1999; Mayne et al. 2002). Based on the interpretation
outcomes of site observation data and prior knowledge, geotechnical engineers are
responsible for estimating the soil properties and underground stratigraphy.
Geotechnical site characterization, therefore, relies on both prior knowledge and
site observation data (e.g., Clayton et al. 1995; Mayne et al. 2002; Wang et al.
2010). The prior knowledge and site observation data are not perfect information
but are associated with uncertainties to some degree (e.g., Baecher 1983; Christian
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et al. 1994; Kulhawy 1996; Vick 2002; Baecher and Christian 2003), such as
inherent spatial variability of soils, statistical uncertainty, measurement errors,
transformation uncertainty associated with transformation models, and uncertainties
of engineers’ expertise.

Probability theory and statistics have been applied to characterize these uncer-
tainties (e.g., Lumb 1966; Vanmarcke 1977, 1983; Baecher 1983; Jaksa 1995;
Kulhawy and Trautmann 1996; Phoon and Kulhawy 1999a, b; Vick 2002). How
these uncertainties propagate during different stages of geotechnical site charac-
terization, however, has not been explicitly explored. This poses a challenge in
dealing rationally with the uncertainties in geotechnical site characterization,
including inherent spatial variability, statistical uncertainty, measurement errors,
and transformation uncertainty. In addition, it remains a challenging task for
geotechnical engineers to integrate systematically the prior knowledge and site
observation data in a probabilistic manner. This problem is further complicated by
the fact that only a limited number of project-specific test results are obtained
during geotechnical site characterization. The number of project-specific test results
is generally too sparse to generate meaningful statistics (e.g., mean, standard
deviation, and the other high-order statistical moments) and probability distribu-
tions of soil properties for probabilistic analysis and/or designs of geotechnical
structures.

1.2 Objectives

This book addresses the challenges in probabilistic site characterization and prob-
abilistic slope stability analysis with MCS. A probabilistic framework is first
developed for geotechnical site characterization, which integrates systematically
prior knowledge and project-specific test results to estimate probabilistically soil
properties and underground stratigraphy. The probabilistic framework addresses
directly and explicitly the inherent spatial variability of soils and accounts rationally
for various uncertainties that arise during geotechnical site characterization. These
uncertainties (including inherent spatial variability of soils) are then incorporated
into slope stability analysis by MCS. An advanced MCS method called “subset
simulation” (Au and Beck 2001, 2003) is applied to improve the efficiency and
resolution of MCS-based probabilistic slope stability analysis at relatively small
probability levels. With the aid of improved efficiency, effects of inherent spatial
variability of soil properties and critical slip surface uncertainty on slope failure
probability are explored. In addition, the relative contributions of various uncer-
tainties to slope failure probability are assessed using failure samples generated in
MCS. The detailed objectives of this book are summarized in the following
subsections.
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1.2.1 Uncertainty Propagation During Geotechnical Site
Characterization

This book starts with revisiting the procedure of geotechnical site characterization
from an uncertainty propagation point of view. The propagation of inherent spatial
variability of soils, statistical uncertainty, measurement errors, and transformation
uncertainty is explored and depicted explicitly during different stages of geotech-
nical site characterization.

1.2.2 Bayesian Framework for Geotechnical Site
Characterization

With an improved understanding of uncertainty propagation during geotechnical
site characterization, a Bayesian framework is developed that integrates systemat-
ically prior knowledge and project-specific test results for probabilistic characteri-
zation of soil properties and underground stratigraphy (i.e., the number and
boundaries of soil layers). The Bayesian framework is generally and equally
applicable for different types of prior knowledge and different numbers of site
observation data. It addresses directly and explicitly the inherent spatial variability
of soils and accounts rationally for various uncertainties (i.e., statistical uncertainty,
measurement errors, and transformation uncertainty) that arise during geotechnical
site characterization.

1.2.3 Prior Knowledge and Prior Distribution

Under the Bayesian framework, the information provided by prior knowledge is
quantitatively reflected by prior distribution in a probabilistic manner. When only a
typical range of the soil parameter concerned is available as prior knowledge, a
uniform distribution that covers the typical range can be taken as the prior distri-
bution of the soil parameter in the Bayesian framework. As prior knowledge
improves, a more sophisticated and informative prior distribution can be estimated
from the prior knowledge.

Based on a stage cognitive model of engineers’ cognitive process, a subjective
probability assessment approach is developed to estimate prior distribution from
prior knowledge. The subjective probability assessment approach assists engineers
in utilizing the prior knowledge in a relatively rational way and expressing quan-
titatively their engineering judgments in a probabilistic manner. The prior distri-
bution obtained from the subjective probability assessment approach quantifies
properly information provided by the prior knowledge and is readily used in the
Bayesian framework.
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1.2.4 Probabilistic Site Characterization Using Limited Site
Observation Data

The Bayesian framework developed in this book is equally applicable for different
numbers of site observation data. When project-specific tests (e.g., standard pene-
tration tests (SPTs)) only provide sparse data, the Bayesian framework is further
developed as an equivalent sample approach that generates a large number of
equivalent samples of the soil property concerned for its probabilistic characteri-
zation using both prior knowledge and project-specific test results. The proposed
probabilistic approach takes advantage of prior knowledge in a rational way and
integrates systematically the prior knowledge and site observation data under the
Bayesian framework. It effectively tackles the difficulty in generating meaningful
statistics and probability distributions from the usually limited number of site
observation data obtained during geotechnical site characterization and provides
proper probabilistic characterization of the soil property for probabilistic analysis
and/or designs in geotechnical engineering practice.

1.2.5 Probabilistic Site Characterization Using a Large
Number of Site Observation Data

When a large number of site observation data can be obtained directly from
project-specific tests (e.g., near-continuous measurements during a cone penetration
test (CPT)), the inherent spatial variability of soil properties can be explicitly
modeled using random field theory. In such a case, a Bayesian approach is
developed for probabilistic site characterization using the Bayesian framework
proposed in this book together with the random field theory. The proposed
Bayesian approach combines probabilistically prior knowledge and site observation
data under the Bayesian framework and addresses directly and explicitly the
inherent spatial variability of the soil property concerned using the random field
theory. It identifies properly the most probable number and boundaries of statisti-
cally homogenous soil layers and estimates probabilistically the soil property of
interest in each soil layer simultaneously.

1.2.6 Probabilistic Slope Stability Analysis Using Subset
Simulation

Inherent spatial variability of soils and various uncertainties that arise during
geotechnical site characterization can be properly incorporated into probabilistic
slope stability analysis, using MCS. A MCS-based probabilistic slope stability
analysis approach is developed that implements subset simulation in a commonly
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available spreadsheet environment by a package of worksheets and
functions/Add-In in Excel with the aid of Visual Basic for Application (VBA). The
Excel spreadsheet software package decouples deliberately the worksheets and
functions/Add-In for deterministic slope stability analysis and those for reliability
analysis (e.g., uncertainty modeling worksheets and subset simulation Add-In), so
that the reliability analysis can proceed as an extension of deterministic analysis in a
non-intrusive manner. This allows deterministic analysis of slope stability and
reliability analysis to be performed separately by personnel with different expertise
and in a parallel fashion. The proposed MCS-based probabilistic slope stability
analysis approach improves the efficiency and the resolution at relatively small
probability levels. With the aid of improved efficiency, effects of the inherent spatial
variability of soil properties and the critical slip surface uncertainty on slope failure
probability are explored.

1.2.7 Probabilistic Failure Analysis of Slope Stability

Based on the failure samples generated in MCS, a probabilistic failure analysis
approach is developed to assess the relative contributions of various uncertainties to
slope failure probability. Subset simulation is, again, employed to improve effi-
ciency of generating failure samples in MCS and resolution of calculating slope
failure probability at small failure probability levels. The proposed probabilistic
failure analysis approach prioritizes and quantifies the effects of various uncer-
tainties on slope failure probability properly, and it gives results equivalent to those
from sensitivity studies on uncertain system parameters and, hence, saves additional
computational time and efforts for sensitivity studies.

1.3 Layout of the Book

This book is comprised of nine chapters. In this chapter, the research background
and objectives have been presented. Chapter 2 reviews the previous studies on
geotechnical site characterization, uncertainties in soil properties, Bayesian
approach, and probabilistic slope stability analysis, and summarizes in situ and
laboratory test results of a US National Geotechnical Experimentation Site (NGES)
at Texas A&M University reported in the literature.

Chapter 3 revisits the procedure of geotechnical site characterization from an
uncertainty propagation point of view and develops a Bayesian framework for
geotechnical site characterization. Then, Chap. 4 develops a subjective probability
assessment approach to estimate the prior distribution from prior knowledge.

Chapter 5 proposes an equivalent sample approach that generates a large number
of equivalent samples of the soil property concerned for its probabilistic charac-
terization, in which prior knowledge and limited project-specific test results (e.g.,
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SPT results) are integrated systematically under the Bayesian framework proposed
in Chap. 3. Using the equivalent sample approach, effects of the number of site
observation data and different types of prior knowledge on probabilistic charac-
terization of soil properties are explored.

Chapter 6 develops a Bayesian approach that utilizes both prior knowledge and a
relatively large number of project-specific test results (e.g., CPT results) to identify
the most probable number and boundaries of statistically homogenous soil layers
and to characterize probabilistically the soil property in each layer simultaneously.
The Bayesian framework proposed in Chap. 3 is applied again in Chap. 6 to
integrate probabilistically prior knowledge and project-specific test results. Using
the Bayesian approach, effects of confidence levels of prior knowledge on identi-
fication of statistically homogenous soil layers and probabilistic characterization of
soil properties are explored.

Chapter 7 develops a MCS-based probabilistic slope stability analysis approach
that implements subset simulation in a commonly available spreadsheet environ-
ment for improving the efficiency and the resolution at relatively small probability
levels. With the aid of improved efficiency, the probabilistic slope stability analysis
approach is used to explore the effects of the inherent spatial variability of soil
properties and the critical slip surface uncertainty on slope failure probability. Then,
Chap. 8 proposes a probabilistic failure analysis approach that makes use of failure
samples generated in MCS and analyzes these failure samples to assess the relative
contributions of various uncertainties to slope failure probability. Finally, Chap. 9
summarizes the study presented in this book and major conclusions.
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Chapter 2
Literature Review

2.1 Geotechnical Site Characterization

Geotechnical site characterization aims to delineate underground stratigraphy (in-
cluding the number and thicknesses or boundaries of soil layers) and to estimate soil
properties for geotechnical analysis and/or designs. As shown in Fig. 2.1, it is a
multi-step process that can be divided into six stages: desk study, site reconnais-
sance, in situ investigation, laboratory testing, interpretation of observation data,
and inferring soil properties and underground stratigraphy, as discussed in the
following four subsections.

2.1.1 Desk Study and Site Reconnaissance

Geotechnical site characterization often starts with desk study to collect the existing
information about the specific site, including geological information, geotechnical
problems and properties, site topography, groundwater conditions, meteorological
conditions, existing construction and services, and previous land use (Clayton et al.
1995; Mayne et al. 2002). The existing information can be obtained from various
useful sources, as shown in Table 2.1.

Geological information (e.g., geological history) is available from existing
geological records (e.g., geological maps, reports, and publications), regional
guides (e.g., Geotechnical Engineering Office 2000 for Hong Kong), air pho-
tographs, soil survey maps and records, textbooks, etc. The information of
geotechnical problems and parameters (e.g., records of adverse ground conditions,
soil classification and properties, and stratigraphy) can be collected from existing
geotechnical reports (e.g., Kulhawy and Mayne 1990), peer-reviewed academic
journals (e.g., geotechnical journals, engineering geology journals, and civil engi-
neering journals), and previous ground investigation reports at or near the site.

© Zhejiang University Press and Springer-Verlag Berlin Heidelberg 2017
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Information on site topography can be gathered from topographical maps and stereo
air photographs. Well records, previous ground investigation reports, topographical
maps, and air photographs provide information about groundwater conditions of the
site (e.g., the groundwater level). Meteorological records provide information on
meteorological conditions. Furthermore, information on existing construction and
services and previous land use can be collected from topographical maps, air
photographs, mining records, etc.

In addition to these sources of existing information, expertise of engineers (i.e.,
the domain knowledge of engineers, such as knowledge on geology and geotech-
nical engineering and local experience) also provides useful information for
geotechnical site characterization. It is an integration of acquired information (in-
cluding knowledge from education, information from professional training, and
experience from deliberate practice) and engineers’ comprehension (Vick 2002).
Engineers’ expertise is internally organized in knowledge patterns, each of which
represents domain knowledge of a certain field or aspect (Vick 2002). The expertise
patterns are internally formed when a person grows from an amateur (e.g., student)
into a qualified engineer.

After desk study, site reconnaissance is carried out to confirm and supplement
the information that is previously collected during desk study. Furthermore, the
accesses and work conditions of the site are evaluated at the stage of site
reconnaissance.

5. Interpretation of observation 
data

3. In-situ investigation

4. Laboratory testing

6. Inferring soil properties and 
underground stratigraphy 

2. Site reconnaissance

1. Desk study
Fig. 2.1 Procedure of
geotechnical site
characterization (after Clayton
et al. 1995; Mayne et al.
2002)
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2.1.2 In Situ Investigation

In situ investigation work generally includes drilling and sampling, in situ testing,
and groundwater investigation (Clayton et al. 1995; Mayne et al. 2002). Herein,
four in situ tests are reviewed, including standard penetration test (SPT), cone
penetration test (CPT), pressuremeter test (PMT), and vane shear test (VST).

SPT consists of driving a standard thick-walled sampler into ground at the
bottom of a borehole through repeated blows of a standard hammer and measuring
the number (i.e., SPT N-value) of blow counts to advance the sampler to a vertical
distance of 300 mm after an initial seating drive of 150 mm (Clayton 1995; Mayne
et al. 2002). SPT provides soil samples for soil classification and laboratory tests. It
is relatively simple to perform and is suitable for many types of soils. The results

Table 2.1 Summary of existing information (after Clayton et al. 1995)

Type Source

Geology Geological maps

Geological reports

Geological publications

Regional guides

Air photographs

Soil survey maps and records

Geotechnical problems and
properties

Geotechnical reports

Academic journals (e.g., geotechnical journals, engineering
geology journals, and civil engineering journals)

Previous ground investigation reports

Site topography Topographical maps

Stereo air photographs

Groundwater conditions Topographical maps

Air photographs

Well records

Previous ground investigation reports

Meteorological conditions Meteorological records

Existing construction and
services

Topographical maps

Plans held by utilities

Mining records

Construction press

Previous land use Out-of-print topographical maps

Out-of-print geological maps

Air photographs

Airborne remote sensing

Archaeological society records

Mining records
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(SPT N-values) provided by SPT are, however, highly operator-dependent and are
highly variable (e.g., Kulhawy and Trautmann 1996; Mayne et al. 2002).

CPT involves pushing a cylindrical steel probe into the ground at a constant rate
and measuring the resistance to the penetration (Lunne 1997; Mayne et al. 2002).
CPT generally provides three measurements: cone tip resistance, sleeve friction,
and pore water pressure (e.g., piezocone test). During the past several decades, CPT
has gained popularity around the world because it is fast and largely
operator-independent and provides near-continuous measurements (e.g., Robertson
and Campanella 1983a, b; Robertson 1990; Mayne et al. 2002; Phoon et al. 2003;
Robertson 2009). However, CPT is not suitable for gravel and boulder deposits and
does not allow retrieval of soil samples (e.g., Mayne et al. 2002).

PMT expands a long cylindrical probe radially into surrounding ground to
measure the amount of volume of fluid and pressure used to inflate the probe (Mair
and Wood 1987; Briaud 1992; Mayne et al. 2002). The measurements subsequently
provide the relationship between the pressure and the deformation of soils. PMT
has a strong theoretical background and provides a complete stress–strain curve
(Mair and Wood 1987; Briaud 1992; Wang and O’Rourke 2007). The procedure of
PMT is, however, relatively complicated, and it is quite time-consuming and
expensive (Mayne et al. 2002).

VST consists of inserting a four-bladed vane into clay and rotating the device
about the vertical axis by applying a torque (Mayne et al. 2002). The measured peak
and residual values of the torque are used to calculate undrained shear strength and
in situ sensitivity of the clay. The procedure of VST is relatively simple. VST
provides a convenient way to evaluate the undrained shear strength for stability
analysis of embankment, footing, and excavation in soft clay (Bjerrum 1973; Mesri
1989; Mayne et al. 2002). The undrained shear strength measured by VST, how-
ever, needs to be corrected by multiplying it with an empirical correction factor
before it is used in calculation (Bjerrum 1973). In addition, application of VST is
limited to soft or stiff clay, and the results from VST might be affected by sand lens
and seams (Mayne et al. 2002).

2.1.3 Laboratory Testing

After in situ investigation work, soil samples are brought back to laboratory for
further testing. The laboratory tests include measuring index properties (e.g.,
moisture content, specific gravity, unit weight, particle size distribution, Atterberg
limits, and moisture–density relationship), strength and stiffness tests (e.g.,
unconfined compression test, direct shear test, and triaxial tests), permeability tests
(e.g., constant head test and falling head test), and consolidation tests (e.g.,
oedometer test) (Clayton et al. 1995; Mayne et al. 2002). The laboratory tests
provide measurements of index properties (e.g., water content, liquid limit, plastic
limit, and shrinkage limit), strength and stiffness parameters (e.g., undrained shear
strength, effective friction angle, Young’s modulus, and shear modulus), coefficient
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of permeability, coefficient of compressibility, and preconsolidation stress.
Laboratory tests generally result in more accurate measurements than those
obtained from in situ tests, but they are usually more time-consuming and expen-
sive than in situ tests (e.g., Mayne et al. 2002).

2.1.4 Interpretation of Observation Data and Inferring
the Site Subsurface Conditions

In situ and/or laboratory test measurements (i.e., measured property) might not be
the soil properties that can be directly used in geotechnical analysis and/or designs
(i.e., design property). The design property can be calculated from direct mea-
surements by transformation models (including empirical correlations and/or the-
oretical relationships) between the measured property and the design property.
Many transformation models between geotechnical properties are available in the
geotechnical literature (e.g., Kulhawy and Mayne 1990; Phoon and Kulhawy
1999b). For example, Tables 2.2 and 2.3 summarize the availability of transfor-
mation models for clays and sands (Kulhawy and Mayne 1990; Phoon and
Kulhawy 1999b), respectively.

For clays, both in situ (including SPT, CPT, PMT, and VST tests) and laboratory
test results can be used to estimate soil properties on soil classification, consistency,
in situ stress state (e.g., preconsolidation stress, overconsolidation ratio, and coef-
ficient of horizontal soil stress), strength (e.g., undrained shear strength), and
deformability (e.g., Young’s modulus, constrained modulus, and coefficient of
consolidation). In addition, laboratory tests of clays also provide measurements to
evaluate unit weight, effective friction angle, Poisson’s ratio, compression index,
coefficient of secondary compression, and coefficient of permeability.

For sands, in situ (including SPT, CPT, and PMT tests) and/or laboratory test
results can be used to estimate soil properties on soil classification, in situ stress
state (e.g., coefficient of horizontal soil stress), strength (e.g., effective friction
angle), deformability (e.g., Poisson’s ratio, Young’s modulus, compression index,
constrained modulus, and subgrade modulus), permeability (e.g., coefficient of
permeability), and liquefaction resistance (e.g., cyclic stress ratio). Several trans-
formation models that will be used in this book are given in Appendix 2.1.

Based on the information available prior to the project (including existing
information collected from various sources and the expertise of engineers), site
observation data obtained from in situ and laboratory tests, and corresponding
transformation models, geotechnical engineers estimate the site ground conditions
(including soil properties and underground stratigraphy) for geotechnical analysis
and/or designs. Finally, geotechnical engineers are responsible for producing a
geotechnical site characterization report that records the information about the site
and for providing some technical suggestions for geotechnical designs (Mayne et al.
2002).
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2.1.5 Challenges in Geotechnical Site Characterization

Geotechnical site characterization relies on both the information available prior to
the project (including the existing information collected from various sources and
engineers’ expertise) and site observation data (e.g., in situ and laboratory test
results). It is a challenging task for geotechnical engineers to integrate systemati-
cally and rationally the information from the two sources (i.e., information available
prior to the project and site observation data). This problem is further complicated
by the fact that only a small portion of geotechnical materials is tested and the
number of site observation data is usually limited during geotechnical site

Table 2.2 Summary of availability of transformation models for clays provided by Kulhawy and
Mayne (1990) (after Phoon and Kulhawy 1999b)

Property
category

Soil property Laboratory or
theory
correlation

In situ test correlation

SPT CPTc PMT VST

Basic
characterization

Classification ✓a ×b ✓ × ×
Unit weight ✓ × × × ×
Consistency × ✓ ✓ × ×

In situ stress
state

Preconsolidation
stress

✓ ✓ ✓ ✓ ✓

Overconsolidation
ratio

✓ ✓ ✓ × ✓

Coefficient of
horizontal soil
stress

✓ ✓ ✓ ✓ ×

Strength Effective friction
angle

✓ × × × ×

Undrained shear
strength

✓ ✓ ✓ ✓ ✓

Deformability Poisson’s ratio ✓ × × × ×
Young’s modulus ✓ × × ✓ ×
Compression
index

✓ × × × ×

Constrained
modulus

✓ ✓ ✓ × ×

Coefficient of
consolidation

✓ × ✓ × ×

Coefficient of
secondary
compression

✓ × × × ×

Permeability Coefficient of
permeability

✓ × × × ×

a✓ = available
b× = unavailable
cIncluding piezocone test
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characterization (Wang et al. 2010). Furthermore, the challenges in geotechnical
site characterization become more profound because of the inherent spatial vari-
ability of soils and various uncertainties that arise during geotechnical site char-
acterization, as discussed in the next section.

2.2 Uncertainties in Soil Properties

During geotechnical site characterization, various uncertainties are incorporated
into the estimated soil properties (e.g., Christian et al. 1994; Kulhawy 1996; Phoon
and Kulhawy 1999a; Baecher and Christian 2003), including inherent variability of
soil properties, measurement errors, statistical uncertainty, and transformation
uncertainty, as discussed in the following four subsections.

2.2.1 Inherent Variability

Geotechnical materials are natural materials, and their properties are affected by
various factors during their formation process, such as properties of their parent

Table 2.3 Summary of availability of transformation models for sands provided by Kulhawy and
Mayne (1990) (after Phoon and Kulhawy 1999b)

Property
category

Soil property Laboratory or theory
correlation

In situ test correlation

SPT CPTc PMT

Basic
characterization

Classification ✓a ×b ✓ ×
Unit weight ✓ × × ×
Relative density × ✓ ✓ ×

In situ stress
state

Coefficient of
horizontal soil stress

✓ × ✓ ✓

Strength Effective friction
angle

✓ ✓ ✓ ✓

Deformability Poisson’s ratio ✓ × × ×
Young’s modulus ✓ ✓ × ✓

Compression index ✓ × × ×
Constrained modulus ✓ × ✓ ×
Subgrade modulus ✓ × × ×

Permeability Coefficient of
permeability

✓ × × ×

Liquefaction
resistance

Cyclic stress ratio × ✓ ✓ ×

a✓ = available
b× = unavailable
cIncluding piezocone test
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materials, weathering and erosion processes, transportation agents, and conditions
of sedimentation (Vanmarcke 1977; Jaksa 1995; Phoon and Kulhawy 1999a;
Baecher and Christian 2003; Mitchell and Soga 2005). Properties of geotechnical
materials, therefore, vary inherently. Such inherent variability is independent of the
state of knowledge about geotechnical properties and cannot be reduced as the
knowledge improves. Therefore, it is categorized as “aleatory uncertainty” in nature
(Baecher and Christian 2003).

Soil properties inherently vary from one location to another location in both
horizontal and vertical directions. The soil property at the same elevation is fre-
quently simplified and represented by a single variable (i.e., fully correlated along
horizontal direction). Such simplification is usually considered reasonable to some
degree for at least two reasons: (1) The soils at the same elevation went through
similar geological processes. Therefore, the values of a soil property at different
locations, but with the same elevation, are somewhat close to each other, and the
correlation of the soil property at different locations in horizontal direction is much
stronger than that in vertical direction (e.g., Phoon and Kulhawy 1996, 1999a);
(2) such simplification generally leads to conservative designs (e.g., Fenton and
Griffith 2007; Klammler et al. 2010). The remaining part of this subsection,
therefore, focuses only on spatial variation of soil properties in vertical direction.

Figure 2.2 shows spatial variation of a soil property x(D) along the depth D (i.e.,
in vertical direction), which can be decomposed into two components: the trend
function t(D) of the soil property and the remaining fluctuating component s
(D) (Lumb 1966; Vanmarcke 1977 and 1983; DeGroot and Baecher 1993; Phoon
and Kulhawy 1999a; Phoon et al. 2003). The soil property can be written as

xðDÞ ¼ tðDÞþ sðDÞ ð2:1Þ

in which t(D) represents the mean value of x(D) at a given depth; s(D) represents the
variation of x(D) at the given depth and has a mean of zero and a standard deviation
of rsðDÞ. Probability theory and statistics have been applied to model the inherent
spatial variability of soil properties since 1970s (Lumb 1966 and 1974; Vanmarcke

s(D)

t(D)

Depth (D)

x(D)Fig. 2.2 Spatial variability of
soil properties along the depth
(after Phoon and Kulhawy
1999a)

18 2 Literature Review



1977 and 1983; DeGroot and Baecher 1993; Jaksa 1995; Fenton 1999a, b;
Wang et al. 2010). Detailed modeling of Eq. (2.1) is further discussed in the
following two subsections.

2.2.1.1 Lumb’s Formulation

Lumb (1966) proposed three different forms of spatial variation of soil properties
along the depth: (1) Both t(D) and standard deviation rsðDÞ of s(D) are spatially
constant; (2) t(D) varies linearly along the depth, but rsðDÞ is spatially constant;
and (3) t(D) varies linearly along the depth and rsðDÞ increases with the depth.
Lumb (1966) examined the spatial variation of soil properties of four soils (i.e., silty
sand, clayey silt, sandy clay, and marine clay) and showed that (1) the tangent of
effective friction angles of silty sand and clayey silt has spatially constant mean and
standard deviation along the depth; (2) the mean of the compression index of sandy
clay increases linearly with the depth, while its standard deviation remains constant
along the depth; (3) the mean and standard deviation of the undrained shear strength
of marine clay increase as the depth increases; and (4) Gaussian distributions are in
good agreement with distributions of soil properties of the four soils except for
compression index of sandy clay, the distribution of which is close to a lognormal
distribution. The mean and standard deviation of soil properties were examined by
Lumb (1966), but the correlation of the variation of a soil property at different
locations was not considered. By this simplification, the soil property that is nor-
mally distributed has the following representation (e.g., Lumb 1966)

xðDÞ ¼ tðDÞþ rsðDÞz ð2:2Þ

in which z is a standard Gaussian random variable. If the soil property is lognor-
mally distributed, it can be written as (e.g., Ang and Tang 2007; Au et al. 2010)

xðDÞ ¼ expðtðDÞN þ rðDÞNzÞ ð2:3Þ

in which tðDÞN and rsðDÞN are the mean and standard deviation of the logarithm
lnðxðDÞÞ of xðDÞ.

2.2.1.2 Random Field Theory

Vanmarcke (1977 and 1983) developed the random field theory to characterize the
spatial variability of geotechnical materials, by which the correlation of a soil
property at different locations (i.e., autocorrelation) is taken into account rationally.
In the context of random field theory, a soil property within a statistically
homogenous soil layer is described by a series of random variables with the same
mean and standard deviation, and the autocorrelation among these random variables
depends on the correlation length (also sometimes known as “scale of fluctuation”)
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(Vanmarcke 1977 and 1983; Fenton and Griffiths 2008). The correlation length is a
separation distance, within which the soil property shows a relatively strong cor-
relation from point to point. In the space domain, a soil property that is normally
distributed can be written as (Ang and Tang 1984; Fenton and Griffiths 2008; Wang
et al. 2010)

xðDÞ ¼ llþ rLTZ ð2:4Þ

in which xðDÞ is a vector of the soil property of interest at different nD depths; D is a
depth vector; l and r are, respectively, the mean and standard deviation of the soil
property, which are spatially constant; l is a vector with nD components that are all
equal to one; Z is a standard Gaussian vector with nD components; and L is a nD by
nD upper triangular matrix obtained by Cholesky decomposition of the correlation
matrix R satisfying

R ¼ LTL ð2:5Þ

in which the (i, j)th entry is the correlation coefficient (i.e., qij) of the soil property at
the ith and jth depths and is calculated from a correlation function fq, which is a
function of the correlation length and describes the correlation of the variation of a
soil property at different locations. For a given correlation structure (or correlation
function), a random field is uniquely determined by the mean, standard deviation,
and correlation length. Based on a set of measurements (e.g., cone tip resistance
measured by a CPT test), the mean, standard deviation, and correlation length of the
measured properties can be estimated (e.g., Vanmarcke 1977; Jaksa 1995; Fenton
1999b). Note that applying random field theory to describe (or model) the inherent
spatial variability of soil properties involves two important issues: the statistical
homogeneity (or stationarity) and the correlation function, which are discussed in
the following two subsections, respectively.

2.2.1.3 Statistical Homogeneity and Data Transformation

Generally speaking, statistical homogeneity (or stationarity) means that the mean
and standard deviation of the soil property of interest are spatially constant, and the
autocorrelation only depends on the separate distance between two locations rather
than the absolute positions (e.g., Vanmarcke 1983; Fenton 1999a, b). Statistical
homogeneity is a significant prerequisite for conventional statistical analysis (e.g.,
calculating mean and standard deviation) on a set of observation data. If the
observation data are not stationary, data transformation techniques can be used to
transform the observed data into stationary data, such as detrending techniques for
non-constant trend component and variance transformation techniques (e.g., loga-
rithmic transformation and the Box–Cox transformation) for non-constant standard
deviation (e.g., Jaksa 1995).
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Detrending techniques, such as regression analysis and normalization method
(e.g., Jaksa 1995; Phoon et al. 2003), are widely used to remove the obvious trend
component. Regression analysis gives the best fit of a predefined trend function
based on the observation data. To some degree, the choice of the trend function is a
decision on how much of the spatial variability in observation data is considered as
a deterministic function, and correspondingly, the residual component in the
measurements is considered statistically and is modeled as a random process (i.e., a
random field in space domain) (Baecher 1987). The trend function can be linear or
polynomial, but, as pointed out by Lumb (1974), there are rarely sufficient data to
estimate any form more complicated than a linear trend in routine site characteri-
zation. The normalization method can also be used to remove the trend in direct
measurements for many geotechnical properties. For example, normalization by the
effective overburden stress accounts for the effect of confinement that generally
increases with the depth (Wroth 1984; Houlsby 1988; Robertson 1990, 2009;
Phoon et al. 2003). Note that normalization by the effective overburden stress
requires information on soil unit weights and groundwater conditions, which might
not be available.

The adequacy of detrending is of great significance for the assumption of sta-
tionarity. This can be examined by many methods, such as visual inspection of the
autocovariance function (e.g., Box and Jenkins 1970; Jaksa 1995), the run test (e.g.,
Alonso and Krizek 1975; Campanella et al. 1987), Kendall’s s tests (e.g., Ravi
1992), and Bartlett’s test (e.g., Phoon et al. 2003). It is also worthwhile to point out
that the detrending process leads to a decrease in the estimated correlation length
(e.g., Phoon et al. 2003), because the detrending process removes the large-scale
fluctuation in nature (Fenton 1999a).

2.2.1.4 Correlation Function and Correlation Length

The correlation between the variations of a soil property at different locations can be
characterized by a correlation function. In general, there are two types of correlation
functions: the finite-scale model, in which the correlation dies out rapidly as the
separate distance is greater than the correlation length, and the fractal model, in
which the correlation remains significant over a very large distance (Fenton 1999a).
Although Fenton (1999b) examined 143 sets of CPT data and concluded that the
correlation of soil properties follows the fractal model in nature, the finite-scale
model is commonly used in the analysis of geotechnical data (e.g., Lumb 1974;
Vanmarcke 1977; DeGroot and Baecher 1993; Jaksa 1995; Phoon et al. 2003).

The major advantage of the finite-scale model is that usually only one model
parameter, i.e., correlation length, needs to be determined. In addition, Fenton
(1999a) also noted that for a given site, there may be little difference between a
properly selected finite-scale model and a real fractal model over a finite domain.
Equation (2.6) gives four commonly used finite-scale models for the analysis of
geotechnical data (Vanmarcke 1977)
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fq ¼

exp � 2jDDj
k

� �
ðaÞ

exp �p DD
k

� �2h i
ðbÞ

1þ 4jDDj
k

� �
exp � 4jDDj

k

� �
ðcÞ

exp � jDDj
k

� �
cos DD

k

� � ðdÞ

8>>>>>><
>>>>>>:

ð2:6Þ

in which DD is the separate distance between two depths; k is the correlation length.
The correlation length can be estimated by choosing a theoretical correlation model
given by Eq. (2.6) to fit the empirical autocorrelation function estimated from
observation data (e.g., Jaksa 1995) or by maximum-likelihood methods (e.g.,
DeGroot and Baecher 1993; Fenton 1999a, b). Because the available observation
data for a specific site are usually limited, choosing an appropriate correlation
function and determining the correlation length are challenging tasks for a specific
site. Fenton (1999a) argued that the correlation model developed for one site is
applicable for another site that has similar geological conditions. Among the four
finite-scale models in Eq. (2.6), the single exponential correlation function given by
Eq. (2.6a) is most widely used in analysis of soil data (e.g., Lumb 1974; DeGroot
and Baecher 1993; Lacasse and Nadim 1996; Phoon et al. 2003; Wang et al. 2010).
Phoon et al. (2003) observed that, among the four models in Eq. (2.6), the single
exponential correlation function (i.e., Eq. (2.6a)) leads to the most stringent criteria
for the identification of stationarity using Bartlett statistics.

The statistically homogenous soil layers and correlation functions of soil prop-
erties are usually determined using in situ and laboratory test data (i.e., measured
soil properties) (e.g., Fenton 1999b; Phoon et al. 2003). Phoon et al. (1995) and
Phoon and Kulhawy (1999a) summarized the inherent spatial variability of many
soil properties (including both measured and design soil properties), some of which
are shown in Table 2.4. Research is, however, relatively limited that addresses
directly inherent spatial variability of design soil properties (e.g., effective friction
angle) using random field theory.

2.2.2 Measurement Errors

Measurement errors are unavoidable during in situ and laboratory tests (Christian
et al. 1994; Kulhawy 1996). As pointed out by Kulhawy (1996) and Kulhawy and
Trautmann (1996), measurement errors arise from three sources: equipment errors
(e.g., inaccuracies of the measuring devices and variations in equipment geometries
and systems used for routine testing), procedural–operator errors (e.g., limitations in
existing test standards and how these standards are followed by operators), and
random testing error (i.e., the remaining scatter in measurements that is not
assignable to specific testing parameters and is not caused by inherent variability of
soils). The total measurement error can be estimated from the square root of the sum
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of the equipment, procedural–operator, and random testing errors (Orchant et al.
1988; Kulhawy and Trautmann 1996). Phoon et al. (1995) summarized the mea-
surement errors of several laboratory tests, including strength tests (e.g., triaxial
test, laboratory vane shear test, direct shear test, and Atterberg limit tests). In
addition, Kulhawy and Trautmann (1996) summarized the measurement errors of
several in situ tests (e.g., SPT, CPT, PMT, and VST) and estimated the total
measurement errors of these in situ tests. The total measurement errors of SPT,
CPT, PMT, and VST range from 15 % to 45 %, from 5 % to 25 %, from 10 % to
25 %, and from 10 % to 20 %, respectively. Note that these values can be used
only as approximate guidelines for estimating measurement errors because they are
evaluated based on limited available data and the evaluation relies on subjective
judgments (Kulhawy and Trautmann 1996).

It is also worthwhile to note that measurement errors arise from a lack of
knowledge about test equipments and procedures, and they are, therefore, catego-
rized as “epistemic uncertainty” in nature (Baecher and Christian 2003). As the
knowledge on test equipments and procedures improves, the measurement errors
can be reduced. In addition, both measurement errors and inherent variability of
soils contribute to the scatter of observation data. It is, however, difficult to discern
the fluctuation resulted from inherent variability and that arising from measurement
errors.

2.2.3 Statistical Uncertainty

As mentioned in Sect. 2.1.5 “Challenges in geotechnical site characterization,” the
number of project-specific test results is usually limited during geotechnical site
characterization (Nawari and Liang 2000; Baecher and Christian 2003; Wang et al.
2010). Different sets of test results with a relatively small sample size might result
in significantly different statistics of soil properties. In other words, statistics of soil
properties estimated from limited test results are uncertain. Such uncertainty is
known as “statistical uncertainty” (Christian et al. 1994; Kulhawy 1996; Baecher
and Christian 2003). Statistical uncertainty arises from insufficient observation data
and is commonly considered to be included in measurement errors (Kulhawy 1996).
It decreases as the observation data increases and is categorized as “epistemic
uncertainty” in nature (Baecher and Christian 2003).

2.2.4 Transformation Uncertainties

Design soil property that is directly used in design can be estimated from in situ and
laboratory test results (i.e., measured property) by transformation models, such as
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empirical and theoretical correlations between the measured property and design
property (e.g., Kulhawy and Mayne 1990; Phoon and Kulhawy 1999b). Empirical
correlations are often obtained from empirical data fitting, and hence, they are
associated with some uncertainties because of data scatter and inaccuracy of the
best fit (e.g., Kulhawy and Mayne 1990; Phoon and Kulhawy 1999b). Theoretical
correlations are also associated with some uncertainties due to idealizations and
simplifications in the theory (Phoon and Kulhawy 1999b). The uncertainties
associated with the transformation model are collectively referred to as “transfor-
mation uncertainty” e. Transformation uncertainty can be modeled as a random
variable with a mean of zero and standard deviation of re that indicates the mag-
nitude of the transformation uncertainty and reflects the degrees-of-belief on the
corresponding transformation model (Phoon and Kulhawy 1999b). Phoon et al.
(1995) and Phoon and Kulhawy (1999b) summarized the transformation uncer-
tainty of several commonly used transformation models, four of which are shown in
Table 2.5.

Transformation uncertainty arises from a lack of knowledge about the rela-
tionship between the measured property and the design property, and it is therefore
categorized as “epistemic uncertainty” and can be reduced as the knowledge about
the relationship improves (e.g., Baecher and Christian 2003; Zhang et al. 2004).

Table 2.5 Four transformation models and their uncertainties (After Phoon and Kulhawy 1999b)

Soil
type

Design property Measured
property

Relationshipsb, c, d Uncertainty
re

Clay Undrained shear
strength (UU)a,
Su;UU

SPT
N-value

log Su;UU
pa

� �
¼ logð0:29Þþ 0:72 logðNSPTÞþ e 0.15

Undrained shear
strength (VST),
Su;VST

Plasticity
index (PI)

Su;VST
r0p

¼ ð0:11þ 0:0037PIÞð1þ eÞ 0.25

Young’s
modulus
measured by
pressuremeter
test EPMT

SPT
N-value

log EPMT
pa

� �
¼ logð19:3Þþ 0:63 logðNSPTÞþ e 0.37

Sand Effective friction
angle, /

0
(°)

Cone tip
resistance
qc

/
0 ¼ 17:6þ 11:0 log qc=paffiffiffiffiffiffiffiffiffiffi

r0v0=pa
p

 !
þ e

2.8°

aUnconsolidated undrained triaxial test
bpa is the atmospheric pressure
cr

0
p is preconsolidation stress

dr
0
vo is vertical effective stress
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2.2.5 Uncertainty Propagation

The inherent variability and various epistemic uncertainties (including measurement
errors, statistical uncertainty, and transformation uncertainty) that arise during site
characterization are incorporated into estimated design properties, as shown in
Fig. 2.3. The total variability (including inherent variability, measurement errors,
statistical uncertainty, and transformation uncertainty) of estimated design proper-
ties can be estimated by a second-moment approach developed by Phoon et al.
(1995) and Phoon and Kulhawy (1999a, b). When the epistemic uncertainties (i.e.,
measurement errors, statistical uncertainty, and transformation uncertainties) are
large, the total variability of estimated design soil properties is large. This generally
leads to conservative designs by reliability-based design (RBD) approaches (e.g.,
Phoon et al. 1995). As the knowledge improves, the epistemic uncertainties are
reduced and the total variability of estimated design soil properties is reduced. The
conservatism in designs resulted from RBD approaches then is reduced. This is
reasonable in the sense that the design should be less conservative as the knowledge
on soil properties accumulates.

It is, however, worthwhile to point out that the epistemic uncertainties that arise
from insufficient knowledge do not contribute to the actual response of geotechnical
structures. In contrast, the inherent variability of soils affects significantly the actual
response of geotechnical structures (e.g., Phoon et al. 1995; Fenton and Griffiths
2002 and 2003; Fenton et al. 2005; Hicks 2005; Klammler et al. 2010). To
understand probabilistically the actual response of geotechnical structures, it is
meaningful to characterize explicitly the inherent variability of design soil prop-
erties for RBD. Research is, however, rare that addresses directly and explicitly the
inherent variability of design soil properties using probability theory.

Soil In-situ and/or laboratory 
measurements

Transformation
model

Estimated soil 
property

Data 
scatter

Statistical 
uncertainty 

Transformation 
uncertainty 

Inherent 
variability

Inherent 
variability

Measurement 
errors

Fig. 2.3 Uncertainties in estimated soil properties (after Phoon and Kulhawy 1999a)
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2.3 Bayesian Approach

Bayesian approach provides a formal framework to integrate systematically infor-
mation from different sources, such as observation data and knowledge available
prior to collecting the observation data (i.e., prior knowledge) (e.g., Ang and Tang
2007; Sivia and Skilling 2006). It can be used to estimate probability distributions
of model parameters of a system based on prior knowledge and observation data
and to update the probability of an event using new information obtained (Baecher
and Christian 2003).

2.3.1 Bayesian Mathematical Framework

Let H ¼ ½h1; h2; . . .; hnm � denote a set of random variables that represent the nm
uncertain model parameters of a model MðHÞ of the system concerned. Under a
Bayesian framework, the updated distribution PðHjDataÞ of model parameters H is
written as (e.g., Ang and Tang 2007; Wang et al. 2010)

PðHjDataÞ ¼ KPðDatajHÞPðHÞ ð2:7Þ

in which Data is the observation data; K ¼ 1=PðDataÞ is a normalizing constant
that is independent of model parameters; PðHÞ is the prior distribution of model
parameters that reflects prior knowledge on model parameters in the absence of
observation data; and PðDatajHÞ is the likelihood function that reflects the model
fit with observation data.

2.3.2 Prior Distribution

In general, there are two types of prior distribution: uninformative prior distribution
and informative prior distribution (Siu and Kelly 1998; Baecher and Christian
2003), as discussed in the following two subsections.

2.3.2.1 Uninformative Prior Distribution

Uninformative prior distributions suggest that there is no prevailing prior knowl-
edge on the possible values of model parameters and all possible values of model
parameters are considered equally likely (Jeffreys 1983; Baecher and Christian
2003). For mutually independent model parameters, the prior distribution PðHÞ is
further written as
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PðHÞ ¼
Ynm
i¼1

PðhiÞ ð2:8Þ

in which PðhiÞ; i ¼ 1; 2; . . .; nm is the prior distribution of the model parameter hi.
Equation (2.9) gives three commonly used uninformative prior distributions of hi.

PðhiÞ ¼
1=ðhi;max � hi;minÞ for hi 2 ½hi;min; hi;max� ðaÞ
constant for hi 2 ½�1; þ1� ðbÞ
1=hi for hi 2 ½0; þ1Þ ðcÞ

8<
: ð2:9Þ

Equation (2.9a) gives an uninformative prior distribution of hi with a range from
the minimum hi;min to the maximum hi;max. This prior distribution is particularly
useful when a reasonable range of hi is available. Equation (2.9b) gives an unin-
formative prior distribution of hi that ranges from negative infinity to positive
infinity. Both Eq. (2.9a) and (2.9b) have been criticized because they are not
invariant to transformation of variables (Jeffreys 1983; Siu and Kelly 1998; Baecher
and Christian 2003). It is also noted that the integral on Eq. (2.9b) is infinite, which
is improper since the integral on a probability density function (PDF) should be
unity (Baecher and Christian 2003). In addition, Eq. (2.9b) has two singularities at
both endpoints.

Equation (2.9c) gives an uninformative prior distribution of hi which ranges
from zero to positive infinity and is uniform in a log scale (i.e., logðhiÞ is uniformly
distributed). Equation (2.9c) is also known as “Jeffreys prior,” and it is invariant to
power and scale transformation of variables (Jeffreys 1983; Sivia and Skilling
2006). Note that Eq. (2.9c) also has a singularity at hi ¼ 0.

Uninformative prior distributions are widely used for the cases with a large
number of observation data (e.g., Beck and Yuen 2004; Zhang 2011), in which the
observation data tend to dominate the results of Bayesian approach so that the effect
of prior knowledge is not so important. Research is, however, rare that explores
systematically the effect of uninformative prior knowledge (e.g., Eq. (2.9a)) when
the observation data are relatively limited, e.g., geotechnical site characterization.

2.3.2.2 Informative Prior Distribution

Informative prior distribution can be estimated from prior knowledge about model
parameters, and it reflects the degrees-of-belief (or confidence level) of prior
knowledge on model parameters. When limited prior knowledge on hi (e.g., the
mean and standard deviation of the system parameter hi of interest) is available and
it is testable (i.e., it can be determined whether or not there is a probability dis-
tribution consistent with the prior knowledge), the maximum entropy method can
be used to obtain the prior distribution from the prior knowledge (e.g., Siu and
Kelly 1998; Sivia and Skilling 2006). Within the maximum entropy method, the
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information entropy HI is used as a measure of uncertainty of the prior PDF PðhiÞ
of hi, and it is defined as (Shannon and Weaver 1949)

HI ¼ �
Z

PðhiÞ ln½PðhiÞ�dhi; i ¼ 1; 2; . . .; nm; ð2:10Þ

Then, the prior PDF PðhiÞ of hi is obtained by maximizing the information
entropy HI subject to constraints of the testable information provided by prior
knowledge and normalization (e.g., Sivia and Skilling 2006). The principle of
maximum entropy provides a reasonable approach for generating prior distribution
based on limited prior knowledge that specifies some probability constraints.

When previous data are available, statistical analysis can be used to estimate
prior distribution of model parameters, such as calculating the mean and standard
deviation and maximum-likelihood function and fitting previous data with specified
distributions by regression analysis (Berger 1985; Maritz and Lwin 1989; Carlin
and Louis 1996; Siu and Kelly 1998). Such statistical analysis is a pragmatic
approach for constructing prior distributions using previous data. It generally takes
the previous data from various sources as the evidence with equal weight. This is,
however, not well justified because the quality (or credibility) of data from different
sources may be significantly different. In addition, it is difficult to incorporate
systematically subjective judgments in the statistical analysis, which is often an
essential component of prior knowledge, e.g., engineering judgments in geotech-
nical engineering.

Subjective probability provides an operational tool to measure the
degrees-of-belief of engineers’ opinions and to express quantitatively their engi-
neering judgments (e.g., Baecher 1983; Vick 2002; Garthwaite et al. 2005; Silva
et al. 2008). Subjective probability assessment methods are, therefore, another
useful approach to construct informative prior distributions (Clemen 1996; Siu and
Kelly 1998). They are usually developed based on cognitive models, in which a
series of cognitive activities of the cognitive process are divided into several stages
(e.g., Beach et al. 1986; Koriat et al. 1980; Smith et al. 1991; Vick 2002). For
example, Fig. 2.4 shows a stage cognitive model that consists of four stages (Vick
2002): identification of the problem, search for relevant information and determi-
nation of possible outcomes, assessment of uncertainties associated with the pos-
sible outcomes, and quantification of uncertainties in the numerical probability
metric. During subjective probability assessment, various cognitive heuristics are
involved, such as availability heuristic, anchoring and adjustment heuristic, and
representativeness heuristic (Tversky and Kahneman 1974; Vick 2002). These
heuristics are generally useful tools that help the assessor make decisions in a
probabilistic manner, but they might, simultaneously, lead to some cognitive biases,
as discussed in what follows.

According to the availability heuristic, the likelihood of an event is estimated by
the ease with which similar events are recalled (Garthwaite et al. 2005). The event
with relatively high probability is easy to be recalled. Conversely, an event with
small probability is often difficult to be retrieved from memory. The availability
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heuristic is often a useful indicator for assessing the probability of an event, but it
can also lead to availability bias because of missing some information that is
relatively difficult to be acquired (Clemen 1996; Garthwaite et al. 2005). In addi-
tion, the availability heuristic possibly results in hindsight bias because of the
inclination to exaggerate the likelihood of occurrence of an event after it occurs and
confirmation bias due to the inclination to ignore disconfirming evidence during
searching for information in memory (Vick 2002).

The assessor sometimes estimates the probability of an event by choosing an
initial probability value roughly, which is known as “anchor,” and adjusts the
probability value according to knowledge about the event of interest to obtain the
final probability value. This is referred to as “anchoring and adjustment heuristic.”
This heuristic helps the assessor overcome cognitive limitation of human infor-
mation processing capacity (Vick 2002; Garthwaite et al. 2005). Insufficient
adjustment, however, might occur, so that the probability estimated from the
heuristic might be biased toward the anchor. This subsequently leads to overcon-
fidence bias (Vick 2002).

The representativeness heuristic evaluates the probability of an event by the
extent to which the event is similar to some other events belonging to a particular
category (Clemen 1996; Vick 2002). The probability of the event concerned
belonging to the category increases as the similarity between the event of interest
and other related events of the category increases. In general, the representativeness
heuristic is a useful tool to estimate probability based on prior knowledge. Several
cognitive biases, however, sometimes arise from it because the base rate of the

Search for relevant 
information and 

determination of possible 
outcomes

Assessment of 
uncertainties associated 

with the possible 
outcomes

Quantification of the 
uncertainties in the 

numerical probability 
metric

Identification of the 
problem

Fig. 2.4 A stage cognitive
model (after Vick 2002)
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event concerned is ignored and there is the insensitivity to sample size of the
category (Garthwaite et al. 2005).

In addition to cognitive biases, the outcomes (e.g., prior distribution herein)
obtained from subjective probability assessment methods are also influenced by
cognitive limitations, such as limited capacity of processing information that might
lead to ignorance of useful information, limited good calibration range of subjective
probability (e.g., from 0.2 to 0.8 by Fischhoff et al. 1977), and limited cognitive
discrimination range of subjective probability (e.g., from 0.01 to 0.99 by Hogarth
1975; Fischhoff et al. 1977; Vick 1997 and 2002). Because of the cognitive biases
and limitations, outcomes of subjective probability assessment might deviate from
the actual beliefs of the assessor and be inconsistent with basic probability axioms
(Vick 2002). To enable meaningful and coherent outcomes, subjective probability
assessment often requires formally organized external procedures (Vick 2002;
Baecher and Christian 2003). It is sometimes difficult to satisfy such a requirement
due to the limitation of resources in geotechnical site characterization, particularly
for projects with medium or relatively small sizes.

2.3.2.3 Confidence Level of Prior Knowledge

The standard deviation or coefficient of variation (COV) of the prior distribution
indicates the degrees-of-belief (or confidence level) of the prior knowledge about
model parameters. When the COV is relatively small, the confidence level of the
prior knowledge on model parameters is relatively high, and the prior knowledge is
relatively informative. As the COV increases, the confidence level of prior
knowledge on model parameters decreases, and the prior knowledge becomes more
and more uninformative. Siu and Kelly (1998) also noted that informative prior
knowledge is likely to have significant impact on the results of Bayesian approach
when observation data are relatively limited.

2.3.3 Likelihood Function

Constructing a likelihood function requires a model MðHÞ that represents the
system concerned and describes how the observation data are generated from the
system. Within the model MðHÞ, model parameters H can be generally divided into
two types: HS representing the unknown input parameter of the model used to
describe behaviors of the system and HU representing modeling errors associated
with the model. The uncertainties in HS and the modeling errors HU result in
uncertainties in predications of the model. The goodness of fit of model predications
with the observation data for a given set of model parameters is defined by the
likelihood function. Based on the applications of the Bayesian approach, the like-
lihood function can be developed in three ways:
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(1) Consider the uncertainties in input parameters HS only when developing the
likelihood function. For example, Jung et al. (2008) and Cetin and Ozan
(2009) developed the likelihood functions considering uncertainties in input
parameters of empirical models of soil classification. Yan et al. (2009) con-
structed the likelihood function for selecting the most appropriate regression
model between the compression index and various other soil properties (e.g.,
liquid limit, plastic index) with the consideration of uncertainties of regression
models.

(2) Consider modeling errors HU only when developing the likelihood function.
For example, Zhang et al. (2004) derived the likelihood function for reducing
modeling errors associated with the empirical transformation model between
the SPT N-values and undrained shear strength. Zhang et al. (2009) developed
the likelihood function for characterization of modeling errors associated with
deterministic models of slope stability analysis. Zhang et al. (2010a, b) con-
structed the likelihood function for probabilistic back analysis of slope sta-
bility with the consideration of modeling errors associated with deterministic
models of slope stability analysis. In addition, Ching et al. (2010) derived the
likelihood function for reducing uncertainties in estimated soil properties with
the consideration of modeling errors associated with empirical transformation
models.

(3) Consider both uncertainties in input parameters HS and modeling errors HU

when developing the likelihood function. Wang et al. (2010) and Cao et al.
(2011) developed the likelihood function for probabilistic characterization of
soil properties based on random field theory, in which both uncertainties in
model parameters of the random field and modeling errors associated with the
transformation model were considered. The Bayesian approach developed by
Wang et al. (2010) and Cao et al. (2011) provides proper probabilistic char-
acterization of soil properties using both prior knowledge and limited site
observation data (i.e., CPT data). Their approach, however, only applies to a
single and predefined statistically homogenous soil layer and provides no
information on the number or thicknesses/boundaries of statistically
homogenous soil layers.

2.3.4 Posterior Distribution

The posterior distribution in Eq. (2.7) is a joint distribution of model parameters. To
obtain the posterior marginal PDF of one model parameter, integration on the
posterior distribution over the space of the other model parameters is required.
Since the posterior distribution might be very complicated, analytical integration is
often infeasible. Numerical integration may be performed using a multidimensional
grid over the space of other model parameters, but it must be performed repeatedly
for a number of values of the model parameters concerned so as to yield
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information about the whole marginal distribution of the model parameter. The
computational complexity has been recognized as one key limitation of the
Bayesian approach (e.g., Zhang et al. 2009; Wang et al. 2010). Traditionally,
conjugated prior distributions (e.g., Siu and Kelly 1998; Baecher and Christian
2003) have been used to bypass the computational problems, but this nevertheless
introduces artificial limitations to the choice of prior distribution.

Laplace asymptotic approach (Bleistein and Handelsman 1986) has been widely
used in Bayesian system identification to bypass the computational complexity
when a relatively large number of observation data are available (e.g.,
Papadimitriou et al. 1997; Beck and Katafygiotis 1998; Katafygiotis and Beck
1998; Katafygiotis et al. 1998; Wang et al. 2010). By Laplace asymptotic approach,
the posterior distribution is approximate to a joint Gaussian PDF, in which the mean
vector is equal to the most probable values (MPV) of model parameters. Under this
approximation, the determination of posterior mean values of model parameters is
reduced to finding the MPV by numerically minimizing the objective function
fobj ¼ � ln½PðHjDataÞ�. The covariance matrix of the posterior distribution is
provided by the inverse of the Hessian matrix of fobj ¼ � ln½PðHjDataÞ�. Note that
Laplace asymptotic approach generally requires a relatively large number of
observation data so that the posterior distribution peaks sharply and the MPV of
model parameters are identified with relative ease by the optimization procedure
(i.e., minimizing the objective function fobj ¼ � ln½PðHjDataÞ�). Wang et al. (2010)
have successfully applied the Laplace asymptotic approach to obtain the posterior
distribution of random field model parameters using CPT data and showed that the
results obtained from the Laplace asymptotic approach are in good agreement with
those obtained from numerical integration. This indicates that CPT tests provide
sufficient data for Laplace asymptotic approach to identify the MPV of random field
model parameters.

2.3.5 Updating the Probability of an Event

Bayesian approach can also be used to update the probability of an event A using
the new evidence B on A. The updated probability PðAjBÞ of A given the new
evidence B is written as (e.g., Siu and Kelly 1998; Ang and Tang 2007)

PðAjBÞ ¼ PðBjAÞPðAÞ=PðBÞ ð2:11Þ

in which PðAÞ is the probability of A prior to the collection of the new evidence B;
PðBÞ is the probability of the new evidence B, which is independent of A; and
PðBjAÞ reflects the information on A provided by the new evidence
B. Equation (2.11) has been applied to calibration of estimated failure probability in
liquefaction evaluation (e.g., Juang et al. 1999) or slope reliability assessment (e.g.,
Cheung and Tang 2005), probabilistic assessment of soil–structure interaction (e.g.,
Schuster et al. 2008), and model class selection (e.g., Beck and Yuen 2004; Yan
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et al. 2009; Yuen 2010). For example, in model class selection, A represents a
model class and B represents the new evidence (e.g., observation data). Using
Eq. (2.11), the plausibility (or occurrence probability) of the model class A given
the new evidence B is determined.

2.4 National Geotechnical Experimentation Site (NGES)
at Texas A&M University

To provide well-characterized reference sites for the development and evaluation of
geotechnical design and construction methods and in situ testing methods, five US
National Geotechnical Experimentation Sites (NGES) were established by US
Federal Highway Administration (FHWA) (Dimillio and Prince 1993; Benoit
2000). Extensive in situ and laboratory test results obtained from NGES are
available in the geotechnical literature (e.g., Briaud 2000; Benoit 2000). The test
results obtained from the NGES at Texas A&M University (TAMU) are used to
illustrate the probabilistic approaches for geotechnical site characterization devel-
oped in this book. The NGES at TAMU is therefore introduced briefly below.
The NGES at TAMU is underlain by Pleistocene fluvial and overbank deposits and
Eocene-aged Spiller Member of the Crockett Formation and includes a clay site
and a sand site (Briaud 2000). Figure 2.5a, b shows the stratigraphy of the clay site
and sand site, respectively. As shown in Fig. 2.5a, the clay site is comprised of a
top stiff clay layer extending from the ground surface to 5.5 m deep, a thin sand
layer from the depth of 5.5 m to the depth of 6.5 m, another stiff clay layer down to
12.5 m deep, and a hard clay layer thereafter. The groundwater level at the clay site
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Very Stiff Clay

Hard Clay
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Hard Clay

6.0m

5.5m

Mayne (2007)
Briaud (2000)

7.5m
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Fig. 2.5 Soil profiles of the clay site and sand site of NGES at Texas A&M University (after
Briaud 2000). a Clay site. b Sand site
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is about 6.0 m deep (Briaud 2000). As shown in Fig. 2.5b, the sand site is underlain
by a silty sand layer extending from the ground surface to 4.0 m deep, a clean sand
layer from the depth of 4.0 m to the depth of 8.0 m, a clayey sand layer from 8.0 m
deep to 12.5 m deep, and a hard clay layer thereafter. The groundwater level at the
sand site is around 7.5 m deep by Briaud (2000) (or about 6.0 m deep by Mayne
2007). Briaud (2000) summarized results of in situ tests (including SPT, CPT, and
PMT) and laboratory tests performed in the clay site and sand site, and Mayne
(2007) reported an additional set of CPT test results obtained from the sand site.

Table 2.6 provides the average soil properties of different soil layers of the clay
site and sand site reported by Briaud (2000), including water content, particle size
distribution, natural unit weight, Atterberg limits, strength (i.e., undrained shear
strength, effective stress cohesion, and effective friction angle), coefficient of

Table 2.6 Summary of soil properties of NGES at Texas A&M University (After Briaud 2000)

Soil property Clay site Sand site

Soil type Very
stiff
claya

Sand Very
stiff
clayb

Hard
clay

Silty
sand

Clean
sand

Clayey
sand

Hard
clay

Water content (%) 24.4 N/A 24.5 26.4 12 17 25 26

Percent of grains (by
weight) smaller than
0.075 mm (%)

N/A N/A N/A N/A 17.4 4 30 N/A

Mean grain size (mm) N/A N/A N/A N/A 0.2 0.25 0.075 N/A

Natural unit weight
(kN/m3)

19.6 N/A 19.5 18.9 20 17 18.3 20

Plastic limit (%) 20.9 N/A 22 22.7 N/A N/A 22 20

Liquid limit (%) 53.7 N/A 60 56 N/A N/A 41 61

Undrained shear
strength (kPa)

110 N/A 140 160 N/A N/A N/A 235

Effective stress
cohesion (kPa)

13 N/A 57 N/A N/A N/A N/A N/A

Effective friction
angle (°)

20 N/A 26.5 N/A 34 31 N/A N/A

Coefficient of
permeability (m/year)

0.0005 N/A 0.00007 N/A 0.05 N/A N/A N/A

SPT N-value
(bl/0.3 m)

12 N/A 32 N/A 15 19 22 55

Cone tip resistance
(MPa)

2.0 N/A 6.0 N/A 7.0 9.0 10.0 N/A

Young’s modulus
measured by
pressuremeter test
(MPa)

15.0 N/A 35.0 230.0 9.0 9.0 33.0 N/A

Limit pressure (MPa) 0.75 N/A 2.2 6.5 0.8 1.0 1.9 N/A
aThe top soil layer at the clay site
bThe third soil layer at the clay site
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permeability, SPT N-values, cone tip resistance, and Young’s modulus and limit
pressure measured by pressuremeter tests. Figure 2.6a shows 5 SPT N-values
versus depth obtained from the SPT tests performed within the top stiff clay layer
(Briaud 2000). Pressuremeter tests were also carried out in the top clay layer
(Briaud 2000). Figure 2.6b shows in total 42 measurements of the undrained
Young’s modulus Eu from pressuremeter tests performed at different depths in the
top clay layer (Briaud 2000). The SPT N-values and undrained Young’s modulus
Eu obtained from the clay site are used to illustrate and validate the probabilistic
approach developed in Chap. 5 of this book.

In addition, Akkaya and Vanmarcke (2003) summarized inherent spatial vari-
ability of soil properties at the NGES, and they concluded that (1) for the clay site
(see Fig. 2.5a), the mean value, coefficient of variation, and correlation length of
cone tip resistance range from 0.14 MPa to 0.27 MPa, from 50 % to 82 %, and
from 3.3 m to 9.0 m, respectively, and their respective mean values are 0.2 MPa,
65 %, and 5.4 m; (2) for the sand site (see Fig. 2.5b), the mean value, coefficient of
variation, and correlation length of cone tip resistance range from 7.0 MPa to
9.0 MPa, from 30 % to 76 %, and from 1.6 m to 6.4 m, respectively, and their
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Fig. 2.6 Standard penetration test (SPT) N-value and undrained Young’s modulus measured by
pressuremeter tests at the clay site of the NGES at Texas A&M University. a SPT N-values.
b Undrained Young’ modulus. (after Briaud 2000)
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respective mean values are 8.4 MPa, 50 %, and 3.3 m. Note that the average cone
tip resistance (i.e., from 7.0 to 9.0 MPa) of the sand site compares favorably with
that reported by Briaud (2000) (see Table 2.6), while the average cone tip resistance
(e.g., from 0.14 to 0.27 MPa) of the clay site is much less than that reported by
Briaud (2000) (see Table 2.6).

2.5 Probabilistic Slope Stability Analysis

Various uncertainties exist in slope engineering, such as inherent spatial variability
of soil properties, uncertainties in subsurface stratigraphy, and modeling errors
associated with geotechnical models. Probability theory and statistics provide a
rational vehicle to account for these uncertainties in slope stability analysis. In the
context of probability theory and statistics, reliability of slope stability is frequently
measured by a “reliability index” (β) or slope failure probability (Pf), which is
defined as the probability that the minimum factor of safety (FS) is less than unity
(i.e., Pf = P(FS < 1)). For reference, Table 2.7 lists β and Pf for representative
geotechnical components and systems and their expected performance levels. The
value of β commonly ranges from 1 to 5, corresponding to Pf varying from about
0.16 to 3 × 10−7. Geotechnical designs require a β-value of at least 2 (i.e.,
Pf < 0.023) for an expected performance level better than “poor.” Relatively small
Pf (information on the tail of probability distribution) is of great interest to
geotechnical practitioners. The reliability index β and slope failure probability Pf

can be estimated by various solution methods, such as the first-order
second-moment method (FOSM) (e.g., Tang et al. 1976; Christian et al. 1994;
Hassan and Wolff 1999), first-order reliability method (FORM, also referred to as
Hasofer–Lind method) (e.g., Low and Tang 1997; Low et al. 1998; Low 2003),
direct Monte Carlo simulation (MCS) method (e.g., El-Ramly et al. 2002; Griffiths
and Fenton 2004; El-Ramly et al. 2005), and subset simulation (e.g., Au 2001; Au
and Beck 2001 and 2003; Au et al. 2009, 2010; Wang et al. 2009). These methods
are briefly reviewed in the following subsections.

Table 2.7 Relationship between reliability index (β) and probability of failure (Pf) (after U.S.
Army Corps of Engineers 1997)

Reliability index β Probability of failure Pf = Ф(−β)a Expected performance level

1.0 0.16 Hazardous

1.5 0.07 Unsatisfactory

2.0 0.023 Poor

2.5 0.006 Below average

3.0 0.001 Above average

4.0 0.00003 Good

5.0 0.0000003 High
aФ(�) = Standard normal cumulative distribution function
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2.5.1 First-Order Second-Moment Method (FOSM)

Let gðxÞ denote the performance function (or deterministic model) of slope stability
used to calculate FS of slope stability, in which x ¼ ½x1; x2; . . .; xk� is a set of
random variables representing uncertain model parameters in the performance
function. Consider, for example, that FS is normally distributed. By FOSM, the
reliability index β is calculated as (e.g., Cornell 1969; Ang and Tang 1984; Baecher
and Christian 2003)

b ¼ lFS � 1
rFS

ð2:12Þ

in which lFS and rFS are the mean and standard deviation of FS, respectively. lFS is
the value of gðxÞ calculated at mean values li, i = 1, 2,…, k of random variables xi,
i = 1, 2, …, k, i.e., lFS ¼ gðl1; l2; . . .; lkÞ, and rFS is calculated as

rFS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
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vuut ð2:13Þ

in which ri, i = 1, 2, …, k are standard deviations of random variables xi, i = 1, 2,
…, k, respectively; @g

@xi
, i = 1, 2, …, k are partial derivatives of the performance

function with respect to xi, i = 1, 2, …, k, respectively; qij is the correlation
coefficient between two different uncertain parameters xi and xj, where i 6¼ j. Then,
the slope failure probability Pf is calculated as 1� UðbÞ, in which U is the
cumulative distribution function of a standard Gaussian random variable (e.g.,
Baecher and Christian 2003).

FOSM is a relatively simple approach for performing probabilistic slope stability
analysis. It, however, requires an analytical model of slope stability analysis, which
is differentiable for all uncertain variables (i.e., xi, i = 1, 2, …, k) involved in the
model. In addition, FOSM usually uses a predefined critical slip surface of slope
failure and does not account for uncertainties of the critical slip surface.

2.5.2 First-Order Reliability Method (FORM)

By FORM, the reliability index β is interpreted as a measure of the distance
between the peak of the multivariate distribution of the uncertain variables (e.g., the
joint distribution of x ¼ ½x1; x2; . . .; xk�) and the critical point on the failure
boundary in a dimensionless space. It is calculated as (e.g., Hasofer and Lind 1974;
Ang and Tang 1984; Low and Tang 1997; Baecher and Christian 2003)
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b ¼ min
xi2XF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� l
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T
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x� l
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s
ð2:14Þ

in which XF represents the failure domain; l is a mean vector of uncertain vari-
ables, i.e., l ¼ ½l1; l2; . . .; lk�; r is a standard deviation vector of uncertain vari-
ables, i.e., r ¼ ½r1; r2; . . .; rk�; and q is the correlation matrix of uncertain
variables. Note that the equivalent mean values and standard deviations of random
variables should be used in Eq. (2.14) when uncertain variables are not normally
distributed (Ang and Tang 1984).

Equation (2.14) has been implemented in a spreadsheet environment with the aid
of the built-in optimization tool “Solver” for probabilistic slope stability analysis by
Low and Tang (1997), Low et al. (1998), and Low (2003). Center coordinates and
radius of circular slip surfaces were also considered as additional optimization
variables by Low (2003) so that variation of potential critical slip surfaces was
implicitly factored in the analysis. However, because of the limitation of the
optimization tool used, FORM tends to overestimate β and underestimate Pf (Wang
et al. 2009).

2.5.3 Direct Monte Carlo Simulation (Direct MCS)

MCS is a numerical process of repeatedly calculating a mathematical or empirical
operator, in which the variables within the operator are random or contain uncer-
tainties with prescribed probability distributions (e.g., Ang and Tang 2007; Wang
2011; Wang et al. 2011). The numerical result from each repetition of the numerical
process is considered as a sample of the true solution of the operator, analogous to
an observed sample from a physical experiment. Consider, for example, proba-
bilistic slope stability analysis in which the mathematical operator (i.e., the per-
formance function gðxÞ) involves calculation of the factor of safety, FS, and
judgment of occurrence of failure (i.e., FS < 1). The direct MCS starts with the
characterization of probability distributions of uncertainties concerned, as well as
the slope geometry and other necessary information, followed by the generation of
nMC sets of random samples according to the prescribed probability distributions.
Using the deterministic model gðxÞ and the nMC sets of random samples, nMC

possible values of FS are obtained. Then, statistical analysis is performed to esti-
mate Pf or β, with the slope failure defined as FS < 1 (e.g., Baecher and Christian
2003).

Monte Carlo simulation (MCS) is gaining popularity in the reliability analysis of
slope stability due to its robustness and conceptual simplicity. It can be performed
together with various types of deterministic models, such as limit equilibrium
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methods (e.g., El-Ramly et al. 2002, 2005, and 2006), finite element method (e.g.,
Griffiths and Fenton 2004; Xu and Low 2006; Griffiths et al. 2009; Hicks and
Spencer 2010), and response surface method (e.g., Xu and Low 2006). It, however,
suffers from a lack of efficiency and resolution at small probability levels and does
not offer insights into the relative contributions of uncertainties to the failure
probability (Baecher and Christian 2003).

2.5.4 Subset Simulation

Recently, an advanced Monte Carlo simulation called “subset simulation” has been
applied to probabilistic slope stability analysis to improve the efficiency and res-
olution of the MCS (Au et al. 2009; Wang et al. 2009; Au et al. 2010). Subset
simulation makes use of conditional probability and Markov Chain Monte Carlo
Simulation (MCMCS) method to efficiently compute small tail probability (Au
2001; Au and Beck 2001 and 2003). It expresses a small probability event as a
sequence of intermediate events {F1, F2,…, Fm} with larger conditional probability
and employs specially designed Markov Chains to generate conditional samples of
these intermediate events until the final target failure region is achieved. For the
slope stability problem, let Y = 1/FS be the critical response (Au et al. 2009; Wang
et al. 2009; Au et al. 2010). The probability of Y = 1/FS being larger than a given
value y (i.e., P(Y = 1/FS > y)) is of interest, and let 0 < y1 < y2 < ��� < ym
−1 < ym = y be an increasing sequence of intermediate threshold values. The
sequence of intermediate events {F1, F2, …, Fm} are chosen as Fi = {Y > yi, i = 1,
2, …, m} for these intermediate threshold values. By sequentially conditioning on
the event {Fi, i = 1, 2, …, m}, the failure probability can be written as

Pf ¼ PðFmÞ ¼ PðF1Þ
Ym
i¼2

PðFijFi�1Þ ð2:15Þ

where P(F1) is equal to P(Y > y1) and P(Fi|Fi−1) is equal to {P(Y > yi|Y > yi−1):
i = 2, …, m}. In implementations, y1, y2, … ym are generated adaptively using
information from simulated samples so that the sample estimate of P(F1) and {P(Fi|
Fi−1): i = 2, …, m} always corresponds to a common specified value of conditional
probability p0 (p0 = 0.1 is found to be a good choice) (Au 2001; Au and Beck 2001
and 2003; Au et al. 2010). The efficient generation of conditional samples is pivotal
in the success of subset simulation, and it is made possible through the machinery
of MCMCS (e.g., Beck and Au 2002; Robert and Casella 2004). The procedures of
subset simulation and MCMCS are described in the following two subsections,
respectively.

40 2 Literature Review



2.5.4.1 Subset Simulation Procedure

Subset simulation starts with direct MCS, in which N MCS samples are generated.
The Y values of the N samples are calculated and ranked in an ascending order. The
(1 − p0)Nth value in the ascending list of Y values is chosen as y1, and hence, the
sample estimate for P(F1) = P(Y > y1) is always p0. In other words, there are
p0N samples with F1 = Y > y1 among the samples generated by direct MCS. Then,
starting from the p0N samples with F1 = Y > y1, MCMCS is used to simulate
(1 − p0)N additional conditional samples given F1 = Y > y1, so that there are a total
of N samples with F1 = Y > y1. The Y values of the N samples with F1 = Y > y1 are
ranked again in an ascending order, and the (1 − p0)Nth value in the ascending list
of Y values is chosen as y2, which defines the F2 = Y > y2. Note that the sample
estimate for P(F2|F1) = P(Y > y2|Y > y1) is also equal to p0. Similarly, there are
p0N samples with F2 = Y > y2 and these samples provide “seeds” for the applica-
tion of MCMCS to simulate additional (1 − p0)N conditional samples with
F2 = Y > y2 so that there are N conditional samples with F2 = Y > y2. The proce-
dure is repeated m times until the probability space of interest (i.e., the sample
domain with Y > ym) is achieved. Note that the subset simulation procedures
contain m + 1 steps, including one direct MCS to generate unconditional samples
and m steps of MCMCS to simulate conditional samples. The m + 1 steps of
simulations are referred to as “m + 1 levels” in subset simulation (Au and Beck
2001 and 2003; Au et al. 2010), and in total, these m + 1 levels of simulations
generate N + m(1 − p0)N samples.

2.5.4.2 Markov Chain Monte Carlo Simulation (MCMCS)

MCMCS method is a numerical process that simulates a sequence of samples of
random variables x as a Markov Chain with the joint PDF of random variables as the
Markov Chain’s limiting stationary distribution (e.g., Beck and Au 2002; Robert and
Casella 2004). It provides a feasible way to generate nMCMC samples from an arbitrary
PDF, particularly when the PDF is complicated and is difficult to express analytically
and explicitly. There are several MCMCS methods, such as Metropolis algorithm
(Metropolis et al. 1953), original Metropolis–Hastings (MH) algorithm (Hastings
1970), and modifiedMetropolis–Hastings (MMH) algorithm (Au 2001; Au and Beck
2001 and 2003). For example, the original MH algorithm is described below.

Consider, for example, random variables x ¼ ½x1; x2; . . .; xk� with a prescribed
joint PDF P(x). In MH algorithm, the Markov Chain starts with an initial state x1 that
is predefined by the user (e.g., conditional failure samples generated in the previous
subset simulation level). Then, the ith state of the x Markov Chain, xi,
i ¼ 2; 3; . . .; nMCMC, (e.g., x2 for the second state) is generated from its previous state
xi�1 (e.g., the initial state x1 for x2). A candidate sample x�i , i ¼ 2; 3; . . .; nMCMC, for
the ith state is generated from the proposal PDF f ðx�i jxi�1Þ (e.g., a normal distribution
or uniform distribution centered at the previous state xi�1). The candidate sample x�i

2.5 Probabilistic Slope Stability Analysis 41



is, however, not necessarily to be accepted as the ith state of the x Markov Chain
(i.e., xi). The chance to accept the candidate sample x�i as the xi depends on the
“acceptance ratio,” ra, which is calculated as

ra ¼ Pðx�i Þ
Pðxi�1Þ

� f ðxi�1jx�i Þ
f ðx�i jxi�1Þ

for i ¼ 2; 3; . . .; nMCMC ð2:16Þ

in which Pðx�i Þ and Pðxi�1Þ are PDF values of x�i and xi�1, respectively; f ðx�i jxi�1Þ is
the conditional PDF value of x�i given xi�1; f ðxi�1jx�i Þ is the conditional PDF value
of xi�1 given x�i . Using PDF of x and the predefined proposal PDF, the acceptance
ratio of x�i is obtained from Eq. (2.16). When ra is greater than unity, the candidate
sample x�i is accepted as the ith state of the x Markov Chain (i.e., xi). When ra falls
within [0, 1], the probability to accept x�i as xi is ra.

In implementation, a random number u is generated from a uniform distribution
with a range from zero to one. If u is less than ra, x�i is accepted as xi, i.e., xi ¼ x�i .
Otherwise, x�i is rejected, and xi is taken as the previous state xi�1, i.e., xi ¼ xi�1.
For example, the ra value for the candidate sample x�2 is calculated from Eq. (2.16)
using x1 and x�2, and the second state x2 is then determined accordingly by com-
paring the values of ra and u. Starting from the initial state x1, the procedure
described above is repeated nMCMC � 1 times to generate nMCMC � 1 samples of x,
i.e., xi; i ¼ 2; 3; . . .; nMCMC. This leads to a Markov Chain that is comprised of
nMCMC x samples (including the initial sample).

The original MH algorithm reduces to the Metropolis algorithm when the pro-
posal PDF is symmetric, i.e., f ðx�i jxi�1Þ = f ðxi�1jx�i Þ. Both the Metropolis algorithm
and the original MH algorithm are not applicable for high-dimensional problems
because the acceptance ratio becomes exponentially small as the dimension k in-
creases and most of candidate samples are rejected (Au 2001; Au and Beck 2001).
The MMH algorithm was proposed for high-dimensional problems by Au (2001)
and Au and Beck (2003). In MMH algorithm, the random vector x with k inde-
pendent components is simulated by generating the candidate sample of x com-
ponent by component, so that the acceptance ratio of individual component of the
candidate sample of x does not decrease to zero when the dimension increases (Au
2001). In this book, MCMCS method is applied in both subset simulation (see
Chaps. 7 and 8) and the probabilistic approach developed for site characterization
(see Chap. 5).

Appendix 2.1: Several Empirical Correlations Reported
by Kulhawy and Mayne (1990)

This appendix summarizes several empirical correlations reported by Kulhawy and
Mayne (1990). Table 2.8 shows empirical correlations between standard penetra-
tion test (SPT) N-value and effective friction angle of sands, the relative density of
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which ranges from very loose to very dense. When the SPT N-value is less than 4,
the effective friction angle is less than 28° by Peck et al. (1974) or less than 30° by
Meyerhof (1956). The effective friction angle increases as the SPT N-value
increases. When the SPT N-value is greater than 50, the effective friction angle is
greater than 41° by Peck et al. (1974) or greater than 45° by Meyerhof (1956).

Table 2.9 gives an empirical correlation between cone tip resistance measured
by cone penetration test (CPT) and effective friction angle of sands, the relative
density of which ranges from very loose to very dense. As the cone tip resistance
increases from less than 2.0 MPa to larger than 20 MPa, the effective friction angle
increases from less than 30° to larger than 45°.

Table 2.10 summarizes the minimum and maximum of the typical dry unit
weight of sands, including silty sand, clean sand, micaceous sand, and silty sand
and gravel. The minimum and maximum of the dry unit weight range from 13.6
kN/m3 to 14.0 kN/m3 and from 20.0 kN/m3 to 22.9 kN/m3, respectively.

Table 2.11 summarizes typical effective friction angles of sands. Typical
effective friction angles of loose and dense uniform sands with round grains are
27.5° and 34.0°, respectively. Typical effective friction angles of loose and dense
well-graded sands with angular grains are 33.0° and 45.0°, respectively. Typical
effective friction angles of loose and dense sandy gravels are 35.0° and 50.0°,
respectively. In addition, typical effective friction angles of loose and dense silty

Table 2.8 Relationship
between SPT N-value and
effective friction angle of sand
(after Kulhawy and Mayne
1990)

SPT N-value Relative density Approximate
effective friction
angle ϕʹ(°)

a b

0–4 Very loose <28 <30

4–10 Loose 28–30 30–35

10–30 Medium 30–36 35–40

30–50 Dense 36–40 40–45

>50 Very dense >41 >45
aAfter Peck et al. (1974)
bAfter Meyerhof (1956)

Table 2.9 Relationship between cone tip resistance qc and effective friction angle of sand (after
Kulhawy and Mayne 1990)

Normalized cone tip resistance
qc/pa

b
Relative
density

Approximate effective friction angle ϕʹ
(°)a

<20 Very loose <30

20–40 Loose 30–35

40–120 Medium 35–40

120–200 Dense 40–45

>200 Very dense >45
aAfter Meyerhof (1956)
bpa is the standard atmospheric pressure
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sands range from 27.0° to 33.0° and from 30.0° to 34.0°, respectively. For loose
and dense inorganic silts, their typical effective friction angles range from 27.0° to
30.0° and from 30.0° to 34.0°, respectively.

Figure 2.7 shows variation of effective friction angle of soils as a function of dry
unit weight, relative density, and soil type. The effective friction angle increases as
the dry unit weight and relative density increase. Figure 2.8 shows an empirical
correlation between cone tip resistance qc measured by CPT and the effective
friction angle /0 of sands, which is a semilog regression equation

/0 ¼ 17:6þ 11:0 log
qc=paffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
v0=pa

q
0
B@

1
CA ð2:17Þ

Table 2.10 Typical soil unit
weight of sand (after Kulhawy
and Mayne 1990)

Soil type Dry unit weight (kN/m3)a

Minimum Maximum

Silty sand 13.6 20.0

Clean, fine to coarse sand 13.3 21.7

Micaceous sand 12.0 18.8

Silty sand and gravel 14.0 22.9
aAfter Hough (1969)

Table 2.11 Typical values
of effective friction angle of
sand (after Kulhawy and
Mayne 1990)

Soil type Effective friction angle
ϕʹ(°)a

Loose Dense

Sand, round grains, uniform 27.5 34.0

Sand, angular grains, well graded 33.0 45.0

Sandy gravels 35.0 50.0

Silty sand 27.0–33.0 30.0–34.0

Inorganic silt 27.0–30.0 30.0–34.0
aAfter Terzaghi and Peck (1967)
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Normalized dry unit weight, γd/γw

Fig. 2.7 Relationship
between the normalized dry
unit weight and effective
friction angle (after Kulhawy
and Mayne 1990)
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in which r
0
v0 and pa are vertical effective stress and standard atmospheric pressure

(i.e., 0.1 MPa), respectively. Figure 2.9 shows an empirical correlation between
SPT N-value (i.e., NSPT) and undrained Young’s modulus Eu of clay, and it is
written as

Eu=pa ¼ 19:3N0:63
SPT ð2:18Þ

In Eq. (2.18), the undrained Young’s modulus Eu of clay is measured by pres-
suremeter tests.

Normalized cone tip resistance q = (qc/pa )/(σσ 'v0 /pa )0.5

φ'=17.6+11.0log(qc/pa)/(σ'v0/pa)0.5

(number=633, r2=0.640, S.D.=2.8º)
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Fig. 2.8 Regression between
normalized cone tip resistance
and effective friction angle
(after Kulhawy and Mayne
1990 and Wang et al. 2010)
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SPT N-Value

Eu/pa=19.3 NSPT
0.63

pa = 0.1MPa

Fig. 2.9 Regression between
SPT N-value and undrained
Young’s modulus of clay
(after Ohya et al. 1982;
Kulhawy and Mayne 1990;
Phoon and Kulhawy 1999b
and Wang and Cao 2013)
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Chapter 3
Bayesian Framework for Geotechnical
Site Characterization

3.1 Introduction

Geotechnical site characterization is a multi-step process that aims to delineate
underground stratigraphy (i.e., the number and boundaries of soil layers) and to
estimate soil properties for geotechnical analysis and/or designs (e.g., Clayton et al.
1995; Mayne et al. 2002). It relies on both prior knowledge (i.e., the site infor-
mation available prior to the project) and site observation data (i.e., project-specific
test results). How to combine systematically prior knowledge and site observation
data, however, remains a challenging task for geotechnical engineers (Wang et al.
2010). This problem is further complicated by various uncertainties incorporated in
prior knowledge and site observation data and the fact that only a limited number of
project-specific test results are obtained during geotechnical site characterization.

To address these challenges, this chapter develops a Bayesian framework for
geotechnical site characterization, which combines systematically prior knowledge
and project-specific test results and deals rationally with the inherent spatial vari-
ability of soils and various uncertainties (e.g., statistical uncertainty, measurement
errors, and transformation uncertainty associated with the transformation model)
arising during site characterization in a probabilistic manner. It starts with
description of uncertainty propagation during geotechnical site characterization,
followed by probabilistic modeling of inherent spatial variability of soils and
transformation uncertainty and development of the Bayesian framework. Based on
the Bayesian framework, the soil property and boundaries of statistically
homogenous soil layers are characterized probabilistically, and a Bayesian model
class selection method is developed to determine the most probable number of
statistically homogenous soil layers.
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3.2 Uncertainty Propagation During Geotechnical
Site Characterization

Figure 3.1 shows schematically the procedure of geotechnical site characterization
together with inherent spatial variability of soils and uncertainties arising during site
characterization. Geotechnical site characterization often starts with desk study and
site reconnaissance, which provide prior knowledge about the site, including
existing information collected from various sources (see Table 2.1) and engineers’
expertise (e.g., Clayton et al. 1995; Mayne et al. 2002). The prior knowledge is not
perfect information but is associated with some uncertainties (e.g., Baecher 1983;
Vick 2002), such as inherent spatial variability and measurement errors incorpo-
rated in existing data, subjective uncertainties of engineers’ expertise, and so forth.

After desk study and site reconnaissance, in situ investigation work (e.g., in situ
boring and testing) and laboratory testing can be performed to provide
project-specific test results, i.e., site observation data. The site observation data
fluctuates because of inherent spatial variability of soils that are formed and existed
long before the project, measurement errors arising from imperfect test equipments
and/or procedural–operator errors, and statistical uncertainty resulted from insuffi-
cient tests (e.g., Vanmarcke 1977; Christian et al. 1994; Kulhawy 1996; Phoon and
Kulhawy 1999a; Baecher and Christian 2003). In addition, the measured soil
property is not necessary to be the soil property that can be directly used in
geotechnical analysis and/or designs (i.e., the design soil property xd). The design
soil property xd can be estimated from in situ and laboratory test results (i.e., site
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Fig. 3.1 Geotechnical site characterization and uncertainty propagation (After Wang et al. 2016)
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observation data of the measured soil property xt) by a transformation model
between xd and xt. It is well recognized that the transformation model is associated
with uncertainties (i.e., transformation uncertainty or modeling error) because of
insufficient knowledge about the relationship between xd and xt (e.g., Phoon and
Kulhawy 1999b; Baecher and Christian 2003). Transformation uncertainty is
incorporated into the interpretation outcomes of the site observation data as well as
the inherent spatial variability of soils and statistical uncertainty and measurement
errors associated with the site observation data, as shown in Fig. 3.1.

Geotechnical engineers then utilize both the interpretation outcomes of site
observation data and prior knowledge to infer the ground conditions (including soil
properties and underground stratigraphy) for geotechnical analysis and/or designs.
The estimations of soil properties and underground stratigraphy are, therefore,
affected by uncertainties in prior knowledge and uncertainties (i.e., inherent spatial
variability of soils, statistical uncertainty and measurement errors associated with
site observation data, and transformation uncertainty) in the interpretation outcomes
of the site observation data. Note that statistical uncertainty and measurement errors
are usually combined with site observation data (see Fig. 3.1). They can, therefore,
be taken into account through site observation data, as discussed in Sect. 3.4
“Bayesian Framework.” In the next section, probability theory is applied to mod-
eling the inherent spatial variability of the design soil property, xd and the trans-
formation uncertainty associated with the transformation model.

3.3 Uncertainty Modeling

3.3.1 Inherent Spatial Variability

Probability models, e.g., random variables and random fields (e.g., Lumb 1966;
Vanmarcke 1977, 1983; Wang et al. 2010; Cao et al. 2011), are applied in this book
to characterize inherent spatial variability of a design soil property xd in a soil
profile containing NL statistically homogenous soil layers. The number NL in the
first part of this chapter (i.e., before Sect. 3.6 “The Most Probable Number of Soil
Layers”) is considered as a given value. It is then determined among several pos-
sible values by a Bayesian model class selection method proposed in Sect. 3.6.

Let Xd ¼ xd1; xd2; . . .xdNL

� �T
denote a set of random variables representing xd at

different locations in the soil profile with NL soil layers, in which
xdn ¼ ½xd1; xd2; . . .; xdkn �; n ¼ 1; 2; . . .;NL, are kn random variables representing xd
within the nth soil layer. Note that the value of kn depends on the adopted prob-
abilistic model and can vary from 1 to a certain positive integer. When kn [ 1,
xdn = ½xd1; xd2; . . .; xdkn � are a series of random variables representing xd at kn dif-
ferent locations within the nth soil layer, i.e., a random field of xd in the nth soil
layer. When kn ¼ 1, the design soil property xd within the nth soil layer is repre-
sented by one random variable, and the inherent variability of xd in the nth soil layer
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is characterized by the probability distribution of the random variable. In the
context of probability theory, the probability distribution of Xd (i.e., random vari-
ables and random fields) depends on several model parameters (e.g., statistics of
random variables) HPNL = hP1; hP2; . . .; hPNL

� �
, where hPn; n ¼ 1; 2; . . .;NL, is the

vector of model parameters of the nth soil layer. Note that HPNL (or
hPn; n = 1; 2; . . .;NL) is generally comprised of model parameters that are used to
describe the inherent spatial variability of xd (e.g., the mean, standard deviation, and
correlation length) and to delineate the boundaries of statistically homogenous soil
layers (e.g., thicknesses of soil layers).

3.3.2 Transformation Uncertainty

The design soil property xd can be estimated from project-specific test results of the
measured property xt by a transformation model between them (e.g., Kulhawy and
Mayne 1990; Phoon and Kulhawy 1999b; Mayne et al. 2002). Consider, for
example, a transformation model as follows

xd = fTðxt; eTÞ ð3:1Þ

in which fTð�; eTÞ represents the transformation model between xd and xt; eT is a
random variable representing the transformation uncertainty or modeling error.

Let Xt = xt1; xt2; . . .; xtNL

� �T
denote a set of values of xt measured at different

locations in the soil profile with NL soil layers, in which
xtn = ½xt1; xt2; . . .; xtkn �n ¼ 1; 2; . . .;NL, are kn values of xt measured within the nth
soil layer. For the nth soil layer, xti, i = 1, 2, …, kn, are corresponding to xdi, i = 1,
2, …, kn by Eq. (3.1), respectively. Such a relationship can be generalized to all
components in Xt and Xd . Since the probability distribution of Xd relies on model
parameters HPNL = ½hP1; hP2; . . .; hPNL

�, the probability distribution of Xt also
depends on HPNL . Knowledge of model parameters HPNL is required to completely
define the probability distribution of Xt. The next section presents a Bayesian
framework for updating the knowledge of model parameters HPNL using prior
knowledge and site observation data Xt.

3.4 Bayesian Framework

Figure 3.2 shows schematically the Bayesian framework developed in this chapter.
Under the Bayesian framework, the updated knowledge (i.e., posterior knowledge)
of model parameters HPNL is reflected by their joint posterior distributions (e.g.,
Ang and Tang 2007; Wang et al. 2010; Cao et al. 2011)
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P HPNL jXt;NLð Þ = KNLP XtjHPNL ;NLð ÞP HPNL jNLð Þ ð3:2Þ

in which KNL = 1=P XtjNLð Þ is a normalizing constant for a given number NL of soil
layers; P XtjHPNL ;NLð Þ is the likelihood function that reflects the model fit with site
observation data Xt within the NL soil layers; PðHPNL jNLÞ is the prior distribution of
model parameters of the NL soil layers.

The likelihood function PðXtjHPNL ;NLÞ is the probability density function
(PDF) of Xt for a given set of model parameters HPNL (i.e., for a given model). It
quantifies probabilistically the information on HPNL provided by site observation
data Xt. As shown in Fig. 3.2, derivation of the likelihood function depends on the
probabilistic model Xd of inherent spatial variability of the design soil property xd
and the transformation model. The inherent spatial variability of xd and transfor-
mation uncertainty associated with the transformation model are explicitly
addressed by the probabilistic model Xd and the random variable e0T , respectively.
In addition, statistical uncertainty and measurement errors are also incorporated into
the Bayesian framework through site observation data Xt (see Fig. 3.2).

The prior distribution PðHPNL jNLÞ is the PDF of HPNL according to the prior
knowledge, and it reflects probabilistically prior knowledge about HPNL in the
absence of data. It can be estimated from prior knowledge using subjective prob-
ability assessment methods (e.g., Siu and Kelly 1998; Vick 2002; Garthwaite et al.
2005). When there is no prevailing knowledge on HPNL , an uninformative prior
distribution (e.g., uniform distribution) can be applied in the Bayesian framework.

The posterior distribution P HPNL jXt;NLð Þ is a joint distribution of model
parameters HPNL and reflects the posterior knowledge on HPNL . As mentioned
before, HPNL (or hPn; n = 1; 2; . . .;NL) includes model parameters that are used to
describe the inherent spatial variability of xd and to delineate the boundaries of NL
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Fig. 3.2 Illustration of the Bayesian framework (After Wang et al. 2016)
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statistically homogenous soil layers. Therefore, the posterior distribution
P HPNL jXt;NLð Þ characterizes probabilistically both the design soil property xd and
the boundaries of the NL soil layers.

3.5 Probability Distribution of the Design Soil Property

For a given set of prior knowledge and site observation data, there are many sets of
possible values of model parameters HPn (or hPn; n ¼ 1; 2; . . .;NL). Each set of HPn

has its corresponding plausibility, which is defined by the posterior distribution
P HPNL jXt;NLð Þ given by Eq. (3.2). For the nth soil layer, the posterior distribution
PðhPnjXt;NLÞ, n = 1, 2, …, NL, of model parameters hPn of the soil layer can be
obtained from integration on PðHPNL jXt;NLÞ over the space of model parameters of
the other soil layers.

Using the Theorem of Total Probability, the joint PDF of the design soil property
xdn ¼ ½xd1; xd2; . . .; xdkn � within the nth statistically homogenous soil layer is then
expressed as

P xdnjXt;NLð Þ ¼
Z

P xdnjhPnð ÞP hPnjXt;NLð ÞdhPn; n ¼ 1; 2; . . .;NL ð3:3Þ

in which P xdnjhPnð Þ, n = 1, 2, …, NL, is the conditional joint PDF of xdn for a given
set of model parameters hPn of the nth statistically homogenous soil layer, which
depends on the probabilistic model adopted to model the inherent variability of xd .

3.6 The Most Probable Number of Soil Layers

3.6.1 Bayesian Model Class Selection Method

The number NL of statistically homogenous soil layers is considered as a given
value in the previous sections. This section considers the number of statistically
homogenous layers as a variable k and utilizes a Bayesian model class selection
method (Beck and Yuen 2004; Yan et al. 2009; Yuen 2010) to determine the most
probable value k� (or the most probable model class) among a pool of candidate
model classes. A model class herein is referred to a family of stratification models
that share the same number (e.g., k) of statistically homogenous soil layers but have
different model parameters HPNL . Let NLmax denote the maximum possible number
of soil layers tested. Then, the model class number k is a positive integer varying
from 1 to NLmax. Subsequently, there are NLmax candidate model classes Mk, k = 1,
2, …, NLmax, and the kth model class Mk has k statistically homogenous layers. The
most probable model class M�

k is the one that has the maximum plausibility (or
occurrence probability), among all candidate model classes, for a given set of site

58 3 Bayesian Framework for Geotechnical Site Characterization



observation data Xt. The most probable layer number k�, therefore, can be deter-
mined by comparing the conditional probabilities P MkjXtð Þ for all candidate model
classes (i.e., k = 1, 2, …, NLmax) and selecting the one with the maximum value of
PðMkjXtÞ.

According to Bayes’ theorem, PðMkjXtÞ is written as (Beck and Yuen 2004; Yan
et al. 2009; Yuen 2010)

P MkjXtð Þ ¼ P XtjMkð ÞP Mkð Þ=P Xtð Þ; k ¼ 1; 2; . . .;NLmax ð3:4Þ

where P Xtð Þ is the PDF of Xt, and it is constant and independent of Mk; PðXtjMkÞ is
the conditional PDF of Xt for a given model class Mk; PðMkÞ is the prior probability
of model class Mk. PðXtjMkÞ is frequently referred to as the “evidence” for the
model class Mk provided by site observation data Xt, and it increases as the
plausibility of Xt conditional on Mk increases. Calculation of PðXtjMkÞ, PðMkÞ, and
P(Xt) is discussed in the following three subsections.

3.6.2 Calculation of the Evidence

By the Theorem of Total Probability (e.g., Ang and Tang 2007), the evidence
PðXtjMkÞ for model class Mk can be expressed as

P XtjMkð Þ ¼
Z

P XtjHPk;Mkð ÞP HPkjMkð ÞdHPk; k ¼ 1; 2; . . .;NLmax ð3:5Þ

in which PðXt HPk;j MkÞ is the likelihood function of Mk; PðHPk MkÞj is the prior
distribution of model parameters HPk of Mk . The likelihood function and prior
distribution developed in Sect. 3.4 “Bayesian Framework” for a soil profile given
NL soil layers can be applied directly in Eq. (3.5) by setting NL ¼ k.

3.6.3 Calculation of Prior Probability

The prior probability PðMkÞ reflects the prior knowledge on the number of soil
layers and can be estimated from the prior knowledge. In the case of no prevailing
prior knowledge on the number of soil layers (i.e., uniformly distributed prior), the
NLmax candidate model classes have the same prior probability, and hence, PðMkÞ
can be taken as a constant 1/NLmax. Then, based on Eq. (3.4), PðMkjXtÞ is pro-
portional to the evidence PðXtjMkÞ for the model class Mk . Since the most probable
model class M�

k corresponds to the maximum value of PðMkjXtÞ, it also has the
maximum value of PðXtjMkÞ. In other words, the most probable model classM�

k can
be selected by comparing the values of PðXtjMkÞ among NLmax candidate model
classes.
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3.6.4 Calculation of Probability Density Function of Site
Observation Data

After PðXtjMkÞ and PðMkÞ are obtained for each model class, P Xtð Þ can be cal-
culated by the Theorem of Total Probability (e.g., Ang and Tang 2007), and it is
written as

P Xtð Þ ¼
XNLmax

k¼1

P XtjMkð ÞP Mkð Þ ð3:6Þ

The conditional probability P MkjXtð Þ of model class Mk for a given set of site
observation data Xt is then calculated using Eqs. (3.4) to (3.6) together with the
prior probability P Mkð Þ. The calculation is repeated NLmax times for the NLmax

candidate model classes, and the values of P MkjXtð Þ for the NLmax model classes are
obtained. By comparing these P MkjXtð Þ values, the most probable model class M�

k
and the most probable number k� of statistically homogenous soil layers are
determined. In addition, it is also worthwhile to note that PðMkjXtÞ is proportional
to P XtjMkð ÞP Mkð Þ for the model class Mk by Eq. (3.4) because P(Xt) is a nor-
malizing constant and is independent of Mk. Therefore, the most probable model
class M�

k can also be determined by comparing the values of PðXtjMkÞPðMkÞ of
NLmax candidate model classes. By this means, the calculation of P(Xt) can be
avoided when determining the most probable model classM�

k and the most probable
number k� of statistically homogenous soil layers.

3.7 Summary and Conclusions

This chapter revisited the procedure of geotechnical site characterization from an
uncertainty propagation point of view. The propagation of inherent spatial vari-
ability of soils, statistical uncertainty, measurement errors, and transformation
uncertainty was depicted explicitly during different stages of geotechnical site
characterization (see Fig. 3.1). Then, a Bayesian framework was developed for
geotechnical site characterization, which integrates systematically prior knowledge
and site observation data to characterize probabilistically the design soil property
and boundaries of statistically homogenous soil layers. The Bayesian framework
addresses directly and explicitly the inherent spatial variability of the design soil
property and accounts rationally for various uncertainties (i.e., statistical uncer-
tainty, measurement errors, and transformation uncertainty) that arise during
geotechnical site characterization. Based on the Bayesian framework, the most
probable number of statistically homogenous soil layers is then determined through
a Bayesian model class selection method.
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It is also worthwhile to note that posterior knowledge provided by the Bayesian
framework reflects the state of knowledge on soil properties based on prior
knowledge and the site observation data. The posterior knowledge can be taken as
the prior knowledge to update the knowledge of soil properties again when new site
observation data are obtained from further in situ and laboratory testing, as shown
by the dashed line in Fig. 3.2. The knowledge on soil properties therefore can be
updated in a row and be accumulated progressively as site observation data
increases.
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Chapter 4
Quantification of Prior Knowledge
Through Subjective Probability
Assessment

4.1 Introduction

Prior distribution is an essential component of the Bayesian framework developed
in the previous chapter, and it reflects the prior knowledge (including the existing
information collected from various sources and engineers’ expertise) obtained
during preliminary stages (e.g., desk study or site reconnaissance) of geotechnical
site characterization. When only a typical range of a soil parameter concerned is
available as the prior knowledge, a uniform prior distribution of the soil parameter
that covers the typical range can be used in the Bayesian framework. As the
information provided by prior knowledge improves, a more sophisticated and
informative prior distribution can be estimated from prior knowledge. Based on the
prior knowledge obtained from desk study and/or site reconnaissance, a subjective
probability assessment framework (SPAF) is proposed in this chapter to assist
engineers in quantifying the information provided by prior knowledge and esti-
mating the prior distribution from prior knowledge.

This chapter starts with brief description of uncertainties in prior knowledge,
followed by development of the SPAF based on a stage cognitive model of engi-
neers’ cognitive process. Each stage of the cognitive process is implemented in the
proposed SPAF, and several suggestions are provided for each stage to assist
engineers in utilizing prior knowledge in a relatively rational way and reducing
effects of cognitive biases and limitations mentioned in Chap. 2. The proposed
SPAF is applied to characterize probabilistically the sand effective friction angle at
a US National Geotechnical Experimentation Site (NGES) at Texas A&M
University, and it is illustrated under two scenarios: one with sparse prior knowl-
edge and the other with a reasonable amount of prior knowledge.
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4.2 Uncertainties in Prior Knowledge

Prior knowledge includes the existing information (e.g., geological information,
geotechnical problems and properties, and groundwater conditions) about a specific
site collected from various sources (see Table 2.1 in Chap. 2) during desk study
and site reconnaissance and engineers’ expertise (Clayton et al. 1995; Mayne et al.
2002). The collected information contains various uncertainties, such as inherent
variability of soil properties, measurement errors, statistical uncertainty incorpo-
rated in historical data, and transformation uncertainty associated with regression
models used to interpret the historical data. In addition, the quantity and quality of
the expertise of an individual engineer depend on various external factors (e.g.,
educational background and career experience) and internal factors (e.g., personal
attributes and individual cognitive process) (Vick 2002). Variations of such external
and internal factors lead to uncertainties in engineers’ expertise. Because of
uncertainties in the existing information and engineers’ expertise, estimates of soil
properties and their statistics from prior knowledge are uncertain results rather than
cut-and-dried conclusions. Such uncertain estimates are, therefore, referred to as
“prior uncertain estimates” in this book.

The plausibility of prior uncertain estimates reflects the confidence level (or
degrees-of-belief) of prior knowledge on such estimates, and it can be evaluated
intuitively and qualitatively through engineering judgments (including various
cognitive heuristics discussed in Chap. 2, such as availability heuristic, representa-
tive heuristic, and anchoring and adjustment heuristic). Because of various cognitive
biases and limitations (see Chap. 2), outcomes from such intuitive and qualitative
evaluations might deviate from the actual beliefs of engineers and be inconsistent
with basic probability axioms (Vick 2002). The next section presents a subjective
probability assessment framework (SPAF), in which subjective probability is applied
to quantify the plausibility of prior uncertain estimates of statistics H ¼
½h1; h2; . . .; hnm � (e.g., the mean, standard deviation, and correlation length) of the soil
property x concerned and to express engineering judgments on x and its statisticsH in
a probabilistic manner. By this means, the plausibility of prior uncertain estimates of
H is quantified by the probability distribution of H, which can be taken as the prior
distribution of H in the Bayesian framework developed in Chap. 3.

4.3 Subjective Probability Assessment Framework (SPAF)

Engineers formulate subjective probability through a series of internal cognitive
activities (i.e., cognitive process). These cognitive activities can be divided into
several stages and be described by a stage cognitive model. Consider, for example,
the stage cognitive model presented by Vick (2002), as shown in Fig. 4.1. Based on
the stage cognitive model, a subjective probability assessment framework (SPAF) is
developed in this section, which is shown in Fig. 4.1.
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The SPAF starts with specification of assessment objectives (e.g., determining
the soil property x and its statistics H of interest), followed by collection of relevant
information and making prior uncertain estimates on the assessment objectives.
A piece of relevant information, a prior uncertain estimate obtained from this piece
of relevant information, and the correlations between the relevant information and
the prior uncertain estimate are collectively referred to as “a piece of evidence” in
this chapter, as shown in Fig. 4.2. The third step (i.e., synthesis of the evidence)
deals cautiously with the evidence collected in the second step. In this step,
uncertainties associated with each evidence are evaluated, and engineering judg-
ments are formulated internally based on the evidence. After that, the fourth step
(i.e., numerical assignment) is to express the engineering judgments through
numerical values (i.e., subjective probability values and probability distributions of
H). The final step (i.e., confirmation) aims to check whether or not the outcomes
(e.g., probability distributions of H) obtained from the SPAF are consistent with
probability axioms and reality and reflect engineers’ actual beliefs on assessment
objectives.

It is worthwhile to point out that the first four steps of the proposed SPAF
correspond to the four stages of the cognitive model of engineers’ cognitive process
(see Fig. 4.1), respectively. This allows engineers to formulate the subjective
probability (or engineering judgments) on assessment objectives by following their
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cognitive process naturally. These five steps of the SPAF are introduced in detail in
the following five sections, respectively. Several suggestions are also provided for
each step of the SPAF to assist engineers in utilizing prior knowledge in a relatively
rational way and reducing effects of cognitive biases and limitations (e.g., avail-
ability bias, representativeness bias, insufficient adjustment, and limited capacity of
processing information) (see Chap. 2).

4.4 Specification of Assessment Objectives

If assessment objectives are misunderstood, inappropriate information might be
collected and utilized in subjective probability assessment. This subsequently
results in various cognitive biases (e.g., availability bias and insufficient adjustment)
in subjective probability assessment. Therefore, it is of great significance to define
and understand assessment objectives clearly at the beginning of the subjective
probability assessment. Several suggestions are provided herein to assist engineers
in specifying and understanding the assessment objectives properly, such as

(1) Write down the soil property x of interest and define a general assessment
objective. For example, the general assessment objective can be “probabilistic
characterization of the soil property x”;

(2) Decompose the general objective into several sub-objectives. Each
sub-objectives is corresponding to a statistic hi; i ¼ 1; 2; . . .; nm, of x. The
statistics H ¼ ½h1; h2; . . .; hnm � of interest depend on the probability theory that
is applied to model the inherent variability of x in the Bayesian framework
developed in Chap. 3. For example, when using random field theory to model
inherent spatial variability of x within a statistically homogenous soil layer, the
statistics of interest are model parameters of the random field, i.e., mean l,
standard deviation r, and correlation length k of x. In other words, H consists
of three random variables: l, r, and k, i.e., H ¼ ½l; r; k�. Hence, the
sub-objectives can be defined as “evaluating probability of the mean l of x,”
“evaluating probability of the standard deviation r of x,” and “evaluating
probability of the correlation length k of x”;

(3) Identify probability terms (including statistics of x) that engineers are not
familiar with. For engineers, training in probability theory and statistics is
usually limited to basic information during their early years of education
(El-Ramly et al. 2002). They might be unfamiliar with some probability terms,
e.g., correlation length k. These probability terms should be written down;

A piece of relevant 
information 

A prior uncertain 
estimate

Correlations

A piece of evidence 

Fig. 4.2 Illustration of the
evidence (After Cao et al.
2016)
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(4) Try to understand physically probability terms that engineers are not familiar
with. Physical interpretation of probability terms helps engineers understand
these terms with relative ease. For example, the correlation length k of x is a
separate distance in which the soil property x shows relatively strong corre-
lation from point to point (Vanmarcke 1977, 1983). By this definition, the
correlation length is understood with relative ease.

Decomposition of the general assessment objective and physical interpretations
of probabilistic terms assist engineers in clearly understanding the assessment
objectives. This helps engineers collect properly information related to the
assessment objectives (including the general assessment objective and
sub-objectives), as discussed in the next section.

4.5 Collection of Relevant Information and Preliminary
Estimation

The next step is to assemble the relevant information on assessment objectives from
the prior knowledge (i.e., the collected existing information and engineers’
expertise). A piece of relevant information might result in several prior uncertain
estimates of the soil property x and/or its statistics H using available correlations
(e.g., empirical regressions or theoretical correlations) or intuitive inference.
Subsequently, it provides several pieces of evidence on assessment objectives.
Evidence can be divided into two types: supportive evidence and disconfirming
evidence (Vick 2002). Supportive evidence provides information that is consistent
with the preconceived view of the assessor (e.g., engineers) about the soil property
x, while disconfirming evidence contradicts with the preconceived view of the
assessor. Examination of relevant information in prior knowledge eventually pro-
vides an evidence list. A relatively comprehensive evidence list includes both
supportive evidence and disconfirming evidence collected from the existing
information and engineers’ expertise. It helps engineers reduce the availability bias
arising from missing some useful evidence, the representativeness bias resulted
from overemphasis on one particular type of information, and the confirmation bias
due to overlooking disconfirming evidence (Vick 2002). Several suggestions are
provided to assist engineers in acquiring a relatively comprehensive evidence list
from prior knowledge.

As shown in Table 2.1 in Chap. 2, there are seven types of existing information,
i.e., geological information, geotechnical problems and properties, site topography,
groundwater conditions, meteorological conditions, existing construction and ser-
vices, and previous land use. Engineers are suggested to cautiously search for
relevant information and/or evidence in each type of existing information and the
corresponding expertise. For each type of existing information, this can be per-
formed through the following three steps:
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(1) Identify the possible sources (including sources of the existing information
(see Table 2.1) and engineers’ expertise) of relevant information pertaining to
this type of existing information;

(2) Assemble the relevant information from each possible source, and write it
down;

(3) Evaluate the correlations between each piece of relevant information and the
soil property x and its statistics H ¼ ½l; r; k�; and write down the possible
outcomes (i.e., prior uncertain estimates). Prior uncertain estimates of x and its
statistics H can be obtained from the relevant information by correlations
(including empirical and theoretical relationships and/or intuitive inference)
and/or by conventional statistical equations. The mean and standard deviation
of a random variable X (e.g., x or hi; i ¼ 1; 2; . . .; nm) can be calculated as (e.g.,
Baecher and Christian 2003)

X ¼
PnX

i¼1
Xi

nX
ð4:1Þ

wX ¼
PnX

i¼1
ðXi � XÞ2

nX � 1
ð4:2Þ

in which X = the mean of X; wX = the standard deviation of X; Xi, i = 1, 2,… nx, are
samples of X; nx is the number of samples of X. When only a range of X from the
minimum Xmin to the maximum Xmax is available, the mean value X and standard
deviation wX can be estimated as (e.g., Duncan 2000; Baecher and Christian 2003)

X ¼ Xmax þXmin

2
ð4:3Þ

wX ¼ Xmax � Xmin

6
ð4:4Þ

Outcomes of the three steps are suggested to be written down clearly, including
the types, sources, contents of relevant information, the prior uncertain estimates of
x andH, and the correlations used to obtain the prior uncertain estimates. After that,
an evidence list is obtained. Diligent attempts to search for relevant information
and/or evidence in prior knowledge lead to a relatively comprehensive evidence list,
which helps engineers reduce effects of cognitive biases (Vick 2002). In addition,
writing down the relevant information and/or evidence in a list allows engineers to
carefully think about each piece of relevant information and/or evidence. This helps
engineers overcome the limitation of human information-processing capacity (Vick
2002).
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4.6 Synthesis of the Evidence

Engineers utilize the collected evidence to formulate internally engineering judg-
ments on the soil property x and its statistics H. The evidence has two essential
cognitive properties: strength and weight (Griffin and Tversky 1992; Vick 2002).
The strength means the forcefulness or extremeness (i.e., how convincingly or
persuasively the evidence argues for a proposition) of the evidence; and the weight
indicates the quality (i.e., how reliable it is) and quantity (i.e., how much of it) of
the evidence (Griffin and Tversky 1992; Vick 2002). Because of the limitation of
information-processing capacity, engineers consider the two properties of the evi-
dence separately and tend to focus more on the strength of the evidence and to
underestimate the effect of the weight (Vick 2002). This, sometimes, makes engi-
neers overly confident of strong but unreliable evidence and underemphasize (or
ignore) the relatively weak evidence with high weight (e.g., good quality and large
quantity), and subsequently leads to overconfidence bias, representativeness bias,
and insufficient adjustment (Vick 2002). To reduce effects of the cognitive biases,
there is a need to properly balance the effects of strength and weight of the evidence
and to synthesize the evidence further for subjective probability assessment. This
can, for example, be carried out through the following four steps: (1) evaluating the
strength of the evidence; (2) evaluating the weight of the evidence; (3) assembling
the evidence and statistical analysis; and (4) reassembling the relevant evidence for
each sub-objective, as discussed in the following four subsections, respectively.

4.6.1 Evaluation of the Strength of Evidence

A piece of evidence consists of a piece of relevant information, a prior uncertain
estimate, and correlations between the relevant information and the estimate (see
Fig. 4.2). The prior uncertain estimate in the evidence can be obtained from the-
oretical and/or empirical correlations or be inferred intuitively according to the
expertise of engineers. Correlations in the evidence can be, therefore, categorized
into two types: theoretical/empirical correlation and intuitive inference. Based on
the type of correlations used in the evidence, the strength of the evidence can be
divided into three levels: weak, moderate, and strong. If only the intuitive inference
is used in the evidence, the strength of the evidence is weak. If only
theoretical/empirical correlations (e.g., theories of probability and soil mechanics,
empirical regressions) are used in the evidence, the strength of the evidence is
strong. When both intuitive inference and theoretical/empirical correlations are
required to obtain the prior uncertain estimate in the evidence and they are used
sequentially, the strength of the evidence is moderate. In addition, when the relevant
information is completely equivalent to the prior uncertain estimate and there is no
need of correlations, the relevant information totally supports the prior uncertain
estimate in the evidence. In such cases, the strength of the evidence is strong.
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After the strength of all the evidence in the evidence list is obtained, engineers
are suggested to check the strength intuitively. This can be implemented by intu-
itively evaluating how convincingly the relevant information supports the corre-
sponding prior uncertain estimate according to the correlations used in the evidence.
The intuitive evaluation outcomes can also be categorized into three possible levels:
highly, moderately, and lowly persuasive, which are corresponding to strong,
moderate, and weak strength, respectively. If the strength of a piece of evidence
obtained from intuitive judgment is inconsistent with the strength of the evidence
obtained previously, engineers are suggested to cautiously think about the incon-
sistency and try to find out the reasons for the inconsistency. The strength of
evidence, sometimes, needs to be properly adjusted according to the causes that
lead to the inconsistency.

4.6.2 Evaluation of the Weight of Evidence

The weight of the evidence depends on several factors, including the source of the
relevant information, quantity of the relevant information (e.g., the number of
existing in-situ test data), and accuracy of the analysis method used to obtain the
prior uncertain estimate in the evidence. The weight of the evidence can be evaluated
according to the three factors. This can, for example, be performed in two steps:

(1) Evaluate the weight of the relevant information based on its source. The
relevant information might have been collected from four types of sources:
official publications (e.g., geotechnical reports, peer-reviewed academic
journals, textbooks, and geological maps) on the site concerned, official
publications on another site, informal sources on the site concerned, and
informal sources on another site. By the source of the relevant information, the
weight of relevant information can be divided into three levels: high, mod-
erate, and low. Relevant information obtained from official publications on the
site concerned has high weight. Relevant information obtained from informal
sources on the site concerned or official publications on another site has
moderate weight. Information collected from informal sources on another site
has low weight.

(2) Adjust the weight of the relevant information to the weight of the evidence
according to the accuracy of the analysis method used in the evidence. The
analysis method used to obtain the prior uncertain estimate in the evidence can
be categorized into two types: qualitative analysis and quantitative analysis.
The accuracy of qualitative analysis is considered relatively poor compared
with that of quantitative analysis. When qualitative analysis is used in the
evidence, the weight of the evidence is obtained by decreasing the weight of
the corresponding relevant information by one level. When quantitative
analysis is used in the evidence, adjustment of the weight of the relevant
information depends on the quantity of data used in the analysis. If there is a
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relatively large number of data used in the analysis, the weight of the evidence
is obtained by increasing the weight of the corresponding relevant information
by one level. If there are relatively limited data, the weight of the evidence is
obtained by decreasing the weight of the corresponding relevant information
by one level.

For the evidence in which the relevant information is completely equivalent to
the prior uncertain estimate, the weight of the evidence is determined by adjusting
the weight of the relevant information according to the quantity of data contained in
the relevant information. Note that when the weight of the relevant information is
already high and there exists a need of increasing it to obtain the weight of the
evidence, the weight of the evidence is still high. Similarly, when weight of the
relevant information is already low and there exists a need of decreasing it to obtain
the weight of the evidence, the weight of the evidence is still low.

When the weight of all the evidence in the evidence list is determined, engineers
are suggested to intuitively check the weight of all the evidence in the list. This can
be implemented by intuitively thinking about how reliable the evidence is. The
outcomes of intuitively weighing the evidence can be divided into three levels:
highly, moderately, and lowly reliable, which are corresponding to high, moderate,
and low weight, respectively. If the weight of the evidence obtained from intuitively
weighing the evidence is inconsistent with the weight of the evidence obtained
previously, engineers are suggested to cautiously examine the inconsistency and try
to find out the reasons resulting in the inconsistency. The weight of the evidence,
sometimes, needs to be properly adjusted according to the causes that lead to the
inconsistency.

4.6.3 Assembling the Evidence and Statistical Analysis

After the strength and weight of all the evidence are obtained, the next step is to
assemble the evidence about the same variable X (i.e., x or hi; i ¼ 1; 2; . . .; nm)
together. For each variable X, the evidence can be categorized into several groups
by strength and weight, and the evidence in each group has the same strength and
weight. Because both strength and weight have three possible levels (see
Sects. 4.6.1 and 4.6.2), there are 9 possible evidence groups: (1) group with weak
strength and low weight; (2) group with weak strength and moderate weight;
(3) group with weak strength and high weight; (4) group with moderate strength
and low weight; (5) group with moderate strength and moderate weight; (6) group
with moderate strength and high weight; (7) group with strong strength and low
weight; (8) group with strong strength and moderate weight; and (9) group with
strong strength and high weight. For each evidence group, conventional statistical
equations (e.g., Eqs. (4.1)–(4.4)) can be used to analyze the information on the
variable X (i.e., x or hi; i ¼ 1; 2; . . .; nm) provided by the evidence. By this means,
some estimates of statistics of X are obtained. The procedure described above is
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repeatedly performed for each variable involved in the subjective probability
assessment objectives, including x in the general assessment objective and
hi; i ¼ 1; 2; . . .; nm, in sub-objectives.

4.6.4 Reassembling the Relevant Evidence for Each
Sub-objective

Evidence with regard to the soil property x provides information on different
statistics hi; i ¼ 1; 2; . . .; nm, of x. In other words, estimates from the evidence on
x might be related to different sub-objectives since each sub-objective involves only
one statistic of x. For the convenience of subjective probability assessment, the
relevant evidence (or evidence groups) about the same sub-objective shall be
assembled together and be written down with the strength and weight of the evi-
dence. After that, engineers can examine cautiously the relevant evidence on each
sub-objective and make their engineering judgments on the sub-objective internally
based on the evidence.

It is worthwhile to point out that the evidence group with limited evidence shall
be used with caution when formulating engineering judgments. In addition, when
using the relevant evidence to make engineering judgments on a sub-objective, the
strength and weight of the evidence need to be considered. The relevant evidence
with strong strength and high weight is more persuasive and reliable than that with
relatively weak strength and relatively low weight. Convincingness and reliability
of the evidence decrease as the levels of strength and weight decrease.

Based on the relevant evidence, engineers have formulated their engineering
judgments on statistics hi; i ¼ 1; 2; . . .; nm, in sub-objectives internally. The next
step is to elicit engineering judgments on hi; i ¼ 1; 2; . . .; nm, from engineers and to
express the engineering judgments through numerical values. Engineers are,
however, not used to thinking in terms of probability due to relatively limited
training in probability theory and statistics (El-Ramly et al. 2002; Vick 2002;
Baecher and Christian 2003). In the next section, the equivalent lottery method and
verbal descriptors of the likelihood (or plausibility) are used to assist engineers in
assigning numerical values (i.e., subjective probability) to their engineering judg-
ments on hi; i ¼ 1; 2; . . .; nm, in sub-objectives.

4.7 Numerical Assignment

4.7.1 Equivalent Lottery Method

Equivalent lottery method (e.g., Clemen 1996; Vick 2002) assists engineers in
making decisions by comparing two lotteries. One of the two lotteries involves the
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event of interest, and the other one is designed as reference lottery in which the
probability information is contained as a reference. The plausibility of the event
concerned is equal to the probability in the reference lottery when indifference
between two lotteries is achieved by adjusting one of them. For example, two
lotteries are used to determine the median value of the statistic hi; i ¼ 1; 2; . . .; nm,
for a given range from the minimum hi;min to the maximum hi;max, which are given
by

Lottery 1:

Win a prize if hi;min � hi � as occurs, where as is a possible value of hi falling within
the range ½hi;min; hi;max�:
Win nothing if as\hi � hi;max occurs.

Lottery 2:

Win a prize with known probability p = 0.5.
Win nothing with probability 1 − p = 0.5.

The second lottery (i.e., lottery 2) is the reference lottery. Engineers can adjust
the value of as between the minimum and maximum (i.e., hi;min and hi;max) of hi
until they are indifferent between the two lotteries according to the previously
obtained relevant evidence on hi. The indifference indicates that engineers believe
that the two lotteries are equivalent to each other. Since occurrence probabilities of
the two choices in lottery 2 are fixed at 0.5, engineers believe that occurrence
probabilities of the two choices in lottery 1 are also 0.5 after the indifference is
reached. Therefore, when the indifference is reached, engineers believe that the
probability of hi;min � hi � as for a given range from hi;min to hi;max is equal to that of
as\hi � hi;max, and both of them are equal to 0.5. In other words, as is the median
value of hi for the given range from hi;min to hi;max after the indifference is reached.

The equivalent lottery method described above requires a range of hi, i.e.,
½hi;min; hi;max�; as input. Using different ranges of hi in the equivalent lottery method
leads to different median values. For example, using the range from 1 % percentile
(i.e., hi;0:01) of hi to 99 % percentile (i.e., hi;0:99) of hi in the equivalent lottery
method leads to a median value of hi equivalent to its 50 % percentile (i.e., hi;0:5).
Subsequently, using the range from hi;0:01 to hi;0:5 (i.e., ½hi;0:01; hi;0:5�Þ in the
equivalent lottery method results in a median value of hi equivalent to its 25 %
percentile (i.e., hi;0:25). Similarly, using the range from hi;0:5 to hi;0:99 (i.e.,
½hi;0:5; hi;0:99�Þ in the equivalent lottery method results in a median value of hi
equivalent to its 75 % percentile (i.e., hi;0:75). Then, using ranges of ½hi;0:01; hi;0:25�;
½hi;0:25; hi;0:5�; ½hi;0:5; hi;0:75�; and ½hi;0:75; hi;0:99� in the equivalent lottery method leads
to the median values equivalent to its 12.5 % (i.e., hi;0:125), 37.5 % (i.e., hi;0:375),
62.5 % (i.e., hi;0:625), and 87.5 % (i.e., hi;0:875) percentiles, respectively.
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4.7.2 Verbal Descriptors of the Likelihood

To start the equivalent lottery method described above, 1 % and 99 % percentiles
(i.e., hi;0:01 and hi;0:99) of hi should be determined first. Direct elicitation of
numerical values of probability from engineers might lead to unstable and inco-
herent results because engineers are not used to thinking in terms of numerical
values of probability (e.g., Baecher and Christian 2003). On the other hand,
engineers prefer to express their engineering judgments using words that indicate
the likelihood, namely verbal descriptors of the likelihood (Vick 2002). Verbal
descriptors can be mapped to numerical values of probability by transformation
conventions. For example, Table 4.1 shows a transformation convention between
verbal descriptors and numerical values of probability (Vick 2002). By this con-
vention, the words “virtually impossible,” “very unlikely,” “equally likely,” “very
likely,” and “virtually certain” are equivalent to the probability of 0.01, 0.1, 0.5,
0.9, and 0.99, respectively. Note that in this convention the probability value ranges
from 0.01 to 0.99 (see Table 4.1), which happens to be the valid cognitive dis-
crimination range (i.e., from 0.01 to 0.99) of subjective probability (Fischhoff et al.
1977; Hogarth 1975; Vick 1997, 2002).

The probability value in the transformation convention increases from 0.01 to
0.99 monotonically (see Table 4.1). Therefore, the transformation convention
corresponds to the cumulative distribution function (CDF) of the variable hi con-
cerned, and the words “virtually impossible” and “virtually certain” can be used to
determine the 1 % and 99 % percentiles of hi, respectively. 1 % and 99 % per-
centiles are located at the lower and upper tails of probability density function
(PDF), respectively. They can be considered as the minimum and maximum pos-
sible values of hi, respectively. Therefore, in the convention shown in Table 4.1, the
words “virtually impossible” and “virtually certain” are actually used to determine
the minimum and maximum possible values of hi in terms of PDF, respectively. In
this chapter, the words “minimum” and “maximum” are directly used to determine
the 1 % and 99 % percentiles, respectively. The 1 % and 99 % percentiles of hi are
then determined by asking “What is the minimum possible value of hi?” and “What
is the maximum possible value of hi?”, respectively.

It is also worthwhile to note that the verbal descriptor “equally likely” is
equivalent to the probability of 0.5 (see Table 4.1). By this convention, the two
lotteries proposed in the previous subsection can be rewritten as follows:

Table 4.1 Verbal descriptors
and their probability
equivalents (After Vick 2002)

Verbal descriptor Probability equivalent Percentile

Virtually impossible 0.01 hi;0:01
Very unlikely 0.10 hi;0:1
Equally likely 0.50 hi;0:5
Very likely 0.90 hi;0:9
Virtually certain 0.99 hi;0:99
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Lottery 1:

Win a prize if hi;min � hi � as occurs, where as is a possible value of hi falling within
the range ½hi;min; hi;max�:
Win nothing if as\hi � hi;max occurs.

Lottery 2:

Win a prize or nothing equally likely.

4.7.3 Implementation of the Equivalent Lottery Method

Using the two lotteries and verbal descriptors, the percentiles of hi in each
sub-objective can be determined accordingly. A questionnaire is designed in this
chapter to implement the equivalent lottery method, as shown in Appendix 4.1.
When answering the questions in the questionnaire, engineers might revisit the
relevant evidence on hi collected before.

The questionnaire starts with a question (i.e., Q1) that is used to determine a
reference prize for the lottery 1, followed by the second and third questions (i.e., Q2
and Q3) for determining hi;0:01 and hi;0:99, respectively. Then, the equivalent lottery
method can be used to estimate the median value (i.e., hi;0:5) for the given range
from hi;0:01 and hi;0:99 in Q4 if there is sufficient information provided by the
relevant evidence on hi. Such a procedure can be repeatedly performed to determine
the percentiles of hi progressively using different ranges of hi in the equivalent
lottery method, as described in Sect. 4.7.1. The questionnaire shall be stopped when
engineers believe that there is no sufficient information on hi to balance the two
lotteries in the equivalent lottery method for a given range of hi.

For example, if the information on hi is very sparse, it might be too difficult for
engineers to estimate 50 %, 25 %, 75 %, 12.5 %, 37.5 %, 62.5 %, and 87.5 %
percentiles (i.e., hi;0:5; hi;0:25; hi;0:75; hi;0:125; hi;0:375; hi;0:625, and hi;0:875) of hi. In such
cases, the questionnaire is stopped after hi;0:01 and hi;0:99 are obtained from Q2 and
Q3. On the other hand, if there is a large number of information on hi, the ques-
tionnaire can be continued to obtain more percentiles of hi after 12.5 %, 37.5 %,
62.5 %, and 87.5 % percentiles are obtained.

The questionnaire is repeated nm times for the nm sub-objectives. After that, the
percentiles of the statistics hi; i ¼ 1; 2; . . .; nm, of x are obtained. The prior distri-
bution of hi is then estimated from its percentiles, as discussed in the next
subsection.
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4.7.4 Prior Distribution

After the percentiles of hi are obtained, its cumulative distribution function
(CDF) and probability density function (PDF) can be estimated from its percentiles
through two methods: a simplified method and a least squares regression method.

4.7.4.1 A Simplified Method

The range of hi from hi;0:01 to hi;0:99 is divided into several intervals by its per-
centiles. Consider, for example, that hi is uniformly distributed within each interval.
Then, an empirical CDF of hi is obtained by plotting a line through the points at
percentiles (i.e., data pairs of the percentiles of hi and their respective cumulative
probability levels, such as (hi;0:01, 1 %), (hi;0:5, 50 %), and (hi;0:99, 99 %)). The PDF
of hi is estimated by constructing a histogram with bins equal to the intervals of hi
between adjacent percentiles. In each bin, the PDF value of hi is calculated as the
ratio of the increase in cumulative probability level in this bin over the length of the
bin. For example, the PDF value of hi in the bin from hi;0:5 to hi;0:625 is calculated as
ð0:625� 0:5Þ=ðhi;0:625 � hi;0:5Þ. The PDF of hi is then taken as the prior distribution
of hi in the Bayesian framework formulated in Chap. 3.

4.7.4.2 A Least Squares Regression Method

The CDF of hi can also be obtained by fitting a probability distribution with assess-
ment results (i.e., data pairs of the percentiles of hi and their respective cumulative
probability levels) using the least squares regression method (e.g., Baecher and
Christian 2003; Ang and Tang 2007). The least squares regression method requires a
probability distribution as the model function for data fitting. Consider, for example,
the Gaussian CDF as the model function. The least squares regression method pro-
vides a Gaussian CDF of hi as the best fit of the assessment results and, simultane-
ously, gives the values of the mean and standard deviation of the Gaussian
distribution. Using the mean and standard deviation, the PDF of hi is determined,
which is then taken as the prior distribution of hi in the Bayesian framework formu-
lated in Chap. 3. Note that the least squares regression method can be achieved using
commercial software packages. For example, MATLAB (Mathworks Inc. 2010)
provides a built-in function “nlinfit” for the least squares regression method.

4.8 Confirmation of Assessment Outcomes

Because of cognitive biases and limitations, the assessment outcomes (e.g., the
percentiles and probability distributions of hi; i ¼ 1; 2; . . .; nm) might violate the
basic probability axioms and deviate from the actual beliefs of engineers (Vick

76 4 Quantification of Prior Knowledge …

http://dx.doi.org/10.1007/978-3-662-52914-0_3
http://dx.doi.org/10.1007/978-3-662-52914-0_3


2002). Several suggestions are provided herein to help engineers check the
assessment outcomes, such as

(1) Check the coherence between the assessment outcomes and the basic proba-
bility axioms (e.g., probability falls within the range from 0 to 1, and inte-
gration on a PDF is equal to unity) (e.g., Ang and Tang 2007; Ross 2007). The
assessment outcomes (the percentiles and probability distributions of
hi; i ¼ 1; 2; . . .; nm) obtained from the proposed SPAF have to conform to the
basic probability axioms.

(2) Examine biases arising from cognitive heuristics. This can be carried out by
reviewing all the evidence carefully and checking that “is there any evidence
that is overlooked or underemphasized” and “is there any evidence that is
overemphasized”. The careful examination of the evidence reduces the over-
confidence bias arising from overemphasis on the supportive evidence and
ignorance of disconfirming evidence (Vick 2002). In addition, the attempts to
find out the evidence that is overlooked or underemphasized reduce the
availability bias.

(3) Engineers are suggested to interpret the assessment outcomes to check whe-
ther or not the outcomes are reasonable in reality according to their expertise
and reflect their actual beliefs.

If there is any inconsistency or any evidence that is misused, engineers need to
adjust properly the percentiles obtained from the SPAF and to reevaluate the prior
distributions accordingly, and they are suggested to write down the reasons for the
adjustment. This provides an opportunity to examine the adjustment and to reduce
the hindsight bias (Vick 2002). The confirmation-reevaluation process might be
iterated several times until engineers believe that the assessment outcomes are
reasonable in reality and reflect their actual beliefs according to the prior knowl-
edge, and all the evidence has been taken into account properly. After the final
confirmation of the assessment outcomes, probability distributions of
hi; i ¼ 1; 2; . . .; nm, quantify their respective plausibility according to the prior
knowledge. In the next section, the proposed SPAF is applied to characterize
probabilistically soil properties at the sand site of US NGES at Texas A&M
University (TAMU) (Briaud 2000), and it is illustrated under two scenarios: sce-
nario I with uninformative prior knowledge and scenario II with a reasonable
amount of prior knowledge, as discussed in the following two sections.

4.9 Scenario I: Uninformative Prior Knowledge

4.9.1 Assessment Objectives

The sand site of US National Geotechnical Experimentation Site (NGES) at Texas
A&M University is comprised of a top layer of sands to about 12.5 m deep and a
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stiff clay layer thereafter (see Fig. 2.5 in Chap. 2). Consider, for example, the sand
effective friction angle /′ of interest, i.e., x = /′. The general assessment objective
is, therefore, defined as “probabilistic characterization of effective friction angle /′
at the sand site.” The sand effective friction angle /′ within a statistically
homogenous soil layer can be probabilistically characterized by the random field
theory (Vanmarcke 1977, 1983), in which three model parameters are required, i.e.,
mean l, standard deviation r, and correlation length k of /′. The statistics of
interest are l, r, and k, i.e., H ¼ ½l; r; k�. The general assessment objective is then
decomposed into three sub-objectives: “evaluating probability of l,” “evaluating
probability of r,” and “evaluating probability of k.”

4.9.2 Relevant Information and Prior Uncertain Estimates

For illustration, suppose that only one piece of relevant information is obtained
according to previous engineering experience at this site (e.g., Briaud 2000), and it
indicates that the site is underlain by sand layers. The piece of relevant information
leads to three pieces of evidence, as shown in Table 4.2. For sands, the typical
value of /′ falls within the range from 27.5° to 50.0° by Terzaghi and Peck (1967)
and Kulhawy and Mayne (1990) (see Table 2.11), i.e., evidence (1). The respective
typical ranges of r and k are from 3.7° to 5.5° (i.e., evidence (2)) and from 2.0 m to
6.0 m (i.e., evidence (3)) by Phoon and Kulhawy (1999a, 1999b).

4.9.3 Strength and Weight of the Evidence and Statistical
Analysis

4.9.3.1 Strength and Weight of the Evidence

Table 4.3 summarizes the strength (i.e., Column 6) and weight (i.e., Column 7) of
the 3 pieces of evidence and the procedure of evaluating their strength and weight,
including source of the information (i.e., Column 2), procedure of estimation (i.e.,
Column 3), type of analysis (i.e., Column 4), and type of correlation (i.e., Column 5).

Table 4.2 Summary of relevant information and prior uncertain estimates for scenario I

Type Relevant
information

Correlations Prior uncertain
estimates

No. of
evidence

Geotechnical
properties

Sands
(Briaud 2000)

Table 2.11 after Kulhawy and
Mayne (1990)

/′ 27.5°–50.0° (1)

Phoon and Kulhawy (1999b) r 3.7°–5.5° (2)

Phoon and Kulhawy (1999a) k 2.0–6.0 m (3)
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In evidence (1), the range of /′ is estimated from the relevant information (i.e.,
the site is underlain by sands) by an empirical correlation (Kulhawy and Mayne
1990). Thus, evidence (1) has a strong strength. The relevant information is
obtained from an official report (Briaud 2000). Thus, the weight of the information
is high. The range of /′ in evidence (1) is qualitatively estimated from the relevant
information, so that the weight of the evidence is obtained through decreasing the
level of the weight of the relevant information by one level, i.e., moderate.

In evidence (2), the relevant information is related to the range of r by an
empirical correlation (Phoon and Kulhawy 1999b). Thus, evidence (2) has a strong
strength. The information is obtained from an official report of the sand site (Briaud
2000). Thus, the weight of the relevant information is high. The range of r is
qualitatively estimated from the relevant information, so that the weight of the
evidence is obtained through decreasing the level of the weight of the relevant
information by one level, i.e., moderate.

In evidence (3), the relevant information is related to the correlation length of
soil properties by an empirical correlation (Phoon and Kulhawy 1999b). The
empirical correlation does not directly give the range of correlation length k of /′,
but provides the correlation length of other soil properties (e.g., standard penetra-
tion test (SPT) N-value, cone tip resistance obtained from cone penetration test
(CPT)) of sands. The range of k of /′ is intuitively inferred from the range of
correlation length of other soil properties (e.g., SPT N-value) of sands. The
empirical correlation and intuitive inference are sequentially used in evidence (3).
Therefore, the strength of the evidence is moderate. The relevant information in
evidence (3) is collected from an official report of the sand site (Briaud 2000). Thus,
the weight of the relevant information is high. The range of k is qualitatively
estimated from the relevant information, so the weight of the evidence is obtained
through decreasing the level of the weight of the relevant information by one level,
i.e., moderate. However, the assessor believes that the intuitive inference on the
correlation length k of /′ from that of other soil properties is not very reliable. Thus,
the weight of the evidence is further decreased to the third level, i.e., low.

Table 4.3 Summary of strength and weight of the evidence for scenario I

No. of
evidence

Source of
information

Procedure
of
estimation

Type of
analysis

Type of
correlation

Strength Weight

(1) An official
report of the
sand site

Soil type
—range of
/′

Qualitative
analysis

Empirical
correlation

Strong Moderate

(2) An official
report of the
sand site

Soil type
—range of
r

Qualitative
analysis

Empirical
correlation

Strong Moderate

(3) An official
report of the
sand site

Soil type
—range of
k

Qualitative
analysis

Empirical
correlation and
Intuitive inference

Moderate Low
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4.9.3.2 Assembling Evidence and Statistical Analysis

There are only three pieces of evidence available. Evidence (1) gives a possible
range of /′ with strong strength and moderate weight. The range of /′ in evidence
(1) provides some information on the mean l of /′. Evidence (2) gives a possible
range of r with strong strength and moderate weight. Evidence (3) gives a possible
range of k with moderate strength and low weight. For each sub-objective, there is
only one piece of evidence available, i.e., evidence (1) for evaluating the probability
of l, evidence (2) for evaluating the probability of r, and evidence (3) for evalu-
ating the probability of k.

4.9.4 Results of Subjective Probability Assessment

Based on the evidence on each sub-objective, the percentiles of l, r, and k are
elicited from the assessor using the questionnaire shown in Appendix 4.1. Because
there is only one piece of evidence for each sub-objective, only the 1 % and 99 %
percentiles of l, r, and k are evaluated (i.e., only Q1 to Q3 in the questionnaire (see
Appendix 4.1) are answered). As shown in Table 4.4, the 1 % and 99 % percentiles
of l, r, and k are l0:01 ¼ 27:5�; l0:99 ¼ 50:0�; r0:01 ¼ 3:7�; r0:99 ¼ 5:5�; k0:01 ¼
2:0m; and k0:99 ¼ 6:0m: Using the simplified method described in Sect. 4.7.4.1,
prior distributions of l, r, and k are obtained from their respective percentiles, as
discussed in the following three subsections.

4.9.4.1 Prior Distribution of the Mean l

Figure 4.3a shows the CDF of l obtained from the simplified method by a solid line
with open circles. The CDF value of l increases linearly from 0.01 to 0.99 as l
increases from 27.5° to 50.0°. Figure 4.3b shows the PDF of l obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 27.5° to 50.0°), and the PDF value of l is about 0.044. The
uniform PDF of l (see Fig. 4.3b) can be taken as the prior distribution of l in the
Bayesian framework developed in Chap. 3.

Table 4.4 Summary of percentiles of the mean, standard deviation, and correlation length for
scenario I

Cumulative probability 0.01 0.99

Mean l (°) 27.5 50

Standard deviation r (°) 3.7 5.5

Correlation length k (m) 2.0 6.0
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4.9.4.2 Prior Distribution of the Standard Deviation r

Figure 4.4a shows the CDF of r obtained from the simplified method by a solid line
with open circles. The CDF value of r increases linearly from 0.01 to 0.99 as r
increases from 3.7° to 5.5°. Figure 4.4b shows the PDF of r obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 3.7° to 5.5°), and the PDF value of r is about 0.54. The uniform
PDF of r (see Fig. 4.4b) can be taken as the prior distribution of r in the Bayesian
framework developed in Chap. 3.
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4.9.4.3 Prior Distribution of the Correlation Length k

Figure 4.5a shows the CDF of k obtained from the simplified method by a solid line
with open circles. The CDF value of k increases linearly from 0.01 to 0.99 as k
increases from 2.0 to 6.0 m. Figure 4.5b shows the PDF of k obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 2.0 to 6.0 m), and the PDF value of k is about 0.25. The uniform
PDF of k (see Fig. 4.5b) can be taken as the prior distribution of k in the Bayesian
framework developed in Chap. 3.
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4.9.5 Final Confirmation

All the areas under the respective PDFs (see Figs. 4.3b, 4.4b, and 4.5b) of l, r, and
k are summed up to unity. This is consistent with the basic probability axiom that
integration on a PDF is unity. The prior distributions of l, r, and k are consistent
with the information on them provided by evidence (1), (2), and (3), respectively.
All the three pieces of evidence are taken into account properly. Because the
information on l, r, and k is very sparse in this scenario, the prior distributions of
l, r, and k obtained from the SPAF are uninformative (i.e., uniform distributions).
The prior distributions of l, r, and k reflect properly the prior knowledge. The
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assessment outcomes are then confirmed. In the next section, the proposed SPAF is
further illustrated under another scenario that has a reasonable amount of prior
knowledge.

4.10 Scenario II: Informative Prior Knowledge

4.10.1 Assessment Objectives

The sand effective friction angle /′ at the sand site of NGES at Texas A&M
university is still of interest under this scenario. The general assessment objective
remains unchanged, i.e., “probabilistic characterization of effective friction angle /′
at the sand site.” Similar to scenario I, it is then decomposed into three
sub-objectives: “evaluating probability of l,” “evaluating probability of r,” and
“evaluating probability of k.”

4.10.2 Relevant Information and Prior Uncertain Estimates

In this scenario, geological information and soil classification information are
obtained from Briaud (2000). Table 4.5 summarizes the relevant information (i.e.,
Column 2) on geology and soil classification, available correlations (i.e., Column 3)
between the geology and soil classification information and /′, l, r, and k; their
prior uncertain estimates (i.e., Column 4). As shown in Table 4.5, a total of 11
pieces of evidence are obtained from geological information and soil classification
information.

Evidence (1), (2), and (3) are obtained from geological information. The sand
site is underlain by fluvial and overbank deposits (Briaud 2000), which can be
categorized as alluvium deposits (Heim 1990). Alluvium deposits usually have
relatively low in-situ densities (e.g., loose or medium) (Heim 1990). For loose and
medium sands, /′ varies from 28° to 40° (i.e., evidence (1)) or varies from 30° to
40° (i.e., evidence (2)) (Kulhawy and Mayne 1990). In addition, a textbook
(Rollings and Rollings 1996) provides consistent values (i.e., from 30° to 40°) of /′
of alluvium deposits, i.e., evidence (3).

The sands underlying the site include silty sand, clean sand, and clayey sand
(Briaud 2000). Two peer-reviewed academic papers (i.e., Phoon and Kulhawy
1999a, 1999b) provided six pieces of evidence (i.e., evidence (4)–(9)) on /′, l, r,
and k of sands. Evidence (4) and (5) give the two possible ranges of /′, i.e., from
35° to 41° and from 33° to 43° (Phoon and Kulhawy 1999a), respectively. Evidence
(6) and (7) provide two possible values of l, i.e., 37.6° or 36.7° (Phoon and
Kulhawy 1999a), respectively. Evidence (8) and (9) provide the respective ranges
of r (i.e., from 3.7° to 5.5°) and k (i.e., from 2 to 6 m) (Phoon and Kulhawy 1999a).
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Note that evidence (8) and (9) in this scenario are the same as evidence (2) and
(3) in scenario I (see Table 4.2), respectively. In addition, the dry unit weight of
sands usually varies from 13.3 to 21.7 kN/m3, and it is also related to /′ (Kulhawy

Table 4.5 Summary of relevant information and prior uncertain estimates for scenario II

Type Relevant
information

Correlations Prior
uncertain
estimates

No. of
evidence

Geology Fluvial and
overbank
deposits
(Briaud 2000)

Alluvium deposit—
relatively low
in-situ density:
loose or medium
sand (Heim 1990)

Table 2.8
after
Kulhawy
and
Mayne
(1990)

/′ 28°–40° (1)

Table 2.9
after
Kulhawy
and
Mayne
(1990)

/′ 30°–40° (2)

Alluvium Deposit
(Heim 1990)

Rollings
and
Rollings
(1996)

/′ 30°–40° (3)

Geotechnical
properties

Classification:
silty sand, clean
sand, and
clayey sand
(Briaud 2000)

Sand Phoon
and
Kulhawy
(1999a)

/′ 35°–41° (4)

33°–43° (5)

l 37.6° (6)

36.7° (7)

Phoon
and
Kulhawy
(1999b)

r 3.7°–
5.5°

(8)

Phoon
and
Kulhawy
(1999a)

k 2–6 m (9)

Dry unit weight:
13.3–21.7 kN/m3

(Table 2.10 after
Kulhawy and
Mayne (1990))

Figure 2.
7 after
Kulhawy
and
Mayne
(1990)

/′ 27.0°–
37.0°

(10)

Sand or silty sand Table 2.
11 after
Kulhawy
and
Mayne
(1990)

/′ 28°–45° (11)
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and Mayne 1990). This leads to evidence (10), i.e., a possible range of /′ from
27.0° to 37.0°. Kulhawy and Mayne (1990) also reported that the effective friction
angle of sand or silty sand ranges from 28° to 45°, i.e., evidence (11).

4.10.3 Strength and Weight of the Evidence and Statistical
Analysis

4.10.3.1 Strength and Weight of the Evidence

Table 4.6 summarizes the strength (i.e., Column 7) and weight (i.e., Column 8) of
the 11 pieces of evidence and the procedure of evaluating their strength and weight,
including source of the information (i.e., Column 2), quantity of data (i.e., Column
3), procedure of estimation (i.e., Column 4), type of analysis (i.e., Column 5), and
type of correlation (i.e., Column 6). As mentioned above, evidence (8) and (9) in
this scenario are the same as evidence (2) and (3) in scenario I (see Table 4.2),
respectively, and the procedures of evaluating their strength and weight have been
described in Sect. 4.9.3.1. For further illustration, procedures of evaluating the
strength and weight of evidence (3) and (11) in this scenario are described below.

In evidence (3), the type of deposits underlying the sand site is intuitively
inferred from the geological information, and the range of /′ is then intuitively
estimated from the deposit type. Only the intuitive inference is used to estimate the
range of /′ in evidence (3). Thus, the strength of the evidence is weak. The
geological information in evidence (3) is obtained from an official report of the sand
site (Briaud 2000). Thus, the weight of the geological information is high. The
range of /′ in evidence (3) is qualitatively estimated from the geological infor-
mation, so that the weight of the evidence is obtained through decreasing the level
of the weight of the relevant information by one level, i.e., moderate.

In evidence (11), the range of /′ is estimated from the soil classification
information by an empirical correlation (Kulhawy and Mayne 1990). Thus, the
strength of the evidence is strong. The soil classification information in evidence
(11) is obtained from an official report of the sand site (Briaud 2000). Thus, the
weight of the soil classification information is high. The range of /′ in evidence
(11) is qualitatively estimated from the geological information, so the weight of the
evidence is obtained through decreasing the level of the weight of the relevant
information by one level, i.e., moderate.

4.10.3.2 Assembling Evidence and Statistical Analysis

Table 4.7 summarizes the strength and weight of evidence with regard to /′, l, r,
and k, respectively. Six evidence groups (i.e., evidence groups (I)–(VI)) are
obtained with their respective strength and weight.
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For /′, there are in total 7 pieces of relevant evidence that are assembled into
evidence groups (I)–(III) by their strength and weight. Evidence group (I) has one
piece of evidence with weak strength and moderate weight, i.e., evidence (3).
Evidence group (II) consists of 3 pieces of evidence with moderate strength and
moderate weight, i.e., evidence (1), (2), and (10). Evidence group (III) is comprised
of 3 pieces of evidence with strong strength and moderate weight, i.e., evidence (4),
(5), and (11).

Using Eqs. (4.3) and (4.4), the range of /′ from 30° to 40° in evidence (3) (i.e.,
evidence group (I)) leads to l = 35.0° and r ¼ 1:7�, respectively. In evidence group
(II), the 3 possible ranges of /′ (i.e., evidence (1), (2), and (10)) provide 3 possible
values of l (i.e., 34.0°, 35.0°, and 32.0°) and r (i.e., 2.0°, 1.7°, and 1.7°) by
Eqs. (4.3) and (4.4), respectively. In evidence group (III), the 3 possible ranges of /′
(i.e., evidence (4), (5), and (11)) provide 3 possible values of l (i.e., 38.0°, 38.0°, and
36.5°) and r (i.e., 1.0°, 1.7°, and 2.8°) by Eqs. (4.3) and (4.4), respectively. Note that
each range of /′ in evidence group (I), (II), and (III) leads to a pair of estimates of l
and r. These estimates of l and r should be used with caution during subjective
probability assessment since they are obtained from only one piece of evidence.

There are 2 pieces of evidence (i.e., evidence (6) and (7)) about the mean value l
of /′ in the evidence list, which suggest that l is equal to 37.6° or 36.7°, i.e.,
evidence group (IV). For the standard deviation r of /′, there is a possible range
(i.e., from 3.7° to 5.5° in evidence (8)) in the evidence list. In addition, there is a
possible range (i.e., from 2.0 to 6.0 m in evidence (9)) of k in the evidence list.

4.10.3.3 Reassembling the Relevant Evidence for Each sub-objective

Table 4.8 summarizes the relevant evidence (i.e., Column 3) for each assessment
sub-objective (i.e., Column 1) together with the strength (i.e., Column 4) and

Table 4.7 Summary of the evidence for scenario II

Variable No. of
evidence

Prior uncertain
estimates

Strength Weight No. of evidence
group

/′ (3) 30°–40° Weak Moderate (I)

(1) 28°–40° Moderate Moderate (II)

(2) 30°–40° Moderate Moderate

(10) 27°–37° Moderate Moderate

(4) 35°–41° Strong Moderate (III)

(5) 33°–43° Strong Moderate

(11) 28°–45° Strong Moderate

l (6) 37.6° Strong Moderate (IV)

(7) 36.7° Strong Moderate

r (8) 3.7°–5.5° Strong Moderate (V)

k (9) 2–6 m Moderate Low (VI)
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weight (i.e., Column 5) of the evidence. There are a total of 9 pieces of evidence on
evaluating probability of l, including evidence (3) with weak strength and mod-
erate weight, evidence (1), (2), and (10) with moderate strength and moderate
weight, and evidence (4), (5), (6), (7), and (11) with strong strength and moderate
weight. 8 pieces of evidence are obtained for evaluating probability of r, including
evidence (3) with weak strength and moderate weight, evidence (1), (2), and
(10) with moderate strength and moderate weight, and evidence (4), (5), (8), and
(11) with strong strength and moderate weight. Only one piece of evidence is
obtained for evaluating probability of k, i.e., evidence (9), with moderate strength
and low weight.

4.10.4 Results of Subjective Probability Assessment

Based on the relevant evidence on each sub-objective (see Tables 4.7 and 4.8),
percentiles of l, r, and k are elicited from the assessor using the equivalent lottery
method with the aid of the questionnaire shown in Appendix 4.1. Table 4.9 sum-
marizes the percentiles of l, r, and k obtained from the equivalent lottery method in
Rows 2, 3, and 4, respectively. For the mean l, 1 %, 25 %, 50 %, 75 % and 99 %
percentiles are obtained from the equivalent lottery method according to the nine
pieces of evidence shown in Table 4.8, and they are l0:01 ¼ 28:0�; l0:25 ¼
33:0�; l0:5 ¼ 36:0�; l0:75 ¼ 38:0�; and l0:99 ¼ 45:0�. For the standard deviation r,
1 %, 50 %, and 99 % percentiles are evaluated using the eight pieces of evidence
shown in Table 4.8, and they are r0:01 ¼ 1:0�; r0:5 ¼ 2:5�; and r0:99 ¼ 5:5�. The
information on k is much less than that of l and r (see Table 4.8). Therefore, only

Table 4.8 Summary of relevant evidence for each sub-objective of scenario II

sub-objective No. of evidence
group

No. of
Evidence

Strength of the
evidence

Weight of the
evidence

Evaluating
probability of l

(I) (3) Weak Moderate

(II) (1), (2), (10) Moderate Moderate

(III) (4), (5), (11) Strong Moderate

(IV) (6), (7) Strong Moderate

Evaluating
probability of r

(I) (3) Weak Moderate

(II) (1), (2), (10) Moderate Moderate

(III) (4), (5), (11) Strong Moderate

(V) (8) Strong Moderate

Evaluating
probability of k

(VI) (9) Moderate Low
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1 % and 99 % percentiles of k are evaluated, and they are l0:01 ¼ 2:0m and
l0:99 ¼ 6:0m: Using the simplified method and the least squares regression method
described in Sect. 4.7.4.1, prior distributions of l, r, and k are obtained from their
respective percentiles, as discussed in the following three subsections.

4.10.4.1 Prior Distribution of the Mean l

Figure 4.6a shows the CDF of l obtained from the simplified method and the least
squares regression method by a solid line with open circles and a dark solid line,
respectively. By the simplified method, the CDF of l increases linearly between the
adjacent percentiles (i.e., adjacent open circles). By the least squares regression
method, a Gaussian CDF with a mean of 35.7° and standard deviation of 3.7° is
obtained, and it is in good agreement with the CDF (i.e., the line with open circles)
obtained from the simplified method. Figure 4.6a also includes the 95 % confidence
interval of the CDF obtained from the least squares regression method by dashed
lines. The five percentiles of l obtained from the SPAF fall within the 95 %
confidence interval of the Gaussian CDF. Therefore, the Gaussian CDF represents
the assessment outcomes (i.e., percentiles of l) from the SPAF reasonably well.
Figure 4.6b shows the PDF of l obtained from the simplified method and the least
squares regression method by a histogram with four bins and a dark solid line,
respectively. The Gaussian PDF of l obtained from the least squares regression
method compares favorably with the histogram of l obtained from the simplified
method. Both can be used as the prior distribution of l in the Bayesian framework
developed in Chap. 3.

4.10.4.2 Prior Distribution of the Standard Deviation r

Figure 4.7a shows the CDF of r obtained from the simplified method by a solid line
with open circles. The CDF value of r increases linearly from 0.01 to 0.5 as r
increases from 1.0° to 2.5° and then increases linearly from 0.5 to 0.99 as r
increases from 2.5° to 5.0°. Figure 4.7b shows the PDF of r obtained from the
simplified method by a histogram with two bins (i.e., from 1.0° to 2.5° and from
2.5° to 5.5°), and the PDF values of r in the two bins are about 0.33 and 0.16,

Table 4.9 Summary of percentiles of the mean, standard deviation, and correlation length for
scenario II

Cumulative probability 0.01 0.25 0.5 0.75 0.99

Mean l (°) 28.0 33.0 36.0 38.0 45.0

Standard deviation r (°) 1.0 N/A 2.5 N/A 5.5

Correlation length k (m) 2.0 N/A N/A N/A 6.0
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respectively. The PDF of r (see Fig. 4.7b) can be taken as the prior distribution of r
in the Bayesian framework developed in Chap. 3.

4.10.4.3 Prior Distribution of the Correlation Length k

Figure 4.8a shows the CDF of k obtained from the simplified method by a solid line
with open circles. The CDF value of k increases linearly from 0.01 to 0.99 as k
increases from 2.0 to 6.0 m. Figure 4.8b shows the PDF of k obtained from the
simplified method by a histogram with only one bin (i.e., a uniform distribution
with a range from 2.0 to 6.0 m), and the PDF value of k is about 0.25. The
probability distribution of k obtained in this scenario remains the same as that
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obtained in scenario I. It is not surprising to see this because the same information
(i.e., a possible range of k from 2.0 to 6.0 m) on k is used in both scenarios. Similar
to scenario I, the uniform PDF of k (see Fig. 4.8b) can be taken as the prior
distribution of k in the Bayesian framework developed in Chap. 3.

4.10.5 Final Confirmation

All the areas under the respective PDFs (see Figs. 4.6b, 4.7b, and 4.8b) of l, r, and k
are summed up to unity. This is consistent with the basic probability axiom that the
integration on a PDF is unity. The PDF value of l in the bin from 36.0° to 38.0° is
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greater than that of l in the other bins, as shown in Fig. 4.6b. This is consistent with
the information provided by evidence groups (III) and (IV) (see Tables 4.7 and 4.8),
both of which have strong strength and moderate weight. Although the information
provided by evidence groups (I) and (II) suggests that l is 35.0° or varies from 32.0°
to 35.0° (see Sect. 4.10.3.2), they have relatively weak strength (i.e., weak and
moderate) compared with evidence groups (III) and (IV) (see Table 4.8). The PDF of
l reflects properly the information provided by prior knowledge.

The PDF value of r in the bin from 1.0° to 2.5° is greater than that of r in the bin
from 2.5° to 5.5°. This is consistent with the information provided by evidence
groups (I), (II), and (III) (see Sect. 4.10.3.2). Although the evidence group
(V) suggests strongly that r varies from 3.7° to 5.5°, the evidence group (V) only
contains one piece of evidence (see Table 4.7) and should not be overemphasized.
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The PDF of r reflects properly the information provided by prior knowledge.
Examination of the evidence is performed cautiously. It is found that no evidence is
overlooked or overemphasized and the weight and strength of the evidence are
properly taken into account when determining the percentiles of l, r, and k.

It is also noted that the prior distributions of l and r (Figs. 4.6 and 4.7) obtained
in this scenario are more informative than those obtained in scenario I (Figs. 4.3
and 4.4). This is reasonable in the sense that more information on l and r is used in
this scenario (see Tables 4.7 and 4.8). In addition, the ranges of l (i.e., from 28.0°
to 45.0°), r (i.e., from 1.0° to 5.5°), and k (i.e., from 2.0 to 6.0 m) obtained from the
SPAF are generally consistent with the actual belief of the assessor. The outcomes
obtained from the SPAF are then confirmed. The probability distributions (see
Figs. 4.6, 4.7 and 4.8) of l, r, and k reflect the confidence levels of prior
knowledge on them, respectively, and quantify properly the information provided
by the prior knowledge.

4.11 Summary and Conclusions

This chapter proposed a subjective probability assessment framework (SPAF) based
on a stage cognitive model of engineers’ cognitive process. The SPAF assists
engineers in utilizing prior knowledge in a relatively rational way and expressing
quantitatively their engineering judgments in a probabilistic manner. The assess-
ment outcomes (e.g., probability distributions) obtained from the SPAF are then
taken as the prior distribution in the Bayesian framework developed in Chap. 3.

The SPAF consists of five steps: specification of assessment objectives (i.e., the
soil property and its statistics of interest), collection of relevant information and
preliminary estimation, synthesis of the evidence, numerical assignment, and
confirmation of assessment outcomes. The steps of the proposed SPAF are corre-
sponding to the stages of cognitive process of engineers. By this means, engineers
can formulate their engineering judgments naturally using prior knowledge and
express quantitatively the engineering judgments using subjective probability with
relative ease. Several suggestions were provided for each step to assist engineers in
utilizing prior knowledge in a relatively rational way and reducing the effects of
cognitive biases and limitations during subjective probability assessment.

The proposed SPAF is applied to characterize probabilistically the sand effective
friction angle at a US National Geotechnical Experimentation Site (NGES) at Texas
A&M University, and it is illustrated under two scenarios: one with sparse prior
knowledge and the other with a reasonable amount of prior knowledge. It is shown
that the SPAF is applicable for both scenarios. When the prior knowledge is sparse,
the prior distribution obtained from the proposed approach is relatively uninfor-
mative (e.g., uniform distributions). As the information provided by the prior
knowledge improves, the proposed approach provides informative prior
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distribution. The prior distribution obtained from the SPAF quantifies properly the
information provided by the prior knowledge.

Appendix 4.1: Questionnaire for Implementing
the Equivalent Lottery Method

This appendix provides a questionnaire for implementing the equivalent lottery
method. The questionnaire starts with a question (i.e., Q1), that is used to determine a
reference prize for the equivalent lottery method, followed by the second and third
questions (i.e., Q2 and Q3) for determining 1 % and 99 % percentiles (i.e., hi;0:01 and
hi;0:99) of the variable hi concerned, respectively. Then, the fourth question (i.e., Q4)
can be used to estimate the 50 % percentile (i.e., hi;0:5) of hi if sufficient information
on hi is available. The questionnaire can be continued to determine percentiles of hi
progressively until engineers believe that there is no sufficient information on hi to
balance the two lotteries in the equivalent lottery method for a given range of hi.

Questionnaire

Q1: What is the prize that you want recently? Please write it down.
Answer: A1

Q2: What is the minimum possible value of hi?
Answer: A2

Q3: What is the maximum possible value of hi?
Answer: A3

Q4: There are two lotteries as follows.

Lottery 1:

Win A1 if A2 � hi � as occurs.
Win nothing if as\hi �A3 occurs.

Lottery 2:

Win A1 or nothing equally likely.

Please adjust the value as fromA3 toA2 gradually until you feel indifferent between
the two lotteries. Please write down the resulting value of as and denote it by A4.

Note that the questionnaire shall be continued to determine percentiles of hi
progressively using different ranges of hi in the equivalent lottery method if there is
sufficient information on hi to balance the two lotteries for a given range of hi.
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Chapter 5
Probabilistic Characterization of Young’s
Modulus of Soils Using Standard
Penetration Tests

5.1 Introduction

The subjective probability approach developed in the previous chapter quantifies
probabilistically the information provided by prior knowledge that is collected
during the preliminary stages (i.e., desk study and site reconnaissance) of
geotechnical site characterization. The prior knowledge is of great significance in
geotechnical site characterization (Clayton et al. 1995), particularly when only
limited project-specific test results are obtained from test boring, in situ testing (e.g.,
standard penetration tests (SPTs)), and laboratory testing. For example, in projects
with medium or relatively small sizes, the number of SPT results is generally too
sparse to generate meaningful statistics (e.g., mean, standard deviation, and other
high-order moments) of soil properties. Such information is, however, required in
probabilistic analysis and/or designs of geotechnical structures. To address this
problem, this chapter develops a Markov Chain Monte Carlo simulation
(MCMCS)-based approach that utilizes both prior knowledge and project-specific
SPT results to generate a large number of equivalent samples of the soil property of
interest for its probabilistic characterization. The proposed approach takes advan-
tage of prior knowledge in a rational way and integrates systematically the prior
knowledge and project-specific test results under the Bayesian framework devel-
oped in Chap. 3. The proposed approach is formulated for the undrained Young’s
modulus Eu estimated from SPT, but it is equally applicable for other soil properties
and other in situ or laboratory tests.

This chapter starts with probabilistic modeling of the inherent variability of Eu

and the transformation uncertainty associated with the regression between Eu and
SPT N-values (i.e., NSPT), followed by integration of the prior knowledge and
project-specific SPT data under the Bayesian framework and derivation of the
probability density function (PDF) of Eu. Then, a large number of equivalent
samples of Eu are generated from the PDF of Eu using MCMCS. Conventional
statistical analysis of the equivalent examples is subsequently carried out to
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determine the statistics of Eu. Implementation procedure of the proposed equivalent
sample approach is described. As an illustration, the proposed approach is applied
to characterizing probabilistically the Eu at the clay site of the US National
Geotechnical Experimentation Sites (NGES) at Texas A&M University. In addi-
tion, sensitivity studies are performed to explore effects of the number of
project-specific test data and prior knowledge on the probabilistic characterization
of soil properties.

5.2 Uncertainty Modeling

5.2.1 Inherent Variability

Geotechnical materials are natural materials, and their properties are affected by
various factors during their formation process, such as properties of their parent
materials, weathering and erosion processes, transportation agents, and conditions
of sedimentation (Vanmarcke 1977; Phoon and Kulhawy 1999a; Baecher and
Christian 2003; Mitchell and Soga 2005). Properties of geotechnical materials
therefore vary spatially, and such inherent variability is independent of the state of
knowledge about geotechnical properties and cannot be reduced as the knowledge
improves (Baecher and Christian 2003). Consider, for example, undrained Young’s
modulus, Eu, within a clay layer. To model explicitly the inherent variability, Eu is
represented by a lognormal random variable with a mean l and standard deviation
r, and it is defined as (e.g., Ang and Tang 2007; Au et al. 2010)

Eu ¼ exp ðlN þ rNzÞ ð5:1Þ

in which z is a standard Gaussian random variable; lN ¼ ln l� 1
2 r

2
N and rN ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ð1þðr=lÞ2Þ
q

are the mean and standard deviation of the logarithm (i.e., lnðEuÞ)
of Eu, respectively. lnðEuÞ is normally distributed, and it is expressed as

lnðEuÞ ¼ lN þ rNz ð5:2Þ

Note that both the r of Eu and the rN of lnðEuÞ represent the inherent variability
of the undrained Young’s modulus within the clay layer.

5.2.2 Transformation Uncertainty

The undrained Young’s modulus of clays can be measured directly using pres-
suremeter tests, which are generally considered as one of the most accurate mea-
surements for Eu, but are certainly expensive and time consuming (Mair and Wood
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1987; Briaud 1992; Wang and O’Rourke 2007). More frequently and particularly
for projects with medium or relatively small sizes, the Eu is usually estimated
indirectly from other in situ tests, such as SPTs (Kulhawy and Mayne 1990;
Clayton 1995; Mayne et al. 2002). The Eu value of the tested soil is obtained by
means of regression between the Eu and the N-values (i.e., NSPT) obtained by SPTs.
Figure 5.1 shows a regression model between the Eu measured by pressuremeter
tests and SPT N-values (Kulhawy and Mayne 1990; Phoon and Kulhawy 1999b)

Eu=pa ¼ 19:3N0:63
SPT ð5:3Þ

in which pa is the atmospheric pressure (i.e., 0.1 MPa). Equation (5.3) can be
rewritten in a log-log scale as

n ¼ lnðNSPTÞ ¼ a lnðEuÞþ bþ e ð5:4Þ

in which n ¼ lnðNSPTÞ denotes the SPT N-value in a log scale;
a ¼ 1:587; b ¼ �1:044, and e is a Gaussian random variable with a zero mean and
a standard deviation re ¼ 1:352 (Ohya et al. 1982; Kulhawy and Mayne 1990;
Phoon and Kulhawy 1999b). The last term e represents a modeling scatterness or
transformation uncertainty associated with the regression equation. Combining
Eqs. (5.2) and (5.4) leads to

n ¼ lnðNSPTÞ ¼ ðalN þ bÞþ arNzþ e ð5:5Þ

E
u
/p

a

SPT N Value

Eu/pa=19.3 NSPT
0.63

-

pa = 0.1MPa

Fig. 5.1 Regression between SPT N-value and undrained Young’s modulus of clay (After Ohya
et al. 1982; Kulhawy and Mayne 1990; Phoon and Kulhawy 1999b; Wang and Cao 2013)
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When the inherent variability is assumed to be independent of the transformation
uncertainty (i.e., z is independent of e), n is a Gaussian random variable with a mean

of ðalN þ bÞ and standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðarNÞ2 þðreÞ2

q
.

Information provided by SPT data n is quantified by its probability distribution.
For completely defining the probability distribution of n, the information on lN and
rN (or l and r, see Eq. (5.1)) is needed. Such information is unknown and needs to
be determined during site characterization. In the next section, the Bayesian
framework, developed in Chap. 3, is applied to updating the knowledge of model
parameters l and r based on prior knowledge and project-specific SPT N-values.

5.3 Bayesian Framework

Under a Bayesian framework, the updated knowledge about l and r is reflected by
their joint posterior distributions based on prior knowledge and site observation
data (e.g., Ang and Tang 2007; Wang et al. 2010)

Pðl; r jDataÞ ¼ KPðData j l; rÞPðl; rÞ ð5:6Þ

in which K ¼ ðRl;r PðData j l; rÞPðl; rÞdl drÞ�1 is a normalizing constant that
does not depend on l and r; Data ¼ fni ¼ lnðNSPT;iÞ; i ¼ 1; 2; . . .; nsg is a set of
SPT data with totally ns lnðNSPTÞ values obtained within a clay layer; PðData j l; rÞ
is the likelihood function reflecting the likelihood of obtaining the Data for a given
set of l and r; Pðl; rÞ is the prior distribution of l and r that reflects the prior
knowledge on l and r in the absence of Data.

As described in the Sect. 5.2.2, n ¼ lnðNSPTÞ is a Gaussian random variable with

a mean of ðalN þ bÞ and standard deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðarNÞ2 þðreÞ2

q
. The

project-specific SPT data (i.e., Data ¼ fni ¼ lnðNSPT;iÞ; i ¼ 1; 2; . . .; nsg) can be
considered as ns independent realizations of the Gaussian random variable n. The
likelihood function for the project-specific SPT data is therefore expressed as (e.g.,
Ang and Tang 2007)

PðData j l; rÞ ¼
Yns
i¼1

1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðarNÞ2 þðreÞ2

q expf� 1
2
½ ni � ðalN þ bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðarNÞ2 þðreÞ2
q �2g ð5:7Þ

The prior distribution can be simply assumed as a joint uniform distribution of l
and r with respective minimum values of lmin and rmin and respective maximum
values of lmax and rmax, and it is expressed as (e.g., Ang and Tang 2007)
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Pðl; rÞ ¼
1

lmax�lmin
� 1

rmax�rmin
for l 2 lmin; lmax½ � and r 2 rmin; rmax½ �

0 otherwise

�
ð5:8Þ

Note that only the possible ranges (i.e., lmin and lmax; rmin and rmax) of model
parameters are needed to completely define a uniform prior distribution herein. This
requires relatively limited prior knowledge (e.g., reasonable ranges of soil prop-
erties of interest), which is commonly available in geotechnical literature (e.g.,
Kulhawy and Mayne 1990; Phoon and Kulhawy 1999a, b). The approach proposed
in this chapter is general and equally applicable for more sophisticated types of
prior distributions, which of course require relatively informative prior knowledge
as justifications. The effect of different prior knowledge is further discussed in
Sect. 5.9.

The posterior distribution in Eq. (5.6) is a joint distribution of l and r, and it
represents the updated knowledge of l and r based on prior knowledge and
project-specific SPT data (i.e., Data). In the next section, the updated knowledge of
l and r is applied to determine the probabilistic density function (PDF) of the
undrained Young’s modulus Eu.

5.4 Probability Density Function of Undrained Young’s
Modulus

As defined by Eq. (5.1) or (5.2), the undrained Young’s modulus is modeled by a
random variable Eu which follows a lognormal distribution with a mean l and
standard deviation r. Both prior knowledge and project-specific test data (e.g., SPT
N-values) are used to estimate the distribution model parameters l and r in
geotechnical site characterization. For a given set of prior knowledge and
project-specific SPT data, there are many sets of possible values of l and r. Each
set of l and r has its corresponding plausibility (or occurrence probability), which
is defined by a joint conditional PDF Pðl; r jData;PriorÞ. Using the conventional
notation of Bayesian framework, Pðl; r jData;PriorÞ is simplified as Pðl; r jDataÞ
and is given by Eq. (5.6). Using the Theorem of Total Probability (e.g., Ang and
Tang 2007), the PDF of the undrained Young’s modulus Eu for a given set of prior
knowledge and project-specific SPT data is expressed as

PðEu jData;PriorÞ ¼
Z
l;r

PðEu j l; rÞPðl; r jData;PriorÞdl dr ð5:9Þ

where Prior and Data denote prior knowledge and project-specific SPT data,
respectively; PðEu j l; rÞ is conditional PDF of Eu for a given set of model
parameters (i.e., l and r). Because Eu is lognormally distributed, PðEu j l; rÞ is
expressed as (e.g., Ang and Tang 2007)
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PðEu j l;rÞ ¼ 1ffiffiffiffiffiffi
2p

p
rNEu

expf� 1
2
½lnðEuÞ � lN

rN
�2g ð5:10Þ

where both lN and rN are functions of l and r (see Sect. 5.2.1). Combining
Eqs. (5.6) and (5.9), the PDF of undrained Young’s modulus Eu (i.e., Eq. (5.9)) is
rewritten as

PðEu jData;PriorÞ ¼ K
Z
l;r

PðEu j l; rÞPðData j l; rÞPðl; rÞdl dr ð5:11Þ

Equation (5.11) is a product of the normalizing constant K and the integral term
I ¼ R

l;r PðEu j l; rÞPðData j l; rÞPðl; rÞdl dr, and it gives the PDF of Eu for a
given set of prior knowledge (i.e., Pðl; rÞ) and project-specific SPT data (i.e.,
Data). In the next section, Markov Chain Monte Carlo simulation (MCMCS)
method (e.g., Beck and Au 2002; Robert and Casella 2004) is used to generate a
sequence of Eu samples whose limiting stationary distribution tends to be the PDF
of Eu (i.e., Eq. (5.11)).

5.5 Markov Chain Monte Carlo Simulation
and Equivalent Samples

MCMCS method is a numerical process that simulates a sequence of samples of a
random variable (e.g., Eu) as a Markov Chain with the PDF of the random variable
(e.g., Eq. (5.11) for Eu) as the Markov Chain’s limiting stationary distribution (e.g.,
Beck and Au 2002; Robert and Casella 2004). The states of the Markov Chain after
it reaches stationary condition are then used as samples of the random variable with
the target PDF. It provides a feasible way to generate samples from an arbitrary
PDF, particularly when the PDF is complicated and is difficult to be expressed
analytically and explicitly.

5.5.1 Metropolis–Hastings (MH) Algorithm

In this chapter, the Metropolis–Hastings (MH) algorithm (Metropolis et al. 1953;
Hastings 1970; Beck and Au 2002) is used in MCMCS to generate totally nMCMC

number of the Eu samples from Eq. (5.11). The Eu Markov Chain starts with an
arbitrary initial state, Eu;1. Then, the jth state of the Eu Markov Chain,
Eu;j; j ¼ 2; 3; . . .; nMCMC , (e.g., Eu;2 for the second state) is generated from its
previous state (j-1)th, Eu;j�1 (e.g., the initial state Eu;1 for Eu;2). A candidate sample,
E�
u;j; j ¼ 2; 3; . . .; nMCMC , for the jth state is generated from the proposal PDF

f ðE�
u;j jEu;j�1Þ. The proposal PDF f ðE�

u;j jEu;j�1Þ herein is taken as a Gaussian PDF,
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which is centered at the previous state Eu;j�1; j ¼ 2; 3; . . .; nMCMC , and has a COV
equal to the mean COV of the prior knowledge (e.g., COV ¼
½0:5ðrmax þ rminÞ� = ½0:5ðlmax þ lminÞ� ¼ ðrmax þ rminÞ = ðlmax þ lminÞ for the uni-
form prior l given in Eq. (5.8)). For example, E�

u;2 is simulated from a
Gaussian PDF with a mean of Eu;1 and COV ¼ ðrmax þ rminÞ = ðlmax þ lminÞ. The
candidate sample E�

u;j is, however, not necessarily to be accepted as the jth state of
the Eu Markov Chain (i.e., Eu;j). The chance to accept the candidate sample E�

u;j as
the Eu;j depends on the “acceptance ratio,” ra, which is calculated as

ra ¼
PðE�

u;j jData;PriorÞ
PðEu;j�1 jData;PriorÞ �

f ðEu;j�1 jE�
u;jÞ

f ðE�
u;j jEu;j�1Þ for j ¼ 2; 3; . . .; nMCMC ð5:12Þ

in which PðE�
u;j jData;PriorÞ and PðEu;j�1 jData;PriorÞ are respective PDF values

of E�
u;j and Eu;j�1, and they are calculated from Eq. (5.11); f ðE�

u;j jEu;j�1Þ is the
conditional PDF value of E�

u;j given Eu;j�1; f ðEu;j�1 jE�
u;jÞ is the conditional PDF

value of Eu;j�1 given E�
u;j. In this chapter, f ðE�

u;j jEu;j�1Þ and f ðEu;j�1 jE�
u;jÞ are

calculated from the Gaussian PDF with respective mean values of Eu;j�1 and E�
u;j.

Combining Eqs. (5.11) and (5.12) leads to

ra ¼
IðE�

u;jÞ
IðEu;j�1Þ �

f ðEu;j�1 jE�
u;jÞ

f ðE�
u;j jEu;j�1Þ for j ¼ 2; 3; . . .; nMCMC ð5:13Þ

in which IðE�
u;jÞ and IðEu;j�1Þ are respective values of the integral term I in

Eq. (5.11) at E�
u;j and Eu;j�1. Note that there is no need to calculate the K term

during the MCMCS because it is canceled out when calculating the ra value (see
Eqs. (5.12) and (5.13)). The integral term I is still needed for the ra calculation (see
Eq. (5.13)), and it can be calculated numerically using a two-dimensional grid over
the space of l and r as follows:

I ¼
Xnl
jl¼1

Xnr
jr¼1

PðEu j ljl ; rjrÞPðData j ljl ; rjrÞPðljl ; rjrÞDlDr ð5:14Þ

in which Dl and Dr are respective intervals of l and r used in the two-dimensional
grid; nl ¼ ðlmax � lminÞ =Dl and nr ¼ ðrmax � rminÞ =Dr are the respective
numbers of intervals of l and r in the two-dimensional grid;
ljl ¼ lmin þð2jl � 1ÞDl = 2; jl ¼ 1; 2; . . . nl, is the average value of l in jlth
interval of l; rjr ¼ rmin þð2jr � 1ÞDr=2; jr ¼ 1; 2; . . . nr, is the average value
of r in jrth interval of r. PðData j ljl ; rjrÞ; Pðljl ; rjrÞ, and PðEu j ljl ; rjrÞ are
calculated from Eqs. (5.7), (5.8), and (5.10) at ljl and rjr , respectively. Among
these three terms, only PðEu j ljl ; rjrÞ needs to be calculated repeatedly for different
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samples of Eu during MCMCS, because PðData j ljl ; rjrÞ and Pðljl ; rjrÞ are
independent of Eu and remain unchanged during MCMCS.

When ra is greater than unity, the candidate sample E�
u;j is accepted as the jth state

of the Eu Markov Chain (i.e., Eu;j). When ra falls within [0, 1], the probability to
accept E�

u;j as Eu;j is ra. In implementation, a random number u is generated from a
uniform distribution with a range from zero to one. If u is less than ra; E�

u;j is accepted
as Eu;j, i.e., Eu;j ¼ E�

u;j. Otherwise, E
�
u;j is rejected, and Eu;j is taken as the previous

state Eu;j�1, i.e., Eu;j ¼ Eu;j�1. For example, the ra value for the candidate sample E�
u;2

is calculated from Eqs. (5.13) and (5.14) using Eu;1 and E�
u;2, and the second state Eu;2

is then determined accordingly by comparing the values of ra and u. Starting from the
initial sample Eu;1, the procedure described above is repeated nMCMC � 1 times to
generate nMCMC � 1 samples of Eu, i.e., Eu;j; j ¼ 2; 3; . . .; nMCMC . This leads to a
Markov Chain that is comprised of nMCMC Eu samples (including the initial sample).
Finally, the Eu samples obtained after the Markov Chain reaches its stationary con-
dition are considered as appropriate samples for probabilistic characterization of Eu.
Note that, because the Markov Chain at its stationary condition is independent of the
initial state, the arbitrary value of Eu;1 taken as the initial state of the Markov Chain
has no effect on the Eu samples adopted herein.

5.5.2 Equivalent Samples

Equation (5.11) shows that the PDF of Eu contains information from both
project-specific test data (i.e., Data) and prior knowledge (i.e., Prior). The infor-
mation from these two different sources is integrated probabilistically in a rational
manner. The MCMCS samples that are drawn from the Eu PDF, therefore, contain
the integrated information of both project-specific site observation data and prior
knowledge. When the project-specific data are limited, the MCMCS samples mainly
reflect the prior knowledge. As the number of project-specific data increases, the
effect of the project-specific data on the MCMCS samples gradually increases.

More importantly, a large number of Eu samples can be generated conveniently
by MCMCS. From a statistical point of view, these MCMCS samples are equiv-
alent to those Eu data that are measured physically from laboratory or in situ tests
(e.g., pressuremeter tests). Therefore, this large number of equivalent samples can
be analyzed statistically, using conventional statistical methods, to estimate the
required statistics (e.g., mean and standard deviation) of Eu, and they can also be
used to construct histogram and cumulative frequency diagram for proper estima-
tions of the PDF and cumulative distribution function (CDF) of Eu. This allows a
proper characterization of the statistical distribution of Eu, and subsequently a
proper selection of the characteristic value of Eu for the implementation of the
recent design codes, such as Eurocode 7 (BSI 2010).
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In summary, the approach proposed in this chapter integrates probabilistically
the prior knowledge (e.g., previous engineering experience) and project-specific test
data (e.g., SPT data) and transforms the integrated information into a large number,
as many as needed, of equivalent samples. This allows meaningful statistics of soil
properties to be obtained using conventional statistical analysis, leading to a proper
selection of the characteristic value (e.g., mean or lower 5 % percentile) of soil
properties for probabilistic geotechnical analysis and/or designs. The proposed
approach effectively tackles the difficulty in generating meaningful statistics from
the usually limited number of soil property data obtained during geotechnical site
characterization.

5.6 Implementation Procedures

Figure 5.2 shows a flowchart for the implementation of the equivalent sample
approach schematically. In general, the implementation procedure involves 5 steps.
Details of each step and its associated equations are summarized as follows:

(1) Obtain ns SPT N-values from SPTs and convert them to
Data ¼ fni ¼ lnðNSPT;iÞ; i ¼ 1; 2; . . .; nsg;

(2) Obtain an appropriate prior knowledge on the mean l and standard deviation
r, such as reasonable ranges of l and r with respective minimum values lmin
and rmin and respective maximum values of lmax and rmax;

(3) Choose an appropriate two-dimensional grid over the space of l and r to
calculate PðData j ljl ; rjrÞ and Pðljl ; rjrÞ at ljl and rjr for each interval of l
and r according to Eqs. (5.7) and (5.8), respectively;

(4) Choose an initial state for the Markov Chain of Eu, such as the mean of the
prior knowledge of l (e.g., ðlmax þ lminÞ = 2 for the uniform prior l given in
Eq. (5.8)), and use the MH algorithm to generate a large number of the Eu

samples using Eqs. (5.9) and (5.11), as illustrated by the textboxes with
dashed lines in Fig. 5.2;

(5) Estimate l and r (or lN and rN) using the large number of equivalent Eu

samples and/or estimate the PDF and CDF of Eu from the histogram and
cumulative frequency diagram of the equivalent samples, respectively.

These five steps can be readily programmed as a user function or toolbox in
commonly available commercial software packages, e.g., MATLAB (Mathworks
Inc. 2010) or Microsoft Excel (Microsoft Corporation 2012). Geotechnical practi-
tioners only need to provide prior knowledge (e.g., reasonable ranges of soil
properties) and project-specific test data (e.g., SPT N-values) as input, and the user
function or toolbox will return a large number, as many as needed, of equivalent
samples that can be analyzed using conventional statistical analysis. The equivalent
sample approach and implement procedure described above are illustrated through a
real example in the next section.
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Fig. 5.2 Flowchart for the implementation of the equivalent sample approach (After Wang and
Cao 2013)
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5.7 Illustrative Example

The proposed equivalent sample approach is applied to characterize probabilisti-
cally the undrained Young’s modulus using SPT N-values obtained from the clay
site of the NGES at Texas A&M University (Briaud 2000). The site is comprised of
a top stiff clay layer extending from the ground surface to a depth of 5.5 m, a thin
sand layer from the depth of 5.5 m to the depth of 6.5 m, another stiff clay layer
down to 12.5 m deep, and a hard clay layer thereafter (see Fig. 2.5 in Chap. 2).
Figure 5.3a shows 5 SPT N-values versus depth obtained from the SPTs performed
within the top stiff clay layer (Briaud 2000). Pressuremeter tests were also carried
out in the top clay layer (Briaud 2000). Figure 5.3b shows totally 42 measurements
of the undrained Young’s modulus from pressuremeter tests performed at different
depths of the top clay layer (Briaud 2000), which yield a mean of about 13.5 MPa
and standard deviation of about 7.5 MPa.

The equivalent sample approach is illustrated using the 5 SPT N-values shown in
Fig. 5.3a for probabilistic characterization of the undrained Young’s modulus in the
clay layer. Consider, for example, a set of prior knowledge in which l is uniformly
distributed between 5.0 and 15.0 MPa (i.e., lmin ¼ 5:0 MPa and lmax ¼ 15:0 MPa)
and r is uniformly distributed between 0.5 and 13.5 MPa (i.e., rmin ¼ 0:5 MPa and
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Fig. 5.3 Standard penetration test (SPT) N-values and undrained Young’s modulus measured by
pressuremeter tests at the clay site of the NGES at Texas A&M University (After Briaud 2000;
Wang and Cao 2013). a SPT N-values. b Undrained Young’ modulus
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rmax ¼ 13:5 MPa). This set of prior knowledge is consistent with the typical ranges
of undrained Young’s modulus reported in the literature (e.g., Kulhawy and Mayne
1990; Phoon and Kulhawy 1999a, b). Using the prior knowledge and the SPT
results shown in Fig. 5.3a, a MCMCS run is performed to simulate 30,000
equivalent samples of Eu together with a two-dimensional grid over the space of l
and r that has intervals (i.e., Dl ¼ Dr ¼ 0:1 MPa) of 0.1 MPa in both directions of
l and r.

5.7.1 Equivalent Samples

Figure 5.4 shows a scatter plot for the 30,000 equivalent samples of Eu. 28,167
equivalent samples (i.e., around 94 % of the 30,000 equivalent samples) are less
than 20.0 MPa. The equivalent samples become growingly sparse when
Eu > 20.0 MPa. To examine the statistical distribution of the equivalent samples,
the corresponding histogram is constructed, as shown in Fig. 5.5. The histogram
peaks at a Eu value of around 12.0 MPa, and 26,947 equivalent samples (i.e.,
around 90 % of the 30,000 equivalent samples) fall within the range of [4.0–
20.0 MPa]. 1,220 equivalent samples (i.e., slightly over 4 % of the 30,000
equivalent samples) are less than 4.0 MPa, and 1,833 equivalent samples (i.e.,
around 6 % of the 30,000 equivalent samples) are greater than 20.0 MPa.
Therefore, the 90 % interpercentile range (i.e., the range from 5 % percentile to
95 % percentile) of Eu is around [4.0 MPa, 20.0 MPa].
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5.7.2 Probability Distribution of Undrained Young’s
Modulus

Figure 5.6 shows the PDF of Eu estimated from the histogram (see Fig. 5.5) of the
equivalent samples by a dashed line with open triangles. For validation, numerical
integration is also performed to calculate directly the Eu PDF using Eq. (5.11), in
which both the normalizing constant K and the integral term I are calculated
numerically and repeatedly. The PDF of Eu obtained from the numerical integration
is included in Fig. 5.6 by a solid line. The solid line plots closely to the dashed line
with open triangles. The PDF of Eu estimated from the equivalent samples is in
good agreement with that obtained from the numerical integration. Such agreement
indicates that the 30,000 equivalent samples portray the Eu PDF reasonably well
and the PDF of Eu estimated from the equivalent samples is reasonably accurate.
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Figure 5.6 also includes the values of Eu obtained from the pressuremeter tests
by open circles. 34 out of the 42 values of Eu provided by the pressuremeter tests
fall within the range of [4.0–20.0 MPa], i.e., the 90 % interpercentile range of Eu

estimated from the equivalent samples. Figure 5.7 plots the CDFs of Eu estimated
from the cumulative frequency diagrams of the 30,000 equivalent samples (see
Fig. 5.4) and the 42 pressuremeter test results (see Fig. 5.3b) by a solid lines and
open circles, respectively. The open circles plot closely to the solid line. The CDF
of Eu estimated from the equivalent samples compares favorably with that obtained
from the 42 pressuremeter tests. Such agreement suggests that based on the limited
SPT data (i.e., 5 SPT N-values) and relatively uninformative prior knowledge (i.e.,
reasonable ranges of model parameters reported in the literature), the equivalent
sample approach provides a reasonable estimate of the statistical distribution of Eu.
Such probabilistic characterization used to require a large number of data from
laboratory and/or in situ tests (e.g., 42 pressuremeter tests in this illustrative
example), which of course involves significant commitment of cost, man power,
and time.

5.7.3 Estimates of the Mean, Standard Deviation,
and Characteristic Value

Table 5.1 summarizes the estimates of the mean l and standard deviation r of Eu

obtained from the 30,000 equivalent samples (see Fig. 5.4) in the second column.
Using conventional mean and standard deviation equations, the mean and standard
deviation of Eu from equivalent samples are calculated as 11.6 MPa and 6.0 MPa,
respectively. Table 5.1 also includes l and r values (i.e., 13.5 MPa and 7.5 MPa)
estimated from the pressuremeter test results (see Fig. 5.3b) in the third column.
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The difference between the l values estimated from the equivalent samples and
pressuremeter test results is 1.9 MPa, and the difference between their r values is
1.5 MPa. Compared with the r value (e.g., 7.5 MPa from the pressuremeter test
results), the difference (i.e., 1.9 MPa) between the l values and the difference (i.e.,
1.5 MPa) between the r values resulted from these two approaches are relatively
small. This subsequently leads to consistent estimation of the characteristic value of
Eu. For example, if the characteristic value is defined as the mean value; then, it is
11.6 MPa and 13.5 MPa, respectively.

With a proper selection of the characteristic values for soil properties, design
calculations can be carried out in accordance with those probabilistic design codes
(e.g., Eurocode 7). In addition, the probabilistic characterization of soil properties is
also one key input information for evaluating risk and reliability related issues in
geotechnical engineering (Hicks 2005), such as probabilistic analysis of slope
stability (e.g., Wang et al. 2009) and foundations under ultimate limit state (e.g.,
Soubra and Massih 2010) or serviceability limit state (e.g., Wang and Kulhawy
2008). It is also worthwhile to note that the equivalent samples generated in this
chapter can be used directly in the probabilistic analysis and/or designs that are
based on Monte Carlo simulation (e.g., Wang 2011; Wang et al. 2011). This will be
further discussed in Chaps. 7 and 8.

5.8 Sensitivity Study on Project-Specific Test Data

The equivalent samples reflect the integrated knowledge of both prior knowledge
and project-specific test data (see Eq. (5.11)). The probabilistic characterization of
soil properties using the equivalent samples is therefore affected by both prior
knowledge and project-specific test data. A sensitivity study is carried out in this
section to explore the effect of the quantity of project-specific test data. In addition,
the effect of the prior knowledge is explored in the next section.

The sensitivity study is performed using simulated SPT data, which are simu-
lated using the uncertainty model given by Eq. (5.5) with lN ¼ 2:23 and rN ¼ 0:39
(i.e., l ¼ 10:0 MPa and r ¼ 4:0 MPa). For example, Fig. 5.8 shows 10 sets of the
simulated SPT data with 10 SPT N-values in each data set (i.e., data quantity
ns ¼ 10 in each data set). Note that in practice the actual values of soil properties
are unknown, and they are estimated through prior knowledge and project-specific

Table 5.1 Summary of the estimated statistics of undrained Young’s modulus (After Wang and
Cao 2013)

Approaches Equivalent sample
approach

Pressuremeter
tests

Difference
(MPa)

Estimates of the mean l� ðMPaÞ 11.6 13.5 1.9

Estimates of the standard
deviation r� ðMPaÞ

6.0 7.5 1.5
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test results. To explore the effect of ns, another 10 sets of SPT data are simulated,
respectively, for ns = 3, 20, and 30, resulting in a total of 40 sets of SPT data with
10 sets for each ns.

Then, using each set of these 40 sets of simulated SPT data as project-specific
test data and the prior knowledge that corresponds to the typical ranges of
undrained Young’s modulus reported in the literature (i.e., a uniform prior distri-
bution with lmin ¼ 5:0 MPa; lmax ¼ 15:0 MPa; rmin ¼ 0:5 MPa; and rmax ¼
13:5 MPa used in the previous section), 30,000 equivalent samples of Eu are
generated for each of the 40 data sets, respectively. This leads to 40 sets of the
probabilistic characterization of Eu, including estimations (i.e., l�N and r�N) of lN
and rN . In addition, for each set of the simulated SPT data, the Eu values are also
directly calculated using the regression model given by Eq. (5.3) in the absence of
prior knowledge. This leads to another 40 sets of l�N and r�N .

The results of l�N and r�N from both the equivalent sample approach and direct
calculation of Eq. (5.3) are evaluated through hypothesis tests. In the hypothesis
tests, the respective acceptance regions of l�N and r�N at a significance level of a are
formulated as (e.g., Ang and Tang 2007)

lN þ rNffiffiffiffi
ns

p U�1
a=2\l�N � lN þ rNffiffiffiffi

ns
p U�1

1�a=2 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ca=2; ns�1

ns � 1

r
rN\r�N �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1�a=2; ns�1

ns � 1

r
rN

ð5:15Þ

in which U�1
a=2 and U�1

1�a=2 are the values of an inverse standard Gaussian CDF at
a=2 and 1� a=2, respectively; ca=2; ns�1 and c1�a=2; ns�1 are the values of a
chi-squared statistic with ns � 1 degrees of freedom at the levels of a=2 and
1� a=2, respectively. Note that the acceptance regions of l�N and r�N decrease as ns
increases (see Eq. (5.15)). In other words, the criteria to accept l�N and r�N at a given
a level become more and more stringent as ns increases.

1

10

100

200

Si
m

ul
at

ed
 S

P
T

 N
-V

al
ue

s

1

10

100

0 1 2 3 4 5 6 7 8 9 10

200

Data set ID

Si
m

ul
at

ed
 S

P
T

 N
-V

al
ue

s

Fig. 5.8 Ten sets of
simulated SPT data (After
Wang and Cao 2013)

112 5 Probabilistic Characterization of Young’s Modulus of Soils …



5.8.1 Effect of Data Quantity on the Mean of ln(Eu)

Figure 5.9a shows the values of l�N versus the number ns of the SPT data in each
data set. The l�N values calculated from the equivalent samples and directly esti-
mated from the regression model in the absence of prior knowledge are plotted by
open triangles and circles, respectively. Figure 5.9a also includes the true value
(i.e., 2.23) of lN and the acceptance region of l�N at 5 % significance level by a
dashed line and solid lines, respectively. In general, open triangles plot more closely
to the dashed line than open circles. The l�N values estimated from the equivalent
samples are generally better estimations of the true value than those directly esti-
mated from the regression model without prior knowledge. By incorporating
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relatively limited and commonly available prior knowledge (i.e., the typical ranges
of model parameters reported in the literature), the equivalent sample approach
significantly improves the estimation of lN .

Figure 5.9a also shows that the scatterness of the l�N diminishes significantly as
the value of ns increases. As the number of SPT data increases, the statistical
uncertainty that arises from incomplete statistical information tends to diminish. In
addition, as the value of ns increases, the difference between the range of l�N
obtained from the equivalent sample approach and that from direct estimate is
reduced. Such difference becomes relatively minor when ns = 30, which happens to
be the “rule-of-thumb” minimum number of data suggested in conventional sta-
tistical analysis (e.g., Walpole et al. 1998). The proposed approach combines the
prior knowledge and project-specific test data and transforms them into equivalent
samples. When the quantity of project-specific test data is limited (e.g., ns = 3) and
its statistical uncertainty is substantial, the equivalent samples are affected signifi-
cantly by the prior knowledge, resulting in significant improvement on the esti-
mation of lN . The prior knowledge adopted in the proposed approach effectively
reduces the substantial statistical uncertainty that raises from a small number of
project-specific test data, and it enables a proper estimation of lN at a small ns value
(e.g., ns = 3). This is particularly beneficial in geotechnical practice where the
number of soil property data obtained during site characterization is generally small
and its statistical uncertainty is substantial. On the other hand, when there is a large
number of project-specific test data (e.g., ns = 30), the equivalent samples are
dominated by the project-specific test data, and the l�N values estimated from the
equivalent samples converge to those estimated directly from regression.

5.8.2 Effect of Data Quantity on the Standard Deviation
of ln(Eu)

Figure 5.9b shows the values of r�N versus the number ns of the SPT data in each
data set. The r�N values calculated from the equivalent samples and directly esti-
mated from the regression model without prior knowledge are plotted by open
triangles and circles, respectively. Figure 5.9b also includes the true value (i.e.,
0.39) of rN and the acceptance region of r�N at 5 % significance level by a dashed
line and solid lines, respectively. Similar to l�N , the r

�
N values (i.e., open triangles)

estimated from the equivalent samples generally plot more closely to the true values
(i.e., the dashed line) than those (i.e., open circles) directly estimated from the
regression model without prior knowledge. The equivalent sample approach pro-
vides better estimation of rN than direct estimation using regression model, because
the prior knowledge is incorporated in the equivalent sample approach. The
improvement on the estimation of rN is more significant when the ns value is small
(e.g., ns = 3).
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Figure 5.9b also shows that the r�N values estimated from the equivalent samples
gradually approach the true value of rN as ns increases (see Fig. 5.9b). On the other
hand, the r�N values estimated directly from the regression model are much larger
than the true value of rN even when the ns value is large (i.e., ns = 30). It is
worthwhile to note that the SPT data are simulated using Eq. (5.5), which contains
both inherent variability and transformation uncertainty. These uncertainties prop-
agate from the SPT N-values to the Eu values through Eq. (5.3), when the Eu values
are estimated directly using regression. The corresponding r�N values therefore
contain both inherent variability and transformation uncertainty, and they are
obviously larger than the inherent variability itself (i.e., the true value of rN ). In
contrast, the transformation uncertainty is formulated and considered explicitly in
the equivalent sample approach, and its corresponding r�N values mainly reflect the
inherent variability itself.

5.9 Sensitivity Study on Prior Knowledge

To explore the effect of prior knowledge, a sensitivity study is performed in this
section using four different sets (i.e., prior knowledge I, II, III, and IV) of prior
knowledge shown in Fig. 5.10, together with the 10 sets of SPT data shown in
Fig. 5.8. Note that each of the SPT data set includes 10 SPT N-values, i.e., ns ¼ 10.
Figure 5.10 also includes the true values of l (i.e., 10.0 MPa) and r (i.e., 4.0 MPa)
that have been used to generate the SPT data in Fig. 5.8.

The prior knowledge I in Fig. 5.10a has been used in the previous section, and it
is used as the baseline case in this sensitivity study. The prior knowledge II in
Fig. 5.10b follows a uniform distribution, but the ranges of both l and r values are
much smaller than the prior knowledge I. The prior knowledge II is, therefore,
much more informative and confident than the prior knowledge I, and it is more
consistent with the true values of l and r. The prior knowledge III in Fig. 5.10c has
the same ranges of both l and r values as the prior knowledge I, but it follows an
arbitrary histogram type of distribution with relatively large PDF values allocated
close to the true values of l and r. Therefore, the prior knowledge III is slightly
more informative and confident than the prior knowledge I, and it is slightly more
consistent with the true values of l and r. The prior knowledge IV in Fig. 5.10d is
the Gaussian best fit of the prior knowledge III, and information provided by the
prior knowledge III and IV is more or less the same.

For each set of the SPT data and prior knowledge, a MCMCS run is performed
to generate 30,000 equivalent samples of Eu. Then, conventional statistical analysis
is performed to estimate l�N and r�N . Effects of the ranges of the uniform prior
distributions and effects of different types of the prior distributions are discussed in
the following two subsections.
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Fig. 5.10 Summary of prior knowledge used in the sensitivity study (After Wang and Cao 2013).
a Prior knowledge I. b Prior knowledge II. c Prior knowledge III. d Prior knowledge IV
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5.9.1 Effect of the Ranges of Uniform Prior Distributions

Figure 5.11a shows values of l�N obtained from the equivalent sample approach
using prior knowledge I and II by open squares and triangles, respectively.
Figure 5.11a also includes the acceptance region of l�N at 5 % significance level for
ns ¼ 10 and the true value (i.e., 2.23) of lN by solid lines and a dashed line,
respectively. For a given set of SPT data, the l�N value (i.e., the open triangle)
obtained using prior knowledge II plots more closely to the true value (i.e., the
dashed line) of lN than that (i.e., the open square) obtained using prior knowledge I.
For the third set of SPT data, using prior knowledge I leads to a l�N value that plots
outside the acceptance region and hence is rejected at 5 % significance level. In
contrast, using prior knowledge II results in a l�N value that falls within the
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standard deviation of lnðEuÞ
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acceptance region and is therefore accepted at 5 % significance level. It is obvious
that informative and consistent prior knowledge improves the estimation of l�N .

Figure 5.11b shows the r�N values obtained using prior knowledge I and II by
open squares and triangles, respectively. It also includes the acceptance region of
r�N at 5 % significance level for ns ¼ 10 and the true value (i.e., 0.39) of rN by solid
lines and a dashed line, respectively. Similar to l�N , the r�N values (i.e., the open
triangles) obtained using prior knowledge II plot more closely to the true value (i.e.,
the dashed line) of rN than those (i.e., the open squares) obtained using prior
knowledge I. Using relatively informative and consistent prior knowledge improves
the estimation of r�N .
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5.9.2 Effect of Different Types of Prior Distributions

Although the prior knowledge defined by Eq. (5.8) is a uniform distribution, the
equivalent sample approach developed in this chapter is general and equally
applicable for more sophisticated types of prior distributions. Figure 5.12a shows
the values of l�N obtained using the prior knowledge I, III (i.e., an arbitrary his-
togram type of distribution), and IV (i.e., a truncated Gaussian distribution) by open
squares, triangles, and circles, respectively. Figure 5.12a also includes the accep-
tance region of l�N at 5 % significance level and the true value (i.e., 2.23) of lN by
solids lines and a dashed line, respectively. Figure 5.12b shows the corresponding
values of r�N using similar symbols. Because the prior knowledge III and IV are
slightly more informative and consistent than the prior knowledge I, the estimation
of l�N and r�N is slightly better when using the prior knowledge III and IV. In
addition, because the information provided by the prior knowledge III and IV is
more or less the same, their estimation of l�N and r�N is also more or less the same.

5.10 Summary and Conclusions

This chapter developed a Markov Chain Monte Carlo simulation (MCMCS)-based
approach for probabilistic characterization of undrained Young’s modulus, Eu, of
clay using standard penetration tests (SPTs). Prior knowledge (e.g., previous
engineering experience) and project-specific test data (e.g., SPT data) are integrated
probabilistically under the Bayesian framework developed in this book and trans-
formed into a large number, as many as needed, of equivalent samples of Eu. Then,
conventional statistical analysis is carried out to estimate statistics of Eu. This
allows a proper selection of characteristic value of the soil property in the imple-
mentation of probabilistic design codes (e.g., Eurocode 7) and reliability analysis in
geotechnical engineering practice. The proposed approach effectively tackles the
difficulty in generating meaningful statistics from the usually limited number of soil
property data obtained during geotechnical site characterization.

Equations were derived for the proposed equivalent sample approach, and it was
illustrated and validated using real SPT and pressuremeter test data at the clay site
of the US National Geotechnical Experimentation Sites (NGES) at Texas A&M
University. It has been shown that based on the limited SPT data (i.e., 5 SPT N-
values) and relatively uninformative prior knowledge (i.e., reasonable ranges of soil
parameters reported in the literature), the equivalent sample approach provides a
reasonable estimate of the statistical distribution of Eu. Such probabilistic charac-
terization is used to require a large number of data from laboratory and/or in situ
tests (e.g., 42 pressuremeter tests in this illustrative example), which of course
involves significant commitment of cost, man power, and time.

A sensitivity study was performed to explore the effect of the number of
project-specific test data. It has been shown that when only limited project-specific
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test data are available, the equivalent sample approach improves significantly the
probabilistic characterization of soil properties and reduces the effect of statistical
uncertainty by incorporating reasonable ranges of soil parameters as prior knowl-
edge. As the number of project-specific test data increases, the standard deviation of
soil properties estimated from the equivalent sample approach gradually approaches
its true value and mainly reflects inherent variability itself. In addition, a sensitivity
study was performed to explore the effect of prior knowledge. It has been shown
that the proposed approach is general and equally applicable for different types of
prior knowledge, although using relatively informative and consistent prior
knowledge does improve probabilistic characterization of soil properties.
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Chapter 6
Probabilistic Site Characterization Using
Cone Penetration Tests

6.1 Introduction

In the previous chapter, an equivalent sample approach is developed for proba-
bilistic site characterization using standard penetration test (SPT) results. SPTs
provide soil samples that can be used to determine the underground stratigraphy
(i.e., the number and thicknesses of soil layers). On the other hand, it is a chal-
lenging task to characterize probabilistically the underground stratigraphy for those
tests that do not allow retrieving of soil samples for visual inspection to assist in soil
classification, such as cone penetration test (CPT) (e.g., Lunne 1997; Phoon et al.
2003). However, CPTs provide a relatively large number of project-specific test
data (i.e., almost continuous measurements during a CPT) compared with SPTs.
This allows an explicit modeling of the inherent spatial variability of soil properties
using random field theory (e.g., Vanmarcke 1977).

This chapter develops a Bayesian approach for probability site characterization
based on the Bayesian framework developed in Chap. 3 and random field theory.
The Bayesian approach integrates systematically prior knowledge with
project-specific CPT data under the Bayesian framework to describe the under-
ground stratigraphy and to estimate probabilistically the effective friction angle of
soil simultaneously. It addresses explicitly and directly the inherent spatial vari-
ability of effective friction angle using random field theory. The proposed approach
contains two major components: a Bayesian model class selection method to
identify the most probable number of statistically homogenous soil layers and a
Bayesian system identification method to estimate the most probable layer
thicknesses/boundaries and soil properties probabilistically.

This chapter starts with random field modeling of the inherent spatial variability
of the effective friction angle in a soil profile with multiple sand layers and a
regression between cone tip resistance and effective friction angle of sand, followed
by the development of the proposed Bayesian system identification and model class
selection approach. Then, the implementation procedure for the Bayesian approach
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is described. The proposed approach is illustrated using a set of real CPT data
obtained from a site in the Netherlands. Finally, a sensitivity study is performed to
explore the effect of prior knowledge on the identification of statistically
homogenous soil layers and probabilistic characterization of the effective friction
angle.

6.2 Random Field Modeling of Inherent Spatial
Variability

Random field theory (Vanmarcke 1977, 1983) is applied in this chapter to model
the inherent spatial variability of effective friction angle, /0, in a soil profile con-
taining NL statistically homogenous sand layers. The number NL in the first part of
this chapter (i.e., before Sect. 6.6 “The Most Probable Number of Soil Layers”) is
considered as a given value. It is then determined among several possible values by
a Bayesian model class selection approach proposed in Sect. 6.6. As shown in
Fig. 6.1, the inherent spatial variability of /0 within the NL layers of sand is
modeled by NL one-dimensional (i.e., along the vertical direction) and mutually
independent Gaussian random fields (i.e., /0

n(D), n = 1, 2, …, NL), in which the
subscript n denotes the layer number (i.e., the nth layer of sand) and D is the depth.
The mean and standard deviation of /′n are ln and rn, respectively. The correlation
structure of /n’ (i.e., the correlation structure within the nth layer of sand) follows

h1

h2

Layer 1: φ'1(D): θ1 = [μ1 σ1 λ1]

Layer 2: φ'2(D): θ2 = [μ2 σ2 λ2]

Layer NL: ],[:)('
LLLLL NNNNN D λσμθφ =

Depth (D)

Layer n: φ'n(D): θn = [μn σn λ n] hn

LNh

Fig. 6.1 An illustration of
random field model (After
Cao and Wang 2013)

124 6 Probabilistic Site Characterization Using Cone Penetration Tests



an exponential correlation function rn (Fenton 1999a, b; Wang et al. 2010; Cao and
Wang 2013)

rn u
0
nðDiÞ;u0

nðDjÞ
h i

¼ exp � 2 di;j
�� ��
kn

� �
; n ¼ 1; 2; . . .;NL ð6:1Þ

where kn is the correlation length, also sometimes known as scale of fluctuation, of
/′n in the nth layer, and it is a separation distance within which the soil property
shows a relatively strong correlation from point to point (Vanmarcke 1977, 1983;
Fenton and Griffiths 2008); di;j ¼ Di � Dj

�� �� is the distance between depths Di and
Dj within the nth layer.

Let /0
n
¼ ½/0

nðD1Þ;/0
nðD2Þ; . . .;/0

nðDknÞ�T be a vector of effective friction angles
at depths D1;D2; . . .;Dkn within the nth layer. In the context of a Gaussian random
field, /0

n
has the following representation in terms of a sequence of independent and

identically distributed random variables

/0
n
¼ lnln þ rnL

T
n Zn; n ¼ 1; 2; . . .;NL ð6:2Þ

where ln is a vector with kn components that are all equal to one; Zn ¼ Z1; . . .; Zkn½ �T
is a standard Gaussian vector with kn independent components; Ln is a kn-by-kn
upper triangular matrix obtained by Cholesky decomposition of the correlation
matrix Rn satisfying

Rn ¼ LTn Ln; n ¼ 1; 2; . . .;NL ð6:3Þ

and the (i, j)th entry of Rn is given by Eq. (6.1). Note that the second term in
Eq. (6.2) represents inherent spatial variability of the effective friction angle of the
nth sand layer. Let hn, n = 1, 2, …, NL, denote the thickness of the nth sand layer
(see Fig. 6.1), then the NL Gaussian random fields are uniquely represented by a
thickness vector hNL

¼ ½h1; h2; . . .; hNL �T and a model parameter matrix HNL that
consists of NL model parameter vectors hn ¼ ½ln rn kn � and NL correlation
matrices Rn.

Although in this chapter one-dimensional Gaussian random fields with an
exponential correlation structure (see Eq. (6.1)) are used for the development of the
method, the Bayesian approach is general and applicable for two- or
three-dimensional random fields and for other distribution types of random vari-
ables or different correlation structures. For example, two- or three-dimensional
random fields can be applied in the Bayesian approach to account for the anisotropy
in inherent spatial variability, provided that a large number of measurement data are
available for each direction. It is also worthwhile to note that the model parameters
hn ¼ ½ ln rn kn � of /0

n within the nth sand layer are considered spatially con-
stant within the nth sand layer in this chapter. There is therefore no need to remove
the spatial trend (i.e., perform detrending) for the parameters. For some soil
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properties (e.g., undrained shear strength) that exhibit obvious spatial trend, how-
ever, detrending should be performed before using statistically homogenous ran-
dom fields to model the inherent spatial variability (e.g., Lumb 1966; Jaksa 1995;
Fenton 1999a, b; Phoon et al. 2003).

6.3 Regression Between Cone Tip Resistance and Effective
Friction Angle

The effective friction angle /0 of soil can be estimated from CPTs using a
regression between /0 and the cone tip resistance qc that is measured at the cone tip
during the CPT. Figure 6.2 shows an empirical model developed by Kulhawy and
Mayne (1990), which is a semilog regression equation

n ¼ ln q ¼ a/0 þ bþ eT/0 ð6:4Þ

where n represents the measured data in a log scale; q ¼ ðqc=paÞ=ðr0
v0=paÞ0:5 is the

normalized cone tip resistance; r
0
v0 and pa are vertical effective stress and standard

atmospheric pressure (i.e., 0.1 MPa), respectively; a = 0.209, b = −3.684, and eT/0

Normalized cone tip resistance q = (qc/pa)/(σ 'v0 /pa)0.5

φ '=17.6+11.0log(qc /pa)/(σ 'v0 /pa)
0.5
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Fig. 6.2 Regression between effective friction angle and normalized cone tip resistance (After
Kulhawy and Mayne 1990; Cao and Wang 2013)
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is a Gaussian random variable with a mean leT = 0 and standard deviation
reT = 0.586 (Kulhawy and Mayne 1990; Phoon and Kulhawy 1999b; Wang et al.
2010). eTu0 represents the transformation uncertainty (i.e., modeling scatterness)
associated with the regression model. It should be noted that the original equation in
Kulhawy and Mayne (1990) expresses /0 in term of n; it is inverted here to facilitate
development in this chapter.

Let n ¼ ½n1; n2; . . .; nNL
�T be a set of lnq data at different depths obtained from a

CPT in a soil profile with NL statistically homogenous layers of sand, in which
nn ¼ ½nn1ðD1Þ; nn2ðD2Þ; . . .; nnknðDknÞ�T ; n ¼ 1; 2; . . .;N, is a set of lnq that are
measured at the kn depths D1;D2; . . .;Dkn within the nth sand layer. Using
Eqs. (6.2) and (6.4) gives

nn ¼ ðaln þ bÞln þðarnLTn Zn þ eT/0 Þ; n ¼ 1; 2; . . .;NL ð6:5Þ

When inherent spatial variability is assumed to be independent of model
uncertainty, i.e., Zn and eT/0 are independent, it can be readily reasoned that nn
measured within the nth sand layer is a Gaussian vector with a mean ðaln þ bÞln
and covariance matrix Cn ¼ a2r2nRn þ r2eT In (Wang et al. 2010; Cao et al. 2011),
where In is a kn-by-kn identity matrix.

It is worthwhile to point out that dividing the CPT data n into different sand
layers (i.e., dividing n into nn, n = 1, 2, …, NL) requires information on the
boundaries that separate the various statistically homogenous layers of soil. Such
information is unknown and needs to be determined in geotechnical site charac-
terization. In the next section, a Bayesian system identification approach is devel-
oped to determine the thicknesses/boundaries of various sand layers for a given
layer number NL and to update, simultaneously, knowledge on model parameters of
sand properties using prior knowledge and site observation data n.

6.4 Bayesian System Identification

Within the Bayesian framework, the updated knowledge on model parameters HNL

of soil properties in the NL statistically homogenous layers of soil is represented by
their joint posterior distribution (e.g., Ang and Tang 2007)

PðHNL jn;NLÞ ¼ KNLPðnjHNL ;NLÞPðHNL jNLÞ ð6:6Þ

where KNL ¼ 1=P n NLj� �
is a normalizing constant for a given NL value;

PðnjHNL ;NLÞ is the likelihood function that reflects the model fit with site obser-
vation data n within the NL layers of sand; PðHNL jNLÞ is the prior distribution of
model parameters in the NL layers of sand that reflects prior knowledge about HNL

in the absence of data.
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Since the NL Gaussian random fields are mutually independent, the likelihood
function PðnjHNL ;NLÞ is given by

PðnjHNL ;NLÞ ¼
YNL

n¼1

Pðnn hnj ;NLÞ ð6:7Þ

where Pðnnjhn;NLÞ; n ¼ 1; 2; . . .;NL, is the likelihood function for the nth sand
layer, since nn is a Gaussian vector with a mean ðaln þ bÞln and covariance matrix
Cn ¼ a2r2nRn þ r2eT In;Pðnn hnj ;NLÞ is expressed as

Pðnn hnj ;NLÞ ¼ ð2pÞ�kn=2 detCnj j�1=2exp � 1
2
½nn � ðaln þ bÞln�TC�1

n nn � ðaln þ bÞln
h i� �

ð6:8Þ

Note that as the boundaries (or thickness hNL
) of sand layers change, the division

of CPT data n into nn also changes. In other words, nn is a function of hNL
. Because

Pðnn hnj ;NLÞ is a function of nn (see Eq. (6.8)), Pðnnjhn;NLÞ is also a function of
hNL

. Therefore, although hNL
does not explicitly appears in Eqs. (6.7) or (6.8), the

likelihood function PðnjHNL ;NLÞ is a function of the thickness vector hNL
. This is

very important for determining thicknesses of the NL statistically homogenous sand
layers, as further illustrated in the next section.

Similar to the likelihood function, the prior distribution PðHNL jNLÞ is expressed as

PðHNL jNLÞ ¼
YNL

n¼1

PðhnjNLÞ ð6:9Þ

where PðhnjNLÞ, n = 1, 2,…, NL, is the prior distribution of model parameters
hn ¼ ½ ln rn kn � of the nth sand layer. Assuming that PðhnjNLÞ is a Gaussian
distribution with the mean hn ¼ ½ ln rn kn � and standard deviation
wn ¼ ½wln wrn wkn �, it is then expressed as

PðhnjNLÞ ¼ 1

ð2pÞ3=2wlnwrnwkn

expf� 1
2w2

ln
ðln � lnÞ2

� 1
2w2

rn
ðrn � rnÞ2 � 1

2w2
kn

ðkn � knÞ2g; n ¼ 1; 2; . . .;NL

ð6:10Þ

The posterior distribution PðHNL jn;NLÞ in Eq. (6.6) is a joint distribution of
model parameters HNL . To obtain the posterior marginal probability density func-
tion (PDF) for one parameter among HNL , integration on Eq. (6.6) over the space of
the other parameters is needed. Since the integrand is complicated, analytical
integration is often infeasible. For the posterior PDF of one parameter among HNL ,
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numerical integration may be performed using a multidimensional grid on the space
of the other parameters, but it must be performed repeatedly for a number of values
of the model parameter so as to yield information about the whole marginal dis-
tribution. To bypass the computational complexity of repetitive integration in high
dimensions which has been recognized as one key limitation of the Bayesian
approach in the literature (e.g., Zhang et al. 2009), an asymptotic technique is
applied in the next section to provide an approximation of the posterior PDF of
model parameters and the most probable thicknesses of the NL sand layers.

6.5 Posterior Knowledge and Boundaries of Statistically
Homogenous Layers

6.5.1 Posterior Knowledge on Model Parameters

The asymptotic technique involves approximating the posterior PDF as a
Gaussian PDF, which is in the same spirit of Laplace asymptotic approximation of
integrals (Bleisten and Handelsman 1986). By this approximation, the posterior
PDF of the model parameters is a joint Gaussian PDF with a mean matrix equal to
the most probable values (MPVs) of the posterior PDF. The MPV, denoted by H�

NL
,

maximizes the posterior PDF. Note that H�
NL

consists of NL model parameter MPV
vectors, i.e., h�n ¼ ½ l�n r�n k�n �, n = 1, 2,…, NL, where l�n; r

�
n; and k

�
n are the

respective MPV of ln; rn; and kn of the nth sand layer. Under this approximation,
the determination of the posterior mean for HNL reduces to finding the MPVH�

NL
by

maximizing PðHNL jn;NLÞ or, for numerical convenience, minimizing an objective
function fobj ¼ � ln½PðHNL jn;NLÞ�. Using Eqs. (6.6)−(6.10), fobj is given by

fobj ¼
XNL

n¼1

f1
2
ln detCnj j þ 1

2
½nn � ðaln þ bÞln�TC�1

n ½nn � ðaln þ bÞlng

þ
XNL

n¼1

f 1
2w2

ln
ðln � lnÞ2 þ

1
2w2

rn
ðrn � rnÞ2 þ 1

2w2
kn

ðkn � knÞ2gþConNL

ð6:11Þ

in which ConNL is a constant for a given NL statistically homogenous soil layers.
Under the Laplace asymptotic approximation of integrals (Bleisten and

Handelsman 1986), the covariance matrix G of the Gaussian PDF that approximates
PðHNL jn;NLÞ is given by the inverse of the Hessian matrix H of fobj ¼
� ln½PðHNL jn;NLÞ� evaluated at the MPV, i.e., G ¼ H�1ðH�

NL
Þ. Since the NL ran-

dom fields are assumed to be mutually independent, the model parameters of dif-
ferent sand layers are uncorrelated. The Hessian matrix of fobj ¼ � ln½PðHNL jn;NLÞ�
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is given by a diagonal matrix H ¼ diag(H1;H2; . . .;HNL
Þ with main diagonal terms

of Hn; n ¼ 1; 2; . . .;NL which are expressed as

Hn ¼

@2fobj
@l2n

@2fobj
@ln@rn

@2fobj
@ln@kn

@2fobj
@r2n

@2fobj
@rn@kn

sym:
@2fobj
@k2n

2
666666664

3
777777775
; n ¼ 1; 2; . . .;NL ð6:12Þ

The covariance matrix G is therefore given by a diagonal matrix H�1 ¼
diag(H�1

1 ;H�1
2 ; . . .;H�1

NL
Þ with main diagonal terms of H�1

n , n = 1, 2, …, NL, where
H�1

n is the inverse of Hn and provides the covariance matrix of model parameters of
the nth sand layer. Therefore, the main diagonal terms of H�1

n give the posterior
variance of ln;rn; and kn, while the off-diagonal terms give their covariance, i.e.,
s2ln ¼ H�1

n ð1; 1Þ, s2rn ¼ H�1
n ð2; 2Þ, and s2kn ¼ H�1

n ð3; 3Þ. Note that the Laplace
asymptotic approach described above has been successfully applied to obtain the
posterior distribution of random field model parameters using CPT data by Wang
et al. (2010), and they showed that the results obtained from the Laplace asymptotic
approach are in good agreement with those obtained from numerical integration.

6.5.2 The Most Probable Thicknesses and Boundaries
of Statistically Homogenous Layers

As mentioned before, the likelihood function PðnjHNL ;NLÞ is a function of thick-
nesses hNL

of statistically homogenous layers. Thus, both the posterior distribution
PðHNL jn;NLÞ and the objective function fobj ¼ � ln½PðHNL jn;NLÞ� are functions of
hNL

. Maximizing the posterior distribution PðHNL jn;NLÞ, i.e., minimizing
fobj ¼ � ln½PðHNL jn;NLÞ�, provides not only the MPV of model parameters H�

NL
but

also the MPV of thicknesses h�NL
¼ ½h�1; h�2; . . .; h�NL

�T for the statistically homoge-
nous layers, in which h�n, n = 1, 2, …, NL, represents the most probable thickness of
the nth sand layer. This delineates the boundaries that separate the NL statistically
homogenous layers of sand.

6.6 The Most Probable Number of Layers

The number NL of the statistically homogenous layers is considered as a given value
in the previous sections. This section considers the number of statistically
homogenous layers as a variable k and utilizes a Bayesian model class selection
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approach (Beck and Yuen 2004; Yan et al. 2009; Yuen 2010) to determine the most
probable value k� (or the most probable model class) among a pool of candidate
model classes. A model class herein is referred to a family of stratification models
that share the same number (e.g., k) of statistically homogenous soil layers but have
different model parameters (e.g., layer thickness hN and the model parameter matrix
HN). Let NLmax denote the maximum possible number of sand layers within the
depth of which CPT is performed. Then, the model class number k is a positive
integer varying from 1 to NLmax. Subsequently, there are NLmax candidate model
classes Mk , k = 1, 2, …, NLmax, and the kth model class Mk has k statistically
homogenous layers. The most probable model class M�

k is the model class that has
the maximum plausibility (or occurrence probability), among all candidate model
classes, given that a set of CPT data n is observed. The most probable layer number
k� therefore can be determined by comparing the conditional probabilities PðMkjnÞ
for all candidate model classes (i.e., k = 1, 2, …, NLmax) and selecting the one with
the maximum value of PðMkjnÞ.

According to Bayes’ theorem, PðMkjnÞ is written as (Beck and Yuen 2004; Yan
et al. 2009; Yuen 2010)

PðMkjnÞ ¼ PðnjMkÞPðMkÞ=PðnÞ; k ¼ 1; 2; . . .;NLmax ð6:13Þ

where PðnÞ is the PDF of n, and it is constant and independent ofMk;PðnjMkÞ is the
conditional PDF of n for a given the model class Mk;PðMkÞ is the prior probability
of the model class Mk, which reflects the prior knowledge on the number of sand
layers. PðnjMkÞ is frequently referred to as the “evidence” for the model class Mk

provided by the CPT data n, and it increases as the plausibility of n conditional on
Mk increases. In the case of no prevailing prior knowledge on the number of sand
layers (i.e., uniformly distributed prior), the NLmax candidate model classes have the
same prior probability, and hence, PðMkÞ can be taken as a constant 1/NLmax. Then,
based on Eq. (6.13), PðMkjnÞ is proportional to PðnjMkÞ. Since the most probable
model class M�

k corresponds to the maximum value of PðMkjnÞ, it also has the
maximum value of PðnjMkÞ. In other words, the most probable model class M�

k can
be selected by comparing the values of PðnjMkÞ among NLmax candidate model
classes. The model class that has the maximum value of PðnjMkÞ is taken as the
most probable class M�

k among the NLmax candidates. The calculation of PðnjMkÞ is
discussed in the next subsection.

6.6.1 Calculation of the Evidence for Each Model Class

By the Theorem of Total Probability, the evidence PðnjMkÞ for model class Mk can
be expressed as
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Pðn Mkj Þ ¼
Z

Pðn Hk;j MkÞPðHk MkÞdHkj ; k ¼ 1; 2; . . .;NLmax ð6:14Þ

Equation (6.14) involves integration over the multidimensional space of model
parameters Hk for model class Mk (Beck and Yuen 2004). To avoid the compu-
tational complexity of multidimensional integration, the asymptotic technique
described in the Sect. 6.5 “Posterior Knowledge and Boundaries of Statistically
Homogenous Layers” is also adopted, and PðnjMkÞ in Eq. (6.14) can be approxi-
mated as (Papadimitriou et al. 1997; Beck and Katafygiotis 1998; Beck and Yuen
2004)

PðnjMkÞ � PðnjH�
k ;MkÞPðH�

k jMkÞð2pÞjk=2 detHðH�
kÞ

�� ���1=2
; k ¼ 1; 2; . . .;NLmax

ð6:15Þ

where H�
k is the MPV of model parameters for model class Mk; PðnjH�

k ;MkÞ is the
likelihood function of Mk evaluated at H�

k , and it is given by Eqs. (6.7) and (6.8);
PðH�

k jMkÞ is the prior distribution of Mk evaluated at H�
k , and it is calculated using

Eqs. (6.9) and (6.10); HðH�
kÞ is the Hessian matrix ofMk evaluated atH�

k ; jk ¼ 3k is

the number of model parameters of Mk. PðH�
k jMkÞð2pÞjk=2 detHðH�

kÞ
�� ���1=2

is called
the Ockham factor OckMk that serves as a measure of the robustness of Mk (Gull
1988). The Ockham factor decreases exponentially as the number (i.e., jk) of
uncertain model parameters increases, and it represents a penalty against parame-
terization (Gull 1988; Mackay 1992, Beck and Yuen 2004; Yan et al. 2009; Yuen
2010). It is worthwhile to note that the value of PðnjH�

k ;MkÞ tends to increase as the
number k of soil layers or the number (i.e., jk) of uncertain model parameters
increases. The evidence PðnjMkÞ in Eq. (6.15) therefore is a result of two contra-
dicting factors: PðnjH�

k ;MkÞ that increases as k increases and the Ockham factor

(i.e., PðH�
k jMkÞð2pÞjk=2 detHðH�

kÞ
�� ���1=2

) that decreases as k increases. The maxi-
mum value of PðnjMkÞ is obtained when a balance between these two contradicting
factors is achieved, and the corresponding k� value represents the most probable
number of soil layers.

The evidence PðnjMkÞ is calculated repeatedly for k = 1, 2, …, NLmax. In each
repeated calculation, the value of k or the number of soil layers is constant. The
Bayesian system identification method developed in Sects. 6.2−6.5 for a soil profile
with given NL layers of soil can be applied directly by setting NL = k. The Bayesian
system identification approach leads toH�

k ;HðH�
kÞ and its inverse H�1ðH�

kÞ, and the
most probable thicknesses h�k for the model class Mk . The evidence PðnjMkÞ is then
obtained using Eqs. (6.7)−(6.10) and (6.15). The calculation is repeated NLmax

times for the NLmax candidate model classes, and the values of PðnjMkÞ for the
NLmax model classes are obtained. By comparing these PðnjMkÞ values, the most
probable model class M�

k and the most probable number k� of soil layers are
determined. Note that the most probable thicknesses h�k� and other MPVs of model
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parameters H�
k� have been determined in the previous repeated calculation for

Bayesian system identification. Therefore, the determination of the most probable
number k� of soil layers simultaneously leads to the determination of the most
probable thicknesses h�k� and other MPV of model parameters H�

k� for each soil
layer in M�

k .

6.7 Implementation Procedure

The implementation of the Bayesian approach involves 8 steps. Details of each step
and their associated equations are summarized as follows:

(1) Obtain a set of cone tip resistance qc versus depth data from CPTs and convert
them to a vector n at different depths using Eq. (6.4);

(2) Choose an appropriate maximum number NLmax of sand layers for the CPT
data n, resulting in NLmax candidate model classes and the k value varying
from 1 to NLmax;

(3) Obtain appropriate prior knowledge including the mean hn ¼ ½ ln rn kn �
and standard deviation wn ¼ ½wln wrn wkn �; n ¼ 1; 2; . . .; k, for the kth
model class;

(4) Construct the objective function fobj ¼ � ln½PðHkjn; kÞ� using Eqs. (6.6)
−(6.10) for the kth model class;

(5) Minimize the objective function fobj ¼ � ln½PðHkjn; kÞ� and determine its
corresponding MPV (i.e., H�

k ) as posterior mean and the most probable
thicknesses h�k ¼ ½h�1; h�2; . . .; h�k � for the kth model class;

(6) Calculate the inverse of the Hessian matrix of the objective function evaluated at
H�

k (i.e., H
�1ðH�

kÞ) to obtain posterior variance s2ln; s
2
rn and s

2
kn; n ¼ 1; 2; . . .; k,

for the kth model class. Each term in the Hessian matrix given by Eq. (6.12) is
calculated using finite difference methods;

(7) Calculate the conditional probability PðnjMkÞ of n given the kth model class
using Eqs. (6.7)−(6.10) and (6.15);

(8) Repeat steps (3)−(7) NLmax times to calculate H�
k ;H

�1ðH�
kÞ; h�k and PðnjMkÞ

for the NLmax candidate model classes, respectively. The model class with the
maximum value of PðnjMkÞ is selected as the most probable model class M�

k ,
and the corresponding k�; h�k� ;H

�
k� and H�1ðH�

k� Þ are obtained.

Note that the minimization of the objective function fobj ¼ � ln½PðHkjn; kÞ� in
step (5) can be readily implemented by conventional optimization algorithm, e.g.,
the function “fminsearch” in MATLAB (Mathworks 2010). The differentiation of
fobj ¼ � ln½PðHkjn; kÞ� for constructing the Hessian matrix in step (6) can be
evaluated numerically in MATLAB using finite difference method. The proposed
approach and the implementation procedure described above will be illustrated
through a real example in the next section.
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6.8 Illustrative Example

The proposed Bayesian system identification and model class selection approach
are illustrated using a set of real CPT data obtained from a site at Eemshaven, the
Netherlands (Niazi and Mayne 2010). The site is comprised of a sequence of loose
to very dense sand layers with occasional clay and silt inclusions extending from a
depth of 1.5 m to a depth of about 50 m. The groundwater table is at about 1.5 m
below ground surface. As shown in Fig. 6.3a, there are two relatively clean sand
layers between 22.5 m and 37.5 m below ground surface, including a medium to
dense sand layer from 22.5 m to about 29.1 m and a very dense sand layer from
about 29.1 m to 37.5 m. Note that the boundary at a depth of 29.1 m given in the
original data is based on relative density (Holtz 1973, Niazi and Mayne 2010). As
shown in Fig. 6.3a, the thickness and the total unit weight (i.e., ct1 and ct2) of the
two layers are 6.6 and 8.4 m, 17.9 and 18.9 kN/m3, respectively. Figure 6.3a also
includes the cone tip resistance measured from a CPT at this site (Fugro 2004; Niazi
and Mayne 2010). As a reference, the sand effective friction angle /0 can be
estimated directly using the regression between cone tip resistance and /0 (i.e.,
Eq. (6.4)). As shown in Fig. 6.3b, the resulting /0 profiles in these two layers are
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Fig. 6.3 An illustrative example with a set of real CPT results at Eemshaven, the Netherlands
(After Niazi and Mayne 2010 and Cao and Wang 2013), a cone tip resistance, b sand effective
friction angle
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quite different, with their respective means of 40.9° and 45.6°, and respective
standard deviations of 2.1º and 0.6º.

Consider, for example, five candidate model classes (i.e., the maximum number
of sand layers, NLmax = 5). The possible numbers (i.e., k) of sand layers therefore
are 1, 2, 3, 4, and 5. Since the number and thicknesses of sand layers are unknown,
the prior knowledge is assumed identical for all sand layers. For the kth model class,
prior knowledge of the nth sand layer is taken as follows: the mean ln ¼ 40

�
; rn ¼

4:0
�
; kn ¼ 1:5m and standard deviation wln ¼ 16

�
;wrn ¼ 1:6

�
;wkn ¼ 0:6m;

n ¼ 1; 2; . . .; k. This prior knowledge falls within the typical ranges of sand
effective friction angles reported in the literature (e.g., Kulhawy and Mayne 1990;
Phoon and Kulhawy 1999a). Note that the ratio of standard deviation over mean
(i.e., the coefficient of variation (COV), wln=ln;wrn=rn; andwkn=kn) of model
parameters in prior knowledge is taken as 40 % in this example. This COV of
model parameters in the adopted prior knowledge is relatively large, and thus, the
confidence level of the adopted prior knowledge is relatively low, and the prior
knowledge is relatively uninformative. Effects of the confidence level of prior
knowledge will be explored further in the next section. Using the prior knowledge
and the CPT data shown in Fig. 6.3a, the proposed Bayesian approach provides the
most probable number of statistically homogenous sand layers, the most probable
boundaries (or thicknesses) of the layers, and posterior knowledge of model
parameters in each layer, as discussed in the following three subsections.

6.8.1 The Most Probable Number of Sand Layers

Table 6.1 summarizes the logarithm of evidence (i.e., ln PðnjMkÞ
	 


) in the second
column for five candidate model classes. The value of ln PðnjMkÞ

	 

increases from

−93.7 to −85.8 as k increases from 1 to 2, and it then decreases from −85.8 to
−97.5 as k further increases from 2 to 5. The model class with two sand layers, i.e.,
M2, has the largest value of ln PðnjMkÞ

	 

(i.e.,−85.8) among all five model classes.

Therefore, the most probable number of statistically homogenous sand layers is
two, i.e., k� ¼ 2. This is consistent with the ground condition given in the original

Table 6.1 Results of the Bayesian model class selection approach (After Cao and Wang 2013)

Model class
Mk

ln[PðnjMkÞ] ln(OckMk) The most probable thicknesses
h�k (m)

h�1 h�2 h�3 h�4 h�5
M1 −93.7 −7.2 15 – – – –

M2
* −85.8 −14.3 6.5 8.5 – – –

M3 −86.7 −19.1 1.9 4.7 8.4 – –

M4 −90.2 −22.4 2.0 3.4 1.2 8.4 –

M5 −97.5 −28.7 1.9 2.9 1.9 2.9 5.4
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data and shown in Fig. 6.3. Table 6.1 also summarizes the logarithm of Ockham
factor (i.e., ln OckMkð Þ) in the third column. As k increases and the number of model
parameters increases, the logarithm of Ockham factor decreases monotonically
from −7.2 to −28.7. This is consistent with the results of the previous studies on
model class selection which have shown that the Ockham factor decreases expo-
nentially as the number of model parameters increases for the same set of data
(Beck and Yuen 2004; Yuen 2010). The Ockham factor therefore assures that the
observed data are not overfitted by a model class with a large number of model
parameters (e.g., a large k value in this chapter) or the most probable model class is
not biased to favor a model class with a large k value.

6.8.2 The Most Probable Thicknesses or Boundaries

Table 6.1 also summarizes the most probable thicknesses (i.e., h�k in Column 4) of
sand layers for the five candidate model classes. Using h�k ; k ¼ 1; 2; . . .; 5, the most
probable boundaries of statistically homogeneous layers are delineated accordingly
for the five model classes. Figure 6.4 shows the most probable boundaries for the
five model classes and the boundary (i.e., 29.1 m) of the two sand layers defined in
the original data by dashed lines and solid lines, respectively. For the most probable
model class M2, the most probable thicknesses of these two layers are 6.5 m and
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Fig. 6.4 The most probable boundaries of statistically homogenous layers for different model
classes (After Cao and Wang 2013)
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8.5 m, respectively. The most probable boundary for M2 is thus at the depth of
22.5 m + 6.5 m = 29.0 m, and it is in good agreement with the one (i.e., 29.1 m)
defined in the original data.

Figure 6.4 also shows an evolution of layer identification as the model class
varies from M1 to M5 (i.e., the number of layers increases from 1 to 5). Model class
M1 only has one layer, and hence, it does not have any internal boundary. The
number of internal boundaries increases from 1 for M2 to 4 for M5. All model
classes M2 to M5 share a common internal boundary at a depth of about 29.1 m. In
addition, model classes M3, M4, and M5 share one more common internal boundary
at a depth of about 24.4 m, and model classes M4 and M5 share another common
one at a depth of about 27.6 m. The first layer in M2 is further divided into two new
layers in M3; the second layer in M3 is further divided into two new layers in M4;
and the fourth layer in M4 is further divided into two new layers in M5. The most
probable boundaries in a model class Mk include those identified in the previous
model class Mk−1 and one additional internal boundary that divides one layer in Mk-

1 into two new layers in Mk. As the value of k increases, the Bayesian approach
developed in this chapter identifies the statistically homogenous layers progres-
sively, starting from the most statistically significant boundary (e.g., at a depth of
29.1 m in this example) and gradually “zooming” into local differences with
improved “resolution.” Such improved “resolution,” of course, comes with an
expense of an increasing number of model parameters (e.g., jk in Eq. (6.15)
increases as k increases). As the number of model parameters increases, the value of
evidence (i.e., ln[PðnjMkÞ], see Table 6.1) first increases, before the most probable
model class (e.g., M2 in this example), and then decreases after the most probably
model class. The “zooming” therefore should be stopped when the maximum value
of ln[PðnjMkÞ] is obtained or the most probable model class is identified. As dis-
cussed in Sect. 6.6.1 “Calculation of the evidence for each model class,” the
Ockham factor in Eq. (6.15) decreases exponentially as the number (i.e., jk) of
model parameters increases, and it assures that the most probable model class is not
biased to favor a model class with a large k value. The Bayesian approach not only
provides a means to identify the statistically homogenous layers progressively by
gradually “zooming” into local difference with improved “resolution,” but also
contains a mechanism to determine when to stop such “zooming.”

6.8.3 The Posterior Knowledge on Model Parameters

Table 6.2 summarizes the posterior knowledge on model parameters for the most
probable model class M2, including their posterior MPV (or mean)
h�n ¼ ½ l�n r�n k�n �, n = 1, 2, in the third column and posterior standard deviation
sn ¼ ½ sln srn skn �; n ¼ 1; 2, in the fourth column. The posterior MPVs of mean
values (i.e., l�n; n ¼ 1; 2) of the medium to dense sand layer and very dense sand
layer are 40.9º and 45.7º, respectively. These values are almost identical to their
respective values (i.e., 40.9º and 45.6º) that are directly estimated from the CPT
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data (i.e., without any prior knowledge or consideration of inherent spatial vari-
ability). The posterior MPVs of standard deviations (i.e., r�n; n ¼ 1; 2) of the two
sand layers are 1.4º and 0.2º, respectively. The posterior standard deviations
sl1; sr1; sl2; and sr2 of model parameters l1; r1; l2; r2 are 0.7º, 0.5º, 0.3º, and 0.3º,
respectively. Then, the posterior standard deviation (i.e., sun) of /n’, n = 1, 2, is

estimated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2n þ s2ln þ s2rn

q
(Wang et al. 2010) and shown in the fifth column.

The respective values of su1 and su2 are 1.6° and 0.5º, and they compare favorably
with those (i.e., 2.1º and 0.6º, respectively) directly estimated from the CPT data.
The results on l�n and sun imply that the information provided by CPT data dom-
inates the estimates of l�n and sun, and the effect of the prior knowledge adopted in
this example is rather minor. It is not surprising to see such results because the prior
knowledge used in this example is relatively uninformative. Effects of prior
knowledge are further explored in the next section.

6.9 Sensitivity Study on Confidence Level of Prior
Knowledge

Prior knowledge on model parameters includes the mean (i.e., hn ¼ ½ ln rn kn �;
n ¼ 1; 2; . . .; k) and standard deviation (i.e., wn ¼ ½wln wrn wkn �;
n ¼ 1; 2; . . .; k). The ratio of standard deviation over mean (i.e., COV) reflects the
confidence level of the prior knowledge onmodel parameters.When the COV in prior
knowledge is relatively small, the confidence level of prior knowledge is relatively
high, and the prior knowledge is informative. The confidence level decreases as the
COV increases. To illustrate the effects of confidence level of prior knowledge, a
sensitivity study is performed with a set of CPT data that are simulated from a soil
profile with three layers of sand, as shown in Fig. 6.5. The effective friction angles in
these three sand layers are represented by three Gaussian random fields with
respective thicknesses of 4 m, 6 m, and 5 m. The CPT data are simulated using the
random fields and the regression model described in this chapter with l1 ¼
30:0

�
; r1 ¼ 1:5

�
; and k1 ¼ 1:5m; l2 ¼ 40:0

�
; r2 ¼ 2:0

�
; and k2 ¼ 2:0m; l3 ¼

Table 6.2 Posterior knowledge on model parameters of the most probable model class (After Cao
and Wang 2013)

The most probable
model class

Sand
layer
n

Posterior MPV
(or mean) of hn

Posterior standard
deviation of hn

Posterior standard
deviation of /′n

M�
k l�n

(º)
r�n
(º)

k�n
(m)

sln
(º)

srn
(º)

skn
(m)

s/n (º)

M2 1 40.9 1.4 1.6 0.7 0.5 0.5 1.6

2 45.7 0.2 1.5 0.3 0.3 0.6 0.5
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28:0
�
; r3 ¼ 1:4

�
; and k3 ¼ 1:0m; respectively. Note that in practice both the true

boundaries of soil layers and the actual values of soil properties are unknown, and they
are estimated through prior knowledge and project-specific test results.

Figure 6.6 shows a set of normalized cone tip resistance q data from simulation
for a cone penetration depth up to 15.0 m with a depth interval of 0.1 m.
Subsequently, the CPT data are integrated with seven different sets of prior

μ1 = 30.0º σ1 = 1.5º λ1 = 1.0 m

μ2 = 40.0º σ2 = 2.0º λ 2 = 2.0 m

μ3 = 28.0º σ3 = 1.4º λ3 = 1.0 m

h1=4 m

h3=5 m

h2=6 m

Fig. 6.5 A soil profile with
three layers of sand (After
Cao and Wang 2013)
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Fig. 6.6 A set of simulated
CPT results from three soil
layers (After Cao and Wang
2013)
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knowledge to estimate the most probable number and boundaries of sand layers and
their posterior knowledge on soil properties. Table 6.3 summarizes seven sets of
prior knowledge used in the sensitivity study. The prior mean of model parameters
is all taken as ln ¼ 30:0

�
; rn ¼ 3:0

�
; kn ¼ 1:5m; n ¼ 1; 2; . . .k;, and the prior COV

increases from 5 to 100 % (i.e., wln;wrn; andwkn range from 1.5º to 30.0º, from
0.15º to 3.0º, and from 0.075 m to 1.5 m, respectively).

6.9.1 Effect on the Most Probable Number of Sand Layers

Table 6.4 summarizes the most probable model classes M�
k (i.e., the most probable

number of sand layers) obtained from the Bayesian approach using different sets of
prior knowledge. The most probable number of sand layers is 3 when using the
prior knowledge IV, V, VI, or VII which is relatively uninformative (i.e., with
relatively low confidence level and large prior COV of 40 %, 60 %, 80 %, and
100 %, respectively). The true sand layer number of 3 is identified correctly. In

Table 6.3 Summary of prior knowledge used in sensitivity study (After Cao and Wang 2013)

Case ID Prior mean Coefficient
of
variation (%)

Prior standard deviation

ln (º) rn (º) kn (m) wln (º) wrn (º) wkn (m)

I 30.0 3.0 1.5 5 1.5 0.15 0.075

II 30.0 3.0 1.5 10 3.0 0.3 0.15

III 30.0 3.0 1.5 20 6.0 0.6 0.3

IV 30.0 3.0 1.5 40 12.0 1.2 0.6

V 30.0 3.0 1.5 60 18.0 1.8 0.9

VI 30.0 3.0 1.5 80 24.0 2.4 1.2

VII 30.0 3.0 1.5 100 30.0 3.0 1.5

Table 6.4 Summary of the most probable model classes and most probable thicknesses in
sensitivity study (After Cao and Wang 2013)

Case
ID

Coefficient of
variation (%)

The most probable
model class
M�

k

The most probable thicknesses
h�k� (m)

h�1 h�2 h�3 h�4 h�5
I 5 M5 2.0 2.0 6.0 1.9 3.1

II 10 M5 2.0 2.0 6.1 1.8 3.1

III 20 M4 1.9 2.1 6.1 4.9 –

IV 40 M3 4.0 6.1 4.9 – –

V 60 M3 4.0 6.1 4.9 – –

VI 80 M3 4.0 6.1 4.9 – –

VII 100 M3 4.0 6.1 4.9 – –
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contrast, the most probable number of sand layers is 5, 5, or 4, respectively, when
using the prior knowledge I, II, or III which is relatively informative (i.e., with
relatively high confidence level and small prior COV of 5 %, 10 %, and 20 %,
respectively). This is obviously incorrect because the true number of sand layers is
3 (see Fig. 6.5). Note that the same prior mean values of model parameters are
adopted for all sand layers (see Table 6.3), and some of them are quite different
from the actual soil properties in the soil layer (see Fig. 6.5). If the adopted prior
knowledge is very confident and very informative, it carries a relatively heavy
weight in the Bayesian approach and affects its results significantly. The most
probable layer number obtained for prior knowledge case I, II, or III is affected
significantly by their inconsistent prior knowledge, and therefore, it is incorrect.
The Bayesian approach provides a formal and rational framework to integrate prior
knowledge and project-specific test data together. Its results are therefore affected
by the quality of both prior knowledge and project-specific test data. It is always
prudent to rely more on the high-quality project-specific test data, if available, and
to start the Bayesian approach with relatively uninformative prior knowledge (i.e.,
large COV and low confidence level), particularly when the prior knowledge is not
well justified.

6.9.2 Effect on the Most Probable Thicknesses
or Boundaries

Table 6.4 also includes the most probable thicknesses h�k� of the statistically
homogenous sand layers when using different sets of prior knowledge. The most
probable boundaries for all seven cases are then delineated accordingly in Fig. 6.7
by dashed lines. All seven cases correctly locate the true boundaries (i.e., the solid
line in Fig. 6.7) of the soil profile. On the other hand, when the prior knowledge is
inconsistent with the actual soil properties but with high confidence level (e.g., low
COV for case I, II, or III), the Bayesian approach provides incorrect results by
further dividing some layers into sublayers. This again suggests that it is a good
idea to start the Bayesian approach with a relatively uninformative prior knowledge
(i.e., large COV and low confidence level).

6.9.3 Effect on Posterior Knowledge on Model Parameters

As the true number of sand layers in the soil profile is 3 (see Fig. 6.5), the cases I,
II, and III in the sensitivity study are re-evaluated with a deterministic sand layer
number of 3 (i.e., M3). It is found that the most probable thicknesses and boundaries
are all identical to their true values or those obtained from cases IV, V, VI, or VII
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(see Table 6.4). The resulting posterior MPVs of mean l�n; n ¼ 1; 2; 3, and standard
deviation r�n; n ¼ 1; 2; 3, for these seven cases of M3 are shown in Fig. 6.8.

Figure 6.8a plots a variation of the posterior MPV of mean l�n; n ¼ 1; 2; 3, as a
function of prior COV of mean by solid lines with open circles, squares, and
triangles, respectively. Figure 6.8a also shows the true values of mean, i.e.,
l1 ¼ 30

�
; l2 ¼ 40

�
; and l3 ¼ 28

�
, by solid lines. As the value of COV increases

(i.e., confidence level decreases), the posterior MPVs of means in three layers all
approach their respective true values. It is also obvious that when the prior
knowledge is inconsistent with the actual soil properties but with low COV value
(i.e., high confidence level), such as l�2 ¼ 35

�
at COV = 5 %, the posterior MPV of

mean (i.e., 35º) deviates significantly from its true value of 40º. This underscores
the negative effect of overconfident prior knowledge.

Figure 6.8b shows a variation of posterior MPV of standard deviation
r�n; n ¼ 1; 2; 3, as a function of prior COV of standard deviation by solid lines with
open circles, squares, and triangles, respectively. Figure 6.8b also includes the true
values of standard deviation, i.e., r1 ¼ 1:5

�
; r2 ¼ 2:0

�
; and r3 ¼ 1:4

�
by solid

lines. Similar to Fig. 6.8a, as the value of COV increases, the posterior MPVs of
standard deviations in three layers all approach their respective true values. When
the prior knowledge is inconsistent with the actual soil properties but is
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overconfident, the posterior MPV of standard deviation deviates significantly from
its true value. On the other hand, prior knowledge with large COV values generally
results in consistent posterior MPV of standard deviation.
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6.10 Summary and Conclusions

This chapter developed a Bayesian approach for probabilistic site characterization
using cone penetration test (CPT). Prior knowledge and results of project-specific
CPTs are integrated properly under the Bayesian framework developed in this book
to identify the most probable number and thicknesses/boundaries of statistically
homogenous layers of soil and to estimate probabilistically the soil effective friction
angle simultaneously. The Bayesian approach has been developed in conjunction
with random field theory to model explicitly the inherent spatial variability and
regression between CPT measurement and soil properties. It contains two major
components: a Bayesian model class selection method to identify the most probable
number of statistically homogenous layers of soil and a Bayesian system identifi-
cation method to estimate the most probable layer thicknesses and soil properties
probabilistically.

Equations were derived for the Bayesian approach, and the proposed approach
was illustrated using a set of real CPT data obtained from a site in the Netherlands.
It has been shown that the proposed approach correctly identifies the number and
thicknesses/boundaries of the statistically homogenous layers of soil and provides
proper probabilistic characterization of soil properties. In addition, as the number of
model classes increases, the Bayesian model class selection approach identifies the
statistically homogenous layers progressively, starting from the most statistically
significant boundary and gradually “zooming” into local difference with improved
“resolution.” The Bayesian approach also contains a mechanism to determine when
to stop further increasing the number of model class (i.e., the “zooming”).

A sensitivity study was performed to explore the effect of prior knowledge on
identification of statistically homogenous soil layers and probabilistic characteri-
zation of soil properties. It is found that the results of Bayesian approach are
affected by the quality of both prior knowledge and project-specific test data. It is
always prudent to rely more on the high-quality project-specific test data, if
available, and to start the Bayesian approach with relatively uninformative prior
knowledge (i.e., large COV and low confidence level), particularly when the prior
knowledge is not well justified.
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Chapter 7
Practical Reliability Analysis of Slope
Stability by Advanced Monte Carlo
Simulations in a Spreadsheet

7.1 Introduction

The previous chapters developed several probabilistic approaches for geotechnical
site characterization. These probabilistic approaches provide probabilistic charac-
terization of soil properties and underground stratigraphy and account rationally for
inherent spatial variability of soils and various uncertainties (i.e., statistical uncer-
tainties, measurement errors, and transformation uncertainties) that arise during site
characterization. The uncertainties (including inherent spatial variability of soils)
obviously affect probabilistic estimations of soil properties and underground
stratigraphy, which are key input information in probabilistic analysis and/or designs
of geotechnical structures. Therefore, the uncertainties subsequently influence
probabilistic analysis and/or designs of geotechnical structures. Consider, for
example, probabilistic slope stability analysis. Various uncertainties can be taken
into account rationally in probabilistic slope stability analysis through Monte Carlo
simulation (MCS). MCS method provides a robust and conceptually simple way to
estimate the “reliability index” b or slope failure probability Pf (e.g., El-Ramly et al.
2002; Griffiths and Fenton 2004; El-Ramly et al. 2005). Direct MCS, however,
suffers from a lack of efficiency and resolution at small probability levels that are of
great interest to geotechnical practitioners (see Chap. 2).

In addition, it has been recognized that a slope may fail along an unlimited
number of potential slip surfaces, although evaluating the total failure probability
along all potential slip surfaces is considered a mathematically formidable task
(El-Ramly et al. 2002). The value of b for slope stability therefore is frequently
determined only for one or a limited number of slip surfaces (e.g., Tang et al. 1976;
Hassan and Wolff 1999; El-Ramly et al. 2002). A few exceptions are the recent
work by Griffiths and Fenton (2004), Xu and Low (2006), and Hong and Roh
(2008) that utilize direct MCS and finite element analysis to search for the critical
slip surfaces. Nevertheless, the effect of critical slip surface uncertainty has not been
explored systematically.
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This chapter presents a practical approach of slope stability–reliability analysis
that implements an advanced MCS method called “subset simulation” in a
spreadsheet environment for improving the efficiency and resolution of MCS at
relatively small probability levels and for exploring the effect of critical slip surface
uncertainty. MCS and subset simulation are operationally decoupled from deter-
ministic slope stability analysis and implemented using a commonly available
spreadsheet software, Microsoft Excel. The proposed methodology is illustrated
through application to a cohesive slope and validated against results from other
reliability solution methods and commercial software. With the aid of improved
computational efficiency and resolution at relatively small probability levels offered
by the proposed methodology, the effects of inherent spatial variability of soil
property and critical slip surface uncertainty will be explored.

7.2 Monte Carlo Simulation of Slope Stability

Figure 7.1 shows a flowchart for MCS of slope stability analysis schematically.
The MCS starts with characterization of probability distributions of uncertainties
concerned, as well as slope geometry and other necessary information, followed by
the generation of nMC sets of random samples according to the prescribed proba-
bility distributions. Note that the input information required (e.g., probability dis-
tributions of soil properties) in MCS can be obtained from probabilistic approaches
developed for geotechnical site characterization in the previous four chapters. For
each set of random samples, limit equilibrium methods are utilized, and the critical
slip surface is searched for obtaining the minimum FS, resulting in totally nMC sets
of minimum FS. Then, statistical analysis is performed to estimate Pf or b, with the
slope failure defined as the minimum FS < 1. To ensure a desired level of accuracy
in Pf, the number of samples in direct MCS should be at least ten times greater than
the reciprocal of the probability level of interest (Robert and Casella 2004). For a Pf

level of 0.001 that corresponds to an expected performance level of “above aver-
age” (see Table 2.7 in Chap. 2), the sample sizes of direct MCS should be greater
than 10,000. As the deterministic slope stability analysis explicitly searches a wide
range of potential slip surfaces to obtain the minimum FS, direct MCS takes
considerable amount of time. This further calls for improvement of computational
efficiency via advanced Monte Carlo procedures as presented in the following
section.

7.3 Subset Simulation

Subset simulation (Au and Beck 2001, 2003) stems from the idea that a small
failure probability can be expressed as a product of larger conditional failure
probabilities for some intermediate failure events, thereby converting a rare event
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(small probability levels) simulation problem into a sequence of more frequent
ones. Consider the slope stability problem where FS is the critical response and the
probability of FS smaller than a given value “fs” (i.e., PðFS \fsÞ) is of interest. Let
fs = fsm \fsm�1 \ � � � fs2 \fs1 be an increasing sequence of m intermediate
threshold values. By sequentially conditioning on the event fFi ¼ FS \fsi;
i ¼ 1; 2; . . .; mg, the probability PðFS \fsÞ can be written as

Generate nMC sets of random samples according to 
prescribed probability distributions

Repeat nMC times 
already?

Yes

No

Characterize slope geometry, other 
necessary information, and probability 
distributions of uncertainties concerned

Search for critical slip surface and calculate the 
minimum factor of safety using limit equilibrium 
methods and one set of random samples as input

Perform statistical analysis of resulting nMC sets of 
output  

Calculate probability of failure Pf and/or 
reliability index β

Last level of 
Subset Simulation?

Yes

Generate nMC(1-
p0) new sets of 

random samples 
using specially 
design Markov 

Chain

No

Note: dashed-line items represent 
additional steps in Subset Simulation.

Fig. 7.1 Flowchart for Monte Carlo simulation of slope stability analysis (after Wang et al. 2011)
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PðFS \fsÞ = PðFS \fs1ÞPðFS \fs2 FS \fs1Þ� � � � �PðFS \fsmj jFS \fsm�1Þ
ð7:1Þ

In implementation, fs1; . . .; fsm are determined adaptively based on the statistical
analysis of simulation output (as shown by the dashed-line items in Fig. 7.1) so that
the sample estimates of PðFS \fs1Þ and {PðFS \fsijFS \fsi�1Þ, i = 2; . . .;m}
always correspond to a common specified value of the conditional probability p0
(p0 = 0.1 is found to be a good choice) (Au et al. 2009 and 2010).

The efficient generation of conditional samples is pivotal in the success of subset
simulation, and it is made possible through the machinery of Markov Chain Monte
Carlo simulation (MCMCS). MCMCS uses a modified version of the Metropolis
algorithm (Metropolis et al. 1953) that is applicable for high-dimensional problems.
Successive samples are generated from a specially designed Markov Chain whose
limiting stationary distribution tends to the target probability distribution function
(PDF) as the length of the Markov Chain increases. Details of the modified
Metropolis algorithm of MCMCS are referred to Au and Beck (2001 and 2003) and
Au et al. (2007).

7.4 Implementation of Subset Simulation in a Spreadsheet
Environment

The subset simulation described above has been implemented in a commonly
available spreadsheet environment by a package of worksheets and
functions/Add-In in Excel with the aid of Visual Basic for Application (VBA) (Au
et al. 2009; Au et al. 2010; Wang et al. 2011). It is of particular interest to decouple
the development of Excel worksheets and VBA functions/Add-In for deterministic
slope stability analysis and those for reliability analysis (e.g., random sample
generations and statistical analysis) so that the reliability analysis can proceed as an
extension of deterministic analysis in a non-intrusive manner. This allows the
deterministic analysis of slope stability and reliability analysis to be performed
separately by personnel with different expertise and in a parallel fashion. This
alleviates the geotechnical practitioners from performing reliability computational
algorithms so that they can focus on the slope stability problem itself. The software
package developed in this chapter therefore is divided into three parts: deterministic
model worksheet for deterministic analysis of slope stability, uncertainty model
worksheet for generating random samples, and subset simulation Add-In for
uncertainty propagation, which are described in the following three subsections,
respectively.
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7.4.1 Deterministic Model Worksheet

For a slope stability problem, deterministic model analysis is the process of cal-
culating factor of safety (i.e., FS) for a given nominal set of values of system
parameters. The system parameters include the geometry information of the slope
and the slip surface, soil properties, and profile of soil layers. In this chapter, limit
equilibrium methods (e.g., Swedish circle method, simplified Bishop method, and
Spencer method) (Duncan and Wright 2005) are employed to calculate the factor of
safety for the critical slip surface. The calculation process of deterministic analysis
is implemented in a series of worksheets assisted by some VBA functions/Add-In.
Figure 7.2 illustrates an example of deterministic model worksheet which is
modified after Low (2003) and uses Ordinary Method of Slices. The worksheet is

Fig. 7.2 Deterministic model worksheet for slope stability analysis (after Au et al. 2010)
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divided into three parts: slope geometry and FS calculation (i.e., Rows 1–13), soil
property profiles (Rows 14–17), and calculation details for each slice (Rows 18–
70). For a given slip surface defined by radius (i.e., Cell M5) and center coordinates
(i.e., Cell N5 and Cell O5), a FS (i.e., Cell L10) can be calculated accordingly.
A wide range of combinations of slip surface radius and center coordinates are then
searched explicitly to obtain the minimum FS and its corresponding critical slip
surface. From an input–output perspective, the deterministic analysis worksheets
take a given set of values (e.g., Row 16 in Fig. 7.2) as input, calculate the factor of
safety, and return the factor of safety as an output.

7.4.2 Uncertainty Model Worksheet

An uncertainty model worksheet is developed to generate random samples of
uncertain system parameters that are treated as random variables in the analysis.
The uncertain worksheet includes detailed information of random variables, such as
statistics, distribution type, and correlation information. The generation of random
samples starts with an Excel built-in function “RAND()” for generating uniform
random samples, which are then transformed to random samples of the target
distribution type (e.g., normal distribution or lognormal distribution). If the random
variables are considered correlated, Cholesky factorization of the correlation matrix
is performed to obtain a lower triangular matrix, which is used in the transformation
to generate correlated random samples. Figure 7.3 shows an example of uncertainty
model worksheet, which consists of three parts: a variable description zone (i.e.,
Rows 2–5), a random sample generation zone (i.e., Rows 6–13), and a zone
showing a lower triangular matrix obtained from Cholesky factorization of the
correlation matrix (i.e., Rows 14–54). From the input–output perspective, the
uncertainty model worksheet takes no input but returns a set of random samples
(e.g., Row 13 in Fig. 7.3) of the uncertain system parameters as its output.

When deterministic model worksheet and uncertainty model worksheet are
developed, they are linked together through their input/output cells (e.g., Row 16 in
Fig. 7.2 and Row 13 in Fig. 7.3) to execute probabilistic analysis of slope stability.
The connection is carried out by simply setting the cell references for nominal
values of uncertain parameters in deterministic model worksheet to be the cell
references for the random samples in the uncertainty model worksheet in Excel.
After this task, the values of uncertain system parameters shown in the deterministic
model worksheet are equal to that generated in the uncertainty model worksheet,
and so the values of the safety factor calculated in the deterministic model work-
sheet are random.
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7.4.3 Subset Simulation Add-In

When the deterministic analysis and uncertainty model worksheets are completed
and linked together, subset simulation procedure is invoked for uncertainty prop-
agation. In this chapter, subset simulation is implemented as an Add-In in Excel
(Au et al. 2009, 2010). The userform of the Add-In is shown in Fig. 7.4. The upper
four input fields of the userform (i.e., number of subset simulation runs, number of
samples per level N, conditional probability from one level to next p0, and the
highest subset simulation level m) control the number of samples generated by
subset simulation. The total number of samples per subset simulation run is equal to
N + mN (1 − p0). The lower four input fields of the userform record the cell
references of the random variables, their PDF values, and the cell references of the
system response (e.g., Y = 1/FS) and other variables V (e.g., random samples) of
interest, respectively.

After each simulation run, the Add-In provides the complementary cumulative
density function (CDF) of the driving variable versus the threshold level, i.e.,

Fig. 7.3 Uncertainty model worksheet (after Au et al. 2010)
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estimate for P(Y > 1/fs) versus 1/fs, into a new spreadsheet and produces a plot of it.
Then, the CDF, histograms, or conditional counterparts of uncertain parameters of
interest can be calculated using the output information obtained.

7.5 Illustrative Example

The proposed methodology and Excel spreadsheet package developed are applied
to assess the reliability of short-term stability of a cohesive soil slope as shown in
Fig. 7.5. The cohesive soil slope has a height H = 10 m and slope angle of 26.6º,
corresponding to an inclination ratio of 1:2. The cohesive soil is underlain by a firm
stratum at 20 m below top of the slope. Short-term shear strength of the cohesive
soil is characterized by undrained shear strength Su, and the saturated unit weight of
soil is csat. Short-term stability of the slope is assessed using Ordinary Method of
Slices under undrained condition (Duncan and Wright 2005). The factor of safety
FS is defined as the minimum ratio of resisting moment over the overturning
moment, and the slip surface is assumed to be a circular arc centered at coordinate
ðxc; ycÞ and with radius r. As shown in Fig. 7.5, the soil mass above the slip surface
is divided into a number of vertical slices, each of which has a weight Wi, circular
slip segment length Dli, undrained shear strength Sui along the slip segment, and an
angle ai between the base of the slice and the horizontal. The FS is then given by

Fig. 7.4 The userform of
subset simulation Add-In
(after Au et al. 2010; Wang
and Cao 2013)
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FS = min
xc;yc;r

P
SuiDliP

Wi sin ai
ð7:2Þ

where the minimum is taken over all possible slip circles, i.e., all possible choices
of ðxc; ycÞ and r. Note that Δli, Wi, and ai change as ðxc,ycÞ and/or r change (i.e.,
geometry of the ith slice changes). In addition, the Wi is a function of the soil
saturated unit weight csat. FS therefore depends on geometry of slip surface (i.e.,
ðxc; ycÞ and r) and soil properties (i.e., Su and csat), and Sui and csat are key input
variables as described in the following subsection.

7.5.1 Input Variables

The undrained shear strength Su of soil is modeled by a one-dimensional random
field spatially varying along the vertical direction. The value of Su at the same depth
is assumed to be fully correlated. The inherent spatial variability with depth is
modeled by a homogeneous lognormal random field with an exponentially
decaying correlation structure. Let SuðDiÞ be the value of undrained shear strength
at depth Di. The correlation Rij between ln½SuðDiÞ� and ln½SuðDjÞ� at respective
depths Di and Dj is given by

Rij = expð�2 Di�Dj
�� ��/kÞ ð7:3Þ

where k is the effective correlation length. As implied by this correlation function,
when Di � Dj

�� ��� k, ln½SuðDiÞ� and ln½SuðDjÞ� are effectively uncorrelated
(Vanmarcke 1977, 1983). When Di�Dj

�� �� is much smaller than k, ln½SuðDiÞ� and
ln½SuðDjÞ� are highly correlated. In this example, the value of k varies from 0.5 m to
infinity for consideration of different spatial correlations. As shown in Fig. 7.5, the
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Fig. 7.5 A cohesive soil slope example (after Wang et al. 2011)
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20-m-thick cohesive soil layer is divided into forty 0.5-m-thick sublayers, and Su at
each sublayer is represented by an entry in a Su vector with a length of 40.
Table 7.1 summarizes the material parameters and their variability used in the
analysis. The mean and standard deviation of Su are approximately equal to 40 and
10 kPa (i.e., 25 % coefficient of variation (COV)), respectively. The saturated unit
weight of cohesive soil csat is taken as deterministic with a value of 20 kN/m3. As a
reference, the nominal value of FS that corresponds to the case where all Su values
equal to their mean values of 40 kPa is equal to 1.178.

7.5.2 Simulation Results

Table 7.2 summarizes the results of both direct MCS and subset simulation for
k = +∞ and 0.5 m, respectively. When k = +∞, all 40 entries in the Su vector are
fully correlated, and they are equivalent to a single random variable. Both direct
MCS and subset simulation provide a consistent Pf value of about 30 %, which
compares well with the Pf value given by Griffiths and Fenton (2004) for cohesive
slopes with similar geometry and soil properties. When k = 0.5 m, all 40 entries in
the Su vector can be approximated as 40 independent and identically distributed
random variables. Direct MCS and subset simulation provide a consistent Pf value
of about 0.9 %, which is significantly smaller than the one for k = +∞. This is

Table 7.1 The values and distributions of the input variables (after Wang et al. 2011)

Variable Distribution Statistics

Su Lognormal (a vector with a length of 40) Mean = 40 kPa
COVa = 25 %
k varies from 0.5 m to +∞

csat Deterministic 20 kN/m3

a “COV” stands for coefficient of variation

Table 7.2 Summary of simulation results (after Wang et al. 2011)

Effective correlation
length k (m)

Simulation
method

Number of samples Reliability
index ba

Probability of
failure Pf (%)

+∞ Direct
MCS

1000 0.52 30

+∞ Subset
simulation

200 + 180 + 180 = 560 0.55 29

0.5 Direct
MCS

2000 2.35 0.95

0.5 Subset
simulation

500 + 450 + 450 = 1400 2.36 0.92

aEquivalent reliability index b = U−1(1 − Pf) where U = standard normal cumulative distribution
function
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consistent with the observation by Hong and Roh (2008) that Pf decreases if spatial
correlation is ignored (i.e., as k decreases). The effect of inherent spatial variability
is discussed further in a later section of this chapter.

As the value of Pf decreases to a relatively small level (e.g., around 0.9 % for
k = 0.5 m), the number of samples required in direct MCS increases significantly
and efficiency of direct MCS decreases dramatically. Figure 7.6 shows a histogram
of the FS from 2000 direct MCS samples, among which 19 samples have a FS < 1.
The efficiency of simulating failure events (i.e., FS < 1) is relatively low. The
resolution of Pf is 1/2000 = 0.05 %, and this resolution might not be sufficient for a
Pf value of 0.95 %.

In contrast, Fig. 7.7 shows histograms of the FS from three levels of subset
simulation with a p0 value of 0.1. The first level of subset simulation is equivalent
to a direct MCS with a sample number of 500, and only 2 samples have a FS < 1,
as shown in Fig. 7.7a. All 500 FS values are then sorted in a decreasing order, and
50 samples (i.e., 10 % (or p0 ¼ 0:1) of 500 samples) with the lowest FS are used to
generate 450 samples in the second level of subset simulation, as illustrated by the
dashed-line items in Fig. 7.1. As shown in Fig. 7.7b, the samples at the second
level fall into the region of FS < 1.06 and have relatively small FS values.
Forty-four samples out of 450 samples have a FS < 1, and the efficiency of sim-
ulating failure events improves significantly when compared with direct MCS. As
shown in Fig. 7.7c, the samples at the third level move further to the lower FS
region, and 413 samples out of 450 samples have a FS < 1. The Pf is calculated as
0.1 � 0.1 � 413/450 = 0.92 %, and the resolution of Pf is 0.1 � 0.1 � 1/450 =
0.002 %. Subset simulation significantly improves efficiency and resolution of
simulations at small probability levels. Such improvement becomes increasingly
substantial and necessary as the probability level of interest decreases (e.g., Pf

further decreases to 0.1 % or 0.003 % for expected performance levels of “above
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average” or “good” (see Table 2.7 in Chap. 2), respectively, as direct MCS is
increasingly inefficient).

7.5.3 Comparison with Other Reliability Analysis Methods

The analysis results are compared with those from other reliability analysis meth-
ods, including the first-order second-moment method (FOSM), first-order reliability
method (FORM), and direct MCS using commercial software Slope/W
(GEO-SLOPE International Ltd. 2008). Table 7.3 summarizes analysis results
from different reliability methods with k =+∞. The value of Pf varies from about 27
to 30 % with a maximum relative difference of 10 % among difference methods.
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The results from direct MCS or subset simulations compare favorably with those
from FOSM, FORM, or direct MCS using Slope/W. Table 7.4 summarizes similar
results for k = 0.5 m. The value of Pf varies from 0.26 to 0.95 %, which is sig-
nificantly smaller than those for k =+∞. The maximum relative difference among
different methods for k = 0.5 m is about 73 %, which is significantly larger than
that for k =+∞. These differences can be attributed to calculation details of each
reliability analysis method, inherent spatial variability of soil property, and critical
slip surface uncertainty, which are discussed in the following several sections.

7.6 Calculation Details of Other Reliability Analysis
Methods

7.6.1 First-Order Second-Moment Method (FOSM)

FOSM uses the first-order terms of a Taylor series expansion of FS with respect to
the random variables, and it is frequently performed with a fixed critical slip surface
(e.g., Ang and Tang 1984; Tang et al. 1976; Wu 2008). Consistent with the pre-
vious studies, the critical slip surface here is determined by setting all Su values

Table 7.3 Summary of analysis results from different reliability methods (k =+∞) (after Wang
et al. 2011)

Reliability method Reliability
index b

Probability of failure Pf

(%)
Relative difference in Pf

(%)

FOSM 0.61 27 −10

FORM 0.55 29 −3

Direct MCS with
Slope/W

0.55 29 −3

Direct MCS with Excel 0.52 30 N/A

Subset simulation with
Excel

0.55 29 −3

Table 7.4 Summary of analysis results from different reliability methods (k = 0.5 m) (after Wang
et al. 2011)

Reliability method Reliability
index b

Probability of failure Pf

(%)
Relative difference in Pf

(%)

FOSM 2.53 0.57 −40

FORM 2.61 0.45 −53

Direct MCS with
Slope/W

2.80 0.26 −73

Direct MCS with Excel 2.35 0.95 N/A

Subset simulation with
Excel

2.36 0.92 −3
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equal to their mean values of 40 kPa and searching for the minimum FS. The
resulting critical slip surface has an r = 29.2 m and (xc, yc) = (10.0 m, 19.2 m), and
the corresponding FS is 1.178. The mean and standard deviation of FS are then
estimated for both cases of k =+∞ and k = 0.5 m. Note that, when k =+∞, all 40
entries in the Su vector are fully correlated, and all Sui behave as a single random
variable Su. Equation (7.2) then can be rewritten as

FS = min
xc;yc;r

P
SuiDliP

Wi sin ai
= min

xc;yc;r

Su
P

DliP
Wi sin ai

= Su min
xc;yc;r

P
DliP

Wi sin ai
ð7:4Þ

As the geometry and soil unit weight are considered deterministic, min
xc;yc;r

P
DliP

Wi sin ai

is deterministic. Equation (7.4) implies that when k = +∞ (i.e., inherent spatial
variability is ignored or perfect correlation), location of critical slip surface (i.e., xc,
yc, and r) is independent of the value of Su, although the value of minimum FS does
vary as the Su value changes. In this case, it is theoretically appropriate that FOSM
method only uses a given slip surface in the analysis. In contrast, when k = 0.5 m
(i.e., inherent spatial variability is considered), all 40 Sui are random variables.
Critical slip surface (i.e., xc, yc, and r) varies spatially and is uncertain, depending
on the value of Sui. Using only one given critical slip surface in FOSM method
therefore underestimates the uncertainty of failure. This results in significant
increase of relative difference in Pf between FOSM method and direct MCS with
Excel from Table 7.3 (i.e., −10 % for k = +∞) to Table 7.4 (i.e., −40 % for
k = 0.5 m). The effect of critical slip surface uncertainty is discussed further under
the Sect. 7.8 “Effect of Critical Slip Surface Uncertainty”.

7.6.2 First-Order Reliability Method (FORM)

The reliability index b for FORM in Tables 7.3 and 7.4 is calculated using an Excel
spreadsheet with its built-in optimization tool “Solver” to obtain the minimum
distance of interest as b (Low and Tang 2007; Low 2003). Although this FORM
approach is mathematically sound, its successful application relies on a robust
optimization algorithm for multidimensional minimization. Similar to other opti-
mization algorithm, the generalized reduced gradient algorithm used in the Excel
“Solver” might not result in a global minimum but a local minimum, particularly
when the function of interest is complex and dimension of the space is high. One
frequently used heuristic for checking if the global minimum is obtained is simply
repeating the optimization with widely varying starting points. The b values for
FORM in Tables 7.3 and 7.4 are obtained with a starting point that corresponds to
the critical slip surface obtained from a deterministic slope stability analysis with all
soil properties equal to their respective mean values (Low 2003). When the opti-
mization is repeated with a slightly different starting point (e.g., different slip
surface parameters or soil properties), the Excel “Solver” gives significantly
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different b value, or even fails to converge. The value of b given by the Excel
“Solver” should, therefore, be treated with caution, and it may correspond to a local
minimum that is larger than the global minimum (i.e., the true b value). In other
words, the FORM overestimates the b value or underestimates the Pf value, which
is unconservative and undesirable. This observation is consistent with the results
summarized in Tables 7.3 and 7.4. The b values for both cases of k = +∞ and
k = 0.5 m are larger than those from direct MCS with Excel. Note that FORM’s
overestimation of b is not unique for slope stability problem. Similar observations
are also reported by Ching et al. (2009) for consolidation problem.

7.6.3 Monte Carlo Simulations Using Commercial Software
Slope/W

The commercial software Slope/W (GEO-SLOPE International Ltd. 2008) is first
used to perform a deterministic slope stability analysis with all Su values equal to
their mean values of 40 kPa. The resulting minimum FS (i.e., 1.178) and critical
slip surface (i.e., r = 29.0 m and (xc, yc) = (9.9 m, 19.0 m)) are virtually identical
to those obtained from the Excel spreadsheet. Monte Carlo simulations are then
performed using Slope/W for both cases of k = +∞ and k = 0.5 m. When k = +∞,
the relative difference in Pf between direct MCS from Slope/W and Excel is within
3 % (see Table 7.3). When k decreases to 0.5 m, the relative difference in Pf

increases to 73 % (see Table 7.4). The relatively large difference can be attributed
to the way that Slope/W handles the critical slip surface in direct MCS. Slope/W
uses only one given critical slip surface in direct MCS, and the given slip surface is
determined based on a deterministic slope stability analysis with all random vari-
ables equal to their respective mean values. Figure 7.8 shows the critical slip sur-
face obtained in Slope/W using the mean values of Su. As discussed under the
Sect. 7.6.1 “first-order second-moment method (FOSM),” when k = +∞ (i.e.,
inherent spatial variability is ignored), it is theoretically appropriate to use only one
given critical slip surface. The direct MCS in Slope/W therefore gives reasonable
result, and the relative difference in Pf between direct MCS from Slope/W and
Excel is small. When k = 0.5 m (i.e., inherent spatial variability is considered), the
critical slip surface itself varies spatially. Using only one given critical slip surface
in direct MCS with Slope/W therefore underestimates the Pf, and the relative dif-
ference in Pf between direct MCS from Slope/W and Excel increases significantly
(see Table 7.4). The effects of inherent spatial variability of soil property and
critical slip surface uncertainty are discussed in two following sections,
respectively.
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7.7 Effect of Inherent Spatial Variability of Soil Property

A series of direct MCS and subset simulations with different k values are performed
using the Excel spreadsheet package developed in this chapter. Figure 7.9 sum-
marizes the results in a plot of Pf versus normalized correlation length (k/H). As k/
H increases from 0.05 to 1 (or k increases from 0.5 to 10 m for H = 10 m), the
value of Pf increases significantly from about 0.9 to 26 %. When k/H > 1 or k is
larger than the slope height H, the effect of k on Pf begins to diminish, and Pf varies
slightly as k/H further increases. If the soil properties (e.g., Su) are characterized by
a single random variable or the inherent spatial variability is ignored, the value of Pf

is overestimated significantly, particularly when the effective correlation length is
smaller than the slope height.

Note that FS is defined as the minimum ratio of summation of resisting moments
over the summation of overturning moments (see Eq. (7.2)) and slope failure occurs
when FS < 1. Let MR be a summation of nR resisting moments DliSui (i.e.,
MR =

PnR
i¼1 DliSui) and variance of MR then can be expressed as

VarðMRÞ =
XnR
i¼1

Dl2i r
2
Sui +

XnR
i;j¼1

XnR
i6¼j

qijDliDljrSuirSuj ð7:5Þ

where r2Sui is variance of Sui and qij is correlation coefficient between Sui and Suj.
The effect of inherent spatial variability is reflected by the variation of qij (i.e.,
between 0 and 1) and the second term at the right-hand side of Eq. (7.5), i.e.,PnR

i;j¼1

PnR
i 6¼j qijDliDljrSuirSuj . When Sui and Suj are uncorrelated, qij = 0 and

Fig. 7.8 Critical slip surface in Slope/W (after Wang et al. 2011)
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VarðMRÞ is equal to
PnR

i¼1 Dl
2
i r

2
Sui . When the inherent spatial variability is ignored

by assuming perfect correlation, qij = 1 and VarðMRÞ is equal to
PnR

i¼1 Dl
2
i r

2
Sui +

PnR
i;j¼1

PnR
i 6¼j

DliDljrSuirSuj . This leads to overestimation of VarðMRÞ and,
hence, overestimation of the FS variance.

It is important to note that overestimation of the FS variance may result in either
overestimation (conservative) or underestimation (unconservative) of Pf (i.e.,
probability of FS < 1). If FS = 1 occurs at the lower tail of the FS probability
distribution, overestimation of the FS variance leads to overestimation of Pf, and it
is therefore conservative. Figure 7.9 illustrates such case, and similar results have
also been reported by Sivakumar Babu and Mukesh (2004) and Hong and Roh
(2008). If the location of FS = 1 approaches the center, or even the upper tail, of the
FS probability distribution (i.e., FS is relatively low), overestimation of the FS
variance leads to underestimation of Pf, and it is therefore unconservative. Griffiths
and Fenton (2004) reported that when FS is relatively low and the inherent spatial
variability is ignored by assuming perfect correlation, the value of Pf is underes-
timated and unconservative. Depending on the location of FS = 1 in the FS
probability distribution, the overestimation of FS variance may result in contra-
dicting results, as reported in the literature.

7.8 Effect of Critical Slip Surface Uncertainty

The discussions above show that different reliability methods deal with the critical
slip surface differently. FOSM and direct MCS with Slope/W use a given slip
surface and do not account for critical slip surface uncertainty. The FORM pro-
posed by Low (2003) includes center coordinates and radius of slip surface as
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additional optimization variables, and variation of potential critical slip surfaces is
implicitly factored in the analysis. However, because of limitation of the opti-
mization tool used, it tends to overestimate b and underestimate Pf.

The direct MCS and subset simulation with Excel package developed in this
chapter explicitly search a wide range of potential slip surfaces for obtaining the
minimum FS in each random sample of Su. Figure 7.10 shows examples of different
critical slip surfaces obtained from different random samples of Su when k = 0.5 m.
It is obvious that the critical slip surface varies spatially as the spatial distribution of
Su changes among different random samples. As a reference, the critical slip surface
highlighted by a thick line in Fig. 7.10 is the one used in the FOSM method and
direct MCS with Slope/W. Table 7.5 summarizes ranges of (xc, yc) and r for critical
slip surfaces obtained from direct MCS with Excel. The r varies from 21.0 to
29.8 m and has a range of 8.8 m. When inherent spatial variability of soil property
and critical slip surface uncertainty are considered explicitly in the simulation, the
value of Pf from direct MCS and subset simulation with Excel is about 40–70 %
larger than that from FOSM and direct MCS with Slope/W which use only one
given critical slip surface.

To further illustrate the effect of critical slip surface uncertainty on Pf, direct
MCS and subset simulation are also performed in Excel with the fixed critical slip
surface highlighted by thick line in Fig. 7.10, which is the same one used in the
direct MCS with Slope/W. As shown in Table 7.6, the resulting Pf value decreases
to 0.1–0.2 % and compares well with that from Slope/W which uses the same
critical slip surface. The comparison summarized in Table 7.6 confirms that when
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Fig. 7.10 Examples of critical slip surfaces obtained from direct MSC with Excel (after Wang
et al. 2011)

164 7 Practical Reliability Analysis of Slope Stability …



inherent spatial variability of soil property is considered, the substantial difference
among Pf from different reliability methods is mainly attributed to the effect of
critical slip surface uncertainty, and using only one given critical slip surface results
in underestimation (or unconservative) of Pf. Thus, when inherent spatial variability
of soil property is considered, the critical slip surface uncertainty should be properly
accounted for.

7.9 Summary and Conclusions

This chapter developed a Monte Carlo simulation (MCS)-based practical reliability
analysis approach for slope stability problem and implemented an advanced MCS
method called subset simulation in a commonly available spreadsheet environment,
Microsoft Excel. The Excel spreadsheet package developed was used to assess
reliability of short-term stability of a cohesive soil slope, followed by a comparative
study on different reliability methods, including the FOSM, FORM, direct MCS
using commercial software Slope/W, and direct MCS and subset simulation using
the Excel package. Subset simulation was shown to significantly improve efficiency
and resolution of simulations at small probability levels. Such improvement

Table 7.5 Ranges of center coordinates and radius of critical slip surfaces obtained from MCS
with Excel (after Wang et al. 2011)

Parameter Minimum Maximum Range

Coordinate xc (m) 8.0 10.4 2.4

Coordinate yc (m) 17.6 22.0 4.4

Radius r (m) 21.0 29.8 8.8

Table 7.6 Comparison of simulation results with different critical slip surfaces (after Wang et al.
2011)

Reliability method Reliability
index b

Probability of
failure Pf (%)

Relative
difference in Pf

(%)

MCS with Slope/W and fixed critical
slip surface

2.80 0.26 −73

MCS with Excel and fixed critical slip
surface

2.95 0.16 −83

Subset simulation with Excel and
fixed critical slip surface

3.00 0.13 −86

MCS with Excel and changing critical
slip surface

2.35 0.95 N/A

Subset simulation with Excel and
changing critical slip surface

2.36 0.92 −3
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becomes increasingly substantial and necessary as the probability level of interest
decreases (e.g., the failure probability further decreases to 0.1 % or 0.003 % for
expected performance levels of “above average” or “good,” respectively, as direct
MCS is increasingly inefficient).

Effect of inherent spatial variability of soil property was explored using the
Excel spreadsheet package developed in this chapter. It is found that when inherent
spatial variability of soil property is ignored by assuming perfect correlation, the
variance of FS is overestimated. However, the overestimation of the FS variance
may result in either overestimation (conservative) or underestimation (unconser-
vative) of Pf. If FS = 1 occurs at the lower tail of the FS probability distribution,
overestimation of the FS variance leads to overestimation of Pf, and it is therefore
conservative. If the location of FS = 1 approaches the center, or even the upper tail,
of the FS probability distribution (i.e., FS is relatively low), overestimation of the
FS variance leads to underestimation of Pf, and it is therefore unconservative.

The effect of critical slip surface uncertainty was also examined. When the
inherent spatial variability of soil property is ignored or soil property is charac-
terized by a single random variable, the location of critical slip surface is deter-
ministic. It is therefore theoretically appropriate to use only one given slip surface
in the analysis, as what FOSM method or direct MCS with Slope/W does. When the
inherent spatial variability of soil property is considered, the critical slip surface
varies spatially. Using only one given critical slip surface significantly underesti-
mates Pf, and it is unconservative. Thus, when the inherent spatial variability of soil
property is considered, the critical slip surface uncertainty should be properly
accounted for.

It is worthwhile to note that although the proposed practical reliability analysis
approach was illustrated through a cohesive soil slope example with Ordinary
Method of Slices, the approach is general and can be readily adapted to frictional
slopes and more sophisticated limit equilibrium methods (e.g., Spencer,
Morgenstern, and Price methods). Usage of these more sophisticated methods may
be more appropriate for general slopes, although their FS equations and associated
discussions may not be as explicit as those (e.g., Eq. (7.4) and its relevant dis-
cussions) shown in the chapter.
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Chapter 8
Efficient Monte Carlo Simulation
of Parameter Sensitivity in Probabilistic
Slope Stability Analysis

8.1 Introduction

In the previous chapter, Monte Carlo simulation (MCS) method has been applied to
probabilistic slope stability analysis and an advanced MCS method (i.e., subset
simulation) is used to improve the resolution and efficiency at small probability
levels. MCS method provides a robust and conceptually simple way to account
rationally for various uncertainties (e.g., inherent spatial variability of soil prop-
erties and uncertainties in subsurface stratigraphy) in slope engineering when cal-
culating slope failure probability. However, as pointed out by Baecher and
Christian (2003), MCS does not offer insight into the relative contributions of
various uncertainties to the failure probability.

This chapter develops a probabilistic failure analysis approach that makes use of
failure samples generated in the MCS and analyzes these failure samples to assess
the effects of various uncertainties on slope failure probability. Subset simulation
(Au and Beck 2001 and 2003) is, again, employed to improve efficiency of gen-
erating failure samples in MCS and resolution of calculating failure probability at
small failure probability levels. This chapter starts with mathematical formulation of
the approach, including hypothesis tests for prioritizing the effects of various
uncertainties and Bayesian analysis for further quantifying their effects. The soft-
ware package of probabilistic slope stability analysis developed in the previous
chapter is applied to generate failure samples for the probabilistic failure analysis.
As an illustration, the proposed approach is applied to study a design scenario of the
James Bay Dyke (Christian et al. 1994; El-Ramly 2001; Xu and Low 2006).
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8.2 Probabilistic Failure Analysis Approach

Probabilistic failure analysis is similar to back analysis (Luckman et al. 1987;
Gilbert et al. 1998; Zhang et al. 2010), which is a common analysis procedure in
geotechnical engineering. The back analysis intends to find a set of model
parameters that would result in the observed performance of geostructures.
Similarly, probabilistic failure analysis aims to identify a group of uncertain
parameters that would significantly affect the slope performance (i.e., the proba-
bility of slope failure). The back analysis, however, relies on the observed per-
formance and it is inapplicable when observed performance of the geostructures of
interest is unavailable (e.g., during design analysis of a new geostructure). On the
other hand, probabilistic failure analysis makes use of failure samples generated in
the MCS, and it is readily applicable in design analysis for evaluating the effects of
various uncertainties. The proposed probabilistic failure analysis approach contains
two major components: hypothesis tests for prioritizing the effects of various
uncertainties and Bayesian analysis for further quantifying their effects, which are
described in the following two subsections, respectively.

8.2.1 Hypothesis Tests

The effects of various uncertainties on the probability of slope failure are prioritized
by comparing, statistically, failure samples with their respective nominal (uncon-
ditional) samples. When the uncertainty of an uncertain system parameter has a
significant effect on the probability of slope failure, the mean l of failure samples of
the parameter differs significantly from the mean l0 of its unconditional samples.
The statistical difference between l and l0 is evaluated by hypothesis tests. A null
hypothesis H0 and alternative hypothesis HA are defined as (Walpole et al. 1998;
Wang et al. 2010)

H0 : l ¼ l0
HA : l 6¼l0

ð8:1Þ

Then, a hypothesis test statistic ZH of the parameter is formulated as

ZH ¼ l� l0
r=

ffiffiffiffiffi
nf

p ð8:2Þ

where r is standard deviation of the uncertain parameter; and nf is the number of
failure samples. Based on central limit theorem, ZH follows the standard normal
distribution when nf is large (e.g., nf � 30) (Walpole et al. 1998). When the failure
sample mean l deviates statistically from the unconditional mean l0 of the
parameter, the absolute value of ZH is relatively large. As the absolute value of ZH
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increases, the statistical difference between l and l0 becomes growingly significant,
and the effect of the uncertain parameter on failure probability also becomes
growingly significant. The absolute value of ZH is therefore formulated in this
chapter as an index to measure the effects of the uncertain parameters on failure
probability and to prioritize their relative effects on failure probability. Using the
absolute value of ZH, the uncertain parameters that have significant effects on failure
probability are selected, and their effects are further quantified using a Bayesian
analysis approach described in the next subsection.

8.2.2 Bayesian Analysis

The failure samples generated in the MCS are further analyzed by a Bayesian
analysis to quantify the effects of various uncertainties. Let h denote an uncertain
parameter selected based on hypothesis tests. In the context of the Bayes’ theorem
(e.g., Au 2005; Ang and Tang 2007),

P Fjhð Þ ¼ P hjFð ÞPf =PðhÞ ð8:3Þ

where P(F|h) is the conditional probability density function (PDF) of slope failure
for a given h value; P(h|F) is the conditional PDF of h given that the slope has
failed; Pf is the failure probability of slope stability; and P(h) is the unconditional
PDF of h. As both P(h|F) and Pf are estimated from failure samples of MCS and P
(h) is given before MCS, Eq. (8.3) can be used to estimate P(F|h) using P(h) and P
(h|F) obtained from analysis of failure samples. Note that P(F|h) is a variation of
failure probability as a function of h, and it can be considered as results of a
sensitivity study of h on slope failure probability. In other words, the probabilistic
failure analysis approach presented in this chapter, which makes use of failure
samples generated in a single run of MCS for assessment of failure probability,
provides results that are equivalent to those from a sensitivity study, which fre-
quently includes many repeated runs of MCS with different given values of h in
each run. Additional computational time and efforts for repeated runs of MCS in the
sensitivity study can be avoided using the probabilistic failure analysis approach
described herein.

In addition, Eq. (8.3) implies that comparison between the conditional proba-
bility P(h|F) and its unconditional one P(h) provides an indication of the effect of
the uncertain parameter h on failure probability. In general, P(F|h) changes as the
values of the uncertain parameter h changes. However, when P(h|F) is similar to P
(h), P(F|h) remains more or less constant regardless of the values of h. This implies
that the effect of h on the slope failure probability is minimal. Such implication can
be used to validate the prioritization obtained from hypothesis tests, as shown in the
example of the James Bay Dyke later.

The resolution of Pf and P(h|F) is pivotal to obtain P(F|h), and it depends on the
number of failure samples generated in MCS. As the number of failure samples
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increases, the resolution improves. For a given slope stability problem, the value of
Pf is constant, although unknown before MCS. In this case, increasing the number
of failure samples necessitates an increase in the total number of samples in MCS.
One possible way to improve the resolution is, therefore, to increase the total
number of samples in MCS at the expense of computational time. Alternatively,
advanced MCS methods can be employed to improve efficiency and resolution at
small failure probability levels. Subset simulation (Au and Beck 2001, 2003; Au
et al. 2009, 2010) is used in this chapter to calculate the failure probability and
generate failure samples efficiently for the probabilistic failure analysis.

8.3 Subset Simulation

Subset simulation is an adaptive stochastic simulation procedure for efficiently
generating failure samples and computing small tail probability (Au and Beck 2001,
2003). It expresses a small probability event as a sequence of intermediate events
{F1, F2,…, Fm} with larger conditional probability and employs specially designed
Markov Chains to generate conditional samples of these intermediate events until
the final target failure region is achieved, as discussed in Sect. 7.3 in Chap. 7.
“Subset simulation”. For the slope stability problem, factor of safety (FS) is the
critical response, and the probability of FS smaller than a given value “fs” (i.e.,
PðFS\fsÞ) is of interest.

Subset simulation provides much more failure samples than direct MCS under
the same total number of samples, especially when the failure probability is rela-
tively small. When compared with failure samples generated in direct MCS where
each sample carries equal weight in the calculation of Pf and P(h|F), the samples
generated by subset simulation are conditional samples and carry different weights
for different intermediate events Fm. Thus, when using these conditional failure
samples collected from subset simulation to construct the conditional PDF P(h|F)
required in Eq. (8.3), a weighted summation by the total probability theorem (e.g.,
Au 2005; Ang and Tang 2007) is necessary, which is described in the following
subsection.

8.3.1 Estimation of P(h|F) Based on Conditional Failure
Samples

Consider a subset simulation that performs m + 1 levels of simulations. The first
level of subset simulation is direct MCS, and samples of the next level are gen-
erated conditional on the samples collected from the previous level. The interme-
diate threshold values {fsi, i = 1, 2, …, m} divide the sample space X of an
uncertain parameter h into m individual sets {Xi, i = 0, 1, 2,…, m} (see Sect. 7.3 in
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Chap. 7 “subset simulation”). According to the total probability theorem (e.g., Ang
and Tang 2007), the failure probability can be written as

Pf ¼
Xm
i¼0

P FjXið ÞPðXiÞ ð8:4Þ

where X0 = {FS � fs1}; Xi, i = 1, …, m − 1 is equal to Fi − Fi+1 (i.e., Xi = {fsi+1
� FS < fsi}); Xm is equal to Fm (i.e., Xm = {FS < fsm}); P(F|Xi) is the conditional
failure probability given sampling in Xi; and P(Xi) is the probability of the event Xi.
P(F|Xi) is estimated as the fraction of the failure samples in Xi. The failure samples
are collected from samples generated by subset simulation and are based on the
performance failure criteria (i.e., FS < 1 for a slope stability problem). P(Xi) is
calculated as

PðX0Þ ¼ 1� p0

PðXiÞ ¼ pi0 � piþ 1
0 ; i ¼ 1; . . .;m� 1

PðXmÞ ¼ pm0

ð8:5Þ

Note that P(Xi \ Xj) = 0 for i 6¼ j and
Pm

i¼0 PðXiÞ ¼ 1. When Pf, P(F|Xi), and
P(Xi) are obtained, the conditional probability P(Xi|F) is calculated using the
Bayes’ theorem

P XijFð Þ ¼ P FjXið ÞPðXiÞ=Pf ð8:6Þ

Then, the conditional PDF P(h|F) of an uncertain parameter h is given by the
total probability theorem as

PðhjFÞ ¼
Xm
i¼0

PðhjXi \FÞPðXijFÞ ð8:7Þ

where P(h|Xi \ F) is the conditional probability of h estimated from failure
samples that lie in Xi. In this chapter, P(h|Xi \ F) is estimated from the failure
sample histogram in Xi. The number of bins kBin in the failure sample histogram is
estimated as (Sturges 1926)

kBin ¼ 1þ logni2 ð8:8Þ

where ni is the number of the failure samples in Xi. Using Eqs. (8.4) and (8.7), Pf

and P(h|F) can be, respectively, calculated from the samples generated by subset
simulation, and subsequently P(F|h) is calculated using Eq. (8.3) accordingly.

The probabilistic failure analysis approach proposed in this chapter requires
failure samples as input. The software package of probabilistic slope stability
analysis developed in the previous chapter is readily used to generate failure
samples for the probabilistic failure analysis of slope stability in this chapter.
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8.4 The James Bay Dyke Case History

As an illustration, the probabilistic failure analysis approach is applied to analyze a
design scenario of the James Bay Dyke. The James Bay Dyke is a 50-km-long earth
dyke of the James Bay hydroelectric project in Canada. Soil properties and various
design scenarios of the dyke were studied by Ladd et al. (1983), Soulié et al. (1990),
Christian et al. (1994), El-Ramly (2001), El-Ramly et al. (2002), and Xu and Low
(2006). As shown in Fig. 8.1, the embankment is 12.0 m high with a 56.0-m-wide
berm at mid-height. The slope angle of the embankment is about 18.4° (3H:1V).
The embankment is overlying on a clay crust with a thickness Tcr. The clay crust is
underlain by a layer of 8.0-m-thick sensitive marine clay and a layer of lacustrine
clay with a thickness TL. The undrained shear strength (i.e., SuM and SuL) of the
marine clay and the lacustrine clay were measured by field vane tests (Ladd et al.
1983; Soulié et al. 1990; Christian et al. 1994; El-Ramly 2001). The lacustrine clay
is overlying on a stiff till layer, and the depth to the top of the stiff till layer is DTill.

Six uncertain system parameters have been considered in the literature (e.g.,
El-Ramly 2001; El-Ramly et al. 2002; and Xu and Low 2006), including the
friction angle /Fill, the unit weight cFill of the embankment material, the thickness
Tcr of clay crust, the undrained shear strength SuM of the marine clay, the undrained
shear strength SuL of the lacustrine clay, and the depth of the till layer DTill. During
the probabilistic failure analysis of the dyke, the six uncertain parameters are
represented by six independent Gaussian random variables (El-Ramly 2001),
respectively. Table 8.1 summarizes the statistics (i.e., mean, standard deviation, and
coefficient of variation (COV)) of these six random variables. These statistics are
used to generate random samples for each random variable in uncertain model
worksheet. Note that the thickness of the lacustrine clay TL is an uncertain variable
that depends on Tcr and DTill and has a mean of about 6.5 m (see Fig. 8.1). In
addition to these uncertain parameters, other system parameters are considered
deterministic, including an undrained shear strength of 41 kPa for the clay crust and
unit weights of 19, 19, and 20.5 kN/m3 for the clay crust, marine clay, and
lacustrine clay (El-Ramly 2001), respectively.
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Using the soil properties described above, El-Ramly (2001) and Xu and Low
(2006) employed direct MCS methods to evaluate failure probability of the dyke
together with limit equilibrium methods and response surface method, respectively.
To enable a consistent comparison with the analyses by El-Ramly (2001), the
critical slip surfaces recommended by El-Ramly (2001) are adopted in this chapter,
which are circular and always tangential to top of the till layer and pass through the
point (x = 4.9 m, y = 36.0 m). The x-coordinate of the center is fixed at 85.9 m.
For each set of random samples, the critical slip surface is specified uniquely by the
value of DTill. In this chapter, the safety factor of the critical slip surface is cal-
culated by simplified Bishop method, and two subset simulation runs are performed
using the software package developed in the previous chapter. One has the highest
simulation level m = 3 and sample number N = 1000 per each level, as opposed to
m = 4 and N = 10000 per each level in the other run.

8.4.1 Simulation Results

Figure 8.2 shows a typical cumulative distribution function (CDF) of FS (i.e., P
(FS < fs) versus fs) from two subset simulation runs with a total sample number
NT = 1000 + 3 � 1000 � (1 − 0.1) = 3700 (i.e., subset simulation Run 1) and
NT = 10000 + 4 � 10000 � (1 − 0.1) = 46000 (i.e., subset simulation Run 2),
respectively. For comparison, the result from a direct MCS with 20000 samples is
also plotted. Three consistent failure probabilities P(FS < 1) = 0.22, 0.23, and
0.25 % are estimated from direct MCS and two runs of subset simulations,
respectively. In addition, the two runs of subset simulations provide results that are
consistent even at low probability levels (e.g., P(FS < fs) = 0.01 %) where the
CDF curve from direct MCS becomes erratic.

Table 8.2 compares the simulation results with those reported by El-Ramly
(2001) and Xu and Low (2006). El-Ramly (2001) performed direct MCS with the
simplified Bishop method (i.e., the same limit equilibrium method used in this

Table 8.1 Soil properties of the James Bay Dyke (After El-Ramly 2001; Wang et al. 2010)

Soil layers Uncertain system
parametersa

Mean Standard
deviation

Coefficient of
variation (%)

Embankment / Fill (˚) 30.0 1.79 6.0

cFill (kN/m
3) 20.0 1.10 5.5

Clay crust Tcr (m) 4.0 0.48 12.0

Marine clay SuM (kN/m2) 34.5 3.95 11.5

Lacustrine
clay

SuL (kN/m2) 31.2 6.31 20.2

Till DTill (m) 18.5 1.00 5.4
aAll parameters are modeled as Gaussian random variables. Thickness of the lacustrine clay layer
TL is an uncertain variable that depends on Tcr and DTill and has a mean of about 6.5 m
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chapter) and obtained a Pf = 0.24 %. This Pf value is almost identical to the average
of the three Pf values obtained in this chapter (i.e., 0.22, 0.23, and 0.25 % in
Column 4–6 of Table 8.2). In addition, Xu and Low (2006) combined MCS with
response surface method to estimate the Pf of the James Bay Dyke and obtained a Pf

value of 0.33 %. Although different deterministic slope stability analysis methods
were used, the obtained Pf values compare favorably with each other. This implies
that the probabilistic analysis models for the James Bay Dyke presented in this
chapter work properly.

Table 8.2 also compares the number of failure samples in direct MCS (e.g.,
Column 2 or 4) with that in subset simulations (e.g., Column 5 or 6). For a total
sample number NT = 20000, direct MCS leads to only 48 or 44 failure samples. In

Table 8.2 Comparison of simulation results (After Wang et al. 2010)

Simulation
results

El-Ramly
(2001)

Xu and
Low
(2006)

Direct
MCS
with
Excel

Subset
simulation
with Excel
Run 1

Subset
simulation
with Excel
Run 2

Failure
probability Pf

(%)

0.24a 0.33b 0.22a 0.23a 0.25a

Number of
failure samples
NF

48 N/A 44 1128 20482

Number of total
samples NT

20000 N/A 20000 3700 46000

Percentage of
failure samples
NF/NT (%)

0.24 N/A 0.22 30.5 44.5

a Pf is calculated by MCS methods integrating with the simplified Bishop method
b Pf is calculated by MCS methods integrating with the response surface method
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contrast, subset simulations with m = 3 and NT = 3700 (i.e., Run 1 in Column 5) or
m = 4 and NT = 46000 (i.e., Run 2 in Column 6) result in a failure sample number
of 1128 and 20482, respectively. This comparison clearly shows that subset sim-
ulations significantly improve the efficiency of generating failure samples, which
enables generation of a large number of failure samples with relative ease and
makes the probabilistic failure analysis feasible. Table 8.2 also shows that as the
value of m increases (e.g., from 3 in Column 5−4 in Column 6), the efficiency
increases as well (e.g., the percentage of failure sample increases from 30.5 to
44.5 %).

8.5 Probabilistic Failure Analysis Results

With the large number of failure samples generated from subset simulations,
probabilistic failure analysis are performed for the James Bay Dyke, including
hypothesis tests for identifying key uncertainties that have significant effects on
slope failure probability and Bayesian analysis for further quantifying their effects.

8.5.1 Hypothesis Test Results

Based on the failure samples generated from subset simulation Run 1, the
hypothesis test statistics ZH defined by Eq. (8.2) are calculated and shown in
Fig. 8.3 for all uncertain parameters. The absolute values of ZH varies from less
than 2 for the thickness of clay crust Tcr to about 95 for undrained shear strength of
the lacustrine clay SuL. The decreasing order of the ZH absolute values is SuL, DTill,
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absolute values of ZH (After
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cFill, SuM, /Fill, and Tcr. This implies that the uncertainty of SuL has the most
significant effects on the slope failure probability, while the uncertainty of Tcr
contributes the least to the failure probability. This result is consistent with that
reported by El-Ramly (2001) who employed an Excel spreadsheet-based MCS
program @RISK (Palisade Corporation 2010) and compared the spearman’s rank
correlation coefficients for various uncertain parameters. El-Ramly (2001) showed
that SuL and Tcr are the most and least influential parameters, respectively. The
results can be validated by an independent sensitivity studies on SuL and Tcr, which
are described in next subsection.

8.5.2 Validation of Hypothesis Test Results

Sensitivity studies are performed to further explore the effect of SuL and Tcr
uncertainties on slope failure probability. The respective values of the coefficient of
variation (COV) of SuL and Tcr vary from 0.15 to 0.50 and from 0.05 to 0.25 in the
sensitivity studies. The range of SuL COV adopted in this chapter follows the typical
range of COV of undrained shear strength of clay measured by vane shear tests
(Phoon and Kulhawy 1999), and the COV of Tcr varies from half to about twice of
the value reported by El-Ramly (2001). Other parameters (including the mean
values of SuL and Tcr) remain unchanged in the sensitivity studies. About 40
additional subset simulation runs are performed to validate the hypothesis test
results, and their results are shown in Fig. 8.4a, b for Tcr and SuL, respectively. In
addition, sensitivity studies on COVs of Tcr and SuL are also carried out using the
Excel spreadsheet-based MCS program @RISK (Palisade Corporation 2010) and a
first-order reliability method (FORM) calculation spreadsheet developed by Low
and his coworkers (Low and Tang 1997; Low et al. 1998; Low 2003; Low and
Tang 2007). Figure 8.4 also includes the results from @RISK and FORM for
comparison.

Figure 8.4a shows that when the COV of Tcr varies from 0.05 to 0.25, the slope
failure probability fluctuates between 0.19 % and 0.43 %. For comparison, the
baseline failure probability (i.e., about 0.24 % corresponding to the values sum-
marized in Table 8.2) is also included in the figure. The failure probabilities from
sensitivity study using subset simulations fall around the horizontal line of 0.24 %,
and the failure probability is insensitive to the uncertainty on Tcr. The results from
subset simulations are in good agreement with those from @RISK and FORM. This
validates the results from hypothesis tests that the Tcr uncertainty has the least effect
on the failure probability. It is interesting to note that the probability of slope failure
should, theoretically, increase as the COV of Tcr increases from 0.05 to 0.25, as
shown by the FORM results (i.e., a rather slight increase of the Pf values shown by
the open circles in Fig. 8.4a when the COV of Tcr increases from 0.05 to 0.25). The
effect is, however, so minimal that it is dominated by the MCS “noise” (i.e., the
random fluctuations of the Pf values obtained from subset simulations and @RISK).
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On the other hand, Fig. 8.4b shows that the slope failure probability increases as
the COV of SuL increases. The results from subset simulations are in good agree-
ment with those from @RISK and FORM. When the COV of SuL is 0.15, the
probability is less than 0.1 %. When the COV of SuL increases to 0.50, the slope
failure probability increases by two orders of magnitude (i.e., increases to about
10 %). The failure probability varies significantly with the change of the SuL COV.
This agrees well with the results from hypothesis tests that the uncertainty of SuL
has significant effects on the slope failure probability. Such agreement further
validates that the hypothesis test procedure proposed in this chapter prioritizes the
effects of various uncertainties on failure probability properly.

8.5.3 Bayesian Analysis Results

Based on the failure samples generated from subset simulation Run 2, a Bayesian
analysis is performed using Eqs. (8.3), (8.6), and (8.7) accordingly. Figure 8.5
shows the Bayesian analysis results by open circles for Su and DTill, which have
been identified from the hypothesis tests (see Sect. 8.5.1 “Hypothesis Test
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Results”) as the two most influential uncertain parameters. Note that the conditional
probability (i.e., P(F|SuL) in Fig. 8.5a and P(F|DTill) in Fig. 8.5b) obtained from the
Bayesian analysis is a variation of failure probability as a function of SuL or DTill.
Figure 8.5a shows that as SuL increases from 12 to 24 kPa, the slope failure
probability decreases from more than 10 % to less than 0.1 %. Similarly, Fig. 8.5b
shows that as DTill increases from about 18 to 23 m, the slope failure probability
increases from about 0.1 % to about 10 %. It is obvious that the values of SuL and
DTill have significant effects on slope failure probability, and such effects can be
quantified explicitly from the Bayesian analysis of failure samples.

8.5.4 Validation of Bayesian Analysis Results

Note that the variations of failure probability as a function of SuL or DTill shown in
Fig. 8.5 can also be obtained from sensitivity studies on SuL or DTill, which fre-
quently include many repeated runs of MCS with different given values of SuL or
DTill in each run. Therefore, to validate the Bayesian analysis results, about 40
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additional subset simulation runs are performed with different given values of SuL or
DTill in each run. Figure 8.5 also includes the results from these additional sensi-
tivity runs by open triangles. The open triangles follow trends similar to the open
circles (i.e., the Bayesian analysis results) and plot closely to the open circles as
well. This validates that a Bayesian analysis of failure samples generated in MCS or
subset simulations provides results equivalent to those from additional sensitivity
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studies. In addition, the Bayesian analysis has the advantage of avoiding additional
computational time and efforts for repeated runs of MCS or subset simulations in
the sensitivity studies.

As mentioned before, Eq. (8.3) implies that comparison between the conditional
probability P(h|F) and its unconditional one P(h) provides an indication of the
effect of the uncertain parameter h on failure probability. This offers a means to
check the Bayesian analysis results with those from hypothesis tests. Figure 8.6
compares the conditional probabilities (i.e., P(Tcr|F), P(SuL|F), and P(DTill|F)) of
Tcr, SuL, and DTill and their unconditional ones (i.e., P(Tcr), P(SuL), and P(DTill)).
Figure 8.6a shows that P(Tcr|F) and P(Tcr) are almost identical for different Tcr
values, which is consistent with the hypothesis test results that Tcr has the least
effect on failure probability. In contrast, the hypothesis tests show that SuL and DTill

are the two most influential uncertain parameters. Figure 8.6b, c show that P(SuL|F)
and P(DTill|F) differ significantly from their respective unconditional one (i.e., P
(SuL) and P(DTill)). The Bayesian analysis results agree well with the hypothesis test
results.

8.6 Summary and Conclusions

This chapter developed a probabilistic failure analysis approach that makes use of
failure samples generated in the MCS and analyzes these failure samples to assess
the effects of various uncertainties on slope failure probability. The approach
contains two major components: hypothesis tests for prioritizing the effects of
various uncertainties and Bayesian analysis for further quantifying their effects.

A hypothesis test statistic ZH was formulated to evaluate the statistical difference
of failure samples with their respective nominal (unconditional) samples. As the
absolute value of ZH increases, the statistical difference between failure samples and
their respective nominal samples becomes growingly significant, and the effect of
the uncertain parameter on failure probability also becomes growingly significant.
Therefore, the absolute value of ZH is used as an index to measure the effects of the
uncertain parameters on failure probability and to prioritize their relative effects on
failure probability.

A Bayesian analysis approach was developed to further quantify the effects of
the uncertain parameters that have been identified from the hypothesis tests as
influential parameters. Equations were derived for estimating conditional PDF (i.e.,
P(F|h)) of slope failure for a given value of uncertain parameter h. Because P(F|h)
is a variation of failure probability as a function of h, it can be considered as results
of a sensitivity study of h on slope failure probability. In other words, a Bayesian
analysis of the failure samples provides results that are equivalent to those from
additional sensitivity studies. In addition, it has the advantage of avoiding addi-
tional computational time and efforts for repeated runs of MCS or subset simula-
tions in the sensitivity studies. Furthermore, it was shown that comparison between
the conditional probability P(h|F) and its unconditional one P(h) provides an
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indication of the effect of the uncertain parameter h on failure probability. This
offers a means to check the Bayesian analysis results with those from hypothesis
tests.

The resolution of Pf and P(h|F) is pivotal to obtain P(F|h), and it depends on the
number of failure samples generated in MCS. An advanced Monte Carlo simulation
called “subset simulation” that has been implemented in Excel spreadsheet envi-
ronment in the previous chapter was employed to improve efficiency of generating
failure samples in MCS and resolution at small failure probability levels.

As an illustration, the proposed probabilistic failure analysis approach was
applied to study a design scenario of the James Bay Dyke. The hypothesis tests
show that the uncertainty of SuL has the most significant effect on the slope failure
probability, while the uncertainty of Tcr contributes the least to the failure proba-
bility. The hypothesis test results are very consistent with results from independent
sensitivity studies. Such agreement validates that the hypothesis test procedure
proposed in this chapter properly prioritizes the effects of various uncertainties on
failure probability.

A Bayesian analysis was performed to quantify explicitly the effects of SuL and
DTill, which have been identified from the hypothesis tests as the two most
influential uncertain parameters. It is shown that the slope failure probability
changes significantly as the values of SuL and DTill change. The Bayesian analysis
results have also been validated against those from independent sensitivity studies.
In addition, a cross-check between the hypothesis test results and the Bayesian
analysis results shows that they agree well with each other.

It is worthwhile to note that although the proposed approach was developed
together with a slope stability analysis problem, the approach is general and
applicable for other types of geotechnical analyses and engineering problems.
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Chapter 9
Summary and Concluding Remarks

9.1 Introduction

The previous chapters have developed several probabilistic approaches for
geotechnical site characterization and slope stability analysis, including a general
Bayesian framework for geotechnical site characterization, a subjective probability
assessment approach for determining prior distribution, an equivalent sample
approach using limited site observation data, a Bayesian approach using a relatively
large number of test data, a probabilistic slope stability analysis approach, and a
probabilistic failure analysis approach. This chapter summarizes the major con-
clusions drawn from previous chapters and provides some recommendations for
future studies.

9.2 Uncertainty Propagation During Geotechnical Site
Characterization

This book revisited geotechnical site characterization from an uncertainty propa-
gation point of view. Geotechnical site characterization was divided into six stages
as follows: desk study, site reconnaissance, in situ investigation, laboratory testing,
interpretation of site observation data, and inferring soil properties and underground
stratigraphy. Desk study and site reconnaissance provide prior knowledge (i.e., site
information available prior to the project) about the site. The prior knowledge is not
perfect information but is combined with some uncertainties, such as inherent
spatial variability and measurement errors in existing data and uncertainties in
engineers’ expertise. Then, project-specific test data can be obtained from in situ
investigation work and laboratory testing but it fluctuates because of inherent
spatial variability of soils, statistical uncertainty, and measurement errors. These
uncertainties together with the transformation uncertainty are incorporated into the
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interpretation outcomes obtained from site observation data using a transformation
model. Geotechnical engineers use both interpretation outcomes of site observation
data and prior knowledge to estimate soil properties and underground stratigraphy
for geotechnical analysis and/or designs. Estimations of soil properties and
underground stratigraphy are, therefore, affected by both uncertainties in prior
knowledge and uncertainties (i.e., inherent spatial variability of soils, statistical
uncertainty, measurement errors, and transformation uncertainty) in interpretation
outcomes of project-specific test data. These uncertainties are taken into account
rationally by the Bayesian framework developed in this book, as discussed in the
next section.

9.3 Bayesian Framework for Geotechnical Site
Characterization

A Bayesian framework was developed for geotechnical site characterization, which
integrates systematically prior knowledge and site observation data to characterize
probabilistically soil properties and boundaries of statistically homogenous soil
layers. The Bayesian framework addresses directly the inherent spatial variability of
the design soil property and models explicitly the transformation uncertainty
associated with the transformation model. In addition, statistical uncertainty and
measurement errors are incorporated into the Bayesian framework through site
observation data. Based on the Bayesian framework, the most probable number of
statistically homogenous soil layers is then determined through a Bayesian model
class selection method. It is also noted that the Bayesian framework provides a
rational vehicle to accumulate the knowledge of soil properties progressively as the
site observation data increase.

The proposed Bayesian framework is general and equally applicable for different
types of prior knowledge and different numbers of site observation data. It was
applied to combine prior knowledge and sparse standard penetration test (SPT) data
for probabilistic characterization of Young’s modulus and to integrate prior
knowledge with a relatively large number of cone penetration test (CPT) data for
probabilistic characterization of effective friction angle, as discussed in Sects. 9.5
and 9.6, respectively.

9.4 Prior Knowledge and Prior Distribution

Under the Bayesian framework, the information provided by prior knowledge is
quantitatively reflected by prior distribution in a probabilistic manner. As men-
tioned above, the Bayesian framework is equally applicable for different types of
prior knowledge. When only a typical range of the soil parameter concerned is
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available as prior knowledge, a uniform prior distribution of the soil parameter that
covers the typical range can be used in the Bayesian framework. As the information
provided by prior knowledge improves, a more sophisticated and informative prior
distribution can be estimated from the prior knowledge.

Based on a stage cognitive model of engineers’ cognitive process, a subjective
probability assessment approach was developed to estimate prior distribution from
prior knowledge. The subjective probability assessment approach assists engineers
in utilizing prior knowledge in a relatively rational way and expressing quantita-
tively their engineering judgments in a probabilistic manner. The assessment out-
comes obtained from the proposed approach are then taken as the prior distribution
in the Bayesian framework. The proposed subjective probability assessment
approach consists of five steps as follows: specification of assessment objectives,
collection of relevant information and preliminary estimation, synthesis of the
evidence, numerical assignment, and confirmation of assessment outcomes. Several
suggestions were provided for each step to assist engineers in reducing the effects of
cognitive biases and limitations during subjective probability assessment.

The proposed subjective probability assessment approach was illustrated under
two scenarios as follows: one with sparse prior knowledge and the other with a
reasonable amount of prior knowledge. When prior knowledge is sparse, the prior
distribution obtained from the proposed approach is relatively uninformative (e.g.,
uniform distributions). As the information provided by prior knowledge improves,
the proposed approach provides informative prior distribution. The prior distribu-
tion obtained from the subjective probability assessment approach quantifies
properly the information provided by prior knowledge and is readily used in the
Bayesian framework.

9.5 Probabilistic Characterization of Young’s Modulus
Using SPT

The number of project-specific test results is generally too sparse to generate
meaningful statistics (i.e., mean, standard deviation, and other high order statistics)
of soil properties, particularly in projects with medium or relatively small sizes. For
this case, a Markov Chain Monte Carlo simulation (MCMCS)-based approach (i.e.,
the equivalent sample approach) was developed for probabilistic characterization of
soil properties. The proposed approach is equally applicable for various soil
properties and different types of in situ or laboratory tests. As an illustration, the
proposed approach was formulated for probabilistic characterization of the
undrained Young’s modulus Eu using SPT. Project-specific SPT data and prior
knowledge are integrated probabilistically under the Bayesian framework devel-
oped in this book and are transformed into a large number, as many as needed, of
equivalent samples of Eu. Then, conventional statistical analysis is carried out to
estimate statistics of Eu. This allows a proper selection of characteristic value of the

9.4 Prior Knowledge and Prior Distribution 187



soil property in implementation of probabilistic design codes (e.g., Eurocode 7) and
reliability analysis in geotechnical engineering practice. The equivalent sample
approach effectively tackles the difficulty in generating meaningful statistics from
the usually limited number of soil property data obtained during geotechnical site
characterization.

Equations were derived for the proposed equivalent sample approach, and the
proposed approach was illustrated and validated using real SPT data and simulated
SPT data. It has been shown that based on the limited SPT data and relatively
uninformative prior knowledge (i.e., reasonable ranges of soil parameters reported
in the literature), the equivalent sample approach provides reasonable estimates of
statistics and probability distribution of Eu. Such probabilistic characterization is
used to require a large number of data from laboratory and/or in situ tests (e.g.,
pressure meter tests), which of course involve significant commitment of cost, man
power, and time.

It is also noted that results of the equivalent sample approach are affected by
both the number of project-specific test results and prior knowledge. When only
limited project-specific test data is available, the equivalent sample approach
improves significantly the probabilistic characterization of soil properties and
reduces the effects of statistical uncertainty by incorporating reasonable ranges of
soil parameters as prior knowledge. As the number of project-specific test data
increases, the standard deviation of soil properties estimated from the equivalent
sample approach gradually approaches its true value and mainly reflects the
inherent variability itself. The proposed approach is general and applicable for
different types of prior knowledge, although using relatively informative and
consistent prior knowledge does improve the probabilistic characterization of soil
properties.

9.6 Probabilistic Site Characterization Using CPT

When a large number of site observation data can be obtained directly from
project-specific tests (e.g., near-continuous measurements during a cone penetration
test (CPT)), the inherent spatial variability of soil properties can be explicitly
modeled using the random field theory. In such a case, a Bayesian approach was
proposed for probabilistic site characterization using the Bayesian framework
developed in this book and the random field theory. The proposed Bayesian
approach was formulated for probabilistic characterization of effective friction angle
/0 using CPT. Project-specific CPT data and prior knowledge are integrated
probabilistically under the Bayesian framework. The Bayesian approach addresses
explicitly the inherent spatial variability of /0 using random field theory. It contains
two major components as follows: a Bayesian model class selection method to
identify the most probable number of soil layers and a Bayesian system
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identification method to estimate the most probable layer thicknesses/boundaries
and soil properties simultaneously.

Equations were derived for the Bayesian approach, and the proposed approach
was illustrated and validated using real CPT data and simulated CPT data. It has
been shown that the proposed Bayesian approach correctly identifies the number
and thicknesses/boundaries of the statistically homogenous soil layers and provides
proper probabilistic characterization of soil properties. In addition, as the number of
model classes increases, the Bayesian model class selection method identifies the
statistically homogenous layers progressively, starting from the most statistically
significant boundary and gradually “zooming” into local difference with improved
“resolution”. The Bayesian approach also contains a mechanism to determine when
to stop further increasing the number of model class (i.e., the “zooming”).

Furthermore, it is also found that results of the Bayesian approach are affected by
the quality of both prior knowledge and project-specific test data. It is always
prudent to rely more on the high quality project-specific test data, if available, and
to start the Bayesian approach with relatively uninformative prior knowledge (i.e.,
low confidence level), particularly when the prior knowledge is not well justified.

9.7 Probabilistic Slope Stability Analysis

Inherent spatial variability of soils and various uncertainties arising during
geotechnical site characterization affect probabilistic estimations of soil properties
and underground stratigraphy, which subsequently influence probabilistic analysis
and/or designs of geotechnical structures, such as probabilistic slope stability
analysis. Monte Carlo simulation (MCS) provides a robust and conceptually simple
way to account rationally for these uncertainties (including inherent spatial vari-
ability of soils).

A MCS-based probabilistic slope stability analysis approach was developed
using an advanced MCS method called “subset simulation” in a commonly avail-
able spreadsheet environment, Microsoft Excel, with the aid of Visual Basic for
Application (VBA). Excel worksheets and VBA functions/Add-In for deterministic
slope stability analysis are deliberately decoupled from those for reliability analysis
(e.g., random sample generations and statistical analysis) so that the reliability
analysis can proceed as an extension of deterministic analysis in a non-intrusive
manner. The Excel spreadsheet package was used to assess reliability of short-term
stability of a cohesive soil slope, followed by a comparative study on different
reliability methods, including the first-order second-moment method (FOSM),
first-order reliability method (FORM), direct MCS using commercial software
Slope/W, and direct MCS and subset simulation using the Excel package.

It has been shown that the MCS-based probabilistic slope stability analysis
approach significantly improves the efficiency and resolution at relatively small
probability levels. With the aid of improved efficiency, the MCS-based probabilistic
slope stability analysis approach was used to explore the effects of inherent spatial
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variability of soil properties and the critical slip surface uncertainty. It is found that
when the inherent spatial variability of soil properties is ignored by assuming
perfect correlation, the variance of factor of safety (FS) is overestimated. Such
overestimation of the FS variance may result in either overestimation (conservative)
or underestimation (unconservative) of slope failure probability Pf. It is also noted
that when the inherent spatial variability of soil properties is considered, the critical
slip surface varies spatially. Using only one given critical slip surface significantly
underestimates Pf, and it is unconservative. Thus, when the inherent spatial vari-
ability of soil properties is considered, the critical slip surface uncertainty should be
properly accounted for.

9.8 Probabilistic Failure Analysis of Slope Stability

Based on failure samples generated in MCS, a probabilistic failure analysis
approach was developed to shed light on relative contributions of various uncer-
tainties to slope failure probability. The probabilistic failure analysis approach
contains two major components as follows: hypothesis tests for prioritizing effects
of various uncertainties and Bayesian analysis for further quantifying their effects.

A hypothesis test statistic was formulated to evaluate the statistical difference
between failure samples and their respective nominal (unconditional) samples. The
absolute value of the hypothesis test statistic is used as an index to measure the
effects of the uncertain parameters on failure probability and to prioritize their
relative effects on failure probability. A Bayesian analysis approach was developed
to further quantify effects of the uncertain parameters that have been identified from
the hypothesis tests as influential parameters. Equations were derived for the
Bayesian analysis to estimate conditional failure probability of slope stability for a
given value of an uncertain parameter. The resolution of the conditional failure
probability obtained from the Bayesian analysis relies on the number of failure
samples generated in MCS. Subset simulation was employed to improve efficiency
of generating failure samples in MCS and resolution at small failure probability
levels.

The probabilistic failure analysis approach was illustrated through a case study,
and it was validated by independent sensitivity studies using repeated runs of MCS.
It has been shown that the effects of various uncertainties on slope failure proba-
bility are properly prioritized and quantified by the proposed approach. The pro-
posed failure analysis approach gives results equivalent to those from sensitivity
studies, and hence, saves additional computational time and efforts for sensitivity
studies. In addition, a cross-check between the hypothesis test results and the
Bayesian analysis results showed that they agree well with each other.
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