
Chapter 6

Extraction of Proteins with ABS

Rupali K. Desai, Mathieu Streefland, Rene H. Wijffels,

and Michel H.M. Eppink

Abstract Over the past years, there has been an increasing trend in research on the

extraction and purification of proteins using aqueous biphasic systems (ABS)

formed by polymers, e.g., polyethylene glycol (PEG). In general, when dealing

with protein purification processes, it is essential to maintain their native structure

and functional stability. In this context, ABS, liquid-liquid systems where both

phases are water-rich, provide a biocompatible medium for such attempts. More

recently, it was shown that the versatility offered by ABS is further enhanced by the

introduction of ionic liquids (ILs) as alternative phase-forming components. This

chapter describes and highlights the current progress on the field of protein extrac-

tion and purification using IL-based ABS. The general approach for protein extrac-

tion using IL-based ABS and factors influencing the partitioning are discussed. In

addition, the challenges to overcome the use of IL-based ABS for protein extraction

are also presented.

Keywords Proteins • Ionic liquids • Aqueous biphasic system • Extraction •

Purification • Stability

6.1 Introduction

Proteins are an integral part of all living systems and have various applications in

food and feed (both relatively low value) and pharmaceuticals (high value). Puri-

fication of proteins involves various unit operations, using low to high resolution

techniques, to obtain proteins with desired purity and quality. Proteins, being fragile

molecules, can be easily denatured by acid/base solutions, salts, and high temper-

ature. Therefore, mild operation conditions for their recovery and purification are

required, in order to maintain their nativity and functionality. With the current

advances in biotechnology, a large increase in the titers of protein production was

already observed; yet, the development of cost-effective purification methods is
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still required. The high cost of protein purification continues to remain a bottleneck

in downstream processing of proteins and mainly for protein value-added

biopharmaceuticals. On the other hand, in the field of food and feed, proteins are

obtained from, e.g., soya, and also there has been a growing interest in third-

generation biofuels from microalgae. For instance, in fuel production processes,

large amounts of proteins are generated which could be used for feed and food [1–

3]. In fact, to make these processes economically feasible, it is necessary to refine

other components from biomass. Proteins are a major fraction of algae biomass and

are normally denatured by the solvents used for lipids extraction. The main chal-

lenge therefore lies in separating the proteins in their native form without affecting

their functionality. Thus, depending on the biomass or initial medium, protein

purification protocols vary and drive the development of more specific, robust,

and cost-effective methods [4].

Aqueous biphasic systems (ABS) based on polymers were first proposed by

Albertsson [5], who studied their applicability in protein extraction and purification.

ABS allow the integration of concentration and purification processing steps and

serve as an alternative approach to the traditional processes. Typical ABS are

formed by mixing polymer-polymer and polymer-salt combinations above given

concentrations to form two distinct aqueous phases, each one enriched in one of the

phase-forming components. Both phases are water-rich (~80–90% w/w), and thus

ABS can provide a mild and gentle environment for protein separation without

affecting their native structure and stability [6, 7]. In addition to the largely

investigated polymer-based ABS, in the last decade, ionic liquids (ILs) were

proposed as alternative phase-forming components of ABS [8]. And because of

the inherent properties of ILs, this possibility allowed the use of ABS in a new range

of applications.

The interest on ILs as extractive solvents increased primarily because of their

nonvolatile nature, which is the major advantage over traditional organic volatile

solvents. In addition to their nonvolatility, ILs, being composed of cations and

anions, can be more easily tuned to achieve specific properties, such as a tunable

polarity, viscosity, and solvent miscibility. Their tunable polarity enabled them to

be used in biotransformations to increase substrate solubility, to dissolve enzymes,

and to tailor the reaction rate [9]. Moreover, due to their tailoring ability, ILs are

also able to form ABS not only with inorganic salts but also with polymers [10],

carbohydrates [11], and amino acids [12]. The main advantage of IL-based ABS

over the conventional systems comprises their ability to tune and tailor the proper-

ties of the coexisting phases by permutation and combination of different cations

and anions, thereby improving the selectivity of these systems for a wide variety of

solutes [13].

Based on the advantages and large recent interest on IL-based ABS for separa-

tion purposes, this chapter describes the general approaches of protein purification

described in the literature using IL-based ABS and factors that influence the

partitioning of proteins in these systems. The challenges in developing a successful

ABS for extraction of proteins are also discussed. Finally, this chapter aims a better

understanding on the mechanisms ruling protein extraction using IL-based ABS.
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Figure 6.1. depicts a scheme on the approach required to use IL-based ABS for the

extraction of proteins.

6.2 Extraction of Proteins/Enzymes Using IL-Based ABS

The extraction of proteins using IL-based ABS has been studied by different

research groups and for which a summary is given in Table 6.1. This table was

adapted from [14] and updated to include more recent studies.

As a first point, only water-miscible ILs are able to form ABS since water-

immiscible ILs do not form two aqueous-rich phases (see Table 6.2). IL-based ABS

are formed by mixing water-miscible ILs with salts, carbohydrates, amino acids,

and polymers [8, 10, 12, 15]. The ability to form ABS with solutes other than salts

has indeed been studied [8, 10, 12, 15], but their efficiency in extracting proteins is

however scarcely studied. Although more promising than inorganic salts in what

concerns the use of more biocompatible systems, these alternative systems suffer

the drawback of only being able to form ABS with a limited number of ILs due to

their low salting-out ability (carbohydrates, amino acids, and polymers versus

salts).

In general, most of the studies reported in the literature deal with imidazolium-

based ILs composed of halogens or [BF4]
� anions. Recently, ABS based on

guanidinium-based ILs have been studied for protein extraction [16, 17] and

where it was shown that model proteins, such as BSA, could be extracted with

high efficiency for the IL-rich phase without losing its native structure and maintain

its stability. IL-based ABS could thus serve as potential platforms for protein

extraction if the stability of proteins at the IL-rich phase is maintained. While
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Table 6.1 Investigated IL-based ABS for the extraction of proteins

Protein IL-based ABS References

Bovine serum albu-

min (BSA)

[C4mim]Cl/K2HPO4, Ammoeng 110™/K2HPO4-

KH2PO4, [Cnmim]Br(n¼ 4,6,8)/K2HPO4, [C4mim]

[N(CN)2]/K2HPO4, ILs
a/K2HPO4, guanidinium-

based ILs/K2HPO4

[16, 17, 18, 19,

36, 37, 40, 41]

Ovalbumin [C4mim]Cl/K2HPO4, ILs
a/K2HPO4, guanidinium-

based ILs/K2HPO4

[16, 36, 37, 43]

Lysozyme Ammoeng 110™/K2HPO4-KH2PO4, guanidinium-

based ILs/K2HPO4

[16, 18]

γ-globulin [Cnmim]Br(n¼ 4,6,8)/K2HPO4 [19]

Myoglobin [C4mim]Cl/K2HPO4, Ammoeng 110™/K2HPO4-

KH2PO4,

[18, 43]

Hemoglobin [C4mim]Cl/K2HPO4, ILs
a/K2HPO4, hydroxyl

ammonium ionic liquidsa/K2HPO4

[36, 37, 43]

Cytochrome c [C4mim]Cl/K2HPO4, [Cnmim]Br (n¼ 4,6,8)/

K2HPO4, amino-based ILsa/K3PO4, glycine-based

ILsa/K2HPO4

[19, 43, 44, 45]

Fungal proteins [C4mim]Cl/K3PO4 [46]

Trypsin Ammoeng 110™/K2HPO4-KH2PO4, [Cnmim]Br

(n¼ 4,6,8)/K2HPO4,ILs
a/K2HPO4, guanidinium-

based ILs/K2HPO4

[16, 18, 19, 36]

Lipase CaL-A [C2mim][C4SO4]/(NH3)2SO4 [47]

Lipase CaL-B Imidazolium-based ILsa/K2HPO4-KH2PO4 [48]

Thermomyces

lanuginosus lipase

(TlL)

[C2mim][C2SO4]/K2CO3 [49]

Alcohol

dehydrogenases

(Ammoeng 100™/Ammoeng 101™/Ammoeng

110™)/K2HPO4-KH2PO4

[13]

Horseradish

peroxidase

[C4mim]Cl/K2HPO4 [39]

RuBisCo Iolilyte 221PG/KH2PO4-Na2HPO4 [25]

Wheat esterase [C4mim][BF4]/NaH2PO4 [50]

Updated from [14]
aDetails of ILs used can be found in the corresponding literature

Table 6.2 Commonly used cation/anions combination of water-miscible versus water-immiscible

ILs

Water-miscible

ILs

Cations Imidazolium, pyridinium, ammonium, phosphonium

Anions Chloride, bromide, fluoride, alkylsulfate, tosylate,

tetrafluoroborate, dicyanamide

Water-immiscible

ILsa
Cations Imidazolium, pyridinium, ammonium, phosphonium

Anions Bistriflimide, hexafluorophosphate
aWater-immiscible ILs also contain water (~2–6%)
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most of the studies focused on the extraction efficiency of model proteins/enzymes,

the studies carried out by Dreyer [18] and Pei [19] made an attempt to understand

the mechanisms responsible for the high extractions attained.

6.2.1 Stability of Proteins in IL-Rich Phases

Proteins are complex macromolecules and require a gentle environment to maintain

their structural and functional integrity. Changes in this environment, such as

solvent concentration, pH, ionic strength, and temperature, could result in denatur-

ation of proteins. Thus, the primary criterion for any protein purification process is

the ability to maintain the proteins’ structural integrity and functionality. In this

context, when using IL-based ABS for the purification of proteins, it is necessary to

understand their stability in aqueous solutions of ILs. There are some studies

carried out to infer on protein-IL interactions [20, 21] and where model proteins

have been used, namely, BSA, lysozyme, and cytochrome c. However, there are

other proteins with higher commercial value, such as monoclonal antibodies,

RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase), etc., that should be

studied in what concerns their stability in aqueous solutions of ILs and their

feasibility to be extracted by ABS. Although some hydrophobic ILs are able to

stabilize enzymes [22, 23], they are not discussed in this chapter since these do not

form ABS.

In the studies regarding the stability of proteins in aqueous solutions of ILs, the

techniques employed to monitor the proteins’ structural and thermal stability

include UV spectroscopy, fluorescence, circular dichroism (CD),small-angle neu-

tron scattering (SANS), differential scanning calorimetry (DSC), dynamic light

scattering (DLS), and size exclusion chromatography (SEC). The stability studies

were designed to address the factors that influence the formation of ABS and the

stability of proteins, such as (i) type of IL; (ii) concentration of IL; (iii) other

process conditions, such as pH, ionic strength, and temperature; and (iv) protein
properties, such as size, charge, and surface hydrophobicity.

ABS consist of two aqueous-rich phases: an IL-rich phase and a phase rich in

salt, polymer, amino acid, or carbohydrate. The concentration of IL in the IL-rich

phase of ABS can vary from 1.5 to 3.0 mol/kg [24], and thus it is prudent to study

IL-protein interactions in aqueous solutions. Moreover, it was already shown that

the concentration of IL has a strong influence on the protein stability [21, 25]. In our

recent study, we have shown that the protein’s stability in aqueous solutions of ILs

is influenced by the concentration of IL and by the protein properties, such as size

and complexity of the molecule [25]. In this study, the stability of BSA, IgG, and

RuBisCo was studied in aqueous solutions of two ILs, Iolilyte 221 PG and Cyphos

108, at different concentrations [25]. It was found that as the concentration of the IL

increases (0–50%, v/v), the proteins start forming aggregates. RuBisCo

(~540 kDa), being a large complex protein/enzyme that consists of eight large

and small subunits, begins to aggregate at lower IL concentrations (~30%, v/v),
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while BSA (~67 kDa), a smaller protein, forms no aggregates or only negligible

aggregates at 50% v/v of IL(Iolilyte 221 PG). IgG (~150 kDa), with an intermediate

size, forms aggregates at 50% (v/v) of Iolilyte 221 PG. In this study [25], the

aggregate formation was monitored using SEC and DLS studies. In an additional

study, SANS results showed that human serum albumin and cytochrome c form

aggregates at high concentrations (50%, v/v) of [C4mim]Cl and retain their high-

order structure at lower IL concentrations (25%, v/v) [26]. Lysozyme and

interleukin-2 (IL-2) showed increased thermal stability in aqueous solutions up to

40% (w/w) of IL, although it is dependent on the pH [27], indicating thus that the

charge of the protein also influences its stability in IL aqueous solutions. Different

ILs with varying “kosmotropicity” were also investigated for their effect on protein

structure and long-term stability [28]. In this study, cytochrome c showed no

significant changes in its structure when dissolved in hydrated choline dihydrogen

phosphate (containing 20% w/w of water). Cytochrome c additionally showed a

higher thermal and long-term stability, leading the authors to conclude that the

“kosmotropicity” of ILs has strong implications on the proteins’ stability [28].

The influence of inorganic salts and ion-specific-induced precipitation of pro-

teins is well described by the Hofmeister series [29]. Since ILs are also composed of

ions, their influence on protein stability in aqueous solutions can also be explained,

to some extent, by the Hofmeister series [20, 28, 30, 31]. Ions can be classified as

kosmotropes (water structure makers) which stabilize proteins and chaotropes

(water structure breakers) which destabilize proteins. The rank of kosmotrope-

chaotrope ions according to the Hofmeister series is shown in Fig. 6.2. The most

suitable combination to enhance protein stability comprises a kosmotropic anion

and a chaotropic cation [32–34]. According to the example described above, the

cytochrome c stability in hydrated choline dihydrogen phosphate is a result of this

type of ion combination. Though the stability of proteins in ILs can be explained by

the Hofmeister series, some deviations were also found while following a reverse

trend [31]. In fact, a large array of factors is responsible for the protein stability in

aqueous solutions of ILs, such as the ability to establish hydrogen bond, electro-

static, and dispersive interactions and hydrophobicity.

Anions
SO4

2- > H2PO4
- > CH3COO- > F- > Cl- || Br- > I- > SCN-

Cations

Cs+ > K+ > Na+ || Li+ > Mg2+ >Al3+

Protein destabilizing
(Chaotropes)

Protein stabilizing
(Kosmotropes)

Fig. 6.2 Hofmeister series

and protein stability
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6.2.2 Partitioning Behavior of Proteins in IL-Based ABS

It has been shown that the partitioning of solutes in typical PEG-based ABS is

primarily governed by the system properties, such as type and concentration of

phase-forming components, pH, and temperature and the solute properties, such as

hydrophobicity, charge, molecular weight, etc. [35]. Thus, partition coefficients and

selectivity can be tuned by modifying these parameters. The extraction of proteins

using IL-based ABS has been studied by several authors (see Table 6.1), revealing

that protein partition preferentially to the IL-rich phase. Most of these studies are

however empirical, and to be able to use IL-based ABS as a separation tool on a

preparative scale, it is mandatory to understand the mechanisms and factors

influencing the partitioning of proteins in these systems.

Different authors have studied the influence of the phase-forming components,

concentration, pH, and temperature on the partitioning of proteins in IL-based ABS

[25, 36–38]. Protein distribution in ABS depends on their ability to interact with the

phase-forming components and extraction conditions, so that the separation could

be protein specific. Cao et.al. [39] studied the extraction of horseradish peroxidase

in four alkylimidazolium-based ABS. The enzyme partitioned to the IL-rich phase,

but its activity decreases with the increase in the alkyl side chain length of the IL. In

the same study, increasing the IL concentration favors the maintenance of the

enzyme activity. Dreyer et al. [13] studied the feasibility of ABS formation with

ammonium-based ILs and showed that Ammoeng 110 forms ABS more easily than

Ammoeng 100 and Ammoeng 101. Ammoeng ILs contain an oligo-ethylene side

chain in the cation which was expected to have a stabilizing effect on the enzyme

(alcohol dehydrogenase) extracted. A low temperature for ABS formation together

with ILs with oligo-ethylene side chains demonstrated to provide a gentle environ-

ment for protein extractions [13]. Desai et al. [25] showed that the partition

coefficient of RuBisCo increases as the IL and salt concentration increases; how-

ever, a decrease in the enzyme activity was observed with higher concentrations

(>20%, w/w) of IL. In summary, all these results indicate that the chaotropicity of

the IL and its concentration influence the stability of the protein to be extracted.

The system parameters (pH and temperature) also influence the partitioning of

proteins to the IL-rich phase through the modification on the protein charge and

surface properties. Protein properties contributing to their partitioning in ABS can

be summarized as follows [5]:

logK ¼ logK0 þ logKel þ logKhphob þ logKsize þ logKbiosp þ logKconf ð6:1Þ

where K is the partition coefficient and el, hphob, biosp, and conf are, respectively,

electrostatic, hydrophobicity, biospecificity, and configuration which contribute to

the partition coefficient value, while K0 represents additional factors.

Partitioning of proteins is governed, in a large extent, by the pH of the system.

Depending on their isoelectric point, proteins carry a net positive or net negative

charge at a given pH. The extraction of BSA, myoglobin, lysozyme, and trypsin
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using IL-based ABS at different pH values showed that proteins are preferentially

transferred to the IL-rich phase as the pH increases [18]. On the other hand, the

molecular weight of the protein also influences its partitioning in the biphasic

system. Dreyer et al. [18] showed that larger proteins, such as BSA, are better

extracted in the IL-rich phase, while smaller proteins, like myoglobin, remain in the

salt-buffer-rich phase. In a separate study, RuBisCo, which is large protein

(540 kDa), is also extracted into the IL-rich phase [25].

Du et al. [40] studied the extraction of BSA from biological fluids using

imidazolium-based ABS and observed that the electrostatic interactions and

salting-out effect are the driving forces in protein partitioning. In summary, both

research groups [18, 40] have shown that there is a strong correlation between the

protein charge and its partitioning in IL-based ABS. Thus, indicating electrostatic

interaction between the amino acids on the protein surface and IL cations to be the

main driving force. On the other hand, Pei et al. [41] have shown that hydrophobic

interactions are the main driving force for protein extraction in IL-based ABS. In

the same study, the influence of temperature on the extraction of BSA was evalu-

ated demonstrating that higher temperatures favor the partitioning of proteins to the

IL-rich phase.

It could be summarized that the partitioning of proteins in IL-based ABS can be

tuned by changing the phase components and the composition, pH, and temperature

of the system. Nevertheless, partitioning in IL-based ABS is a quite complex

phenomenon not influenced by a single factor, yet it is a result of a combined effect

of these factors.

6.3 Recovery of Proteins from the IL-Rich Phase

Like conventional ABS, protein extraction using IL-based ABS involves two main

steps: (i) forward extraction, i.e., extraction of the protein from the initial source/

matrix into one of the phases (here, IL-rich phase), and (ii) recovery of the (purified)

protein from the IL-rich phase.

In conventional ABS, proteins can be recovered by modification of system

parameters, such as pH, change in salt concentration, or addition of other salts.

The main goal is to achieve a high recovery of a protein with a high purity level

without affecting the functionality of the protein. This is indeed one of the major

lacunas in the literature since there are almost no attempts on the literature to this

end. An isolated work was recently published by Pereira et al. [42] where the

protein (BSA) was recovered by dialysis from the IL-rich phase, allowing the

further use of the ABS in a new extraction step. The authors [42] demonstrated

the recovery of the protein and the IL reusability in three-step consecutive extrac-

tions, concluding that IL-based ABS can be adequately reused without losses on

their extraction performance.

ILs being salts and proteins being macromolecules, their separation can be

achieved by ultrafiltration and/or nanofiltration, induced precipitation, and
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chromatographic techniques, such as size exclusion chromatography and by the use

of affinity tags (HisTags) able to help in recovering the protein from the IL-rich

phase by Immobilized Metal Affinity Chromatography (IMAC). Protein recovery

studies are thus one of the major lacunas in the IL-based ABS field and must be

investigated in the near future.

6.4 Conclusions and Future Perspectives

IL-based ABS are a promising platform for the extraction and purification of

proteins. However, there are still some issues which need to be addressed to be

able to use IL-based ABS on a commercial scale, namely:

1. Currently, studies on proteins of commercial importance are scarce; only few

studies were performed, for instance, for RuBisCo and alcohol dehydrogenases.

Most studies in the literature address model proteins (BSA, lysozyme, etc.).

2. With a plethora of ILs available and the complex and variable nature of proteins,

it is difficult to generalize or to predict the behavior of proteins in IL-based ABS.

However, the setup of a well-defined guideline with respect to some protein

classes would be useful. A mechanistic modeling approach still seems to be

far off.

3. Stability of proteins in ILs is the prime requirement to guarantee the viability of

IL-based ABS for protein separation. Most studies on this line are focused on

model proteins, such as BSA and lysozyme. A pragmatic approach would be to

create a public and free available (online) database with respect to the functional

stability of commercial proteins in IL-based systems.

4. More sophisticated analytical methods to quantify proteins in the IL-rich phase

should be attempted to avoid interferences from the IL. Also for preparative

chromatography, the stability and functionality of currently available resins need

to be determined.

5. The high costs of ILs are one of the major drawbacks when envisaging the large-

scale application of IL-based ABS. The reuse of ILs in large-scale applications is

essential to guarantee the economic viability.

6. The ILs used for ABS formation are water-soluble and hence can enter into the

ecosystem. Thus, toxicity and biodegradation of ILs pose another concern and

must be considered while designing protein extraction and separation processes.

All these points require not only extra efforts to study different IL-based ABS

but more focused studies on the use of biodegradable and biocompatible ILs and

efficient IL recycling processes. Since polymers, such as PEG, are able to maintain

and even increase the stability of some proteins, IL-PEG ABS seem as an interest-

ing option for protein extraction. Progress in IL-based ABS would open up new

applications on their use, especially in biorefinery of third-generation biomass

feedstocks (e.g., microalgae), where proteins could be separated from more hydro-

phobic components. IL-based ABS are novel systems and their use for protein
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extraction is still in an early stage. Thus, there is ample scope for improvement in

protein extractions using IL-based ABS and a strong requirement for further

in-depth investigations.
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