
Chapter 5
A Brief Review of Relativistic Gravitational
Collapse

Daniele Malafarina

Abstract We review here the basic setup to describe complete gravitational collapse
of massive bodies within the general theory of relativity. We derive Einstein’s equa-
tions describing collapse and solve them in some simple well-known toy models. We
study the final outcome of collapse and the quantities that describe the formation of
trapped surfaces and of the central singularity.

5.1 Introduction

General relativity became an essential part of the curricula of astrophysicists nearly
50 years after it was first developed by Albert Einstein, when new ultra-dense objects
such as pulsars and highly energetic phenomena such as quasars were discovered.
By 1963, it was clear that general relativity was necessary to understand those phe-
nomena and that gravitational collapse played a crucial role for many astrophysical
scenarios. Nevertheless, the seeds of our modern understanding of stellar collapse
have deeper roots. It was Chandrasekhar, back in 1931, who used special relativity
to evaluate the pressure necessary to overcome the electron degeneracy in a star and
derived the famous upper mass limit for a stable white dwarf. He wrote: “...the life
history of a star of small mass must be essentially different from the life history of
a star of large mass. For a star of small mass the natural white dwarf stage is an
initial step towards complete extinction. A star of large mass cannot pass into the
white dwarf stage, and one is left speculating on other possibilities” [8]. The “other
possibilities” to which Chandrasekhar referred today are called neutron stars and
black holes.
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In 1939, Oppenheimer and Volkov performed a similar calculation using neutrons
instead of electrons and general relativity instead of special relativity [39]. They con-
cluded that any body with a large enough mass would not be able to sustain its own
gravity and undergo complete collapse, although at the time it was not clear what the
final state would be. Theywrote: “...actual stellar matter after the exhaustion of ther-
monuclear sources of energy will, if massive enough, contract indefinitely, although
more and more slowly, never reaching equilibrium.” Soon after, Oppenheimer and
Snyder and independently Datt developed the first exact solution of Einstein’s equa-
tions describing a collapsing spherical cloud of non-interacting particles [11, 38].
The end state of such collapse model is a Schwarzschild black hole.

The existence of black holes as astrophysical objects was just a conjecture fifty
years ago, while today is almost unanimously accepted by the community of astro-
physicists. Nevertheless, the theoretical paradigm upon which the whole theory of
black hole formation relies is not much different from the original Oppenheimer–
Snyder–Datt (OSD) collapse model. And while our physical knowledge of astro-
physical phenomena has progressed enormously in the last fifty years, our theoret-
ical understanding of how black holes form is still very much rooted in simple toy
models such as OSD. The reason for this relies mostly in the immense difficulty
that one encounters when trying to solve analytically Einstein’s equation in more
general and physically relevant cases. Also, the fact that we do not knowmuch about
the behavior of matter in the strong field regime contributes in making our present
theoretical understanding very limited.

On the other hand, from an experimental perspective, new missions and obser-
vatories are due to come online in the near future, and there is great hope that they
will produce, among other things, an enormous amount of data on gravitational col-
lapse and black hole formation. Astrophysicists of tomorrow will be able to rely on
photons, neutrinos, and gravitational waves in order to study and understand what
happens at the end of the life cycle of a star. This is usually called multimessen-
ger astronomy. One of the key questions they will have to address is whether white
dwarves, neutron stars, and black holes are the only possible objects that are left
after a star dies. At present, it is natural to ask whether it is possible that there exists
some yet unknown state of matter beyond the neutron degeneracy limit and capable
of producing stable ultra-dense remnants. The purpose of this chapter is to pave the
way for astrophysicists toward a broad theoretical understanding of the processes
that lead to the formation of black holes. We do so by reviewing the paradigm for
gravitational collapse in general relativity (GR) and the most fundamental analytical
results that were obtained in the field.

The chapter is structured as follows: In Sect. 5.2, we derive the set of differential
equations that are used to describe collapse. In Sect. 5.3, we discuss how the collaps-
ing “star” can be matched to a vacuum exterior. Section5.4 is devoted to the discus-
sion of the conditions for the model to be physically viable. In Sect. 5.5, the apparent
horizon and the singularity curve are defined. Section5.6 presents the simplest solu-
tion for the homogenous dust collapse model, while in Sect. 5.7 inhomogeneous dust
and homogeneous perfect fluid models are briefly outlined. Section5.8 is devoted to
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discussing how the mathematical models can be useful for astrophysics, and finally,
in Sect. 5.9, some possible future directions of investigation are discussed.

5.2 Einstein’s Equations for the Collapsing Interior

Stars are supported in equilibrium by the balance of the gravitational attraction that
pulls inward and the push outward generated by nuclear reactions happening at their
center. When a star exhausts the nuclear fuel that was keeping it stable, it implodes
under its own weight. At this point, the future evolution of the star depends on its
mass. If a star is sufficientlymassive, then there is no known force in nature capable of
halting collapse. These stars end their lives forming black holes. In order to be able to
describe the final stages of collapse, where the gravitational field becomes extremely
large, we must use general relativity. Therefore, it is useful to begin our discussion
by understanding what is a black hole in general relativity. The simplest and most
intuitive definition of a black hole is that of a space-time singularity surrounded by
an event horizon. Clearly, there are two elements that are crucial to our definition
of a black hole: the singularity and the event horizon. The event horizon acts like
a two-dimensional one-way membrane that lets particles and light enter while not
letting anything exit. The singularity, strictly speaking, is not a part of the space-
time, and it is the boundary that marks the geodesic incompleteness of all paths
for particles that enter the horizon. The horizon for a non-rotating Schwarzschild
black hole is located at a radius RSch = 2G MS/c2, where MS is the black hole’s
mass, G is the Newton’s constant, and c is the speed of light. The singularity is
ideally “located” at the center of symmetry of the system. Intuitively, we can see that
the black hole forms once enough mass is concentrated within a sphere of a small
enough radius. Once matter is trapped inside the horizon, it can only fall toward the
singularity (if there is no rotation). In principle, the equations of general relativity
can be very difficult to solve; therefore, in order to describe the process by which all
the matter in the star falls within the horizon radius thus forming a black hole, we
need a mathematical framework that is simple enough to solve the equations but that
still retains the most important physical features. In the following, we will neglect all
the physical processes that happen in the cloud except gravity, we will assume that
the cloud is perfectly spherically symmetric and not rotating, and we will assume
that the exterior of the cloud is vacuum. Also, we shall consider here only extremely
simplified fluid models to describe the state of matter of the collapsing star. Finally,
it is custom to make use of natural units, thus setting G = c = 1.

5.2.1 Co-moving Coordinates

Our aim is to solve the system of Einstein’s equations for a spherical collapsing
matter cloud. As it is well known, Einstein’s equations possess two distinct parts that
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both require some assumptions in order to allow us to find physically meaningful
solutions. On the left-hand side, we have the geometrical part of the set of equations
that is given by the Einstein tensor. This is determined once we know the metric
for the space-time. As said, we will consider here only spherically symmetric, non-
rotating space-times. A space-time is said to be spherically symmetric if the metric
remains invariant under the group of spatial rotations SO(3). This means that we
can define the two-dimensional metric induced on the unit two-sphere as

dΩ2 = dθ2 + sin2 θdφ2 (5.1)

and define a function R for which 4π R2 represents the area of each two-sphere in
the space-time. The full four-dimensional metric then can be written as

ds2 = gABdx Adx B + R(xA, xB)2dΩ2, (5.2)

with A, B = 0, 1. We can then introduce the coordinates t = x0 and r = x1 that
diagonalize the two-dimensional part of the metric gAB and write the most general
spherically symmetric line element in the simple form

ds2 = −e2λdt2 + e2ψdr2 + R2dΩ2 (5.3)

where the functions λ, ψ , and R do not depend on the coordinates θ and φ. In the
following, we will use a dot to express derivatives with respect to t and a prime to
express derivatives with respect to r , thus writing Ẋ = d X/dt , X ′ = d X/dr . The
above coordinate system forwhich themetric is diagonal is called co-moving because
one can think of the labels t and r as “attached” to each collapsing particle. Then,
the functions λ, ψ , and R depend only on r and t . In this reference frame, the fluid
is instantaneously at rest and its four-velocity uμ is ut = e−λ, ur = uθ = uφ = 0.

In order to describe the collapse of a spherically symmetric massive object such
as a star, we need to solve Einstein’s equations for a space-time described by (5.3)
coupled to an energymomentum tensor describing a realistic fluid source. The energy
momentum tensor is the right-hand side of Einstein’s equations and for a fluid source
in the co-moving frame can be written as

T μν =

⎛
⎜⎜⎝

ρ 0 0 0
0 pr 0 0
0 0 pθ 0
0 0 0 pθ

⎞
⎟⎟⎠

A perfect fluid is an idealized fluid where no shear stresses, no viscosity, and no
heat conduction are present. It can be characterized by its mass density and isotropic
pressures alone. Isotropic pressuremeans that the radial pressure equals the tangential
pressure, and this implies pr = pθ = p. The energy density is the energy per unit
volume of the fluid in the local rest frame with four-velocity uμ and the energy
momentum tensor for a perfect fluid can then be written as
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T μν = (ρ + p)uμuν + pgμν. (5.4)

Note that in general relativity, the pressure contributes to the gravitational field, and
therefore, the total gravitational energy need not be conserved. Nevertheless, the
baryon number is conserved. For a gas of non-interacting particles, the so-called
dust, the pressure vanishes and we can set p = 0. This is the simplest fluid model
that can be considered.

5.2.2 Misner–Sharp Mass

The metric (5.3) can be used to describe static sources in equilibrium in the case
when λ, ψ , and R do not depend on t . These are static objects with non-vanishing
energy momentum. In this case, the area radius R can be used as a radial coordinate
setting R = r . The simplest interior solution of this kind is given by the constant
density Schwarzschild interior and was found by Schwarzschild himself together
with the more famous vacuum solution (see, e.g., [47]). For the constant density
interior, one sets ρ = const. and solves Einstein’s equations that take the form of the
famous Tolman–Oppenheimer–Volkov equation [44], to find p(r). Then, the object’s
boundary rb is determined by the condition that p(rb) = 0. For a metric describing
a static interior case, we can define a function m(r) such that

grr = e2ψ(r) =
(
1 − 2m(r)

r

)−1

. (5.5)

It is easy to see that at the boundary of the static object, the function m(r) must
become equal to the Schwarzschild parameter MS that describes the total mass of the
star, and therefore, we can interpretm(r) as describing the amount of matter enclosed
within the radius r . We can generalize the above expression in the dynamical case
by introducing a function U (r, t) as

U = uμ d R(r, t)

dxμ
= e−λ Ṙ, (5.6)

then, we get

grr = e2ψ(r,t) =
(
1 + U 2 − 2m(r, t)

R

)−1

R′2. (5.7)

which reduces to the static case for R = r , so that R′ = 1 and Ṙ = 0. The Misner–
Sharp mass F(r, t) is then defined from 1 − F/R = gμν∇μ R∇ν R and it is given by

F(r, t) = 2m(r, t) = R(1 − e−2ψ R′2 + e−2λ Ṙ2). (5.8)
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In analogy with what was said before, we can interpret the Misner–Sharp mass as
describing the amount of matter enclosed within the radius r at the time t [35].

5.2.3 Einstein’s Equations

Einstein’s equations couple the space-time geometry given by the metric gμν appear-
ing in the Einstein’s tensor Gμν for the line element (5.3) to the matter content of the
collapsing cloud given by the energy momentum tensor (5.4). Einstein’s equations
take the usual form

Gμν = Rμν − 1

2
gμνR = Tμν, (5.9)

where Rμν and R are the Ricci tensor and Ricci scalar and where we have absorbed
the constant factor 8πk into the definition of Tμν . Then, Einstein’s tensor for the
collapsing system is given by

Gt
t = − F ′

R2R′ + 2Ṙe−2λ

R R′
(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (5.10)

Gr
r = − Ḟ

R2 Ṙ
− 2R′e−2ψ

R Ṙ

(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (5.11)

Gt
r = −e2ψ−2λGr

t = 2e−2λ

R

(
Ṙ′ − Ṙλ′ − ψ̇ R′) , (5.12)

Gθ
θ = Gφ

φ = e−2ψ

R

(
(λ′′ + λ′2 − λ′ψ ′)R + R′′ + R′λ′ − R′ψ ′) +

−e−2λ

R

(
(ψ̈ + ψ̇2 − λ̇ψ̇)R + R̈ + Ṙψ̇ − Ṙλ̇

)
. (5.13)

These equations need to be supplemented with one more equation coming from the
conservation of energy momentum that in general relativity comes as a consequence
of the fact that the connection is metric and which can be written as

∇μT μ
ν = 0. (5.14)

Then, in the simple case of pressureless (i.e., dust) collapse, and by making use of
the definition of the Misner–Sharp mass given in Eq. (5.8), the first two equations of
the above system simplify to

ρ = −Gt
t = F ′

R2R′ , (5.15)

p = 0 = Gr
r = − Ḟ

R2 Ṙ
, (5.16)
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the third and fourth combine to give

Ṙ′ = Ṙλ′ + ψ̇ R′ = 0, (5.17)

and the conservation of energy momentum (5.14) becomes

ρλ′ = 0. (5.18)

From Eq. (5.16), we see that for dust, we must have Ḟ = 0 which implies F =
F(r). This shows that the amount of matter enclosed within the co-moving radius
r does not change with time. In other words, during collapse, there is no inflow or
outflow of matter across any co-moving shell r . From Eq. (5.18), since the energy
density is nonzero, we see that we must have λ′ = 0, which implies λ = λ(t). Now,
we can define a new co-moving time coordinate t̃ by rescaling in such a way that

dt̃

dt
= eλ, (5.19)

and therefore obtain

− e2λdt2 = −e2λ
(

dt

dt̃

)2

dt̃ 2 = −dt̃ 2
. (5.20)

This means that there is always the gauge freedom to fix the co-moving time t such
that λ = 0, and in the following, we shall take t as such a gauge. Finally, Eq. (5.17)
can be written as

Ṙ′

R′ = ψ̇, (5.21)

from which we get

R′ = eg(r)+ψ. (5.22)

We call f (r) = e2g(r) − 1 and theMisner–Sharpmass equation (5.8) can be rewritten
in the form of the equation of motion of the system as

Ṙ2 = F(r)

R
+ f (r). (5.23)

Once Eq. (5.23) is solved to give R(r, t), the whole system of Einstein’s equations is
solved. The metric becomes

ds2 = −dt2 + R′2

1 + f
dr2 + R2dΩ2. (5.24)
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This is the well-known Lemaitre–Tolman–Bondi (LTB) space-time [6, 33, 43]. We
see that the whole problem allows for two free functions of r , namely F and f , to be
specified at will. As said, the function F can be thought of as representing the matter
profile within the radius r , while from the above line element, the function f can
be thought of as an energy profile describing the spatial curvature of the space-time.
Then, provided that F and f are sufficiently regular, a unique solution of the equation
of motion (5.23) exists for each regular initial condition Ri = R(r, ti ).

5.3 Matching with an Exterior Metric

The metric given in Eq. (5.24) describes the dynamical collapse of a dust sphere.
This can be thought of as describing the final stages of the life of a star, provided that
gravity prevails on all other forces (thus allowing us to neglect any effect coming
from the microphysics of the collapsing fluid) and that the collapsing cloud has a
boundary. In the co-moving frame, this boundary can be identified with the surface
given by the co-moving radius r = rb. We consider the exterior of the collapsing
dust cloud to be static and vacuum. Then, Birkhoff’s theorem implies that it must
be a portion of the Schwarzschild space-time. The exterior Schwarzschild solution
can readily be derived from the metric (5.3) by including the further assumptions
of staticity and vanishing of energy momentum tensor. A space-time is said to be
stationary if it possess a time-like Killing vector, ∂t . In such a case, the metric (5.3)
becomes invariant under translations in t , and this is reflected in the metric functions
λ, ψ , and R that do not depend on t . Further, a space-time is said to be static if the
time-like Killing vector is orthogonal to the hypersurfaces of constant t . If we further
impose that the energy momentum tensor is that of vacuum, namely Tμν = 0, we
find that the only static spherically symmetric vacuum solution of Einstein’s field
equations can be written in the form

ds2 = −
(
1 − 2MS

rs

)
dt2s +

(
1 − 2MS

rs

)−1

dr2s + r2s dΩ2. (5.25)

which is the well-known Schwarzschild line element expressed in Schwarzschild
coordinates {ts, rs, θ, φ}. As said, the Schwarzschild metric has a singularity at the
center rs = 0. One way to determine the presence of singularities in solutions of Ein-
stein’s field equations is by inspecting curvature invariants looking for divergences.
The Kretschmann scalar is one of these invariants and it is defined starting from the
Riemann tensor asK = RμνσδRμνσδ . The Kretschmann scalar for Schwarzschild is

K = 12
4MS

2

r6s
, (5.26)
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from which we see that the null surface rs = 2MS is not singular; in fact, it is the
event horizon [15], and the singularity is located at rs = 0.

The global solution for the collapsing star is obtained by matching the collapsing
interior given by the metric (5.24) to the vacuum exterior across a shrinking bound-
ary surface Σ . Mathematically, “matching” means that the induced metric on the
boundary hypersurface Σ must be the same on both sides. Also, the rate of change
of the unit normal to Σ must be the same on both sides [23]. Let us label the interior
metric with (−) and the exterior metric with (+). Then, the two line elements can be
written as

ds2± = g±
μνdxμ

±dxν
±. (5.27)

The boundary hypersurface is implicitly defined on each side by Φ±(xμ
±(ya)) = 0,

and the induced metric on Σ can be written as

ds2Σ = γabdyadyb, (5.28)

where a = 1, 2, 3. Now define the three basis 4-vectors tangent to Σ as eμ

(a) =
∂xμ/∂ya . Then, the condition that the induced metric γ ±

ab = g±
μνeμ

(a)e
ν
(b) agrees on

both sides is simply γ +
ab = γ −

ab. Define the unit normal to Σ as

nμ =
(

gρσ ∂Φ

∂xρ

∂Φ

∂xσ

)−1/2
∂Φ

∂xμ
. (5.29)

The extrinsic curvature (or second fundamental form) is defined as

Kab = gμνnμ∇aeν
(b). (5.30)

Then,

K ±
ab = ∂xμ

±
∂ya

∂xν±
∂yb

∇μnν , (5.31)

and continuity of K across Σ is given by

K +
ab = K −

ab. (5.32)

In the case of spherical collapse of dust, we have that the boundary hypersurface, in
the exterior, with coordinates {x+} = {ts, rs, θ, φ}, is given by

Φ+ = rs − Rb(ts) = 0, (5.33)

and in the interior, with coordinates {x−} = {t, r, θ, φ}, is given by

Φ− = r − rb = 0. (5.34)
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So that the induced metric on the boundary is

ds2Σ = −dt2 + Rb(t)
2dΩ2. (5.35)

The Schwarzschild time ts can be written as a function of the co-moving time t from

dt

dts
=

√(
1 − 2MS

Rb

)
−

(
1 − 2MS

Rb

)−1 (
d Rb

dts

)2

, (5.36)

and the matching conditions for the continuity of the metric become

Rb(ts) = R(rb, ts(t)), (5.37)

F(rb) = 2MS. (5.38)

Finally, continuity of Kab follows identically from the matching conditions. There-
fore, we see that the Misner–Sharp mass can be interpreted as the mass enclosed
within the co-moving radius r and that on the boundary, it becomes proportional to
the Schwarzschild mass MS. Also, we see that the area function R(r, t) in the interior
at the boundary becomes the shrinking area radius in the Schwarzschild portion of
the space-time. For more general collapse model, a matching to a suitable exterior
space-time can also be defined (see, e.g., [13, 14, 27]).

5.4 Regularity, Scaling, and Energy Conditions

In order for the model to be physically acceptable, we need to choose an initial
configuration that satisfies several conditions. Themost important ones are regularity,
which corresponds to requiring that the initial matter profiles do not present any
singularities and are well behaved and the usual energy conditions, which in the dust
case can be expressed via positivity of the energy density. Another requirement that
is often imposed on the model is the absence of shell crossing singularities. These are
caustics like singularities that are due to the overlap of infalling shells. Shell crossing
singularities can possibly be removed by a suitable redefinition of the coordinates
and generally do not represent a breakdown of the model.

5.4.1 Regularity and Scaling

We now investigate regularity of the matter profiles and the condition for avoidance
of singularities at the initial time. In order to study these properties, we first need to
express the area radius R, the Misner–Sharp F mass, and the velocity profile f in an
appropriate gauge. As mentioned before, the Kretschmann scalar constitutes a valid
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tool to investigate the occurrence of singularities. In the case of the metric (5.24),
this becomes

K = 12
F ′2

R4R′2 − 32
F F ′

R5R′ + 48
F2

R6
. (5.39)

We note here that with the present choice of themetric functions, onemay be induced
to think that the central curve R = 0 is always singular, including at the initial time.
Nevertheless, this is not a physical singularity, as can be easily verified by evaluating
the energy density, which turns out to be finite at the initial time. We notice then
that there is a gauge degree of freedom in the scaling of R, namely in the way R is
“measured” at the initial time that can be used to remove the above ambiguity. In
fact, we can always choose arbitrarily the initial value of R. In the following, we
choose this initial scaling condition as

R(r, ti ) = r. (5.40)

From the choice of the initial data for R given in Eq. (5.40), we see that the gauge
freedom allows us to define a scaling function a(r, t) from the area function R(r, t)
as

R = ra(r, t). (5.41)

Now, the scaling factor a is an a-dimensional quantity such that

• at the initial time, we have a(r, ti ) = 1,
• at the time of formation of the singularity tsing , we have a(r, tsing) = 0,
• collapse is given by ȧ < 0.

For dust, using Einstein’s equation (5.15), the above scaling implies that the initial
density must satisfy the following condition:

ρ(r, ti ) = ρi (r) = F ′

r2
> 0. (5.42)

Therefore, in order to avoid having ρ diverging at r = 0 at the initial time, we must
impose a regularity condition on the Misner–Sharp mass. This is given by

F(r) = r3M(r), (5.43)

with M(r) non-diverging and sufficiently regular in the interval [0, rb]. Generally, we
assume that the function M(r) canbewritten as a polynomial expansion in the vicinity
of r = 0. In general, a physically viable density profile should be non-increasing
radially outwards and therefore we must impose that the first non-vanishing term in
the polynomial expansion of M is vanishing or negative in r = 0. It is reasonable to
suppose that M ′ ≤ 0 near the center. With the above scaling, the density becomes
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ρ = 3M + r M ′

a2(a + ra′)
. (5.44)

If we add the further requirement that ρ must not present any cusps at r = 0, we
must impose that M ′(r) vanishes in r = 0, and therefore, we must require M ′′ ≤ 0
near r = 0. Note that in the simplest case of homogeneous dust, ρ does not depend
on r and so M(r) must be constant M0. Then,

ρ(t) = 3M0

a3
, (5.45)

and as a consequence, the scale factor also does not depend on r . With this choice
of the scaling factor, it is easy to verify that the central density diverges only at
the singularity. Also, we see that the Kretschmann scalar in the homogeneous case
reduces to

K = 60
M2

0

a6
, (5.46)

and it is regular at the initial time, its value beingKi = 60M2
0 . In general, for inho-

mogeneous dust, we have

K = 12
(3M + r M ′)2

a4(a + ra′)2
− 32

M(3M + r M ′)
a5(a + ra′)

+ 48
M2

a6
. (5.47)

Note that by writing K in terms of M and a, we avoid the problem of divergence
along the central line. In the new scaling along r = 0,we see thatK diverges only for
a = 0, thus showing the occurrence of the singularity. The curve tsing(r) for which
a(r, tsing) = 0 is the singularity curve which describes the time at which the shell
r becomes singular. As a consequence of the fact that in the homogeneous case, a
depends only on t , we see that for homogeneous dust, the singularity occurs at the
same time tsing for every co-moving shell r .

From the equation of motion (5.23), we see that at the initial time, the velocity of
the infalling particles is given by

Ṙi = −
√

F

r
+ f . (5.48)

Given the fact that the choice of the free function F corresponds to fixing the initial
density profile from the above equation, we see that fixing f corresponds to deter-
mining the initial velocity profile for the particles in the cloud. Now, by making use
of the scaling above, we can rewrite Eq. (5.48) as

ȧi = −
√

M + f

r2
, (5.49)
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from which we see that in order to have a finite initial velocity at all radii, we must
set a scaling for f as well. We shall take

f (r) = r2b(r), (5.50)

with b(r) a sufficiently regular function (again which can be given as a polynomial
expansion near r = 0). To summarize, at the initial time, we have the freedom to
specify three functions of r as follows:

• Choose an initial condition for the scaling R(r, ti ) = Ri (r) or equivalently set the
value of a(r, ti ).

• Choose a mass function F(r), or equivalently M(r), which implies an initial
density ρi = F ′/r2.

• Choose a velocity function f (r), or equivalently b(r), which implies the initial
condition for the velocity Ṙ(r, ti ).

Then, the system is fully determined and the equation of motion can be written as

ȧ(r, t) = −
√

M(r)

a(r, t)
+ b(r). (5.51)

By solving the above equation for a, we completely solve the system of Einstein’s
equations. As said, homogeneous dust collapse is given by ρ = ρ(t) = 3M0/a3.
Therefore, from the above, it follows that homogeneous dust collapse can be obtained
from the following requirements:

• a = a(t)
• M(r) = M0 = const.
• b(r) = k = const.

In this case, we can give a precise interpretation of the velocity profile if we imagine
a dust cloud that extends to infinity.We can think at the constant k as representing the
initial velocity of particles at spatial infinity, and we can characterize the geometry
of the space-time based on the sign of k in the following way:

• k = 0marginally bound collapse, corresponding to a flat geometry. Shells at radial
infinity begin collapse with zero initial velocity.

• k > 0 unbound collapse, corresponding to a hyperbolic geometry. Shells at radial
infinity have positive initial velocity.

• k < 0 bound collapse, corresponding to an elliptic geometry. Shells at radial infin-
ity have negative initial velocity.

Note that if one wishes to have zero initial velocity Ṙi = 0 for particles in the col-
lapsing cloud with boundary, then the only possible choice is that of bound collapse
with M0 = −k.
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5.4.2 Energy Conditions

Einstein’s equations are often regarded as made of two different parts. The “golden”
half, more elegant, is the left-hand side that contains the Einstein tensor and therefore
encodes the information about the geometry of the space-time. The “wooden” half
is the right-hand side that contains the energy momentum tensor and in principle
should describe the physical properties of matter. As a matter of fact, it is generally
practically impossible to fully describe all the properties of the matter fields in the
energy momentum tensor, and therefore, one usually resorts to simplifications and
averaged properties that are valid for macroscopic fields. Nevertheless, wemust keep
inmind that the behavior of matter under very strong gravitational fields is not known
at present, and therefore, the description of classical macroscopic fluids that is valid
in the weak field may not be enough when the curvature becomes very high. To sim-
plify things, one usually imposes that certain inequalities be satisfied by the energy
momentum tensor in order for the same to be considered physically viable [18]. The
first and most commonly used inequality is the weak energy condition (w.e.c.). To
satisfy the w.e.c., the energy momentum tensor must be given in such a way that
TμνV μV ν ≥ 0 for any time-like (and null) vector V μ. This means that the energy
density must be nonnegative in any reference frame. The energy momentum tensor
for a fluid made of massive particles, with respect to some orthonormal basis, can
always be written as T μν = diag{ρ, p1, p2, p3}. Then, the weak energy conditions
in the co-moving frame can be written as

ρ ≥ 0 ρ + pi ≥ 0 with i = 1, 2, 3. (5.52)

This is the less demanding of the energy requirements. The weak energy condition
allows for violations of the conservation of baryon number as new particles can be
created. Still, more stringent conditions can be imposed. If one desires to impose that
the total amount of mass in the space-time is conserved, then one must impose the
dominant energy condition (d.e.c.) which states that for every time-like vector V μ,
the energy momentum tensor must satisfy both TμνV μV ν ≥ 0 and TμνV μ being a
null or time-like vector. This means that not only the energy density is nonnegative
in any frame, but also the flow of ρ must be locally not space-like. As a consequence,
we get that in an orthonormal reference frame, the energy density must be greater
than the pressures. Namely,

ρ ≥ 0 , −ρ ≤ pi ≤ ρ with i = 1, 2, 3. (5.53)

Note that if we define the speed of sound waves within the fluid travelling in the
direction of pi as vi = dpi/dρ (i = 1, 2, 3), then the d.e.c. does not allow for the
speed of sound to be greater that the speed of light. It is a very reasonable assumption
that is not implemented by thew.e.c.. Afluid that satisfies the d.e.c. obviously satisfies
also the w.e.c.. Finally, let us briefly mention a third energy condition that can be
imposed and that is not directly related to the previous two. This is the strong energy
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condition (s.e.c.), and for a perfect fluid in the co-moving frame, it is equivalent to
requiring

ρ ≥ 0 , ρ + p ≥ 0 , ρ + 3p ≥ 0. (5.54)

In the following, we shall always require that the fluid satisfies the w.e.c. and when-
ever possible that it satisfies the d.e.c. as well.

5.4.3 Shell Crossing Singularities

From Eq. (5.47), we see that the Kretschmann scalar diverges when the central sin-
gularity forms, namely when a = 0, but also when R′ = 0 if M ′ �= 0. In this case,
we speak of the occurrence of shell crossing singularities. These are true curvature
singularities that arise from overlapping radial shells. At the shell crossing singular-
ity, the radial geodesic distance between shells with radial coordinate r and r + dr
vanishes. These singularities are equivalent to caustics in wave propagation, and it is
reasonable to assume that the space-time can be extended through the singularity by
a suitable redefinition of the coordinates. This can also be seen from the fact that shell
crossing singularities are gravitationally weak, meaning that geodesics reaching the
singularity are not squeezed into a line (as is the case of the central singularity), and
thus, observers at the shell crossing are not crushed (see, e.g., [21, 22, 32, 49, 50]).
Nevertheless, in any collapse model, a condition that can be required is the absence
of shell crossing singularities. In order to avoid shell crossing singularities, we can
either impose R′ �= 0 or choose M(r) in such a way that M(r) = 0 when R′ = 0 so
that M ′/R′ < ∞. During collapse, the mass function M is generally assumed to be
positive; therefore, requiring the absence of shell crossing singularities is equivalent
to requiring that R′ is not vanishing. Note that since R′ = a + ra′ in a neighborhood
of the center, the condition can always be satisfied if a′ �= 0.

5.5 Trapped Surfaces and Singularities

In the Schwarzschild space-time, the surface rs = 2MS, known as the event horizon,
is “...a perfect unidirectional membrane: causal influences can cross it in only one
direction” [15]. The event horizon is the boundary of the region where light rays can
not escape to infinity. At the horizon, the time-like Killing vector is null and outgoing
null geodesics have zero radial velocity. Nevertheless, the event horizon is not a very
useful concept for practical (i.e., astrophysical) purposes. In fact, the event horizon
is a global property of the space-time which does not depend on the observer and its
determination requires the knowledge of the entire future history of the space-time.
What we need in order to be able to make experiments is a local approach to the
definition of trapped surfaces that allows us to define when a co-moving observer
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that is collapsing with the cloud becomes causally disconnected from the outside
universe. If matter is present, as in the case of the LTB metric given in Eq. (5.24), the
event horizon is not the only possible horizon that can be defined and it is not themost
useful concept to investigate the physics that occurs as the black hole forms.Wewant
to know how andwhen the black hole forms during gravitational collapse.When light
will be trapped by the gravitational field? The exterior region will become a black
hole solution once the boundary surface Rb(t) passes the Schwarzschild radius.What
about the interior? Each collapsing shell will become causally disconnected from the
outer universe at some point and will eventually fall into the central singularity. If
we want to track the formation of the horizon inside the matter region, first we need
to know what we mean by trapped surface in the interior.

Given a 3 + 1 slicing of the space-time, consider the three-dimensional space-like
slice. Then, a “trapped surface” is defined as a smooth closed two-surface in the slice
whose future-pointing outgoing null geodesics have negative expansion. This means
that all light rays, all null geodesics, emanating from the surface are pointing inward.
The “trapped region” in the slice is then defined as the union of all trapped surfaces,
and the “apparent horizon” is the outer boundary of the trapped region [7, 20, 40].
One intuitive way to understand the difference between the apparent horizon and
the event horizon is to note that the event horizon is the surface at which any light
ray directed outward can be initially outgoing and eventually become ingoing, thus
falling back inwards at some later time, while the apparent horizon is the surface
for which all light rays directed outwards are ingoing, thus directed inward at the
time when they are emitted. In vacuum, the two surfaces coincide, and therefore,
the apparent horizon and the event horizon in the Schwarzschild space-time are the
same. Still, when matter is present, they can be different, as is the case for the LTB
metric.

The apparent horizon in general need not be a null surface and it always lies inside
the event horizon. Nevertheless, it is the apparent horizon that determines the trapped
region in the collapsing cloud. It is a local property of the space-time and is observer
dependent, and therefore, it can be experimentally tested, while the event horizon
may be undetectable. To understand this, imagine the situation of a thin spherical
shell separating a vacuumMinkowski interior from a vacuumSchwarzschild exterior.
The shell may be time-like or light-like. Let the shell have total mass MS and collapse
under its own gravity (see Fig. 5.1). As the shell collapses, an event horizon will form
at R = 0 at the time t = t0. The event horizon curve will expand to larger radii and
eventually match the Schwarzschild radius R = 2MS in the exterior at t = tSch. An
observer living at a fixed radial coordinate R = R1 inside the Minkowski region will
experience the event horizon passing through him at the time t1 but will not have
any way to detect it. This shows how in principle we can have event horizons where
we would not expect and why local experiment cannot detect the presence of an
event horizon. For this reason, the apparent horizon is a more useful tool to study the
trapped region that develops during the formation of a black hole.

For the spherical dust collapse model, the apparent horizon is the surface for
which the surface R(r, t) = const. is null. This means
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R

t0

t

Minkowski Schwarzschild

R1

t1

tSch

2Ms

Fig. 5.1 Collapse of a thin spherical null shell (thick line) separating a flat vacuum interior from
a Schwarzschild exterior. The angular coordinates θ and φ are suppressed, so every radius R
corresponds to a spherical surface. The thin line represents the event horizon, which forms at the
center of symmetry of the system at the time t0 and expands toward bigger radii. As the shell crosses
the Schwarzschild radius 2MS, the horizon settles to the usual event horizon of a static black hole.
Observers living in the interior at a fixed radius R1 would fall inside the trapped region at the time
t1 but would have no way of detecting the horizon that is passing through them

gμν(∂μ R)(∂ν R) = 1 + f − e−2λ Ṙ2 = 0. (5.55)

From the definition of the Misner–Sharp mass in Eq. (5.8), we get that the condition
for the formation of trapped surfaces can be expressed as

1 − F

R
= 1 − r2M

a
= 0. (5.56)

This condition can be viewed as the implicit definition of the curve tah(r) for which

a(r, tah(r)) = r2M(r). (5.57)

The above curve is called the apparent horizon curve and describes the co-moving
time t at which the co-moving shell r becomes trapped.

As we have seen, the other important curve to describe the formation of the black
hole at the end of collapse is the singularity curve tsing(r). This is the curve that
describes the co-moving time t at which the co-moving shell r becomes singular.
This curve represents the limit of the space-time manifold, and all geodesics inside
the trapped region must terminate at the singularity. From the condition of formation
of the singularity, we see that the curve tsing(r) is given implicitly by
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a(r, tsing(r)) = 0. (5.58)

We have already seen that in the case of homogeneous dust, we must have tsing =
const., which means that all shells become singular at the same co-moving time.

5.6 Homogeneous Solutions

The equation of motion (5.51) for homogeneous collapse is written as

ȧ = −
√

M0

a
+ k. (5.59)

We can characterize the geometry depending on the sign of the free parameter k by
introducing the following change of coordinates

r = Sk(χ) =

⎧⎪⎨
⎪⎩

sinh χ if k = +1, “hyperbolic” region,

χ if k = 0, “flat” region,

sin χ if k = −1, “elliptic” region.

We can then write the Oppenheimer–Snyder metric in a unified form as

ds2 = −dt2 + a(t)2
[
dχ2 + Sk(χ)2dΩ2

]
, (5.60)

and the solution of the equation of motion is given in parametric form by

a(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M0
2k (cosh η − 1) with sinh η − η = 2k3/2(t−ts )

M0
if k > 0,

(
3M0(t−ts )

2

)2/3
if k = 0,

M0
−2k (1 − cos η) with η − sin η = 2(−k)3/2(t−ts )

M0
if k < 0,

On the other hand, one can always solve the equation of motion (5.59) to find t (a).

• In the flat region given by k = 0, the equation of motion is easily integrated to give

t (a) = − 2a
3
2

3
√

M0
+ tsing.

• In the hyperbolic region, given by k > 0, we define X = M0/k and we get

t (a) = a√
k

⎛
⎝ X

a
tanh−1 1√

X
a + 1

−
√

X

a
+ 1

⎞
⎠ + tsing.
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• In the elliptic region, given by k < 0, we define X = −M0/k and we get

t (a) = a√−k

⎛
⎝

√
X

a
− 1 − X

a
tan−1 1√

X
a − 1

⎞
⎠ + tsing.

Finally, for homogeneous dust, the metric (5.3) can also be written as

ds2 = −dt2 + a2

1 + r2k
dr2 + r2a2dΩ2, (5.61)

from which we see that the metric in the interior is just the time reversal of a dust
Friedmann–Robertson–Walker cosmological solution.

Marginally bound case is a particularly simple case given by k = 0. Then, the ini-
tial velocity of collapse is nonzero, as can be seen from ȧi = −√

M0, and the equation
of motion is simply ȧ = −√

M0/a for which the solution is obtained immediately
as (see Fig. 5.2)

a(t) =
(
1 − 3

2

√
M0t

)2/3

. (5.62)

R
0

t

Interior Exterior

Rb(t)

t0

tsing

2Ms

Fig. 5.2 Schematic view of homogeneous dust collapse. At the time ti = 0, no singularities are
present. The boundary curve Rb(t) separates the interior from the vacuum exterior. The cloud
collapses as t increases, and at the time t0, the horizon forms at the boundary. In the exterior region,
the horizon is the Schwarzschild radius. In the interior, the apparent horizon propagates inward and
reaches the center of symmetry at the time of formation of the singularity tsing. For t > tsing, the
space-time has settled to the usual Schwarzschild solution
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5.6.1 Apparent Horizon and Singularity

From the condition for formation of trapped surfaces given in Eq. (5.56), we obtain
the curve tah(r) describing the time at which the shell r crosses the apparent horizon:

tah(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tsing(r) + F

f
3
2
tanh−1

√
f

1+ f − F
f

√
1 + f , for k > 0,

tsing(r) − 2
3 F(r) = 2

3
√

M0
− 2

3r3M0 , for k = 0,

tsing(r) + F

(− f )
3
2
tan−1

√
− f

1+ f − F
f

√
1 + f , for k > 0.

Now, if we look for simplicity at the apparent horizon for marginally bound homo-
geneous dust model, we see that it forms initially at the boundary of the collapsing
cloud at the time t0 = tah(rb) = 2/3

√
M0 − 2r3b M0/3 and then propagates inward

toward the center. The time t0 is the same time at which the event horizon forms
in the exterior spacetime. For t > t0, the apparent horizon curve moves to smaller
radii reaching the center at the time tsing = tah(0) = 2/3

√
M0, which is the time of

formation of the singularity. Inside the trapped region, all geodesics terminate at the
singularity; therefore, an observer on the boundary, once this has passed the horizon,

falls toward the singularity in a finite time of the order of
√

R3
b/G M . An observer

at infinity sees the boundary approaching the horizon becoming infinitely redshifted
and indefinitely slow [36].

The singularity is reached once the density diverges. From the above, we have
seen that the shell focusing strong curvature singularity corresponds to a = 0. In the
homogeneous dust collapse case, this gives

tsing =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√−k

(
X tan−1 1√

X−1
− √

X − 1
)

, for k > 0,

2r
3
2

3
√

F
= 2

3
√

M0
, for k = 0,

1√
k

(√
X + 1 − X tanh−1 1√

X+1

)
, for k > 0.

The singularity is simultaneous, and all shells fall into the singularity at the same
co-moving time.

5.7 Inhomogeneous Dust and Collapse with Pressures

The easiest way to extend the homogeneous dust collapse model is to introduce
inhomogeneities in ρ. Inhomogeneous models have been widely considered in cos-
mology which are obtained by a time reversal of collapse models (see [5, 31] and
references therein). This means considering ρ = ρ(r, t), with ρ radially decreasing
in order for the matter profile to be physically realistic. This describes a dust cloud
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that initially has higher density at the center. Following the same procedure as in
homogeneous collapse, we can evaluate Einstein’s equations as

ρ = F ′

R2R′ , (5.63)

Ḟ = 0, (5.64)

λ′ = 0, (5.65)

ψ̇ = Ṙ′

R′ . (5.66)

The main difference with the homogeneous case is that now we will have M(r),
b(r), and a(r, t). Then, it is worth asking how the boundary, the trapped surfaces,
and singularity are affected by the presence of inhomogeneities. Does a black hole
still form at the end of collapse? Yes, the singularity theorems by Hawking and
Penrose tell us that once the trapped surfaces form, the formation of the singularity
is inevitable. Eventually, all matter falls into the central singularity and we are left
with a Schwarzschild black hole [19]. Nevertheless, if we ask whether we get a
picture of collapse qualitatively similar to the OS model, then the answer is not
always in the affirmative. In fact, the way in which the apparent horizon and the
singularity curve develop depends on the form of the density and velocity profiles
and some important differences with the OS model may arise. The most striking of
these differences is that in the inhomogeneous dust collapse, there is the possibility
for the central singularity to be “naked” (i.e., not covered by a horizon) at the instant
of formation (see, e.g., [9, 12, 26, 37, 48]).

In general, if M = M(r), we have

ρ = F ′

R2R′ = 3M + r M ′

a2(a + ra′)
. (5.67)

If we consider M(r) as a polynomial expansion near r = 0, we can take

M(r) = M0 + M1r + M2r
2 + · · · , (5.68)

and the condition for the energy density to be radially decreasing outward is given by
M1 ≤ 0. Ifwe alsowish to impose that the density does not present cusps at the center,
we may impose M1 = 0, and then, the condition for ρ to be decreasing becomes
M2 ≤ 0. This is consistent with the choice of density profiles in astrophysical models
that generally present only quadratic terms in r . Similar to the homogeneous case,
the value a = 0 signals the appearance of the shell focusing singularity. On the
other hand, now we need to make sure that shell crossing singularities, given by
R′ = a + ra′ = 0, donot occur before the formationof the singularity. For simplicity,
let us consider the marginally bound case. Then, R′ = 0 implies
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1 − 3

2

√
M − r t M ′

2
√

M
= 0, (5.69)

which can be used to obtain the time at which the shell r develops a shell crossing
singularity as

tsc(r) = 2
√

M

3M + r M ′ . (5.70)

For homogeneous dust, then tsc = tsing andwe do not have shell crossing singularities
during collapse. Similarly, in the inhomogeneous casewith M ′ < 0, we have tsc(r) ≥
ts(r), and therefore, no shell crossing singularities occur before the formation of the
central singularity. From this, we see that the physical requirement of a radially
decreasing density profile is compatible with the condition for avoidance of shell
crossing singularities.

The solution for inhomogeneous dust collapse can be obtained form the one for
homogeneous dust by replacing M0 and k with M(r) and b(r). Again, let us consider
for simplicity the solution for marginally bound collapse. This is given by

a(r, t) =
(
1 − 3

2

√
M(r)t

)2/3

. (5.71)

We immediately see that now each shell collapses with a different scale factor and
a different velocity. As a consequence, each shell becomes singular at a different
time. The apparent horizon curve is also affected, as now it does not necessarily
form initially at the boundary. The singularity curve and apparent horizon curve are
explicitly given by

tsing(r) = 2

3
√

M(r)
, (5.72)

tah(r) = tsing(r) − 2

3
r3M, (5.73)

and near r = 0, they have the same behavior up until the third order in r ,

tsing(r) = 2

3
√

M0
− M1r

3M3/2
0

+ · · · , (5.74)

tah(r) = 2

3
√

M0
− M1r

3M3/2
0

+ · · · . (5.75)

Note that near the center, the apparent horizon curve is increasing and the central line
r = 0 becomes singular and trapped at the same time. This suggests the possibility
for the existence of geodesics that originate at the central singularity and are not
trapped inside the horizon as (see Fig. 5.3). Due to the lack of pressures in the model,
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Fig. 5.3 Schematic view of inhomogeneous dust collapse. At the time ti = 0, no singularities
are present. The boundary curve Rb(t) separates the interior from the vacuum exterior. The cloud
collapses as t increases, and at the time t0, the horizon forms at the center of the cloud. The
singularity forms at the same time. Null geodesic can originate from the singularity and reach
distant observers. In the interior, the apparent horizon propagates outward and reaches the boundary
at the time t1 > t0. Once all the matter falls into the singularity, the space-time settles to the usual
Schwarzschild solution

the boundary of the star rb can be chosen arbitrarily. This is a mathematical artifact
of the dust solution, and in the case with pressures, the boundary would have to be
set at the radius where p vanishes. Therefore, if the boundary is chosen in such a
way that tah is always increasing, it is possible to find null geodesics that originate at
ts(0) and reach observers at infinity. Outgoing radial null geodesics tγ (r) are given
by

dtγ
dr

= R′, (5.76)

and it can be proven that there are null geodesics coming out of the first instant of
the central singularity ts(0) and reaching the boundary [9, 12, 26, 37, 48]. Naked
singularities are found in many solutions of Einstein’s equations and can be very
different from one another. The question is if they can form from physically realistic
processes. How much these models rely on the assumptions? What outcome will
come from more realistic models? We shall shortly discuss these issues in the next
sections (for a more detailed discussion, see, e.g., [28]).

Analytically, we cannot deal with rotation or departures from spherical symmetry.
In fact, when it comes to rotation at present, we do not possess an analytical solu-
tion that describes an interior for the Kerr space-time that matches smoothly to the
exterior. Nevertheless, some indications on how general is the scenario described
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in the dust collapse model can be obtained by considering collapse of a fluid
source with pressures. For a fluid source, the energy momentum tensor is given
by Tμν = diag{ρ, pr , pθ , pθ } and we can write Einstein’s equations and energy
momentum conservation

ρ = F ′

R2R′ , (5.77)

pr = − Ḟ

R2 Ṙ
, (5.78)

λ′ = 2
pθ − pr

ρ + pr

R′

R
− p′

r

ρ + pr
, (5.79)

Ġ = 2λ′ Ṙ

R
G , with G = R′2e−2ψ. (5.80)

Then, it is easy to see that the system of equations to be solved becomes much more
complicated with respect to the dust case. Together with the Misner–Sharp mass
definition, the system has five equations and seven unknown functions. Specifying
equations of state for pr and pθ then closes the system.

In this case, the Misner–Sharp mass need not be conserved during the evolution,
and therefore, there can be an inflow or outflow of matter across each shell r as
collapse progresses. As a consequence, the matching with the exterior space-time
need not be done with the Schwarzschild solution. Requiring the boundary condition
pr (rb, t) = 0 implies that F(rb, t) is conserved during collapse and the exterior is
Schwarzschild, and on the other hand, the condition that pr vanishes at the bound-
ary translates in a variable boundary surface rb(t). It can be shown that matching
with the Vaidya solution describing ingoing or outgoing null dust can be done in
certain cases and matching with a generalized Vaidya solution is always possible
[13, 14, 27].

The simplestmodelwith pressures that can be considered is that of a homogeneous
perfect fluid with linear equation of state. Then, requiring that the fluid be perfect
implies pr = pθ = p, while homogeneity implies p = p(t) and ρ = ρ(t). Finally,
a linear equation of state relates p to ρ via

p = γρ, (5.81)

with γ being a constant. The presence of the linear equation of state closes the system,
and Einstein’s equations can be fully integrated in this case. The third Einstein’s
equation (5.79) becomes again λ′ = 0, and the fourth equation gives again G =
1 + kr2. Then, the equation of motion is again written as

ȧ2 = M

a
+ k, (5.82)

where now M = M(t) is to be determined from the equation of state that together
with Eqs. (5.77) and (5.78) gives
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Ṁ = −3γ M

a
. (5.83)

Integrating the above equation, we get

M(t) = M0

a3γ
. (5.84)

Einstein’s equations (5.77) and (5.78) imply that the density is ρ = 3M/a3 and the
pressure is p = −Ṁ/a2. To have a positive pressure, M must decrease in time. If
we require a constant co-moving boundary r = rb, then the exterior metric cannot
be a portion of the Schwarzschild space-time and some mass must be radiated away
in the exterior region. This can be easily seen from the fact that M(t) implies that
the total mass within rb changes with time, and therefore, there must be an outflow
of matter from the co-moving boundary. As said, we can always match to a non-
vacuum solution describing a radiating null fluid or we can require the matching to
be performed at a surface rb(t).

5.8 Collapse in Astrophysics

We studied here some simple analytical toy models that describe the complete grav-
itational collapse of a spherical matter cloud made of non-interacting particles in
general relativity (GR). If we assume as a first approximation that these models can
be used to describe the most relevant features of the collapse of the core of a massive
star, we see that a black hole must inevitably form as the final product of collapse. At
the time t0, the horizon forms as the boundary of the star crosses the threshold of the
Schwarzschild radius, and at the time tsing > t0, the singularity forms at the center
of symmetry of the system. In the end, we are left with a Schwarzschild black hole.
The Oppenheimer–Snyder–Datt (OSD) model is very simple and relies on many
simplifying assumptions that while on the one hand allow us to solve the equations
analytically thus finding a global solution, on the other hand make for a scenario that
is not very realistic. The OSDmodel can be seen as the bridge between mathematical
black holes and astrophysical black holes in the sense that it is a simplified mathe-
matical description of a dynamical phenomena that nevertheless captures the most
essential features. The main assumptions in the model are spherical symmetry, no
rotation, homogeneous density, and no pressures. A real star will have some small
but non-vanishing quadrupole moment, it will have angular momentum, it will be
composed of several kinds of gases with pressures and different equations of state,
and its density will not be homogeneous. Therefore, it is reasonable to ask how gen-
eral is the picture obtained in the OSD model and how much the collapse of a real
star will depart from our mathematical idealization.

What happens to singularity andhorizononcewe introduce inhomogeneities, pres-
sures, rotation, and asymmetries in the model? Gravitational collapse is a dynamical
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process, and the structure and evolution of the horizon in a realistic stellar interior
is not well understood. We still do not have any analytical model of formation of a
Kerr black hole. In fact, we do not even have any analytical solution describing a
viable interior metric for the Kerr solution. Nevertheless, the evidence for the exis-
tence of black holes is now almost universally accepted, and most people believe
that the process that leads to their formation can be roughly described via the OSD
model. Still, the question of whether the black hole candidates that we observe in the
universe are well described by the Schwarzschild and Kerr metrics is still open. As is
the question of whether every collapsing star that is massive enough must inevitably
form a black hole as the final end state. In order to study more realistic models, one
needs to give up the hope to solve Einstein’s equations analytically and resort to
numerical simulations. Fully general relativistic simulations have been done in the
past years to study (among other things) gravitational core collapse with rotation and
magnetic fields, black holemergers and black hole neutron starmergers, gravitational
wave production, recoil from black hole mergers, production of jets, and gamma ray
bursts (see, e.g., [24, 25, 42] and references therein).

Numerical simulations have improved dramatically over the last decade. Never-
theless, there are still no fully satisfactory simulations of supernovae explosions that
lead to the formation of a black hole. One reason resides in the fact that many ele-
ments of classical and quantum physics come into play during the last stages of the
life of a star. Describing accurately such scenarios is an enormous task that requires
very expansive computations on the most advanced supercomputers. Further to this,
numerical simulationsmust assume that GR holds unchanged at all energy scales and
therefore are limited by our lack of knowledge of gravity in the strong field. Stellar
evolution and black hole formation still present a lot of open questions, and the pos-
sibility exists that black holes are not the only possible final outcome of collapse of
very massive stars. For these reasons, despite the increasing amount of observational
evidence for the existence of black holes, it is useful to keep an eye open for other,
more exotic, possibilities (see, e.g., [10, 16, 34, 45, 46] and references therein).

5.9 Concluding Remarks

Simple analytical models of general relativistic collapse show that a black hole can
form as the end state of the life of a massive star. From a mathematical point of view,
a black hole is a space-time singularity covered by an event horizon. The curvature
singularity at the end of collapse is indicated by the divergence of the scalar K ,
and approaching the singularity matter reaches infinite density in a finite co-moving
time. In some sense, the singularity at the end of collapse is analogous to the infinite
density obtained in Newtonian collapse and can be viewed as a limit of the model
rather than a physical feature of the system. Singularities are found in many solutions
of Einstein’s equations. The question is whether they can form from physically real-
istic processes and how we should interpret their appearance. We may think that GR
works well in the strong field regime and nothing can prevent complete collapse from
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happening. In this case, one has to accept that singularities are there and they may be
causally connected to the outside universe. On the other hand, we can believe that GR
works well in the strong field, but other effects arise either preventing the formation
of singularities or hiding them from view. Or we can think that GR needs modifica-
tions in the strong field regime due perhaps to quantum effects. These modifications
would then affect the space-time near the formation of classical singularities, thus
removing them. The first attitude, although legitimate, is not very common. A sin-
gularity in any classical theory such as classical mechanics or electromagnetism is
located somewhere in time and space and it does not affect the future predictability
of space-time itself. On the other hand in GR, a singularity is not a part of the space-
time. The distribution of matter determines the properties of space and time, and the
occurrence of singularities translates in geodesic incompleteness and has important
consequences for the causal structure of the space-time itself. For this reason, most
people believe that singularities must not occur in the real universe. The second atti-
tude can be summarized by the words of Roger Penrose [41]: “...does there exist a
‘cosmic censor’ who forbids the appearance of naked singularities, clothing each
one in an absolute event horizon?” This is the famous cosmic censorship conjecture
(CCC). At present, there exist counterexamples to the CCC, like the inhomogeneous
dust collapse model, but their physical relevance is not entirely clear. On the other
hand, it is highly plausible that GR is not enough to describe what happens in the
strong field regime. One needs to account for microphysics or for modifications to
GR possibly due to quantum effects. This third attitude is a view that was already
suggested by Wheeler who saw singularities as possible probes for new physics.

If the occurrence of singularities at the end of collapse signals a breakdown of
the fluid model approximation or a breakdown of GR itself, then what could be a
better mathematical framework to describe the last stages of the life of a star? Is there
any viable model for collapse that does not originate a singularity? The singularity
theorems by Hawking and Penrose tell us that if GR is the ultimate ingredient that we
need to use to describe collapse and if matter satisfies the usual energy conditions,
then a singularity must necessarily form [19]. More precisely, provided that some
energy condition is satisfied, the space-time is globally hyperbolic, and a trapped
region develops at some point, a singularity must always form. Therefore, in order
to develop non-singular model of collapse, one needs to modify GR in some way.
Several attempts have been made over the years, and the general scenario that is
arising is that singularities may be removed by quantum gravitational effects. Matter
in the strong field regime may violate standard energy conditions, and the complete
collapse to a black hole may be replaced by a bouncing scenario in which collapsing
matter re-expands after reaching a minimal size. The expansion phase may take the
form of an explosive event, and it may leave behind an exotic compact remnant (see,
e.g., [3, 4, 17] and references therein).

These compact remnants may be less massive, more dense, and smaller than a
neutron star and they would not possess an event horizon. Several types of exotic
compact objects have been investigated, and their observational properties are of
great interest for future astrophysical observations (see, e.g., [1, 2, 29, 30]). Given
the small number of astrophysical black hole candidates observed so far and the
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peculiar features that theoretical compact objects may possess, it is reasonable to
suppose that their observation may pose a great challenge for future astrophysics.
Nevertheless, if some departure from the black hole paradigm will be observed in
the future, this may open a window onto new areas of physics where gravitation and
quantum mechanics merge.
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