
Chapter 9
Distances on Convex Bodies, Cones,
and Simplicial Complexes

9.1 Distances on Convex Bodies

A convex body in the n-dimensional Euclidean space E
n is a convex compact

connected subset of E
n. It is called solid (or proper) if it has nonempty interior.

Let K denote the space of all convex bodies in E
n, and let Kp be the subspace of all

proper convex bodies. Given a set X � E
n, its convex hull conv.X/ is the minimal

convex set containing X.
Any metric space .K; d/ on K is called a metric space of convex bodies. Such

spaces, in particular the metrization by the Hausdorff metric, or by the symmetric
difference metric, play a basic role in Convex Geometry (see, for example,
[Grub93]).

For C;D 2 Knf;g, the Minkowski addition and the Minkowski nonnegative
scalar multiplication are defined by C C D D fx C y W x 2 C; y 2 Dg, and
˛C D f˛x W x 2 Cg, ˛ � 0, respectively. The Abelian semigroup .K;C/ equipped
with nonnegative scalar multiplication operators can be considered as a convex cone.

The support function hC W Sn�1 ! R of C 2 K is defined by hC.u/ D
supfhu; xi W x 2 Cg for any u 2 Sn�1, where Sn�1 is the (n � 1)-dimensional
unit sphere in E

n, and h; i is the inner product in E
n. The width wC.u/ is hC.u/ C

hC.�u/ D hC�C.u/. It is the perpendicular distance between the parallel supporting
hyperplanes perpendicular to given direction. The mean width is the average of
width over all directions in Sn�1.

• Area deviation
The area deviation (or template metric) is a metric on the set Kp in E

2 (i.e.,
on the set of plane convex disks) defined by

A.C4D/;
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where A.:/ is the area, and 4 is the symmetric difference. If C � D, then it is
equal to A.D/� A.C/.

• Perimeter deviation
The perimeter deviation is a metric on Kp in E

2 defined by

2p.conv.C [ D//� p.C/� p.D/;

where p.:/ is the perimeter. In the case C � D, it is equal to p.D/� p.C/.
• Mean width metric

The mean width metric is a metric on Kp in E
2 defined by

v2W.conv.C [ D//� W.C/ � W.D/;

where W.:/ is the mean width: W.C/ D p.C/=� , and p.:/ is the perimeter.
• Florian metric

The Florian metric is a metric on K defined by

Z
Sn�1

jhC.u/� hD.u/jd�.u/ D jjhC � hDjj1:

It can be expressed in the form 2S.conv.C [ D//� S.C/� S.D/ for n D 2 (cf.
perimeter deviation); it can be expressed also in the form nkn.2W.conv.C [
D// � W.C/ � W.D// for n � 2 (cf. mean width metric).

Here S.:/ is the surface area, kn is the volume of the unit ball B
n

of En, and
W.:/ is the mean width: W.C/ D 1

nkn

R
Sn�1 .hC.u/C hC.�u//d�.u/.

• McClure–Vitale metric
Given 1 � p � 1, the McClure–Vitale metric is a metric on K, defined by

�Z
Sn�1

jhC.u/� hD.u/jpd�.u/

� 1
p

D jjhC � hDjjp:

• Pompeiu–Hausdorff–Blaschke metric
The Pompeiu–Hausdorff–Blaschke metric is a metric on K defined by

maxfsup
x2C

inf
y2D

jjx � yjj2; sup
y2D

inf
x2C

jjx � yjj2g;

where jj:jj2 is the Euclidean norm on E
n.

In terms of support functions and using Minkowski addition, this metric is

sup
u2Sn�1

jhC.u/�hD.u/j D jjhC�hDjj1 D inff� � 0 W C � DC�B
n
;D � CC�B

ng;

where B
n

is the unit ball of En. This metric can be defined using any norm on R
n

and for the space of bounded closed subsets of any metric space.
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• Pompeiu–Eggleston metric
The Pompeiu–Eggleston metric is a metric on K defined by

sup
x2C

inf
y2D

jjx � yjj2 C sup
y2D

inf
x2C

jjx � yjj2;

where jj:jj2 is the Euclidean norm on E
n.

In terms of support functions and using Minkowski addition, this metric is

maxf0; sup
u2Sn�1

.hC.u/� hD.u//g C maxf0; sup
u2Sn�1

.hD.u/� hC.u//g D

D inff� � 0 W C � D C �B
ng C inff� � 0 W D � C C �B

ng;

where B
n

is the unit ball of En. This metric can be defined using any norm on R
n

and for the space of bounded closed subsets of any metric space.
• Sobolev distance

The Sobolev distance is a metric on K defined by

jjhC � hDjjw;

where jj:jjw is the Sobolev 1-norm on the set GSn�1 of all real continuous functions
on the unit sphere Sn�1 of En.

The Sobolev 1-norm is defined by jj f jjw D h f ; f i1=2w , where h; iw is an inner
product on GSn�1 , given by

h f ; giw D
Z

Sn�1

. fg C rs. f ; g//dw0; w0 D 1

n � kn
w;

where rs. f ; g/ D hgradsf ; gradsgi, h; i is the inner product in E
n, and grads is

the gradient on Sn�1 (see [ArWe92]).
• Shephard metric

The Shephard metric is a metric on Kp defined by

ln.1C 2 inff� � 0 W C � D C �.D � D/;D � C C �.C � C/g/:

• Nikodym metric
The Nikodym metric (or volume of symmetric difference, Dinghas

distance) is a metric on Kp defined by

V.C4D/ D
Z
.1x2C � 1x2D/

2dx;

where V.:/ is the volume (i.e., the Lebesgue n-dimensional measure), and 4 is
the symmetric difference. For n D 2, one obtains the area deviation.
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Normalized volume of symmetric difference is a variant of Steinhaus
distance defined by

V.C4D/

V.C [ D/
:

• Eggleston distance
The Eggleston distance (or symmetric surface area deviation) is a distance

on Kp defined by

S.C [ D/ � S.C \ D/;

where S.:/ is the surface area. It is not a metric.
• Asplund metric

The Asplund metric is a metric on the space Kp= � of affine-equivalence
classes in Kp defined by

ln inff� � 1 W 9T W En ! E
n affine; x 2 E

n;C � T.D/ � �C C xg

for any equivalence classes C� and D� with the representatives C and D,
respectively.

• Macbeath metric
The Macbeath metric is a metric on the space Kp= � of affine-equivalence

classes in Kp defined by

ln inffj det T � Pj W 9T;P W En ! E
n regular affine;C � T.D/;D � P.C/g

for any equivalence classes C� and D� with the representatives C and D,
respectively.

Equivalently, it can be written as ln ı.C;D/ C lnı.D;C/, where ı.C;D/ D
infTf V.T.D//

V.C/ I C � T.D/g, and T is a regular affine mapping of En onto itself.
• Banach–Mazur metric

The Banach–Mazur metric is a metric on the space Kpo= � of the
equivalence classes of proper 0-symmetric convex bodies with respect to linear
transformations defined by

ln inff� � 1 W 9T W En ! E
n linear, C � T.D/ � �Cg

for any equivalence classes C� and D� with the representatives C and D,
respectively.

It is a special case of the Banach–Mazur distance (Chap. 1).
• Separation distance

The separation distance between two disjoint convex bodies C and D in
E

n (in general, between any two disjoint subsets) En) is (Buckley, 1985) their
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Euclidean set-set distance inffjjx � yjj2 W x 2 C; y 2 Dg, while supfjjx � yjj2 W
x 2 C; y 2 Dg is their spanning distance.

• Penetration depth distance
The penetration depth distance between two interpenetrating convex bodies

C and D in E
n (in general, between any two interpenetrating subsets of En) is

(Cameron–Culley, 1986) defined as the minimum translation distance that one
body undergoes to make the interiors of C and D disjoint:

minfjjtjj2 W interior.C C t/ \ D D ;g:

Keerthi–Sridharan, 1991, considered jjtjj1- and jjtjj1-analogs of this distance.
Cf. penetration distance in Chap. 23 and penetration depth in Chap. 24.

• Growth distances
Let C;D 2 Kp be two compact convex proper bodies. Fix their seed points

pC 2 int C and pD 2 int D; usually, they are the centroids of C and D. The growth
function g.C;D/ is the minimal number � > 0, such that

.fpCg C �.CnfpCg//\ .fpDg C �.DnfpDg// ¤ ;:

It is the amount objects must be grown if g.C;D/ > 1 (i.e., C \ D D ;), or
contracted if g.C;D/ > 1 (i.e., int C \ int D ¤ ;) from their internal seed points
until their surfaces just touch. The growth separation distance dS.C;D/ and the
growth penetration distance dP.C;D/ ([OnGi96]) are defined as

dS.C;D/ D maxf0; rCD.g.C;D/�1/g and dP.C;D/ D maxf0; rCD.1�g.C;D//g;

where rCD is the scaling coefficient (usually, the sum of radii of circumscribing
spheres for the sets CnfpCg and DnfpDg).

The one-sided growth distance between disjoint C and D (Leven–Sharir,
1987) is

�1C min� > 0 W .fpCg C �f.CnfpCg//\ D ¤ ;g:

• Minkowski difference
The Minkowski difference on the set of all compact subsets, in particular, on

the set of all sculptured objects (or free form objects), of R3 is defined by

A � B D fx � y W x 2 A; y 2 Bg:

If we consider object B to be free to move with fixed orientation, the Minkowski
difference is a set containing all the translations that bring B to intersect with
A. The closest point from the Minkowski difference boundary, @.A � B/, to the
origin gives the separation distance between A and B.



188 9 Distances on Convex Bodies, Cones, and Simplicial Complexes

If both objects intersect, the origin is inside of their Minkowski difference,
and the obtained distance can be interpreted as a penetration depth distance.

• Demyanov distance
Given C 2 Kp and u 2 Sn�1, denote, if jfc 2 C W hu; ci D hC.u/gj D 1, this

unique point by y.u;C/ (exposed point of C in direction u).
The Demyanov difference A 	 B of two subsets A;B 2 Kp is the closure of

conv.[T.A/\T.B/fy.u;A/� y.u;B/g/;

where T.C/ D fu 2 Sn�1 W jfc 2 C W hu; ci D hC.u/gj D 1g.
The Demyanov distance between two subsets A;B 2 Kp is defined by

jjA 	 Bjj D max
c2A�B

jjcjj2:

It is shown in [BaFa07] that jjA 	 Bjj D sup˛ jjSt˛.A/� St˛.M/jj2, where St˛.C/
is a generalized Steiner point and the supremum is over all “sufficiently smooth”
probabilistic measures ˛.

• Maximum polygon distance
The maximum polygon distance is a distance between two convex polygons

P D .p1; : : : ; pn/ and Q D .q1; : : : ; qm/ defined by

max
i;j

jjpi � qjjj2; i 2 f1; : : : ; ng; j 2 f1; : : : ;mg:

• Grenander distance
Let P D .p1; : : : ; pn/ and Q D .q1; : : : ; qm/ be two disjoint convex polygons,

and let L.pi; qj/;L.pl; qm/ be two intersecting critical support lines for P and Q.
Then the Grenander distance between P and Q is defined by

jjpi � qjjj2 C jjpl � qmjj2 �†.pi; pl/�†.gj; qm/;

where jj:jj2 is the Euclidean norm, and †.pi; pl/ is the sum of the edges lengths
of the polynomial chain pi; : : : ; pl.

Here P D .p1; : : : ; pn/ is a convex polygon with the vertices in standard form,
i.e., the vertices are specified according to Cartesian coordinates in a clockwise
order, and no three consecutive vertices are collinear. A line L is a line of support
of P if the interior of P lies completely to one side of L.

Given two disjoint polygons P and Q, the line L.pi; qj/ is a critical support
line if it is a line of support for P at pi, a line of support for Q at qj, and P and
Q lie on opposite sides of L.pi; qj/. In general, a chord Œa; b� of a convex body
C is called its affine diameter if there is a pair of different hyperplanes each
containing one of the endpoints a; b and supporting C.
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9.2 Distances on Cones

A convex cone C in a real vector space V is a subset C of V such that C C C � C,
�C � C for any � � 0. A cone C induces a partial order on V by

x 
 y if and only if y � x 2 C:

The order 
 respects the vector structure of V , i.e., if x 
 y and z 
 u, then x C z 

y C u, and if x 
 y, then �x 
 �y, � 2 R, � � 0. Elements x; y 2 V are called
comparable and denoted by x � y if there exist positive real numbers ˛ and ˇ such
that ˛y 
 x 
 ˇy. Comparability is an equivalence relation; its equivalence classes
(which belong to C or to �C) are called parts (or components, constituents).

Given a convex cone C, a subset S D fx 2 C W T.x/ D 1g, where T W V ! R

is a positive linear functional, is called a cross-section of C. A convex cone C is
called almost Archimedean if the closure of its restriction to any 2D subspace is also
a cone.

A convex cone C is called pointed if C [ .�C/ D f0g and solid if int C ¤ ;.

• Koszul–Vinberg metric
Given an open pointed convex cone C, let C� be its dual cone.
The Koszul–Vinberg metric on C (Vinberg, 1963, and Koszul, 1965) is an

affine invariant Riemannian metric defined as the Hessian g D d2 C, where
 C.x/ D � log

R
C�

e�.�;x/d� for any x 2 C.
The Hessian of the entropy (Legendre transform of  C.x/) defines a metric

on C�, which ([Barb14]) is equivalent to the Fisher–Rao metric (Sect. 7.2).
[Barb14] also observed that Fisher–Souriau metric ([Sour70]) generalises
Fisher–Rao metric for Lie group thermodynamics and interpreted it as a
geometric heat capacity.

• Invariant distances on symmetric cones
An open convex cone C in an Euclidean space V is said to be homogeneous if

its group of linear automorphisms G D fg 2 GL.V/ W g.C/ D Cg act transitively
on C. If, moreover, C is pointed and C is self-dual with respect to the given inner
product h; i, then it is called a symmetric cone. Any symmetric cone is a Cartesian
product of such cones of only 5 types: the cones Sym.n;R/C, Her.n;C/C (cf.
Chap. 12), Her.n;H/C of positive-definite Hermitian matrices with real, complex
or quaternion entries, the Lorentz cone (or forward light cone) f.t; x1; : : : ; xn/ 2
R

nC1 W t2 > x21C� � �Cx2ng and 27-dimensional exceptional cone of 3�3 positive-
definite matrices over the octonions O. An n � n quaternion matrix A can be seen
as a 2n � 2n complex matrix A0; so, A 2 Her.n;H/C means A0 2 Her.2n;C/C.

Let V be an Euclidean Jordan algebra, i.e., a finite-dimensional Jordan alge-
bra (commutative algebra satisfying x2.xy/ D x.x2y/ and having a multiplicative
identity e) equipped with an associative (hxy; zi D hy; xzi) inner product h; i.
Then the set of square elements of V is a symmetric cone, and every symmetric
cone arises in this way. Denote P.x/y D 2x.xy/� x2y for any x; y 2 C.
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For example, for C D PDn.R/, the group G is GL.n;R/, the inner product is
hX;Yi D Tr.XY/, the Jordan product is 1

2
.XY C YX/, and P.X/Y D XYX, where

the multiplication on the right-hand side is the usual matrix multiplication.
If r is the rank of V , then for any x 2 V there is a complete set of orthogonal

primitive idempotents c1; : : : ; cr ¤ 0 (i.e., c2i D ci, ci indecomposable, cicj D 0

if i ¤ j,
Pr

iD1 ci D e) and real numbers �1; : : : ; �r, called eigenvalues of x, such

that x D Pr
iD1 �ici. Let x; y 2 C and �1; : : : ; �r be the eigenvalues of P.x� 1

2 /y.
Lim, 2001, defined following three G-invariant distances on any symmetric cone
C:

dR D .
X
1�i�r

ln2 �i/
1
2 ; dF D max

1�i�r
ln j�ij; dH D ln.max

1�i�r
�i.min

1�i�r
�i/

�1/:

For above distances, the geometric mean P.x
1
2 /.P.x� 1

2 y//
1
2 is the midpoint

of x and y. The distances dR.x; y/, dF.x; y/ are the intrinsic metrics of G-
invariant Riemannian and Finsler metrics on C. The Riemannian geodesic curve
˛.t/ D P.x

1
2 /.P.x� 1

2 y//t is one of infinitely many shortest Finsler curves passing
through x and y. The space .C; dR.x; y// is an Hadamard space (Chap. 6), while
.C; dF.x; y// is not. The distance dF.x; y/ is the Thompson’s part metric on C,
and the distance dH.x; y/ is the Hilbert projective semimetric on C which is a
complete metric on the unit sphere on C.

• Thompson’s part metric
Given a convex cone C in a real Banach space V , the Thompson’s part metric

on a part K � Cnf0g is defined (Thompson, 1963) by

log maxfm.x; y/;m.y; x/g

for any x; y 2 K, where m.x; y/ D inff� 2 R W y 
 �xg.
If C is almost Archimedean, then K equipped with this metric is a complete

metric space. If C is finite-dimensional, then one obtains a chord space
(Chap. 6). The positive cone R

nC D f.x1; : : : ; xn/ W xi � 0 for 1 � i � ng
equipped with this metric is isometric to a normed space which can be seen as
being flat. The same holds for the Hilbert projective semimetric on R

nC.
If C is a closed solid cone in R

n, then int C can be seen as an n-dimensional
manifold Mn. If for any tangent vector v 2 Tp.Mn/, p 2 Mn, we define a norm
jjvjjT

p D inff˛ > 0 W �˛p 
 v 
 ˛pg, then the length of any piecewise

differentiable curve � W Œ0; 1� ! Mn is l.�/ D R 1
0

jj� 0

.t/jjT
�.t/dt, and the distance

between x and y is inf� l.�/, where the infimum is taken over all such curves �
with �.0/ D x, �.1/ D y.

• Hilbert projective semimetric
Given a pointed closed convex cone C in a real Banach space V , the Hilbert

projective semimetric on Cnf0g is defined (Bushell, 1973), for x; y 2 Cnf0g, by

h.x; y/ D log.m.x; y/m.y; x//;
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where m.x; y/ D inff� 2 R W y 
 �xg; it holds 1
m.y;x/ D supf� 2 R W �y 
 xg.

This semimetric is finite on the interior of C and h.�x; �0y/ D h.x; y/ for �; �0 >
0. So, h.x; y/ is a metric on the projectivization of C, i.e., the space of rays of this
cone.

If C is finite-dimensional, and S is a cross-section of C (in particular, S D fx 2
C W jjxjj D 1g, where jj:jj is a norm on V), then, for any distinct points x; y 2 S, it
holds h.x; y/ D j ln.x; y; z; t/j, where z; t are the points of the intersection of the
line lx;y with the boundary of S, and .x; y; z; t/ is the cross-ratio of x; y; z; t. Cf.
the Hilbert projective metric in Chap. 6.

If C is finite-dimensional and almost Archimedean, then each part of C is a
chord space (Chap. 6) under the Hilbert projective semimetric. On the Lorentz
cone L D fx D .t; x1; : : : ; xn/ 2 R

nC1 W t2 > x21 C � � � C x2ng, this semimetric is
isometric to the n-dimensional hyperbolic space. On the hyperbolic subspace
H D fx 2 L W det.x/ D 1g, it holds h.x; y/ D 2d.x; y/, where d.x; y/ is
the Thompson’s part metric which is (on H) the usual hyperbolic distance
arccoshhx; yi.

If C is a closed solid cone in R
n, then int C can be seen as an n-manifold Mn

(Chap. 2). If for any tangent vector v 2 Tp.Mn/, p 2 Mn, we define a seminorm
jjvjjH

p D m.p; v/� m.v; p/, then the length of any piecewise differentiable curve

� W Œ0; 1� ! Mn is l.�/ D R 1
0

jj� 0

.t/jjH
�.t/dt, and h.x; y/ D inf� l.�/, where the

infimum is taken over all such curves � with �.0/ D x and �.1/ D y.
• Bushell metric

Given a convex cone C in a real Banach space V , the Bushell metric on the
set S D fx 2 C W Pn

iD1 jxij D 1g (in general, on any cross-section of C) is defined
by

1 � m.x; y/ � m.y; x/

1C m.x; y/ � m.y; x/

for any x; y 2 S, where m.x; y/ D inff� 2 R W y 
 �xg. In fact, it is equal to
tanh. 1

2
h.x; y//, where h is the Hilbert projective semimetric.

• k-oriented distance
A simplicial cone C in R

n is defined as the intersection of n (open or closed)
half-spaces, each of whose supporting planes contain the origin 0. For any set M
of n points on the unit sphere, there is a unique simplicial cone C that contains
these points. The axes of the cone C can be constructed as the set of the n rays,
where each ray originates at the origin, and contains one of the points from M.

Given a partition fC1; : : : ;Ckg of Rn into a set of simplicial cones C1, : : : , Ck,
the k-oriented distance is a metric on R

n defined by

dk.x � y/

for all x; y 2 R
n, where, for any x 2 Ci, the value dk.x/ is the length of the shortest

path from the origin 0 to x traveling only in directions parallel to the axes of Ci.



192 9 Distances on Convex Bodies, Cones, and Simplicial Complexes

• Cones over metric space
A cone over a metric space .X; d/ is the quotient space Con.X; d/=.X �

Œ0; 1�/=.X � f0g/ obtained from the product X � R�0 by collapsing the fiber
(subspace X � f0g) to a point (the apex of the cone). Cf. metric cone in Chap. 1.

The Euclidean cone over the metric space .X; d/ is the cone Con.X; d/ with a
metric d defined, for any .x; t/; .y; s/ 2 Con.X; d/, by

p
t2 C s2 � 2ts cos.minfd.x; y/; �g/:

If .X; d/ is a compact metric space with diameter < 2, the Krakus metric is
a metric on Con.X; d/ defined, for any .x; t/; .y; s/ 2 Con.X; d/, by

minfs; tgd.x; y/C jt � sj:

The cone Con.X; d/ with the Krakus metric admits a unique midpoint for each
pair of its points if .X; d/ has this property.

If Mn is a manifold with a pseudo-Riemannian metric g, one can consider a
metric dr2Cr2g (in general, a metric 1

k dr2Cr2g, k ¤ 0) on Con.Mn/ D Mn�R>0.
For example, Con.Mn/ D R

n n f0g if .Mn; g/ is the unit sphere in R
n.

A spherical cone (or suspension) †.X/ over a metric space .X; d/ is the
quotient of the product X � Œ0; a� obtained by identifying all points in the fibers
X � f0g and X � fag. If .X; d/ is a length space (Chap. 6) with diam.X/ � � , and
a D � , the suspension metric on †.X/ is defined, for any .x; t/; .y; s/ 2 †.X/,
by

arccos.cos t cos s C sin t sin s cos d.x; y//:

9.3 Distances on Simplicial Complexes

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the convex
hull of r C 1 points of En which do not lie in any .r � 1/-plane. The boundary
of an r-simplex has r C 1 0-faces (polytope vertices), r.rC1/

2
1-faces (polytope

edges), and .rC1
iC1 / i-faces, where .ri / is the binomial coefficient. The content (i.e., the

hypervolume) of a simplex can be computed using the Cayley–Menger determinant.
The regular simplex of dimension r is denoted by ˛r. Simplicial depth of a point
p 2 E

n relative to a set P � E
n is the number of simplices S, generated by .n C 1/-

subsets of P and containing p.
Roughly, a geometrical simplicial complex is a space with a triangulation, i.e., a

decomposition of it into closed simplices such that any two simplices either do not
intersect or intersect only along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices, in
which a family of finite nonempty subsets, called simplices, is distinguished, such
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that every nonempty subset of a simplex s is a simplex, called a face of s, and every
one-element subset is a simplex. A simplex is called i-dimensional if it consists
of i C 1 vertices. The dimension of S is the maximal dimension of its simplices.
For every simplicial complex S there exists a triangulation of a polyhedron whose
simplicial complex is S. This geometric simplicial complex, denoted by GS, is called
the geometric realization of S.

• Vietoris–Rips complex
Given a metric space .X; d/ and distance ı, their Vietoris–Rips complex is

an abstract simplicial complex, the simplexes of which are the finite subsets M
of .X; d/ having diameter at most ı; the dimension of a simplex defined by M is
jMj � 1.

• Simplicial metric
Given an abstract simplicial complex S, the points of geometric simplicial

complex GS, realizing S, can be identified with the functions ˛ W S ! Œ0; 1� for
which the set fx 2 S W ˛.x/ ¤ 0g is a simplex in S, and

P
x2S ˛.x/ D 1. The

number ˛.x/ is called the x-th barycentric coordinate of ˛.
The simplicial metric on GS (Lefschetz, 1939) is the Euclidean metric on it:

sX
x2S

.˛.x/ � ˇ.x//2:

Tukey, 1939, found another metric on GS, topologically equivalent to a
simplicial one. His polyhedral metric is the intrinsic metric, defined as the
infimum of the lengths of the polygonal lines joining the points ˛ and ˇ such that
each link is within one of the simplices. An example of a polyhedral metric is the
intrinsic metric on the surface of a convex polyhedron in E

3.
• Polyhedral space

A Euclidean polyhedral space is a simplicial complex with a polyhedral
metric. Every simplex is a flat space (a metric space locally isometric to
some E

n; cf. Chap. 1), and the metrics of any two simplices coincide on their
intersection. The metric is the maximal metric not exceeding the metrics of
simplices.

If such a space is an n-manifold (Chap. 2), a point in it is a metric singularity
if it has no neighborhood isometric to an open subset of En.

A polyhedral metric on a simplicial complex in a space of constant (positive
or negative) curvature results in spherical and hyperbolic polyhedral spaces.

The dimension of a polyhedral space is the maximal dimension of simplices
used to glue it. Metric graphs (Chap. 15) are just one-dimensional polyhedral
spaces.

The surface of a convex polyhedron is a 2D polyhedral space. A polyhedral
metric d on a triangulated surface is a circle-packing metric (Thurston, 1985)
if there exists a vertex-weighting w.x/ > 0 with d.x; y/ D w.x/ C w.y/ for any
edge xy.
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• Manifold edge-distance
A (boundaryless) combinatorial n-manifold is an abstract n-dimensional

simplicial complex Mn in which the link of each r-simplex is an .n�r�1/-sphere.
The category of such spaces is equivalent to the category of piecewise-linear (PL)
manifolds.

The link of a simplex S is Cl.StarS/ � StarS, where StarS is the set of
all simplices in Mn having a face S, and Cl.StarS/ is the smallest simplicial
subcomplex of Mn containing StarS.

The edge-distance between vertices u; v 2 Mn is the minimum number of
edges needed to connect them.

• Manifold triangulation metric
Let Mn be a compact PL (piecewise-linear) n-dimensional manifold. A trian-

gulation of Mn is a simplicial complex such that its corresponding polyhedron
is PL-homeomorphic to Mn. Let TMn be the set of all combinatorial types of
triangulations, where two triangulations are equivalent if they are simplicially
isomorphic.

Every such triangulation can be seen as a metric on the smooth manifold M
if one assigns the unit length for any of its 1-dimensional simplices; so, TMn can
be seen as a discrete analog of the space of Riemannian structures, i.e., isometry
classes of Riemannian metrics on Mn.

A manifold triangulation metric between two triangulations x and y is
(Nabutovsky and Ben-Av, 1993) an editing metric on TMn , i.e., the minimal
number of elementary moves, from a given finite list of operations, needed to
obtain y from x.

For example, the bistellar move consists of replacing a subcomplex of a
given triangulation, which is simplicially isomorphic to a subcomplex of the
boundary of the standard .n C 1/-simplex, by the complementary subcomplex
of the boundary of an .n C 1/-simplex, containing all remaining n-simplices and
their faces. Every triangulation can be obtained from any other one by a finite
sequence of bistellar moves.

• Polyhedral chain metric
An r-dimensional polyhedral chain A in E

n is a linear expression
Pm

iD1 ditr
i ,

where, for any i, the value tr
i is an r-dimensional simplex of En. The boundary

@A of a chain AD is the linear combination of boundaries of the simplices in the
chain. The boundary of an r-dimensional chain is an .r � 1/-dimensional chain.

A polyhedral chain metric is a norm metric jjA � Bjj on the set Cr.E
n/ of

all r-dimensional polyhedral chains. As a norm jj:jj on Cr.E
n/ one can take:

1. The mass of a polyhedral chain, i.e., jAj D Pm
iD1 jdijjtr

i j, where jtrj is the
volume of the cell tr

i ;
2. The flat norm of a polyhedral chain, i.e., jAj[ D infDfjA � @Dj C jDjg, where

the infimum is taken over all .r C 1/-dimensional polyhedral chains;
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3. The sharp norm of a polyhedral chain, i.e.,

jAj] D inf

 Pm
iD1 jdijjtr

i jjvij
r C 1

C j
mX

iD1
diTvi t

r
i j[
!
;

where the infimum is taken over all shifts v (here Tvtr is the cell obtained by
shifting tr by a vector v of length jvj). A flat chain of finite mass is a sharp
chain. If r D 0, than jAj[ D jAj].

The metric space of polyhedral co-chains (i.e., linear functions of polyhedral
chains) can be defined similarly. As a norm of a polyhedral co-chain X one can
take:

1. The co-mass of a polyhedral co-chain, i.e., jXj D supjAjD1 jX.A/j, where X.A/
is the value of the co-chain X on a chain A;

2. The flat co-norm of a polyhedral co-chain, i.e., jXj[ D supjAj[D1 jX.A/j;
3. The sharp co-norm of a polyhedral co-chain, i.e., jXj] D supjAj]D1 jX.A/j.


	9 Distances on Convex Bodies, Cones, and Simplicial Complexes
	9.1 Distances on Convex Bodies
	9.2 Distances on Cones
	9.3 Distances on Simplicial Complexes


