Chapter 3 Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, **quasimetric**, **near-metric**, **extended metric**, were defined in Chap. 1. Here we give some generalizations in the direction of Topology, Probability, Algebra, etc.

3.1 *m***-Tuple Generalizations of Metrics**

In the definition of a metric, for every *two points* there is a *unique associated number*. Here we group some generalizations of metrics in which *several points* or *several numbers* are considered instead.

• *m***-hemimetric**

Let *X* be a nonempty set. A function $d : X^{m+1} \to \mathbb{R}_{\geq 0}$ is called a leminatric (Deza-Rosenberg 2000) if it have the following properties: *m***-hemimetric** (Deza–Rosenberg, 2000) if it have the following properties:

- 1. *d* is *totally symmetric*, i.e., satisfies $d(x_1, \ldots, x_{m+1}) = d(x_{\pi(1)}, \ldots, x_{\pi(m+1)})$
for all $x_i \in X$ and for any permutation π of $\{1, \ldots, m+1\}$. for all $x_1, \ldots, x_{m+1} \in X$ and for any permutation π of $\{1, \ldots, m+1\}$;
 $d(x_1, \ldots, x_{m+1}) = 0$ if x_1, \ldots, x_{m+1} are not pairwise distinct:
- 2. $d(x_1,...,x_{m+1}) = 0$ if $x_1,...,x_{m+1}$ are not pairwise distinct;
- 3. for all $x_1, \ldots, x_{m+2} \in X$, *d* satisfies the *m***-simplex inequality**

$$
d(x_1,\ldots,x_{m+1})\leq \sum_{i=1}^{m+1}d(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{m+2}).
$$

Cf. unrelated **hemimetric** (i.e., a quasi-semimetric) in Chap. 1.

If in above 3. $d(x_1, \ldots, x_{m+1})$ is replaced by $sd(x_1, \ldots, x_{m+1})$ for some $s, 0 < s \leq 1$, then *d* is called (m, s) **-super-metric** ([DeDu03]). $(m, 1)$ - and $(1, s)$ -
super-metrics are exactly *m*-hemimetric and $\frac{1}{2}$ -near-semimetric; cf. **pear-metric** super-metrics are exactly *m*-hemimetric and $\frac{1}{s}$ -*near-semimetric*; cf. **near-metric** in Chap. 1.

If above 3. is dropped, *d* is called *m***-dissimilarity**. 1-dissimilarity and 1 hemimetric are exactly a distance and a semimetric.

• 2**-metric**

An *m***-hemimetric** with $m = 2$ satisfies 2-simplex (or *tetrahedron*) inequality

$$
d(x_1,x_2,x_3) \leq d(x_4,x_2,x_3) + d(x_1,x_4,x_3) + d(x_1,x_2,x_4).
$$

A 2**-metric** (Gähler, 1963 and 1966) is a 2**-hemimetric** *d* in which, for any distinct points x_1, x_2 , there is a point x_3 with $d(x_1, x_2, x_3) > 0$. The area of the triangle spanned by x_1, x_2, x_3 on \mathbb{R}^2 or \mathbb{S}^2 is a 2-metric.

A *D*-space (Dhage, 1992) is an 2-**hemimetric space** (X, d) in which the condition " $d(x_1, x_2, x_3) = 0$ if two of x_1, x_2, x_3 are equal" is replaced by " $d(x_1, x_2, x_3) = 0$ if and only if $x_1 = x_2 = x_3$." Mustafa and Sims, 2003, showed that D-spaces are not suitable for topological constructions. In 2006, they defined instead a function, let us call it $MS - 2$ **-metric**, $D: X^3 \to \mathbb{R}_{\geq 0}$ which satisfies

1. $D(x_1, x_2, x_3) = 0$ if $x_1 = x_2 = x_3$;

2. $D(x_1, x_1, x_2) > 0$ whenever $x_1 \neq x_2$;

3. $D(x_1, x_2, x_3) \ge D(x_1, x_1, x_2)$ whenever $x_3 \ne x_2$;

4. *D* is a *totally symmetric* function of its three variables, and

5. $D(x_1, x_2, x_3) \leq D(x_1, x_4, x_4) + D(x_4, x_2, x_3)$ for all $x_1, x_2, x_3, x_4 \in X$.

The perimeter of the triangle spanned by x_1, x_2, x_3 on \mathbb{R}^2 is a $MS - 2$ metric. If *d* is a metric, then $\frac{1}{2}(d(x_1, x_2) + d(x_2, x_3) + d(x_1, x_3))$ and $\max(d(x_1, x_2), d(x_2, x_3))$ are $MS = 2$ -metrics If *D* is a $MS = 2$ -metric $max(d(x_1, x_2), d(x_2, x_3), d(x_1, x_3))$ are $MS - 2$ -metrics. If *D* is a $MS - 2$ -metric, then $D(x_1, x_2, x_2) + D(x_1, x_1, x_2)$ is a metric. If (X, D) is a $MS - 2$ -metric space, the open *D-ball with center* x_0 *and radius* r is $B_D(x_0, r) = \{x_1 \in X :$ $D(x_0, x_1, x_1) < r$.

• **Multidistance**

Given a set *X*, a function $D : \bigcup_{m>1} X^m \to \mathbb{R}_{\geq 0}$ is called a **multidistance** artin–Major 2009) if for all *m* and all *x*, $x, y \in X$ it satisfies: (Martin–Major, 2009) if, for all *m* and all $x_1, \ldots, x_m, y \in X$, it satisfies:

- 1. $D(x_1, \ldots, x_m) = 0$ if $x_1 = \cdots = x_m$;
- 2. $D(x_1, \ldots, x_m) = D(x_{\pi(1)}, \ldots, x_{\pi(m)})$ for any permutation π of $\{1, \ldots, m\};$
3. $D(x_1, \ldots, x_m) \leq \sum_{m=1}^{m} D(x_1, y_1)$
- 3. $D(x_1,...,x_m) \leq \sum_{i=1}^m D(x_i,y).$

Clearly, the restriction of a multidistance on X^2 is a semimetric.

A multidistance *D* is called *regular*, if all $D(x_1, \ldots, x_m) \leq D(x_1, \ldots, x_m, y)$
id and *stable* if all $D(x_1, \ldots, x_n) = D(x_1, \ldots, x_n)$ hold. Given a metric hold, and *stable*, if all $D(x_1, \ldots, x_m) = D(x_1, \ldots, x_m, x_i)$ hold. Given a metric space (X, d) , the *Fermat multidistance* is $\min_{x \in X} \sum_{i=1}^{m} d(x_i, x)$; it is regular, but not stable.

The regular multidistances on *X* form a convex cone.

• **Multimetric**

In Mao, 2006, a **multimetric space** is the union of some metric spaces $(X_i, d_i), i \in J$. In the case $X_i = X, i \in J$, the **multimetric** is defined as the sequence-valued map $d(x, y) = (d_i), i \in J$, from $X \times X$ to $R_{\geq 0}^{|J|}$.

Cf. **bimetric theory of gravity** in Chap. 24 and (in the item **meter-related terms**) *multimetric crystallography* in Chap. 27.

Also, Jörnsten, 2007, consider *clustering* (Chap. 17) under several distance metrics simultaneously. In Rintanen, 2004, a *linear multimetric* is defined as $d =$ $w_1d_1 + \cdots + w_md_m$, where d_i are metrics and $w_i \in [0, 1]$ are weights.

• **Diversity**

Given a set *X*, a function *f* from its finite subsets to $\mathbb{R}_{\geq 0}$ is called (Bryant– Tupper, 2012) *diversity on X* if $f(A) = 0$ for all $A \subset X$ with $|A| \le 1$ and

 $f(A \cup B) + f(B \cup C) \geq f(A \cup C)$ for all $A, B, C \subset X$ with $B \neq \emptyset$.

The **induced diversity metric** $d(x, y)$ is $f({x, y})$.

For any diversity $f(A)$ with induced metric space (X, d) , it holds $f_{diam}(A) \le$
 $\leq f_c(A) \leq (|A| - 1)f_{f-c}(A)$ where the **diameter diversity** $f_{f-c}(A)$ is $f(A) \leq f_S(A) \leq (|A| - 1) f_{diam}(A)$, where the **diameter diversity** $f_{diam}(A)$ is may get $d(x, y) = dim(A)$ and the **Steiner diversity** $f_c(A)$ is the minimum $\max_{x,y \in A} d(x, y) = \text{diam}(A)$ and the **Steiner diversity** $f_S(A)$ is the minimum weight of a Steiner tree connecting elements of *A*.

*l*₁**-diversity** is defined by $f_{m1}(A) = \max |a_i - b_i| : a, b \in A$ for all finite $A \subset \mathbb{R}^m$.

Any diversity is a **Vitanyi multiset metric**, restricted to subsets. But much of Bryant–Tupper's theory of diversities does not extend on multisets.

• **Vitanyi multiset metric**

Given two multisets *m* and *m'*, define $n = mm'$ if *n* is the multiset consisting of elements of the multisets *m* and *m'* that is if *x* occurs once in *m* and once in the elements of the multisets *m* and m' , that is, if *x* occurs once in *m* and once in m' , then it occurs twice in *n*. A function *d* on the set of nonempty finite multisets is (Vitanyi, 2011) a **multiset metric** if

- 1. $d(m) = 0$ if all elements of *m* are equal and $d(m) > 0$ otherwise.
- 2. $d(X)$ is invariant under all permutations of *m*.
- 3. $d(mm') \leq d(mm'') + d(m''m')$ (multiset triangle inequality).

The usual metric between two elements results if the multiset *m* has two elements in 1. and 2. and the multisets m, m', m'' have one element each in 3.

An example is the set of all nonempty finite multisets *m* of integers with $d(m) = \max\{x : x \in m\} - \min\{x : x \in m\}$. Cohen–Vitanyi, 2012, defined another multiset metric, generalising **normalised web distance** (Chap. 22).

3.2 Indefinite Metrics

• **Indefinite metric**

An **indefinite metric** (or *G-metric*) on a real (complex) vector space *V* is a *bilinear* (in the complex case, *sesquilinear*) *form* G on V , i.e., a function G : $V \times V \to \mathbb{R}(\mathbb{C})$, such that, for any $x, y, z \in V$ and for any scalars α, β , we have the following properties: $G(\alpha x + \beta y, z) = \alpha G(x, z) + \beta G(y, z)$, and $G(x, \alpha y + \beta z) =$ $\overline{\alpha}G(x, y) + \beta G(x, z)$, where $\overline{\alpha} = a + bi = a - bi$ denotes the *complex conjugation*.

If a positive-definite form *G* is symmetric, then it is an *inner product* on *V*, and one can use it to canonically introduce a *norm* and the corresponding **norm metric** on *V*. In the case of a general form *G*, there is neither a norm, nor a metric canonically related to *G*, and the term **indefinite metric** only recalls the close relation of such forms with certain metrics in vector spaces (cf. Chaps. 7 and 26).

The pair (V, G) is called a *space with an indefinite metric*. A finitedimensional space with an indefinite metric is called a *bilinear metric space*. A **Hilbert space** *H*, endowed with a continuous *G*-metric, is called a *Hilbert space with an indefinite metric*. The most important example of such space is a *J-space*; cf. *J***-metric**.

A subspace L in a space (V, G) with an indefinite metric is called a *positive subspace*, *negative subspace*, or *neutral subspace*, depending on whether $G(x, x) > 0$, $G(x, x) < 0$, or $G(x, x) = 0$ for all $x \in L$.

• **Hermitian** *G***-metric**

A **Hermitian** *G***-metric** is an **indefinite metric** *G^H* on a complex vector space *V* such that, for all $x, y \in V$, we have the equality

$$
G^H(x, y) = \overline{G^H(y, x)},
$$

where $\overline{\alpha} = a + bi = a - bi$ denotes the *complex conjugation*.

• **Regular** *G***-metric**

A **regular** *G***-metric** is a continuous **indefinite metric** *G* on a **Hilbert space** *H* over C, generated by an invertible *Hermitian operator T* by the formula

$$
G(x, y) = \langle T(x), y \rangle,
$$

where \langle , \rangle is the *inner product* on *H*.

A *Hermitian operator* on a Hilbert space *H* is a *linear operator T* on *H* defined on a *domain* $D(T)$ of *H* such that $\langle T(x), y \rangle = \langle x, T(y) \rangle$ for any $x, y \in D(T)$. A bounded Hermitian operator is either defined on the whole of *H*, or can be so extended by continuity, and then $T = T^*$. On a finite-dimensional space a Hermitian operator can be described by a *Hermitian matrix* $((a_{ii})) = ((\overline{a}_{ii}))$.

• *J***-metric**

A *J***-metric** is a continuous **indefinite metric** *G* on a **Hilbert space** *H* over C defined by a certain *Hermitian involution J* on *H* by the formula

$$
G(x, y) = \langle J(x), y \rangle,
$$

where $\langle \cdot, \cdot \rangle$ is the *inner product* on *H*.

An *involution* is a mapping *H* onto *H* whose square is the *identity mapping*. The involution *J* may be represented as $J = P_+ - P_-,$ where P_+ and P_- are orthogonal projections in *H*, and $P_+ + P_- = H$. The rank *of indefiniteness* of the *J*-metric is defined as $\min\{\dim P_+, \dim P_-\}.$

The space (H, G) is called a *J-space*. A *J-space* with finite rank of indefiniteness is called a *Pontryagin space*.

3.3 Topological Generalizations

• **Metametric space**

A **metametric space** (Väisälä, 2003) is a pair (X, d) , where *X* is a set, and *d* is a nonnegative symmetric function $d : X \times X \to \mathbb{R}$ such that $d(x, y) = 0$ implies $x = y$ and triangle inequality $d(x, y) \leq d(x, z) + d(z, y)$ holds for all *x*, *y*, *z* $\in X$.
A metametric space is metrizable: the metametric *d* defines the same topolog

A metametric space is metrizable: the metametric *d* defines the same topology as the metric *d'* defined by $d'(x, x) = 0$ and $d'(x, y) = d(x, y)$ if $x \neq y$. A metametric *d* induces a Hausdorff topology with the usual definition of a hall metametric *d* induces a Hausdorff topology with the usual definition of a *ball* $B(x_0, r) = \{x \in X : d(x_0, x) < r\}$. Any **partial metric** (Chap. 1) is a metametric. • **Resemblance**

Let *X* be a set. A function $d: X \times X \to \mathbb{R}$ is called (Batagelj-Bren, 1993) a **resemblance** on *X* if *d* is *symmetric* and if, for all *x*, $y \in X$, either $d(x, x) \leq d(x, y)$
(in which case *d* is called a **forward resemblance**) or $d(x, x) \geq d(x, y)$ (in which (in which case *d* is called a **forward resemblance**), or $d(x, x) \geq d(x, y)$ (in which case *d* is called a **backward resemblance**).

Every resemblance *d* induces a *strict partial order* \prec on the set of all unordered pairs of elements of *X* by defining $\{x, y\} \prec \{u, v\}$ if and only if $d(x, y) \leq d(u, v)$.

• *w***-distance**

Given a metric space (X, d) , a *w***-distance** on *X* (Kada–Suzuki–Takahashi, 1996) is a nonnegative function $p: X \times X \to \mathbb{R}$ which satisfies the following conditions:

1. $p(x, z) \leq p(x, y) + p(y, z)$ for all $x, y, z \in X$;
2. for any $x \in X$ the function $p(x) \cdot Y \to \mathbb{R}$

- 2. for any $x \in X$, the function $p(x, .): X \to \mathbb{R}$ is *lower semicontinuous*, i.e., if a sequence $\{y_n\}_n$ in *X* converges to $y \in X$, then $p(x, y) \le \lim_{n \to \infty} p(x, y_n)$;
for any $\epsilon > 0$, there exists $\delta > 0$ such that $p(z, y) \le \delta$ and $p(z, y) \le \delta$.
- 3. for any $\epsilon > 0$, there exists $\delta > 0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply $d(x, y) \leq \epsilon$ for each $x, y, z \in X$ $d(x, y) \le \epsilon$, for each $x, y, z \in X$.

\cdot τ -distance space

A τ -distance space is a pair (X, f) , where *X* is a topological space and *f* is an Aamri-Moutawakil's τ -distance on X, i.e., a nonnegative function $f: X \times X \to \mathbb{R}$ such that, for any $x \in X$ and any neighborhood U of x, there exists $\epsilon > 0$ with $\{y \in X : f(x, y) < \epsilon\} \subset U$.

Any distance space (X, d) is a τ -distance space for the topology τ_f defined as follows: $A \in \tau_f$ if, for any $x \in X$, there exists $\epsilon > 0$ with $\{y \in X : f(x, y) < \epsilon\} \subset$ *A*. However, there exist nonmetrizable τ -distance spaces. A τ -distance $f(x, y)$ need be neither symmetric, nor vanishing for $x = y$; for example, $e^{|x-y|}$ is a τ -distance on $X = \mathbb{R}$ with usual topology.

• **Proximity space**

A **proximity space** (Efremovich, 1936) is a set *X* with a binary relation δ on the *power set* $P(X)$ of all of its subsets which satisfies the following conditions:

- 1. $A\delta B$ if and only if $B\delta A$ (*symmetry*);
- 2. $A\delta(B \cup C)$ if and only if $A\delta B$ or $A\delta C$ (*additivity*);
- 3. *A* δ *A* if and only if $A \neq \emptyset$ (*reflexivity*).

The relation δ defines a **proximity** (or *proximity structure*) on *X*. If $A\delta B$ fails, the sets *A* and *B* are called *remote sets*.

Every metric space (X, d) is a proximity space: define $A\delta B$ if and only if $d(A, B) = \inf_{x \in A, y \in B} d(x, y) = 0.$

Every proximity on *X* induces a (**completely regular**) topology on *X* by defining the *closure operator cl* : $P(X) \rightarrow P(X)$ on the set of all subsets of X $\text{as } cl(A) = \{x \in X : \{x\} \delta A\}.$

• **Uniform space**

A **uniform space** is a topological space (with additional structure) providing a generalization of metric space, based on **set-set distance**.

A **uniform space** (Weil, 1937) is a set *X* with an *uniformity* (or *uniform structure*) U , i.e., a nonempty collection of subsets of $X \times X$, called *entourages*, with the following properties:

- 1. Every subset of $X \times X$ which contains a set of U belongs to U ;
- 2. Every finite intersection of sets of *U* belongs to *U*;
- 3. Every set $V \in \mathcal{U}$ contains the *diagonal*, i.e., the set $\{(x, x) : x \in X\} \subset X \times X$;
- 4. If *V* belongs to *U*, then the set $\{(y, x) : (x, y) \in V\}$ belongs to *U*;
- 5. If *V* belongs to *U*, then there exists $V' \in U$ such that $(x, z) \in V$ whenever $(x, y), (y, z) \in V'.$

Every metric space (X, d) is a uniform space. An entourage in (X, d) is a subset of $X \times X$ which contains the set $V_{\epsilon} = \{(x, y) \in X \times X : d(x, y) < \epsilon\}$ for some positive real number ϵ . Other basic example of uniform space are *topological groups*.

Every uniform space (X, \mathcal{U}) generates a topology consisting of all sets $A \subset X$ such that, for any $x \in A$, there is a set $V \in \mathcal{U}$ with $\{y : (x, y) \in V\} \subset A$.

Every uniformity induces a **proximity** σ where $A \sigma B$ if and only if $A \times B$ has nonempty intersection with any entourage.

A topological space admits a uniform structure inducing its topology if only if the topology is **completely regular** (Chap. 2) and, also, if only if it is a *gauge space*, i.e., the topology is defined by a *-filter* of semimetrics.

• **Nearness space**

A **nearness space** (Herrich, 1974) is a set *X* with a *nearness structure*, i.e., a nonempty collection U of families of subsets of X , called *near families*, with the following properties:

- 1. Each family refining a near family is near;
- 2. Every family with nonempty intersection is near;
- 3. *V* is near if $\{cl(A) : A \in V\}$ is near, where $cl(A)$ is $\{x \in X : \{ \{x\}, A \} \in U\}$;
- 4. \emptyset is near, while the set of all subsets of *X* is not;
- 5. If ${A \cup B : A \in \mathcal{F}_1, B \in \mathcal{F}_2}$ is near family, then so is \mathcal{F}_1 or \mathcal{F}_2 .

The **uniform spaces** are precisely **paracompact** nearness spaces.

• **Approach space**

An **approach space** is a topological space providing a generalization of metric space, based on **point-set distance**.

An **approach space** (Lowen, 1989) is a pair (X, D) , where *X* is a set and *D* is a **point-set distance**, i.e., a function $X \times P(X) \rightarrow [0, \infty]$ (where $P(X)$ is the set of all subsets of *X*) satisfying, for all $x \in X$ and all $A, B \in P(X)$, the following conditions:

- 1. $D(x, \{x\}) = 0;$
- 2. $D(x, \{\emptyset\}) = \infty;$
- 3. $D(x, A \cup B) = \min\{D(x, A), D(x, B)\};$
- 4. $D(x, A) \leq D(x, A^{\epsilon}) + \epsilon$ for any $\epsilon \in [0, \infty]$, where $A^{\epsilon} = \{x : D(x, A) \leq \epsilon\}$ is the " ϵ -ball" with center x the " ϵ -ball" with center *x*.

Every metric space (X, d) (moreover, any extended quasi-semimetric space) is an approach space with $D(x, A)$ being the usual point-set distance min_{ve A} $d(x, y)$.

Given a **locally compact separable** metric space (X, d) and the family $\mathcal F$ of its nonempty closed subsets, the **Baddeley–Molchanov distance function** gives a tool for another generalization. It is a function $D: X \times \mathcal{F} \to \mathbb{R}$ which is lower semicontinuous with respect to its first argument, measurable with respect to the second, and satisfies the following two conditions: $F = \{x \in X : D(x, F) \le 0\}$
for $F \in \mathcal{F}$ and $D(x, F_1) > D(x, F_2)$ for $x \in X$ whenever $F_1, F_2 \in \mathcal{F}$ and for $F \in \mathcal{F}$, and $D(x, F_1) \geq D(x, F_2)$ for $x \in X$, whenever $F_1, F_2 \in \mathcal{F}$ and $F_1 \subset F_2$.

The additional conditions $D(x, \{y\}) = D(y, \{x\})$, and $D(x, F) \leq D(x, \{y\}) + y$, *F*) for all $x, y \in X$ and every $F \in F$ provide analogs of symmetry and the $D(y, F)$ for all $x, y \in X$ and every $F \in \mathcal{F}$, provide analogs of symmetry and the triangle inequality. The case $D(x, F) = d(x, F)$ corresponds to the usual point-set distance for the metric space (X, d) ; the case $D(x, F) = d(x, F)$ for $x \in X \backslash F$ and $D(x, F) = -d(x, X \ F)$ for $x \in X$ corresponds to the **signed distance function** in Chap. 1.

• **Metric bornology**

Given a topological space *X*, a *bornology* of *X* is any family *A* of proper subsets *A* of *X* such that the following conditions hold:

- 1. $\bigcup_{A \in A} A = X;$
- 2. *A* is an *ideal*, i.e., contains all subsets and finite unions of its members. The family *A* is a **metric bornology** ([Beer99]) if, moreover
- 3. *A* contains a countable base;
- 4. For any $A \in \mathcal{A}$ there exists $A' \in \mathcal{A}$ such that the closure of A coincides with the interior of A' .

The metric bornology is called *trivial* if A is the set $P(X)$ of all subsets of X ; such a metric bornology corresponds to the family of bounded sets of some bounded metric. For any noncompact **metrizable** topological space *X*, there exists an unbounded metric compatible with this topology. A nontrivial metric bornology on such a space *X* corresponds to the family of bounded subsets with respect to some such unbounded metric. A noncompact metrizable topological space *X* admits uncountably many nontrivial metric bornologies.

3.4 Beyond Numbers

• **Metric** 1**-space**

A *category* Ψ consists (Eilenberg and MacLane, 1945) of a set $Ob(\Psi)$ of *objects*, a set $Mor(\Psi)$ of *morphisms* (or *arrows*)) and a set-valued map associating a set $\Psi(x, y)$ of arrows to each ordered pair of objects x, y, so that each arrow belongs to only one set $\Psi(x, y)$. An element of $\Psi(x, y)$ is also denoted by $f: x \rightarrow y$.

Moreover, the composition $f \cdot g \in \Psi(x, z)$ of two arrows $f : x \to y, g : y \to z$ is defined, and it is associative. Finally, each set $\Psi(x, x)$ contains an *identity arrow id_x* such that $f \cdot id_x = f$ and $id_x \cdot g = g$ for any arrows $f : y \to x$ and $g : x \to z$. Cf. **category of metric spaces** in Chap. 1.

Weiss defined in [Weis12] a **metric** 1-space as a category Ψ together with a weight-function $w : \Psi(x, y) \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ on arrows, which satisfies

- 1. $w(id_x) = 0$ holds for each object $x \in Ob(\Psi)$ (*reflexivity*).
- 2. $|w(g) w(f)| \leq w(g \cdot f) \leq w(g) + w(f)$ holds for any objects *x*, *y*, *z* and arrows $f : x \to y$ *g* $\cdot y \to z$ (full triangle inequality) arrows $f: x \rightarrow y, g: y \rightarrow z$ (full triangle inequality).

Any set *X* produces an *indiscrete category* I_X , in which $Ob(I_X) = X$ and $|I_X(x, y)| = 1$ for all $x, y \in X$. Any metric space (X, d) produces a metric 1-space on I_X by defining $w(f) = d(x, y)$, and it is unique metric 1-space on I_X . But, in general, the function *w* on arrows can be seen as a multivalued function on $Ob \times Ob$.

[Weis12] also outlined a **metric** *m***-space** as a kind of an *m***-hemimetric** on an *m-category* consisting of *i*-dimensional cells, $0 \le i \le m$ (objects, arrows, ...) and a associative-like composition rule for the cells with matching boundaries and a associative-like composition rule for the cells with matching boundaries.

• *V***-continuity space**

Let (V, \wedge, \vee) be a *complete* (having $\wedge S := \wedge_{x \in S} x$ and $\vee S := \vee_{x \in S}$ for all $S \subseteq V$) lattice with bottom element 0. For $a, b \in V$, a is said to be *well above b*, denoted by $b \prec a$, if given any $S \subseteq V$ such that $\land S \prec b$, there exists $s \in S$ with $s \prec a$.

A *value quantale* is a pair $(V, +)$, where *V* is a complete lattice and $+$ is an associative and commutative operation o such that for all $a, b \in V$ and $S \subseteq V$,

1. $a + \land S = \land (a + S),$ 2. $a + 0 = a$, 3. $a = \land \{b \in Va \prec b\},\$ 4. $0 \lt a \lt b$ if $0 \lt a, b$.

A *V***-continuity space** is (Flagg–Koperman, 1997) a triple (X, d, V) , where *V* is a value quantale, *X* is a set, and $d: X \times X \rightarrow V$ is a function satisfying

$$
d(x, x) = 0
$$
 and $d(x, z) \le d(x, y) + d(y, z)$.

Any extended quasi-semimetric space is a *V*-continuity space, where *V* is the value quantale $[0,\infty]$, seen as a complete lattice, with ordinary addition.

Weiss, 2013, showed that taken with continuous functions, the categories of all *V*-continuity spaces and of all topological spaces are equivalent. In particular, every topological space (X, τ) is "metrizable" in the sense that there exists a *V*continuity space (X, d, V) such that τ is the topology generated by *open balls* $\{y \in X : \prec \epsilon\}.$

• **Probabilistic metric space**

A notion of **probabilistic metric space** is a generalization of the notion of metric space (see, for example, [ScSk83]) in two ways: distances become probability distributions, and the sum in the triangle inequality becomes a **triangle operation**.

Formally, let *A* be the set of all *probability distribution functions*, whose support lies in $[0,\infty]$. For any $a \in [0,\infty]$ define *step functions* $\epsilon_a \in A$ by $\epsilon_a(x) = 1$ if $x > a$ or $x = \infty$, and $\epsilon_a(x) = 0$, otherwise. The functions in *A* are ordered by defining $F \leq G$ to mean $F(x) \leq G(x)$ for all $x \geq 0$; the minimal element is ϵ_0 . element is ϵ_0 .

A commutative and associative operation τ on A is called a **triangle function** if $\tau(F, \epsilon_0) = F$ for any $F \in A$ and $\tau(E, F) \leq \tau(G, H)$ whenever $E \leq G, F \leq H$.
The semigroup (A, τ) generalizes the group $(\mathbb{R} +)$ The semigroup (A, τ) generalizes the group $(\mathbb{R}, +)$.

A **probabilistic metric space** is a triple (X, D, τ) , where *X* is a set, *D* is a function $X \times X \to A$, and τ is a triangle function, such that for any $p, q, r \in X$

- 1. $D(p,q) = \epsilon_0$ if and only if $p = q$;
- 2. $D(p, q) = D(q, p);$
- 3. $D(p, r) \ge \tau(D(p, q), D(q, r)).$

For any metric space (X, d) and any triangle function τ , such that $\tau(\epsilon_a, \epsilon_b) \geq$ ϵ_{a+b} for all $a, b \ge 0$, the triple $(X, D = \epsilon_{d(x,y)}, \tau)$ is a probabilistic metric space.

For any $x \geq 0$, the value $D(p, q)$ at x can be interpreted as "the probability that the distance between p and q is less than x "; this was approach of Menger, who proposed in 1942 the original version, *statistical metric space*, of this notion.

A probabilistic metric space is called a *Wald space* if the triangle function is a convolution, i.e., of the form $\tau_x(E, F) = \int_{\mathbb{R}} E(x - t) dF(t)$.
A probabilistic metric space is called a **generalized** N

A probabilistic metric space is called a **generalized Menger space** if the triangle function has form $\tau_x(E, F) = \sup_{u+v=x} T(E(u), F(v))$ for a *t-norm T*, i.e., such a commutative and associative operation on [0, 1] that $T(a, 1) = a$, $T(0, 0) = 0$ and $T(c, d) \geq T(a, b)$ whenever $c \geq a, d \geq b$.

• **Fuzzy metric spaces**

A *fuzzy subset* of a set *S* is a mapping $\mu : S \rightarrow [0, 1]$, where $\mu(x)$ represents the "degree of membership" of $x \in S$.

A *continuous t-norm* is a binary commutative and associative continuous operation *T* on [0, 1], such that $T(a, 1) = a$ and $T(c, d) > T(a, b)$ whenever $c > a, d > b$.

A **KM fuzzy metric space** (Kramosil–Michalek, 1975) is a pair $(X, (\mu, T))$, where *X* is a nonempty set and a *fuzzy metric* (μ, T) is a pair comprising a continuous t-norm *T* and a fuzzy set $\mu : X^2 \times \mathbb{R}_{\geq 0} \to [0, 1]$, such that, for $x, y, z \in X$ and $s, t > 0$, the following conditions hold: $x, y, z \in X$ and $s, t \geq 0$, the following conditions hold:

1. $\mu(x, y, 0) = 0$;

- 2. $\mu(x, y, t) = 1$ if and only if $x = y, t > 0$;
- 3. $\mu(x, y, t) = \mu(y, x, t);$
- 4. $T(\mu(x, y, t), \mu(y, z, s)) \leq \mu(x, z, t + s);$
5. the function $\mu(x, y, t) : \mathbb{R}_{\geq 0} \to [0, 1]$ is
- 5. the function $\mu(x, y, \cdot) : \mathbb{R}_{\geq 0} \to [0, 1]$ is left continuous.

A KM fuzzy metric space is called also a **fuzzy Menger space** since by defining $D_t(p,q) = \mu(p,q,t)$ one gets a **generalized Menger space**. The following modification of the above notion, using a stronger form of metric fuzziness, it a generalized Menger space with $D_t(p,q)$ positive and continuous on $\mathbb{R}_{>0}$ for all *p*; *q*.

A **GV fuzzy metric space** (George–Veeramani, 1994) is a pair $(X, (\mu, T))$, where *X* is a nonempty set, and a *fuzzy metric* (μ, T) is a pair comprising a continuous t-norm *T* and a fuzzy set μ : $X^2 \times \mathbb{R}_{>0} \rightarrow [0, 1]$, such that for *x*, *y*, *z* \in *X* and *s*, $t > 0$

1. $\mu(x, y, t) > 0$;

- 2. $\mu(x, y, t) = 1$ if and only if $x = y$;
- 3. $\mu(x, y, t) = \mu(y, x, t);$

4. $T(\mu(x, y, t), \mu(y, z, s)) \leq \mu(x, z, t + s);$
5. the function $\mu(x, y, t) : \mathbb{R} \to [0, 1]$ is

5. the function $\mu(x, y, \cdot) : \mathbb{R}_{>0} \to [0, 1]$ is continuous.

An example of a GV fuzzy metric space comes from any metric space (X, d) by defining $T(a, b) = b - ab$ and $\mu(x, y, t) = \frac{t}{t + d(x, y)}$. Conversely, any GV fuzzy metric space (and also any KM fuzzy metric space) generates a metrizable fuzzy metric space (and also any KM fuzzy metric space) generates a metrizable topology. Most GV fuzzy metrics are *strong*, i.e., $T(\mu(x, y, t), \mu(y, z, t)) \le$
 $\mu(x, z, t)$ holds $\mu(x, z, t)$ holds.

A *fuzzy number* is a fuzzy set $\mu : \mathbb{R} \to [0, 1]$ which is *normal* ({ $x \in \mathbb{R}$: $\mu(x) = 1$ $\neq \emptyset$, *convex* ($\mu(tx + (1 - t)y) \ge \min\{\mu(x), \mu(y)\}\$ for every $x, y \in \mathbb{R}$ R and $t \in [0, 1]$ and *upper semicontinuous* (at each point x_0 , the values $\mu(x)$ for *x* near x_0 are either close to $\mu(x_0)$ or less than $\mu(x_0)$). Denote the set of all fuzzy numbers which are *nonnegative*, i.e., $\mu(x) = 0$ for all $x < 0$, by *G*. The additive and multiplicative identities of fuzzy numbers are denoted by $\overline{0}$ and $\overline{1}$, respectively. The *level set* $[\mu]_t = \{x : \mu(x) \geq t\}$ of a fuzzy number μ is a closed interval.

Given a nonempty set *X* and a mapping $d : X^2 \rightarrow G$, let the mappings $L, R : [0, 1]^2 \rightarrow [0, 1]$ be symmetric and nondecreasing in both arguments and satisfy $L(0,0) = 0$, $R(1,1) = 1$. For all $x, y \in X$ and $t \in (0,1]$, let $[d(x, y)]_t = [\lambda_t(x, y), \rho_t(x, y)].$

A **KS fuzzy metric space** (Kaleva–Seikkala, 1984) is a quadruple (X, d, L, R) with *fuzzy metric d*, if for all $x, y, z \in X$

- 1. $d(x, y) = 0$ if and only if $x = y$;
- 2. $d(x, y) = d(y, x);$
- 3. $d(x, y)(s + t) \ge L(d(x, z)(s), d(z, y)(t))$ whenever $s \le \lambda_1(x, z), t \le \lambda_1(z, y),$
and $s + t \le \lambda_1(x, y)$. and $s + t \leq \lambda_1(x, y);$
 $d(x, y)(s + t) \leq R(s)$
- 4. $d(x, y)(s + t) \le R(d(x, z)(s), d(z, y)(t))$ whenever $s \ge \lambda_1(x, z), t \ge \lambda_1(z, y),$
and $s + t > \lambda_1(x, y)$ and $s + t > \lambda_1(x, y)$.

The following functions are some frequently used choices for *L* and *R*:

 $\max\{a+b-1, 0\}$, ab , $\min\{a, b\}$, $\max\{a, b\}$, $a+b-ab$, $\min\{a+b, 1\}$.

Several other notions of **fuzzy metric space** were proposed, including those by Erceg, 1979, Deng, 1982, and Voxman, 1998, Xu–Li, 2001, Tran– Duckstein, 2002, Chakraborty–Chakraborty, 2006. Cf. also **metrics between fuzzy sets**, **fuzzy Hamming distance**, **gray-scale image distances** and **fuzzy polynucleotide metric** in Chaps. 1, 11, 21 and 23, respectively.

• **Interval-valued metric space**

Let $I(\mathbb{R}_{\geq 0})$ denote the set of closed intervals of $\mathbb{R}_{\geq 0}$.

An **interval-valued metric space** (Coppola–Pacelli, 2006) is a pair $((X, \le), \Delta)$, where (X, \le) is a partially ordered set and Δ is an interval-valued
manning $\Delta : X \times X \rightarrow I(\mathbb{R}_{>0})$ such that for every $x, y \in X$ mapping $\Delta: X \times X \to I(\mathbb{R}_{\geq 0})$, such that for every *x*, *y*, *z* $\in X$

- 1. $\Delta(x, x) \star [0, 1] = \Delta(x, x);$
2. $\Delta(x, y) = \Delta(y, x);$
- 2. $\Delta(x, y) = \Delta(y, x);$
3. $\Delta(x, y) = \Delta(z, z)$
- 3. $\Delta(x, y) \Delta(z, z) \leq \Delta(x, z) + \Delta(z, y);$
4. $\Delta(x, y) \Delta(x, y) \leq \Delta(x, x) + \Delta(y, y);$
- 4. $\Delta(x, y) \Delta(x, y) \leq \Delta(x, x) + \Delta(y, y);$
5. $x \leq x'$ and $y \leq y'$ imply $\Delta(x, y) \subset \Delta(x)$
- 5. $x \le x'$ and $y \le y'$ imply $\Delta(x, y) \subseteq \Delta(x', y')$;
6. $\Delta(x, y) = 0$ if and only if $x = y$ and x y
- 6. $\Delta(x, y) = 0$ if and only if $x = y$ and x, y are *atoms* (minimal elements of $(X \leq x)$) $(X, \leq)).$

Here the following *interval arithmetic* rules hold: $[u, v] \leq [u', v']$ if and only if $u \leq u'$ $u \leq u',$
 $u \leq u,$

$$
[u, v] + [u', v'] = [u + u', v + v'], \quad [u, v] - [u', v'] = [u - u', v - v'],
$$

\n $[u, v] \star [u', v'] = [\min\{uu', uv', vu', vv'\}, \max\{uu', uv', vu', vv'\}]$ and $\frac{[u,v]}{[u',v']} = [\min\{\frac{u}{u'}, \frac{u}{v'}, \frac{v}{u'}, \frac{v}{v'}\}, \max\{\frac{u}{u'}, \frac{v}{v'}, \frac{v}{u'}, \frac{v}{v'}\}\]$ when $0 \notin [u', v']$. The addition and multiplication operations are commutative, associative and

subdistributive: it holds $X \star (Y + Z) \subset (X \star Y + X \star Z)$.

Cf. **metric between intervals** in Chap. 10.

The usual metric spaces coincide with above spaces in which all $x \in X$ are atoms.

• **Direction distance**

Given a normed real vector space $(V, ||.||)$, for any $x \in V \setminus \{0\}$, denote by [x] the *direction* (ray) $\{\lambda x : \lambda > 0\}$ and by x_0 the point $\frac{x}{||x||}$. An *oriented angle* is an

ordered pair $([x], [y])$ of directions. The **direction distance** from *x* to *y* is defined (Busch–Ruch, 1992) as the family of distances $||\alpha x_0 - \beta y_0||$ with $\alpha, \beta \in \mathbb{R}_{>0}$.

The **mixing distance** is defined as the restriction of the direction distance to pairs of directions in the cone $\{\lambda v : v \in V, \lambda > 0\}$. In fact, authors introduced these distances on some special normed spaces used in Quantum Mechanics.

• **Generalized metric**

Let *X* be a set. Let $(V, +, \leq)$ be an *ordered semigroup* (not necessarily negative) with a least element θ and with $x \leq v$ $x_1 \leq v$, implying commutative) with a least element θ and with $x \leq y, x_1 \leq y_1$ implying
 $x + x_1 \leq y + y_1$. Let $(V +)$ be also endowed with an order-preserving *involution* $x + x_1 \leq y + y_1$. Let $(V, +)$ be also endowed with an order-preserving *involution*
 x^* (i.e. $(x^*)^* = x$) which is operation-reversing i.e. $(x + y)^* = y^* + x^*$ x^* (i.e., $(x^*)^* = x$), which is operation-reversing, i.e., $(x + y)^* = y^* + x^*$.

A function $d: X \times X \rightarrow G$ is called (Li–Wang–Pouzet, 1987) a **generalized metric** over $(V, +, \leq)$ if the following conditions hold:

1. $d(x, y) = \theta$ if and only if $x = y$; 2. $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y \in X$;
3. $d^*(x, y) = d(y, x)$ 3. $d^*(x, y) = d(y, x)$.

• **Cone metric**

Let *C* be a *proper cone* in a real Banach space *W*, i.e., *C* is closed, $C \neq \emptyset$, the interior of *C* is not equal to $\{\theta\}$ (where θ is the zero vector in *W*) and

1. if $x, y \in C$ and $a, b \in \mathbb{R}_{\geq 0}$, then $ax + by \in C$;
2 if $x \in C$ and $-x \in C$ then $x = 0$

2. if $x \in C$ and $-x \in C$, then $x = 0$.

Define a partial ordering (W, \leq) on *W* by letting $x \leq y$ if $y - x \in C$. The lowing variation of **generalized metric** and **partially ordered distance** was following variation of **generalized metric** and **partially ordered distance** was defined in Huang–Zhang, 2007, and, partially, in Rzepecki, 1980. Given a set *X*, a **cone metric** is a mapping $d: X \times X \rightarrow (W, \leq)$ such that

- 1. $\theta \leq d(x, y)$ with equality if and only if $x = y$;
 $\frac{d(x, y) d(y, x)}{dx}$ for all $x, y \in Y$.
- 2. $d(x, y) = d(y, x)$ for all $x, y \in X$;
- 3. $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y \in X$;

The pair (X, d) is called a **cone metric space**.

• *W***-distance on building**

Let *X* be a set, and let $(W, \cdot, 1)$ be a group. A *W-distance* on *X* is a *W*-valued map $\sigma: X \times X \rightarrow W$ having the following properties:

1. $\sigma(x, y) = 1$ if and only if $x = y$; 2. $\sigma(y, x) = (\sigma(x, y))^{-1}$.

A natural *W*-distance on *W* is $\sigma(x, y) = x^{-1}y$.

A *Coxeter group* is a group $(W, \cdot, 1)$ generated by the elements

$$
\{w_1,\ldots,w_n:(w_iw_j)^{m_{ij}}=1, 1\leq i,j\leq n\}.
$$

Here $M = ((m_{ij}))$ is a *Coxeter matrix*, i.e., an arbitrary symmetric $n \times n$ matrix with $m_{ii} = 1$, and the other values are positive integers or ∞ . The *length l(x)* of $x \in W$ is the smallest number of generators w_1, \ldots, w_n needed to represent *x*.

Let *X* be a set, let $(W, \cdot, 1)$ be a Coxeter group and let $\sigma(x, y)$ be a *W*-distance on *X*. The pair (X, σ) is called (Tits, 1981) a *building* over $(W, \cdot, 1)$ if it holds

- 1. the relation \sim defined by $x \sim$ *y* if $\sigma(x, y) = 1$ or w_i , is an equivalence relation;
- 2. given $x \in X$ and an equivalence class C of \sim _i, there exists a unique $y \in C$ such that $\sigma(x, y)$ is *shortest* (i.e., of smallest length), and $\sigma(x, y') = \sigma(x, y)w_i$
for any $y' \in C$, $y' \neq y$ for any $y' \in C$, $y' \neq y$.

The **gallery distance on building** *d* is a usual metric on *X* defined by $l(d(x, y))$. The distance *d* is the **path metric** in the graph with the vertex-set *X* and *xy* being an edge if $\sigma(x, y) = w_i$ for some $1 \le i \le n$. The gallery distance on building is a special case of a **gallery metric** (of *chamber system X*) on building is a special case of a **gallery metric** (of *chamber system X*).

• **Boolean metric space**

A *Boolean algebra* (or *Boolean lattice*) is a *distributive lattice* (B, \vee, \wedge) admitting a least element 0 and greatest element 1 such that every $x \in B$ has a *complement* \bar{x} with $x \vee \bar{x} = 1$ and $x \wedge \bar{x} = 0$.

Let *X* be a set, and let (B, \vee, \wedge) be a Boolean algebra. The pair (X, d) is called (Blumenthal, 1953) a **Boolean metric space** over *B* if the function $d: X \times X \rightarrow B$ has the following properties:

1. $d(x, y) = 0$ if and only if $x = y$;

2. $d(x, y) \leq d(x, z) \vee d(z, y)$ for all $x, y, z \in X$.

• **Space over algebra**

A **space over algebra** is a metric space with a differential-geometric structure, whose points can be provided with coordinates from some *algebra* (usually, an associative algebra with identity).

A *module* over an algebra is a generalization of a vector space over a field, and its definition can be obtained from the definition of a vector space by replacing the field by an associative algebra with identity. An *affine space over an algebra* is a similar generalization of an *affine space* over a field. In affine spaces over algebras one can specify a Hermitian metric, while in the case of commutative algebras even a quadratic metric can be given. To do this one defines in a unital module a *scalar product* $\langle x, y \rangle$, in the first case with the property $\langle x, y \rangle = J(\langle y, x \rangle)$, where *J* is an *involution* of the algebra, and in the second case with the property $\langle y, x \rangle = \langle x, y \rangle$.

The *n*-dimensional *projective space over an algebra* is defined as the variety of one-dimensional submodules of an $(n + 1)$ -dimensional unital module over this algebra. The introduction of a *scalar product* $\langle x, y \rangle$ in a unital module makes it possible to define a Hermitian metric in a projective space constructed by means of this module or, in the case of a commutative algebra, quadratic elliptic and hyperbolic metrics. The metric invariant of the points of these spaces is the **cross-ratio** $W = \langle x, x \rangle^{-1} \langle x, y \rangle \langle y, y \rangle^{-1} \langle y, x \rangle$. If *W* is a real number, then $w = \arccos \sqrt{W}$ is called the **distance** between *x* and *y* in the space over **algebra**.

• **Partially ordered distance**

Let *X* be a set. Let (G, \leq) be a *partially ordered set* with a least element g_0 .
partially ordered distance is a function $d: X \times X \to G$ such that for any A **partially ordered distance** is a function $d : X \times X \rightarrow G$ such that, for any $x, y \in X$, $d(x, y) = g_0$ if and only if $x = y$.

A **generalized ultrametric** (Priess-Crampe and Ribenboim, 1993) is a symmetric (i.e., $d(x, y) = d(y, x)$) partially ordered distance, such that $d(z, x) \leq g$
and $d(z, y) \leq g$ imply $d(x, y) \leq g$ for any $x, y \in \mathcal{X}$ and $g \in G$ and $d(z, y) \leq g$ imply $d(x, y) \leq g$ for any *x*, *y*, *z* $\in X$ and *g* $\in G$.
Suppose that $G' = G \setminus \{g_0\} \neq \emptyset$ and for any $g_1, g_2 \in G'$ the

Suppose that $G' = G \setminus \{g_0\} \neq \emptyset$ and, for any $g_1, g_2 \in G'$, there exists $g_3 \in G'$
th that $g_3 \le g_1$ and $g_2 \le g_2$. Consider the following possible properties: such that $g_3 \leq g_1$ and $g_3 \leq g_2$. Consider the following possible properties:

- 1. For any $g_1 \in G'$, there exists $g_2 \in G'$ such that, for any $x, y \in X$, from $d(x, y) \le g_2$ it follows that $d(y, y) \le g_3$. $d(x, y) \leq g_2$ it follows that $d(y, x) \leq g_1$;
For any $g_1 \in G'$, there exist $g_2, g_2 \in G$
- 2. For any $g_1 \in G'$, there exist $g_2, g_3 \in G'$ such that, for any $x, y, z \in X$, from $d(x, y) \le g_2$ and $d(y, z) \le g_3$ it follows that $d(x, z) \le g_3$. $d(x, y) \leq g_2$ and $d(y, z) \leq g_3$ it follows that $d(x, z) \leq g_1$;
For any $g_1 \in G'$ there exists $g_2 \in G'$ such that for a
- 3. For any $g_1 \in G'$, there exists $g_2 \in G'$ such that, for any $x, y, z \in X$, from $d(x, y) \le g_2$ and $d(y, z) \le g_2$ if follows that $d(y, x) \le g_2$. $d(x, y) \leq g_2$ and $d(y, z) \leq g_2$ it follows that $d(y, x) \leq g_1$;
 G' has no first element:
- 4. *G'* has no first element;
- 5. $d(x, y) = d(y, x)$ for any $x, y \in X$;
- 6. For any $g_1 \in G'$, there exists $g_2 \in G'$ such that, for any $x, y, z \in X$, from $d(x, y) \leq x^*$ as and $d(y, z) \leq x^*$ as it follows that $d(x, z) \leq x^*$ as here $n \leq x$ $d(x, y) \leq g_2$ and $d(y, z) \leq g_2$ it follows that $d(x, z) \leq g_1$; here $p \leq g_2$ means that either $p < q$, or *p* is not comparable to *q*;
- 7. The order relation < is a total ordering of *G*.

In terms of above properties, *d* is called: the **Appert partially ordered distance** if 1 and 2 hold; the **Golmez partially ordered distance of first type** if 4, 5, and 6 hold; the **Golmez partially ordered distance of second type** if 3, 4, and 5 hold; the **Kurepa–Fréchet distance** if 3, 4, 5, and 7 hold.

The case $G = \mathbb{R}_{\geq 0}$ of the Kurepa–Fréchet distance corresponds to the **Fréchet**
space: cf, the f-quasi-metric in Sect 1.1. The general case was considered in *V***-space**; cf. the *f***-quasi-metric** in Sect. 1.1. The general case was considered in Kurepa, 1934, and rediscovered in Fréchet, 1946.

• **Distance from measurement**

Distance from measurement is an analog of distance on domains in Computer Science; it was developed in [Mart00].

A *po* (partially ordered set) (D, \leq) is called *dcpo* (directed-complete po) if
the *directed subset* $S \subset D$ (i.e. $S \neq \emptyset$ and any pair $x, y \in S$ is *hounded*; there every *directed subset* $S \subset D$ (i.e., $S \neq \emptyset$ and any pair $x, y \in S$ is *bounded*: there is $z \in S$ with $x, y \le z$) has a *supremum* $\Box S$, i.e., the least of such upper bounds *z*.
For $x, y \in D$, *y* is an *annoximation* of *x* if for all directed subsets $S \subset D$

For $x, y \in D$, *y* is an *approximation* of *x* if, for all directed subsets $S \subset D$, $x \leq \text{LS}$ implies $y \leq s$ for some $s \in S$. A dcpo (D, \leq) is *continuous* if for all $s \in D$ the set of all approximations of *x* is directed and *x* is its supremum. A $x \in D$ the set of all approximations of *x* is directed and *x* is its supremum. A *domain* is a continuous dcpo (D, \leq) such that for all $x, y \in D$ there is $z \in D$ with $z \prec y$. A Scott domain is a domain with least element in which any bounded $z \leq x, y$. A *Scott domain* is a domain with least element, in which any bounded pair has a supremum pair has a supremum.

A subset *U* of a dcpo (D, \leq) is *Alexandrov open* if, for any $x \in U$ and $y \in D$, \leq *y* implies $y \in U$; it is *Scott open* if also, for any directed subset $S \subset D$ $x \leq y$ implies $y \in U$; it is *Scott open* if also, for any directed subset $S \subset D$,
 $\cup S \in U$ implies $S \cap U \neq \emptyset$. The set of Scott open sets form the *Scott topology*; it is $\Box S \in U$ implies $S \cap U \neq \emptyset$. The set of Scott open sets form the *Scott topology*; it is a *T*0**-space** (Chap. 2) with generalized metrization by a **partial metric** (Chap. 1).

A *measurement* is a mapping $\mu : D \to \mathbb{R}_{\geq 0}$ between dcpo (D, \leq) and dcpo $\leq \infty$. ($\mathbb{R}_{\geq 0}$, \leq), where $\mathbb{R}_{\geq 0}$ is ordered as $x \leq y$ if $y \leq x$, such that

- 1. $x \leq y$ implies $\mu(x) \leq \mu(y)$;
2. $\mu(1|S) = \frac{1}{\mu(x)} \cdot s \in S$
- 2. $\mu(\square S) = \square({\mu(s) : s \in S})$ for every directed subset $S \subset D$;
- 3. For all $x \in D$ with $\mu(x) = 0$ and all sequences $(x_n), n \to \infty$, of approximations of *x* with $\lim_{n\to\infty} \mu(x_n) = \mu(x)$, one has $\Box(\bigcup_{n=1}^{\infty} \{x_n\}) = x$.

Given a measurement μ , the **distance from measurement** is a mapping d : $D \times D \to \mathbb{R}_{\geq 0}$ given by

$$
d(x, y) = \inf \{ \mu(z) : z \text{ approximates } x, y \} = \inf \{ \mu(z) : z \le x, y \}.
$$

One has $d(x, x) \leq \mu(x)$. The function $d(x, y)$ is a metric on the set $\{x \in D : x \geq 0\}$ if μ satisfies the following **measurement triangle inequality** for all $\mu(x) = 0$ if μ satisfies the following **measurement triangle inequality**: for all bounded pairs *x*, $y \in D$, there is an element $z \preceq x$, y such that $\mu(z) \leq \mu(x) + \mu(y)$.
Was zkiewicz 2001, found topological connections between topologies com-

Waszkiewicz, 2001, found topological connections between topologies coming from a distance from measurement and from a **partial metric** defined in Chap. 1.