
Chapter 3
Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, quasi-
metric, near-metric, extended metric, were defined in Chap. 1. Here we give some
generalizations in the direction of Topology, Probability, Algebra, etc.

3.1 m-Tuple Generalizations of Metrics

In the definition of a metric, for every two points there is a unique associated
number. Here we group some generalizations of metrics in which several points
or several numbers are considered instead.

• m-hemimetric
Let X be a nonempty set. A function d W XmC1 ! R�0 is called a

m-hemimetric (Deza–Rosenberg, 2000) if it have the following properties:

1. d is totally symmetric, i.e., satisfies d.x1; : : : ; xmC1/ D d.x�.1/; : : : ; x�.mC1//

for all x1; : : : ; xmC1 2 X and for any permutation � of f1; : : : ; m C 1g;
2. d.x1; : : : ; xmC1/ D 0 if x1; : : : ; xmC1 are not pairwise distinct;
3. for all x1; : : : ; xmC2 2 X, d satisfies the m-simplex inequality

d.x1; : : : ; xmC1/ �
mC1X

iD1

d.x1; : : : ; xi�1; xiC1; : : : ; xmC2/:

Cf. unrelated hemimetric (i.e., a quasi-semimetric) in Chap. 1.
If in above 3. d.x1; : : : ; xmC1/ is replaced by sd.x1; : : : ; xmC1/ for some

s; 0 < s � 1, then d is called .m; s/-super-metric ([DeDu03]). .m; 1/- and .1; s/-
super-metrics are exactly m-hemimetric and 1

s -near-semimetric; cf. near-metric
in Chap. 1.
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72 3 Generalizations of Metric Spaces

If above 3. is dropped, d is called m-dissimilarity. 1-dissimilarity and 1-
hemimetric are exactly a distance and a semimetric.

• 2-metric
An m-hemimetric with m D 2 satisfies 2-simplex (or tetrahedron) inequality

d.x1; x2; x3/ � d.x4; x2; x3/ C d.x1; x4; x3/ C d.x1; x2; x4/:

A 2-metric (Gähler, 1963 and 1966) is a 2-hemimetric d in which, for any
distinct points x1; x2, there is a point x3 with d.x1; x2; x3/ > 0. The area of the
triangle spanned by x1; x2; x3 on R

2 or S2 is a 2-metric.
A D-space (Dhage, 1992) is an 2-hemimetric space .X; d/ in which the

condition “d.x1; x2; x3/ D 0 if two of x1; x2; x3 are equal” is replaced by
“d.x1; x2; x3/ D 0 if and only if x1 D x2 D x3.” Mustafa and Sims, 2003, showed
that D-spaces are not suitable for topological constructions. In 2006, they defined
instead a function, let us call it MS � 2-metric, D W X3 ! R�0 which satisfies

1. D.x1; x2; x3/ D 0 if x1 D x2 D x3;
2. D.x1; x1; x2/ > 0 whenever x1 ¤ x2;
3. D.x1; x2; x3/ � D.x1; x1; x2/ whenever x3 ¤ x2;
4. D is a totally symmetric function of its three variables, and
5. D.x1; x2; x3/ � D.x1; x4; x4/ C D.x4; x2; x3/ for all x1; x2; x3; x4 2 X.

The perimeter of the triangle spanned by x1; x2; x3 on R
2 is a MS � 2-

metric. If d is a metric, then 1
2
.d.x1; x2/ C d.x2; x3/ C d.x1; x3// and

max.d.x1; x2/; d.x2; x3/; d.x1; x3// are MS � 2-metrics. If D is a MS � 2-metric,
then D.x1; x2; x2/ C D.x1; x1; x2/ is a metric. If .X; D/ is a MS � 2-metric
space, the open D-ball with center x0 and radius r is BD.x0; r/ D fx1 2 X W
D.x0; x1; x1/ < rg.

• Multidistance
Given a set X, a function D W [m>1Xm ! R�0 is called a multidistance

(Martin–Major, 2009) if, for all m and all x1; : : : ; xm; y 2 X, it satisfies:

1. D.x1; : : : ; xm/ D 0 if x1 D � � � D xm;
2. D.x1; : : : ; xm/ D D.x�.1/; : : : ; x�.m// for any permutation � of f1; : : : ; mg;
3. D.x1; : : : ; xm/ � Pm

iD1 D.xi; y/.

Clearly, the restriction of a multidistance on X2 is a semimetric.
A multidistance D is called regular, if all D.x1; : : : ; xm/ � D.x1; : : : ; xm; y/

hold, and stable, if all D.x1; : : : ; xm/ D D.x1; : : : ; xm; xi/ hold. Given a metric
space .X; d/, the Fermat multidistance is minx2X

Pm
iD1 d.xi; x/; it is regular, but

not stable.
The regular multidistances on X form a convex cone.

• Multimetric
In Mao, 2006, a multimetric space is the union of some metric spaces

.Xi; di/; i 2 J. In the case Xi D X; i 2 J, the multimetric is defined as the
sequence-valued map d.x; y/ D .di/; i 2 J, from X � X to RjJj

�0.
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Cf. bimetric theory of gravity in Chap. 24 and (in the item meter-related
terms) multimetric crystallography in Chap. 27.

Also, Jörnsten, 2007, consider clustering (Chap. 17) under several distance
metrics simultaneously. In Rintanen, 2004, a linear multimetric is defined as d D
w1d1 C � � � C wmdm, where di are metrics and wi 2 Œ0; 1� are weights.

• Diversity
Given a set X, a function f from its finite subsets to R�0 is called (Bryant–

Tupper, 2012) diversity on X if f .A/ D 0 for all A � X with jAj � 1 and

f .A [ B/ C f .B [ C/ � f .A [ C/ for all A; B; C � X with B ¤ ;:

The induced diversity metric d.x; y/ is f .fx; yg/.
For any diversity f .A/ with induced metric space .X; d/, it holds fdiam.A/ �

f .A/ � fS.A/ � .jAj � 1/fdiam.A/, where the diameter diversity fdiam.A/ is
maxx;y2A d.x; y/ D diam.A/ and the Steiner diversity fS.A/ is the minimum
weight of a Steiner tree connecting elements of A.

l1-diversity is defined by fm1.A/ D max jai � bij W a; b 2 A for all finite
A �R

m.
Any diversity is a Vitanyi multiset metric, restricted to subsets. But much of

Bryant–Tupper’s theory of diversities does not extend on multisets.
• Vitanyi multiset metric

Given two multisets m and m0, define n D mm0 if n is the multiset consisting of
the elements of the multisets m and m0, that is, if x occurs once in m and once in
m0, then it occurs twice in n. A function d on the set of nonempty finite multisets
is (Vitanyi, 2011) a multiset metric if

1. d.m/ D 0 if all elements of m are equal and d.m/ > 0 otherwise.
2. d.X/ is invariant under all permutations of m.
3. d.mm0/ � d.mm00/ C d.m00m0/ (multiset triangle inequality).

The usual metric between two elements results if the multiset m has two elements
in 1. and 2. and the multisets m; m0; m00 have one element each in 3.

An example is the set of all nonempty finite multisets m of integers with
d.m/ D maxfx W x 2 mg � minfx W x 2 mg. Cohen–Vitanyi, 2012, defined
another multiset metric, generalising normalised web distance (Chap. 22).

3.2 Indefinite Metrics

• Indefinite metric
An indefinite metric (or G-metric) on a real (complex) vector space V is

a bilinear (in the complex case, sesquilinear) form G on V , i.e., a function G W
V�V ! R (C), such that, for any x; y; z 2 V and for any scalars ˛; ˇ, we have the
following properties: G.˛xCˇy; z/ D ˛G.x; z/CˇG.y; z/, and G.x; ˛yCˇz/ D
˛G.x; y/CˇG.x; z/, where ˛ D a C bi D a�bi denotes the complex conjugation.
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If a positive-definite form G is symmetric, then it is an inner product on V ,
and one can use it to canonically introduce a norm and the corresponding norm
metric on V . In the case of a general form G, there is neither a norm, nor a
metric canonically related to G, and the term indefinite metric only recalls the
close relation of such forms with certain metrics in vector spaces (cf. Chaps. 7
and 26).

The pair .V; G/ is called a space with an indefinite metric. A finite-
dimensional space with an indefinite metric is called a bilinear metric space.
A Hilbert space H, endowed with a continuous G-metric, is called a Hilbert
space with an indefinite metric. The most important example of such space is a
J-space; cf. J-metric.

A subspace L in a space .V; G/ with an indefinite metric is called a
positive subspace, negative subspace, or neutral subspace, depending on whether
G.x; x/ > 0, G.x; x/ < 0, or G.x; x/ D 0 for all x 2 L.

• Hermitian G-metric
A Hermitian G-metric is an indefinite metric GH on a complex vector space

V such that, for all x; y 2 V , we have the equality

GH.x; y/ D GH.y; x/;

where ˛ D a C bi D a � bi denotes the complex conjugation.
• Regular G-metric

A regular G-metric is a continuous indefinite metric G on a Hilbert space
H over C, generated by an invertible Hermitian operator T by the formula

G.x; y/ D hT.x/; yi;

where h; i is the inner product on H.
A Hermitian operator on a Hilbert space H is a linear operator T on H defined

on a domain D.T/ of H such that hT.x/; yi D hx; T.y/i for any x; y 2 D.T/.
A bounded Hermitian operator is either defined on the whole of H, or can be
so extended by continuity, and then T D T�. On a finite-dimensional space a
Hermitian operator can be described by a Hermitian matrix ..aij// D ..aji//.

• J-metric
A J-metric is a continuous indefinite metric G on a Hilbert space H over C

defined by a certain Hermitian involution J on H by the formula

G.x; y/ D hJ.x/; yi;

where h�; �i is the inner product on H.
An involution is a mapping H onto H whose square is the identity mapping.

The involution J may be represented as J D PC � P�, where PC and P� are
orthogonal projections in H, and PC CP� D H. The rank of indefiniteness of the
J-metric is defined as minfdim PC; dim P�g.
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The space .H; G/ is called a J-space. A J-space with finite rank of indefinite-
ness is called a Pontryagin space.

3.3 Topological Generalizations

• Metametric space
A metametric space (Väisälä, 2003) is a pair .X; d/, where X is a set, and d is

a nonnegative symmetric function d W X � X ! R such that d.x; y/ D 0 implies
x D y and triangle inequality d.x; y/ � d.x; z/ C d.z; y/ holds for all x; y; z 2 X.

A metametric space is metrizable: the metametric d defines the same topology
as the metric d0 defined by d0.x; x/ D 0 and d0.x; y/ D d.x; y/ if x ¤ y. A
metametric d induces a Hausdorff topology with the usual definition of a ball
B.x0; r/ D fx 2 X W d.x0; x/ < rg. Any partial metric (Chap. 1) is a metametric.

• Resemblance
Let X be a set. A function d W X � X ! R is called (Batagelj-Bren, 1993) a

resemblance on X if d is symmetric and if, for all x; y 2 X, either d.x; x/ � d.x; y/

(in which case d is called a forward resemblance), or d.x; x/ � d.x; y/ (in which
case d is called a backward resemblance).

Every resemblance d induces a strict partial order � on the set of all
unordered pairs of elements of X by defining fx; yg � fu; vg if and only if
d.x; y/ < d.u; v/.

• w-distance
Given a metric space .X; d/, a w-distance on X (Kada–Suzuki–Takahashi,

1996) is a nonnegative function p W X � X ! R which satisfies the following
conditions:

1. p.x; z/ � p.x; y/ C p.y; z/ for all x; y; z 2 X;
2. for any x 2 X, the function p.x; :/ W X ! R is lower semicontinuous, i.e., if a

sequence fyngn in X converges to y 2 X, then p.x; y/ � limn!1p.x; yn/;
3. for any � > 0, there exists ı > 0 such that p.z; x/ � ı and p.z; y/ � ı imply

d.x; y/ � �, for each x; y; z 2 X.

• �-distance space
A �-distance space is a pair .X; f /, where X is a topological space and f is an

Aamri-Moutawakil’s �-distance on X, i.e., a nonnegative function f W X �X ! R

such that, for any x 2 X and any neighborhood U of x, there exists � > 0 with
fy 2 X W f .x; y/ < �g � U.

Any distance space .X; d/ is a �-distance space for the topology �f defined as
follows: A 2 �f if, for any x 2 X, there exists � > 0 with fy 2 X W f .x; y/ < �g �
A. However, there exist nonmetrizable �-distance spaces. A �-distance f .x; y/

need be neither symmetric, nor vanishing for x D y; for example, ejx�yj is a
�-distance on X D R with usual topology.
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• Proximity space
A proximity space (Efremovich, 1936) is a set X with a binary relation ı on

the power set P.X/ of all of its subsets which satisfies the following conditions:

1. AıB if and only if BıA (symmetry);
2. Aı.B [ C/ if and only if AıB or AıC (additivity);
3. AıA if and only if A ¤ ; (reflexivity).

The relation ı defines a proximity (or proximity structure) on X. If AıB fails, the
sets A and B are called remote sets.

Every metric space .X; d/ is a proximity space: define AıB if and only if
d.A; B/ D infx2A;y2B d.x; y/ D 0.

Every proximity on X induces a (completely regular) topology on X by
defining the closure operator cl W P.X/ ! P.X/ on the set of all subsets of X
as cl.A/ D fx 2 X W fxgıAg.

• Uniform space
A uniform space is a topological space (with additional structure) providing

a generalization of metric space, based on set-set distance.
A uniform space (Weil, 1937) is a set X with an uniformity (or uniform

structure) U , i.e., a nonempty collection of subsets of X � X, called entourages,
with the following properties:

1. Every subset of X � X which contains a set of U belongs to U ;
2. Every finite intersection of sets of U belongs to U ;
3. Every set V 2 U contains the diagonal, i.e., the set f.x; x/ W x 2 Xg � X � X;
4. If V belongs to U , then the set f.y; x/ W .x; y/ 2 Vg belongs to U ;
5. If V belongs to U , then there exists V 0 2 U such that .x; z/ 2 V whenever

.x; y/; .y; z/ 2 V 0.

Every metric space .X; d/ is a uniform space. An entourage in .X; d/ is a
subset of X � X which contains the set V� D f.x; y/ 2 X � X W d.x; y/ < �g
for some positive real number �. Other basic example of uniform space are
topological groups.

Every uniform space .X;U/ generates a topology consisting of all sets A � X
such that, for any x 2 A, there is a set V 2 U with fy W .x; y/ 2 Vg � A.

Every uniformity induces a proximity � where A�B if and only if A � B has
nonempty intersection with any entourage.

A topological space admits a uniform structure inducing its topology if only
if the topology is completely regular (Chap. 2) and, also, if only if it is a gauge
space, i.e., the topology is defined by a �-filter of semimetrics.

• Nearness space
A nearness space (Herrich, 1974) is a set X with a nearness structure, i.e., a

nonempty collection U of families of subsets of X, called near families, with the
following properties:

1. Each family refining a near family is near;
2. Every family with nonempty intersection is near;



3.3 Topological Generalizations 77

3. V is near if fcl.A/ W A 2 Vg is near, where cl.A/ is fx 2 X W ffxg; Ag 2 Ug;
4. ; is near, while the set of all subsets of X is not;
5. If fA [ B W A 2 F1; B 2 F2g is near family, then so is F1 or F2.

The uniform spaces are precisely paracompact nearness spaces.
• Approach space

An approach space is a topological space providing a generalization of metric
space, based on point-set distance.

An approach space (Lowen, 1989) is a pair .X; D/, where X is a set and D is
a point-set distance, i.e., a function X � P.X/ ! Œ0; 1� (where P.X/ is the set
of all subsets of X) satisfying, for all x 2 X and all A; B 2 P.X/, the following
conditions:

1. D.x; fxg/ D 0;
2. D.x; f;g/ D 1;
3. D.x; A [ B/ D minfD.x; A/; D.x; B/g;
4. D.x; A/ � D.x; A�/ C � for any � 2 Œ0; 1�, where A� D fx W D.x; A/ � �g is

the “�-ball” with center x.

Every metric space .X; d/ (moreover, any extended quasi-semimetric space) is an
approach space with D.x; A/ being the usual point-set distance miny2A d.x; y/.

Given a locally compact separable metric space .X; d/ and the family F of
its nonempty closed subsets, the Baddeley–Molchanov distance function gives
a tool for another generalization. It is a function D W X � F ! R which is lower
semicontinuous with respect to its first argument, measurable with respect to the
second, and satisfies the following two conditions: F D fx 2 X W D.x; F/ � 0g
for F 2 F , and D.x; F1/ � D.x; F2/ for x 2 X, whenever F1; F2 2 F and
F1 � F2.

The additional conditions D.x; fyg/ D D.y; fxg/, and D.x; F/ � D.x; fyg/ C
D.y; F/ for all x; y 2 X and every F 2 F , provide analogs of symmetry and the
triangle inequality. The case D.x; F/ D d.x; F/ corresponds to the usual point-set
distance for the metric space .X; d/; the case D.x; F/ D d.x; F/ for x 2 XnF and
D.x; F/ D �d.x; XnF/ for x 2 X corresponds to the signed distance function in
Chap. 1.

• Metric bornology
Given a topological space X, a bornology of X is any family A of proper

subsets A of X such that the following conditions hold:

1. [A2AA D X;
2. A is an ideal, i.e., contains all subsets and finite unions of its members.

The family A is a metric bornology ([Beer99]) if, moreover
3. A contains a countable base;
4. For any A 2 A there exists A0 2 A such that the closure of A coincides with

the interior of A0.

The metric bornology is called trivial if A is the set P.X/ of all subsets of X; such
a metric bornology corresponds to the family of bounded sets of some bounded
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metric. For any noncompact metrizable topological space X, there exists an
unbounded metric compatible with this topology. A nontrivial metric bornology
on such a space X corresponds to the family of bounded subsets with respect
to some such unbounded metric. A noncompact metrizable topological space X
admits uncountably many nontrivial metric bornologies.

3.4 Beyond Numbers

• Metric 1-space
A category ‰ consists (Eilenberg and MacLane, 1945) of a set Ob.‰/

of objects, a set Mor.‰/ of morphisms (or arrows)) and a set-valued map
associating a set ‰.x; y/ of arrows to each ordered pair of objects x, y, so that
each arrow belongs to only one set ‰.x; y/. An element of ‰.x; y/ is also denoted
by f W x ! y.

Moreover, the composition f �g 2 ‰.x; z/ of two arrows f W x ! y, g W y ! z is
defined, and it is associative. Finally, each set ‰.x; x/ contains an identity arrow
idx such that f � idx D f and idx � g D g for any arrows f W y ! x and g W x ! z.
Cf. category of metric spaces in Chap. 1.

Weiss defined in [Weis12] a metric 1-space as a category ‰ together with a
weight-function w W ‰.x; y/ ! R�0 [ f1g on arrows, which satisfies

1. w.idx/ D 0 holds for each object x 2 Ob.‰/ (reflexivity).
2. jw.g/ � w. f /j � w.g � f / � w.g/ C w. f / holds for any objects x; y; z and

arrows f W x ! y; g W y ! z (full triangle inequality).

Any set X produces an indiscrete category IX, in which Ob.IX/ D X and
jIX.x; y/j D 1 for all x; y 2 X. Any metric space .X; d/ produces a metric 1-space
on IX by defining w. f / D d.x; y/, and it is unique metric 1-space on IX . But,
in general, the function w on arrows can be seen as a multivalued function on
Ob � Ob.

[Weis12] also outlined a metric m-space as a kind of an m-hemimetric on an
m-category consisting of i-dimensional cells, 0 � i � m (objects, arrows, . . . )
and a associative-like composition rule for the cells with matching boundaries.

• V-continuity space
Let .V; ^; _/ be a complete (having ^S WD ^x2Sx and _S WD _x2S for all

S 	 V) lattice with bottom element 0. For a; b 2 V , a is said to be well above b,
denoted by b � a, if given any S 	 V such that ^S � b, there exists s 2 S with
s � a.

A value quantale is a pair .V; C/, where V is a complete lattice and C is an
associative and commutative operation o such that for all a; b 2 V and S 	 V ,

1. a C ^S D ^.a C S/,
2. a C 0 D a,
3. a D ^fb 2 Va � bg,
4. 0 � a ^ b if 0 � a; b.
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A V-continuity space is (Flagg–Koperman, 1997) a triple .X; d; V/, where V
is a value quantale, X is a set, and d W X � X ! V is a function satisfying

d.x; x/ D 0 and d.x; z/ � d.x; y/ C d.y; z/:

Any extended quasi-semimetric space is a V-continuity space, where V is the
value quantale Œ0; 1�, seen as a complete lattice, with ordinary addition.

Weiss, 2013, showed that taken with continuous functions, the categories of
all V-continuity spaces and of all topological spaces are equivalent. In particular,
every topological space .X; �/ is “metrizable” in the sense that there exists a V-
continuity space .X; d; V/ such that � is the topology generated by open balls
fy 2 X W� �g.

• Probabilistic metric space
A notion of probabilistic metric space is a generalization of the notion

of metric space (see, for example, [ScSk83]) in two ways: distances become
probability distributions, and the sum in the triangle inequality becomes a
triangle operation.

Formally, let A be the set of all probability distribution functions, whose
support lies in Œ0; 1�. For any a 2 Œ0; 1� define step functions �a 2 A by
�a.x/ D 1 if x > a or x D 1, and �a.x/ D 0, otherwise. The functions in A
are ordered by defining F � G to mean F.x/ � G.x/ for all x � 0; the minimal
element is �0.

A commutative and associative operation � on A is called a triangle function
if �.F; �0/ D F for any F 2 A and �.E; F/ � �.G; H/ whenever E � G, F � H.
The semigroup .A; �/ generalizes the group .R; C/.

A probabilistic metric space is a triple .X; D; �/, where X is a set, D is a
function X � X ! A, and � is a triangle function, such that for any p; q; r 2 X

1. D.p; q/ D �0 if and only if p D q;
2. D.p; q/ D D.q; p/;
3. D.p; r/ � �.D.p; q/; D.q; r//.

For any metric space .X; d/ and any triangle function � , such that �.�a; �b/ �
�aCb for all a; b � 0, the triple .X; D D �d.x;y/; �/ is a probabilistic metric space.

For any x � 0, the value D.p; q/ at x can be interpreted as “the probability that
the distance between p and q is less than x”; this was approach of Menger, who
proposed in 1942 the original version, statistical metric space, of this notion.

A probabilistic metric space is called a Wald space if the triangle function is
a convolution, i.e., of the form �x.E; F/ D R

R
E.x � t/dF.t/.

A probabilistic metric space is called a generalized Menger space if the
triangle function has form �x.E; F/ D supuCvDx T.E.u/; F.v// for a t-norm T,
i.e., such a commutative and associative operation on Œ0; 1� that T.a; 1/ D a,
T.0; 0/ D 0 and T.c; d/ � T.a; b/ whenever c � a; d � b.

• Fuzzy metric spaces
A fuzzy subset of a set S is a mapping � W S ! Œ0; 1�, where �.x/ represents

the “degree of membership” of x 2 S.
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A continuous t-norm is a binary commutative and associative continuous
operation T on Œ0; 1�, such that T.a; 1/ D a and T.c; d/ � T.a; b/ whenever
c � a; d � b.

A KM fuzzy metric space (Kramosil–Michalek, 1975) is a pair .X; .�; T//,
where X is a nonempty set and a fuzzy metric .�; T/ is a pair comprising a
continuous t-norm T and a fuzzy set � W X2 � R�0 ! Œ0; 1�, such that, for
x; y; z 2 X and s; t � 0, the following conditions hold:

1. �.x; y; 0/ D 0;
2. �.x; y; t/ D 1 if and only if x D y; t > 0;
3. �.x; y; t/ D �.y; x; t/;
4. T.�.x; y; t/; �.y; z; s// � �.x; z; t C s/;
5. the function �.x; y; �/ W R�0 ! Œ0; 1� is left continuous.

A KM fuzzy metric space is called also a fuzzy Menger space since by defining
Dt.p; q/ D �.p; q; t/ one gets a generalized Menger space. The following
modification of the above notion, using a stronger form of metric fuzziness, it
a generalized Menger space with Dt.p; q/ positive and continuous on R>0 for all
p; q.

A GV fuzzy metric space (George–Veeramani, 1994) is a pair .X; .�; T//,
where X is a nonempty set, and a fuzzy metric .�; T/ is a pair comprising a
continuous t-norm T and a fuzzy set � W X2 �R>0 ! Œ0; 1�, such that for x; y; z 2
X and s; t > 0

1. �.x; y; t/ > 0;
2. �.x; y; t/ D 1 if and only if x D y;
3. �.x; y; t/ D �.y; x; t/;
4. T.�.x; y; t/; �.y; z; s// � �.x; z; t C s/;
5. the function �.x; y; �/ W R>0 ! Œ0; 1� is continuous.

An example of a GV fuzzy metric space comes from any metric space .X; d/

by defining T.a; b/ D b � ab and �.x; y; t/ D t
tCd.x;y/

. Conversely, any GV
fuzzy metric space (and also any KM fuzzy metric space) generates a metrizable
topology. Most GV fuzzy metrics are strong, i.e., T.�.x; y; t/; �.y; z; t// �
�.x; z; t/ holds.

A fuzzy number is a fuzzy set � W R ! Œ0; 1� which is normal (fx 2 R W
�.x/ D 1g ¤ ;), convex (�.tx C .1 � t/y/ � minf�.x/; �.y/g for every x; y 2
R and t 2 Œ0; 1�) and upper semicontinuous (at each point x0, the values �.x/

for x near x0 are either close to �.x0/ or less than �.x0/). Denote the set of all
fuzzy numbers which are nonnegative, i.e., �.x/ D 0 for all x < 0, by G. The
additive and multiplicative identities of fuzzy numbers are denoted by Q0 and Q1,
respectively. The level set Œ��t D fx W �.x/ � tg of a fuzzy number � is a closed
interval.

Given a nonempty set X and a mapping d W X2 ! G, let the mappings
L; R W Œ0; 1�2 ! Œ0; 1� be symmetric and nondecreasing in both arguments
and satisfy L.0; 0/ D 0, R.1; 1/ D 1. For all x; y 2 X and t 2 .0; 1�, let
Œd.x; y/�t D Œ�t.x; y/; 	t.x; y/�.
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A KS fuzzy metric space (Kaleva–Seikkala, 1984) is a quadruple .X; d; L; R/

with fuzzy metric d, if for all x; y; z 2 X

1. d.x; y/ D Q0 if and only if x D y;
2. d.x; y/ D d.y; x/;
3. d.x; y/.s C t/ � L.d.x; z/.s/; d.z; y/.t// whenever s � �1.x; z/, t � �1.z; y/,

and s C t � �1.x; y/;
4. d.x; y/.s C t/ � R.d.x; z/.s/; d.z; y/.t// whenever s � �1.x; z/, t � �1.z; y/,

and s C t � �1.x; y/.

The following functions are some frequently used choices for L and R:

maxfa C b � 1; 0g; ab; minfa; bg; maxfa; bg; a C b � ab; minfa C b; 1g:

Several other notions of fuzzy metric space were proposed, including
those by Erceg, 1979, Deng, 1982, and Voxman, 1998, Xu–Li, 2001, Tran–
Duckstein, 2002, Chakraborty–Chakraborty, 2006. Cf. also metrics between
fuzzy sets, fuzzy Hamming distance, gray-scale image distances and fuzzy
polynucleotide metric in Chaps. 1, 11, 21 and 23, respectively.

• Interval-valued metric space
Let I.R�0/ denote the set of closed intervals of R�0.
An interval-valued metric space (Coppola–Pacelli, 2006) is a pair

..X; �/; 
/, where .X; �/ is a partially ordered set and 
 is an interval-valued
mapping 
 W X � X ! I.R�0/, such that for every x; y; z 2 X

1. 
.x; x/ ? Œ0; 1� D 
.x; x/;
2. 
.x; y/ D 
.y; x/;
3. 
.x; y/ � 
.z; z/ 
 
.x; z/ C 
.z; y/;
4. 
.x; y/ � 
.x; y/ 
 
.x; x/ C 
.y; y/;
5. x � x0 and y � y0 imply 
.x; y/ 	 
.x0; y0/;
6. 
.x; y/ D 0 if and only if x D y and x; y are atoms (minimal elements of

.X; �/).

Here the following interval arithmetic rules hold: Œu; v� 
 Œu0; v0� if and only if
u � u0,

Œu; v� C Œu0; v0� D Œu C u0; v C v0�, Œu; v� � Œu0; v0� D Œu � u0; v � v0�,
Œu; v� ? Œu0; v0� D Œminfuu0; uv0; vu0; vv0g; maxfuu0; uv0; vu0; vv0g� and
Œu;v�

Œu0 ;v0 � D Œminf u
u0 ;

u
v0

; v
u0 ;

v
v0

g; maxf u
u0 ;

u
v0

; v
u0 ;

v
v0

g� when 0 … Œu0; v0�.
The addition and multiplication operations are commutative, associative and

subdistributive: it holds X ? .Y C Z/ � .X ? Y C X ? Z/.
Cf. metric between intervals in Chap. 10.
The usual metric spaces coincide with above spaces in which all x 2 X are

atoms.
• Direction distance

Given a normed real vector space .V; jj:jj/, for any x 2 V n f0g, denote by Œx�

the direction (ray) f�x W � > 0g and by x0 the point x
jjxjj . An oriented angle is an
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ordered pair .Œx�; Œy�/ of directions. The direction distance from x to y is defined
(Busch–Ruch, 1992) as the family of distances jj˛x0 � ˇy0jj with ˛; ˇ 2 R>0.

The mixing distance is defined as the restriction of the direction distance to
pairs of directions in the cone f�v W v 2 V; � > 0g. In fact, authors introduced
these distances on some special normed spaces used in Quantum Mechanics.

• Generalized metric
Let X be a set. Let .V; C; �/ be an ordered semigroup (not necessarily

commutative) with a least element � and with x � y; x1 � y1 implying
x C x1 � y C y1. Let .V; C/ be also endowed with an order-preserving involution
x� (i.e., .x�/� D x), which is operation-reversing, i.e., .x C y/� D y� C x�.

A function d W X � X ! G is called (Li–Wang–Pouzet, 1987) a generalized
metric over .V; C; �/ if the following conditions hold:

1. d.x; y/ D � if and only if x D y;
2. d.x; y/ � d.x; z/ C d.z; y/ for all x; y 2 X;
3. d�.x; y/ D d.y; x/.

• Cone metric
Let C be a proper cone in a real Banach space W, i.e., C is closed, C ¤ ;, the

interior of C is not equal to f�g (where � is the zero vector in W) and

1. if x; y 2 C and a; b 2 R�0, then ax C by 2 C;
2. if x 2 C and �x 2 C, then x D 0.

Define a partial ordering .W; �/ on W by letting x � y if y � x 2 C. The
following variation of generalized metric and partially ordered distance was
defined in Huang–Zhang, 2007, and, partially, in Rzepecki, 1980. Given a set X,
a cone metric is a mapping d W X � X ! .W; �/ such that

1. � � d.x; y/ with equality if and only if x D y;
2. d.x; y/ D d.y; x/ for all x; y 2 X;
3. d.x; y/ � d.x; z/ C d.z; y/ for all x; y 2 X;

The pair .X; d/ is called a cone metric space.
• W-distance on building

Let X be a set, and let .W; �; 1/ be a group. A W-distance on X is a W-valued
map � W X � X ! W having the following properties:

1. �.x; y/ D 1 if and only if x D y;
2. �.y; x/ D .�.x; y//�1.

A natural W-distance on W is �.x; y/ D x�1y.
A Coxeter group is a group .W; �; 1/ generated by the elements

fw1; : : : ; wn W .wiwj/
mij D 1; 1 � i; j � ng:

Here M D ..mij// is a Coxeter matrix, i.e., an arbitrary symmetric n � n matrix
with mii D 1, and the other values are positive integers or 1. The length l.x/ of
x 2 W is the smallest number of generators w1; : : : ; wn needed to represent x.
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Let X be a set, let .W; �; 1/ be a Coxeter group and let �.x; y/ be a W-distance
on X. The pair .X; �/ is called (Tits, 1981) a building over .W; �; 1/ if it holds

1. the relation �i defined by x �i y if �.x; y/ D 1 or wi, is an equivalence
relation;

2. given x 2 X and an equivalence class C of �i, there exists a unique y 2 C
such that �.x; y/ is shortest (i.e., of smallest length), and �.x; y0/ D �.x; y/wi

for any y0 2 C; y0 ¤ y.

The gallery distance on building d is a usual metric on X defined by
l.d.x; y//. The distance d is the path metric in the graph with the vertex-set
X and xy being an edge if �.x; y/ D wi for some 1 � i � n. The gallery distance
on building is a special case of a gallery metric (of chamber system X).

• Boolean metric space
A Boolean algebra (or Boolean lattice) is a distributive lattice .B; _; ^/

admitting a least element 0 and greatest element 1 such that every x 2 B has
a complement x with x _ x D 1 and x ^ x D 0.

Let X be a set, and let .B; _; ^/ be a Boolean algebra. The pair .X; d/ is called
(Blumenthal, 1953) a Boolean metric space over B if the function d W X�X ! B
has the following properties:

1. d.x; y/ D 0 if and only if x D y;
2. d.x; y/ � d.x; z/ _ d.z; y/ for all x; y; z 2 X.

• Space over algebra
A space over algebra is a metric space with a differential-geometric structure,

whose points can be provided with coordinates from some algebra (usually, an
associative algebra with identity).

A module over an algebra is a generalization of a vector space over a field,
and its definition can be obtained from the definition of a vector space by
replacing the field by an associative algebra with identity. An affine space over
an algebra is a similar generalization of an affine space over a field. In affine
spaces over algebras one can specify a Hermitian metric, while in the case of
commutative algebras even a quadratic metric can be given. To do this one defines
in a unital module a scalar product hx; yi, in the first case with the property
hx; yi D J.hy; xi/, where J is an involution of the algebra, and in the second case
with the property hy; xi D hx; yi.

The n-dimensional projective space over an algebra is defined as the variety
of one-dimensional submodules of an .n C 1/-dimensional unital module over
this algebra. The introduction of a scalar product hx; yi in a unital module makes
it possible to define a Hermitian metric in a projective space constructed by
means of this module or, in the case of a commutative algebra, quadratic elliptic
and hyperbolic metrics. The metric invariant of the points of these spaces is
the cross-ratio W D hx; xi�1hx; yihy; yi�1hy; xi. If W is a real number, then
w D arccos

p
W is called the distance between x and y in the space over

algebra.
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• Partially ordered distance
Let X be a set. Let .G; �/ be a partially ordered set with a least element g0.

A partially ordered distance is a function d W X � X ! G such that, for any
x; y 2 X, d.x; y/ D g0 if and only if x D y.

A generalized ultrametric (Priess-Crampe and Ribenboim, 1993) is a sym-
metric (i.e., d.x; y/ D d.y; x/) partially ordered distance, such that d.z; x/ � g
and d.z; y/ � g imply d.x; y/ � g for any x; y; z 2 X and g 2 G.

Suppose that G0 D Gnfg0g ¤ ; and, for any g1; g2 2 G0, there exists g3 2 G0
such that g3 � g1 and g3 � g2. Consider the following possible properties:

1. For any g1 2 G0, there exists g2 2 G0 such that, for any x; y 2 X, from
d.x; y/ � g2 it follows that d.y; x/ � g1;

2. For any g1 2 G0, there exist g2; g3 2 G0 such that, for any x; y; z 2 X, from
d.x; y/ � g2 and d.y; z/ � g3 it follows that d.x; z/ � g1;

3. For any g1 2 G0, there exists g2 2 G0 such that, for any x; y; z 2 X, from
d.x; y/ � g2 and d.y; z/ � g2 it follows that d.y; x/ � g1;

4. G0 has no first element;
5. d.x; y/ D d.y; x/ for any x; y 2 X;
6. For any g1 2 G0, there exists g2 2 G0 such that, for any x; y; z 2 X, from

d.x; y/ <� g2 and d.y; z/ <� g2 it follows that d.x; z/ <� g1; here p <� q
means that either p < q, or p is not comparable to q;

7. The order relation < is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered
distance if 1 and 2 hold; the Golmez partially ordered distance of first type if
4, 5, and 6 hold; the Golmez partially ordered distance of second type if 3, 4,
and 5 hold; the Kurepa–Fréchet distance if 3, 4, 5, and 7 hold.

The case G D R�0 of the Kurepa–Fréchet distance corresponds to the Fréchet
V-space; cf. the f -quasi-metric in Sect. 1.1. The general case was considered in
Kurepa, 1934, and rediscovered in Fréchet, 1946.

• Distance from measurement
Distance from measurement is an analog of distance on domains in Com-

puter Science; it was developed in [Mart00].
A po (partially ordered set) .D; 
/ is called dcpo (directed-complete po) if

every directed subset S � D (i.e., S ¤ ; and any pair x; y 2 S is bounded: there
is z 2 S with x; y 
 z) has a supremum tS, i.e., the least of such upper bounds z.

For x; y 2 D, y is an approximation of x if, for all directed subsets S � D,
x 
 tS implies y 
 s for some s 2 S. A dcpo .D; 
/ is continuous if for all
x 2 D the set of all approximations of x is directed and x is its supremum. A
domain is a continuous dcpo .D; 
/ such that for all x; y 2 D there is z 2 D with
z 
 x; y. A Scott domain is a domain with least element, in which any bounded
pair has a supremum.

A subset U of a dcpo .D; 
/ is Alexandrov open if, for any x 2 U and y 2 D,
x 
 y implies y 2 U; it is Scott open if also, for any directed subset S � D,
tS 2 U implies S\U ¤ ;. The set of Scott open sets form the Scott topology; it is
a T0-space (Chap. 2) with generalized metrization by a partial metric (Chap. 1).
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A measurement is a mapping � W D ! R�0 between dcpo .D; 
/ and dcpo
.R�0; 
/, where R�0 is ordered as x 
 y if y � x, such that

1. x 
 y implies �.x/ 
 �.y/;
2. �.tS/ D t.f�.s/ W s 2 Sg/ for every directed subset S � D;
3. For all x 2 D with �.x/ D 0 and all sequences .xn/; n ! 1, of

approximations of x with limn!1 �.xn/ D �.x/, one has t.[1
nD1fxng/ D x.

Given a measurement �, the distance from measurement is a mapping d W
D � D ! R�0 given by

d.x; y/ D inff�.z/ W z approximates x; yg D inff�.z/ W z 
 x; yg:

One has d.x; x/ 
 �.x/. The function d.x; y/ is a metric on the set fx 2 D W
�.x/ D 0g if � satisfies the following measurement triangle inequality: for all
bounded pairs x; y 2 D, there is an element z 
 x; y such that �.z/ � �.x/C�.y/.

Waszkiewicz, 2001, found topological connections between topologies com-
ing from a distance from measurement and from a partial metric defined in
Chap. 1.
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