Chapter 12 Distances on Numbers, Polynomials, and Matrices

12.1 Metrics on Numbers

Here we consider the most important metrics on the classical number systems: the semiring N of natural numbers, the ring Z of integers, and the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ of rational, real, complex numbers, respectively. We consider also the algebra *Q* of quaternions.

• **Metrics on natural numbers**

There are several well-known metrics on the set $\mathbb N$ of natural numbers:

- 1. $|n-m|$; the restriction of the **natural metric** (from R) on N;
2. $n^{-\alpha}$ where α is the highest power of a given prime number r
- 2. $p^{-\alpha}$, where α is the highest power of a given prime number *p* dividing $m n$,
for $m \neq n$ (and equal to 0 for $m = n$); the restriction of the *n*-adic metric for $m \neq n$ (and equal to 0 for $m = n$); the restriction of the *p***-adic metric** (from \mathbb{Q}) on \mathbb{N} ;
- 3. In $\frac{lcm(m,n)}{gcd(m,n)}$; an example of the **lattice valuation metric**;
- 4. $w_r(n-m)$, where $w_r(n)$ is the *arithmetic r-weight* of *n*; the restriction of the **arithmetic** *r***-norm metric** (from \mathbb{Z}) on \mathbb{N} . **arithmetic** *r***-norm metric** (from \mathbb{Z}) on \mathbb{N} ;
- 5. $\frac{|n-m|}{mn}$ (cf. *M***-relative metric** in Chap. 5);
- 6. $1 + \frac{1}{m+n}$ for $m \neq n$ (and equal to 0 for $m = n$); the **Sierpinski metric**.

Most of these metrics on $\mathbb N$ can be extended on $\mathbb Z$. Moreover, any one of the above metrics can be used in the case of an arbitrary countable set *X*. For example, the **Sierpinski metric** is defined, in general, on a countable set $X = \{x_n : n \in \mathbb{N}\}\$ by $1 + \frac{1}{m+n}$ for all x_m , $x_n \in X$ with $m \neq n$ (and is equal to 0, otherwise).
A rithmetic *r*-norm metric

• **Arithmetic** *r***-norm metric**

Let $r \in \mathbb{N}, r > 2$. The *modified r-ary form* of an integer *x* is a representation

$$
x=e_n r^n+\cdots+e_1 r+e_0,
$$

where $e_i \in \mathbb{Z}$, and $|e_i| < r$ for all $i = 0, \ldots, n$.

© Springer-Verlag Berlin Heidelberg 2016

M.M. Deza, E. Deza, *Encyclopedia of Distances*, DOI 10.1007/978-3-662-52844-0_12

An *r*-ary form is called *minimal* if the number of nonzero coefficients is minimal. The minimal form is not unique, in general. But if the coefficients *ei*, $0 \le i \le n-1$, satisfy the conditions $|e_i + e_{i+1}| < r$, and $|e_i| < |e_{i+1}|$ if $e_{i+1} \le n$ then the above form is unique and minimal; it is called the *oeneralized* $e_i e_{i+1} < 0$, then the above form is unique and minimal; it is called the *generalized nonadjacent form*.

The *arithmetic r-weight* $w_r(x)$ of an integer x is the number of nonzero coefficients in a *minimal r-ary form* of *x*, in particular, in the generalized nonadjacent form. The **arithmetic** *r***-norm metric** on \mathbb{Z} (see, for example, [Ernv85]) is defined by

$$
w_r(x-y).
$$

• **Distance between consecutive primes**

The **distance between consecutive primes** (or *prime gap*, *prime difference function*) is the difference $g_n = p_{n+1} - p_n$ between two successive prime numbers.

It holds $g_n \le n$, $\overline{\lim}_{n \to \infty} g_n = \infty$ and (Zhang, 2013) $\lim_{n \to \infty} g_n \le 7 \times 10^7$ It holds $g_n \leq p_n$, $\overline{\lim}_{n\to\infty} g_n = \infty$ and (Zhang, 2013) $\lim_{n\to\infty} g_n < 7 \times 10^7$, improved to \leq 246 (conjecturally, to \leq 6) by Polymath8, 2014. There is no $\lim_{n\to\infty} g_n$ but $g_n \approx \ln p_n$ for the average g_n .

Open *Polignac's conjecture*: for any $k \geq 1$, there are infinitely many *n* with $g_n = 2k$; the case $k = 1$ (i.e., that $\lim_{n \to \infty} g_n = 2$ holds) is the *twin prime conjecture*.

• **Distance Fibonacci numbers**

Fibonacci numbers are defined by the recurrence $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$
b initial terms $F_0 = 0$ and $F_1 = 1$. **Distance Eihonacci numbers** are three with initial terms $F_0 = 0$ and $F_1 = 1$. **Distance Fibonacci numbers** are three following generalizations of them in the distance sense, considered by Wloch et al..

Kwaśnik–Wloch, 2000: $F(k, n) = F(k, n-1) + F(k, n-k)$ for $n > k$ and $k, n) = n + 1$ for $n \le k$ $F(k, n) = n + 1$ for $n \leq k$.

Bednarz et al., 2012: $Fd(k, n) = Fd(k, n-k+1) + Fd(k, n-k)$ for $n \ge k > 1$
H $Fd(k, n) - 1$ for $0 \le n < k$ and $Fd(k, n) = 1$ for $0 \le n \le k$.

Wloch et al., 2013: $F_2(k, n) = F_2(k, n-2) + F_2(k, n-k)$ for $n \ge k \ge 1$ and $\frac{k(n-1)}{2} = 1$ for $0 \le n \le k$ $F_2(k, n) = 1$ for $0 \le n < k$.

• *p***-adic metric**

Let p be a prime number. Any nonzero rational number x can be represented as $x = p^{\alpha} \frac{c}{d}$, where *c* and *d* are integers not divisible by *p*, and α is a unique integer.
The *padic norm* of *x* is defined by |x| = $p^{-\alpha}$ Moreover |0| = 0 is defined The *p*-adic norm of *x* is defined by $|x|_p = p^{-\alpha}$. Moreover, $|0|_p = 0$ is defined.
The *p*-adic metric is a norm metric on the set \oplus of rational numb

The *p***-adic metric** is a **norm metric** on the set $\mathbb Q$ of rational numbers defined by

$$
|x-y|_p.
$$

This metric forms the basis for the algebra of *p*-adic numbers. The **Cauchy completions** of the metric spaces $(\mathbb{Q}, |x-y|_p)$ and $(\mathbb{Q}, |x-y|)$ with the **natural metric** $|x-y|$ give the fields \mathbb{Q} , of *n-adic numbers* and \mathbb{R} of real numbers, respectively $|x - y|$ give the fields \mathbb{Q}_p of *p-adic numbers* and \mathbb{R} of real numbers, respectively.

The **Gajić metric** is an **ultrametric** on the set \mathbb{O} of rational numbers defined, for $x \neq y$ (via the integer part |z| of a real number z), by

$$
\inf\{2^{-n} : n \in \mathbb{Z}, \ [2^n(x-e)] = [2^n(y-e)]\},\
$$

where *e* is any fixed irrational number. This metric is **equivalent** to the **natural metric** $|x - y|$ on Q.
Continued fraction

• **Continued fraction metric on irrationals**

The **continued fraction metric on irrationals** is a complete metric on the set *Irr* of irrational numbers defined, for $x \neq y$, by

$$
\frac{1}{n},
$$

where *n* is the first index for which the continued fraction expansions of *x* and *y* differ. This metric is **equivalent** to the **natural metric** $|x - y|$ on *Irr* which is noncomplete and disconnected. Also, the *Raire* 0-dimensional space $R(\mathbf{x})$ (cf. noncomplete and disconnected. Also, the *Baire* 0-dimensional space $B(\aleph_0)$ (cf. **Baire metric** in Chap. 11) is homeomorphic to *Irr* endowed with this metric.

• **Natural metric**

The **natural metric** (or **absolute value metric**, **line metric**, *the distance between numbers*) is a metric on R defined by

$$
|x - y| = \begin{cases} y - x, \text{ if } x - y < 0, \\ x - y, \text{ if } x - y \ge 0. \end{cases}
$$

On $\mathbb R$ all l_p **-metrics** coincide with the natural metric. The metric space $(\mathbb R, |x-y|)$ is called the *real line* (or *Fuclidean line*) is called the *real line* (or *Euclidean line*).

There exist many other metrics on \mathbb{R} coming from $|x - y|$ by some **metric**
neform (Chan A) For example: $\min\{1, |x - y| \}$ $\frac{|x - y|}{|x - y|} + \frac{|x - y|}{|x - y|} + \frac{|y|}{|y - y|}$ **transform** (Chap. 4). For example: min{1, |x - y|}, $\frac{|x-y|}{1+|x-y|}$, $|x| + |x - y| + |y|$ (for $x \neq y$) and, for a given $0 < \alpha < 1$, the **generalized absolute value metric**
 $|x - y|^{\alpha}$ $|x-y|^{\alpha}$.
Some

Some authors use $|x - y|$ as the *Polish notation* (parentheses-free and notice-friendly) of the distance function in any metric space computer-friendly) of the distance function in any metric space.

• **Zero bias metric**

The **zero bias metric** is a metric on R defined by

$$
1+|x-y|
$$

if one and only one of *x* and *y* is strictly positive, and by

$$
|x-y|,
$$

otherwise, where $|x - y|$ is the **natural metric** (see, for example, [Gile87]).

• **Sorgenfrey quasi-metric**

The **Sorgenfrey quasi-metric** is a quasi-metric *d* on R defined by

 $y - x$

if $y \ge x$, and equal to 1, otherwise. Some similar quasi-metrics on R are:

- 1. $d_1(x, y) = \max\{y x, 0\}$ (in general, $\max\{f(y) f(x), 0\}$ is a quasi-metric on a set X if $f : X \to \mathbb{R}_{\geq 0}$ is an injective function). a set *X* if $f: X \to \mathbb{R}_{\geq 0}$ is an injective function);
- 2. $d_2(x, y) = \min\{y x, 1\}$ if $y \ge x$, and equal to 1, otherwise;
3. $d_2(x, y) = y x$ if $y > x$ and equal to $a(x y)$ (for fixed a)
- 3. $d_3(x, y) = y x$ if $y \ge x$, and equal to $a(x y)$ (for fixed $a > 0$), otherwise;
4. $d_1(x, y) = e^y e^x$ if $y > x$ and equal to $e^{-y} e^{-x}$ otherwise.
- 4. $d_4(x, y) = e^y e^x$ if $y \ge x$, and equal to $e^{-y} e^{-x}$ otherwise.

• **Real half-line quasi-semimetric**

The **real half-line quasi-semimetric** is defined on the half-line $\mathbb{R}_{>0}$ by

$$
\max\{0, \ln\frac{y}{x}\}.
$$

• **Janous–Hametner metric**

The **Janous–Hametner metric** is defined on the half-line $\mathbb{R}_{>0}$ by

$$
\frac{|x-y|}{(x+y)^t},
$$

where $t = -1$ or $0 \le t \le 1$, and $|x - y|$ is the **natural metric**.
Extended real line metric

• **Extended real line metric**

An **extended real line metric** is a metric on $\mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$. The main unple (see for example [Cons681) of such metric is given by example (see, for example, [Cops68]) of such metric is given by

$$
|f(x)-f(y)|,
$$

where $f(x) = \frac{x}{1+|x|}$ for $x \in \mathbb{R}$, $f(+\infty) = 1$, and $f(-\infty) = -1$.
A nother metric, commonly used on $\mathbb{R} + \{+\infty\} + \infty$, is Another metric, commonly used on $\mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$, is defined by

$$
|\arctan x - \arctan y|,
$$

where $-\frac{1}{2}\pi < \arctan x < \frac{1}{2}\pi$ for $-\infty < x < \infty$, and $\arctan(\pm \infty) = \pm \frac{1}{2}\pi$.
Complex modulus metric • **Complex modulus metric**

The **complex modulus metric** on the set $\mathbb C$ of complex numbers is defined by

$$
|z-u|,
$$

where, for any $z = z_1 + z_2 i \in \mathbb{C}$, the number $|z| = \sqrt{z_1^2 + z_2^2}$ is the *com-*
*z*₁*u* and *z*¹*z***₂** and *z*¹*z***₂** and *z*¹*z*₂ is the *complex modulus.* The *complex argument* θ is defined by $z = |z|(\cos(\theta) + i \sin(\theta))$.

The metric space $(\mathbb{C}, |z-u|)$ is called the *complex* (or *Wessel–Argand*) *plane*.
s isometric to the Fuclidean plane (\mathbb{R}^2 $||x-v||_2$). So, the metrics on \mathbb{R}^2 given It is isometric to the Euclidean plane $(\mathbb{R}^2, ||x-y||_2)$. So, the metrics on \mathbb{R}^2 , given
in Chaps 19 and 5, can be seen as metrics on \mathbb{C} . For example, the **British Rail** in Chaps. 19 and 5, can be seen as metrics on C. For example, the **British Rail metric** on \mathbb{C} is $|z| + |u|$ for $z \neq u$. The *p*-relative (if $1 \leq p \leq \infty$) and relative **metric** (if $p = \infty$) on C are defined for $|z| + |u| \neq 0$ respectively, by

$$
\frac{|z-u|}{\sqrt[p]{|z|^p+|u|^p}} \text{ and } \frac{|z-u|}{\max\{|z|, |u|\}}.
$$

• $\mathbb{Z}(\eta_m)$ -related norm metrics

A *Kummer* (or *cyclotomic*) *ring* $\mathbb{Z}(\eta_m)$ is a subring of the ring \mathbb{C} (and an extension of the ring \mathbb{Z}), such that each of its elements has the form $\sum_{j=0}^{m-1} a_j \eta_m^j$, where η_m is a primitive *m*-th root exp $\left(\frac{2\pi i}{m}\right)$ of unity, and all a_j are integers.

The *complex modulus* |*z*| of $z = a + b\eta_m \in \mathbb{C}$ is defined by

$$
|z|^2 = z\overline{z} = a^2 + (\eta_m + \overline{\eta_m})ab + b^2 = a^2 + 2ab\cos(\frac{2\pi i}{m}) + b^2.
$$

Then $(a + b)^2 = q^2$ for $m = 2$ (or 1), $a^2 + b^2$ for $m = 4$, and $a^2 + ab + b^2$ for $m = 6$ (or 3), i.e., for the ring $\mathbb Z$ of usual integers, $\mathbb Z(i)$ of *Gaussian integers* and Z./ of *Eisenstein–Jacobi* (or *EJ*) *integers*.

The set of units of $\mathbb{Z}(\eta_m)$ contain $\eta_m^j, 0 \le j \le m-1$; for $m = 5$ and > 6 units of infinite order appear also, since $\cos(2\pi i)$ is irrational. For $m \geq 6$, units of infinite order appear also, since $\cos(\frac{2\pi i}{m})$ is irrational. For $m = 2, 4, 6$ the set of units is $l+1$, $l+1$, $l+1$, $l+1$, $l+2$, where $l = n_l$ $m = 2, 4, 6$, the set of units is $\{\pm 1\}$, $\{\pm 1, \pm i\}$, $\{\pm 1, \pm \rho, \pm \rho^2\}$, where $i = \eta_4$ and $\rho = \eta_6 = \frac{1+i\sqrt{3}}{2}$.
The name low

The norms $|z| = \sqrt{a^2 + b^2}$ and $||z||_i = |a| + |b|$ for $z = a + bi \in \mathbb{C}$ give rise to the **complex modulus** and *i***-Manhattan** metrics on C. They coincide with the Euclidean $(l_2$ -) and Manhattan $(l_1$ -) metrics, respectively, on \mathbb{R}^2 seen as the complex plane. The restriction of the *i*-Manhattan metric on $\mathbb{Z}(i)$ is the path metric of the square grid \mathbb{Z}^2 of \mathbb{R}^2 ; cf. **grid metric** in Chap. 19.

The ρ -**Manhattan metric** on C is defined by the norm $||z||_{\rho}$, i.e.,

$$
\min\{|a|+|b|+|c| : z = a+b\rho + c\rho^2\} = \min\{|a|+|b|, |a+b|+|b|, |a+b|+|a| : z = a+b\rho\}.
$$

The restriction of the ρ -Manhattan metric on $\mathbb{Z}(\rho)$ is the path metric of the triangular grid of \mathbb{R}^2 (seen as the *hexagonal lattice* $A_2 = \{(a, b, c) \in \mathbb{Z}^3$: $a + b + c = 0$, i.e., the **hexagonal metric** (Chap. 19).

Let *f* denote either *i* or $\rho = \frac{1+i\sqrt{3}}{2}$. Given a $\pi \in \mathbb{Z}(f) \setminus \{0\}$ and $z, z' \in \mathbb{Z}(f)$, write $z = z' \pmod{\pi}$ if $z - z' - \delta \pi$ for some $\delta \in \mathbb{Z}(f)$. For the quotient ring we write $z \equiv z' \pmod{\pi}$ if $z - z' = \delta \pi$ for some $\delta \in \mathbb{Z}(f)$. For the quotient ring $\mathbb{Z}(f) - \frac{1}{z} \pmod{\pi}$; $z \in \mathbb{Z}(f)$, it holds $|\mathbb{Z}(f)| - |\mathbb{Z}|^2$ $\mathbb{Z}_{\pi}(f) = \{z \pmod{\pi} : z \in \mathbb{Z}(f)\}\text{, it holds } |\mathbb{Z}_{\pi}(f)| = ||\pi||_f^2.$
Call two congruence classes $z \pmod{\pi}$ and $z' \pmod{\pi}$.

Call two congruence classes $z \pmod{\pi}$ and $z' \pmod{\pi}$ *adjacent* if $z - z' \equiv$
mod π) for some *i*. The resulting graph on \mathbb{Z}_+ (f) called a *Gaussian network* f^j (mod π) for some *j*. The resulting graph on $\mathbb{Z}_{\pi}(f)$ called a *Gaussian network* or *EJ network* if, respectively, $f = i$ or $f = \rho$. The path metrics of these networks coincide with their norm metrics, defined (Fan–Gao, 2004) for $z \pmod{\pi}$ and z' (mod π), by

$$
\min ||u||_f : u \in z - z' \pmod{\pi}.
$$

These metrics are different from the previously defined ([Hube94a, Hube94b]) distance on $\mathbb{Z}_{\pi}(f)$: $||v||_f$, where $v \in z - z' \pmod{\pi}$ is selected by minimizing
the complex modulus For $f = i$ this is the **Mannheim distance** (Chap 16) the complex modulus. For $f = i$, this is the **Mannheim distance** (Chap. 16), which is not a metric.

• **Chordal metric**

The **chordal metric** d_{χ} is a metric on the set $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ defined by

$$
d_{\chi}(z, u) = \frac{2|z - u|}{\sqrt{1 + |z|^2}\sqrt{1 + |u|^2}} \text{ and } d_{\chi}(z, \infty) = \frac{2}{\sqrt{1 + |z|^2}}
$$

for all $u, z \in \mathbb{C}$ (cf. *M***-relative metric** in Chap. 5).

The metric space $(\overline{C}, d_{\gamma})$ is called the *extended complex plane*. It is homeomorphic and conformally equivalent to the *Riemann sphere*, i.e., the *unit sphere* $S^2 = \{(x_1, x_2, x_3) \in \mathbb{E}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$ (considered as a metric subspace of \mathbb{F}^3) onto which $(\overline{\mathbb{C}}^d)$ is one to one manned under stereographic projection \mathbb{E}^3), onto which $(\overline{\mathbb{C}}, d_{\gamma})$ is one-to-one mapped under stereographic projection.

The plane \overline{C} can be identified with the plane $x_3 = 0$ such that the and imaginary axes coincide with the x_1 and x_2 axes. Under stereographic projection, each point $z \in \mathbb{C}$ corresponds to the point $(x_1, x_2, x_3) \in S^2$, where the ray drawn from the "north pole" $(0, 0, 1)$ to the point *z* meets the sphere S^2 ; the "north pole" corresponds to the point at ∞ . The chordal (spherical) metric between two points $p, q \in S^2$ is taken to be the distance between their preimages $z, u \in \overline{C}$.

The chordal metric is defined equivalently on $\overline{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$:

$$
d_{\chi}(x, y) = \frac{2||x - y||_2}{\sqrt{1 + ||x||_2^2} \sqrt{1 + ||y||_2^2}} \text{ and } d_{\chi}(x, \infty) = \frac{2}{\sqrt{1 + ||x||_2^2}}.
$$

The restriction of the metric d_χ on \mathbb{R}^n is a **Ptolemaic metric**; cf. Chap. 1.

Given $\alpha > 0$, $\beta > 0$, $p > 1$, the **generalized chordal metric** is a metric on \mathbb{C} (in general, on $(\mathbb{R}^n, ||.||_2)$ and even on any *Ptolemaic space* $(V, ||.||)$), defined by

$$
\frac{|z-u|}{\sqrt[p]{\alpha+\beta|z|^p}\cdot\sqrt[p]{\alpha+\beta|u|^p}}.
$$

• **Metrics on quaternions**

Quaternions are members of a noncommutative division algebra *Q* over the field R, geometrically realizable in \mathbb{R}^4 ([Hami66]). Formally,

$$
Q = \{q = q_1 + q_2i + q_3j + q_4k : q_i \in \mathbb{R}\},\
$$

where the *basic units* $1, i, j, k \in \mathcal{Q}$ satisfy $i^2 = j^2 = k^2 = -1$ and $ij = -ji = k$.

The *quaternion norm* is defined by $||q|| = \sqrt{q\overline{q}} = \sqrt{q_1^2 + q_2^2 + q_3^2 + q_4^2}$, where $\overline{q} = q_1 - q_2i - q_3j - q_4k$. The **quaternion metric** is the norm metric $||q - q'||$ on Ω $\frac{||q-q'||}{||\ln Q}$.
The set of al

The set of all *Lipschitz integers* and *Hurwitz integers* are defined, respectively, by

$$
L = \{q_1 + q_2 i + q_3 j + q_4 k : q_i \in \mathbb{Z}\} \text{ and}
$$

$$
H = \{q_1 + q_2 i + q_3 j + q_4 k : \text{all } q_i \in \mathbb{Z} \text{ or all } q_i + \frac{1}{2} \in \mathbb{Z} \}.
$$

A quaternion $q \in L$ is *irreducible* (i.e., $q = q'q''$ implies $\{q', q''\} \cap$
 $\{+1 + i + i + k\} \neq \emptyset$ if and only if $||q||$ is a prime Given an irreducible $\{\pm 1, \pm i, \pm j, \pm k\} \neq \emptyset$ if and only if $||q||$ is a prime. Given an irreducible $\pi \in L$ and $q, q' \in H$, we write $q \equiv q' \pmod{\pi}$ if $q - q' = \delta \pi$ for some $\delta \in L$.
For the rings $L_{\infty} = \{q \pmod{\pi} : q \in L\}$ and $H_{\infty} = \{q \pmod{\pi} : q \in H\}$

For the rings $L_{\pi} = \{q \pmod{\pi} : q \in L\}$ and $H_{\pi} = \{q \pmod{\pi} : q \in H\}$ it
 $dS |L_{\pi}| = ||\pi||^2$ and $|H_{\pi}| = 2||\pi||^2 - 1$ holds $|L_{\pi}| = ||\pi||^2$ and $|H_{\pi}| = 2||\pi||^2 - 1$.
The **quaternion Linschitz metric** on L_{in}

The **quaternion Lipschitz metric** on L_{π} is defined (Martinez et al., 2009) by

$$
d_L(\alpha, \beta) = \min \sum_{1 \leq s \leq 4} |q_s| : \alpha - \beta \equiv q_1 + q_2 i + q_3 j + q_4 k \, (\text{mod } \pi).
$$

The ring *H* is additively generated by its subring *L* and $w = \frac{1}{2}(1 + i + j + k)$.
The **Hurwitz metric** on the ring *H* is defined (Guzëltene, 2013) by The **Hurwitz metric** on the ring H_{π} is defined (Guzëltepe, 2013) by

$$
d_H(\alpha, \beta) = \min \sum_{1 \le s \le 5} |q_s| : \alpha - \beta \equiv q_1 + q_2 i + q_3 j + q_4 k + q_5 w \, (\text{mod } \pi).
$$

Cf. the **hyper-Kähler** and **Gibbons–Manton** metrics in Sect. 7.3 and the **unit quaternions** and **joint angle** metrics in Sect. 18.3.

12.2 Metrics on Polynomials

A *polynomial* is a sum of powers in one or more variables multiplied by coefficients. A *polynomial in one variable* (or *monic polynomial*) with constant real (complex) coefficients is given by $P = P(z) = \sum_{k=0}^{n} a_k z^k$, $a_k \in \mathbb{R}$ ($a_k \in \mathbb{C}$). The set P of all real (complex) polynomials forms a ring ($P + i$, 0). It is also a vector space over real (complex) polynomials forms a ring $(P, +, \cdot, 0)$. It is also a vector space over $\mathbb R$ (over $\mathbb C$).

• **Polynomial norm metric**

A **polynomial norm metric** is a **norm metric** on the vector space *P* of all real (complex) polynomials defined by

$$
||P-Q||,
$$

where ||.|| is a *polynomial norm*, i.e., a function $||.|| : \mathcal{P} \rightarrow \mathbb{R}$ such that, for all $P, Q \in \mathcal{P}$ and for any scalar *k*, we have the following properties:

- 1. $||P|| > 0$, with $||P|| = 0$ if and only if $P \equiv 0$;
- 2. $|kP|| = |k||P||$;
- 3. $||P + Q|| \le ||P|| + ||Q||$ (triangle inequality).

The l_p -norm and L_p -norm of a polynomial $P(z) = \sum_{k=0}^{n} a_k z^k$ are defined by

$$
||P||_p = (\sum_{k=0}^n |a_k|^p)^{1/p} \text{ and } ||P||_{L_p} = (\int_0^{2\pi} |P(e^{i\theta})|^p \frac{d\theta}{2\pi})^{\frac{1}{p}} \text{ for } 1 \le p < \infty,
$$

$$
||P||_{\infty} = \max |a_1| \text{ and } ||P||_{L_p} = \sup |P(z)| \text{ for } p = \infty
$$

 $||P||_{\infty} = \max_{0 \le k \le n} |a_k|$ and $||P||_{L_{\infty}} = \sup_{|z|=1} |P(z)|$ for $p = \infty$.

The values $||P||_1$ and $||P||_{\infty}$ are called the *length* and *height* of polynomial *P*. • **Distance from irreducible polynomials**

For any field \mathbb{F} , a polynomial with coefficients in \mathbb{F} is said to be *irreducible over* $\mathbb F$ if it cannot be factored into the product of two nonconstant polynomials with coefficients in $\mathbb F$. Given a metric *d* on the polynomials over $\mathbb F$, the **distance** (of a given polynomial $P(z)$) **from irreducible polynomials** is $d_{ir}(P)$ = inf $d(P, Q)$, where $Q(z)$ is any irreducible polynomial of the same degree over \mathbb{F} .

Polynomial conjecture of Turán, 1967, is that there exists a constant *C* with $d_{ir}(P) \le C$ for every polynomial *P* over Z, where $d(P, Q)$ is the *length* $||P - Q||_1$ of $P - Q$.
De-R

Lee–Ruskey–Williams, 2007, conjectured that there exists a constant *C* with $d_{ir}(P) \leq C$ for every polynomial *P* over the Galois field \mathbb{F}_2 , where $d(P, Q)$ is the **Hamming distance** between the $(0, 1)$ -sequences of coefficients of *P* and *Q*.

• **Bombieri metric**

The **Bombieri metric** (or **polynomial bracket metric**) is a **polynomial norm metric** on the set P of all real (complex) polynomials defined by

$$
[P-Q]_p,
$$

where $[.]_{p}, 0 \leq p \leq \infty$, is the *Bombieri p-norm*. For a polynomial $P(z) = \sum_{k=0}^{n} a_k z^k$ it is defined by

$$
[P]_p = (\sum_{k=0}^n {n \choose k}^{1-p} |a_k|^p)^{\frac{1}{p}}.
$$

• **Metric space of roots**

The **metric space of roots** is (Curgus–Mascioni, 2006) the space (X, d) where *X* is the family of all multisets of complex numbers with *n* elements and the distance between multisets $U = \{u_1, \ldots, u_n\}$ and $V = \{v_1, \ldots, v_n\}$ is defined by the following analog of the **Fréchet metric**:

$$
\min_{\tau \in Sym_n} \max_{1 \leq j \leq n} |u_j - v_{\tau(j)}|,
$$

where τ is any permutation of $\{1, \ldots, n\}$. Here the set of roots of some monic complex polynomial of degree *n* is considered as a multiset with *n* elements. Cf. **metrics between multisets** in Chap. 1.

The function assigning to each polynomial the multiset of its roots is a **homeomorphism** between the metric space of all monic complex polynomials of degree *n* with the **polynomial norm metric** l_{∞} and the metric space of roots.

12.3 Metrics on Matrices

An $m \times n$ matrix $A = ((a_{ij}))$ over a field $\mathbb F$ is a table consisting of *m* rows and *n* columns with the entries a_{ij} from \mathbb{F} . The set of all $m \times n$ matrices with real (complex) entries is denoted by $M_{m,n}$ or $\mathbb{R}^{m \times n}$ ($\mathbb{C}^{m \times n}$). It forms a *group* $(M_{m,n}, +, 0_{m,n})$, where $((a_{ij}) + ((b_{ij})) = ((a_{ij} + b_{ij}))$, and the matrix $0_{m,n} \equiv 0$. It is also an *mn*-dimensional vector space over $\mathbb R$ ($\mathbb C$).

The *transpose* of a matrix $A = ((a_{ij})) \in M_{m,n}$ is the matrix $A^T = ((a_{ij})) \in M_{n,m}$. A $m \times n$ matrix A is called a *square matrix* if $m = n$, and a *symmetric matrix* if $A = A^T$. The *conjugate transpose* (or *adjoint*) of a matrix $A = ((a_{ii})) \in M_{m,n}$ is the matrix $A^* = ((\overline{a}_{ii})) \in M_{n,m}$. An *Hermitian matrix* is a complex square matrix *A* with $A = A^*$.

The set of all square $n \times n$ matrices with real (complex) entries is denoted by M_n . It forms a *ring* $(M_n, +, \cdot, 0_n)$, where $+$ and 0_n are defined as above, and $((a_{ij}))$. $((b_{ij})) = ((\sum_{k=1}^{n} a_{ik}b_{kj}))$. It is also an *n*²-dimensional vector space over R (over C).
The *trace* of a square $n \times n$ matrix $A = ((a_{ij}))$ is defined by $Tr(A) = \sum_{k=1}^{n} a_{ik}$. The *trace* of a square $n \times n$ matrix $A = ((a_{ij}))$ is defined by Tr $(A) = \sum_{i=1}^{n} a_{ii}$.
The *identity matrix* is $1 - ((c_{ii}))$ with $c_{ii} - 1$ and $c_{ii} - 0$ $i \neq i$ An *un*

The *identity matrix* is $1_n = ((c_{ij}))$ with $c_{ii} = 1$, and $c_{ij} = 0$, $i \neq j$. An *unitary matrix U* = $((u_{ij}))$ is a square matrix defined by $U^{-1} = U^*$, where U^{-1} is the *unverse matrix* of *U* i.e. $UU^{-1} = 1$. A matrix $A \in M$ is orthonormal if A^*A . *inverse matrix* of *U*, i.e., $UU^{-1} = 1_n$. A matrix $A \in M_{m,n}$ is *orthonormal* if $A^*A = 1$ A matrix $A \in \mathbb{R}^{n \times n}$ is *orthonormal* if $A^T = A^{-1}$ *normal* if $A^T A = AA^T$ and 1_n . A matrix $A \in \mathbb{R}^{n \times n}$ is *orthogonal* if $A^T = A^{-1}$, *normal* if $A^T A = AA^T$ and *singular* if its determinant is 0. *singular* if its determinant is 0.

If for a matrix $A \in M_n$ there is a vector *x* such that $Ax = \lambda x$ for some scalar λ , then λ is called an *eigenvalue* of *A* with corresponding *eigenvector x*. Given a matrix $A \in \mathbb{C}^{m \times n}$, its *singular values* $s_i(A)$ are defined as $\sqrt{\lambda(A^*A)}$. A real matrix A is *positive-definite* if $v^T Av > 0$ for all nonzero real vectors v; it holds if and only if all eigenvalues of $A_H = \frac{1}{2}(A + A^T)$ are positive. An Hermitian matrix *A* is *positive-*
definite if $v^* A v \ge 0$ for all nonzero complex vectors *v*; it holds if and only if all *definite* if $v^*Av > 0$ for all nonzero complex vectors v; it holds if and only if all $\lambda(A)$ are positive.

The *mixed states* of a *n*-dimensional *quantum system* are described by their *density matrices, i.e., positive-semidefinite Hermitian* $n \times n$ *matrices of trace 1. The* set of such matrices is convex, and its extremal points describe the *pure states*. Cf. **monotone metrics** in Chap. 7 and **distances between quantum states** in Chap. 24.

• **Matrix norm metric**

A **matrix norm metric** is a **norm metric** on the set $M_{m,n}$ of all real (complex) $m \times n$ matrices defined by

$$
||A-B||,
$$

where ||.|| is a *matrix norm*, i.e., a function $||.|| : M_{m,n} \to \mathbb{R}$ such that, for all $A, B \in M_{m,n}$, and for any scalar *k*, we have the following properties:

- 1. $||A|| \ge 0$, with $||A|| = 0$ if and only if $A = 0_{m,n}$;
- 2. $|kA|| = |k|||A||;$
- 3. $||A + B|| \le ||A|| + ||B||$ (triangle inequality).
- 4. $||AB|| \le ||A|| \cdot ||B||$ (*submultiplicativity*).

All matrix norm metrics on $M_{m,n}$ are equivalent. The simplest example of such metric is the **Hamming metric** on $M_{m,n}$ (in general, on the set $M_{m,n}(\mathbb{F})$ of all $m \times n$ matrices with entries from a field \mathbb{F}) defined by $||A - B||_H$, where $||A||_H$ is the *Hamming norm* of $A \in M$, i.e., the number of ponzero entries in A. Example *Hamming norm* of $A \in M_{m,n}$, i.e., the number of nonzero entries in A. Example of a *generalized* (i.e., not submultiplicative one) *matrix norm* is the *max element norm* $||A = ((a_{ii}))||max = max_{i,j} |a_{ii}|$; but $\sqrt{mn}||A||_{max}$ is a matrix norm.

• **Natural norm metric**

A **natural** (or *operator*, *induced*) **norm metric** is a **matrix norm metric** on the set M_n defined by

$$
||A-B||_{\text{nat}},
$$

where $||.||_{nat}$ is a *natural* (or *operator*, *induced*) *norm* on M_n , *induced* by the vector norm $||x||$, $x \in \mathbb{R}^n$ ($x \in \mathbb{C}^n$), is a matrix norm defined by

$$
||A||_{nat} = \sup_{||x|| \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax|| = \sup_{||x|| \leq 1} ||Ax||.
$$

The natural norm metric can be defined in similar way on the set $M_{m,n}$ of all $m \times n$ real (complex) matrices: given vector norms $\|\cdot\|_{\mathbb{R}^m}$ on \mathbb{R}^m and $\|\cdot\|_{\mathbb{R}^n}$ on \mathbb{R}^n , the *natural norm* $||A||_{nat}$ of a matrix $A \in M_{m,n}$, induced by $||.||_{\mathbb{R}^n}$ and $||.||_{\mathbb{R}^m}$, is a matrix norm defined by $||A||_{nat} = \sup_{||x||_{\mathbb{R}^n}} ||Ax||_{\mathbb{R}^m}$.

• **Matrix** *p***-norm metric**

A **matrix** *p***-norm metric** is a **natural norm metric** on M_n defined by

$$
||A-B||_{\text{nat}}^p,
$$

where $||.||_{\text{nat}}^p$ is the *matrix* (or *operator*) *p-norm*, i.e., a *natural norm*, induced by the vector l -norm $1 \le n \le \infty$. the vector $l_p\text{-}norm, 1 \leq p \leq \infty$:

$$
||A||_{nat}^p = \max_{||x||_p=1} ||Ax||_p, \text{ where } ||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}.
$$

The **maximum absolute column** and **maximum absolute row metric** are the **matrix** 1**-norm** and **matrix** ∞ **-norm metric** on M_n . For a matrix $A = ((a_{ii})) \in$ *Mn*, the *maximum absolute column* and *maximum absolute row sum norm* are

$$
||A||_{nat}^{1} = \max_{1 \leq j \leq n} \sum_{i=1}^{n} |a_{ij}| \text{ and } |A||_{nat}^{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
$$

The **spectral norm metric** is the **matrix** 2-norm metric $||A - B||_{\text{nat}}^2$ on The matrix 2-norm ii $||A - B||_{\text{nat}}^2$ induced by the vector *l*₂-norm is also called the M_n . The matrix 2-norm $||.||_{\text{nat}}^2$, induced by the vector l_2 -norm, is also called the spectral norm and denoted by $||.||_{\text{nat}}$. For a symmetric matrix $A = ((a \cdot)) \in M$. *spectral norm* and denoted by $||.||_{sp}$. For a symmetric matrix $A = ((a_{ij})) \in M_n$, it is

$$
||A||_{sp} = s_{\max}(A) = \sqrt{\lambda_{\max}(A^*A)},
$$

where $A^* = ((\overline{a}_{ii}))$, while s_{max} and λ_{max} are largest singular value and eigenvalue. • **Frobenius norm metric**

The **Frobenius norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$
||A-B||_{Fr},
$$

where $||.||_{F_r}$ is the *Frobenius* (or *Hilbert–Schmidt*) *norm*. For $A = ((a_{ij}))$, it is

$$
||A||_{Fr} = \sqrt{\sum_{i,j} |a_{ij}|^2} = \sqrt{\text{Tr}(A^*A)} = \sqrt{\sum_{1 \le i \le \text{rank}(A)} \lambda_i} = \sqrt{\sum_{1 \le i \le \text{rank}(A)} s_i^2},
$$

where λ_i , s_i are the eigenvalues and singular values of A.

This norm is strictly convex, is a differentiable function of its elements a_{ij} and is the only unitarily invariant norm among $||A||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{\frac{1}{p}}, p \ge 1$.
The **trace norm metric** is a matrix norm metric on *M* defined by The **trace norm metric** is a matrix norm metric on $M_{m,n}$ defined by

$$
||A-B||_{tr},
$$

where $\left\| \cdot \right\|_{tr}$ is the *trace norm* (or *nuclear norm*) on $M_{m,n}$ defined by

$$
||A||_{tr} = \sum_{i=1}^{\min\{m,n\}} s_i(A) = \text{Tr}(\sqrt{A^*A}).
$$

• **Schatten norm metric**

Given $1 \leq p < \infty$, the **Schatten norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$
||A-B||_{Sch}^p,
$$

where $||.||_{Sch}^p$ is the *Schatten p-norm* on $M_{m,n}$. For a matrix $A \in M_{m,n}$, it is defined as the *n*-th root of the sum of the *n*-th powers of all its *singular values*: as the *p*-th root of the sum of the *p*-th powers of all its *singular values*:

$$
||A||_{Sch}^{p} = \left(\sum_{i=1}^{\min\{m,n\}} s_i^{p}(A)\right)^{\frac{1}{p}}.
$$

For $p = \infty$, 2 and 1, one obtains the **spectral norm metric**, **Frobenius norm metric** and **trace norm metric**, respectively.

• (c, p) -norm metric

Let $k \in \mathbb{N}$, $k \le \min\{m, n\}$, $c \in \mathbb{R}^k$, $c_1 \ge c_2 \ge \cdots \ge c_k > 0$, and $1 \le p < \infty$.
The (c, p) -norm metric is a matrix norm metric on M , defined by The (c, p) -norm metric is a matrix norm metric on $M_{m,n}$ defined by

$$
||A-B||_{(c,p)}^k,
$$

where $||.||_{(c,p)}^k$ is the (c, p) *-norm* on $M_{m,n}$. For a matrix $A \in M_{m,n}$, it is defined by

$$
||A||_{(c,p)}^k = (\sum_{i=1}^k c_i s_i^p(A))^{\frac{1}{p}},
$$

where $s_1(A) \geq s_2(A) \geq \cdots \geq s_k(A)$ are the first *k singular values* of *A*.

If $p = 1$, it is the *c*-norm. If, moreover, $c_1 = \cdots = c_k = 1$, it is the *Ky Fan k-norm*.

• **Ky Fan** *k***-norm metric**

Given $k \in \mathbb{N}$, $k \le \min\{m, n\}$, the **Ky Fan** *k***-norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$
||A-B||_{KF}^k,
$$

where $||.||_{KF}^k$ is the *Ky Fan k-norm* on $M_{m,n}$. For a matrix $A \in M_{m,n}$, it is defined as the sum of its first *k* singular values: as the sum of its first *k singular values*:

$$
||A||_{KF}^k = \sum_{i=1}^k s_i(A).
$$

For $k = 1$ and $k = \min\{m, n\}$, one obtains the **spectral** and **trace** norm metrics. • **Cut norm metric**

The **cut norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$
||A-B||_{cut},
$$

where $||.||_{cut}$ is the *cut norm* on $M_{m,n}$ defined, for a matrix $A = ((a_{ii})) \in M_{m,n}$, as:

$$
||A||_{cut} = \max_{I \subset \{1,\dots,m\}, J \subset \{1,\dots,n\}} |\sum_{i \in I, j \in J} a_{ij}|.
$$

Cf. in Chap. 15 the **rectangle distance on weighted graphs** and the **cut semimetric**, but the **weighted cut metric** in Chap. 19 is not related.

• **Matrix nearness problems**

A norm $||.||$ is *unitarily invariant* on $M_{m,n}$ if $||B|| = ||UBV||$ for all $B \in M_{m,n}$ and all unitary matrices *U*; *V*. All *Schatten p-norms* are unitarily invariant.

Given a unitarily invariant norm $||.||$ on $M_{m,n}$, a matrix property P defining a subspace or compact subset of $M_{m,n}$ (so that $d_{\parallel,\parallel}(A,\mathcal{P})$ below is well defined) and a matrix $A \in M_{m,n}$, then the *distance to* P is the **point-set distance** on $M_{m,n}$

$$
d(A) = d_{\parallel,\parallel}(A,\mathcal{P}) = \min\{\parallel E\parallel : A + E \text{ has property } \mathcal{P}\}.
$$

A **matrix nearness problem** is ([High89]) to find an explicit formula for $d(A)$, the *P*-closest matrix (or matrices) $X_{\parallel \parallel \parallel}(A) = A + E$, satisfying the above minimum, and efficient algorithms for computing $d(A)$ and $X_{\parallel,\parallel}(A)$. The *componentwise nearness problem* is to find $d'(A) = \min\{\epsilon : |E| \le \epsilon |A|, A + E\}$ has property \mathcal{D}^{χ} where $|R| = O(|b| \cdot |\chi|)$ and the matrix inequality is interpreted *E* has property P , where $|B| = ((|b_{ij}|))$ and the matrix inequality is interpreted componentwise.

The most used norms for *B* = $((b_{ij}))$ are the *Schatten* 2*-* and ∞ -norms (cf. **Schatten norm metric**): the *Frobenius norm* $||B||_{Fr}$ = ∞ -norms (cf. **Schatten norm metric**): the *Frobenius norm* $||B||_{Fr} = \sqrt{\text{Tr}(B^*B)} = \sqrt{\sum_{1 \le i \le \text{rank}(B)} s_i^2}$ and the *spectral norm* $||B||_{sp} = \sqrt{\lambda_{\text{max}}(B^*B)} =$ $s_1(B)$.

Examples of closest matrices $X = X_{\parallel \parallel}(A, \mathcal{P})$ follow.

Let $A \in \mathbb{C}^{n \times n}$. Then $A = A_H + A_S$, where $A_H = \frac{1}{2}(A + A^*)$ is Hermitian and $A_H = \frac{1}{2}(A - A^*)$ is *skew-Hermitian* (i.e., $A_H^* = -A_H$). Let $A = U\Sigma V^*$ be a singular value deconnosition (SVD) of A i.e. $U \in M$ and $V^* \in M$ are unitary *H* $H = \frac{1}{2}$ $(A - A)$ is skew-Hermitian (i.e., $H_H = -A_H$). Let $A = C \Delta V$ be a singular value decomposition (SVD) of *A*, i.e., $U \in M_m$ and $V^* \in M_n$ are unitary, while $\Sigma = \text{diag}(s, s_0, \ldots, s_{n-1})$ is an $m \times n$ diagonal matri while $\Sigma = \text{diag}(s_1, s_2, \ldots, s_{\text{min} \{m,n\}})$ is an $m \times n$ diagonal matrix with $s_1 \geq s_2 \geq n$ $\cdots \geq s_{\text{rank}(A)} > 0 = \cdots = 0$. Fan and Hoffman, 1955, showed that, for any unitarily invariant norm, A_H , A_S , UV^* are closest Hermitian (symmetric), skew-Hermitian (skew-symmetric) and unitary (orthogonal) matrices, respectively. Such matrix $X_{Fr}(A)$ is a unique minimizer in all three cases.

Let $A \in \mathbb{R}^{n \times n}$. Gabriel, 1979, found the closest normal matrix $X_{Fr}(A)$. Higham found in 1988 a unique closest symmetric positive-semidefinite matrix $X_{Fr}(A)$ and, in 2001, the closest matrix of this type with unit diagonal (i.e., ab correlation matrix).

Given a SVD $A = U\Sigma V^*$ of A, let A_k denote $U\Sigma_k V^*$, where Σ_k is a diagonal matrix diag $(s_1, s_2, \ldots, s_k, 0, \ldots, 0)$ containing the largest *k* singular values of *A*. Then (Mirsky, 1960) A_k achieves $\min_{\text{rank}(A+E)\leq k} ||E||$ for any unitarily invariant norm. So, $||A - A_k||_{Fr} = \sqrt{\sum_{i=k+1}^{\text{rank}(A)} s_i^2}$ (Eckart–Young, 1936) and $||A - A_k||_{sp} =$ $s_{max}(A - A_k) = s_{k+1}(A)$. A_k is a unique minimizer $X_{Fr}(A)$ if $s_k > s_{k+1}$.

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then its **distance to singularity** $d(A, Sing) =$ $\min\{|E| : A + E \text{ is singular}\}\$ is, for both above norms, $s_n(A) = \frac{1}{s_1(A^{-1})} =$ $\frac{1}{\|A^{-1}\|_{sp}} = \sup\{\delta : \delta \mathbb{B}_{\mathbb{R}^n} \subseteq A \mathbb{B}_{\mathbb{R}^n}\};$ here $\mathbb{B}_{\mathbb{R}^n} = \{x \in \mathbb{R}^n : ||x|| \le 1\}.$
Given a closed convex cone $C \subseteq \mathbb{R}^n$, call a matrix $A \subseteq \mathbb{R}^m$

Given a closed convex cone $C \subseteq \mathbb{R}^n$, call a matrix $A \in \mathbb{R}^{m \times n}$ *feasible* if ${Ax : x \in C} = \mathbb{R}^m$; so, for $m = n$ and $C = \mathbb{R}^n$, feasibly means nonsingularity. Renegar, 1995, showed that, for feasible matrix *A*, its **distance to infeasibility** $\min\{|E|\big|_{\text{nat}} : A + E \text{ is not feasible}\}\$ is $\sup\{\delta : \delta \mathbb{B}_{\mathbb{R}^m} \subset A(\mathbb{B}_{\mathbb{R}^n} \cap C)\}.$

Lewis, 2003, generalized this by showing that, given two real normed spaces *X*; *Y* and a surjective *convex process* (or *set valued sublinear mapping*) *F* from *X* to *Y*, i.e., a multifunction for which $\{(x, y) : y \in F(x)\}$ is a closed convex cone, it holds

$$
\min\{||E||_{\text{nat}} : E \text{ is any linear map } X \to Y, F + E \text{ is not surjective}\} = \frac{1}{||F^{-1}||_{\text{nat}}}.
$$

Donchev et al. 2002, extended this, computing **distance to irregularity**; cf. **metric regularity** (Chap. 1). Cf. the above four *distances to ill-posedness* with **distance to uncontrollability** (Chap. 18) and **distances from symmetry** (Chap. 21).

• $Sym(n, \mathbb{R})^+$ and $Her(n, \mathbb{C})^+$ metrics

Let $Sym(n, \mathbb{R})^+$ and $Her(n, \mathbb{C})^+$ be the cones of $n \times n$ symmetric real and Hermitian complex positive-definite $n \times n$ matrices. The $Sym(n, \mathbb{R})^+$ metric is defined, for any $A, B \in \text{Sym}(n, \mathbb{R})^+$, as

$$
\left(\sum_{i=1}^n \log^2 \lambda_i\right)^{\frac{1}{2}},
$$

where λ_1 , *c*, λ_n are the *eigenvalues* of the matrix $A^{-1}B$ (the same as those of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$). It is the **Riemannian distance**, arising from the Riemannian metric $ds^2 = \text{Tr}((A^{-1}(dA))^2)$. This metric was rediscovered in Förstner–Moonen, 1999, and Pennec et al. 2004, via *generalized eigenvalue problem:* $det(\lambda A - B) = 0$ and Pennec et al., 2004, via *generalized eigenvalue problem:* $det(\lambda A - B) = 0$.
The Her(n \mathbb{C})⁺ metric is defined for any $A \, B \in Her(n \, \mathbb{C})^+$ by

The *Her* $(n, \mathbb{C})^+$ metric is defined, for any $A, B \in Her(n, \mathbb{C})^+$, by

$$
d_R(A, B) = || \log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})||_{Fr},
$$

where $||H||_{Fr} = (\sum_{i,j} |h_{ij}|^2)^{\frac{1}{2}}$ is the *Frobenius norm* of the matrix $H = ((h_{ij}))$. It is the **Riemannian distance** arising from the Riemannian metric of nonpositive is the **Riemannian distance** arising from the Riemannian metric of nonpositive curvature, defined locally (at *H*) by $ds = ||H^{-\frac{1}{2}}dH H^{-\frac{1}{2}}||_{Fr}$. In other words, this distance is the **geodesic distance** distance is the **geodesic distance**

$$
\inf\{L(\gamma): \gamma \text{ is a (differentiable) path from A to B}\},\
$$

where $L(\gamma) = \int_A^B ||\gamma^{-\frac{1}{2}}(t)\gamma'(t)\gamma^{-\frac{1}{2}}(t)||_F r dt$ and the geodesic $[A, B]$ is parametrized by $\gamma(t) = A^{\frac{1}{2}} (A^{-\frac{1}{2}} B A^{-\frac{1}{2}})^t A^{\frac{1}{2}}$ in the sense that $d_R(A, \gamma(t)) = t d_P(A, R)$ for each $t \in [0, 1]$. In particular, the geodesic midnoint $\gamma(\frac{1}{2})$ of [A, R] $td_R(A, B)$ for each $t \in [0, 1]$. In particular, the geodesic midpoint $\gamma(\frac{1}{2})$ of $[A, B]$
can be seen as the *geometric mean* of two positive-definite matrices A and B can be seen as the *geometric mean* of two positive-definite matrices *A* and *B*.

The space $(Her(n, \mathbb{C})^+, d_R)$ is an **Hadamard** (i.e., complete and CAT(0)) **space**, cf. Chap. 6. But $Her(n, \mathbb{C})^+$ is not complete with respect to matrix norms; it has a boundary consisting of the singular positive-semidefinite matrices.

Above $Sym(n, \mathbb{R})^+$ and $Her(n, \mathbb{C})^+$ metrics are the special cases of the distance $d_R(x, y)$ among **invariant distances on symmetric cones** in Chap. 9.

Cf. also, in Chap. 24, the **trace distance** on all Hermitian of trace 1 positivedefinite $n \times n$ matrices and in Chap. 7, the **Wigner–Yanase–Dyson metrics** on all complex positive-definite $n \times n$ matrices.

The **Bartlett distance** between two matrices $A, B \in Her(n, \mathbb{C})^+$, is defined (Conradsen et al., 2003, for radar applications) by

$$
\ln\left(\frac{(det(A+B))^2}{4det(A)det(B)}\right)
$$

:

• **Siegel distance**

The *Siegel half-plane* is the set *SH_n* of $n \times n$ matrices $Z = X + iY$, where *X*, *Y* are symmetric or Hermitian and *Y* is positive-definite. The **Siegel–Hua metric** (Siegel, 1943, and independently, Hua, 1944) on SH_n is defined by

$$
ds^2 = \operatorname{Tr}(Y^{-1}(dZ)Y^{-1}(d\overline{Z})).
$$

It is unique metric preserved by any automorphism of *SHn*. The Siegel–Hua metric on the *Siegel disk* $SD_n = \{W = (Z - iI)(Z + iI)^{-1} : Z \in SH_n\}$ is defined by defined by

$$
ds^{2} = \text{Tr}((I - WW^{*})^{-1}dW(I - W^{*}W)^{-1}dW^{*}).
$$

For n=1, the Siegel–Hua metric is the **Poincaré metric** (cf. Chap. 6) on the *Poincaré half-plane SH*¹ and the *Poincaré disk SD*1, respectively.

Let $A_n = \{Z = iY : Y > 0\}$ be the imaginary axe on the Siegel half-plane. The Siegel–Hua metric on A_n is (cf. [Barb12]) the Riemannian **trace metric** ds^2 = $\text{Tr}((P^1dP)^2)$. The corresponding distances are $\textit{Sym}(n,\mathbb{R})^+$ **metric** or $\textit{Her}(n,\mathbb{C})^+$ **metric**. The **Siegel distance** on $SH_n \setminus A_n$ is defined by

$$
d_{Siegel}^2(Z_1, Z_2) = \sum_{i=1}^n \log^2(\frac{1+\sqrt{\lambda_i}}{1-\sqrt{\lambda_i}});
$$

 $\lambda_1, \ldots, \lambda_n$ are the *eigenvalues* of the matrix $(Z_1 - Z_2)(Z_1 - Z_2) - 1(Z_1 - Z_2)(Z_1 - Z_2)$ Z_2 $)^{-1}$.

• **Barbaresco metrics**

Let $z(k)$ be a complex temporal (discrete time) *stationary* signal, i.e., its mean value is constant and its *covariance function* $\mathbb{E}[z(k_1)z^*(k_2)]$ is only a function of $k_1 - k_2$. Such signal can be represented by its covariance *n* × *n* matrix $R = ((r_{ij}))$,
where $r_{ii} = \mathbb{E}[r(i) \ z * (i)] = \mathbb{E}[r(n)z * (n-i+i)]$ It is a positive-definite *Toenlitz* where $r_{ij} = \mathbb{E}[z(i), z*(j)] = \mathbb{E}[z(n)z*(n-i+j)]$. It is a positive-definite *Toeplitz*
(i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices (i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices represent the Doppler spectra of the signal. Matrices *R* admit a parametrization (complex ARM, i.e., *m*-th order autoregressive model) by *partial autocorrelation coefficients* defined recursively as the complex correlation between the forward and backward prediction errors of the $(m-1)$ -th order complex ARM.
Barbaresco ([Barb12]) defined via this parametrization a **Beroma**

Barbaresco ([Barb12]) defined, via this parametrization, a **Bergman metric** (Chap. 7) on the bounded domain $\mathbb{R} + xD_n \subset \mathbb{C}^n$ of above matrices *R*; here *D* is a *Poincaré disk*. He also defined a related **Kähler metric** on $M \times S_n$, where M is the set of positive-definite Hermitian matrices and *SDn* is the *Siegel disk* (cf. **Siegel distance**). Such matrices represent spatiotemporal stationary signals, i.e., in radar applications, the Doppler spectra and spatial directions of the signal.

Ben Jeuris, 2015, extended above metrics on *block Toeplitz matrices*, i.e., those having blocks that are repeated (as elements of a Toeplitz matrix) down the diagonals of the matrix.

Cf. **Ruppeiner metric** (Chap. 7) and **Martin cepstrum distance** (Chap. 21). • **Distances between graphs of matrices**

The *graph* $G(A)$ *of a complex m* \times *n matrix A* is the *range* (i.e., the span of columns) of the matrix $R(A) = ([IA^T])^T$. So, $G(A)$ is a subspace of \mathbb{C}^{m+n} of all vectors v, for which the equation $R(A)x = v$ has a solution.

A **distance between graphs of matrices** *A* and *B* is a distance between the subspaces $G(A)$ and $G(B)$. It can be an **angle distance between subspaces** or, for example, the following distance (cf. also the **Kadets distance** in Chap. 1 and the **gap metric** in Chap. 18).

The **spherical gap distance** between subspaces *A* and *B* is defined by

$$
\max\{\max_{x\in S(A)}d_E(x,S(B)),\max_{y\in S(B)}d_E(y,S(A))\},\
$$

where $S(A)$, $S(B)$ are the unit spheres of the subspaces $A, B, d(z, C)$ is the **pointset distance** inf_{*v* \in *C*} $d(z, y)$ and $d_E(z, y)$ is the Euclidean distance.

• **Angle distances between subspaces**

Consider the *Grassmannian space G(m, n)* of all *n*-dimensional subspaces of Euclidean space \mathbb{E}^m ; it is a compact *Riemannian manifold* of dimension $n(m-n)$.
Given two subspaces $A, B \in G(m, n)$, the *principal angles* $\frac{\pi}{n} > \theta$, $> \infty$, \geq

Given two subspaces $A, B \in G(m, n)$, the *principal angles* $\frac{\pi}{2} \ge \theta_1 \ge \cdots \ge$
 > 0 between them are defined for $k - 1$, and inductively by $\theta_n \geq 0$ between them are defined, for $k = 1, \ldots, n$, inductively by

$$
\cos \theta_k = \max_{x \in A} \max_{y \in B} x^T y = (x^k)^T y^k
$$

subject to the conditions $||x||_2 = ||y||_2 = 1$, $x^T x^i = 0$, $y^T y^i = 0$, for $1 \le i \le k-1$, where $||x||_2$ is the Euclidean norm where $\vert \vert . \vert \vert_2$ is the Euclidean norm.

The principal angles can also be defined in terms of orthonormal matrices Q_A and Q_B spanning subspaces *A* and *B*, respectively: in fact, *n* ordered singular values of the matrix $O_4O_B \in M_n$ can be expressed as cosines $\cos \theta_1, \ldots, \cos \theta_n$.

The **Grassmann distance** between subspaces *A* and *B* of the same dimension is their geodesic distance defined by

$$
\sqrt{\sum_{i=1}^n \theta_i^2}.
$$

The **Martin distance** between subspaces *A* and *B* is defined by

$$
\sqrt{\ln\prod_{i=1}^{n}\frac{1}{\cos^2\theta_i}}.
$$

In the case when the subspaces represent ARMs (*autoregressive models*), the Martin distance can be expressed in terms of the *cepstrum* of the autocorrelation functions of the models. Cf. the **Martin cepstrum distance** in Chap. 21.

The **Asimov distance** between subspaces *A* and *B* is defined by θ_1 . The **spectral distance** (or *chordal* 2*-norm distance*) is defined by $2 \sin(\frac{\theta_1}{2})$.

The **containment gap distance** (or *projection distance*) is $\sin \theta_1$. It is the l_2 *norm* of the difference of the *orthogonal projectors* onto *A* and *B*. Many versions of this distance are used in Control Theory (cf. **gap metric** in Chap. 18).

The **Frobenius distance** and **chordal distance** between subspaces *A* and *B* are

$$
\sqrt{2\sum_{i=1}^{n}\sin^2\theta_i}
$$
 and
$$
\sqrt{\sum_{i=1}^{n}\sin^2\theta_i}
$$
, respectively.

It is the *Frobenius norm* of the difference of above projectors onto *A* and *B*.

Similar distances $\sqrt{1 - \prod_{i=1}^{n} \cos^2 \theta_i}$ and arccos($\prod_{i=1}^{n} \cos \theta_i$) are called the **Binet–Cauchy distance** and (cf. Chap. 7) **Fubini–Study distance**, respectively. • **Larsson–Villani metric**

Let *A* and *B* be two arbitrary orthonormal $m \times n$ matrices of full rank, and let θ_{ij} be the angle between the *i*-th column of *A* and the *j*-th column of *B*.

We call **Larsson–Villani metric** the distance between *A* and *B* (used by Larsson and Villani, 2000, for multivariate models) the square of which is defined by

$$
n-\sum_{i=1}^n\sum_{j=1}^n\cos^2\theta_{ij}.
$$

The square of usual Euclidean distance between *A* and *B* is $2(1-\sum_{i=1}^{n} \cos \theta_{ii})$.
For $n = 1$, above two distances are $\sin \theta$ and $\sqrt{2(1-\cos \theta)}$ respectively. For *n* = 1, above two distances are $\sin \theta$ and $\sqrt{2(1 - \cos \theta)}$, respectively.

• **Lerman metric**

Given a finite set *X* and real symmetric $|X| \times |X|$ matrices $((d_1(x, y))),$ $((d_2(x, y))$ with $x, y \in X$, their **Lerman semimetric** (cf. **Kendall** τ **distance** on permutations in Chap. 11) is defined by

$$
|\{(\{x,y\},\{u,v\}): (d_1(x,y)-d_1(u,v))(d_2(x,y)-d_2(u,v))<0\}|\binom{|X|+1}{2}^{-2},
$$

where $({x, y}, {u, v})$ is any pair of unordered pairs of elements *x*, *y*, *u*, *v* from *X*. Similar **Kaufman semimetric** between $((d_1(x, y))$ and $((d_2(x, y)))$ is

$$
\frac{|\{(x,y),\{u,v\}) : (d_1(x,y)-d_1(u,v))(d_2(x,y)-d_2(u,v)) < 0\}|}{|\{(x,y),\{u,v\}) : (d_1(x,y)-d_1(u,v))(d_2(x,y)-d_2(u,v)) \neq 0\}|}.
$$