Chapter 12 Distances on Numbers, Polynomials, and Matrices

12.1 Metrics on Numbers

Here we consider the most important metrics on the classical number systems: the semiring $\mathbb N$ of natural numbers, the ring $\mathbb Z$ of integers, and the fields $\mathbb Q$, $\mathbb R$, $\mathbb C$ of rational, real, complex numbers, respectively. We consider also the algebra $\mathcal Q$ of quaternions.

Metrics on natural numbers

There are several well-known metrics on the set \mathbb{N} of natural numbers:

- 1. |n-m|; the restriction of the **natural metric** (from \mathbb{R}) on \mathbb{N} ;
- 2. $p^{-\alpha}$, where α is the highest power of a given prime number p dividing m-n, for $m \neq n$ (and equal to 0 for m=n); the restriction of the p-adic metric (from \mathbb{Q}) on \mathbb{N} ;
- 3. $\ln \frac{lcm(m,n)}{gcd(m,n)}$; an example of the **lattice valuation metric**;
- 4. $w_r(n-m)$, where $w_r(n)$ is the *arithmetic r-weight* of n; the restriction of the **arithmetic** r-**norm metric** (from \mathbb{Z}) on \mathbb{N} ;
- 5. $\frac{|n-m|}{mn}$ (cf. *M*-relative metric in Chap. 5);
- 6. $1 + \frac{1}{m+n}$ for $m \neq n$ (and equal to 0 for m = n); the **Sierpinski metric**.

Most of these metrics on \mathbb{N} can be extended on \mathbb{Z} . Moreover, any one of the above metrics can be used in the case of an arbitrary countable set X. For example, the **Sierpinski metric** is defined, in general, on a countable set $X = \{x_n : n \in \mathbb{N}\}$ by $1 + \frac{1}{m+n}$ for all $x_m, x_n \in X$ with $m \neq n$ (and is equal to 0, otherwise).

• Arithmetic *r*-norm metric

Let $r \in \mathbb{N}$, r > 2. The modified r-ary form of an integer x is a representation

$$x = e_n r^n + \dots + e_1 r + e_0,$$

where $e_i \in \mathbb{Z}$, and $|e_i| < r$ for all $i = 0, \dots, n$.

An *r*-ary form is called *minimal* if the number of nonzero coefficients is minimal. The minimal form is not unique, in general. But if the coefficients e_i , $0 \le i \le n-1$, satisfy the conditions $|e_i + e_{i+1}| < r$, and $|e_i| < |e_{i+1}|$ if $e_i e_{i+1} < 0$, then the above form is unique and minimal; it is called the *generalized nonadjacent form*.

The arithmetic r-weight $w_r(x)$ of an integer x is the number of nonzero coefficients in a minimal r-ary form of x, in particular, in the generalized nonadjacent form. The **arithmetic** r-**norm metric** on \mathbb{Z} (see, for example, [Ernv85]) is defined by

$$w_r(x-y)$$
.

• Distance between consecutive primes

The **distance between consecutive primes** (or *prime gap*, *prime difference function*) is the difference $g_n = p_{n+1} - p_n$ between two successive prime numbers.

It holds $g_n \le p_n$, $\overline{\lim}_{n\to\infty} g_n = \infty$ and (Zhang, 2013) $\underline{\lim}_{n\to\infty} g_n < 7 \times 10^7$, improved to ≤ 246 (conjecturally, to ≤ 6) by Polymath8, 2014. There is no $\lim_{n\to\infty} g_n$ but $g_n \approx \ln p_n$ for the average g_n .

Open *Polignac's conjecture*: for any $k \ge 1$, there are infinitely many n with $g_n = 2k$; the case k = 1 (i.e., that $\underline{\lim}_{n \to \infty} g_n = 2$ holds) is the *twin prime conjecture*.

• Distance Fibonacci numbers

Fibonacci numbers are defined by the recurrence $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ with initial terms $F_0 = 0$ and $F_1 = 1$. **Distance Fibonacci numbers** are three following generalizations of them in the distance sense, considered by Wloch et al.

Kwaśnik–Wloch, 2000: F(k, n) = F(k, n - 1) + F(k, n - k) for n > k and F(k, n) = n + 1 for n < k.

Bednarz et al., 2012: Fd(k, n) = Fd(k, n-k+1) + Fd(k, n-k) for $n \ge k > 1$ and Fd(k, n) = 1 for $0 \le n < k$.

Which et al., 2013: $F_2(k, n) = F_2(k, n-2) + F_2(k, n-k)$ for $n \ge k \ge 1$ and $F_2(k, n) = 1$ for $0 \le n < k$.

• p-adic metric

Let p be a prime number. Any nonzero rational number x can be represented as $x = p^{\alpha} \frac{c}{d}$, where c and d are integers not divisible by p, and α is a unique integer. The p-adic norm of x is defined by $|x|_p = p^{-\alpha}$. Moreover, $|0|_p = 0$ is defined.

The *p*-adic metric is a norm metric on the set $\mathbb Q$ of rational numbers defined by

$$|x-y|_p$$
.

This metric forms the basis for the algebra of p-adic numbers. The **Cauchy completions** of the metric spaces $(\mathbb{Q}, |x-y|_p)$ and $(\mathbb{Q}, |x-y|)$ with the **natural metric** |x-y| give the fields \mathbb{Q}_p of p-adic numbers and \mathbb{R} of real numbers, respectively.

12.1 Metrics on Numbers 231

The **Gajić metric** is an **ultrametric** on the set \mathbb{Q} of rational numbers defined, for $x \neq y$ (via the integer part $\lfloor z \rfloor$ of a real number z), by

$$\inf\{2^{-n} : n \in \mathbb{Z}, \lfloor 2^n(x-e) \rfloor = \lfloor 2^n(y-e) \rfloor\},\$$

where *e* is any fixed irrational number. This metric is **equivalent** to the **natural metric** |x - y| on \mathbb{Q} .

Continued fraction metric on irrationals

The **continued fraction metric on irrationals** is a complete metric on the set *Irr* of irrational numbers defined, for $x \neq y$, by

$$\frac{1}{n}$$

where n is the first index for which the continued fraction expansions of x and y differ. This metric is **equivalent** to the **natural metric** |x - y| on Irr which is noncomplete and disconnected. Also, the *Baire* 0-dimensional space $B(\aleph_0)$ (cf. **Baire metric** in Chap. 11) is homeomorphic to Irr endowed with this metric.

· Natural metric

The **natural metric** (or **absolute value metric**, **line metric**, *the distance between numbers*) is a metric on \mathbb{R} defined by

$$|x - y| =$$

$$\begin{cases} y - x, & \text{if } x - y < 0, \\ x - y, & \text{if } x - y \ge 0. \end{cases}$$

On \mathbb{R} all l_p -metrics coincide with the natural metric. The metric space $(\mathbb{R}, |x-y|)$ is called the *real line* (or *Euclidean line*).

There exist many other metrics on \mathbb{R} coming from |x-y| by some **metric transform** (Chap. 4). For example: $\min\{1, |x-y|\}, \frac{|x-y|}{1+|x-y|}, |x|+|x-y|+|y|$ (for $x \neq y$) and, for a given $0 < \alpha < 1$, the **generalized absolute value metric** $|x-y|^{\alpha}$.

Some authors use |x - y| as the *Polish notation* (parentheses-free and computer-friendly) of the distance function in any metric space.

Zero bias metric

The **zero bias metric** is a metric on \mathbb{R} defined by

$$1 + |x - y|$$

if one and only one of x and y is strictly positive, and by

$$|x-y|$$
,

otherwise, where |x - y| is the **natural metric** (see, for example, [Gile87]).

• Sorgenfrey quasi-metric

The **Sorgenfrey quasi-metric** is a quasi-metric d on \mathbb{R} defined by

$$y - x$$

if $y \ge x$, and equal to 1, otherwise. Some similar quasi-metrics on \mathbb{R} are:

- 1. $d_1(x, y) = \max\{y x, 0\}$ (in general, $\max\{f(y) f(x), 0\}$ is a quasi-metric on a set X if $f: X \to \mathbb{R}_{>0}$ is an injective function);
- 2. $d_2(x, y) = \min\{y x, 1\}$ if $y \ge x$, and equal to 1, otherwise;
- 3. $d_3(x, y) = y x$ if $y \ge x$, and equal to a(x y) (for fixed a > 0), otherwise;
- 4. $d_4(x, y) = e^y e^x$ if $y \ge x$, and equal to $e^{-y} e^{-x}$ otherwise.

· Real half-line quasi-semimetric

The **real half-line quasi-semimetric** is defined on the half-line $\mathbb{R}_{>0}$ by

$$\max\{0,\ln\frac{y}{x}\}.$$

Janous–Hametner metric

The **Janous–Hametner metric** is defined on the half-line $\mathbb{R}_{>0}$ by

$$\frac{|x-y|}{(x+y)^t},$$

where t = -1 or $0 \le t \le 1$, and |x - y| is the **natural metric**.

· Extended real line metric

An **extended real line metric** is a metric on $\mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$. The main example (see, for example, [Cops68]) of such metric is given by

$$|f(x)-f(y)|$$
,

where $f(x) = \frac{x}{1+|x|}$ for $x \in \mathbb{R}$, $f(+\infty) = 1$, and $f(-\infty) = -1$. Another metric, commonly used on $\mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$, is defined by

$$|\arctan x - \arctan y|$$
,

where $-\frac{1}{2}\pi < \arctan x < \frac{1}{2}\pi$ for $-\infty < x < \infty$, and $\arctan(\pm \infty) = \pm \frac{1}{2}\pi$.

Complex modulus metric

The **complex modulus metric** on the set \mathbb{C} of complex numbers is defined by

$$|z-u|$$
.

where, for any $z = z_1 + z_2 i \in \mathbb{C}$, the number $|z| = \sqrt{z_1^2} = \sqrt{z_1^2 + z_2^2}$ is the *complex modulus*. The *complex argument* θ is defined by $z = |z|(\cos(\theta) + i\sin(\theta))$.

The metric space $(\mathbb{C}, |z-u|)$ is called the *complex* (or *Wessel-Argand*) plane. It is isometric to the Euclidean plane $(\mathbb{R}^2, ||x-y||_2)$. So, the metrics on \mathbb{R}^2 , given in Chaps. 19 and 5, can be seen as metrics on C. For example, the **British Rail** metric on \mathbb{C} is |z| + |u| for $z \neq u$. The p-relative (if 1) and relative**metric** (if $p = \infty$) on \mathbb{C} are defined for $|z| + |u| \neq 0$ respectively, by

$$\frac{|z-u|}{\sqrt[p]{|z|^p+|u|^p}}$$
 and $\frac{|z-u|}{\max\{|z|,|u|\}}$.

$\mathbb{Z}(\eta_m)$ -related norm metrics

A *Kummer* (or *cyclotomic*) ring $\mathbb{Z}(\eta_m)$ is a subring of the ring \mathbb{C} (and an extension of the ring \mathbb{Z}), such that each of its elements has the form $\sum_{i=0}^{m-1} a_i \eta_m^i$, where η_m is a primitive m-th root $\exp(\frac{2\pi i}{m})$ of unity, and all a_j are integers. The *complex modulus* |z| of $z=a+b\eta_m\in\mathbb{C}$ is defined by

$$|z|^2 = z\overline{z} = a^2 + (\eta_m + \overline{\eta_m})ab + b^2 = a^2 + 2ab\cos(\frac{2\pi i}{m}) + b^2.$$

Then $(a + b)^2 = q^2$ for m = 2 (or 1), $a^2 + b^2$ for m = 4, and $a^2 + ab + b^2$ for m=6 (or 3), i.e., for the ring \mathbb{Z} of usual integers, $\mathbb{Z}(i)$ of Gaussian integers and $\mathbb{Z}(\rho)$ of Eisenstein–Jacobi (or EJ) integers.

The set of units of $\mathbb{Z}(\eta_m)$ contain η_m^j , $0 \le j \le m-1$; for m=5 and $m \ge 6$, units of infinite order appear also, since $\cos(\frac{2\pi i}{m})$ is irrational. For m = 2, 4, 6, the set of units is $\{\pm 1\}$, $\{\pm 1, \pm i\}$, $\{\pm 1, \pm \rho, \pm \rho^2\}$, where $i = \eta_4$ and $\rho = \eta_6 = \frac{1 + i\sqrt{3}}{2}$.

The norms $|z| = \sqrt{a^2 + b^2}$ and $||z||_i = |a| + |b|$ for $z = a + bi \in \mathbb{C}$ give rise to the **complex modulus** and *i*-Manhattan metrics on \mathbb{C} . They coincide with the Euclidean (l_2-) and Manhattan (l_1-) metrics, respectively, on \mathbb{R}^2 seen as the complex plane. The restriction of the *i*-Manhattan metric on $\mathbb{Z}(i)$ is the path metric of the square grid \mathbb{Z}^2 of \mathbb{R}^2 ; cf. grid metric in Chap. 19.

The ρ -Manhattan metric on \mathbb{C} is defined by the norm $||z||_{\rho}$, i.e.,

$$\min\{|a|+|b|+|c|: z=a+b\rho+c\rho^2\} = \min\{|a|+|b|, |a+b|+|b|, |a+b|+|a|: z=a+b\rho\}.$$

The restriction of the ρ -Manhattan metric on $\mathbb{Z}(\rho)$ is the path metric of the triangular grid of \mathbb{R}^2 (seen as the hexagonal lattice $A_2 = \{(a,b,c) \in \mathbb{Z}^3 : a \in \mathbb{Z}^$ a + b + c = 0), i.e., the **hexagonal metric** (Chap. 19).

Let f denote either i or $\rho = \frac{1+i\sqrt{3}}{2}$. Given a $\pi \in \mathbb{Z}(f) \setminus \{0\}$ and $z, z' \in \mathbb{Z}(f)$, we write $z \equiv z' \pmod{\pi}$ if $z - z' = \delta \pi$ for some $\delta \in \mathbb{Z}(f)$. For the quotient ring $\mathbb{Z}_{\pi}(f) = \{z \pmod{\pi} : z \in \mathbb{Z}(f)\}, \text{ it holds } |\mathbb{Z}_{\pi}(f)| = ||\pi||_f^2.$

Call two congruence classes $z \pmod{\pi}$ and $z' \pmod{\pi}$ adjacent if $z - z' \equiv$ $f^{j} \pmod{\pi}$ for some j. The resulting graph on $\mathbb{Z}_{\pi}(f)$ called a Gaussian network or EJ network if, respectively, f = i or $f = \rho$. The path metrics of these networks coincide with their norm metrics, defined (Fan–Gao, 2004) for $z \pmod{\pi}$ and $z' \pmod{\pi}$, by

$$\min ||u||_f : u \in z - z' \pmod{\pi}.$$

These metrics are different from the previously defined ([Hube94a, Hube94b]) distance on $\mathbb{Z}_{\pi}(f)$: $||v||_f$, where $v \in z - z' \pmod{\pi}$ is selected by minimizing the complex modulus. For f = i, this is the **Mannheim distance** (Chap. 16), which is not a metric.

· Chordal metric

The **chordal metric** d_{χ} is a metric on the set $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ defined by

$$d_{\chi}(z,u) = \frac{2|z-u|}{\sqrt{1+|z|^2}\sqrt{1+|u|^2}}$$
 and $d_{\chi}(z,\infty) = \frac{2}{\sqrt{1+|z|^2}}$

for all $u, z \in \mathbb{C}$ (cf. *M*-relative metric in Chap. 5).

The metric space $(\overline{\mathbb{C}}, d_{\chi})$ is called the *extended complex plane*. It is homeomorphic and conformally equivalent to the *Riemann sphere*, i.e., the *unit sphere* $S^2 = \{(x_1, x_2, x_3) \in \mathbb{E}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$ (considered as a metric subspace of \mathbb{E}^3), onto which $(\overline{\mathbb{C}}, d_{\chi})$ is one-to-one mapped under stereographic projection.

The plane $\overline{\mathbb{C}}$ can be identified with the plane $x_3 = 0$ such that the and imaginary axes coincide with the x_1 and x_2 axes. Under stereographic projection, each point $z \in \mathbb{C}$ corresponds to the point $(x_1, x_2, x_3) \in S^2$, where the ray drawn from the "north pole" (0, 0, 1) to the point z meets the sphere S^2 ; the "north pole" corresponds to the point at ∞ . The chordal (spherical) metric between two points $p, q \in S^2$ is taken to be the distance between their preimages $z, u \in \overline{\mathbb{C}}$.

The chordal metric is defined equivalently on $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}$:

$$d_{\chi}(x,y) = \frac{2||x-y||_2}{\sqrt{1+||x||_2^2}\sqrt{1+||y||_2^2}} \text{ and } d_{\chi}(x,\infty) = \frac{2}{\sqrt{1+||x||_2^2}}.$$

The restriction of the metric d_{χ} on \mathbb{R}^n is a **Ptolemaic metric**; cf. Chap. 1.

Given $\alpha > 0$, $\beta \ge 0$, $p \ge 1$, the **generalized chordal metric** is a metric on $\mathbb C$ (in general, on $(\mathbb R^n, ||.||_2)$ and even on any *Ptolemaic space* (V, ||.||)), defined by

$$\frac{|z-u|}{\sqrt[p]{\alpha+\beta|z|^p}\cdot\sqrt[p]{\alpha+\beta|u|^p}}.$$

Metrics on quaternions

Quaternions are members of a noncommutative division algebra \mathcal{Q} over the field \mathbb{R} , geometrically realizable in \mathbb{R}^4 ([Hami66]). Formally,

$$Q = \{q = q_1 + q_2i + q_3j + q_4k : q_i \in \mathbb{R}\},\$$

where the basic units $1, i, j, k \in \mathcal{Q}$ satisfy $i^2 = j^2 = k^2 = -1$ and ij = -ji = k.

The *quaternion norm* is defined by $||q|| = \sqrt{q\overline{q}} = \sqrt{q_1^2 + q_2^2 + q_3^2 + q_4^2}$, where $\overline{q} = q_1 - q_2i - q_3j - q_4k$. The **quaternion metric** is the norm metric ||q - q'|| on Q.

The set of all *Lipschitz integers* and *Hurwitz integers* are defined, respectively, by

$$L = \{q_1 + q_2i + q_3j + q_4k : q_i \in \mathbb{Z}\}$$
 and

$$H = \{q_1 + q_2i + q_3j + q_4k : \text{ all } q_i \in \mathbb{Z} \text{ or all } q_i + \frac{1}{2} \in \mathbb{Z}\}.$$

A quaternion $q \in L$ is *irreducible* (i.e., q = q'q'' implies $\{q', q''\} \cap \{\pm 1, \pm i, \pm j, \pm k\} \neq \emptyset$) if and only if ||q|| is a prime. Given an irreducible $\pi \in L$ and $q, q' \in H$, we write $q \equiv q' \pmod{\pi}$ if $q - q' = \delta \pi$ for some $\delta \in L$.

For the rings $L_{\pi} = \{q \pmod{\pi} : q \in L\}$ and $H_{\pi} = \{q \pmod{\pi} : q \in H\}$ it holds $|L_{\pi}| = ||\pi||^2$ and $|H_{\pi}| = 2||\pi||^2 - 1$.

The quaternion Lipschitz metric on L_{π} is defined (Martinez et al., 2009) by

$$d_L(\alpha, \beta) = \min \sum_{1 \le s \le 4} |q_s| : \alpha - \beta \equiv q_1 + q_2 i + q_3 j + q_4 k \pmod{\pi}.$$

The ring H is additively generated by its subring L and $w = \frac{1}{2}(1 + i + j + k)$. The **Hurwitz metric** on the ring H_{π} is defined (Guzëltepe, 2013) by

$$d_H(\alpha, \beta) = \min \sum_{1 \le s \le 5} |q_s| : \alpha - \beta \equiv q_1 + q_2 i + q_3 j + q_4 k + q_5 w \pmod{\pi}.$$

Cf. the **hyper-Kähler** and **Gibbons–Manton** metrics in Sect. 7.3 and the **unit quaternions** and **joint angle** metrics in Sect. 18.3.

12.2 Metrics on Polynomials

A *polynomial* is a sum of powers in one or more variables multiplied by coefficients. A *polynomial* in one variable (or monic polynomial) with constant real (complex) coefficients is given by $P = P(z) = \sum_{k=0}^{n} a_k z^k$, $a_k \in \mathbb{R}$ ($a_k \in \mathbb{C}$). The set \mathcal{P} of all real (complex) polynomials forms a ring $(\mathcal{P}, +, \cdot, 0)$. It is also a vector space over \mathbb{R} (over \mathbb{C}).

Polynomial norm metric

A **polynomial norm metric** is a **norm metric** on the vector space \mathcal{P} of all real (complex) polynomials defined by

$$||P-Q||$$
,

where ||.|| is a *polynomial norm*, i.e., a function $||.|| : \mathcal{P} \to \mathbb{R}$ such that, for all $P, Q \in \mathcal{P}$ and for any scalar k, we have the following properties:

- 1. $||P|| \ge 0$, with ||P|| = 0 if and only if $P \equiv 0$;
- 2. ||kP|| = |k|||P||;
- 3. $||P + Q|| \le ||P|| + ||Q||$ (triangle inequality).

The l_p -norm and L_p -norm of a polynomial $P(z) = \sum_{k=0}^n a_k z^k$ are defined by

$$\begin{split} ||P||_p &= (\sum_{k=0}^n |a_k|^p)^{1/p} \ \text{ and } \ ||P||_{L_p} = (\int_0^{2\pi} |P(e^{i\theta})|^p \frac{d\theta}{2\pi})^{\frac{1}{p}} \ \text{ for } \ 1 \leq p < \infty, \\ ||P||_{\infty} &= \max_{0 \leq k \leq n} |a_k| \ \text{ and } \ ||P||_{L_{\infty}} = \sup_{|z|=1} |P(z)| \ \text{ for } \ p = \infty. \end{split}$$

The values $||P||_1$ and $||P||_{\infty}$ are called the *length* and *height* of polynomial P.

Distance from irreducible polynomials

For any field \mathbb{F} , a polynomial with coefficients in \mathbb{F} is said to be *irreducible over* \mathbb{F} if it cannot be factored into the product of two nonconstant polynomials with coefficients in \mathbb{F} . Given a metric d on the polynomials over \mathbb{F} , the **distance** (of a given polynomial P(z)) **from irreducible polynomials** is $d_{ir}(P) = \inf d(P, Q)$, where Q(z) is any irreducible polynomial of the same degree over \mathbb{F} .

Polynomial conjecture of Turán, 1967, is that there exists a constant C with $d_{ir}(P) \leq C$ for every polynomial P over \mathbb{Z} , where d(P,Q) is the length $||P-Q||_1$ of P-Q.

Lee–Ruskey–Williams, 2007, conjectured that there exists a constant C with $d_{ir}(P) \leq C$ for every polynomial P over the Galois field \mathbb{F}_2 , where d(P,Q) is the **Hamming distance** between the (0,1)-sequences of coefficients of P and Q.

· Bombieri metric

The Bombieri metric (or polynomial bracket metric) is a polynomial norm metric on the set \mathcal{P} of all real (complex) polynomials defined by

$$[P-Q]_p$$

where $[.]_p$, $0 \le p \le \infty$, is the *Bombieri p-norm*. For a polynomial $P(z) = \sum_{k=0}^n a_k z^k$ it is defined by

$$[P]_p = (\sum_{k=0}^n {n \choose k}^{1-p} |a_k|^p)^{\frac{1}{p}}.$$

Metric space of roots

The **metric space of roots** is (Ćurgus–Mascioni, 2006) the space (X, d) where X is the family of all multisets of complex numbers with n elements and the distance between multisets $U = \{u_1, \ldots, u_n\}$ and $V = \{v_1, \ldots, v_n\}$ is defined by

the following analog of the Fréchet metric:

$$\min_{\tau \in Sym_n} \max_{1 \le j \le n} |u_j - v_{\tau(j)}|,$$

where τ is any permutation of $\{1, \ldots, n\}$. Here the set of roots of some monic complex polynomial of degree n is considered as a multiset with n elements. Cf. **metrics between multisets** in Chap. 1.

The function assigning to each polynomial the multiset of its roots is a **homeomorphism** between the metric space of all monic complex polynomials of degree n with the **polynomial norm metric** l_{∞} and the metric space of roots.

12.3 Metrics on Matrices

An $m \times n$ matrix $A = ((a_{ij}))$ over a field \mathbb{F} is a table consisting of m rows and n columns with the entries a_{ij} from \mathbb{F} . The set of all $m \times n$ matrices with real (complex) entries is denoted by $M_{m,n}$ or $\mathbb{R}^{m \times n}$ ($\mathbb{C}^{m \times n}$). It forms a *group* $(M_{m,n}, +, 0_{m,n})$, where $((a_{ij})) + ((b_{ij})) = ((a_{ij} + b_{ij}))$, and the matrix $0_{m,n} \equiv 0$. It is also an mn-dimensional vector space over \mathbb{R} (\mathbb{C}).

The *transpose* of a matrix $A = ((a_{ij})) \in M_{m,n}$ is the matrix $A^T = ((a_{ji})) \in M_{n,m}$. A $m \times n$ matrix A is called a *square matrix* if m = n, and a *symmetric matrix* if $A = A^T$. The *conjugate transpose* (or *adjoint*) of a matrix $A = ((a_{ij})) \in M_{m,n}$ is the matrix $A^* = ((\overline{a}_{ji})) \in M_{n,m}$. An *Hermitian matrix* is a complex square matrix A with $A = A^*$.

The set of all square $n \times n$ matrices with real (complex) entries is denoted by M_n . It forms a ring $(M_n, +, \cdot, 0_n)$, where + and 0_n are defined as above, and $((a_{ij})) \cdot ((b_{ij})) = ((\sum_{k=1}^n a_{ik}b_{kj}))$. It is also an n^2 -dimensional vector space over \mathbb{R} (over \mathbb{C}). The trace of a square $n \times n$ matrix $A = ((a_{ij}))$ is defined by $Tr(A) = \sum_{i=1}^n a_{ii}$.

The *identity matrix* is $1_n = ((c_{ij}))$ with $c_{ii} = 1$, and $c_{ij} = 0$, $i \neq j$. An *unitary matrix* $U = ((u_{ij}))$ is a square matrix defined by $U^{-1} = U^*$, where U^{-1} is the *inverse matrix* of U, i.e., $UU^{-1} = 1_n$. A matrix $A \in M_{m,n}$ is *orthonormal* if $A^*A = 1_n$. A matrix $A \in \mathbb{R}^{n \times n}$ is *orthogonal* if $A^T = A^{-1}$, *normal* if $A^TA = AA^T$ and *singular* if its determinant is 0.

If for a matrix $A \in M_n$ there is a vector x such that $Ax = \lambda x$ for some scalar λ , then λ is called an *eigenvalue* of A with corresponding *eigenvector* x. Given a matrix $A \in \mathbb{C}^{m \times n}$, its *singular values* $s_i(A)$ are defined as $\sqrt{\lambda(A^*A)}$. A real matrix A is *positive-definite* if $v^TAv > 0$ for all nonzero real vectors v; it holds if and only if all eigenvalues of $A_H = \frac{1}{2}(A + A^T)$ are positive. An Hermitian matrix A is *positive-definite* if $v^*Av > 0$ for all nonzero complex vectors v; it holds if and only if all $\lambda(A)$ are positive.

The *mixed states* of a *n*-dimensional *quantum system* are described by their *density matrices*, i.e., positive-semidefinite Hermitian $n \times n$ matrices of trace 1. The set of such matrices is convex, and its extremal points describe the *pure states*. Cf. **monotone metrics** in Chap. 7 and **distances between quantum states** in Chap. 24.

· Matrix norm metric

A matrix norm metric is a norm metric on the set $M_{m,n}$ of all real (complex) $m \times n$ matrices defined by

$$||A - B||$$
,

where ||.|| is a *matrix norm*, i.e., a function $||.||: M_{m,n} \to \mathbb{R}$ such that, for all $A, B \in M_{m,n}$, and for any scalar k, we have the following properties:

- 1. $||A|| \ge 0$, with ||A|| = 0 if and only if $A = 0_{m,n}$;
- 2. ||kA|| = |k|||A||;
- 3. $||A + B|| \le ||A|| + ||B||$ (triangle inequality).
- 4. $||AB|| < ||A|| \cdot ||B||$ (submultiplicativity).

All matrix norm metrics on $M_{m,n}$ are equivalent. The simplest example of such metric is the **Hamming metric** on $M_{m,n}$ (in general, on the set $M_{m,n}(\mathbb{F})$ of all $m \times n$ matrices with entries from a field \mathbb{F}) defined by $||A - B||_H$, where $||A||_H$ is the *Hamming norm* of $A \in M_{m,n}$, i.e., the number of nonzero entries in A. Example of a *generalized* (i.e., not submultiplicative one) *matrix norm* is the *max element norm* $||A = ((a_{ij}))||\max = \max_{i,j} |a_{ij}|$; but $\sqrt{mn} ||A||_{\max}$ is a matrix norm.

Natural norm metric

A **natural** (or *operator*, *induced*) **norm metric** is a **matrix norm metric** on the set M_n defined by

$$||A - B||_{\text{nat}}$$

where $||.||_{\text{nat}}$ is a *natural* (or *operator*, *induced*) *norm* on M_n , induced by the vector norm ||x||, $x \in \mathbb{R}^n$ ($x \in \mathbb{C}^n$), is a matrix norm defined by

$$||A||_{\text{nat}} = \sup_{||x|| \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| = 1} ||Ax|| = \sup_{||x|| \le 1} ||Ax||.$$

The natural norm metric can be defined in similar way on the set $M_{m,n}$ of all $m \times n$ real (complex) matrices: given vector norms $||.||_{\mathbb{R}^m}$ on \mathbb{R}^m and $||.||_{\mathbb{R}^n}$ on \mathbb{R}^n , the *natural norm* $||A||_{\text{nat}}$ of a matrix $A \in M_{m,n}$, induced by $||.||_{\mathbb{R}^n}$ and $||.||_{\mathbb{R}^m}$, is a matrix norm defined by $||A||_{\text{nat}} = \sup_{||x||_{\mathbb{R}^n} = 1} ||Ax||_{\mathbb{R}^m}$.

• Matrix *p*-norm metric

A matrix p-norm metric is a natural norm metric on M_n defined by

$$||A-B||_{\mathrm{nat}}^p$$

where $||.||_{\text{nat}}^p$ is the *matrix* (or *operator*) *p-norm*, i.e., a *natural norm*, induced by the vector l_p -norm, $1 \le p \le \infty$:

$$||A||_{\text{nat}}^p = \max_{||x||_p = 1} ||Ax||_p$$
, where $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$.

The maximum absolute column and maximum absolute row metric are the matrix 1-norm and matrix ∞ -norm metric on M_n . For a matrix $A = ((a_{ij})) \in M_n$, the maximum absolute column and maximum absolute row sum norm are

$$||A||_{\text{nat}}^1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| \text{ and } |A||_{\text{nat}}^\infty = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.$$

The **spectral norm metric** is the **matrix** 2-**norm metric** $||A - B||_{\text{nat}}^2$ on M_n . The matrix 2-norm $||.||_{\text{nat}}^2$, induced by the vector l_2 -norm, is also called the *spectral norm* and denoted by $||.||_{sp}$. For a symmetric matrix $A = ((a_{ij})) \in M_n$, it is

$$||A||_{sp} = s_{\max}(A) = \sqrt{\lambda_{\max}(A^*A)},$$

where $A^* = ((\overline{a}_{ii}))$, while s_{max} and λ_{max} are largest singular value and eigenvalue.

· Frobenius norm metric

The **Frobenius norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$||A-B||_{Fr}$$

where $||.||_{Fr}$ is the Frobenius (or Hilbert-Schmidt) norm. For $A = ((a_{ii}))$, it is

$$||A||_{Fr} = \sqrt{\sum_{i,j} |a_{ij}|^2} = \sqrt{\operatorname{Tr}(A^*A)} = \sqrt{\sum_{1 \le i \le \operatorname{rank}(A)} \lambda_i} = \sqrt{\sum_{1 \le i \le \operatorname{rank}(A)} s_i^2},$$

where λ_i , s_i are the eigenvalues and singular values of A.

This norm is strictly convex, is a differentiable function of its elements a_{ij} and is the only unitarily invariant norm among $||A||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{\frac{1}{p}}, p \ge 1$.

The **trace norm metric** is a matrix norm metric on $M_{m,n}$ defined by

$$||A-B||_{tr}$$

where $||.||_{tr}$ is the *trace norm* (or *nuclear norm*) on $M_{m,n}$ defined by

$$||A||_{tr} = \sum_{i=1}^{\min\{m,n\}} s_i(A) = \operatorname{Tr}(\sqrt{A^*A}).$$

Schatten norm metric

Given $1 \le p < \infty$, the **Schatten norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$||A-B||_{Sch}^p$$

where $||.||_{Sch}^p$ is the *Schatten p-norm* on $M_{m,n}$. For a matrix $A \in M_{m,n}$, it is defined as the *p*-th root of the sum of the *p*-th powers of all its *singular values*:

$$||A||_{Sch}^p = (\sum_{i=1}^{\min\{m,n\}} s_i^p(A))^{\frac{1}{p}}.$$

For $p = \infty$, 2 and 1, one obtains the spectral norm metric, Frobenius norm metric and trace norm metric, respectively.

• (c, p)-norm metric

Let $k \in \mathbb{N}$, $k \le \min\{m, n\}$, $c \in \mathbb{R}^k$, $c_1 \ge c_2 \ge \cdots \ge c_k > 0$, and $1 \le p < \infty$. The (c, p)-norm metric is a matrix norm metric on $M_{m,n}$ defined by

$$||A - B||_{(c,p)}^k$$

where $||.||_{(c,p)}^k$ is the (c,p)-norm on $M_{m,n}$. For a matrix $A \in M_{m,n}$, it is defined by

$$||A||_{(c,p)}^k = (\sum_{i=1}^k c_i s_i^p(A))^{\frac{1}{p}},$$

where $s_1(A) \ge s_2(A) \ge \cdots \ge s_k(A)$ are the first *k* singular values of *A*.

If p = 1, it is the *c-norm*. If, moreover, $c_1 = \cdots = c_k = 1$, it is the *Ky Fan k-norm*.

• Ky Fan k-norm metric

Given $k \in \mathbb{N}$, $k \leq \min\{m, n\}$, the **Ky Fan** k-norm metric is a matrix norm metric on $M_{m,n}$ defined by

$$||A-B||_{KF}^k,$$

where $||.||_{KF}^k$ is the Ky Fan k-norm on $M_{m,n}$. For a matrix $A \in M_{m,n}$, it is defined as the sum of its first k singular values:

$$||A||_{KF}^k = \sum_{i=1}^k s_i(A).$$

For k = 1 and $k = \min\{m, n\}$, one obtains the **spectral** and **trace** norm metrics.

· Cut norm metric

The **cut norm metric** is a **matrix norm metric** on $M_{m,n}$ defined by

$$||A - B||_{cut}$$

where $||.||_{cut}$ is the *cut norm* on $M_{m,n}$ defined, for a matrix $A = ((a_{ij})) \in M_{m,n}$, as:

$$||A||_{cut} = \max_{I \subset \{1,\dots,m\},J \subset \{1,\dots,n\}} |\sum_{i \in I,j \in J} a_{ij}|.$$

Cf. in Chap. 15 the **rectangle distance on weighted graphs** and the **cut semimetric**, but the **weighted cut metric** in Chap. 19 is not related.

• Matrix nearness problems

A norm ||.|| is *unitarily invariant* on $M_{m,n}$ if ||B|| = ||UBV|| for all $B \in M_{m,n}$ and all unitary matrices U, V. All *Schatten p-norms* are unitarily invariant.

Given a unitarily invariant norm ||.|| on $M_{m,n}$, a matrix property \mathcal{P} defining a subspace or compact subset of $M_{m,n}$ (so that $d_{||.||}(A,\mathcal{P})$ below is well defined) and a matrix $A \in M_{m,n}$, then the *distance to* \mathcal{P} is the **point-set distance** on $M_{m,n}$

$$d(A) = d_{\parallel,\parallel}(A, \mathcal{P}) = \min\{||E|| : A + E \text{ has property } \mathcal{P}\}.$$

A **matrix nearness problem** is ([High89]) to find an explicit formula for d(A), the \mathcal{P} -closest matrix (or matrices) $X_{||.||}(A) = A + E$, satisfying the above minimum, and efficient algorithms for computing d(A) and $X_{||.||}(A)$. The componentwise nearness problem is to find $d'(A) = \min\{\epsilon : |E| \le \epsilon |A|, A + E$ has property $\mathcal{P}\}$, where $|B| = ((|b_{ij}|))$ and the matrix inequality is interpreted componentwise.

The most used norms for $B=((b_{ij}))$ are the *Schatten* 2- and ∞ -norms (cf. **Schatten norm metric**): the *Frobenius norm* $||B||_{Fr}=\sqrt{\text{Tr}(B^*B)}=\sqrt{\sum_{1\leq i\leq \text{rank}(B)}s_i^2}$ and the *spectral norm* $||B||_{sp}=\sqrt{\lambda_{\max}(B^*B)}=s_1(B)$.

Examples of closest matrices $X = X_{\parallel,\parallel}(A, \mathcal{P})$ follow.

Let $A \in \mathbb{C}^{n \times n}$. Then $A = A_H + A_S$, where $A_H = \frac{1}{2}(A + A^*)$ is Hermitian and $A_H = \frac{1}{2}(A - A^*)$ is *skew-Hermitian* (i.e., $A_H^* = -A_H$). Let $A = U\Sigma V^*$ be a *singular value decomposition* (SVD) of A, i.e., $U \in M_m$ and $V^* \in M_n$ are unitary, while $\Sigma = \operatorname{diag}(s_1, s_2, \ldots, s_{\min\{m,n\}})$ is an $m \times n$ diagonal matrix with $s_1 \geq s_2 \geq \cdots \geq s_{\operatorname{rank}(A)} > 0 = \cdots = 0$. Fan and Hoffman, 1955, showed that, for any unitarily invariant norm, A_H, A_S, UV^* are closest Hermitian (symmetric), skew-Hermitian (skew-symmetric) and unitary (orthogonal) matrices, respectively. Such matrix $X_{Fr}(A)$ is a unique minimizer in all three cases.

Let $A \in \mathbb{R}^{n \times n}$. Gabriel, 1979, found the closest normal matrix $X_{Fr}(A)$. Higham found in 1988 a unique closest symmetric positive-semidefinite matrix $X_{Fr}(A)$ and, in 2001, the closest matrix of this type with unit diagonal (i.e., ab correlation matrix).

Given a SVD $A = U\Sigma V^*$ of A, let A_k denote $U\Sigma_k V^*$, where Σ_k is a diagonal matrix diag $(s_1, s_2, \ldots, s_k, 0, \ldots, 0)$ containing the largest k singular values of A. Then (Mirsky, 1960) A_k achieves $\min_{\text{rank}(A+E) \leq k} ||E||$ for any unitarily invariant norm. So, $||A - A_k||_{Fr} = \sqrt{\sum_{i=k+1}^{\text{rank}(A)} s_i^2}$ (Eckart–Young, 1936) and $||A - A_k||_{sp} = s_{max}(A - A_k) = s_{k+1}(A)$. A_k is a unique minimizer $X_{Fr}(A)$ if $s_k > s_{k+1}$.

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then its **distance to singularity** $d(A, Sing) = \min\{||E|| : A + E \text{ is singular}\}$ is, for both above norms, $s_n(A) = \frac{1}{s_1(A^{-1})} = \frac{1}{||A^{-1}||_{SP}} = \sup\{\delta : \delta \mathbb{B}_{\mathbb{R}^n} \subseteq A \mathbb{B}_{\mathbb{R}^n}\}$; here $\mathbb{B}_{\mathbb{R}^n} = \{x \in \mathbb{R}^n : ||x|| \le 1\}$.

Given a closed convex cone $C \subseteq \mathbb{R}^n$, call a matrix $A \in \mathbb{R}^{m \times n}$ feasible if $\{Ax : x \in C\} = \mathbb{R}^m$; so, for m = n and $C = \mathbb{R}^n$, feasibly means nonsingularity. Renegar, 1995, showed that, for feasible matrix A, its **distance to infeasibility** $\min\{||E||_{\text{nat}} : A + E \text{ is not feasible}\}$ is $\sup\{\delta : \delta \mathbb{B}_{\mathbb{R}^m} \subseteq A(\mathbb{B}_{\mathbb{R}^n} \cap C)\}$.

Lewis, 2003, generalized this by showing that, given two real normed spaces X, Y and a surjective *convex process* (or *set valued sublinear mapping*) F from X to Y, i.e., a multifunction for which $\{(x, y) : y \in F(x)\}$ is a closed convex cone, it holds

$$\min\{||E||_{\text{nat}} : E \text{ is any linear map } X \to Y, F + E \text{ is not surjective}\} = \frac{1}{||F^{-1}||_{\text{nat}}}$$

Donchev et al. 2002, extended this, computing **distance to irregularity**; cf. **metric regularity** (Chap. 1). Cf. the above four *distances to ill-posedness* with **distance to uncontrollability** (Chap. 18) and **distances from symmetry** (Chap. 21).

• $Sym(n, \mathbb{R})^+$ and $Her(n, \mathbb{C})^+$ metrics

Let $Sym(n, \mathbb{R})^+$ and $Her(n, \mathbb{C})^+$ be the cones of $n \times n$ symmetric real and Hermitian complex positive-definite $n \times n$ matrices. The $Sym(n, \mathbb{R})^+$ **metric** is defined, for any $A, B \in Sym(n, \mathbb{R})^+$, as

$$(\sum_{i=1}^n \log^2 \lambda_i)^{\frac{1}{2}},$$

where λ_1, c, λ_n are the *eigenvalues* of the matrix $A^{-1}B$ (the same as those of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$). It is the **Riemannian distance**, arising from the Riemannian metric $ds^2 = \text{Tr}((A^{-1}(dA))^2)$. This metric was rediscovered in Förstner–Moonen, 1999, and Pennec et al., 2004, via *generalized eigenvalue problem:* $det(\lambda A - B) = 0$.

The $Her(n, \mathbb{C})^+$ metric is defined, for any $A, B \in Her(n, \mathbb{C})^+$, by

$$d_R(A, B) = || \log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})||_{Fr},$$

where $||H||_{Fr} = (\sum_{i,j} |h_{ij}|^2)^{\frac{1}{2}}$ is the *Frobenius norm* of the matrix $H = ((h_{ij}))$. It is the **Riemannian distance** arising from the Riemannian metric of nonpositive curvature, defined locally (at H) by $ds = ||H^{-\frac{1}{2}} dH H^{-\frac{1}{2}}||_{Fr}$. In other words, this distance is the **geodesic distance**

 $\inf\{L(\gamma): \gamma \text{ is a (differentiable) path from A to B}\},\$

where $L(\gamma) = \int_A^B ||\gamma^{-\frac{1}{2}}(t)\gamma'(t)\gamma^{-\frac{1}{2}}(t)||_{Fr}dt$ and the geodesic [A,B] is parametrized by $\gamma(t) = A^{\frac{1}{2}}(A^{-\frac{1}{2}}BA^{-\frac{1}{2}})^tA^{\frac{1}{2}}$ in the sense that $d_R(A,\gamma(t)) = td_R(A,B)$ for each $t \in [0,1]$. In particular, the geodesic midpoint $\gamma(\frac{1}{2})$ of [A,B] can be seen as the *geometric mean* of two positive-definite matrices A and B.

The space $(Her(n, \mathbb{C})^+, d_R)$) is an **Hadamard** (i.e., complete and CAT(0)) **space**, cf. Chap. 6. But $Her(n, \mathbb{C})^+$ is not complete with respect to matrix norms; it has a boundary consisting of the singular positive-semidefinite matrices.

Above $Sym(n, \mathbb{R})^+$ and $Her(n, \mathbb{C})^+$ metrics are the special cases of the distance $d_R(x, y)$ among **invariant distances on symmetric cones** in Chap. 9.

Cf. also, in Chap. 24, the **trace distance** on all Hermitian of trace 1 positive-definite $n \times n$ matrices and in Chap. 7, the **Wigner–Yanase–Dyson metrics** on all complex positive-definite $n \times n$ matrices.

The **Bartlett distance** between two matrices $A, B \in Her(n, \mathbb{C})^+$, is defined (Conradsen et al., 2003, for radar applications) by

$$\ln\left(\frac{(det(A+B))^2}{4det(A)det(B)}\right).$$

Siegel distance

The Siegel half-plane is the set SH_n of $n \times n$ matrices Z = X + iY, where X, Y are symmetric or Hermitian and Y is positive-definite. The **Siegel–Hua metric** (Siegel, 1943, and independently, Hua, 1944) on SH_n is defined by

$$ds^2 = \text{Tr}(Y^{-1}(dZ)Y^{-1}(d\overline{Z})).$$

It is unique metric preserved by any automorphism of SH_n . The Siegel-Hua metric on the Siegel disk $SD_n = \{W = (Z - iI)(Z + iI)^{-1} : Z \in SH_n\}$ is defined by

$$ds^{2} = \text{Tr}((I - WW^{*})^{-1}dW(I - W^{*}W)^{-1}dW^{*}).$$

For n=1, the Siegel–Hua metric is the **Poincaré metric** (cf. Chap. 6) on the *Poincaré half-plane SH*₁ and the *Poincaré disk SD*₁, respectively.

Let $A_n = \{Z = iY : Y > 0\}$ be the imaginary axe on the Siegel half-plane. The Siegel-Hua metric on A_n is (cf. [Barb12]) the Riemannian **trace metric** $ds^2 = \text{Tr}((P^1dP)^2)$. The corresponding distances are $Sym(n, \mathbb{R})^+$ **metric** or $Her(n, \mathbb{C})^+$ **metric**. The **Siegel distance** on $SH_n \setminus A_n$ is defined by

$$d_{Siegel}^{2}(Z_{1}, Z_{2}) = \sum_{i=1}^{n} \log^{2}(\frac{1 + \sqrt{\lambda_{i}}}{1 - \sqrt{\lambda_{i}}});$$

 $\lambda_1, \ldots, \lambda_n$ are the *eigenvalues* of the matrix $(Z_1 - Z_2)(Z_1 - \overline{Z_2}) - 1(\overline{Z_1} - \overline{Z_2})(\overline{Z_1} - \overline{Z_2})^{-1}$.

Barbaresco metrics

Let z(k) be a complex temporal (discrete time) *stationary* signal, i.e., its mean value is constant and its *covariance function* $\mathbb{E}[z(k_1)z^*(k_2)]$ is only a function of $k_1 - k_2$. Such signal can be represented by its covariance $n \times n$ matrix $R = ((r_{ij}))$, where $r_{ij} = \mathbb{E}[z(i), z*(j)] = \mathbb{E}[z(n)z*(n-i+j)]$. It is a positive-definite *Toeplitz* (i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices represent the Doppler spectra of the signal. Matrices R admit a parametrization (complex ARM, i.e., m-th order autoregressive model) by *partial autocorrelation coefficients* defined recursively as the complex correlation between the forward and backward prediction errors of the (m-1)-th order complex ARM.

Barbaresco ([Barb12]) defined, via this parametrization, a **Bergman metric** (Chap. 7) on the bounded domain $\mathbb{R} + xD_n \subset \mathbb{C}^n$ of above matrices R; here D is a *Poincaré disk*. He also defined a related **Kähler metric** on $M \times S_n$, where M is the set of positive-definite Hermitian matrices and SD_n is the *Siegel disk* (cf. **Siegel distance**). Such matrices represent spatiotemporal stationary signals, i.e., in radar applications, the Doppler spectra and spatial directions of the signal.

Ben Jeuris, 2015, extended above metrics on *block Toeplitz matrices*, i.e., those having blocks that are repeated (as elements of a Toeplitz matrix) down the diagonals of the matrix.

Cf. Ruppeiner metric (Chap. 7) and Martin cepstrum distance (Chap. 21).

• Distances between graphs of matrices

The graph G(A) of a complex $m \times n$ matrix A is the range (i.e., the span of columns) of the matrix $R(A) = ([IA^T])^T$. So, G(A) is a subspace of \mathbb{C}^{m+n} of all vectors v, for which the equation R(A)x = v has a solution.

A distance between graphs of matrices A and B is a distance between the subspaces G(A) and G(B). It can be an **angle distance between subspaces** or, for example, the following distance (cf. also the **Kadets distance** in Chap. 1 and the **gap metric** in Chap. 18).

The **spherical gap distance** between subspaces *A* and *B* is defined by

$$\max \{ \max_{x \in S(A)} d_E(x, S(B)), \max_{y \in S(B)} d_E(y, S(A)) \},$$

where S(A), S(B) are the unit spheres of the subspaces A, B, d(z, C) is the **point-set distance** $\inf_{y \in C} d(z, y)$ and $d_E(z, y)$ is the Euclidean distance.

Angle distances between subspaces

Consider the *Grassmannian space* G(m, n) of all n-dimensional subspaces of Euclidean space \mathbb{E}^m ; it is a compact *Riemannian manifold* of dimension n(m-n).

Given two subspaces $A, B \in G(m, n)$, the *principal angles* $\frac{\pi}{2} \ge \theta_1 \ge \cdots \ge \theta_n \ge 0$ between them are defined, for $k = 1, \ldots, n$, inductively by

$$\cos \theta_k = \max_{x \in A} \max_{y \in B} x^T y = (x^k)^T y^k$$

subject to the conditions $||x||_2 = ||y||_2 = 1$, $x^Tx^i = 0$, $y^Ty^i = 0$, for $1 \le i \le k-1$, where $||.||_2$ is the Euclidean norm.

The principal angles can also be defined in terms of orthonormal matrices Q_A and Q_B spanning subspaces A and B, respectively: in fact, n ordered singular values of the matrix $Q_A Q_B \in M_n$ can be expressed as cosines $\cos \theta_1, \ldots, \cos \theta_n$.

The **Grassmann distance** between subspaces *A* and *B* of the same dimension is their geodesic distance defined by

$$\sqrt{\sum_{i=1}^{n} \theta_i^2}.$$

The **Martin distance** between subspaces A and B is defined by

$$\sqrt{\ln \prod_{i=1}^{n} \frac{1}{\cos^2 \theta_i}}.$$

In the case when the subspaces represent ARMs (*autoregressive models*), the Martin distance can be expressed in terms of the *cepstrum* of the autocorrelation functions of the models. Cf. the **Martin cepstrum distance** in Chap. 21.

The **Asimov distance** between subspaces *A* and *B* is defined by θ_1 . The **spectral distance** (or *chordal 2-norm distance*) is defined by $2\sin(\frac{\theta_1}{2})$.

The **containment gap distance** (or *projection distance*) is $\sin \theta_1$. It is the l_2 -norm of the difference of the *orthogonal projectors* onto A and B. Many versions of this distance are used in Control Theory (cf. **gap metric** in Chap. 18).

The **Frobenius distance** and **chordal distance** between subspaces A and B are

$$\sqrt{2\sum_{i=1}^{n}\sin^{2}\theta_{i}} \text{ and } \sqrt{\sum_{i=1}^{n}\sin^{2}\theta_{i}}, \text{ respectively.}$$

It is the *Frobenius norm* of the difference of above projectors onto A and B.

Similar distances $\sqrt{1-\prod_{i=1}^{n}\cos^{2}\theta_{i}}$ and $\arccos(\prod_{i=1}^{n}\cos\theta_{i})$ are called the **Binet–Cauchy distance** and (cf. Chap. 7) **Fubini–Study distance**, respectively.

Larsson-Villani metric

Let *A* and *B* be two arbitrary orthonormal $m \times n$ matrices of full rank, and let θ_{ij} be the angle between the *i*-th column of *A* and the *j*-th column of *B*.

We call **Larsson-Villani metric** the distance between A and B (used by Larsson and Villani, 2000, for multivariate models) the square of which is defined by

$$n - \sum_{i=1}^{n} \sum_{j=1}^{n} \cos^2 \theta_{ij}.$$

The square of usual Euclidean distance between A and B is $2(1-\sum_{i=1}^{n}\cos\theta_{ii})$. For n=1, above two distances are $\sin\theta$ and $\sqrt{2(1-\cos\theta)}$, respectively.

· Lerman metric

Given a finite set X and real symmetric $|X| \times |X|$ matrices $((d_1(x, y)))$, $((d_2(x, y)))$ with $x, y \in X$, their **Lerman semimetric** (cf. **Kendall** τ **distance** on permutations in Chap. 11) is defined by

$$|\{(\{x,y\},\{u,v\}): (d_1(x,y)-d_1(u,v))(d_2(x,y)-d_2(u,v))<0\}| \binom{|X|+1}{2}^{-2},$$

where $(\{x, y\}, \{u, v\})$ is any pair of unordered pairs of elements x, y, u, v from X. Similar **Kaufman semimetric** between $((d_1(x, y)))$ and $((d_2(x, y)))$ is

$$\frac{|\{(\{x,y\},\{u,v\}): (d_1(x,y)-d_1(u,v))(d_2(x,y)-d_2(u,v))<0\}|}{|\{(\{x,y\},\{u,v\}): (d_1(x,y)-d_1(u,v))(d_2(x,y)-d_2(u,v))\neq0\}|}$$