Chapter 12
Distances on Numbers, Polynomials,
and Matrices

12.1 Metrics on Numbers

Here we consider the most important metrics on the classical number systems: the
semiring N of natural numbers, the ring Z of integers, and the fields Q, R, C of
rational, real, complex numbers, respectively. We consider also the algebra Q of
quaternions.

e Metrics on natural numbers
There are several well-known metrics on the set N of natural numbers:

1. |n — m|; the restriction of the natural metric (from R) on N;

2. p~%, where « is the highest power of a given prime number p dividing m — n,
for m # n (and equal to O for m = n); the restriction of the p-adic metric
(from Q) on N;

3. In ;CC'ZEZZ;, an example of the lattice valuation metric;

4. w,(n — m), where w,(n) is the arithmetic r-weight of n; the restriction of the
arithmetic 7-norm metric (from Z) on N;

5. Im=ml (cf. M-relative metric in Chap. 5);

6. 1+ m+rn for m # n (and equal to O for m = n); the Sierpinski metric.

Most of these metrics on N can be extended on Z. Moreover, any one of the above
metrics can be used in the case of an arbitrary countable set X. For example, the
Sierpinski metric is defined, in general, on a countable set X = {x, : n € N} by
1+ m+rn for all x,,, x, € X with m # n (and is equal to 0, otherwise).
* Arithmetic 7-norm metric
Let r € N, r > 2. The modified r-ary form of an integer x is a representation

x=e,"+---+er+ e,

where ¢; € Z, and |e;| < rforalli =0,...,n.
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An r-ary form is called minimal if the number of nonzero coefficients is
minimal. The minimal form is not unique, in general. But if the coefficients e;,
0 < i < n— 1, satisfy the conditions |e; + e;+1| < r, and |e;| < |ei+1] if
eiei+1 < 0, then the above form is unique and minimal; it is called the generalized
nonadjacent form.

The arithmetic r-weight w,(x) of an integer x is the number of nonzero
coefficients in a minimal r-ary form of x, in particular, in the generalized
nonadjacent form. The arithmetic r-norm metric on Z (see, for example,
[Ernv85]) is defined by

Wr(x - y)

« Distance between consecutive primes

The distance between consecutive primes (or prime gap, prime difference
function) is the difference g, = p,+1—p, between two successive prime numbers.

It holds g, < pu, lim,—008» = o0 and (Zhang, 2013) lim,,_, g, < 7 X 107,
improved to < 246 (conjecturally, to < 6) by Polymath8, 2014. There is no
lim, -« g, but g, &~ Inp, for the average g,.

Open Polignac’s conjecture: for any k > 1, there are infinitely many n with
gn = 2k; the case k = 1 (i.e., that lim,_, g, = 2 holds) is the twin prime
conjecture.

» Distance Fibonacci numbers

Fibonacci numbers are defined by the recurrence F,, = F,,—1 + F,— forn > 2
with initial terms Fy = 0 and F; = 1. Distance Fibonacci numbers are three
following generalizations of them in the distance sense, considered by Wloch
etal..

Kwasnik—Wloch, 2000: F(k,n) = F(k,n — 1) + F(k,n — k) for n > k and
F(k,n) =n+ 1forn <k.

Bednarz et al., 2012: Fd(k,n) = Fd(k,n—k+ 1)+ Fd(k,n—k) forn > k > 1
and Fd(k,n) = 1for0 <n <k.

Wiloch et al., 2013: F,(k,n) = Fy(k,n —2) + Fa(k,n — k) forn > k > 1 and
Fy(k,n) =1for0 <n<k.

¢ p-adic metric

Let p be a prime number. Any nonzero rational number x can be represented as
x = p*7, where ¢ and d are integers not divisible by p, and « is a unique integer.
The p-adic norm of x is defined by |x|, = p~. Moreover, |0|, = 0 is defined.

The p-adic metric is a norm metric on the set Q of rational numbers
defined by

|x—y|1,.

This metric forms the basis for the algebra of p-adic numbers. The Cauchy com-
pletions of the metric spaces (Q, |x—y|,) and (Q, [x—y|) with the natural metric
|x — y| give the fields Q, of p-adic numbers and R of real numbers, respectively.
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The Gaji¢ metric is an ultrametric on the set Q of rational numbers defined,
for x # y (via the integer part |z| of a real number z), by

inf2™" :neZ, |2"xc—e)] = 2" —e)]}

where e is any fixed irrational number. This metric is equivalent to the natural
metric |x — y| on Q.
¢ Continued fraction metric on irrationals
The continued fraction metric on irrationals is a complete metric on the set
Irr of irrational numbers defined, for x # y, by

1

pe
where n is the first index for which the continued fraction expansions of x and
y differ. This metric is equivalent to the natural metric |x — y| on Irr which is
noncomplete and disconnected. Also, the Baire 0-dimensional space B(Ry) (cf.
Baire metric in Chap. 11) is homeomorphic to /rr endowed with this metric.

* Natural metric

The natural metric (or absolute value metric, line metric, the distance

between numbers) is a metric on R defined by

—y| = y—X, %fx—y <0,
x—y, ifx—y>0.
On R all /,-metrics coincide with the natural metric. The metric space (R, [x—y|)
is called the real line (or Euclidean line).

There exist many other metrics on R coming from |x — y| by some metric
transform (Chap. 4). For example: min{1, [x — y|}, l-l‘:)-(\:i‘yl’ lx] + |x —y| + |yl
(for x # y) and, for a given 0 < o < 1, the generalized absolute value metric
lx —y|*.

Some authors use |x — y| as the Polish notation (parentheses-free and
computer-friendly) of the distance function in any metric space.

* Zero bias metric
The zero bias metric is a metric on R defined by

I+ [x—yl
if one and only one of x and y is strictly positive, and by
|X - yl s

otherwise, where |x — y| is the natural metric (see, for example, [Gile87]).
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¢ Sorgenfrey quasi-metric
The Sorgenfrey quasi-metric is a quasi-metric d on R defined by

y—x

if y > x, and equal to 1, otherwise. Some similar quasi-metrics on R are:

1. di(x,y) = max{y —x, 0} (in general, max{ f(y) — f(x), 0} is a quasi-metric on
aset X if f : X — R is an injective function);

2. dy(x,y) = min{y — x, 1} if y > x, and equal to 1, otherwise;

3. d3(x,y) = y—xif y > x, and equal to a(x — y) (for fixed a > 0), otherwise;

4. di(x,y) = & — " if y > x, and equal to e — ¢ otherwise.

¢ Real half-line quasi-semimetric
The real half-line quasi-semimetric is defined on the half-line R.( by

max{0, In X}
x

¢ Janous—-Hametner metric
The Janous—-Hametner metric is defined on the half-line R. by

|x — |
(x+y"

where t = —1 or 0 <t < 1, and |x — y| is the natural metric.
* Extended real line metric
An extended real line metric is a metric on R U {+00} U {—o0}. The main
example (see, for example, [Cops68]) of such metric is given by

Lf () =fI.

where f(x) = 77 forx € R, f(400) = I, and f(—o0) = —1.

Another metric, commonly used on R U {+00} U {—o0}, is defined by
| arctan x — arctan y|,
where —%]T < arctanx < %71 for —oo < x < oo, and arctan(£o0) = :I:%n.
¢ Complex modulus metric
The complex modulus metric on the set C of complex numbers is defined by

|Z_ M|s

where, for any z = z; + 22i € C, the number |z| = v/2Z = /2 + 23 is the com-
plex modulus. The complex argument 9 is defined by z = |z[(cos(6) + isin(f)).
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The metric space (C, |z—ul) is called the complex (or Wessel-Argand) plane.
It is isometric to the Euclidean plane (R?, ||x—y]||»). So, the metrics on R?, given
in Chaps. 19 and 5, can be seen as metrics on C. For example, the British Rail
metric on C is |z| + |u| for z # u. The p-relative (if 1 < p < oco) and relative
metric (if p = 0o) on C are defined for |z| 4 |u| # O respectively, by

|z — ul |z —ul
an .
Yzlp + |ulp max{|z|, [u]}

e Z(n,)-related norm metrics
A Kummer (or cyclotomic) ring Z(n,) is a subring of the ring C (and an
extension of the ring Z), such that each of its elements has the form Z;i_ol an,,

where 7, is a primitive m-th root exp(%) of unity, and all g; are integers.
The complex modulus |z| of z = a + by, € C is defined by

2mi
12? = 2 = & + (N + Nm)ab + b* = a* + 2ab cos(7) + b

Then (a + b)? = ¢* form = 2 (or 1), a* + b* for m = 4, and a* + ab + b? for
m = 6 (or 3), i.e., for the ring Z of usual integers, Z(i) of Gaussian integers and
Z(p) of Eisenstein—Jacobi (or EJ) integers.

The set of units of Z(7,) contain 77’,'”,0 <j<m-—1,form = 5 and
m > 6, units of infinite order appear also, since cos(%) is irrational. For
m = 2,4,6, the set of units is {£1}, {1, i}, {£]1, +p, £p?}, where i = 14
and p = ne¢ = #

The norms |z| = ~/a*> + b? and ||z]|; = |a| + |b| for z = a + bi € C give
rise to the complex modulus and i-Manhattan metrics on C. They coincide
with the Euclidean (/,-) and Manhattan (/;-) metrics, respectively, on R? seen as
the complex plane. The restriction of the i-Manhattan metric on Z(i) is the path

metric of the square grid Z? of R?; cf. grid metric in Chap. 19.
The p-Manhattan metric on C is defined by the norm ||z||,, i.e.,

min{lal+[b]+|e| : z = a+bp+cp’} = minlal+1b], la+bl+|bl, la+b|+lal : z = a+bp}.

The restriction of the p-Manhattan metric on Z(p) is the path metric of the
triangular grid of R? (seen as the hexagonal lattice Ay = {(a,b,c) € Z* :
a+ b+ ¢ = 0}), i.e., the hexagonal metric (Chap. 19).

Let f denote either i or p = # Givenaw € Z(f) \ {0} and 7,7 € Z(f),
we write z = 7 (mod r) if z — 7/ = 87 for some § € Z(f). For the quotient ring
Zx(f) = {z(mod ) : z € Z(f)}, itholds |Z (f)| = || ||}-

Call two congruence classes z (mod ) and 7' (mod 7) adjacent if z — 7 =
f/ (mod r) for some j. The resulting graph on Z, (f) called a Gaussian network
or EJ network if, respectively, f = i or f = p. The path metrics of these networks
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coincide with their norm metrics, defined (Fan—Gao, 2004) for z (mod ) and
7 (mod 1), by

min |[u||y : u € z— 7 (mod 7).

These metrics are different from the previously defined ([Hube94a, Hube94b])
distance on Z, (f): ||v||s, where v € z—Z (mod ) is selected by minimizing
the complex modulus. For f = i, this is the Mannheim distance (Chap. 16),
which is not a metric.

¢ Chordal metric
The chordal metric d, is a metric on the set C=C U {oo} defined by

2|z —ul dd,(z.00) 2
= an 7,00) = ————
VIFEE/ T+ VI+ 1z

for all u, z € C (cf. M-relative metric in Chap. 5).

The metric space (C, d,) is called the extended complex plane. It is homeo-
morphic and conformally equivalent to the Riemann sphere, i.e., the unit sphere
82 = {(x1,x2,x3) € E3 : x3 + x3 + x} = 1} (considered as a metric subspace of
%), onto which (C, d +) is one-to-one mapped under stereographic projection.

The plane C can be identified with the plane x3 = 0 such that the and
imaginary axes coincide with the x; and x, axes. Under stereographic projection,
each point z € C corresponds to the point (x1, x2, x3) € S?, where the ray drawn
from the “north pole” (0, 0, 1) to the point z meets the sphere S2; the “north pole”
corresponds to the point at co. The chordal (spherical) metric between two points
p.q € S2 is taken to be the distance between their preimages z, u € C.

The chordal metric is defined equivalently on R" = R" U {oo}:

d,(z,u)

2|lx—yll 2

and d, (x, 00) = ————
U+ BT+ 1013 NIRSIRTE

The restriction of the metric d, on R" is a Ptolemaic metric; cf. Chap. 1.
Givena > 0, 8 > 0, p > 1, the generalized chordal metric is a metric on C
(in general, on (R", ||.||2) and even on any Prolemaic space (V,||.||)), defined by

dx(xv y) =

|z —ul

Yo+ Bl - Yo+ Blulr

e Metrics on quaternions
Quaternions are members of a noncommutative division algebra Q over the
field R, geometrically realizable in R* ([Hami66]). Formally,

Q=1{g=q+qi+qyj+qik:qg € R},

where the basic units 1,i,j, k € Q satisfy > = j> = k* = —l and ij = —ji = k.
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The guaternion norm is defined by ||g|| = +/qq = \/q% +@3+ @+ 4
where ¢ = q1 — q2i — q3j — qak. The quaternion metric is the norm metric

llg —¢'ll on Q.
The set of all Lipschitz integers and Hurwitz integers are defined, respectively,

by

L={q+ q:i + q3j + qak : g; € Z} and
. . 1
H = {q1 + q2i + q3j + qsk : all qieZorallqi—}-EeZ},

A quaternion ¢ € L is irreducible (ie., ¢ = ¢'q" implies {¢’,¢"} N
{£1, £i, £, £k} # 0) if and only if ||g|| is a prime. Given an irreducible
7 € Landq,q € H, we write ¢ = ¢’ (mod ) if ¢ — ¢ = §n for some § € L.
For the rings L, = {g(modx) : ¢ € L} and H, = {g(modr) : ¢ € H} it
holds |L,| = ||7||? and |H,| = 2||7|]*> — 1.
The quaternion Lipschitz metric on L, is defined (Martinez et al., 2009) by

di(e, f) = min Z lgs] : @ — B = q1 + q2i + q3j + gak (mod 7).

1<s<4

The ring H is additively generated by its subring L and w = %(1 +i4j+k).
The Hurwitz metric on the ring H,; is defined (Guzéltepe, 2013) by

dy(a, ) = min Z lgs| : 00 — B = q1 + q2i + q3j + q4k 4 gsw (mod ).

1<s<5

Cf. the hyper-Kihler and Gibbons—Manton metrics in Sect. 7.3 and the unit
quaternions and joint angle metrics in Sect. 18.3.

12.2 Metrics on Polynomials

A polynomial is a sum of powers in one or more variables multiplied by coefficients.
A polynomial in one variable (or monic polynomial) with constant real (complex)
coefficients is given by P = P(z) = Y j_, &z, ax € R (ax € C). The set P of all
real (complex) polynomials forms a ring (P, +, -, 0). It is also a vector space over
R (over C).

¢ Polynomial norm metric
A polynomial norm metric is a norm metric on the vector space P of all
real (complex) polynomials defined by

1P —Qll.
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where ||.|| is a polynomial norm, i.e., a function ||| : P — R such that, for all
P, Q € P and for any scalar k, we have the following properties:

1. ||P|| = 0, with ||P|| = 0 if and only if P = 0;
2. |[kP| = |kI[|P]l;
3. ||P 4+ Ql| < |IP|| + ||Q]| (triangle inequality).

The l,-norm and Ly,-norm of a polynomial P(z) = Y ;_, axz* are defined by

n 21
oo df 1
1Pl = (Z |acl?)'/? and [|P||L, = (/0 IP(e’g)lpg)" for 1 <p < oo,
k=0

[[Plloo = max |ax| and [|P|[.,, = sup |P(z)| for p = ooc.
0<k<n ‘Z‘=1

The values ||P||; and ||P||co are called the length and height of polynomial P.
¢ Distance from irreducible polynomials

For any field IF, a polynomial with coefficients in I is said to be irreducible
over I if it cannot be factored into the product of two nonconstant polynomials
with coefficients in F. Given a metric d on the polynomials over F, the
distance (of a given polynomial P(z)) from irreducible polynomials is d;.(P) =
infd(P, Q), where Q(z) is any irreducible polynomial of the same degree over F.

Polynomial conjecture of Turan, 1967, is that there exists a constant C with
d;;(P) < C for every polynomial P over Z, where d(P, Q) is the length ||P — Q||
of P— Q.

Lee—Ruskey—Williams, 2007, conjectured that there exists a constant C with
d;;(P) < C for every polynomial P over the Galois field I, where d(P, Q) is the
Hamming distance between the (0, 1)-sequences of coefficients of P and Q.

* Bombieri metric

The Bombieri metric (or polynomial bracket metric) is a polynomial norm

metric on the set P of all real (complex) polynomials defined by

[P —Oly.

where [.],, 0 < p < oo, is the Bombieri p-norm.
For a polynomial P(z) = Y_;_, axZ" it is defined by

Pl = O O Pl

k=0

e Metric space of roots
The metric space of roots is (Curgus—Mascioni, 2006) the space (X, d) where
X is the family of all multisets of complex numbers with n elements and the
distance between multisets U = {uy, ..., u,} and V = {vy, ..., v,} is defined by
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the following analog of the Fréchet metric:

min max |u; — V()|
t€Sym, 1<j<n  °

where t is any permutation of {1, ...,n}. Here the set of roots of some monic
complex polynomial of degree n is considered as a multiset with n elements. Cf.
metrics between multisets in Chap. 1.

The function assigning to each polynomial the multiset of its roots is a
homeomorphism between the metric space of all monic complex polynomials
of degree n with the polynomial norm metric /, and the metric space of roots.

12.3 Metrics on Matrices

An m x n matrix A = ((a;;)) over a field I is a table consisting of m rows and n
columns with the entries a;; from . The set of all m x n matrices with real (complex)
entries is denoted by M,,,, or R"™*" (C™"). It forms a group (M, +, O,.,), Wwhere
((ay)) + ((by)) = ((a;j + b)), and the matrix 0,,, = 0. It is also an mn-dimensional
vector space over R (C).

The transpose of a matrix A = ((a;)) € M, is the matrix AT = ((a;1)) € My
A m x n matrix A is called a square matrix if m = n, and a symmetric matrix if
A = A". The conjugate transpose (or adjoint) of a matrix A = ((a;)) € My, is
the matrix A* = ((@;;)) € M,,,». An Hermitian matrix is a complex square matrix A
withA = A*.

The set of all square n x n matrices with real (complex) entries is denoted by
M,. It forms a ring (M,,, +,-,0,), where + and 0, are defined as above, and ((a;)) -
((by) = (Xy=; aiby))- Itis also an n’-dimensional vector space over R (over C).
The trace of a square n x n matrix A = ((a;)) is defined by Tr(A) = >\, a;;.

The identity matrix is 1, = ((¢;)) with ¢; = 1, and ¢;; = 0, i # j. An unitary
matrix U = ((u;)) is a square matrix defined by U™' = U*, where U™ is the
inverse matrix of U, i.e., UU™! = 1,. A matrix A € M, is orthonormal if A*A =
1,. A matrix A € R™" is orthogonal if AT = A™', normal if ATA = AAT and
singular if its determinant is 0.

If for a matrix A € M,, there is a vector x such that Ax = Ax for some scalar
A, then A is called an eigenvalue of A with corresponding eigenvector x. Given a
matrix A € C™", its singular values s;(A) are defined as /A(A*A). A real matrix A
is positive-definite if v Av > 0 for all nonzero real vectors v; it holds if and only if
all eigenvalues of Ay = %(A + AT) are positive. An Hermitian matrix A is positive-
definite if v*Av > 0 for all nonzero complex vectors v; it holds if and only if all
A(A) are positive.

The mixed states of a n-dimensional quantum system are described by their
density matrices, i.e., positive-semidefinite Hermitian n x n matrices of trace 1. The
set of such matrices is convex, and its extremal points describe the pure states. Cf.
monotone metrics in Chap. 7 and distances between quantum states in Chap. 24.
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Matrix norm metric
A matrix norm metric is a norm metric on the set M,, ,, of all real (complex)
m x n matrices defined by

|lA — B,

where ||.|| is a matrix norm, i.e., a function ||.|| : M,,,, — R such that, for all
A,B € M,, ,, and for any scalar k, we have the following properties:

1. ||A|| > 0, with |JA|| = 0 if and only if A = 0,,,.,;
2. ||kA[| = [k]|A]l;

3. ||A 4+ Bl| < ||A]| + ||B]| (triangle inequality).
4. ||AB|| < ||Al] - ||B]| (submultiplicativity).

All matrix norm metrics on M, , are equivalent. The simplest example of such
metric is the Hamming metric on M,, ,, (in general, on the set M,, ,(IF) of all mxn
matrices with entries from a field IF) defined by ||A — B||y, where [|A||y is the
Hamming norm of A € M,, ., i.e., the number of nonzero entries in A. Example
of a generalized (i.e., not submultiplicative one) matrix norm is the max element
norm ||A = ((a;))||max = max;; |a;|; but /mn||A||max is @ matrix norm.
Natural norm metric

A natural (or operator, induced) norm metric is a matrix norm metric on
the set M,, defined by

||A_B||natv

where ||.||nat 18 @ natural (or operator, induced) norm on M, induced by the
vector norm ||x|[, x € R" (x € C"), is a matrix norm defined by

[|Ax]||
[|A]lnat = sup = sup ||Ax|| = sup [|Ax||.
o X =1 <1

The natural norm metric can be defined in similar way on the set M,, , of all
m X n real (complex) matrices: given vector norms ||.||g= on R™ and ||.||rs on
R", the natural norm ||A||na of @ matrix A € M,,, ,, induced by ||.||r» and ||.||gm,
is a matrix norm defined by [[A|[nat = Sup)jyjp, =1 ||Ax]|rn.
Matrix p-norm metric

A matrix p-norm metric is a natural norm metric on M, defined by

»
| |A - B| |natv

where ||.||%,, is the matrix (or operator) p-norm, i.e., a natural norm, induced by
the vector [,-norm, 1 < p < oc:

n
1
[|Allhae = max ||Ax]|,, where [x]], = (Y [xl")'".
Ixll,=1

X ;
i i=1
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The maximum absolute column and maximum absolute row metric are the
matrix 1-norm and matrix co-norm metric on M,,. For a matrix A = ((a;)) €
M,,, the maximum absolute column and maximum absolute row sum norm are

n n
1
141l = max 2|az;,~| and |A[|% = max 2|az;,~|.
= pm

The spectral norm metric is the matrix 2-norm metric ||A — B||2, on

M,. The matrix 2-norm ||.||,,, induced by the vector l>-norm, is also called the

spectral norm and denoted by ||.||;,. For a symmetric matrix A = ((a;)) € M,,
itis

||A||sp = Smax(A) =V Amax(A*A)s

where A* = ((@j;)), while Syax and Apay are largest singular value and eigenvalue.
* Frobenius norm metric
The Frobenius norm metric is a matrix norm metric on M,, , defined by
1A —Bl|p,
where ||.||- is the Frobenius (or Hilbert—Schmidt) norm. For A = ((a;)), it is

Al = [D lagl> = /Tr(A*A) = o= Y2
ij

1<i<rank(A) 1<i<rank(A)

where A;, s; are the eigenvalues and singular values of A.
This norm is strictly convex, is a differentiable function of its elements a;; and

1
is the only unitarily invariant norm among |[A[l, = 3 2, >0, layl")7.p > 1.
The trace norm metric is a matrix norm metric on M,, , defined by

||A = Bllr,

where ||.||; is the trace norm (or nuclear norm) on My, , defined by

min{m,n}
IAlle = > si(A) = Tr(VA*A).

i=1

¢ Schatten norm metric
Given 1 < p < 00, the Schatten norm metric is a matrix norm metric on
M, , defined by

1A = B[
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where ||.| |[§ch is the Schatten p-norm on M, ,. For a matrix A € M, ,, it is defined
as the p-th root of the sum of the p-th powers of all its singular values:

min{m,n}

Al = ( D2 @y,

i=1

For p = 00, 2 and 1, one obtains the spectral norm metric, Frobenius norm
metric and trace norm metric, respectively.
* (¢, p)-norm metric
Letk € N,k <min{m,n},c e R, ¢c; >¢c;>-->¢;>0,and 1 <p < o0.
The (c, p)-norm metric is a matrix norm metric on M,,, defined by

1A~ Bl

where ||.| |’(‘C’p) is the (¢, p)-norm on M, ,. For a matrix A € M,, ,, it is defined by

k
AL, = O a (A7,

i=1

where s1(A) > 52(A) > --- > s;(A) are the first k singular values of A.
If p = 1, it is the c-norm. If, moreover, c; = -+ = ¢ = 1, it is the Ky Fan
k-norm.
¢ Ky Fan k-norm metric
Given k € N, k < min{m, n}, the Ky Fan k-norm metric is a matrix norm
metric on M,, , defined by

1A = Bl

where |[.||% is the Ky Fan k-norm on M, ,. For a matrix A € M, ,, it is defined
as the sum of its first k singular values:

k

Allkr = Y si(A).

i=1

For k = 1 and k = min{m, n}, one obtains the spectral and trace norm metrics.
¢ Cut norm metric
The cut norm metric is a matrix norm metric on M,, , defined by

”A - B”cuh
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where ||.||cu is the cut norm on M, , defined, for a matrix A = ((a;;)) € My, as:

Cf. in Chap. 15 the rectangle distance on weighted graphs and the cut

semimetric, but the weighted cut metric in Chap. 19 is not related.
¢ Matrix nearness problems

A norm ||.|| is unitarily invariant on M, if ||B|| = ||UBV/|| for all B € M,
and all unitary matrices U, V. All Schatten p-norms are unitarily invariant.

Given a unitarily invariant norm ||.|| on M, ,, a matrix property P defining
a subspace or compact subset of M,,, (so that d}| |(A, P) below is well defined)
and a matrix A € M, ,, then the distance to P is the point-set distance on M,, ,

d(A) = d) (A, P) = min{||E|| : A + E has property P}.

A matrix nearness problem is ([High89]) to find an explicit formula for
d(A), the P-closest matrix (or matrices) X [(A) = A + E, satisfying the
above minimum, and efficient algorithms for computing d(A) and X ||(A). The
componentwise nearness problem is to find d'(A) = min{e : |E| < €|A|,A +
E has property P}, where |B| = ((|b;])) and the matrix inequality is interpreted
componentwise.

The most used norms for B = ((b;)) are the Schatten 2- and
oo-norms (cf. Schatten norm metric): the Frobenius norm ||B|lp =

VTt(B*B)=1/ > <i<rank(s) s? and the spectral norm ||B||sy = v/Amax(B*B) =
S (B)

Examples of closest matrices X = X);||(A, P) follow.

Let A € C™" Then A = Ay + Ag, where Ay = %(A + A*) is Hermitian
and Ay = %(A — A*) is skew-Hermitian (i.e., A}, = —An). Let A = UXV™* be a
singular value decomposition (SVD) of A, i.e., U € M,, and V* € M, are unitary,
while ¥ = diag(si, 52, . . ., Smin{m.n}) 15 an m X n diagonal matrix with s; > s, >

© > Sranka) > 0 = --- = 0. Fan and Hoffman, 1955, showed that, for any
unitarily invariant norm, Ay, As, UV* are closest Hermitian (symmetric), skew-
Hermitian (skew-symmetric) and unitary (orthogonal) matrices, respectively.
Such matrix Xr-(A) is a unique minimizer in all three cases.

Let A € R™", Gabriel, 1979, found the closest normal matrix Xr,(A). Higham
found in 1988 a unique closest symmetric positive-semidefinite matrix Xp,(A)
and, in 2001, the closest matrix of this type with unit diagonal (i.e., ab correlation
matrix).

Givena SVD A = UXV* of A, let A; denote UX, V*, where X is a diagonal
matrix diag(si, s2, ..., S, 0,...,0) containing the largest k singular values of A.
Then (Mirsky, 1960) A, achieves minranka+£)<k ||E|| for any unitarily invariant

norm. So, ||A — Al = /W) 2 (Eckart-Young, 1936) and ||A — A||, =
Smax(A — Ay) = sp+1(A). Ay is a unique minimizer Xg.(A) if sg > Sgy1-
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Let A € R™" be nonsingular. Then its distance to singularity d(A, Sing) =

min{||E|| : A + E is singular} is, for both above norms, s,(A) = ! =

s1(A~h
m = sup{8 : 6Bre C ABgn}; here Brn = {x € R" : ||x|| < 1}.

Given a closed convex cone C C R”, call a matrix A € R™" feasible if
{Ax : x € C} = R"; so0, for m = nand C = R", feasibly means nonsingularity.
Renegar, 1995, showed that, for feasible matrix A, its distance to infeasibility
min{||E||nat : A + E is not feasible} is sup{é : §Brn S A(Bgr- N C)}.

Lewis, 2003, generalized this by showing that, given two real normed spaces
X, Y and a surjective convex process (or set valued sublinear mapping) F from X

to Y, i.e., a multifunction for which {(x,y) : y € F(x)} is a closed convex cone, it
holds

min{||E||na : E is any linear map X — Y, F + E is not surjective} = ﬁ
nat
Donchev et al. 2002, extended this, computing distance to irregularity;
cf. metric regularity (Chap. 1). Cf. the above four distances to ill-posedness
with distance to uncontrollability (Chap. 18) and distances from symmetry
(Chap.21).
e Sym(n,R)* and Her(n, C)* metrics
Let Sym(n,R)* and Her(n, C)™ be the cones of n x n symmetric real and
Hermitian complex positive-definite n x n matrices. The Sym(n, R)* metric is
defined, for any A, B € Sym(n,R)™, as

() log?4)?,
i=1

where Ay, c, A, are the eigenvalues of the matrix A7!'B (the same as those of

A_%BA_%). It is the Riemannian distance, arising from the Riemannian metric

ds? = Tr((A~'(dA))?). This metric was rediscovered in Forstner—-Moonen, 1999,

and Pennec et al., 2004, via generalized eigenvalue problem: det(AA — B) = 0.
The Her(n, C)™ metric is defined, for any A, B € Her(n, C)*, by

dr(4. B) = || log(A™2BA™) |,
where ||H||r = (3, |h,;,~|2)% is the Frobenius norm of the matrix H = ((hy)). It
is the Riemannian distance arising from the Riemannian metric of nonpositive

curvature, defined locally (at H) by ds = ||H ~YdHH™: || In other words, this
distance is the geodesic distance

inf{L(y) : y is a (differentiable) path from A to B},
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where L(y) = [y 2y’ @)y 2(0)|lpdr and the geodesic [A,B] is
parametrized by y(f) = Az (A_%BA_%)’A% in the sense that dgr(A,y(t)) =
tdr(A, B) for each ¢ € [0, 1]. In particular, the geodesic midpoint y(%) of [A, B]
can be seen as the geometric mean of two positive-definite matrices A and B.
The space (Her(n, C)T,dg)) is an Hadamard (i.e., complete and CAT(0))
space, cf. Chap. 6. But Her(n, C)™ is not complete with respect to matrix norms;
it has a boundary consisting of the singular positive-semidefinite matrices.
Above Sym(n,R)* and Her(n,C)* metrics are the special cases of the
distance dg(x, y) among invariant distances on symmetric cones in Chap.9.
Cf. also, in Chap. 24, the trace distance on all Hermitian of trace 1 positive-
definite n x n matrices and in Chap. 7, the Wigner—Yanase-Dyson metrics on
all complex positive-definite n X n matrices.
The Bartlett distance between two matrices A, B € Her(n, C)™, is defined
(Conradsen et al., 2003, for radar applications) by

In ((det(A + B))z)
4det(A)det(B) )

* Siegel distance
The Siegel half-plane is the set SH,, of n x n matrices Z = X +iY, where X, Y
are symmetric or Hermitian and Y is positive-definite. The Siegel-Hua metric
(Siegel, 1943, and independently, Hua, 1944) on SH, is defined by

ds*> = Tr(Y"'(dZ)Y 1 (dZ)).

It is unique metric preserved by any automorphism of SH,,. The Siegel-Hua
metric on the Siegel disk SD, = {W = (Z —il)(Z + il)™' : Z € SH,} is
defined by

ds? = Te((I — WW*)“ldw (I — W*W) " dw™).

For n=1, the Siegel-Hua metric is the Poincaré metric (cf. Chap.6) on the
Poincaré half-plane SH| and the Poincaré disk SDy, respectively.

LetA, = {Z = iY : Y > 0} be the imaginary axe on the Siegel half-plane. The
Siegel-Hua metric on A, is (cf. [Barb12]) the Riemannian trace metric ds? =
Tr((P' dP)?). The corresponding distances are Sym(n, R)™ metric or Her(n, C)*
metric. The Siegel distance on SH,, \ A, is defined by

" 1+ VA

Bipge(Z1.22) =) log*( )i
i i=1 1=V

Al ..., A, are the eigenvalues of the matrix (Z; — Z,)(Z) — Z>)—1(Z) — Z,)(Z) —
Zz)_l.
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Barbaresco metrics

Let z(k) be a complex temporal (discrete time) stationary signal, i.e., its mean
value is constant and its covariance function E[z(k;)z* (k2)] is only a function of
ki — ka. Such signal can be represented by its covariance n x n matrix R = ((ry)),
where rj = E[z(i), z* (j)] = E[z(n)z* (n—i+)]. Itis a positive-definite Toeplitz
(i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices
represent the Doppler spectra of the signal. Matrices R admit a parametrization
(complex ARM, i.e., m-th order autoregressive model) by partial autocorrelation
coefficients defined recursively as the complex correlation between the forward
and backward prediction errors of the (m — 1)-th order complex ARM.

Barbaresco ([Barb12]) defined, via this parametrization, a Bergman metric
(Chap. 7) on the bounded domain R + xD,, C C" of above matrices R; here D is
a Poincaré disk. He also defined a related Kihler metric on M x S,, where M
is the set of positive-definite Hermitian matrices and SD,, is the Siegel disk (cf.
Siegel distance). Such matrices represent spatiotemporal stationary signals, i.e.,
in radar applications, the Doppler spectra and spatial directions of the signal.

Ben Jeuris, 2015, extended above metrics on block Toeplitz matrices, i.e.,
those having blocks that are repeated (as elements of a Toeplitz matrix) down
the diagonals of the matrix.

Cf. Ruppeiner metric (Chap.7) and Martin cepstrum distance (Chap.21).
Distances between graphs of matrices

The graph G(A) of a complex m x n matrix A is the range (i.e., the span of
columns) of the matrix R(A) = ([IAT])”. So, G(A) is a subspace of C"*" of all
vectors v, for which the equation R(A)x = v has a solution.

A distance between graphs of matrices A and B is a distance between the
subspaces G(A) and G(B). It can be an angle distance between subspaces or,
for example, the following distance (cf. also the Kadets distance in Chap. 1 and
the gap metric in Chap. 18).

The spherical gap distance between subspaces A and B is defined by

max{ max dg(x, S(B)), max de(y, S(A))},
XES(A) YES(B)

where S(A), S(B) are the unit spheres of the subspaces A, B, d(z, C) is the point-
set distance infyec d(z, y) and dg(z,y) is the Euclidean distance.
Angle distances between subspaces
Consider the Grassmannian space G(m, n) of all n-dimensional subspaces of
Euclidean space E”; it is a compact Riemannian manifold of dimension n(m—n).
Given two subspaces A, B € G(m, n), the principal angles % >0 > - >
6, > 0 between them are defined, fork = 1, ..., n, inductively by

cos 0 = maxmaxx’y = (X)Ty*
X€EA YyEB

subject to the conditions ||x||, = ||y|]» = 1,x7x' = 0,y"y' = 0,for 1 <i < k—1,
where ||.||, is the Euclidean norm.
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The principal angles can also be defined in terms of orthonormal matrices
Q4 and Qp spanning subspaces A and B, respectively: in fact, n ordered singular
values of the matrix Q4Qp € M, can be expressed as cosines cos 0y, ..., cos 0,.

The Grassmann distance between subspaces A and B of the same dimension
is their geodesic distance defined by

The Martin distance between subspaces A and B is defined by

In the case when the subspaces represent ARMSs (autoregressive models), the
Martin distance can be expressed in terms of the cepstrum of the autocorrelation
functions of the models. Cf. the Martin cepstrum distance in Chap.21.

The Asimov distance between subspaces A and B is defined by 6. The
spectral distance (or chordal 2-norm distance) is defined by 2 sin(‘g—z‘).

The containment gap distance (or projection distance) is sin 6. It is the /-
norm of the difference of the orthogonal projectors onto A and B. Many versions
of this distance are used in Control Theory (cf. gap metric in Chap. 18).

The Frobenius distance and chordal distance between subspaces A and B
are

n
Z sin? 6, respectively.

i=1

2 Z sin®6; and
i=1

It is the Frobenius norm of the difference of above projectors onto A and B.

Similar distances /1 — [['_, cos? 6; and arccos(]['_, cos 6;) are called the
Binet—-Cauchy distance and (cf. Chap. 7) Fubini-Study distance, respectively.

* Larsson-Villani metric

Let A and B be two arbitrary orthonormal m x n matrices of full rank, and let
8;; be the angle between the i-th column of A and the j-th column of B.

We call Larsson-Villani metric the distance between A and B (used by
Larsson and Villani, 2000, for multivariate models) the square of which is
defined by

n n
n—E E cos? 0.

i=1 j=1
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The square of usual Euclidean distance between A and Bis 2(1—)_;_, cos ;).
For n = 1, above two distances are sin 6 and /2(1 — cos ), respectively.
¢ Lerman metric
Given a finite set X and real symmetric |X| x |X| matrices ((d;(x,y))),
((dy(x,y))) with x,y € X, their Lerman semimetric (cf. Kendall t distance
on permutations in Chap. 11) is defined by

-2
X|+1
I{({x,y},{u,v}):(dl(x,y)—dl(u,v))(dz(x,y)—dz(u,v))<0}|<| |2+ ) ,

where ({x, y}, {&, v}) is any pair of unordered pairs of elements x, y, u, v from X.
Similar Kaufman semimetric between ((d;(x,y))) and ((d2(x, y))) is

{(x y} . v)) = (di(x. ) — di(u, v)) (da(x, y) — da(u, v)) < 0}
H(x v} {u, ) 1 (di(x,y) = di(u, 0))(da(x,y) — da(u,v) # O}
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