
Chapter 10
Distances in Algebra

10.1 Group Metrics

A group .G; �; e/ is a set G of elements with a binary operation �, called the group
operation, that together satisfy the four fundamental properties of closure (x � y 2 G
for any x; y 2 G), associativity (x � .y � z/ D .x � y/ � z for any x; y; z 2 G), the identity
property (x � e D e � x D x for any x 2 G), and the inverse property (for any x 2 G,
there exists an element x�1 2 G such that x � x�1 D x�1 � x D e).

In additive notation, a group .G; C; 0/ is a set G with a binary operation C such
that the following properties hold: xCy 2 G for any x; y 2 G, xC.yCz/ D .xCy/Cz
for any x; y; z 2 G, x C 0 D 0 C x D x for any x 2 G, and, for any x 2 G, there
exists an element �x 2 G such that x C .�x/ D .�x/ C x D 0.

A group .G; �; e/ is called finite if the set G is finite. A group .G; �; e/ is called
Abelian if it is commutative, i.e., x � y D y � x for any x; y 2 G.

Most metrics considered in this section are group norm metrics on a group
.G; �; e/, defined by

jjx � y�1jj

(or, sometimes, by jjy�1 � xjj), where jj:jj is a group norm, i.e., a function jj:jj W G !
R such that, for any x; y 2 G, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D e;
2. jjxjj D jjx�1jj;
3. jjx � yjj � jjxjj C jjyjj (triangle inequality).

In additive notation, a group norm metric on a group .G; C; 0/ is defined by
jjx C .�y/jj D jjx � yjj, or, sometimes, by jj.�y/ C xjj.

The simplest example of a group norm metric is the bi-invariant ultrametric
(sometimes called the Hamming metric) jjx � y�1jjH , where jjxjjH D 1 for x ¤ e, and
jjejjH D 0.
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• Bi-invariant metric
A metric (in general, a semimetric) d on a group .G; �; e/ is called bi-invariant

if

d.x; y/ D d.x � z; y � z/ D d.z � x; z � y/

for any x; y; z 2 G (cf. translation invariant metric in Chap. 5). Any group
norm metric on an Abelian group is bi-invariant.

A metric (in general, a semimetric) d on a group .G; �; e/ is called a right-
invariant metric if d.x; y/ D d.x � z; y � z/ for any x; y; z 2 G, i.e., the operation of
right multiplication by an element z is a motion of the metric space .G; d/. Any
group norm metric defined by jjx � y�1jj, is right-invariant.

A metric (in general, a semimetric) d on a group .G; �; e/ is called a left-
invariant metric if d.x; y/ D d.z � x; z � y/ holds for any x; y; z 2 G, i.e., the
operation of left multiplication by an element z is a motion of the metric space
.G; d/. Any group norm metric defined by jjy�1 � xjj, is left-invariant.

Any right-invariant or left-invariant (in particular, bi-invariant) metric d on G
is a group norm metric, since one can define a group norm on G by jjxjj D d.x; 0/.

• G-invariant metric
Given a metric space .X; d/ and an action g.x/ of a group G on it, the metric

d is called G-invariant (under this action) if for all x; y 2 X; g 2 G it holds

d.g.x/; g.y// D d.x; y/:

For every G-invariant metric dX on X and every point x 2 X, the function

dG.g1; g2/ D dX.g1.x/; g2.x//

is a left-invariant metric on G. This metric is called orbit metric in [BBI01],
since it is the restriction of d on the orbit Gx, which can be identified with G.

• Positively homogeneous distance
A distance d on an Abelian group .G; C; 0/ is called positively homogeneous

if

d.mx; my/ D md.x; y/

for all x; y 2 G and all m 2 N, where mx is the sum of m terms all equal to x.
• Translation discrete metric

A group norm metric (in general, a group norm semimetric) on a group
.G; �; e/ is called translation discrete if the translation distances (or translation
numbers)

�G.x/ D lim
n!1

jjxnjj
n
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of the nontorsion elements x (i.e., such that xn ¤ e for any n 2 N) of the group
with respect to that metric are bounded away from zero.

If the numbers �G.x/ are just nonzero, such a group norm metric is called a
translation proper metric.

• Word metric
Let .G; �; e/ be a finitely-generated group with a set A of generators (i.e., A

is finite, and every element of G can be expressed as a product of finitely many
elements A and their inverses). The word length w A

W.x/ of an element x 2 Gnfeg
is defined by

w A
W.x/ D inffr W x D a�1

1 : : : a�r
r ; ai 2 A; �i 2 f˙1gg and w A

W.e/ D 0:

The word metric dA
W associated with A is a group norm metric on G defined

by

w A
W.x � y�1/:

As the word length w A
W is a group norm on G, dA

W is right-invariant. Sometimes
it is defined as w A

W.y�1 �x/, and then it is left-invariant. In fact, dA
W is the maximal

metric on G that is right-invariant, and such that the distance from any element
of A or A�1 to the identity element e is equal to one.

If A and B are two finite sets of generators of the group .G; �; e/, then the
identity mapping between the metric spaces .G; dA

W/ and .G; dB
W/ is a quasi-

isometry, i.e., the word metric is unique up to quasi-isometry.
The word metric is the path metric of the Cayley graph � of .G; �; e/,

constructed with respect to A. Namely, � is a graph with the vertex-set G in
which two vertices x and y 2 G are connected by an edge if and only if y D a�x,
� D ˙1, a 2 A.

• Weighted word metric
Let .G; �; e/ be a finitely-generated group with a set A of generators. Given a

bounded weight function w W A ! .0; 1/, the weighted word length w A
WW.x/ of

an element x 2 Gnfeg is defined by w A
WW.e/ D 0 and

w A
WW.x/ D inf

(
tX

iD1

w.ai/; t 2 N W x D a�1

1 : : : a�t
t ; ai 2 A; �i 2 f˙1g

)
:

The weighted word metric dA
WW associated with A is a group norm metric

on G defined by

w A
WW .x � y�1/:

As the weighted word length w A
WW is a group norm on G, dA

WW is right-invariant.
Sometimes it is defined as w A

WW.y�1 � x/, and then it is left-invariant.
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The metric dA
WW is the supremum of semimetrics d on G with the property that

d.e; a/ � w.a/ for any a 2 A.
The metric dA

WW is a coarse-path metric, and every right-invariant coarse path
metric is a weighted word metric up to coarse isometry.

The metric dA
WW is the path metric of the weighted Cayley graph �W of

.G; �; e/ constructed with respect to A. Namely, �W is a weighted graph with
the vertex-set G in which two vertices x and y 2 G are connected by an edge with
the weight w.a/ if and only if y D a�x, � D ˙1, a 2 A.

• Interval norm metric
An interval norm metric is a group norm metric on a finite group .G; �; e/

defined by

jjx � y�1jjint;

where jj:jjint is an interval norm on G, i.e., a group norm such that the values of
jj:jjint form a set of consecutive integers starting with 0.

To each interval norm jj:jjint corresponds an ordered partition fB0; : : : ; Bmg of
G with Bi D fx 2 G W jjxjjint D ig; cf. Sharma–Kaushik distance in Chap. 16.
The Hamming and Lee norms are special cases of interval norm. A generalized
Lee norm is an interval norm for which each class has a form Bi D fa; a�1g.

• C-metric
A C-metric d is a metric on a group .G; �; e/ satisfying the following

conditions:

1. The values of d form a set of consecutive integers starting with 0;
2. The cardinality of the sphere B.x; r/ D fy 2 G W d.x; y/ D rg is independent

of the particular choice of x 2 G.

The word metric, the Hamming metric, and the Lee metric are C-metrics. Any
interval norm metric is a C-metric.

• Order norm metric
Let .G; �; e/ be a finite Abelian group. Let ord.x/ be the order of an element

x 2 G, i.e., the smallest positive integer n such that xn D e. Then the function
jj:jjord W G ! R defined by jjxjjord D ln ord.x/, is a group norm on G, called the
order norm.

The order norm metric is a group norm metric on G, defined by

jjx � y�1jjord:

• Tărnăuceanu metric
Let o.a/ denote the order of the element a of a group. Let C be the class of

finite groups G in which o.ab/ < o.a/ C o.b/ for every a; b 2 G. Tărnăuceanu,
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2015, noted that the function d W G � G ! N defined by

d.x; y/ D o.xy�1/ � 1

for all x; y 2 G is a metric on G if and only if G 2 C.
He found that C contains all Abelian p-groups, Q8, and A4, but not nonabelian

finite simple groups, alternating groups A.n/ with n � 5, and, for n � 4, Sym.n/,
quaternion groups Q2n , dihedral groups D2n. C is closed under subgroups, but
not under direct products or extensions. The centralizers of nontrivial elements
of such groups contain only elements of prime power order.

• Monomorphism norm metric
Let .G; C; 0/ be a group. Let .H; �; e/ be a group with a group norm jj:jjH. Let

f W G ! H be a monomorphism of groups G and H, i.e., an injective function
such that f .xCy/ D f .x/ � f .y/ for any x; y 2 G. Then the function jj:jjfG W G ! R

defined by jjxjjfG D jj f .x/jjH, is a group norm on G, called the monomorphism
norm.

The monomorphism norm metric is a group norm metric on G defined by

jjx � yjjf
G:

• Product norm metric
Let .G; C; 0/ be a group with a group norm jj:jjG. Let .H; �; e/ be a group with

a group norm jj:jjH. Let G � H D f˛ D .x; y/ W x 2 G; y 2 Hg be the Cartesian
product of G and H, and .x; y/ � .z; t/ D .x C z; y � t/.

Then the function jj:jjG�H W G�H ! R defined by jj˛jjG�H D jj.x; y/jjG�H D
jjxjjG C jjyjjH, is a group norm on G � H, called the product norm.

The product norm metric is a group norm metric on G � H defined by

jj˛ � ˇ�1jjG�F:

On the Cartesian product G � H of two finite groups with the interval norms
jj:jjint

G and jj:jjint
H , an interval norm jj:jjint

G�H can be defined. In fact, jj˛jjint
G�H D

jj.x; y/jjint
G�H D jjxjjG C .m C 1/jjyjjH, where m D maxa2G jjajjint

G .
• Quotient norm metric

Let .G; �; e/ be a group with a group norm jj:jjG. Let .N; �; e/ be a normal
subgroup of .G; �; e/, i.e., xN D Nx for any x 2 G. Let .G=N; �; eN/ be the
quotient group of G, i.e., G=N D fxN W x 2 Gg with xN D fx � a W a 2 Ng, and
xN � yN D xyN. Then the function jj:jjG=N W G=N ! R defined by jjxNjjG=N D
mina2N jjxajjX, is a group norm on G=N, called the quotient norm.

A quotient norm metric is a group norm metric on G=N defined by

jjxN � .yN/�1jjG=N D jjxy�1NjjG=N :
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If G D Z with the norm being the absolute value, and N D mZ, m 2 N, then
the quotient norm on Z=mZ D Zm coincides with the Lee norm.

If a metric d on a group .G; �; e/ is right-invariant, then for any normal
subgroup .N; �; e/ of .G; �; e/ the metric d induces a right-invariant metric (in
fact, the Hausdorff metric) d� on G=N by

d�.xN; yN/ D maxfmax
b2yN

min
a2xN

d.a; b/; max
a2xN

min
b2yN

d.a; b/g:

• Commutation distance
Let .G; �; e/ be a finite nonabelian group. Let Z.G/ D fc 2 G W x � c D

c � x for any x 2 Gg be the center of G.
The commutation graph of G is defined as a graph with the vertex-set G

in which distinct elements x; y 2 G are connected by an edge whenever they
commute, i.e., x � y D y � x. (Darafsheh, 2009, consider noncommuting graph on
G n Z.G/.)

Any two noncommuting elements x; y 2 G are connected in this graph by
the path x; c; y, where c is any element of Z.G/ (for example, e). A path x D
x1; x2; : : : ; xk D y in the commutation graph is called an .x � y/ N-path if xi …
Z.G/ for any i 2 f1; : : : ; kg. In this case the elements x; y 2 GnZ.G/ are called
N-connected.

The commutation distance (see [DeHu98]) d is an extended distance on G
defined by the following conditions:

1. d.x; x/ D 0;
2. d.x; y/ D 1 if x ¤ y, and x � y D y � x;
3. d.x; y/ is the minimum length of an .x � y/ N-path for any N-connected

elements x and y 2 GnZ.G/;
4. d.x; y/ D 1 if x; y 2 GnZ.G/ are not connected by any N-path.

Given a group G and a G-conjugacy class X in it, Bates–Bundy–Perkins–
Rowley in 2003, 2004, 2007, 2008 considered commuting graph .X; E/ whose
vertex set is X and distinct vertices x; y 2 X are joined by an edge e 2 E whenever
they commute.

• Modular distance
Let .Zm; C; 0/, m � 2, be a finite cyclic group. Let r 2 N, r � 2. The

modular r-weight wr.x/ of an element x 2 Zm D f0; 1; : : : ; mg is defined as
wr.x/ D minfwr.x/; wr.m � x/g, where wr.x/ is the arithmetic r-weight of the
integer x.

The value wr.x/ can be obtained as the number of nonzero coefficients in the
generalized nonadjacent form x D enrn C : : : e1r C e0 with ei 2 Z, jeij < r,
jei C eiC1j < r, and jeij < jeiC1j if eieiC1 < 0. Cf. arithmetic r-norm metric in
Chap. 12.

The modular distance is a distance on Zm, defined by

wr.x � y/:
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The modular distance is a metric for wr.m/ D 1, wr.m/ D 2, and for several
special cases with wr.m/ D 3 or 4. In particular, it is a metric for m D rn or
m D rn � 1; if r D 2, it is a metric also for m D 2n C 1 (see, for example,
[Ernv85]).

The most popular metric on Zm is the Lee metric defined by jjx�yjjLee, where
jjxjjLee D minfx; m � xg is the Lee norm of an element x 2 Zm.

• G-norm metric
Consider a finite field Fpn for a prime p and a natural number n. Given a

compact convex centrally-symmetric body G in R
n, define the G-norm of an

element x 2 Fpn by jjxjjG D inff� � 0 W x 2 pZn C �Gg.
The G-norm metric is a group norm metric on Fpn defined by

jjx � y�1jjG:

• Permutation norm metric
Given a finite metric space .X; d/, the permutation norm metric is a group

norm metric on the group .SymX; �; id/ of all permutations of X (id is the identity
mapping) defined by

jj f � g�1jjSym;

where the group norm jj:jjSym on SymX is given by jj f jjSym D maxx2X d.x; f .x//.
• Metric of motions

Let .X; d/ be a metric space, and let p 2 X be a fixed element of X.
The metric of motions (see [Buse55]) is a metric on the group .�; �; id/ of all

motions of .X; d/ (id is the identity mapping) defined by

sup
x2X

d. f .x/; g.x// � e�d. p;x/

for any f ; g 2 � (cf. Busemann metric of sets in Chap. 3). If the space .X; d/ is
bounded, a similar metric on � can be defined as

sup
x2X

d. f .x/; g.x//:

Given a semimetric space .X; d/, the semimetric of motions on .�; �; id/ is

d. f . p/; g. p//:

• General linear group semimetric
Let F be a locally compact nondiscrete topological field. Let .Fn; jj:jjFn/,

n � 2, be a normed vector space over F. Let jj:jj be the operator norm associated
with the normed vector space .Fn; jj:jjFn/. Let GL.n;F/ be the general linear
group over F. Then the function j:jop W GL.n;F/ ! R defined by jgjop D
supfj ln jjgjj j; j ln jjg�1jj jg, is a seminorm on GL.n;F/.
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The general linear group semimetric on the group GL.n;F/ is defined by

jg � h�1jop:

It is a right-invariant semimetric which is unique, up to coarse isometry,
since any two norms on F

n are bi-Lipschitz equivalent.
• Generalized torus semimetric

Let .T; �; e/ be a generalized torus, i.e., a topological group which is iso-
morphic to a direct product of n multiplicative groups F

�
i of locally compact

nondiscrete topological fields Fi. Then there is a proper continuous homomor-
phism v W T ! R

n, namely, v.x1; : : : ; xn/ D .v1.x1/; : : : ; vn.xn//, where
vi W F�

i ! R are proper continuous homomorphisms from the F
�
i to the additive

group R, given by the logarithm of the valuation. Every other proper continuous
homomorphism v

0 W T ! R
n is of the form v

0 D ˛ � v with ˛ 2 GL.n;R/. If jj:jj
is a norm on R

n, one obtains the corresponding seminorm jjxjjT D jjv.x/jj on T.
The generalized torus semimetric is defined on the group .T; �; e/ by

jjxy�1jjT D jjv.xy�1/jj D jjv.x/ � v.y/jj:

• Stable norm metric
Given a Riemannian manifold .M; g/, the stable norm metric is a group

norm metric on its real homology group Hk.M;R/ defined by the following
stable norm jjhjjs: the infimum of the Riemannian k-volumes of real cycles
representing h.

The Riemannian manifold .Rn; g/ is within finite Gromov–Hausdorff dis-
tance (cf. Chap. 1) from an n-dimensional normed vector space .Rn; jj:jjs/.

If .M; g/ is a compact connected oriented Riemannian manifold, then the
manifold H1.M;R/=H1.M;R/ with metric induced by jj:jjs is called the Albanese
torus (or Jacobi torus) of .M; g/. This Albanese metric is a flat metric (Chap. 8).

• Heisenberg metric
Let .H; �; e/ be the (real) Heisenberg group Hn, i.e., a group on the set H D

R
n � R

n � R with the group law h � h0 D .x; y; t/ � .x0; y0; t0/ D .x C x0; y C
y0; t C t0 C 2

Pn
iD1.x

0
iyi � xiy0

i/, and the identity e D .0; 0; 0/. Let j:jHeis be the
Heisenberg gauge (Cygan, 1978) on Hn defined by jhjHeis D j.x; y; t/jHeis D
..
Pn

iD1.x
2
i C y2

i //2 C t2/1=4.
The Heisenberg metric (or Korányi metric, Cygan metric, gauge metric)

dHeis is a group norm metric on Hn defined by

jx�1 � yjHeis:

One can identify the Heisenberg group Hn�1 D C
n�1 � R with @Hn

C
n f1g,

where Hn
C

is the Hermitian (i.e., complex) hyperbolic n-space, and 1 is any point
of its boundary @Hn

C
. So, the usual hyperbolic metric of HnC1

C
induces a metric
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on Hn. The Hamenstädt distance on @Hn
C

n f1g (Hersonsky–Paulin, 2004) is
1p
2
dHeis.
Sometimes, the term Cygan metric is reserved for the extension of the

metric dHeis on whole H
n
C

and (Apanasov, 2004) for its generalization (via the
Carnot group F

n�1 � ImF) on F-hyperbolic spaces H
n
F

over numbers F that
can be complex numbers, or quaternions or, for n D 2, octonions. Also, the
generalization of dHeis on Carnot groups of Heisenberg type is called the Cygan
metric.

The second natural metric on Hn is the Carnot–Carathéodory metric (or CC
metric, sub-Riemannian metric; cf. Chap. 7) dC defined as the length metric
(Chap. 6) using horizontal vector fields on Hn. This metric is the internal metric
(Chap. 4) corresponding to dHeis.

The metric dHeis is bi-Lipschitz equivalent with dC but not with any
Riemannian distance and, in particular, not with any Euclidean metric. For both
metrics, the Heisenberg group Hn is a fractal since its Hausdorff dimension,
2n C 2, is strictly greater than its topological dimension, 2n C 1.

• Metric between intervals
Let G be the set of all intervals Œa; b� of R. The set G forms semigroups .G; C/

and .G; �/ under addition I C J D fx C y W x 2 I; y 2 Jg and under multiplication
I � J D fx � y W x 2 I; y 2 Jg, respectively.

The metric between intervals is a metric on G, defined by

maxfjIj; jJjg

for all I; J 2 G, where, for K D Œa; b�, one has jKj D ja � bj.
• Metric between games

Consider positional games, i.e., two-player nonrandom games of perfect
information with real-valued outcomes. Play is alternating with a nonterminated
game having move options for both players. Real-world examples include
Chess, Go and Tic-Tac-Toe. Formally, let FR be the universe of games defined
inductively as follows:

1. Every real number r 2 R belongs to FR and is called an atomic game.
2. If A; B � FR with 1 � jAj; jBj < 1, then fAjBg 2 FR (nonatomic game).

Write any game G D fAjBg as fGLjGRg, where GL D A and GR D B are the set
of left and right moves of G, respectively.

FR becomes a commutative semigroup under the following addition opera-
tion:

1. If p and q are atomic games, then p C q is the usual addition in R.
2. p C fgl1 ; : : : jgr1 ; : : : g D fgl1 C p; : : : jgr1 C p; : : : g.
3. If G and H are both nonatomic, then fGLjGRg C fHLjHRg D fILjIRg, where

IL D fgl C H; G C hl W gl 2 GL; hl 2 HLg and IR D fgr C H; G C hr W gr 2
GR; hr 2 HRg.
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For any game G 2 FR, define the optimal outcomes L.G/ and R.G/ (if both
players play optimally with Left and Right starting, respectively) as follows:

L. p/ D R. p/ D p and L.G/ D maxfR.gl/ W gl 2 GLg, R.G/ D maxfL.gr/ W
gr 2 GRg.

The metric between games G and H defined by Ettinger, 2000, is the
following extended metric on FR:

sup
X

jL.G C X/ � L.H C X/j D sup
X

jR.G C X/ � R.H C X/j:

• Helly semimetric
Consider a game .A;B; H/ between players A and B with strategy sets A and

B, respectively. Here H D H.�; �/ is the payoff function, i.e., if player A plays
a 2 A and player B plays b 2 B, then A pays H(a,b) to B. A player’s strategy set
is the set of available to him pure strategies, i.e., complete algorithms for playing
the game, indicating the move for every possible situation throughout it.

The Helly semimetric between strategies a1 2 A and a2 2 A of A is defined
by

sup
b2B

jH.a1; b/ � H.a2; b/j:

• Factorial ring semimetric
Let .A; C; �/ be a factorial ring, i.e., an integral domain (nonzero commutative

ring with no nonzero zero divisors), in which every nonzero nonunit element can
be written as a product of (nonunit) irreducible elements, and such factorization
is unique up to permutation.

The factorial ring semimetric is a semimetric on the set Anf0g, defined by

ln
lcm.x; y/

gcd.x; y/
;

where lcm.x; y/ is the least common multiple, and gcd.x; y/ is the greatest
common divisor of elements x; y 2 Anf0g.

• Frankild–Sather–Wagstaff metric
Let G.R/ be the set of isomorphism classes, up to a shift, of semidualizing

complexes over a local Noetherian commutative ring R. An R-complex is
a particular sequence of R-module homomorphisms; see [FrSa07]) for exact
definitions.

The Frankild–Sather–Wagstaff metric ([FrSa07]) is a metric on G.R/

defined, for any classes ŒK�; ŒL� 2 G.R/, as the infimum of the lengths of chains
of pairwise comparable elements starting with ŒK� and ending with ŒL�.
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10.2 Metrics on Binary Relations

A binary relation R on a set X is a subset of X � X; it is the arc-set of the directed
graph .X; R/ with the vertex-set X.

A binary relation R which is symmetric (.x; y/ 2 R implies .y; x/ 2 R), reflexive
(all .x; x/ 2 R), and transitive (.x; y/; .y; z/ 2 R imply .x; z/ 2 R) is called
an equivalence relation or a partition (of X into equivalence classes). Any q-ary
sequence x D .x1; : : : ; xn/, q � 2 (i.e., with 0 � xi � q � 1 for 1 � i � n),
corresponds to the partition fB0; : : : ; Bq�1g of Vn D f1; : : : ; ng, where Bj D f1 �
i � n W xi D jg are the equivalence classes.

A binary relation R which is antisymmetric (.x; y/; .y; x/ 2 R imply x D y),
reflexive, and transitive is called a partial order, and the pair .X; R/ is called a poset
(partially ordered set). A partial order R on X is denoted also by � with x � y if
and only if .x; y/ 2 R. The order � is called linear if any elements x; y 2 X are
compatible, i.e., x � y or y � x.

A poset .L; �/ is called a lattice if every two elements x; y 2 L have the join
x _ y and the meet x ^ y. All partitions of X form a lattice PX by refinement; it is a
sublattice of the lattice (by set-inclusion) of all binary relations.

• Kemeny distance
The Kemeny distance between binary relations R1 and R2 on a set X is the

Hamming metric jR14R2j. It is twice the minimal number of inversions of pairs
of adjacent elements of X which is necessary to obtain R2 from R1.

If R1; R2 are partitions, then the Kemeny distance coincides with the Mirkin–
Tcherny distance, and 1 � jR14R2j

n.n�1/
is the Rand index.

If binary relations R1; R2 are linear orders (or permutations) on the set X, then
the Kemeny distance coincides with the Kendall � distance (Chap. 11).

• Drápal–Kepka distance
The Drápal–Kepka distance between distinct quasigroups (differing from

groups in that they need not be associative) .X; C/ and .X; �/ is the Hamming
metric jf.x; y/ W x C y ¤ x � ygj between their Cayley tables.

For finite nonisomorphic groups, this distance is (Ivanyos, Le Gall and
Yoshida, 2012) at least 2. jXj

3
/2 with equality (Drápal, 2003) for some 3-groups.

• Editing metrics between partitions
Let X be a finite set, jXj D n, and let A, B be nonempty subsets of X. Let

PX be the set of partitions of X, and P; Q 2 PX . Let P1; : : : ; Pq be blocks in the
partition P, i.e., the pairwise disjoint sets such that X D P1 [ � � � [ Pq, q � 1. Let
P _ Q and P ^ Q be the join and meet of P and Q in the lattice PX of partitions
of X.

Consider the following editing operations on partitions (clusterings):

– An augmentation transforms a partition P of AnfBg into a partition of A by
either including the objects of B in a block, or including B as a new block;

– An removal transforms a partition P of A into a partition of AnfBg by deleting
the objects in B from each block that contains them;



210 10 Distances in Algebra

– A division transforms one partition P into another by the simultaneous
removal of B from Pi (where B � Pi, B ¤ Pi), and augmentation of B as
a new block;

– A merging transforms one partition P into another by the simultaneous
removal of B from Pi (where B D Pi), and augmentation of B to Pj (where
j ¤ i);

– A transfer transforms one partition P into another by the simultaneous
removal of B from Pi (where B � Pi), and augmentation of B to Pj (where
j ¤ i).

Define (see, say, [Day81]), using above operations, the following metrics on
PX:

1. The minimum number of augmentations and removals of single objects
needed to transform P into Q;

2. The minimum number of divisions, mergings, and transfers of single objects
needed to transform P into Q;

3. The minimum number of divisions, mergings, and transfers needed to trans-
form P into Q;

4. The minimum number of divisions and mergings needed to transform P into
Q; in fact, it is equal to jPj C jQj � 2jP _ Qj;

5. �. P/ C �.Q/ � 2�. P ^ Q/, where �. P/ D P
Pi2P jPij.jPij � 1/;

6. e. P/ C e.Q/ � 2e. P ^ Q/, where e. P/ D log2 n C P
Pi2P

jPij
n log2

jPij
n ;

7. 2n�P
Pi2P maxQj2Q jPi \Qjj�P

Qj2Q maxPi2P jPi \Qjj (van Dongen, 2000).

The maximum matching distance (or partition-distance as defined in Gus-
field, 2002) is (Réignier, 1965) the minimum number of elements that must be
moved between the blocks of partition P in order to transform it into Q.

• Rossi–Hamming metric
Given a partition P D . P1; : : : ; Pq/ of a finite set X, its size is defined as

s. P/ D 1
2

P
1�i�q jPij.jPij � 1/. We call the Rossi–Hamming metric the metric

between partitions P and Q, defined in Rossi, 2014, as

dRH. P; Q/ D s. P/ C s.Q/ � 2s. P ^ Q/:

One has dRH. P; Q/ � s. P _ Q/ � s. P ^ Q/, where the right-hand side is
the size-based distance (Rossi, 2011). The inequality is strict only for some
noncomparable P; Q.

10.3 Metrics on Semilattices

Consider a poset .L; �/. The meet (or infimum) x ^ y (if it exists) of two elements
x and y is the unique element satisfying x ^ y � x; y, and z � x ^ y if z � x; y. The
join (or supremum) x _ y (if it exists) is the unique element such that x; y � x _ y,
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and x _ y � z if x; y � z. A poset .L; �/ is called a lattice if every its elements x; y
have the join x _ y and the meet x ^ y. A poset is a meet (or lower) semilattice if
only the meet-operation is defined. A poset is a join (or upper) semilattice if only
the join-operation is defined.

A lattice L D .L; �; _; ^/ is called a semimodular lattice if the modularity
relation xMy is symmetric: xMy implies yMx for any x; y 2 L. Here two elements x
and y are said to constitute a modular pair, in symbols xMy, if x^.y_z/ D .x^y/_z
for any z � x. A lattice L in which every pair of elements is modular, is called a
modular lattice.

Given a lattice L, a function v W L ! R�0, satisfying v.x _ y/ C v.x ^ y/ �
v.x/Cv.y/ for all x; y 2 L, is called a subvaluation on L. A subvaluation v is isotone
if v.x/ � v.y/ whenever x � y, and it is positive if v.x/ < v.y/ whenever x � y,
x ¤ y. A subvaluation v is called a valuation if it is isotone and v.x_y/Cv.x^y/ D
v.x/ C v.y/ for all x; y 2 L.

• Lattice valuation metric
Let L D .L; �; _; ^/ be a lattice, and let v be an isotone subvaluation on L.

The lattice subvaluation semimetric dv on L is defined by

2v.x _ y/ � v.x/ � v.y/:

(It can be defined also on some semilattices.) If v is a positive subvaluation on L,
one obtains a metric, called the lattice subvaluation metric. If v is a valuation,
dv is called the valuation semimetric and can be written as

v.x _ y/ � v.x ^ y/ D v.x/ C v.y/ � 2v.x ^ y/:

If v is a positive valuation on L, one obtains a metric, called the lattice valuation
metric, and the lattice is called a metric lattice.

An example is the Hamming distance dH.A; B/ D jA [ Bj � jA \ Bj on the
lattice . P.X/; [; \/ of all subsets of the set X. Cf. also the Shannon distance
(Chap. 14), which can be seen as a distance on partitions.

If L D N (the set of positive integers), x _ y D lcm.x; y/ (least common
multiple), x^y D gcd.x; y/ (greatest common divisor), and the positive valuation
v.x/ D ln x, then dv.x; y/ D ln lcm.x;y/

gcd.x;y/
.

This metric can be generalized on any factorial ring equipped with a positive
valuation v such that v.x/ � 0 with equality only for the multiplicative unit of
the ring, and v.xy/ D v.x/ C v.y/. Cf. factorial ring semimetric.

• Finite subgroup metric
Let .G; �; e/ be a group. Let L D .L; �; \/ be the meet semilattice of all

finite subgroups of the group .G; �; e/ with the meet X \ Y and the valuation
v.X/ D ln jXj.

The finite subgroup metric is a valuation metric on L defined by

v.X/ C v.Y/ � 2v.X ^ Y/ D ln
jXjjYj

.jX \ Yj/2
:
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• Join semilattice distances
Let L D .L; �; _/ be a join semilattice, finite or infinite, such that every

maximal chain in every interval Œx; y� is finite. For x � y, the height h.x; y/ of y
above x is the least cardinality of a finite maximal (by inclusion) chain of Œx; y�

minus 1. Call the join semilattice L semimodular if for all x; y 2 L, whenever
there exists an element z covered by both x and y, the join x _ y covers both x
and y, or, in other words, whenever elements x; y have a common lower bound
z, it holds h.x; x _ y/ � h.z; y/. Any tree (i.e., all intervals Œx; z� are finite, each
pair x; y of uncomparable elements have a least common upper bound x _ y but
they never have a common lower bound) is semimodular. Consider the following
distances on L:

dpath.x; y/ is the path metric of the Hasse diagram of .L; �/, i.e., a graph with
vertex-set L and an edge between two elements if they are comparable.

da:path.x; y/ is the smallest number of the form h.x; z/ C h.y; z/, where z is
a common upper bound of x and y, i.e., it is the ancestral path distance; cf.
pedigree-based distances in Chap. 23. This and next distance reflect the way
how Roman civil law and medieval canon law, respectively, measured degree of
kinship.

dmax.x; y/ is defined by max.h.x; x _ y/; h.y; x _ y//.
It holds da:path.x; y/ � dpath.x; y/ � dmax.x; y/. Foldes, 2013, proved that

dmax.x; y/ is a metric if L is semimodular and that da:path.x; y/ is a metric if and
only if L is semimodular, in which case da:path.x; y/ D dpath.x; y/.

• Gallery distance of flags
Let L be a lattice. A chain C in L is a subset of L which is linearly ordered, i.e.,

any two elements of C are compatible. A flag is a chain in L which is maximal
with respect to inclusion. If L is a semimodular lattice, containing a finite flag,
then L has a unique minimal and a unique maximal element, and any two flags
C, D in L have the same cardinality, n C 1. Then n is the height of the lattice L.

Two flags C, D are called adjacent if either they are equal or D contains
exactly one element not in C. A gallery from C to D of length m is a sequence
of flags C D C0; C1; : : : ; Cm D D such that Ci�1 and Ci are adjacent for
i D 1; : : : ; m.

A gallery distance of flags (see [Abel91]) is a distance on the set of all flags
of a semimodular lattice L with finite height defined as the minimum of lengths
of galleries from C to D. It can be written as

jC _ Dj � jCj D jC _ Dj � jDj;

where C _ D D fc _ d W c 2 C; d 2 Dg is the subsemilattice generated by C and
D. This distance is the gallery metric of the chamber system consisting of flags.

• Scalar and vectorial metrics
Let L D .L; �; max; min/ be a lattice with the join maxfx; yg, and the meet

minfx; yg on a set L � Œ0; 1/ which has a fixed number a as the greatest element
and is closed under negation, i.e., for any x 2 L, one has x D a � x 2 L.
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The scalar metric d on L is defined, for x ¤ y, by

d.x; y/ D maxfminfx; yg; minfx; ygg:

The scalar metric d� on L� D L [ f	g, 	 62 L, is defined, for x ¤ y, by

d�.x; y/ D
8<
:

d.x; y/; if x; y 2 L;

maxfx; xg; if y D 	; x ¤ 	;

maxfy; yg; if x D 	; y ¤ 	:

Given a norm jj:jj on R
n, n � 2, the vectorial metric on Ln is defined by

jj.d.x1; y1/; : : : ; d.xn; yn//jj;

and the vectorial metric on .L�/n is defined by

jj.d�.x1; y1/; : : : ; d�.xn; yn//jj:

The vectorial metric on Ln
2 D f0; 1gn with l1-norm on R

n is the
Fréchet–Nikodym–Aronszyan distance. The vectorial metric on Ln

m D
f0; 1

m�1
; : : : ; m�2

m�1
; 1gn with l1-norm on R

n is the Sgarro m-valued metric. The
vectorial metric on Œ0; 1�n with l1-norm on R

n is the Sgarro fuzzy metric.
If L is Lm or Œ0; 1�, and x D .x1; : : : ; xn; xnC1; : : : ; xnCr/, y D

.y1; : : : ; yn; 	; : : : ; 	/, where 	 stands in r places, then the vectorial metric
between x and y is the Sgarro metric (see, for example, [CSY01]).

• Metrics on Riesz space
A Riesz space (or vector lattice) is a partially ordered vector space .VRi; �/ in

which the following conditions hold:

1. The vector space structure and the partial order structure are compatible: x � y
implies x C z � y C z, and x 
 0, 	 2 R; 	 > 0 implies 	x 
 0;

2. For any two elements x; y 2 VRi there exists the join x _ y 2 VRi (in particular,
the join and the meet of any finite set of elements from VRi exist).

The Riesz norm metric is a norm metric on VRi defined by

jjx � yjjRi;

where jj:jjRi is a Riesz norm, i.e., a norm on VRi such that, for any x; y 2 VRi, the
inequality jxj � jyj, where jxj D .�x/ _ .x/, implies jjxjjRi � jjyjjRi.

The space .VRi; jj:jjRi/ is called a normed Riesz space. In the case of
completeness it is called a Banach lattice. All Riesz norms on a Banach lattice
are equivalent.

An element e 2 VC
Ri D fx 2 VRi W x 
 0g is called a strong unit of VRi if for

each x 2 VRi there exists 	 2 R such that jxj � 	e. If a Riesz space VRi has a



214 10 Distances in Algebra

strong unit e, then jjxjj D inff	 2 R W jxj � 	eg is a Riesz norm, and one obtains
on VRi a Riesz norm metric

inff	 2 R W jx � yj � 	eg:

A weak unit of VRi is an element e of VC
Ri such that e ^ jxj D 0 implies x D 0.

A Riesz space VRi is called Archimedean if, for any two x; y 2 VC
Ri , there exists

a natural number n, such that nx � y. The uniform metric on an Archimedean
Riesz space with a weak unit e is defined by

inff	 2 R W jx � yj ^ e � 	eg:

• Machida metric
For a fixed integer k � 2 and the set Vk D f0; 1; : : : ; k � 1g, let O.n/

k be the

set of all n-ary functions from .Vk/
n into Vk and Ok D [1

nD1O.n/
k . Let Prk be

the set of all projections prn
i over Vk, where prn

i .x1; : : : ; xi; : : : ; xn/ D xi for any
x1; : : : ; xn 2 Vk.

A clone over Vk is a subset C of Ok containing Prk and closed under
(functional) composition. The set Lk of all clones over Vk is a lattice. The Post
lattice L2 defined over Boolean functions, is countable but any Lk with k � 3 is
not. For n � 1 and a clone C 2 Lk, let C.n/ denote n-slice C \ O.n/

k .
For any two clones C1; C2 2 Lk, Machida, 1998, defined the distance to be 0 if

C1 D C2 and .minfn W C.n/
1 ¤ C.n/

2 g/�1, otherwise. The lattice Lk of clones with
this distance is a compact ultrametric space. Cf. Baire metric in Chap. 11.
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