Chapter 10 Distances in Algebra

10.1 Group Metrics

A group (G, \cdot, e) is a set *G* of elements with a binary operation \cdot , called the group *operation*, that together satisfy the four fundamental properties of *closure* $(x \cdot y \in G)$ for any $x, y \in G$, *associativity* $(x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for any $x, y, z \in G$), the *identity property* $(x \cdot e = e \cdot x = x$ for any $x \in G$, and the *inverse property* (for any $x \in G$, there exists an element $x^{-1} \in G$ such that $x \cdot x^{-1} = x^{-1} \cdot x = e$).

In additive notation, a group (G, +, 0) is a set *G* with a binary operation + such that the following properties hold: $x+y \in G$ for any $x, y \in G, x+(y+z) = (x+y)+z$ for any $x, y, z \in G, x+0 = 0 + x = x$ for any $x \in G$, and, for any $x \in G$, there exists an element $-x \in G$ such that x + (-x) = (-x) + x = 0.

A group (G, \cdot, e) is called *finite* if the set G is finite. A group (G, \cdot, e) is called *Abelian* if it is *commutative*, i.e., $x \cdot y = y \cdot x$ for any $x, y \in G$.

Most metrics considered in this section are group norm metrics on a group (G, \cdot, e) , defined by

 $||x \cdot y^{-1}||$

(or, sometimes, by $||y^{-1} \cdot x||$), where ||.|| is a *group norm*, i.e., a function $||.|| : G \to \mathbb{R}$ such that, for any $x, y \in G$, we have the following properties:

- 1. $||x|| \ge 0$, with ||x|| = 0 if and only if x = e;
- 2. $||x|| = ||x^{-1}||;$
- 3. $||x \cdot y|| \le ||x|| + ||y||$ (triangle inequality).

In additive notation, a group norm metric on a group (G, +, 0) is defined by ||x + (-y)|| = ||x - y||, or, sometimes, by ||(-y) + x||.

The simplest example of a group norm metric is the **bi-invariant ultrametric** (sometimes called the *Hamming metric*) $||x \cdot y^{-1}||_{H}$, where $||x||_{H} = 1$ for $x \neq e$, and $||e||_{H} = 0$.

© Springer-Verlag Berlin Heidelberg 2016 M.M. Deza, E. Deza, *Encyclopedia of Distances*, DOI 10.1007/978-3-662-52844-0_10

Bi-invariant metric

A metric (in general, a semimetric) d on a group (G, \cdot, e) is called **bi-invariant** if

$$d(x, y) = d(x \cdot z, y \cdot z) = d(z \cdot x, z \cdot y)$$

for any $x, y, z \in G$ (cf. translation invariant metric in Chap. 5). Any group norm metric on an Abelian group is bi-invariant.

A metric (in general, a semimetric) d on a group (G, \cdot, e) is called a **rightinvariant metric** if $d(x, y) = d(x \cdot z, y \cdot z)$ for any $x, y, z \in G$, i.e., the operation of right multiplication by an element z is a **motion** of the metric space (G, d). Any group norm metric defined by $||x \cdot y^{-1}||$, is right-invariant.

A metric (in general, a semimetric) d on a group (G, \cdot, e) is called a leftinvariant metric if $d(x, y) = d(z \cdot x, z \cdot y)$ holds for any $x, y, z \in G$, i.e., the operation of left multiplication by an element z is a motion of the metric space (G, d). Any group norm metric defined by $||y^{-1} \cdot x||$, is left-invariant.

Any right-invariant or left-invariant (in particular, bi-invariant) metric d on G is a group norm metric, since one can define a group norm on G by ||x|| = d(x, 0).

• G-invariant metric

Given a metric space (X, d) and an action g(x) of a group G on it, the metric d is called G-invariant (under this action) if for all $x, y \in X, g \in G$ it holds

$$d(g(x), g(y)) = d(x, y).$$

For every G-invariant metric d_X on X and every point $x \in X$, the function

$$d_G(g_1, g_2) = d_X(g_1(x), g_2(x))$$

is a left-invariant metric on G. This metric is called orbit metric in [BBI01], since it is the restriction of d on the orbit Gx, which can be identified with G.

Positively homogeneous distance

A distance d on an Abelian group (G, +, 0) is called **positively homogeneous** if

$$d(mx, my) = md(x, y)$$

for all $x, y \in G$ and all $m \in \mathbb{N}$, where mx is the sum of m terms all equal to x. Translation discrete metric

A group norm metric (in general, a group norm semimetric) on a group (G, \cdot, e) is called **translation discrete** if the *translation distances* (or *translation* numbers)

$$\tau_G(x) = \lim_{n \to \infty} \frac{||x^n||}{n}$$

of the *nontorsion elements* x (i.e., such that $x^n \neq e$ for any $n \in \mathbb{N}$) of the group with respect to that metric are bounded away from zero.

If the numbers $\tau_G(x)$ are just nonzero, such a group norm metric is called a **translation proper metric**.

• Word metric

Let (G, \cdot, e) be a finitely-generated group with a set A of generators (i.e., A is finite, and every element of G can be expressed as a product of finitely many elements A and their inverses). The *word length* $w_W^A(x)$ of an element $x \in G \setminus \{e\}$ is defined by

$$w_{W}^{A}(x) = \inf\{r : x = a_{1}^{\epsilon_{1}} \dots a_{r}^{\epsilon_{r}}, a_{i} \in A, \epsilon_{i} \in \{\pm 1\}\} \text{ and } w_{W}^{A}(e) = 0.$$

The word metric d_W^A associated with A is a group norm metric on G defined by

$$w^A_W(x \cdot y^{-1}).$$

As the word length w_W^A is a group norm on G, d_W^A is **right-invariant**. Sometimes it is defined as $w_W^A(y^{-1} \cdot x)$, and then it is **left-invariant**. In fact, d_W^A is the maximal metric on G that is right-invariant, and such that the distance from any element of A or A^{-1} to the identity element e is equal to one.

If A and B are two finite sets of generators of the group (G, \cdot, e) , then the identity mapping between the metric spaces (G, d_W^A) and (G, d_W^B) is a **quasi-isometry**, i.e., the word metric is unique up to quasi-isometry.

The word metric is the **path metric** of the *Cayley graph* Γ of (G, \cdot, e) , constructed with respect to *A*. Namely, Γ is a graph with the vertex-set *G* in which two vertices *x* and *y* \in *G* are connected by an edge if and only if *y* = $a^{\epsilon}x$, $\epsilon = \pm 1, a \in A$.

• Weighted word metric

Let (G, \cdot, e) be a finitely-generated group with a set *A* of generators. Given a bounded *weight function* $w : A \to (0, \infty)$, the *weighted word length* $w^A_{WW}(x)$ of an element $x \in G \setminus \{e\}$ is defined by $w^A_{WW}(e) = 0$ and

$$w_{WW}^A(x) = \inf\left\{\sum_{i=1}^t w(a_i), t \in \mathbb{N} : x = a_1^{\epsilon_1} \dots a_t^{\epsilon_t}, a_i \in A, \epsilon_i \in \{\pm 1\}\right\}.$$

The weighted word metric d_{WW}^A associated with A is a group norm metric on G defined by

$$w^A_{WW}(x \cdot y^{-1}).$$

As the weighted word length w_{WW}^A is a *group norm* on G, d_{WW}^A is **right-invariant**. Sometimes it is defined as $w_{WW}^A(y^{-1} \cdot x)$, and then it is **left-invariant**. The metric d_{WW}^A is the supremum of semimetrics d on G with the property that $d(e, a) \le w(a)$ for any $a \in A$.

The metric d_{WW}^A is a **coarse-path metric**, and every right-invariant coarse path metric is a weighted word metric up to **coarse isometry**.

The metric d_{WW}^A is the **path metric** of the *weighted Cayley graph* Γ_W of (G, \cdot, e) constructed with respect to *A*. Namely, Γ_W is a weighted graph with the vertex-set *G* in which two vertices *x* and $y \in G$ are connected by an edge with the weight w(a) if and only if $y = a^{\epsilon}x$, $\epsilon = \pm 1$, $a \in A$.

• Interval norm metric

An interval norm metric is a group norm metric on a finite group (G, \cdot, e) defined by

$$||x \cdot y^{-1}||_{int},$$

where $||.||_{int}$ is an *interval norm* on *G*, i.e., a *group norm* such that the values of $||.||_{int}$ form a set of consecutive integers starting with 0.

To each interval norm $||.||_{int}$ corresponds an ordered *partition* $\{B_0, \ldots, B_m\}$ of G with $B_i = \{x \in G : ||x||_{int} = i\}$; cf. **Sharma–Kaushik distance** in Chap. 16. The *Hamming* and *Lee* norms are special cases of interval norm. A *generalized Lee norm* is an interval norm for which each class has a form $B_i = \{a, a^{-1}\}$.

• C-metric

A *C*-metric *d* is a metric on a group (G, \cdot, e) satisfying the following conditions:

- 1. The values of d form a set of consecutive integers starting with 0;
- 2. The cardinality of the sphere $B(x, r) = \{y \in G : d(x, y) = r\}$ is independent of the particular choice of $x \in G$.

The word metric, the Hamming metric, and the Lee metric are *C*-metrics. Any interval norm metric is a *C*-metric.

• Order norm metric

Let (G, \cdot, e) be a finite Abelian group. Let ord(x) be the *order* of an element $x \in G$, i.e., the smallest positive integer *n* such that $x^n = e$. Then the function $||.||_{ord} : G \to \mathbb{R}$ defined by $||x||_{ord} = \ln ord(x)$, is a *group norm* on *G*, called the *order norm*.

The order norm metric is a group norm metric on G, defined by

$$||x \cdot y^{-1}||_{ord}$$
.

Tărnăuceanu metric

Let o(a) denote the order of the element *a* of a group. Let *C* be the class of finite groups *G* in which o(ab) < o(a) + o(b) for every $a, b \in G$. Tărnăuceanu,

2015, noted that the function $d: G \times G \to \mathbb{N}$ defined by

$$d(x, y) = o(xy^{-1}) - 1$$

for all $x, y \in G$ is a metric on G if and only if $G \in C$.

He found that *C* contains all Abelian *p*-groups, Q_8 , and A_4 , but not nonabelian finite simple groups, alternating groups A(n) with $n \ge 5$, and, for $n \ge 4$, Sym(n), quaternion groups Q_{2^n} , dihedral groups D_{2n} . *C* is closed under subgroups, but not under direct products or extensions. The centralizers of nontrivial elements of such groups contain only elements of prime power order.

Monomorphism norm metric

Let (G, +, 0) be a group. Let (H, \cdot, e) be a group with a group norm $||.||_H$. Let $f: G \to H$ be a monomorphism of groups G and H, i.e., an injective function such that $f(x+y) = f(x) \cdot f(y)$ for any $x, y \in G$. Then the function $||.||_G^f: G \to \mathbb{R}$ defined by $||x||_G^f = ||f(x)||_H$, is a group norm on G, called the monomorphism norm.

The monomorphism norm metric is a group norm metric on G defined by

$$||x-y||_G^f$$

• Product norm metric

Let (G, +, 0) be a group with a group norm $||.||_G$. Let (H, \cdot, e) be a group with a group norm $||.||_H$. Let $G \times H = \{\alpha = (x, y) : x \in G, y \in H\}$ be the Cartesian product of *G* and *H*, and $(x, y) \cdot (z, t) = (x + z, y \cdot t)$.

Then the function $||.||_{G \times H} : G \times H \to \mathbb{R}$ defined by $||\alpha||_{G \times H} = ||(x, y)||_{G \times H} = ||x||_G + ||y||_H$, is a group norm on $G \times H$, called the *product norm*.

The product norm metric is a group norm metric on $G \times H$ defined by

$$||\alpha \cdot \beta^{-1}||_{G \times F}.$$

On the Cartesian product $G \times H$ of two finite groups with the *interval norms* $||.||_{G}^{int}$ and $||.||_{H}^{int}$, an interval norm $||.||_{G\times H}^{int}$ can be defined. In fact, $||\alpha||_{G\times H}^{int} = ||(x, y)||_{G\times H}^{int} = ||x||_{G} + (m+1)||y||_{H}$, where $m = \max_{a \in G} ||a||_{G}^{int}$.

Quotient norm metric

Let (G, \cdot, e) be a group with a group norm $||.||_G$. Let (N, \cdot, e) be a normal subgroup of (G, \cdot, e) , i.e., xN = Nx for any $x \in G$. Let $(G/N, \cdot, eN)$ be the quotient group of G, i.e., $G/N = \{xN : x \in G\}$ with $xN = \{x \cdot a : a \in N\}$, and $xN \cdot yN = xyN$. Then the function $||.||_{G/N} : G/N \to \mathbb{R}$ defined by $||xN||_{G/N} = \min_{a \in N} ||xa||_X$, is a group norm on G/N, called the quotient norm.

A quotient norm metric is a group norm metric on G/N defined by

$$||xN \cdot (yN)^{-1}||_{G/N} = ||xy^{-1}N||_{G/N}.$$

If $G = \mathbb{Z}$ with the norm being the absolute value, and $N = m\mathbb{Z}$, $m \in \mathbb{N}$, then the quotient norm on $\mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$ coincides with the *Lee norm*.

If a metric d on a group (G, \cdot, e) is **right-invariant**, then for any normal subgroup (N, \cdot, e) of (G, \cdot, e) the metric d induces a right-invariant metric (in fact, the **Hausdorff metric**) d^* on G/N by

$$d^*(xN, yN) = \max\{\max_{b \in yN} \min_{a \in xN} d(a, b), \max_{a \in xN} \min_{b \in yN} d(a, b)\}.$$

Commutation distance

Let (G, \cdot, e) be a finite nonabelian group. Let $Z(G) = \{c \in G : x \cdot c = c \cdot x \text{ for any } x \in G\}$ be the *center* of *G*.

The *commutation graph* of *G* is defined as a graph with the vertex-set *G* in which distinct elements $x, y \in G$ are connected by an edge whenever they *commute*, i.e., $x \cdot y = y \cdot x$. (Darafsheh, 2009, consider noncommuting graph on $G \setminus Z(G)$.)

Any two noncommuting elements $x, y \in G$ are connected in this graph by the path x, c, y, where c is any element of Z(G) (for example, e). A path $x = x^1, x^2, \ldots, x^k = y$ in the commutation graph is called an (x - y) *N*-path if $x^i \notin Z(G)$ for any $i \in \{1, \ldots, k\}$. In this case the elements $x, y \in G \setminus Z(G)$ are called *N*-connected.

The **commutation distance** (see [DeHu98]) d is an extended distance on G defined by the following conditions:

- 1. d(x, x) = 0;
- 2. d(x, y) = 1 if $x \neq y$, and $x \cdot y = y \cdot x$;
- 3. d(x, y) is the minimum length of an (x y) *N*-path for any *N*-connected elements *x* and $y \in G \setminus Z(G)$;
- 4. $d(x, y) = \infty$ if $x, y \in G \setminus Z(G)$ are not connected by any *N*-path.

Given a group *G* and a *G*-conjugacy class *X* in it, Bates–Bundy–Perkins– Rowley in 2003, 2004, 2007, 2008 considered *commuting graph* (*X*, *E*) whose vertex set is *X* and distinct vertices $x, y \in X$ are joined by an edge $e \in E$ whenever they commute.

Modular distance

Let $(\mathbb{Z}_m, +, 0)$, $m \ge 2$, be a finite cyclic group. Let $r \in \mathbb{N}$, $r \ge 2$. The modular *r*-weight $w_r(x)$ of an element $x \in \mathbb{Z}_m = \{0, 1, ..., m\}$ is defined as $w_r(x) = \min\{w_r(x), w_r(m-x)\}$, where $w_r(x)$ is the arithmetic *r*-weight of the integer *x*.

The value $w_r(x)$ can be obtained as the number of nonzero coefficients in the *generalized nonadjacent form* $x = e_n r^n + ... e_1 r + e_0$ with $e_i \in \mathbb{Z}$, $|e_i| < r$, $|e_i + e_{i+1}| < r$, and $|e_i| < |e_{i+1}|$ if $e_i e_{i+1} < 0$. Cf. **arithmetic** *r***-norm metric** in Chap. 12.

The **modular distance** is a distance on \mathbb{Z}_m , defined by

$$w_r(x-y)$$

The modular distance is a metric for $w_r(m) = 1$, $w_r(m) = 2$, and for several special cases with $w_r(m) = 3$ or 4. In particular, it is a metric for $m = r^n$ or $m = r^n - 1$; if r = 2, it is a metric also for $m = 2^n + 1$ (see, for example, [Ernv85]).

The most popular metric on \mathbb{Z}_m is the **Lee metric** defined by $||x-y||_{Lee}$, where $||x||_{Lee} = \min\{x, m-x\}$ is the *Lee norm* of an element $x \in \mathbb{Z}_m$.

• G-norm metric

Consider a finite field \mathbb{F}_{p^n} for a prime p and a natural number n. Given a compact convex centrally-symmetric body G in \mathbb{R}^n , define the *G*-norm of an element $x \in \mathbb{F}_{p^n}$ by $||x||_G = \inf\{\mu \ge 0 : x \in p\mathbb{Z}^n + \mu G\}$.

The *G*-norm metric is a group norm metric on \mathbb{F}_{p^n} defined by

$$||x \cdot y^{-1}||_G.$$

• Permutation norm metric

Given a finite metric space (X, d), the **permutation norm metric** is a **group norm metric** on the group (Sym_X, \cdot, id) of all permutations of *X* (*id* is the *identity mapping*) defined by

$$||f \cdot g^{-1}||_{Sym},$$

where the *group norm* $||.||_{Sym}$ on Sym_X is given by $||f||_{Sym} = \max_{x \in X} d(x, f(x))$. • Metric of motions

Let (X, d) be a metric space, and let $p \in X$ be a fixed element of X.

The **metric of motions** (see [Buse55]) is a metric on the group (Ω, \cdot, id) of all **motions** of (X, d) (*id* is the *identity mapping*) defined by

$$\sup_{x \in X} d(f(x), g(x)) \cdot e^{-d(p,x)}$$

for any $f, g \in \Omega$ (cf. **Busemann metric of sets** in Chap. 3). If the space (X, d) is bounded, a similar metric on Ω can be defined as

$$\sup_{x\in X} d(f(x), g(x)).$$

Given a semimetric space (X, d), the **semimetric of motions** on (Ω, \cdot, id) is

• General linear group semimetric

Let \mathbb{F} be a locally compact nondiscrete *topological field*. Let $(\mathbb{F}^n, ||.||_{\mathbb{F}^n})$, $n \ge 2$, be a *normed vector space* over \mathbb{F} . Let ||.|| be the *operator norm* associated with the normed vector space $(\mathbb{F}^n, ||.||_{\mathbb{F}^n})$. Let $GL(n, \mathbb{F})$ be the *general linear* group over \mathbb{F} . Then the function $|.|_{op} : GL(n, \mathbb{F}) \to \mathbb{R}$ defined by $|g|_{op} = \sup\{|\ln||g||, |\ln||g^{-1}|||\}$, is a seminorm on $GL(n, \mathbb{F})$.

The general linear group semimetric on the group $GL(n, \mathbb{F})$ is defined by

$$|g \cdot h^{-1}|_{op}$$

It is a **right-invariant** semimetric which is unique, up to **coarse isometry**, since any two norms on \mathbb{F}^n are **bi-Lipschitz equivalent**.

Generalized torus semimetric

Let (T, \cdot, e) be a generalized torus, i.e., a topological group which is isomorphic to a direct product of *n* multiplicative groups \mathbb{F}_i^* of locally compact nondiscrete topological fields \mathbb{F}_i . Then there is a proper continuous homomorphism $v : T \to \mathbb{R}^n$, namely, $v(x_1, \ldots, x_n) = (v_1(x_1), \ldots, v_n(x_n))$, where $v_i: \mathbb{F}_i^* \to \mathbb{R}$ are proper continuous homomorphisms from the \mathbb{F}_i^* to the additive group \mathbb{R} , given by the logarithm of the *valuation*. Every other proper continuous homomorphism $v': T \to \mathbb{R}^n$ is of the form $v' = \alpha \cdot v$ with $\alpha \in GL(n, \mathbb{R})$. If ||.||is a norm on \mathbb{R}^n , one obtains the corresponding seminorm $||x||_T = ||v(x)||$ on T.

The generalized torus semimetric is defined on the group (T, \cdot, e) by

$$||xy^{-1}||_{T} = ||v(xy^{-1})|| = ||v(x) - v(y)||.$$

• Stable norm metric

Given a Riemannian manifold (M, g), the stable norm metric is a group **norm metric** on its *real homology group* $H_k(M, \mathbb{R})$ defined by the following stable norm $||h||_{s}$: the infimum of the Riemannian k-volumes of real cycles representing h.

The Riemannian manifold (\mathbb{R}^n, g) is within finite **Gromov–Hausdorff dis**tance (cf. Chap. 1) from an *n*-dimensional normed vector space $(\mathbb{R}^n, ||.||_s)$.

If (M, g) is a compact connected oriented Riemannian manifold, then the manifold $H_1(M,\mathbb{R})/H_1(M,\mathbb{R})$ with metric induced by $||.||_s$ is called the Albanese torus (or Jacobi torus) of (M, g). This Albanese metric is a flat metric (Chap. 8).

Heisenberg metric

Let (H, \cdot, e) be the (real) Heisenberg group \mathcal{H}^n , i.e., a group on the set H = $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ with the group law $h \cdot h' = (x, y, t) \cdot (x', y', t') = (x + x', y + t)$ $y', t + t' + 2\sum_{i=1}^{n} (x'_{i}y_{i} - x_{i}y'_{i})$, and the identity e = (0, 0, 0). Let $|.|_{Heis}$ be the Heisenberg gauge (Cygan, 1978) on \mathcal{H}^n defined by $|h|_{Heis} = |(x, y, t)|_{Heis} =$ $\left(\left(\sum_{i=1}^{n} (x_i^2 + y_i^2)\right)^2 + t^2\right)^{1/4}$.

The Heisenberg metric (or Korányi metric, Cygan metric, gauge metric) d_{Heis} is a group norm metric on \mathcal{H}^n defined by

$$|x^{-1} \cdot y|_{Heis}$$
.

One can identify the Heisenberg group $\mathcal{H}^{n-1} = \mathbb{C}^{n-1} \times \mathbb{R}$ with $\partial \mathbb{H}^n_{\mathbb{C}} \setminus \{\infty\}$, where $\mathbb{H}^n_{\mathbb{C}}$ is the Hermitian (i.e., complex) hyperbolic *n*-space, and ∞ is any point of its boundary $\partial \mathbb{H}^n_{\mathbb{C}}$. So, the usual hyperbolic metric of $\mathbb{H}^{n+1}_{\mathbb{C}}$ induces a metric on \mathcal{H}^n . The **Hamenstädt distance** on $\partial \mathbb{H}^n_{\mathbb{C}} \setminus \{\infty\}$ (Hersonsky–Paulin, 2004) is $\frac{1}{\sqrt{2}}d_{Heis}$.

Sometimes, the term *Cygan metric* is reserved for the extension of the metric d_{Heis} on whole $\mathbb{H}^n_{\mathbb{C}}$ and (Apanasov, 2004) for its generalization (via the *Carnot group* $\mathbb{F}^{n-1} \times Im\mathbb{F}$) on \mathbb{F} -hyperbolic spaces $\mathbb{H}^n_{\mathbb{F}}$ over numbers \mathbb{F} that can be complex numbers, or quaternions or, for n = 2, octonions. Also, the generalization of d_{Heis} on Carnot groups of Heisenberg type is called the *Cygan metric*.

The second natural metric on \mathcal{H}^n is the **Carnot–Carathéodory metric** (or **CC metric**, **sub-Riemannian metric**; cf. Chap. 7) d_C defined as the **length metric** (Chap. 6) using *horizontal vector fields* on \mathcal{H}^n . This metric is the **internal metric** (Chap. 4) corresponding to d_{Heis} .

The metric d_{Heis} is **bi-Lipschitz equivalent** with d_C but not with any Riemannian distance and, in particular, not with any Euclidean metric. For both metrics, the Heisenberg group \mathcal{H}^n is a **fractal** since its **Hausdorff dimension**, 2n + 2, is strictly greater than its **topological dimension**, 2n + 1.

• Metric between intervals

Let *G* be the set of all intervals [a, b] of \mathbb{R} . The set *G* forms semigroups (G, +) and (G, \cdot) under addition $I + J = \{x + y : x \in I, y \in J\}$ and under multiplication $I \cdot J = \{x \cdot y : x \in I, y \in J\}$, respectively.

The metric between intervals is a metric on G, defined by

$$\max\{|I|, |J|\}$$

for all $I, J \in G$, where, for K = [a, b], one has |K| = |a - b|.

• Metric between games

Consider *positional games*, i.e., two-player nonrandom games of perfect information with real-valued outcomes. Play is alternating with a nonterminated game having move options for both players. Real-world examples include Chess, Go and Tic-Tac-Toe. Formally, let $F_{\mathbb{R}}$ be the universe of games defined inductively as follows:

- 1. Every real number $r \in \mathbb{R}$ belongs to $F_{\mathbb{R}}$ and is called an *atomic game*.
- 2. If $A, B \subset F_{\mathbb{R}}$ with $1 \leq |A|, |B| < \infty$, then $\{A|B\} \in F_{\mathbb{R}}$ (nonatomic game).

Write any game $G = \{A|B\}$ as $\{G^L|G^R\}$, where $G^L = A$ and $G^R = B$ are the set of left and right moves of *G*, respectively.

 $F_{\mathbb{R}}$ becomes a commutative semigroup under the following addition operation:

- 1. If p and q are atomic games, then p + q is the usual addition in \mathbb{R} .
- 2. $p + \{g_{l_1}, \dots, |g_{r_1}, \dots\} = \{g_{l_1} + p, \dots, |g_{r_1} + p, \dots\}.$
- 3. If *G* and *H* are both nonatomic, then $\{G^{L}|G^{R}\} + \{H^{L}|H^{R}\} = \{I^{L}|I^{R}\}$, where $I^{L} = \{g_{l} + H, G + h_{l} : g_{l} \in G^{L}, h_{l} \in H^{L}\}$ and $I^{R} = \{g_{r} + H, G + h_{r} : g_{r} \in G^{R}, h_{r} \in H^{R}\}$.

For any game $G \in F_{\mathbb{R}}$, define the optimal outcomes $\overline{L}(G)$ and $\overline{R}(G)$ (if both players play optimally with Left and Right starting, respectively) as follows:

 $\overline{L}(p) = \overline{R}(p) = p \text{ and } \overline{L}(G) = \max\{\overline{R}(g_l) : g_l \in G^L\}, \overline{R}(G) = \max\{\overline{L}(g_r) : g_r \in G^R\}.$

The metric between games G and H defined by Ettinger, 2000, is the following extended metric on $F_{\mathbb{R}}$:

$$\sup_{X} |\overline{L}(G+X) - \overline{L}(H+X)| = \sup_{X} |\overline{R}(G+X) - \overline{R}(H+X)|.$$

• Helly semimetric

Consider a game $(\mathcal{A}, \mathcal{B}, H)$ between players A and B with *strategy sets* \mathcal{A} and \mathcal{B} , respectively. Here $H = H(\cdot, \cdot)$ is the *payoff function*, i.e., if player A plays $a \in \mathcal{A}$ and player B plays $b \in \mathcal{B}$, then A pays H(a,b) to B. A player's *strategy set* is the set of available to him *pure strategies*, i.e., complete algorithms for playing the game, indicating the move for every possible situation throughout it.

The **Helly semimetric** between strategies $a_1 \in A$ and $a_2 \in A$ of A is defined by

$$\sup_{b\in\mathcal{B}}|H(a_1,b)-H(a_2,b)|.$$

Factorial ring semimetric

Let $(A, +, \cdot)$ be a *factorial ring*, i.e., an *integral domain* (nonzero commutative ring with no nonzero zero divisors), in which every nonzero nonunit element can be written as a product of (nonunit) irreducible elements, and such factorization is unique up to permutation.

The factorial ring semimetric is a semimetric on the set $A \setminus \{0\}$, defined by

$$\ln \frac{lcm(x,y)}{gcd(x,y)},$$

where lcm(x, y) is the *least common multiple*, and gcd(x, y) is the *greatest common divisor* of elements $x, y \in A \setminus \{0\}$.

Frankild–Sather–Wagstaff metric

Let $\mathcal{G}(R)$ be the set of isomorphism classes, up to a shift, of semidualizing complexes over a local Noetherian commutative ring *R*. An *R*-complex is a particular sequence of *R*-module homomorphisms; see [FrSa07]) for exact definitions.

The **Frankild–Sather–Wagstaff metric** ([FrSa07]) is a metric on $\mathcal{G}(R)$ defined, for any classes $[K], [L] \in \mathcal{G}(R)$, as the infimum of the *lengths* of chains of pairwise comparable elements starting with [K] and ending with [L].

10.2 Metrics on Binary Relations

A *binary relation* R on a set X is a subset of $X \times X$; it is the arc-set of the directed graph (X, R) with the vertex-set X.

A binary relation *R* which is *symmetric* $((x, y) \in R$ implies $(y, x) \in R$), *reflexive* (all $(x, x) \in R$), and *transitive* $((x, y), (y, z) \in R$ imply $(x, z) \in R$) is called an *equivalence relation* or a *partition* (of *X* into equivalence classes). Any *q*-ary sequence $x = (x_1, ..., x_n), q \ge 2$ (i.e., with $0 \le x_i \le q - 1$ for $1 \le i \le n$), corresponds to the partition $\{B_0, ..., B_{q-1}\}$ of $V_n = \{1, ..., n\}$, where $B_j = \{1 \le i \le n : x_i = j\}$ are the equivalence classes.

A binary relation *R* which is *antisymmetric* $((x, y), (y, x) \in R \text{ imply } x = y)$, reflexive, and transitive is called a *partial order*, and the pair (X, R) is called a *poset* (partially ordered set). A partial order *R* on *X* is denoted also by \leq with $x \leq y$ if and only if $(x, y) \in R$. The order \leq is called *linear* if any elements $x, y \in X$ are *compatible*, i.e., $x \leq y$ or $y \leq x$.

A poset (L, \leq) is called a *lattice* if every two elements $x, y \in L$ have the *join* $x \lor y$ and the *meet* $x \land y$. All partitions of X form a lattice \mathbb{P}_X by refinement; it is a sublattice of the lattice (by set-inclusion) of all binary relations.

Kemeny distance

The **Kemeny distance** between binary relations R_1 and R_2 on a set X is the **Hamming metric** $|R_1 \triangle R_2|$. It is twice the minimal number of inversions of pairs of adjacent elements of X which is necessary to obtain R_2 from R_1 .

If R_1 , R_2 are *partitions*, then the Kemeny distance coincides with the **Mirkin– Tcherny distance**, and $1 - \frac{|R_1 \Delta R_2|}{n(n-1)}$ is the *Rand index*. If binary relations R_1 , R_2 are *linear orders* (or *permutations*) on the set *X*, then

If binary relations R_1 , R_2 are *linear orders* (or *permutations*) on the set X, then the Kemeny distance coincides with the **Kendall** τ **distance** (Chap. 11).

Drápal–Kepka distance

The **Drápal–Kepka distance** between distinct *quasigroups* (differing from groups in that they need not be associative) (X, +) and (X, \cdot) is the **Hamming metric** $|\{(x, y) : x + y \neq x \cdot y\}|$ between their *Cayley tables*.

For finite nonisomorphic groups, this distance is (Ivanyos, Le Gall and Yoshida, 2012) at least $2(\frac{|X|}{3})^2$ with equality (Drápal, 2003) for some 3-groups.

Editing metrics between partitions

Let *X* be a finite set, |X| = n, and let *A*, *B* be nonempty subsets of *X*. Let \mathcal{P}_X be the set of partitions of *X*, and $P, Q \in \mathcal{P}_X$. Let P_1, \ldots, P_q be *blocks* in the partition *P*, i.e., the pairwise disjoint sets such that $X = P_1 \cup \cdots \cup P_q, q \ge 1$. Let $P \lor Q$ and $P \land Q$ be the *join* and *meet* of *P* and *Q* in the *lattice* \mathbb{P}_X of partitions of *X*.

Consider the following editing operations on partitions (clusterings):

- An *augmentation* transforms a partition P of $A \setminus \{B\}$ into a partition of A by either including the objects of B in a block, or including B as a new block;
- An *removal* transforms a partition P of A into a partition of $A \setminus \{B\}$ by deleting the objects in B from each block that contains them;

- A *division* transforms one partition P into another by the simultaneous removal of B from P_i (where $B \subset P_i, B \neq P_i$), and augmentation of B as a new block:
- A merging transforms one partition P into another by the simultaneous removal of B from P_i (where $B = P_i$), and augmentation of B to P_i (where $i \neq i$;
- A transfer transforms one partition P into another by the simultaneous removal of B from P_i (where $B \subset P_i$), and augmentation of B to P_i (where $j \neq i$).

Define (see, say, [Day81]), using above operations, the following metrics on \mathcal{P}_X :

- 1. The minimum number of augmentations and removals of single objects needed to transform P into Q;
- 2. The minimum number of divisions, mergings, and transfers of single objects needed to transform P into Q;
- 3. The minimum number of divisions, mergings, and transfers needed to transform *P* into *Q*;
- 4. The minimum number of divisions and mergings needed to transform P into Q; in fact, it is equal to $|P| + |Q| - 2|P \vee Q|$;
- 5. $\sigma(P) + \sigma(Q) 2\sigma(P \wedge Q)$, where $\sigma(P) = \sum_{P \in P} |P_i|(|P_i| 1);$
- 6. $e(P) + e(Q) 2e(P \land Q)$, where $e(P) = \log_2 n + \sum_{P_i \in P} \frac{|P_i|}{n} \log_2 \frac{|P_i|}{n}$; 7. $2n \sum_{P_i \in P} \max_{Q_j \in Q} |P_i \cap Q_j| \sum_{Q_j \in Q} \max_{P_i \in P} |P_i \cap Q_j|$ (van Dongen, 2000).

The maximum matching distance (or partition-distance as defined in Gusfield, 2002) is (Réignier, 1965) the minimum number of elements that must be moved between the blocks of partition P in order to transform it into Q.

٠ **Rossi–Hamming metric**

Given a partition $P = (P_1, \ldots, P_q)$ of a finite set X, its size is defined as $s(P) = \frac{1}{2} \sum_{1 \le i \le q} |P_i| (|P_i| - 1)$. We call the **Rossi-Hamming metric** the metric between partitions P and Q, defined in Rossi, 2014, as

$$d_{RH}(P,Q) = s(P) + s(Q) - 2s(P \wedge Q).$$

One has $d_{RH}(P,Q) \leq s(P \vee Q) - s(P \wedge Q)$, where the right-hand side is the size-based distance (Rossi, 2011). The inequality is strict only for some noncomparable P, Q.

Metrics on Semilattices 10.3

Consider a poset (L, \leq) . The *meet* (or *infimum*) $x \wedge y$ (if it exists) of two elements x and y is the unique element satisfying $x \wedge y \leq x$, y, and $z \leq x \wedge y$ if $z \leq x$, y. The *join* (or *supremum*) $x \lor y$ (if it exists) is the unique element such that $x, y \preceq x \lor y$,

and $x \lor y \le z$ if $x, y \le z$. A poset (L, \le) is called a *lattice* if every its elements x, y have the join $x \lor y$ and the meet $x \land y$. A poset is a *meet* (or *lower*) *semilattice* if only the meet-operation is defined. A poset is a *join* (or *upper*) *semilattice* if only the join-operation is defined.

A lattice $\mathbb{L} = (L, \leq, \lor, \land)$ is called a *semimodular lattice* if the *modularity relation xMy* is symmetric: *xMy* implies *yMx* for any $x, y \in L$. Here two elements x and y are said to constitute a *modular pair*, in symbols *xMy*, if $x \land (y \lor z) = (x \land y) \lor z$ for any $z \preceq x$. A lattice \mathbb{L} in which every pair of elements is modular, is called a *modular lattice*.

Given a lattice \mathbb{L} , a function $v : L \to \mathbb{R}_{\geq 0}$, satisfying $v(x \lor y) + v(x \land y) \le v(x) + v(y)$ for all $x, y \in L$, is called a *subvaluation* on \mathbb{L} . A subvaluation v is *isotone* if $v(x) \le v(y)$ whenever $x \le y$, and it is *positive* if v(x) < v(y) whenever $x \le y$, $x \ne y$. A subvaluation v is called a *valuation* if it is isotone and $v(x \lor y) + v(x \land y) = v(x) + v(y)$ for all $x, y \in L$.

• Lattice valuation metric

Let $\mathbb{L} = (L, \leq, \lor, \land)$ be a lattice, and let v be an isotone subvaluation on \mathbb{L} . The *lattice subvaluation semimetric* d_v on L is defined by

$$2v(x \vee y) - v(x) - v(y).$$

(It can be defined also on some semilattices.) If v is a positive subvaluation on \mathbb{L} , one obtains a metric, called the **lattice subvaluation metric**. If v is a valuation, d_v is called the *valuation semimetric* and can be written as

$$v(x \lor y) - v(x \land y) = v(x) + v(y) - 2v(x \land y).$$

If *v* is a positive valuation on \mathbb{L} , one obtains a metric, called the **lattice valuation** metric, and the lattice is called a metric lattice.

An example is the **Hamming distance** $d_H(A, B) = |A \cup B| - |A \cap B|$ on the lattice $(P(X), \cup, \cap)$ of all subsets of the set *X*. Cf. also the **Shannon distance** (Chap. 14), which can be seen as a distance on partitions.

If $L = \mathbb{N}$ (the set of positive integers), $x \lor y = lcm(x, y)$ (least common multiple), $x \land y = gcd(x, y)$ (greatest common divisor), and the positive valuation $v(x) = \ln x$, then $d_v(x, y) = \ln \frac{lcm(x, y)}{gcd(x, y)}$.

This metric can be generalized on any *factorial ring* equipped with a positive valuation v such that $v(x) \ge 0$ with equality only for the multiplicative unit of the ring, and v(xy) = v(x) + v(y). Cf. **factorial ring semimetric**.

Finite subgroup metric

Let (G, \cdot, e) be a group. Let $\mathbb{L} = (L, \subset, \cap)$ be the meet semilattice of all finite subgroups of the group (G, \cdot, e) with the meet $X \cap Y$ and the valuation $v(X) = \ln |X|$.

The **finite subgroup metric** is a **valuation metric** on *L* defined by

$$v(X) + v(Y) - 2v(X \wedge Y) = \ln \frac{|X||Y|}{(|X \cap Y|)^2}.$$

• Join semilattice distances

Let $\mathbb{L} = (L, \leq, \lor)$ be a join semilattice, finite or infinite, such that every maximal chain in every interval [x, y] is finite. For $x \leq y$, the *height* h(x, y) of y *above* x is the least cardinality of a finite maximal (by inclusion) chain of [x, y]minus 1. Call the join semilattice \mathbb{L} *semimodular* if for all $x, y \in L$, whenever there exists an element z covered by both x and y, the join $x \lor y$ covers both x and y, or, in other words, whenever elements x, y have a common lower bound z, it holds $h(x, x \lor y) \leq h(z, y)$. Any *tree* (i.e., all intervals [x, z] are finite, each pair x, y of uncomparable elements have a least common upper bound $x \lor y$ but they never have a common lower bound) is semimodular. Consider the following distances on L:

 $d_{\text{path}}(x, y)$ is the path metric of the *Hasse diagram* of (L, \leq) , i.e., a graph with vertex-set *L* and an edge between two elements if they are comparable.

 $d_{a.path}(x, y)$ is the smallest number of the form h(x, z) + h(y, z), where z is a common upper bound of x and y, i.e., it is the **ancestral path distance**; cf. **pedigree-based distances** in Chap. 23. This and next distance reflect the way how Roman civil law and medieval canon law, respectively, measured degree of kinship.

 $d_{\max}(x, y)$ is defined by $\max(h(x, x \lor y), h(y, x \lor y))$.

It holds $d_{a,\text{path}}(x, y) \ge d_{\text{path}}(x, y) \ge d_{\max}(x, y)$. Foldes, 2013, proved that $d_{\max}(x, y)$ is a metric if \mathbb{L} is semimodular and that $d_{a,\text{path}}(x, y)$ is a metric if and only if \mathbb{L} is semimodular, in which case $d_{a,\text{path}}(x, y) = d_{\text{path}}(x, y)$.

Gallery distance of flags

Let \mathbb{L} be a lattice. A *chain* C in \mathbb{L} is a subset of L which is *linearly ordered*, i.e., any two elements of C are compatible. A *flag* is a chain in \mathbb{L} which is maximal with respect to inclusion. If \mathbb{L} is a semimodular lattice, containing a finite flag, then \mathbb{L} has a unique minimal and a unique maximal element, and any two flags C, D in \mathbb{L} have the same cardinality, n + 1. Then n is the *height* of the lattice \mathbb{L} .

Two flags *C*, *D* are called *adjacent* if either they are equal or *D* contains exactly one element not in *C*. A *gallery* from *C* to *D* of length *m* is a sequence of flags $C = C_0, C_1, \ldots, C_m = D$ such that C_{i-1} and C_i are adjacent for $i = 1, \ldots, m$.

A gallery distance of flags (see [Abel91]) is a distance on the set of all flags of a semimodular lattice \mathbb{L} with finite height defined as the minimum of lengths of galleries from *C* to *D*. It can be written as

$$|C \lor D| - |C| = |C \lor D| - |D|,$$

where C ∨ D = {c ∨ d : c ∈ C, d ∈ D} is the subsemilattice generated by C and D. This distance is the gallery metric of the *chamber system* consisting of flags.
Scalar and vectorial metrics

Let $\mathbb{L} = (L, \leq, \max, \min)$ be a lattice with the join $\max\{x, y\}$, and the meet $\min\{x, y\}$ on a set $L \subset [0, \infty)$ which has a fixed number *a* as the greatest element and is closed under *negation*, i.e., for any $x \in L$, one has $\overline{x} = a - x \in L$.

The scalar metric *d* on *L* is defined, for $x \neq y$, by

$$d(x, y) = \max\{\min\{x, \overline{y}\}, \min\{\overline{x}, y\}\}.$$

The scalar metric d^* on $L^* = L \cup \{*\}, * \notin L$, is defined, for $x \neq y$, by

$$d^{*}(x, y) = \begin{cases} d(x, y), & \text{if } x, y \in L, \\ \max\{x, \bar{x}\}, & \text{if } y = *, x \neq *, \\ \max\{y, \bar{y}\}, & \text{if } x = *, y \neq *. \end{cases}$$

Given a norm ||.|| on \mathbb{R}^n , $n \ge 2$, the **vectorial metric** on L^n is defined by

$$||(d(x_1, y_1), \ldots, d(x_n, y_n))||,$$

and the **vectorial metric** on $(L^*)^n$ is defined by

$$||(d^*(x_1, y_1), \ldots, d^*(x_n, y_n))||.$$

The vectorial metric on $L_2^n = \{0, 1\}^n$ with l_1 -norm on \mathbb{R}^n is the **Fréchet–Nikodym–Aronszyan distance**. The vectorial metric on $L_m^n = \{0, \frac{1}{m-1}, \ldots, \frac{m-2}{m-1}, 1\}^n$ with l_1 -norm on \mathbb{R}^n is the **Sgarro** *m*-valued metric. The vectorial metric on $[0, 1]^n$ with l_1 -norm on \mathbb{R}^n is the **Sgarro fuzzy metric**.

If *L* is L_m or [0, 1], and $x = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+r})$, $y = (y_1, \ldots, y_n, *, \ldots, *)$, where * stands in *r* places, then the vectorial metric between *x* and *y* is the **Sgarro metric** (see, for example, [CSY01]).

Metrics on Riesz space

A *Riesz space* (or *vector lattice*) is a partially ordered vector space (V_{Ri}, \leq) in which the following conditions hold:

- 1. The vector space structure and the partial order structure are compatible: $x \leq y$ implies $x + z \leq y + z$, and $x \succ 0$, $\lambda \in \mathbb{R}$, $\lambda > 0$ implies $\lambda x \succ 0$;
- 2. For any two elements $x, y \in V_{Ri}$ there exists the join $x \lor y \in V_{Ri}$ (in particular, the join and the meet of any finite set of elements from V_{Ri} exist).

The **Riesz norm metric** is a **norm metric** on V_{Ri} defined by

$$||x-y||_{Ri}$$

where $||.||_{Ri}$ is a *Riesz norm*, i.e., a *norm* on V_{Ri} such that, for any $x, y \in V_{Ri}$, the inequality $|x| \le |y|$, where $|x| = (-x) \lor (x)$, implies $||x||_{Ri} \le ||y||_{Ri}$.

The space $(V_{Ri}, ||.||_{Ri})$ is called a *normed Riesz space*. In the case of completeness it is called a *Banach lattice*. All Riesz norms on a Banach lattice are equivalent.

An element $e \in V_{Ri}^+ = \{x \in V_{Ri} : x \succ 0\}$ is called a *strong unit* of V_{Ri} if for each $x \in V_{Ri}$ there exists $\lambda \in \mathbb{R}$ such that $|x| \leq \lambda e$. If a Riesz space V_{Ri} has a

strong unit *e*, then $||x|| = \inf\{\lambda \in \mathbb{R} : |x| \le \lambda e\}$ is a Riesz norm, and one obtains on V_{Ri} a Riesz norm metric

$$\inf\{\lambda \in \mathbb{R} : |x - y| \le \lambda e\}.$$

A weak unit of V_{Ri} is an element e of V_{Ri}^+ such that $e \wedge |x| = 0$ implies x = 0. A Riesz space V_{Ri} is called *Archimedean* if, for any two $x, y \in V_{Ri}^+$, there exists a natural number n, such that $nx \leq y$. The **uniform metric** on an Archimedean Riesz space with a weak unit e is defined by

$$\inf\{\lambda \in \mathbb{R} : |x - y| \land e \leq \lambda e\}.$$

Machida metric

For a fixed integer $k \ge 2$ and the set $V_k = \{0, 1, ..., k-1\}$, let $O_k^{(n)}$ be the set of all *n*-ary functions from $(V_k)^n$ into V_k and $O_k = \bigcup_{n=1}^{\infty} O_k^{(n)}$. Let Pr_k be the set of all *projections* pr_i^n over V_k , where $pr_i^n(x_1, ..., x_i, ..., x_n) = x_i$ for any $x_1, ..., x_n \in V_k$.

A *clone over* V_k is a subset *C* of O_k containing Pr_k and closed under (functional) composition. The set L_k of all clones over V_k is a lattice. The *Post lattice* L_2 defined over Boolean functions, is countable but any L_k with $k \ge 3$ is not. For $n \ge 1$ and a clone $C \in L_k$, let $C^{(n)}$ denote *n-slice* $C \cap O_k^{(n)}$.

For any two clones $C_1, C_2 \in L_k$, Machida, 1998, defined the distance to be 0 if $C_1 = C_2$ and $(\min\{n : C_1^{(n)} \neq C_2^{(n)}\})^{-1}$, otherwise. The lattice L_k of clones with this distance is a compact ultrametric space. Cf. **Baire metric** in Chap. 11.