Chapter 10 Distances in Algebra

10.1 Group Metrics

A *group* (G, \cdot, e) is a set *G* of elements with a binary operation \cdot , called the *group* operation, that together satisfy the four fundamental properties of *closure* $(x, y \in G)$ *operation*, that together satisfy the four fundamental properties of *closure* ($x \cdot y \in G$) *associativity* ($x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for any $x \cdot y \cdot z \in G$) the *identity* for any $x, y \in G$, *associativity* $(x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for any $x, y, z \in G$, the *identity*
property $(x \cdot e - e \cdot x - x$ for any $x \in G$, and the *inverse property* (for any $x \in G$ *property* ($x \cdot e = e \cdot x = x$ for any $x \in G$), and the *inverse property* (for any $x \in G$, there exists an element $x^{-1} \in G$ such that $x \cdot x^{-1} = x^{-1} \cdot x = e$) there exists an element $x^{-1} \in G$ such that $x \cdot x^{-1} = x^{-1} \cdot x = e$.
In additive notation, a group $(G + 0)$ is a set G with a binar

In additive notation, a group $(G, +, 0)$ is a set *G* with a binary operation + such the following properties hold: $x + y \in G$ for any $x, y \in G$, $x+(y+z) = (x+y)+z$ that the following properties hold: $x + y \in G$ for any $x, y \in G$, $x + (y + z) = (x + y) + z$ for any $x, y, z \in G$, $x + 0 = 0 + x = x$ for any $x \in G$, and, for any $x \in G$, there exists an element $-x \in G$ such that $x + (-x) = (-x) + x = 0$.

A group (G, \cdot, e) is called *finite* if the set *G* is finite. A group (G, \cdot, e) is called *elian* if it is *commutative* i.e., $x, y = y$, x for any $x, y \in G$ *Abelian* if it is *commutative*, i.e., $x \cdot y = y \cdot x$ for any $x, y \in G$.
Most metrics considered in this section are **group norm**

Most metrics considered in this section are **group norm metrics** on a group (G, \cdot, e) , defined by

$$
||x \cdot y^{-1}||
$$

(or, sometimes, by $||y^{-1} \cdot x||$), where $||.||$ is a *group norm*, i.e., a function $||.|| : G \rightarrow \mathbb{R}$ such that for any $x, y \in G$ we have the following properties: R such that, for any $x, y \in G$, we have the following properties:

- 1. $||x|| > 0$, with $||x|| = 0$ if and only if $x = e$;
- 2. $||x|| = ||x^{-1}||;$
3. $||x, y|| < ||x||$
- 3. $||x \cdot y|| \le ||x|| + ||y||$ (*triangle inequality*).

In additive notation, a group norm metric on a group $(G, +, 0)$ is defined by $||x + (-y)|| = ||x - y||$, or, sometimes, by $||(-y) + x||$.

The simplest example of a group norm metric is the **bi-invariant ultrametric** (sometimes called the *Hamming metric*) $||x \cdot y^{-1}||_H$, where $||x||_H = 1$ for $x \neq e$, and $||e||_H = 0$ $||e||_H = 0.$

© Springer-Verlag Berlin Heidelberg 2016 M.M. Deza, E. Deza, *Encyclopedia of Distances*, DOI 10.1007/978-3-662-52844-0_10

• **Bi-invariant metric**

A metric (in general, a semimetric) *d* on a group (G, \cdot, e) is called **bi-invariant** if

$$
d(x, y) = d(x \cdot z, y \cdot z) = d(z \cdot x, z \cdot y)
$$

for any $x, y, z \in G$ (cf. **translation invariant metric** in Chap. 5). Any **group norm metric** on an Abelian group is bi-invariant.

A metric (in general, a semimetric) *d* on a group (G, \cdot, e) is called a **right-**
ariant metric if $d(x, y) = d(x, z, y, z)$ for any $x, y \in G$ i.e., the operation of **invariant metric** if $d(x, y) = d(x \cdot z, y \cdot z)$ for any $x, y, z \in G$, i.e., the operation of right multiplication by an element z is a **motion** of the metric space (G, d) . Any group norm metric defined by $||x \cdot y^{-1}||$, is right-invariant.
A metric (in general a semimetric) d on a group (G)

A metric (in general, a semimetric) *d* on a group (G, \cdot, e) is called a **left-**
pariant metric if $d(x, y) = d(z, x, z, y)$ holds for any $x, y, z \in G$ i.e., the **invariant metric** if $d(x, y) = d(z \cdot x, z \cdot y)$ holds for any $x, y, z \in G$, i.e., the operation of left multiplication by an element z is a motion of the metric space operation of left multiplication by an element *z* is a motion of the metric space (G, d) . Any group norm metric defined by $||y^{-1} \cdot x||$, is left-invariant.
Any right-invariant or left-invariant (in particular bi-invariant) me

-Any right-invariant or left-invariant (in particular, bi-invariant) metric *d* on *G* is a group norm metric, since one can define a group norm on *G* by $||x|| = d(x, 0)$.

• *G***-invariant metric**

Given a metric space (X, d) and an action $g(x)$ of a group G on it, the metric *d* is called *G***-invariant** (under this action) if for all $x, y \in X, g \in G$ it holds

$$
d(g(x), g(y)) = d(x, y).
$$

For every *G*-invariant metric d_X on *X* and every point $x \in X$, the function

$$
d_G(g_1, g_2) = d_X(g_1(x), g_2(x))
$$

is a **left-invariant metric** on *G*. This metric is called **orbit metric** in [BBI01], since it is the restriction of *d* on the orbit *Gx*, which can be identified with *G*.

• **Positively homogeneous distance**

A distance *d* on an Abelian group $(G, +, 0)$ is called **positively homogeneous** if

$$
d(mx, my) = md(x, y)
$$

for all $x, y \in G$ and all $m \in \mathbb{N}$, where mx is the sum of m terms all equal to x .

• **Translation discrete metric**

A **group norm metric** (in general, a group norm semimetric) on a group (G, \cdot, e) is called **translation discrete** if the *translation distances* (or *translation* numbers) *numbers*)

$$
\tau_G(x) = \lim_{n \to \infty} \frac{||x^n||}{n}
$$

of the *nontorsion elements* x (i.e., such that $x^n \neq e$ for any $n \in \mathbb{N}$) of the group with respect to that metric are bounded away from zero.

If the numbers $\tau_G(x)$ are just nonzero, such a group norm metric is called a **translation proper metric**.

• **Word metric**

Let (G, \cdot, e) be a finitely-generated group with a set *A* of generators (i.e., *A* and every element of *G* can be expressed as a product of finitely many is finite, and every element of *G* can be expressed as a product of finitely many elements *A* and their inverses). The *word length* $w_W^A(x)$ of an element $x \in G \setminus \{e\}$ is defined by is defined by

$$
w_W^A(x) = \inf\{r : x = a_1^{\epsilon_1} \dots a_r^{\epsilon_r}, a_i \in A, \epsilon_i \in \{\pm 1\}\}\
$$
and $w_W^A(e) = 0$.

The **word metric** d_W^A *associated with* A is a **group norm metric** on G defined by

$$
w_W^A(x \cdot y^{-1}).
$$

As the word length w_W^A is a *group norm* on *G*, d_W^A is **right-invariant**. Sometimes it is defined as $w_W^A(y^{-1} \cdot x)$, and then it is **left-invariant**. In fact, d_W^A is the maximal metric on *G* that is right-invariant, and such that the distance from any element of *A* or A^{-1} to the identity element *e* is equal to one.

If *A* and *B* are two finite sets of generators of the group (G, \cdot, e) , then the netric spaces (G, d^A) and (G, d^B) is a **quasi**identity mapping between the metric spaces (G, d_W^A) and (G, d_W^B) is a **quasiisometry**, i.e., the word metric is unique up to quasi-isometry.

The word metric is the **path metric** of the *Cayley graph* Γ of (G, \cdot, e) ,
intructed with respect to A. Namely, Γ is a graph with the vertex-set G in constructed with respect to A . Namely, Γ is a graph with the vertex-set G in which two vertices *x* and $y \in G$ are connected by an edge if and only if $y = a^{\epsilon}x$, $\epsilon = \pm 1, a \in A$.

• **Weighted word metric**

Let (G, \cdot, e) be a finitely-generated group with a set *A* of generators. Given a unded weight function $w : A \rightarrow (0, \infty)$ the weighted word length w^A , (x) of bounded *weight function* $w : A \to (0, \infty)$, the *weighted word length* $w_{WW}^A(x)$ of an element $x \in G \backslash \{e\}$ is defined by w^A $(e) = 0$ and an element $x \in G \backslash \{e\}$ is defined by $w_{WW}^A(e) = 0$ and

$$
w_{WW}^A(x) = \inf \left\{ \sum_{i=1}^t w(a_i), t \in \mathbb{N} : x = a_1^{\epsilon_1} \dots a_t^{\epsilon_t}, a_i \in A, \epsilon_i \in \{\pm 1\} \right\}.
$$

The **weighted word metric** d_{WW}^A *associated with A* is a **group norm metric** on *G* defined by

$$
w_{WW}^A(x\cdot y^{-1}).
$$

As the weighted word length w_{WW}^A is a *group norm* on *G*, d_{WW}^A is **right-invariant**. Sometimes it is defined as $w_{WW}^A(y^{-1})$ \cdot *x*), and then it is **left-invariant**.

The metric d_{WW}^A is the supremum of semimetrics *d* on *G* with the property that $d(e, a) \leq w(a)$ for any $a \in A$.

The metric d_{WW}^A is a **coarse-path metric**, and every right-invariant coarse path metric is a weighted word metric up to **coarse isometry**.

The metric d_{WW}^A is the **path metric** of the *weighted Cayley graph* Γ_W of (G, \cdot, e) constructed with respect to *A*. Namely, Γ_W is a weighted graph with the vertex-set *G* in which two vertices r and $y \in G$ are connected by an edge with the vertex-set *G* in which two vertices *x* and $y \in G$ are connected by an edge with the weight $w(a)$ if and only if $y = a^{\epsilon}x$, $\epsilon = \pm 1$, $a \in A$.

• **Interval norm metric**

An **interval norm metric** is a **group norm metric** on a finite group (G, \cdot, e)
ined by defined by

$$
||x \cdot y^{-1}||_{int},
$$

where $||.||_{int}$ is an *interval norm* on *G*, i.e., a *group norm* such that the values of jj:jj*int* form a set of consecutive integers starting with ⁰.

To each interval norm $||.||_{int}$ corresponds an ordered *partition* $\{B_0, \ldots, B_m\}$ of *G* with $B_i = \{x \in G : ||x||_{int} = i\}$; cf. **Sharma–Kaushik distance** in Chap. 16. The *Hamming* and *Lee* norms are special cases of interval norm. A *generalized Lee norm* is an interval norm for which each class has a form $B_i = \{a, a^{-1}\}.$
C-metric

• *C***-metric**

A *C***-metric** *d* is a metric on a group (G, \cdot, e) satisfying the following oditions: conditions:

- 1. The values of *d* form a set of consecutive integers starting with 0;
- 2. The cardinality of the sphere $B(x, r) = \{y \in G : d(x, y) = r\}$ is independent of the particular choice of $x \in G$.

The **word metric**, the **Hamming metric**, and the **Lee metric** are *C*-metrics. Any **interval norm metric** is a *C*-metric.

• **Order norm metric**

Let (G, \cdot, e) be a finite Abelian group. Let *ord* (x) be the *order* of an element G i.e., the smallest positive integer *n* such that $x^n - e$. Then the function $x \in G$, i.e., the smallest positive integer *n* such that $x^n = e$. Then the function $||.||_{ord}: G \to \mathbb{R}$ defined by $||x||_{ord} = \ln ord(x)$, is a *group norm* on *G*, called the *order norm*.

The **order norm metric** is a **group norm metric** on *G*, defined by

$$
||x \cdot y^{-1}||_{ord}.
$$

• Tărnăuceanu metric

Let $o(a)$ denote the order of the element *a* of a group. Let *C* be the class of finite groups *G* in which $o(ab) < o(a) + o(b)$ for every $a, b \in G$. Tărnăuceanu, 2015, noted that the function $d: G \times G \rightarrow \mathbb{N}$ defined by

$$
d(x, y) = o(xy^{-1}) - 1
$$

for all $x, y \in G$ is a metric on *G* if and only if $G \in C$.

He found that *C* contains all Abelian p -groups, Q_8 , and A_4 , but not nonabelian finite simple groups, alternating groups $A(n)$ with $n \ge 5$, and, for $n \ge 4$, $Sym(n)$, quaternion groups Q_{2^n} , dihedral groups D_{2^n} . *C* is closed under subgroups, but not under direct products or extensions. The centralizers of nontrivial elements of such groups contain only elements of prime power order.

• **Monomorphism norm metric**

Let $(G, +, 0)$ be a group. Let (H, \cdot, e) be a group with a *group norm* $||.||_H$. Let $G \rightarrow H$ be a *monomorphism* of groups G and H i.e., an injective function $f : G \to H$ be a *monomorphism* of groups *G* and *H*, i.e., an injective function such that $f(x+y) = f(x) \cdot f(y)$ for any $x, y \in G$. Then the function $||.||_G^f : G \to \mathbb{R}$ defined by $||x||_G^f = ||f(x)||_H$, is a *group norm* on *G*, called the *monomorphism norm*.

The **monomorphism norm metric** is a **group norm metric** on *G* defined by

$$
||x-y||_G^f.
$$

• **Product norm metric**

Let $(G, +, 0)$ be a group with a *group norm* $||.||_G$. Let (H, \cdot, e) be a group with roup norm $||.||_G$. Let $G \times H - \{ \alpha - (x, y) : x \in G, y \in H \}$ be the Cartesian a group norm $||.||_H$. Let $G \times H = \{ \alpha = (x, y) : x \in G, y \in H \}$ be the Cartesian product of *G* and *H*, and $(x, y) \cdot (z, t) = (x + z, y \cdot t)$.
Then the function $|| \cdot ||_{C \times U} : G \times H \to \mathbb{R}$ defined by

Then the function $||.||_{G \times H} : G \times H \to \mathbb{R}$ defined by $||\alpha||_{G \times H} = ||(x, y)||_{G \times H} =$ $\frac{f}{f}$ *j* $\frac{f}{g}$ + $\frac{f}{f}$ *j* $\frac{f}{H}$, is a group norm on *G* × *H*, called the *product norm*.

The **product norm metric** is a **group norm metric** on $G \times H$ defined by

$$
||\alpha \cdot \beta^{-1}||_{G \times F}.
$$

On the Cartesian product $G \times H$ of two finite groups with the *interval norms* $||.||_{G}^{int}$ and $||.||_{H}^{int}$, an interval norm $||.||_{G \times H}^{int}$ can be defined. In fact, $||\alpha||_{G \times H}^{int}$
 $||\alpha||_{H}^{int}$ $-||\alpha||_{H}^{int}$ $-||\alpha||_{H}^{int}$ where $m = \max_{\alpha} \alpha ||\alpha||^{int}$ $||(x, y)||_{G \times H}^{int} = ||x||_G + (m+1)||y||_H$, where $m = \max_{a \in G} ||a||_G^{int}$.
Quotient norm metric

• **Quotient norm metric**

Let (G, \cdot, e) be a group with a *group norm* $||.||_G$. Let (N, \cdot, e) be a *normal*
paroup of (G, \cdot, e) i.e., $rN = Nr$ for any $r \in G$. Let $(G/N, \cdot, e)$ be the *subgroup* of (G, \cdot, e) , i.e., $xN = Nx$ for any $x \in G$. Let $(G/N, \cdot, eN)$ be the *quotient group* of G i.e. $G/N = \{xN : x \in G\}$ with $xN = \{x, a : a \in N\}$ and *quotient group* of *G*, i.e., $G/N = \{xN : x \in G\}$ with $xN = \{x \cdot a : a \in N\}$, and $xN \cdot yN = yN$. Then the function $|| \cdot ||_{G/N} \rightarrow \mathbb{R}$ defined by $||xN||_{G/N}$. $xN \cdot yN = xyN$. Then the function $||.||_{G/N} : G/N \to \mathbb{R}$ defined by $||xN||_{G/N} =$
min_{or} $||x||_X$ is a group porm on G/N called the *quotient norm* $\min_{a \in N} ||xa||_X$, is a group norm on *G*/*N*, called the *quotient norm*.

A **quotient norm metric** is a **group norm metric** on G/N defined by

$$
||xN \cdot (yN)^{-1}||_{G/N} = ||xy^{-1}N||_{G/N}.
$$

If $G = \mathbb{Z}$ with the norm being the absolute value, and $N = m\mathbb{Z}, m \in \mathbb{N}$, then the quotient norm on $\mathbb{Z}/m\mathbb{Z}=\mathbb{Z}_m$ coincides with the *Lee norm*.

If a metric *d* on a group (G, \cdot, e) is **right-invariant**, then for any normal veroup $(N \cdot e)$ of $(G \cdot e)$ the metric *d* induces a right-invariant metric (in subgroup (N, \cdot, e) of (G, \cdot, e) the metric *d* induces a right-invariant metric (in fact the **Hausdorff metric**) d^* on G/N by fact, the **Hausdorff metric**) d^* on G/N by

$$
d^*(xN, yN) = \max\{\max_{b \in yN} \min_{a \in xN} d(a, b), \max_{a \in xN} \min_{b \in yN} d(a, b)\}.
$$

• **Commutation distance**

Let (G, \cdot, e) be a finite nonabelian group. Let $Z(G) = \{c \in G : x \cdot c =$
x for any $x \in G$ be the center of G $c \cdot x$ for any $x \in G$ be the *center* of *G*.
The *commutation graph* of *G* is de

The *commutation graph* of *G* is defined as a graph with the vertex-set *G* in which distinct elements $x, y \in G$ are connected by an edge whenever they *commute*, i.e., $x \cdot y = y \cdot x$. (Darafsheh, 2009, consider noncommuting graph on $G \setminus Z(G)$) $G \setminus Z(G)$.)

Any two noncommuting elements $x, y \in G$ are connected in this graph by the path *x*, *c*, *y*, where *c* is any element of $Z(G)$ (for example, *e*). A path $x =$ $x^1, x^2, \ldots, x^k = y$ in the commutation graph is called an $(x - y)$ *N*-path if $x^i \notin$ *Z*(*G*) for any $i \in \{1, \ldots, k\}$. In this case the elements $x, y \in G\setminus Z(G)$ are called *N-connected*.

The **commutation distance** (see [DeHu98]) *d* is an extended distance on *G* defined by the following conditions:

- 1. $d(x, x) = 0$;
- 2. $d(x, y) = 1$ if $x \neq y$, and $x \cdot y = y \cdot x$;
3. $d(x, y)$ is the minimum length of a
- 3. $d(x, y)$ is the minimum length of an $(x y)$ *N*-path for any *N*-connected elements *x* and $y \in G\setminus Z(G)$;
- 4. $d(x, y) = \infty$ if $x, y \in G\setminus Z(G)$ are not connected by any *N*-path.

Given a group *G* and a *G*-conjugacy class *X* in it, Bates–Bundy–Perkins– Rowley in 2003, 2004, 2007, 2008 considered *commuting graph* (X, E) whose vertex set is *X* and distinct vertices $x, y \in X$ are joined by an edge $e \in E$ whenever they commute.

• **Modular distance**

Let $(\mathbb{Z}_m, +, 0)$, $m \geq 2$, be a finite *cyclic group*. Let $r \in \mathbb{N}$, $r \geq 2$. The *modular r-weight* $w_r(x)$ of an element $x \in \mathbb{Z}_m = \{0, 1, \ldots, m\}$ is defined as $w_r(x) = \min\{w_r(x), w_r(m - x)\}\$, where $w_r(x)$ is the *arithmetic r-weight* of the integer *x*.

The value $w_r(x)$ can be obtained as the number of nonzero coefficients in the *generalized nonadjacent form* $x = e_n r^n + \dots e_1 r + e_0$ with $e_i \in \mathbb{Z}$, $|e_i| < r$, $|e_i + e_{i+1}| < r$, and $|e_i| < |e_{i+1}|$ if $e_i e_{i+1} < 0$. Cf. **arithmetic** *r***-norm metric** in Chap. 12.

The **modular distance** is a distance on \mathbb{Z}_m , defined by

$$
w_r(x-y).
$$

The modular distance is a metric for $w_r(m) = 1$, $w_r(m) = 2$, and for several special cases with $w_r(m) = 3$ or 4. In particular, it is a metric for $m = r^n$ or $m = r^n - 1$; if $r = 2$, it is a metric also for $m = 2^n + 1$ (see, for example, [Ernv85]).

The most popular metric on \mathbb{Z}_m is the **Lee metric** defined by $||x-y||_{Lee}$, where $\frac{f}{f}|x|_{\text{Lee}} = \min\{x, m-x\}$ is the *Lee norm* of an element $x \in \mathbb{Z}_m$.

• *G***-norm metric**

Consider a finite field \mathbb{F}_{p^n} for a prime p and a natural number *n*. Given a compact convex centrally-symmetric body *G* in R*ⁿ*, define the *G-norm* of an element $x \in \mathbb{F}_{p^n}$ by $||x||_G = \inf \{ \mu \ge 0 : x \in p\mathbb{Z}^n + \mu G \}.$

The *G***-norm metric** is a **group norm metric** on \mathbb{F}_{p^n} defined by

$$
||x \cdot y^{-1}||_G.
$$

• **Permutation norm metric**

Given a finite metric space (X, d) , the **permutation norm metric** is a **group norm metric** on the group (Sym_X, \cdot, id) of all permutations of *X* (*id* is the *identity* manning) defined by *mapping*) defined by

$$
||f \cdot g^{-1}||_{\text{Sym}},
$$

where the *group norm* $||.||_{Sym}$ on *Sym_X* is given by $||f||_{Sym} = max_{x \in X} d(x, f(x))$. • **Metric of motions**

Let (X, d) be a metric space, and let $p \in X$ be a fixed element of X.

The **metric of motions** (see [Buse55]) is a metric on the group (Ω, \cdot, id) of all tions of (X, d) (id is the identity manning) defined by **motions** of (X, d) (*id* is the *identity mapping*) defined by

$$
\sup_{x \in X} d(f(x), g(x)) \cdot e^{-d(p,x)}
$$

for any $f, g \in \Omega$ (cf. **Busemann metric of sets** in Chap. 3). If the space (X, d) is bounded, a similar metric on Ω can be defined as

$$
\sup_{x \in X} d(f(x), g(x)).
$$

Given a semimetric space (X, d) , the **semimetric of motions** on (Ω, \cdot, id) is

$$
d(f(p), g(p)).
$$

• **General linear group semimetric**

Let F be a locally compact nondiscrete *topological field*. Let $(\mathbb{F}^n, ||.||_{\mathbb{F}^n})$, $n \geq 2$, be a *normed vector space* over \mathbb{F} . Let ||.|| be the *operator norm* associated with the normed vector space $(\mathbb{F}^n, ||.||_{\mathbb{F}^n})$. Let $GL(n, \mathbb{F})$ be the *general linear group* over F. Then the function $|.|_{op}$: $GL(n, \mathbb{F}) \rightarrow \mathbb{R}$ defined by $|g|_{op}$ = $\sup\{\| \ln ||g|| \, |, |\ln ||g^{-1}|| \, | \}$, is a seminorm on $GL(n, \mathbb{F})$.

The **general linear group semimetric** on the group $GL(n, \mathbb{F})$ is defined by

$$
|g\cdot h^{-1}|_{op}.
$$

It is a **right-invariant** semimetric which is unique, up to **coarse isometry**, since any two norms on \mathbb{F}^n are **bi-Lipschitz equivalent**.

• **Generalized torus semimetric**

Let (T, \cdot, e) be a *generalized torus*, i.e., a *topological group* which is iso-
rphic to a direct product of *n* multiplicative groups \mathbb{F}^* of locally compact morphic to a direct product of *n* multiplicative groups \mathbb{F}_i^* of locally compact nondiscrete *topological fields* \mathbb{F}_i . Then there is a proper continuous homomorphism $v : T \rightarrow \mathbb{R}^n$, namely, $v(x_1,...,x_n) = (v_1(x_1),..., v_n(x_n))$, where $v_i : \mathbb{F}_i^* \to \mathbb{R}$ are proper continuous homomorphisms from the \mathbb{F}_i^* to the additive group \mathbb{R} given by the logarithm of the *valuation*. Every other proper continuous group R, given by the logarithm of the *valuation*. Every other proper continuous homomorphism $v' : T \to \mathbb{R}^n$ is of the form $v' = \alpha \cdot v$ with $\alpha \in GL(n, \mathbb{R})$. If $||.||$
is a norm on \mathbb{R}^n one obtains the corresponding seminorm $||v||_T = ||v(x)||$ on T is a norm on \mathbb{R}^n , one obtains the corresponding seminorm $||x||_T = ||v(x)||$ on *T*.

The **generalized torus semimetric** is defined on the group (T, \cdot, e) by

$$
||xy^{-1}||_T = ||v(xy^{-1})|| = ||v(x) - v(y)||.
$$

• **Stable norm metric**

Given a Riemannian manifold (M, g) , the **stable norm metric** is a **group norm metric** on its *real homology group* $H_k(M, \mathbb{R})$ defined by the following *stable norm* $||h||_s$: the infimum of the Riemannian *k*-volumes of real cycles representing *h*.

The Riemannian manifold (\mathbb{R}^n, g) is within finite **Gromov–Hausdorff distance** (cf. Chap. 1) from an *n*-dimensional normed vector space $(\mathbb{R}^n, ||.||_{\mathcal{S}})$.

If (M, g) is a compact connected oriented Riemannian manifold, then the manifold $H_1(M,\mathbb{R})/H_1(M,\mathbb{R})$ with metric induced by $||.||_s$ is called the *Albanese torus* (or *Jacobi torus*) of (M, g) . This **Albanese metric** is a **flat metric** (Chap. 8).

• **Heisenberg metric**

Let (H, \cdot, e) be the (real) *Heisenberg group* \mathcal{H}^n , i.e., a group on the set $H = \times \mathbb{R}^n \times \mathbb{R}$ with the group law $h \cdot h' = (x \times h) \cdot (x' \times f') = (x + x' \times f')$ $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ with the group law $h \cdot h' = (x, y, t) \cdot (x', y', t') = (x + x', y + y' + t' + 2 \sum_{k=1}^n (x', y' + t' + t' + 2 \sum_{k=1}^n x, y' + t' + t' + 2 \sum_{k=1}^n x, y' + t' + t' + 2 \sum_{k=1}^n x, y' + t' + t' + 2 \sum_{k=1}^n x, y' + t' + t' + 2 \sum_{k=1}^n x, y' + t' + t' + 2 \$ $y', t + t' + 2\sum_{i=1}^{n} (x_i' y_i - x_i y_i')$, and the identity $e = (0, 0, 0)$. Let $|\cdot|_{Heis}$ be the *Heisenberg gauge* (Cygan 1978) on \mathcal{H}^n defined by $|h|_{U} = |(x, y, t)|_{U} = -1$ *Heisenberg gauge* (Cygan, 1978) on \mathcal{H}^n defined by $|h|_{Heis} = |(x, y, t)|_{Heis}$ $((\sum_{i=1}^{n} (x_i^2 + y_i^2))^2 + t^2)^{1/4}.$
The **Heisenberg metric**

The **Heisenberg metric** (or **Korányi metric**, **Cygan metric**, **gauge metric**) d_{Heis} is a **group norm metric** on \mathcal{H}^n defined by

$$
|x^{-1}\cdot y|_{Heis}.
$$

One can identify the Heisenberg group $\mathcal{H}^{n-1} = \mathbb{C}^{n-1} \times \mathbb{R}$ with $\partial \mathbb{H}^n_{\mathbb{C}} \setminus \{\infty\}$, ere \mathbb{H}^n is the Hermitian (i.e., complex) by perbolic *n*-space, and ∞ is any point where $\mathbb{H}_{\mathbb{C}}^n$ is the Hermitian (i.e., complex) hyperbolic *n*-space, and ∞ is any point of its boundary $\partial \mathbb{H}^n$. So, the usual hyperbolic metric of \mathbb{H}^{n+1} induces a metric of its boundary $\partial \mathbb{H}_{\mathbb{C}}^n$. So, the usual hyperbolic metric of $\mathbb{H}_{\mathbb{C}}^{n+1}$ induces a metric on \mathcal{H}^n . The **Hamenstädt distance** on $\partial \mathbb{H}^n_{\mathbb{C}} \setminus {\infty}$ (Hersonsky–Paulin, 2004) is $\frac{1}{n} d_{\mathbf{U}}$. $\frac{1}{\sqrt{ }}$ $\frac{1}{2}d_{Heis}.$

Sometimes, the term *Cygan metric* is reserved for the extension of the metric d_{Heis} on whole $\mathbb{H}_{\mathbb{C}}^n$ and (Apanasov, 2004) for its generalization (via the *Carnot group* $\mathbb{F}^{n-1} \times Im\mathbb{F}$ on \mathbb{F} -hyperbolic spaces $\mathbb{H}^n_{\mathbb{F}}$ over numbers \mathbb{F} that can be complex numbers or quaternions or for $n = 2$ octonions. Also the can be complex numbers, or quaternions or, for $n = 2$, octonions. Also, the generalization of *dHeis* on Carnot groups *of Heisenberg type* is called the *Cygan metric*.

The second natural metric on \mathcal{H}^n is the **Carnot–Carathéodory metric** (or **CC metric**, **sub-Riemannian metric**; cf. Chap. 7) d_C defined as the **length metric** (Chap. 6) using *horizontal vector fields* on *^Hⁿ*. This metric is the **internal metric** (Chap. 4) corresponding to d_{Heis} .

The metric d_{Heis} is **bi-Lipschitz equivalent** with d_C but not with any Riemannian distance and, in particular, not with any Euclidean metric. For both metrics, the Heisenberg group \mathcal{H}^n is a **fractal** since its **Hausdorff dimension**, $2n + 2$, is strictly greater than its **topological dimension**, $2n + 1$.

• **Metric between intervals**

Let *G* be the set of all intervals [a, b] of R. The set *G* forms semigroups $(G, +)$ and (G, \cdot) under addition $I + J = \{x + y : x \in I, y \in J\}$ and under multiplication $I \cdot I = \{x \cdot y : x \in I, y \in J\}$ respectively $I \cdot J = \{x \cdot y : x \in I, y \in J\}$, respectively.
The **metric between intervals** is a mo

The **metric between intervals** is a metric on *G*, defined by

$$
\max\{|I|,|J|\}
$$

for all $I, J \in G$, where, for $K = [a, b]$, one has $|K| = |a - b|$.

• **Metric between games**

Consider *positional games*, i.e., two-player nonrandom games of perfect information with real-valued outcomes. Play is alternating with a nonterminated game having move options for both players. Real-world examples include Chess, Go and Tic-Tac-Toe. Formally, let F_R be the universe of games defined inductively as follows:

- 1. Every real number $r \in \mathbb{R}$ belongs to $F_{\mathbb{R}}$ and is called an *atomic game*.
- 2. If $A, B \subset F_{\mathbb{R}}$ with $1 \leq |A|, |B| < \infty$, then $\{A|B\} \in F_{\mathbb{R}}$ (*nonatomic game*).

Write any game $G = \{A|B\}$ as $\{G^L|G^R\}$, where $G^L = A$ and $G^R = B$ are the set of left and right moves of *G*, respectively.

 $F_{\mathbb{R}}$ becomes a commutative semigroup under the following addition operation:

- 1. If p and q are atomic games, then $p + q$ is the usual addition in R.
- 2. $p + \{g_{l_1}, \ldots | g_{r_1}, \ldots\} = \{g_{l_1} + p, \ldots | g_{r_1} + p, \ldots\}.$
- 3. If *G* and *H* are both nonatomic, then $\{G^L | G^R\}$ + $\{H^L | H^R\}$ = $\{I^L | I^R\}$, where $I^L = \{g_l + H, G + h_l : g_l \in G^L, h_l \in H^L\}$ and $I^R = \{g_r + H, G + h_r : g_r \in H^L\}$ $G^R, h_r \in H^R$.

For any game $G \in F_{\mathbb{R}}$, define the optimal outcomes $\overline{L}(G)$ and $\overline{R}(G)$ (if both players play optimally with Left and Right starting, respectively) as follows:

 $\overline{L}(p) = \overline{R}(p) = p$ and $\overline{L}(G) = \max{\{\overline{R}(g_l) : g_l \in G^L\}}$, $\overline{R}(G) = \max{\{\overline{L}(g_r) : g_l \in G^L\}}$ $g_r \in G^R$.

The **metric between games** *G* and *H* defined by Ettinger, 2000, is the following **extended metric** on $F_{\mathbb{R}}$:

$$
\sup_X |\overline{L}(G+X) - \overline{L}(H+X)| = \sup_X |\overline{R}(G+X) - \overline{R}(H+X)|.
$$

• **Helly semimetric**

Consider a game (A, B, H) between players *A* and *B* with *strategy sets A* and *B*, respectively. Here $H = H(\cdot, \cdot)$ is the *payoff function*, i.e., if player *A* plays $a \in A$ and player *B* plays $b \in B$, then *A* pays $H(a, b)$ to *B*. A player's *strategy set* $a \in \mathcal{A}$ and player *B* plays $b \in \mathcal{B}$, then *A* pays H(a,b) to *B*. A player's *strategy set* is the set of available to him *pure strategies*, i.e., complete algorithms for playing the game, indicating the move for every possible situation throughout it.

The **Helly semimetric** between strategies $a_1 \in A$ and $a_2 \in A$ of A is defined by

$$
\sup_{b\in\mathcal{B}}|H(a_1,b)-H(a_2,b)|.
$$

• **Factorial ring semimetric**

Let $(A, +, \cdot)$ be a *factorial ring*, i.e., an *integral domain* (nonzero commutative σ with no nonzero zero divisors) in which every nonzero nonunit element can ring with no nonzero zero divisors), in which every nonzero nonunit element can be written as a product of (nonunit) irreducible elements, and such factorization is unique up to permutation.

The **factorial ring semimetric** is a semimetric on the set $A \setminus \{0\}$, defined by

$$
\ln \frac{lcm(x, y)}{gcd(x, y)},
$$

where $lcm(x, y)$ is the *least common multiple*, and $gcd(x, y)$ is the *greatest common divisor* of elements $x, y \in A \setminus \{0\}$.

• **Frankild–Sather–Wagstaff metric**

Let $\mathcal{G}(R)$ be the set of isomorphism classes, up to a shift, of semidualizing complexes over a local Noetherian commutative ring *R*. An *R-complex* is a particular sequence of *R*-module homomorphisms; see [FrSa07]) for exact definitions.

The **Frankild–Sather–Wagstaff metric** ([FrSa07]) is a metric on $\mathcal{G}(R)$ defined, for any classes $[K]$, $[L] \in \mathcal{G}(R)$, as the infimum of the *lengths* of chains of pairwise comparable elements starting with $[K]$ and ending with $[L]$.

10.2 Metrics on Binary Relations

A *binary relation R* on a set *X* is a subset of $X \times X$; it is the arc-set of the directed graph (X, R) with the vertex-set X .

A binary relation *R* which is *symmetric* $((x, y) \in R$ implies $(y, x) \in R$, *reflexive* (all $(x, x) \in R$), and *transitive* $((x, y), (y, z) \in R$ imply $(x, z) \in R$) is called an *equivalence relation* or a *partition* (of *X* into equivalence classes). Any *q-ary sequence* $x = (x_1, \ldots, x_n), q \ge 2$ (i.e., with $0 \le x_i \le q - 1$ for $1 \le i \le n$), corresponds to the partition $\{B_0, \ldots, B_{q-1}\}$ of $V_n = \{1, \ldots, n\}$, where $B_j = \{1 \leq j \leq n : r_j = i\}$ are the equivalence classes $i \leq n : x_i = j$ are the equivalence classes.

A binary relation *R* which is *antisymmetric* $((x, y), (y, x) \in R$ imply $x = y$, reflexive, and transitive is called a *partial order*, and the pair (X, R) is called a *poset* (partially ordered set). A partial order *R* on *X* is denoted also by \leq with $x \leq y$ if and only if $(x, y) \in R$. The order \preceq is called *linear* if any elements $x, y \in X$ are *compatible*, i.e., $x \leq y$ or $y \leq x$.

A poset (L, \leq) is called a *lattice* if every two elements $x, y \in L$ have the *join* $x \vee y$ and the *meet* $x \wedge y$. All partitions of *X* form a lattice \mathbb{P}_X by refinement; it is a sublattice of the lattice (by set-inclusion) of all binary relations.

• **Kemeny distance**

The **Kemeny distance** between binary relations R_1 and R_2 on a set *X* is the **Hamming metric** $|R_1 \triangle R_2|$. It is twice the minimal number of inversions of pairs of adjacent elements of *X* which is necessary to obtain R_2 from R_1 .

If *R*1; *R*² are *partitions*, then the Kemeny distance coincides with the **Mirkin– Tcherny distance**, and $1 - \frac{|R_1 \Delta R_2|}{n(n-1)}$ is the *Rand index*.
If binary relations R_1, R_2 are linear orders (or nerm

If binary relations *R*1; *R*² are *linear orders* (or *permutations*) on the set *X*, then the Kemeny distance coincides with the **Kendall** τ distance (Chap. 11).

• **Drápal–Kepka distance**

The **Drápal–Kepka distance** between distinct *quasigroups* (differing from groups in that they need not be associative) $(X,+)$ and (X, \cdot) is the **Hamming**
metric $[(x, y) : x + y \neq x, y]$ between their *Cayley tables* **metric** $\{(x, y) : x + y \neq x \cdot y\}$ between their *Cayley tables*.
For finite nonisomorphic groups, this distance is (Jy

For finite nonisomorphic groups, this distance is (Ivanyos, Le Gall and Yoshida, 2012) at least $2(\frac{|X|}{3})^2$ with equality (Drápal, 2003) for some 3-groups.

• **Editing metrics between partitions**

Let *X* be a finite set, $|X| = n$, and let *A*, *B* be nonempty subsets of *X*. Let P_X be the set of partitions of *X*, and $P, Q \in P_X$. Let P_1, \ldots, P_q be *blocks* in the partition *P*, i.e., the pairwise disjoint sets such that $X = P_1 \cup \cdots \cup P_q$, $q \ge 1$. Let $P \vee Q$ and $P \wedge Q$ be the *join* and *meet* of *P* and *Q* in the *lattice* \mathbb{P}_x of partitions $P \lor Q$ and $P \land Q$ be the *join* and *meet* of *P* and *Q* in the *lattice* \mathbb{P}_X *of partitions* of *X* of *X*.

Consider the following *editing operations* on partitions (clusterings):

- An *augmentation* transforms a partition *P* of $A \setminus \{B\}$ into a partition of *A* by either including the objects of *B* in a block, or including *B* as a new block;
- An *removal* transforms a partition *P* of *A* into a partition of $A \setminus \{B\}$ by deleting the objects in *B* from each block that contains them;
- A *division* transforms one partition *P* into another by the simultaneous removal of *B* from P_i (where $B \subset P_i$, $B \neq P_i$), and augmentation of *B* as a new block;
- A *merging* transforms one partition *P* into another by the simultaneous removal of *B* from P_i (where $B = P_i$), and augmentation of *B* to P_i (where $i \neq i$;
- A *transfer* transforms one partition *P* into another by the simultaneous removal of *B* from P_i (where $B \subset P_i$), and augmentation of *B* to P_i (where $j \neq i$).

Define (see, say, [Day81]), using above operations, the following metrics on \mathcal{P}_X :

- 1. The minimum number of augmentations and removals of single objects needed to transform *P* into *Q*;
- 2. The minimum number of divisions, mergings, and transfers of single objects needed to transform *P* into *Q*;
- 3. The minimum number of divisions, mergings, and transfers needed to transform *P* into *Q*;
- 4. The minimum number of divisions and mergings needed to transform *P* into *Q*; in fact, it is equal to $|P| + |Q| - 2|P \vee Q|$;
- 5. $\sigma(P) + \sigma(Q) 2\sigma(P \wedge Q)$, where $\sigma(P) = \sum_{P_i \in P} |P_i|(|P_i| 1);$
- 6. $e(P) + e(Q) 2e(P \wedge Q)$, where $e(P) = \log_2 n + \sum_{P_i \in P} \frac{|P_i|}{n} \log_2 \frac{|P_i|}{n}$;

7. $2n = \sum_{P_i \in P} \max_{Q_i \in Q} |P_i \cap Q_i| = \sum_{P_i \in P} \max_{P_i \in P} |P_i \cap Q_i|$ (van Dongen);
- 7. $2n \sum_{P_i \in P} \max_{Q_j \in Q} |P_i \cap Q_j| \sum_{Q_j \in Q} \max_{P_i \in P} |P_i \cap Q_j|$ (van Dongen, 2000).

The **maximum matching distance** (or *partition-distance* as defined in Gusfield, 2002) is (Réignier, 1965) the minimum number of elements that must be moved between the blocks of partition *P* in order to transform it into *Q*.

• **Rossi–Hamming metric**

Given a partition $P = (P_1, \ldots, P_q)$ of a finite set *X*, its *size* is defined as $s(P) = \frac{1}{2} \sum_{1 \leq i \leq q} |P_i|(|P_i| - 1)$. We call the **Rossi–Hamming metric** the metric hermic partitions *P* and *Q* defined in Rossi 2014 as between partitions *P* and *Q*, defined in Rossi, 2014, as

$$
d_{RH}(P,Q) = s(P) + s(Q) - 2s(P \wedge Q).
$$

One has $d_{RH}(P, Q) \leq s(P \vee Q) - s(P \wedge Q)$, where the right-hand side is the *size-based distance* (Rossi, 2011). The inequality is strict only for some noncomparable *P*; *Q*.

10.3 Metrics on Semilattices

Consider a poset (L, \leq) . The *meet* (or *infimum*) $x \wedge y$ (if it exists) of two elements *x* and *y* is the unique element satisfying $x \wedge y \preceq x$, *y*, and $z \preceq x \wedge y$ if $z \preceq x$, *y*. The *join* (or *supremum*) $x \vee y$ (if it exists) is the unique element such that $x, y \leq x \vee y$,

and $x \vee y \preceq z$ if $x, y \preceq z$. A poset (L, \preceq) is called a *lattice* if every its elements x, y have the join $x \vee y$ and the meet $x \wedge y$. A poset is a *meet* (or *lower*) *semilattice* if only the meet-operation is defined. A poset is a *join* (or *upper*) *semilattice* if only the join-operation is defined.

A lattice $\mathbb{L} = (L, \leq, \vee, \wedge)$ is called a *semimodular lattice* if the *modularity relation xMy* is symmetric: *xMy* implies *yMx* for any $x, y \in L$. Here two elements *x* and *y* are said to constitute a *modular pair*, in symbols *xMy*, if $x \wedge (y \vee z) = (x \wedge y) \vee z$. for any $z \leq x$. A lattice $\mathbb L$ in which every pair of elements is modular, is called a *modular lattice*.

Given a lattice \mathbb{L} , a function $v : L \to \mathbb{R}_{\geq 0}$, satisfying $v(x \vee y) + v(x \wedge y) \leq$ $v(x) + v(y)$ for all $x, y \in L$, is called a *subvaluation* on L. A subvaluation v is *isotone* if $v(x) \le v(y)$ whenever $x \le y$, and it is *positive* if $v(x) < v(y)$ whenever $x \le y$, $x \neq y$. A subvaluation v is called a *valuation* if it is isotone and $v(x \vee y) + v(x \wedge y) = 0$ $v(x) + v(y)$ for all $x, y \in L$.

• **Lattice valuation metric**

Let $\mathbb{L} = (L, \leq, \vee, \wedge)$ be a lattice, and let v be an isotone subvaluation on \mathbb{L} . The *lattice subvaluation semimetric* d_v on L is defined by

$$
2v(x \vee y) - v(x) - v(y).
$$

(It can be defined also on some semilattices.) If v is a positive subvaluation on \mathbb{L} , one obtains a metric, called the **lattice subvaluation metric**. If v is a valuation, *d*^v is called the *valuation semimetric* and can be written as

$$
v(x \vee y) - v(x \wedge y) = v(x) + v(y) - 2v(x \wedge y).
$$

If v is a positive valuation on \mathbb{L} , one obtains a metric, called the **lattice valuation metric**, and the lattice is called a **metric lattice**.

An example is the **Hamming distance** $d_H(A, B) = |A \cup B| - |A \cap B|$ on the lattice $(P(X), \cup, \cap)$ of all subsets of the set *X*. Cf. also the **Shannon distance** (Chap. 14), which can be seen as a distance on partitions.

If $L = \mathbb{N}$ (the set of positive integers), $x \vee y = lcm(x, y)$ (least common multiple), $x \wedge y = \gcd(x, y)$ (greatest common divisor), and the positive valuation $v(x) = \ln x$, then $d_v(x, y) = \ln \frac{\text{len}(x, y)}{\text{gcd}(x, y)}$.
This metric can be generalized on :

This metric can be generalized on any *factorial ring* equipped with a positive valuation v such that $v(x) \geq 0$ with equality only for the multiplicative unit of the ring, and $v(xy) = v(x) + v(y)$. Cf. **factorial ring semimetric**.

• **Finite subgroup metric**

Let (G, \cdot, e) be a group. Let $\mathbb{L} = (L, \subset, \cap)$ be the meet semilattice of all ite subgroups of the group (G, \cdot, e) with the meet $X \cap Y$ and the valuation finite subgroups of the group (G, \cdot, e) with the meet $X \cap Y$ and the valuation $v(X) = \ln |X|$ $v(X) = \ln |X|$.

The **finite subgroup metric** is a **valuation metric** on *L* defined by

$$
v(X) + v(Y) - 2v(X \wedge Y) = \ln \frac{|X||Y|}{(|X \cap Y|)^2}.
$$

• **Join semilattice distances**

Let $\mathbb{L} = (L, \prec, \vee)$ be a join semilattice, finite or infinite, such that every maximal chain in every interval [x, y] is finite. For $x \prec y$, the *height h*(x, y) *of y above x* is the least cardinality of a finite maximal (by inclusion) chain of [x, y] minus 1. Call the join semilattice \mathbb{L} *semimodular* if for all $x, y \in L$, whenever there exists an element *z* covered by both *x* and *y*, the join $x \vee y$ covers both *x* and *y*, or, in other words, whenever elements *x*; *y* have a common lower bound *z*, it holds $h(x, x \vee y) \leq h(z, y)$. Any *tree* (i.e., all intervals [x, z] are finite, each pair *x*, *y* of uncomparable elements have a least common upper bound $x \vee y$ but they never have a common lower bound) is semimodular. Consider the following distances on *L*:

 $d_{\text{path}}(x, y)$ is the path metric of the *Hasse diagram* of (L, \leq) , i.e., a graph with vertex-set *L* and an edge between two elements if they are comparable.

 $d_{a,\text{path}}(x, y)$ is the smallest number of the form $h(x, z) + h(y, z)$, where *z* is a common upper bound of *x* and *y*, i.e., it is the **ancestral path distance**; cf. **pedigree-based distances** in Chap. 23. This and next distance reflect the way how Roman civil law and medieval canon law, respectively, measured degree of kinship.

 $d_{\text{max}}(x, y)$ is defined by max $(h(x, x \vee y), h(y, x \vee y))$.

It holds $d_{a, \text{path}}(x, y) \geq d_{\text{path}}(x, y) \geq d_{\text{max}}(x, y)$. Foldes, 2013, proved that $d_{\text{max}}(x, y)$ is a metric if L is semimodular and that $d_{a, \text{path}}(x, y)$ is a metric if and only if \mathbb{L} is semimodular, in which case $d_{a,\text{path}}(x, y) = d_{\text{path}}(x, y)$.

• **Gallery distance of flags**

Let $\mathbb L$ be a lattice. A *chain* C in $\mathbb L$ is a subset of L which is *linearly ordered*, i.e., any two elements of *C* are compatible. A *flag* is a chain in \mathbb{L} which is maximal with respect to inclusion. If $\mathbb L$ is a semimodular lattice, containing a finite flag, then $\mathbb L$ has a unique minimal and a unique maximal element, and any two flags *C*, *D* in \mathbb{L} have the same cardinality, $n + 1$. Then *n* is the *height* of the lattice \mathbb{L} .

Two flags *C*, *D* are called *adjacent* if either they are equal or *D* contains exactly one element not in *C*. A *gallery* from *C* to *D* of length *m* is a sequence of flags $C = C_0, C_1, \ldots, C_m = D$ such that C_{i-1} and C_i are adjacent for $i-1$ $i = 1, \ldots, m$.

A **gallery distance of flags** (see [Abel91]) is a distance on the set of all flags of a semimodular lattice $\mathbb L$ with finite height defined as the minimum of lengths of galleries from *C* to *D*. It can be written as

$$
|C \vee D| - |C| = |C \vee D| - |D|,
$$

where $C \vee D = \{c \vee d : c \in C, d \in D\}$ is the subsemilattice generated by *C* and *D*. This distance is the **gallery metric** of the *chamber system* consisting of flags. • **Scalar and vectorial metrics**

Let $\mathbb{L} = (L, \leq, \text{max}, \text{min})$ be a lattice with the join max{*x*, *y*}, and the meet $\min\{x, y\}$ on a set $L \subset [0, \infty)$ which has a fixed number *a* as the greatest element and is closed under *negation*, i.e., for any $x \in L$, one has $\overline{x} = a - x \in L$.

The **scalar metric** *d* on *L* is defined, for $x \neq y$, by

$$
d(x, y) = \max\{\min\{x, \overline{y}\}, \min\{\overline{x}, y\}\}.
$$

The **scalar metric** d^* on $L^* = L \cup \{*\}, * \notin L$, is defined, for $x \neq y$, by

$$
d^*(x, y) = \begin{cases} d(x, y), & \text{if } x, y \in L, \\ \max\{x, \overline{x}\}, & \text{if } y = *, x \neq *, \\ \max\{y, \overline{y}\}, & \text{if } x = *, y \neq *.\end{cases}
$$

Given a norm $||.||$ on \mathbb{R}^n , $n \geq 2$, the **vectorial metric** on L^n is defined by

$$
||(d(x1,y1),\ldots,d(xn,yn))||,
$$

and the **vectorial metric** on $(L^*)^n$ is defined by

$$
|| (d^*(x_1,y_1), \ldots, d^*(x_n,y_n))||.
$$

The vectorial metric on $L_2^n = \{0, 1\}^n$ with l_1 -norm on \mathbb{R}^n is the sector is the vectorial metric on I^n **Fréchet–Nikodym–Aronszyan distance**. The vectorial metric on *Ln* $\{0, \frac{1}{m-1}, \ldots, \frac{m-2}{m-1}, 1\}^n$ with l_1 -norm on \mathbb{R}^n is the **Sgarro** *m*-valued metric. The vectorial metric on $[0, 1]^n$ with l_1 -norm on \mathbb{R}^n is the **Sgarro fuzzy metric** vectorial metric on $[0, 1]^n$ with l_1 -norm on \mathbb{R}^n is the **Sgarro fuzzy metric**.

If *L* is L_m or [0,1], and $x = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+r})$, $y =$ $(y_1, \ldots, y_n, \ast, \ldots, \ast)$, where \ast stands in *r* places, then the vectorial metric between *x* and *y* is the **Sgarro metric** (see, for example, [CSY01]).

• **Metrics on Riesz space**

A *Riesz space* (or *vector lattice*) is a partially ordered vector space (V_{Ri}, \leq) in which the following conditions hold:

- 1. The vector space structure and the partial order structure are compatible: $x \leq y$ implies $x + z \leq y + z$, and $x > 0$, $\lambda \in \mathbb{R}, \lambda > 0$ implies $\lambda x > 0$;
For any two elements $x, y \in V_0$; there exists the join $x \vee y \in V_0$;
- 2. For any two elements $x, y \in V_{Ri}$ there exists the join $x \vee y \in V_{Ri}$ (in particular, the join and the meet of any finite set of elements from V_{Ri} exist).

The **Riesz norm metric** is a **norm metric** on V_{Ri} defined by

$$
||x-y||_{Ri},
$$

where $||.||_{R_i}$ is a *Riesz norm*, i.e., a *norm* on V_{R_i} such that, for any $x, y \in V_{R_i}$, the inequality $|x| \le |y|$, where $|x| = (-x) \vee (x)$, implies $||x||_{R_i} \le ||y||_{R_i}$.

The space $(V_{Ri},\|.\|_{Ri})$ is called a *normed Riesz space*. In the case of completeness it is called a *Banach lattice*. All Riesz norms on a Banach lattice are equivalent.

An element $e \in V_{Ri}^+ = \{x \in V_{Ri} : x > 0\}$ is called a *strong unit* of V_{Ri} if for $\mathbf{r} \in V_{Ri}$ there exists $\lambda \in \mathbb{R}$ such that $|\mathbf{r}| \leq \lambda e$. If a Riesz space V_{Ri} has a each $x \in V_{Ri}$ there exists $\lambda \in \mathbb{R}$ such that $|x| \leq \lambda e$. If a Riesz space V_{Ri} has a strong unit *e*, then $||x|| = \inf{\lambda \in \mathbb{R} : |x| \leq \lambda e}$ is a Riesz norm, and one obtains on *VRi* a Riesz norm metric

$$
\inf \{ \lambda \in \mathbb{R} : |x - y| \leq \lambda e \}.
$$

A *weak unit* of V_{Ri} is an element *e* of V_{Ri}^+ such that $e \wedge |x| = 0$ implies $x = 0$.
Riesz space V_{Ri} is called *Archimedean* if for any two $x, y \in V^+$ there exists A Riesz space V_{Ri} is called *Archimedean* if, for any two $x, y \in V_{Ri}^+$, there exists a natural number *n*, such that $nx \prec y$. The **uniform metric** on an Archimedean a natural number *n*, such that $nx \leq y$. The **uniform metric** on an Archimedean Riesz space with a weak unit *e* is defined by

$$
\inf\{\lambda\in\mathbb{R}:|x-y|\wedge e\leq\lambda e\}.
$$

• **Machida metric**

For a fixed integer $k \ge 2$ and the set $V_k = \{0, 1, \ldots, k-1\}$, let $O_k^{(n)}$ be the of all *n* arr functions from (V, \mathbb{R}) into V and $O_n = \log_{10} O_n^{(n)}$. Let P_n has set of all *n*-ary functions from $(V_k)^n$ into V_k and $O_k = \bigcup_{n=1}^{\infty} O_k^{(n)}$. Let Pr_k be the set of all *nmiections* pr^n over V_k where $pr^n(Y_k) = Y_k$. $Y_k = Y_k$ for any the set of all *projections* pr_i^n over V_k , where $pr_i^n(x_1, \ldots, x_i, \ldots, x_n) = x_i$ for any $r_i \in V_i$ $x_1,\ldots,x_n \in V_k$.

A *clone over* V_k is a subset C of O_k containing Pr_k and closed under (functional) composition. The set L_k of all clones over V_k is a lattice. The *Post lattice L*₂ defined over Boolean functions, is countable but any L_k with $k \geq 3$ is not. For $n \ge 1$ and a clone $C \in L_k$, let $C^{(n)}$ denote *n-slice* $C \cap O_k^{(n)}$.
For any two clones $C_1, C_2 \in L$. Machida 1998 defined the distri

For any two clones $C_1, C_2 \in L_k$, Machida, 1998, defined the distance to be 0 if $C_1 = C_2$ and $(\min\{n : C_1^{(n)} \neq C_2^{(n)}\})^{-1}$, otherwise. The lattice L_k of clones with this distance is a compact ultrametric space. Cf. **Baire metric** in Chap 11 this distance is a compact ultrametric space. Cf. **Baire metric** in Chap. 11.