
Chapter 1
General Definitions

1.1 Basic Definitions

• Distance
A distance space .X; d/ is a set X (carrier) equipped with a distance d.
A function d W X � X ! R is called a distance (or dissimilarity) on X if, for

all x; y 2 X, it holds:

1. d.x; y/ � 0 (nonnegativity);
2. d.x; y/ D d.y; x/ (symmetry);
3. d.x; x/ D 0 (reflexivity).

In Topology, a distance with d.x; y/ D 0 implying x D y is called a
symmetric.

For any distance d, the function D1 defined for x ¤ y by D1.x; y/ D d.x; y/Cc,
where c D maxx;y;z2X.d.x; y/ � d.x; z/ � d.y; z//, and D.x; x/ D 0, is a metric.
Also, D2.x; y/ D d.x; y/c is a metric for sufficiently small c � 0.

The function D3.x; y/ D inf
P

i d.zi; ziC1/, where the infimum is taken over
all sequences x D z0; : : : ; znC1 D y, is the path semimetric of the complete
weighted graph on X, where, for any x; y 2 X, the weight of edge xy is d.x; y/.

• Similarity
Let X be a set. A function s W X � X ! R is called a similarity on X if s is

nonnegative, symmetric and the inequality

s.x; y/ � s.x; x/

holds for all x; y 2 X, with equality if and only if x D y.
The main transforms used to obtain a distance (dissimilarity) d from a

similarity s bounded by 1 from above are: d D 1 � s, d D 1�s
s , d D p

1 � s,

d D p
2.1 � s2/, d D arccos s, d D � ln s (cf. Chap. 4).

© Springer-Verlag Berlin Heidelberg 2016
M.M. Deza, E. Deza, Encyclopedia of Distances,
DOI 10.1007/978-3-662-52844-0_1

3



4 1 General Definitions

• Semimetric
Let X be a set. A function d W X � X ! R is called a semimetric on X if d is

nonnegative, symmetric, reflexive (d.x; x/ D 0 for x 2 X) and it holds

d.x; y/ � d.x; z/ C d.z; y/

for all x; y; z 2 X (triangle inequality or, sometimes, triangular inequality).
In Topology, it is called a pseudo-metric (or, rarely, semidistance, gauge),

while the term semimetric is sometimes used for a symmetric (a distance d.x; y/

with d.x; y/ D 0 only if x D y); cf. symmetrizable space in Chap. 2.
For a semimetric d, the triangle inequality is equivalent, for each fixed n � 4

and all x; y; z1; : : : ; zn�2 2 X, to the following n-gon inequality

d.x; y/ � d.x; z1/ C d.z1; z2/ C � � � C d.zn�2; y/:

Equivalent rectangle inequality is jd.x; y/ � d.z1; z2/j � d.x; z1/ C Cd.y; z2/.
For a semimetric d on X, define an equivalence relation, called metric

identification, by x � y if d.x; y/ D 0; equivalent points are equidistant
from all other points. Let Œx� denote the equivalence class containing x; then
D.Œx�; Œy�/ D d.x; y/ is a metric on the set fŒx� W x 2 Xg of equivalence classes.

• Metric
Let X be a set. A function d W X � X ! R is called a metric on X if, for all

x; y; z 2 X, it holds:

1. d.x; y/ � 0 (nonnegativity);
2. d.x; y/ D 0 if and only if x D y (identity of indiscernibles);
3. d.x; y/ D d.y; x/ (symmetry);
4. d.x; y/ � d.x; z/ C d.z; y/ (triangle inequality).

In fact, the above condition 1. follows from above 2., 3. and 4.
If 2. is dropped, then d is called (Bukatin, 2002) relaxed semimetric. If 2. is

weakened to “d.x; x/ D d.x; y/ D d.y; y/ implies x D y”, then d is called relaxed
metric. A partial metric is a partial semimetric, which is a relaxed metric.

If above 2. is weakened to “d.x; y/ D 0 implies x D y”, then d is called
(Amini-Harandi, 2012) metric-like function. Any partial metric is metric-like.

• Metric space
A metric space .X; d/ is a set X equipped with a metric d.
It is called a metric frame (or metric scheme, integral) if d is integer-valued.
A pointed metric space (or rooted metric space) .X; d; x0/ is a metric space

.X; d/ with a selected base point x0 2 X.
• Extended metric

An extended metric is a generalization of the notion of metric: the value 1
is allowed for a metric d.

• Quasi-distance
Let X be a set. A function d W X � X ! R is called a quasi-distance on X if d

is nonnegative, and d.x; x/ D 0 holds for all x 2 X. It is also called a premetric
or prametric in Topology and a divergence in Probability.
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If a quasi-distance d satisfies the strong triangle inequality d.x; y/ �
d.x; z/ C d.y; z/, then (Lindenbaum, 1926) it is symmetric and so, a semimetric.
A quasi-semimetric d is a semimetric if and only if (Weiss, 2012) it satisfies the
full triangle inequality jd.x; z/ � d.z; y/j � d.x; z/ � d.x; z/ C d.z; y/.

The distance/metric notions are usually named as weakenings or modifica-
tions of the fundamental notion of metric, using various prefixes and modifiers.
But, perhaps, extended (i.e., the value 1 is allowed) semimetric and quasi-
semimetric should be (as suggested in Lawvere, 2002) used as the basic terms,
since, together with their short mappings, they are best behaved of the metric
space categories.

• Quasi-semimetric
A function d W X � X ! R is called a quasi-semimetric (or hemimetric,

ostensible metric) on X if d.x; x/ D 0, d.x; y/ � 0 and the oriented triangle
inequality

d.x; y/ � d.x; z/ C d.z; y/

holds for all x; y; z 2 X. The set X can be partially ordered by the specialization
order: x � y if and only if d.x; y/ D 0.

A weak quasi-metric is a quasi-semimetric d on X with weak symmetry, i.e.,
for all x; y 2 X the equality d.x; y/ D 0 implies d.y; x/ D 0.

An Albert quasi-metric is a quasi-semimetric d on X with weak definiteness,
i.e., for all x; y 2 X the equality d.x; y/ D d.y; x/ D 0 implies x D y.

Both, weak and Albert, quasi-metric, is a usual quasi-metric.
Any pre-order .X; 	/ (satisfying for all x; y; z 2 X, x 	 x and if x 	 y and

y 	 z then x 	 z) can be viewed as a pre-order extended quasi-semimetric
.X; d/ by defining d.x; y/ D 0 if x 	 y and d.x; y/ D 1, otherwise.

A weightable quasi-semimetric is a quasi-semimetric d on X with relaxed
symmetry, i.e., for all x; y; z 2 X

d.x; y/ C d.y; z/ C d.z; x/ D d.x; z/ C d.z; y/ C d.y; x/;

holds or, equivalently, there exists a weight function w.x/ 2 R on X with
d.x; y/ � d.y; x/ D w.y/ � w.x/ for all x; y 2 X (i.e., d.x; y/ C 1

2
.w.x/ � w.y//

is a semimetric). If d is a weightable quasi-semimetric, then d.x; y/ C w.x/ is a
partial semimetric (moreover, a partial metric if d is an Albert quasi-metric).

• Partial metric
Let X be a set. A nonnegative symmetric function p W X � X ! R is called a

partial metric ([Matt92]) if, for all x; y; z 2 X, it holds:

1. p.x; x/ � p.x; y/, i.e., every self-distance (or extent) p.x; x/ is small;
2. x D y if p.x; x/ D p.x; y/ D p.y; y/ D 0 (T0 separation axiom);
3. p.x; y/ � p.x; z/ C p.z; y/ � p.z; z/ (sharp triangle inequality).

The 1-st above condition means that p is a forward resemblance, cf. Chap. 3.
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If the 2-nd above condition is dropped, the function p is called a partial
semimetric. The nonnegative function p is a partial semimetric if and only if
p.x; y/ � p.x; x/ is a weightable quasi-semimetric with w.x/ D p.x; x/.

If the 1-st above condition is also dropped, the function p is called (Heckmann,
1999) a weak partial semimetric. The nonnegative function p is a weak partial
semimetric if and only if 2p.x; y/ � p.x; x/ � p.y; y/ is a semimetric.

Sometimes, the term partial metric is used when a metric d.x; y/ is defined
only on a subset of the set of all pairs x; y of points.

• Protometric
A function p W X � X ! R is called a protometric if, for all (equivalently, for

all different) x; y; z 2 X, the sharp triangle inequality holds:

p.x; y/ � p.x; z/ C p.z; y/ � p.z; z/:

For finite X, the matrix .. p.x; y/// is (Burkard et al., 1996) weak Monge array.
A strong protometric is a protometric p with p.x; x/ D 0 for all x 2 X. Such

a protometric is exactly a quasi-semimetric, but with the condition p.x; y/ � 0

(for any x; y 2 X) being relaxed to p.x; y/ C p.y; x/ � 0.
A partial semimetric is a symmetric protometric (i.e., p.x; y/ D p.y; x/

with p.x; y/ � p.x; x/ � 0 for all x; y 2 X.) An example of a nonpositive
symmetric protometric is given by p.x; y/ D �.x:y/x0 D 1

2
.d.x; y/ � d.x; x0/ �

d.y; y0//, where .X; d/ is a metric space with a fixed base point x0 2 X; see
Gromov product similarity .x:y/x0 and, in Chap. 4, Farris transform metric
C � .x:y/x0 .

A 0-protometric is a protometric p for which all sharp triangle inequalities
(equivalently, all inequalities p.x; y/ C p.y; x/ � p.x; x/ C p.y; y/ implied by
them) hold as equalities. For any u 2 X, denote by A0

u; A00
u the 0-protometrics p

with p.x; y/ D 1xDu; 1yDu, respectively. The protometrics on X form a flat convex
cone in which the 0-protometrics form the largest linear space. For finite X, a
basis of this space is given by all but one A0

u; A00
u (since

P
u A0

u D P
u A00

u ) and, for
the flat subcone of all symmetric 0-protometrics on X, by all A0

u C A00
u .

A weighted protometric on X is a protometric with a point-weight function
w W X ! R. The mappings p.x; y/ D 1

2
.d.x; y/ C w.x/ C w.y// and

d.x; y/ D 2p.x; y/ � p.x; x/ � p.y; y/, w.x/ D p.x; x/ establish a bijection
between the weighted strong protometrics .d; w/ and the protometrics p on X,
as well as between the weighted semimetrics and the symmetric protometrics.
For example, a weighted semimetric .d; w/ with w.x/ D �d.x; x0/ corresponds
to a protometric �.x:y/x0 . For finite jXj, the above mappings amount to the
representation

2p D d C
X

u2X

p.u; u/.A0
u C A00

u /:

• Quasi-metric
A function d W X � X ! R is called a quasi-metric (or asymmetric metric,

directed metric) on X if d.x; y/ � 0 holds for all x; y 2 X with equality if and
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only if x D y, and for all x; y; z 2 X the oriented triangle inequality

d.x; y/ � d.x; z/ C d.z; y/

holds. A quasi-metric space .X; d/ is a set X equipped with a quasi-metric d.
For any quasi-metric d, the functions maxfd.x; y/; d.y; x/g (called sometimes

bi-distance), minfd.x; y/; d.y; x/g, 1
2
.dp.x; y/ C dp.y; x//

1
p with given p � 1 are

metric generating; cf. Chap. 4.
A non-Archimedean quasi-metric d is a quasi-distance on X which, for all

x; y; z 2 X, satisfies the following strengthened oriented triangle inequality:

d.x; y/ � maxfd.x; z/; d.z; y/g:

• Directed-metric
Let X be a set. A function d W X � X ! R is called (Jegede, 2005) a directed-

metric on X if, for all x; y; z 2 X, it holds d.x; y/ D �d.y; x/ and

jd.x; y/j � jd.x; z/j C jd.z; y/j:

Cf. displacement in Chap. 24 and rigid motion of metric space.
• Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a
fixed C � 0 and for every pair of points x; y 2 X, there exists a sequence
x D x0; x1; : : : ; xt D y for which d.xi�1; xi/ � C for i D 1; : : : ; t, and it holds

d.x; y/ � d.x0; x1/ C d.x1; x2/ C � � � C d.xt�1; xt/ � C:

• Near-metric
Let X be a set. A distance d on X is called a near-metric (or C-near-metric)

if d.x; y/ > 0 for x ¤ y and the C-relaxed triangle inequality

d.x; y/ � C.d.x; z/ C d.z; y//

holds for all x; y; z 2 X and some constant C � 1.
If d.x; y/ > 0 for x ¤ y and the C-asymmetric triangle inequality d.x; y/ �

d.x; z/ C Cd.z; y/ holds, d is a CC1
2

-near-metric.
A C-inframetric is a C-near-metric, while a C-near-metric is a 2C-

inframetric.
Some recent papers use the term quasi-triangle inequality for the above

inequality and so, quasi-metric for the notion of near-metric.
The power transform (Chap. 4) .d.x; y//˛ of any near-metric is a near-metric

for any ˛ > 0. Also, any near-metric d admits a bi-Lipschitz mapping on
.D.x; y//˛ for some semimetric D on the same set and a positive number ˛.
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A near-metric d on X is called a Hölder near-metric if the inequality

jd.x; y/ � d.x; z/j � ˇd˛.y; z/.d.x; y/ C d.x; z//1�˛

holds for some ˇ > 0, 0 < ˛ � 1 and all x; y; z 2 X. Cf. Hölder mapping.
A distance d on set X is said (Greenhoe, 2015) to satisfy .C; p/ power triangle

inequality if, for given positive C; p and any x; y; z 2 X, it holds

d.x; y/ � 2Cj1
2

dp.x; z/ C 1

2
dp.z; y/j 1

p :

• f -quasi-metric
Let f .t; t0/ W R�0 � R�0 ! R�0 be a function with lim.t;t0/!0; f .t; t0/ D

f .0; 0/ D 0.
Let X be a set. A function d W X � X ! R is called (Arutyunov et al., 2016)

a f -quasi-metric on X if d.x; y/ � 0 holds for all x; y 2 X with equality if and
only if x D y, and for all x; y; z 2 X holds the f -triangle inequality

d.x; y/ � f .d.x; z/; d.z; y//:

The f -quasi-metric space .X; d/ with symmetric d and f .t; t0/ D max.t; t0/
is exactly the Fréchet V-space (1906); cf. the partially ordered distance in
Sect. 3.4.

The case f .t; t0/ D t C t0 of a f -quasi-metric corresponds to a quasi-metric.
Given q; q0 � 1, the f -quasi-metric with f .t; t0/ D qt Cq0t0 is called .q; q0/-quasi-
metric.

The inequality d.x; y/ � F.d.x; z/; d.y; z// implies d.x; y/ � f .d.x; z/; d.z; y//

for the function f .t; t0/ D F.t; F.0; t0//.
• Weak ultrametric

A weak ultrametric (or C-inframetric, C-pseudo-distance) d is a distance
on X such that d.x; y/ > 0 for x ¤ y and the C-inframetric inequality

d.x; y/ � C maxfd.x; z/; d.z; y/g

holds for all x; y; z 2 X and some constant C � 1.
The term pseudo-distance is also used, in some applications, for any of

a pseudo-metric, a quasi-distance, a near-metric, a distance which can be
infinite, a distance with an error, etc. Another unsettled term is weak metric:
it is used for both a near-metric and a quasi-semimetric.

• Ultrametric
An ultrametric (or non-Archimedean metric) is (Krasner, 1944) a metric d

on X which satisfies, for all x; y; z 2 X, the following strengthened version of the
triangle inequality (Hausdorff, 1934), called the ultrametric inequality:

d.x; y/ � maxfd.x; z/; d.z; y/g



1.1 Basic Definitions 9

An ultrametric space is also called an isosceles space since at least two of d.x; y/,
d.z; y/, d.x; z/ are equal. An ultrametric on a set V has at most jVj values.

A metric d is an ultrametric if and only if its power transform (see Chap. 4)
d˛ is a metric for any real positive number ˛. Any ultrametric satisfies the
four-point inequality. A metric d is an ultrametric if and only if it is a Farris
transform metric (Chap. 4) of a four-point inequality metric.

• Robinsonian distance
A distance d on X is called a Robinsonian distance (or monotone distance)

if there exists a total order � on X compatible with it, i.e., for x; y; w; z 2 X,

x � y � w � z implies d.y; w/ � d.x; z/;

or, equivalently, for x; y; z 2 X, it holds

x � y � z implies d.x; y/ � maxfd.x; z/; d.z; y/g:

Any ultrametric is a Robinsonian distance.
• Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive metric) if it
satisfies the following strengthened version of the triangle inequality called the
four-point inequality (Buneman, 1974): for all x; y; z; u 2 X

d.x; y/ C d.z; u/ � maxfd.x; z/ C d.y; u/; d.x; u/ C d.y; z/g

holds. Equivalently, among the three sums d.x; y/ C d.z; u/, d.x; z/ C d.y; u/,
d.x; u/ C d.y; z/ the two largest sums are equal.

A metric satisfies the four-point inequality if and only if it is a tree-like
metric.

Any metric, satisfying the four-point inequality, is a Ptolemaic metric and an
L1-metric. Cf. Lp-metric in Chap. 5.

A bush metric is a metric for which all four-point inequalities are equalities,
i.e., d.x; y/ C d.u; z/ D d.x; u/ C d.y; z/ holds for any u; x; y; z 2 X.

• Relaxed four-point inequality metric
A metric d on X satisfies the relaxed four-point inequality if, for all

x; y; z; u 2 X, among the three sums

d.x; y/ C d.z; u/; d.x; z/ C d.y; u/; d.x; u/ C d.y; z/

at least two (not necessarily the two largest) are equal. A metric satisfies this
inequality if and only if it is a relaxed tree-like metric.

• Ptolemaic metric
A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic

inequality

d.x; y/d.u; z/ � d.x; u/d.y; z/ C d.x; z/d.y; u/



10 1 General Definitions

for all x; y; u; z 2 X. A classical result, attributed to Ptolemy, says that this
inequality holds in the Euclidean plane, with equality if and only if the points
x; y; u; z lie on a circle in that order.

A Ptolemaic space is a normed vector space .V; jj:jj/ such that its norm metric
jjx � yjj is a Ptolemaic metric. A normed vector space is a Ptolemaic space if
and only if it is an inner product space (Chap. 5); so, a Minkowskian metric
(Chap. 6) is Euclidean if and only if it is Ptolemaic.

For any metric d, the metric
p

d is Ptolemaic ([FoSc06]).
• ı-hyperbolic metric

Given a number ı � 0, a metric d on a set X is called ı-hyperbolic if it
satisfies the following Gromov ı-hyperbolic inequality (another weakening of
the four-point inequality): for all x; y; z; u 2 X, it holds that

d.x; y/ C d.z; u/ � 2ı C maxfd.x; z/ C d.y; u/; d.x; u/ C d.y; z/g:

A metric space .X; d/ is ı-hyperbolic if and only if for all x0; x; y; z 2 X it holds

.x:y/x0 � minf.x:z/x0 ; .y:z/x0 g � ı;

where .x:y/x0 D 1
2
.d.x0; x/ C d.x0; y/ � d.x; y// is the Gromov product of the

points x and y of X with respect to the base point x0 2 X.
A metric space .X; d/ is 0-hyperbolic exactly when d satisfies the four-point

inequality. Every bounded metric space of diameter D is D-hyperbolic. The n-
dimensional hyperbolic space is ln 3-hyperbolic.

Every ı-hyperbolic metric space is isometrically embeddable into a geodesic
metric space (Bonk and Schramm, 2000).

• Gromov product similarity
Given a metric space .X; d/ with a fixed point x0 2 X, the Gromov product

similarity (or Gromov product, covariance, overlap function) .:/x0 is a similarity
on X defined by

.x:y/x0 D 1

2
.d.x; x0/ C d.y; x0/ � d.x; y//:

The triangle inequality for d implies .x:y/x0 � .x:z/x0 C .y:z/x0 � .z:z/x0

(covariance triangle inequality), i.e., sharp triangle inequality for protomet-
ric �.x:y/x0 .

If .X; d/ is a tree, then .x:y/x0 D d.x0; Œx; y�/. If .X; d/ is a measure
semimetric space, i.e., d.x; y/ D �.x4y/ for a Borel measure � on X, then
.x:y/; D �.x \ y/. If d is a distance of negative type, i.e., d.x; y/ D d2

E.x; y/ for
a subset X of a Euclidean space En, then .x:y/0 is the usual inner product on E

n.
Cf. Farris transform metric dx0 .x; y/ D C � .x:y/x0 in Chap. 4.

• Cross-difference
Given a metric space .X; d/ and quadruple .x; y; z; w/ of its points, the cross-

difference is the real number cd defined by

cd.x; y; z; w/ D d.x; y/ C d.z; w/ � d.x; z/ � d.y; w/:
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In terms of the Gromov product similarity, for all x; y; z; w; p 2 X, it holds

1

2
cd.x; y; z; w/ D �.x:y/p � .z:w/p C .x:z/p C .y:w/pI

in particular, it becomes .x:y/p if y D w D p.
If x ¤ z and y ¤ w, the cross-ratio is the positive number defined by

cr..x; y; z; w/; d/ D d.x; y/d.z; w/

d.x; z/d.y; w/
:

• 2k-gonal distance
A 2k-gonal distance d is a distance on X which satisfies, for all distinct

elements x1; : : : ; xn 2 X, the 2k-gonal inequality
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 0 and

Pn
iD1 jbij D 2k.

• Distance of negative type
A distance of negative type d is a distance on X which is 2k-gonal for any

k � 1, i.e., satisfies the negative type inequality
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 0, and for all distinct elements x1; : : : ; xn 2 X.

A distance can be of negative type without being a semimetric. Cayley proved
that a metric d is an L2-metric if and only if d2 is a distance of negative type.

• .2k C 1/-gonal distance
A .2k C1/-gonal distance d is a distance on X which satisfies, for all distinct

elements x1; : : : ; xn 2 X, the .2k C 1/-gonal inequality
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 1 and

Pn
iD1 jbij D 2k C 1.

The .2k C 1/-gonal inequality with k D 1 is the usual triangle inequality. The
.2k C 1/-gonal inequality implies the 2k-gonal inequality.

• Hypermetric
A hypermetric d is a distance on X which is .2k C 1/-gonal for any k � 1,

i.e., satisfies the hypermetric inequality (Deza, 1960)
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 1, and for all distinct elements x1; : : : ; xn 2 X.
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Any hypermetric is a semimetric, a distance of negative type and, moreover,
it can be isometrically embedded into some n-sphere Sn with squared Euclidean
distance. Any L1-metric (cf. Lp-metric in Chap. 5) is a hypermetric.

• P-metric
A P-metric d is a metric on X with values in Œ0; 1� which satisfies the

correlation triangle inequality

d.x; y/ � d.x; z/ C d.z; y/ � d.x; z/d.z; y/:

The equivalent inequality 1�d.x; y/ � .1�d.x; z//.1�d.z; y// expresses that the
probability, say, to reach x from y via z is either equal to .1 � d.x; z//.1 � d.z; y//

(independence of reaching z from x and y from z), or greater than it (positive
correlation). A metric is a P-metric if and only if it is a Schoenberg transform
metric (Chap. 4).

1.2 Main Distance-Related Notions

• Metric ball
Given a metric space .X; d/, the metric ball (or closed metric ball) with center

x0 2 X and radius r > 0 is defined by B.x0; r/ D fx 2 X W d.x0; x/ � rg,
and the open metric ball with center x0 2 X and radius r > 0 is defined by
B.x0; r/ D fx 2 X W d.x0; x/ < rg. The closed ball is a subset of the closure of the
open ball; it is a proper subset for, say, the discrete metric on X.

The metric sphere with center x0 2 X and radius r > 0 is defined by
S.x0; r/ D fx 2 X W d.x0; x/ D rg.

For the norm metric on an n-dimensional normed vector space .V; jj:jj/, the
metric ball B

n D fx 2 V W jjxjj � 1g is called the unit ball, and the set Sn�1 D
fx 2 V W jjxjj D 1g is called the unit sphere. In a two-dimensional vector space, a
metric ball (closed or open) is called a metric disk (closed or open, respectively).

• Metric hull
Given a metric space .X; d/, let M be a bounded subset of X.
The metric hull H.M/ of M is the intersection of all metric balls containing

M.
The set of surface points S.M/ of M is the set of all x 2 H.M/ such that x lies

on the sphere of one of the metric balls containing M.
• Distance-invariant metric space

A metric space .X; d/ is distance-invariant if all metric balls B.x0; r/ D fx 2
X W d.x0; x/ � rg of the same radius have the same number of elements.

Then the growth rate of a metric space .X; d/ is the function f .n/ D
jB.x; n/j.
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.X; d/ is a metric space of polynomial growth if there are some positive
constants k; C such that f .n/ � Cnk for all n � 0. Cf. graph of polynomial
growth, including the group case, in Chap. 15.

For a metrically discrete metric space .X; d/ (i.e., with a D
infx;y2X;x¤y d.x; y/ > 0), its growth rate was defined also (Gordon–Linial–
Rabinovich, 1998) by

max
x2X;r�2

log jB.x; ar/j
log r

:

• Ahlfors q-regular metric space
A metric space .X; d/ endowed with a Borel measure � is called Ahlfors q-

regular if there exists a constant C � 1 such that for every ball in .X; d/ with
radius r < diam.X; d/ it holds

C�1rq � �.B.x0; r// � Crq:

If such an .X; d/ is locally compact, then the Hausdorff q-measure can
be taken as � and q is the Hausdorff dimension. For two disjoint continua
(nonempty connected compact metric subspaces) C1; C2 of such space .X; d/,
let � be the set of rectifiable curves connecting C1 to C2. The q-modulus between
C1 and C2 is Mq.C1; C2/ D inffRX �q W inf�2�

R
�

� � 1g, where � W X ! R>0 is
any density function on X; cf. the modulus metric in Chap. 6.

The relative distance between C1 and C2 is ı.C1; C2/ D inffd. p1;p2/Wp12C1;p22C2g
minfdiam.C1/;diam.C2/g .

.X; d/ is a q-Loewner space if there are increasing functions f ; g W Œ0; 1/ !
Œ0; 1/ such that for all C1; C2 it holds f .ı.C1; C2// � Mq.C1; C2/ �
g.ı.C1; C2//.

• Connected metric space
A metric space .X; d/ is called connected if it cannot be partitioned into two

nonempty open sets. Cf. connected space in Chap. 2.
The maximal connected subspaces of a metric space are called its connected

components. A totally disconnected metric space is a space in which all
connected subsets are ; and one-point sets.

A path-connected metric space is a connected metric space such that any
two its points can be joined by an arc (cf. metric curve).

• Cantor connected metric space
A metric space .X; d/ is called Cantor (or pre-) connected if, for any two its

points x, y and any � > 0, there exists an �-chain joining them, i.e., a sequence of
points x D z0; z1; : : : ; zn�1; zn D y such that d.zk; zkC1/ � � for every 0 � k � n.
A metric space .X; d/ is Cantor connected if and only if it cannot be partitioned
into two remote parts A and B, i.e., such that inffd.x; y/ W x 2 A; y 2 Bg > 0.

The maximal Cantor connected subspaces of a metric space are called its
Cantor connected components. A totally Cantor disconnected metric is the
metric of a metric space in which all Cantor connected components are one-point
sets.
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• Indivisible metric space
A metric space .X; d/ is called indivisible if it cannot be partitioned into

two parts, neither of which contains an isometric copy of .X; d/. Any indivisible
metric space with jXj � 2 is infinite, bounded and totally Cantor disconnected
(Delhomme–Laflamme–Pouzet–Sauer, 2007).

A metric space .X; d/ is called an oscillation stable metric space (Nguyen
Van Thé, 2006) if, given any � > 0 and any partition of X into finitely many
pieces, the �-neighborhood of one of the pieces includes an isometric copy of
.X; d/.

• Closed subset of metric space
Given a subset M of a metric space .X; d/, a point x 2 X is called a limit (or

accumulation) point of M if any open metric ball B.x; r/ D fy 2 X W d.x; y/ < rg
contains a point x0 2 M with x0 ¤ x. The boundary #.M/ of M is the set of all its
limit points. The closure of M, denoted by cl.M/, is M [ #.M/, and M is called
closed subset, if M D cl.M/, and dense subset, if X D cl.M/.

Every point of M which is not its limit point, is called an isolated point. The
interior int.M/ of M is the set of all its isolated points, and the exterior ext.M/

of M is int.XnM/. A subset M is called nowhere dense if int.cl.M// D ;.
A subset M is called topologically discrete (cf. metrically discrete metric

space) if int.M/ D M and dense-in-itself if int.M/ D ;. A dense-in-itself
subset is called perfect (cf. perfect metric space) if it is closed. The subsets
Irr (irrational numbers) and Q (rational numbers) of R are dense, dense-in-itself
but not perfect. The set Q \ Œ0; 1� is dense-in-itself but not dense in R.

• Open subset of metric space
A subset M of a metric space .X; d/ is called open if, given any point x 2 M,

the open metric ball B.x; r/ D fy 2 X W d.x; y/ < rg is contained in M for some
number r > 0. The family of open subsets of a metric space forms a natural
topology on it. A closed subset is the complement of an open subset.

An open subset is called clopen, if it is closed, and a domain if it is connected.
A door space is a metric (in general, topological) space in which every subset

is either open or closed.
• Metric topology

A metric topology is a topology induced by a metric; cf. equivalent metrics.
More exactly, the metric topology on a metric space .X; d/ is the set of all open
sets of X, i.e., arbitrary unions of (finitely or infinitely many) open metric balls
B.x; r/ D fy 2 X W d.x; y/ < rg, x 2 X, r 2 R, r > 0.

A topological space which can arise in this way from a metric space is called
a metrizable space (Chap. 2). Metrization theorems are theorems which give
sufficient conditions for a topological space to be metrizable.

On the other hand, the adjective metric in several important mathematical
terms indicates connection to a measure, rather than distance, for example, metric
Number Theory, metric Theory of Functions, metric transitivity.

• Equivalent metrics
Two metrics d1 and d2 on a set X are called equivalent if they define the same

topology on X, i.e., if, for every point x0 2 X, every open metric ball with center
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at x0 defined with respect to d1, contains an open metric ball with the same center
but defined with respect to d2, and conversely.

Two metrics d1 and d2 are equivalent if and only if, for every � > 0 and
every x 2 X, there exists ı > 0 such that d1.x; y/ � ı implies d2.x; y/ � � and,
conversely, d2.x; y/ � ı implies d1.x; y/ � �.

All metrics on a finite set are equivalent; they generate the discrete topology.
• Metric betweenness

The metric betweenness of a metric space .X; d/ is (Menger, 1928) the set of
all ordered triples .x; y; z/ such that x; y; z are (not necessarily distinct) points of
X for which the triangle equality d.x; y/ C d.y; z/ D d.x; z/ holds.

• Monometric
A ternary relation R on a set X is called a betweenness relation if .x; y; z/ 2 R

if and only if .z; y; x/ 2 R and .x; y; z/; .x; z; y/ 2 R if and only if y D z.
Given a such relation R, a monometric is (Perez-Fernández et al., 2016) a

function d W X � X ! R�0 with d.x; y/ D 0 if and only if x D y and .x; y; z/
implying d.x; y/ � d.x; z/. Clearly, any metric is a monometric.

Cf. a distance-rationalizable voting rule in Sect. 11.2.
• Closed metric interval

Given two different points x; y 2 X of a metric space .X; d/, the closed metric
interval between them (or line induced by) them is the set of the points z, for
which the triangle equality (or metric betweenness .x; z; y/) holds:

I.x; y/ D fz 2 X W d.x; y/ D d.x; z/ C d.z; y/g:

Cf. inner product space (Chap. 5) and cutpoint additive metric (Chap. 15).
Let Ext.x; y/ D fz W y 2 I.x; z/ n fx; zgg. A CC-line CC.x; y/ is I.x; y/ [

Ext.x; y/ [ Ext.y; x/. Chen–Chvátal, 2008, conjectured that every metric space
on n; n � 2; points, either has at least n distinct CC-lines or consists of a unique
CC-line.

• Underlying graph of a metric space
The underlying graph (or neighborhood graph) of a metric space .X; d/ is a

graph with the vertex-set X and xy being an edge if I.x; y/ D fx; yg, i.e., there is
no third point z 2 X, for which d.x; y/ D d.x; z/ C d.z; y/.

• Distance monotone metric space
A metric space .X; d/ is called distance monotone if for any its closed metric

interval I.x; y/ and u 2 X n I.x; y/, there exists z 2 I.x; xy/ with d.u; z/ > d.x; y/.
• Metric triangle

Three distinct points x; y; z 2 X of a metric space .X; d/ form a metric
triangle if the closed metric intervals I.x; y/; I.y; z/ and I.z; x/ intersect only
in the common endpoints.

• Metric space having collinearity
A metric space .X; d/ has collinearity if for any � > 0 each of its infinite

subsets contains distinct �-collinear (i.e., with d.x; y/ C d.y; z/ � d.x; z/ � �)
points x; y; z.
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• Modular metric space
A metric space .X; d/ is called modular if, for any three different points

x; y; z 2 X, there exists a point u 2 I.x; y/ \ I.y; z/ \ I.z; x/. This should not be
confused with modular distance in Chap. 10 and modulus metric in Chap. 6.

• Median metric space
A metric space .X; d/ is called a median metric space if, for any three points

x; y; z 2 X, there exists a unique point u 2 I.x; y/\I.y; z/\I.z; x/, or, equivalently,

d.x; u/ C d.y; u/ C d.z; u/ D 1

2
..x; y/ C d.y; z/ C d.z; x//:

The point u is called median for fx; y; zg, since it minimises the sum of distances
to them. Any median metric space is an L1-metric; cf. Lp-metric in Chap. 5 and
median graph in Chap. 15.

A metric space .X; d/ is called an antimedian metric space if, for any three
points x; y; z 2 X, there exists a unique point u 2 X maximizing d.x; u/Cd.y; u/C
d.z; u/.

• Metric quadrangle
Four different points x; y; z; u 2 X of a metric space .X; d/ form a metric

quadrangle if x; z 2 I.y; u/ and y; u 2 I.x; z/; then d.x; y/ D d.z; u/ and
d.x; u/ D d.y; z/.

A metric space .X; d/ is called weakly spherical if any three different points
x; y; z 2 X with y 2 I.x; z/, form a metric quadrangle with some point u 2 X.

• Metric curve
A metric curve (or, simply, curve) � in a metric space .X; d/ is a continuous

mapping � W I ! X from an interval I of R into X. A curve is called an arc (or
path, simple curve) if it is injective. A curve � W Œa; b� ! X is called a Jordan
curve (or simple closed curve) if it does not cross itself, and �.a/ D �.b/.

The length of a curve � W Œa; b� ! X is the number l.�/ defined by

l.�/ D supf
X

1�i�n

d.�.ti/; �.ti�1// W n 2 N; a D t0 < t1 < � � � < tn D bg:

A rectifiable curve is a curve with a finite length. A metric space .X; d/, where
every two points can be joined by a rectifiable curve, is called a quasi-convex
metric space (or, specifically, C-quasi-convex metric space) if there exists a
constant C � 1 such that every pair x; y 2 X can be joined by a rectifiable curve
of length at most Cd.x; y/. If C D 1, then this length is equal to d.x; y/, i.e., .X; d/

is a geodesic metric space (Chap. 6).
In a quasi-convex metric space .X; d/, the infimum of the lengths of all

rectifiable curves, connecting x; y 2 X is called the internal metric.
The metric d on X is called the intrinsic metric (and then .X; d/ is called a

length space) if it coincides with the internal metric of .X; d/.
If, moreover, any pair x; y of points can be joined by a curve of length d.x; y/,

the metric d is called strictly intrinsic, and the length space .X; d/ is a geodesic
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metric space. Hopf–Rinow, 1931, showed that any complete locally compact
length space is geodesic and proper. The punctured plane .R2 n f0g; jjx � yjj2/
is locally compact and path-connected but not geodesic: the distance between
.�1; 0/ and .1; 0/ is 2 but there is no geodesic realizing this distance.

The metric derivative of a metric curve � W Œa; b� ! X at a limit point t is

lim
s!0

d.�.t C s/; �.t//

jsj ;

if it exists. It is the rate of change, with respect to t, of the length of the curve at
almost every point, i.e., a generalization of the notion of speed to metric spaces.

• Geodesic
Given a metric space .X; d/, a geodesic is a locally shortest metric curve, i.e.,

it is a locally isometric embedding of R into X; cf. Chap. 6.
A subset S of X is called a geodesic segment (or metric segment, shortest

path, minimizing geodesic) between two distinct points x and y in X, if there exists
a segment (closed interval) [a,b] on the real line R and an isometric embedding
� W Œa; b� ! X, such that �Œa; b� D S, �.a/ D x and �.b/ D y.

A metric straight line is a geodesic which is minimal between any two of its
points; it is an isometric embedding of the whole of R into X. A metric ray and
metric great circle are isometric embeddings of, respectively, the half-line R�0

and a circle S1.0; r/ into X.
A geodesic metric space (Chap. 6) is a metric space in which any two points

are joined by a geodesic segment. If, moreover, the geodesic is unique, the space
is called totally geodesic (or uniquely geodesic).

A geodesic metric space .X; d/ is called geodesically complete if every
geodesic is a subarc of a metric straight line. If .X; d/ is complete, then it
is geodesically complete. The punctured plane .R2 n f0g; jjx � yjj2/ is not
geodesically complete: any geodesic going to 0 is not a subarc of a metric straight
line.

• Length spectrum
Given a metric space .X; d/, a closed geodesic is a map � W S1 ! X which is

locally minimizing around every point of S1.
If .X; d/ is a compact length space, its length spectrum is the collection of

lengths of closed geodesics. Each length is counted with multiplicity equal to the
number of distinct free homotopy classes that contain a closed geodesic of such
length. The minimal length spectrum is the set of lengths of closed geodesics
which are the shortest in their free homotopy class. Cf. the distance list.

• Systole of metric space
Given a compact metric space .X; d/, its systole sys.X; d/ is the length of

the shortest noncontractible loop in X; such a loop is a closed geodesic. So,
sys.X; d/ D 0 exactly if .X; d/ is simply connected. Cf. connected space in
Chap. 2.

If .X; d/ is a graph with path metric, then its systole is referred to as the girth.

If .X; d/ is a closed surface, then its systolic ratio is the ratio SR D sys2.X;d/

area.X;d/
.



18 1 General Definitions

Some tight upper bounds of SR for every metric on a surface are: 2p
3

D �2

(Hermite constant in 2D) for 2-torus (Loewner, 1949), �
2

for the real projective
plane (Pu, 1952) and �p

8
for the Klein bottle (Bavard, 1986). Tight asymptotic

bounds for a surface S of large genus g are 4
9

� log2 g
�g � SR.S/ � log2 g

�g (Katz et al.,
2007).

• Shankar–Sormani radii
Given a geodesic metric space .X; d/, Shankar and Sormani, 2009, defined

its unique injectivity radius Uirad.X/ as the supremum over all r � 0 such
that any two points at distance at most r are joined by a unique geodesic, and its
minimal radius Mrad.X/ as infp2X d. p; MinCut. p//.

Here the minimal cut locus of p MinCut. p/ is the set of points q 2 X for which
there is a geodesic � running from p to q such that � extends past q but is not
minimizing from p to any point past q. If .X; d/ is a Riemannian space, then the
distance function from p is a smooth function except at p itself and the cut locus.
Cf. medial axis and skeleton in Chap. 21.

It holds Uirad.X/ � Mrad.X/ with equality if .X; d/ is a Riemannian space
in which case it is the injectivity radius. It holds Uirad.X/ D 1 for a flat disk
but Mrad.X/ < 1 if .X; d/ is compact and at least one geodesic is extendible.

• Geodesic convexity
Given a geodesic metric space .X; d/ and a subset M 
 X, the set M is

called geodesically convex (or convex) if, for any two points of M, there exists a
geodesic segment connecting them which lies entirely in M; the space is strongly
convex if such a segment is unique and no other geodesic connecting those points
lies entirely in M. The space is called locally convex if such a segment exists for
any two sufficiently close points in M.

For a given point x 2 M, the radius of convexity is rx D supfr � 0 W B.x; r/ 

Mg, where the metric ball B.x; r/ is convex. The point x is called the center
of mass of points y1; : : : ; yk 2 M if it minimizes the function

P
i d.x; yi/

2 (cf.
Fréchet mean); such point is unique if d.yi; yj/ < rx for all 1 � i < j � k.

The injectivity radius of the set M is the supremum over all r � 0 such that
any two points in M at distance � r are joined by unique geodesic segment which
lies in M. The Hawaiian Earring is a compact complete metric space consisting
of a set of circles of radius 1

i for each i 2 N all joined at a common point; its
injectivity radius is 0. It is path-connected but not simply connected.

The set M 
 X is called a totally convex metric subspace of .X; d/ if, for
any two points of M, any geodesic segment connecting them lies entirely in M.

• Busemann convexity
A geodesic metric space .X; d/ is called Busemann convex (or Busemann

space, nonpositively curved in the sense of Busemann) if, for any three points
x; y; z 2 X and midpoints m.x; z/ and m.y; z/ (i.e., d.x; m.x; z// D d.m.x; z/; z/ D
1
2
d.x; z/ and d.y; m.y; z// D d.m.y; z/; z/ D 1

2
d.y; z/), there holds

d.m.x; z/; m.y; z// � 1

2
d.x; y/:



1.2 Main Distance-Related Notions 19

The flat Euclidean strip f.x; y/ 2 R
2 W 0 < x < 1g is Gromov hyperbolic

metric space (Chap. 6) but not Busemann convex one. In a complete Busemann
convex metric space any two points are joined by a unique geodesic segment.

A locally geodesic metric space .X; d/ is called Busemann locally convex if
the above inequality holds locally. Any locally CAT(0) metric space is Busemann
locally convex.

• Menger convexity
A metric space .X; d/ is called Menger convex if, for any different points

x; y 2 X, there exists a third point z 2 X for which d.x; y/ D d.x; z/ C d.z; y/,
i.e., jI.x; y/j > 2 holds for the closed metric interval I.x; y/ D fz 2 X W .x; y/ D
d.x; z/ C d.z; y/g. It is called strictly Menger convex if such a z is unique for all
x; y 2 X.

Geodesic convexity implies Menger convexity. The converse holds for com-
plete metric spaces.

A subset M 
 X is called (Menger, 1928) a d-convex set (or interval-convex
set) if I.x; y/ 
 M for any different points x; y 2 M. A function f W M !
R defined on a d-convex set M 
 X is a d-convex function if for any z 2
I.x; y/ 
 M

f .z/ � d.y; z/

d.x; y/
f .x/ C d.x; z/

d.x; y/
f .y/:

A subset M 
 X is a gated set if for every x 2 X there exists a unique x0 2 M,
the gate, such that d.x; y/ D d.x; x0/ C d.x0; y/ for y 2 M. Any such set is d-
convex.

• Midpoint convexity
A metric space .X; d/ is called midpoint convex (or having midpoints,

admitting a midpoint map) if, for any different points x; y 2 X, there exists a
third point m.x; y/ 2 X for which d.x; m.x; y// D d.m.x; y/; y/ D 1

2
d.x; y/. Such

a point m.x; y/ is called a midpoint and the map m W X � X ! X is called a
midpoint map (cf. midset); this map is unique if m.x; y/ is unique for all x; y 2 X.

For example, the geometric mean
p

xy is the midpoint map for the metric
space .R>0; d.x; y/ D j log x � log yj/.

A complete metric space is geodesic if and only if it is midpoint convex.
A metric space .X; d/ is said to have approximate midpoints if, for any points

x; y 2 X and any � > 0, there exists an �-midpoint, i.e., a point z 2 X such that
d.x; z/ � 1

2
d.x; y/ C � � d.z; y/.

• Ball convexity
A midpoint convex metric space .X; d/ is called ball convex if

d.m.x; y/; z/ � maxfd.x; z/; d.y; z/g

for all x; y; z 2 X and any midpoint map m.x; y/.
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Ball convexity implies that all metric balls are totally convex and, in the case
of a geodesic metric space, vice versa. Ball convexity implies also the uniqueness
of a midpoint map (geodesics in the case of complete metric space).

The metric space .R2; d.x; y/ D P2
iD1

pjxi � yij/ is not ball convex.
• Distance convexity

A midpoint convex metric space .X; d/ is called distance convex if

d.m.x; y/; z/ � 1

2
.d.x; z/ C d.y; z//:

A geodesic metric space is distance convex if and only if the restriction of the
distance function d.x; �/, x 2 X, to every geodesic segment is a convex function.

Distance convexity implies ball convexity and, in the case of Busemann
convex metric space, vice versa.

• Metric convexity
A metric space .X; d/ is called metrically convex if, for any different points

x; y 2 X and any 	 2 .0; 1/, there exists a third point z D z.x; y; 	/ 2 X for which
d.x; y/ D d.x; z/ C d.z; y/ and d.x; z/ D 	d.x; y/.

The space is called strictly metrically convex if such a point z.x; y; 	/ is
unique for all x; y 2 X and any 	 2 .0; 1/.

A metric space .X; d/ is called strongly metrically convex if, for any different
points x; y 2 X and any 	1; 	2 2 .0; 1/, there exists a third point z D z.x; y; 	/ 2
X for which d.z.x; y; 	1/; z.x; y; 	2// D j	1 � 	2jd.x; y/.

Metric convexity implies Menger convexity, and every Menger convex
complete metric space is strongly metrically convex.

A metric space .X; d/ is called nearly convex (Mandelkern, 1983) if, for any
different points x; y 2 X and any 	; � > 0 such that d.x; y/ < 	C�, there exists a
third point z 2 X for which d.x; z/ < 	 and d.z; y/ < �, i.e., z 2 B.x; 	/\B.y; �/.
Metric convexity implies near convexity.

• Takahashi convexity
A metric space .X; d/ is called Takahashi convex if, for any different points

x; y 2 X and any 	 2 .0; 1/, there exists a third point z D z.x; y; 	/ 2 X such that
d.z.x; y; 	/; u/ � 	d.x; u/ C .1 � 	/d.y; u/ for all u 2 X. Any convex subset of a
normed space is a Takahashi convex metric space with z.x; y; 	/ D 	xC.1�	/y.

A set M 
 X is Takahashi convex if z.x; y; 	/ 2 M for all x; y 2 X and any
	 2 Œ0; 1�. In a Takahashi convex metric space, all metric balls, open metric balls,
and arbitrary intersections of Takahashi convex subsets are all Takahashi convex.

• Hyperconvexity
A metric space .X; d/ is called hyperconvex (Aronszajn–Panitchpakdi, 1956)

if it is metrically convex and its metric balls have the infinite Helly property, i.e.,
any family of mutually intersecting closed balls in X has nonempty intersection.
A metric space .X; d/ is hyperconvex if and only if it is an injective metric space.

The spaces ln1, l11 and l21 are hyperconvex but l12 is not.
• Distance matrix

Given a finite metric space .X D fx1; � � � ; xng; d/, its distance matrix is the
symmetric n � n matrix ..dij//, where dij D d.xi; xj/ for any 1 � i; j � n.
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The probability that a symmetric n � n matrix, whose diagonal elements are
zeros and all other elements are uniformly random real numbers, is a distance
matrix is (Mascioni, 2005) 1

2
, 17

120
for n D 3; 4, respectively.

• Magnitude of a finite metric space
Let .X D fx1; : : : ; xng; d/ be a finite metric space, such that there exists a

vector w D fw1; : : : ; wng with ..e�d.xi;xj///w D .1; : : : ; 1/T .
Then the magnitude of .X; d/ is (Leinster–Meckes, 2016) the sum

Pn
iD1 wi.

In fact, the definition of Euler characteristic of a category was generalized to
enriched categories, renamed magnitude, then re-specialized to metric spaces.

• Distance product of matrices
Given n � n matrices A D ..aij// and B D ..bij//, their distance (or min-plus)

product is the n � n matrix C D ..cij// with cij D minn
kD1.aik C bkj/.

It is the usual matrix multiplication in the tropical semiring .R[f1g; min; C/

(Chap. 18). If A is the matrix of weights of an edge-weighted complete graph Kn,
then its direct power An is the (shortest path) distance matrix of this graph.

• Distance list
Given a metric space .X; d/, its distance set and distance list are the set and

the multiset (i.e., multiplicities are counted) and of all pairwise distances.
Two subsets A; B 
 X are said to be homometric sets if they have the same

distance list. Cf. homometric structures in Chap. 24.
A finite metric space is called tie-breaking if all pairwise distances are distinct.

• Degree of distance near-equality
Given a finite metric space .X; d/ with jXj D n � 3, let f D min j d.x;y/

d.a;b/
� 1j

(degree of distance near-equality) and f 0 D min j d.x;y/

d.x;b/
�1j, where the minimum

is over different 2-subsets fx; yg; fa; bg of X and, respectively, over different
x; y; b 2 X. [OpPi14] proved f � 9 log n

n2 and f 0 � 3
n , while f � log n

20n2 and f 0 � 1
2n

for some .X; d/.
• Semimetric cone

The semimetric cone METn is the polyhedral cone in R.n
2/ of all distance

matrices of semimetrics on the set Vn D f1; : : : ; ng. Vershik, 2004, considers
MET1, i.e., the weakly closed convex cone of infinite distance matrices of
semimetrics on N.

The cone of n-point weightable quasi-semimetrics is a projection along an
extreme ray of the semimetric cone MetnC1 (Grishukhin–Deza–Deza, 2011).

The metric fan is a canonical decomposition MFn of METn into subcones
whose faces belong to the fan, and the intersection of any two of them is their
common boundary. Two semimetrics d; d0 2 METn lie in the same cone of the
metric fan if the subdivisions ıd; ıd0 of the polyhedron ı.n; 2/ D convfei C ej W
1 � i < j � ng 
 R

n are equal. Here a subpolytope P of ı.n; 2/ is a cell of the
subdivision ıd if there exists y 2 R

n satisfying yi Cyj D dij if ei Cej is a vertex of
P, and yi C yj > dij, otherwise. The complex of bounded faces of the polyhedron
dual to ıd is the tight span of the semimetric d.
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• Cayley–Menger matrix
Given a finite metric space .X D fx1; � � � ; xng; d/, its Cayley–Menger matrix

is the symmetric .n C 1/ � .n C 1/ matrix

CM.X; d/ D
�

0 e
eT D

�

;

where D D ..d2.xi; xj/// and e is the n-vector all components of which are 1.
The determinant of CM.X; d/ is called the Cayley–Menger determinant. If

.X; d/ is a metric subspace of the Euclidean space E
n�1, then CM.X; d/ is

.�1/n2n�1..n�1/Š/2 times the squared .n�1/-dimensional volume of the convex
hull of X in R

n�1.
• Gram matrix

Given elements v1; : : : ; vk of a Euclidean space, their Gram matrix is the
symmetric k � k matrix VVT , where V D ..vij//, of pairwise inner products of
v1; : : : ; vk:

G.v1; : : : ; vk/ D ..hvi; vji//:

It holds G.v1; : : : ; vk/ D 1
2
..d2

E.v0; vi/ C d2
E.v0; vj/ � d2

E.vi; vj///, i.e., the
inner product h�; �i is the Gromov product similarity of the squared Euclidean
distance d2

E. A k � k matrix ..d2
E.vi; vj/// is called Euclidean distance matrix (or

EDM). It defines a distance of negative type on f1; : : : ; kg; all such matrices
form the (nonpolyhedral) closed convex cone of all such distances.

The determinant of a Gram matrix is called the Gram determinant; it is equal
to the square of the k-dimensional volume of the parallelotope constructed on
v1; : : : vk.

A symmetric k � k real matrix M is said to be positive-semidefinite (PSD) if
xMxT � 0 for any nonzero x 2 R

k and positive-definite (PD) if xMxT > 0. A
matrix is PSD if and only if it is a Gram matrix; it is PD if and only the vectors
v1; : : : ; vk are linearly independent. In Statistics, the covariance matrices and
correlation matrices are exactly PSD and PD ones, respectively.

• Midset
Given a metric space .X; d/ and distinct y; z 2 X, the midset (or bisector) of

points y and z is the set M D fx 2 X W d.x; y/ D d.x; z/g of midpoints x.
A metric space is said to have the n-point midset property if, for every pair of

its points, the midset has exactly n points. The one-point midset property means
uniqueness of the midpoint map. Cf. midpoint convexity.

• Distance k-sector
Given a metric space .X; d/ and disjoint subsets Y; Z 
 X, the bisector of Y

and Z is the set M D fx 2 X W infy2Y d.x; y/ D infz2Z d.x; z/g.
The distance k-sector of Y and Z is the sequence M1; : : : ; Mk�1 of subsets of

X such that Mi, for any 1 � i � k � 1, is the bisector of sets Mi�1 and MiC1,
where Y D M0 and Z D Mk. Asano–Matousek–Tokuyama, 2006, considered the
distance k-sector on the Euclidean plane .R2; l2/; for compact sets Y and Z, the
sets M1; : : : ; Mk�1 are curves partitioning the plane into k parts.
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• Metric basis
Given a metric space .X; d/ and a subset M 
 X, for any point x 2 X, its

metric M-representation is the set f.m; d.x; m// W m 2 Mg of its metric M-
coordinates .m; d.x; m//. The set M is called (Blumenthal, 1953) a metric basis
(or resolving set, locating set, set of uniqueness, set of landmarks) if distinct
points x 2 X have distinct M-representations. A vertex-subset M of a connected
graph is (Okamoto et al., 2009) a local metric basis if adjacent vertices have
distinct M-representations.

The resolving number of a finite .X; d/ is (Chartrand–Poisson–Zhang, 2000)
minimum k such that any k-subset of X is a metric basis.

The vertices of a non degenerate simplex form a metric basis of En, but l1-
and l1-metrics on R

n, n > 1, have no finite metric basis.
The distance similarity is (Saenpholphat–Zhang, 2003) an equivalence

relation on X defined by x � y if d.z; x/ D d.z; y/ for any z 2 X n fx; yg. Any
metric basis contains all or all but one elements from each equivalence class.

1.3 Metric Numerical Invariants

• Resolving dimension
Given a metric space .X; d/, its resolving dimension (or location number

(Slater, 1975), metric dimension (Harary–Melter, 1976)) is the minimum car-
dinality of its metric basis. The upper resolving dimension of .X; d/ is the
maximum cardinality of its metric basis not containing another metric basis
as a proper subset. Adjacency dimension of .X; d/ is the metric dimension of
.X; min.2; d//.

A metric independence number of .X; d/ is (Currie–Oellermann, 2001) the
maximum cardinality I of a collection of pairs of points of X, such that for any
two, (say, .x; y/ and .x0; y0/) of them there is no point z 2 X with d.z; x/ ¤ d.z; y/

and d.z; x0/ ¤ d.z; y0/. A function f W X ! Œ0; 1� is a resolving function of .X; d/

if
P

z2XWd.x;z/¤d.y;z/ f .z/ � 1 for any distinct x; y 2 X. The fractional resolving
dimension of .X; d/ is F D min

P
x2X g.x/, where the minimum is taken over

resolving functions f such that any function f 0 with f 0; f is not resolving.
The partition dimension of .X; d/ is (Chartrand–Salevi–Zhang, 1998) the

minimum cardinality P of its resolving partition, i.e., a partition X D [1�i�kSi

such that no two points have, for 1 � i � k, the same minimal distances to the
set Si.

Related locating a robber game on a graph G D .V; E/ was considered
in 2012 by Seager and by Carraher et al.: cop win on G if every sequence
r D r1; : : : ; rn of robber’s steps (ri 2 V and dpath.ri; riC1/ � 1) is uniquely
identified by a sequence d.r1; c1/; : : : ; d.rn; cn/ of cop’s distance queries for some
c1; : : : ; cn 2 V .
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• Metric dimension
For a metric space .X; d/ and a number � > 0, let C� be the minimal size of

an �-net of .X; d/, i.e., a subset M 
 X with [x2MB.x; �/ D X. The number

dim.X; d/ D lim
�!0

ln C�

� ln �

(if it exists) is called the metric dimension (or Minkowski–Bouligand dimen-
sion, box-counting dimension) of X. If the limit above does not exist, then the
following notions of dimension are considered:

1. dim.X; d/ D lim�!0
ln C�� ln �

called the lower Minkowski dimension (or lower
dimension, lower box dimension, Pontryagin–Snirelman dimension);

2. dim.X; d/ D lim�!0
ln C�� ln �

called the Kolmogorov–Tikhomirov dimension
(or upper dimension, entropy dimension, upper box dimension).

See below examples of other, less prominent, notions of metric dimension.

1. The (equilateral) metric dimension of a metric space is the maximum cardi-
nality of its equidistant subset, i.e., such that any two of its distinct points
are at the same distance. For a normed space, this dimension is equal to the
maximum number of translates of its unit ball that touch pairwise.

2. For any c > 1, the (normed space) metric dimension dimc.X/ of a finite metric
space .X; d/ is the least dimension of a real normed space .V; jj:jj/ such that
there is an embedding f W X ! V with 1

c d.x; y/ � jj f .x/ � f .y/jj � d.x; y/.
3. The (Euclidean) metric dimension of a finite metric space .X; d/ is the least

dimension n of a Euclidean space E
n such that .X; f .d// is its metric sub-

space, where the minimum is taken over all continuous monotone increasing
functions f .t/ of t � 0.

4. The dimensionality of a metric space is �2

2
2 , where � and 
2 are the mean and
variance of its histogram of distance values; this notion is used in Information
Retrieval for proximity searching.

The term dimensionality is also used for the minimal dimension, if it is
finite, of Euclidean space in which a given metric space embeds isometrically.

• Hausdorff dimension
Given a metric space .X; d/ and p; q > 0, let Hq

p D inf
P1

iD1.diam.Ai//
p,

where the infimum is taken over all countable coverings fAig with diameter of Ai

less than q. The Hausdorff q-measure of X is the metric outer measure defined
by

Hp D lim
q!0

Hq
p :

The Hausdorff dimension (or fractal dimension) of .X; d/ is defined by

dimHaus.X; d/ D inffp � 0 W Hp.X/ D 0g:
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Any countable metric space has dimHaus D 0, dimHaus.E
n/ D n, and any

X 
 E
n with Int X ¤ ; has dimHaus D dim. For any totally bounded .X; d/, it

holds

dimtop � dimHaus � dim � dim � dim:

• Rough dimension
Given a metric space .X; d/, its rough n-volume VolnX is lim�!0�

nˇX.�/,
where � > 0 and ˇX.�/ D max jYj for Y � X with d.a; b/ � � if a 2 Y; b 2
Y n fag; ˇX.�/ D 1 is permitted. The rough dimension is defined ([BBI01]) by

dimrough.X; d/ D supfn W VolnX D 1g or, equivalently, D inffn W VolnX D 0g:

The space .X; d/ can be not locally compact. It holds dimHaus � dimrough.
• Packing dimension

Given a metric space .X; d/ and p; q > 0, let Pq
p D sup

P1
iD1.diam.Bi//

p,
where the supremum is taken over all countable packings (by disjoint balls) fBig
with the diameter of Bi less than q.

The packing q-pre-measure is Pp
0 D limq!0 Pq

p. The packing q-measure is
the metric outer measure which is the infimum of packing q-pre-measures of
countable coverings of X. The packing dimension of .X; d/ is defined by

dimpack.X; d/ D inffp � 0 W Pp.X/ D 0g:

• Topological dimension
For any compact metric space .X; d/ its topological dimension (or Lebesgue

covering dimension) is defined by

dimtop.X; d/ D inf
d0

fdimHaus.X; d0/g;

where d0 is any metric on X equivalent to d. So, it holds dimtop � dimHaus. A
fractal (Chap. 18) is a metric space for which this inequality is strict.

This dimension does not exceed also the Assouad–Nagata dimension of
.X; d/.

In general, the topological dimension of a topological space X is the smallest
integer n such that, for any finite open covering of X, there exists a finite open
refinement of it with no point of X belonging to more than n C 1 elements.

The geometric dimension is (Kleiner, 1999; [BBI01]) sup dimtop.Y; d/ over
compact Y 
 X.

• Doubling dimension
The doubling dimension (dimdoubl.X; d/) of a metric space .X; d/ is the

smallest integer n (or 1 if such an n does not exist) such that every metric ball
(or, say, a set of finite diameter) can be covered by a family of at most 2n metric
balls (respectively, sets) of half the diameter.
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If .X; d/ has finite doubling dimension, then d is called a doubling metric and
the smallest integer m such that every metric ball can be covered by a family of
at most m metric balls of half the diameter is called doubling constant.

• Assouad–Nagata dimension
The Assouad–Nagata dimension dimAN.X; d/ of a metric space .X; d/ is the

smallest integer n (or 1 if such an n does not exist) for which there exists a
constant C > 0 such that, for all s > 0, there exists a covering of X by its subsets
of diameter � Cs with every subset of X of diameter � s meeting � n C 1

elements of covering. It holds (LeDonne–Rajala, 2014) dimAN � dimdoubl; but
dimAN D 1, while dimdoubl D 1, holds (Lang–Schlichenmaier, 2014) for some
real trees .X; d/.

Replacing “for all s > 0” in the above definition by “for s > 0 sufficiently
large” or by “for s > 0 sufficiently small”, gives the microscopic mi-dimAN.X; d/

and macroscopic ma-dimAN.X; d/ Assouad–Nagata dimensions, respectively.
Then (Brodskiy et al., 2006) mi-dimAN.X; d/ D dimAN.X; minfd; 1g/ and

ma-dimAN.X; d/ D dimAN.X; maxfd; 1g/ (here maxfd.x; y/; 1g means 0 for
x D y).

The Assouad–Nagata dimension is preserved (Lang–Schlichenmaier, 2004)
under quasi-symmetric mapping but, in general, not under quasi-isometry.

• Vol’berg–Konyagin dimension
The Vol’berg–Konyagin dimension of a metric space .X; d/ is the smallest

constant C > 1 (or 1 if such a C does not exist) for which X carries a doubling
measure, i.e., a Borel measure � such that, for all x 2 X and r > 0, it holds that

�.B.x; 2r// � C�.B.x; r//:

A metric space .X; d/ carries a doubling measure if and only if d is a doubling
metric, and any complete doubling metric carries a doubling measure.

The Karger–Ruhl constant of a metric space .X; d/ is the smallest c > 1 (or
1 if such a c does not exist) such that for all x 2 X and r > 0 it holds

jB.x; 2r/j � cjB.x; r/j:

If c is finite, then the doubling dimension of .X; d/ is at most 4c.
• Hyperbolic dimension

A metric space .X; d/ is called an .R; N/-large-scale doubling if there exists a
number R > 0 and integer N > 0 such that every ball of radius r � R in .X; d/

can be covered by N balls of radius r
2
.

The hyperbolic dimension hypdim.X; d/ of a metric space .X; d/ (Buyalo–
Schroeder, 2004) is the smallest integer n such that for every r > 0 there are
R > 0, an integer N > 0 and a covering of X with the following properties:

1. Every ball of radius r meets at most n C 1 elements of the covering;
2. The covering is an .R; N/-large-scale doubling, and any finite union of its

elements is an .R0; N/-large-scale doubling for some R0 > 0.
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The hyperbolic dimension is 0 if .X; d/ is a large-scale doubling, and it is n if
.X; d/ is n-dimensional hyperbolic space.

Also, hypdim.X; d/ � asdim.X; d/ since the asymptotic dimension
asdim.X; d/ corresponds to the case N D 1 in the definition of hypdim.X; d/.

The hyperbolic dimension is preserved under a quasi-isometry.
• Asymptotic dimension

The asymptotic dimension asdim.X; d/ of a metric space .X; d/ (Gromov,
1993) is the smallest integer n such that, for every r > 0, there exists a constant
D D D.r/ and a covering of X by its subsets of diameter at most D such that
every ball of radius r meets at most n C 1 elements of the covering.

The asymptotic dimension is preserved under a quasi-isometry.
• Width dimension

Let .X; d/ be a compact metric space. For a given number � > 0, the width
dimension Widim�.X; d/ of .X; d/ is (Gromov, 1999) the minimum integer n such
that there exists an n-dimensional polyhedron P and a continuous map f W X ! P
(called an �-embedding) with diam. f �1.y// � � for all y 2 P.

The width dimension is a macroscopic dimension at the scale � � of .X; d/,
because its limit for � ! 0 is the topological dimension of .X; d/.

• Godsil–McKay dimension
We say that a metric space .X; d/ has Godsil–McKay dimension n � 0 if

there exists an element x0 2 X and two positive constants c and C such that the
inequality ckn � jfx 2 X W d.x; x0/ � kgj � Ckn holds for every integer k � 0.

This notion was introduced in [GoMc80] for the path metric of a countable
locally finite graph. They proved that, if the group Z

n acts faithfully and with a
finite number of orbits on the vertices of the graph, then this dimension is n.

• Metric outer measure
A 
-algebra over X is any nonempty collection † of subsets of X, including X

itself, that is closed under complementation and countable unions of its members.
Given a 
-algebra † over X, a measure on .X; †/ is a function � W † !

Œ0; 1� with the following properties:

1. �.;/ D 0;
2. For any sequence fAig of pairwise disjoint subsets of X, �.

P
i Ai/ D P

i �.Ai/

(countable 
-additivity).

The triple .X; †; �) is called a measure space. If M 
 A 2 † and �.A/ D 0

implies M 2 †, then .X; †; �) is called a complete measure space. A measure
� with �.X/ D 1 is called a probability measure.

If X is a topological space (see Chap. 2), then the 
-algebra over X, consisting
of all open and closed sets of X, is called the Borel 
-algebra of X, .X; †/ is
called a Borel space, and a measure on † is called a Borel measure. So, any
metric space .X; d/ admits a Borel measure coming from its metric topology,
where the open set is an arbitrary union of open metric d-balls.

An outer measure on X is a function � W P.X/ ! Œ0; 1� (where P.X/ is the
set of all subsets of X) with the following properties:

1. �.;/ D 0;
2. For any subsets A; B 
 X, A 
 B implies �.A/ � �.B/ (monotonicity);
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3. For any sequence fAig of subsets of X, �.
P

i Ai/ � P
i �.Ai/ (countable

subadditivity).

A subset M 
 X is called �-measurable if �.A/ D �.A [ M/ C �.A n M/ for
any A 
 X. The set †0 of all �-measurable sets forms a 
-algebra over X, and
.X; †0; �) is a complete measure space.

A metric outer measure is an outer measure � defined on the subsets of a
given metric space .X; d/ such that �.A [ B/ D �.A/ C �.B/ for every pair of
nonempty subsets A; B 
 X with positive set-set distance infa2A;b2B d.a; b/. An
example is Hausdorff q-measure; cf. Hausdorff dimension.

• Length of metric space
The Fremlin length of a metric space .X; d/ is its Hausdorff 1-measure

H1.X/.
The Hejcman length lng.M/ of a subset M 
 X of a metric space .X; d/ is

supflng.M0/ W M0 
 M; jM0j < 1g. Here lng.;/ D 0 and, for a finite subset
M0 
 X, lng.M0/ D min

Pn
iD1 d.xi�1; xi/ over all sequences x0; : : : ; xn such that

fxi W i D 0; 1; : : : ; ng D M0.
The Schechtman length of a finite metric space .X; d/ is inf

qPn
iD1 a2

i over
all sequences a1; : : : ; an of positive numbers such that there exists a sequence
X0; : : : ; Xn of partitions of X with following properties:

1. X0 D fXg and Xn D ffxg W x 2 Xg;
2. Xi refines Xi�1 for i D 1; : : : ; n;
3. For i D 1; : : : ; n and B; C 
 A 2 Xi�1 with B; C 2 Xi, there exists a one-to-

one map f from B onto C such that d.x; f .x// � ai for all x 2 B.

• Volume of finite metric space
Given a metric space .X; d/ with jXj D k < 1, its volume (Feige, 2000) is the

maximal .k � 1/-dimensional volume of the simplex with vertices f f .x/ W x 2 Xg
over all metric mappings f W .X; d/ ! .Rk�1; l2/. The volume coincides with the
metric for k D 2. It is monotonically increasing and continuous in the metric d.

• Rank of metric space
The Minkowski rank of a metric space .X; d/ is the maximal dimension of

a normed vector space .V; jj:jj/ such that there is an isometry .V; jj:jj/ ! .X; d/.
The Euclidean rank of a metric space .X; d/ is the maximal dimension of a

flat in it, that is of a Euclidean space En such that there is an isometric embedding
E

n ! .X; d/.
The quasi-Euclidean rank of a metric space .X; d/ is the maximal dimen-

sion of a quasi-flat in it, i.e., of an Euclidean space E
n admitting a quasi-

isometry E
n ! .X; d/. Every Gromov hyperbolic metric space has this rank 1.

• Roundness of metric space
The roundness of a metric space .X; d/ is the supremum of all q such that

d.x1; x2/
q C d.y1; y2/q � d.x1; y1/

q C d.x1; y2/
q C d.x2; y1/

q C d.x2; y2/q

for any four points x1; x2; y1; y2 2 X.
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Every metric space has roundness � 1; it is � 2 if the space has approximate
midpoints. The roundness of Lp-space is p if 1 � p � 2.

The generalized roundness of a metric space .X; d/ is (Enflo, 1969) the
supremum of all q such that, for any 2k � 4 points xi; yi 2 X with 1 � i � k,

X

1�i<j�k

dq.xi; xj/ C dq.yi; yj/ �
X

1�i;j�k

dq.xi; yj/:

Lennard–Tonge–Weston, 1997, have shown that the generalized roundness is the
supremum of q such that d is of q-negative type, i.e., dq is of negative type.

Every CAT(0) space (Chap. 6) has roundness 2, but some of them have
generalized roundness 0 (Lafont–Prassidis, 2006).

• Type of metric space
The Enflo type of a metric space .X; d/ is p if there exists a constant 1 �

C < 1 such that, for every n 2 N and every function f W f�1; 1gn ! X,P
�2f�1;1gn dp. f .�/; f .��// is at most
Cp

Pn
jD1

P
�2f�1;1gn dp. f .�1; : : : ; �j � 1; �j; �j C 1; : : : ; �n/; f .�1; : : : ; �j�1; ��j;

�jC1; : : : ; �n//.
A Banach space .V; jj:jj/ of Enflo type p has Rademacher type p, i.e., for every

x1; : : : ; xn 2 V , it holds

X

�2f�1;1gn

jj
nX

jD1

�jxjjjp � Cp
nX

jD1

jjxjjjp:

Given a metric space .X; d/, a symmetric Markov chain on X is a Markov
chain fZlg1

lD0 on a state space fx1; : : : ; xmg 
 X with a symmetrical transition
m � m matrix ..aij//, such that P.ZlC1 D xj W Zl D xi/ D aij and P.Z0 D xi/ D 1

m
for all integers 1 � i; j � m and l � 0. A metric space .X; d/ has Markov type
p (Ball, 1992) if supT Mp.X; T/ < 1 where Mp.X; T/ is the smallest constant
C > 0 such that the inequality

Edp.ZT ; Z0/ � TCp
Edp.Z1; Z0/

holds for every symmetric Markov chain fZlg1
lD0 on X holds, in terms of expected

value (mean) EŒX� D P
x xp.x/ of the discrete random variable X.

A metric space of Markov type p has Enflo type p.
• Strength of metric space

Given a finite metric space .X; d/ with s different nonzero values of dij D
d.i; j/, its strength is the largest number t such that, for any integers p; q � 0

with p C q � t, there is a polynomial fpq.s/ of degree at most minfp; qg such that
..d2p

ij //..d2q
ij // D .. fpq.d2

ij///.
• Rendez-vous number

Given a metric space .X; d/, its rendez-vous number (or Gross number,
magic number) is a positive real number r.X; d/ (if it exists) defined by the
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property that for each integer n and all (not necessarily distinct) x1; : : : ; xn 2 X
there exists a point x 2 X such that

r.X; d/ D 1

n

nX

iD1

d.xi; x/:

If the number r.X; d/ exists, then it is said that .X; d/ has the average distance
property. Every compact connected metric space has this property. The unit ball
fx 2 V W jjxjj � 1g of a Banach space .V; jj:jj/ has the rendez-vous number 1.

• Wiener-like distance indices
Given a finite subset M of a metric space .X; d/ and a parameter q, the Wiener

polynomial of M (as defined by Hosoya, 1988, for the graphic metric dpath) is

W.MI q/ D 1

2

X

x;y2MW x¤y

qd.x;y/:

It is a generating function for the distance distribution (Chap. 16) of M, i.e., the
coefficient of qi in W.MI q/ is the number jffx; yg 2 M � M W d.x; y/ D igj.

In the main case when M is the vertex-set V of a connected graph G D .V; E/

and d is the path metric of G, the number W.MI 1/ D 1
2

P
x;y2M d.x; y/ is called

the Wiener index of G. This notion is originated (Wiener, 1947) and applied,
together with its many analogs, in Chemistry; cf. chemical distance in Chap. 24.

The hyper-Wiener index is
P

x;y2M.d.x; y/ C d.x; y/2/. The reverse-Wiener

index is 1
2

P
x;y2M.D�d.x; y//, where D is the diameter of M. The complementary

reciprocal Wiener index is 1
2

P
x;y2M.1 C D � d.x; y//�1. The Harary index is

P
x;y2M.d.x; y//�1. The Szeged index and the vertex PI index are

P
e2E nx.e/ny.e/

and
P

e2E.nx.e/Cny.e//, where e D .xy/ and nx.e/=jfz 2 V W d.x; z/ < d.y; z/gj.
Two studied edge-Wiener indices of G are the Wiener index of its line graph

and
P

.xy/;.x0y0/2E maxfd.x; x0/; d.x; y0/; d.y; x0/; d.y; y0/g.
The Gutman–Schultz index, degree distance (Dobrynin–Kochetova, 1994),

reciprocal degree distance and terminal Wiener index are:

X

x;y2M

rxryd.x; y/;
X

x;y2M

d.x; y/.rx C ry/;
X

x;y2M

1

d.x; y/
.rx C ry/;

X

x;y2fz2MWrzD1g
d.x; y/;

where rz is the degree of the vertex z 2 M. The eccentric distance sum (Gupta
et al., 2002) is

P
y2M.maxfd.x; y/ W x 2 Mgdy), where dy is

P
x2M d.x; y/.

The Balaban index is jEj
cC1

P
.yz/2E.

p
dydz/

�1, where c is the number of
primitive cycles. The multiplicative Wiener index is (Das–Gutman, 2016)Q

x;y2M;x¤y d.x; y/.
Given a partition P D fV1; : : : ; Vkg of the vertex-set V , set fP.x/ D i for

x 2 Vi. The colored distance (Dankelman et al., 2001) and the partition distance
(Klavžar, 2016) of G are

P
fP.x/¤fP.y/ d.x; y/ and

P
fP.x/DfP.y/ d.x; y/, respectively.
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Above indices are called (corresponding) Kirchhoff indices if d the resistance
metric (Chap. 15) of G.

The average distance of M is the number 1
jMj.jMj�1/

P
x;y2M d.x; y/. In

general, for a quasi-metric space .X; d/, the numbers
P

x;y2M d.x; y/ and
1

jMj.jMj�1/

P
x;y2M;x¤y

1
d.x;y/

are called, respectively, the transmission and global
efficiency of M.

• Distance polynomial
Given an ordered finite subset M of a metric space .X; d/, let D be the distance

matrix of M. The distance polynomial of M is the characteristic polynomial of
D, i.e., the determinant det.D � 	I/.

Usually, D is the distance matrix of the path metric of a graph. Sometimes,
the distance polynomial is defined as det.	I � D/ or .�1/ndet.D � 	I/.

The roots of the distance polynomial constitute the distance spectrum (or
D-spectrum of D-eigenvalues) of M. Let �max and �min be the largest and the
smallest roots; then �max and �max � �min are called (distance spectral) radius
and spread of M. The distance degree of x 2 M is

P
y2M d.x; y/. The distance

energy of M is the sum of the absolute values of its D-eigenvalues. It is 2�max

if (as, for example, for the path metric of a tree) exactly one D-eigenvalue is
positive.

• s-energy
Given a finite subset M of a metric space .X; d/ and a number s > 0, the

s-energy and 0-energy of M are, respectively, the numbers

X

x;y2M;x¤y

1

ds.x; y/
and

X

x;y2M;x¤y

log
1

d.x; y/
D � log

Y

x;y2M;x¤y

d.x; y/:

The (unnormalized) s-moment of M is the number
P

x;y2M ds.x; y/.
The discrete Riesz s-energy is the s-energy for Euclidean distance d. In

general, let � be a finite Borel probability measure on .X; d/. Then U�
s .x/ DR �.dy/

d.x;y/s is the (abstract) s-potential at a point x 2 X. The Newton gravitational

potential is the case .X; d/ D .R3; jx � yj/, s D 1, for the mass distribution �.
The s-energy of � is E�

s D R
U�

s .x/�.dx/ D R R
�.dx/�.dy/

d.x;y/s , and the s-capacity

of .X; d/ is .inf� E�
s /�1. Cf. the metric capacity.

• Fréchet mean
Given a metric space .X; d/ and a number s > 0, the Fréchet function is

Fs.x/ D EŒds.x; y/�. For a finite subset M of X, this expected value is the mean
Fs.x/ D P

y2M w.y/ds.x; y/, where w.y/ is a weight function on M.
The points, minimizing F1.x/ and F2.x/, are called the Fréchet median (or

weighted geometric median) and Fréchet mean (or Karcher mean), respectively.
If .X; d/ D .Rn; jjx � yjj2/ and the weights are equal, these points are called

the geometric median (or Fermat–Weber point, 1-median) and the centroid (or
geometric center, barycenter), respectively.

The k-median and k-mean of M are the k-sets C minimizing, respectively, the
sums

P
y2M minc2C d.y; c/ D P

y2M d.y; C/ and
P

y2M d2.y; C/.
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Let .X; d/ be the metric space .R>0; j f .x/ � f .y/j/, where f W R>0 ! R is a
given injective and continuous function. Then the Fréchet mean of M 
 R>0 is
the f -mean (or Kolmogorov mean, quasi-arithmetic mean) f �1.

P
x2M f .x/

jMj /. It is the

arithmetic, geometric, harmonic, and power mean if f D x; log.x/; 1
x , and f D xp

(for a given p ¤ 0), respectively. The cases p ! C1; p ! �1 correspond
to maximum and minimum, while p D 2; D 1; ! 0; ! �1 correspond to the
quadratic, arithmetic, geometric and harmonic mean.

Given a completely monotonic (i.e., .�1/kf .k/ � 0 for any k) function f 2 C
1,

the f -potential energy of a finite subset M of .X; d/ is
P

x;y2M;x¤y f .d2.x; y//. The
set M is called (Cohn–Kumar, 2007) universally optimal if it minimizes, among
sets M0 
 X with jM0j D jMj, the f -potential energy for any such f . Among
universally optimal subsets of .Sn�1; jjx � yjj2/, there are the vertex-sets of a
polygon, simplex, cross-polytope, icosahedron, 600-cell, E8 root system.

• Distance-weighted mean
In Statistics, the distance-weighted mean between given data points

x1; : : : ; xn is defined (Dodonov–Dodonova, 2011) by

P
1�i�n wixi

P
1�i�n wi

with wi D n � 1
P

1�j�n jxi � xjj :

The case wi D 1 for all i corresponds to the arithmetic mean.
• Inverse distance weighting

In Numerical Analysis, multivariate (or spatial) interpolation is interpolation
on functions of more than one variable. Inverse distance weighting is a method
(Shepard, 1968) for multivariate interpolation. Let x1; : : : ; xn be interpolating
points (i.e., samples ui D u.xi/ are known), x be an interpolated (unknown) point
and d.x; xi/ be a given distance. A general form of interpolated value u.x/ is

u.x/ D
P

1�i�n wi.x/ui
P

1�i�n wi.x/
; with wi.x/ D 1

.d.x; xi//p
;

where p > 0 (usually p D 2) is a fixed power parameter.
• Transfinite diameter

The n-th diameter Dn.M/ and the n-th Chebyshev constant Cn.M/ of a set
M � X in a metric space .X; d/ are defined (Fekete, 1923, for the complex plane
C) as

Dn.M/ D sup
x1;:::;xn2M

Y

i¤j

d.xi; xj/
1

n.n�1/ and Cn.M/ D inf
x2X

sup
x1;:::;xn2M

nY

jD1

d.x; xj/
1
n :

The number log Dn.M/ (the supremum of the average distance) is called the
n-extent of M. The numbers Dn.M/; Cn.M/ come from the geometric mean
averaging; they also come as the limit case s ! 0 of the s-moment

P
i¤j d.xi; xj/

s

averaging.
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The transfinite diameter (or 1-th diameter) and the 1-th Chebyshev
constant C1.M/ of M are defined as

D1.M/ D lim
n!1 Dn.M/ and C1.M/ D lim

n!1 Cn.M/I

these limits existing since fDn.M/g and fCn.M/g are nonincreasing sequences of
nonnegative real numbers. Define D1.;/ D 0.

The transfinite diameter of a compact subset of C is its conformal radius at
infinity (cf. Chap. 6); for a segment in C, it is 1

4
of its length.

• Metric diameter
The metric diameter (or diameter, width) diam.M/ of a set M � X in a

metric space .X; d/ is defined by

sup
x;y2M

d.x; y/:

The diameter graph of M has, as vertices, all points x 2 M with d.x; y/ D
diam.M/ for some y 2 M; it has, as edges, all pairs of its vertices at distance
diam.M/ in .X; d/. .X; d/ is called a diametrical metric space if any x 2 X has
the antipode, i.e., a unique x0 2 X such that the closed metric interval I.x; x0/ is
X.

The furthest neighbor digraph of M is a directed graph on M, where xy is an
arc (called a furthest neighbor pair) whenever y is at maximal distance from x.

In a metric space endowed with a measure, one says that the isodiametric
inequality holds if the metric balls maximize the measure among all sets with
given diameter. It holds for the volume in Euclidean space but not, for example,
for the Heisenberg metric on the Heisenberg group (Chap. 10).

The k-ameter (Grove–Markvorsen, 1992) is supK�XW jKjDk
1
2

P
x;y2K d.x; y/,

and the k-diameter (Chung–Delorme–Sole, 1999) is supK�XW jKjDk infx;y2KW x¤y

d.x; y/.
Given a property P � X � X of a pair .K; K0/ of subsets of a finite metric

space .X; d/, the conditional diameter (called P-diameter in Balbuena et al.,
1996) is max.K;K0/2P min.x;y/2K�K0 d.x; y/. It is diam.X; d/ if P D f.K; K0/ 2
X � X W jKj D jK0j D 1g. When .X; d/ models an interconnection network,
the P-diameter corresponds to the maximum delay of the messages interchanged
between any pair of clusters of nodes, K and K0, satisfying a given property P of
interest.

• Metric spread
A subset M of a metric space .X; d/ is called Delone set (or separated �-net,

.A; a/-Delone set) if it is bounded (with a finite diameter A D supx;y2M d.x; y/)
and metrically discrete (with a separation a D infx;y2M;x¤y d.x; y/ > 0).

The metric spread (or distance ratio, normalized diameter) of M is the
ratio A

a .
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The aspect ratio (or axial ratio) of a shape is the ratio of its longer and shorter
dimensions, say, the length and diameter of a rod, major and minor axes of a torus
or width and height of a rectangle (image, display, pixel, etc.).

For a mesh M with separation a and covering radius (or mesh norm) c D
supy2X infx2M d.x; y/, the mesh ratio is c

a .
In Physics, the aspect ratio is the ratio of height-to-length scale characteristics.

Cf. the wing’s aspect ratio among aircraft distances in Chap. 29.
Dynamic range DNR is the ratio between the largest and smallest possible

values of a quantity, such as in sound or light signals; cf. SNR distance in
Chap. 21.

• Eccentricity
Given a bounded metric space .X; d/, the eccentricity (or Koenig number) of

a point x 2 X is the number e.x/ D maxy2X d.x; y/.
The numbers D D maxx2X e.x/ and r D minx2X e.x/ are called the diameter

and the radius of .X; d/, respectively. The point z 2 X is called central if
e.z/ D r, peripheral if e.z/ D D, and pseudo-peripheral if for each point x with
d.z; x/ D e.z/ it holds that e.z/ D e.x/. For finite jXj, the average eccentricity is
1

jXj
P

x2X e.x/, and the contour of .X; d/ is the set of points x 2 X such that no
neighbor (closest point) of x has an eccentricity greater than x.

The eccentric digraph (Buckley, 2001) of .X; d/ has, as vertices, all points
x 2 X and, as arcs, all ordered pairs .x; y/ of points with d.x; y/ D e.y/.
The eccentric graph (Akyiama–Ando–Avis, 1976) of .X; d/ has, as vertices, all
points x 2 X and, as edges, all pairs .x; y/ of points at distance minfe.x/; e.y/g.

The super-eccentric graph (Iqbalunnisa–Janairaman–Srinivasan, 1989) of
.X; d/ has, as vertices, all points x 2 X and, as edges, all pairs .x; y/ of points
at distance no less than the radius of .X; d/. The radial graph (Kathiresan–
Marimuthu, 2009) of .X; d/ has, as vertices, all points x 2 X and, as edges,
all pairs .x; y/ of points at distance equal to the radius of .X; d/.

The sets fx 2 X W e.x/ � e.z/ for any z 2 Xg, fx 2 X W e.x/ �
e.z/ for any z 2 Xg and fx 2 X W P

y2X d.x; y/ � P
y2X d.z; y/ for any z 2 Xg

are called, respectively, the metric center (or eccentricity center, center), metric
antimedian (or periphery) and the metric median (or distance center) of .X; d/.

• Radii of metric space
Given a bounded metric space .X; d/ and a set M � X of diameter D,

its metric radius (or radius) Mr, covering radius (or directed Hausdorff
distance from X to M) Cr and remoteness (or Chebyshev radius) Re are the
numbers infx2M supy2M d.x; y/, supx2X infy2M d.x; y/ and infx2X supy2M d.x; y/,
respectively. It holds that D

2
� Re � Mr � D with Mr D D

2
in any injective

metric space. Somemimes, D
2

is called the radius.
For m > 0, a minimax distance design of size m is an m-subset of X having

smallest covering radius. This radius is called the m-point mesh norm of .X; d/.
The packing radius Pr of M is the number supfr W infx;y2M;x¤y d.x; y/ > 2rg.

For m > 0, a maximum distance design of size m is an m-subset of X having
largest packing radius. This radius is the m-point best packing distance on .X; d/.
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• �-net
Given a metric space .X; d/, a subset M 
 X, and a number � > 0, the �-

neighborhood of M is the set M� D [x2MB.x; �/.
The set M is called an �-net (or �-covering, �-approximation) of .X; d/ if

M� D X, i.e., the covering radius of M is at most �.
Let C� denote the �-covering number, i.e., the smallest size of an �-net in

.X; d/. The number lg2 C� is called (Kolmogorov–Tikhomirov, 1959) the metric
entropy (or �-entropy) of .X; d/. It holds P� � C� � P �

2
, where P� denote

the �-packing number of .X; d/, i.e., supfjMj W M 
 X; B.x; �/ \ B.y; �/ D
; for any x; y 2 M; x ¤ yg. The number lg2 P� is called the metric capacity (or
�-capacity) of .X; d/.

• Steiner ratio
Given a metric space .X; d/ and a finite subset V 
 X, let G D .V; E/ be the

complete weighted graph on V with edge-weights d.x; y/ for all x; y 2 V .
Given a tree T, its weight is the sum d.T/ of its edge-weights. A spanning tree

of V is a subset of jVj � 1 edges forming a tree on V . Let MSpTV be a minimum
spanning tree of V , i.e., a spanning tree with the minimal weight d.MSpTV/.

A Steiner tree of V is a tree on Y, V 
 Y 
 X, connecting vertices
from V; elements of Y n V are called Steiner points. Let StMTV be a minimum
Steiner tree of V , i.e., a Steiner tree with the minimal weight d.StMTV/ D
infY�X W V�Y d.MSpTY/. This weight is called the Steiner diversity of V; cf.
diversity in Chap. 3. It is the Steiner distance of set V (Chap. 15) if .X; d/ is
graphic metric space.

The Steiner ratio St.X; d/ of the metric space .X; d/ is defined by

inf
V�X

d.StMTV/

d.MSpTV/
:

Cf. arc routing problems in Chap. 15.
• Chromatic numbers of metric space

Given a metric space .X; d/ and a set D of positive real numbers, the D-
chromatic number of .X; d/ is the standard chromatic number of its D-distance
graph, i.e., the graph .X; E/ with the vertex-set X and the edge-set E D fxy W
d.x; y/ 2 Dg (Chap. 15). Usually, .X; d/ is an lp-space and D D f1g (Benda–
Perles chromatic number) or D D Œ1 � �; 1 C ��.

For a metric space .X; d/, the polychromatic number is the minimum number
of colors needed to color all the points x 2 X so that, for each color class Ci, there
is a distance di such that no two points of Ci are at distance di.

For a metric space .X; d/, the packing chromatic number is the minimum
number of colors needed to color all the points x 2 X so that, for each color class
Ci, no two distinct points of Ci are at distance at most i.

For any integer t > 0, the t-distance chromatic number of a metric space
.X; d/ is the minimum number of colors needed to color all the points x 2 X so
that any two points whose distance is � t have distinct colors. Cf. k-distance
chromatic number in Chap. 15.
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For any integer t > 0, the t-th Babai number of a metric space .X; d/ is the
minimum number of colors needed to color all the points in X so that, for any set
D of positive distances with jDj � t, any two points x; y 2 X with d.x; y/ 2 D
have distinct colors.

• Congruence order of metric space
A metric space .X; d/ has congruence order n if every finite metric space

which is not isometrically embeddable in .X; d/ has a subspace with at most
n points which is not isometrically embeddable in .X; d/. For example, the
congruence order of ln2 is n C 3 (Menger, 1928); it is 4 for the path metric of
a tree.

1.4 Main Mappings of Metric Spaces

• Distance function
In Topology, the term distance function is often used for distance. But, in

general, a distance function (or ray function) is a continuous function on a
metric space .X; d/ (usually, on a Euclidean space E

n) f W X ! R�0 which is
homogeneous, i.e., f .tx/ D tf .x/ for all t � 0 and all x 2 X.

Such function f is called positive if f .x/ > 0 for all x ¤ 0, symmetric if
f .x/ D f .�x/, convex if f .tx C .1 � t/y/ � tf .x/ C .1 � t/f .y/ for any 0 < t < 1

and x ¤ y, and strictly convex if this inequality is strict.
If X D E

n, the set Sf D fx 2 R
n W f .x/ < 1g is star body, i.e., x 2 Sf implies

Œ0; x� 
 Sf . Any star body S corresponds to a unique distance function g.x/ D
inftx2S;t>0

1
t , and S D Sg. The star body is bounded if f is positive, symmetric

about the origin if f is symmetric, convex if f is convex, and strictly convex (i.e.,
the boundary @B does not contain a segment) if f is strictly convex.

For a quadratic distance function of the form fA D xAxT , where A is a real
matrix and x 2 R

n, the matrix A is positive-definite (i.e., the Gram matrix
VVT D ..hvi; vji// of n linearly independent vectors vi D .vi1; : : : ; vin/) if and
only if fA is symmetric and strictly convex function. The homogeneous minimum
of fA is

min. fA/ D inf
x2Znnf0g

fA.x/ D inf
x2Lnf0g

X

1�i�n

x2
i ;

where L D fP xivi W xi 2 Zg is a lattice, i.e., a discrete subgroup of Rn spanning
it. The Hermite constant �n, a central notion in Geometry of Numbers, is the
supremum, over all positive-definite .n � n/-matrices, of min. fA/ det.A/

1
n . It is

known only for 2 � n � 8 and n D 24; cf. systole of metric space.
• Convex distance function

Given a compact convex region B 
 R
n containing the origin O in its interior,

the convex distance function (or Minkowski distance function, Minkowski
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seminorm, gauge) is the function jjPjjB whose value at a point P 2 R
n is the

distance ratio OP
OQ , where Q 2 B is the furthest from O point on the ray OP.

Then dB.x; y/ D jjx � yjjB is the quasi-metric on R
n defined, for x ¤ y, by

inff˛ > 0 W y � x 2 ˛Bg;

and B D fx 2 R
n W dB.0; x/ � 1g with equality only for x 2 @B.

The function jjPjjB is called a polyhedral distance function if B is a n-
polytope, simplicial distance function if it is a n-simplex, and so on.

If B is centrally-symmetric with respect to the origin, then dB is a
Minkowskian metric (Chap. 6) whose unit ball is B. This is the l1-metric if
B is the n-cross-polytope and the l1-metric if B is the n-cube.

• Funk distance
Let B be an nonempty open convex subset of Rn. For any x; y 2 B, denote by

R.x; y/ the ray from x through y. The Funk distance (Funk, 1929) on B is the
quasi-semimetric defined, for any x; y 2 B, as 0 if the boundary @.B/ and R.x; y/

are disjoint, and, otherwise, i.e., if R.x; y/ \ @B D fzg, by

ln
jjx � zjj2
jjy � zjj2 :

The Hilbert projective metric in Chap. 6 is a symmetrization of this distance.
• Metric projection

Given a metric space .X; d/ and a subset M 
 X, an element u0 2 M is called
an element of best approximation (or nearest point) to a given element x 2 X
if d.x; u0/ D infu2M d.x; u/, i.e., if d.x; u0/ is the point-set distance d.x; M/.

A metric projection (or operator of best approximation, nearest point map)
is a multivalued mapping associating to each element x 2 X the set of elements
of best approximation from the set M (cf. distance map).

A Chebyshev set in a metric space .X; d/ is a subset M 
 X containing a
unique element of best approximation for every x 2 X.

A subset M 
 X is called a semi-Chebyshev set if the number of such
elements is at most one, and a proximinal set if this number is at least one.

While the Chebyshev radius (or remoteness; cf. radii of metric space)
of the set M is infx2X supy2M d.x; y/, a Chebyshev center of M is an element
x0 2 X realizing this infimum. Sometimes (say, for a finite graphic metric
space), 1

jMj infx2X
P

y2M d.x; y/ and 1
jMj supx2X

P
y2M d.x; y/ are called proximity

and remoteness of M.
• Distance map

Given a metric space .X; d/ and a subset M 
 X, the distance map is a
function fM W X ! R�0, where fM.x/ D infu2M d.x; u/ is the point-set distance
d.x; M/ (cf. metric projection).
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If the boundary B.M/ of the set M is defined, then the signed distance
function gM is defined by gM.x/ D � infu2B.M/ d.x; u/ for x 2 M, and gM.x/ D
infu2B.M/ d.x; u/, otherwise. If M is a (closed orientable) n-manifold (Chap. 2),
then gM is the solution of the eikonal equation jrgj D 1 for its gradient r.

If X D R
n and, for every x 2 X, there is unique element u.x/ with d.x; M/ D

d.x; u.x// (i.e., M is a Chebyshev set), then jjx�u.x/jj is called a vector distance
function.

Distance maps are used in Robot Motion (M being the set of obstacle points)
and, especially, in Image Processing (M being the set of all or only boundary
pixels of the image). For X D R

2, the graph f.x; fM.x// W x 2 Xg of d.x; M/ is
called the Voronoi surface of M.

• Isometry
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is

called an isometric embedding of X into Y if it is injective and the equality
dY. f .x/; f .y// D dX.x; y/ holds for all x; y 2 X.

An isometry (or congruence mapping) is a bijective isometric embedding.
Two metric spaces are called isometric (or isometrically isomorphic) if there
exists an isometry between them.

A property of metric spaces which is invariant with respect to isometries (com-
pleteness, boundedness, etc.) is called a metric property (or metric invariant).

A path isometry (or arcwise isometry) is a mapping from X into Y (not
necessarily bijective) preserving lengths of curves.

• Rigid motion of metric space
A rigid motion (or, simply, motion) of a metric space .X; d/ is an isometry

of .X; d/ onto itself.
For a motion f , the displacement function df .x/ is d.x; f .x//. The motion

f is called semisimple if infx2X df .x/ D d.x0; f .x0// for some x0 2 X, and
parabolic, otherwise. A semisimple motion is called elliptic if infx2X df .x/ D 0,
and axial (or hyperbolic), otherwise. A motion is called a Clifford translation if
the displacement function df .x/ is a constant for all x 2 X.

• Symmetric metric space
A metric space .X; d/ is called symmetric if, for any point p 2 X, there exists

a symmetry relative to that point, i.e., a motion fp of this metric space such that
fp. fp.x// D x for all x 2 X, and p is an isolated fixed point of fp.

• Homogeneous metric space
A metric space is called homogeneous (or point-homogeneous) if, for any two

points of it, there exists a motion mapping one of the points to the other.
In general, a homogeneous space is a set together with a given transitive group

of symmetries. Moss, 1992, defined similar distance-homogeneous distanced
graph.

A metric space is called ultrahomogeneous space (or highly transitive) if any
isometry between two of its finite subspaces extends to the whole space.

A metric space .X; d/ is called (Grünbaum–Kelly) a metrically homogeneous
metric space if fd.x; z/ W z 2 Xg D fd.y; z/ W z 2 Xg for any x; y 2 X.
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• Flat space
A flat space is any metric space with local isometry to some E

n, i.e., each
point has a neighborhood isometric to an open set in E

n. A space is locally
Euclidean if every point has a neighborhood homeomorphic to an open subset
in E

n.
• Dilation of metric space

Given a metric space .X; d/, its dilation (or r-dilation) is a mapping f W X !
X with d. f .x/; f .y// D rd.x; y/ for some r > 0 and any x 2 X.

• Wobbling of metric space
Given a metric space .X; d/, its wobbling (or r-wobbling) is a mapping f W

X ! X with d.x; f .x// < r for some r > 0 and any x 2 X.
• Paradoxical metric space

Given a metric space .X; d/ and an equivalence relation on the subsets of X,
the space .X; d/ is called paradoxical if X can be decomposed into two disjoint
sets M1, M2 so that M1, M2 and X are pairwise equivalent.

Deuber, Simonovitz and Sós, 1995, introduced this idea for wobbling equiva-
lent subsets M1; M2 
 X, i.e., there is a bijective r-wobbling f W M1 ! M2. For
example, .R2; l2/ is paradoxical for wobbling but not for isometry equivalence.

• Metric cone
A pointed metric space .X; d; x0/ is called a metric cone, if it is isometric to

.	X; d; x0/ for all 	 > 0. A metric cone structure on .X; d; x0/ is a (pointwise)
continuous family ft (t 2 R>0) of dilations of X, leaving the point x0 invariant,
such that d. ft.x/; ft.y// D td.x; y/ for all x; y and ft ı fs D fts. A Banach space has
such a structure for the dilations ft.x/ D tx (t 2 R>0). The Euclidean cone over a
metric space (cf. cone over metric space in Chap. 9) is another example.

The tangent metric cone over a metric space .X; d/ at a point x0 is (for all
dilations tX D .X; td/) the closure of [t>0tX, i.e., of limt!1 tX taken in the
pointed Gromov–Hausdorff topology (cf. Gromov–Hausdorff metric).

The asymptotic metric cone over .X; d/ is its tangent metric cone “at
infinity”, i.e., \t>0tX D limt!0 tX. Cf. boundary of metric space in Chap. 6.

The term metric cone was also used by Bronshtein, 1998, for a convex cone
C equipped with a complete metric compatible with its operations of addition
(continuous on C � C) and multiplication (continuous on C �R�0). by all 	 � 0.

• Metric fibration
Given a complete metric space .X; d/, two subsets M1 and M2 of X are called

equidistant if for each x 2 M1 there exists y 2 M2 with d.x; y/ being equal to the
Hausdorff metric between the sets M1 and M2. A metric fibration of .X; d/ is
a partition F of X into isometric mutually equidistant closed sets.

The quotient metric space X=F inherits a natural metric for which the
distance map is a submetry.

• Homeomorphic metric spaces
Two metric spaces .X; dX/ and .Y; dY/ are called homeomorphic (or topolog-

ically isomorphic) if there exists a homeomorphism from X to Y, i.e., a bijective
function f W X ! Y such that f and f �1 are continuous (the preimage of every
open set in Y is open in X).
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Two metric spaces .X; dX/ and .Y; dY/ are called uniformly isomorphic if
there exists a bijective function f W X ! Y such that f and f �1 are uniformly
continuous. A function g is uniformly continuous if, for any � > 0, there
exists ı > 0 such that, for any x; y 2 X, the inequality dX.x; y/ < ı implies
that dY.g.x/; f .y// < �; a continuous function is uniformly continuous if X is
compact.

• Möbius mapping
Given distinct points x; y; z; w of a metric space .X; d/, their cross-ratio is

cr..x; y; z; w/; d/ D d.x; y/d.z; w/

d.x; z/d.y; w/
> 0:

Given metric spaces .X; dX/ and .Y; dY/, a homeomorphism f W X ! Y is
called a Möbius mapping if, for every distinct points x; y; z; w 2 X, it holds

cr..x; y; z; w/; dX/ D cr.. f .x/; f .y/; f .z/; f .w//; dY /:

A homeomorphism f W X ! Y is called a quasi-Möbius mapping (Väisälä,
1984) if there exists a homeomorphism � W Œ0; 1/ ! Œ0; 1/ such that, for every
quadruple x; y; z; w of distinct points of X, it holds

cr.. f .x/; f .y/; f .z/; f .w//; dY/ � �.cr..x; y; z; w/; dX//:

A metric space .X; d/ is called metrically dense (or �-dense for given � > 1,
Aseev–Trotsenko, 1987) if for any x; y 2 X, there exists a sequence fzi; i 2 Zg
with zi ! x as i ! �1, zi ! y as i ! 1, and log cr..x; zi; ziC1; y/; d/ � log �

for all i 2 Z. The space .X; d/ is �-dense if and only if (Tukia-Väisälä, 1980), for
any x; y 2 X, there exists z 2 X with d.x;y/

6�
� d.x; z/ � d.x;y/

4
.

• Quasi-symmetric mapping
Given metric spaces .X; dX/ and .Y; dY/, a homeomorphism f W X ! Y

is called a quasi-symmetric mapping (Tukia–Väisälä, 1980) if there is a
homeomorphism � W Œ0; 1/ ! Œ0; 1/ such that, for every triple .x; y; z/ of
distinct points of X,

dY. f .x/; f .y//

dY. f .x/; f .z//
� �

dX.x; y/

dX.x; z/
:

Quasi-symmetric mappings are quasi-Möbius, and quasi-Möbius mappings
between bounded metric spaces are quasi-symmetric. In the case f W Rn ! R

n,
quasi-symmetric mappings are exactly the same as quasi-conformal mappings.

• Conformal metric mapping
Given metric spaces .X; dX/ and .Y; dY/ which are domains in R

n, a home-
omorphism f W X ! Y is called a conformal metric mapping if, for any
nonisolated point x 2 X, the limit limy!x

dY . f .x/;f .y//

d.x;y/
exists, is finite and positive.



1.4 Main Mappings of Metric Spaces 41

A homeomorphism f W X ! Y is called a quasi-conformal mapping (or,
specifically, C-quasi-conformal mapping) if there exists a constant C such that

lim
r!0

sup
maxfdY. f .x/; f .y// W dX.x; y/ � rg
minfdY. f .x/; f .y// W dX.x; y/ � rg � C

for each x 2 X. The smallest such constant C is called the conformal dilation.
The conformal dimension of a metric space .X; d/ (Pansu, 1989) is the

infimum of the Hausdorff dimension over all quasi-conformal mappings of
.X; d/ into some metric space. For the middle-third Cantor set on Œ0; 1�, it is 0

but, for any of its quasi-conformal images, it is positive.
• Hölder mapping

Let c; ˛ � 0 be constants. Given metric spaces .X; dX/ and .Y; dY/, a function
f W X ! Y is called the Hölder mapping (or ˛-Hölder mapping if the constant
˛ should be mentioned) if for all x; y 2 X

dY. f .x/; f .y// � c.dX.x; y//˛:

A 1-Hölder mapping is a Lipschitz mapping; 0-Hölder mapping means that
the metric dY is bounded.

• Lipschitz mapping
Let c be a positive constant. Given metric spaces .X; dX/ and .Y; dY/, a

function f W X ! Y is called a Lipschitz (or Lipschitz continuous, c-Lipschitz
if the constant c should be mentioned) mapping if for all x; y 2 X it holds

dY. f .x/; f .y// � cdX.x; y/:

A c-Lipschitz mapping is called a metric mapping if c D 1, and is called a
contraction if c < 1.

• Bi-Lipschitz mapping
Given metric spaces .X; dX/; .Y; dY/ and a constant c > 1, a function f W X !

Y is called a bi-Lipschitz mapping (or c-bi-Lipschitz mapping, c-embedding) if
there exists a number r > 0 such that for any x; y 2 X it holds

rdX.x; y/ � dY. f .x/; f .y// � crdX.x; y/:

Every bi-Lipschitz mapping is a quasi-symmetric mapping.
The smallest c for which f is a c-bi-Lipschitz mapping is called the distortion

of f . Bourgain, 1985, proved that every k-point metric space c-embeds into a
Euclidean space with distortion O.ln k/. Gromov’s distortion for curves is the
maximum ratio of arc length to chord length.

Two metrics d1 and d2 on X are called bi-Lipschitz equivalent metrics if
there are positive constants c and C such that cd1.x; y/ � d2.x; y/ � Cd1.x; y/ for
all x; y 2 X, i.e., the identity mapping is a bi-Lipschitz mapping from .X; d1/ into
.X; d2/. Bi-Lipschitz equivalent metrics are equivalent, i.e., generate the same
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topology but, for example, equivalent L1-metric and L2-metric (cf. Lp-metric in
Chap. 5) on R are not bi-Lipschitz equivalent.

A bi-Lipschitz mapping f W X ! Y is a c-isomorphism f W X ! f .X/.
• c-isomorphism of metric spaces

Given two metric spaces .X; dX/ and .Y; dY/, the Lipschitz norm jj:jjLip on the
set of all injective mappings f W X ! Y is defined by

jj f jjLip D sup
x;y2X;x¤y

dY. f .x/; f .y//

dX.x; y/
:

Two metric spaces X and Y are called c-isomorphic if there exists an injective
mapping f W X ! Y such that jj f jjLipjj f �1jjLip � c.

• Metric Ramsey number
For a given class M of metric spaces (usually, lp-spaces), an integer n � 1,

and a real number c � 1, the metric Ramsey number (or c-metric Ramsey
number) RM.c; n/ is the largest integer m such that every n-point metric space
has a subspace of cardinality m that c-embeds into a member of M (see
[BLMN05]).

The Ramsey number Rn is the minimal number of vertices of a complete graph
such that any edge-coloring with n colors produces a monochromatic triangle.
The following metric analog of Rn was considered in [Masc04]: the least number
of points a finite metric space must contain in order to contain an equilateral
triangle, i.e., to have equilateral metric dimension greater than two.

• Uniform metric mapping
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a

uniform metric mapping if there are two nondecreasing functions g1 and g2

from R�0 to itself with limr!1 gi.r/ D 1 for i D 1; 2, such that the inequality

g1.dX.x; y// � dY. f .x/; f .y// � g2.dX.x; y//

holds for all x; y 2 X. A bi-Lipschitz mapping is a uniform metric mapping with
linear functions g1; g2.

• Metric compression
Given metric spaces .X; dX/ (unbounded) and .Y; dY/, a function f W X ! Y

is a large scale Lipschitz mapping if, for some c > 0; D � 0 and all x; y 2 X,

dY. f .x/; f .y// � cdX.x; y/ C D:

The compression of such a mapping f is �f .r/ D infdX .x;y/�r dY. f .x/; f .y//.
The metric compression of .X; dX/ in .Y; dY/ is defined by

R.X; Y/ D sup
f

flimr!1
log maxf�f .r/; 1g

log r
g;

where the supremum is over all large scale Lipschitz mappings f .
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In the main interesting case—when .Y; dY/ is a Hilbert space and .X; dX/ is a
(finitely generated discrete) group with word metric—R.X; Y/ D 0 if there is no
(Guentner–Kaminker, 2004) uniform metric mapping .X; dX/ ! .Y; dY /, and
R.X; Y/ D 1 for free groups, even if there is no quasi-isometry. Arzhantzeva–
Guba–Sapir, 2006, found groups with 1

2
� R.X; Y/ � 3

4
.

• Quasi-isometry
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a

quasi-isometry (or .C; c/-quasi-isometry) if it holds

C�1dX.x; y/ � c � dY. f .x/; f .y// � CdX.x; y/ C c;

for some C � 1; c � 0, and Y D [x2XBdY . f .x/; c/, i.e., for every point y 2 Y,
there exists x 2 X such that dY.y; f .x// < c

2
. Quasi-isometry is an equivalence

relation on metric spaces; it is a bi-Lipschitz equivalence up to small distances.
Quasi-isometry means that metric spaces contain bi-Lipschitz equivalent Delone
sets.

A quasi-isometry with C D 1 is called a coarse isometry (or rough isometry,
almost isometry). Cf. quasi-Euclidean rank of a metric space.

• Coarse embedding
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called

a coarse embedding if there exist nondecreasing functions �1; �2 W Œ0; 1/ !
Œ0; 1/ with �1.dX.x; x0// � dY. f .x/; f .x0// � �2.dX.x; x0// if x; x0 2 X and
limt!1 �1.t/ D C1.

Metrics d1; d2 on X are called coarsely equivalent metrics if there exist
nondecreasing functions f ; g W Œ0; 1/ ! Œ0; 1/ such that d1 � f .d2/; d2 �
g.d1/.

• Metrically regular mapping
Let .X; dX/ and .Y; dY/ be metric spaces, and let F be a set-valued mapping

from X to Y, having inverse F�1, i.e., with x 2 F�1.y/ if and only if y 2 F.x/.
The mapping F is said to be metrically regular at x for y (Dontchev–Lewis–

Rockafeller, 2002) if there exists c > 0 such that it holds

dX.x; F�1.y// � cdY.y; F.x//

for all .x; y/ close to .x; y/. Here d.z; A/ D infa2A d.z; a/ and d.z; ;/ D C1.
• Contraction

Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a
contraction if the inequality

dY. f .x/; f .y// � cdX.x; y/

holds for all x; y 2 X and some real number c, 0 � c < 1.
Every contraction is a contractive mapping, and it is uniformly continuous.

Banach fixed point theorem (or contraction principle): every contraction from a
complete metric space into itself has a unique fixed point.
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• Contractive mapping
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a

contractive (or strictly short, distance-decreasing) mapping if

dY. f .x/; f .y// < dX.x; y/

holds for all different x; y 2 X. A function f W X ! Y is called a noncontractive
mapping (or dominating mapping) if for all x; y 2 X it holds

dY. f .x/; f .y// � dX.x; y/:

Every noncontractive bijection from a totally bounded metric space onto
itself is an isometry.

• Short mapping
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called

a short (or 1-Lipschitz, nonexpansive, distance-noninreasing, metric) mapping
(or semicontraction) if for all x; y 2 X it holds

dY. f .x/; f .y// � dX.x; y/:

A submetry is a short mapping such that the image of any metric ball is a
metric ball of the same radius.

The set of short mappings f W X ! Y for bounded metric spaces .X; dX/ and
.Y; dY/ is a metric space under the uniform metric supfdY. f .x/; g.x// W x 2 Xg.

Two subsets A and B of a metric space .X; d/ are called (Gowers, 2000)
similar if there exist short mappings f W A ! X, g W B ! X and a small
� > 0 such that every point of A is within � of some point of B, every point of
B is within � of some point of A, and jd.x; g. f .x/// � d.y; f .g.y///j � � for any
x 2 A; y 2 B.

• Category of metric spaces
A category ‰ consists of a class Ob.‰/ of objects and a class Mor.‰/ of

morphisms (or arrows) satisfying the following conditions:

1. To each ordered pair of objects A, B is associated a set ‰.A; B/ of morphisms,
and each morphism belongs to only one set ‰.A; B/;

2. The composition f � g of two morphisms f W A ! B, g W C ! D is defined if
B D C in which case it belongs to ‰.A; D/, and it is associative;

3. Each set ‰.A; A/ contains, as an identity, a morphism idA such that f � idA D f
and idA � g D g for any morphisms f W X ! A and g W A ! Y.

The category of metric spaces, denoted by Met (see [Isbe64]), is a category
which has metric spaces as objects and short mappings as morphisms. A unique
injective envelope exists in this category for every one of its objects; it can be
identified with its tight span. In Met, the monomorphisms are injective short
mappings, and isomorphisms are isometries. Met is a subcategory of the category
which has metric spaces as objects and Lipschitz mappings as morphisms.
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Cf. metric 1-space on the objects of a category in Chap. 3.
• Injective metric space

A metric space .X; d/ is called injective if, for every isometric embedding
f W X ! X0 of .X; d/ into another metric space .X0; d0/, there exists a short
mapping f 0 from X0 into X with f 0 � f D idX , i.e., X is a retract of X0.

Equivalently, X is an absolute retract, i.e., a retract of every metric space into
which it embeds isometrically. A metric space .X; d/ is injective if and only if
it is hyperconvex. Examples of such metric spaces are l21-space, ln1-space, any
real tree and the tight span of a metric space.

• Injective envelope
The injective envelope (introduced first in [Isbe64] as injective hull) is a

generalization of Cauchy completion. Given a metric space .X; d/, it can be
embedded isometrically into an injective metric space . OX; Od/; given any such
isometric embedding f W X ! OX, there exists a unique smallest injective subspace
.X; d/ of . OX; Od/ containing f .X/ which is called the injective envelope of X. It is
isometrically identified with the tight span of .X; d/.

A metric space coincides with its injective envelope if and only if it is
injective.

• Tight extension
An extension .X0; d0/ of a metric space .X; d/ is called a tight extension if, for

every semimetric d00 on X0 satisfying the conditions d00.x1; x2/ D d.x1; x2/ for all
x1; x2 2 X, and d00.y1; y2/ � d0.y1; y2/ for any y1; y2 2 X0, one has d00.y1; y2/ D
d0.y1; y2/ for all y1; y2 2 X0.

The tight span is the universal tight extension of X, i.e., it contains, up to
isometries, every tight extension of X, and it has no proper tight extension itself.

• Tight span
Given a metric space .X; d/ of finite diameter, consider the set RX D f f W X !

Rg. The tight span T.X; d/ of .X; d/ is defined as the set T.X; d/ D f f 2 R
X W

f .x/ D supy2X.d.x; y/ � f .y// for all x 2 Xg, endowed with the metric induced
on T.X; d/ by the sup norm jj f jj D supx2X j f .x/j.

The set X can be identified with the set fhx 2 T.X; d/ W hx.y/ D d.y; x/g or,
equivalently, with the set T0.X; d/ D f f 2 T.X; d/ W 0 2 f .X/g. The injective
envelope .X; d/ of X is isometrically identified with the tight span T.X; d/ by

X ! T.X; d/; x ! hx 2 T.X; d/ W hx.y/ D d. f .y/; x/:

The tight span T.X; d/ of a finite metric space is the metric space
.T.X/; D. f ; g/ D max j f .x/ � g.x/j/, where T.X/ is the set of functions
f W X ! R such that for any x; y 2 X, f .x/ C f .y/ � d.x; y/ and, for each
x 2 X, there exists y 2 X with f .x/ C f .y/ D d.x; y/. The mapping of any x into
the function fx.y/ D d.x; y/ gives an isometric embedding of .X; d/ into T.X; d/.
For example, if X D fx1; x2g, then T.X; d/ is the interval of length d.x1; x2/.
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The tight span of a metric space .X; d/ of finite diameter can be considered as
a polytopal complex of bounded faces of the polyhedron

fy 2 R
n�0 W yi C yj � d.xi; xj/ for 1 � i < j � ng

if, for example, X D fx1; : : : ; xng. The dimension of this complex is called (Dress,
1984) the combinatorial dimension of .X; d/.

• Real tree
A metric space .X; d/ is called (Tits, 1977) a real tree (or R-tree) if, for all

x; y 2 X, there exists a unique arc from x to y, and this arc is a geodesic segment.
So, an R-tree is a (uniquely) arcwise connected metric space in which each arc
is isometric to a subarc of R. R-tree is not related to a metric tree in Chap. 17.

A metric space .X; d/ is a real tree if and only if it is path-connected and
Gromov 0-hyperbolic (i.e., satisfies the four-point inequality). The plane R

2

with the Paris metric or lift metric (Chap. 19) are examples of an R-tree.
Real trees are exactly tree-like metric spaces which are geodesic; they are

injective metric spaces among tree-like spaces. Tree-like metric spaces are by
definition metric subspaces of real trees.

If .X; d/ is a finite metric space, then the tight span T.X; d/ is a real tree and
can be viewed as an edge-weighted graph-theoretical tree.

A metric space is a complete real tree if and only if it is hyperconvex and any
two points are joined by a metric segment.

A geodesic metric space .X; d/ is called (Druţu–Sapir, 2005) tree-graded with
respect to a collection P of connected proper subsets with jP \ P0j � 1 for
any distinct P; P0 2 P , if every its simple loop composed of three geodesics is
contained in one P 2 P . R-trees are tree-graded with respect to the empty set.

1.5 General Distances

• Discrete metric
Given a set X, the discrete metric (or trivial metric, sorting distance,

drastic distance, Dirac distance, overlap) is a metric on X, defined by d.x; y/ D
1 for all distinct x; y 2 X and d.x; x/ D 0. Cf. the much more general notion of a
(metrically or topologically) discrete metric space.

• Indiscrete semimetric
Given a set X, the indiscrete semimetric d is a semimetric on X defined by

d.x; y/ D 0 for all x; y 2 X.
• Equidistant metric

Given a set X and a positive real number t, the equidistant metric d is a metric
on X defined by d.x; y/ D t for all distinct x; y 2 X (and d.x; x/ D 0).

• .1; 2/ � B-metric
Given a set X, the .1; 2/ � B-metric d is a metric on X such that, for any

x 2 X, the number of points y 2 X with d.x; y/ D 1 is at most B, and all other
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distances are equal to 2. The .1; 2/�B-metric is the truncated metric of a graph
with maximal vertex degree B.

• Permutation metric
Given a finite set X, a metric d on it is called a permutation metric (or linear

arrangement metric) if there exists a bijection ! W X ! f1; : : : ; jXjg such that

d.x; y/ D j!.x/ � !.y/j

holds for all x; y 2 X. Even–Naor–Rao–Schieber, 2000, defined a more general
spreading metric, i.e., any metric d on f1; : : : ; ng such that

P
y2M d.x; y/ �

jMj.jMjC2/

4
for any 1 � x � n and M � f1; : : : ; ng n fxg with jMj � 2.

• Induced metric
Given a metric space .X; d/ and a subset X0 
 X, an induced metric (or

submetric) is the restriction d0 of d to X0. A metric space .X0; d0/ is called a
metric subspace of .X; d/, and .X; d/ is called a metric extension of .X0; d0/.

• Katĕtov mapping
Given a metric space .X; d/, the mapping f W X ! R is a Katĕtov mapping if

j f .x/ � f .y/j � d.x; y/ � f .x/ C f .y/

for any x; y 2 X, i.e., setting d.x; z/ D f .x/ defines a one-point metric extension
.X [ fzg; d/ of .X; d/.

The set E.X/ of Katĕtov mappings on X is a complete metric space with
metric D. f ; g/ D supx2X j f .x/ � g.x/j; .X; d/ embeds isometrically in it via the
Kuratowski mapping x ! d.x; :/, with unique extension of each isometry of X to
one of E.X/.

• Dominating metric
Given metrics d and d1 on a set X, d1 dominates d if d1.x; y/ � d.x; y/ for all

x; y 2 X. Cf. noncontractive mapping (or dominating mapping).
• Barbilian semimetric

Given sets X and P, the function f W P � X ! R>0 is called an influence (of P
over X) if for any x; y 2 X the ratio gxy. p/ D f . p;x/

f . p;y/
has a maximum when p 2 P.

The Barbilian semimetric is defined on the set X by

ln
maxp2P gxy. p/

minp2P gxy. p/

for any x; y 2 X. Barbilian, 1959, proved that the above function is well defined
(moreover, minp2P gxy. p/ D 1

maxp2P gyx. p/
) and is a semimetric. Also, it is a metric

if the influence f is effective, i.e., there is no pair x; y 2 X such that gxy. p/ is
constant for all p 2 P. Cf. a special case Barbilian metric in Chap. 6.

• Metric transform
A metric transform is a distance obtained as a function of a given metric (cf.

Chap. 4).
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• Complete metric
Given a metric space .X; d/, a sequence fxng, xn 2 X, is said to have

convergence to x� 2 X if limn!1 d.xn; x�/ D 0, i.e., for any � > 0, there exists
n0 2 N such that d.xn; x�/ < � for any n > n0. Any sequence converges to at
most one limit in X; it is not so, in general, if d is a semimetric.

A sequence fxngn, xn 2 X, is called a Cauchy sequence if, for any � > 0, there
exists n0 2 N such that d.xn; xm/ < � for any m; n > n0.

A metric space .X; d/ is called a complete metric space if every Cauchy
sequence in it converges. In this case the metric d is called a complete metric.
An example of an incomplete metric space is .N; d.m; n/ D jm�nj

mn /.
• Cauchy completion

Given a metric space .X; d/, its Cauchy completion is a metric space .X�; d�/

on the set X� of all equivalence classes of Cauchy sequences, where the sequence
fxngn is called equivalent to fyngn if limn!1 d.xn; yn/ D 0. The metric d� is
defined by

d�.x�; y�/ D lim
n!1 d.xn; yn/;

for any x�; y� 2 X�, where fzngn is any element in the equivalence class z�.
The Cauchy completion .X�; d�/ is a unique, up to isometry, complete metric

space, into which the metric space .X; d/ embeds as a dense metric subspace.
The Cauchy completion of the metric space .Q; jx � yj/ of rational numbers

is the real line .R; jx � yj/. A Banach space is the Cauchy completion of a
normed vector space .V; jj:jj/ with the norm metric jjx � yjj. A Hilbert space
corresponds to the case an inner product norm jjxjj D phx; xi.

• Perfect metric space
A complete metric space .X; d/ is called perfect if every point x 2 X is a limit

point, i.e., jB.x; r/ D fy 2 X W d.x; y/ < rgj > 1 holds for any r > 0.
A topological space is a Cantor space (i.e., homeomorphic to the Cantor set

with the natural metric jx � yj) if and only if it is nonempty, perfect, totally
disconnected, compact and metrizable. The totally disconnected countable
metric space .Q; jx�yj/ of rational numbers also consists only of limit points but
it is not complete and not locally compact.

Every proper metric ball of radius r in a metric space has diameter at most
2r. Given a number 0 < c � 1, a metric space is called a c-uniformly perfect
metric space if this diameter is at least 2cr. Cf. the radii of metric space.

• Metrically discrete metric space
A metric space .X; d/ is called metrically (or uniformly) discrete if there

exists a number r > 0 such that B.x; r/ D fy 2 X W d.x; y/ < rg D fxg for every
x 2 X.

.X; d/ is a topologically discrete metric space (or a discrete metric space) if
the underlying topological space is discrete, i.e., each point x 2 X is an isolated
point: there exists a number r.x/ > 0 such that B.x; r.x// D fxg. For X D f 1

n W
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n D 1; 2; 3; : : : g, the metric space .X; jx � yj/ is topologically but not metrically
discrete. Cf. translation discrete metric in Chap. 10.

Alternatively, a metric space .X; d/ is called discrete if any of the following
holds:

1. (Burdyuk–Burdyuk 1991) it has a proper isolated subset, i.e., M 
 X with
inffd.x; y/ W x 2 M; y … Mg > 0 (any such space admits a unique
decomposition into continuous, i.e., nondiscrete, components);

2. (Lebedeva–Sergienko–Soltan, 1984) for any distinct points x; y 2 X, there
exists a point z of the closed metric interval I.x; y/ with I.x; z/ D fx; zg;

3. a stronger property holds: for any two distinct points x; y 2 X, every sequence
of points z1; z2; : : : with zk 2 I.x; y/ but zkC1 2 I.x; zk/ n fzkg for k D 1; 2; : : :

is a finite sequence.

• Locally finite metric space
Let .X; d/ be a metrically discrete metric space. Then it is called locally

finite if for every x 2 X and every r � 0, the ball jB.x; r/j is finite.
If, moreover, jB.x; r/j � C.r/ for some number C.r/ depending only on r,

then .X; d/ is said to have bounded geometry.
• Bounded metric space

A metric (moreover, a distance) d on a set X is called bounded if there exists
a constant C > 0 such that d.x; y/ � C for any x; y 2 X.

For example, given a metric d on X, the metric D on X, defined by D.x; y/ D
d.x;y/

1Cd.x;y/
, is bounded with C D 1.

A metric space .X; d/ with a bounded metric d is called a bounded metric
space.

• Totally bounded metric space
A metric space .X; d/ is called totally bounded if, for every � > 0, there exists

a finite �-net, i.e., a finite subset M 
 X with the point-set distance d.x; M/ < �

for any x 2 X (cf. totally bounded space in Chap. 2).
Every totally bounded metric space is bounded and separable. A metric

space is totally bounded if and only if its Cauchy completion is compact.
• Separable metric space

A metric space .X; d/ is called separable if it contains a countable dense
subset M, i.e., a subset with which all its elements can be approached: X is the
closure cl.M/ (M together with all its limit points).

A metric space is separable if and only if it is second-countable (cf. Chap. 2).
• Compact metric space

A compact metric space (or metric compactum) is a metric space in
which every sequence has a Cauchy subsequence, and those subsequences are
convergent. A metric space is compact if and only if it is totally bounded and
complete.

Every bounded and closed subset of a Euclidean space is compact. Every finite
metric space is compact. Every compact metric space is second-countable.

A continuum is a nonempty connected metric compactum.
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• Proper metric space
A metric space is called proper (or finitely compact, having the Heine–Borel

property) if every its closed metric ball is compact. Any such space is complete.
• UC metric space

A metric space is called a UC metric space (or Atsuji space) if any continuous
function from it into an arbitrary metric space is uniformly continuous.

Every such space is complete. Every metric compactum is a UC metric
space.

• Metric measure space
A metric measure space (or mm-space, metric triple) is a triple .X; d; �/,

where .X; d/ is a Polish (i.e., complete separable; cf. Chap. 2) metric space and
.X; †; �/ is a probability measure space (�.X/ D 1) with † being a Borel 
-
algebra of all open and closed sets of the metric topology (Chap. 2) induced by
the metric d on X. Cf. metric outer measure.

• Norm metric
Given a normed vector space .V; jj:jj/, the norm metric on V is defined by

jjx � yjj:

The metric space .V; jjx � yjj/ is called a Banach space if it is complete.
Examples of norm metrics are lp- and Lp-metrics, in particular, the Euclidean
metric.

Any metric space .X; d/ admits an isometric embedding into a Banach space
B such that its convex hull is dense in B (cf. Monge–Kantorovich metric in
Chap. 14); .X; d/ is a linearly rigid metric space if such an embedding is unique
up to isometry. A metric space isometrically embeds into the unit sphere of a
Banach space if and only if its diameter is at most 2.

• Path metric
Given a connected graph G D .V; E/, its path metric (or graphic metric) dpath

is a metric on V defined as the length (i.e., the number of edges) of a shortest path
connecting two given vertices x and y from V (cf. Chap. 15).

• Editing metric
Given a finite set X and a finite set O of (unary) editing operations on X, the

editing metric on X is the path metric of the graph with the vertex-set X and xy
being an edge if y can be obtained from x by one of the operations from O.

• Gallery metric
A chamber system is a set X (its elements are called chambers) equipped with

n equivalence relations �i, 1 � i � n. A gallery is a sequence of chambers
x1; : : : ; xm such that xi �j xiC1 for every i and some j depending on i.

The gallery metric is an extended metric on X which is the length of the
shortest gallery connecting x and y 2 X (and is equal to 1 if there is no
connecting gallery). The gallery metric is the (extended) path metric of the graph
with the vertex-set X and xy being an edge if x �i y for some 1 � i � n.
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• Metric on incidence structure
An incidence structure .P; L; I/ consists of 3 sets: points P, lines L and flags

I 
 P�L, where a point p 2 P is said to be incident with a line l 2 L if . p; l/ 2 I.
If, moreover, for any pair of distinct points, there is at most one line incident

with both of them, then the collinearity graph is a graph whose vertices are the
points with two vertices being adjacent if they determine a line.

The metric on incidence structure is the path metric of this graph.
• Riemannian metric

Given a connected n-dimensional smooth manifold Mn (cf. Chaps. 2 and 7), its
Riemannian metric is a collection of positive-definite symmetric bilinear forms
..gij// on the tangent spaces of Mn which varies smoothly from point to point.

The length of a curve � on Mn is expressed as
R

�

qP
i;j gijdxidxj, and the

intrinsic metric on Mn, also called the Riemannian distance, is the infimum of
lengths of curves connecting any two given points x; y 2 Mn. Cf. Chap. 7.

• Linearly additive metric
A linearly additive (or additive on lines) metric is a continuous metric d on

R
n which, for any points x; y; z lying in that order on a common line, satisfies

d.x; z/ D d.x; y/ C d.y; z/:

Hilbert’s 4-th problem asked in 1900 to classify such metrics; it is solved only
for dimension n D 2 ([Amba76]). Cf. projective metric in Chap. 6.

Every norm metric on R
n is linearly additive. Every linearly additive metric

on R
2 is a hypermetric.

• Hamming metric
The Hamming metric dH (called sometimes Dalal distance in Semantics) is

a metric on R
n defined (Hamming, 1950) by

jfi W 1 � i � n; xi ¤ yigj:

On binary vectors x; y 2 f0; 1gn the Hamming metric and the l1-metric (cf. Lp-
metric in Chap. 5) coincide; they are equal to jI.x/I.y/j D jI.x/n I.y/jCjI.y/n
I.x/j, where I.z/ D f1 � t � n W zi D 1g.

In fact, maxfjI.x/ n I.y/j; jI.y/ n I.x/jg is also a metric.
• Lee metric

Given m; n 2 N, m � 2, the Lee metric dLee is a metric on Z
n
m D

f0; 1; : : : ; m � 1gn defined (Lee, 1958) by

X

1�i�n

minfjxi � yij; m � jxi � yijg:

The metric space .Zn
m; dLee/ is a discrete analog of the elliptic space.
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The Lee metric coincides with the Hamming metric dH if m D 2 or m D
3. The metric spaces .Zn

4 ; dLee/ and Z2n
2 ; dH/ are isometric. Lee and Hamming

metrics are applied for phase and orthogonal modulation, respectively.
Cf. absolute summation distance and generalized Lee metric in Chap. 16.

• Enomoto–Katona metric
Given a finite set X and an integer k, 2k � jXj, the Enomoto–Katona metric

(2001) is the distance between unordered pairs .X1; X2/ and .Y1; Y2/ of disjoint
k-subsets of X defined by

minfjX1 n Y1j C jX2 n Y2j; jX1 n Y2j C jX2 n Y1jg:

Cf. Earth Mover’s distance, transportation distance in Chaps. 21 and 14.
• Symmetric difference metric

Given a measure space .�;A; �/, the symmetric difference (or measure)
semimetric on the set A� D fA 2 A W �.A/ < 1g is defined by

od4.A; B/ D �.A4B/;

where A4B D .A [ B/n.A \ B/ is the symmetric difference of A and B 2 A�.
The value d4.A; B/ D 0 if and only if �.A4B/ D 0, i.e., A and B are equal

almost everywhere. Identifying two sets A; B 2 A� if �.A4B/ D 0, we obtain
the symmetric difference metric (or Fréchet–Nikodym–Aronszyan distance,
measure metric).

If � is the cardinality measure, i.e., �.A/ D jAj, then d4.A; B/ D jA4Bj D
jA n Bj C jB n Aj. In this case jA4Bj D 0 if and only if A D B.

The metrics dmax.A; B/ D max.jA n Bj; jB n Aj/ and 1 � jA\Bj
max.jAj;jBj/ (its

normalised version) are special cases of Zelinka distance and Bunke–Shearer
metric in Chap. 15. For each p � 1, the p-difference metric (Noradam–Nyblom,

2014) is dp.A; B/ D .jA n Bjp C jB n Ajp/
1
p ; so, d1 D d4 and limp!1 dp D dmax.

The Johnson distance between k-sets A and B is jA4Bj
2

D k � jA \ Bj.
The symmetric difference metric between ordered q-partitions A D

.A1; : : : ; Aq/ and B D .B1; : : : ; Bq/ is
Pq

iD1 jAiBij. Cf. metrics between
partitions in Chap. 10.

• Steinhaus distance
Given a measure space .�;A; �/, the Steinhaus distance dSt is a semimetric

on the set A� D fA 2 A W �.A/ < 1g defined as 0 if �.A/ D �.B/ D 0, and by

�.A4B/

�.A [ B/
D 1 � �.A \ B/

�.A [ B/

if �.A[B/ > 0. It becomes a metric on the set of equivalence classes of elements
from A�; here A; B 2 A� are called equivalent if �.A4B/ D 0.
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The biotope (or Tanimoto) distance jA4Bj
jA[Bj is the special case of Steinhaus

distance obtained for the cardinality measure �.A/ D jAj for finite sets.
Cf. also the generalized biotope transform metric in Chap. 4.

• Fréchet metric
Let .X; d/ be a metric space. Consider a set F of all continuous mappings

f W A ! X, g W B ! X, : : : , where A; B; : : : are subsets of Rn, homeomorphic to
Œ0; 1�n for a fixed dimension n 2 N.

The Fréchet semimetric dF is a semimetric on F defined by

inf



sup
x2A

d. f .x/; g.
.x///;

where the infimum is taken over all orientation preserving homeomorphisms 
 W
A ! B. It becomes the Fréchet metric on the set of equivalence classes f � D
fg W dF.g; f / D 0g. Cf. the Fréchet surface metric in Chap. 8.

• Hausdorff metric
Given a metric space .X; d/, the Hausdorff metric (or two-sided Hausdorff

distance) is a metric on the family F of nonempty compact subsets of X defined
by

dHaus D maxfddHaus.A; B/; ddHaus.B; A/g;

where ddHaus.A; B/ D maxx2A miny2B d.x; y/ is the directed Hausdorff distance
(or one-sided Hausdorff distance) from A to B. The metric space .F ; dHaus/ is
called hyperspace of metric space .X; d/; cf. hyperspace in Chap. 2.

In other words, dHaus.A; B/ is the minimal number � (called also the Blaschke
distance) such that a closed �-neighborhood of A contains B and a closed �-
neighborhood of B contains A. Then dHaus.A; B/ is equal to

sup
x2X

jd.x; A/ � d.x; B/j;

where d.x; A/ D miny2A d.x; y/ is the point-set distance.
If the above definition is extended for noncompact closed subsets A and B of

X, then dHaus.A; B/ can be infinite, i.e., it becomes an extended metric.
For not necessarily closed subsets A and B of X, the Hausdorff semimetric

between them is defined as the Hausdorff metric between their closures. If X is
finite, dHaus is a metric on the class of all subsets of X.

• Lp-Hausdorff distance
Given a finite metric space .X; d/, the Lp-Hausdorff distance ([Badd92])

between two subsets A and B of X is defined by

.
X

x2X

jd.x; A/ � d.x; B/jp/
1
p ;
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where d.x; A/ is the point-set distance. The usual Hausdorff metric corre-
sponds to the case p D 1.

• Generalized G-Hausdorff metric
Given a group .G; �; e/ acting on a metric space .X; d/, the generalized G-

Hausdorff metric between two closed bounded subsets A and B of X is

min
g1;g22G

dHaus.g1.A/; g2.B//;

where dHaus is the Hausdorff metric. If d.g.x/; g.y// D d.x; y/ for any g 2 G
(i.e., if the metric d is left-invariant with respect of G), then above metric is equal
to ming2G dHaus.A; g.B//.

• Gromov–Hausdorff metric
The Gromov–Hausdorff metric is a metric on the set of all isometry classes

of compact metric spaces defined by

inf dHaus. f .X/; g.Y//

for any two classes X� and Y� with the representatives X and Y, respectively,
where dHaus is the Hausdorff metric, and the minimum is taken over all metric
spaces M and all isometric embeddings f W X ! M, g W Y ! M. The
corresponding metric space is called the Gromov–Hausdorff space.

The Hausdorff–Lipschitz distance between isometry classes of compact
metric spaces X and Y is defined by

inffdGH.X; X1/ C dL.X1; Y1/ C dGH.Y; Y1/g;

where dGH is the Gromov–Hausdorff metric, dL is the Lipschitz metric, and the
minimum is taken over all (isometry classes of compact) metric spaces X1; Y1.

• Kadets distance
The gap (or opening) between two closed subspaces X and Y of a Banach

space .V; jj:jj/ is defined by

gap.X; Y/ D maxfı.X; Y/; ı.Y; X/g;

where ı.X; Y/ D supfinfy2Y jjx � yjj W x 2 X; jjxjj D 1g (cf. gap distance in
Chap. 12 and gap metric in Chap. 18).

The Kadets distance between two Banach spaces V and W is a semimetric
defined (Kadets, 1975) by

inf
Z;f ;g

gap.Bf .V/; Bg.W//;

where the infimum is taken over all Banach spaces Z and all linear isometric
embeddings f W V ! Z and g W W ! Z; here Bf .V/ and Bg.W/ are the closed unit
balls of Banach spaces f .V/ and g.W/, respectively.
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The nonlinear analog of the Kadets distance is the following Gromov–
Hausdorff distance between Banach spaces U and W:

inf
Z;f ;g

dHaus. f .BV /; g.BW//;

where the infimum is taken over all metric spaces Z and all isometric embeddings
f W V ! Z and g W W ! Z; here dHaus is the Hausdorff metric.

The Kadets path distance between Banach spaces V and W is defined
(Ostrovskii, 2000) as the infimum of the lengths (with respect to the Kadets
distance) of all curves joining V and W (and is equal to 1 if there is no such
curve).

• Banach–Mazur distance
The Banach–Mazur distance dBM between two Banach spaces V and W is

ln inf
T

jjTjj � jjT�1jj;

where the infimum is taken over all isomorphisms T W V ! W.
It can also be written as ln d.V; W/, where the number d.V; W/ is the smallest

positive d � 1 such that B
n
W 
 T.B

n
V/ 
 d B

n
W for some linear invertible

transformation T W V ! W. Here B
n
V D fx 2 V W jjxjjV � 1g and

B
n
W D fx 2 WI jjxjjW � 1g are the unit balls of the normed spaces .V; jj:jjV/

and .W; jj:jjW/, respectively.
One has dBM.V; W/ D 0 if and only if V and W are isometric, and dBM

becomes a metric on the set Xn of all equivalence classes of n-dimensional
normed spaces, where V � W if they are isometric. The pair .Xn; dBM/ is a
compact metric space which is called the Banach–Mazur compactum.

The modified Banach–Mazur distance (Glushkin, 1963, and Khrabrov,
2001) is

inffjjTjjX!Y W jdetTj D 1g � inffjjTjjY!X W jdetTj D 1g:
The weak Banach–Mazur distance (Tomczak–Jaegermann, 1984) is

maxf�Y.idX/; �X.idY/g;
where id is the identity map and, for an operator U W X ! Y, �Z.U/ denotes
inf

P jjWkjj � jjVkjj. Here the infimum is taken over all representations U DP
WkVk for Wk W X ! Z and Vk W Z ! Y. This distance never exceeds the

corresponding Banach–Mazur distance.
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• Lipschitz distance
Given ˛ � 0 and two metric spaces .X; dX/, .Y; dY/, the ˛-Hölder norm jj:jjHol

on the set of all injective functions f W X ! Y is defined by

jj f jjHol D sup
x;y2X;x¤y

dY. f .x/; f .y//

dX.x; y/˛
:

The Lipschitz norm jj:jjLip is the case ˛ D 1 of jj:jjHol.
The Lipschitz distance between metric spaces .X; dX/ and .Y; dY/ is defined

by

ln inf
f

jj f jjLip � jj f �1jjLip;

where the infimum is taken over all bijective functions f W X ! Y. Equivalently,
it is the infimum of numbers ln a such that there exists a bijective bi-Lipschitz
mapping between .X; dX/ and .Y; dY/ with constants exp.�a/, exp.a/.

It becomes a metric (Lipschitz metric) on the set of all isometry classes of
compact metric spaces. Cf. Hausdorff–Lipschitz distance.

This distance is an analog to the Banach–Mazur distance and, in the case of
finite-dimensional real Banach spaces, coincides with it.

It also coincides with the Hilbert projective metric on nonnegative projective
spaces, obtained by starting with R

n
>0 and identifying any point x with cx, c > 0.

• Lipschitz distance between measures
Given a compact metric space .X; d/, the Lipschitz seminorm jj:jjLip on the set

of all functions f W X ! R is defined by jj f jjLip D supx;y2X;x¤y
j f .x/�f .y/j

d.x;y/
.

The Lipschitz distance between measures � and � on X is defined by

sup
jj f jjLip�1

Z

fd.� � �/:

It is the transportation distance (Chap. 14) if �; � are probability measures.
Let a such measure mx.:/ be attached to any x 2 X; for distinct x; y the coarse
Ricci curvature along .xy/ is defined (Ollivier, 2009) as �.x; y/ D 1 � W1.mx;my/

d.x;y/
.

Ollivier’s curvature generalizes the Ricci curvature in Riemannian space (cf.
Chap. 7).

• Barycentric metric space
Given a metric space .X; d/, let .B.X/; jj� � �jjTV/ be the metric space, where

B.X/ is the set of all regular Borel probability measures on X with bounded
support, and jj� � �jjTV is the variational distance

R
X jp.�/ � p.�/jd	 (cf.

Chap. 14). Here p.�/ and p.�/ are the density functions of measures � and �,
respectively, with respect to the 
-finite measure �C�

2
.
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A metric space .X; d/ is barycentric if there exists a constant ˇ > 0 and a
surjection f W B.X/ ! X such that for any measures �; � 2 B.X/ it holds the
inequality

d. f .�/; f .�// � ˇdiam.supp.� C �//jj� � �jjTV :

Any Banach space .X; d D jjx � yjj/ is a barycentric metric space with the
smallest ˇ being 1 and the map f .�/ being the usual center of mass

R
X xd�.x/.

Any Hadamard (i.e., a complete CAT(0) space, cf. Chap. 6, is barycentric
with the smallest ˇ being 1 and the map f .�/ being the unique minimizer of the
function g.y/ D R

X d2.x; y/d�.x/ on X.
• Point-set distance

Given a metric space .X; d/, the point-set distance d.x; A/ between a point
x 2 X and a subset A of X is defined as

inf
y2A

d.x; y/:

For any x; y 2 X and for any nonempty subset A of X, we have the following
version of the triangle inequality: d.x; A/ � d.x; y/ C d.y; A/ (cf. distance map).

For a given point-measure �.x/ on X and a penalty function p, an optimal
quantizer is a set B 
 X such that

R
p.d.x; B//d�.x/ is as small as possible.

• Set-set distance
Given a metric space .X; d/, the set-set distance between two subsets A and

B of X is defined by

dss.A; B/ D inf
x2A;y2B

d.x; y/:

This distance can be 0 even for disjoint sets, for example, for the intervals
.1; 2/, .2; 3/ on R. The sets A and B are positively separated if dss.A; B/ > 0. A
constructive appartness space is a generalization of this relation on subsets of
X.

The spanning distance between A and B is supx2A;y2B d.x; y/.
In Data Analysis, (cf. Chap. 17) the set-set and spanning distances between

clusters are called the single and complete linkage, respectively.
• Matching distance

Given a metric space .X; d/, the matching distance (or multiset-multiset
distance) between two multisets A and B in X is defined by

inf
�

max
x2A

d.x; �.x//;

where � runs over all bijections between A and B, as multisets.
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The matching distance is not related to the perfect matching distance in
Chap. 15 and to the nonlinear elastic matching distance in Chap. 21. But the
bottleneck distance in Chap. 21 is a special case of it.

• Metrics between multisets
A multiset (or bag) drawn from a set S is a mapping m W S ! Z�0, where

m.x/ represents the “multiplicity” of x 2 S. The dimensionality, cardinality and
height of multiset m is jSj, jmj D P

x2S m.x/ and maxx2S m.x/, respectively.
Multisets are good models for multi-attribute objects such as, say, all symbols

in a string, all words in a document, etc.
A multiset m is finite if S and all m.x/ are finite; the complement of a finite

multiset m is the multiset m W S ! Z�0, where m.x/ D maxy2S m.y/ � m.x/.
Given two multisets m1 and m2, denote by m1 [ m2, m1 \ m2, m1nm2 and m1m2

the multisets on S defined , for any x 2 S, by m1 [ m2.x/ D maxfm1.x/; m2.x/g,
m1 \ m2.x/ D minfm1.x/; m2.x/g, m1nm2.x/ D maxf0; m1.x/ � m2.x/g and
m1m2.x/ D jm1.x/ � m2.x/j, respectively. Also, m1 � m2 denotes that
m1.x/ � m2.x/ for all x 2 S.

The measure �.m/ of a multiset m is a linear combination �.m/ DP
x2S 	.x/m.x/ with 	.x/ � 0. In particular, jmj is the counting measure.
For any measure �.m/ 2 R�0, Miyamoto, 1990, and Petrovsky, 2003,

proposed several semimetrics between multisets m1 and m2 including
d1.m1; m2/ D �.m1m2/ and d2.m1; m2/ D �.m1m2/

�.m1[m2/
(with d2.;; ;/ D 0

by definition). Cf. symmetric difference metric and Steinhaus distance.
Among examples of other metrics between multisets are matching distance,

metric space of roots in Chap. 12, �-metric in Chap. 15 and, in Chap. 11, bag
distance maxfjm1nm2j; jm2nm1jg and q-gram similarity.

See also Vitanyi multiset metric in Chap. 3.
• Metrics between fuzzy sets

A fuzzy subset of a set S is a mapping � W S ! Œ0; 1�, where �.x/ represents
the “degree of membership” of x 2 S. It is an ordinary (crisp) if all �.x/ are 0

or 1. Fuzzy sets are good models for gray scale images (cf. gray scale images
distances in Chap. 21), random objects and objects with nonsharp boundaries.

Bhutani–Rosenfeld, 2003, introduced the following two metrics between two
fuzzy subsets � and � of a finite set S. The diff-dissimilarity is a metric (a fuzzy
generalization of Hamming metric), defined by

d.�; �/ D
X

x2S

j�.x/ � �.x/j:

The perm-dissimilarity is a semimetric defined by

minfd.�; p.�//g;

where the minimum is taken over all permutations p of S.
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The Chaudhuri–Rosenfeld metric (1996) between two fuzzy sets � and �

with crisp points (i.e., the sets fx 2 S W �.x/ D 1g and fx 2 S W �.x/ D 1g are
nonempty) is an extended metric, defined the Hausdorff metric dHaus by

Z 1

0

2tdHaus.fx 2 S W �.x/ � tg; fx 2 S W �.x/ � tg/dt:

A fuzzy number is a fuzzy subset � of the real line R, such that the level set (or
t-cut) A�.t/ D fx 2 R W �.x/ � tg is convex for every t 2 Œ0; 1�. The sendograph
of a fuzzy set � is the set send.�/ D f.x; t/ 2 S � Œ0; 1� W �.x/ > 0; �.x/ � tg.
The sendograph metric (Kloeden, 1980) between two fuzzy numbers �, � with
crisp points and compact sendographs is the Hausdorff metric

maxf sup
aD.x;t/2send.�/

d.a; send.�//; sup
bD.x0;t0/2send.�/

d.b; send.�//g;

where d.a; b/ D d..x; t/; .x0; t0// is a box metric (Chap. 4) maxfjx � x0j; jt � t0jg.
The Klement–Puri–Ralesku metric (1988) between fuzzy numbers �, � is

Z 1

0

dHaus.A�.t/; A�.t//dt;

where dHaus.A�.t/; A�.t// is the Hausdorff metric

maxf sup
x2A�.t/

inf
y2A�.t/

jx � yj; sup
x2A�.t/

inf
x2A�.t/

jx � yjg:

Several other Hausdorff-like metrics on some families of fuzzy sets were
proposed by Boxer in 1997, Fan in 1998 and Brass in 2002; Brass also argued
the nonexistence of a “good” such metric.

If q is a quasi-metric on Œ0; 1� and S is a finite set, then Q.�; �/ D
supx2S q.�.x/; �.x// is a quasi-metric on fuzzy subsets of S.

Cf. fuzzy Hamming distance in Chap. 11 and, in Chap. 23, fuzzy set distance
and fuzzy polynucleotide metric. Cf. fuzzy metric spaces in Chap. 3 for fuzzy-
valued generalizations of metrics and, for example, [Bloc99] for a survey.

• Metrics between intuitionistic fuzzy sets
An intuitionistic fuzzy subset of a set S is (Atanassov, 1999) an ordered pair

of mappings �; � W! Œ0; 1� with 0 � �.x/ C �.x/ � 1 for all x 2 S, representing
the “degree of membership” and the “degree of nonmembership” of x 2 S,
respectively. It is an ordinary fuzzy subset if �.x/ C �.x/ D 1 for all x 2 S.

Given two intuitionistic fuzzy subsets .�.x/; �.x// and .�0.x/; �0.x// of a finite
set S D fx1; : : : ; xng, their Atanassov distances (1999) are:

1

2

nX

iD1

.j�.xi/ � �0.xi/j C j�.xi/ � �0.xi/j/ (Hamming distance)
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and, in general, for any given numbers p � 1 and 0 � q � 1, the distance

.

nX

iD1

.1 � q/.�.xi/ � �0.xi//
p C q.�.xi/ � �0.xi/

p/
1
p :

Their Grzegorzewski distances (2004) are:

nX

iD1

maxfj�.xi/ � �0.xi/j; j�.xi/ � �0.xi/jg (Hamming distance);

v
u
u
t

nX

iD1

maxf.�.xi/ � �0.xi//2; .�.xi/ � �0.xi//2g (Euclidean distance):

The normalized versions (dividing the above sums by n) were also proposed.
Szmidt–Kacprzyk, 1997, proposed a modification of the above, adding �.x/�

� 0.x/, where �.x/ is the third mapping 1 � �.x/ � �.x/.
An interval-valued fuzzy subset of a set S is a mapping � W! ŒI�, where ŒI� is

the set of closed intervals Œa�; aC� � Œ0; 1�. Let �.x/ D Œ��.x/; �C.x/�, where
0 � ��.x/ � �C.x/ � 1 and an interval-valued fuzzy subset is an ordered pair
of mappings �� and �C. This notion is close to the above intuitionistic one;
so, above distance can easily be adapted. For example,

Pn
iD1 maxfj��.xi/ �

�0�.xi/j; j�C.xi/ � �0C.xi/jg is a Hamming distance between interval-valued
fuzzy subsets .��; �C/ and .�0�; �0C/.

• Polynomial metric space
Let .X; d/ be a metric space with a finite diameter D and a finite normalized

measure �X . Let the Hilbert space L2.X; d/ of complex-valued functions decom-
pose into a countable (when X is infinite) or a finite (with DC1 members when X
is finite) direct sum of mutually orthogonal subspaces L2.X; d/ D V0 ˚ V1 ˚ : : : .

Then .X; d/ is a polynomial metric space if there exists an ordering of
the spaces V0; V1; : : : such that, for i D 0; 1; : : : , there exist zonal spherical
functions, i.e., real polynomials Qi.t/ of degree i such that

Qi.t.d.x; y/// D 1

ri

riX

jD1

vij.x/vij.y/

for all x; y 2 X, where ri is the dimension of Vi, fvii.x/ W 1 � j � rig is
an orthonormal basis of Vi, and t.d/ is a continuous decreasing real function
such that t.0/ D 1 and t.D/ D �1. The zonal spherical functions constitute an
orthogonal system of polynomials with respect to some weight w.t/.

The finite polynomial metric spaces are also called (P and Q)-polynomial
association schemes; cf. distance-regular graph in Chap. 15. The infinite
polynomial metric spaces are the compact connected two-point homogeneous
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spaces. Wang, 1952, classified them as the Euclidean unit spheres, the real,
complex, quaternionic projective spaces or the Cayley projective line and plane.

• Universal metric space
A metric space .U; d/ is called universal for a collection M of metric spaces

if any metric space .M; dM/ from M is isometrically embeddable in .U; d/, i.e.,
there exists a mapping f W M ! U which satisfies dM.x; y/ D d. f .x/; f .y// for
any x; y 2 M. Some examples follow.

Every separable metric space .X; d/ isometrically embeds (Fréchet, 1909) in
(a nonseparable) Banach space l11. In fact, d.x; y/ D supi jd.x; ai/ � d.y; ai/j,
where .a1; : : : ; ai; : : : / is a dense countable subset of X.

Every metric space isometrically embeds (Kuratowski, 1935) in the Banach
space L1.X/ of bounded functions f W X ! R with the norm supx2X j f .x/j.

The Urysohn space is a homogeneous complete separable space which is
the universal metric space for all separable metric spaces. The Hilbert cube
(Chap. 4) is the universal space for the class of metric spaces with a countable
base.

The graphic metric space of the random graph (Rado, 1964; the vertex-
set consists of all prime numbers p � 1 . mod 4/ with pq being an edge if p
is a quadratic residue modulo q) is the universal metric space for any finite or
countable metric space with distances 0, 1 and 2 only. It is a discrete analog of
the Urysohn space.

There exists a metric d on R, inducing the usual (interval) topology, such that
.R; d/ is a universal metric space for all finite metric spaces (Holsztynski, 1978).
The Banach space ln1 is a universal metric space for all metric spaces .X; d/ with
jXj � n C 2 (Wolfe, 1967). The Euclidean space E

n is a universal metric space
for all ultrametric spaces .X; d/ with jXj � n C 1; the space of all finite functions
f .t/ W R�0 ! R equipped with the metric d. f ; g/ D supft W f .t/ ¤ g.t/g is a
universal metric space for all ultrametric spaces (Lemin–Lemin, 1996).

The universality can be defined also for mappings, other than isometric
embeddings, of metric spaces, say, a bi-Lipschitz embedding, etc. For example,
any compact metric space is a continuous image of the Cantor set with the
natural metric jx � yj inherited from R, and any complete separable metric space
is a continuous image of the space of irrational numbers.

• Constructive metric space
A constructive metric space is a pair .X; d/, where X is a set of constructive

objects (say, words over an alphabet), and d is an algorithm converting any pair
of elements of X into a constructive real number d.x; y/ such that d is a metric on
X.

• Computable metric space
Let fxngn2N be a sequence of elements from a given Polish (i.e., complete

separable) metric space .X; d/ such that the set fxn W n 2 Ng is dense in .X; d/.
Let N .m; n; k/ be the Cantor tuple function of a triple .n; m; k/ 2 N

3, and let
fqkgk2N be a fixed total standard numbering of the set Q of rational numbers.
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The triple .X; d; fxngn2N/ is called an effective (or semicomputable) metric
space ([Hemm02]) if the set fN .n; m; k/ W d.xm; xn/ < qkg is recursively
enumerable, i.e., there is an algorithm that enumerates the members of this set. If,
moreover, the set fN .n; m; k/ W d.sm; sm/ > qkg is recursively enumerable, then
this triple is called (Lacombe, 1951) computable metric space, (or recursive
metric space). In other words, the map d ı .q � q/ W N2 ! R is a computable
(double) sequence of real numbers, i.e., is recursive over R.
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