
Chapter 2
The Theory: Mechanics. An Example:
Collision of a Point and a Plane

Michel Frémond

2.1 A System Made of a Point and a Plane

The system we consider is made of a point and an obstacle, for instance a plane. The
pointmoves above the plane, can collide it, can slide on it. But it cannot interpenetrate
it. Indeed, the two elements of the system, the point and the plane are not deformable.
And it is not possible to speak of deformation when each of them is considered by
itself. But when we consider the system made of the point and the plane, this system
is deformable because the distance of the point to the plane changes, [14]. The
development of this idea in the sequel gives a productive and elegant theory.

We assume also that the duration of the collisions of the point with the plane,
i.e., the time for the point to adapt to the kinematic incompatibility, is negligible
with respect to the time scale of the theory. For instance, with respect to the time
flight. Thus we assume, the collisions are instantaneous. As for an example of such a
motion, one may think of the motion of a soccer ball over a soccer field. The system
is made of the soccer ball and the field. Collisions result from external actions due
to the players and from internal actions due to the kinematic constraint which is that
the soccer ball call cannot interpenetrate the field.

Remark 2.1 The collision theory has mainly been developed for solids. The tradi-
tional approach (see for example, [4, 36–38]) is based on the coefficients of restitution
which is appropriated in simple situations but may be in contradiction with the basic
principles of mechanics in more complex setups [3, 4, 7, 25, 37, 38].

2.2 The Velocities

The velocity of the point is a smooth function of time t when the flight is smooth.
When it is not, for instance when colliding the plane or when hitted by some external
percussion. At such a time, the velocity is discontinuous. There is velocity
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U−(t) = lim
Δt→0,Δt>0

U(t − Δt), (2.1)

before the collision and velocity

U+(t) = lim
Δt→0,Δt>0

U(t + Δt), (2.2)

after the collision. The virtual velocities V are possible velocities of the point or pos-
sible velocities of the point wemay think of. In terms of mechanics andmathematics,
the virtual velocities are elements of the linear space which is induced by the formula
giving the actual velocity. In this example, we choose the space of bounded variation
3-D vectors denoted V, [1, 2, 31]. For the sake of simplicity, we assume the plane
is fixed in a Galilean reference frame and remains immobile even when collided by
the point. This is the case if the plane, the obstacle, is very massive compared to the
point. Note that this is the case of the soccer field.

The discontinuity of velocity is denoted

[U(t)] = U+(t) − U−(t). (2.3)

More generally discontinuity of quantity A is denoted

[A(t)] = A+(t) − A−(t), (2.4)

with
A+(t) = lim

Δt→0,Δt>0
A(t + Δt), A−(t) = lim

Δt→0,Δt>0
A(t − Δt) (2.5)

2.3 The Velocity of Deformation

The choice of the velocity of deformation of the system has to be in agreement with
observations. It is reasonable to choose as velocity of deformation of the system,
the velocity of the point with respect to the plane obstacle which is assumed to be
immobile, for instance assuming it is very massive. It is obvious that if the velocity of
the point with respect to the plane is null, the shape of the system does not change. To
be precise, if the velocity of the point is parallel to the plane, the form of the system
changes. In particular, if the point slides on the plane, the shape changes because the
distance of a reference point of the plane to the point changes.
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2.4 The Principle of Virtual Work

Aproductiveway toderive the equations ofmotion inmechanics is to use thePrinciple
of Virtual Work, [16–19]. We think it may be founded on experimental observations.
Let us consider a system and apply actions. We see that the work we provide to the
system between times t1 and t2, t1 ≤ t2 is used to modify its velocity and to modify
its shape. We assume that this work, the work of the external forces, Wext(t1, t2), is
the sum of two works:

• the work to modify the velocity which is the actual work of the acceleration forces,
Wacc(t1, t2);

• the work to modify the shape or the form which is the opposite of the classical
actual work of the internal forces, −Wint(t1, t2).

Wext(t1, t2) = Wacc(t1, t2) − Wint(t1, t2)), (2.6)

Experiments lead also to assume the works are additive functions of time t and linear
functions of the velocities. Thus we have

Wext(V, t1, t2) =
∫ t2

t1

Pext(V(τ))dτ +
∑
t

Text(V, t), (2.7)

Wacc(V, t1, t2) =
∫ t2

t1

Pacc(V(τ))dτ +
∑
t

Tacc(V, t), (2.8)

Wint(V, t1, t2) =
∫ t2

t1

Pint(V(τ))dτ +
∑
t

Tint(V, t). (2.9)

Theworks have a densitywith respect to theLebesguemeasure, the powerPext(V(τ))

and a density with respect to the atomic measure, the work Text(V, t). Experimental
result (2.6) becomes

Wext(U, t1, t2) = Wacc(U, t1, t2) − Wint(U, t1, t2), (2.10)

The principle of virtual works extends this relationship to virtual velocities V and to
any times t1 and t2, t1 ≤ t2,

∀V ∈ V, ∀t1, ∀t2, t1 ≤ t2, (2.11)

Wext(V, t1, t2) = Wacc(V, t1, t2) − Wint(V, t1, t2), (2.12)

or in its classical formulation,

∀V ∈ V, ∀t1, ∀t2, t1 ≤ t2, (2.13)

Wacc(V, t1, t2) = Wint(V, t1, t2) + Wext(V, t1, t2). (2.14)
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Let us investigate the principle of virtual work and define the different works. To
be didactic, we assume only one time t between times t1 and t2 where there is an
atomic part in the works. The work of the acceleration forces is

2.4.1 The Work of the Acceleration Forces

In the smooth evolution, the work of the acceleration force is the sum of the classical
power

Pacc(V(τ )) = m
dU
dt

(τ ) · V(τ), (2.15)

where m is the mass of the point. Let us note that we have

Theorem 2.1 In a smooth evolution, the variation of the kinetic energy is equal to
the actual work of the acceleration

Wacc(U, t1, t2) =
∫ t2

t1

Pacc(U(τ))dτ = m

2
(U(t2))

2 − m

2
(U(t1))

2. (2.16)

In the non smooth evolution, the work Tacc(V, t) of the non smooth acceleration
force, the discontinuity of the velocity (U+(t) − U−(t)) is

Tacc(V, t) = m(U+(t) − U−(t)) · L(V), (2.17)

where L(V) is a linear function of velocity V ∈ V. Because we want to keep Theo-
rem2.1, we choose

L(V) = V+(t) + V−(t)

2
, (2.18)

and have

Tacc(V, t) = m(U+(t) − U−(t)) · V+(t) + V−(t)

2
, (2.19)

with theorem

Theorem 2.2 In a non smooth evolution, the variation of the kinetic energy is equal
to the actual work of the acceleration

Tacc(U, t) = m

2
(U+(t))2 − m

2
(U−(t))2. (2.20)

The work of the acceleration with an atomic part at time t is

Wacc(V, t1, t2) =
∫ t2

t1

Pacc(V(τ))dτ + Tacc(V, t) (2.21)
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=
∫ t2

t1

m
dU
dt

· Vdτ + m(U+(t) − U−(t)) · V+(t) + V−(t)

2
. (2.22)

The choice of the non smooth part of the virtual work of the acceleration forces is
based on the wish to have its actual value to be equal to the variation of the kinetic
energy.

2.4.1.1 The Theorem of the Kinetic Energy

The actual work of the acceleration forces, Wacc(U, t1, t2) satisfies the theorem
of kinetic energy, the théorème de l’énergie cinétique in French and il teorema
dell’energia cinetica in Italian.

Theorem 2.3 In an evolution, the variation of the kinetic energy is equal to the sum
of the actual, internal and external works

m

2
(U+(t))2 − m

2
(U−(t))2 = Wint(U, t1, t2) + Wext(U, t1, t2). (2.23)

Proof It is a direct application of Theorems2.1 and 2.2. �

2.4.2 The Work of the External Forces

Todefine thiswork let us goback to the soccer fieldwhere a player kicks the ballwhich
is flying. The external action of the player modifies instantaneously the ball velocity.
The player has applied an instantaneous work. An other interesting observation is to
look at a ball of a pin-ball machine hitting a bumper and getting an impulse from an
electrical device which modifies instantaneously its velocity. Considering the system
to be the ball. The system has received an external work which can be measured (at
least we may think of such a measure) through the electrical energy consumption.
We conclude that the work of the external forces we consider has jumps: it is a
bounded variation function of time. Its time derivative has a density with respect to
the Lebesgue measure and a density with respect to the atomic measure. The density
with respect to the Lebesgue measure is the classical power we have defined in the
previous section. Based on this idea, we choose the work of the external forces to be

Wext(V, t1, t2) =
∫ t2

t1

Pext(V(τ))dτ + Text(V, t) (2.24)

=
∫ t2

t1

fext(τ ) · V(τ)dτ + Pext(t) · V+(t) + V−(t)

2
, (2.25)
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with

Pext(V(τ)) = fext(τ ) · V(τ )), (2.26)

Text(V, t) = Pext(t) · V+(t) + V−(t)

2
, (2.27)

where fext is the external force, for instance the gravity, and Pext(t) the external
percussion, the kick of the soccer player in the example, applied to the point.

Remark 2.2 The work of the external percussion may be

Text(V, t) = Pext+(t) · V+(t) + Pext−(t) · V−(t). (2.28)

In fact, our choice is not restrictive, [18–20]. It has the advantage of being simple.

2.4.3 The Work of the Internal Forces

The virtual work of the internal force is a linear function of the virtual velocities
of deformation which is null for any rigid system velocities. Because the plane is
immobile, the rigid system velocities are V+ = V− = 0. The work of the internal
forces has to satisfy theGalilean relativity: thework of the internal force has to be null
for any constant translation velocity of the system. Let us note that this property is
equivalent to the internal work is null in any rigid body motion. A rigid body motion
is such that the distance of the material points remains constant, thus in this situation
the position of the points remain constant (remember the plane is immobile). The
quantity which measures the evolution has to be null in such a motion. The distance
of the material points of the system does not change. Because, the plane is immobile
the only rigid bodymotion has a null velocity. Because the work of the internal forces
is a linear function of the velocity, it is null for any rigid body motion. The work of
the internal forces is a linear function of the velocity of deformation. Our choice is

Wint(V, t1, t2) =
∫ t2

t1

Pint(V(τ))dτ + Tint(V, t) (2.29)

= −
∫ t2

t1

Rint(τ ) · V(τ)dτ − Pint(t) · V+(t) + V−(t)

2
, (2.30)

with

Pint(V(τ)) = −Rint(τ ) · V(τ), (2.31)

Tint(V, t) = −Pint(t) · V+(t) + V−(t)

2
, (2.32)
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Internal force Rint is a classical force which intervenes in smooth evolution, when
the point is sliding on the plane or if there are at a distance interactions between the
plane and the point, for instance if the point is tight to the plane by a long elastic
string. Internal percussion Pint intervenes when the point collides with the plane.

Remark 2.3 The work of the internal percussion may be

Tint(V, t) = −Pint+(t) · V+(t) − Pint−(t) · V−(t). (2.33)

In fact, this choice does not providenewopportunities, [18–20].As said inRemark2.2,
it has the advantage of being simple. In case no external percussion is applied, the
equation of motion, (2.41) down below, gives

Pint(t) = Pint+(t) + Pint−(t)

2
. (2.34)

It is the choice of the works of the acceleration forces which is the important and
leading choice.

2.5 The Equations of Motion

We derive the equations of motion using the assumption that time interval ]t1, t[
contains only one time t, t1 < t < t2, where two of the densities, i.e., the works, of
the atomic measure are not null. By choosing virtual velocity with compact support
in interval ]t1, t[, we get

∀V ∈ V, (2.35)∫ t

t1

m
dU
dt

(τ ) · V(τ )dτ = −
∫ t

t1

Rint(τ ) · V(τ )dτ +
∫ t

t1

fext(τ ) · V(τ )dτ. (2.36)

The fondamental lemma of the variation calculus gives

m
dU
dt

= −Rint + fext, a.e. in ]t1, t[ . (2.37)

Remark 2.4 a.e. means almost everywhere or almost always in this context.

This relationship is also valid almost everywhere in interval ]t, t2[. It results it is
valid almost everywhere in whole interval ]t1, t2[.
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Then the principle becomes

∀V ∈ V, (2.38)

m [U(t)] · V+(t) + V−(t)

2
(2.39)

= −Pint(t) · V+(t) + V−(t)

2
+ Pext(t) · V+(t) + V−(t)

2
. (2.40)

It gives immediately

m [U(t)] = −Pint(t) + Pext(t). (2.41)

Previous relationship shows that at time t at least two of its quantities are non null
Because at times different from t, its three quantities are null, relationship (2.41) is
satisfied at any time

∀t ∈ ]t1, t2[ , m [U(t)] = −Pint(t) + Pext(t). (2.42)

Remark 2.5 For a soccer ball, previous relationship is

1. whenm [U(t)] andPint(t) are non null withPext(t) = 0, there is a collision: soccer
ball hits the field;

2. when m [U(t)] and Pext(t) are non null with Pint(t) = 0, a player kicks the ball
which is flying;

3. when Pint(t) and Pext(t) are non null with m [U(t)] = 0, a player kicks the ball
vertically downward. Nothing occurs, the percussion applied by the foot of the
player is equilibrated by the reaction of the field. Note that because it is impossible
that the ball surges from the field, we have U−(t) · N ≤ 0, where N is the upward
normal vector to the field. Because the ball cannot interpenetrate the field, we have
U+(t) · N ≥ 0. Because the discontinuity of velocity is null, we get U−(t) · N =
U+(t) · N = 0. Thus the ball is either at rest or sliding on the field;

4. when the three quantities of relationship (2.37) are non null there is a concomitant
collision with the field and a kick by a player.

The other example of external percussion concomitant to a collision has been men-
tioned by Jean Jacques Moreau: in an electrical pin ball machine an impulse due to
an electrical device is applied to a steel ball whenever it collides some obstacle called
bumper.

A more general derivation of the equation of motion from the principle of virtual
power is given in the book [19].
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2.5.1 Properties of the Equations of Motion

The two Eqs. (2.37) and (2.42) describe:

• the smooth evolution, the free flight and the sliding of the point on the plane with
Eq. (2.37) where the Lebesgue measure intervenes;

• the non smooth evolution or the collisions, with Eq. (2.41) where the atomic Dirac
measure intervenes. This equation may be read two way: if there is a discontinuity
of velocity, there is either an internal or an external percussion and if there is a
percussion either external or internal, there is a discontinuity of velocity.

When Eq. (2.37) is no longer valid, quantities of Eq. (2.41) are non null. This is the
case either if there is a kinematic constraint: the point hits the plane, or if there is
a constraint related to the force, a sthenic constraint. This unexpected and not very
common cause of discontinuity of velocity, an example of which is known as the
Painlevé’s paradox, [24, 26, 33–35], is not a paradox and it is taken into account by
our theory, [19, 22].

Remark 2.6 Equations of motion (2.37) and (2.42) may be understood as a unique
equality of measures

mdU = −Zint + Zext . (2.43)

Differential measure dU is defined by

〈dU,ϕ〉 = Tacc(t1, t2,ϕ), (2.44)

whereϕ is a continuous virtual velocity with compact support. This measure satisfies

〈dU,ϕ〉 = −
∫ t2

t1

U
dϕ

dt
dτ, (2.45)

if ϕ is smooth enough. Measures Zint , the internal forces, and Zext , the externals
forces, are defined by

〈
Zint,ϕ

〉 =
∫ t2

t1

Rintϕdτ + Pint(t)ϕ (t) , (2.46)

〈
Zext,ϕ

〉 =
∫ t2

t1

fϕdτ + Pext(t)ϕ (t) , (2.47)

[29, 31]. In [31], Jean Jacques Moreau describe these equations with differential
inclusions. Relationship (2.43) is an equality in the dual space of the space of bounded
variations functions. An existence mathematical result of solutions of (2.43) is given
in [9].
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2.6 The Laws of Thermodynamics

For the sake of simplicity, we assume the point and plane have the same constant
temperature T . Thus any heat which is produced is expelled toward the exterior. The
case where the temperatures of the colliding solids evolve is investigated in Chap.3
and in [6, 15, 19, 28].

2.6.1 The First Law

The energy balance is

E−(t2) − E+(t1) + K−(t2) − K+(t1) = Text(t1, t2, U) + C(t1, t2), (2.48)

where E is the internal energy of the system and C(t1, t2) is the amount of heat
received by the system between times t1 and t2

C(t1, t2) =
∫ t2

t1

TQ(τ )dτ + TB(t), (2.49)

where TQ(τ ) is the Lebesgue density of heat received at temperature T and TB(t) is
the heat received instantaneously at temperature T at collision time t. It is possible
to measure those heat quantities, (see Chap.3). If internal energy depends only on
temperature, −TQ(τ ) is the heat resulting from friction and −TB(t) is the heat burst
resulting from the collision. We have

E−(t2) − E+(t1) =
∫ t2

t1

dE

dt
dτ + [E(t)] , (2.50)

Theorem of kinetic energy 2.3

Tacc(t1, t2, U) = Tint(t1, t2, U) + Text(t1, t2, U), (2.51)

gives with the energy balance

E−(t2) − E+(t1) = −Tint(t1, t2, U) + C(t1, t2). (2.52)

This relationship satisfied for any times t1 and t2, gives

dE

dt
= Rint · U + TQ, a.e. in ]t1, t2[ , (2.53)

http://dx.doi.org/10.1007/978-3-662-52696-5_3
http://dx.doi.org/10.1007/978-3-662-52696-5_3
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and

[E(t)] = Pint(t) · U+(t) + U−(t)

2
+ TB(t), ∀t ∈ ]t1, t2[ . (2.54)

The last relationship describes the effects of the internal mechanical heat burst and
of a possible external heat burst. Its quantities are null when there is neither collision,
i.e., neither internal heat burst, nor external heat burst. If the internal energy depends
only on temperature T , heat produced by a collision is expelled toward the external
without modifying the temperature in agreement with our assumption. In a smooth
evolution, the heat produced by friction is also immediately expelled toward the
exterior. The case where the temperatures are no longer constant is investigated in
[19].

2.6.2 The Second Law

The second law is

S−(t2) − S+(t1) ≥
∫ t2

t1

Q(τ )dτ + B(t), (2.55)

where S is the entropy of the system and t is the collision time. We have

S−(t2) − S+(t1) =
∫ t2

t1

dS

dt
dτ + [S(t)] , (2.56)

The law which is satisfied for any times t1 and t2 gives

dS

dt
≥ Q, a.e. in ]t1, t2[ , (2.57)

and
[S(t)] ≥ B(t), ∀t ∈ ]t1, t2[ . (2.58)

If the entropy depends only on temperature T and if there is no external burst of
heat at times different from time t, the elements of this relationship are null at times
different from time t.

2.6.2.1 A Useful Inequality

Let us recall that the free energy is Ψ = E−TS. Combining relationships (2.53) and
(2.57), we get

dΨ

dt
≤ Rint · U, a.e. in ]t1, t2[ , (2.59)
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and combining relationships (2.54) and (2.58)

[Ψ (t)] ≤ Pint(t) · U+(t) + U−(t)

2
, ∀t ∈ ]t1, t2[ . (2.60)

If the free energy depends only on temperature T and if there is no external burst of
heat at times different from time t, the elements of this relationship are null at times
different from time t.

2.7 The Constitutive Laws

The two internal forces Rint and Pint(t) result from theoretical choices and experi-
ments. Theoretical choices are controlled by relationships (2.59) and (2.60). They
are a guide for the general expression of the internal forces which depend on some
parameters. Experiments can be used to quantify them. In any case it is always pos-
sible to have an idea of their value. The theoretical results given by the predictive
theory is compared to practical results. If we do not get what is expected and useful
for the engineering project, adaptation are to be made. The simplest is to change the
expression of the internal forces. The more sophisticated is to change some of the
assumptions of the predictive theory. For instance to assume the solid, the soccer
ball, is no longer represented by a point but it is represented either by a rigid solid or
by a deformable solid and use the theories given either in Chaps. 4, 5, 6 or in 7. Let
us recall a predictive theory is subjective: it is the engineer who chooses the sophis-
tication of the theory he needs. In this book, we keep the instantaneity assumption
for the different collisions but the other assumptions may be changed.

Internal forces are split into non dissipative or elastic forces and dissipative forces

Rint = Rinte + Rintd, Pint = Pinte + Pintd . (2.61)

The definition of the internal forces is based on this splitting and on the structure of
relationships (2.59) and (2.60): non dissipative forces are definedwith the system free
energy and the dissipative forces are defined either with a pseudo-potential of dissi-
pation or with a dissipation function as for the Coulomb’s friction law. This method
described further down is not very demanding and offers innumerable openings with
the advantage of satisfying automatically the mechanical laws (2.59) and (2.60). Of
course, it is possible to follow another way but there are risks and verifications are
to be performed. An example of such a situation is the restitution coefficient which
is perfect for the collision of two spheres but is misleading in case of collisions of
two or many solids (see [5, 7, 19]).

In this chapter, we want to give the basic elements of the collision theory and to
show its large scope. For this purpose, we focus on simple constitutive laws, in fact
in many cases on linear constitutive laws besides the non interpenetration conditions
and thresholds we cannot avoid. We are convince that with those simple laws we

http://dx.doi.org/10.1007/978-3-662-52696-5_4
http://dx.doi.org/10.1007/978-3-662-52696-5_5
http://dx.doi.org/10.1007/978-3-662-52696-5_6
http://dx.doi.org/10.1007/978-3-662-52696-5_7
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may capture the main physical properties. The fine and sophisticated constitutive
laws will be easily integrated and adapted to each particular system.

2.7.1 The Free Energy and the Non Dissipative Forces

The free energy depends on the system state variables and defines the non dissipative
or elastic forces. In the present situation, wemay choose the position of the point with
respect to the plane x(t) as state variable. It intervenes when there are at a distance
interactions between the point and the plane, for instance when the ball is connected
to a point of the plane by a long elastic wire. In this case the free energy depends
on x(t) − xo where xo is the elastic wire fixation point we choose as origin, [21].
Because the free energy accounts for the static properties, it has to take into account
that the point is above the plane:

d(x(t)) = x(t) · N ≥ 0, (2.62)

where N is the upward normal vector to the plane. We forget the at a distance inter-
actions and choose simple free energy Ψ

Ψ (x) = I+(d(x)), (2.63)

where I+ is the indicator function of R+ (see [12, 13, 32] or the appendix). Non
dissipative forces are the generalized derivatives of the free energy

Rinte ∈ ∂I+(d(x))N = ∂Ψ (x), (2.64)

Pinte = 0, (2.65)

where ∂I+ is the subdifferential set of function I+, (see [12, 13, 32] or Sect. A.2.1
and A.4 of the appendix). Non dissipative force −Rinte is the non interpenetration
reaction force of the plane: the action of the plane on the point. It is null if the point is
not in contact with the plane. It is directed upward when the point slides on the plane.
The non dissipative percussionPinte is null because [Ψ (t)] = 0. In a collision, the non
interpenetration is not ensured by a non dissipative percussion. It is to be ensured by a
dissipative percussion. This means that the non interpenetration reaction works. This
reaction cannot be workless or perfect (liaison parfaite in French, vincolo perfetto
in Italian). The dissipative character of collisions appears. Some properties we are
accustomed to disappear. We mention them in the sequel.

Remark 2.7 Adjective elastic is used with its abstract meaning equivalent to non
dissipative.
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2.7.2 The Dissipative Forces

Relationships (2.59) and (2.60) show that it is wise to assume that the internal forces
depend not only on d, as we already know, but also on U and

(
U+(t) + U−(t)

)
/2

which describe how the form of the system evolves.

2.7.2.1 The Dissipative Forces Defined with a Pseudo-potential
of Dissipation

A pseudo-potential of dissipation Φ(X, χ), introduced by Jean Jacques Moreau, is
a convex function of X, with value in R̄ = R ∪ {∞}, positive and null at the origin,
Φ(0, χ) = 0, [23, 27, 30]. At any timeχ(t) depends on the past but not onX. Internal
dissipative forces are given by the subdifferential set with respect to X of Φ(X, χ)

(see [12, 13, 32] or Sect. A.4 of the appendix).
In the present situation, X is either U or

(
U+(t) + U−(t)

)
/2. The internal dissi-

pative forces are either Rintd or Pintd

Rintd ∈ ∂ϕ̃(U, χ), Pintd ∈ ∂Φ̃(
U+ + U−

2
, χ). (2.66)

Assuming there is no at a distance actions, the dissipative forces are null when
the point is not in contact with the plane. Thus we let d be a χ quantity and choose
pseudo-potentials of dissipation null for d > 0

ϕ̃(U, d) =
{

0, if d > 0,
ϕ(U), if d = 0,

(2.67)

for smooth evolution, and

Φ̃(
U+ + U−

2
, d, U− · N) =

{
0, if d > 0,
Φ(U++U−

2 ) + I+(U+ · N), if d = 0,
(2.68)

for the collisions; i.e., for the non smooth evolutions. We have added U− · N in quan-
tities χ for the non interpenetration condition. Because when d = 0, non interpene-
tration is insured if normal velocity after collision is directed upward, U+ · N ≥ 0.
This is why indicator function

I+(U+ · N) = I+(
U+ + U−

2
· N − U−

2
· N), (2.69)

intervenes. Clearly it is a function of (U+ + U−)/2 and χ = (d, U− · N). For X = 0,
X = (U+ + U−)/2 = 0, indicator function
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I+(0 − U−

2
· N), (2.70)

is actually null because normal velocity before collision,U− · N ≤ 0, is non positive.

Remark 2.8 Situation where U− · N > 0, is physically impossible because the point
cannot surge from the planeMoreover Φ̃ is no longer a pseudo-potential of dissipation
because Φ̃(0, d, U− · N) = +∞ for d = 0.

Dissipative forces are defined by

Rintd ∈ ∂ϕ̃(U, d) =
{

0, if d > 0,
∂ϕ(U), if d = 0,

(2.71)

Pintd = Pint ∈ ∂Φ̃(
U+ + U−

2
, d, U− · N) (2.72)

=
{
0, if d > 0,
∂Φ(U++U−

2 ) + ∂I+(U++U−
2 · N − U−

2 · N)N, if d = 0.
(2.73)

Remark 2.9 Subdifferential set ∂Φ̃(X, χ) is computed with respect to X ∈ R
3 with

the usual scalar product in R
3.

These forces are actually null when there is no contact. Non interpenetration
percussion

PreacN ∈ ∂I+(
U+ + U−

2
· N − U−

2
· N)N = ∂I+(U+ · N)N, (2.74)

is normal to the plane. It is active only if U+ · N = 0, i.e., if the future normal
velocity is null meaning that there is a risk of interpenetration. We remark that
the non interpenetration reaction appears when the other mechanical effects are not
sufficient to prevent interpenetration. This percussion works with work

PreacN · U+ + U−

2
= Preac U− · N

2
≥ 0. (2.75)

We denote in the sequel

Pint = Pd + PreacN = Pd + Preac. (2.76)

2.7.2.2 Internal Forces Defined with a Dissipation Function

A dissipation function is a real function Φ(X, χ) where at any time χ(t) depends
on the past and possibly on X. This function is differentiable or has a generalized
derivative with respect to X, in a domain which contains at least the origin, X = 0.
It satisfies
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∀Y , gradXΦ(Y , χ) · Y ≥ 0. (2.77)

The dissipative forces are given by the derivative of Φ(X, χ) with respect to X.

2.7.2.3 A Property of Dissipative Internal Forces Defined Either
with a Pseudo-potential of Dissipation or with a Dissipation
Function

An advantage of defining the dissipative forces either with a pseudo-potential of
dissipation or with a function of dissipation is that relationships (2.59) and (2.60)
are satisfied. Moreover experimental results fit very often with pseudo-potential of
dissipation. There are some cases but important cases where experimental results are
more easily taken into account by a dissipation function.

Theorem 2.4 If dissipative internal forces are defined either by a pseudo-potential
of dissipation or by a dissipation function, relationships (2.59) et (2.60) are satisfied.

Proof In case of a pseudo-potential, the proof is classical [18, 27]. In case of a
dissipation function, the proof relies on relationship (2.77).

Examples are given in following section. Let us note that a pseudo-potential of
dissipation is a dissipation function but the converse is not true.

The presentation of the predictive theory of the motion of a point above a plane is
achieved. It remains to identify the constitutive laws with experiments giving hints
to choose either a pseudo-potential of dissipation or a function of dissipations.

2.8 Examples of Collisions with Internal Forces Defined
with a Pseudo-potential of Dissipation

In these examples, we decouple the collision normal to the plane phenomena from
the tangential phenomena.

We define the normal and tangential percussions

Pint = PNN + PT , PN = Pint · N, (2.78)

with the normal and tangential velocities

U = UNN + UT , UN = U · N. (2.79)

We split the pseudo-potential into a part giving the normal percussion depending
on the normal velocity and a part giving the tangential percussion depending on the
tangential velocity
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Φ(
U+ + U−

2
) + I+(U+ · N) = ΦT (

U+
T + U−

T
2

) + I+(U+ · N) + ΦN (
U+
N + U−

N
2

).

(2.80)

2.8.1 First Example

The normal and tangential evolutions are decoupled. And we choose ΦT = 0 and
ΦN (X) = kX2 quadratic functions giving linear internal forces (besides the non inter-
penetration reaction). MoreoverΦT = 0, gives a tangential percussion null We have

PN ∈ ∂ΦN

∂X
(
U+

N + U−
N

2
) + ∂I+(

U+
N + U−

N

2
− U−

N

2
) (2.81)

= k(U+
N + U−

N ) + ∂I+(U+
N ), (2.82)

Pd
N = k(U+

N + U−
N ), Preacd

N ∈ ∂I+(U+
N ), (2.83)

PT = 0. (2.84)

2.8.1.1 A Collision

Let us consider le point falling on the plane. Equations of motion and constitutive
laws give

m [UT ] = −PT = 0, (2.85)

m [UN ] = −PN ∈ −k(U+
N + U−

N ) − ∂I+(U+
N ). (2.86)

First equation proves that the tangential velocity is continuous: it is not modified by
the collision. Second equation is easy to solve

• if m < k, i.e., if the solid is light or the dissipation is important in collisions, the
point bounces with velocity

U+
N = m − k

m + k
U−

N , (2.87)

and non interpenetration reaction percussion is null

Preacd
N = 0 ; (2.88)

• if m > k, if the solid is heavy or if the dissipation is not important in collisions,
the point does not bounce. It remains in contact with the plane and slides

U+
N = 0, (2.89)

and non interpenetration reaction percussion is
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Preacd
N = (m − k)U−

N ≤ 0, (2.90)

the dissipative percussion being

Pd
N = kU−

N . (2.91)

Dissipated energy is

Pint · U+ + U−

2
= (Pd

N + Preacd
N )

U+
N + U−

N

2
= (2.92)

= k

2
(

2m

m + k
)2

(
U−

N

)2
, if m < k, (2.93)

= k

2

(
U−

N

)2 + m − k

2

(
U−

N

)2 = m

2

(
U−

N

)2
, if m > k. (2.94)

We remark again that the non interpenetration reaction percussion is dissipative and
it intervenes only if interpenetration is at risk, i.e., if the point does not bounce.
The energy dissipated by this reaction is maximal for k = 0. It decreases to 0 when
k increases up to m. We may note that if k is small, dissipation is mostly due to
the reaction percussion and that if k is large the whole dissipation is due to the
dissipative percussion. This is in agreement with our vocabulary. Let us also note
another property which may be surprising, when dissipative parameter k is infinite,
dissipation is null. But when k tends toward infinity, deformation velocityU+

N + U−
N

tends to 0. The system tends to become rigid! Thus it is correct that the dissipation
tends to 0, the dissipation in a rigid or undeformable system. The pseudo-potential
tends to I0(U

+
N + U−

N ) where I0 is the indicator function of the origin. If we assume
the same type of constitutive law for the smooth evolution pseudo-potential I0(UN )

implies rigidity for the vertical displacement. As soon as the point gets into contact
with the plane, it is irremediably fixed to it. It remains free to slide on the plane
without dissipation with the tangential constitutive law we have chosen. Thus it is
good that the dissipated energy tends to 0 when k tends to ∞.

2.8.2 Second Example

We may choose sophisticated pseudo-potentials. For instance

ΦN

(
U+

N + U−
N

2

)
= k0np

(
U+

N + U−
N + 2Ulim

2

)
(2.95)

+k

(
np

(
U+

N + U−
N + 2Ulim

2

))2

, (2.96)
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where we assume (k0/m) ≥ Ulim ≥ 0 and np(x) denotes the negative part function
see (A.2.1)

np(x) =
{−x, if x ≤ 0,

0, if x ≥ 0.
(2.97)

Remark 2.10 We have
∣∣∣∣
(
np(

U+
N + U−

N + 2Ulim

2
)

)∣∣∣∣ = np

(
U+

N + U−
N + 2Ulim

2

)
. (2.98)

The subdifferential set of np(x) is

G(x) =
⎧⎨
⎩

0, if x > 0,
[−1, 0] , siif x = 0,

−1, if x < 0.
(2.99)

Graph G(x) = −H(−x) where graph H(x) is the subdifferential set of the positive
part function defined by formula (A.2.1). Constitutive law is

PN ∈ k0G(U+
N + U−

N + 2Ulim) − k
(
np(U+

N + U−
N + 2Ulim)

) + ∂I+(U+
N ).

(2.100)

We let X = U+
N + U−

N + 2Ulim

mX + k0G(X) − knp(X) + ∂I+(X − U−
N − 2Ulim) � 2m

(
U−

N + Ulim
)
. (2.101)

In the case m − k ≥ 0, i.e., if the point is heavy or the dissipation is not important in
collisions we have, (remember we have assumed Ulim ≤ k0/(2m))

U+
N = 0, if 0 ≤ −U−

N ≤ 2Ulim (2.102)

U+
N = −U−

N − 2Ulim, if 2Ulim ≤ −U−
N ≤ Ulim + k0

2m
, (2.103)

U+
N = k0

m + k
+ m − k

m + k
U−

N − 2k

m + k
Ulim, (2.104)

if Ulim + k0
2m

≤ −U−
N ≤ k0

m − k
− 2k

m − k
Ulim, (2.105)

U+
N = 0, if − U−

N ≥ k0
m − k

− 2k

m − k
Ulim. (2.106)

Function−U−
N → U+

N shown on Fig. 2.1, illustrates what happened when a gang-
sters’ car, pursued by a police one, drives on speed bumps (the car is shown by a
point):
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• when the car travels at low speed, it takes off on the first speed bump and falls back
at low vertical speed. 0 ≤ −U−

N ≤ 2Ulim. The car does not bounce back, U
+
N = 0,

the gangsters haven’t found out that the police follows them;
• on the next speed bump, the gangsters understand the police is after them. They
try to escape and increase their speed. The car takes off and falls back at a vertical
speed −U−

N satisfying

2Ulim ≤ −U−
N ≤ k0

m − k
− 2k

m − k
Ulim. (2.107)

The car bounces as it falls back, it keeps travelling, potentially bouncing back
several times while accelerating more and more;

• on the following speed bump, the gangsters’ car is at a breakneck speed, it flies
off and falls back at a high vertical speed,

− U−
N ≥ k0

m − k
− 2k

m − k
Ulim. (2.108)

As it falls back, the springs and shock absorbers are not sufficient to withstand the
impact. They break and thus unable the car to bounce. As such, the car does not
bounce, U+

N = 0 and is not in a state to travel as it is not suspended anymore. The
police can now stops the gangsters.

Function U+
N versus −U−

N plotted on Fig. 2.1 shows that the physical behaviours
may be non monotonous and sophisticated whereas the constitutive laws are rather
simple.

Fig. 2.1 The vertical velocityU+
N of a solid after collision versus its velocity−U−

N before collision.
The solid shown by a point, bounces only at medium vertical velocity. At low or high velocity, it
does not bounce. This is what happens when a car drives on speed bumps. After taking off on the
bump, when falling down with a low vertical velocity, it does not bounce, it bounces when falling
down at medium velocity due to its springs and shock absorbers and does not bounce when falling
at high velocity, breaking its springs and shock absorbers
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2.8.3 Third Example. Interpenetration Is Possible

Let us consider a steel ball falling on a tightened sheet of paper. Depending on its
velocity and mass, it can get through the sheet of paper. We choose the following
pseudo-potential of dissipation no longer involving the non interpenetration condition
(2.68).

Φ̃(
U+ + U−

2
,

U−

2
) = k0np

(
U+

N + U−
N

2
− U−

N

2

)
(2.109)

+k

(
U+

N + U−
N

2

)2

, (2.110)

It satisfies Φ̃(0, U−/2) = 0 because U− · N < 0. Internal percussion is

PN = ∂Φ̃

∂((U+ + U−)/2)
∈ k

(
U+

N + U−
N

) + k0G
(
U+

N

)
, (2.111)

where graph G, subdifferential set of negative part function np, is defined by (2.99).
Equation giving normal velocity

m(U+
N − U−

N ) = −PN ∈ −k0G
(
U+

N

) − k(U+
N + U−

N ), (2.112)

is solved by letting X = U+
N + U−

N . It becomes

mX + k0G(X − U−
N ) + kX � 2mU−

N . (2.113)

Because graph Y → mY + k0G(Y − U−
N ) + kY is monotone, maximal and surjec-

tive, Previous equation has one and only one solution which is

1. si m − k ≤ 0, i.e., either the ball is light or the system is very dissipative, the ball
bounces with velocity

U+
N = m − k

m + k
U−

N ; (2.114)

2. if m − k ≥ 0, i.e., if the ball is heavy or the system is weakly dissipative,

a. if falling velocity is low,

− U−
N ≤ k0

m − k
, (2.115)

the ball does not bounce. It is stopped by the sheet of paper

U+
N = 0 ; (2.116)



26 2 The Theory: Mechanics. An Example: Collision of a Point …

Fig. 2.2 The velocity U+ of the steel ball versus its velocity −U− before colliding the sheet of
paper. When the falling velocity is low, −U− ≤ k0/ (m − k), the ball is stopped by the sheet of
paper. When it is high, −U− ≥ k0/ (m − k), the steel ball transfixes the sheet of paper

b. if falling velocity is large

− U−
N ≥ k0

m − k
, (2.117)

the ball transfixes the sheet of paper with velocity

U+
N = k0

m + k
+ m − k

m + k
U−

N , (2.118)

U−
N < U+

N ≤ 0. (2.119)

The ball is still falling but it is slowed down when getting through the sheet
of paper, (Fig. 2.2).

This idea has been used by to predict avalanches of rocks in mountain forests. The
trees can be broken by the falling rocks, [11].

Remark 2.11 Quasi-static collision. If we neglect the inertia effects. Collision equa-
tion of motion becomes

0 = m [U] = −Pint + Pext . (2.120)

When there is no external percussion and the constitutive law is given by pseudo-
potential of dissipation

I+(U+
N ) + ΦN (

U+
N + U−

N

2
), (2.121)

we have

0 ∈ ∂I+(U+
N ) + ∂ΦN (

U+
N + U−

N

2
). (2.122)

This equation has always solutionU+
N + U−

N = 0. The point rebounces. No informa-
tion is given on the tangential motion.Wemay choose the continuity of the tangential
velocity.
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2.9 Examples of Dissipative Forces Defined with a Function
of Dissipation

The important behaviour described by a function of dissipation is the Coulomb
behaviour which intervenes in the smoothmotion but also in the collisions.Moreover
the two constitutive laws are related, [19].

2.9.1 The Coulomb’s Friction Law

The normal and tangential forces are

Rint = RNN + RT , RN = Rint · N. (2.123)

The normal and tangential velocities are

U = UNN + UT , UN = U · N. (2.124)

We choose

X =
(
UN

UT

)
, χ = −RN , (2.125)

and

Φ(X, χ) =
(

0
−RNφ(UT )

)
, (2.126)

where φ is a pseudo-potential of dissipation.
Pseudo-potential φ(UT ) = μ ‖UT‖ where UT is the tangential velocity, is often

chosen. Function Φ(X, χ) is not a pseudo-potential of dissipation because normal
reaction χ = −RN is not a function of the state quantities, i.e., position or distance
d. It can depend on UT . Coulomb’s friction law is defined by

Rinte =
(
Re
N

Re
T

)
∈

(
∂I+(d)

0

)
, (2.127)

Rintd =
(
Rd
N

Rd
T

)
∈

(
0

−RN∂φ(UT )

)
, (2.128)

Rint = Rinte + Rintd =
(
RN

RT

)
∈

(
∂I+(d)

0

)
+

(
0

−RN∂φ(UT )

)
. (2.129)

Tangential force is given by relationships

RT = −RNμ
UT

‖UT‖ , if UT = 0, (2.130)

‖RT‖ ≤ −RNμ, if UT = 0. (2.131)
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2.9.2 The Coulomb’s Collision Law

For collisions, internal percussion is split in the same way

Pint = PNN + PT , PN = Pint · N. (2.132)

Coulomb collision dissipation function is

X =
(

U+
N +U−

N
2

U+
T +U−

T
2

)
, χ =

(
−PN ,

U−
N

2
, d

)
, (2.133)

and

Φ(X, χ) = 0, if d > 0, (2.134)

Φ(X, χ) =
(

ΦN (
U+

N +U−
N

2 ) + I+(
U+

N +U−
N

2 − U−
N
2 )

−PNφ(
U+

T +U−
T

2 )

)
, if d = 0. (2.135)

Collision Coulomb constitutive law is

Pint =
(
PN

PT

)
= Pd + Preac, (2.136)

Pint = 0, if d > 0, (2.137)

Pint ∈
(

∂ΦN (
U+
N +U−

N
2 ) + ∂I+(

U+
N +U−

N
2 − U−

N
2 )

−PN∂φ(
U+
T +U−

T
2 )

)
, if d = 0, (2.138)

Pd ∈
(

∂ΦN (
U+
N +U−

N
2 )

−PN∂φ(
U+
T +U−

T
2 )

)
, Preac ∈

(
∂I+(

U+
N +U−

N
2 − U−

N
2 )

0

)
, if d = 0, (2.139)

where ΦN and φ are pseudo-potentials of dissipation. Function Φ(X, χ) is not a
pseudo-potential of dissipation because PN depends onU+

N + U−
N . We see again that

collisions are uniquely dissipative phenomenons.

2.9.3 Experimental Results

Experimental results, [7, 8, 10] show that φ(UT ) = μ

∥∥∥U+
T +U−

T
2

∥∥∥ may be chosen for

collisions of small steel squares with a marble table (see Figs. 2.3 and 2.4). Then
tangential percussion is
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PT PT

-PN-PN

Fig. 2.3 Normal percussion −PN versus tangential percussion PT for two small solids colliding
a marble table. Coulomb cone with collision coefficient of friction μ = 0.22 is conspicuous. Left
figure is for small steel triangles and right figure for small steel rectangles, [7]

Fig. 2.4 Quotient −PT/PN
versus U+

T + U−
T in m/s for

small steel triangles colliding
a marble table. Collision
coefficient of friction is 0.22
equal to the smooth motion
coefficient of friction
Coulomb’s law appears
clearly even if the
experimental results are
scattered, [7]. One may
compare with Fig. 2.5 where
no functional relationship
appears

PT = −PNμ
U+

T + U−
T∥∥U+

T + U−
T

∥∥ , if U+
T + U−

T = 0, (2.140)

‖PT‖ ≤ −PNμ, if U+
T + U−

T = 0. (2.141)

These experimental results show that there are good functional relationships
between percussions and velocity of deformation U+ + U− whereas nothing perti-
nent appears when investigating the percussions versus either the deformation veloc-
ity before collision, U− or the deformation velocity after collision, U+, [7, 17]. This
is in agreement with theoretical inequality (2.60) which suggests that to relate Pint

and U+ + U− may be productive. Let us note that there is a priori no hint to look
for relationships between these quantities. As already said the important interest of
relationship (2.60) is to guide experimental work and theoretical choices.
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Fig. 2.5 Tangential internal
percussion versus tangential
velocity U+

T after collision.
No functional relationship
may be founded. We have the
same result for the tangential
percussion versus tangential
velocity U−

T before collision

2.9.4 Relationships Between Smooth Friction and Collision
Constitutive Laws

The experimental results for collisions between steel small solids and a marble table,
in fact a massive polished stone table, give a Coulomb’s collision coefficient 0.17
approximatively. The dry coefficient of friction for steel-stone is of this order, around
0.2. Moreover it appears a relationship between collisions with the Coulomb law and
smooth sliding on the plane with Coulomb friction law. It may be proved that smooth
sliding is the limit of periodic small jumps (Coulomb collisions with rebounds) when
the amplitude of the jumps tends to zero, [19]. Thus experimental and theoreti-
cal results suggest to have for both smooth friction and non smooth collisions, the
Coulomb’s law with the same coefficient. Of course this choice is not compulsory
but without more experimental information, it is reasonable.
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