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Abstract Accuracy in prediction of global horizontal irradiance is vitally important
for photovoltaic energy prediction, its installation and pre-sizing studies. A change
in the solar radiation directly impacts the electricity production and in turn, the plant
economics. Hence employing a model possessing improved prediction accuracy
significantly affects the photovoltaic energy prediction. Furthermore, monthly mean
data is required for prediction of long-term performance of solar photovoltaic
systems, making the same to be concentrated for the present contribution. The
available models for prediction of irradiance and energy unlike physical and sta-
tistical models depend on input parameters whose availability, assumption and
determination is difficult. This finally creates complexity in predicting the desired
response. Hence empirical models are chosen preferable over physical and
statistical-based models. Empirical models correlate only the available input
atmospheric parameters affecting solar irradiance and energy, thereby reducing the
complexity experienced by physical and statistical models. Yet, the reliability or
accuracy of model varies with location. The reliability of an empirical model
depends on the incorporation of input’s and data set (training set) for its formula-
tion. Thus the consideration of significant input factors lies to be a persistently
prevailing challenge, driving the need for an improved prediction model delivering
irradiance and energy. In this chapter, an empirical model is proposed for prediction
of irradiance and energy. The incorporated input factors for the formulation of
energy prediction model is emphasized by performance and exergy analysis of solar
photovoltaic systems. The proposed model hence combines the thermal and elec-
trical aspects of photovoltaic systems gaining reliability and limiting the depen-
dence towards real-time measured input factors.

Keywords Global solar irradiance � Empirical model � Energy prediction model �
Performance analysis � Exergy analysis � Percentage error

S. Sundaram (&) � J.S.C. Babu
Department of Chemical Engineering, National Institute of Technology Tiruchirappalli,
Tiruchirappalli 620015, Tamil Nadu, India
e-mail: sivasankari66@gmail.com

© Springer-Verlag Berlin Heidelberg 2016
M.R. Islam et al. (eds.), Advances in Solar Photovoltaic Power Plants,
Green Energy and Technology, DOI 10.1007/978-3-662-50521-2_6

139



1 Introduction

The advantages of solar with respect to its availability and environmental friendly
nature cause increasing penetration of the same into electrical grid. But despite the
advantages, the inherent nature of solar irradiation causes intermittency in the
production of energy generated by a solar photovoltaic system posing potential
challenges for power system operation or grid operators. Moreover, the main task of
the power system is to ensure a reliable state-of-the-art supply-on-demand system.
Thus reliability can be achieved only if the deliverable amount of energy from a
photovoltaic system to the grid is known. This can be reinforced through predictive
technologies or models employed for the prediction of energy generated by a solar
power plant over a time-based horizon. The performance ratio or plant capacity
factor of a solar photovoltaic power plant is always evaluated over a long-term
horizon. Also, a performance comparison among solar PV plants is always made
based on the annual long term (monthly average daily) monitored or evaluated
response. Hence long-term prediction over an annual horizon is practically required
for moving towards smarter grid or making reliability a reality.

The necessity of solar resource assessment for prediction of energy generated by a
typical solar photovoltaic distribution system is made clear. This necessity creates a
dependence on theoretical modelling of global solar irradiance and energy genera-
tion. There currently occur three modelling aspects for prediction of global irradi-
ance and energy. These include physical or mathematical models, statistical models
and empirical models. Physical or parameterized models of kind included for pre-
diction of irradiance and energy were reported by researchers as seen in [1–8]. The
physics-based models for irradiance rely on the physics of interaction between the
extraterrestrial irradiance and constituents of atmosphere. The disadvantage of
physics-based models for irradiance and energy include complex structure and
dependence of it towards more number of input parameters such as station pressure,
temperature, Rayleigh scattering, ozone reduced path, perceptible water, aerosol
scattering albedo, aerosol optical thickness, temperature coefficient of modules, solar
irradiance at plane of array and PV characteristic parameters. Hence models based on
statistical approach were also reported to exist for prediction of irradiance.
Statistical-based models employing time series based modelling strategies such as
moving average, support vector regression and auto regression integrated moving
average (ARIMA) [9, 10] are commonly employed for minutely or hourly based
forecasting. These techniques are too complex to be employed for monthly
average-based prediction. This further resulted in empirical-based approach for
prediction of solar potential in a desired location of interest. Empirical models
correlate the desired response (global horizontal irradiance and energy) to the
available and accessible inputs. This reduces the dependence of the model towards
more number of input parameters (as in case of physical models). Furthermore, the
empirical constants are derived employing simple regression-based methodology
limiting the complexity experienced with statistical models.
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Though empirical models possess advantages as compared to physical and
statistical-based approach, there remain certain research investigations among the
prevailing empirical structures. These include the opportunity for improving accu-
racy by incorporation of significant input factors, which are absent in the existing
models, proper validation check and limiting its dependency towards real-time
measurable input parameters. This drives or motivates towards the formulation of an
empirical model addressing the challenges as stated above. Before stepping into the
formulation of an improved empirical model, the existing empirical models for
prediction of irradiance and energy have to be known. There exist two basic clas-
sifications of empirical model for irradiance based on the incorporation of input
parameters such as single parametric model and multi-parametric or hybrid models.
Whereas, only a few polynomial regressive-based empirical models are found to be
reported for energy prediction [11–13]. Hence, this chapter contributes to the for-
mulation of empirical model for prediction of global irradiance and energy gener-
ation for solar photovoltaic system. The location of interest for the formulation of
proposed empirical model was selected based on the accessibility of testing data set
required for its validation. Moreover, the proposed model can further be used for
other locations on altering the empirical constants embedded in the model.
A schematic showing the classification of empirical model for irradiance and energy
prediction is presented in Fig. 1.

1.1 Single Parametric Models for Prediction of Solar
Irradiance

The single parametric models include only a single significant factor affecting
irradiance which is reported to be practically measured. The commonly existing
single parametric models include the sunshine-based and ambient temperature-based

Fig. 1 Classification of empirical irradiance and energy prediction models
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model. The section below describes the single parametric sunshine and temperature-
based model.

1.1.1 Single Parametric Sunshine-Based Model

The sunshine-based model was first introduced by Angstrom in 1940 [14], who
suggested a linear relationship between the clearness index (ratio of global hori-
zontal irradiance to the extraterrestrial global irradiance) and the relative sunshine
hour (ratio of sunshine hour to maximum possible bright sunshine hour). This was
further modified by Presscott [15] to deliver Angstrom-Presscott model which
supported the addition of an empirical constant to the Angstrom model. The
equation of form reported by Presscott [15] is given by

H
H0

¼ aþ b
S
S0

� �
ð1Þ

where H represents the monthly average daily global irradiance, H0 represents the
extraterrestrial global irradiance; S represents the monthly average daily sunshine
hour and S0 represents the maximum possible bright sunshine hour.

Having Angstrom-Prescott model as the basis several other researchers devel-
oped linear order-based sunshine model with the change in empirical constants ‘a’
and ‘b’ for certain locations of US, Zimbabwe and India [16–20]. In 1984, Benson
et al. [21] proposed a seasonal specific linear order-based model for 46 stations,
which experiences improved prediction accuracy than yearly based models as
described in [16, 17].

Ogelmann in 1984 [22] proposed a yearly based monthly average daily quadratic
model for Andana and Ankara in Turkey with a training data set of 3 years. The
prediction agreement was found better than the linear based sunshine model. This
occurred due to the addition of quadratic order based factor to the linear order,
increasing accuracy. The regression coefficient representing closeness between the
response and the input is high for a quadratic order than for a linear order factor.
The basic form of quadratic order based model [22] is given by

H
H0

¼ aþ b
S
S0

� �
þ c

S
S0

� �2

ð2Þ

Furthermore, Samuel in 1991 [23] proposed a cubic model for a location with
latitude 5.55°N. The MPE reflecting accuracy was reported to be 2.6 %. Thus a
cubic order based empirical model would deliver better closeness between the
predicted and actual value of irradiance than a quadratic and linear order. The basic
form of cubic order-based model [23] is given by
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H
H0

¼ aþ b
S
S0

� �
þ c

S
S0

� �2

þ d
S
S0

� �3

ð3Þ

Ampratwum et al. in 1999 [24] compared models of linear, quadratic and log-
arithmic sunshine-based models. The author finally reported the usage of quadratic
and logarithmic sunshine-based models for prediction of global irradiance. Further,
a monthly specific quadratic order-based model for prediction of global irradiance
in Sudan was proposed as in [25]. A least MPE of 0.36 % on training was observed.
This occurs due to the nature of reported empirical constants, being monthly spe-
cific. Haydar et al. in 2006 [26] also experienced highly acceptable accuracy for the
cubic model than the developed linear and quadratic-based sunshine models for
certain provinces in Anatolia such as Afyon, Cankiri and Corum. A non-linear
curve fitting model for prediction of monthly average daily global irradiance for
Jeddah was reported in [27]. An acceptable prediction performance was observed
due to the fact of deriving the empirical constants through curve fitting method-
ology than regression-based method [27]. A similar curve fitting-based methodol-
ogy for gaining improved prediction accuracy, in formulation of empirical model
was followed by Wanxiang et al. [28].

Finally summarizing, the single parametric-based sunshine model, improved
accuracy would be rendered on employing monthly specific cubic models or curve
fitting-based methodology for obtaining the empirical constants.

1.1.2 Single Parametric-Based Temperature Model

As already cited, ambient temperature also occur as a significant single parametric
factor affecting global irradiance. This section cites the reported temperature-based
global irradiance model with its performance comparison among sunshine-based
model.

Similar to [15] which describes the basic form of sunshine model, an attempt
was made in 1982 by Hargreaves and Sammi [29] to report a basic form of
temperature-based model. The model reported by Hargreaves and Sammi [29] is
given by Eq. (4) as follows:

H
H0

¼ aþ b Tmax � Tminð Þ0:5 ð4Þ

Further modifications to the basic form of temperature model as reported in [29]
model was described by few researchers as seen in literatures [30–36]. Though
temperature-based models exist for prediction of global irradiance, it lies less
accurate on comparison to sunshine-based models [37, 38]. Ultimately, a factor of
temperature which is proven to affect the solar radiation cannot be neglected
though. Hence, a hybrid model would form a better solution encompassing factors
implicitly and explicitly affecting global horizontal irradiance.
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1.2 Multi-Parametric or Hybrid Models for Prediction of
Solar Irradiance

The hybrid parametric model evolved as the methodology for experiencing further
improved accuracy than the reported sunshine and temperature-based models. The
available input factors which are proved to affect the intensity of solar radiation for
a desired location are considered for its prediction. The models in line with the
consideration of available input factors are seen in literatures [38–43]. The reported
models constitute metrological input factors such as ambient temperature (Ta), soil
temperature (Tso), relative humidity (RH), sine of declination angle (d), mean sea
level, ambient temperature, water vapour pressure (Pv), and mean cloud cover (Cm).
The basic form of the existing hybrid models as reported by cited researchers
include

H
H0

¼ a DTð Þb 1þ cPþ dP2
� �� �

½39� ð5Þ

H ¼ 4:591� 0:1135H0 þ 2:522
S
S0

� �
þ 6:1589ðsin dÞ

� 0:0124ðRHÞþ 0:0187ðTsoÞ � 0:052ðTaÞ ½40�
ð6Þ

H
H0

¼ aþ b
S
S0

� �
þ cT þ dV þ eRHþ fPv ½41� ð7Þ

H
H0

¼ a lnðTaðmaxÞ � TaðminÞÞ þ b
S
S0

� �c

þ d ½42� ð8Þ

The regression coefficient marking the closeness between the desired irradiance
and the input factor increases on addition of input factors affecting irradiance [38–
43]. Furthermore, an exhaustive review as seen in [44] for empirical models on
solar radiation prediction, reported non-linear model to be the best predictor on
comparison with linear, ANN and fuzzy (complex methods) with least MPE of
0.11 %, RMSE of 0.0181 % and MBE of 0.0001 %.

Summarizing the facts delivered by hybrid model, the prediction accuracy is
proved to increase on addition of significant available factors towards irradiance.
The hybrid model can necessarily include the incorporation of proved significant
factors of sunshine and ambient temperature towards global irradiance.

The hybrid models perform acceptably well in comparison with the single
parametric model. But the prevailing challenge occurring in the present multi-
parametric model is its dependence towards more number of real-time monitored
input factors. These could be unavailable for stations other than its formulation or
training. More simply, its reliability varies with location. Furthermore, the cost
incurred in measuring the input model parameters aiding prediction of global irra-
diance (response) should be less than measuring the response directly. Hence
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formulating a model for prediction of irradiance, whose input factor limits its
dependence towards realistic measurement, is required. Similar is the case with the
prediction of energy generation for a photovoltaic system.

1.3 Multi-parametric Model for Prediction
of Energy Generation

The multi-parametric model for prediction of energy delivered by a typical solar
photovoltaic system is given by models of kind [11–13] and [45]. These include
either of the input parameters such as global irradiance, ambient temperature,
module temperature and wind speed. The basic form of the reported models is given
as follows:

Pac ¼ aHþ bH2 þ c lnðHÞ ½11� ð9Þ

Pac ¼ aHþ b
H

Tmax

� �2

þ cTmax ½12� ð10Þ

Pac ¼ H aþ bHþ cTa þ dðWSÞð Þ ½13� ð11Þ

Pac ¼ aþ bHTm þ cHþ dH2 ½45� ð12Þ

The performance of the prevailing models marked by absolute mean relative
error varied from a minimum of 2 % to a maximum of 17 %, for the models
reported as in Eqs. (9)–(12) on its application to a typical case study [13]. The
prediction accuracy of the model depends on the nature of significant factors
incorporated for its formulation as already cited. The generation of heat loss on
power generation from a photovoltaic cell is well evident from the nature of pho-
tovoltaic effect [46] and reported research investigations [47, 48]. This significantly
affects the yield or the energy generation. Hence the empirical model to be for-
mulated for energy generation should account for the heat loss dissipated on power
generation. This chapter further contributes to the evaluation of improved model for
prediction of energy, generated by a typical PV system.

2 Formulation of Multi-parametric Global
Irradiance Prediction Model

The formulation of an empirical multi-parametric model for prediction of global
irradiance and energy involves the following sequential schematic as represented in
Fig. 2. As seen, the formulation is assisted with the measured response (be it either
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irradiance or energy) during the training period. The significant atmospheric factors
affecting the spectral properties of solar irradiance or energy are related through
justified or proven facts (requiring prior knowledge). The proposed model is then
evaluated for its coefficients employing simpler regression methodology for a
desired location, making the same to be applicable on reality.

The measured global irradiance (considering solar irradiance as the first
response) for the formulation of the prediction model is inherited from the solar
radiation database provided by RETscreen plus [49]. RETscreen plus provides the
complied monthly average daily global irradiation data from NASA and WRDC.
As the accuracy of the proposed model depends on the accuracy of the training data,
a compiled input data set is preferred. The training period occurs for the duration of
1961–1990 where the monthly average daily global irradiance input set is available.
The desired locations were selected based on the availability or accessibility of the
validation data set. Furthermore, merely basic sunshine-based models occur for
certain locations of India such as Mumbai, Kolkata, Jodhpur, Kodaikanal and
Chennai, where the need for improved prediction accuracy lies important. The
formulation of multi-parametric model which is believed to exhibit improved
accuracy remains untested. Most particularly the state of Tamil Nadu shares about
35 % of its installed capacity from renewable source of energy [50]. The state also
experiences around 300 sunny days which makes it to rely on solar power for
supporting the created demand. As solar installations increase, the intermittency of

Real time measured response 

Selection of atmospheric input 
factors

Determine model input struc-
ture

Empirical coefficient estima-
tion 

Performance evaluation with 
trained data

Model validation with alter-
nate or validation data set

Supported with 
prior knowledge

Fig. 2 Methodology for
empirical model formulation
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energy generation increases, ultimately creating a need for reliability. This further
can be made a reality, on existence of predictive technologies. Thus certain loca-
tions of Tamil Nadu were considered in the present chapter for training and
validation.

2.1 Input Factors Considered Affecting Global
Solar Irradiance

The atmospheric input factors affecting the clearness index (ratio of measured
global irradiance to extraterrestrial global irradiance) includes the relative sunshine
hour, temperature ratio and the air mass at solar noon which are briefly described as
follows.

2.1.1 Relative Sunshine Hour

The sunshine duration is defined as the length of time during which the ground is
irradiated with direct solar irradiance [51]. The duration during which the ground is
irradiated or the amount of daylight implicitly marks the intensity of global irra-
diance received by it. This duration is recommended to rely on the measurement
from the sunshine recorder as suggested by several researchers, who reported
sunshine-based empirical models for prediction of global irradiance. Instead of
relying on real-time measurement, it can be suggested to limit the real-time
dependency by theoretical assessment of sunshine hour. Thus, the equation reported
as in [52] is suggested for calculation of sunshine hour duration. This reduces one
of the prevailing challenges of empirical-based models. Equation (13) gives the
theoretical estimation of sunshine hour [52]

S ¼ h
360

arc cosðtanðLÞ tanð23:5Þ cos 360Dn

365:25

� �
ð13Þ

where h represents hours per day; L corresponds to the latitude of the monitored
site; the daily sunshine is averaged over a month to obtain monthly average daily
sunshine hour (S). The maximum possible sunshine hour can be calculated by
Eq. (14) as

S0¼ 2
15

xs ð14Þ

where xs represents the hour angle in degrees. The hour angle is defined as the
angular displacement of sun towards the east or west of the local meridian due to
rotation of the earth on its axis at 15°/h. It is mathematically derived from decli-
nation and latitudinal angle as seen in Eq. (15).
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xs ¼ cos�1ð� tan d tan LÞ ð15Þ

The declination angle represented by d is defined as the angular position of the
sun with respect to the equatorial plane. This varies with the value of ±23.45°. The
declination angle can be found from the approximate equation given by Cooper [53]

d ¼ 23:45 sin 360
ð284þDnÞ
365:25

� �
ð16Þ

The higher the sunshine duration, the more is the intensity of global irradiance
received by a horizontal surface. The direct dependence of global irradiance
towards sunshine hour or clearness index towards relative sunshine hour is further
justified by Rahman [54]. Figure 3 shows the annual average values of clearness
index for various locations such as Buenos Aries, Penang, New Delhi, Ibadan,
Venezia, El Fasher, Port Sudan, Bhavnagar, Alicante, Lucknow, Abu Namma and
certain other regions.

Figure 3 represents the closeness or the significance between the clearness index
and relative sunshine hour, reflected through the value of regression coefficient
between the same. Higher the value of regression coefficient, higher is the signif-
icance of the input factor with respect to the desired response. As the percentage
contribution of relative sunshine hour towards clearness index is high as 82.9 %,
the same is termed significant.

2.1.2 Temperature Ratio

The fact of sunshine duration implicitly alters the temperature of the ambient, which
is incident to the radiation from the sun. This phenomenon occurs naturally and is
self-evident [55]. Thus inclusion of ambient temperature towards global horizontal
irradiance serves justified. Furthermore, the latitude of the location influences the
amount of solar radiation. However, the pattern of temperature distribution across

Fig. 3 Variation of clearness
index with respect to relative
sunshine hour as reported in
[54]

148 S. Sundaram and J.S.C. Babu



the globe is also latitudinal. Thus incorporation of ambient temperature indirectly
marks the inclusion of latitudinal variation across the location, making the proposed
model more significant.

Besides, the consideration of ambient temperature the physical reason behind its
occurrence or source of origin should also be incorporated. The source of origin is
none other than the black body or the sun. Hence consideration of sun’s temperature
in addition to the ambient makes an empirical model physically significant. The
physical significance of sun’s temperature towards the intensity of radiant flux is
justified by physical laws of radiation defined by Stefan-Boltzmann [56] and Planck
[57].

As a ratio of measured global irradiance (H) to the maximum extraterrestrial
irradiance (H0) is found to vary linearly with a ratio of sunshine hour to maximum
possible sunshine hour, the same (H/H0) is considered to vary with the ratio of
minimum temperature (ambient temperature) to the maximum temperature (sun’s
temperature).

2.1.3 Air Mass at Solar Noon

The solar irradiance passes through an atmospheric column of air surrounding the
earth. This varies depending on the apparent position of the sun in the sky [58]. The
path length of the column of air is minimum when the sun is exactly overhead
(at zenith position) or at solar noon. For the instant other than solar noon, the rays
have to pass through a long atmospheric air column preferably termed as optical air
mass. Hence the distance between the earth and the sun decreases at solar noon
increasing the magnitude of solar radiation received over the ground. Air mass is
often approximated for a constant density atmosphere and is given by

AM ðat solar noon) ¼ 1
cos Z

; ð17Þ

Z is the Zenith angle at solar noon.
Z ¼ 90� a. Where a ¼ 90þ d� / for Northern Hemisphere, as India lies in

the Northern hemisphere.
d, U and a are the declination angle, latitudinal angle and altitude angle of the

site respectively.
Hence the proposed model for prediction of monthly average daily global irra-

diance includes the input model parameters such as relative sunshine hour, tem-
perature ratio and air mass at solar noon. The significance of the incorporated input
factor is justified by the value of regression coefficient (R2) generated between the
same and the desired global horizontal irradiance. Figure 4a–c shows or justifies the
significance of the incorporated input parameters such as sunshine hour, tempera-
ture ratio and air mass towards global irradiance respectively. The value of R2

varied from 0.71 to 0.89 marking significant contribution of input factors such as
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sunshine hour, temperature ratio and air mass at solar noon in prediction of global
irradiance.

Thus, the section has briefly described the factors considered for modelling
global horizontal irradiance with its justification towards the same. The next section
follows, relating the input parameters to the response leading to the formulation of a
modified multi-parametric model for global irradiance.

Fig. 4 a–c Significance of
considered input factor
sunshine hour, temperature
ratio and air mass towards
clearness index (response)
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3 Modified Multi-parametric Empirical Model

The next step under the process of formulating an empirical model is to relate the
considered input parameters towards prediction of desired response. Hence sum-
marizing the observed relationship between the global horizontal irradiance and the
input parameters, a modified multi-parametric model is formulated. The intensity of
global horizontal irradiance increases for increase in sunshine hour, ambient tem-
perature and air mass at solar noon. Hence, the form as proposed in Eq. (18) is
rightly employed for the prediction of monthly average daily global irradiance.

H
H0

¼ aþ b
S
S0

� �
þ c

S
S0

� �2

þ d
S
S0

� �3

þ e
Ta
Ts

� �
þ f ðAMÞ ð18Þ

where a, b, c, d, e and f represents the empirical constants pertaining to a location of
interest for which the model is formulated.

The proposed model incorporates explicitly the effect of sunshine, ambient
temperature and air mass at solar noon. These factors implicitly mark the account of
variation in latitude of the location, declination angle, altitude angle and hour angle.
Thus the incorporation of more number of input parameters (multi-parametric
model) either implicitly or explicitly refers to the strength of the model. The
addition of significant factors also makes the model to exhibit improved prediction
accuracy.

3.1 Case Studies for the Prediction of Global Horizontal
Irradiance

The case studies for the applicability of the proposed irradiance model falls where
the validation data set encompassing the measured global irradiance was accessible
or made available. Hence the locations of Madurai/Sivagangai and Chennai were
selected as case study for testing the prediction accuracy of the modified
multi-parametric model. The validation data set for Madurai for which the model
was formulated or trained was not available appropriately. Hence the nearest
monitoring station of Sivagangai was considered for testing the model, as its val-
idation data set was available for the duration of (2011–2013). The validation data
set for Chennai was obtained from [59], who reported a basic sunshine-based model
for Chennai. The validation data set for Chennai ranges from a duration of
1980–2009. The training data set for the region of Madurai is tabulated in Table 1.

The empirical constants were formulated from the training data set of model
parameters covering monthly average daily data ranging for duration of 1961–1990.
The least square regression-based methodology [60] was adopted for evaluation of
empirical constants. The empirical constants of the proposed model for the loca-
tions of Madurai/Sivagangai are tabulated in Table 2.
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Similarly, the training data set for Chennai were employed in determining the
empirical constants of the modified multi-parametric model. The training data set
for Chennai is tabulated in Table 3 and the associated empirical constants are made
available in Table 4.

The basic Angstrom-based sunshine models such as linear, quadratic and cubic
were also formulated for the locations of Madurai/Sivagangai and Chennai to
compare the performance accuracy of the same and the proposed multi-parametric
model. The proposed Angstrom-based constants of linear, quadratic and cubic
models for Madurai/Sivagangai and Chennai are tabulated in Tables 5 and 6
respectively.

Table 1 Training data set of proposed model parameters (comprising the measured and evaluated
input parameters) for Madurai/Sivagangai during (1961–1990)

Training period H/H0 S/S0 Ta/Ts AM

January 0.408485 0.4981 0.004594 1.1647

February 0.475178 0.4962 0.004758 1.089

March 0.559899 0.4957 0.004957 1.0244

April 0.587719 0.4966 0.004921 1.0015

May 0.69554 0.4927 0.004939 1.0127

June 0.722052 0.4992 0.004939 1.027

July 0.695404 0.5015 0.004921 1.0199

August 0.634385 0.5035 0.004921 1.0032

September 0.562624 0.504 0.004867 1.0114

October 0.440609 0.5037 0.004758 1.0637

November 0.377241 0.5022 0.004667 1.1428

December 0.376478 0.5007 0.004594 1.1922

Table 2 Empirical constants for the proposed model for Madurai/Sivagangai

Training period Empirical constants for Madurai/Sivagangai

a b c d e f

January 0.3284 −0.7469 0.1224 0.6445 1.043 0.2896

February 1.6781 −1.4378 1.3805 −0.0744 −2.1012 −0.744

March 10.8872 −13.4546 −8.5434 −1.5638 −8.9353 −1.2921

April 0.6676 −0.6244 −0.1145 0.1751 1.1518 0.2310

May −0.8909 1.2945 2.8468 −3.0847 4.4550 0.5969

June −11.0506 5.7176 6.4529 −12.3908 −3.2989 8.6333

July 0.5529 −0.5874 0.5659 0.6156 1.1353 0.207

August −0.6611 −0.0010 0.8371 −1.8810 −1.6701 1.3361

September 1.3152 0.2649 −0.9630 −0.8408 −0.0895 −0.5272

October 0.6667 1.0000 −0.5000 0.8333 9.07e−11 −0.6667

November 0.8113 0.2286 0.0053 0.5319 −1.3049 −0.5357

December −0.1683 0.3910 0.0153 −0.2364 0.1970 0.3136
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The proposed models are compared for suggesting the highly acceptable model
suited for prediction of monthly average daily global irradiance tested for locations
of Madurai/Sivagangai and Chennai.

3.2 Performance Study of Irradiance Prediction Models

There exist certain performance indicators for prediction models indicating its
prediction accuracy. These include mean bias error (MBE), root mean square error

Table 3 Training data set of proposed model parameters (comprising the measured and evaluated
input parameters) for Chennai during (1961–1990)

Training period H/H0 S/S0 Ta/Ts AM

January 0.458509 0.4975 0.004576 1.2054

February 0.541023 0.4948 0.004812 1.1167

March 0.607537 0.4944 0.005302 1.038

April 0.683374 0.4955 0.005666 1.0031

May 0.767807 0.492 0.006083 1.0057

June 0.779793 0.4991 0.005902 1.0157

July 0.730715 0.502 0.005684 1.0105

August 0.659156 0.5046 0.005484 1.0013

September 0.584128 0.5054 0.00543 1.0202

October 0.457592 0.5045 0.005085 1.0864

November 0.394036 0.503 0.004721 1.1798

December 0.396513 0.5008 0.004576 1.2374

Table 4 Empirical constants for the proposed model for Chennai

Training period Empirical constants for Chennai

a b c d e f

January −0.226 1.364 0.997 −0.035 −1.047 −0.192

February 0.841 −0.681 −0.180 −0.459 0.596 0.119

March 2.810 1.510 −1.070 −2.900 2.490 −2.270

April 0.080 −1.120 0.200 −1.600 1.260 1.290

May 1.560 −1.070 −0.980 0.140 −1.010 −0.040

June 1.130 −0.400 0.630 0.590 −0.270 −0.370

July −0.080 −0.990 0.490 1.310 0.360 1.000

August 1.340 −0.890 0.040 −0.530 −0.320 −0.170

September 0.310 0.530 0.430 −0.790 −0.230 −0.010

October 2.550 −0.100 0.510 2.280 0.410 −2.280

November 0.100 1.391 0.728 −0.154 −0.037 −0.4842

December 0.126 −0.006 −0.510 2.990 6.9290 −0.0080
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(RMSE), mean percentage error (MPE), mean absolute bias error (MABE) and
mean absolute percentage error (MAPE). The mean bias error gives accurate
information on the long-term performance of the model. This allows term by term
comparison of actual deviation between the predicted and actual response [25].
A low value of MBE is always desired for better accuracy of the proposed model.
A positive value of MBE shows an overestimate, while a negative value an
underestimate by the model. The RMSE test gives the information on the short-term
performance of the proposed model [61]. The value of RMSE is always positive.
The following equations deliver the statistical performance indicators for a pre-
diction model.

MBE ¼ 1
N

� �X
ðHpred � HmeasÞ ð19Þ

RMSE ¼ 1
N

� �X
ðHpred � HmeasÞ2

� �0:5

ð20Þ

MPE ¼ 1
N

� �X
ðHpred � HmeasÞ=Hmeas
� �� 100 ð21Þ

On reality, prediction models usually possess low values of MBE, RMSE and
MPE indicating acceptable prediction limits. The maximum deviation between the
actual and the predicted response values (mean percentage error) should lie between
±10 % for a model to satisfy predictive nature. If the mean absolute percentage
error (MAPE) is � 10 %, then the model has higher prediction accuracy and if
10 � MAPE � 20 means good prediction. MPE � 20 indicates inaccurate
prediction [62].

The values of statistical indicators are evaluated during validation and are
compared for the suggested multi-parametric and sunshine-based models. The
evaluated statistical indicators are compared for Madurai/Sivagangai during vali-
dation (2011–2013). The performance comparison is tabulated in Table 7.

The modified multi-parametric model encompassing significant factors proves to
be better accurate and acceptable than basic sunshine based models for prediction of
monthly average daily global horizontal irradiance for Madurai/Sivagangai. This is
justified from Table 7, where a least MAPE of 2.29 % occurs for the modified
multi-parametric model. A similar comparison of percentage error or deviation is
made among the modified multi-parametric model and the existing multi-parametric
models for the case of Sivagangai during training or model formulation. Selected
multi-parametric models whose input parameters were found available was con-
sidered. The models which fall in this line were reported by literatures as seen in
[63–65]. A performance comparison of deviation among the actual and predicted
values of global irradiance obtained through the existing and the proposed
multi-parametric model is made for the location of Sivagangai and is tabulated in
Table 8.
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Table 7 Performance comparison for the proposed models during validation for Sivagangai

Statistical performance
indicators

Linear Quadratic Cubic Modified
multi-parametric model

MBE (kWh/m2/day) −0.106 −0.1082 −0.1032 −0.1059

RMSE (kWh/m2/day) 0.2533 0.2577 0.2566 0.2420

MPE (%) 1.9040 1.9430 1.8500 1.8900

MABE (kWh/m2/day) 0.1423 0.1457 0.1437 0.1253

MAPE (%) 2.6033 2.6705 2.6284 2.2900

Table 8 Performance comparison among the existing and the reported multi-parametric models
for Sivagangai

Monitored
period

% error for
[63] (%)

% error for
[64] (%)

% error for
[65] (%)

% error for proposed
multi-parametric model

January 13.92731 −14.6246 2.649734 0.002878

February −2.35788 −2.34319 1.019544 −0.01721

March −13.9682 8.728655 1.586171 −0.03314

April −7.61535 9.613422 2.483227 −0.00439

May 5.823812 5.004125 3.4477 0.004055

June 11.50724 1.430333 −3.79753 0.232906

July 11.17679 −0.85644 −6.35005 0.058892

August 3.219488 5.195329 −2.32099 −1.30617

September −1.41395 10.80888 5.435546 −0.03205

October −10.0784 −0.19466 −0.49072 −0.05847

November −5.28594 −14.8999 −3.33001 0.190918

December 6.761487 −19.4203 −1.46601 0.017024

Table 6 Sunshine based empirical constants for Chennai

Training period Linear model Quadratic model Cubic model

a b a b c a b c d

January 0.16 0.6 0.608 −0.400 0.200 0.055 0.446 0.58 0.29

February 0.7825 −0.488 2.560 −4.450 0.750 0.754 −0.21 −0.77 0.66

March 1.427 −1.658 1.107 −0.612 −0.806 0.757 −0.15 0.38 −1.41

April 0.079 1.2197 0.449 0.589 −0.233 0.87 −1.30 −0.71 5.21

May 0.1883 1.1778 0.951 0.515 −1.806 −0.01 1.57 0.76 −1.53

June 1.901 −2.246 −5.6e−3 1.63 −0.12 0.98 −0.28 −0.29 0.04

July −0.7 2.85 0.96 −0.50 0.072 −1.2 4.6 −1.0 −1.0

August −0.1115 1.5274 3.854 −4.208 −4.208 0.57 −0.27 0.29 1.13

September 0.5123 0.1419 1.286 −0.754 −1.254 0.50 0.277 −0.14 −0.14

October 1.4740 −2.014 0.865 −1.632 1.632 −0.28 1.28 −1.28 3.28

November 1.4000 −2.000 −0.031 0.562 0.562 −0.82 1.105 1.86 1.52

December 26.06 −51.25 0.688 −0.488 −0.188 0.284 0.50 −0.20 −0.70
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The proposed model of the form as in Eq. (18) lies close to the actual or the
measured values of global irradiance during the training. This is reflected in the
least value of percentage error as seen in Table 8. Similarly, the modified
multi-parametric model is also applied for Chennai with the evaluated empirical
constants and testing data set. A performance comparison of MAPE is made among
the existing prediction models for Chennai [18, 19, 66, 67] during validation,
considered for the duration from 1980 to 2009. This comparison is made available
in Table 9.

The modified multi-parametric model works out well for the prediction of global
irradiance for the location of Chennai. This is made evident from Table 9, showing
the multi-parametric model as in Eq. (18) to experience least MAPE of 0.07 % than
the reported models. The proposed multi-parametric model possess better prediction
accuracy due to the fact of encompassing significant input factors affecting global
irradiance. Hence the selection of suitable model for prediction of global irradiance
lie in the availability of model inputs and in the addition of significant factor
justified through established physical laws.

4 Energy Prediction Model Emphasized Through
Performance and Exergy Analysis

Prediction of energy delivered by a typical photovoltaic system forms a major
aspect towards achieving reliability, which is one of the greatest challenge in
context to power system operation. This section contributes to the formulation of
energy prediction model for prediction of long term (monthly average daily) AC
energy generation.

Table 9 Performance
comparison among the
existing and the reported
models for Chennai during
validation

Prediction Models for Chennai MAPE (%)

Modi and Sukhatme [66] 8.87

Mani and Rangarajan [18] 9.39

Veeran and Kumar [19] 9.03

Sivamadhavi and Samuel [67]
(Sunshine (linear))

4.7

Temperature (linear) [67] 11

Ta(min)/Ta(max) [67] 11.3

Relative humidity (linear) [67] 10

Wind speed (linear) [67] 10.6

Precipitation (linear) [67] 8

Rainy days (linear) 7

Proposed multi-parametric model 0.07
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The existing Sandia inverter empirical model employs four equations which are
the function of DC power input and the electric self-consumption [68]. The theo-
retical estimation of DC power output, further depends on models such as Sandia
photovoltaic array dependent model and California Energy Commission model [5]
which further lies dependent on more number of input parameters such as direct and
diffuse radiation, module characteristics, array layout, diode current, reverse satu-
ration current, series and shunt resistance increasing complexity. Thus to reduce the
complexity and to make the model most applicable for pre-sizing and installation
study, an empirical model independent of module system parameter is highly
recommended. This forms the objective for the present section.

The evaluation of an empirical model for energy prediction follows the similar
steps of methodology as adopted in formulation of global irradiance prediction. The
performance analysis (electrical study) and exergy analysis (thermal study) form the
preliminary study emphasizing factor addition towards empirical model
formulation.

4.1 Performance Analysis of Solar PV Distribution System
(Grid Connected PV System)

The performance analysis for a grid connected PV system deals with the evaluation
of performance indicators such as energy generation, yield, performance ratio and
efficiency for the monitored duration. Most commonly, monthly average daily
based comparison for an annual period is commercially practiced. Hence monthly
average prediction is rightly dealt. Furthermore, the most unique performance
indicator occurs to be the AC energy generation through which the key performance
indices like final yield, performance ratio and capacity factor is made available.
Thus the prediction of AC energy generation for a solar photovoltaic system lies
important.

The reason for the variation of key performance indices with respect to moni-
tored input identifies the input factors affecting the same. The significant factor
affecting the AC energy generation is emphasized through baseline regression
analysis employed in RETscreen plus.

A typical case study of 5 MWp PV system is considered whose energy gener-
ation is to be predicted. The plant lies operational at Sivagangai. The measured AC
energy generation for the monitored duration is shown in Fig. 5. The AC energy
generation varied from a minimum value of 19413.1 kWh/day (December) to
27482.8 kWh/day (September). Similarly, the monthly average daily global irra-
diance varies from a minimum of 4.388 kWh/m2/day in December to
5.986 kWh/m2/day during September. Hence the variation of AC energy generation
and global irradiance occurs hand in hand. An increase in global irradiance sub-
sequently increases the AC energy generation.
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The calculated monthly average daily variation of final yield for the monitored
duration for the 5 MWp PV plant is shown in Fig. 6. The nature of variation in final
yield is similar to the annual variation of AC energy generation, which ultimately
depends on the global irradiance.

Thus, the significant effect of global irradiance towards AC energy generation is
emphasized by Figs. 5 and 6. Furthermore, the same is justified by adopting
baseline regression analysis through RETscreen plus. The input factors such as
global irradiance and ambient temperature are varied with respect to the response to
be predicted or the AC energy generation. The regression coefficient occurring
between their variations mark the closeness between the same. The higher the value
of regression coefficient, the significant is the considered input parameter towards
energy generation. Table 10 represents the effect of variation in global irradiance

Fig. 5 Monthly average
daily variation of AC energy
generation and global
irradiance for 5 MWp PV

Fig. 6 Monthly average
daily variation of final yield
for 5 MWp PV plant
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(H) and ambient temperature (Ta) towards the key performance indices such as
energy generation and efficiency as obtained from RETscreen plus.

As inferred from Table 10, the input parameter Ta is found to be less significant
towards energy generation and efficiency. This lies behind the value of R2 which
varies between the ranges of 0.40 and 0.49 indicating the parameter of Ta to be less
significant on comparison to global irradiance. Hence the emphasized input factor
through performance analysis is the global horizontal irradiance. This is considered
as one of the input factor for formulation of empirical model for energy generation.

Multi-parametric system independent energy prediction models are preferred
over single parametric energy models. This is because the multi-parametric
empirical prediction models experience better prediction accuracy. Hence, the
formulation of multi-parametric model is followed for energy prediction too.

4.2 Exergy Analysis of Solar PV System

The effect of photovoltaic deals with the creation of power on exposure of the PV
material to sunlight. During the process of power generation, there also occurs
simultaneous dissipation of heat or thermal energy. The amount of thermal heat loss
dissipated varies with the sizing of PV system. This loss of heat plays a significant
role in affecting the performance or the energy generation of the PV system. Thus
the knowledge on exergy, which accounts for the variation of thermal exergy loss
towards efficiency thereby energy generation is essential for knowing its signifi-
cance. The term exergy and its concept were first put forward by Gibbs in 1873 [69]
and were further developed by Rant in 1956 [70]. Exergy analysis is basically
derived from the second law of thermodynamics. Thus, exergy is more concentrated
than energy as it considers all the irreversibility’s present in the on-site operation of
the plant yielding more meaningful efficiencies approaching to the ideal.

Exergy analysis plays a decisive role in analysis, improvement, design, assess-
ment and optimization of the energy system [71]. The main key features of this
analysis are to provide a true measure of actual plant performance and to identify
the types, causes and location of thermodynamic losses in the system. The objective
of exergy analysis in the present study is to emphasize the significance of thermal
exergy loss and module temperature (resulted due to the dissipation of thermal loss)
toward energy generation. Though the concept of exergy is dealt with the PV side,

Table 10 Effect of variation of H and Ta towards energy generation and efficiency

Estimated performance
indicator (Y1–Y3)

Plot of X1

versus (Y1–Y3)
Plot of X2

versus (Y1–Y3)
R2 for X1

versus (Y1–Y3)
R2 for X2

versus (Y1–Y3)

Eac H versus Eac Ta versus Eac 0.94 0.40

PV module efficiency ηpv H versus ηpv Ta versus ηpv 0.96 0.43

Inverter efficiency ηinv H versus ηinv Ta versus ηinv 0.68 0.49
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the same remains unchanged on integrating the PV array system to the grid. Hence
the accountability of thermal loss towards energy modelling remains important.

4.2.1 Assessment of Thermal Exergy Loss

Exergy balance of solar photovoltaic as seen in [72] can be written as

Exergy input� Exergy output� Exergy consumption ¼ Exergy accumulation:

ðor) Exergy input� ðElectrical exergy� Thermal exergyÞ ¼ Energy destruction

The thermal exergy loss can be theoretically evaluated [73] as given in equation

Thermal exergy ¼ UAðTm � TaÞ 1� Ta
Tm

� �
ð22Þ

U represents the overall heat loss coefficient in (W/m2 °C). Tm represents the
module temperature. The convective heat transfer coefficient ‘h’ is given by Boyle
(2004) [74]

hc ¼ 5:7þ 3:8ts ð23Þ

The radiative heat transfer coefficient is small and hence considered to be
negligible.

The assessment of thermal exergy loss is carried out for the 5 MWp PV plant to
justify the addition of it towards energy prediction. The evaluated monthly average
daily thermal exergy loss over the monitored duration of the 5 MWp PVplant is
shown in Fig. 7. The thermal exergy loss is found to increase with increase in
ambient temperature. The increase in ambient temperature further increases the
module temperature. Hence, as the module temperature increases the thermal
exergy loss subsequently increases. Hence the module temperature, also acts as a
significant factor affecting thermal exergy loss influencing energy generation.

The variation of thermal exergy loss with respect to AC energy generation for
the 5 MWp PV plant is shown in Fig. 8.

The value of R2 justifying or indicating the effect between thermal loss and AC
energy generation (Eac) is found to be 0.771. This greatly implies the justification
for inclusion of thermal exergy loss for modelling energy generation. Similarly, the
dependence of thermal exergy loss towards energy generation for a 160 kWp PV
plant [75] is shown in Fig. 9. The variation of Edc with respect to thermal exergy
loss rightly represents the variation of Eac with respect to Exth. The factors
influencing the DC energy generation is considered influencing AC energy gen-
eration. The value of R2 is also high amounting to 0.846 emphasizing the effect
between energy generation and thermal exergy loss.
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Fig. 7 Monthly average
thermal exergy loss generated
by 5 MWp PV system and the
monitored temperature
difference

Fig. 8 Variation of thermal
exergy loss over AC energy
generated for a 5 MWp PV
system

Fig. 9 Variation of thermal
exergy loss over AC energy
generated for a 160 kWp PV
system
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Thus, the effect of thermal loss significantly affects the AC energy generation.
Furthermore, the effect of module temperature also influences AC energy genera-
tion. This is justified by certain case studies which are described as follows. The
effect of module temperature with respect to Eac for a 1.72 kWp roof top PV plant
[76] generates the regression coefficient value between the same to be 0.734. The
performance of 67.84 kWp PV system [77] possesses an R2 value of 0.767 as
shown in Fig. 10.

The higher the value of R2 approaching ideality, the more is the significance of
response with respect to the input. Thus, the inclusion of Tm towards formulation of
long-term energy prediction model is well supported by long term realistic PV plant
studies.

Ultimately, the factors influencing the DC energy generation of a PV system
influences the AC energy generated by the system too. The DC energy of the
system varies with AC energy with an assumed constant of proportionality in most
cases or the inverter efficiency.

Thus, the AC energy generated can have its dependence as

Eac ¼ function ðEdc; ginvÞ ! Eac ¼ function ðTm;ExthÞ; ½from exergy analysis] ð24Þ

Thus, as inferred from Eq. (24), the AC energy generated by the system is
influenced by significant factors such as module temperature and thermal exergy
loss as concluded from exergy analysis.

4.2.2 Formulation of Empirical Model for Energy Prediction

The input factors affecting the AC energy generation, termed significant are the
global horizontal irradiance (H), module temperature (Tm) and thermal exergy loss

Fig. 10 Tm versus Eac for
67.84 kWp PV system [77]
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(Exth). These are the individual input factors contributing towards the formulation
of empirical model for energy prediction.

The possible combinations of constituted input factors which are significantly
affecting the energy generation include H, Tm, Exth, (H * Tm) (H * Exth), and H2.
The interactions of the main effects include (H * Tm) and (H * Exth). Thus the
proposed non-linear model is of the form

Eac ¼ aþ bHþ cTm þ dExth þ eHTm þ fHExth þ gH2 ð25Þ

The empirical coefficients in the proposed model such as a, b, c, d, e, f and g as
in Eq. (25) can be calculated for a solar PV system installed at a particular location
employing least square criterion. Thus the proposed model can be made applicable
for a location with the assistance of certain input data set called the training data set
corresponding to a location.

Thus applying Eq. (25) employing the measured and evaluated training data set
the proposed equation for prediction of AC energy generated by a 5 MWp PV plant
at Sivagangai employing predicted irradiance (obtained from Eq. (18)) is given by

Eac ¼ �22550� 11585Hþ 3590:4Tm þ 5:0718Exth � 723:72HTm

� 0:302HExth þ 3936:9H2
ð26Þ

The proposed model is compared with the other existing models as cited in [11,
13, 45]. The absolute mean percentage error varied from a minimum to a maximum
of 1.13–7.37 % for the proposed model and the same for the models proposed by
Krebs and Gianolli-Rossi [11], Mayer et al. [13], International Energy Agency [45]
varied from 0.3 to 24.79 %, 0.5 to 8.4 % and 0.5 to 9.47 % respectively. This is
depicted in Fig. 11, which shows the proposed model to be highly acceptable for
prediction of monthly average daily energy generated by a PV distribution system.

Fig. 11 Comparison of MPE
for the existing with the
proposed model for
5 MWp PV plant at
Sivagangai during training
(2011–2012)
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The modified form of energy prediction model and the existing models is also
applied to a reported case study of 1.72 kWp [76]. A performance comparison of
MPE is made among the models and is represented in Fig. 12.

As seen from Fig. 12, the mean percentage error for the individual observations
is least for the proposed energy prediction model than the reported energy pre-
diction models. The adaptability of suggested energy prediction model for varying
peak power capacity is also inferred on its application to PV plant at Durban.

The advantage of the modified empirical energy prediction model lies in the
incorporation of system independent or metrological factors for energy prediction.
Furthermore, the model is limited to real-time monitored input parameters such as
ambient temperature and wind speed. In addition, the improved accuracy of the
proposed model resulted due to the account of factors emphasized through per-
formance (electrical) and exergy (thermal) analysis.

5 Summary

In order to experience improved prediction accuracy multi-parametric model is
preferred over single parametric model. In addition, incorporation of significant
input factors affecting energy generation also plays a vital role in yielding improved
prediction accuracy. An improved empirical model for prediction of monthly
average daily global horizontal irradiance tested for locations of Madurai/
Sivagangai and Chennai are proposed. Furthermore, an improved energy predic-
tion model is also formulated with predicted global irradiance for a 5 MWp PV
system whose AC energy generation is predicted over a long term horizon (monthly
average daily). The advantage of the proposed models includes its limitation
towards real time measured input parameters which is absent in the existing

Fig. 12 MPE of the energy
prediction models for a
1.72 kWp PV plant at Durban
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empirical model. Moreover, the cost experienced for measuring the independent
model parameters should be less than the direct measurement of the depended
parameter or the desired response (global irradiance and energy generation). This
becomes the adequate necessity of an empirical model. Hence, the proposed models
lie in line with this adequate necessity.

References

1. Bird RE, Hulstrom RL (1980) Direct insolation models. Report SERI/TR-335–344. Solar
Energy Research Institute, Golden, CO

2. Powell GL (1984) The clear sky model. Asharae J 26:27–29
3. Machler MA, lqbal M (1985) A modification of the ASHRAE clear sky irradiation model.

Trans ASHRAE 91A:106–115
4. Gueymard C (2001) Parameterized transmittance model for direct beam and circumsolar

spectral irradiance. Sol Energy 71:325–346
5. De Soto W, Klein SA, Beckman WA (2006) Improvement and validation of a model for

photovoltaic array performance. Sol Energy 80:78–88
6. Mavromatakis F, Makrides G, Georghiou G, Pothrakis A, Franghiadakis Y, Drakakis E,

Koudoumas E (2010) Modeling the photovoltaic potential of a site. Renew Energy 35:1387–
1390

7. Lacour A, Duffy A, Sarah MC, Michael C (2010) Validated real time energy models for
small-scale grid connected PV systems. Energy 36:4086–4091

8. King DL, Gonzalez S, Galbraith GM, Boyson W (2007) Performance model for
grid-connected photovoltaic inverters, SAND2007-5036. http://www.prod.sandia.gov/cgi/
bin/techlib/accesscontrol.pl/2007/075036.pdf

9. Box G, Jenkins G (1976) Time series analysis: forecasting and control. Holden Day, Oakland
10. Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural

Process Lett 9:293–300
11. Krebs K, Gianolli-Rossi E (1988) Energy rating of PV modules by outdoor response analysis.

In: International conference on solar energy, Florence, Italy
12. Meyer EL, Dyk EE (2000) Development of energy model based on total daily irradiation and

maximum ambient temperature. Renew Energy 21:37–47
13. Mayer D, Wald L, Poissant Y, Pelland S (2008) Performance prediction of grid-connected

photovoltaic systems using remote sensing. Report IEA-PVPS T2-07, p 18
14. Angstrom AS (1924) Solar and terrestrial radiation. Q J Roy Meteorol Soc 50:121–126
15. Prescott JA (1940) Evaporation from water surface in relation to solar radiation. Trans Roy

Soc S Australia 64:114–118
16. Lewis G (1983) Estimates of irradiance over Zimbabwe. Sol Energy 31:609–612
17. Jain S, Jain PC (1988) A comparison of the angstrom-type correlations and the estimation of

monthly average daily global irradiation. Sol Energy 40:93–98
18. Mani A, Rangarajan S (1982) Solar radiation over India. Allied Publishers, New Delhi
19. Veeran PK, Kumar S (1995) Analysis of monthly average daily global radiation and monthly

average sunshine duration at two tropical locations. Renew Energy 3:935–939
20. Katiyar AK, Pandey C (2010) Simple correlation for estimating the global solar radiation on

horizontal surfaces in India. Energy 35:5043–5048
21. Benson PR, Paris MV, Serry JE, Justus CG (1984) Estimation of daily and monthly direct,

diffuse and global solar radiation from sunshine duration measurement. Sol Energy
32:523–535

22. Ogelman H, Ecevit A, Tasdemiroglu E (1984) A new method for estimating solar radiation
from bright sunshine data. Sol Energy 33:619–625

166 S. Sundaram and J.S.C. Babu

http://www.prod.sandia.gov/cgi/bin/techlib/accesscontrol.pl/2007/075036.pdf
http://www.prod.sandia.gov/cgi/bin/techlib/accesscontrol.pl/2007/075036.pdf


23. Samuel TDMA (1991) Estimation of global radiation for Sri Lanka. Sol Energy 47:333–337
24. Ampratwum DB, Dorvlo ASS (1999) Estimation of solar radiation from the number of

sunshine hours. Appl Energy 63:161–167
25. Elagib N, Mansel MG (2000) New approaches for estimating global solar radiation across

Sudan. Energy Convers Manag 41:419–434
26. Hayer A, Balli O, Arif H (2006) Global solar radiation potential, part 1: model development.

Energy Sources Part B 1:303–315
27. El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS (2009) Estimation of global solar

radiation on horizontal surfaces in Jeddah, Saudi Arabia. Energy Policy 37:3645–3649
28. Wanxiang Y, Zhengrong L, Yuyan W, Fujian J, Lingzhou H (2014) Evaluation of global solar

radiation models for Shanghai, China. Energy Convers Manag 84:597–612
29. Hargreaves GH, Samani A (1982) Estimating potential evapo-transpiration. J Irrig Drainage

Eng 223–230
30. Bristow K, Cambell G (1984) On the relationship between incoming solar radiation and daily

maximum and minimum temperature. Agric For Meteorol 31:159–166
31. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapo-transpiration: guidelines for

computing crop water requirements. J Irrig Drainage Eng 56
32. Goodin DG, Hutchinson JMS, Vanderlip RL, Knapp MC (1999) Estimating solar irradiance

for crop modeling using daily air temperature. Agric For Meteorol 91:293–300
33. Meza F, Varas E (2000) Estimation of mean monthly solar global radiation as a function of

temperature. Agric For Meteorol 100:231–241
34. Almorox J, Hontoria C, Benito M (2011) Models for obtaining daily global solar radiation

with measured air temperature data in Madrid (Spain). Appl Energy 88:1703–1709
35. Huashan L, Weibin M, Yongwang L, Xianlong W, Liang Z (2011) Global solar radiation

estimation with sunshine duration in Tibet, China. Renew Energy 36:3141–3145
36. Punnaiah V, Guduri G (2014) Analysis of yearly solar radiation by using correlations based on

ambient temperature: India. Sustain Cities Soc 11:16–21
37. Mahmood R, Hubbard KG (2002) Effect of time of temperature observation and estimation of

daily solar radiation for the Northern Great Plains, U.S.A. Agron J 94:723–733
38. Emmanuel K, Sofoklis K, Thales M (2009) Performance analysis of grid connected

photovoltaic park on the island of Crete. Energy Convers Manag 50:433–438
39. De Jong R, Stewart DW (1993) Estimating global solar radiation from common

meteorological observations in western Canada. Can J Plant Sci 73:509–518
40. Togrul IT, Onat E (2000) A comparison of estimated and measured values of solar radiation in

Elazig. Renew Energy 20:243–252
41. Trabea AA, Mosalam Shaltout MA (2000) Correlation of global solar radiation with

meteorological parameters over Egypt. Renew Energy 21:297–308
42. Rensheng C, Kang E, Jianping Y, Shihua L, Wenzhi Z (2006) Estimating daily global

radiation using two types of revised models in China. Energy Convers Manag 47:865–878
43. Muyiwa SA (2012) Estimating global solar radiation using common meteorological data in

Akure, Nigeria. Renew Energy 47:38–44
44. Teke A, Basak H, Celik O (2015) Evaluation and performance comparison of different models

on solar radiation. Renew Sustain Energy Rev 50:1097–1107
45. IEA International Energy Agency (2008) Performance prediction of grid connected

photovoltaic systems using remote sensing. Report IEA PVPS T2-08, pp 1–44
46. Becquerel Edmond (1839) Mémoire sur les effets électriques produits sous l’influence des

rayons solaires (In French). Comptes Rendus 9:561–567
47. Igzi E, Akkaya YE (2013) Exergo-economic analysis of a solar photovoltaic system in

˙Istanbul, Turkey. Turkish J Electr Eng Comput Sci 21:350–359
48. Rusirawan D (2012) Energy modelling of photovoltaic modules in grid connected PV systems.

Ph.D Dissertation
49. Minister of Natural Resources Canada (2003) RETscreen engineering and cases textbook, 3rd edn
50. Athena Infonomics India Private Limited (2011) Power scenario in Tamil Nadu: a comparative

analysis. pp 1–27

Empirical-Based Approach for Prediction … 167



51. Measurement of sunshine duration and solar radiation, pp 1–14. www.jma.go.jp/jma/jma-eng
52. Taylor W (1996) www.taylormade.com.au/billspage/sunshine/sunhine.html
53. Cooper PI (1969) The Absorption of Solar Radiation in Solar Stills. Sol Energy 12:3
54. Rahman MM (2000) Site independent global solar radiation correlation with bright sun shine

hours. Int J Radio Space Phys 29:285–290
55. Kunt M (2008) The daily temperature amplitude and surface solar radiation. Ph.D Dissertation,

University of Zurich
56. Stefan J (1879) On the relationship between heat radiation and temperature. 79:391–428
57. Planck M (1914) The theory of heat radiation, 2nd edn
58. Tyagi AP (2009) Solar radiant energy over India. Indian Metrological Department, Ministry of

Earth Sciences
59. Sivamadhavi V, Samuel Selvaraj R (2012) Prediction of monthly mean daily global solar

radiation using artificial neural network. J Earth Syst Sci 121:1501–1510
60. Per Christian H, Victor P, Godela S (2013) Least square data fitting with applications. The

John Hopkins University Press, Baltimore
61. Tarhan S, Ahmed S (2005) Model selection for global and diffuse radiation over the central

black sea (CBS) region of Turkey. Energy Convers Manag 46:605–613
62. Amit KY, Chandel SS (2014) Solar radiation prediction using artificial neural network

techniques: a review. Renew Sustain Energy Rev 33:771–781
63. Magrabhi AH (2009) Parameterization of a simple model to estimate monthly global solar

radiation based on meteorological variables, and evaluation of existing solar radiation models
for Tabouk. Saudi Arabia Energy Convers Manage 50:2754–2760

64. Swartman RK, Ogunlade O (1967) Solar radiation estimates from common parameters. Sol
Energy 11:170–172

65. Abdalla YAG (1994) New correlation of global solar radiation with meteorological parameters
for Bahrain. Int J Solar Energy 16:111–120

66. Modi V, Sukhatme SP (1979) Estimation of daily total and diffuse insolation in India from
weather data. Sol Energy 22:402

67. Sivamadhavi V, Samuel R (2012) Robust regression technique to estimate global radiation.
Int J Radio Space Phys 41:17–25

68. Nathan B, Mark M, Craig C (2008) Modeling photovoltaic and concentrating solar power
trough performance, cost, and financing with the solar advisor model. In: American solar
energy society conference

69. Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of
substances by means of surfaces. Trans Connecticut Acad 2:382–404

70. Rant Z (1956) Exergy, a new word for technical available work. Forschung auf dem Gebiete
des Ingenieurwesens 22:36–37 (in German)

71. Sahin A, Dincer I, Rosen MA (2007) Thermodynamic analysis of solar photovoltaic cell
systems. Solar Energy Mater Solar Cells 91:153–159

72. Wong KFV (2000) Thermodynamics for engineers. CRC Press LLC, University of Miami,
Boca Raton, USA

73. Petala R (2003) Exergy of undiluted thermal radiations. Sol Energy 74:469–488
74. Boyle G (2004) Renewable energy power for a sustainable future, 2nd ed. Oxford: Oxford

University Press
75. Pandey A, Tyagi VK, Tyagi SK (2012) Exergetic analysis and parametric study of

multi-crystalline solar photovoltaic system at a typical climatic zone. Clean Technol Environ
Policy 15:333–343

76. Ayompe LM, Duffy A, McCormack SJ, Conlon M (2011) Measured performance of a
1.72 kW roof top grid connected photovoltaic system in Ireland. Energy Convers Manag
52:816–825

77. Drif M, Perez PJ, Aguileria J, Almonacid G, Gomez P, De la Casa J, Aguilar JD (2007) A grid
connected photovoltaic system of 200 kWp at Jean university: overview and performance
analysis. Solar Energy 91:670–683

168 S. Sundaram and J.S.C. Babu

http://www.jma.go.jp/jma/jma-eng
http://www.taylormade.com.au/billspage/sunshine/sunhine.html

	6 Empirical-Based Approach for Prediction of Global Irradiance and Energy for Solar Photovoltaic Systems
	Abstract
	1 Introduction
	1.1 Single Parametric Models for Prediction of Solar Irradiance
	1.1.1 Single Parametric Sunshine-Based Model
	1.1.2 Single Parametric-Based Temperature Model

	1.2 Multi-Parametric or Hybrid Models for Prediction of &!blank;Solar Irradiance
	1.3 Multi-parametric Model for Prediction of Energy Generation

	2 Formulation of Multi-parametric Global Irradiance Prediction Model
	2.1 Input Factors Considered Affecting Global Solar Irradiance
	2.1.1 Relative Sunshine Hour
	2.1.2 Temperature Ratio
	2.1.3 Air Mass at Solar Noon


	3 Modified Multi-parametric Empirical Model
	3.1 Case Studies for the Prediction of Global Horizontal Irradiance
	3.2 Performance Study of Irradiance Prediction Models

	4 Energy Prediction Model Emphasized Through Performance and Exergy Analysis
	4.1 Performance Analysis of Solar PV Distribution System (Grid Connected PV System)
	4.2 Exergy Analysis of Solar PV System
	4.2.1 Assessment of Thermal Exergy Loss
	4.2.2 Formulation of Empirical Model for Energy Prediction


	5 Summary
	References


