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Preface to Hydrocarbon and Lipid Microbiology
Protocols1

All active cellular systems require water as the principal medium and solvent for their metabolic and

ecophysiological activities. Hydrophobic compounds and structures, which tend to exclude water,

although providing inter alia excellent sources of energy and a means of biological compartmental-

ization, present problems of cellular handling, poor bioavailability and, in some cases, toxicity.

Microbes both synthesize and exploit a vast range of hydrophobic organics, which includes biogenic

lipids, oils and volatile compounds, geochemically transformed organics of biological origin (i.e.

petroleum and other fossil hydrocarbons) and manufactured industrial organics. The underlying

interactions between microbes and hydrophobic compounds have major consequences not only for

the lifestyles of the microbes involved but also for biogeochemistry, climate change, environmental

pollution, human health and a range of biotechnological applications. The significance of this

“greasy microbiology” is reflected in both the scale and breadth of research on the various aspects

of the topic. Despite this, there was, as far as we know, no treatise available that covers the subject.

In an attempt to capture the essence of greasy microbiology, the Handbook of Hydrocarbon and
Lipid Microbiology (http://www.springer.com/life+sciences/microbiology/book/978-3-540-77584-3)

was published by Springer in 2010 (Timmis 2010). This five-volume handbook is, we believe,

unique and of considerable service to the community and its research endeavours, as evidenced by

the large number of chapter downloads. Volume 5 of the handbook, unlike volumes 1–4 which

summarize current knowledge on hydrocarbon microbiology, consists of a collection of experimen-

tal protocols and appendices pertinent to research on the topic.

A second edition of the handbook is now in preparation and a decision was taken to split off the

methods section and publish it separately as part of the Springer Protocols program (http://www.

springerprotocols.com/). The multi-volume work Hydrocarbon and Lipid Microbiology Protocols,
while rooted in Volume 5 of the Handbook, has evolved significantly, in terms of range of topics,

conceptual structure and protocol format. Research methods, as well as instrumentation and

strategic approaches to problems and analyses, are evolving at an unprecedented pace, which can

be bewildering for newcomers to the field and to experienced researchers desiring to take new

approaches to problems. In attempting to be comprehensive – a one-stop source of protocols for

research in greasy microbiology – the protocol volumes inevitably contain both subject-specific and

more generic protocols, including sampling in the field, chemical analyses, detection of specific

functional groups of microorganisms and community composition, isolation and cultivation of such

organisms, biochemical analyses and activity measurements, ultrastructure and imaging methods,

genetic and genomic analyses, systems and synthetic biology tool usage, diverse applications, and

1Adapted in part from the Preface to Handbook of Hydrocarbon and Lipid Microbiology.
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the exploitation of bioinformatic, statistical and modelling tools. Thus, while the work is aimed at

researchers working on the microbiology of hydrocarbons, lipids and other hydrophobic organics,

much of it will be equally applicable to research in environmental microbiology and, indeed,

microbiology in general. This, we believe, is a significant strength of these volumes.

We are extremely grateful to the members of our Scientific Advisory Board, who have made

invaluable suggestions of topics and authors, as well as contributing protocols themselves, and to

generous ad hoc advisors like Wei Huang, Manfred Auer and Lars Blank. We also express our

appreciation of Jutta Lindenborn of Springer who steered this work with professionalism, patience

and good humour.

Colchester, Essex, UK Terry J. McGenity

Braunschweig, Germany Kenneth N. Timmis

Palma de Mallorca, Spain Balbina Nogales
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Systems and Synthetic Biology in Hydrocarbon
Microbiology: Tools

Vı́ctor de Lorenzo

Abstract

Systems and synthetic biology represent the two sides of the recent ambition to understand quantitatively
biological systems as full, logically organized objects able to perform functions on the basis of their extant
blueprint and therefore amenable to being refactored to generate new-to-nature properties. The systemic
approach focuses on the cataloguing of all components of the studied entity, their relational logic and their
dynamic interplay for comprehending and predicting its behaviour as a whole. The synthetic counterpart
adopts straight engineering principles taken from industrial and electric manufacturing for re-creating
biological systems from perfectly defined constituents as well as for constructing functionalities that have
not yet emerged through the natural evolutionary course.

Keywords: Containment, DNA assembly, Modelling, Networks, Orthogonality, Parts

1 Systems and Synthetic Biology Meet Environmental Biotechnology

The biological world is an extraordinary case of multi-scale com-
plexity in which every layer of the system (from single genes or
proteins up to whole landscapes) seems to be connected both
upstream and downstream to other autonomous layers of intricacy
and interdependence [1]. The challenge in this scenario is that
understanding the rules that govern one level of functioning
(say, the way one biodegradation pathway is regulated in a single
bacterium in a Petri dish) may tell us very little on the next layer
(e.g. whether the same strain/pathway has any significance in
degrading the same compound in a natural niche). The phenome-
non so pervasive in complex systems (and therefore in biology)
known as emergence means that the combination of discrete
components of a system may not result in a clear fusion of their
properties or their parameters but on different qualities that can be
better, worse or altogether different of what was there as the start-
ing point. Although molecular biology was born after the WWII
out of the interest of physicists for living objects, there was a sort of

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016) 1–7,
DOI 10.1007/8623_2015_185, © Springer-Verlag Berlin Heidelberg 2015, Published online: 19 March 2016
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foundational choice for reductionist approaches that advocated the
focus on the details of specific biological constituents as a way to
understand the whole. Despite the spectacular development of
molecular biology for more than 30 years, the onset of techniques
for easy and cheap DNA sequencing and the generation of large
volumes of omics data on specific microorganisms have both
exposed the limitations of such reductionist strategies and opened
a possibility to study biological systems as a whole and not as a sum
of parts [2]. Ultimately, systemic approaches mean moving from a
focus on the separate components of a system towards the whole
of dynamic interactions between them. As Henrik Kacser, the
founder of metabolic control analysis, stated in a celebrated quote
“One thing is certain: if you want to understand the whole you
must study the whole” [3]. This criterium can be applied to nearly
every level of biological complexity but is particularly relevant to
examine environmental microorganisms [2]. In this context, there
is a need to incorporate conceptual methods imported from other
fields, in particular, the abstractions that are typical of physics and
mathematics and the modelling tools often taken from electric or
chemical engineering, as well as some principles of complexity
theory for tackling the behaviour of, e.g. non-linear systems [4].

Yet, there are some features of biological entities, specifically
microorganisms, that have one remarkable property when placed in
a multi-scale multifaceted scenario, namely, that the functionalities
encoded in their DNA can quickly penetrate through all complexity
layers, from the genome to complete landscapes. One dramatic
example is the global spread of antibiotic resistance genes from
their environmental point of origin, often resulting from minor
mutations in metabolic genes towards virtually all hospitals of the
world [5]. The unstoppable flow of DNA through all physical and
geographical barriers places a considerable focus of contemporary
systemic environmental microbiology on the genomes of the bac-
teria at stake (whether culturable or not) and on attempts to extract
from them as much information as possible [2]. This makes a
combination of wet data, collecting methods with bioinformatic
analysis and modelling necessary, as addressed separately in the
chapters below.

The diversity of assets available for systemic and synthetic
approaches to environmental microorganisms and their interface
with hydrocarbons has distinct but still intertwined aspects. On the
one hand, we have the deconstruction-reconstruction-redesign
agenda (the last with different qualities of the original system).
On the other hand, there are the wet vs the in silico strategies.
The papers contained in this volume provide a good panel of
current protocols that allow addressing both old and new questions
under systemic and synthetic perspectives. Note, however, that the
methods included in this collection focus exclusively in the aspects
that have to do with fundamental understanding of the system at
stake, not with practical bioengineering. The group of articles
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under the umbrella of synthetic biology therefore deals with using
synthesis and directed design as the counterpart of analysis, the two
being the pillars of any research endeavour. Although some of these
concepts and methods described here are equally usable for explicit
bioengineering, e.g. for biotechnological purposes, the protocols
dealing with applied projections of synthetic biology have been
compiled in a separate Volume of this Protocol series (Hydrocarbon
and Lipid Microbiology Protocols: Synthetic and Systems Biology
Applications).

2 Systemic Approaches to Environmentally Relevant Bacteria

It is generally accepted that the key appeal of systems biology relies
on its power to translate loads of data into workable models that
help in understanding otherwise complex and undecipherable
biological entities. And, as a consequence, they guide experiments
for validation and further model refinement. In this respect, sys-
tems biology borrows from engineering the typical modelling/
testing/improvement cycle that is so typical of industrial design
[4]. The part of the cycle that has to do with massive data collection
(whether transcriptomics, metabolomics, proteomics, etc.) has
been tackled in a different Volume (Hydrocarbon and Lipid Micro-
biology Protocols: Genetic, Genomic and Systems Analyses of Pure
Cultures) and will not be revisited here. The starting point of the
chapters below is instead the availability of enough data on the
microbial system under scrutiny that allows us to abstract the
components and apply models for their comprehension. And as
mentioned above, the methodologies discussed range from purely
wet to purely computational. One exemplary case is the set-up of
metabolic models out of genomic information, as discussed by
Nogales [6]. One reliable test of robustness of such in silico models
(as well as an awesome source of extra information) is the passing of
the strain under study through a large panel of growth conditions
(the so-called phenomic testing [7]). The effect of given perturba-
tions (e.g. mutations) on the resulting biochemical network can
thereby be checked by observing growth or lack of it on specific
carbon sources or stress settings. And once one has a goodmodel in
hand, there is a large number of operations that one can perform
in vivo to understand specific steps of the metabolic traffic and,
wherever desired, modify the metabolism at user’s will. Along this
line, article [8] showcases one example in which systemic under-
standing of NAD(P)/NAD(P)H balance in environmental bacteria
results in strategies to make it a better host for knocked-in redox
reactions. In a further turn of the screw, one can also benefit from
modelling and computer-assisted genetic design for engineering
new biochemical and catalytic capabilities in pre-existing metabolic
networks, in fact one of the most spectacular products of contem-
porary systems biology [9, 10]. But one important detail is often

Systems and Synthetic Biology in Hydrocarbon Microbiology: Tools 3



overlooked in systems-guided metabolic engineering: reactions do
not occur in dimensionless space but in a reactor (the cell) that has a
distinct 3D distribution of its material constituents. Biotransforma-
tions carried out by whole-cell catalysts must occur in time and
space as if in a chemical factory. How are microorganisms inside
organized thereof? To answer this question, one thinks immedi-
ately in looking at cells directly with a microscope: in fact, super-
resolution microscopy is a growingly feasible approach [11, 12].
But one can also generate a considerable amount of information on
the same matter through genetic and computational probing of co-
occurrent genomic spots, e.g. those that share the same transcrip-
tional factors. As presented in [13], such analyses allow dissection
of higher-level genomic architecture and perhaps identification of
optimal sites for knocking in new activities. The techniques just
mentioned can then be applied in various ways to decipher details of
the interplay between specific microorganisms and hydrocarbons as
well as gaining insight on the general properties of given bacterial
groups specialized in key environmental activities (e.g. methylo-
trophs [14]).

3 The Tools of Synthetic Biology

In its most widespread connotation, synthetic biology is associated
to the deep genetic design of biological systems for given biotech-
nological purposes (e.g. a sort of extreme genetic engineering
[15]). In reality, there is much more than that: synthetic biology
adopts engineering not as an analogy or a metaphor but as a
veritable interpretative frame [16, 17]. This choice becomes instru-
mental both for making sense of the relational logic of extant
biological objects and for (genetically) changing that logic in
order to create new-to-nature activities. Such an agenda (for the
sake of both understanding and doing) involves standardization,
metrology, definition of system’s boundaries, scalability, etc.; all of
them are engineering matters that have been traditionally put aside
in biological research. But the benefits of such a take (that involves
a new jargon for describing biological properties and transactions as
well [16, 17]) start just to be appreciated and expanding at the time
of writing this article. For now, synthetic biology approaches have
been mostly applied to E. coli,mycoplasma and yeast and to a much
lesser extent to other microorganisms. But the range of environ-
mental bacteria that can be the subject of these approaches is
growing. Some of the articles found in this volume map precisely
in this ongoing momentum.

Despite the ease and lowering of the price of chemically synthe-
sized DNA, the synthetic biology practitioner still faces the
problem of combining many variants of the same biological parts
for optimizing a given pathway or construct. It cannot come as a
surprise that techniques for the assembly of multiple DNA
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segments are still quite a challenge and the subject of considerable
efforts. A number of strategies have been proposed to this end, and
the article Nørholm [18] describes in detail one that looks specially
promising for complex combinations or DNA fragments. A sepa-
rate matter is that of measuring the activity of the resulting con-
structs. As mentioned above, metrology is at the core of any serious
effort of engineering biological systems but still a phenomenal
challenge. Given the context dependency of the parameters asso-
ciated to virtually all biological functions [19], even the very simple
measurement of promoter activity is the subject of controversies
[20]. To alleviate this problem, [21] proposes a virtually automated
high-throughput method of prototyping promoter activity that can
be interfaced with computational analyses in order to unveil the
general rules that determine transcriptional activity. This is an
important step towards standardization of promoter strength and
the description of its potency in polymerase per second (PoPs)
units, a biological counterpart of electric current [22].

In addition to DNA assembly and standardization/metrology
of the gene expression flow, a third recurrent theme in synthetic
biology is orthogonality, e.g. the pursuit of a minimal dependence
of the engineered modules or devices on the host and vice versa
[23]. Although nature has already produced a large number of parts
and devices that work in a fashion somewhat autonomous of the
carrier (e.g. activities found in bacteriophages and mobile genetic
systems [24]), synthetic biology pushes these natural limits in new
directions. As shown in [25], one can reassign the meaning of given
triplets of the genetic code to be read by equally modified ribo-
somal constituents in order to generate orthogonal gene expression
devices. These amplify extant biological diversity as they allow
incorporation of non-natural or unusual amino acids into the struc-
ture of otherwise natural proteins.

4 Outlook

The wealth of conceptual and material tools delivered by contem-
porary systems and synthetic biology (of which the protocols of this
volume are just a sample) is bound to change the way we under-
stand and reshape biological entities as engineer-able objects. At the
same time, the creation in the laboratory of new biological activities
and the chances of their accidental scape or deliberate release into
the environment are not devoid of controversies that echo former
debates on the safety of genetically engineered microorganisms
[26]. In this context, article [27] reviews updated views on this
matter as well as fresh propositions to limit the spread of deeply
engineered (or even altogether synthetic) bacteria in a time in which
the hype and the promise of synthetic biology are also accompanied
by public fears on its possible damage if released out of control.

Systems and Synthetic Biology in Hydrocarbon Microbiology: Tools 5



In sum, incomplete as it is because of the very fast develop-
ments in the field, this volume displays a representative palette of
quantitative strategies offered by systems and synthetic biology to
examine complex (micro)biological scenarios.

Acknowledgements

The work in Author’s Laboratory is supported by the CAMBIOS
Project of the Spanish Ministry of Economy and Competitiveness,
the ARISYS, EVOPROG and EMPOWERPUTIDA Contracts of
the EU, the ERANET-IB and the PROMT Project of the CAM.

References

1. de Lorenzo V (2008) Systems biology
approaches to bioremediation. Curr Opin Bio-
technol 19:579–589

2. de Lorenzo V, Fraile S, Jiménez J (2010)
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Protocol for the Standardisation of Transcriptional
Measurements

Christopher D. Hirst, Catherine Ainsworth, Geoff Baldwin,
Richard I. Kitney, and Paul S. Freemont

Abstract

A key component of the engineering approach underlying synthetic biology is the use of standardisation to
enable better design of biological systems. One of the most important areas to standardise is the measure-
ment of part, device and system activity in order to improve designs and aid sharing of data. While methods
for standardising transcriptional measurements have been designed, they have suffered from poor uptake,
and as more parts and systems are detailed, potentially useful information and comparison may be being
lost. This protocol takes the best of the previously developed standards while adding some advice for best
practice and data standardisation, designed to improve the ease with which data collected in separate labs
may be shared and used. Standardisation of measurements and data has the potential to allow greater
understanding of the biological systems synthetic biologists engineer and in turn lead to better tools to
allow the design of larger and more complicated systems.

Keywords: Fluorescence, Standardization, Synthetic biology, Transcription, Transcriptional
measurement

1 Introduction

Synthetic biology aims to utilise engineering approaches to aid the
development of biological systems that function as initially
designed. Of the many engineering principles that may be applied
to advance these goals, one of the most important is standardisation
both in terms of the definitions of physical pieces or DNA ‘parts’
and the procedures used to assemble and measure these parts.
Significant work has been carried out to improve the standardisa-
tion of physical parts by descriptions and decoupling of their junc-
tions [1, 2], the boundaries of the parts where they contextually
interact with each other, and also in the area of improving and
standardising the methods which can be employed to put these
parts together [3–5]. When it comes to measurement standards
however, progress has continued to be slow, while the number of
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projects and characterisations of parts and in particular libraries of
parts has been increasing rapidly [2, 6, 7]. While these projects have
produced much useful data, it is difficult at best to compare these
datasets in meaningful ways and enable the production of the part
and device models required for the field to achieve its aims.

One of the most important parts required for system design are
the promoters which trigger transcription as most biological sys-
tems require the expression of various proteins or RNAs. While the
immediate product of these parts is RNA molecules, the RNAs
themselves can be difficult to study directly as this often requires
lysis of the host and purification of mRNAs for use by methods such
as RT-PCR [8]. This has meant that the measurement of promoter
parts has tended to be carried out by monitoring production of
fluorescent proteins encoded on those mRNAs. This has allowed
characterisation experiments to be carried out in large numbers
through the use of microplates and plate readers but at a cost of
no longer directly assaying the signal of interest.

While protein-based experiments have been sufficient for now,
many new tools and techniques have recently been developed to
improve characterisation, each with advantages and disadvantages.
New sensors based on RNA capable of directly reporting mRNA
levels have been demonstrated for characterisation purposes [9].
These sensors have been observed to produce somewhat weak
signals (necessitating flow cytometry or microscopy measurement)
[9], but this may be a difficulty alleviated through improvements in
aptamer chemistry [10]. Developments with in vitro transcription-
translation technology have improved the reliability of these sys-
tems [11] to the point where it has been demonstrated that data
collected in vitro may be comparable to in vivo derived data [12].
These systems are much less sensitive to context but also have short
life spans and may struggle to execute complicated designs or
systems. Finally, there has been increased use of flow cytometry
either alone [13] or in combination with other techniques such as
RNA-seq [7]. Flow cytometry provides high-quality expression
data for individual cells but generally at a cost of throughput
because of the time to assay sufficient cells for analysis.

This proliferation in technologies could be a problem for stan-
dardisation of transcriptional measurement; however, there are
many areas where these different methodologies can be standar-
dised to produce data which is as reliable and comparable as possi-
ble. For simplicity this chapter will focus primarily on the methods
for standardising in vivo protein-based measurements as these are
the most common, and the methods explained can be easily
adapted to in vitro and aptamer-based methodologies. These stan-
dardisation methods focus on converting signal observed into stan-
dard units such as those described by Canton et al. [14] and Beal
et al. [13] or by use of a reference system [15, 16]. As these
techniques work in different ways, they are somewhat
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complementary, and it may be advised to use both to gather insight
into the measurement. In addition standardisation of the measure-
ment scenario will also be discussed as this will significantly improve
the reliability and reproducibility of such experiments.

2 Protocol

2.1 Approach Part 1:

Measurement

Environment and

Reference Standards

If the environment where a final design may operate is known, it
would be beneficial to replicate this during the measurement pro-
cess. Where this is not the case of transcriptional measurement
being carried for a more generic scenario or to obtain data for a
set of parts or devices, a more standard measurement environment
may be more suitable.

Biological systems operate in a chassis upon which they are
dependant. As the properties of the chassis will alter the observed
measurement, standardisation of the measurement environment
should be considered in order to aid comparison and reuse of
measurement data. When transcription within a chassis is measured,
it requires the use of the host’s machinery to produce the transcript
and any reporter. This machinery minimally includes the host’s
RNA polymerase and ribonucleotide resources but often also ribo-
somal machinery when a protein reporter is used. The amount of
these pieces of machinery will differ between hosts with evidence
from in vivo studies that changing strain of organism alone signifi-
cantly alters results [17]. Within a living host, the growth rate can
change in response to a number of environmental factors and has
been observed to alter a number of global properties inside host
cells. This not only includes the relative abundance of RNA and
protein molecules, the rate of protein synthesis and transcription
which is being measured [18] but also the copy number on which
many plasmids are kept [19]. Although in vitro transcription-
translation mixes do not possess a growth rate which could alter
the abundance of the machinery, the source of the mix currently is a
living chassis, and as a result the process of generating the mix could
have similar impacts.

As such the standardisation of any transcriptional measurement
must consider both which hosts are appropriate for testing and in
what environment (media and vessel) in which the measurement
should take place. Many labs appear to use one of many cloning
strains for the measurement of transcription, and the reasons for
this choice are unclear but may be simply because it is easier than
transferring to a new strain for the measurement. Additionally the
requirement by some projects to use knockout strains further
makes the restriction to a single standard strain of host for mea-
surement impractical. Some strains are more appropriate candidates
for standardised measurements, a few of which have been fre-
quently used for the transcriptional measurements documented to
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date (Table 1), and as some of the absolute unit calibration techni-
ques take into account the cell strain, it would be advisable to use
the most appropriate suggested strain if a choice of strain is
possible.

The media used however is much more open to standardisa-
tion, and experience from other biological fields should be a strong
guide towards the selection of highly or better yet entirely defined
media. While many commonly used media components are given
the same name or are made by the same method, there may be
subtle differences that could influence a measurement. For this
reason, fully defined or standardised media should be used if possi-
ble, and at present the only fully defined, widely used media is the
EZ Rich [20] or minimal [21] variants of the MOPS media first
developed by Neidhardt [22]. Any media where all the components
are at known concentration would also be appropriate but these
formulations need to be well documented. Where the use of a fully
defined media is inappropriate (e.g. in a bioreactor), the use of
particularly variable media such as LB or those based on variable
components such as tryptone or yeast extract should be avoided. A
suggested set of standard E. coli strains and media can be seen in
Table 1, and similar standards would ideally be established for other
organisms when they are regularly used by the community. Where
in vitro mixes are made, it may be suitable to generate these from
one of the suggested strains where possible.

For in vivo measurements, beyond the strain and the media,
other factors can also influence measurements. Biological systems
are inherently in a constant state of flux, and for this reason it

Table 1
Suitable strains and media for standardised transcriptional measurements

Media or strain Notes and suggested reasons for use

Suggested strains
MG1655 E. coli lab strain frequently used for its relatively ‘wild’ genotype. Frequently used for

transcriptional measurements
MDS42 Most minimalised genome E. coli currently available that still exhibits relatively

‘normal’ behaviour
BW25113 Source strain for the Keio collection so useful when knockouts are required.

Frequently used for measurements
DH5/ Cloning strain commonly used in transcriptional measurement
BL21 T7 RNA polymerase-carrying strain often used for protein expression. Frequently

used for measurements and often used for the generation of TX-TL in vitro mixes

Media
Rich MOPS EZ
media

Rich variant MOPS E. coli media, commercially available and modular in nature to
allow for easy replacement of components

Minimal MOPS
media

Minimal version of MOPS media, based on only the MOPS mixture and potassium
thiamine. Also commercially available
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cannot be assumed that they continually stay the same, particularly
during growth. For this reason, care should be taken to ensure that
samples are always measured in the same state, generally governed
by the number of cells, and ideally multiple measurements should
be taken during growth so as to indicate any variation in results and
to yield data more likely to be consistent. This however may not be
possible depending on equipment available. With methods such as
flow cytometry and RNA-seq where obtaining a time series of data
is difficult, expensive or impractical, it is therefore important to
keep growth consistent among samples. The strategy employed to
obtain this consistency will depend upon the strains and media used
but will likely require volumetric of concentration-based dilution
and set-up steps.

A complementary standardisation technique can be employed
where a standardised measurement set-up cannot be used. Argu-
ably it would ideally also be used with every measurement to
indicate any abnormalities or unknown deviations in the measure-
ment procedure or conditions. This strategy is the measurement of
a reference construct which is maintained across experiments and
when carefully designed allows the derivation of transcriptional
output in a standardised unit. This method is based on the notion
that while conditions may affect how a part functions, its behaviour
in relation to other similar parts should remain the same; this can be
used up to define the behaviour of a part relative to other parts of
the same class and was the core of the relative promoter unit (RPU)
standard [15]. The relative promoter unit standard used a near
identical reference plasmid to dictate a value of 1 on an otherwise
arbitrary scale around which all other measurements could be
understood. Variants on this procedure have since been demon-
strated in similar situations resulting in αRPU [23] and relative
expression unit [24]-based results and have also been shown to be
appropriate for in vitro experiments [16]. With careful design, these
reference measurements can be useful for removing a large amount
of context sensitivity but do not provide an absolute output which
may be significantly more useful for models and design software.

To standardise a transcriptional measurement, this way a suit-
able reference construct must be measured as part of the assay. As
an additional benefit, it is possible to compare the results of the
reference construct between assays, which allows it to indicate
where abnormalities in the measurement procedure may have
occurred. This is particularly useful for in vitro assays where the
transcription-translation mix can vary significantly batch to batch
[16]. Generally, the reference construct is carried as a separate
sample in the assay, but it has been suggested that a second fluor-
ophore could be used to carry out the reference measurement. The
reference constructs are suitable for both in vivo and in vitro work
and may even provide a method to allow data comparison between
in vivo and in vitro experiments [12]. For reference measurements
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to convert results into standard units, the reference construct must
be carefully designed.

The original RPU standard [15] only called for the reference
construct to match the tested construct in the region from the 50

end of the transcript to an undefined distance into the protein
being used as a reporter. While this region is likely to have a large
impact upon the measurement, there may be many other effects
from both the testing construct and the overall plasmid or genomic
environment upon which it is hosted. For this reason a very strict
reference construct should be used. In this scenario, the reference
should be identical with the only exception of the part being
measured. If parts within the design (particularly a promoter
where the transcription start site is within its sequence) are likely
to be switched in future experiments it would also be advisable to
use promoter/5’UTR decoupling tools [1, 25] and insulator
sequences such as those for promoters [23]. An SBOL diagram of
such a construct is included in Fig. 1. The mathematical method to
produce results in relative units is included with mathematical
methods for the other output units in the data analysis section.

2.2 Approach Part 2:

Equipment Calibration

Most measurements of transcriptional activity are based around the
use of fluorescent proteins and so are carried out on only a few of
pieces of equipment. As a result, standardising around these pieces
of equipment is a viable option. The equipment used in many of the
transcriptional measurements are plate readers and flow cytometers.
Both types of equipment gather fluorescence data about samples
that are given in arbitrary fluorescence output units and optical
density or absorbance values which are also effectively arbitrary. It
is however possible to convert these outputs into results with
standard units (Table 2). Results converted this way can be com-
pared instantly. In addition these methods can allow the calculation
of more complicated results types, such as polymerases per second
(PoPs) [14].

2.2.1 Plate Reader

Fluorescence Experiments

For in vivo transcriptional assays, plate readers monitor the emis-
sion of fluorescent light to judge the amount of fluorescence emit-
ted by protein within cells as well as the size of the bacterial
population responsible for this signal based on the amount of
light they scatter or absorb. As an in vitro reaction uses a fixed
volume of reaction mix, such transcriptional assays only require the
emission of fluorescence to be monitored. Both scales are inher-
ently arbitrary and will vary from machine to machine but can be
converted into absolute units.

The absolute unit for fluorescence signals are molecules of
fluorescent protein. This calibration was originally designed by
Canton et al. [14] and will yield results in terms of the molecules
actually produced by the transcription and translation processes,
and so these results may be more immediately useful in models or
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design tools. It should be possible to use these methods to perform
a calibration for molecules of fluorescent aptamer or similar mole-
cules. For increased reliability, it is advisable to regularly run a test
plate or chemical standard on the plate reader to ensure there that
response of the detector does not change over time or as a result of
hardware use. This is important as the equipment calibrations are
likely to be only carried out rarely (particularly molecules of fluo-
rescent protein calibrations). Additionally, it may be sensible to
carry out these calibrations for a small number of different gains
or sensitivities so that the calibration procedure does not need to be

Fig. 1 Example of a suitable reference control and integration of promoter part standards. As many biological
‘parts’ may have unknown interactions with each other or their hosts for accurate comparison, the reference
construct should be as close to identical to the tested construct as possible within the experimental
constraints. An example constitute promoter testing construct and its ideal reference are shown in SBOL-v
notation [26]. Surrounding the promoter in the above diagram are two part standardisation devices, two
promoter insulators [23] and an mRNA cleavage device [1]. Use of such devices may be useful for
measurement accuracy (depending upon experimental context)
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repeated and one of these pretested gains used instead. If the
change in detector properties is carefully monitored, it should be
possible to adjust calibrations to take this into account. It is impor-
tant to note that the fluorescence detection part of these calibra-
tions must be carried out at the same temperature as that used for
the transcriptional measurement due to the affect of temperature
upon fluorescent signals.

The conversion of fluorescence results into molecules of fluo-
rescent protein is slightly different for in vivo and in vitro measure-
ments (the alteration will be detailed following the in vivo
protocol). For conversion of in vivo data, two calibrations are
required, the fluorescence obtained from known concentrations
of protein in cell lysate (produced chemically) and the change in
fluorescence observed from fluorescent protein when the cells are
chemically lysed. The second conversion is required because the
exact nature of the environment inside the tested cells is unknown,
with some properties such as pH [27] able to affect the signal from
a fluorescent protein. The only way to deal with this unknown
effect and ensure accuracy of results is to use a common environ-
ment (chemically generated cell lysate). For both of these calibra-
tions, controlled cell lysis is critical, and this should be achieved by
chemical methods as this will ensure >95% cell lysis. The following
has been demonstrated using B-PER II lysis buffer (Pierce), and if
other lysis solutions are to be used, they should be tested for lysis
efficiency by plating (see Sect. 2.2.2). As the environment inside

Table 2
Possible and appropriate units for standardised transcriptional measurements using commonly used
equipment

Measurement
equipment Output units Experimental requirement

Plate reader
(fluorescence)

Arbitrary unitsa

Molecules of fluorescent protein
None
Calibration curves for
Fluorescence from purified protein
(in lysate)
Cell physiology on fluorescent
protein

Plate reader
(absorbance)

Absorbance/optical densitya Linearity calibrations
Colony-forming units Plate counting assays
Cell population numbers Cell bead counting calibration

Flow cytometer
(fluorescence)

Arbitrary unitsa None
Equivalent units of fluorescein/
fluorescent dye

Calibration bead data

aDenote result unit which is not standardised and so cannot be easily compared without referencing
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cell strains may be different if a new strain is used, the calibration
should be repeated.

For generation of lysate, cells should be grown to an
approximate OD of 0.5 prior to spinning at 3,000 � g for 5 min.
Cell solutions need to be kept on ice following this step of the
process. Following spinning cells should be resuspended in PBS to
an OD of 0.5 before being spun and resuspended in PBS a second
time. Protease inhibitors should be added to the cells in PBS and
then an equal volume of lysis solution added to generate cell lysate
(this should be done in tubes if possible to reduce the possibility of
generating bubbles in wells). For the calibration of the change in
fluorescence signal in lysate versus intact cells (i.e. accounting for
the cellular environment), batches of cells expressing differing levels
of fluorescent protein should be spun individually, washed with PBS
and then stored on ice prior to generation of lysate. The individual
samples should be equally split in two and one of each pair lysed
using an equal volume of lysis buffer, while the other is diluted with
an equal volume of PBS. Samples of each should then be transferred
to amicroplate (being careful not to introduce bubbles) and read for
fluorescence. Samples not expressing fluorescent protein should be
included to account for autofluorescence. The signal from these
autofluorescence controls should be subtracted, and the relation-
ship between the fluorescence observed before and after lysis should
be calculated for use in the overall calibration.

The protein molecule calibration is itself also a two-step proce-
dure (shown in Fig. 2), first requiring purification and quantifica-
tion of protein and secondly detection of fluorescent signals from
known concentration samples. The purification should be carried
out by commonly used protein purification set-ups which allow
purification while minimally affecting the protein such as his-
tagging. Cleavage of a tag may be beneficial but could also cause
problems related to folding of resulting protein or sample contam-
ination. Protein purity should ideally be >90%; however, as long as
the purity can be ascertained, that should be acceptable. For quan-
tification a small dilution series should be produced by diluting
protein in PBS to improve accuracy of quantification and to identify
any pipetting problems arising due to viscosity of protein sample.
Quantification of the protein should then be achieved by using a
commercially available protein quantification kit to quantify the
dilution series of purified protein rather than nanodrop or similar
methods as the fluorescent properties of the proteins may interfere
with these readings. A large range of dilutions may then need to be
created from these samples by careful pipetting if they do not cover
a large enough fluorescence range. To generate the final calibration
curve, 40 μl of these samples should be added first into microplate
wells before addition of 160 μl of nonfluorescent cell lysate gener-
ated by the above methods. Samples containing no fluorescent
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protein should also be added to use as a background measurement.
Following fluorescent measurement of the GFP in lysate, the fluo-
rescence background from the lysate-only samples should be sub-
tracted, and the number for molecules of protein added to each
well should be calculated. From these results, the mathematical

Fig. 2 Method to obtain calibration of observed fluorescence into molecules of fluorescent protein. The
experimental workflows shown produce two separate calibrations relating either the fluorescence signal
inside cells or the number of molecules of fluorescent protein in a sample to the fluorescence observed in cell
lysate. By carrying out these calibrations with protein in cells and purified proteins separately, it is possible to
convert via the common scenario (protein in cell lysate) from the fluorescence observed by a plate reader to
the number of molecules of protein present inside cells in a microplate well
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relationship between molecules of fluorescent protein and observed
fluorescence should be calculated and can then be used to convert
fluorescent results into molecules of fluorescent protein (see Sect. 3
for details).

For in vitro measurements, only the signal observed from
quantified protein is required although this should be carried out
in in vitro reaction mix to maintain the chemical properties that will
be observed under measurement conditions. For fluorescent repor-
ters that are not proteins (such as fluorescent RNAs), a similar
method using the reporter molecule may be appropriate but
would need thorough testing.

2.2.2 Cell Population

Measurement Calibration

Collection of in vivo transcriptional measurements on a plate reader
also requires the determination of the size of the cellular popula-
tion. This is normally established by measuring the scattering of a
beam of light. While many pieces of equipment measure this scat-
tering and produce absorbance or optical density results, the result
observed for different pieces of equipment varies widely. The absor-
bance of a liquid on one machine will not be the same as the
absorbance measured on another, and this is made significantly
worse by equipment ‘linearity’ where the measurement equipment
no longer detects a doubling in the concentration of the absorbing
material as a doubling in fluorescence. For this reason, the experi-
mental equipment used to take these measurements should also be
calibrated for their absorbance results. It would be advisable to
keep all arbitrary measurements in absorbance so as to avoid con-
fusion with optical density and pathlength corrections. While a dye
exhibiting known optical densities at various concentrations could
be used, it is almost as simple and potentially more useful to
calibrate these measurements directly into the number of cells in a
given sample vessel. This calibration should be carried out by taking
samples from growing cultures at regular intervals and assaying for
the number of cells by one of two different methods depending on
the equipment available. While both of these methods are viable, if
the lab has access to flow cytometry equipment, a method employ-
ing counting beads should be used as this will give more accurate
data than plating assays.

To ensure accurate calibration of cell numbers, the experiment
must be set up using conditions identical to those under which the
measurement was (or will be) taken. In particular the cell strain,
growth medium, growth vessel (including volume) and incubation
settings should be kept the same unless an experiment demon-
strates there is no difference in cell size as a result of these factors.
Additionally, the plasmid held by the host should also carry the
same resistance and cause a similar burden (if applicable) to the
measured system. For bead counting assays, the inclusion of a
strong fluorescent marker on the sample bacteria will make gating
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significantly simpler. From this set-up, samples should be taken and
measured for absorbance/optical density before being diluted to a
level appropriate for either plating or bead counting. Multiple
samples should be taken to observe the relationship between absor-
bance and cell numbers or colony-forming units. For plating assay,
this should be done multiple times to account for the possible
errors as a result of the large number of dilutions. For a diagram
of the two methods, see Fig. 3.

For plating assays, large dilutions should be carried out by serial
dilution using well-calibrated pipettes to yield dilutions in the range
106–108. These dilutions should then be plated on selective plates
and grown overnight. The following day the plates should be
inspected for colonies, and the colonies on the lowest dilution
plate that can easily be counted should be counted. This number
of colonies should then be multiplied by the dilution (being careful
to remember any dilution which may have occurred during plating)
to obtain the colony-forming units of the original sample. The
colony-forming units are the number of viable cells in the sample
and so should approximate the population size in properly designed
experiments.

Fig. 3 Methods for determining cell numbers from absorbance or optical density data. Diagrams for the
workflow of plate or bead counting are displayed, highlighting the common sample preparation and dilution
steps before differing dilutions can be taken for either type of cell number counting. Low dilutions can be taken
for bead counting, where samples are run through a flow cytometer with beads and the number of cells
calculated using the ratio of cells to beads and the dilution run through the flow cytometer. Larger dilutions are
required for plating assays, where following spreading on agar plates, the number of colonies on the
most suitable plate is counted and multiplied by the dilution factor to obtain the number of colony-forming
units (c.f.u.) in the original sample
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For bead counting assays, smaller dilutions should be carried
out. The dilutions here should be suitable to yield cell numbers to
be assayed that are ideally within an order of magnitude of the
number of beads in the counting mixture. As such the exact dilu-
tion will depend on the sample absorbance and the concentration of
counting beads being used, though it is likely to be in the region of
40- to 1,000-fold (for absorbance values in the range of 0.002–1
and a bead concentration of approximately 6,000/μl). It should be
possible to establish this with the first sample (or a test sample of
known absorbance) and from then on use educated guesses based
on the observed absorbance and number of event measured for the
previous sample. For the counting itself, as many events as are
sensibly possible should be recorded per sample to obtain the
most accurate results. Flow cytometry results should be gated
(ideally in side scatter and fluorescence) to distinguish bead events,
cell events and other events. The ratio of the bead and cell popula-
tions should be calculated before multiplying by the number of
beads per microlitre (to obtain cells/μl) and the dilution to obtain
the number of cells in the original sample.

When the c.f.u. or counted cell numbers are calculated for
multiple absorbance/optical density values, the absorbance results
should be plotted against c.f.u. to obtain a mathematical relation-
ship which can be used for calibration of all results into c.f.u. or cell
number. This equation should be used to convert all absorbance or
optical density results into c.f.u. or cell number following blanking
of measurement (see Sect. 3 for more details) (Fig. 3).

2.2.3 Generation

of Results in Polymerases

per Second (PoPs)

Canton et al. [14] demonstrated that it was possible to convert
results in absolute protein units into PoPs. While these units may be
an ideal metrology for a transcriptional process, the full methods
required to allow this conversion are clear. In short, several mRNA
and protein parameters are required in order to calculate the PoPs
output of the promoter using an ODE model based on transcrip-
tion and translation. The parameters required are the mRNA deg-
radation rate, the protein synthesis rate (from mRNA), the protein
maturation rate and the degradation rate of immature protein (the
full protein degradation rate would be required if the protein
degrades after folding). The methodology required to obtain
these parameters is not so clear, and anyone wanting to produce
results in PoPs would be advised to look at the work of Canton et al.
[14] for more details.

2.2.4 Flow Cytometry

Measurement Calibration

Flow cytometry has recently begun to be used regularly for tran-
scriptional measurements in a synthetic biology context. A large set
of tools has been developed to work with this methodology, and
part of this is an easily applicable method of unit standardisation
[13]. Commercially available flow cytometry calibration beads are
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available from many suppliers. Standardisation with these beads is
very simple but is the only unit conversionwhichmust be performed
each time data is collected (whenever the cytometer is turned
off then restarted). Prior to data acquisition, calibration beads
must be run through the cytometer and data collected with all the
fluorescence instrument settings to be used for data collection. If
more than one fluorophore is to be used in a sample, care also must
be taken to remove any signal caused by bleed from one channel into
another (e.g. green fluorescence appearing in a red channel).

Many manufacturers offer calibration beads which possess mul-
tiple standard levels of appropriate fluorescent dyes (e.g. example
fluorescein for GFP). The exact procedure varies but generally
should begin with generation of a dye calibration curve. For the
bead sample, non-bead event should be filtered out by gating, and
then a manufacturer-provided calibration data (i.e. amount of dye
per bead) should be applied to yield a conversion equation for
arbitrary fluorescence signal to molecules of equivalent fluorophore
(e.g. MEFL – molecules of equivalent fluorescein for GFP). This
may have to be carried out without or after background signal
removal as dictated by the bead manufacturer. Transcription mea-
surement data should then be treated the same way as the beads
with regard to background signal before the arbitrary fluorescence
values observed are converted toMEFL or similar units via the bead
calibration curve.

3 Data Analysis

Careful data analysis can be the difference between poor quality,
noisy data and highly accurate insightful results, particularly when
applied to the plate reader-based population measurements that are
commonly reported. Care must always be taken to appropriately
remove background signal prior to calibration of data and calculation
of results. Additionally, great care should be taken with the determi-
nation of error and when to carry out data averaging as performing
this at the wrong stage will artificially increase the observed error.
While plate reader and flow cytometry data will be separated here,
some data from the plate reader may be required for calculation of
flow cytometry results (notably population growth rate).

Following the data analysis, care should be taken to be clear
which format and unit the results have been produced in to allow
accurate comparisons to be drawn between other datasets. If the
data is to be put into a shared repository or sent to other groups, it
would be highly beneficial to send the data along with information
relating to context and analysis. At the bare minimum, this should
include the DNA sequences used in the measurement, the assay
media and the cell strain but could ideally be assembled to in some

22 Christopher D. Hirst et al.



kind of datasheet, with good previous examples including the
F2620 datasheet [14] and BglBrick vector datasheets [28].

3.1 Plate Reader

Data

This section will focus primarily on in vivo data as this is more
complicated. For in vitro data, the main steps are the same except
there are no absorbance measurements and autofluorescence
should be handled by timepoint by timepoint subtraction of nega-
tive control fluorescence values. For in vivo plate reader data, data
analysis should always begin with the absorbance measurements as
they will require adjustment in order to estimate autofluorescence.
First media absorbance values should be checked to ensure there
has been no growth consistent with contamination. Small gains in
absorbance values for the media may occur, but significantly they
should ultimately plateau and must not increase exponentially. The
average absorbance value of all the media wells which pass this
examination should then be subtracted on a timepoint by timepoint
basis from all sample absorbance to obtain corrected absorbance
values.

The autofluorescence is dependent upon media and is also
related to the population of cells (as measured by absorbance) in
many media. It may be beneficial to carry out the conversion of
absorbance signal into cell number of c.f.u. prior to calculating
autofluorescence. To calculate the autofluorescence, the fluores-
cence and the corrected absorbance values for the negative controls
are required. Autofluorescence should not be removed by remov-
ing the fluorescence of negative control cells at a given timepoint
unless the absorbance values are very similar at that timepoint.
Instead the relationship between the absorbance and fluorescence
of negative cells should be identified by regression or similar math-
ematical analysis (different media tend to yield differing equation
types but generally linear plus offset or quadratic are most appro-
priate). The corrected fluorescence can then be calculated by sub-
traction of the level of fluorescence expected to be observed from
negative cells with the same absorbance.

For all output formats, both fluorescence and absorbance data
should now be converted into a standard unit format to ensure that
the results determined following this step are easily compared and
should easily be reproduced. While for RPU calculations this may
not be necessary as later steps will have the effect of cancelling out
any conversions used, it is likely that having data in another abso-
lute format will be beneficial. The conversions should be carried out
by multiplying the data with the relevant conversion/calibration
factors determined experimentally (see Sect. 2.2). With the data
calibrated into standardised units, the results can be calculated in
the most useful format for the desired objective, generally RPU or
equivalent for relative results and synthesis rate or expression level
(fluorescent molecule/cell). From the calibrated data, expression
level or synthesis rate should be calculated first. Expression level is
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the simplest to calculate but may require more analysis if a rate of
transcription is required. These calculations are already carried out
with analysis in synthesis rate, but results expressed this way will be
noisier, particularly with weak transcriptional signals. If only a
limited number of data points have been generated, the results
should be presented in expression level, as synthesis rate ideally
should be calculated from a few points to reduce some of the impact
of noise and because it has been observed to change over time [15].

The expression level is the fluorescence signal normalised by
the number of cells and should be carried out for each replicate of a
sample individually prior averaging. If the expression level is the
desired output, the resulting expression level for all replicates can
then be averaged and the standard deviation calculated. Synthesis
rate requires the calculation of the change in fluorescence normal-
ised by the cell population. While many equations have been
suggested for this calculation, the following equation taken from
Kelly et al. [15] should be used:

SynthesisRate Plate Readerð Þ ¼ cFli � cFli�1ð Þ
cODi � cODi�1ð Þ=2 =t i � t i�1

where t is time, cFl is calibrated fluorescence and cOD is calibrated
optical density/absorbance. This should give results in the format
such as molecules of protein per cell per minute or similar. As with
expression level, this should be calculated for each individual repli-
cate prior to averaging and calculation of standard deviation. As
with expression level, the averaging of all replicates should only be
carried out at this stage if synthesis rate is the desired output format
to prevent unnecessary addition of error.

Output in relative promoter units and relative expression level
can now be calculated from the synthesis rate and expression level,
respectively. While the calculation to do this is simple (division of
the sample expression level or synthesis rate by that of the reference
construct), the ordering of division and averaging steps is impor-
tant to avoid introduction of unnecessary error. As a first step, the
replicates for both samples and reference constructs should be
grouped according to their data run (i.e. the data for all the repli-
cates obtained on day 1 of a 3-day experiment should be kept
separate from those of the other days). At this point the reference
results only should be averaged for each day. Following this the
division of sample results by the average reference result of that data
run should be carried out, yielding the relative expression level or
RPU for all the sample replicates. These results should now be
averaged and the standard deviation calculated.

3.2 Flow

Cytometry Data

The flow cytometry data is much simpler to analyse following
gating and many more accurate statistics can be produced. Owing
to the difficulties associated with the one box on a log scale,
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software that can handle data with a ‘logicle’ axis should be used for
gating and determination of flow cytometry statistics [29]. Flow
cytometry should always be gated in forward and side scatter as
tightly as possible before calculation of results. Dimensions of this
gate will depend upon instrument settings, host species and strain
and growth phase. Generally following gating, the geomean is the
key statistic to be determined for each individual replicate, but on
some occasions the mean or median statistic may be more appro-
priate (usually as the result of subpopulations or significant back-
ground noise). It may be advisable to also calculate the coefficient
of variation as this is a better estimation of the variation in results
(the geomean/mean/median will be used primarily to calculate
error and only the geomean will be referred to from this point).

As flow cytometry measures the fluorescence per cell, to calcu-
late the expression level, the only requirement is to remove the
background signal. This can be carried out by subtracting the aver-
age geomean of the negative controls from the geomean of each
sample. Depending on the supplier of calibration beads, results
should be converted into molecules of equivalent dye either imme-
diately before or after the background subtraction step. If the syn-
thesis rate is desired, it can be calculated from this calibrated data by
division of the doubling time (usually determined from plate reader
or optical density data) to give results in units of molecules of
equivalent dye per cell per minute. Alternatively, the calibrated
result is a standardised expression of the fluorescence per cell. The
relative expression level and output in relative promoter units can be
calculated using the same equations as the plate reader data (if the
OD terms are ignored) following background signal removal.
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Uracil Excision for Assembly of Complex Pathways

Ana Mafalda Cavaleiro, Morten T. Nielsen, Se Hyeuk Kim, Susanna
Sepp€al€a, and Morten H.H. Nørholm

Abstract

Despite decreasing prices on synthetic DNA constructs, higher-order assembly of PCR-generated DNA
continues to be an important exercise in molecular and synthetic biology. Simplicity and robustness are
attractive features met by the uracil excision DNA assembly method, which is one of the most inexpensive
technologies available. Here, we describe four different protocols for uracil excision-based DNA editing:
one for simple manipulations such as site-directed mutagenesis, one for plasmid-based multigene assembly
in Escherichia coli, one for one-step assembly and integration of single or multiple genes into the genome,
and a standardized assembly pipeline using benchmarked oligonucleotides for pathway assembly and
multigene expression optimization.

Keywords: BioBricks, DNA editing, Metabolic engineering, Molecular cloning, Synthetic biology,
Uracil excision cloning

1 Introduction

The polymerase chain reaction (PCR) [1] is a simple yet incredibly
powerful technology that revolutionized molecular biology.
Shortly after the advent of PCR, a handful of methods for assembly
of PCR-amplified DNA into larger constructs was developed. PCR
generates double-stranded DNA flanked by sequences that are
defined by the two PCR primers, and several methods exist that
facilitate the formation of cohesive ends for specific higher-order
assemblies (Fig. 1). Simple features can be added when the oligo-
nucleotides are chemically synthesized. As an example, uracil exci-
sion DNA assembly makes use of oligonucleotides where selected
thymines are replaced by uracils. This is a non-mutagenic and PCR-
tolerated replacement, as the uracil is able to form base pairs with
adenine nucleotides on the complementary strand [2–4]. Follow-
ing PCR, the uracils are selectively removed by treatment with
uracil DNA glycosidase, leaving a chemically unstable phosphori-
bose backbone. At elevated temperatures, the upstream sequence
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dissociates, generating a single-stranded DNA overhang. A recently
developed similar approach uses phosphorothioate (PTO)-
modified synthetic oligonucleotides [5]. PTO-modified DNA is
converted to single-stranded DNA by treatment with a solution
of iodide and ethanol. Thus, in the case of PTO, the formation of
cohesive ends is enzyme-free. Another enzyme-free route to cohe-
sive ends on PCR products involves the use of two pairs of highly
similar oligonucleotides, but of slightly different length, for ampli-
fication of the same DNA template [6]. When the resulting two

Fig. 1 Illustration of different methods to create cohesive ends on PCR fragments for specific higher-order
assemblies. In the schematic examples, all four methods can generate the same 30 cohesive ends that are not
filled in by excess DNA polymerase activity from the PCR. Thus, all methods can in principle be employed
directly after PCR with no prior purification. S denotes the phosphorothioate modification employed in the PTO/
PLICing cloning technology. I� denotes iodine and etOH denotes ethanol. For more information and refer-
ences, see main text
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PCR products are mixed, denatured, and reannealed, the two
products recombine and form single-stranded ends defined by the
length difference of the two oligonucleotide pairs. However, this
approach complicates the PCR setup (and doubles the price tag)
and does not seem to be extensively used. Finally, exonuclease-
catalyzed recessions of the ends of the DNA are heavily used alter-
natives, e.g., in the form of ligase-independent cloning (LIC) [7] or
the commercially available cloning kit Gibson Assembly [8].

In our experience, uracil excision excels in robustness, simplic-
ity, and price tag. This may be explained by the relatively short
overlap sequence that uracil excision requires (typically 7–12
nucleotides [9], compared to, e.g., 12 nucleotides for PTO-based
cloning [5] and 40 nucleotides for Gibson Assembly [10]). Theo-
retically, DNA fragments with cohesive ends should recombine
with the same efficiency independently of how the single-stranded
ends were generated. However, the protocol, purity, and quality of
the DNA overhangs make all the difference. The quality and yield
of synthetic oligonucleotides is typically low when approaching a
size of 100 nucleobases [11]. Therefore, PCR-based assembly
technologies that use short oligonucleotides are probably less
error prone and more efficient. Moreover, short functional ele-
ments, such as promoters or ribosome binding sites, can easily be
correctly incorporated directly in oligonucleotides that are assem-
bled using short overlap sequences, because the total length of the
oligonucleotide is kept relatively short. In our experience, 50 “tails”
(sequence added at the 50 end of the oligonucleotides that do not
anneal to the template DNA in the first PCR cycles) up to more
than 100 nucleotides are possible, but often negatively affect the
PCR yield.

Another way to ensure oligonucleotide quality is to build a
molecular cloning pipeline that reuses benchmarked oligonucleo-
tides. This was recently demonstrated for the uracil excision assem-
bly and engineering of a six-gene biosynthetic pathway for
porphyrin production [12] and a seven-gene heterologous pathway
for production of a diterpene in Escherichia coli [13]. This type of
standardization perfectly fits large collaborative efforts, much like
BioBricks in the global iGEM project [14], and reuse of parts also
enables better comparison of data.

Protocols for simple and seamless assembly of PCR products
(also known as USER fusion), and the corresponding primer
design, have been described and reviewed previously [15, 16].
Here, we provide protocols for simple manipulations and more
complex assembly pipelines, including site-directed mutagenesis,
multigene assembly, one-step cloning, and genome integration
with uracil excision, and for a standardized, BioBrick uracil
excision-based DNA editing pipeline.
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2 Materials

2.1 Strains, Media,

and Antibiotic

Selection

1. Bacterial strains: E. coli strain NEB5α (New England Biolabs,
Ipswich, USA) is used as a cloning host. E. coli BL21, K12
MG1655, and KRX (Promega, Madison, USA) are used for
uracil excision combined with genomic integration (see
below).

2. Growth media: SOC (20 g Bacto-Tryptone, 5 g yeast extract,
10 mM NaCl, 2.5 mM KCl, 20 mM MgSO4, 20 mM glucose,
water up to 1 L), 2�YT (16 g Bacto-Tryptone, 10 g yeast
extract, 5 g NaCl, water up to 1 L), and LB (10 g Bacto-
Tryptone, 5 g yeast extract, 10 g NaCl, water up to 1 L) (all rea-
gents can be purchased from Sigma-Aldrich, St. Louis, USA).

3. Antibiotics: chloramphenicol (25 μg/mL), kanamycin
(50 μg/mL), and tetracycline (50 μg/mL) (Sigma-Aldrich,
St. Louis, USA). For clonetegration, half concentration is
used with all antibiotics.

2.2 PCR Components 1. DNA polymerase: uracil excision-compatible PCR products are
amplified using the proofreading PfuX7 DNA polymerase [17]
(see Note 1). Cloned Pfu DNA Polymerase Buffer (Agilent
Technologies, Santa Clara, USA) is used to buffer the reaction
mixture.

2. Oligonucleotides (Integrated DNA Technologies, Inc., Coral-
ville, USA) are designed with melting temperatures (Tm) of ca.
60�C. Additionally, all oligonucleotides contain one uracil, typi-
cally placed 7–12 nucleotides from the 50 end (see Note 2).
Upon uracil excision, the generated single-stranded ends
should have melting temperatures between 10 and 30�C [18]
(see Note 3).

3. Template DNA: plasmid DNA is isolated using theNucleoSpin®

Plasmid QuickPure Kit (Macherey-Nagel, Bethlehem, USA).
Plasmid aliquots are kept at �20�C (see Note 4).

4. PCR purification: PCR products are purified using a PureLink™
Quick Gel Extraction and PCR Purification Combo Kit
(Thermo Fisher Scientific Inc., Waltham, USA).

5. Template DNA removal:DpnI (20,000 U/mL) (New England
Biolabs, Ipswich, USA) is used to degrade methylated template
DNA after the PCR.

2.3 USER Cloning 1. USER™ enzyme mix (New England Biolabs, Ipswich, USA).

2. USER reaction is performed in 5� Phusion HF Buffer (Life
Technologies, Grand Island, USA) or Cloned Pfu DNA Poly-
merase Buffer (Agilent Technologies, Santa Clara, USA).
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2.4 Plasmid DNA 1. Vectors: a series of pOSIP vectors is described in St-Pierre
et al. [19] and can be obtained from Addgene (Addgene,
Cambridge, USA). Duet vectors are available from Merck
Millipore (EMD Millipore, Billerica, USA) or Addgene.

3 Methods

The protocols described here showcase the versatility of the uracil
excision methodology and include protocols for (1) simple introduc-
tions of mutations, deletions, and insertions in DNA, (2) multigene
assembly, (3) direct assembly and genome integration, and (4) using
standardized BioBricks for assembly of pathways. The first uracil
excision protocol describes the introduction of mutations, inser-
tions, or deletions by one-fragment whole-plasmid synthesis and is
largely based on the overall principles described by Nørholm [17].
Multigene assembly is performed as described previously [20] with
some modifications. The third uracil excision protocol adds direct
genome integration (clonetegration [19]) to the uracil excision
portfolio. The optimal design parameters for multigene assembly
and uracil excision combined with clonetegration have recently
been explored [18]. Detailed information on clonetegration includ-
ing vectors and an oligonucleotide list for colony PCR is described in
St-Pierre et al. [19]. The fourth uracil excision protocol describes two
operations of a fully standardized assembly procedure. The first stan-
dardized operation encompasses cloning of genes of interest into an
entry vector using gene-specific oligonucleotides with fixed exten-
sions mediating cloning. This vector contains all elements required
for protein production in E. coli and can therefore be used straight-
away for monitoring proper transcription and translation. The second
standardized operation is assembly of entry fragments into multigene
constructs using pairs of oligonucleotides with generic annealing
parts, but distinct cloning mediating extensions. These oligonucleo-
tides facilitate directional and specific assembly of any number of
fragments. For detailed description of the options and limitations of
such a standardized design, please refer to Nielsen et al. [12].

3.1 PCRs The PCRs are performed using 1 μL PfuX7 DNA polymerase (the
optimal concentration is typically batch dependent and should be
empirically determined when purifying the polymerase – after
desalting of his-tagged-purified PfuX7 [17], we typically determine
the optimal concentration by titrating the amount of PfuX7 in a
standard PCR reaction), 5 μL 10� Cloned Pfu Polymerase Buffer,
5 μL dNTP mix (25 mM each of dATP, dTTP, dGTP, dCTP), 2 μL
DNA template (150 ng μL), 5 μL forward primer (5 μM), 5 μL
reverse primer (5 μM), 1.2 μLMgCl2 (50 mM) (it may be advanta-
geous to optimize the MgCl2 concentration from batch to batch
PfuX7 by titrating the final concentration from 1 to 5 mM), and
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29.8 μL nuclease-free water. The PCR involves an initial denatur-
ation step at 98�C for 2 min, then 20 cycles of 98�C for 20 s, 58�C
for 20 s, and 72�C for 45 s/kbp. Finally, the thermocycler is
programmed for 72�C for 8 min and stored at 12�C.

3.2 Analysis and

Purification of PCR

Results

PCR products are analyzed by standard agarose gel electrophoresis.
The resulting PCR products may be purified using any PCR
cleanup kit.

3.3 Simple Protocol

for Site-Directed

Mutagenesis,

Insertions, or

Deletions

Mutations, deletions, or insertions in plasmid constructs are made
by amplifying the whole plasmid with uracil-containing oligonu-
cleotides that incorporate these new features. The extraordinarily
simple protocol involves adding USER™ enzyme mix and DpnI
directly to the PCR reaction mix described above; incubate for 1 h
at 37�C and 20 min at 16�C in a thermocycler followed by direct
transformation of 3 μL of the reaction mixture into 17 μL chemi-
cally competent cells (see Sect. 3.5). Oligonucleotide design is very
flexible, but general guidelines can be found in Sect. 2.2, and it is
recommended to try software-assisted design tools such as
AMUSER [21].

3.4 Uracil Excision-

Assisted Multigene

Assembly

3.4.1 Simple Multigene

Assembly with Non-

purified Fragments

For assembly of two or more fragments, equal volumes of each
PCR reaction are mixed in a total volume of 10 μL and buffered
using the 5� Phusion HF Buffer (see Note 5). For template
removal, DpnI is added prior to USER™ enzyme mix and incu-
bated for 1 h at 37�C. The DpnI enzyme is deactivated by incuba-
tion at 65�C for 10 min. After 5 min on ice, 1 μL of USER™
enzyme mix is added to the reaction tubes, and uracil excision is
accomplished by incubating the sample at 37�C for 15 min. Subse-
quently, DNA assembly is executed by cooling down the reaction to
below the melting temperature of the cohesive ends for at least
15 min.

3.4.2 Multigene

Assembly with Purified

Fragments

PurifiedDNA fragments (seeNote 6) are assembled as described for
the non-purified DNA fragments except that 100 ng of each frag-
ment is used and theDpnI-assisted template elimination step can be
omitted.

3.5 Chemical

Transformation of

E. coli NEB5α Cells

17 μL of chemically competent E. coli NEB5α cells are mixed with
3 μL of the assembly mix described above and incubated for 15 min
on ice followed by a heat shock at 42�C for 1 min (see Note 7).
Following the heat shock, 1 mL of LB medium is added, and the
cells are incubated for 1 h at 37�C, followed by plating on solid LB
medium with the appropriate antibiotic selection for 16 h at 37�C.
For selection with antibiotics like ampicillin or carbenicillin, the
cells can be spread without a 1 h recovery step.
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3.6 One-Step Uracil

Excision Assembly and

Genome Integration

Amplify one of the pOSIP backbones (see Note 8 and [19]) with
the oligonucleotides 50-AGATGCAUGGCGCCTAACC-30 and
50-AGCCCTCUAGAGGATCCCCGGGTAC-30 and the DNA to
be integrated on the genome with 50-AGAGGGCU-30 followed by
a gene-specific forward annealing sequence and 50-ATGCATCU-30

followed by a gene-specific reverse annealing sequence using the
PCR conditions described above. Gel purify the amplified DNA,
and make an assembly mix as described above except for using a
molar ratio of 3:1 between insert and vector. Transform E. coli cells
as described above. Recover the cells in SOC medium at 37�C for
1 h, spread the cells on LB agar plate containing the appropriate
antibiotic, and incubate the plate at 30�C for 20 h. Perform a
standard colony PCR to confirm the clones are integrated as
described in St-Pierre et al. [19].

3.7 Standardized

BioBrick

Bioengineering

Pipeline with Uracil

Excision

Make initial entry clones by PCR amplifying the pET-Duet-1
vector using the oligonucleotides 50-AGCACTGGUCATTGCTA
ATGCTTAAGTCGAACAG-30 and 50-ACCACTGGUCATTGC
TTATCTCCTTCTTAAAGT-30 (see Note 9). PCR amplify gene-
coding sequences with 50-ACCAGTGGU-30 followed by a gene-
specific forward annealing sequence and 50-ACCAGTGCU-30

followed by a gene-specific reverse annealing sequence. In the
standardized entry clones, 50-ATGACCAGTGGT-30 that translates
into MTSG is added to the 50 end, and 50-AGCACTGGTCA
TTGC-30 that translates into TSGHC is added to the open reading
frame. Make sure that the oligonucleotides anneal in frame with the
coding sequence. At this stage, genes of interest can be tested for
proper transcription and translation using selective 35S-methionine
labeling of gene products in the presence of rifampicin (seeNote 10
and [22]). The standardized 50 end may facilitate a more predict-
able translational initiation rate, as previously described for similar
translational fusions [23, 24], and the standardized 50 and 30

sequences serve as anneal sites for collections of standardized oli-
gonucleotides for higher-order assemblies, independent of the spe-
cific genes inserted in the entry vectors. Higher-order assemblies are
generated with oligonucleotides with the same overall design: linker +
control element + annealing sequence. When generating the pET-
Duet-1-based entry vector as described above, the forward annealing
sequence for downstream multigene assembly is 50-ATAAGCAAT
GACCAGTGGT-30, and the reverse annealing sequence is 50-
TAATGTAAGTTAGCTCACTCATTAG-30. The principle is sche-
matically illustrated in Fig. 2. The setup will allow the buildup of a
library of benchmarked oligonucleotides where differently designed
linkers have been validated for correct assembly. Examples of validated
linkers are 50-ACACCGACU-30/50-AGTCGGTGU-30, 50-
ACGCTGCTU-30/50-AAGCAGCGU-30, 50-AGACGTCAU-30/50-
ATGACGTCU-30, 50-AGGTCTGAGU-30/50-ACTCAGACCU-30,
50-ATAGGCTTU-30/50-AAAGCCTAU-30, and 50-AACGTGGAU-
30/50-ATCCACGTU-30 [12, 13]. Examples of control elements are
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constitutive promoters such as Ptrc followed by randomized Shine-
Dalgarno sequences (for details, see 12] and the phage promoter PT7
followedby the lacoperator andaconsensus Shine-Dalgarno sequence
(for details, see 13]. The protocols for assembly are as described above
(seeNote 11).

4 Notes

1. Commercially available proofreading DNA polymerases with
similar characteristics are available as Phusion U Hot Start
DNA Polymerase (Thermo Fischer Scientific, Pittsburgh,
USA) and KAPA HiFi Uracil+ (Kapa Biosystems, Inc., Wil-
mington, USA).

Fig. 2 Illustration of the two-step, uracil excision-based, standardized pipeline for multigene engineering. (a)
In the first step, genes of interest are cloned with standardized linkers into an entry vector. In the entry vector,
an orthogonal T7 phage promoter allows for assessment of proper transcription and translation by 35S-
methionine labeling in the presence of rifampicin (rifampicin blocks transcription of endogenous genes by
inhibiting the endogenous E. coli RNA polymerase). (b) The standardized linkers allow the use of standardized
oligonucleotides for re-amplification and construction of multigene constructs with benchmarked linkers and
functional elements such as promoters and ribosome binding sites. Linkers for uracil excision are relatively
short, thus allowing for larger control elements to be incorporated in standard oligonucleotides
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2. Oligonucleotides can be designed using the PHUSER or
AMUSER software [21, 25].

3. The melting temperature of the overhangs can be calculated by
online software tools such as the Tm calculator from Thermo
Fischer Scientific.

4. Plasmid aliquots should contain a small volume (max. 50 μL) to
avoid repeated cycles of freeze thawing.

5. According to the supplier (New England Biolabs, Ipswich,
USA), the USER™ enzyme is active in all standard reaction
buffers. We routinely use buffers such as Phusion HF, NEB4,
cloned Pfu buffer, and T4 ligase buffer.

6. In our experience, purification in some cases enhances the
efficiency and fidelity of the assembly reaction, possibly due
the removal of interfering oligonucleotides [18], but it also
complicates the protocol.

7. We routinely use between 30 s and 2 min for heat shock – the
optimal incubation time depends on the plasticware and the
heat block and can be optimized empirically.

8. Clonetegration is highly dependent on the kind of integrase in
the pOSIP vector and the efficiency of the competent cells.
Before you select the strain and vector for integration, check
if the strain contains the attB site in the genome corresponding
to the integrase and attP site in the vector. For example, in the
case of pOSIP-KO (containing phage 186 integrase), MG1655
contains two corresponding attB sites, whereas BL21 (DE3)
contains only one.

9. The protocol is described for uracil excision cloning, since this
is the technique most often applied in our lab. The concept and
principles of standardized assembly, however, are by no means
limited to this cloning technique. On the contrary, the princi-
ples can be implemented with any PCR-based cloning tech-
nique as well as several restriction enzyme-based techniques as
described in Nielsen et al. [12].

10. While his technique should be applicable to all E. coli strains
containing T7-RNA polymerase, it is our experience that BL-21
(DE3) is superior regarding the 35-S labeling of proteins. We
cannot say whether this is attributed to increased uptake and
incorporation of labeled methionine, efficiency of cell lysis, or
another parameter, but in side-by-side comparisons, BL-21
(DE3) consistently gives us the strongest labeling signals. Any
defined media can be used, but we have found that the PASM-
51 media developed by Studier (2005) yields robust expression
of many different protein types in various E. coli expression
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strains. By depleting the media of methionine, more efficient
labeling is achieved.

11. The described oligonucleotides facilitate directional and spe-
cific assembly of any number of fragments, although efficiency
decreases as the number of fragments increases. In our lab, 3–5
fragments (including the vector backbone) are routinely assem-
bled using this protocol.
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Quantitative Physiology Approaches to Understand
and Optimize Reducing Power Availability
in Environmental Bacteria

Pablo I. Nikel and Max Chavarrı́a

Abstract

The understanding of how carbon fluxes are distributed through a metabolic network offers an overview of
the pathways that a given microorganism uses to produce energy, reducing power, and biomass. These
invaluable data are related to the physiological state of the cell and provide information about the metabolic
potential of microorganisms for specific environmental and biotechnological applications such as the
degradation of toxic compounds (e.g., hydrocarbons) or the targeted production of high value-added
products (e.g., lipids). Here, we propose a general approach to explore the pathways involved in NADPH
balance in bacteria, which are in turn responsible for maintaining redox homeostasis and endowing the
microorganism with the ability to counteract oxidative stress. We focus on the fluxes catalyzed by NADP+-
dependent enzymes in the metabolic network of the model soil bacterium Pseudomonas putida KT2440.
This environmental microorganism is a promising cell factory for a number of NADPH-dependent
biotransformations, including industrial and bioremediation processes. The relevant enzymes involved in
redox balance in strain KT2440 are (1) glucose-6-phosphate dehydrogenase, (2) 6-phosphogluconate
dehydrogenase, (3) isocitrate dehydrogenase, (4) malic enzyme, and (5) 2-keto-6-phosphogluconate
reductase. NADPH can be generated or consumed by other enzymatic reactions depending on the
microorganism; however, the first four enzymes listed above are recognized as a major source of reducing
power in a wide variety of microorganisms. The present protocol includes a first stage in which the NADPH
balance is derived from fluxomic data and in vitro enzymatic assays. A second step is then proposed, where
the redox ratios of pyridine dinucleotides and the cell capacity to counter oxidative stress are qualitatively
correlated.

Keywords: Central carbon metabolism, Fluxomics, Metabolic optimality, NADPH, Oxidative stress,
Pseudomonas putida

1 Introduction

1.1 Fluxomics as a

Tool for Metabolic

Studies

The emergence of systems biology as a field has led to the develop-
ment of a large number of analytical techniques to analyze the
different levels of cellular organization in many organisms [1].
The high-throughput tools (the so-called “omic” techniques) cur-
rently available include those for the analysis of (1) genome
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(genomics), (2) gene transcription (transcriptomics), (3) protein
abundance (proteomics), and (4) metabolite profiles (metabolo-
mics) [2–4]. Each of these data sets provides snapshots of the
components and processes present in the cell at a given time.
With the comprehensive view of the cellular processes that systems
biology brings forth, all this information is integrated to gain a
more holistic view of the overall cellular performance [5, 6]. Fluxo-
mics, which encompasses metabolic flux analysis (MFA), integrates
all this information simultaneously and aims at measuring the
in vivo pathway activity or enzyme reaction rates (i.e., fluxes) in
the central carbon metabolism [7]. The metabolic flux distribution
is the final result of the interplay of gene expression, protein and
metabolite concentrations, and regulation at the level of enzymatic
activity, i.e., it represents the metabolic phenotype [8]. Therefore,
this technique helps representing the concept of systems biology as
it reflects the total system rather than its individual parts [9].

Information on the intracellular metabolic flux distribution is
of major importance in several fields of microbiology. MFA allows
identifying routes used by an organism to degrade a particular
carbon source [10–15], the response of cells to changes in the
environmental conditions [16], or more specific information such
as the pattern of regulation of enzymatic activities in central carbon
metabolism in vivo [17]. Depending on the experimental design, it
is possible to identify the function of a protein in catalyzing a
metabolic reaction or its regulation on central metabolism (e.g.,
transcriptional regulators) by including the appropriate mutant
strains [17]. Fluxomics is also important for fields such as synthetic
biology because it allows to redesign metabolic pathways and to
genetically modify microorganisms in a more rational way in order
to obtain a desired product [18]. Some specific examples of MFA
applications in the area of hydrocarbon degradation and lipid pro-
duction include several studies in Pseudomonas putida, a soil bacte-
rium capable of degrading both aliphatic and aromatic
hydrocarbons [10, 14, 19], the evaluation of microalgae (e.g., the
green alga Chlorella protothecoides) as cell factories to produce
triacylglycerols for biodiesel production [20], and the systematic
analysis of the pathways involved in the biosynthesis of the biopoly-
mer poly(3-hydroxybutyrate) in Cupriavidus necator [21] and
recombinant Escherichia coli strains [22].

How is MFA performed? Typically, an MFA experiment
includes both an experimental stage and a bioinformatic approach.
MFA is carried out by applying mass balances on steady-state
metabolic models. This often results in an underdetermined system
of linear equations that require other data (such as extracellular
fluxes) to be solved [11, 13, 23–27]. Thus, three aspects must be
considered to perform MFA experiments: (1) measurements of
extracellular rates (e.g., carbon source consumption or production
of some metabolites), (2) 13C-labeling experiments to follow the
pattern of carbon source distribution through the central
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metabolism, and (3) a stoichiometric model for the metabolism of
interest. Below we describe the procedures to obtain each of these
parameters.

1.1.1 Measurements

of Extracellular Rates

The measurement of extracellular fluxes is required to be integrated
with 13C-labeling patterns (explained in Sect. 1.1.2) within a stoi-
chiometric model to obtain intracellular fluxes. Usually, extracellu-
lar rates include the consumption of the carbon source, specific rate
of (by-) product secretion, and biomass production. It is generally
sufficient to determine the rate of carbon source uptake to obtain
intracellular fluxes; however, the extracellular flux of a (by-) prod-
uct of the central metabolism, such as acetate or ethanol in E. coli, is
often determined as well [26, 28]. Measurements of extracellular
fluxes are performed during the exponential phase of growth,
where a pseudo-steady state is assumed.

MFA has been reported in cultures of several bacteria using
glucose, fructose, xylose, and malate, among many other carbon
sources [10, 11, 29, 30]. Here lies one of the limitations to perform
fluxomic experiments: the availability and high cost of 13C-labeled
carbon sources for experiments of labeling patterns (see
Sect. 1.1.2). In addition, the detailed knowledge on how the
degradation of each carbon source occurs is often lacking for non-
model bacteria. This information is essential to define the stoichio-
metric model, as described in Sect 1.1.3. The consumption of a
given carbon source can be measured by different analytical meth-
ods, depending on its chemical nature, e.g., by high-performance
liquid chromatography (HPLC) coupled to mass spectrometry
(MS), or using specific enzyme-based kits coupled to ultraviolet
(UV) spectroscopy or chemi-/bioluminescence. As stated above,
most fluxomic methods have been performed using glucose as the
carbon source [10, 11, 31, 32]. 13C-Labeled glucose is available in
different forms: uniformly labeled in all the carbon atoms
([U-13C]-glucose) or in specific carbon positions (e.g., glucose
labeled in position 1, [1-13C]-glucose). Furthermore, glucose
metabolism is widely known in a number of microorganisms, and
its concentration is easily quantified either by HPLC or a commer-
cial kit coupled to NADPH formation (measured at 340 nm) using
a mixture of hexokinase (HK) and glucose-6-phosphate (G6P)
dehydrogenase (G6PDH). In the present protocol, we describe a
general fluxomic method using glucose as the carbon source.

1.1.2 13C-Labeling

Experiments

The most important information for an MFA experiment is
obtained from 13C-labeling experiments [25, 33]. MFA uses stoi-
chiometric models of metabolism and MS methodologies to eluci-
date the transfer of moieties containing isotopic tracers from one
metabolite into another. Relevant information about the operativ-
ity of the metabolic network is thus derived from these measure-
ments. Labeling experiments are based on several assumptions: (1)
in the exponential phase of growth, the metabolism can be
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considered to be in a pseudo-steady state, i.e., the flux turnover of a
specific metabolite is several orders of magnitude larger than the
changes in the concentration of this metabolite over time (note that
the pseudo-steady-state assumption does not imply the metabolite
concentration is at a fixed steady state; it just indicates that the rate
of change of these metabolites is so fast that their concentrations
can be adjusted to a new steady state very rapidly), (2) 13C-labeled
isotope effects on biochemical reaction rates are insignificant, (3)
the entire knowledge of the destination of each carbon atom in the
model is available or can be inferred from the obtained 13C-labeling
data, and (4) the specific stoichiometry of central carbon metabo-
lism reactions is known [7, 34, 35].

In MFA experiments, the 13C-labeled carbon source is frag-
mented by the action of enzymatic reactions within the central
metabolism in a way that a significant fraction of the carbon
atoms are incorporated into proteinogenic amino acids, which
leads to characteristic labeling patterns when analyzed byMSmeth-
odologies [25, 33]. The labeling pattern of these molecules (gen-
erally after fragmentation into ions) provides valuable information
about the metabolic origin of the various amino acids (Fig. 1). The
actual fluxes within the metabolic network can be assigned by
integrating the relative isotopic abundance of metabolic intermedi-
ates with stoichiometric metabolic models and experimental physi-
ological data. For the quantification of stable-isotope-labeled
proteinogenic amino acids, two main analytical methods are com-
monly used, (1) nuclear magnetic resonance (NMR) and (2) gas
chromatography coupled to MS (GC–MS), the latter being the
most widely adopted.

NMR exploits the magnetic properties of the isotopes to dis-
tinguish between them (e.g., 12C versus 13C). Therefore, it is
possible to track the positions where 13C atoms have been
incorporated in the amino acids with this technique [36, 37].
Also, NMR provides valuable labeling information such as carbon–
carbon or carbon–nitrogen coupling. Despite these strengths,
NMR is less used for metabolic flux analysis than GC–MS. The
reason is very simple: the high sensitivity of MS and rapid data
generation place this technique in advantage over NMR. Just
0.5 mg of CDW are required to complete the proteinogenic
amino acid analysis via GC–MS, while at least 5 mg of CDW are
needed for NMR measurements [38, 39]. In GC–MS measure-
ments, the amino acids are first separated by GC and subsequently
analyzed by MS. With the mass distributions in labeled proteino-
genic amino acids obtained from mass spectra, MFA is performed
by deriving information on specific metabolic steps. These data are
often expressed as flux ratios because they correspond to a propor-
tion (expressed as a relative ratio of the contributions from each
relevant pathway to the biosynthesis of a common intermediate).
For example, in the methodology developed by Sauer and
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collaborators [11, 13, 23, 25], a total of 14 flux ratios are obtained
that include information of specific points of central metabolism.
Hence, pyruvate from the Entner–Doudoroff (ED) pathway quan-
tifies the amount of pyruvate produced through the activity of this
particular pathway, while serine from Embden–Meyerhof–Parnas
(EMP) pathway gives information about the activity of this linear
glycolysis pathway. Subsequently, the labeling patterns in amino
acids and metabolic intermediates can be integrated with the extra-
cellular rates (as explained in Sect. 1.1.1) within a metabolic model
(as detailed in Sect 1.1.3) to estimate the net fluxes through the
whole central metabolism.

1.1.3 The Stoichiometric

Model for Central

Metabolism

A complete stoichiometric model of the central metabolism is
required to obtain net fluxes (see Fig. 2 for an example in P. putida
KT2440). Such model should be specific for each microorganism

Fig. 1 Example of a typical 13C-tracing experiment. Metabolic flux analysis
allows for the determination of individual fluxes within a biochemical network
by previously detecting the relative and positional abundance of 13C in selected
proteinogenic amino acids. These amino acids, in turn, come from central
metabolites, which provide the link between the actual 13C enrichment determi-
nation and metabolic fluxes in the metabolic network. In this example, the
relative enrichment of 13C in the pool of pyruvate molecules permits to identify
its metabolic origin. If cells are grown on [1-13C]-glucose, labeled pyruvate
molecules can only stem from the linear Embden–Meyerhof–Parnas (EMP)
pathway. As the oxidative decarboxylation of 6-phosphogluconate through the
pentose phosphate (PP) pathway eliminates the carbon atom in the 1-C position,
all pyruvate molecules originated from this metabolic sequence are unlabeled.
Depending on the protocol adopted for determinations, the pattern of pyruvate
labeling can be deduced from that in alanine, valine, leucine, and/or isoleucine.
Note that some bioreactions have been lumped in the diagram for the sake of
clarity. G6P glucose-6-phosphate, F6P fructose-6-phosphate, R5P ribulose-5-
phosphate, Pyr pyruvate
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Fig. 2 Central carbon metabolism in P. putida KT2440. Representation of the
main metabolic pathways involved in glucose catabolism in P. putida KT2440.
Each metabolic block is highlighted in different colors. The biochemical network
encompasses a set of peripheral oxidative reactions in the periplasm (black), the
incomplete Embden–Meyerhof–Parnas (EMP) pathway (red), the Entner–Doudoroff
(ED) pathway (blue), the pentose phosphate (PP) pathway (purple), and the
tricarboxylic acid (TCA) cycle and gluconeogenesis (green). The enzymes
responsible for the formation and consumption of NADPH are indicated in gray,
and the gray line indicates the separation between periplasm and cytoplasm. Note
that the oxidation of glucose to gluconate and 2-ketogluconate proceeds through
the action of membrane-bound, pyrroloquinoline quinone/flavin adenine
dinucleotide-dependent dehydrogenases. Some cofactors have been omitted
and some bioreactions have been lumped in the diagram for the sake of clarity.
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and designed by considering genomic studies (gene annotation) as
well as biochemical information (if available). Unfortunately, exten-
sive knowledge of the central metabolism including gene annota-
tions, gene/protein functions, reaction reversibility, etc., exists
only for a few model microorganisms (such as E. coli or yeast).
A metabolic master reaction network is a requisite for MFA [11].
This is another a priori assumption of fluxomics (namely, that the
components in a master biochemical network are more or less the
same among different bacteria). In fact, such assumption can be
considered as a limitation because the use of a general metabolic
model can lead to interpretation errors [40]. However, the use of a
master reaction network is widely accepted for its convenience, and
the results that can be obtained from these studies are valid espe-
cially when two variables (e.g., wild-type strain versus mutant
strains) or two different environmental conditions (e.g., absence/
presence of stressors) are compared. For more details on metabolic
models, see the protocol by Nogales entitled “Genome-scale
constraint-based models” (Volume 10 in this series).

1.2 The Concept of

Metabolic Optimality

and Reducing Power

Availability

What does metabolic optimality mean? An accurate definition rises
from the field of computational biology: to optimize means to find
the best solution, the best compromise among several conflicting
demands subject to predefined requirements [41]. In the context of
cellular performance, the “best” solution may mean maximum
growth rate or highest biomass production. The justification to
obtain a best solution arises from the assumption that the cell behav-
ior adapts to the variety of conditions so that an optimal performance
is ensured [41]. One of the most tightly regulated phenotypic traits
in a cell is the redox balance [42]. The availability of NAD(P)H and
NAD(P)+ constitutes an important parameter that defines the redox
homeostasis of bacterial cells, a physiological trait which can in turn
be manipulated for practical purposes [43]. In particular, the cata-
bolic formation of NADPH must be balanced with the demand of
the >300 bioreactions that constitute anabolism [42].

In an attempt to explore (and manipulate) redox homeostasis
in environmental bacteria, in the present protocol we focus on the
quantitative analysis of NADPH formation and consumption, i.e.,
the regeneration of anabolic reducing power in the cell. NADH and
NADPH are the two reduced nicotinamide nucleotides that con-
stitute the basis of life [44]. While NADH provides ATP in all

�

Fig. 2 (continued) FBP fructose-1,6-bisphosphate, G6P glucose-6-phosphate, F6P fructose-6-phosphate,
6PG 6-phosphogluconate, 2K6PG 2-keto-6-phosphogluconate, 2K3D6PG 2-keto-3-deoxy-6-phosphogluco-
nate, Pyr pyruvate, GA3P glyceraldehyde-3-phosphate, DHAP dihydroxyacetone phosphate, PEP phosphoenol-
pyruvate, CoA coenzyme A, OAA oxaloacetate, 2-OX 2-oxoglutarate, Zwf glucose-6-phosphate dehydrogenase
(represented by Zwf-1, Zwf-2, and Zwf-3), Gnd 6-phosphogluconate dehydrogenase, MaeB malic enzyme, Icd
isocitrate dehydrogenase, KguD 2-keto-6-phosphogluconate reductase
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aerobic organisms via the process of oxidative phosphorylation,
NADPH helps nullify oxidative stress and constitutes the electron
donor for anabolic bioreactions [44]. For research fields such as
metabolic engineering or synthetic biology, it is relevant to study
how bacteria maintain an intracellular reducing environment and
how fluxes are rearranged for the formation of NADPH as a source
of reducing power. Several metabolic engineering strategies have
focused on manipulating the NADH/NADPHmetabolism in bac-
teria such as E. coli [45–47].

Yet, how does NADPH help maintaining the redox balance
within the cell? Catalase, superoxide dismutase, and glutathione
peroxidase are enzymes that counteract oxidative stress during
aerobic respiration [48, 49]. The effectiveness of these detoxifying
enzymes to fight again reactive oxygen species (ROS) largely
depends on the availability of NADPH. This nucleotide supplies
the reducing power necessary to suppress the oxidative damage
caused by ROS [49, 50]. The resistance mechanism through the
activity of glutathione peroxidase is particularly important in bacte-
ria. Glutathione peroxidase catalyzes the reaction 2GSH + H2O2

! GS–SG + 2H2O, where GSH represents reduced monomeric
glutathione, and GS–SG represents oxidized glutathione (i.e., two
GSH molecules linked by a disulfide bridge). In this process, the
key metabolite is GSH, which is found at very high concentrations
in several microorganisms [44, 49, 51]. This thiol maintains a
strong reducing environment in the cell, and its reduced form is
maintained by glutathione reductase using NADPH as a source of
reducing power (GS–SG + NADPH + H+ ! 2GSH + NADP+).
Thus, the reducing potential of the cell is highly dependent of
NADPH availability and the production of this reducing agent is
an integral part of the microbial metabolic machinery.

1.3 Central Carbon

Metabolism and

NADPH Regeneration

What is central carbon metabolism? Central carbon metabolism
comprises all the pathways needed for transport and oxidation of
a given substrate for the generation of energy and the formation of
the metabolic precursors for biosynthesis of the building blocks
that are in turn polymerized to form the essential cellular constitu-
ents [52, 53]. In most bacteria, central carbon metabolism basically
encompasses the EMP pathway, the pentose phosphate (PP) path-
way, the ED pathway, and the tricarboxylic acid (TCA) cycle
(Fig. 2) [52, 54]. Interestingly, each of these pathways can be
replaced by alternative biochemical reactions. In fact, all possible
combinations of these classic, alternative, and abbreviated meta-
bolic pathways can be found together in microorganisms [55].
Central metabolism is a source of ATP (energy) needed to perform
most cell functions [53]. These bioreactions are also responsible of
producing a sufficient number of moles of nucleotide cofactors and
maintaining appropriate levels of GSH in its reduced form to fight
oxidative stress as described above. What are the most important
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reactions for the replenishment of NADPH? It is widely recognized
that, in a very generalized form, the bulk of NADPH is produced by
just a few enzymatic reactions catalyzed by (1) G6PDH [42, 56, 57],
(2) 6-phosphogluconate (6PG) dehydrogenase (6PGDH) [58–60],
(3) NADP+-dependent isocitrate dehydrogenase (Icd) [61, 62], and
(4) malic enzyme (Mae) [62–64] (Table 1 and Fig. 2). Depending
on the microorganism under study, NADPH formation can be
mediated by other enzymatic reactions and different biochemical
mechanisms. Biochemical strategies of this sort that can mediate
NADPH balancing under different environmental circumstances
can be divided into (1) mechanisms that avoid nucleotide imbalances
in the first place and (2) biochemical processes that decouple
NADPH formation from central catabolism. Imbalance-avoiding
mechanisms include the appropriate choice of catabolic pathways,
as observed in yeast [65], and the differential expression of isoen-
zymes with different cofactor specificities (e.g., the NADP+-depen-
dent acetaldehyde dehydrogenases of Saccharomyces cerevisiae [66]
or the NAD+- and NADP+-dependent glyceraldehyde-3-phosphate
dehydrogenases of P. putida [67]). On the other hand, the func-
tional decoupling of catabolic NADPH formation from anabolic
reactions can potentially be achieved through three distinct mechan-
isms: (1) the action of transhydrogenase enzymes [42, 68, 69], (2)
NAD(H) kinases that can directly convert NAD(H) into NAD(P)H
at the expense of ATP [70], and also (3) biochemical redox cycles,
i.e., a combination of biochemical reactions or isoenzymes with
different cofactor specificities which catalyzes effective transhydro-
genation without affecting net catabolic fluxes [69].

Table 1
Biochemical reactions involved in NADPH formation and consumption in
Pseudomonas putida KT2440

Reaction Enzyme(s)

Glucose-6-phosphate + NADP+

! 6-phosphoglucono-1,5-lactone
+ NADPH + H+

Zwf-1, Zwf-2, Zwf-3, glucose-6-
phosphate dehydrogenase

6-Phosphogluconate + NADP+

! ribulose-5-phosphate
+ NADPH + CO2

Gnd, 6-phosphogluconate
dehydrogenase

D-threo-Isocitrate + NADP+ !
2-oxoglutarate + CO2 + NADPH
+ H+

Icd, isocitrate dehydrogenase

(S)-Malate + NADP+ ! pyruvate
+ CO2 + NADPH

Mae, malic enzyme

2-Keto-6-phosphogluconate
+ NADPH + H+ !
6-phosphogluconate + NADP+

KguD, 2-keto-6-
phosphogluconate reductase
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Although the mechanisms listed above ensure an appropriate
redox balance in several microbial cells, we decided to focus on four
reactions, two of which belong to the PP pathway and two to the
TCA cycle, which have been demonstrated to represent the main
source of NADPH in a number of bacteria, including pseudomo-
nads. Additionally, there are two main NADPH sinks in P. putida
KT2440 during growth on glucose that should be considered when
assessing the overall redox balance. The first (and most obvious)
fate of NADPH is the anabolic buildup of biomass components.
On the other hand, a considerable part of glucose is converted by
most pseudomonads in organic acids, such as gluconate and
2-ketogluconate. These intermediates finally converge at the level
of 6PG. One of the reducing pathways that feed this node is
catalyzed by 2-keto-6-phosphogluconate reductase (KguD, Table 1
and Fig. 2). KguD uses NADPH as the cofactor to reduce 2-keto-
6-phosphogluconate to 6PG (Nikel et al., unpublished), and it
constitutes the second sink of NADPH in the biochemical network
operated by strain KT2440 when cells grow on glucose.

G6PDH and 6PGDH are widely distributed enzymes, from
bacteria to humans, and they constitute the nonreversible entry
point to the PP pathway (see Fig. 2) [14, 71]. Particularly, during
growth on hexoses, the PP pathway represents a major source of
pentose phosphates for nucleotide biosynthesis and NADPH
through these two consecutive NADP+-dependent dehydro-
genases. Carbon fluxes through the PP pathway can be different
between species [11] and, depending on the demands of reducing
power, these reactions may be critical to the regeneration of
NADPH. On the other hand, Icd is an enzyme of the TCA cycle
that catalyzes the oxidative decarboxylation of isocitrate, producing
2-oxoglutarate and CO2 (Table 1) [61]. This process involves
oxidation of isocitrate to oxalosuccinate, followed by the decarbox-
ylation of the β-carboxyl group to the ketone, forming
2-oxoglutarate. Icd has been reported in all domains of life, and
both NAD+- and NADP+-dependent enzymes have been described
[72]. Finally, Mae converts malate, an intermediate of the TCA
cycle, into pyruvate (Table 1 and Fig. 2), which is the end product
of glycolysis and a key metabolite in the split of respiratory and
fermentative metabolism (e.g., in E. coli). The activity of Mae can
be regarded as part of a metabolic shunt where NADPH is obtained
at the expense of one ATP molecule consumed by pyruvate carbox-
ylase and one NADH molecule consumed by malate dehydroge-
nase [63, 73].

1.4 Overview

of the Procedure

Synthetic biology and metabolic engineering approaches call for
the choice of suitable hosts, which can operate in a variety of
environmental conditions. One of the important aspects of an
optimization procedure to obtain a robust microbial cell factory is
the availability of reducing power, so that the microorganisms can
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satisfy their metabolic needs and counteract oxidative stress. In this
protocol, we describe a method to explore the pathways that a
microorganism uses to ensure proper NADPH supply and redox
balance. Specifically, we seek to associate metabolic fluxes through a
set of specific enzymes with the maximum capabilities of NADPH
formation in the cell, i.e., metabolic optimality as a function of
redox homeostasis. For this purpose, we propose a two steps pro-
tocol, which we have previously applied in physiological and meta-
bolic studies of the soil bacterium P. putida KT2440 [74, 75]
(Fig. 3). As mentioned before, this Gram-negative microorganism
represents a model for the biodegradation of hydrocarbons. Firstly,

Fig. 3 Diagram of the steps proposed to study the NADPH balance in
environmental bacteria. We adopted a two-step protocol, which we have applied
to explore the redox homeostasis in the soil bacterium P. putida KT2440. Firstly,
the metabolic fluxes for each of the relevant strains or environmental conditions
(i.e., engineered strains, presence of stressors, alternative carbon source, etc.) are
determined. The overall NADPH balance is obtained from the metabolic fluxes and
the cofactor specificity of each enzyme in the biochemical network. The second
step corresponds to a validation step to qualitatively associate the redox capability
of the cell (i.e., redox ratios, derived from the determination of pyridine
nucleotides) with its tolerance to oxidative stress
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the metabolic fluxes of each of the strains or conditions in which the
reducing power capability it to be determined, i.e., engineered
strains, presence of stressors, culture conditions, etc., are measured.
Because most fluxomic approaches have been developed to
glucose-consuming cultures, in this protocol this hexose is used as
carbon source. Glucose utilization has two important advantages:
the metabolism of this hexose is well known in P. putida KT2440
(and many other microorganisms), and the labeled sugar is com-
mercially available at a reasonable price. There are several meth-
odologies and software platforms available to conduct MFA
experiments. In Volume 10 within this series, Blank and collabora-
tors describe a specific protocol to perform MFA experiments. In
principle, any MFA protocol can be used in the approach proposed
here; however, in this chapter, we will use the platform developed
by Sauer and collaborators, which is well described in the literature
[11, 13, 25, 26, 76, 77]. After the MFA of the cells at stake has
been performed, the in vitro enzymatic assays for G6PDH,
6PGDH, NADP+-dependent Icd, Mae, and KguD should be con-
ducted. These enzymatic assays should be performed using NAD+

and NADP+ as cofactors to evaluate the specificity of each enzyme.
Once theMFA data and the specificity of each enzyme are gathered,
an NADPH balance is obtained from the flux distribution and the
cofactor specificity of the different dehydrogenases in the biochem-
ical network. The second step corresponds to a validation stage of
the results obtained in the first step. In this step, the quantification
of each cofactor is required to obtain the corresponding redox
ratios and therefore to assess any possible increase or decrease in
the NADPH pool according to the predictions obtained by MFA.
Moreover, at this validation stage a phenotypic test is proposed to
qualitatively evaluate the ability of P. putida KT2440 to combat
oxidative stress.

2 Materials

Unless otherwise stated, all the chemicals described below were
purchased from Sigma-Aldrich Co. (St. Louis, MO, USA;
https://www.sigmaaldrich.com).

2.1 MFA

2.1.1 Growth Conditions

and Determination of

Kinetic Parameters

1. Glucose (cat. # G8270) and reagents needed for the prepara-
tion of M9 minimal medium: Na2HPO4 · 7H2O (cat. #
S9390), KH2PO4 (cat. # P0662), NH4Cl (cat. # 254134),
and NaCl (cat. # S9888).

2. Glucose (HK) assay kit (cat. # GAHK20). See Note 1.

3. Deionized (DI) water; resistivity �18 MΩ cm�1 at 25�C.

4. Benchtop microcentrifuge (capable of reaching at least
16,000�g).
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5. Cold centrifuge for 15-mL tubes (capable of reaching at least
4,000�g).

6. Centrifuge tubes (15 mL) and microcentrifuge tubes (1.5 mL).

7. Nitrocellulose filters (0.45 μm) [cat. # N0271].

8. Spectrophotometer. See Note 2.

9. Sterile serological pipettes (Corning Life Sciences Inc.; Pitts-
burgh, PA, USA).

10. Micropipettes and the appropriate tips.

11. 0.9% (w/v) NaCl solution prepared from solid reagent [cat. #
S9888]. This solution can be stored at room temperature.

12. Gyratory shaker.

13. Lab oven.

14. Analytical balance capable to measure masses within 0.0001 g.

2.1.2 13C-Labeling

Experiments

1. Isotopically labeled glucose. See Note 3.

2. Cell culture (prepared in M9 minimal medium) at metabolic
steady state (seeNote 4). Materials are described in Sect. 2.1.1.

3. Heating block.

4. 50- and 15-mL centrifuge tubes.

5. Microcentrifuge tubes (1.5 and 2 mL).

6. Micropipettes and the appropriate tips.

7. Vortex and benchtop microcentrifuge (capable of reaching at
least 16,000�g).

8. Cold centrifuge for 15- and 50-mL tubes (capable of reaching
at least 4,000�g).

9. DI water.

10. 6 M HCl solution prepared from concentrated HCl [ACS
reagent, 37% (w/w), cat. # H1758]. This solution can be
stored at room temperature.

11. For derivatization: anhydrous, 99.8% (w/w)N,N-dimethylfor-
mamide (cat. # D4551) and N-tert-butyldimethylsilyl-N-
methyltrifluoroacetamide with 1% (w/v) tert-butyldimethyl-
chlorosilane (cat. # 375934). This reagent should be handled
and stored under anhydrous conditions.

12. For the evaporation of samples: air stream.

13. Columns (seeNote 5), gases, vials, filters (for GC–MS analysis).

14. Gas chromatograph coupled to a mass spectrometer. See
Note 6.
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2.1.3 MS Data Analysis

and Flux Calculations

1. Computer equipped with an MS analysis software (see Note 7)
for integrating mass spectra and data processing.

2.2 Determination of

Cofactor Specificity of

NAD+- and NADP+-

Dependent Enzymes

2.2.1 Preparation of Cell-

Free Extracts for Enzymatic

Assays

1. Cell culture (prepared in M9 minimal medium) at metabolic
steady state. Materials are described in Sect. 2.1.1.

2. Cold centrifuge for 15- and 50-mL tubes (capable of reaching
at least 4,000�g).

3. DI water.

4. 10 mM sodium phosphate buffer (pH 7.5) containing 100mM
2-mercaptoethanol (cat. # M6250). Sodium phosphate buffer
(pH 7.5) is prepared by mixing 1M solutions of NaH2PO4 and
Na2HPO4 (e.g., by mixing 8.4 mL of Na2HPO4 and 1.6 mL
NaH2PO4). The mixture should be diluted to 1 L and the final
pH should be 7.5 (if needed, adjust the pH with the concen-
trated Na2HPO4 or NaH2PO4 solutions as appropriate). Then,
2-mercaptoethanol is added up to 100 mM. This buffer can be
stored for up to 1 month at 4�C.

5. Cell disruptor (e.g., Omni Ruptor 4000 ultrasonic homoge-
nizer/cell disrupter; Omni International Inc., Kennesaw, GA,
USA).

6. Commercial kit for protein determination based on the Brad-
ford method [78] (cat. # 500–0201; Bio-Rad Labs., Hercules,
CA, USA; http://www.bio-rad.com).

7. 50- and 15-mL centrifuge tubes.

8. Micropipettes and the appropriate tips.

2.2.2 Assay for G6PDH 1. 250 mM glycylglycine (Gly–Gly) pH 7.5 [Gly–Gly, >99% (w/
w), cat. # G1002]. This buffer can be stored for up to 1 month
at 4�C.

2. DI water.

3. 60 mM G6P. The solution was prepared from G6P monoso-
dium salt (cat. # G7879). This solution should be stored at
�20�C.

4. 20 mM β-nicotinamide adenine dinucleotide phosphate
(NADP+). The solution was prepared from solid reagent
[�98% (w/w), cat. # N0505]. Working solutions have to be
prepared freshly in DI water.

5. 20 mM β-nicotinamide adenine dinucleotide (NAD+). The
solution was prepared from solid reagent [�98% (w/w), cat.
# N6522]. Working solutions have to be prepared freshly in DI
water.

6. 300 mMMgCl2. The solution was prepared from solid reagent
[�98% (w/w), anhydrous, cat. # 63063] and can be stored at
room temperature.
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7. G6PDH solution prepared from lyophilized enzyme from S.
cerevisiae (200–400 mg per protein, cat. # G6378). Immedi-
ately before use, prepare a solution containing 0.3–0.6 units
mL�1 in cold DI water.

8. 15-mL centrifuge tubes.

9. Micropipettes and the appropriate tips.

10. UV-transparent cuvettes. See Note 8.

11. Water bath (e.g., Precision general-purpose water bath;
Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.2.3 Assay for 6PGDH 1. 100 mM Gly–Gly, pH 7.5 (cat. # G1002). This buffer should
be stored at 4�C.

2. DI water.

3. 100 mM 6PG prepared from 6PG trisodium salt [�97% (w/w),
cat. # P7877]. This solution should be stored at �20�C.

4. 60 mM NADP+ [�98% (w/w), cat. # N0505]. Working solu-
tions have to be prepared freshly in DI water.

5. 60 mM NAD+ [�98% (w/w), cat. # N6522]. Working solu-
tions have to be prepared freshly in DI water.

6. 6PGDH enzyme solution prepared from lyophilized enzyme
from S. cerevisiae (3.0–6.0 mg per protein, cat. # P4553).
Immediately before use, prepare a solution containing
1.5–3.0 units mL�1 in cold DI water.

7. 15-mL centrifuge tubes.

8. Micropipettes and the appropriate tips.

9. UV-transparent cuvettes.

10. Water bath.

2.2.4 Assay for Icd There are several commercial kits for determining the isocitrate
dehydrogenase activity by colorimetric techniques (Sigma-Aldrich
Co., https://www.sigmaaldrich.com; Abcam, http://www.abcam.
com; BioVision, http://www.biovision.com; BioAssay Systems,
http://www.bioassaysys.com; or Genway Biotech Inc., http://
www.genwaybio.com). There are also protocols for the analysis of
Icd activity using fluorescence or UV spectroscopy. Here, we
describe a standard protocol, which utilizes isocitrate as a specific
substrate and measures the NADP+ reduction rate at 340 nm.

1. 250 mM Gly–Gly buffer (pH 7.4) (cat. # G1002). This buffer
should be stored at 4�C.

2. DI water.

3. 6.6 mM D,L-isocitric acid solution prepared from D,L-isocitric
acid trisodium salt hydrate [�93% (w/w), cat. # I1252]. This
solution should be stored at �20�C.
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4. 20 mM NADP+ [�98% (w/w), cat. # N0505]. Working solu-
tions have to be prepared freshly in DI water.

5. 20 mM NAD+ [�98% (w/w), cat. # N6522]. Working solu-
tions have to be prepared freshly in DI water.

6. 18 mM MnCl2. Solution prepared from solid reagent [�99%
(w/w), cat. # 244589], and it can be stored at room
temperature.

7. Icd enzyme solution (0.3–0.6 units mL�1) prepared from com-
mercial product (Bacillus subtilis, recombinant from E. coli, cat.
# 94596). Prepare freshly in cold Gly–Gly buffer.

8. 15-mL centrifuge tubes.

9. Micropipettes and the appropriate tips.

10. UV-transparent cuvettes.

11. Water bath.

2.2.5 Assay for Mae 1. 100 mM triethanolamine · HCl buffer (pH 7.4). Prepared
from solid triethanolamine hydrochloride (�99.5%, cat. #
T1502). This buffer can be stored for up to 1 month at 4�C.

2. DI water.

3. 100 mM L-malic acid solution prepared from solid reagent
[95–100% (w/w), cat. # M1000]. Solution should be stored
at �20�C.

4. 20 mM NADP+ [�98% (w/w), cat. # N0505]. Working solu-
tions have to be prepared freshly in DI water.

5. 20 mM NAD+ [�98% (w/w), cat. # N6522]. Working solu-
tions have to be prepared freshly in DI water.

6. 20 mM MnCl2 [�99% (w/w), cat. # 244589]. This solution
can be stored at room temperature.

7. Mae solution (0.25–0.50 units mL�1) prepared from recombi-
nant enzyme from E. coli (also known as malic dehydrogenase,
cat. # 18115). Prepare fresh in DI water.

8. 15-mL centrifuge tubes.

9. Micropipettes and the appropriate tips.

10. UV-transparent cuvettes.

11. Water bath.

2.2.6 Assay for KguD 1. 100 mM Tris · HCl buffer (pH 8). Prepared from solid tris
base (�99.9%, cat. # T5941). This buffer should be stored at
4�C.

2. DI water.

3. 40 mM 2-keto-3-deoxy-6-phosphogluconic acid lithium salt
solution prepared from solid reagent [�95% (w/w), cat. #
79156]. This solution should be stored at �20�C.
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4. 20 mM NADPH [�97% (w/w), cat. # N7505]. Working
solutions have to be prepared freshly in DI water.

5. 20 mM MgCl2 (cat. # 63063). This solution can be stored at
room temperature.

6. 15-mL centrifuge tubes.

7. Micropipettes and the appropriate tips.

8. UV-transparent cuvettes.

9. Water bath.

2.3 Determination of

Pyridine Dinucleotides

1. Cold centrifuge for 15- and 50-mL tubes (capable of reaching
at least 8,500�g).

2. DI water.

3. Cell culture (prepared in M9 minimal medium) at metabolic
steady state. Materials are described in Sect. 2.1.1.

4. Benchtop microcentrifuge (capable of at least 16,000�g).

5. Lab oven.

6. 50 mM sodium phosphate buffer (pH 7.5). 50 mM sodium
phosphate buffer (pH 7.5) is prepared by mixing 1 M solutions
of NaH2PO4 and Na2HPO4 (e.g., by mixing 42 mL of
Na2HPO4 and 8 mL NaH2PO4). The mixture should be
diluted to 1 L and the final pH should be 7.5 (if needed, adjust
the pH with the concentrated Na2HPO4 or NaH2PO4 solu-
tions as appropriate). This buffer can be stored for up to 3
months at room temperature.

7. 0.25 M NaOH prepared from solid reagent (cat. # 221465),
and it can be stored at room temperature.

8. 0.25 M HCl [ACS reagent, 37% (w/w), cat. # H1758]. This
solution can be stored at room temperature.

9. 0.1 M NaCl from solid reagent (cat. # S9888). This solution
can be stored at room temperature.

10. 1M and 120mMbicine · NaOH (pH 8.0) prepared from solid
bicine (�99%, cat. # B3876). Dissolve the bicine and adjust the
pH with 5 N NaOH. Buffer should be stored at 4�C.

11. 2.5 mM 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazo-
lium bromide (MTT) prepared from solid MTT [98%, cat. #
M2128]. Prepare freshly in DI water just before use and keep
the solution protected from light.

12. 80mM ethylenediaminetetraacetic acid (EDTA) prepared from
solid reagent (ACS reagent, cat. # E9884) and can be stored at
room temperature.

13. 15 mM phenazine ethosulfate from solid reagent (cat. #
P4544). Prepare freshly in DI water just before use and keep
the solution protected from light.
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14. 12.5 mM G6P solution prepared from G6P monosodium salt
(cat. # G7879). This solution should be stored at �20�C.

15. 350 units mL�1 of alcohol dehydrogenase (ADH) prepared
from the lyophilized enzyme from S. cerevisiae (�300 mg per
protein, cat. # A3263). Prepare immediately before use in
120 mM bicine · NaOH (pH 8.0) and keep at 4�C.

16. 0.5 units mL�1 of G6PDH prepared from the lyophilized
enzyme from S. cerevisiae (200–400 mg per protein, cat. #
G4134). Prepare immediately before use in 120 mM bicine ·
NaOH (pH 8.0) and keep at 4�C.

17. 1.25 M ethanol prepared in DI water from absolute ethanol
(ACS reagent, cat. # 459844). This solution can be stored at
room temperature.

18. NADP+ solution for the calibration curve prepared from solid
reagent (�98%, cat. # N0505). Prepare standards freshly in DI
water.

19. NAD+ solution for the calibration curve prepared from solid
reagent (�98%, cat. #N6522). Prepare standards freshly in DI
water.

20. Nunclon MicroWell plates for automation (96 wells, with lid),
flat bottom, clear (Thermo Scientific Inc.; Waltham, MA,
USA).

21. SpectraMax Plus 384 microplate reader (Molecular Devices
LLC.; Sunnyvale, CA, USA).

22. 50- and 15-mL centrifuge tubes.

23. Micropipettes and the appropriate tips.

24. Liquid N2.

2.4 Tolerance to

Oxidative Stress Test

1. Glucose (cat. # G8270) and the reagents needed for prepara-
tion of M9 minimal medium.

2. DI water.

3. Diamide (DA) solutions for a dose–response curve. A 1 M
solution is prepared in dimethyl sulfoxide (DMSO) (cat. #
D8418) from the solid reagent (cat. # D3648). Prepare freshly
and protect from light exposure.

4. Nunclon MicroWell plates for automation (96 wells, with lid),
flat bottom, clear.

5. SpectraMax Plus 384 microplate reader.

6. 50- and 15-mL centrifuge tubes.

7. Micropipettes and the appropriate tips.
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3 Methods

3.1 MFA

3.1.1 Growth Conditions

and Determination of

Kinetic Parameters

1. Prepare M9 minimal medium (see Note 9) containing 20 mM
glucose as the only C source.

2. Determine the maximum growth rate (μ) in aerobic batch
cultures. Grow cells at 30�C with shaking at 170 rpm in 250-
mL baffled Erlenmeyer flasks filled with 50 mL of M9 minimal
medium supplemented with 20 mM glucose. Monitor growth
spectrophotometrically (seeNote 2) at a wavelength of 600 nm
(OD600). Results of turbidity measurements are computed
during exponential growth (log-linear regression of OD600

versus time), and μ(h�1) is calculated for each condition as
μ ¼ [ln(OD600 at t1) � ln(OD600 at t0)]/(t1 � t0).

3. Determine the correlation factor (k) between CDWand OD600

as follows. Aerobic batch cultures are developed as detailed in
the preceding section. At least seven parallel 10-mL cell sus-
pension aliquots are harvested by fast filtration at different
times during exponential growth. Cultures are filtered in pre-
weighed nitrocellulose filters (0.45 μm), which are subse-
quently washed twice with 10 mL of 0.9% (w/v) NaCl and
dried at 105�C for 24 h to constant weight (see Note 10). The
value of k is determined by linear regression of OD600 versus
CDW, k being the regression coefficient in the equation OD600

¼ k � CDW + b. The parameter b is a constant.

4. Determine the biomass yield on glucose (YX/S; gCDW g
glucose�1) as the coefficient of a linear regression of CDW
versus consumed glucose concentration during the exponential
growth phase [OD600 � k ¼ CDW ¼ YX/S � consumed glu-
cose concentration + c]. The parameter c is a constant. Aerobic
batch cultures are grown as described above, and 1-mL cell
suspension aliquots are taken during the exponential growth
phase (at least seven points), the OD600 measured, and cells are
immediately harvested by centrifugation (1 min at 15,800�g)
in an Eppendorf tabletop centrifuge to sediment the biomass.
Glucose concentration is determined enzymatically in the cul-
ture supernatant with a glucose kit.

5. Calculate the specific rate of glucose consumption (qS, g glu-
cose gCDW

�1 h�1) dividing the maximum growth rate (μ) by
the biomass yield on glucose (YX/S).

3.1.2 13C-Labeling

Experiments

1. Aerobic batch cultures are developed as detailed in the preced-
ing section (see Note 11).

2. Harvest 5–10-mL cell suspension aliquots at mid-exponential
growth phase (at an OD600 of about 50% of the maximal value,
OD600 ¼ 0.5–0.6) by centrifugation (15 min, 4,000�g, 4�C).
Cell pellets are washed twice by resuspension in 1 mL of 0.9%
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(w/v) NaCl, transferred into a 2-mL Eppendorf tube, and
centrifuged in a tabletop Eppendorf centrifuge at 15,800�g
and room temperature for 5 min. See Note 12.

3. Resuspend the washed pellet in 1.5 mL of 6 M HCl, hydrolyze
for 24 h at 110�C in sealed 2-mL Eppendorf tubes, and desic-
cate the contents overnight in a heating block at 60�C under a
constant air stream.

4. Resuspend the dried hydrolysate in 30 μL of dimethyl formam-
ide and derivatize under gentle shaking with 30 μL of N-tert-
butyldimethylsilyl-N-methyltrifluoroacetamide containing 1%
(v/v) tert-butyldimethylchlorosilane at 85�C for 60 min.
Tert-butyldimethylchlorosilane allows for an efficient derivati-
zation of the amino acids [25] and readily silylates hydroxyl
groups, thiols, primary and secondary amines, amides, and
carboxyl groups. The derivatized sample is then immediately
transferred into an amber crimp vial and sealed with a cap.

5. Inject 1 μL of the derivatized sample into a Series 8000 gas
chromatograph combined with a MD 800 mass spectrometer
(Fisons Instruments PLC, Ipswich, UK) using a split ratio of
1:20 on a SPB-1 column (see Note 5). The carrier gas flow
[helium, � 99.996% (v/v) purity; PanGas AG, Dagmersellen,
Switzerland] is set at 2 mL min�1. The initial oven temperature
of 150�C is maintained for 2 min and raised to 280�C with a
gradient of 10�C min�1. The final temperature is maintained
for 2 min, and source and interface temperatures are held at
200�C and 280�C, respectively. Ions are generated by electron
impact at �70 eV (full scan ranging from m/z ¼ 70 to 560,
with a solvent delay of 4 min). The amino acids analyzed by
GC–MS are Ala, Asp, Glu, Gly, His, Ile, Leu, Phe, Pro, Ser,
Thr, Tyr, and Val for uniformly labeled substrates and Ala, Asp,
Ile, Phe, Leu, Ser, Thr, Tyr, and Val for [1-13C]-labeled
substrates.

3.1.3 MS Data Analysis 1. Perform MS analysis through custom-developed or commer-
cial software (see Note 7). First, identify the chromatographic
peaks corresponding to the amino acids of interest. The identi-
fication is based on (1) the retention time and (2) the MS
spectra of the peak. Built-in databases of the mass spectrometer
can help to identify each amino acid. In case of doubt, or when
working with complex samples, mixtures of pure amino acid
standards or spiked samples can be run in parallel to ensure the
identity of each peak. Commercially available standards of most
amino acids are required for MS analysis.

2. Once a suitable chromatogram with assigned peaks is obtained,
the integration of specific ions in the mass spectra of each
amino acid is targeted at. This information is then used to
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obtain the distribution of mass isotopomers (i.e., isotopic iso-
mers of the same molecule, only differing in the position of 13C
atoms) and to quantify the relative abundance of isotope peaks
through program ratio of Fiat Flux software [77]. There are
other software platforms freely available that allow for data
processing.

3. Obtain the following flux ratios: serine derived from the EMP
pathway, pyruvate derived from the ED pathway, oxaloacetate
(OAA) originating from pyruvate, phosphoenolpyruvate (PEP)
originating from OAA, the lower and upper bounds of pyru-
vate originating from malate, and the upper bound of PEP
derived from the PP pathway.

4. Calculate the net fluxes with the MATLAB-based program
Netto of Fiat Flux software [77] by minimizing the sum of
the weighed square residuals of the constraints from both
metabolite balances and flux ratios. The metabolic model used
for net-flux analysis is based on a master reaction network [11]
which includes 45 reactions and 33 metabolites (see Note 13).
For the calculation of net fluxes, additional information is
needed: (1) the stoichiometric reaction matrix, (2) the flux
ratios, (3) physiological data [i.e., maximum growth rate (μ)
and specific rate of glucose consumption (qS)], and (4) precursor
requirements for biomass synthesis [77].

3.2 Determination of

Cofactor Specificity of

NAD+- and NADP+-

Dependent Enzymes

3.2.1 Preparation of Cell-

Free Extracts for Enzymatic

Assays

1. Grow P. putida cultures as described in the preceding sections.

2. Harvest 5–25-mL cell suspension aliquots at mid-exponential
growth phase (at an OD600 of about 50% of the maximal value,
OD600 ¼ 0.5–0.6) by centrifugation (15 min, 4,000�g, 4�C).

3. Resuspend the pellets in the appropriate volume of 50 mM
phosphate buffer (pH 7.5) containing 100 mM 2-
mercaptoethanol, to achieve an OD600 ¼ 4.

4. Disrupt the cells by sonication in the cold (five pulses of 30 s)
and spin down (30 min, 14,000�g, 4�C) to collect cell debris.

5. Determine the protein concentration in the supernatant (i.e.,
the cell-free extract) as per the Bradford protocol [78] using a
commercially available kit.

3.2.2 Assay for G6PDH 1. Prepare a reaction mixture by pipetting appropriate volumes of
the solutions described in Sect. 2.2.2 to obtain a concentration
of 43 mM Gly–Gly, 2 mM G6P, 10 mM MgCl2, and 0.7 mM
NADP+ or NAD+. The final volume is adjusted with DI water.
Mix and equilibrate at 30�C (see Note 14).

2. Pipette 2.90 mL of the reaction mixture into suitable cuvettes
(see Notes 2 and 8). Equilibrate at 30�C. Monitor the absor-
bance at 340 nm (A340) until a constant value is reached.
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3. Start the reaction by the addition of 100 μL (see Note 14) of
cell-free extract (or an appropriate dilution thereof). Immedi-
ately mix by inversion and record the increase in A340 for
approximately 10 min (see Note 15).

4. A negative control should be performed using the same volume
of reaction mixture and 100 μL of the buffer used to prepare
cell extracts [i.e., 50 mM phosphate (pH 7.5) and 100 mM 2-
mercaptoethanol].

5. A positive control should be performed using the same volume
of reaction mixture and 100 μL of a G6PDH suspension con-
taining 0.3–0.6 units mL�1 instead of cell-free extract.

6. Obtain the ΔA340 min�1 using the maximum linear rate for
both the test and blank using a minimum of five points in the
linear region of the curve [A340 versus time (min)].

7. Calculate the activity of G6PDH (in units mL�1) for each
cofactor (i.e., NAD+ and NADP+) as follows:

units mL�1 ¼ A340min�1
� �

sample
� A340min�1
� �

blank

h i
� 3�DF

� �

= 6:22� 0:1ð Þ
where:

3 ¼ total volume (in mL) of assay

DF ¼ dilution factor (whenever used)

6.22 ¼ millimolar extinction coefficient of NADPH at 340 nm
(in mM�1 cm�1)

0.1 ¼ volume (in mL) of cell-free extract used

3.2.3 Assay for 6PGDH 1. Prepare a reaction mixture by pipetting appropriate volumes of
the solutions described in Sect. 2.2.3 to obtain a concentration
of 94 mM Gly–Gly, 1.7 mM 6PG, and 2.0 mM NADP+ or
NAD+. Mix and equilibrate at 30�C.

2. Pipette 2.90 mL of the reaction mixture into suitable cuvettes
(see Notes 2 and 8). Equilibrate at 30�C. Monitor the A340

until a constant value is reached.

3. Start the reaction by the addition of 100 μL (see Note 16) of
cell-free protein extract (or an appropriate dilution thereof).
Immediately mix by inversion and record the increase in A340

for approximately 5 min.

4. A negative control should be performed using the same volume
of reaction mixture and 100 μL of the buffer used to make cell
extracts [i.e., 50 mM phosphate (pH 7.5) and 100 mM 2-
mercaptoethanol].
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5. A positive control should be performed using the same volume
of reaction mixture and 100 μL of a 6PGDH suspension con-
taining 0.03–0.06 units mL�1 instead of cell-free extract.

6. Obtain the ΔA340 min�1 and the 6PGDH activity (i.e., units
mL�1) as described in Sect. 3.2.2.

3.2.4 Assay for Icd 1. Prepare a reaction mixture by pipetting appropriate volumes of
the solutions described in Sect. 2.2.4 to obtain a concentration
of 67 mM Gly–Gly, 0.44 mM D,L-isocitric acid, 0.60 mM
MnCl2, and 1.0 mM NADP+ or NAD+. Mix and equilibrate
at 30�C.

2. Pipette 2.90 mL of the reaction mixture into suitable cuvettes
(see Notes 2 and 8). Equilibrate at 30�C. Monitor the A340

until a constant value is reached.

3. Start the reaction by the addition of 100 μL (see Note 16) of
cell-free protein extract (or an appropriate dilution thereof).
Immediately mix by inversion and record the increase in A340

for approximately 5 min.

4. A negative control should be performed using the same volume
of reaction mixture and 100 μL of the buffer used to make cell
extracts [i.e., 50 mM phosphate (pH 7.5) and 100 mM 2-
mercaptoethanol].

5. A positive control should be performed using the same volume
of reaction mixture and 100 μL of an Icd suspension
0.03–0.06 units mL�1 instead of cell-free extract.

6. Obtain the ΔA340 min�1 and the Icd activity (i.e., units mL�1)
as described in Sect. 3.2.2.

3.2.5 Assay for Mae 1. Prepare a reaction mixture by pipetting appropriate volumes of
the solutions described in Sect. 2.2.4 to obtain a concentration
of 67 mM triethanolamine, 3.3 mM L-malic acid, 5.0 mM
MnCl2, and 0.3 mM NADP+ or NAD+. Mix and equilibrate
at 30�C.

2. Pipette 2.90 mL of the reaction mixture into suitable cuvettes
(see Notes 2 and 8). Equilibrate at 30�C. Monitor the A340

until a constant value is reached.

3. Start the reaction by the addition of 100 μL (see Note 16) of
cell-free protein extract (or an appropriate dilution thereof).
Immediately mix by inversion and record the increase in A340

for approximately 5–10 min.

4. A negative control should be performed using the same volume
of reaction mixture and 100 μL of the buffer used to make cell
extracts [i.e., 50 mM phosphate (pH 7.5) and 100 mM
2-mercaptoethanol].
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5. A positive control should be performed using the same volume
of reaction mixture and 100 μL of a Mae suspension
0.025–0.050 units mL�1 instead of cell-free extract.

6. Obtain theΔA340 min�1 and theMae activity (i.e., units mL�1)
as described in Sect. 3.2.2.

3.2.6 Assay for KguD 1. Prepare a reaction mixture by pipetting appropriate volumes of
the solutions described in Sect. 2.2.6 to obtain a concentration
of 55 mM Tris · HCl (pH 8), 9.5 mM MgCl2, 1.5 mM
NADPH, and 4 mM 2-keto-3-deoxy-6-phosphogluconic
acid. Mix and equilibrate at 30�C.

2. Pipette 2.90 mL of the reaction mixture into suitable cuvettes
(see Notes 2 and 8). Equilibrate at 30�C. Monitor the A340

until a constant value is reached.

3. Start the reaction by the addition of 100 μL (see Note 16) of
cell-free protein extract (or an appropriate dilution thereof).
Immediately mix by inversion and record the increase in A340

for approximately 15 min.

4. A negative control should be performed using the same volume
of reaction mixture and 100 μL of the buffer used to make cell
extracts [i.e., 50 mM phosphate (pH 7.5) and 100 mM 2-
mercaptoethanol].

5. Obtain the ΔA340 min�1 and the KguD activity (i.e., units
mL�1) as described in Sect. 3.2.2.

3.2.7 Determination of

the NADPH Balance

1. Calculate the relative cofactor dependence (CD) of each dehy-
drogenase (DH) from the data obtained according to Sect. 3.2
as CDx

DH ¼ specific DH activity with cofactor x/total specific
DH activity, where x is any given cofactor. For example, the
relative cofactor dependence of G6PDH for NADP+ (termed
CDNADP

G6PDH) is obtained as the ratio CDNADP ¼ specific
G6PDH activity in the presence of NADP+/total specific
G6PDH activity (i.e., using NADP+ and NAD+). Note that for
any given DH enzyme, CDNADP + CDNAD ¼ 1. See Note 17.

2. Obtain the net NADPH formation rate (termed fNADPH
F, the

superscript F standing for formation) as f F
NADPH=CD

G6PDH
NADP �

vG6PDH þ CD6PGDH
NADP � v6PGDH þ CDIcd

NADP � vIcd þ CDMae
NADP

�vMae, where v is the net flux through the reaction catalyzed by
the corresponding enzyme. Note that both f and v have the
same units, as they represent fluxes,

3. Obtain the net NADPH consumption rate (termed fNADPH
C,

the superscript C standing for consumption) as

f C
NADPH=CD

KguD
NADPH � vKguD þNADPH requirement for bio-

mass formation. The NADPH requirement for biomass forma-
tion is directly obtained from the corresponding flux
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distribution in the MFA experiment (i.e., from the flux repre-
senting biomass generation from metabolic precursors).

4. Calculate the overall NADPH balance as rNADPH = f F
NADPH-

f C
NADPH. This calculation allows to identify whether the physi-

ological state of the cells is characterized by catabolic NADPH
underproduction (rNADPH < 0) or catabolic NADPHoverpro-
duction (rNADPH > 0).

3.3 Determination of

Pyridine Dinucleotides

The protocol below is based on the cycling assay originally devel-
oped by Bernofsky and Swan [79], with the modifications described
elsewhere [80–82].

1. Grow P. putida cultures as described in the preceding sections.

2. Harvest 1.5-mL cell suspension aliquots at mid-exponential
growth phase (at an OD600 of about 50% of the maximal
value; OD600 ¼ 0.5–0.6) by fast centrifugation (1 min,
12,500�g, 4�C). Depending on the cell density, a new cell
culture aliquot can be added to the sediment from the first
sampling. Discard the supernatant and freeze the biomass sam-
ples by rapid immersion of the Eppendorf tubes in liquid N2

(see Note 18). Harvest another suitably large broth sample in
parallel to determine CDW concn. as described in Sect. 3.1.1.

3. Add 0.3 mL of either 0.25 M NaOH [for NAD(P)H extrac-
tion] or HCl [for NAD(P)+ extraction] to the frozen biomass
samples.

4. Heat the samples for 15 min at 55�C.

5. Neutralize the samples by dropwise addition of 0.3 mL of
either 0.1 M HCl [for NAD(P)H extraction] or NaOH [for
NAD(P)+ extraction]. Add 0.1 mL of 1 M bicine · NaOH
buffer (pH 8.0) to all samples to equilibrate the pH.

6. Remove cellular debris by centrifugation (5 min, 12,500�g,
room temperature), and transfer the supernatants to clean
Eppendorf tubes (see Note 19).

7. Take 5 μL of the sample and add it to a single well in 96-well
microtiter plates containing 90 μL of the reaction mixture. The
components in the cycling reaction mixture and their final
concentrations are 120 mM bicine · NaOH (pH 8.0),
0.5 mMMTT, 4.5 mM EDTA, 4.5 mM phenazine ethosulfate,
and the cognate substrate (either 200 mM ethanol or 12.5 mM
G6P). After addition of the extracts to the wells containing the
appropriate reaction mixture [i.e., containing ethanol for NAD
(H/+) determinations and G6P for NADP(H/+) determina-
tions], the plates are incubated at 30�C for 5 min in the dark.

8. Start the reaction by prompt addition of 5 μL of either
350 units mL�1 of ADH or 5 units mL�1 of G6PDH as
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appropriate. Mix the contents of the wells thoroughly and
immediately place the plate in the microplate reader.

9. Run parallel controls with known amounts of each nucleotide
(in the range 0.015–1.5 mM). Blanks are likewise included in
the same plate by adding bicine · NaOH buffer instead of the
sample. Blanks are particularly important in this experiment as
they account for the amount of nucleotides bound to the
enzymes used in the assay (although it is usually very low).
For each standard, perform the procedure described above
from step 7 onward.

10. Monitor the formation of reduced MTT at 570 nm by record-
ing the absorbance at 570 nm (A570) and 30�C using a micro-
plate reader.

11. Calculate the intracellular nucleotide concentration as follows.
First, obtain the ΔA570 min�1 using the maximum linear rate
for the controls, blank, and experimental samples for at least
10 min. Subtract the ΔA570 min�1 of the blank from the value
obtained for the samples. Plot the ΔA570 min�1 of the stan-
dards against the nucleotide concentration in each of them to
obtain a calibration curve in which the values for the samples
are to be interpolated. Using the OD600 of the cultures, esti-
mate the CDW concn. for each sample as detailed in
Sect. 3.1.1. Obtain the nucleotide content by dividing the
mole amount of each nucleotide by the CDW from which
they were extracted.

12. Calculate the catabolic redox ratio as [NADH]/[NAD+] and
the anabolic redox ratio as [NADPH]/[NADP+]. The total
redox ratio is defined as [NADH] + [NADPH]/
[NAD+] + [NADP+].

3.4 Oxidative

Stress Test

For the determination of the sensitivity of the cells to oxidative
stress, we propose a protocol in which oxidative stress conditions
are imposed by adding the thiol-oxidizing agent DA [1,10-azo-bis
(N,N-dimethylformamide)] to the cultures from a concentrated
solution. DA solutions are freshly prepared in DMSO. An appro-
priate volume of DMSO is added to control cultures, run in
parallel.

1. Prepare P. putida cultures as described in the preceding
sections.

2. Harvest 5–10-mL cell suspension aliquots at mid-exponential
growth phase (at an OD600 of about 50% of the maximal value,
OD600 ¼ 0.5–0.6) by centrifugation (15 min, 4,000�g, 4�C).
Wash the pellets twice with 10 mM MgSO4.

3. Resuspend the cells in 10 mM MgSO4 to an OD600 ¼ 3.
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4. Prepare a dose–response curve to determine the cells’ sensitiv-
ity to diamide, by distributing M9 minimal medium supple-
mented with 20 mM glucose and increasing concentrations of
DA (10–1,000 μg mL�1) in 96-well microtiter plates. The DA
concentration gradient is prepared by aliquoting the appropri-
ate volume from the concentrated DA solution.

5. Inoculate each plate with the cell suspension adjusted to
OD600 ¼ 3, so that the initial OD600 is ~0.05.

6. Incubate the samples at 30�C using a microplate reader (with
periodic agitation to prevent biomass sedimentation) and mon-
itor the culture growth by turbidimetry (i.e., OD600).

7. Determine the concentration of DA that produces a 50% and
100% inhibition of the bacterial growth. For this purpose,
calculate the percentage of growth inhibition as 100 � (μDA/
μC), where μDA is the specific growth rate in the presence of any
given concentration of DA and μC is the specific growth rate of
the control culture (i.e., without any DA added). Specific
growth rates are obtained as detailed in Sect. 3.1.1. Qualita-
tively correlate the redox ratios obtained in vitro as detailed in
Sect. 3.3 (in particular, the anabolic redox ratio) to the toler-
ance of the cells to diamide.

4 Notes

1. There are several spectrophotometric- or HPLC-based analyti-
cal methods that can be used to determine the glucose content
in liquid samples. Several commercial kits can also be used.
Most of them are based on fluorescence (Amplex red glu-
cose/glucose oxidase assay kit; Life Technologies) or colorim-
etry [glucose (GO) assay kit; Sigma-Aldrich Co.].

2. We have used an UltroSpec 3000 Pro UV–vis spectrophotom-
eter (Biochrom Ltd., Cambridge, UK) for the determinations;
however, the determination of kinetic parameters and enzy-
matic assays can be optimized in smaller volumes in a micro-
plate reader [e.g., SpectraMax Plus 384 microplate reader or a
Wallac 1420 VICTOR2 multi-label counter and microplate
reader (PerkinElmer Inc., Waltham, MA, USA)].

3. For labeling experiments, either 100% [1-13C]-glucose or a
mixture of 20% (w/w) [U-13C]-glucose and 80% (w/w)
natural glucose were used. [1-13C]-Glucose was purchased
from Cambridge Isotope Laboratories Inc. (Tewksbury, MA,
USA) and [U-13C]-glucose from Sigma-Aldrich Co.

4. A cell culture at metabolic steady state refers to the fact that
there is no change neither in the growth rate nor in the uptake
of carbon source over small periods of time. These growth
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parameters usually remain constant in the range of few hours
during exponential growth.

5. A SPB-1 capillary column [length ¼ 30 m, internal diameter
¼ 0.32 mm, film thickness ¼ 0.25 μm, phase ¼ poly(dimethyl
siloxane), bonded] (Sigma-Aldrich Co., cat. # 24044) was
used; however, other capillary nonpolar columns can also be
employed.

6. GC–MS determinations were carried out in a Series 8000 gas
chromatograph combined with a MD 800 mass spectrometer
(Fisons Instruments PLC, Ipswich, UK). MD 800 mass spec-
trometer (Fisons Instruments) commonly comes equipped
with Excalibur or Masslab software for data acquisition.

7. For flux calculations in MFA experiments, we recommend to
use the MATLAB-based program Fiat Flux software [77].

8. A quartz cell of 1-cm width is the most commonly used for
enzymatic assays involving NAD(P)(+/H). There are a number
of plastic cells currently available that can be used in the UV
region of the spectrum (e.g., BRANDUV cuvettes, BrandTech
Scientific Inc., Essex, CT, USA, cat. # 759170).

9. A M9 salt mixture is prepared as a 10� concentrated solution
and autoclaved. This 10� solution is obtained by mixing the
following components (per liter of DI water): 128 g
Na2HPO4 · 7H2O, 30 g KH2PO4, 5 g NaCl, and 10 g
NH4Cl [83]. Just prior to use, this concentrated solution is
diluted with sterile DI water, added with MgCl2, a trace ele-
ment solution, and glucose as needed. MgCl2 is added at
0.2 g L�1 from a filter-sterilized 2% (w/v) stock. A trace ele-
ment solution [84] is added at 2.5 mL L�1. Glucose is added at
20 mM from a filter-sterilized 20% (w/v) stock.

10. In this step, 0.20-μm nitrocellulose filters can also be used but
the filtration process would be very slow. The procedure can
also be done by centrifugation (15 min, 4,000�g, 4�C). After
decanting the supernatant, the cells are subsequently washed
with 0.9% (w/v) NaCl, transferred to pre-weighed Eppendorf
tubes and dried at 105�C for 24 h to a constant weight.

11. To calculate the flux ratios, two independent experiments are
required for each strain or condition: an experiment where the
carbon source is 100% [1-13C]-glucose and another experi-
ment where the carbon source is a mixture of 20% (w/w)
[U-13C]-glucose and 80% (w/w) naturally labeled glucose.

12. The pellet may be stored at �20�C for several weeks.

13. Although a master network of biochemical reactions has been
established and can be used for MFA experiments, the meta-
bolic model should be adjusted as close as possible according to
genomic information available for the microorganism under
study.
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14. Most enzyme assays are performed at 25�C; however, this
protocol has been designed for P. putida, the optimum growth
temperature of which is 30�C.

15. Depending on the activity of each enzyme, the time necessary
to measure the change in A340 can vary widely. The time
needed to get data in the linear portion of the absorbance
versus time plot in these enzymatic assays usually varies
between 5 and 10 min.

16. Depending on the culture conditions and the efficiency of
protein extraction during the preparation of cell-free extracts,
a dilution of the extract should also be tested in parallel to
determine the best amount of total protein for each assay.
Dilutions of the cell-free extract are prepared in the same buffer
used for sonication.

17. In the case of activities represented by more than one enzyme
(e.g., G6PDH), the cofactor specificity of the total activity is
given.

18. We have found that keeping the time needed for cell harvesting
and metabolic quenching to less than 3 min gives the best
results in terms of recovery of pyridine nucleotides.

19. Store the neutralized samples at �20�C for no longer than
24 h.
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7. Winter G, Krömer JO (2013) Fluxomics - con-
necting omics analysis and phenotypes. Environ
Microbiol 15:1901–1916

8. Liu L, Agren R, Bordel S, Nielsen J (2010) Use
of genome-scale metabolic models for

understanding microbial physiology. FEBS
Lett 584:2556–2564

9. Kitano H (2002) Systems biology: a brief over-
view. Science 295:1662–1664

10. Chavarrı́a M, Kleijn RJ, Sauer U, Pfl€uger-Grau
K, de Lorenzo V (2012) Regulatory tasks of
the phosphoenolpyruvate-phosphotransferase
system of Pseudomonas putida in central carbon
metabolism. mBio 3, e00028-12

11. Fuhrer T, Fischer E, Sauer U (2005) Experi-
mental identification and quantification of glu-
cose metabolism in seven bacterial species. J
Bacteriol 187:1581–1590

12. Sauer U, Eikmanns BJ (2005) The PEP-pyru-
vate-oxaloacetate node as the switch point for
carbon flux distribution in bacteria. FEMS
Microbiol Rev 29:765–794

13. Dauner M, Bailey JE, Sauer U (2001) Meta-
bolic flux analysis with a comprehensive isoto-
pomer model in Bacillus subtilis. Biotechnol
Bioeng 76:144–156

14. del Castillo T, Ramos JL, Rodrı́guez-Herva JJ,
Fuhrer T, Sauer U, Duque E (2007) Conver-
gent peripheral pathways catalyze initial glu-
cose catabolism in Pseudomonas putida:

Quantitative Physiology Approaches to Understand. . . 67



genomic and flux analysis. J Bacteriol
189:5142–5152

15. Berger A, Dohnt K, Tielen P, Jahn D, Becker J,
Wittmann C (2014) Robustness and plasticity
of metabolic pathway flux among uropatho-
genic isolates of Pseudomonas aeruginosa.
PLoS One 9, e88368

16. Sauer U, Lasko DR, Fiaux J et al (1999)
Metabolic flux ratio analysis of genetic and
environmental modulations of Escherichia
coli central carbon metabolism. J Bacteriol
181:6679–6688

17. Perrenoud A, Sauer U (2005) Impact of global
transcriptional regulation by ArcA, ArcB, Cra,
Crp, Cya, Fnr, and Mlc on glucose catabolism
in Escherichia coli. J Bacteriol 187:3171–3179

18. Stephanopoulos G (1999) Metabolic fluxes
and metabolic engineering. Metab Eng 1:1–11

19. Blank LM, Ionidis G, Ebert BE, B€uhler B,
Schmid A (2008) Metabolic response of Pseu-
domonas putida during redox biocatalysis in
the presence of a second octanol phase. FEBS
J 275:5173–5190

20. Xiong W, Liu L, Wu C, Yang C, Wu Q (2010)
13C-Tracer and gas chromatography–mass
spectrometry analyses reveal metabolic flux dis-
tribution in the oleaginous microalga Chlorella
protothecoides. Plant Physiol 154:1001–1011

21. Shi H, Shiraishi M, Shimizu K (1997) Meta-
bolic flux analysis for biosynthesis of poly(β-
hydroxybutyric acid) in Alcaligenes eutrophus
from various carbon sources. J Ferment Bioeng
84:579–587

22. Tyo KEJ, Fischer CR, Simeon F, Stephanopou-
los G (2010) Analysis of polyhydroxybutyrate
flux limitations by systematic genetic and met-
abolic perturbations. Metab Eng 12:187–195

23. Nanchen A, Fuhrer T, Sauer U (2007) Deter-
mination of metabolic flux ratios from 13C-
experiments and gas chromatography–mass
spectrometry data: protocol and principles.
Methods Mol Biol 358:177–197

24. Fischer E, Sauer U (2005) Large-scale in vivo
flux analysis shows rigidity and suboptimal per-
formance of Bacillus subtilis metabolism. Nat
Genet 37:636–640

25. Dauner M, Sauer U (2000) GC-MS analysis of
amino acids rapidly provides rich information
for isotopomer balancing. Biotechnol Prog
16:642–649

26. Sauer U (2006)Metabolic networks in motion:
13C-based flux analysis. Mol Syst Biol 2:62

27. Fischer E, Zamboni N, Sauer U (2004) High-
throughput metabolic flux analysis based on
gas chromatography–mass spectrometry
derived 13C constraints. Anal Biochem
325:308–316

28. Fischer E, Sauer U (2003) Metabolic flux
profiling of Escherichia coli mutants in central
carbon metabolism using GC-MS. Eur J Bio-
chem 270:880–891

29. Kleijn RJ, Buescher JM, Le Chat L, Jules M,
Aymerich S, Sauer U (2010) Metabolic fluxes
during strong carbon catabolite repression by
malate in Bacillus subtilis. J Biol Chem
285:1587–1596

30. Meijnen JP, de Winde JH, Ruijssenaars HJ
(2012) Metabolic and regulatory rearrange-
ments underlying efficient D-xylose utilization
in engineered Pseudomonas putida S12. J Biol
Chem 287:14606–14614

31. Yang C, Hua Q, Shimizu K (2002) Metabolic
flux analysis in Synechocystis using isotope distri-
bution from 13C-labeled glucose. Metab Eng
4:202–216

32. Nissen TL, Schulze U, Nielsen J, Villadsen J
(1997) Flux distributions in anaerobic,
glucose-limited continuous cultures of Sac-
charomyces cerevisiae. Microbiology
143:203–218

33. Christensen B, Nielsen J (1999) Isotopomer
analysis using GC-MS. Metab Eng 1:282–290

34. Nikel PI, Zhu J, San KY, Méndez BS, Bennett
GN (2009) Metabolic flux analysis of Escheri-
chia coli creB and arcA mutants reveals shared
control of carbon catabolism under microaero-
bic growth conditions. J Bacteriol
191:5538–5548

35. Emmerling M, Dauner M, Ponti A et al (2002)
Metabolic flux responses to pyruvate kinase
knockout in Escherichia coli. J Bacteriol
184:152–164

36. Massou S, Nicolas C, Letisse F, Portais JC
(2007) NMR-based fluxomics: quantitative
2D NMR methods for isotopomers analysis.
Phytochemistry 68:2330–2340

37. Sekiyama Y, Kikuchi J (2007) Towards
dynamic metabolic network measurements by
multi-dimensional NMR-based fluxomics.
Phytochemistry 68:2320–2329

38. Sauer U (2004) High-throughput phenomics:
experimental methods for mapping fluxomes.
Curr Opin Biotechnol 15:58–63

39. Nargund S, Joffe ME, Tran D, Tugarinov V,
Sriram G (2013) Nuclear magnetic resonance
methods for metabolic fluxomics. Methods
Mol Biol 985:335–351

40. Chavarrı́a M, Nikel PI, Pérez-Pantoja D, de
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Design of Orthogonal Pairs for Protein Translation: Selection
Systems for Genetically Encoding Noncanonical Amino
Acids in E. coli

Jelena Jaric and Nediljko Budisa

Abstract

The expansion of the genetic code is gradually becoming a core discipline in synthetic biology.
Residue-specific incorporation of noncanonical amino acids (ncAAs) into proteins allows facile alteration
and enhancement of protein properties. There are two distinct in vivo approaches available for their
cotranslational incorporation. For isostructural noncanonical amino acids, residue-specific replacement of
canonical amino acids is performed with the supplementation-based incorporation method (SPI) using
auxotrophic host strains. On the other hand, orthogonal ncAAs are incorporated into the proteins site
specifically in response to stop or quadruplet codons (stop codon suppression (SCS)) using orthogonal
aminoacyl-tRNA synthetase/tRNA pairs (o-pair). Frequently used o-pair is based on the tyrosyl-tRNA
synthetase from Methanocaldococcus jannaschii (MjTyrRS). To evolve a new orthogonal aminoacyl-tRNA
synthetase (aaRS), which recognizes exclusively the noncanonical amino acid, the most straightforward
solution is to produce a library of MjTyrRS mutants, containing randomized residues in the amino acid-
binding site, on the basis of available crystal structure. The library is transformed into Escherichia coli and
three rounds of positive and negative selection are performed in order to select for desired MjTyrRS variant
which uniquely charges the tRNA with the ncAA of interest. Here, we provide a protocol with detailed
description how to perform positive and negative selection with chloramphenicol acetyltransferase and
barnase, respectively.

Keywords: Amber suppressor Methanocaldococcus jannaschii tRNATyr
CUAopt, Methanocaldococcus

jannaschii tyrosyl-tRNA synthetase, Noncanonical amino acid, Orthogonal pair, Positive and negative
selection, Stop codon suppression approach

1 Introduction

To generate natural proteins, only 20 canonical amino acids (cAAs),
encoded by the 61 sense codons, are used. However, due to the
limited range of functions performed by proteins, they often require
amino acid side chains with increased chemical functionality.
The main source of chemical diversity in the majority of mature

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016) 71–82,
DOI 10.1007/8623_2015_105, © Springer-Verlag Berlin Heidelberg 2015, Published online: 19 June 2015
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proteins and peptides is posttranslational modifications (PTMs).
These complex processes, performed by enzymes and enzyme
assemblies, are separated from translation concerning both time and
space. Thus, the engineeringof cells with expanded genetic codes that
include noncanonical amino acids (ncAAs) allows design of proteins
with enhanced and novel characteristics and activities [1].

Currently, there are two different approaches for the incorpora-
tion of noncanonical amino acids into the proteins (Fig. 1). The
first approach, so-called supplementation-based incorporation
(SPI), relies on the natural substrate tolerance of the endogenous
host aminoacyl-tRNA synthetase (aaRS) by using auxotrophic host

Fig. 1 Aminoacylation with canonical and noncanonical amino acids for protein translation. (a) In normal
aminoacylation reaction aminoacyl-tRNA synthetase charges tRNAs with the corresponding cognate amino
acid. (b) Supplementation-based incorporation method (SPI). (c) Stop codon suppression (SCS) approaches.
See introduction part for more detailed description (Figure reproduced from Hoesl M.G. and Budisa N. 2012
with permission from Elsevier [2])
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strain (Fig. 1b). In this way, noncanonical amino acids which are
isostructural to their canonical counterparts can be incorporated in
a target protein via sense-codon reassignment [3]. Stop codon
suppression (SCS) methodology, the second approach, uses a het-
erologous orthogonal aaRS:tRNA pair (o-pair) to incorporate an
orthogonal amino acid in response to a stop codon site specifically
(Fig. 1c). Orthogonality is a crucial condition and is defined by a
lack of cross-reactivity between the o-pair (including the ncAA) and
the endogenous host aminoacyl-tRNA synthetases, amino acid, and
tRNAs [4].

Since Methanocaldococcus jannaschii tyrosyl-tRNA synthetase
(MjTyrRS) and its cognate tRNATyr (MjtRNATyr) are almost a
natural orthogonal pair in E. coli [5], the MjTyrRS is often used
for evolving an aaRS, which will exclusively charge tRNA with
desired ncAA, by introducing mutations in the active site of
MjTyrRS. Normally, up to five amino acids are randomized into
all 20 amino acids and several are placed into fixed mutations based
on the available crystal structure [6] and rational design. Addition-
ally, since the incorporation of ncAA is in response to a stop codon,
MjtRNATyr has to be mutated into amber suppressor tRNA by
changing the tRNA anticodon to CUA. In 2009 Guo et al. per-
formed directed evolution experiments that focused on the T-stem
of amber suppressor MjtRNATyr

CUA and identified a modified
optimized suppressor (MjtRNATyr

CUAopt) that increased unnatu-
ral amino acid incorporation efficiency with several aaRS [7].

Once the MjTyrRS library is produced, a few rounds (usually
three) of positive and negative selection have to be performed in
order to select for the MjTyrRS variant which uniquely recognizes
the ncAA of interest (Fig. 2). MjTyrRS library is transformed into
E. coli cells that express MjtRNATyr

CUAopt and a gene encoding
chloramphenicol acetyltransferase (CAT) with two amber stop
codons at a permissive sites (Fig. 3a). In this step cells are grown
in the presence of all canonical amino acids, noncanonical amino
acids, and chloramphenicol so that only cells with the aaRS mutants
capable of aminoacylating MjtRNATyr

CUAopt with the ncAA or any
endogenous amino acids live since suppression of amber stop
codons in cat gene gives cells the resistance to chloramphenicol
(Cm). Surviving mutants are then transformed into E. coli cells that
express MjtRNATyr

CUAopt and the toxic barnase gene with two
amber stop codons at permissive sites (Fig. 3b). This is negative
selection step: cells are grown in the presence of all canonical amino
acids, but in the absence of noncanonical amino acid. In this way,
cells which contain aaRS mutants which still charge suppressor
tRNA with any of 20 canonical amino acids die since the suppres-
sion of amber stop codons in the gene for barnase results with the
expression of toxic protein. This leaves only aaRS variant that
aminoacylates MjtRNATyr

CUAopt with the noncanonical amino
acid of interest [4].
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Fig. 2 Principle of positive and negative selection. (a) In positive selection only aaRS mutants which charge
suppressor tRNA with any of 20 canonical amino acids or noncanonical amino acid lead to cell growth. In this
step mutants whose amino acid-binding pocket is inactive are discriminated. (b) In negative selection only
cells which are not incorporating the noncanonical amino acid survive since ncAA is not provided in the growth
media. All other aaRS mutants which still charge suppressor tRNA with any of 20 canonical amino acids
enable translation of barnase which leads to cell death. Graphic kindly provided by Dr. Michael Hösl. (c)
Substrates to be tested are tyrosine which is natural or canonical amino acid whereas fluorescent probes
coumarin alanine and 1-naphthylalanine are noncanonical counterparts
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In this chapter we describe how to perform positive and nega-
tive selection with chloramphenicol acetyltransferase and barnase,
respectively, with the already selected MjTyrRS variant in order to
prove its substrate specificity and functionality. We exemplify here
the library design with fluorescent ncAAs coumarin alanine and
1-naphthylalanine (Fig. 2). Although their orthogonal pairs have
been reported [4], there is still a great need for the catalytic
improvements.

From a practical standpoint, it is important to emphasize that
reassignment of stop codons is not toxic to cells, as a whole proce-
dure is in fact an extension of the recombinant DNA technology.
Namely, the cells are grown to mid-log phase, and after enough cell
mass is accumulated, plasmid encoded gene with in-frame stop

Fig. 3 CAT/barnase-based selection system. (a) Positive selection with chloramphenicol acetyltransferase. Cells
grow in the presence of all canonical amino acids (red and gray circles), noncanonical amino acid (green square),
and chloramphenicol so that only cells with the aaRS mutants capable of aminoacylating MjtRNATyrCUAopt with the
ncAA or any endogenous amino acid live. (b) Negative selection with barnase. Cells grow in the absence of
noncanonical amino acid (green square). In this way, cells which contain aaRS mutants which still charge
suppressor tRNA with any of 20 canonical amino acids rescue barnase activity and subsequently die. Therefore
only cells with aaRS variant that exclusively aminoacylates MjtRNATyrCUAopt with the noncanonical amino acid of
interest survive negative selection step
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codon is almost exclusively expressed. The widely used promoters
(e.g., T7, T5, arabinose, etc.) do not support cellular growth of the
bacterial host after induction of the protein synthesis at all, i.e., the
whole cellular machinery is in the function of target protein pro-
duction. Bacterium Escherichia coli is commonly used as host cell,
although other microorganisms (e.g., yeast) and even higher
eukaryotic cells (from insects, mammals) were used as well [4].

2 Materials

2.1 Preparation of

24-Well Plate for

Positive Selection

1. New minimal media without tyrosine (NMM (�Tyr)) with
agar (see Subheading 2.6).

2. Antibiotics: ampicillin, kanamycin, and chloramphenicol
(see Subheading 2.5).

3. 24-well plate (Techno Plastic Products; TPP (http://www.
tpp.ch)).

4. Noncanonical amino acid (see Subheading 2.5) (see Note 1).

2.2 Transformation

of Chemically

Competent E. coli

DH10b Cells

1. Vector: pBU181GK_MjTyrRSmutant (Fig. 4c) (see Note 2).

2. Bacteria strain: chemically competent E. coli DH10b strain
(Life Technologies (http://www.lifetechnologies.com)) which
already contains plasmid pPAB260_cat(Q98TAG, D181TAG)
MjtRNATyr

CUAopt or pNB2602_barnase(Q2TAG, D44TAG)
MjtRNATyr

CUAopt, respectively (Fig. 4a, b).

3. LB media (see Subheading 2.6).

2.3 Cell Growth and

Positive Selection with

Chloramphenicol

Acetyltransferase

1. LB media (see Subheading 2.6).

2. Antibiotics: ampicillin and kanamycin (see Subheading 2.5).

3. Bacteria strain: E. coli DH10b strain (Life Technologies
(http://www.lifetechnologies.com)) transformed with two

proK tRNA promoter

MjtRNATyrCUAopt
proK tRNA terminator

KanR

p15A
Cm resistance module

D181TAG

Q98TAG

3,736 bp

rrnB t1 terminator

Barnase

MjtRNATyrCUAopt

Lac promoter

KanR

p15a

D44TAG

Q2TAG

3,359 bp

pUC Ori

AmpR

glnS' terminator

MjTyrRS mutant

glnS' promoter

4,023 bp

pPAB26'_cat(Q98TAG, D181TAG)
MjtRNATyr

CUAopt

a b c

pNB26'2_barnase(Q2TAG, D44TAG)
MjtRNATyr

CUAopt
pBU181GK_MjTyrRSmutant 

Fig. 4 Maps of plasmids used in our laboratory. (a) pPAB260_cat(Q98TAG, D181TAG) MjtRNATyrCUAopt is
kanamycin-resistance plasmid carrying genes for CAT with two in-frame amber stop codons (Q98TAG and
D181TAG) and MjtRNATyrCUAopt. (b) pNB2602_barnase(Q2TAG, D44TAG) MjtRNATyrCUAopt is kanamycin-
resistance plasmid carrying genes for barnase with two in-frame amber stop codons (Q2TAG and D44TAG)
and MjtRNATyrCUAopt. (c) pBU181GK_MjTyrRSmutant is ampicillin-resistance plasmid carrying gene for
MjTyrRS mutant
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plasmids: pPAB260_cat(Q98TAG, D181TAG) MjtRNATyr-
CUAopt and pBU181GK_MjTyrRSmutant (Fig. 4a, c).

4. NMM (�Tyr) (see Subheading 2.6).

5. Previously prepared 24-well plate.

2.4 Negative

Selection with Barnase

1. Plates: LBAmpKan with 2 mM ncAA and LBAmpKan.

2. Vector: pBU181GK_MjTyrRSmutant (Fig. 4c) (see Note 2).

3. Bacteria strain: chemically competent E. coli DH10b strain
(Life technologies (http://www.lifetechnologies.com)) which
already contains plasmid pNB2602_barnase(Q2TAG,
D44TAG) MjtRNATyr

CUAopt (Fig. 4b).

4. LB media (see Subheading 2.6).

2.5 General Buffers

and Reagents

1. Ampicillin (Roth (http://www.carlroth.com)): 100 mg/ml in
water. Store at �20�C.

2. Kanamycin (Roth (http://www.carlroth.com)): 50 mg/ml in
water. Store at �20�C.

3. Chloramphenicol (Roth (http://www.carlroth.com)): 37 mg/
ml in 100% ethanol. Store at �20�C.

4. Noncanonical amino acid: if possible, prepare 40mM stock and
store according to manufacturer’s instructions.

2.6 Bacteria Growth

Media

1. LB: 10 g tryptone/peptone, 5 g yeast extract, and 5 g NaCl/L
water.

2. New minimal media (NMM): 7.5 mM (NH4)2SO4, 8.5 mM
NaCl, 22 mM KH2PO4, 50 mM K2HPO4, 1 mM MgSO4,
20 mM D-glucose, 50 mg/L all amino acids (see Note 3),
1 μg/mL Ca2+, 1 μg/mL Fe2+, 0.01 μg/mL trace elements
(Cu2+, Zn2+, Mn2+, MoOH2+), 10 μg/mL thiamine, 10 μg/
mL biotin, 100 μg/mL ampicillin, 50 μg/mL kanamycin,
0.5–2 mM noncanonical amino acid (see Note 4)

To prepare solid LB media, agar at the final concentration of
15 g/L was added to the solution. Following the autoclaving, the
media was supplemented with needed antibiotics. The final con-
centrations of the antibiotics used in this study were as follows:
ampicillin 100 μg/mL, kanamycin 50 μg/mL, and chlorampheni-
col 37 μg/mL. To prepare solid NMM (�Tyr), freshly autoclaved
(still liquid) 2 � agar (30 g/L) was gently mixed with the equal
volume of 2 � NMM (�Tyr); the final concentration of NMM
components in 2 � NMM (�Tyr) is as twice as mentioned above
(see Note 5).
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3 Methods

3.1 Positive

Selection with

Chloramphenicol

Acetyltransferase

3.1.1 Preparation

of 24-Well Plate

1. Pipette in each well 100 μL autoclaved sterile MilliQ water.

2. Add 100 μL 40 mM noncanonical amino acid in the wells from
A1 to B6 so that the final concentration of ncAA in the final
volume of 2 mL is 2 mM (Fig. 5).

3. Instead of ncAA add the same volume (100 μL) of autoclaved
sterile MilliQ water in the wells from C1 to D6.

4. Pipette 100 μL Cm of appropriate concentration in the wells
from A1 to B6 and from C1 to D6, respectively, so that the
concentration of Cm rises in the following way: 0, 5, 10, 15,
25, 37, 50, 60, 75, 100, 150, and 200 μg/mL (Fig. 5).

5. In the end add 1.7 mL NMM (�Tyr) with agar and premixed
ampicillin and kanamycin, mix carefully to avoid air bubbles in
the media, and let the 24-well plate stand on the room temper-
ature (RT) to cool down.

3.1.2 Transformation of

Chemically Competent

E. coli DH10b Cells

In order to perform positive selection test, chemically competent
E. coli DH10b cells which already contain plasmid pPAB260_cat
(Q98TAG, D181TAG) MjtRNATyr

CUAopt were transformed with
pBU181GK_MjTyrRSmutant in the following way:

1. Add 100–500 ng of plasmid DNA pBU181GK_MjTyrRSmu-
tant into 50 μL E. coli DH10b cells.

2. Incubate on ice 30 min.

3. Incubate at 42�C 2 min.

4. Add immediately 950 μL LB media.

5. Incubate at 37�C 60 min.

with 2 mM ncAA

without ncAA
0 5 10 15 20 37

50 60 75 200100 150

0 5 10 15 20 37

50 60 75 100 150 200

Fig. 5 Schematic representation of 24-well plate with antibiotic concentration
gradient. Wells in the lines A (A1–A6) and B (B1–B6) are supplemented with
2 mM noncanonical amino acid, while wells in the lines C (C1–C6) and D
(D1–D6) do not contain noncanonical amino acid. Different numbers in the
circles designate the chloramphenicol concentration in μg/mL
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3.1.3 Cell Growth and

Test on the 24-Well

Positive Selection Plate

1. Inoculate 9 mL of LB which contains 100 μg/mL ampicillin
and 50 μg/mL kanamycin (LBAmpKan) with 1 mL of freshly
transformed E. coli DH10b cells from the previous step.

2. Grow the cells shaking (200 rpm) overnight at 37�C to an
OD600nm (optical density) ¼ 0.6.

3. Spin down 1 mL of cells by centrifugation at maximal speed
(13,400 rpm) for 2 min.

4. Resuspend the cells gently in 1 mL of NMM (�Tyr) by pipet-
ting up and down and spin down the cells by centrifugation at
maximal speed (13,400 rpm) for 2 min. Remove the
supernatant.

5. Repeat step 4.

6. Resuspend the cells in 1 mL of NMM (�Tyr).

7. Plate 10 μL of cells on each well on the 24-well plate.

8. Incubate at 37�C overnight (see Note 6) (Fig. 6a).

Figure 6a represents 24-well plate after 1-day incubation at
37�C. Cells grow up to 37 μg/mL Cm in the presence of ncAA
(well A6), while in the absence of ncAA, cells grow only on the
NMM (�Tyr) media without chloramphenicol (0 μg/mL Cm; well
C1), as expected. After 2-day incubation at 37�C, there is cell
growth up to 150 μg/mL Cm and 2 mM ncAA (well B5) and up
to 15 μg/mL Cm when ncAA is omitted (well C4) (Fig. 6b).

3.2 Negative

Selection with Barnase

1. Prepare two different type of plates: (1) LBAmpKan with
2 mM ncAA and (2) LBAmpKan.

2. Transform chemically competent E. coli DH10b cells which
already contain plasmid pNB2602_barnase(Q2TAG,
D44TAG) MjtRNATyr

CUAopt with pBU181GK_MjTyrRSmu-
tant as described under “Transformation of chemically compe-
tent E. coli DH10b cells” (see Subheading 3.1.2).

3. After 1 h incubation at 37�C (see Subheading 3.1.2), plate 20,
200, and 780 μL of cells on LBAmpKan with/without ncAA
plates (see Note 7) (Fig. 7).

4. The next day, streak several colonies (e.g., 16 colonies) from
the LBAmpKan plate to a fresh plate of the same media com-
position. Incubate the plate at 37�C overnight (Fig. 8a).

5. To confirm once more that streaked colonies do not grow on
LBAmpKan with noncanonical amino acid, restreak them on a
such plate. Incubate the plate at 37�C overnight (Fig. 8b).
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4 Notes

1. We prefer not to define the exact name of noncanonical amino
acid since its incorporation into the proteins and respective new
orthogonal aminoacyl-tRNA synthetase are not published yet.
So, we keep the name of used noncanonical amino acid as
“noncanonical amino acid or ncAA” throughout the text.

2. The vectors should be purified by mini or midi prep kit.

Fig. 6 Positive selection 24-well plates after (a) 1-day and (b) 2-day incubation. E. coli DH10b cells were
transformed with pPAB260_cat(Q98TAG, D181TAG) MjtRNATyrCUAopt and pBU181GK_MjTyrRSmutant. Rows A
and B (A1–A6 and B1–B6) contain 2 mM ncAA, while rows C and D (C1–C6 and D1–D6) do not contain ncAA.
Chloramphenicol concentration varies like shown in schematic representation in Fig. 5. Cells were left to grow
on NMM (�Tyr) Amp Kan at 37�C for 1 or 2 days, respectively
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3. We used NMM without tyrosine (NMM (�Tyr)). When evol-
ving a new aaRS fromMjTyrRS or testing the existing one, one
can omit tyrosine when preparing NMM for positive selection.

4. Depending on the commercial availability and price, one can
also use higher concentrations of noncanonical amino acid
(e.g., 5 mM).

5. Mix carefully 2 � NMM (�Tyr) and 2 � agar to avoid air
bubbles in liquid media and afterward in solid media in the
Petri dish or 24-well plate.

6. It’s recommended to incubate the plates up to 3 days to follow
the growth difference among wells with and without ncAA and
wells with different Cm concentration.

Fig. 7 Negative selection plates in the (a) (b) (c) absence and (d) presence of noncanonical amino acid.
Different amounts of cells from the culture with OD600 ffi 1 were plated: (a) 20 μL, (b) 200 μL, and (c) 780 μL
on the LBAmpKan plates. Cells grew at 37�C overnight. Due to the lack of ncAA, expression of toxic barnase
does not occur and cells live. (d) Only LBAmpKan with 2 mM ncAA plate with 200 μL of cells is shown.
Cells grew at 37�C overnight. Due to the presence of ncAA, toxic barnase is expressed and cells are not
growing. E. coli DH10b cells were transformed with pNB2602_barnase(Q2TAG, D44TAG) MjtRNATyrCUAopt and
pBU181GK_MjTyrRSmutant

Fig. 8 Control experiment on negative selection plates in the (a) absence and (b)
presence of noncanonical amino acid, respectively. (a) Eight colonies from the
negative selection LBAmpKan plates (Fig. 7a, b, c) were streaked on the
LBAmpKan plate and incubated at 37�C overnight. (b) The same eight colonies
were restreaked on the LBAmpKan with 2 mM ncAA and incubated at 37�C
overnight. As expected, cellular growth is completely inhibited in the presence of
ncAA
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7. After plating 20 and 200 μL of cells from the total volume of
1 mL, we advise to spin down the remaining 780 μL of cells by
centrifugation at maximal speed (13,400 rpm) for 1–2 min.
Resuspend the cell pellet in 100–200 μL of LB and plate.
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Phenome-ing Microbes

Klaus Hornischer and Susanne H€aussler

Abstract

One of the burning questions in bacterial genomics is how the phenotype of a bacterial strain correlates to
its genotype. Some phenotypes of a given organism’s isolate arise through simple sequence variations like
single nucleotide polymorphisms (SNP) or small insertions/deletions (InDel). For some phenotypes,
however, the underlying mechanism cannot be explained by simple genomic differences; rather, most of
them are the result of more complex sequence variations. Insight into complex phenotypes such as bacterial
pathogenicity, or resistance traits and their molecular background, require comprehensive data obtained in
large-scale projects and involve statistical methods. With the increasing usage of next-generation sequenc-
ing (NGS) and other “-omics” techniques in molecular biology, projects are now feasible which provide
such a data foundation. Big data, however, not only offers new opportunities but also requires extensive
data management systems. A coupled system of a relational database, web interface and statistical methods
provides substantial support for phenotype-genotype correlation studies aimed to unravel molecular
mechanisms underlying complex phenotypes and designed for biomarker identification.

Keywords Association study, Biomarker identification, Genotype-phenotype correlation

1 Introduction

One of themajor questions posed and addressed, especially in large-
scale sequencing projects, is how the genotype of a bacterial strain
correlates to its phenotypes. Some phenotypes of strains or isolates
of a given organism are explained by one small difference in the
nucleotide sequence (SNP or InDel) in comparison to a reference
strain, which lacks the respective trait. For most phenotypic differ-
ences, however, the underlying mechanism cannot be explained by
such simple genomic variation. Most of the phenotypic traits result
from the combination of several sequence differences.

The identification of a set of genetic determinants that are most
likely involved in the formation of a phenotype is not a simple task
and strictly relies on statistical methods. Due to high sequencing
costs in past years, the amount of data required for robust statistics
was frequently not available. With the recent introduction of new
sequencing and other “-omics” technologies [1, 2], a wealth of new
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possibilities has been introduced into molecular biology. Experi-
mental designs, which were not realistic in the past, due to high
costs or lengthy project times, are now feasible [3, 4].

One potential pitfall of association studies is the creation of false
positive associations due to small sample size or a lack of comparabil-
ity of the two groups to be compared. Only studies that are based on
an appropriately high number of isolates displaying the phenotype
under investigation, compared to a properly selected group of control
variants lacking the phenotype, have a good chance to produce
meaningful results. In an ideal experimental design, the two isolate
groups upon which the study is based would be identical in terms of
ancestry, environmental conditions and phenotypes, with the excep-
tion of the phenotype under consideration. This is obviously difficult
to achieve. In such a situation, a large sample size and a collection of
samples from very heterogeneous sources minimises the probability
of spurious associations as unlinked genetic differences level out due
to the big sample size, and associations which are statistically detected
have a higher probability to be true positives.

Recording of a plethora of biological features by the use of
“-omics” technologies can substantially facilitate the differentiation
of phenotypes (“stratification”). The term stratification is used in
personalised medicine for the identification of patient groups which
share “biological” characteristics, through biochemical, molecular
and imaging diagnostic test methods [5]. In the context of molec-
ular bacteriology, this means that “-omics” data on the bacterial
genome of a given species and its derivatives such as RNA, protein
and metabolites is used for the classification and characterisation of
bacterial phenotypes.

The aim of new approaches for genotype-phenotype correla-
tion studies is to provide extensive insights into the underlying
molecular mechanisms of even very complex bacterial phenotypes.
Furthermore, the subsequent identification of biomarkers that
serve stratification purposes, for instance susceptible versus non-
susceptible or pathogenic versus non-pathogenic isolates, is
expected to change and significantly advance routine medical
microbiology diagnostic procedures with respect to predictive
power and due to a lower “turnaround time”.

The data sets resulting from genome sequencing, protein
expression profiling, metabolomics and RNA-seq [6] experiments
are very large. Although for a small number of experiments values
can still be stored and handled in spreadsheets (e.g. Microsoft Excel
or OpenOffice Calc), for larger data collections the storage and
analysis is much more complicated or only feasible in a relational
database system. The structure of relational databases facilitates
data filtering, which has to be applied to produce meaningful sub-
sets of the data. The extracted data sets are then subjected to
statistical analysis, with the aim to identify statistically relevant
associations between sequence variations and a particular
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phenotype. The analysis results form the start point for the devel-
opment of hypotheses explaining the molecular mechanisms of
phenotypic traits, which have to be subsequently validated in wet
lab experiments. The accumulated knowledge can be exploited for
the identification of potential biomarkers that serve stratification
purposes [7].

2 Materials and Methods

2.1 Database

Creation

Although it is feasible to handle data resulting froma small number of
transcriptomics, proteomics and/or metabolomics experiments in
flat files like spreadsheets, the large number of data sets required for
sound and convincing statistics necessitates a relational database
system. Data in relational databases is usually stored in a multitude
of tables, each containing a distinct portion of the data, together with
information about how the entries of the diverse tables are related to
each other. Database systems frequently used in science are the open
source database systemsMySQL (http://dev.mysql.com/) and Post-
greSQL (http://www.postgresql.org/). Importing data into a data-
base, or retrieving data from the database, is commonly performed
using executable scripts, which in molecular biology are most fre-
quently written in popular scripting languages like Python (https://
www.python.org/) or Perl (https://www.perl.org/).

There are a number of good reasons for the utilisation of a
relational database for genotype-phenotype correlation studies. The
data produced in a variety of experiments, like those performed in “-
omics” experiments, is mostly available in flat files. For fast access and
reliable storage, the produced data has to be filed into a coherent
database structure. The generation of data subsets for analysis is
supported through the relational database schema by providing con-
venient ways to filter the stored information. Data sets from
subsequent analyses can also be sorted into the database, thus allow-
ing both original data and analysis results to be superimposed on the
database structure. This in turn providesmeans to link the stored data
with supporting information, in this way easing the interpretation of
the produced results through an “expert system”.

A reasonable and obvious choice for a basic database concep-
tion would be a structure that reflects the genomic organisation of
features (genes, transcriptional units, operons, proteins, regulatory
elements, etc.). The annotation files for finished bacterial genome
projects from one of the public sequence repositories (DDBJ [8],
EMBL [9], GenBank [10] or RefSeq [11]) can be used for its
creation. Parsing the information into a suitable table structure
provides not only the sequence information and annotation for
the required genomic features but also a wealth of links to addi-
tional external data sources. A subsequent update of the database
contents with sequence and annotation data for recently finished
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strains of the bacterial species in question ensures that the data
collection is up to date (Fig. 1).

The database system has to be extendable in a way that any
additional experimental results of a multitude of different “-omics”
technologies and supportive information can be easily integrated
without requiring changes to the overall structure of the database.
This also includes information defining the pan-genome
(Sect. 2.3). With the genomic annotation as the basis of the data
collection, and the “-omics” data, which represent molecular phe-
notypic properties of the respective prokaryote (“phenotypic land-
scape”), a broad data foundation for genotype-phenotype
correlation studies is prepared.

Storing data in relational databases facilitates data filtering. For
example in RNA-seq experiments data can be analysed based on
isolate groups, read coverage or SNP scores/qualities. This facil-
itates the creation of data matrices for statistical methods, which can
be filtered based on a multitude of parameters. The organisation of

Fig. 1 Example of the basic structure for a relational genomic database. The tables reflect the genomic
organisation. Additional tables for further structural genomic elements, phenotypic data and external database
links have to be linked to the respective tables of the basic structure
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data in a relational database system provides a suitable structure for
the storage of the data produced by “-omics” experiments (abso-
lute/relative expression values, overall variations in the expression
of the trait, etc.). Furthermore, it enables the association of the data
with additional information, like genomic feature annotation, or
phenotypic data of interest. Phenotypic data might, for instance,
include colony morphology parameters, minimal inhibitory con-
centration (MIC) profiles of antibiotic agents, growth curves, bio-
physical parameters of biofilm formation and so forth. With this
method, a holistic information platform for data storage and data
retrieval is available, which is not only a template structure for
storage and integration of experimentally generated “-omics” data
but also provides supporting information.

2.2 Data

Visualisation and

Distribution

A convenient way for users to communicate with a relational geno-
mic database is a web-based system. Such a system can be easily
implemented on a computer with a so-called LAMP configuration:
Linux operating system, Apache web server, MySQL database and
PHP, Perl or Python scripting. A system with a browser-based user
interface provides platform-independent user access not only
locally but also globally; a password protection restricts access to
authorised users. Web services creating dynamic web pages estab-
lish possibilities for data retrieval and data analysis and facilitate the
interpretation of analysis results by connecting them with back-
ground information. The Common Gateway Interface (CGI)
scripts required for the creation of the dynamically created web
pages are frequently programmed in a popular scripting language
like PHP (http://php.net/), Python or Perl.

2.3 Pan-Genome

Creation

The starting point of any attempt to understand genotype-
phenotype correlations is a detailed understanding of the genomic
composition of the organism under consideration. To date, the full
genomic sequence of multiple strains is available for many prokar-
yotes. Together with the annotation of genomic features this
provides at least an initial understanding of the genetic organisa-
tion. The entirety of all different genes in an organism is called a
pan-genome (or supra-genome) [12]. The concept describes the
gene pool that is available for a given organism: the larger the set of
different genes and gene functions which an organism has collected
in its pan-genome, the higher the potential of the organism to settle
in a multitude of environmental niches.

A compilation of the genes of which a species’ pan-genome is
composed is beneficial – or even required – in several different ways
to understand phenotypical differences. Sometimes, already the
presence of a gene or a group of genes in the accessory genome
(the genes which are present in only a subset of strains) is sufficient
to explain a given phenotype or its absence. A pan-genome can also
be used in situations in which a reference genome is required for an
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analysis, for instance, for base calling and transcriptional profiling
(Sect. 2.4). Normally, the genome assumed to be the ancestral
genome of the isolate under consideration is used as a reference.
In some situations, however, the ancestral genome is unknown.
Instead of arbitrarily choosing one of the known strains to be the
reference, a more accurate approach is to use the pan-genome of
the species, thus avoiding possible artefacts arising from the erro-
neous selection of the reference genome.

To identify the pan-genome for a species, the orthologous gene
relationship between the genomic sequences of all strains, for
which sequence and annotation are available, is determined. An
orthologous relationship is defined as the reciprocal best hit of
two genes not belonging to the same strain. An orthologous gene
group is a group of genes in which all genes are orthologs of all
other genes; if the gene group contains a gene from all investigated
isolates, the respective gene group is a core gene group. Many
ortholog gene groups, however, will contain only representatives
of a subset of the investigated isolates (accessory genes). Some of
the genes do not form a single ortholog gene pair; these are
identified as singleton gene. For each of the orthologous gene
groups a representative sequence is selected; all representatives
are then compiled into a pan-genome gene list. Singleton genes
are subsequently added. A number of online tools and software
suites have been published, which assist in the creation of a pan-
genome [13, 14].

The reference genome utilised for the evaluation of an RNA-
seq experiment is used in the form of a FASTA file. In the case of a
pan-genome the collected gene sequences are listed in the file, thus
forming a template for read mapping and SNP detection. However,
the sequence for a particular gene must not simply contain the
annotated gene sequence (between start and stop position),
because reads produced in a sequencing project frequently continue
into the intergenic region. For this reason, gene sequences in the
pan-genome should contain flanking sequence, so that even reads
continuing into the intergenic region can be properly assigned. In
the case of reference sequences created for DNA-resequencing
experiments, the intergenic sequences must also be included in
the construction of the pan-genome sequence. The intergenic
nucleotides on both sides of a gene, but particularly upstream, are
of interest, because they may contain regulatory elements of the
gene in question.

2.4 RNA-Seq

Experiments

In the first step of an RNA-seq [6] experiment, RNA is prepared
from harvested cell material. Since less than 5% of prokaryotic
cellular RNA is composed of mRNA sequences, rRNA and tRNA
are depleted in order to improve the ratio of mRNA to rRNA and
tRNA. Common techniques for mRNA enrichment in prokaryotes
are ribosomal RNA capture, degradation of processed RNA and
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selective polyadenylation of mRNAs [15]. From the RNA prepara-
tion, a cDNA library is created [16], which is subsequently
sequenced.

For transcriptional profiling the reads produced in the RNA-
seq experiment are matched to the pan-genome (Sect. 2.3) or a
reference genome, resulting in a reads per gene (RPG) count. To
do this, short reads of the sequence in question are aligned with the
reference sequence. A multitude of read mapping software tools are
available, two popular examples are Stampy [17] and Bowtie [18].
The calculated RPG can be used as the basis for the estimation of
relative expression values by comparing them to the RPG of a
reference strain; such normalisation is required for the comparison
of the gene expression in different isolates. Those reads not
matched during read mapping are not necessarily artefacts; a de
novo assembly can be performed in an attempt to detect unique
genes which were previously unknown (Sect. 2.6).

For the estimation of sequence variations (“SNP calling”), a
reference genome is required. Normally a previously sequenced
strain is used, which is ideally the ancestral genome of the variant
under investigation. If the selection of the proper reference strain is
arbitrary or inaccurate, alternatively a pan-genome can be used. In
the SNP calling process, sequence differences are determined by
matching the reads produced during sequencing of the isolate in
question to the reference genome, for example using SAMtools
[19]. The analysis of RNA-seq data with SNP calling algorithms
helps to understand the overall variability on the single nucleotide
level. This knowledge is useful in phenotype correlation studies,
because it supplies required information for the weighting of a
given SNP’s contribution to the expression of the phenotype.

In comparison with DNA sequencing (DNA-seq), the
sequence information gained through RNA-seq experiments is
incomplete, because intergenic regions are in most parts not cov-
ered by the sequencing experiment. Nevertheless, through short
read alignment of the high-quality sequencing read collection to
the reference strain, information about sequence differences (SNPs,
InDels) of the sequenced strain in comparison to the selected
reference sequence is available. The big advantage of RNA-seq,
however, lies in the fact that the experiment also provides informa-
tion about relative gene expression, which is measured by the read
coverage of a specific location of the genomic sequence. This
provides information about genes that are active in the respective
isolate, when it is cultivated under the applied growth conditions.

2.5 De Novo Genome

Assembly

The reads resulting from DNA-seq can be mapped to a reference
genome to assemble them into contigs. Although this is a faster
approach to assemble contigs than a de novo assembly, the latter
approach is unbiased. A de novo assembly of genomic reads can be
done using tools like Velvet [20] or ABySS [21] with parameters
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optimised to maximise the average contig length. Smaller contigs
are removed, and larger contigs are assembled into supercontigs,
for instance using the software CAP3 [22]. A reasonable threshold
value for the distinction between small and large contigs is 200 bps.
Supercontigs and unassembled regular contigs are annotated by
matching them to all bacterial entries in the UniProt database
[23] using the BLAST tool blastx [24, 25] to identify known
proteins or genes from other strains or species. Results are filtered
for the best hit for a given region in a contig in order to remove
multiple descriptions for the same gene. BLAST matching of the
resulting gene list against the pan-genome distinguishes known
genes from yet unknown or undescribed genes.

2.6 De Novo

Transcriptome

Assembly

In the first step of de novo transcriptome assembly, the reads
resulting from an RNA-seq experiment are mapped against a refer-
ence genome using tools like BWA [26], or Stampy [17], resulting
in the identification of the associated genes. Those reads which do
not map, however, still contain valid and important information
and are not necessarily artefacts resulting from poor sequencing
reads: if the sequenced isolate contains a gene which is not part of
the reference genome, its sequencing reads will not match.

Catching these accessory genes is achieved by processing the
pool of unmatched reads. In the first step, the mapping of the yet
unmatched reads is performed against all strains of the species, for
which sequence and annotation is available, or against the pan-
genome if it has been previously created. This allows identification
of all genes which are not part of the reference gene set but which
are present in one of the species’ other strains. With the remaining
pool of sequencing reads a de novo transcriptome assembly
approach using Velvet [27, 28] is performed. To start, an appropri-
ate parameter set uses a minimal contig length of 100 bp and a
sequence similarity higher than 90% as cut-off values, with applica-
tion of a range of k-mer values (for example 27–37). As for de novo
genome assembly, the resulting contigs are matched to the bacterial
entries of the UniProt database [23] to annotate detected genes.

2.7 Phylogenetic

Trees

Genotype-phenotype correlation studies rely upon statistical meth-
ods. For this reason, the number of isolates used for such a study is
critical; a higher number of strains used in the study results in
higher accuracy for the results of a statistical analysis. This state-
ment, however, is not globally true – a higher number of isolates
increases the significance of the applied statistical tests but only if
they are properly selected.

The isolates collected for studies that want to explain genotype-
phenotype correlations have to be collected from a broad spectrum
of resources, to assure that they are genetically as diverse as possible.
If, for instance, samples of pathogens were collected in a single
hospital, there is a high risk that at least some of them are clonal
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lineages caused by a clonal outbreak. These strains will likely carry
almost identical genomic sequences; if isolates resulting from such
an outbreak are included in a statistical analysis, although the
overall number of genomes used in the study might seem appropri-
ate, the results will be biased and could be misleading.

Prior to the start of a statistical project, the bacterial isolates
used in the study should therefore be checked for independence.
This can be done by the construction of a phylogenetic tree [29], in
which clonal outbreaks will be easily detected. The construction of
phylogenetic trees is based on a set of core gene sequences. For each
of the isolates to be included in the phylogenetic tree, information
for each of the selected genes is extracted. This can be achieved, for
instance, by first creating a consensus sequence from the reads
produced for the respective isolate using the SAMtools mpileup
tool [19]. The locations of the marker genes are estimated by
sequence matching with the reference gene sequences, whereby
the isolate gene sequences are cut out and concatenated, typically
using a short spacer nucleotide sequence consisting of “N”s to
separate them. The result of the operation will be a collection of
sequences, one for each of the isolates, each containing the con-
catenated sequences of the marker genes, always in the same order
and orientation.

In many projects in which phylogenetic trees are constructed, a
small number of housekeeping or marker genes are used. From the
multi-sequence FASTAfile created as described above, with a proper
tool like ClustalW [30], a Phylip distance matrix and a phylogenetic
tree can be constructed and subsequently visualised, e.g. in R statis-
tics by using the as.dist, hclust and as.dendrogram tools.

The rather small collection of marker genes used for the con-
struction of the phylogenetic tree, however, has the potential to
result in a biased phylogenetic tree. Using a large number of genes
for tree construction would be a much better choice, yet causes
problems during the sequence alignment step due to huge compu-
tational costs and extremely long programme run times. An alterna-
tive is an alignment-free genome phylogeny method, for instance
the k-mer tree method as described in Leekitcharoenphon et al.
[31]. The basic idea behind the method is that highly similar
sequences share k-mers (nucleotide sequence fragments of length k).
The frequency of all k-mers across the genomes is computed and
used to construct a matrix with k-mers as rows and genomes as
columns, with the cells containing the k-mer frequency. This matrix
is then submitted to hierarchical clustering in order to build the k-
mer tree, e.g. as a neighbour-joining tree. With the k-mer tree
method, all core genes which have a reasonable coverage (e.g. at
least 90% of the gene) for all of the genomes can be used as input for
the construction of the phylogenetic tree, thus using a huge number
of genes for the construction of the tree. The length of the k-mers
depends on the genome set and has to be adapted for best results.
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2.8 Statistical

Analysis of Variations

Between Groups of

Isolates

The investigation of complex behaviour, like resistance against
antibiotic agents or the virulence of bacterial pathogens, requires
the application of statistical methods. A strategy for the statistical
analysis of “-omics” data sets for potential genotype-phenotype
correlations is the comparison of two isolate groups, where one is
positive with respect to a phenotypic trait and the other is negative
with respect to that trait. The overall aim is to exploit the wealth of
acquired data and to use the information in order to identify
(groups of) sequence variations that reliably differentiate the
groups, in order to understand the molecular mechanism charac-
terising the phenotype and to identify biomarkers. For the statisti-
cal analysis of the collected data as well as the graphical
representation of results, the open source statistical language R
(http://www.r-project.org/) or the commercial available
programme MatLab (http://www.mathworks.com/products/
matlab/) can be used.

One way to analyse sequence variations is to consider each SNP
or InDel individually, investigating their potential to be significant
for the explanation of the group differences. For the evaluation of
SNPs and InDels, a table is extracted from the relational database,
which contains columns for the strains or isolates, a row for every
SNP and the data matrix that is used as the input for statistical
analysis. The cells of the table, the junctions of SNP rows and
isolate columns, contain a 1 (for present), 0 (for absent) or NA
(for unknown or insecure). Additional leading columns in the table
contain information about the SNP itself, like the position of the
respective SNP in the reference genome, intergenic or gene loca-
tion of the SNPs and further information. This extra information is
not required for the statistical analysis but rather to understand the
results of the statistical test, for which Fisher’s Exact Test (Fig. 2) is
a commonly used algorithm.

Another approach assumes that any (non-synonymous) SNP or
InDel in a given gene has an impact upon that gene, influencing its
activity or even completely destroying it. As a consequence, the
respective gene has significance for the explanation of the group
differences. Again, a data matrix is extracted from the database,
with columns for strains/isolates, and leading columns which con-
tain additional information about the involved genes, but which are
not required for the statistical test itself. The rows, however, this
time stand for the genes: the cells of the table contain a 1 (for
present) if the respective gene for the isolate in question has at least
one SNP, a 0 if no SNP is present and NA if the sequencing results
do not permit any definite assertion about the state of the gene.
Again, Fisher’s Exact Test is frequently the method of choice.

For expression values, Student’s t-test (Fig. 3) is a possible
statistical test to be applied. In the case of the example R script
presented in Fig. 3, the input is a table file containing RPG counts
for all isolates which are included in the analysis and an annotation
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file from which the R script reads gene length information. A
function contained in the DESeq package is used for the calculation
of normalised gene expression values. The statistical analysis creates
a list of genes, which are potentially involved in the cellular mechan-
isms that produce the observed phenotype.

It should be emphasised that although considerable informa-
tion can be gained through statistical tests, the statistical analysis of
differences between groups of isolates is limited in its potential to

Fig. 2 Example R script for Fisher’s Exact Test (S. Pohl and F. Klawonn, HZI, Germany). The input file “Input.
mat” contains semicolon-separated data, each line stands for a gene or a SNP, and each column represents
an isolate. No header line is used. The fields of the matrix contain a 1 if a condition in question is fulfilled (e.g.
if a given SNP is present in a given isolate), a 0 if the condition is NOT fulfilled and NA if the condition in
question is ambiguous. The output file “Output.txt” contains a p-value for each line of the input file, in the
same order
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provide satisfactory results. For all tests described above, the results
are lists of sequence variations, sorted according to the calculated p-
values. They form the basis for the development of a working
hypothesis for the explanation of the molecular mechanisms that
lead to the observed phenotypic trait. This working hypothesis then
is the starting point for wet lab experiments performed to prove or
reject the hypothesis. An issue that always has to be considered is
the p-value cut-off that has to be applied to yield a minimal rate of
false positives, where sequence variations are detected as significant
although they are not, and false negatives, where sequence varia-
tions that are actually significant are not present in the results list of
significant features. An appropriate means for the definition of a
reasonable cut-off value utilises permutation tests. By randomly

Fig. 3 Example R script for Student’s t-test (S. Pohl and F. Klawonn, HZI, Germany). The data file “rpg.tab”
(Reads per Gene) contains lines with<TAB>-separated fields, in which a leading column provides the gene
names and each following column represents an isolate. The first line is a header line and contains the isolate
names. Data file “PA14_annot.tab” contains<TAB>-separated PA14 gene data. Each line describes a gene;
the order of the genes has to be the same as in “rpg.tab”. The first line of the file is a header line describing the
contents of the respective column. For the above script, only one column is important: it is called “length” and
contains the length of the respective gene in nucleotides. The gene length is required for read count
normalisation
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shuffling the contents of the cells within the rows of the data matrix
relevant for statistical analysis, a randomised data set is created. The
statistical analysis of this arbitrary data set provides random p-
values; the lowest p-value detected in a set of permutation tests is
a reasonable cut-off value to exclude insignificant results.
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Systems Biology Tools for Methylotrophs

Marina G. Kalyuzhnaya, Song Yang, David A.C. Beck,
and Ludmila Chistoserdova

Abstract

The methylotrophy field is currently experiencing a renaissance. Innovative cultivation techniques are
resulting in discovery of novel types of methylotrophs, the growing genomic databases are providing
blueprints for metabolic reconstruction in traditional as well as newly discovered methylotrophs, and the
concepts and dogmas formed during the pre-omics era are changing, sometimes dramatically. The
emerging approach in characterizing methylotrophs, as well as other metabolic specialists, is a combination
of systems biology approaches, with availability of the genomic sequence being a prerequisite. We here
describe a series of omics approaches to characterizing methylotrophs, which, in their combination, provide
comprehensive outlook at how methylotrophy metabolism is enabled in specific methylotroph guilds and
how it is regulated.

Keywords: Community dynamics, Genomics, Metabolic modeling, Metabolomics, Methanotroph,
Methylotroph, Proteomics, Transcriptomics

1 Introduction

Methylotrophs are microbes that can build their biomass as well as
obtain energy from compounds with no carbon–carbon bonds (C1
compounds), which include methane, methanol, methylated
amines, methylated sulfur species, and halogenated C1 compounds
[1]. Aerobic methylotrophs have been known since early 1900s [2],
with the details of the biochemical pathways responsible for utiliza-
tion of C1 compounds emerging in the early 1970s [3]. Anaerobic
methylotrophy has been described only recently. While in Bacteria
it appears to be linked to nitrate/nitrite reduction [4], in Archaea,
it can be linked to nitrate reduction [5], sulfate reduction [6], or
reduction of certain metals [7]. None of the anaerobic methylo-
trophs have yet been cultivated in pure cultures. The focus of this
chapter is on methylotrophic bacteria and does not cover the
archaeal methylotrophs.

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016) 97–118,
DOI 10.1007/8623_2015_69, © Springer-Verlag Berlin Heidelberg 2015, Published online: 10 April 2015
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2 Genomics

Today, a (draft) genomic sequence is prerequisite for studying
aspects of physiology and metabolism of a select model organism.
Typically, genomic sequencing, including gene calling and gene
annotation, is outsourced to service facilities, such as the Joint
Genome Institute (http://www.jgi.doe.gov), Genoscope (http://
www.genoscope.cns.fr), etc. These facilities have generated most of
the genomic sequences for methylotrophs to this date, and they
deliver high-quality genome drafts or finished genomic sequences
[8, 9]. Gene annotations can be manually curated by experts, based
on experimental evidence [10]. Of course, genomic sequencing,
assembly, and annotation could be carried out in the house, using
one of the current sequencing platforms and appropriate software
packages [11, 12].

3 Functional Metagenomics

3.1 Principle While genomics of methylotrophs are no different from genomics
of any other type of microbes, special metagenomic approaches are
effective in studying methylotrophs in semi-in situ conditions, such
as “functional” metagenomics combining stable isotope probing
(SIP) with high-throughput sequencing. The technique of SIP, as
applied to probing active methylotrophs in situ, was first developed
and further perfected in the Colin Murrell’s laboratory, and we
refer the reader to their excellent reviews as well as to the original
works (e.g., [13–16]). This approach involves feeding natural
populations a substrate of interest, labeled by a heavy isotope
(e.g., 13C), followed by characterization of the heavy fraction of
communal DNA that should be enriched in DNA of microbes that
actively metabolize the labeled substrate. A number of labeled C1
substrates are commercially available.

3.2 Sample

Collection and Cell

Labeling

Samples are collected using an appropriate devise, such as box core,
Niskin bottles, etc., and transported to the laboratory on ice.
Microcosms are set up in conditions that mimic the in situ condi-
tions, including substrate concentrations that should approximate
the in situ concentrations. However, substrate concentrations
should be high enough to allow for efficient labeling. We were
successful using the following concentrations of 13C-labeled sub-
strates: methane (up to 50% of the atmosphere) [17, 18], methanol
(1–10 mM) [17, 19], methylamine (10 mM), formaldehyde
(1 mM), and formate (10 mM) [17]. Samples are incubated, pref-
erably at the in situ temperature, for the duration of time that
allows for some of the DNA to become labeled with 13C, 3–30
days, depending on the substrate and on other conditions [17–19].
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3.3 DNA Extraction,

Isopycnic

Centrifugation,

and Labeled DNA

Recovery

Total DNA is extracted using an appropriate protocol for a given
sample. PowerSoil DNA Isolation Kit (MO Bio Laboratories,
Carlsbad, CA, USA) produces good results with soil and sediment
samples. DNA is prepared for CsCl-ethidium bromide density
gradient ultracentrifugation as previously described [13] and cen-
trifuged at approximately 265,000 g (e.g., in Beckman VTi 65
rotor) for 16 h at 20�C. DNA fractions are visualized in UV, and
13C-DNA fractions are collected using 19-gauge needles [20].
DNA preparations may be subjected to a second round of CsCl-
ethidium bromide density gradient ultracentrifugation, followed by
a standard DNA purification procedure. Optionally, the 12C-DNA
fractions may also be collected and analyzed, for comparison.

3.4 DNA Sequencing

and Assembly

Shotgun libraries are constructed in accordance with the protocols
specific to each sequencing technology, following manufacturers’
suggestions. Illumina is probably the most attractive technology
currently, providing the optimal cost efficiency per sequenced
nucleotide [21]. Like sequencing single genomes, metagenomic
sequencing is also best outsourced to specialized facilities. How-
ever, respective pipelines can be developed within a single labora-
tory. Raw sequences are trimmed and denoised, paired-end
sequences are joined, sequences are assembled, and genes are called
and functionally annotated using appropriate software for each
step. Service facilities such as the JGI have developed efficient
pipelines for processing the data, and these are constantly updated
and improved, and we refer the reader to their expertise (http://
img.jgi.doe.gov/cgi-bin/m/main.cgi) [22]. Sequence coverage
and degree of assembly depend on the sequencing effort applied
and on the species richness and evenness of the enriched
communities.

3.5 iTag (Pyrotag)

Sequencing

These days it is customary to carry out phylogenetic profiling of
community DNA via iTag (Illumina) or Pyrotag (Roche 454)
sequencing, targeting variable regions of the 16S rRNA gene,
after polymerase chain reaction (PCR) amplification [23, 24].
Such profiling provides an estimate of the complexity of the com-
munity to be analyzed via metagenomics, suggesting, importantly,
an appropriate sequencing effort for the metagenome in question.
The sequencing effort for iTagging (Pyrotagging) may vary
between tens and hundreds of thousands sequencing reads per
sample, allowing for high phylogenetic resolution, even for very
complex community samples. These days, the experimental part of
this approach (PCR amplification, sample purification, and
sequencing), as well as statistical analyses, could also be outsourced
to service facilities. For fast turnaround, we use MR DNA service
facility (http://www.mrdnalab.com/). i/Pyrotagging is also effi-
cient in monitoring enrichment for specific functional types in the
functional metagenomics experiments. For example, Pyrotag
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profiling of Lake Washington sediment communities enriched in
heavy carbon isotope originating from methane has revealed not
only rapid reduction in community complexity, but also significant
enrichment in the sequences of Methylococcaceae and Methylophila-
ceae, suggesting, on one hand, that they are key players in methane
consumption and, on the one hand, that they might be involved in
cooperative behavior [18].

3.6 Data Analysis Several software packages are available for 16S rRNA gene ampli-
con sequencing, including QIIME [25], MOTHUR [26], and
MEGAN [27]. In addition, well-documented protocol and soft-
ware combinations are available for simplifying typical analyses of
microbial communities based on 16S rRNA gene sequences [28].
At their core, these tools perform a very similar set of sequence
handling, clustering, and taxonomy assignment steps.

3.6.1 Sequence Handling When paired-end Illumina reads are used, the two read pairs need
to be assembled to create the full-length sequence. In this step,
there are critical parameters that need to be evaluated for each
experiment, which include how many bases of an overlap are
required between the read pairs and how many mismatches are
allowed in the alignment. For both Illumina- and Roche 454-
based reads, the full-length sequences can be trimmed. In our
experience, the maximum error method of Edgar has proven useful
[29]. In this approach, each read is scanned from 50 to 30 using the
sequencer-generated quality scores, to estimate the cumulative
number of sequencing errors. A maximum expected error of 0.5
has the effect of limiting the number of sequence errors to less than
1. Larger numbers result in longer sequences, whereas smaller
numbers result in shorter but more accurate sequences.

3.6.2 Sequence

Clustering

The quality trimmed reads are then run through preprocessing
steps. A good summary can be found in [29]. Briefly, unique
sequences are counted and checked for chimeras that can result
from amplification. Chimera detection can be done in a variety of
ways including the UCHIME/USEARCH approach against a high-
quality reference database [30] or the ChimeraSlayer tool [31].

Next, the sequences are clustered at a given percent identity,
from 95% to 99%. Tradeoffs between artificial splitting of clusters
due to possible amplification errors at high identities and species
resolution at the lower identities are a necessary aspect of the
clustering process. For each cluster, a representative sequence
must be chosen or computed (e.g., average) for subsequence taxo-
nomical assignment. Representative sequences have the advantage
of being real sequences but may not accurately represent an entire
cluster at lower percent identity cutoffs, whereas average sequences
may not be realistic and can frustrate assignment.
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3.6.3 Taxonomy

Assignment

Representative of each cluster is assigned to a taxonomical clade,
which is attributed to the entire cluster. Assignment can be done
using sequence alignment or another classifier method such as the
Ribosomal Database Project (RDP) Classifier (rdp.cme.msu.edu)
[32]. The RDPClassifier has the advantage of providing confidence
scores in the assignment at each level of taxonomy.

3.6.4 Visualization

and Analysis

Once the taxonomies have been assigned, a variety of visualizations
and analyses can be performed after normalization. Normalization
for sample size is required to assign relative abundances across
samples when the total number of reads passing quality control
varies between samples. Visualizations such as heatmaps and col-
umn charts of taxonomy are useful, particularly when only the most
abundant OTUs are presented. That is, only those OTUs present
in at least one sample at, for example, 1% or 2.5% are included.
Tools such as vegan can be used to create ordination plots and
perform principal component analysis and classical correspondence
analysis [33].

3.6.5 Phylogenetic

Markers in Metagenomes

To classify the 16S rRNA gene sequences in the metagenomes, 16S
rRNA genes identified as part of an annotation pipeline are aligned
against the RDP Classifier, as above. The top scoring alignment for
each sequence is used to assign taxonomy, based on the annotations
in the RDP.

3.6.6 Functional Gene

Profiling

Enrichment for specific functional genes can be addressed in a
similar way, via single-gene profiling, using known genes/proteins
as queries in BLAST analyses [17, 18]. This approach is especially
effective in the case of shallow metagenomes. We employed pro-
teins involved in the reactions of the tetrahydromethanopterin
pathway for C1 transfers that is a hallmark pathway in methylo-
trophs [34] to demonstrate the function-relevant enrichment of
microcosm datasets [17, 18]. In a similar fashion, specific functions
in methylotrophy can be profiled, such as soluble versus particulate
methane monooxygenase [35, 36], MxaFI- versus XoxF-type
methanol dehydrogenase [35–37], as well as the nitrogen metabo-
lism functions, such as nitrogen fixation and assimilatory versus
dissimilatory denitrification [18]. In cases of highly divergent
enzymes, multiple queries are required. For example, we used
peptide sequences of fae homologs belonging to different phyloge-
netic groups (Proteobacteria, Planctomycetes, and Archaea) to
identify multiple and extremely divergent fae and fae-like sequences
in our datasets [17, 18].

3.6.7 Assembling

Genomes from

Metagenomes

Genomes of individual organisms or populations of closely related
strains may be present in a metagenome at high sequence coverage.
Estimates of coverage for each organism can be initially gained
from the coverage of individual 16S rRNA genes present in a
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metagenome, as described above. If high relative abundance is
predicted for a specific organism, it is reasonable to assume that
complete or nearly complete genomes of respective strains may be
present in a metagenomic dataset, and these can be extracted using
one of the available binning tools. In the metagenomic study of
Lake Washington methylotroph populations, a composite genome
of M. mobilis totaling slightly over 11 Mb was extracted from the
methylamine microcosm metagenome using a compositional bin-
ning method PhyloPythia, and genome completeness was validated
by examination of the presence of key metabolic and housekeeping
genes [17]. With satisfactory results, metabolic potential of an
individual organism or a population of closely related strains
(which will not necessarily be distinguished between by the binning
methods) can be reconstructed, and genome-wide comparisons
may be carried out with other complete or composite genomes.
For example, by comparing the composite genome of Methylote-
nera mobilis to the complete genome of a close relative Methyloba-
cillus flagellatus, we were able to uncover examples of highly
conserved metabolic traits, including methylotrophy, as well as of
non-conserved metabolic traits, including nonhomologous repla-
cements in common biochemical pathways, such as a cytochrome
electron acceptor from methylamine dehydrogenase in M. mobilis
versus an azurin protein in M. flagellatus [17].

3.6.8 Genome

Recruitment and Variant

Analysis

The content of the metagenomes can also be evaluated via genome
recruitment, as long as a reasonably closely related proxy genome is
available for comparison. This approach is useful for less well-
covered genomes, shorter reads, or single-end sequence-based
experiments where binning and/or assembly may be problematic.
In this mode, paired-end or single-end raw reads are aligned to a
proxy genome at a given identity cutoff, e.g., 90–95%. Such relaxed
alignment is available in BWA [38] when seeding is disabled
(option –l 100,000). Similar modes are available for BFAST [39]
and Bowtie 2 [40].

After the alignments are computed, SAMtools can be used
to post-process the alignments to binary alignment file formats
(.BAM) and to perform SNP calling [41]. A wide array of
constantly evolving tools can also use the binary alignment file
format (.BAM) for SNP predictions. Visualization of the align-
ments for manual inspection can be performed with IGV [42].
This protocol allowed us to assign up to 60% of reads in our
relatively shallow metagenomes to specific organisms, not only at
the genus and species level, but also at the ecotype level [43].
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4 Community Dynamics Assessed via i/Pyrotagging

4.1 Principle The active populations of methylotrophs in specific environmental
niches can also be assessed without labeling, thus avoiding any
biases that may be associated with this step, by following the
dynamics of the communities in response to a specific stimulus.
By profiling communities in the microcosms responding to the
stimulus of methane, we were able to confirm our findings from
SIP-metagenomics on the dominant role ofMethylobacter in meth-
ane metabolism in the sediment of Lake Washington [43, 44]. In
these experiments, we also obtained further support for the
involvement of Methylophilaceae in metabolism of methane, by
observing a dramatic increase in the population ofMethylophilaceae
in microcosms fed methane as the only carbon source [43, 44]. By
modifying oxygen levels in these experiments, beside the Methylo-
tenera species, we were also able to detect the response by the
Methylophilus species, which were not detected via SIP-
metagenomics [17, 18, 43, 44]. From the microcosm experiments,
it appears that theMethylophilus species tend to be outcompeted by
the Methylotenera species in hypoxic conditions, likely suggesting
that microcosm incubations with 13C-labeled substrates must have
been limited by oxygen even when designated as “aerobic” [18].
This conclusion is supported by our recent data on active oxygen
consumption by complex sediment communities [44].

4.2 Experimental

Setup

Natural samples are collected using appropriate tools, such as box
core, Niskin bottles etc., and transferred to the laboratory at appro-
priate temperature. Samples can be immediately used for setting up
microcosm cultures or deep-frozen with a cryoprotective agent
such as dimethyl sulfoxide (DMSO), to assure the viability of the
microbial population and to preserve cells for omics profiling [45].

Microcosms are set up in a chosen set of conditions. Either
water from the native environment can be used (e.g., above-the-
sediment lake water in our case) or one of a traditional artificial
media for methylotroph cultivation [46, 47], or a diluted version of
the standard medium [43, 46]. Vials with rubber stoppers are used
as cultivation vessels for methanotroph enrichments. Choosing the
atmosphere composition in the headspace is important and should
depend on the specific scientific questions. In natural environments
such as lake sediments or wetlands, methane and oxygen are present
as steep counter gradients [48, 49]. The specific methylotroph
communities may inhabit specific microenvironments with differ-
ent oxygen to carbon ratios [50]. In our experiments, we observed
clear dependence of community compositions on the oxygen con-
centration [43, 44].

Microcosms are preferably incubated at an in situ temperature if
insights into the natural processes are desired. Shaking is advised for
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reproducibility. It is advisable to measure key chemicals, such as
methane and oxygen concentrations, to monitor their consump-
tion. Microcosm cultures can be sampled at the desired frequency
by pelleting fractions of the culture, followed by DNA extraction, as
above. DNA samples are then subjected to either phylogenetic
profiling or to metagenomic sequencing using the methodologies
described above.

5 Transcriptomics

5.1 Principle While genomes and metagenomes provide the blueprint for an
organism/community metabolic potential, the availability of tran-
scriptomes, an outcome of the transcriptomics approach, brings
them alive. Which genes are expressed in which conditions and
how much more expression is needed to enable a certain lifestyle?
Transcriptomics are also a major tool for discovering genes and
functions that are involved in a specific metabolic scheme, but are
not detectable by other types of experiments, such as mutant screen-
ing. Transcriptomics are most informative when transcript profiles
between multiple growth conditions are compared. Dependent on
the goal of the experiment and on the scientific questions pursued,
samples can be collected from cultures growing on different sub-
strates or in different conditions. While it is straightforward when it
comes to facultative methylotrophs, it may be tricky with obligate
methylotrophs, if only a single growth substrate is known to sup-
port growth. In the latter case, however, other conditions could be
modified, for example, oxygen pressure or nitrogen source.

5.2 Sampling and

RNA Isolation

The culture should either be grown in bioreactor (chemostat,
turbidostat, or feed-batch) or grown in vials/flasks to the growth
stage of interest (usually exponential phase of growth). At least two
biological replicates should be used for each condition tested.
Growth is terminated by the addition of 10% (V/V) of “stop
solution.” The “stop solution” is comprised of 5% water-
equilibrated phenol (pH 6.6–7.0) and 95% ethanol. Cells are col-
lected by centrifugation, typically at approximately 4,500 g at 4�C
for 10–15 min. The resultant pellets are used for RNA extraction
using RNeasy Kit (QIAGEN), essentially as described [51]. Higher
RNA yields can be achieved by using a two-step procedure, as
described [52, 53]. In this protocol, cell pellets are resuspended
in 0.75 mL of the extraction buffer (2.5% CTAB; Sigma, St. Louis,
MO), 0.7 M NaCl, and 0.075 M phosphate buffer (pH 7.6) and
transferred into a 2-mL sterilized screw-cap tube containing
0.75 mL of phenol/chloroform/isoamylic alcohol with a volume
ratio of 25:24:1 (Ambion, Austin, TX), 0.5 g of 0.1 mm silica beads
(BioSpec products, Bartlesville, OK), 0.2% SDS (Ambion; Austin,
TX), and 0.2% lauryl sarcosine (Sigma, St. Louis, MO). The
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mixture is homogenized in a bead beater (Mini-Beadbeater, BioS-
pec Products; Bartlesville, OK) for 2 min (75% of the maximum
power). The resulting slurry is centrifuged for 5 min at 4�C at
approximately 20,000 g. The aqueous layer is transferred to a
fresh tube containing 0.75 mL of chloroform/isoamylic alcohol
with a volumetric ratio of 24:1 (Sigma, St. Louis, MO) and cen-
trifuged again for 5 min at 4�C and 20,000 g, to remove the
dissolved phenol. The aqueous phase is transferred to a new tube.
MgCl2 (final concentration 3 mM), sodium acetate (10 mM, pH
5.5), and 0.8 mL ice-cold isopropanol are added. Nucleic acids are
precipitated at �80�C overnight. Samples are then centrifuged for
45 min at 4�C at 20,000 g, washed with 0.5 mL 75% ethanol
(Deacon Labs, Inc.; King of Prussia, PA), and purified using
RNeasy Kit (QIAGEN), essentially as recommended by the
manufacturer.

The MICROBExpress™ Kit (Ambion, Austin, TX) or Ribo-
Zero (Epicentre, Madison, WI) kits could be used to reduce the
rRNA concentration, in order to increase sequencing depth for
mRNA. Recently, such services are also best to outsource to service
facilities, as part of a sequencing package. Alternatively, total RNA
could be sequenced, with rRNA sequences removed from the
dataset computationally.

Sample quality is monitored using three different techniques:
(1) electrophoresis in TAE buffer in 1% agarose gel; (2) using
Agilent 2100 Bioanalyzer with Agilent RNA 6000 Nano Kit, fol-
lowing suggestions by the manufacturer; and (3) real-time reverse-
transcriptase PCR (RT-RT PCR) with appropriate 16S rRNA and/
or functional gene-specific primers.

5.3 Transcript

Sequencing,

Alignment, and

Read Mapping

The enriched or non-enriched RNA samples (at least two biological
replicates) are typically submitted to a service facility equipped with
up-to-date sequencing equipment such as Illumina, unless a
sequencing machine is available at the premises and the expertise
is in hand. As the technologies are constantly changing, the choice
of the sequencing platform is normally dictated by cost per
nucleotide.

5.4 Data Analysis The resulting reads are aligned to the reference genome using an
alignment tools such as BWA [38] BFAST [39], or Bowtie 2 [40].
The alignments are then post-processed into sorted BAM files with
SAMTools [41]. Reads are attributed to open reading frames
(ORFs) using the htseq-count tool from the “HTSeq” framework
in the “intersection-nonempty” mod [54]. Samples can then be
normalized by reads per kilobase of gene per million mapped
reads (RPKM) to coding sequences [55] and resulting p-values
from statistical comparisons corrected by a multiple hypothesis
testing correction scheme such as q-values [56]. Alternatively,
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normalization, comparison, and correction can be performed in a
single package with the DESeq2 [57, 58].

6 Metatranscriptomics

6.1 Principle Metatranscriptomics, as a natural next step to metagenomics, is
what transcriptomics is to genomics. Thus, while metatranscrip-
tomes may be analyzed in isolation, including assembly/binning
and annotation, availability of matching (meta)genomic scaffolds
make metatranscriptomics more reliable, most effective, and easier
to process. These days it seems reasonable to combine analysis of
metagenomes and metatranscriptomes from the same sample.
Other than dealing with DNA and RNA originating from commu-
nity samples, the strategies for sequencing and analysis are the same
as described above. Again, depleting or not depleting total RNA of
ribosomal RNA is a choice, dependent on what sequencing effort
can be attempted. If total RNA is sequenced, then the rRNA
sequences are simply computationally removed from the database
before mRNA sequence mapping.

7 Proteomics

7.1 Principle Proteomics, analysis of protein profiles of microbial cultures grown
on specific substrates or in specific conditions, presents further
opportunity to address the function directly, as proteins are the
molecules that ultimately perform the function. Like transcrip-
tomics, proteomics are most informative when transcript profiles
between multiple growth conditions are compared, thus again
becoming somewhat limiting when a single or few substrates
support growth. Proteomics have been successfully applied in
methylotrophs to define global proteome landscapes duringmethy-
lotrophic versus non-methylotrophic growth [59–62], to obtain
new insights into methylotrophy [63–65], to evaluate copper
response [66], and to identify proteins produced specifically in
the phyllosphere [59]. Different types of proteomics approaches
have been applied, including analysis of select proteins, after two-
dimensional gel electrophoresis separation [59, 62], or global
(shotgun) proteomics [60, 61, 63–65]. The advantage of the latter
technology is in its comprehensive nature. With sufficient number
of spectra collected for a given proteome, up to 70% of the inferred
proteome could be covered, and data from different conditions can
be compared in a semiquantitative manner [60, 63–65]. Of course,
to achieve this level of protein detection, a high-quality genomic
sequence for an organism in question is required. Below we
describe a typical workflow for shotgun proteomics.
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7.2 Sampling and

Protein Isolation

Cultures can be grown in a bioreactor or in vials/flasks, to the
growth stage of interest (usually exponential phase of growth). At
least two biological replicates should be used for each condition
tested. Cells are cooled rapidly and harvested by centrifugation at
approximately 4,500 � g for 5–10 min at 4�C. Cells are washed
with cooled 15–20 mMTris–HCl pH 8.0 buffer and flash-frozen in
liquid nitrogen. Cells can be stored at �80�C for up to a few
months.

Frozen cell pellets are resuspended in 500 μL hot resuspension
buffer (20 mM Tris–HCl pH 8.0, 5 mM dithiothreitol (DTT)) and
lysed by boiling for 2 min in a water bath, followed by cooling on
ice for 10 min. For nucleic acid digestion, 10 units Benzonase
nuclease (Roche) is added after adjusting the suspension to 2 mM
MgCl2 (final concentration). After 15-min incubation at room
temperature, 200 μL of ethanol- and buffer-washed glass beads
(150 μm) are added, and the sample volume is adjusted to
1.5 mL with resuspension buffer. Bead beating is performed for
4 min at 48 RPM, in a Mini-Beadbeater (BioSpec Products). Total
protein concentration is determined by Bradford protein assay
(Bio-Rad). The desired concentration is approximately 1 mgmL�1.
The homogenate is lyophilized to dryness. After resuspension in
500 μL digestion buffer (2 M urea, 5% acetonitrile, 5 mM DTT,
0.1% RapiGest), the sample is digested as follows. After reduction
with 10 mM DTT for 30 min at 37�C and alkylation with 30 mM
iodoacetamide for 30 min at 30�C (in the dark), digestion is started
by adding EndoLysC (Roche Applied Sciences, Indianapolis, IN,
USA) at a ratio of 1:200 protease to protein, according to the
Bradford Assay, and the mixture is incubated overnight at 37�C.
Trypsin (Promega, Madison, WI, USA) is then added at a ratio of
1:50, and incubation is continued for 8 h at 37�C. The reaction is
stopped by adding 0.3% (final concentration) trifluoroacetic acid
(TFA) until the pH reaches 2.5. RapiGest™ is precipitated by
further incubation at 37�C for 30 min. The sample is then centri-
fuged for 10 min at approximately 20,000 � g, and supernatant is
collected. Pellets (containing insoluble particles and the glass
beads) are washed twice with 250 μL 0.5% TFA and 5% acetonitrile.
pH is adjusted to 2.5 with TFA if necessary.

7.3 HPLC Pre-

fractionation and

Linear Ion Trap Mass

Spectrometry

The soluble fraction after digestion is lyophilized to a volume of
approximately 150 μL and centrifuged for 10 min at 20,000 � g. A
10–20 μL sample of the supernatant is applied to a PLRP-S
reversed-phase column (2.1 mm i.d. � 150 mm, 300 Å, 5 μm;
Polymer Laboratories) with mobile phases of 0.1% TFA in water
and acetonitrile. Peptides are eluted at 0.2 mL min�1 with a gradi-
ent of 2–60% acetonitrile in 60 min and 60–90% acetonitrile in
20 min and collected as five separate fractions. The fractions are
each lyophilized to 20 μL, and after reconstitution to volumes of
120 μL with acetic acid and acetonitrile at final concentrations of
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0.5% and 5% (V/V), respectively, subjected to LC/LC-MS/MS
using a biphasic 2-D capillary HPLC system (Michrom Magic
2002, Michrom, Auburn, CA, USA), coupled to an LTQ linear
ion trap mass spectrometer (Thermo Fisher Scientific, San Jose,
CA, USA). The peptides are eluted by ammonium acetate solutions
(0, 10, 25, 50, 100, 250, and 500 mM), followed by reverse-phase
gradients of 5–12% in 1 min, 12% B in 9 min, 12–40% B in 50 min,
40–80% B in 11 min, 80% B in 10 min, and 80–5% B in 5 min.
Solvent B: 99.5% acetonitrile, 0.5% acetic acid (v/v). The MS1 scan
range is 400–2,000 m/z. After each main beam (MS1) scan, the 10
most intense ions above threshold are selected for CID scans with
one CID scan collected for each of the precursor ions. Default
parameters under the Xcalibur 1.4 data acquisition software
(Thermo Fisher) are used, with the exception of an isolation
width of 3.0 m/z units and normalized collision energy of 40%.

7.4 Data Processing

and Normalization

Proteomics data processing can be performed using entirely open
source tools by leveraging the Trans-Proteomic Pipeline, TPP [67].
The spectra files can be converted to compressed mzXML files
using the ProteoWizard’s msconvert tool [68]. These spectra, in
conjunction with a FASTA file containing the predicted amino acid
sequences from the genome and several additional enzymes used in
sample prep, including trypsin precursor (gi 136429), DNase I
precursor (gi 6647483), RNase A precursor (gi 133198), and
lysyl endopeptidase (gi 7463016), are fed into a peptide-spectra
matching software such as COMET [69]. It is a good practice to
use a set of decoy proteins that have the same size and amino acid
composition as the proteome being searched. These decoys can be
used to determine the false-positive rates arising from the peptide-
spectra matching (PSM) process.

Next, the resulting pepXML from technical replicates are
pooled and analyzed with PeptideProphet [70] using TPP’s xinter-
act. During this step, the prefix used to identify the decoy proteins
(e.g., prefix “DECOY” ¼ -OP-dDECOY) is supplied with the
pepXML and the FASTA. Additional options to consider include
the confidence below which to ignore PSMs (e.g., 0.85 ¼ -p 0.85)
and the minimum length of a peptide to consider (e.g., 7 ¼ -l 7).
The resulting pepXML is then processed by ProteinProphet [71] to
produce a protXML file.

For well-sampled proteomes, protein relative abundances can
be estimated on the basis of spectral count values. To calculate
protein abundance ratios, a normalization scheme needs to be
applied such that the total spectral counts across samples are
equal. Alternatively, count-based normalization methods with
more complexity can be used such as DeSeq [57].
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8 Metaproteomics

8.1 Principle Metaproteomics refers to analysis of mixed proteomes. A synonym
term proteogenomics is also used, to reflect the fact that detection
of specific proteins in mixed cultures heavily depends on the quality
of and the relatedness of the DNA sequence scaffolds. Not surpris-
ingly, the best examples so far of large-scale metaproteomics
approaches include low-complexity models, most prominently
acid mine drainage communities for which high-quality metage-
nomic sequences are available [72]. In such low-complexity com-
munities, proteomic coverage may be saturating when target
organisms constitute 30–40% of total population. However, partial
proteomes can be recovered even for minor populations (1% of
total community) [72]. Metaproteomics of complex communities
still present great challenges that range from difficulties with pro-
tein extraction from certain environments such as soils and sedi-
ments to the dynamic range of peptide detection, to the
fragmented nature of metagenomic datasets, to noises and false
positives. These and other challenges are described in detail in this
excellent review [72].

The proteogenomic approach in the methylotrophic world has
been so far applied to the plant phyllosphere [73] and to a marine
sample [74]. The community of the plant phyllosphere has Methy-
lobacterium as one of the dominant organisms, and thus a number
of abundant proteins were assigned to this organism, including
some of the methylotrophy-specific proteins (both MxaF-type and
XoxF-type methanol dehydrogenases, formaldehyde activating
enzyme, malyl-CoA lyase) [73]. In the marine sample, XoxF was
found as one of the abundant proteins, even though the total
population of the OM43 clade bacteria expressing this protein
was estimated at only 1% [74]. In both cases, protein detection
was most efficient when using the DNA scaffolds originating from
the same environment. To demonstrate the importance of a per-
fectly matching scaffold in protein detection, we tested the same
spectral dataset with inferred protein databases generated based on
a perfectly matching DNA scaffold [65] and a scaffold representing
closely related species [63]. In the former case, we obtained 68%
inferred protein coverage, while in the latter the coverage was only
20% [65].

9 Metabolomics

9.1 Principle While (meta)genomics provide the blueprint of metabolism and
(meta)transcriptomics and (meta)proteomics provide clues about
which genes and proteins are expressed in which conditions, detec-
tion of metabolites provides the ultimate evidence for what
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metabolic activities take place. Obviously, metabolites that are sub-
jects to rapid conversion, as part of a natural metabolic flux, would
be difficult to detect. Certain manipulations such as a switch from
one metabolic mode to another may be helpful in catching key
player metabolites. Detecting and quantifying a metabolite of inter-
est may be defining for interpretation of the genomic, transcrip-
tomic, and proteomic data.

9.2 Sample

Preparation

Since the turnover rate of the metabolites involved in central
metabolism is in the range of seconds to minutes, rapid quenching
for stopping the enzyme reactions and for keeping the cell mem-
brane intact is essential for acquiring an accurate snapshot of the
metabolome. Many quenching methods, including cold metha-
nol–water mixture, cold glycerol–saline solution, cold ethanol–so-
dium chloride solution, or fast filtration protocol, have been
developed to be used with either batch or bioreactor cultures. For
example, a fast filtration protocol has been successfully applied for
metabolomic analysis in methanotrophic bacteria [75]. For exam-
ple, 3 mL culture samples that are collected in mid-exponential
phase of growth are rapidly harvested by vacuum filtration using S-
Pak™ membrane filters (0.22 μm, 47 mm) (Millipore, Billerica,
MA) and washed with 3 mL of a fresh medium. The filter is then
immediately transferred to a Petri dish located on the surface of a
Cool Beans Chill Bucket™ (ISC Bioexpress, Kaysville, UT) at
�5�C. To collect cells, the following three sequential rinse solu-
tions are applied: 0.5 mL of 25 mM ice-cold HEPES buffer (pH
5.2), 0.5 mL of �20�C ethanol solution (75/25, v/v, ethanol/
aqueous 25 mM HEPES buffer, pH 5.2), and 1.5 mL of �20�C
ethanol. The resulting solution is transferred into a prechilled tube
and stored in �80�C freezer until subsequent extractions.

Metabolites are extracted from microbial cells using different
protocols, such as boiling ethanol solution; cold methanol or ace-
tonitrile, either alone or in combination with an aqueous buffer;
freeze–thaw cycles in methanol; and perchloric acid. A boiling
ethanol solution has been applied to extract the metabolome from
Methylobacterium extorquens AM1 and other methylotrophic bac-
teria [75–77]. Briefly, 1 mL of boiling HEPES-buffered ethanol
solution (75/25, v/v ethanol/water, pH 5.2) is added to a given
cell pellet, followed by incubation at 100�C for 3 min. The
extracted cell suspension is cooled on ice for 3 min, and cell debris
is removed by centrifugation at approximately 5,000 g for 5 min.
The cell-free metabolite extract is centrifuged at 20,000 g for
8 min. The supernatant is transferred into a 2 mL glass vial and
dried in a vacuum centrifuge (CentriVap Concentrator System,
Labconco, MO, USA) to complete the drying. The dried sample,
prior to analysis using LC-MS/MS, is redissolved in 100 mL
purified water. The dried sample to be analyzed by GC-MS is
further derivatized in two steps as follows [78]. In the first step,
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the keto- groups are methoximated by the addition of 50 mL
methoxyamine solution (25 mg/mL methoxyamine hydrochloride
in pyridine), followed by incubation at 60�C for 30 min. In the
second step, trimethylsilylation is performed by adding 50 mL
TMS reagent (BSTFA/TMCS, 99:1) and heating at 60�C for 60
min. Notably, no matter which extraction method is used, intro-
duction of internal standards (IS) is usually essential for accurate
relative or absolute quantification. IS may be natural (12C) or
isotopically labeled (13C or 15N), and they can be added at different
stages of sample preparation and analysis and used to monitor
either the recovery after each preparation step or the performance
of the subsequent LC-MS or GC-MS analyses.

9.3 LC-MS

and GC-MS

Instrumentation

for Metabolomics

Mass spectrometry (MS)-based metabolomics, in which a separa-
tion technique such as gas chromatography (GC), capillary electro-
phoresis (CE), or liquid chromatography (LC) is coupled to a mass
spectrometer, has been widely applied to profile metabolomes or to
determine metabolite concentrations. Due to the versatile separa-
tion characteristics of LC, broader selectivity, and omission of the
derivatization steps, LC-MS is often the preferred technique for
metabolomic analysis. Metabolites are typically moderately to
highly polar small molecules, which are often too hydrophilic to
be reliably retained and separated on common reversed-phase col-
umns (RPLC). Novel chromatographic techniques, including
hydrophilic interaction liquid chromatography (HILIC), ion-
pairing reverse-phase chromatography, and hybrid phase chroma-
tography, are gaining popularity for metabolomics applications.
However, some metabolites with similar physicochemical proper-
ties present challenges for LC analyses. As a result, the combination
of multiple LC-based and GC-based methods for the same sample
is preferred in order to increase the resolving power.

As described in recent reports, we have investigated central
metabolisms of M. extorquens AM1, Methylosinus trichosporium
OB3b, and Methylomicrobium 20Z using a combination of comple-
mentary separation techniques (RPLC, HILIC, and GC) with MS
[75–77]. LC-MS/MS experiments were carried out on a Waters
(Milford, MA, USA) LC-MS system consisting of a 1525 μ binary
HPLC pump with a 2,777 autosampler coupled to a Quattro
Micro™ API triple quadrupole mass spectrometer (Micromass,
Manchester, UK). The HILIC method employing gradient elution
was carried out using the previously described column (Luna NH2,
250 � 2 mm, 5 μm; Phenomenex, Torrance, CA, USA) and the
conditions as described below. Gradient elution was carried out
with 20 mM ammonium acetate and 0.35% NH4OH (28%) in
water (v/v)/acetonitrile (95:5,v/v) with pH 9.7 (mobile phase
A) and acetonitrile (mobile phase B). The linear gradients used
were 85–0% B for 15 min, 0% B for 11 min, 0–85% B for 1 min,
and 85% B for 15 min. The total run time was 42 min at
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0.15 mL/min. The injection volume was 10 mL. The eluent from
each LC column was directed into the ion source of the MS.
Multiple reaction-monitoring (MRM) experiments were carried
out as previously described [79, 80]. The dwell time for each
MRM transition was 0.08 s. All peaks were integrated using Mas-
sLynx™ Applications Manager (version 4.1) software. For GC-MS,
the experiments were performed using an Agilent 5973 MSD/
6890 instrument (Agilent Corp, Santa Clara, CA, USA). The col-
umn was a 30 m � 0.25 mm � 0.5 μm film (RTX-5MS, Restek,
Bellefonte, PA, USA). Ultra-high purity helium was used as the
carrier gas in a constant flow mode of 1 mL/min, and 1 μL of a
given sample was injected in splitless mode via an Agilent 7683
autosampler. The inlet temperature was set at 280�C. The temper-
ature program began at 60�C with a hold time of 0.25 min, and
then increased at 8�C/min to 280�C with a hold time of 10 min at
280�C. The ion source temperature was set to 250�C. Mass spectra
were collected from m/z 40 to 500 at 3 spectra/s after a 6-min
solvent delay [78].

In addition to a good retention and separation of metabolites,
introduction of internal standards (IS) to the samples prior to
metabolite extraction is important for reliable quantification.
When complex biological extracts are injected into an electrospray
ionization source, the ionization efficiency of metabolites can be
suppressed or enhanced due to the presence of less volatile and co-
eluting compounds [79]. By adding 13C-labeled IS to the samples,
especially the respective culture-derived, global 13C-labeled IS,
corrections can be made for the variations arising from instrumen-
tal analysis and/or sample preparation. With the introduction of a
global 13C-labeled IS, we were able to accurately profile more than
40 metabolites in both M. extorquens AM1 and M. trichosporium
OB3b [75, 79].

9.4 Data Analysis Many efforts have beenmade to develop efficient chemometric data
analysis tools in our laboratory and elsewhere. Parallel factor analy-
sis (PARAFAC) is one mathematical tool for peak deconvolution
that provides accurate quantification of metabolites of interest,
even in the presence of overlapping compounds. Recently, a novel
PARAFAC method was reported for the analysis of nearly co-
eluting 12C and 13C isotopically labeled metabolites on GC-MS
data [76, 78, 81]. This methodology further forms the basis for
dynamic 13C flux analysis to determine the fate of specific metabo-
lites in methylotrophs, via quantitative determination of 13C-label
uptake as a function of time [78, 81]. For example, by using 13C-
based metabolomics, alternative metabolic pathways for glyoxylate
consumption were demonstrated [82].

More recently, 13CH4-based analysis was used to measure
fluxes through the metabolic network in M. alcaliphilum 20Z
[77]. For the 13CH4-labeling experiments, cells are typically
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grown to mid-exponential phase. In order to quickly remove resi-
dues of 12C-methane, cells can be transferred to a fresh flask, sealed,
and supplemented with the same concentration of 13CH4. Cell
cultures are then harvested at defined time points (such as 0, 1, 2,
5, 10, 20, 40, and 60 min.). The mass isotopomer distributions
should be corrected for the natural isotope contribution by using a
matrix-based method [78] and calculated as the relative abun-
dances of the different possible mass isotopomers of a metabolite
[75]. Total 13C-incorporation of a metabolite is obtained by nor-
malizing to its total carbon number. Relative isotopic abundance
(Mi) is calculated by the following equation:

Mi %ð Þ ¼ mi

�Xn
j¼0

m j ;

where Mi represented the isotopic abundance for a metabolite in
which 13C atoms were incorporated and n represented the maxi-
mum number of 13C atoms incorporated. Total 13C-incorporation
of a metabolite withN carbon atoms is obtained by normalizing to
its total carbon number using the following equation:

Total13C‐incorporation %ð Þ ¼
XN
i¼1

i �Mið Þ�N
13C-incorporation rate is then calculated from the initial slope of all
13C-isotopologues versus time, i.e., the change of total 13C-incor-
poration versus the times from 0 to 60 min.

We utilized multiple reaction-monitoring transitions on mass
spectrometry (MRM-MS), to resolve the labeling position of 13C-
carbons in pyruvate [75]. When pyruvate is formed as part of the
Entner–Doudoroff (ED) pathway, the initial 13C incorporation
should be observed in position (1). However, if pyruvate is derived
as part of the glycolysis pathway, it would be expected to be labeled in
position (3). MRM-MS with 13C-labeled metabolomes has demon-
strated that M. alcaliphilum 20Z, and likely other type I methano-
trophs, utilizes both ED and glycolysis pathways for C1 assimilation.

10 Metabolic Modeling of C1 Metabolism

A few metabolic models focused on C1 metabolism, mostly for
methanol- or methylamine-utilizing species, have been constructed
[83, 84]. Access to the complete genome sequences of methylo-
trophic bacteria now provides new, top-down approaches for meta-
bolic reconstruction of C1 metabolism [85, 86]. A number of
genome-scale biochemical network reconstructions of methylo-
trophic bacteria are available in BioCyc (http://www.biocyc.org).
However, these are based on automated reconstructions, which
should be carefully evaluated in the light of the published data for
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a specific microbe of interest (substrate consumption and biomass
accumulation rates, biomass composition analysis, metabolic path-
way validation via enzymatic activity, gene/protein expression, etc.)
and then converted into a mathematical model that can be analyzed
through constraint-based, linear programming tools such as
COBRA (http://opencobra.sourceforge.net/openCOBRA/Wel
come.html) or PathwayTools (bioinformatics.ai.sri.com/ptools),
at a global, systems level and through nonlinear kinetic modeling
at a local, more mechanistic level. In ideal situations, the recon-
struction should be further validated through comparison of model
predictions to phenotypic data.

11 Concluding Remarks

The omics techniques, especially in their combination, present an
efficient way to approach the questions in metabolism, physiology,
and ecology of specific guilds of microorganisms, such as methylo-
trophs. However, the specific protocols and the details of the
omics-associated analyses are fluid, with the technologies changing
and evolving very rapidly. The genomics field is approximately 20
years of age, and metagenomics are only a decade or so old. During
this time, a succession of novel sequencing technologies have come
into play, some featuring low cost with shorter sequence reads
(Illumina) and some featuring longer reads at higher cost per
nucleotide (PacBio). Novel technologies are continuously entering
the scene, and, likely, further advances in sequencing technology
are in the process of being developed. Thus, the recommendations
given in this chapter are very tentative, based on the experiences of
the past years. It is amazing to look back to the state of the field, as
of only a few years ago, and realize that we are in a different world
all together, in terms of both sequencing technologies and compu-
tational tools. Our message is, the specific physiology of a specific
methylotrophs should be considered when designing systems
biology-based experiments, in order to take advantage of the
knowledge available on their specialized metabolism. At the same
time, our minds should be open to discovering novel and unex-
pected pathways for metabolizing C1 compounds. The omics
approaches, in their combination, should present a likely path
toward such new knowledge.

Acknowledgements

This material is based upon the work supported by the US Depart-
ment of Energy, Office of Science, Office of Biological and Envi-
ronmental Research under Award Number DE-SC-0010556, and
the Joint Fund of National Natural Science Foundation of China
(Grant Number U1462109).

114 Marina G. Kalyuzhnaya et al.

http://opencobra.sourceforge.net/openCOBRA/Welcome.html
http://opencobra.sourceforge.net/openCOBRA/Welcome.html
http://bioinformatics.ai.sri.com/ptools


References

1. Chistoserdova L, Lidstrom ME (2013) Aero-
bic methylotrophic prokaryotes. In: Rosenberg
E, DeLong EF, Thompson F, Lory S, Stack-
ebrandt E (eds) The prokaryotes, 4th edn.
Springer, Berlin, pp 267–285
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Protocols for Probing Genome Architecture of Regulatory
Networks in Hydrocarbon and Lipid Microorganisms

Costas Bouyioukos, Mohamed Elati, and François Képès

Abstract

Genome architecture and the regulation of gene expression are expected to be interdependent. Under-
standing this interdependence is key to successful genome engineering. Evidence for nonrandom arrange-
ment of genes along genomes, defined as the relative positioning of cofunctional or co-regulated genes,
stems from two main approaches. Firstly, the analysis of contiguous genome segments across species has
highlighted the conservation of gene order (synteny) along chromosome regions. Secondly, the study of
long-range regularities along chromosomes of one given species has emphasised periodic positioning of
microbial genes that are either co-regulated, evolutionarily correlated, or highly codon biased. Software
tools to detect, visualise, systematically analyse and exploit gene position regularities along genomes can
facilitate the studies of such nonrandom genome layouts and the inference of transcription factor binding
sites and potentially guide rational genome design. Here, a computational protocol is demonstrated for the
analysis and exploitation of regular patterns in a set of genomic features of interest (e.g. cofunctional or co-
regulated genes, chromatin immunoprecipitation results, etc.). This case study is conducted for genes
involved in hydrocarbon metabolism of a marine petroleum-degrading bacteriumAlcanivorax borkumensis.

Keywords: Gene regulation, Genome architecture, Genome organisation, Periodicity detection,
Prediction of TFBSs

1 Introduction

In trying to understand and engineer microorganisms, it proved
rewarding to consider at once the threefold relation between chro-
mosome spatial conformation, genome expression, and genome
layout. Genome layout is defined here as the respective positioning
of cofunctional genes. ‘Cofunctional genes’ refer to three, not
mutually exclusive, possibilities: genes that encode proteins from
the same complex or from the samemetabolic pathway or genes that
are co-regulated by the same regulatory factor. Indeed, individual
gene transcription is modulated by sequence-specific transcription
factors (TF). ATF binds to its binding site (TFBS) in the regulatory
region of its target gene(s) to activate or repress its transcription.
Short-range genomic similarities in the one-dimensional (1-D)

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016) 119–134,
DOI 10.1007/8623_2015_92, © Springer-Verlag Berlin Heidelberg 2015, Published online: 14 May 2015
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positioning, known as synteny [1], reveal valuable information
regarding the physiology of microorganisms. However, it has been
demonstrated and is an active area of investigation that yet another
level of three-dimensional (3-D) organisation of the genome is
realised in terms of the long-range periodic arrangements of geno-
mic features along genomes [2, 3]. Studies involving co-regulated
[4, 5], cofunctional [6] and evolutionary correlated [7] genes have
all identified sets of periodic patterns of the organisation of genes
along microbial chromosomes. As these regularities in genome
organisation can serve as a means for genomes to accommodate a
series of physiological constraints [8, 9], the systematic detection,
analysis and visualisation of such periodic patterns can elucidate
regulatory mechanisms at the genomic level and provide insights
for rational genome design in microorganisms.

Here, we demonstrate the use of a computational approach
which detects and analyses patterns of regular organisation of the
positions of genomic features of interest (e.g. genes). This approach
is part of a more general schema of using modelling of genome
architecture as a tool for studying and engineering regulation on a
global – genomic – level. This general computational schema is
called Genome REgulatory and Architecture Tools (GREAT) and
is under development in our team at the institute of Systems and
Synthetic Biology (iSSB). In this chapter we give a detailed account
about how to use, interpret and exploit the results of the SCAN
suite of tools which comprises all the analytical capacities of the
GREAT schema.

The chapter is organised as follows: Section 2 provides a brief
introduction to the materials and requirements to perform analyses
with the GREAT:SCAN suite as well as a quick description of each
tool. Section 3 is the main section where the details of each tool are
delineated and the steps for a successful analysis are described
further. Finally, Sect. 4 deals with troubleshooting and provides a
guide for the values of the most significant parameters of the
analysis.

2 Materials

GREAT:SCAN is a computational protocol for the integrated anal-
ysis of regular patterns in genomes. Its requirements are merely
computational/software based. No previous programming experi-
ence is required to perform a complete GREAT:SCAN analysis, and
no installation is required as, at the moment, GREAT:SCAN is
available as a web tool. The required computations are performed
by the calculators of the abSYNTH platform of synthetic biology at
the institute of Systems and Synthetic Biology (iSSB, www.issb.
genopole.fr). All the files generated during the execution (plots,
tables and raw output files) can be downloaded by the user as a
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single zipped file. The web interface to perform the analysis can be
found at the address https://absynth.issb.genopole.fr/Bioinformat
ics/ by selecting the icon for GREAT. The software accepts a range
of optional parameters to control the analysis steps; all the para-
meters are implemented in the online interface of the tool, and a
technical overview is presented in Appendix 2. Every user has
unlimited and free access to perform analyses with the tools, with
a single requirement to complete a very simple registration process
at the above-mentioned internet address.

2.1 GREAT:SCAN:

patterns

GREAT:SCAN:patterns is a tool written in R and is based on
concepts and algorithms previously developed by the Képès team
[2, 10]. The single requirement to perform the pattern analysis of
the software suite is the format of the input file. Every input file of
the analysis should contain two columns (any additional column
will be ignored by the system). The first column should contain a
unique identifier (e.g. a name) of the gene or the genomic feature
of interest. The second column should contain the genomic coor-
dinate (i.e. the position in the genome) of the gene or the genomic
feature of interest. A single space is sufficient as a delimiter between
the two columns although the system can accept any kind of
conventional delimiter (tabs, semicolons). Appendix 1 contains an
example of how the input file looks like. The source of the input
data is totally arbitrary and is based on the motivation and the
object of study of every researcher. GREAT:SCAN:patterns has
been used to identify periodicities among co-regulated and co-
evolved genes as well as among sites from ChIP-Seq or transcrip-
tomics analyses. For this reason hereafter, when we describe a
generic feature of GREAT:SCAN:patterns, we will be referring to
the input as the ‘set of genomic features of interest’ (there be
positions of co-regulated genes, ChIP-Seq peaks, transcriptomics
peaks or any other set of interest as long as it obeys this simple rule
of having a position in the genome and a unique identifier).

2.2 GREAT:SCAN:

PreCisIon

GREAT:SCAN:PreCisIon is a tool written in R and based
on concepts and algorithms previously developed by the team
[11, 12].

PreCisIon is a general supervised method to infer new regu-
latory relationships between a known TF and genes in an organism.
In its current form, it requires two types of data as inputs. Firstly,
each gene in the organismmust be characterised by some properties
(views), here two views: its promoter sequence and its chromo-
somal position. While the former property has been used in all
TFBS prediction studies so far, the latter has been developed by
our team. The tool ‘retrieve-seq’ of the ‘Regulatory Sequence
Analysis Tools’ http://rsat.ulb.ac.be/rsat/ [13] was used to
retrieve upstream regulatory sequences (‘promoters’) defined here
by the DNA sequence between position �400 and �1.
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Secondly, for each TF, a list of its known target genes and, if
possible, of its known nontargets is needed. Such lists can be
constructed from publicly available databases of experimentally
characterised regulations such as RegulonDB [14].

PreCisIon splits the problem of regulatory network inference
into many binary classifications from disjoint views. For each view,
PreCisIon trains a binary classifier to discriminate between genes
known to be regulated and nonregulated by the TF. The final step is
to combine all individual classifiers that have been trained on all
(two here) disjoint views. All genes known to be regulated by this
TF form a class of positive examples, and no prediction is needed
for them. The remaining genes are split in three subsets of roughly
equal size. In turn, each subset is taken apart, and PreCisIon is
trained on all the positive examples, plus all genes in the two other
subsets considered as negative examples. PreCisIon is then tested
on the third subset, which has not been used during training.
Rotating three times over the three subsets allows PreCisIon to
attribute a prediction to each unlabelled gene by using an indepen-
dent model.

2.3 Bacterial

Genome

Alcanivorax borkumensis is a ubiquitous marine petroleum oil-
degrading bacterium with an unusual physiology specialised for
alkane metabolism. Its genome sequence and its genes involved in
hydrocarbon metabolism were retrieved from the published freely
available genome [15] through the UCSC Archaeal Genome
Browser [16].

3 Methods

3.1 GREAT:SCAN:

patterns

3.1.1 Periodicity Analysis

Every GREAT:SCAN study starts with a systematic and rigorous
analysis and evaluation of all the periodic patterns that can be
identified in the full genome of an organism. To this end, a pre-
processing step is of paramount importance, the removal of prox-
imity effects within the set of interest. Genomic features that are
close to each other can ‘contaminate’ the calculation of probability
values (p-values) for periods, as a few genes that are in proximity to
each other can give a strong periodic signal with a single gene that is
sufficiently far. Furthermore, as we study long-range regularities on
bacterial chromosomes, we need to remove the sequential organi-
sation of co-regulated and cofunctional genes into operons [17].
Thus, in the first step, all operons are reduced to a single position,
that of their first cistron, because it is closest to the transcriptional
start point. In the second step, a set of proximal genes is replaced by
a single site located at their barycentre. The proximity criterion is
defined by the user by specifying the average intergenic distance for
the organism under study (by default two times this average inter-
genic distance).
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The software then executes the periodicity detection algorithm
as it is described in [10] exhaustively, that is, it looks for every
possible period in the set of genomic features of interest and
evaluates each one independently. The periods are evaluated
according to their p-value, after applying a correction calculation
to account for multiple testing. Indeed, for relatively short periods,
many periods get tested, thus increasing the chances that a signifi-
cant pattern will be detected. The p-values are weighted to take this
fact into account.

At this level the user can specify a cut-off for the p-values (by
default the significance level of 0.05 is applied) of the periods that
will get displayed. The selected p-values are plotted in a typical plot
that is used frequently in analyses of periodic phenomena and is
called the periodogram (Fig. 1). A periodogram provides a quick
overview of the most significant periods in terms of p-values (it
depicts both the initial as well as the weighted p-value), and the
researcher can readily identify which periods (if any) are the signifi-
cant ones for the set of genomic features of interest.

3.1.2 An Example from

Hydrocarbon Metabolism

Genes

Here, we provide a test case of our analysis by performing a full
GREAT:SCAN:patterns analysis on the genes from A. borkumensis
which are involved in alkane degradation. We manually selected all
the members of the two hydrocarbon degradation systems of A.
borkumensis from [15] and found their respective translation start
sites positions along the A. borkumensis genome. This information
is enough to generate an input file for a GREAT:SCAN analysis.
The only extra information that is required is the genome length as
well as the average intergenic size of A. borkumensis which is used
by the software in order to remove genome proximity effects. The
output of the software consists of a set of tables where all the
relevant information for each period is collected as well as a period-
ogram which is depicted in Fig. 1. The GREAT:SCAN analysis of
the A. borkumensis genes that are involved in hydrocarbon metab-
olism found periods which approach the full genome size of the
microorganism. This indicates that the major organisational princi-
ple of the hydrocarbon metabolism genes is 1-D genomic cluster-
ing, a result that could have been speculated from the neighbouring
genomic coordinates of several genes in the set. Please note that this
proximal trend is detected despite the prior removal of direct
neighbourhood by the algorithm. However, a significant period
of around 50 kbp was detected also, a finding which can raise
some interesting insights (see Sect. 3.1.2 and further discussion in
the legend of Fig. 1).

3.1.3 Clustering In-Phase

Genes

Periodically arranged genes have a specific radial position on the
modulo period coordinates of each individual significant period.
Visualising their modulo coordinates is of key interest for biological
researchers because this viewmight provide insights on whether the
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set of the genes of interest can be found to be co-localised in the
3-D folding of the chromosome and take advantage of any proxim-
ity or local concentration effect for their transcriptional activity. We
employ a simple density clustering approach based on an algorithm
known in data sciences as DBSCAN [18]. DBSCAN is an unsuper-
vised clustering algorithm that requires two parameters to find
clusters, the minimum size of the cluster (which is set to two
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Fig. 1 Periodogram of genes involved in hydrocarbon metabolism of A. borkumensis. The height of the bars
corresponds to the significance of the detected period (�log(p-value); thus if, e.g. the p-value equals 10�3,
the bar height is 3), the dotted vertical lines indicate highly significant periods (periods with p-value lower than
the user specified pvThres parameter) and the dashed line connects the tips of the bars together to provide a
view of regions with dense periodic signal detection. The upper panel depicts the same periods where the p-
values have been normalised to correct for multiple testing and ordered by their size. The lower panel depicts
the raw non-normalised p-values. Numerous significant periods are found to be close to the size of the whole
A. borkumensis chromosome; this finding indicates that the proximal genomic arrangement of hydrocarbon
metabolism genes is significant (see also Note 4.3 in the text). However, in the lower end of the spectrum, a
few bars are also significant, which indicates a periodic pattern and suggests a potential 3-D solenoid
arrangement of genes. Notably, a significant peak is detected for period 50,760 bp. A further step (Sect. 3.1.2)
of the analysis with GREAT:SCAN:patterns can provide more information about that finding
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genes by default) and the minimum distance between points (which
is set as the ratio of the average intergenic size to the period; this
ratio is normalised by a single parameter called the clustering expo-
nent, set to 0.5 by default). This density-based clustering technique
is applied to the modulo period coordinates of the genomic features
of interest for all of the significant periods that have resulted from
the previous periodicity analysis step (Sect. 3.1.1). For each of the
significant periods, the user obtains a table of the clustered genes
including their position information score as well as a unique plot
for each of the significant periods that we call a clustergram. A
clustergram visualises the formation of the clusters of the genomic
features of interests after plotting their modulo coordinate (phase)
on the x-axis and their phase ranking on the y-axis. The clustergram
automatically colours the clustered genes according to the cluster
they belong to. However, a viewer can also identify clusters by
looking for vertical alignment of genomic features of interest in
the plot (Figs. 2 and 3). Genes belonging to a cluster will appear to
be perfectly aligned on a vertical line in a clustergram plot.

3.1.4 An Example from

Hydrocarbon Metabolism

Genes

Continuing the analysis of the genes involved in hydrocarbon
metabolism of A. borkumensis, GREAT:SCAN:patterns computed
the clustergrams of all the significant periods from the previous
analysis step (see Sect. 3.1.1). The results from the periodogram
analysis indicate that most of the significant periods are similar to
the genome length thus implying a 1-D genomic proximity
arrangement of the hydrocarbon metabolic genes. The clustering
analysis corroborates that further, as genes are clustered for the
period of 3,043,845 bp as it is demonstrated in the clustergram of
Fig. 2. However, a much shorter period of 50,760 bp was also
found to be significant, and the hydrocarbon-involved genes
appeared to cluster well (Fig. 3), suggesting a potential 3-D clus-
tering of hydrocarbon metabolism genes.

3.1.5 Chromosome

Mapping

So far, we considered periods that span the full length of the
genome. Each period analysed and studied up to this section refers
to the full set of the genes (or the genomic features) of interest as it
is positioned on the whole genome. However, there might be cases
where only a certain chromosomal region displays periodic arrange-
ment. This section of the protocol will provide the tools and
techniques to analyse these cases too.

To address this requirement, an additional feature of the algo-
rithm was developed: the periodicity analysis can be performed in a
sliding window. We have developed a ‘mapping’ algorithm where a
sliding window approach is scrounging the whole genome on
multiple scales in order to identify periodic regions. This section
(and the following) will provide the steps to perform chromosome
mapping analysis and interpret the results.
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The period-scanning algorithm that is described in [10] and is
used in section 3.1.1 to detect periods in the whole genome is
adapted with a sliding window approach so that it operates in
segments of the genome. The size of the window is specified by
the user; however, a default value of 10,000 bp that grows incre-
mentally to the whole genome length is used and provides the right
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Fig. 2 Clustergram of the hydrocarbon metabolism genes of A. borkumensis for a period close to full genome
length. The x-axis represents the length of one whole period, and each location corresponds to the phase
(modulo coordinate) of each genomic feature of interest. Thus, any vertical quasi-alignment of the points
denotes a gene cluster. The left y-axis shows the gene name and its genomic position; the right y-axis shows
the positional information score of each gene (a score which corresponds to the individual contribution of each
genomic feature to the clustering for this particular period). Cases like this, where the period approaches the
genomic length, capture 1-D proximity, because proximity is detected by going around the full circle of the
genome and falling back in the same neighbourhood
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results in any occasion. The user can also specify a p-value cut-off
for the periods that are selected for plotting.

3.1.6 An Example from

Hydrocarbon Metabolism

Genes

We continue the analysis of the genes from A. borkumensis which
play a central role in hydrocarbon metabolism by analysing their
organisation in a finer scale using the ‘sliding window’ version of
the periodicity detection algorithm. This allows the user to obtain a
graph of the whole genome of the organism of interest where the
detected periods on each particular segment are immediately
observable together with information about the number of
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Fig. 3 Clustergram of the hydrocarbon metabolism genes of A. borkumensis for a period of 50,760 bp. Cases,
like the one illustrated where the period is much lower than genome length, may be interpreted as 1-D
periodicity, suggestive of 3-D arrangement and clustering of genes [2, 6]. Genes, or genomic features of
interest, with a high position information score, are the top candidates for further investigation of potential 3-D
co-localisation. The caption of Fig. 2 describes the details regarding the graph
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involved genes, the p-value of each period and genomic locations of
interest which can be superimposed on the graph. We call this plot a
‘period mapping plot’ or ‘chromogram’, and the result for the
hydrocarbon metabolism genes is illustrated in Fig. 4.

3.2 GREAT:SCAN:

PreCisIon

Current methods for the identification of cis-regulatory elements
are marginally successful in their ability to discriminate between
many alternative variants of the possible TFBSs. While the data on
the consensus sequences for the corresponding regulatory sites are
available, it often contains motifs with very low sequence conserva-
tion (like TCRNNNNNNACG, where N can be any nucleotide).
Such degenerate consensus sequences lead to high false-negative
and false-positive rates. The difficulty lies in the specific nature of
DNA-protein interactions. Our method PreCisIon addresses this
issue by taking into account both views: (a) local binding sequence
readout and (b) global genome layout readout. The underlying
rationale is based on the observation that co-regulated genes tend
to be positioned at periodic intervals along the chromosome (see
Sect. 3.1). The combined classifier is then obtained with an iterative
weight update scheme, using a modified version of the AdaBoost
algorithm. PreCisIon consistently improves methods based on
consensus-binding sequence information only. This is shown by
implementing a cross-validation analysis of the 20 major
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Fig. 4 The period mapping graph (or ‘chromogram’) of the hydrocarbon metabolism genes of A. borkumensis.
Here, segments of the genome that contain periodic genes or genomic features of interest are depicted. The
x-axis displays the genomic coordinates for the full genome length. The y-axis is used only to order the
segments according to the segment size. The thickness of the segment denotes the number of genes that
belong to this segment. The colour code corresponds to the p-value for this period. Thickness and colour scales
self-adjust to the data and chosen parameters and are indicated on the right side of the plot. For each significant
segment, its end coordinates, period value (p:) and number of genes (g:) appear in the text just above the middle
of the segment. The blue ticks on the horizontal axis demark the genomic position of the input data. Additionally
(not shown), the user can specify some genomic landmarks of interest from the parameters of the program.
NOTE: all the above-mentioned plots were obtained by running the GREAT:SCAN:patterns program and using
the following parameters: avgGene: 1000, clustExp: 0.1, clustSize: 3, infile: alcanivoraxHC_Metabolism.txt,
length: 3120143, perRange: 5000, 3120143, pvSelect: 0.01, pvThres: 0.05, mapSelect: 0.001
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transcription factors from two phylogenetically remote model
organisms. For Bacillus subtilis and Escherichia coli, respectively,
PreCisIon achieves on average an AUC (area under the ROC
curve) of 70% and 60%, a sensitivity of 80% and 70% and a specificity
of 60% and 56% [11, 12].

4 Notes

GREAT:SCAN analyses might not always detect significant periods
or clusters, and might not return some (or any) plots. Even though
the software tries to prevent the most common mistakes a user can
make (i.e. wrong parameter choices) and suggest the most common
solution, there are some cases where the plots and the results are
not easily interpretable. Here, we collect a couple of these cases and
give some explanations of why it happened as well as how to solve
the problem.

4.1 Significant

Periods Not Detected

There might be cases where significant periods will not be reported.
There are two reasons why this might happen. Firstly, a genuine
reason is that the input data do not contain any genomic features
that are periodically arranged in the genome. Please note however
that periodicity of cofunctional genes has been detected in all
eubacterial phyla [6] and in baker’s yeast [4]. A second reason is
that the parameters for reporting the periods to plots (and tables)
are very stringent, and thus none of the periods passed the thresh-
olds. This is often the case with the region mapping algorithm. As
the chromosome periodical mapping (Sect. 3.1.3) zooms on seg-
ments of the chromosome with a small portion of the whole data-
points, the p-value of these periods is generally much lower than the
p-value of periods that refer to the whole genome. Therefore, the
default value for the plotting of thesemapped periods is much lower
than the level of significance of 0.05 (set to 0.001 by default in the
web server). If an analysis fails to return any periods in the chromo-
some mapping plot, then try to increase this threshold p-value.

4.2 Clusters of

In-phase Features

Not Detected

The clusters reported in the clustergram analysis of Sect. 3.1.2 are
calculated by a local density cluster approach. The algorithm that is
used is called DBSCAN, and it requires two parameters: the cluster
size (by default 3) and the minimum distance between members of
the cluster (specified by the clustering exponent). The clustering
exponent is applied on the ratio between the period and the
genome length which specifies the minimum distance parameter
for clustering. The exponent ranges between 0 and 1; the closer to
1, the lower the effect of the length of the period towards clustering
sensitivity is, therefore clustering becomes more sensitive for a
given period. For values 0 or close to it, the minimum distance
for clustering becomes the largest possible, and thus clustering
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becomes less sensitive. As a rule of thumb, when no cluster of
in-phase genes has been detected, it is advisable to lower the
clustering exponent (the default is set to 0.5).

4.3 Period Nearly

Equals Genome Length

GREAT:SCAN:patterns may return periods which equal the total
genome length of the organism of interest or total genome length
divided by a small integer. This was for instance the case with A.
borkumensis (Sect. 3.1.1). Such very long periods denote significant
proximity (1-D clustering) patterns. Indeed, it is known from the
genome sequence ofA. borkumensis [15] that there are several gene
clusters where the hydrocarbon degradation genes are organised.
This fact was evident from the periodicity analysis with GREAT:
SCAN:patterns in Sect. 3.1.1, when the patterns procedure detects
periods close to the genome length.

In sum, one interesting feature of the pattern algorithm is that
it detects 1-D proximity and 3-D periodicity patterns in a single
pass and provides p-values for both features that can be directly
compared [10].
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Appendix 1: Input File Format for a GREAT:SCAN:patterns Analysis (This Example
Contains the Genes from A. borkumensis Involved in Hydrocarbon Degradation)

dhmA, 2734484
alkB1, 3063242
alkB2, 130408
aldh, 3066633
alkK, 3110974
alkL, 2198588
alkN, 114433
rubB, 170672
rubA, 171870
GntR, 129582
p450, 2707944
p450b, 2607794
p450c, 217210
fdx, 216875
alkJ2, 218643
FAD, 220424
AraC, 215704
alkG, 3064575
alkS, 3060396
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Appendix 2: Usage Message of GREAT:SCAN:patterns

usage: patterns.R [-h] -t [<title> [<title> . . .]]

[-l <genome_in_bp>]

[-a <avgGene_in_bp>]

[-r [<per_bounds> [<per_bounds> . . .]]]

[-p <pvalue_thres>]

[-s <pvalue_select>]

[-d [<set_coords> [<set_coords> . . .]]]

[-k [<set_ticks> [<set_ticks> . . .]]]

[-c <clust_exponent>]

[-z <cluster_size>]

[-m <pvalue_mapping>]

[-i [<a_uniq_ID>]] [-v <path>]

[-o <output_path>]

<file_name>

Systematically analyse, cluster and visualise results from

a complete GREAT:SCAN analysis. Full global_spectrum (-DOM

and -CIRC analysis) followed by a DBSCAN clustering to iden-

tify the in-phase genes and a solenoid_map (sliding window)

analysis and visualisation of the spread of all the possible

periods.

positional arguments:

<file_name> The input file consisting of two columns of

data formatted like this: <entity_ID>

<entity_position>

optional arguments:

-h, –help show this help message and exit

-t [<title> [<title> . . .]], –title [<title> [<title> . . .]]

A substring to specify a title for the

experiment

(default: None)

-l <genome_in_bp>, –chrom_length <genome_in_bp>

The length in bp of the organism

chromosome

(default: 4639675)

-a <avgGene_in_bp>, –avg_gene <avgGene_in_bp>

The average gene length of the organism

genes

(default: 1000)

-r [<per_bounds> [<per_bounds> . . .]], –period_range

[<per_bounds> [<per_bounds> . . .]]

The range (min. – max.) within which peri-

ods will be considered for further analy-

sis (default: 5000)
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-p <pvalue_thres>, –pvalue_thres <pvalue_thres>

The unweighted p-value threshold for

considering a period for further analy-

sis (default: 0.05)

-s <pvalue_select>, –pvalue_select <pvalue_select>

The weighted p-value threshold for

selecting which periods will be printed

(default: 0.05)

-d [<set_coords> [<set_coords> . . .]], –plot_coords

[<set_coords> [<set_coords> . . .]]

Specifies a set of genomic coordinates to

be printed as significant genome marks in

the mapping plot (the E.coli macrodo-

mains are defaults:

[46396, 603158, 1206296, 2180612,

2876552, 3758076])

-k [<set_ticks> [<set_ticks> . . .]], –plot_ticks

[<set_ticks> [<set_ticks> . . .]]

Specifies a set of axis ticks to be printed

as indicators of genome marks in the

mapping plot (must be equal size with the

coordinates).

(default: [’ori’, ’right’, ’R/ter’,

’ter/L’, ’left’, ’ori’])

-c <clust_exponent>, –clust_exp <clust_exponent>

The clustering exponent. Assigns the

minimum distance d between two points to

be members of the same cluster. Specifies

the exponent of the ratio between the

length of the period and chromosome

length (p/L). (default: 0.5)

-z <cluster_size>, –clust_size <cluster_size>

The minimum number of members for a group

to be considered as a cluster (DBSCAN

parameter)

(default: 2)

-m <pvalue_mapping>, –pvalue_map <pvalue_mapping>

The weighted p-value threshold for

selecting which sliding window periods

will be plotted (default: 0.001)

-i [<a_uniq_ID>], –uniq_ID [<a_uniq_ID>]

The unique ID for the generation of the

results folder. (default: patternAnaly-

sis_ xxxx_xx_xx)
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-v <path>, –pv <path>

The path to the ’pv’ fit parameters file.

(default: <installation_of_cmdline_

programs>)

-o <output_path>, –output_path <output_path>

The absolute path for a directory (exist-

ing one including the trailing slash ’/’)

where the output will be kept, or omit for

the current working directory. (just the

path, the directory name itself is con-

trolled by the -i option).

(default: <current_working_dir>)
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A Practical Protocol for Integration of Transcriptomics Data
into Genome-Scale Metabolic Reconstructions

Juan Nogales and Lucı́a Agudo

Abstract

In recent years, an avalanche of data in the form of the so-called omics has been generated in biological
sciences. Nevertheless, the effective use of this huge volume of data is challenging from a purely mathemat-
ical and statistical point of view, and integrative approaches are becoming a necessity. Genome-scale
metabolic models offer an unprecedented chance to integrate and contextualise, in the correct biological
context, this large amount of omics data being generated. This chapter provides a step-by-step protocol for
the integration of transcriptomics data in genome-scale metabolic models by constructing condition-
specific bacterial models. Subsequently, they are used to increase the accuracy of the in silico predictions
in terms of metabolic flux prediction and for the better contextualisation of the transcriptomics data in the
correct biological context. Two models environmental bacterial such as Pseudomonas putida KT2440 and
Synechocystis sp. PCC 8063 and their corresponding GEMs are used here for such proposes.

Keywords Constraint-based reconstruction and analysis, Genome-scale model, GIMME, Omics
integration, Pseudomonas putida, Synechocystis

1 Introduction

One of the prime biological questions still remaining is the complete
deciphering of the complex genotype-phenotype relationships.
Metabolic phenotype, which is understood as the metabolic fluxes
displayed by a living organism against environmental perturbations,
remains elusive to fully understand despite the knowledge of geno-
type. This is because of the complex network of interactions includ-
ing signalling, regulatory and metabolic networks taking place
between the biological components present in any given organism
[1–3] (Fig. 1). With the advent of omics technologies, it is now
possible to quantitatively monitor the levels of cellular components
(e.g. nucleic acids, proteins and metabolites) enabling the identifi-
cation of patterns in genotype expression andmolecular interactions
and, as a consequence, shortening the existing gap between geno-
type and phenotype. In recent years an avalanche of transcriptomics,

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016) 135–152,
DOI 10.1007/8623_2015_98, © Springer-Verlag Berlin Heidelberg 2015, Published online: 16 June 2015
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proteomics, metabolomics and fluxomics data are being collected
during biological experiments. However, the correct managing and
effective use of this myriad of data are challenging and integrative
approaches are needed. Many so-called inference-based methods
have emerged recently in order to extract biological meaning to
omics datasets [4]. These methods rely on mathematical and statis-
tical analysis of the data in order to construct biological networks,
and subsequently they find common patterns in genotype expres-
sion and interactions between biological components under
perturbations. These methods have proven to be highly useful;
however, they are limited, at some extent, by the incomplete
biological network constructed solely based on omics data which
are often incomplete, hampering the contextualisation of the data in
the correct biological context [4, 5].

An attractive and complementary approach comes from the
possibility to integrate these data into accurate biological networks
constructed from biochemical and genetic data, e.g. genome-scale

Fig. 1 Graphical representation of the gene/protein-reaction association (GPR) present in any GEM and its
suitability for multi-omics data integration. Genomics, transcriptomics, proteomics, fluxomics and metabo-
lomics data can be integrated easily in GEMs through the GPR. Additionally, the construction of condition-
specific models by using different kinds of omics offers the possibility to identify new insights in the regulatory
mechanism connecting both omics data
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metabolic reconstructions (GEMREs). Such reconstructions
contain detailed information on the target organism including the
exact reaction stoichiometry, the reaction reversibility; the relation-
ships between genes, proteins and reactions (GPR) (Fig. 1) as well
as the biochemical and physiological data available [6, 7]. Thereby
they are structured and species-specific knowledge bases which
provide the suitable framework for omics data contextualisation
[8, 9]. In addition, these reconstructions are amenable to transfor-
mation on mathematical models, genome-scale models (GEMs),
which enable computation of the phenotype, in terms of metabolic
fluxes, by making certain assumptions [10]. The constraint-based
reconstruction and analysis (COBRA) approach [11, 12] is based
on the application of those constraints imposed by the genotype
and environment perturbations (e.g. nutritional conditions), and it
describes the set of feasible metabolic states (see Nogales [9] in this
protocol book series for more details about GEMs reconstruction
and analysis). Because GEMs are constructed containing all the
metabolic genes and reactions in a given organism, it is assumed
that any reaction is active in any condition. However, many of the
genes encoded in any genome are only active under particular
conditions. Thus, additional regulatory constraints such as those
derived from omics data can be further imposed through the GPR
(Fig. 1), in order to reduce the feasible metabolic states to that
corresponding to the specific environmental perturbation where
the omics data were collected. Hence, this approach increases the
accuracy of the model predictions. In addition, it allows the mech-
anistic interpretation of the data in the correct biological context,
and because different kinds of omics data can be used to construct
condition-specific models (e.g. transcriptomics and proteomics),
the comparison of these models constructed based on different
sources of omics data can provide new insights into the regulatory
mechanism connecting both omics data (e.g. post-transcriptional
mechanisms, Fig. 1) [8, 13, 14].

From those omics now being collected, metabolic fluxes [15]
can be integrated into GEMs in a straightforward manner by con-
straining the maximum and minimum fluxes of the reactions in the
model to those experimentally measured. However, the wide appli-
cation of such approach remains challenging because the large
facilities required and the reduced number of fluxes and conditions
that can be experimentally measured [16], thus making its use not
applicable at genome scale. Contrary, the advancements in high-
throughput methods for the quantification of nucleic acids and
proteins have emphasised their use as more suitable omics technol-
ogies for constraining the solution space in GEMs [8]. In particu-
lar, the use of transcriptomics data has become popular not only
due to its low cost but also because changes in mRNA concentra-
tion can be determined with great accuracy due to its higher
coverage when compared with proteomics. Therefore, it is not
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surprising that several constraint-based methods for integration
of transcriptomics data into GEMs have been developed recently
(see for review [8, 13, 14, 17, 18]). Roughly, the current methods
can be classified into two main categories [8]: (a) the switch
approach, based on constraining the fluxes of the reactions whose
encoding gene is under a user-given threshold expression level (e.g.
GIMME [19]), and (b) the valve approach, which constrains the
fluxes of the reactions in the network based on relative gene expres-
sion (e.g. PROM [20]). Recently, a very detailed comparison of
these methods revealed that none of the methods published so far
outperforms the others and it was concluded that there is no
universal method for addressing accurately all of the metabolic
scenarios tested [18]. Beyond this shortcoming is the fact that
gene/protein expression levels do not necessarily reflect flux levels.
Therefore, some of the methods yielded reasonable predictions
under certain conditions, thus suggesting that the method of
choice is not a trivial issue and that a given biological problem
should be addressed through more than one method (seeMachado
and Herrgård [18] for more detailed discussion about the methods
performance). For practical reasons, we will focus here in switch-
based methods since they only require a limited number of gene
expression datasets as input, often only a single dataset, and because
they have been extensively used. Specifically, Gene Inactivity Mod-
erated by Metabolism and Expression algorithm, GIMME [19],
will be used here (Fig. 2). GIMME is a switch-based method which,
although initially developed to create tissue-specific human cells
models, can be easily adapted to create condition-specific bacterial
models. By minimising the use of reactions encoded by genes with
expression levels under a given threshold, GIMME finds a flux
distribution consistent with a biological objective [19]. In others
words, GIMME constructs condition-specific models by removing
from the original GEM those reactions whose encoding genes are
considered unexpressed in the omics dataset. The resulting model
has to satisfy an appropriate objective function (e.g. biomass pro-
duction); otherwise, the method restores the model functionality
by adding the minimal set of the reactions that satisfy the objective
(Fig. 2). GIMME has been extensively used for the study of multi-
cellular metabolic processes in human tissues [21] and for the con-
struction of host-pathogen [22] and disease-specific models [23],
among other applications. In addition, GIMME has the advantage
that it can be used to input both transcriptomics and proteomics
datasets allowing the extension of this protocol to proteomics data,
and it is already implemented in the popular COBRAToolbox [12].
Therefore, it does not require additional implementation making it
a user-friendly method. In this protocol we use GIMME to con-
struct condition-specific models from two environmental bacteria
such as Pseudomonas putida KT2440 and Synechocystis sp. PCC
6803 by using transcriptomics data. We further use these models
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Fig. 2 Schematic representation of GIMME. GIMME is a switch-based method that uses a set of gene
expression data (1), a GEM (2) and a biological objective (BO, 3) which is assumed to be achieved by the
cell under the conditions where the gene expression data were collected. GIMME is applied in two steps. First
FBA is applied on the original GEM to find a flux distribution optimising the imposed BO. Then, by comparing
the mRNA transcripts level in the experimental gene expression dataset with a user-imposed threshold, the
method identifies inactive reactions whose encoding genes have an mRNA transcript level lower than the
given threshold. Subsequently the inactive reactions are removed from the GEM and FBA is applied again on
the reduced GEM. If the new model is able to achieve the assumed BO, the condition-specific model is ready.
Otherwise, GIMME reintroduces in the model sets of inactive reactions by minimising the deviation from the
expression data. For this, an inconsistency score is calculated for each reaction by multiplying the distance
between the mRNA transcript level and the threshold value per the optimal flux required to achieve the
imposed BO through the target reaction. The reaction or set of reactions allowing model functionality while
minimising the inconsistency score are back into the system. The toy networks constructed to illustrate how
GIMME works is composed of eight reactions R1–8, eight genes gene1–8 and six metabolites (2). The gene
expression values in a given condition are expressed in arbitrary units (1). The biological objective assumed is
also indicated (3). Transcriptomics-based condition-specific models are constructed by using two different
thresholds. When a threshold value of 2 is used, only the gene4 is assumed to be unexpressed and
subsequently its associated reaction is removed from the network (A). The assumed BO is achieved meaning
that the expression data are consistent with the assumed functionality. As consequence the condition-specific
model has an inconsistency score ¼ 0. The feasible and disabled fluxes by GIMME are shown as bold and
grey arrows, respectively. When a threshold value of 3 is used, three genes are considered unexpressed,
gene3–5. This higher threshold results in a condition-specific model unable to satisfy the imposed BO which
indicates that the gene expression data are only partially consistent with the assumed functionality.
Subsequently, GIMME calculates the inconsistency score for each inactive reaction (e.g. R3–5) and returns
a functional model minimising the overall inconsistency score. By assuming the same maximum flux value for
all of the reactions in the network and in order to achieve the BO from the two potential models that can be
constructed (b and c), GIMME returns to the model B since the inconsistency score is lower. The flux through
the inactive reactions reintroduced in the model is shown as dotted arrows



to improve the flux distribution prediction in P. putida as well as to
enhance our understanding of the photosynthetic robustness in
Synechocystis.

2 Materials

1. Equipment.

1.1 A personal computer capable of running Matlab.

1.2 Matlab, version 7.0 or above (The MathWorks Inc.,
Natick, MA, http://www.mathworks.es/). Matlab is a
numerical computing environment.

1.3 COBRAToolbox version 2.0 or above. The latest version
can be downloaded from http://opencobra.sourceforge.
net/openCOBRA/Welcome.html. The COBRA Tool-
box is a set of MATLAB scripts for constraint-based
modelling which run within the MATLAB environment.

1.4 libSBML programming library 4.0.1 or above (http://
sbml.org/Software/libSBML).

1.5 SBMLToolbox version 3.1.1 or above for MATLAB to
allow reading and writing models in SBML format
(http://www.sbml.org).

1.6 A linear programming (LP) solver. The COBRAToolbox
supports several open-access and commercial solvers. For
the present case we used:

1.6.1 GLPK (http://www.gnu.org/software/glpk)
provided by the COBRA Toolbox.

1.6.2 Gurobi: a free licence is available upon request at
http://www.gurobi.com/.

2. Equipment Setup.

2.1 Install Matlab.

2.2 Install libSBML, the SBML Toolbox and selected solvers
according to their specific instructions.

2.3 Unpack the COBRA 2.0 archive.

2.4 Initiate Matlab and navigate to the COBRA Toolbox
directory.

2.5 Save the path.

2.6 Initialise the COBRAToolbox by typing initCobraToolbox.

Detailed information about the material, software and equip-
ment setup can be found in Schellenberger et al. [12] and on
the COBRA Toolbox website http://opencobra.sourceforge.
net/openCOBRA/Welcome.html.
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3. Source of GEMs. Any GEM in sbml or mat format and
accounting with GPR association can be used following this
protocol. An updated list of the current GEM can be found at
the SBRG web page (http://systemsbiology.ucsd.edu/
InSilicoOrganisms/OtherOrganisms). Here we used the met-
abolic model of P. putida KT2440 (iJN746) [24] which can be
downloaded from BIGG database (http://bigg.ucsd.edu/), and
an updated model of Synechocystis (iJN678_v1.1) [25] which
contain corrections in mass and charge balancing with respect
to the original model [26] and can be downloaded from (http://
emciblab.com/lab-members/juan-nogales.html).

3 Methods

3.1 Construction and

Analysis of a Glucose

Minimal Media GEM of

P. putida (see Note 1)

1. Getting the GEM in proper format compatible with the
COBRA Toolbox:

1.1 Download the model of P. putida iJN746 in sbml
format from the BIGG database (see step 2.3) and save it as
P.putida_ iJN746.sbml. Place it in your Matlab work
path. The basic tutorial of Matlab and detailed examples
can be found in http://www.mathworks.com/support/?s_
tid¼gn_supp.

1.2 Import the Model to Matlab by typing the following
command:

model¼readCbModel(’Pputida_iJN746.xml’).

1.3 Save the model as mat file:

save Pputida_iJN746

2. Constructing the gene expression structure array:

2.1 Download the gene expression data from the original
source (see Note 2).

2.2 Extract the genes from the GEM:

Genes¼model.genes

A vector containing the genes present in the reconstruc-
tion will be created.

2.3 Map the expression data for the list of genes in the GEM
from the original gene expression data (seeNote 3). Note
that transcripts of 5,254 genes were detected in the cur-
rent experimental study [27] and that only 746 genes are
included in iJN746.

2.4 From the gene expression levels (RPKM) of the genes
present in iJN746, compute the value of the first quartile.
This value will be used as a threshold (see Note 4).
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2.5 Creating the presence/absence calls vector such that
those genes with expression value upper and lower to
the threshold will receive a value of 1 and 0, respectively.

2.6 Modify the gene ID from the original GEM to a solely
numerical ID. For instance, change the original ID
PP_0059 to 0059 (see Note 5).

model.genes ¼ strrep(model.genes,’PP_’,’’);

model.grRules ¼ strrep(model.grRules,’PP_’,’’);

2.7 Construct the empty gene expression structure array con-
taining two fields (e.g. Locus and Data):

ExpressionData¼struct(’Locus’,[],’Data’,[])

2.8 Repeat step 3.1.2.2 and fill up the field “Locus” with the
list of genes and the field “Data” with the presence/
absence call vector in binary form (step 3.1.2.5)

3. Constructing the condition-specific model:

3.1 Constrain the exchange reactions in the model as possible,
based on the experimental evidences (see Note 6). In this
case, glucose uptake rate from Chavarrı́a [28] was used.

model¼changeRxnBounds(model,’EX_glc(e)’,

-4.79,’l’);

3.2 Add any other known constraints (see Note 6). In this
case, it was assumed that the peripheral metabolism of
glucose to gluconate occurs exclusively through glucose
kinase [28]; thus, the flux through glucose dehydroge-
nase was constrained to 0.

model¼changeRxnBounds(model,’GLCDpp’,0,’b’);

3.3 Save the constrained model.

save ModelGlc_Base

3.4 Create the condition-specific model by using the create-
TissueSpecificModel function from the COBRA Tool-
box. This function uses as mandatory inputs a GEM in
mat format (in this case ModelGlc_Base) and an expres-
sion data structure (step 3.1.2.7) (see Note 7).

[ModelGlc,RxnsGlc] ¼ createTissueSpecificModel

(ModelGlc_Base,ExpressionData,[],[],

[],’GIMME’);

The function returns two array structures.

ModelGlc contains the autotrophic-specific GEM including
the regulatory constraints imposed by the transcriptomics
data.

RxnsGlc contains the functional categorising of the reac-
tions from the original GEM based on the transcriptomics
data and the threshold applied (see Note 8).

3.5 Save the condition-specific model as ModelGlc
Save Pputida_Glc
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4. Analysing the accuracy of the condition-specific model (see
Note 9):

We tested the accuracy of the glucose-specific GEM of
P. putida by comparing the flux distribution predictions through
central metabolism against those reported experimentally.

4.1 Find the flux distributionmaximising biomass production
for the glucose-specific model (see Note 10).

4.1.1 Maximise biomass production using FBA.

Sol_ModelGlc ¼ optimizeCbModel(ModelGlc,

’max’,’one’);

4.1.2 Print the metabolic fluxes yielding such biomass
maximisation.

FluxModelGlc ¼ printfluxVector(ModelGlc,

Sol_ModelGlc.x,false,false)

4.2 Find the flux distributionmaximising biomass production
for iJN746 using glucose as the only carbon source.

4.2.1 Maximise biomass production using FBA.

Sol_Base_Glc ¼ optimizeCbModel

(ModelGlc_Base,’max’,’one’)

4.2.2 Print the metabolic fluxes yielding such biomass
maximisation.

FluxGlc_Base ¼ printfluxVector(SolGlcBase,

Sol_Base_Glc.x,false,false)

4.3 Compare flux distribution prediction of the glucose-
specific model and iJN746 against experimentally
reported flux distribution (Fig. 3).

3.2 Construction and

Analysis of an

Autotrophic-Specific

Metabolic Model of

Synechocystis Under

Optimal Light

Conditions

1. Getting the GEM in proper format compatible with the
COBRA Toolbox:

1.1 Download the model of Synechocystis in sbml format (see
step 2.3). Place it in your Matlab path.

1.2 Import the model to Matlab by typing the following
command:

model ¼ readCbModel(’iJN678_v1.1.xml’)

1.3 Save the model as a mat file:

save iJN678_v1.1

2. Construct the gene expression structure array.

2.1 Download the gene expression data from the original
source (Note 1 [29]).

2.2 Extract the gene from the GEM; type:

Genes ¼ model.genes
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A vector containing the genes present in the reconstruc-
tion will be created.

2.3 Map the expression data for the list of genes in the GEM
from the original gene expression data. Note that tran-
scripts of 3,106 genes were detected in the current exper-
imental study [29] and that only 678 genes are included
in iJN678.

2.4 From the gene expression levels (RPKM) of the genes
present in iJN678, compute the value of the first quartile.
This value will be used as a threshold (see Note 4).

2.5 Creating the presence/absence calls vector such that
those genes with expression value upper and lower to
the threshold will receive a value of 1 and 0, respectively.

2.6 Modify the gene ID from the original GEM to a solely
numerical ID. For instance, change the original ID
sll1682 to 11682 (see Note 5).

model.genes ¼ strrep(model.genes,’sll’,’1’);

model.grRules¼ strrep(model.grRules,’sll’,’1’);

model.genes ¼ strrep(model.genes,’slr’,’2’);

Fig. 3 Flux distribution predictions compared with experimental data. The flux predictions through the central
metabolism from the original model (ModelGlc_Base) and the condition-specific model (ModelGlc) against experi-
mental data are show in panel A. The flux values are shown in % and were normalised to the glucose uptake rate,
which was 4.79 mmol.gDW�1.h�1. The correlation coefficients of the in silico predictions against experimental
value are shown in panel B. Note that the imposition of regulatory constraints in the form of gene expression data
improves significantly the in silico predictions. The condition-specific model predicts accurately higher carbon flux
being funnelled to TCAdrivenby the pyruvate kinase (PYK) and pyruvate dehydrogenase (PDH).GLCabcpp D-glucose
transport, HEX1 hexokinase, G6PDH2 glucose-6-phosphate dehydrogenase, PGL phosphogluconolactonase, PGI
glucose-6-phosphate isomerase, GND phosphogluconate dehydrogenase, EDD 6-phosphogluconate dehydratase,
EDA2-dehydro-3-deoxy-phosphogluconate aldolase,PYK pyruvate kinase, PC pyruvate carboxylase,PDH pyruvate
dehydrogenase,ME1malic enzyme, FUM fumarase,MDHmalate dehydrogenase
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model.grRules¼ strrep(model.grRules,’slr’,’2’);

model.genes ¼ strrep(model.genes,’sml’,’3’);

model.grRules¼ strrep(model.grRules,’sml’,’3’);

model.genes ¼ strrep(model.genes,’smr’,’4’);

model.grRules¼ strrep(model.grRules,’smr’,’4’);

model.genes ¼ strrep(model.genes,’ssl’,’5’);

model.grRules¼ strrep(model.grRules,’ssl’,’5’);

model.genes ¼ strrep(model.genes,’ssr’,’6’);

model.grRules¼ strrep(model.grRules,’ssr’,’6’);

2.7 Construct the empty gene expression structure array con-
taining two fields (e.g. Locus and Data) by typing:

ExpressionData ¼ struct(’Locus’,[],’Data’,[])

2.8 Repeat step 3.2.2.2 and fill up the field “Locus” with the
list of genes and the field “Data” with the presence/
absence call vector in binary form (step 3.2.2.5)

3. Constructing the condition-specific model:

3.1 Constrain the exchange reactions in the model in order to
simulate the environmental conditions corresponding to
the transcriptomics data (see Note 6).

In this case, autotrophic conditions under optimal
light conditions will be used [26, 29].

Inorganic carbon is supplied in form of hco3 [26].

model ¼ changeRxnBounds(model, ’EX_hco3(e)’,

-3.70, ’l’);

model¼changeRxnBounds(model,’EX_glc(e)’,0,’l’);

Unconstrained light uptake is allowed.

model ¼ changeRxnBounds(model, ’EX_photon(e)’,

-100, ’l’);

Biomass formation under autotrophic condition is selected
as BO.

model ¼ changeObjective(model, ’Ec_biomass_

SynAuto’);

3.2 Add any other physiological constraint susceptible to be
included, such as known metabolic fluxes. In this case, it
was assumed no exchange of CO2 under these conditions.

model¼changeRxnBounds(model,’EX_co2(e)’,0,’l’);

3.3 Save the constrained model.

save ModelAuto_Base

3.4 Create the condition-specific model by using the create-
TissueSpecificModel function from the COBRA Tool-
box. This function uses mandatory inputs, a GEM in
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mat format (in this ModelAuto_Base) and an expression
data structure (step 3.2.2.7) (see Note 7).

[ModelAuto,RxnsAuto] ¼ createTissueSpecificModel

(ModelAuto_Base,ExpressionData,[],[],

[],’GIMME’);

The function returns two array structures.

ModelAuto contains the autotrophic-specific GEM includ-
ing the regulatory constraints imposed by the transcrip-
tomics data.

RxnsAuto contains the functional categorising of the
reactions from the original GEM based on the transcrip-
tomics data and the threshold applied.

3.5 Save the condition-specific model as ModelAuto.

4. Analysing of the condition-specific model (see Notes 8 and 9):
The autotrophic-specific metabolic model of Synechocystis was
analysed in terms of the flux prediction accuracy and for better
understanding of the metabolic states feasible under optimal
light conditions.

4.1 Analysis of the flux distribution accuracy

4.1.1 Find the flux distribution maximising biomass
production under autotrophic conditions under
optimal light conditions using the autotrophic-
specific model (ModelAuto).

Maximise biomass production using FBA.

Sol_ModelAuto ¼ optimizeCbModel

(ModelAuto,’max’,’one’);

Print the metabolic fluxes yielding such biomass
maximisation.

FluxModelAuto ¼ printfluxVector(ModelAuto,

Sol_ ModelAuto .x,false,false)

4.1.2 Find the flux distribution maximising biomass
production for iJN678 using autotrophic condi-
tions under optimal light conditions (see steps
3.2.3.1 and 3.2.3.2).

Maximise biomass production using FBA.

Sol_ModelAuto_Base ¼ optimizeCbModel

(ModelAuto_Base,’max’,’one’)

Print the metabolic fluxes yielding such biomass
maximisation.

FluxModelAuto_Base ¼ printfluxVector(Mode-

lAuto_Base, Sol_ModelAuto_Base.x,false,

false)
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4.1.3 Compare flux distribution prediction of the
autotrophic-specific model (ModelAuto) and
iJN678 (ModelAuto_Base) against experimen-
tally reported flux distribution (Fig. 4).

4.2 Exploring of the feasible metabolic states using random
sampling

4.2.1 Sample the solution space in the autotrophic-
specific metabolic model (see Note 11).

[sampleStructModelAuto, mixedFracAuto] ¼
gpSampler(ModelAuto, 4000,[], 57600, [])

4.2.2 Sample the solution space in iJN678 under auto-
trophic conditions (see Note 11).

[sampleStructModelAuto_Base, mixedFracAu-

to_Base] ¼ gpSampler(ModelAuto_Base, 4000,

[], 57600, [])

4.2.3 Compare the metabolic states feasible through the
linear electron flow pathway in the model of Syne-
chocystis under autotrophic conditions with and
without the regulatory constraints imposed by
transcriptomics data.

Select the reactions of interest.

rxnList ¼ {’PSII’,’CBFCu’,’PSI’,’F-

NOR’,’RBPC’, ’ATPSu’};

Plot the feasible flux distribution for each reaction
in both models.

Fig. 4 Flux distribution predictions compared with experimental data. The
construction of an autotrophic-specific model of Synechocystis under optimal
light conditions does not increase in this case the accuracy of the flux predictions
which was extremely high even in the original model
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plotSampleHist(rxnList, {sampleStructMo-

delAuto.points,sampleStructModelAuto_-

Base.points}, {ModelAuto,

ModelAuto_Base},[1000],[3, 3]);

See Fig. 5.

4 Notes

1. The GIMME algorithm already implemented in the COBRA
Toolbox [12] requires as inputs a GEM in mat format and an
expression structure array containing: (a) a vector for gene IDs
and (b) a presence/absence call vector for each gene in the
reconstruction in binary form where 1 and 0 indicate presence

Fig. 5 Impact of the introduction of regulatory constraints on the flux distribution through the linear electron
flow photosynthetic pathway in Synechocystis. The linear electron flow (LEF) pathway in Synechocystis is
composed by the photosystem II (PSII), cytochrome Cytb6f (CBFCu), photosystem I (PSI) and ferredoxin-NADP
reductase (FNOR). The LEF is assisted by multiple alternate electron flow pathways as a function of the light
conditions in optimal photosynthesis performance. As a consequence, LEF adopts multiple flux distributions in
response to the AEF pathway(s) activated in a given light condition [26]. This behaviour is consistent with the
large range of flux distributions predicted through the LEF using sampling in the original model (ModelAu-
to_Base, grey) which accounts for the complete set of metabolic states feasible in Synechocystis. However,
the imposition of the regulatory constraints and the construction of an autotrophic-specific model of
Synechocystis under optimal light conditions (ModelAuto, black) reduce significantly the number of metabolic
states possible (e.g. remove those corresponding to nonoptimal light conditions). As a result, the range of flux
distributions through the LEF narrows significantly. Therefore, despite the condition-specific model unable to
increase the accuracy regarding flux predictions, it was able to delimit the metabolic states feasible to that
specifically corresponding to the environmental condition analysed, showing the robustness of this approach
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and absence, respectively. Be sure that the two vectors from the
expression structure array have the same dimension.

2. Multiple sources of transcriptomics data can be scrutinised
from primary literature to general gene expression repository
databases such as Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) and KEGG Expression Data-
base (http://www.genome.jp/kegg/expression/), up to
species-specific gene expression databases. For a recent evalua-
tion of these sources, see Rung and Brazma [30]. Although less
developed, similarly public proteomics repository databases
such as Proteomics IDEntifications (PRIDE) http://www.ebi.
ac.uk/pride/archive/ and Multi-Omics Profilling Expression
Database (MOPED) https://www.proteinspire.org/MOPED/
mopedviews/proteinExpressionDatabase.jsf are available and
contain large datasets of already published protein expression
studies. Here, absolute gene expression transcriptomics data of
P. putida growing in glucose minimal medium [27] and Synecho-
cystis under autotrophic conditions [29] were used.

3. Due to the large number of databases and associated gene/
protein IDs, the conversion of the gene/protein identifiers to
that included in the proper GEM is a key step. For most of the
current GEMs, the gene IDs included in the GPR are unique
and correspond to the gene IDs used in the popular metabolic
databases KEGG.However, for many expression datasets, alter-
native gene IDs can be used, such as those used in databases like
EntrezGene, RefSeq, UniGene, etc. In the same way, many
expression datasets include platform-specific gene IDs such as
those from Affymetrix, Agilent, etc. For these cases, several
freely available ID conversion tools are available and can be used
for mapping gene IDs on GEMs (see, e.g., http://hum-molgen.
org/NewsGen/08-2009/000020.html).

4. Since the bacterial gene expression is continuous, there are no
well-established rules to consider a given gene significantly
expressed or not. Thus, the user-imposed threshold for consid-
ering whether a gene is significantly expressed is one of the
most sensitive parameters when using GIMME. A popular
method for selecting systematically the threshold is to consider
that the gene is not significantly expressed if its expression level
is under the first quartile [18]. In addition, it is recommended to
compute the threshold value only taking into account metabolic
genes (these are those included in the reconstruction) since non-
metabolic genes such as those encoding for tRNAs or ribosomal
proteins present very high levels of expression [31]. The con-
struction of condition-specific models by using different thresh-
olds is therefore desirable previously to the final analysis.
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5. The function implemented in the COBRA Toolbox is design
specifically for constructing tissue-specific models using as
input the human GEM which contains numerical genes ID.
Therefore, the conversion to numerical IDs for genes is
required to bypass this technical limitation without modifying
the function in the COBRA Toolbox.

6. Themodel needs to be constrained by using experimental nutri-
ents uptake rates and/or by-product secretion rates measured
under the environmental condition to simulate. In addition, any
other physiological constraints susceptible to be included, such
as known metabolic fluxes, should be included as well.

7. The method implemented in the COBRA Toolbox offers the
possibility to include additional inputs. Here default conditions
have been used including the achievement of 90% of the bio-
mass produced by the original model.

8. The RxnsGlc structure contains the categorising of the reaction
from the original model based on the transcriptomics data of
their coding genes. ExpressedRxns are those predicted to be
expressed, UnExpressedRxns are those predicted to be unex-
pressed and are removed from the model, and Upregulated are
those added back into the model in order to achieve the BO
while minimising the inconsistence score.

9. The imposition of regulatory constraints based on the tran-
scriptomics data excludes from the new model those metabolic
state consequences of the predicted unexpressed genes, reduc-
ing the solution space. Thus, it is expected that the accuracy of
the condition-specific model increases significantly with respect
to the original one. These condition-specific models can be
analysed using the large array of COBRA methods currently
available [11].

10. A detailed description of flux balance analysis (FBA) can be
found in Orth et al. [10]. A practical tutorial is also available in
this book of protocols [9].

11. The random sampling method implemented in the COBRA
Toolbox uses the hit-and-run algorithm [32], and it computes
the probabilistic flux value for each single reaction by obtaining
points uniformly distributed in the region of allowed solutions
[33]. The gpSampler function returns two outputs. The sam-
pleStructModelAuto contains the sampling structure including
the flux distribution points allowed for each reaction in the
network. The mixedFracAuto is the statistical index which
regards the quality of the sampling analysis. A value of 0.5
means that the solution space has been sampled uniformly. A
total of 4,000 points were used in this protocol (it is recom-
mendable to use at least double number of points than reac-
tions in the model). In addition, the sampling was run for
57,600 s. The rest of the variables were used as defaults.
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Computer-Guided Metabolic Engineering

M.A. Valderrama-Gomez, S.G. Wagner, and A. Kremling

Abstract

Computational methods and tools are nowadays widely applied for rational Metabolic Engineering
approaches. However, what is still missing are clear advices on the right order of the application of these
tools. The availability of genomic information for a large number of cellular systems especially requires the
use of computers to store, analyze, and process knowledge of single enzymes, metabolic pathways, and
cellular networks. The trend of integrating measured quantities for the metabolome, the transcriptome, and
the proteome into mathematical models, combined with methods for the rational design of cellular
networks, has led to the research field Systems Metabolic Engineering, a field that extends and amplifies
the classical field of Metabolic Engineering. This chapter describes mathematical and computational
approaches on the cellular and the process levels. In the Material section, modeling approaches and
methods for model analysis are introduced, and the current state of the art is reviewed. In the Method
section, we propose a protocol for efficiently combining various approaches for the optimal production of
desired biotechnological products.

Keywords: Constraint-based modelling, Dynamic flux balance analysis, Flux balance analysis, In silico
strain optimization, Metabolic Engineering, Metabolic models, Stoichiometric analysis, Succinate
production, Systems Metabolic Engineering, Theoretical yields

1 Introduction

Computational methods and tools are nowadays widely applied for
rational Metabolic Engineering approaches. The optimization of
hydrocarbon and lipid production or degradation is one concrete
example for the application of this tool and has already been applied
successfully by a number of research groups [1–4]. Usually, a large
amount of biological data is necessary for Metabolic Engineering.
For example, the availability of genomic information for a large
number of cellular systems especially requires the use of computers
to store, analyze, and process knowledge of single enzymes, meta-
bolic pathways, and cellular networks. The trend of integrating
measured quantities for the metabolome, the transcriptome, and
the proteome into mathematical models, combined with methods
for the rational design of cellular networks, has led to the research

T.J. McGenity et al. (eds.), Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks (2016) 153–184,
DOI 10.1007/8623_2015_118, © Springer-Verlag Berlin Heidelberg 2015, Published online: 26 July 2015
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field SystemsMetabolic Engineering, a field that extends and ampli-
fies the classical field of Metabolic Engineering. In recent years
different views have become popular that describe the field (Fig. 1).

All views address a different question but have a common aim,
namely, the efficient production of a target. Depending on the
applied tools, methods, and researcher expertise, the cell-based
view, the compound-driven view, or the laboratory-based view pre-
dominate. The cell-based view starts by exploring the capabilities of
the cellular systems and modifies enzymes, pathway elements, or
network elements to optimize the system [5]. Furthermore, the ease
of genetic manipulation and cultivation of the cells is the driving
force. The compound-based view [6] starts with the target compo-
nent and asks how the component can be synthesized. The
laboratory-based view distinguishes between experimental and the-
oretical approaches.

In the theoretical laboratory-based view, computational tools
must perform diverse tasks to support the optimization of cellular
systems with respect to the production of desired compounds.
Three main tasks can be identified: search for information in
genomic and metabolic databases, description and integration of
experimental data in mathematical models, and application of opti-
mization strategies to improve single enzymes, to design pathways
and networks, and to construct new cellular circuits.

For the first of these tasks, databases like KEGG [7], EcoCyc
[8] or Brenda [9] provide information about compounds, reac-
tions, and networks for various cellular systems. Moreover, kinetic
information, that is, information on the temporal behavior of
enzymes, can also be found. In general, the information is very
detailed, ranging from the chemical structure of compounds and
promoter and ribosome sequences to pathway information. In this
way, databases support all strategies for modification of cellular
systems. The setup and the analysis of mathematical models are
further pillars in Systems Metabolic Engineering. Such models are

Target selection
Evolutionary engineering
Integrated bioprocess

Experimental / wet lab
Theoretical / dry lab

Capacity/ network level
Genetic manipulation
Cultivation

Laboratory based

Metabolic Engineering

Compound driven Cell based

Target

Fig. 1 Views describing the field of Metabolic Engineering. Each view tackles the engineering problem of the
efficient target production using different tools and focuses. This chapter describes theoretical tools used in
the laboratory-based view
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helpful in two ways: first, they integrate what we know of a system
in terms of mathematical equations. Since these equations are based
on physical and chemical laws, models are used to check the consis-
tency of the knowledge and thereby allow researchers to detect
missing or incorrect items. Second, quantitative models, that is,
models that are validated with quantitative experimental data, have
potential for prediction. The chance to make predictions about
conditions that were not used for model validation opens possibi-
lities for model-based modifications such as optimization of cellular
properties. Optimization itself plays the most important role in
Systems Metabolic Engineering and is used not only on the cellular
level but also on the process level.

When optimizing the metabolic system with respect to the
production of a target, there are two possible cases. Figure 2
shows that either the target is already inherently produced by the
host cell (case A), or a noninherent pathway has to be inserted (case
B). In case A, a metabolite is often produced only at a low specific
rate r, while the organism is growing at a high growth rate (Fig. 2a,
left). The aim is to construct a strain with a higher specific produc-
tion rate. Caused by a reorganization of the available resources, a
lower growth rate results (Fig. 2a, right). If the target is not
produced by the strain inherently (Fig. 2b, left), heterologous
DNA information should be introduced into the strain. When
new enzymes are expressed and the desired product is built, it is
expected that the growth rate also decreases (Fig. 2b, right).

This chapter describes mathematical and computational
approaches on the cellular and the process level. In the Material
section, modeling approaches and methods for model analysis are
introduced, and the current state of the art is reviewed. In the
Method section, we propose a protocol for efficiently combining
various approaches for the optimal production of desired biotech-
nological products.

Fig. 2 Resource usage in two different cases. The circles represent the available cellular resources and how
they are used in different situations: (a) the target is already produced inherently by the cell (left). Optimization
of this metabolic system results in a rearrangement of the resources (right). (b) If the target is not produced
naturally (left), a noninherent pathway has to be introduced. This also causes a reorganization of the cellular
metabolism. Here, the plasmids represent the heterologous DNA introduced into the host cell (right)
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2 Materials

Commonly used materials for computer-guided Metabolic Engi-
neering include metabolic reconstructions, model equations for the
cellular reaction network and for the bioreactor system, experimen-
tal data, and software. The last category included solvers, comput-
ing environments, and/or programming languages.

2.1 Metabolic

Reconstruction

A genome-scale metabolic reconstruction is a mathematical repre-
sentation of the metabolism of a living cell. It is typically made up of
the stoichiometry of all known reactions that take place inside an
organism and the enzymes and genes associated with that reaction.
Additionally, a reaction accounting for biomass generation
[Eq. (1)] which is based on the biomass composition of that
microorganism and an estimation for growth- (GAM) and
nongrowth-associated energy requirements (NGAM) are also
important components of the metabolic reconstruction. The con-
cept of GAM and NGAM for the description of the energetics of
bacterial cell growth was first mathematically formalized by Pirt
[10]. GAM accounts for the energy needed to synthetize macro-
molecules (DNA, RNA, lipids, etc.) necessary for cell growth, while
NGAM refers to the energy consumed for functions other than
production of new cellular material.

Proteinþ RNA þDNA þ lipidþ lipopolysaccarideþ � � �
þ energy !μ biomass: ð1Þ

High-quality genome-scale metabolic reconstructions for many
industrially important microorganisms are freely available in public
repositories (http://sbrg.ucsd.edu/Downloads). The methods for
building those reconstructions are alsowell established [11]. Curated
metabolic models can be used in constraint-based modeling
approaches for the estimation of metabolic capabilities of the cell,
hypothesis testing and generation, and Metabolic Engineering [12].

The scope and coverage of the metabolic reconstructions can
vary substantially. Table 1 shows the evolution of the genome-scale
metabolic reconstruction of Escherichia coli (E. coli) over the last
decade [13, 14].

During this period of time, many new reactions have been
introduced, and some others have been updated based on newly
available biochemical knowledge. The selection of a specific meta-
bolic reconstruction depends on the aim of the simulations to be
performed. However, it is highly recommended to start with a small
version (core model) of the metabolic network of interest. This
allows a better understanding of the methods used while keeping an
overview of the results obtained.
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2.2 Model Equations In this section, mathematical equations describing the dynamics of
metabolite concentration inside the cell and the reactor are dis-
cussed. The idealized case of perfect mixing, in which no spatial
concentration gradients are considered, is assumed for the reactor
and the cell. The mass balance for the intracellular metabolites is
formulated for an average cell, which is assumed to be representa-
tive of the whole cell population.

2.2.1 Intracellular

Reaction Networks and

Constraint-Based Modeling

Biochemical reactions taking place in a cell can be generically
written as:

γA1j j A þ γB1j j B !r1 γC1j j C þ γD1j j D
γA2j j A þ γX2j j X !r2 γF2j j F þ γG2j j G:

⋮

ð2Þ

γij are stoichiometric coefficients andA, B, X, D, F, and G represent
network components. The corresponding mass balance for each
intracellular component reads:

dCA

dt
¼ γA1 � r1 þ γA2 � r2 � � � � μ �CA ,

⋮
ð3Þ

where CA is the concentration of component A in the cell
[mmol gDW�1] and ri represents the reaction rate of the reaction
i [mmol gDW�1 h�1]. Note that the stoichiometric coefficients γij
are contained in the so-called stoichiometric matrix S. Therefore,
the matrix S itself can be used for the intracellular mass balance
formulation:

dc

dt
¼ Sr � μc; ð4Þ

where r is a flux vector, μ is the growth rate, and c is the concentra-
tion vector, which contains the concentrations for all components

Table 1
Evolution of the metabolic reconstruction of E. coli. Exchange reactions are related to reactions that
permit mass exchange between the cell and culture media

E. coli core iJR904 [15] iAF1260 [16] iJO1366 [17]

Included genes 137 904 1260 1366

Reactions 95 931 2077 2251

Exchange reactions 20 143 298 329

Metabolites 72 761 1039 1136
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(CA, CB, etc.). In most cases, the dilution term (μ c) is small in
comparison to the intracellular fluxes, and the equation can be
simplified as follows:

dc

dt
¼ S r: ð5Þ

The steady state is a special case in which no temporal change of the
intracellular concentrations is considered. This can be mathemati-
cally expressed as:

0 ¼ S r: ð6Þ

The equation above does not have a unique solution. The
number of variables (reactions of the metabolic network) is usually
much larger than the number of equations (metabolites), and
measured reaction fluxes are normally scarce. Additional constraints
can be applied to further reduce the number of allowable flux
distributions [18]. Limits on the range of individual flux values
can be used for this purpose; thermodynamic constraints [19]
expressed as the directionality of a given reaction [16] can thus be
used by setting one of the boundaries for that reaction to zero if the
reaction is irreversible. In a similar way, maximum flux values can be
estimated based on enzymatic capacity limitations [20], or for the
case of exchange reactions, measured maximal uptake rates can be
used (Sect. 3.3). Regulation of gene expression can also be consid-
ered in cases where the regulatory effects have a great influence on
cellular behavior [21]. Usually, these constraints are not sufficient
to reduce the solution space to a single solution. Therefore, linear
programming methods are used to find a flux distribution that
satisfies the problem:

max Z
subject to :

Sr ¼ 0
lb � r � ub;

ð7Þ

where Z is the objective function to be maximized (see Sect. 3.4.1),
r is the flux vector, lb and ub are the lower and upper flux bound-
aries, respectively, and S is the stoichiometric matrix of the meta-
bolic network. A reaction describing biomass generation [Eq. (1)]
has been successfully used as an adequate objective function for
predicting in vivo cellular behavior [22–24]. The above-explained
approach is known as flux balance analysis (FBA) and is the most
commonly used method for simulating the cellular phenotype.
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2.2.2 Model for

Bioreactor System

A generic mass balance equation for any component in a bioreactor
can verbally be formulated as:

accumulation of component ¼ mass added to the system
�mass extracted from the system
þmass converted in the system:

ð8Þ

The term “mass converted in the system” refers to the catalytic
activity of living cells. The equation is used to formulate mass
balance equations for the volume of the reactor, for the biomass,
and for the components in the liquid phase of the reactor. Table 2
gives an overview of the variables used. For a more complete
description, refer to Kremling [25].

Volume of the Bioreactor The dynamics of the reactor volume can be described by:

dmR

dt
¼

X
qin, jρ� qoutρ: ð9Þ

If ρ is assumed to be constant and since mR ¼ VRρ:

dV R

dt
¼

X
q in, j � qout: ð10Þ

Table 2
Overview of the used variables and units for the reactor system

Name Symbol Units

Density ρ g l�1

Reactor volume VR l

Growth rate μ h�1

Biomass yield on substrate i YXS g g�1

Volumetric feed j qin,j l h�1

Volumetric reactor efflux qout l h�1

Mass of liquid in reactor mR g

Biomass mB g

Mass of component i mSi g

Biomass concentration cB g l�1

Concentration of component i cSi g l�1

Molecular weight of component i wSi g mol�1

Exchange reaction for component i rSi
e mol gDW�1 h�1
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Biomass For modeling of the biomass, it is assumed that the feed contains no
cells. Cell recirculation is also not considered. The mass balance for
the biomass reads:

dmB

dt
¼ μmB � qoutcB: ð11Þ

The growth rate μ can be typically expressed as a function of the
substrate uptake rate and the biomass yield: μ ¼ YX=S r e

Si wSi. For
convenience, the biomass dynamics are now expressed in terms of
biomass concentration. This is done by expressing the biomass in
the reactor [g] as a function of the biomass concentration [g l�1]
and the reactor volume [l]:

dmB

dt
¼ d V RcBð Þ

dt
¼ VR

dcB
dt

þ dV R

dt
cB: ð12Þ

Substituting Eqs. (12) and (10) into Eq. (11) and solving for
biomass concentration lead to:

VR
dcB
dt

þ dV R

dt
cB ¼ μmB � qoutcB

dcB
dt

¼ μcB �
X

q in, j
V R

cB: ð13Þ

Components in the Liquid

Phase

The mass balance for substances (substrates/products) in the liquid
phase is derived in a similar way as for the biomass. The mass
balance for the component i is shown in Eq. (14). In this case,
exchange reactions rSi

e between the cell and culture media have to
be considered. A positive sign is used for products secreted by the
cell, whereas a negative sign precedes rSi

e for substrates absorbed by
the cell.

dmSi

dt
¼ q in, j c

in
Si � qoutcSi � r e

SicB V R wSi

dcSi
dt

¼ q in, j
V R

c inSi �
X

q in, j
V R

cSi � r e
Si cB wSi : ð14Þ

Themass balance equations derived for biomass, reactor volume, and
components in the liquid phase can be used to describe the dynamics
of a continuous (q in, j 6¼ 0; qout 6¼ 0), a batch (q in, j ¼ qout ¼ 0), or a
fed-batch process (q in, j 6¼ 0, qout ¼ 0).
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2.3 Experimental

Data

With the development of high-throughput technologies, it is
currently possible to produce large amounts of experimental data
to characterize the proteome, genome, metabolome, and transcrip-
tome of a microorganism under specific conditions. This allows a
system-wide analysis of the cell response to genetic perturbations
and operating conditions in the bioreactor, such as glucose and
oxygen concentrations. Genome-scale reconstructions provide a
suitable framework for the analysis and integration of these large
datasets. To this end, many approaches have been developed over
the last years. Hyduke [26] and Kim and Lun [27] provide a good
overview of the possibilities of integrating omics data with genome-
scale models. A recent multi-scale, genome-wide model of E. coli
[28] represents an illustrative example of integrative modeling. The
model incorporates the gene expression data of 4,189 genes in
2,198 conditions, transcriptional regulation, signal transduction,
and metabolic pathways.

If the abovementioned high-throughput measurements are not
readily available for the organism of interest, insights into the
metabolism of wild-type and mutant strains can be gained using
simple experiments. For instance, measurements of the time course
of concentrations of extracellular metabolites can be used to deter-
mine cell-specific uptake and production rates [29]. The resulting
rates can then be used as constraints for the corresponding
exchange reactions used to reduce the solution space of the meta-
bolic model describing the metabolism of the cell (see Sects. 2.2.1
and 3.3).

2.4 Software Table 3 summarizes some commonly used software packages that
support the calculations necessary for Metabolic Engineering.
Some tools, like YANA, are stand-alone and need no extra software
for their operation. Some others, like the widely used COBRA
Toolbox, are packages that require previous installation of a specific
platform (Matlab or Python) and a solver. Python + COBRApy +
Glpk represent high-quality, free, open-source options and are
recommended if a Matlab license is not available. Gurobi offers a
free academic license and is therefore a good option when
performing quadratic or quadratically constrained programming.

2.5 Next-Generation

Models for Metabolic

Engineering

Metabolic processes taking place in the cell are strictly coordinated
by highly interconnected, complex, and sometimes intricate net-
works. The activity level of a specific enzyme in the cell can be
regulated at the transcription/translation level as well as by using
posttranslational modifications, which in turn are coordinated by
signaling networks. Thus, observable cellular behavior results from
a complex interplay of multiple cellular networks. First attempts to
integrate metabolic reconstructions into additional networks have
already been made by many research groups [28, 35–37].
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Table 3
Commonly used software for calculations in Metabolic Engineering

Description Reference/URL

Platform Matlab High-level language for numerical computation,
visualization, and application development

www.mathworks.com

Python High-level, multi-paradigm programming
language. It is a free and open-source software
and has a community-based development model

www.python.org

Mathematica Computational software program used in many
scientific, engineering, mathematical, and
computing fields, based on symbolic
mathematics

www.wolfram.com/
mathematica

Toolbox COBRA for
Matlab

Matlab package for implementing COBRA
(constraint-based reconstruction and analysis)
methods to simulate, analyze, and predict a
variety of metabolic phenotypes using genome-
scale models

[30]

COBRA for
Python
(COBRApy)

Python package that provides support for basic
COBRA methods. COBRApy includes parallel
processing support for computationally intensive
processes

[31]

CellNetAnalyzer Matlab toolbox that provides a graphical user
interface and various computational methods
and algorithms for exploring structural and
functional properties of metabolic, signaling, and
regulatory networks

[32]

Pathway Pioneer Web-based biological engineering tool that allows
dynamic interaction with biological models. The
underlying data is flux balance analysis (FBA)
computed using COBRApy

www.
pathwaypioneer.
org

SNA:
stoichiometric
network
analysis

Interactive, high-performance toolbox for
analyzing steady-state behavior of metabolic
networks. The toolbox is mainly implemented in
Mathematica

[33]

YANA Platform-independent, dedicated toolbox for
metabolic networks with graphical user interface
to calculate, edit visualize, centralize, and
compare elementary flux modes

[34]

Solver Glpk The GNU Linear Programming Kit (Glpk) is
intended for solving large-scale linear
programming (LP), mixed integer programming
(MILP), and other related problems

www.gnu.org/
software/glpk

Gurobi Commercial solver for optimization problems. Free
academic license available. Supports LP,
quadratic and quadratically constrained
programming (QP and QCP), and MILP

www.gurobi.com

Lindo Commercial optimization modeling software www.lindo.com
Mosek Tool for solving mathematical optimization

problems: LP, QP, conic problems, MILP
www.mosek.com
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A current example is the development of the first model, which
aims to integrate metabolism and gene expression (ME-Models)
for E. coli [35, 36]. ME-Models extend the prediction capabilities
of the traditional metabolic models (M-models), allowing, for
instance, the assessment of the metabolic burden observed in cells
expressing large engineered pathways. Thus, with ME-Models,
engineering strategies to overcome the metabolic burden can be
better explored. With the addition of further details and the refin-
ing of the ME-Models [37], the dimension of the stoichiometric
matrix grows to a computationally challenging magnitude.
The great scope of the ME-Models encompasses not only their
tractability but also their analysis of the simulation results. As an
alternative to these detailed models, a mechanistic ODE-model
(compartment model) that describes transcription and translation
[38, 39] of gene pools can be coupled with a metabolic model.
The application of such a compartment model that describes the
relationship between growth rate and the content of RNA, DNA,
and bulk protein, and additionally accounts for the amount of free
and bounded ribosomes, improves the prediction capabilities of the
extended model while keeping it tractable.

3 Methods

Here, we propose a five-step Metabolic Engineering strategy to
achieve the optimal production of a target molecule in a selected
host microorganism. Figure 3 summarizes the main phases of the
strategy and shows the associated chapters, in which each step is
explained in detail.

Theoretical flux
distribution

FBA
Strain & medium

optimization

Feasible optimal
flux distribution

Data integration
& flux calculation

Dynamic process
and strain model

Dynamic flux
balance analysis

Valid flux
distribution

Process
optimization

Target

3.1

3.3 / 3.4

3.5

3.2

Material

3.5

Fig. 3 Five-step Metabolic Engineering strategy. Light gray symbols represent methods, while the dark gray
symbols represent the result of these methods. Material is an input in different stages but is shown only for the
first method. The sections of this book chapter are represented by the numbers
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In the first step, a theoretical characterization of the capabilities
of the strain is performed. Moreover, optimal pathway configura-
tion and medium composition are estimated for the production of
the target. For this purpose, an adequate metabolic model is ana-
lyzed using flux balance analysis (FBA) and its extensions. In the
second step, in silico strain optimization algorithms are used to
predict gene/reaction deletions that redirect the carbon flow
toward the production pathways. In the third and fourth steps,
experimental data is analyzed and integrated. The comparison of
the estimated intracellular flux pattern of the wild-type and mutant
strains can be used to evaluate the effect of genetic manipulations
on the improvement of product yield. In the last step, the perfor-
mance of the engineered strains in a bioreactor is assessed, and by
selecting adequate process conditions, improvements of productiv-
ity and final titer are achieved. Dynamic flux balance analysis plays a
central role in this last step.

3.1 Theoretical

Product Yields and

Pathways

Even before experimental data for the strain to be engineered is
available (Sect. 2.3), a pure theoretical characterization of the met-
abolic system capabilities can be performed using a suitable meta-
bolic reconstruction. The methods discussed in this section
include:

– Theoretical product yields: can be used as an indicator for the
performance potential of the wild-type/mutant strains under
different conditions

– Optimal pathway configuration: facilitates decisions about which
pathway or pathway combinations have to be used to optimally
produce the target molecule

– Optimal medium composition: guides the selection of the real
medium composition by showing which substrates have a posi-
tive impact on product yield

3.1.1 Calculation of the

Theoretical Product Yields

A metabolic reconstruction, specific for the host strain used, is
necessary to calculate the maximal theoretical product yield sup-
ported by the host microorganism. The theoretical product yield is
a function of the thermodynamic, stoichiometric, and physiological
constraints considered when performing the calculations. The pro-
cedure for calculating the maximal theoretical yield is explained for
the production of succinate in E. coli as a case study.

1. Choose a metabolic reconstruction of E. coli. See Table 1.

2. Set the production of succinate as an objective function. Here
one can choose between selecting an existing reaction and
adding a new one to the model. In case of the E. coli core
model, the reaction SUCCt3 (succinate transport out via pro-
ton antiport) is a good candidate for the objective function. If
one decides to add a new reaction, it should be of the form
“succ[c] !.”
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3. Define the medium composition. This is done by modifying
the upper and lower limits of the exchange reactions. For this
specific example, we will assume that glucose is the sole carbon
source.

4. Add additional constraints to the model (gene deletions,
growth rate, GAM value, etc.).

5. Assume an arbitrary uptake rate for glucose (if no experimental
measurements are available) and solve the linear programming
problem using an adequate solver (see Note 1).

6. The resulting flux distribution should now be scaled to the
input flux of glucose in order to get the value of the maximal
theoretical yield (see Note 2).

The COBRA Toolbox provides a set of functions that facilitate
the execution of all these steps with only a few code lines (Table 4).
For a detailed explanation of these functions, refer to the COBRA
Protocol [30].

The effect of imposing different constraints on the maximal
theoretical yield is illustrated in Fig. 4. Aerobic and anaerobic culti-
vations are considered with glucose as the sole carbon source. Three
situations are analyzed: two cases in which growth is not considered
and one case in which the growth rate has an arbitrary value of
0.35 h�1. The yield values reported in Fig. 4 represent the limits
for the metabolic system under these conditions. No higher yields
are possible as long as the metabolic network is not modified (addi-
tion or stoichiometry modification of reactions). It can be seen
that growth has a negative effect on the maximal theoretical yield.

Table 4
Theoretical maximal yield calculations using the core model of the E. coli metabolism and functions
of the COBRA Toolbox

Matlab code Explanation

model¼readCbModel(’ecoli_core_model.
xml’);

Load the E. coli core model

model¼changeObjective(model,’SUCCt3’); Set the objective function

model¼changeRxnBounds(model,’EX_glc
(e)’,-1,’l’);

Assume an uptake rate for glucose

model¼changeRxnBounds(model,’EX_o2
(e)’,0,’b’);

Define the medium composition, e.g.,
oxygen

model¼changeRxnBounds
(model,’SUCCt2_2’,0,’b’);

Constrain the solution to avoid cycles

model¼changeRxnBounds
(model,’ATPM’,0,’b’);

Optional: assume no maintenance ATP
requirement

solution¼optimizeCbModel(model,’max’); Optimize the LP problem
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This is a logical consequence if the biomass is considered as an
additional product that has to be synthetized by the metabolic
system. The more biomass is produced, the less carbon will be
available for the production of the target biomolecule. Additionally,
Fig. 4 shows that for the succinate production in E. coli, a maximal
theoretical carbon yield of one can only be reached under aerobic
conditions. This is further analyzed in Sect. 3.1.3.

3.1.2 Determining an

Optimal Pathway

Configuration Using

Stoichiometric Analysis

Many bio-products can be produced using different biochemical
routes. These routes can occur naturally either in the host strain
itself (native pathways) or in other organisms (heterologous path-
way), or they can be synthetically generated. Metabolic engineers
are thus often confronted with the task of selecting the best path-
way configuration to be engineered in the host cell. Pathway con-
figuration refers here to the situation of using pathway A, pathway
B, or a combination of both for the biosynthesis of a target product
R (Fig. 5a). This choice should be made considering many aspects,
e.g., energy, cofactor, and reduction equivalent consumption.
Curated metabolic models can be used to guide the selection
process of the pathway configuration with the best performance
index: molar and carbon yield are commonly used performance
indices when comparing pathways (see Note 3). The procedure of
finding a pathway configuration that reaches the maximal perfor-
mance index is explained using a hypothetical case study, in which
pathway A and pathway B lead to the formation of the product R.
In the hypothetical case study, pathway A is a native pathway, while
pathway B is a heterologous one.

1.5

1.2

0.8

Molar yield
[mol succinate/mol glucose]

1

0.8

0.53

Carbon yield
[C-mol succinate/C-mol glucose]

Aerobic succinate production
µ=0 h-1

Anaerobic succinate production
µ=0 h-1

Anaerobic succinate production
µ=0.35 h-1

Fig. 4 Effect of constraints on theoretical yields: aerobic and anaerobic cultivations are considered with
glucose as sole carbon source for the production of succinate in E. coli. Three different situations are analyzed:
two cases in which growth is not considered (μ ¼ 0) and one case with a growth rate of 0.35 h�1. The
maximal possible yields are calculated for each situation, and the results are presented as molar (left) and
carbon (right) yields. A carbon yield of 1 (equivalent to a molar yield of 1.5) indicates that the metabolic system
is capable of converting all supplied carbon atoms into product
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ATP
NAD(P)H

ADP
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Product R
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Point

Pathway
A
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B

ATP
NAD(P)H

ADP
NAD(P)+

Product R

Flux ratio between both pathways

x as a function of the flux fraction

New constraint in the stoichiometric matrix:

a

b

Fig. 5 (a) Pathway configuration for wild-type and engineered but suboptimal strain: two different situations
are shown. The left panel shows the wild type, in which the substrate flows only into the native pathway A
(f ¼ 1). The native pathway A consumes one molecule of ATP and NAD(P)H. In the central panel, pathway B is
added to the wild-type strain. The heterologous pathway B produces one molecule of ATP and NAD(P)H. In this
engineered strain, 10% of the carbon flows into the native pathway A and the rest into pathway B (f ¼ 0.1).
This pathway configuration is not optimal. Equations describing the carbon distribution are shown in the right
panel. rA and rB represent the rates through the first reaction of pathways A and B, respectively. A f-value of
one means that all of the carbon flows into pathway A. (b) Simulation of different pathway configurations. The
maximal performance index is reached when 37% of the substrate flows into the native pathway A (f ¼ 0.37).
The synergy observed arises from the dynamics of ATP and NADPH between the two pathways
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1. Identify the different pathways that lead to the target bio-
product formation.

2. Incorporate new biochemical routes, if necessary.

3. Identify the common branch point of the pathways. See
Fig. 5a.

4. Use the flux ratio between pathway A and B to specify the flux
through each pathway. Use the variables x and f as shown in
Fig. 5a for this propose.

5. Add the marked equation in Fig. 5a as a new constraint in the
stoichiometric matrix. The coefficients are x and�1 for the first
reaction of pathways A and B, respectively.

6. Calculate the maximal theoretical performance index for differ-
ent pathway configurations, i.e., different values of flux ratio x
or flux fraction f. Note that the variable f (flux fraction) can
only take values between 0 and 1, while the flux ratio ranges
from 0 to infinity.

7. Select the optimal pathway configuration from the simulation
results. See Fig. 5b.

The effect of the pathway configuration on the selected perfor-
mance index, in this case molar yield, is illustrated in Fig. 5b. In this
hypothetical case study, the native pathway A has a lower perfor-
mance index than the heterologous pathway B. However, the sys-
tem only becomes optimal when both pathways are expressed in a
fraction of f ¼ 0.37. Shen and Liao [40] experimentally proved the
validity of the approach described above when engineering E. coli
for the production of 1-propanol. They observed an improvement
of the 1-propanol yield of 30–50% when expressing both the heter-
ologous citramalate pathway and the native threonine pathway for
the production of the 1-propanol intermediate 2-ketobutyrate,
compared to the yield when using only one pathway. The synergy
observed was in good agreement with the predictions made with
the approach explained above.

3.1.3 Estimation of the

Culture Medium

Composition

Which are the optimal substrates for the production of a desired
target molecule? Should the production be performed under aero-
bic or anaerobic conditions? Can the totality of the assimilated
carbon be transformed into product by the metabolic system in its
actual configuration? Finding the answers to these and similar
questions can be challenging and requires a great experimental
effort. However, when dealing with these issues, a sensitivity analy-
sis of the metabolic model of the strain being engineered can be
helpful. The general procedure is illustrated again, using the exam-
ple of succinate production in E. coli.

1. Select an adequate metabolic reconstruction of the analyzed
strain. See Sect. 2.1.
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2. Define a base model. This model will represent the starting
conditions for the sensitivity analysis. In the concrete case of
the succinate production in E. coli, the starting conditions
correspond to no carbon source and anaerobic conditions.

3. Define a biologically meaningful range for each analyzed
exchange reaction. For instance, the glucose uptake rate was
assumed to have a maximal value of 18 mmol gDW�1 h�1.

4. Vary the lower limit of an arbitrary exchange reaction, inside of
the predefined range, in order to permit the system to absorb
the corresponding compound.

5. Calculate the maximal value of the desired performance index.
See Sect. 3.1.1.

6. Repeat steps 4 to 5 until all exchange reactions of interest are
analyzed.

7. Sort the results in a table and make decisions about what
compound should be added to the culture medium (base
model) in order to improve the performance index.

8. If the desired value for the performance index is not reached
after modifying the base model, repeat steps 1–7 until the
desired performance is accomplished.

The production of succinate in E. coli is an extensively studied
process. Therefore it is a good case study to show the utility of the
approach explained above in guiding the selection of medium
composition. Encouraging steps toward an engineered E. coli strain
with high yield, productivity, and titer have been made. Most of the
work reported to enhance the succinate production has been per-
formed under anaerobic conditions [41–43]. Interestingly, a simple
sensitivity analysis shows (Table 5b) that the maximal theoretical
carbon yield can only be reached under aerobic conditions. E. coli
mutants, which produce succinate under aerobic conditions, and a
theoretically designed high-performance aerobic strain have been
reported [44, 45]. The sensitivity analysis can also guide the devel-
opment of an anaerobic cultivation process. It shows that the
addition of carbon dioxide to the system has a positive effect on
the maximal yield. It is therefore logical to use a carbon dioxide
atmosphere in anaerobic cultivations. This fact has been identified
and used by many research groups [46–48].

3.2 In Silico Strain

Optimization

Genome-scale reconstructions of metabolism have been used for
over a decade now to predict genetic modifications that improve
the product yield and production performance of the engineered
production strains. Some manipulation strategies that can be
explored in silico are listed in Table 6. A more extensive overview
of these methods can be found in [5]. The first algorithms for in
silico strain design permit us to predict the effect of reaction
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knockouts, that is, they consider the effect that reaction deletions
have on the metabolic network and product yield. Predicting the
up- and downregulation of reactions represents an extension of
these first algorithms. Additionally, if gene-protein reaction

Table 5
Sensitivity analysis of succinate production in E. coli. The core model was used for the calculations.
(a) First round of the sensitivity analysis. The maximal theoretical carbon yield [C-mole succinate/
C-mole glucose] for each carbon source is shown. Malate and fumarate exhibit the highest performance,
followed by fructose and glucose. (b) Glucose is selected as the carbon source and a second round of
sensitivity analysis is performed. The addition of oxygen permits themodel to reach themaximal possible
carbon yield. Under these conditions it is theoretically possible to use all carbon atoms of glucose for the
synthesis of succinate (c). After addition of oxygen, the system has reached its optimum, and further
modifications have no effect on the yield

(a) Base model: no carbon source,
anaerobic, μ ¼ 0

(b) Base model: glucose,
anaerobic, μ ¼ 0

(c) Base model: glucose,
aerobic, μ ¼ 0

EX_mal-L (e) 0.85714 EX_o2 (e) 1 EX_ac (e) 1

EX_fum (e) 0.85714 EX_fum (e) 0.99966 EX_acald (e) 1

EX_fru (e) 0.8 EX_mal-L (e) 0.99966 EX_akg (e) 1

EX_glc (e) 0.8 EX_co2 (e) 0.98778 EX_co2 (e) 1

EX_pyr (e) 0.44444 EX_akg (e) 0.97978 EX_etoh (e) 1

EX_acald (e) 0.4 EX_pyr (e) 0.87516 EX_for (e) 1

EX_akg (e) 0.4 EX_gln-L (e) 0.85674 EX_fru (e) 1

EX_lac-D (e) 0.23529 EX_glu-L (e) 0.85674 EX_fum (e) 1

EX_ac (e) 0 EX_ac (e) 0.8 EX_glc (e) 1

EX_co2 (e) 0 EX_fru (e) 0.8 EX_gln-L (e) 1

EX_etoh (e) 0 EX_glc (e) 0.8 EX_glu-L (e) 1

EX_for (e) 0 EX_lac-D (e) 0.8 EX_h2o (e) 1

EX_gln-L (e) 0 EX_acald (e) 0.8 EX_h (e) 1

EX_glu-L (e) 0 EX_etoh (e) 0.8 EX_lac-D (e) 1

EX_h2o (e) 0 EX_for (e) 0.8 EX_mal-L (e) 1

EX_h (e) 0 EX_h2o (e) 0.8 EX_nh4 (e) 1

EX_nh4 (e) 0 EX_h (e) 0.8 EX_o2 (e) 1

EX_o2 (e) 0 EX_nh4 (e) 0.8 EX_pi (e) 1

EX_pi (e) 0 EX_pi (e) 0.8 EX_pyr (e) 1

EX_succ (e) 0 EX_succ (e) 0.8 EX_succ (e) 1

EX_mal-L(e) exchange reaction for L-malate, ac acetate, acald acetaldehyde, akg 2-oxoglutarate, etoh ethanol, for
formate, fru D-fructose, fum fumarate, glc D-glucose, gln L-glutamine, glu L-glutamate, h H+, lac-D D-lactate, mal-L L-
malate, nh4 ammonia, pi phosphate, pyr pyruvate, succ succinate
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(GPR) mappings are available for the metabolic system being ana-
lyzed, algorithms that only predict gene knockouts can be used and
should be preferred, as exactly these modifications will later be
experimentally implemented in the real biological systems.

The general procedure used to perform in silico strain optimi-
zation is explained using the metabolic network shown in Fig. 6, as
described by Kremling [25]. X and P represent the biomass and the
target product, respectively. P, C, and B are intermediates. In this
example, the synthesis of P is coupled to growth (X).

1. Set up the metabolic model or choose an existing genome-scale
metabolic reconstruction.

2. Identify the reactions that contribute to the production of the
target molecules. In this example the reactions r4 and r6 synthe-
tize the product P, and the reactions r2, r3, r5, and r6 contribute
to the formation of biomass.

Table 6
Common strain optimization algorithms

Strategy Algorithm Approach Reference

Reaction knockout OptKnock Bilevel optimization, MILP [49]
RobustKnock Bilevel max-min optimization, MILP [50]

Gene knockout OptGene Genetic algorithm [51]
GDLS MILP [52]

Reaction upregulation/
downregulation

EMILiO Bilevel optimization, iterative linear program
(ILP), and MILP

[44]

OptForce LP [53]

A

2X

B

X

2P

X

P

C

D

X

r1

r5

r7

r6
r2

r4

r3

A

2X

B

X

2P

X

P

C

D

X

r1

r5
r7

r6
r2

r4

r3

a b c

Fig. 6 (a) Hypothetical metabolic network for the production of P and X. (b) The network consists of seven
reactions. A, B, C, and D are intermediates. (c) Two reaction knockouts – r3 and r7 – are necessary to
maximize the production of biomass and at the same time product P [25]
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3. Define the objective functions: Z1 ¼ f(r4,r6) and Z2 ¼ f(r2,r3,
r5,r6) for product and biomass, respectively.

4. Select the set of reactions that can be deleted from the network.

5. Determine the number, n, of reactions to be knocked out. The
computing time required to find a solution depends on the
algorithm used and can increase exponentially or linearly with
the total number of knockouts in the mutant strain.

6. Select a strain optimization algorithm (Table 6) and perform
the simulation. It is strongly recommended to use more than
one algorithm to perform the in silico strain optimization.
Since each algorithm examines the solution space in a different
way (local/global search, one path/multiple path), finding
different solutions is to be expected. OptKnock is a good
starting point and is already implemented in the COBRA
Toolbox.

7. Analyze the predicted gene deletions in respect to biological
consistence and select the best option to be experimentally
implemented. Note that due to inherent inaccuracies in the
metabolic model, not all predicted mutants are biologically
feasible. Further genetic modifications might be necessary in
order to obtain the optimal flux distribution that maximizes
the product yield. A good example for this situation is the
design of a high-performance aerobic E. coli strain for the
succinate production, in which additional genetic modifica-
tions are necessary to obtain the optimal flux distribution pre-
dicted by EMILiO [44].

In the case of the network shown in Fig. 6, only two reaction
knockouts are sufficient to maximize the reaction flux through the
product and biomass. The network was optimized using the
OptKnock algorithm. Reaction two to reaction seven conform
the set of reactions that can be deleted. The calculation time
required was 0.005 s.

3.3 Analysis

of Experimental Data

For analyzing and optimizing a host strain, substrate uptake rates
and product excretion rates must be determined to calculate the
complete flux distribution. The rates measured can be used to
identify bottlenecks as well as to confirm engineering success.
Basically, the more metabolic data are available, the more precise
and better is the evaluation of the fluxes.

Biomass and substrate concentrations especially are easily mea-
surable during an experiment, and commercial kits for accessing
them are often available. In many laboratories, measurement tools
like HPLC to quantify the cellular output in the form of metabo-
lites have already been established. In an open system, such as the
standard shaking flask, it is not possible to close the mass balance
because of the impossibility of determining all carbon fluxes in
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the system (e.g., CO2 that is produced by the cells). Therefore, a
bioreactor system and an exhaust gas analyzing system are
recommended.

After pre-culturing, the strain of interest should be inoculated
in a defined minimal medium with a carbon source of interest.
According to the fermentation strategy, either a feeding strategy
or a batch cultivation with a specific initial concentration of the
carbon source can be applied. Substrate feeding has to be included
in the mathematical analysis as described in 2.2.2. The specific
uptake and formation rates are determined depending on the
corresponding time course data for the metabolite concentrations
in the bioreactor system. To determine all relevant rates, data for all
metabolites and for cell dry mass have to be taken from the same
time frame and growth phase as shown in the gray-shaded area
in Fig. 7a.

As the rates should be normalized to the cell dry mass (DW), as
a first step it is useful to correlate the measured optical density (OD)
with the biomass (Fig. 7b). If there is no DW available, the OD can

Fig. 7 Fictive data for strain performance during a production process (a). The measured optical density
increases with rising biomass (b). Graph c shows the logarithmic optical density in the exponential phase
against time. Substrate concentration (d) and product concentration (e) are plotted with respect to the cell dry
weight. To evaluate the respective rates, concentrations are related to biomass formation. Therefore,
equations of the contemplated gradients are necessary. The rate is equal to the slope of the straight line
multiplied by the growth rate. Corresponding rates have to be analyzed in the same time frame and growth
phase (gray shaded). A high coefficient of correlation R2 is required to obtain conclusive results
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also be used as a proxy for biomass. In order to correlate substrate
uptake and product formation rates, it is important to always use
the same parameters (wavelength, growth stage, medium, etc.).
At least three biological replicates should be measured to minimize
the standard deviation of the measurement.

The biomass formation, also known as specific growth rate μ, is
one particular case of formation rate. It can be determined directly
from the slope of the measured logarithmic OD curve. Due to the
(linear) correlation between OD and biomass concentration
(Fig. 7b), the slope of the data points in the chosen interval is
equal to the growth rate μ [Fig. 7c, Eq. (15)].

Metabolic rates have to be determined from the extracellular
time course data of substance depletion or accumulation dcsi

dt that has
to be related to the currently measured biomass concentration cB
[Eq. (16)]. Uptake and formation rates r for a substance S not only
correspond to the respective time point of the measurement but
also to the already generated biomass cBt [29]. The temporal alter-
ation of biomass [Eq. (15)] has to be linked to the uptake or
formation rate [Eq. (16)] to analyze those rates:

μ ¼ 1

cBt
*
dcB
dt

resp: cBt ¼
1

μ
*
dcB
dt

ð15Þ

r ¼ 1

cB
*
dcsi
dt

¼ μ*dt

dcB
*
dcsi
dt

¼ μ*
dcsi
dcB

: ð16Þ

In order to calculate the substrate uptake rate as well as the product
formation rate, the according concentration has to be plotted
against the corresponding biomass (Fig. 7d and e). The slope dcsi

dcB
multiplied by the growth rate μ gives the respective rate [Eq. (16)]
(see Note 4).

3.4 Estimation

of the In Vivo Flux

Distribution

First of all, measured rates can be fed into the already established
metabolic model to restrict the solution space (Fig. 8). Addition-
ally, to provide realistic flux estimations, an objective function and
an adjusted value for GAM (see below) are included in the
calculations.

Experimental data

Objective function

Constraints
rsubstrate
rproduct
µ

Model
Fluxes:
rATP
YP/S;YX/S
µmax

Fig. 8 In a comprehensive model, there are more unknown variables than equations. For defining a range of
solutions, some constrains have to be given [11]. Additionally, a suitable objective function concerning the
model output is required to compute an optimal network state and a resulting flux distribution [14]
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3.4.1 Selecting an

Adequate Objective

Function

The most common assumption is that microbial cells maximize
their growth [54]. For this reason biomass production is a fre-
quently used objective function. However, depending on the
growth phase, different objective functions as summarized in [54]
are possible. So, in some cases it will be advantageous to combine a
number of objective functions to restrict the solution space. If there
is no growth, the energetic efficiency could be optimized instead of
biomass yield. In this case the objective function would be the ATP
yield. Another approach is to minimize the substrate consumption
or the required number of reaction steps.

3.4.2 Calculation

of Growth-Associated

Maintenance (GAM)

Energy has to be considered for growth prediction. Cells have a
specific energy requirement for maintenance metabolism [10]. This
rate is defined as nongrowth-associated maintenance energy
(NGAM) [14]. The yield of substrate uptake necessary for the
resulting growth is defined as growth-associated maintenance
metabolism (GAM) [14]. The available energy is specified with
respect to the ATP concentration in order to meet different sub-
strate compositions. The following steps need to be completed to
calculate specific GAM values:

1. Determine growth rate and substrate uptake rates of the ana-
lyzed strain from different experimental setups (here named as
setups 1–5) with various growth rates (e.g., adjusted by dilu-
tion rate in a continuous culture using a chemostat [11]
(Fig. 9a)).

2. Compute the slope of the linear growth rate/substrate uptake
rate correlation between μ ¼ 0 and μmax (Fig. 9b).

3. Calculate, with the help of the already available stoichiometric
model, different theoretical yields YX/S under different theo-
retical GAMs (here named GAM1–GAM3) (Fig. 9c) as
described above (Sect. 3.1.1). The strain-specific NGAM
value is assumed to be the same.

4. After correlation of the used theoretical GAMs (here again
GAM1–GAM3) with calculated yield YX/S (Fig. 9d), the theo-
retical GAMout of the interpolated experimental data (Fig. 9b)
can be read out as shown in Fig. 9e.

5. Depending on the model, wild-type E. coli strains have a GAM
around 60 mmolATP gDW�1 h�1 [16]. Mutants with an
altered network structure will show a different behavior, and
growth yields can be compared (Fig. 9f).

6. The existing model can be adapted to be strain specific with the
experimentally determined GAM. For the modeled strain, it is
possible to predict growth rate and flux distributions for a given
substrate uptake as well as vice versa.
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The value for NGAM can be calculated as described in
Sect. 3.1.1 by setting ATP as an objective function and measured
qS NGAM as input (Fig. 9b).

3.4.3 Reconstructing In

Vivo Flux Distributions

The strain performance has to be recorded under various conditions
and experimental setups with different growth rates to determine flux
distributions. Flux balance analysis enables the calculation of the flux
through the metabolic network of the cell (see above Sect. 3.1.1).
For many organisms, these networks are already available online. It is
possible to reconstruct the flux distribution in a microbial cell based
on metabolic reconstructions in the systems biology markup lan-
guage (SMBL) format available online with the help of the COBRA
Toolbox [30]. This toolbox allows the visualization of the actual
fluxes and offers us the opportunity to compare fluxes in mutant
strains with wild-type flux distributions (seeNote 5).

As shown in Fig. 10a, many rates in the E. coli coremodel are not
available (thin arrows). It is possible to calculate the carbon flux in
silico by setting themeasured uptake and excretion rates as additional
constraints. Figure 10b shows a hypothetical flux distribution
through the network. Setting the hypothetical flux D–E to zero
(e.g., by a mutation) results in a measurable shift in the production
rate of metabolite I. If the predicted flux distributions are not con-
gruent to the actual measured rates, it is an indication that regulatory
interactions or further pathways are missing in the model.

Fig. 9 The strain of interest can be analyzed by considering different growth rates and substrate uptake yields
under various setups (a, b). Theoretical strain behavior with fixed GAM values has to be computed (c) to create
the YX/S to GAM ratio (d). From this correlation the GAM of the strain can be determined (e). The yield of the
substrate with respect to the growth rate can be compared to the performance of other strains (f), and growth
rates can be predicted
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The presentation of metabolic networks is realized via graphical
visualization of subnetworks. The output generated by Matlab
enables a comparison of flux rates as shown in Fig. 10b. Maps
from different metabolic pathways are available in BiGG knowledge
base [55]. To create the image it is necessary to load the chosen
map of interest into Matlab and draw it as a Matlab figure. This can
be realized with only a few commands [30].

The stoichiometric matrix has to be modified to adapt the
reconstruction to mutant strains proposed via in silico strain opti-
mization. To get an idea of the most probable solution, the solution
space of the mutant could be analyzed using the MOMA method,
which is the minimization of metabolic adjustment [56]. This
theory is based on the assumption that the “fitness” of the wild
type has evolved over millions of years and represents the optimal
metabolic state. This kind of pressure is not present for genetically
modified organisms, which means that they probably do not pos-
sess the optimal growth configuration [56]. Caused by this, the
most realistic flux distribution is the one derived from the solution
space which contains the minimal distance to the wild-type flux
distribution.

3.5 Assessing and

Improving the

Performance of

Engineered Strains in a

Bioreactor

The goal of the algorithms for strain optimization discussed in
Sect. 3.2 is the redesign of the host metabolic network to maximize
the yield of a target molecule while simultaneously supporting
growth. This approach does not explicitly take into account the
subsequent utilization of the engineered strain in a bioprocess, and
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consequently, the selected strain might not be optimal from an
economical/operational point of view. The solution to this
problem can be addressed in two different ways. The first approach
considers criteria related to bioprocess design in the early stages of
strain design. This can be done by combining existing in silico
strain optimization algorithms with dynamic flux balance analysis
[23, 57, 58] to optimize yield (Y), titer (T), and productivity (P) in
a balanced fashion. Zhuang [59] presented a Dynamic Strain Scan-
ning Optimization (DySScO) strategy that uses this rationale to
produce strains that balance the product yield, titer, and productiv-
ity. DySScO searches for a strain design that maximizes a user-
defined metric of the form: Z ¼ f(Y, T, P). The second approach
consists of decoupling the production of the target molecule from
growth. The production process is thus divided into two phases.
In the first phase, biomass is produced at a high rate and no
production occurs. The second stage is characterized by low to no
growth and production of the target chemical. The switching time
from the growth phase to production has a high impact on the
overall process performance.

Irrespective of the approach used, dynamic flux balance analysis
(dFBA) has a central role in assessing and improving the perfor-
mance of engineered strains in a bioreactor. dFBA combines both
the process dynamics with the metabolic network, thus allowing the
simulation of concentration profiles and flux distributions over
time in the reactor and the cell, respectively. Shown here is the
general procedure for performing a dFBA simulation with the
COBRA Toolbox. Moreover, the utility of dFBA is illustrated
with a case study.

1. Select a metabolic reconstruction and perform the necessary
adjustment of the network (gene/reaction deletions, new path-
ways) in order to describe the metabolism of the strain studied.
See Note 6.

2. Specify values for strain-specific parameters. This refers to sub-
strate uptake and production rates, maximum growth rate,
product inhibition, etc. These values can be taken from the
literature or correspond to experimental measurements.

3. Define initial values for process-specific parameters. This refers
to mode of operation (batch, fed batch), initial concentration
of biomass and substrates, duration of the process, maximal
reactor volume and feeding strategy (continuous substrate
feeding, substrate pulses), time point of induction, etc.

4. Perform a dFBA simulation and determine values for yield,
titer, and productivity.

5. Repeat steps 3 to 4 with a modified set of process-specific
parameters until the desired performance for yield, titer, and
productivity is reached. Alternatively, an optimization
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algorithm can be used to find the set of optimal process-specific
parameters that maximize yield, titer, and productivity.

The procedure explained above will, in the following, be used
to study a hypothetical case for which experimental data is available.
The production system consists of a strain carrying an inducible
plasmid, which expresses heterologous enzymes necessary to
synthetize some product R. In this hypothetical experiment, cells
were cultivated until a defined optical density was reached, and then
the synthesis ofR was induced. The effect of varying the time point
of induction on the yield, productivity, and titer will be analyzed.
Figure 11 shows the experimentally obtained concentration profiles
of biomass, glucose, and product inside the bioreactor over time.
As can be concluded from the glucose concentration profile in
Fig. 11 (circles, middle plot), the production of R occurs in a
semibatch process in which glucose is added to the reactor in the
form of two pulses over the course of the fermentation. The
measured concentrations, shown as circles in Fig. 11, are used to
determine glucose uptake and production rates before and after
induction of the system. It is assumed that these parameters do not
depend on the point of induction of the culture.

Figure 11a shows the consequences of varying the time point of
induction for the plasmid-based system on the overall process
performance. The dashed and dotted lines correspond to simula-
tions performed with a modified time point of induction of 1.25*
tind,exp or 0.5* tind,exp, respectively. tind,exp refers to the experimental
time point of induction and is used as a reference for the simula-
tions. Increased product and biomass concentration is predicted by
dFBA when the induction occurs at 1.25*tind,exp. Interestingly,
under this circumstance, the simulation also indicates that the
actual fermentation setup would not support growth and produc-
tion throughout the whole process time. The initial glucose
concentration or the first glucose pulse has to be increased so that
the process time is the same as in the experimental setup. The
simulation also predicts the effect of a premature time point of
induction. If the induction occurs at 1/2*tind,exp, the biomass
concentration remains comparatively low and the glucose concen-
tration high. This in turn generates a lower end titer and produc-
tivity (right plot).

Figure 11b represents the behavior of the system which was
simulated when the induction was made at 1.25*tind,exp, and the
first glucose pulse is sevenfold increased. This increase is realized to
extend the process time of the simulated process thus allowing for a
comparison with the experimental data. The improved feeding
strategy leads to a twofold increase of the productivity and the
end titer, as can be seen in Fig. 11b.
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4 Notes

1. Glpk is a free, widely used linear programming solver.
However, its installation and use with the COBRA Toolbox
can sometimes be difficult. Gurobi offers a good alternative
when there is trouble with Glpk. At the homepage http://
www.gurobi.com/, a free distribution can be downloaded for
academic use.

Fig. 11 Dynamic flux balance simulations for the production of a hypothetical target compound R. Biomass,
glucose, and product concentration in the reactor over process time are shown. Circles (○) correspond to
hypothetical measured concentrations. Solid lines represent simulated profiles using the experimental time
point of induction, tind,exp. Dashed lines (-) were simulated with a time point of induction of 1.25*tind,exp and
dotted (l) lines with a time point of induction of 0.5*tind,exp. (a) The experimental feeding strategy is conserved
for the simulations. (b) The first glucose pulse is increased sevenfold and the simulation for the process with
an induction time point of 1.25*tind,exp is performed again
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2. The reaction ’SUCCt2_2’, which transports succinate from
the culture medium to the cytoplasm of the cell, has to be
constrained to carry a reaction flux of zero. This prevents the
occurrence of cycles when calculating the maximal theoretical
succinate yield. These cycles lead to the reabsorption of the
secreted succinate and thus generate an artificially high flux
through the reaction ’SUCCt3’. As a consequence, the calcu-
lated maximal theoretical yield has no biological meaning. This
holds true for the calculation of the maximal theoretical yield
for any target molecule using metabolic models. An easy way to
verify the consistency is to calculate the carbon yield associated
with the maximal yield being computed (molar or mass yield).
Values for carbon yields greater than one are not consistent and
need to be verified.

3. Many performance indices can be used in order to quantita-
tively assess the efficiency of a metabolic network with respect
to the production of a target molecule. The most used perfor-
mance index is the molar yield. Since the maximal value of this
performance index depends on the substrate used and the
target to be produced, it does not directly give an indication
of the network efficiency. An alternative to the molar yield is the
carbon yield. The carbon yield is related to the molar yield and
has always, independent of the substrate used and target, a
maximal value of 1. It provides therefore directly insight of
the network performance and should be preferred if the net-
work efficiency has an important role in the analysis being
performed. If economic aspects should be considered, the
maximal profit can be used. This performance index corre-
sponds to the product of the molar yield and the market
value of each component.

4. Because not only biomass but also intracellular fluxes vary with
cellular behavior and time, for a stringent analysis, it is explicitly
necessary to use corresponding rates that were measured simul-
taneously at the same time.

5. The flux distribution calculated for the wild-type or mutant
strain using FBA is not unique in most cases. In order to
compare the intracellular flux patterns of two strains, it is
necessary to calculate the flux variability of the network [60].
This can be done by using the flux variability analysis (FVA)
function of the COBRAToolbox. Once the variability range for
each reaction in the network has been calculated, it is recom-
mended to limit the scope of the analysis to the reactions with a
narrow or no variability range. Reactions with a broad varia-
bility range are often not essential for the network
performance.
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6. The suitability of a specific model that describes the behavior of
a designed strain depends mainly on the accuracy of the
assumptions made by the implemented model. For example,
when modeling the metabolism of a strain that is used for
heterologous protein production, a model that accounts for a
fixed, comparatively low protein content will not be suitable for
describing the behavior of the cell. In this case, a model that
takes into account variable cell composition, such as a compart-
ment model coupled with a metabolic model, will be more
suitable for modeling the cell metabolism.
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Improving Biocontainment with Synthetic Biology: Beyond
Physical Containment

Markus Schmidt and Lei Pei

Abstract

Genetically engineered organisms are per se subject to a biosafety risk assessment to define whether the
resulting organism is safe for humans and the environment, either for contained use or environmental
release. Contained use currently means physical containment and allows for a less strict assessment
compared to environmental release. With developments in synthetic biology, we are currently witnessing
the evolution of different forms of nonphysical containment enabled by sophisticated forms of genetic
engineering, genome recoding, and xenobiology. Design and implementation of cells that use advanced
suicide circuits, different genetic codes, alternative nucleic acids, amino acids, etc., will allow for a semantic
or informational containment restricting and possibly eliminating horizontal gene flow with natural species.
Here, we describe the scientific advances in this field and map the different approaches to design safe xeno-
organisms. Finally, we address the questions that will have to be answered when semantic biocontainment
systems become a reality.

Keywords: Biocontainment, Biosafety, Risk, Synthetic biology, Xenobiology

1 Introduction

As of 2015, practically all research and development projects in
synthetic biology (SB) are done in contained facilities and at rather
small scale. These activities carry only a very small probability
regarding environmental release of genetically modified organisms
(GMOs). Some applications suggested for SB, however, only make
sense when there is a deliberate release into the environment (e.g.,
open pond microalgae production, bio-mining). But even those
that entail the contained use of large-scale production facilities
(e.g., production of bulk chemicals) face the risk of environmental
escape of production organisms under real-world conditions [1–3].

To fully unlock the potential of SB, making SB applications safe
regarding deliberate or accidental environmental release has
become a hot and contested topic in research, policy, and public
debate [4–11].
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Since the 1970s and 1980s, a number of ideas have been
entertained and tested to provide a built-in safety system for
GMOs, especially when physical containment alone is not enough
[3, 11, 12]. Three major strategies have been applied for the design
of microorganisms with genetic safeguards: (1) organisms with
built-in auxotrophy (supplement is needed either to suppress a
toxic gene production or to provide nutrition to survive), (2)
induced lethality (kill switch), and (3) gene flow barriers (to inte-
grate the circuits into the chromosome of the host or to include a
killer gene which will be lethal to the new receipt hosts if a gene
transfer event has happened) [3, 11].

In addition to that, several novel approaches have been pro-
posed.One of them is an enhanced biocontainment systembased on
GeneGuard. This modular plasmid system consists of a conditional
origin of replication that will limit the replication of the engineered
plasmids in undesired hosts, a complementation of an introduced
host auxotrophy that will replace the dependency of the antibiotic
genes tomaintain the plasmids in the host, and a toxin-antitoxin pair
to prevent the plasmid spreading to other bacteria [13].

The other approach to build proper containment for the release
of engineered or entirely synthetic microorganisms for bioremedia-
tion is to build genetic information exchange barriers by xenobiolo-
gical approaches – using xeno-nucleic acids (XNAs) instead of DNA
as information-bearingmolecules, rewriting the genetic code tomake
it non-understandable by the existing gene expression machineries,
and/or making growth dependent on xenobiotic chemicals [12].

It is known that all living organisms, fromprokaryotic to eukary-
otic species, have known strategies for genetic information exchange,
which are critical for adaptation and evolution. One of these strate-
gies is known as horizontal gene transfer (HGT).Taking the bacterial
evolution, for example, the ability of bacteria to exploit new environ-
ment andmount response to new selective pressure ismore likely due
to new genes acquired by HGT than to “internal” mutations [14].
The mechanisms for HGT are mainly via conjugation, transduction,
and natural transformation [15]. Mobile genetic elements, such as
phages, transposons, and plasmids, play important roles in facilitat-
ing HGT. It is also known that these mobile genetic elements have
played important roles in genetic engineering and now in SB research
as well. Thus, the concern is thatHGTcan enable engineered organ-
isms to evolve and circumvent current biocontainment designs,
taking into account the high population number, mutation rate,
and duplication time of microorganisms [16].

A handful approaches or concepts have been presented recently
to improve nonphysical biocontainment strategies, including built-
in genetic control circuits, genomically recoded organisms (GROs)
that are engineered organisms with reassigned genetic code, and
organisms with noncanonical biochemical building blocks (xeno-
biology). Here, we will review the recent scientific progress in
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intrinsic biological containment, exploit the potential of the newly
developed technologies for better biocontainment design, and dis-
cuss new research needs and challenges in the area of biocontain-
ment of engineered organisms (Table 1).

2 Biocontainment Improved by Sophisticated Genetic Engineering Technologies

Recent progress in SB has made it possible to design more sophis-
ticated genetic circuits to monitor environmental signals, broaden-
ing the applications of the engineered microorganisms from
environmental biosensors to noninvasive diagnostic tools for
human health. For example, Escherichia coli has been equipped
with a genetic memory circuit capable of sensing, remembering,
and reporting in the presence of antibiotic signals in the mamma-
lian gut [17]. A recent article on the history of SB has reviewed the
process on genetic circuits since 2000 [18]. Genetic circuits devel-
oped during the foundational years of contemporary SB (year
2000–2003) were those simple gene regulatory circuits mimicking
minimalistic electric circuits, for example, a toggle switch [19] and a
repressilator [20]. Campos wrote a historical overview of SB [21].
He noted that those SB systems developed during the intermediate
years of SB (year 2004–2007) moved from simple to more complex
systems, involving post-transcriptional [22] and translational con-
trols [23], as well as circuits of multiple cellular pattern formations
[24]. Those developed during the recent year of SB (year
2008–2013) were for more precisely controlled circuits, e.g., relax-
ation oscillator designed based on quantitative modeling other
than those simple positive or negative feedback circuits [25].

So far, available intrinsic biocontainment systems based on built-
in genetic designs are not considered to be failure-proof.While these
systems could decrease the likelihood of HGT, they will not
completely eliminate it [3, 11, 16]. Recent reviews showed that the
frequencies of microbes that escaped engineered auxotrophy and
lethality safeguard systems were from 5.00E-9 to 1.00E-4 [3],
while the recommended limit was less than 1.00E-8 (from 1.00E-1
to 1.00E-8 observed among prokaryotes in the environment) [26].
Several concepts have been brought up to improve the biocontain-
ment (i.e., to reduce the probability ofHGT). These include, e.g., to
design microbes with low environmental retention times, to remove
mechanism of HGT (such as conjugation, transduction, or transfor-
mation), to design microbes with lower evolutional advantages
(minimizing genes with marked selection advantage and/or includ-
ing genes with marked selection disadvantage), and to design
microbes with stacked containment strategies [11, 16]. Besides
these approaches to improve biocontainment directly, other
approaches might also help to improve the stability of the designed
genetic circuits to reduce the uncertainty of the fate of the engi-
neered organisms in the ecosystem. One observed failure of the
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current genetic containment is due to the weak stability of the
safeguard structures [3]. To tackle this issue, rational design of
genetic circuits with improved evolutionary stability has been stud-
ied. One example was to combine the target genes (genes of interest)
with the essential genes under the regulation of the bidirectional
promoters (forward and backward). While a target gene (e.g., green
fluorescent protein) coupled to the essential gene (e.g., Kanamycin
resistant gene) in a bidirectional promoter circuit, the evolutionary
half time of it showed 4–10 times increase in E. coli [27].

The other risk of failure of the biocontainment might be due to
the plasmids used to construct the safeguard. The usage of plasmids
has facilitated the genetic engineering yet also increased the likeli-
hood of gene transfer. The recombinant plasmids might be trans-
ferred to other organisms through the active manner via
conjugation or the passive manner via uptake of those released
from the dead cells [3]. The progress of genome editing might
provide solutions to overcome or significantly reduce the risk of
gene transfer mediated by plasmids. The recently developed
genome-editing technologies are mediated by Zinc-finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and the emergence of clustered regulatory interspaced
short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA
endonucleases. These chimeric nucleases enable a broad range of
genetic modifications in the target organisms [28–31]. Meanwhile,
the new progress of whole genome synthesis, ranging from bacte-
rial genomes, yeast genomes, to mammalian mitochondrial gen-
omes, might help to rationally design organisms equipped with all
possible semantic biocontainment components to maximize the
genetic flow safeguard system [32–34]. As of 2014, this idea
remains a theoretical concept since real-world (contained) experi-
ments testing the efficacy are not (yet) taking place.

In addition, more knowledge is needed to better estimate the
frequency of HGT of constructed genetic circuits. Statistical
approaches have been proposed to access the probability of
HGT events in microbial populations of four different case scenar-
ios [15]. These approaches developed based on the knowledge of
the rates of the processes (yet independent of the mechanism of
HGT) would be applicable to HGT events occurring between
unrelated species. It is clear, however, that a theoretical calculation
alone will not be enough to assess its real-world practicability.
Practical experiments need to follow, such as HGT experiments
on filter or soil and water microcosms.

3 Biocontainment Approaches Based on Codon Reassignment

Biocontainment can also be enhanced by changing the biological
semantics of engineered organisms. With semantics, we mean the
genetic language used by cells, i.e., the cell uses four different
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bases as letters, combining them to three letter words (triplets)
which are arranged to sentences that gain meaning via their trans-
lation into amino acids and proteins. The term “genetic code”
describes how the 64 triplets are translated to the 20 (up to 22)
amino acids. The translational fidelity in the proper codon assign-
ment for 20 canonical amino acids (AAs) has played an important
role in the high precision, robustness, and stability of the transla-
tion from the genetic to the protein alphabet. This set of code is
shared by almost all organisms, which is why it is called the
“standard” genetic code. Besides the standard code, science cur-
rently knows 24 other naturally occurring codes, such as the one
used in vertebrate mitochondrial DNA. HGTonly works in nature
because the source and the receptor organism both use the same
code; in the case where they don’t share the same code, the
foreign genetic information would make no sense to the receiving
organism.

Codon reassignment techniques have been developed to engi-
neer microorganisms that also accept noncanonical amino acids
(ncAAs) in the translational machinery [35–38]. Restricted selec-
tion pressure can lead to the reassignment of certain genetic codons
to some ncAAs.

To reassign codons on demandwill require different approaches
other than harnessing the natural existing mechanisms. One
approach to achieve codon reassignment is to eliminate the aminoa-
cylation proofreading step. Another approach is to exploit the broad
ribosome substrate specificity, e.g., to change or relax the substrate
specificity of the aminoacyl-tRNA synthetases (aaRS) [35]. More
than 70 ncAAs have been genetically encoded by reassignments to
blank codons in E. coli, yeast, and mammalian cells [39].

One challenging research endeavor is to reassign the amber
stop codon UAG to a desired ncAA. Such an approach targets the
stop codon, the so-called stop codon suppression (SCS) methodol-
ogies using a heterologous orthogonal aaRS-tRNA pair to incor-
porate an ncAA in response to a stop codon [36, 39].

Even further goes the scrambling of the genetic code by switch-
ing from 3 to 4 bases as “genetic words.” By introducing an orthog-
onal ribosome (ribo-Q1), a serial of quadruplet codons can be
assigned to encode ncAAs. The approach based on combining
synthetases-tRNA pair and ribo-Q1 can encode 256 blank codons
in theory [40]. An additional approach to incorporate ncAAs in vivo
is to synthesize ncAA by pyridoxal 50-phosphate (PLP)-dependent
enzymes [38]. PLP-dependent enzymes are known to catalyze sev-
eral essential chemical reactions, such as transamination, decarbox-
ylation, racemization, carbon–carbon bond cleavage, and
formation. Combining a PLP-dependent enzymemetabolic biosyn-
thesis of ncAAs could set the microorganisms with codon reassign-
ment free from the dependence on specific supplement on
additional chemicals to survive. An engineering approach to couple
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the orthogonal chemistries with artificial metabolism was achieved
in a methionine-auxotroph E. coli strain to directly incorporate
ncAA into a recombinant protein (barstar) [41]. The intracellular
biosynthesis metabolic pathway was engineered to produce L-azi-
dohomoalanine fromO-acetyl-L-homoserine and NaN3. The direct
incorporation of this ncAA into recombinant protein barstar was
achieved by the production of the ncAA by exploiting the broad
specificity of recombinant pyridoxal phosphate-dependent O-acet-
ylhomoserine sulfhydrylase fromCorynebacterium glutamicum and
AUG codon reassignment to incorporate L-azidohomoalanine in
place of L-methionine [41]. This approach showed that ncAA
could be produced by the engineered intracellular biosynthesis
using common fermentable sources, paving way to develop novel
approaches on using external food sources to contain the organisms
engineered based on codon reassignment. The value of the codon
reassignment for enhanced biocontainment lies more on preventing
the built-in heterogeneous genes (encoding functional proteins) in
the engineered organisms from being correctly expressed in other
organisms. So even though when HGT does happen between the
engineered and another species, the other species is unable to trans-
late the proteins [42]. So far, codon reassignment has just left the
proof of principle phase. Real-world test regarding its value to
improve biocontainment has not been made.

A natural example of a mild semantic biocontainment has been
described in a recent research paper that showed that UGA (nor-
mally a stop codon) is an additional glycine codon in uncultured
SR1 bacteria from the human oral microbiota [43]. It is known that
many human cohabiting microbes from phylum SR1 are difficult to
cultivate and are only identified by small subunit rRNA sequences.
Single-cell genome sequence on one such taxon (SR1-OR1) from a
healthy oral sample revealed that this SR1 bacteria use a unique
genetic code, where the UGA codon is not a stop codon but in
equilibrium with the canonical GGN glycine codons. It seems
that UGA codon reassignment prevented the SR1 genes from
being translatable by other bacteria. That means the unique
codon reassignment strategy helps the SR1 bacteria to keep the
advantageous genetic information among their own species, not
sharing it with other microbes via HGT in the human microbiota.
This provides a proof of principle that the codon reassignment can
help to contain the genes of interest within the engineered ones but
not the native ones.

Another natural codon reassignment on canonical genetic code
(CUU and CUA sense codons to alanine instead of leucine in the
standard code) has been discovered in the mitochondria of Ashbya
(Eremothecium) gossypii, a filamentous-growing plant pathogen
related to yeast Saccharomycetaceae [44]. Natural codon
reassignments, although not universal, can be found in the
genomes (11 events) and mitochondria (16 events), indicating
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the organisms with codon reassignment can survive well in the
natural setting.

The 25 known codes are, however, an insignificant share of the
combinatorial explosion of theoretical possible genetic codes. A
simple calculation shows that there are more than 1071 possible
genetic codes.Semantic biocontainment tries to achieve a Babylo-
nian diversity of codes to render HGT meaningless.

4 Biocontainment Approaches Based on Genome Recoding

The (almost) universal genetic code shared by most microbes
allows the expression of heterogeneous genes in the engineered
microorganisms. However, this common system also permits
organisms to exchange genes through HGT, posing a challenge
to genetic containment for environmental applications.

Recently, GROs have been constructed to build microbes with
improved physiological properties (such as viral resistance and effi-
cient incorporation of the nonstandard amino acids, nsAAs) and
better biosafety profiles [45–48]. An in vivo genome-editing
approach was applied to replace all known 321 UAG stop codons
in E. coli MG1655 with synonymous UAA codons. In this GRO
strain, the UAG termination (release factor 1, RF1) was further
eliminated, which allowed the reintroduced UAG to code for the
ncAAs (e.g. p-acetylphenylalanine, pAcF) [48]. GROs might
expand the chemical capabilities of the engineered microbes and
isolate them better from nature. A biocontainment approach based
on GROs with recoding on stop codon might help to prevent
GROs gain heterogeneous genes from natural organisms due to
the read-through on the translation terminators resulting in mis-
translation of the foreign genes.

Several challenges have been raised for the genome recoding due
to the fact that codon usage can strongly affect gene regulation and
translation; in turn, genome-wide recoding on essential genes
remains unexplored until the limitation on genetic recoding in essen-
tial genes has been studied [47]. Codon reassignments on “13 for-
bidden codes” were done in 42 highly expressed essential genes in 80
E. coli strains, of which 41 were essential ribosomal protein-coding
genes and the prfB (the gene encoding RF2). The strains with
recoded genes exhibited the broadest range of fitness defects
(measured by doubling time) and indicated that although individual
gene recoding was feasible, pooling together several recoded genes
into one genome could “lead to fitness impairment.” This requires to
be explored further when a genome recoding involves essential
genes. In 2015, engineered microorganisms dependent on synthetic
amino acids to survive were developed by two US research groups
[49, 50]. Both engineered microbes developed by these two groups
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were obtained by further modifications on a recoded E. coli strain
C321. Δ A which was developed earlier [48]. Mandell et al. engi-
neered the strain further by recoding the UAG for L-4,40-biopheny-
lalmine (bipA), which eventually resulted in a triple synthetic
auxotrophic strain with two essential proteins (adenylate kinase and
tyrosyl-tRNA synthetase) that incorporated bipA and the re-
engineered bipA aaRS that required bipA for folding. The resulting
synthetic auxotrophic strains proved unable to metabolically bypass
the biocontainment mechanisms by compounds found in the natural
environment, while they showed low escape rates and were resistant
to HGT [49]. Instead of incorporating bipA into essential proteins,
Rovner et al. recoded UAG in C321. Δ A for three synthetic amino
acids: p-acetyl-L-phenylalanine (pAcF), p-iodo-L-phenylalanine
(pIF), or p-azido-L-phenylalanine (pAzF). The multiple-layered safe-
guard engineered synthetic auxotrophic strains obtained were the
strains incorporating pAcF in the functional sites of three essential
proteins, while the genes encoding tyrosine tRNAs (tyrT and tyrV)
were deleted [50]. This novel GRO strain showed improved contain-
ment profiles: low escape rate (undetectable escape frequencies upon
culturing 1011 cells on solidmedia for 7 days or in liquidmedia for 20
days) and resistance to HGT [50]. These two studies showed that
better containment mechanisms could be developed based on syn-
thetic auxotrophic. They also demonstrated, however, that the cur-
rently available metrics to measure the degree of safety are limited.
Mandell et al. [49] stated: “Our results demonstrate that mutational
escape frequency under laboratory growth conditions is a necessary
but insufficient metric to evaluate biocontainment strategies.” Thus,
new standards and metrics are needed to quantitatively define how
safe these new strains really are.

Although the genome recoding in eukaryotic cells is less stud-
ied, such concept has been applied as well to on-going research.
Taking one example from the Sc2.0 project [51], to enhance the
genetic flexibility of the synthetic chromosome arms that could
function in yeast, the elimination of the TAG stop codons of the
right arm of Saccharomyces cerevisiae chromosome IX (IXR) was
done by recoding them to TAA, thus reserving one codon for future
expansion of the genetic code, e.g., to add ncAA [45]. This
approach could also serve as a future mechanism for genetic isola-
tion and an additional level of containment control over the syn-
thetic yeast. In addition, an error-prone orthogonal DNA
replication system has been developed in S. cerevisiae, a system
consisting of an orthogonal plasmid- polymerase pair. This plas-
mid-polymerase-based system could allow increased substantial
mutation rates of the plasmid (400-fold greater than the host
genome), while the mutation rates of host genome were not
affected. This system can serve as a platform for in vivo continuous
evolution [52].
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5 Directed Evolution

Although genome recoding may require sophisticated engineering
approaches, there are alternative approaches to rewrite the genome
with a different genetic makeup. One of these attempts was
achieved by artificially evolving the microbial genome in a turbido-
stat (the dynamic sister of the chemostat) to incorporate the non-
canonical thymidine analogue 5-chlorouracil. This approach has
been applied to generate an E. coli strain that contained 90%
chlorodeoxyuridine and 10% thymidine [53]. Chemically modified
organisms might lead the way toward a new type of genetic firewall
[54, 55].

Due to the genome dynamics and the fact that reversion is an
evolutionary process, one concern about the semantic biocontain-
ment efficiency of genome recoding is the slow fitness recovery in
the modified genomes. Not much research has been done on this
aspect. However, knowledge on the codon-modified viral genome
might provide some hints. Synonymous codonmodification of viral
genome has been carried out in many viruses and considered as an
effective approach to develop attenuated vaccines [56–58]. This
approach for attenuating viruses for vaccine was based on a differ-
ent principle used in genome recoding though: changing a large
number of codons within the viral genome but not changing the
protein sequence. The key of this approach is to replace the wild-
type codons with designed codons of those sequences that impair
replication and/or expression. The slow fitness recovery of the
codon-attenuated viruses to high fitness or even to high virulence
has been studied in a codon-modified bacterial virus T7 [59].
Results on evaluations on the fitness of the engineered viruses,
the evolution of the sequence, and the fitness effects of the changes
supported “the premise that codon-modified viruses recover fitness
slowly, although the evolution is substantially more rapid
than expected from the design principle.” Besides the modified
viral genome, the genome evolution and adaptation of a bacterial
strain were also studied. Genomes of 40,000 generations from a
common laboratory E. coli strain were sequenced [60]. It showed
that genomic evolution was constant for the first 20,000 genera-
tions despite the sharp decline of adaptation. Microorganisms of
these first 20,000 generations showed low mutation rate, and those
mutations were neutral. The studies on the sequences from the
40,000 generations showed that synonymous change rates were
lower than the first 20,000 generations, while the mutants found
in the 40,000 genome were skewed toward AT to GC transver-
sions. The continuous investigation on the evolution and adapta-
tion on the genomes should also be applied to the recoded
genomes in the future.
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6 Biocontainment Approach Based on Xenobiology

Xenobiology (XB) is the design, engineering, and production
of biological systems with noncanonical biochemistries
and/or alternative genetic codes. XB is a subfield of synthetic
biology, and in addition to genetic code engineering and the use
of ncAAs, it also covers XNAs, expanded genetic alphabet with
alternative base pairs, and the use of novel polymerases and
ribosomes.

XNAs: The chemical backbone of DNA and RNA is desoxyr-
ibose and ribose, respectively, and appears to be highly conserved
biochemical structures in nature [61, 62]. When another chemi-
cal structure is used as a base-carrying backbone, the abbreviation
of the resulting nucleic acid changes, e.g., to HNA (hexose),
CeNA (cyclohexenyl), or TNA (threose) [63–65]. The collective
term for all nucleic acids that are not DNA or RNA is thus
XNA, where the X stands for xeno (Greek for “foreign or
unknown”) [54, 66].

Expanded genetic alphabet or alternative base pairs: The two
natural base pairs in DNA are A-T (A-U in RNA) and C-G. From a
chemical point of view, these base pairs match because their chemi-
cal architecture and the number of hydrogen bonds fit together
(A-T has two and C-G has three hydrogen bonds). C and T are
pyrimidines, while A and G are purines. Additional base pairs can be
synthesized and incorporated into DNA (or XNA). In case the aim
is to extend the genetic alphabet, the new base pairs (or the new
base in case it is self-pairing) need to match each other with high
accuracy and discriminate against other existing bases to maintain
information storage capabilities [67]. For each added base pair, the
genetic alphabet grows by 2; in the special case of a self-pairing
base, it would grow by 1. For example, in 2014, researchers
announced that they had successfully introduced two new artificial
nucleotides into bacterial DNA, alongside the four naturally occur-
ring nucleotides, and, by including individual artificial nucleotides
in the culture media, were able to retain this new base pair for
several days [68].

Novel polymerases and ribosomes: In most cases, natural poly-
merases and ribosomes (and other nucleic acid-interacting pro-
teins) do not work on XNAs and nucleic acids with expanded
alphabets. To allow for replication, transcription, and translation,
the nucleic acid cell machinery has to be adapted to operate on
these novel nucleic acids [69].

Combining these three types of alterations in living organisms
will lead to different degrees of xeno-organisms that will have less
and less in common with their naturally evolved counterparts.
Xeno-organisms will not be able to read or translate the genetic
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information into tangible products for the cell, thus rendering the
original information useless and out of reach. HGT will thus be
severely limited, if not entirely impossible.

7 Conclusion and Future Challenges

SB and especially xenobiology will add a powerful set of tools and
methods to improve biocontainment beyond physical restrictions.
Semantic or informational containment refers to the use of different
biological languages (genetic codes) or building blocks (e.g., nucleic
acids) as an additional layer of safety for upcoming biotechnological
devises and systems. The proof of principle for all constituting aspects
of xenobiology has been given in recent years. The coming years will
show how easy or difficult it will be to integrate the different systems
into one organism and “move it as far away” from natural cells as
possible. Soon, we will have to ask ourselves: should these novel
species be treated the same or differently from currently genetically
engineered organisms, and at what point will the semantic biocon-
tainment be “strong enough” to use it even without physical con-
tainment [70]? What kind of metric should be used to measure the
semantic distance between natural and different types of xeno-
organisms and what metric to measure the biosafety increase? And
what, finally, will be suitable areas of application for xeno-organisms?
These and more questions will have to be answered as xenobiology
develops from the stage of “proof of principle” to become a main-
stream methodology enabling applications for the real world.
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