
Chapter 9

Parameterisation and Algorithms of GPS
Data Processing

The parameterisation problems of the bias parameters in the GPS observation model
are outlined in Sect. 12.1 of the first edition of this book. The problems are then
mostly solved, and the theory will be addressed here in detail (cf. Xu 2004; Xu et al.
2006b). The equivalence properties of the algorithms of GPS data processing are
described, and the standard algorithms are outlined.

9.1
Parameterisation of the GPS Observation Model

The commonly used GPS data processing methods are the so-called uncombined
and combining, and the undifferenced and differencing algorithms (e.g.,
Hofmann-Wellenhof et al. 2001; Leick 2004; Remondi 1984; Seeber 1993; Strang
and Borre 1997; Blewitt 1998). The observation equations of the combining and
differencing methods can be obtained by carrying out linear transformations of the
original (uncombined and undifferenced) equations. As soon as the weight matrix is
similarly transformed according to the law of variance–covariance propagation, all
methods are theoretically equivalent. The equivalences of combining and differencing
algorithms are discussed in Sects. 6.7 and 6.8, respectively. The equivalence of the
combiningmethods is exact, whereas the equivalence of the differencing algorithms is
slightly different (Xu 2004, cf. Sect. 9.2). The parameters are implicitly expressed in
the discussions; therefore, the parameterisation problems of the equivalent methods
have not been discussed in detail. At that time, this topic was considered one of the
remainingGPS theoretical problems (Xu 2003, pp. 279–280;Wells et al. 1987, p. 34),
and it will be discussed in the next subsection.

Three pieces of evidence of the parameterisation problem of the undifferenced
GPS observation model are given first. Then the theoretical analysis and numerical
derivation are made to show how to parameterise the bias effects of the
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undifferenced GPS observation model independently. A geometry-free illustration
and a correlation analysis in the case of a phase–code combination are discussed. At
the end, conclusions and comments are given.

9.1.1
Evidence of the Parameterisation Problem
of the Undifferenced Observation Model

Evidence from Undifferenced and Differencing Algorithms

Suppose the undifferenced GPS observation equation and the related LS normal
equation are

V ¼ L� A1 A2ð Þ X1

X2

� �
; P ð9:1Þ

M11 M12

M21 M22

� �
X1

X2

� �
¼ W1

W2

� �
; ð9:2Þ

where all symbols have the same meanings as that of Eqs. 7.117 and 7.118.
Equation 9.2 can be diagonalised as (cf. Sect. 7.6.1)

M1 0
0 M2

� �
X1

X2

� �
¼ B1

B2

� �
: ð9:3Þ

The related equivalent observation equation of the diagonal normal Eq. 9.3 can
be written (cf. Sect. 7.6.1)

U1

U2

� �
¼ L

L

� �
� D1 0

0 D2

� �
X1

X2

� �
;

P 0
0 P

� �
; ð9:4Þ

where all symbols have the same meanings as that of Eqs. 7.142 and 7.140. If X1 is
the vector containing all clock errors, then the second equation of Eq. 9.3 is the
equivalent double-differencing GPS normal equation. It is well known that in a
double-differencing algorithm, the ambiguity sub-vector contained in X2 must be the
double-differencing ambiguities; otherwise, the problem will be generally singular.
It is notable that X2 is identical with that of in the original undifferenced observation
Eq. 9.1. Therefore, the ambiguity sub-vector contained in X2 (in Eq. 9.1) must be a
set of double-differencing ambiguities (or an equivalent set of ambiguities). This is
the first piece of evidence (or indication) of the singularity of the undifferenced GPS
observation model in which the undifferenced ambiguities are used.

Evidence from Uncombined and Combining Algorithms

Suppose the original GPS observation equation of one viewed satellite is (cf. Eq. 6.
134)
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then the uncombined or combining algorithms have the same solution of (cf. Eq. 6.
138)
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where all symbols have the same meanings as that of Eqs. 6.134 and 6.138. Then
one notices that the ionosphere (B1) and geometry (Cρ) are functions of the codes
(R1 and R2) and are independent from phases (Φ1 and Φ2) in Eq. 9.6. In other
words, the phase observables contribute nothing to the ionosphere and geometry,
and this is not possible. Such an illogical conclusion is caused by the parameteri-
sation of the ambiguities given in the observation model of Eq. 9.5. If one takes the
first evidence discussed above into account, and defines that for each station one of
the satellites in view must be selected as reference, and the related ambiguity must
be merged into the clock parameter, then the phases do contribute to ionosphere and
geometry. One can see again that parameterisation is a very important topic and
must be discussed more specifically. An improper parameterisation of the obser-
vation model will lead to incorrect conclusions through the derivation from the
model.

Evidence from Practice

Without using a priori information, a straightforward programming of the GPS data
processing using an undifferenced algorithm leads to no results (i.e. the normal
equation is singular, cf. Xu 2004). Therefore, an exact parameterisation description
is necessary and will be discussed in the next section.

9.1.2
A Method of Uncorrelated Bias Parameterisation

Here we restrict our discussion to the parameterisation problem of the bias
parameters (or constant effects, i.e. the clock errors and ambiguities).

Recall the discussions of the equivalence of undifferenced and differencing
algorithms in Sect. 6.8. The equivalence property is valid under three conditions:
observation vector L used in Eq. 9.1 is identical; parameterisation of X2 is identical;
and X1 is able to be eliminated (cf. Sect. 6.8).
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The first condition is necessary for the exactness of the equivalence because,
through forming differences, the unpaired data will be cancelled out in the
differencing.

The second condition states that the parameterisation of the undifferenced and
differencing model should be the same. This may be interpreted as the following:
the rank of the undifferenced and differencing equations should be the same if the
differencing is formed by a full rank linear transformation. If only the differencing
equations are taken into account, then the rank of the undifferenced model should
equal the rank of the differencing model plus the number of eliminated independent
parameters.

It is well known that one of the clock error parameters is linearly correlated with
the others. This may be seen in the proof of the equivalence property of the double
differences, where the two receiver clock errors of the baseline may not be separated
from each other and have to be transformed to one parameter and then eliminated
(Xu 2002, Sect. 6.8). This indicates that if in the undifferenced model all clock
errors are modelled, the problem will be singular (i.e. rank defect). Indeed, Wells
et al. (1987) noticed that the equivalence is valid if measures are taken to avoid rank
defect in the bias parameterisation. Which clock error has to be kept fixed is
arbitrary. Because of the different qualities of the satellite and receiver clocks, a
good choice is to fix a satellite clock error (the clock is called a reference clock). In
practice, the clock error is an unknown; therefore, there is no way to keep that fixed
except to fix it to zero. In this case, the meaning of the other bias parameters will be
changed and may represent the relative errors between the other biases.

The third condition is important to ensure a full-ranked parameterisation of the
parameter vector X1 which is going to be eliminated.

The undifferenced Eq. 9.1 is solvable if the parameters X1 and X2 are not
over-parameterised. In the case of single differences, X1 includes satellite clock
errors and is able to be eliminated. Therefore, to guarantee that the undifferenced
model Eq. 9.1 is not singular, X2 in Eq. 9.1 must be not over-parameterised. In the
case of double differences, X1 includes all clock errors except the reference one.
Here we notice that the second observation equation of 9.1 is equivalent to the
double-differencing observation equation and the second equation of 9.2 is the
related normal equation. In a traditional double-differencing observation equation,
the ambiguity parameters are represented by double-differencing ambiguities.
Recall that for the equivalence property, the number (or rank) of ambiguity
parameters in X2 that are not linearly correlated must be equal to the number of the
double-differencing ambiguities. In the case of triple differences, X1 includes all
clock errors and ambiguities. The fact that X1 should able to be eliminated leads
again to the conclusion that the ambiguities should be linearly independent.

The two equivalent linear equations should have the same rank. Therefore, if all
clock errors except the reference one are modelled, the number of independent undif-
ferenced ambiguity parameters should be equal to the number of double-differencing
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ambiguities. According to the definition of the double-differencing ambiguity, one has
for one baseline

Nk1;k2
i1;i2 ¼ Nk2

i2 � Nk2
i1 � Nk1

i2 þNk1
i1

Nk1;k3
i1;i2 ¼ Nk3

i2 � Nk3
i1 � Nk1

i2 þNk1
i1

Nk1;k4
i1;i2 ¼ Nk4

i2 � Nk4
i1 � Nk1

i2 þNk1
i1

. . .. . .

Nk1;kn
i1;i2 ¼ Nkn

i2 � Nkn
i1 � Nk1

i2 þNk1
i1 ;

ð9:7Þ

where i1 and i2 are station indices, kj is the jth satellite’s identification, n is the
common observed satellite number and is a function of the baseline, and N is
ambiguity. Then there are n − 1 double-differencing ambiguities and 2n undiffer-
enced ambiguities. Taking the connection of the baselines into account, there are
n − 1 double-differencing ambiguities and n new undifferenced ambiguities for any
further baseline. If i1 is defined as the reference station of the whole network and k1
as the reference satellite of station i2, then undifferenced ambiguities of the refer-
ence station cannot be separated from the others (i.e. they are linearly correlated
with the others). The undifferenced ambiguity of the reference satellite of station i2
cannot be separated from the others (i.e. it is linearly correlated with the others).
That is, the ambiguities of the reference station cannot be determined, and the
ambiguities of the reference satellites of non-reference stations cannot be deter-
mined. Either they should not be modelled or they should be kept fixed.
A straightforward parameterisation of all undifferenced ambiguities will lead to
rank defect, and the problem will be singular and not able to be solved.

Therefore, using the equivalence properties of the equivalent equation of GPS
data processing, we come to the conclusion that the ambiguities of the reference
station and ambiguities of the reference satellite of every station are linearly cor-
related with the other ambiguities and clock error parameters. However, a general
method of parameterisation should be independent of the selection of the references
(station and satellite). Therefore, we use a two-baseline network to further our
analysis. The original observation equation can be written as follows:

Lk1i1 ¼ � � � di1 þ dk1 þNk1
i1 þ � � �

Lk2i1 ¼ � � � di1 þ dk2 þNk2
i1 þ � � �

Lk3i1 ¼ � � � di1 þ dk3 þNk3
i1 þ � � �

Lk4i1 ¼ � � � di1 þ dk4 þNk4
i1 þ � � �

Lk5i1 ¼ � � � di1 þ dk5 þNk5
i1 þ � � �

Lk6i1 ¼ � � � di1 þ dk6 þNk6
i1 þ � � �

ð9:8Þ
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Lk1i2 ¼ � � � di2 þ dk1 þNk1
i2 þ � � �

Lk2i2 ¼ � � � di2 þ dk2 þNk2
i2 þ � � �

Lk3i2 ¼ � � � di2 þ dk3 þNk3
i2 þ � � �

Lk4i2 ¼ � � � di2 þ dk4 þNk4
i2 þ � � �

Lk5i2 ¼ � � � di2 þ dk5 þNk5
i2 þ � � �

Lk7i2 ¼ � � � di2 þ dk7 þNk7
i2 þ � � �

ð9:9Þ

Lk2i3 ¼ � � � di3 þ dk2 þNk2
i3 þ � � �

Lk3i3 ¼ � � � di3 þ dk3 þNk3
i3 þ � � �

Lk4i3 ¼ � � � di3 þ dk4 þNk4
i3 þ � � �

Lk5i3 ¼ � � � di3 þ dk5 þNk5
i3 þ � � �

Lk6i3 ¼ � � � di3 þ dk6 þNk6
i3 þ � � �

Lk7i3 ¼ � � � di3 þ dk7 þNk7
i3 þ � � � ;

ð9:10Þ

where only the bias terms are listed and L and δ represent observable and clock
error, respectively. Observation equations of station i1, i2, and i3 are Eqs. 9.8, 9.9,
and 9.10. Define that the baseline 1, 2 are formed by station i1 and i2, as well as i2
and i3, respectively. Select i1 as the reference station and then keep the related
ambiguities fixed (set to zero for simplification). For convenience of later discus-
sion, select δi1 as the reference clock (set to zero, too) and select k1, k2 as reference
satellites of the station i2, i3 (set the related ambiguities to zero), respectively. Then
Eqs. 9.8–9.10 become

Lk1i1 ¼ � � � dk1 þ � � �
Lk2i1 ¼ � � � dk2 þ � � �
Lk3i1 ¼ � � � dk3 þ � � �
Lk4i1 ¼ � � � dk4 þ � � �
Lk5i1 ¼ � � � dk5 þ � � �
Lk6i1 ¼ � � � dk6 þ � � �

ð9:11Þ

Lk1i2 ¼ � � � di2 þ dk1 þ � � �
Lk2i2 ¼ � � � di2 þ dk2 þNk2

i2 þ � � �
Lk3i2 ¼ � � � di2 þ dk3 þNk3

i2 þ � � �
Lk4i2 ¼ � � � di2 þ dk4 þNk4

i2 þ � � �
Lk5i2 ¼ � � � di2 þ dk5 þNk5

i2 þ � � �
Lk7i2 ¼ � � � di2 þ dk7 þNk7

i2 þ � � �

ð9:12Þ
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Lk2i3 ¼ � � � di3 þ dk2 þ � � �
Lk3i3 ¼ � � � di3 þ dk3 þNk3

i3 þ � � �
Lk4i3 ¼ � � � di3 þ dk4 þNk4

i3 þ � � �
Lk5i3 ¼ � � � di3 þ dk5 þNk5

i3 þ � � �
Lk6i3 ¼ � � � di3 þ dk6 þNk6

i3 þ � � �
Lk7i3 ¼ � � � di3 þ dk7 þNk7

i3 þ � � �

ð9:13Þ

Differences can be formed through linear operations. The total operation is a full
rank linear transformation, which does not change the least squares solution of the
original equations. Single differences can be formed by the following (Eq. 9.11
remains unchanged and, therefore, will not be listed again):

Lk1i2 � Lk1i1 ¼ � � � di2 þ � � �
Lk2i2 � Lk2i1 ¼ � � � di2 þNk2

i2 þ � � �
Lk3i2 � Lk3i1 ¼ � � � di2 þNk3

i2 þ � � �
Lk4i2 � Lk4i1 ¼ � � � di2 þNk4

i2 þ � � �
Lk5i2 � Lk5i1 ¼ � � � di2 þNk5

i2 þ � � �
Lk7i2 ¼ . . .di2 þ dk7 þNk7

i2 þ � � �

ð9:14Þ

Lk2i3 � Lk2i2 ¼ � � � di3 � di2 � Nk2
i2 þ � � �

Lk3i3 � Lk3i2 ¼ � � � di3 � di2 þNk3
i3 � Nk3

i2 þ � � �
Lk4i3 � Lk4i2 ¼ � � � di3 � di2 þNk4

i3 � Nk4
i2 þ � � �

Lk5i3 � Lk5i2 ¼ � � � di3 � di2 þNk5
i3 � Nk5

i2 þ � � �
Lk6i3 ¼ � � � di3 þ dk6 þNk6

i3 þ � � �
Lk7i3 � Lk7i2 ¼ � � � di3 � di2 þNk7

i3 � Nk7
i2 þ � � �

ð9:15Þ

where two observations are unpaired due to the baseline definitions. Double dif-
ferences can be formed by

Lk1i2 � Lk1i1 ¼ � � � di2 þ � � �
Lk2i2 � Lk2i1 � Lk1i2 þ Lk1i1 ¼ � � �Nk2

i2 þ � � �
Lk3i2 � Lk3i1 � Lk1i2 þ Lk1i1 ¼ � � �Nk3

i2 þ � � �
Lk3i2 � Lk3i1 � Lk1i2 þ Lk1i1 ¼ � � �Nk3

i2 þ � � �
Lk4i2 � Lk4i1 � Lk1i2 þ Lk1i1 ¼ � � �Nk4

i2 þ � � �
Lk5i2 � Lk5i1 � Lk1i2 þ Lk1i1 ¼ � � �Nk5

i2 þ � � �
Lk7i2 � Lk1i2 þ Lk1i1 ¼ � � � dk7 þNk7

i2 þ � � �

ð9:16Þ
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Lk2i3 � Lk2i2 ¼ � � � di3 � di2 � Nk2
i2 þ � � �

Lk3i3 � Lk3i2 � Lk2i3 þ Lk2i2 ¼ � � �Nk3
i3 � Nk3

i2 þNk2
i2 þ � � �

Lk4i3 � Lk4i2 � Lk2i3 þ Lk2i2 ¼ � � �Nk4
i3 � Nk4

i2 þNk2
i2 þ � � �

Lk5i3 � Lk5i2 � Lk2i3 þ Lk2i2 ¼ � � �Nk5
i3 � Nk5

i2 þNk2
i2 þ � � �

Lk6i3 ¼ � � � di3 þ dk6 þNk6
i3 þ � � �

Lk7i3 � Lk7i2 � Lk2i3 þ Lk2i2 ¼ � � �Nk7
i3 � Nk7

i2 þNk2
i2 þ � � �

ð9:17Þ

Using Eqs. 9.16 and 9.11, Eq. 9.17 can be further modified to

Lk2i3 � Lk2i2 þðLk1i2 � Lk1i1 Þþ ðLk2i2 � Lk2i1 � Lk1i2 þLk1i1 Þ ¼ � � � di3 þ � � �
Lk3i3 � Lk3i2 � Lk2i3 þ Lk2i2 þðLk3i2 � Lk3i1 � Lk1i2 þ Lk1i1 Þ � ðLk2i2 � Lk2i1 � Lk1i2 þLk1i1 Þ ¼ � � �Nk3

i3 þ � � �
Lk4i3 � Lk4i2 � Lk2i3 þ Lk2i2 þðLk4i2 � Lk4i1 � Lk1i2 þ Lk1i1 Þ � ðLk2i2 � Lk2i1 � Lk1i2 þLk1i1 Þ ¼ � � �Nk4

i3 þ � � �
Lk5i3 � Lk5i2 � Lk2i3 þ Lk2i2 þðLk5i2 � Lk5i1 � Lk1i2 þ Lk1i1 Þ � ðLk2i2 � Lk2i1 � Lk1i2 þLk1i1 Þ ¼ � � �Nk5

i3 þ � � �
Lk6i3 � Lk6i1 ¼ � � � di3 þNk6

i3 þ � � �
Lk7i3 � Lk7i2 � Lk2i3 þ Lk2i2 þðLk7i2 � Lk1i2 þ Lk1i1 Þ � ðLk2i2 � Lk2i1 � Lk1i2 þLk1i1 Þ ¼ � � � � dk7 þNk7

i3 þ � � �
ð9:18Þ

or

Lk2i3 � Lk2i1 ¼ � � � di3 þ � � �
Lk3i3 � Lk3i1 � Lk2i3 þ Lk2i1 ¼ � � �Nk3

i3 þ � � �
Lk4i3 � Lk4i1 � Lk2i3 þ Lk2i1 ¼ � � �Nk4

i3 þ � � �
Lk5i3 � Lk5i1 � Lk2i3 þ Lk2i1 ¼ � � �Nk5

i3 þ � � �
Lk6i3 � Lk6i1 � Lk2i3 þ Lk2i1 ¼ � � �Nk6

i3 þ � � �
Lk7i3 � Lk2i3 þ Lk2i1 ¼ � � � � dk7 þNk7

i3 þ � � �

ð9:19Þ

From the last equation of Eqs. 9.16 and 9.19, it is obvious that the clock error
and the ambiguities of satellite k7, which is not observed by the reference station,
are linearly correlated. Keeping one of the ambiguities of the satellite k7 at station
i2 or i3 is necessary and equivalent. Therefore, for any satellite that is not observed
by the reference station, one of the related ambiguities should be kept fixed (station
selection is arbitrary). In other words, one of the ambiguities of all satellites has to
be kept fixed. In this way, every transformed equation includes only one bias
parameter and the bias parameters are linearly independent (regular). Furthermore,
the differencing cannot be formed for the unpaired observations of every baseline.
However, in the case of an undifferenced adjustment, the situation would be dif-
ferent. We notice that the equation for k6 in Eq. 9.18 can be transformed to a
double-differencing one in Eq. 9.19. If more data is used in the undifferenced
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algorithm than in the differencing method, the number of undifferenced ambiguity
parameters will be larger than that of double-differencing parameters. Therefore, we
must drive the so-called data condition to guarantee that the data are able to be
differenced, or equivalently, we must extend the method of double-difference for-
mation such that the differencing will not be limited by special baseline design.
Both will be discussed in Sect. 9.2.

The meanings of the parameters are changed by independent parameterisation,
and they can be read from Eqs. 9.11–9.13. The clock errors of the satellites
observed by the reference station include the errors of receiver clock and ambi-
guities. The receiver clock errors include the error of ambiguity of the reference
satellite of the same station. Due to the inseparable property of the bias parameters,
the clock error parameters no longer represent pure clock errors, and the ambigu-
ities represent no longer pure physical ambiguity. Theoretically speaking, the
synchronisation applications of GPS may not be realised using the carrier-phase
observations. Furthermore, Eq. 9.19 shows that the undifferenced ambiguities of i3
have the meaning of double-differencing ambiguities of the station i3 and i1 in this
case.

Up to now, we have discussed the correlation problem of the bias parameters and
found a method of how to parameterise the GPS observations regularly to avoid the
problem of rank defect. Of course, many other ways to parameterise the GPS
observation model can be similarly derived. However, the parameter sets should be
equivalent to each other and can be transformed from one set to another uniquely as
long as the same data is used.

9.1.3
Geometry-Free Illustration

The reason why the reference parameters have to be fixed lies in the nature of range
measurements, which cannot provide information of the datum origin (cf., e.g.,
Wells et al. 1987, p. 9). Suppose d is the direct measurement of clock errors of
satellite k and receiver i, i.e. dki ¼ di þ dk, no matter how many observations were
made and how the indices were changed, one parameter (i.e. reference clock) is
inseparable from the others and has to be fixed. Suppose h is the direct measure-
ment of ambiguity N and clock errors of satellite k and receiver i, i.e.
hki ¼ di þ dk þNk

i , the number of over-parameterised biases is exactly the number
of total observed satellites and used receivers. This ensures again that our param-
eterisation method to fix the reference clock and one ambiguity of every satellite as
well as one ambiguity of the reference satellite of every non-reference station is
reasonable. The case of combination of d and h (as code and phase observations)
will be discussed in the next section.
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9.1.4
Correlation Analysis in the Case of Phase–Code
Combinations

A phase–code combined observation equation can be written by (cf. Sect. 7.5.2)

V1

V2

 !
¼ L1

L2

 !
� A11 A12

A11 0

� �
X1

X2

� �
and P ¼ wpP0 0

0 wcP0

� �
; ð9:20Þ

where L1 and L2 are the observational vectors of phase (scaled in length) and code,
respectively; V1 and V2 are related residual vectors; X2 and X1 are unknown vectors
of ambiguity and others; A12 and A11 are related coefficient matrices; P0 is a
symmetric and definite weight matrix; and wp and wc are weight factors of the phase
and code observations.

The phase, code and phase–code normal equations can be formed respectively
by

N11 N12

N21 N22

� �
X1

X2

� �
¼ R1

R2

� �
;

N11X1 ¼ Rc; and

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
;

ð9:21Þ

where

M11 ¼ ðwp þwcÞAT
11P0A11 ¼ ðwp þwcÞN11;

M12 ¼ MT
21 ¼ wpA

T
11P0A12 ¼ wpN12;

M22 ¼ wpA
T
12P0A12 ¼ wpN22;

B1 ¼ AT
11P0ðwpL1 þwcL2Þ ¼ wpR1 þwcRc; and

B2 ¼ wpA
T
12P0L1 ¼ wpR2:

ð9:22Þ

The covariance matrix Q is denoted

Q ¼ M11 M12

M21 M22

� ��1

¼ Q11 Q12

Q21 Q22

� �
; ð9:23Þ
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where (Gotthardt 1978; Cui et al. 1982)

Q11 ¼ ðM11 �M12M
�1
22 M21Þ�1;

Q22 ¼ ðM22 �M21M
�1
11 M12Þ�1;

Q12 ¼ M�1
11 ð�M12Q22Þ and

Q21 ¼ M�1
22 ð�M21Q11Þ:

ð9:24Þ

i.e.

Q11 ¼ ððwp þwcÞN11 � wpN12N
�1
22 N21Þ�1;

Q22 ¼ ðwpN22 � w2
pðwp þwcÞ�1N21N

�1
11 N12Þ�1 and

Q21 ¼ �N�1
22 N21ððwp þwcÞN11 � wpN12N

�1
22 N21Þ�1:

ð9:25Þ

Thus the correlation coefficient Cij is a function of wp and wc, i.e.

Cij ¼ f ðwp;wcÞ; ð9:26Þ

where indices i and j are the indices of unknown parameters in X1 and X2. For
wc = 0 (only phase is used, X1 and X2 are partly linear correlated) and wc = wp (X1

and X2 are uncorrelated), there exists indices ij, so that

Cij ¼ f ðwp;wc ¼ 0Þ ¼ 1 and Cij ¼ f ðwp;wc ¼ wpÞ ¼ 0: ð9:27Þ

In other words, there exists indices i and j, the related unknowns are correlated if
wc = 0 and uncorrelated if wc = wp. In the case of a phase–code combination,
wc = 0.01wp can be selected, and one has

Cij ¼ f ðwp;wc ¼ 0:01wpÞ ð9:28Þ

whose value is very close to 1 (strongly correlated) in the discussed case.
Equations 9.26, 9.27, and 9.28 indicate that for the correlated unknown pair ij the
correlation situation may not change much by combining the code to the phase
because of the lower weight of the code related to the phase. A numerical test
confirmed this conclusion (Xu 2004).

9.1.5
Conclusions and Comments

In this section, the singularity problem of the undifferenced GPS data processing is
pointed out and an independent parameterisation method is proposed for bias
parameters of the GPS observation model. The method is implemented into
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software, and the results confirm the correctness of the theory and algorithm.
Conclusions can be summarised by the following:

1. Bias parameterisation of undifferenced GPS phase observations with all clock
errors except the reference one, and all undifferenced ambiguities are linearly
correlated. The linear equation system of undifferenced GPS is then singular and
cannot be solved theoretically.

2. A linear independent bias parameterisation can be reached by fixing the refer-
ence clock of the reference station, fixing one of the ambiguities of every
satellite of arbitrary station (called reference station of every satellite), and fixing
the ambiguities of the reference satellite of every non-reference station. The
selections of the references are arbitrary; however, the selections are not allowed
to be duplicated.

3. The linear independent ambiguity parameter set is equivalent to the parameter
set of double-differencing ambiguities, and they can be transformed from one to
another uniquely if the same data is used.

4. The physical meanings of the bias parameters are varied depending on the way
of parameterisation. Because of the inseparable property of the bias parameters,
the synchronisation applications of GPS may not be realised using the
carrier-phase observations.

5. The phase–code combination does not change the correlation relation between
the correlated biases significantly.

It is noteworthy to comment on the use of the undifferenced algorithm:

1. In the undifferenced algorithm, the observation equation is rank defect if the
over-parameterisation problem has not been taken into account. The numerical
inexactness introduced by eliminating the clock error parameters and the use of
a priori information of some other parameters are the reason why the singular
problem is solvable in practice thus far.

2. Using the undifferenced and differencing methods, solutions of the common
parameters must be the same if the undifferenced GPS data modelling is really
an equivalent one and not over-parameterised.

3. A singular undifferenced parameterisation may become regular by introducing
conditions or by fixing some of the parameters through introducing a priori
information.

9.2
Equivalence of the GPS Data Processing Algorithms

The equivalence theorem, an optimal method for forming an independent baseline
network, and a data condition, as well as the equivalent algorithms using secondary
observables are discussed in this section (cf. Xu et al. 2006c).
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9.2.1
Equivalence Theorem of GPS Data Processing Algorithms

In Sect. 6.7, the equivalence properties of uncombined and combining algorithms
of GPS data processing are given. Whether uncombined or combining algorithms
are used, the results obtained are identical and the precisions of the solutions are
identical, too. It is notable that the parameterisation is very important. The solutions
depend on the parameterisation. For convenience, the original GPS observation
equation and the solution are listed as (cf. Sect. 6.7)
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0
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and

k1N1

k2N2

B1

Cq

0
BB@

1
CCA ¼

1� 2a �2b 1 0
�2a 2a� 1 0 1
1=q �1=q 0 0
a b 0 0

0
BB@

1
CCA

R1

R2

k1U1

k2U2

0
BB@

1
CCA ð9:30Þ

where the meanings of the symbols are the same as that of Eqs. 6.134 and 6.138.
In Sect. 6.8, the equivalence properties of undifferenced and differencing algo-

rithms of GPS data processing are given. Whether undifferenced or differencing
algorithms are used, the results obtained are identical and the precisions of the
solutions are equivalent. It is notable that the equivalence here is slightly different
from the equivalence in combining algorithms. To distinguish them, we call the
equivalence in the differencing case a soft equivalence. The soft equivalence is
valid under three so-called conditions. The first is a data condition, which guar-
antees that the data used in undifferenced or differencing algorithms are the same.
The data condition will be discussed in the next section. The second is a param-
eterisation condition, i.e. the parameterisation must be the same. The third is the
elimination condition, i.e. the parameter set to be eliminated should be able to be
eliminated. (Implicitly, the parameter set of the problem should be a regular one).
Because of the process of elimination, the cofactor matrices of the undifferenced
and differencing equations are different. If the cofactor of an undifferenced normal
equation has the form of

M11 M12

M21 M22

� ��1

¼ Q ¼ Q11 Q12

Q21 Q22

� �
; ð9:31Þ
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then we call the diagonal part of the cofactor

Qe ¼ M1 0
0 M2

� ��1

¼ Q11 0
0 Q22

� �
ð9:32Þ

an equivalent cofactor. The equivalent cofactor has the same diagonal element
blocks as the original cofactor matrix Q and guarantees that the precision relation
between the unknowns remains the same. The soft equivalence is defined as fol-
lows: the solutions are identical and the covariance matrices are equivalent. This
definition is implicitly used in the traditional block-wise least squares adjustment. It
is notable that the parameterisation is very important and the rank of the normal
equation of the undifferenced observation equation must be equal to the rank of the
normal equation of the differencing observation equation plus the number of the
eliminated independent parameters. For convenience, the original GPS observation
equation and the equivalent differencing equation can be generally written as (cf.
Eqs. 9.1 and 9.4)

V ¼ L� A1 A2ð Þ X1

X2

� �
; P ð9:33Þ

U1

U2

� �
¼ L

L

� �
� D1 0

0 D2

� �
X1

X2

� �
;

P 0
0 P

� �
: ð9:34Þ

In Sect. 9.1 the way to parameterise the GPS observables independently is
proposed. A correct and reasonable parameterisation is the key to a correct con-
clusion by combining and differencing derivations. An example is given in Sect. 6.
7 where an illogical conclusion is derived due to the inexact parameterisation.

For any GPS survey with a definitive space-time configuration, observed GPS
data can be parameterised (or modelled) in a suitable way and listed together in a
form of linear equations for processing. Combining and differencing are two linear
transformations. Because the uncombined and combining data (or equations) are
equivalent, differencing the uncombined or combining equations is (soft) equiva-
lent. Inversely, the combining operator is an invertible transformation; making or
not making the combination operation on the equivalent undifferenced or differ-
encing equations (Eqs. 9.33 and 9.34) is equivalent. That is, the mixtures of the
combining and differencing algorithms are also equivalent to the original undif-
ferenced and uncombined algorithms. The equivalence properties can be sum-
marised in a theorem as follows.

Equivalence Theorem of GPS Data Processing Algorithms

Under the three so-called equivalence conditions and the definition of the
so-called soft equivalence, for any GPS survey with definitive space-time config-
uration, GPS data processing algorithms—uncombined and combining algorithms,
undifferenced and differencing algorithms, as well as their mixtures—are at least
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soft equivalent. That is, the results obtained by using any algorithm or any mixture
of the algorithms are identical. The diagonal elements of the covariance matrix are
identical. The ratios of the precisions of the solutions are identical. None of the
algorithms are preferred in view of the results and precisions. Suitable algorithms or
mixtures of the algorithms will be specifically advantageous for special kinds of
data dealings.

The implicit condition of this theorem is that the parameterisation must be the
same and regular. The parameterisation depends on different configurations of the
GPS surveys and strategies of the GPS data processing. The theorem says that if the
data used are the same and the model is parameterised identically and regularly,
then the results must be identical and the precision should be equivalent. This is a
guiding principle for the GPS data processing practice.

9.2.2
Optimal Baseline Network Forming and Data Condition

It is well known that for a network with n stations there are n − 1 independent
baselines. An independent baseline network can be stated in words: all stations are
connected through these baselines, and the shortest way from one station to any
other stations is unique. Generally speaking, a shorter baseline leads to a better
common view of the satellites. Therefore, the baseline should be formed so that the
length of the baseline falls as short as possible. For a network, an optimal choice
should be that the summation of weighted lengths of all independent baselines
should be minimal. This is a specific mathematic problem called a minimum
spanning tree (cf., e.g., Wang et al. 1979).

Algorithms exist to solve this minimum spanning tree problem with software.
Therefore, we will just show an example here. An IGS network with ca. 100 sta-
tions and the related optimal and independent baseline tree is shown in Fig. 9.1.
The average length of the baselines is ca. 1300 km. The maximum distance is ca.
3700 km.

In the traditional double-differencing model, the unpaired GPS observations of
every designed baseline have to be omitted because of the requirement of differ-
encing (in the example of Sect. 1.2, two observations of k6 will be omitted.
However, if the differencing is not limited by baseline design, no observations have
to be cancelled out). Therefore, an optimal means of double differencing should be
based on an optimal baseline design to form the differencing first, then, without
limitation of the baseline design, to check for the unpaired observations in order to
form possible differencing. This measure is useful for raising the rate of data used
by the differencing method. An example of an IGS network with 47 stations and a
1-day observations has shown (Xu 2004) that 87.9 % of all data is used in dif-
ference forming based on the optimal baseline design, whereas 99.1 % of all data is
used in the extended method of difference forming without limitation of the
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baseline design. That is, the original data may be nearly 100 % used for such a
means of double differencing.

In the undifferenced model, in order to be able to eliminate the clock error
parameters, it is sufficient that every satellite is observed at least at two stations (for
eliminating the satellite clock errors) and at every station there is a satellite com-
bined with one of the other satellites that are commonly viewed by at least one of
the other stations (for eliminating the receiver clock errors). The condition ensures
that extended double differencing can be formed from the data. The data has to be
cancelled out if the condition is not fulfilled or the ambiguities including in the
related data have to be kept fixed.

For convenience, we state the data condition as follows.

Data Condition: All satellites must be observed at least twice (for forming single
differences) and one satellite combined with one of the other satellites should be
commonly viewed by at least one of the other stations (for forming double
differences).

It is notable that the data condition above is valid for single and double differ-
encing. For triple differencing and user defined differencing the data condition may
be similarly defined. The data condition is one of the conditions of the equivalence
of the undifferenced and differencing algorithms. The data condition is derived from
the difference forming; however, it is suggested to use it also in undifferenced
methods to reduce the singular data. The optimal baseline network forming is
beneficial for differencing methods to raise the rate of used data.

Fig. 9.1 Independent and optimal IGS GPS baseline network (100 stations)
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9.2.3
Algorithms Using Secondary GPS Observables

As stated in Sects. 6.7 and 9.2, the uncombined and combining algorithms are
equivalent. A method of GPS data processing using secondary data is outlined in
Sect. 6.7.3. However, a concrete parameterisation of the observation model is only
possible after the method of independent parameterisation is discussed in Sect. 9.1.
The data processing using secondary observables leads to equivalent results of any
combining algorithms. Therefore, the concrete parameterisation of the GPS
observation model has to be specifically discussed again. The observation model of
m satellites viewed at one station is (cf. Eqs. 6.134 and 9.5)
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where the relation

Bz
1 ¼

1
m

Xm
k¼1

B1ðkÞ=Fk ð9:36Þ

can be used to map the ionospheric parameters in the path directions to the
parameter in the zenith direction. The meanings of the symbols are the same as
stated in Sect. 6.7. Solutions of Eq. 9.35 are (similar to Eq. 9.6)
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where the covariance matrix Q(k) can be obtained by variance-covariance propa-
gation law. The vector on the left side of Eq. 9.37 is called the secondary obser-
vation vector. In the case where K satellites are viewed, the traditional combinations
of the observation model and the related secondary solutions are the same as the
Eqs. 9.35 and 9.37, where the m = K. However, taking the parameterisation method
into account, at least one satellite has to be selected as reference and the related
ambiguities cannot be modelled. If one were to suppose that the satellite of index
K is the reference, then the first m = K − 1 observation equations are the same as
Eq. 9.35. The satellite K related observation equations can be written as
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where the ambiguities are not modelled and the constant effects will be absorbed by
the clock parameters. Solutions of Eq. 9.38 are
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It is notable that the solutions of the traditional combinations are Eq. 9.37 with
m = K, whereas for the combinations with independent bias parameterisation, the
solutions are the combinations of the Eq. 9.37 with m = K − 1 and Eq. 9.39. It is
obvious that the two solutions are different. Because the traditional observation
model used is inexact, the solutions of the traditional combinations are also inexact.
The bias effects (of ambiguities) that are not modelled are merged into the clock
bias parameters. Because the bias effects cannot be absorbed into the non-bias
parameters, only the clock error parameters will be different in the results and the
clock errors will have the different meanings. Further, the ionosphere-free and
geometry-free combinations are correct under the independent parameterisation.

It shows that through exact parameterisation, the combinations are no longer
independent from satellite to satellite. For surveys with multiple stations, through
correct parameterisation the combinations will no longer be independent from
station to station. Therefore, traditional combinations will lead to incorrect results
because of the inexact parameterisation.

The so-called secondary observables on the left-hand side of Eqs. 9.37 and 9.39
can be further processed. The original observables can be uniquely transformed to
secondary observables. The secondary observables are equivalent and direct mea-
surements of the ambiguities and ionosphere as well as geometry. Any further GPS
data processing can be based on the secondary observables (cf. Sect. 6.7).

9.2.4
Simplified Equivalent Representation of GPS Observation
Equations

The GPS observation models, the data differentiation (single, double, and triple
differences) and the equivalent property between un-differenced and differencing
algorithms were discussed in Chap. 6. According to the theorem of equivalent
property, Shen and Xu (2008) developed the simplified equations which
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equivalently represent the single and double-differenced observation equations
using corresponding pseudo-observations in single or multi-baseline solutions.
However, this study was based on the assumption of all stations tracking the same
satellites with identical weights, thus the simplified equations were expanded in the
case of each station tracking different satellites with elevation-dependent weights
(Shen et al. 2009). The derived simplified equivalent algorithm was shown to be
very convenient for programming and efficient in computation, which would
potentially aid the development of efficient GNSS software and benefit the local,
regional and even global GNSS multi-baseline solutions. The specific algorithm is
emphatically introduced in this section.

Single-Differenced Simplified Equivalent Observation Equations

The GNSS observation equations for one epoch can be symbolically expressed as

e ¼ AxþByþCz� l; P; ð9:40Þ

where y and z are the vectors of station and satellite biases, B and C denote the
respective coefficient matrices with full column rank; x is a column vector with
t parameters, A is its coefficient matrix also with full column rank; l and e are the
column vectors of observables and normally distributed observation errors; P is the
weight matrix of observations. Here elevation-dependent weights are used and
different stations can track the different satellites, but the correlations among the
observables (temporal, cross, and channel) are not considered. Thus, the weight
matrix P is diagonal with varying elements. Refer to Leick (2004) for the detailed
interpretation of these parameters. If there are total of k stations and each station
only tracks the subset of the total n satellites, then y = (y1 y2 … yk)

T and z = (z1 z2
… zn)

T. The coefficient matrices, vector of observables and weight matrix are
grouped with the following sub-blocks in the order of satellites as
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where

Aj ¼

a j
S jð1Þ

a j
S jð2Þ
..
.

a j
S jðkjÞ

0
BBBBB@

1
CCCCCA; l j ¼

l jS jð1Þ
l jS jð2Þ
..
.

l jS jðkjÞ

0
BBBBB@

1
CCCCCA; P ¼

Pj
S jð1Þ

Pj
S jð2Þ

. .
.

Pj
S jðkjÞ

0
BBBBB@

1
CCCCCA:

The symbols a j
S jðiÞ and l jS jðiÞ denote respectively the coefficient row vector and

observable of the satellite j tracked by the station S jðiÞ, Pj
S jðiÞ is its weight. The

symbol S j represents the set of all stations that simultaneously track the satellite
j and S jðiÞ is the order of the ith station in the total set. The letter kj denotes the
number of stations that track the satellite j, ekj ¼ 1 1 � � � 1ð ÞT is a kj vector.
The coefficient for the jth satellite is a kj � k matrix Bj consisting of kj canonical
row vectors, in each canonical row vector all elements are zeros expect the element
associated with the tracking receiver is one. For example, if there are five stations
and the 2nd station does not track the 3rd satellite, then the matrix B3 is

B3 ¼
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BB@

1
CCA:

The satellite-specific parameter vector z can be eliminated by single differencing
in the station domain or by right-multiplying the original observation equations
with the transformation matrix R. The transformation matrix is (Teunissen 1997a, b;
Shen and Xu 2008)
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where the dimension of identity matrix IP k is
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where p
P

j ¼Pi2S j p
j
i being the sum of weights of observables for all stations that

tack the jth satellites.
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Multiplying Eq. 9.40 with matrix R, we obtain the equivalently transformed
observation equations

~e ¼ ~Axþ ~By�~l; P; ð9:44Þ

where ~A ¼ RA, ~B ¼ RB, ~l ¼ Rl, and ~e ¼ Re. As shown in Eq. 9.42, the matrix R is
diagonal with sub-matrix Rkj . Therefore, Eq. 9.44 can be further simplified as

~e j ¼ ~Ajxþ ~Bjy�~l j; Pj; j ¼ 1; 2; . . .; n; ð9:45Þ

with

~Aj ¼ RkjA
j; ~Bj ¼ RkjB

j; ~l j ¼ Rkj l
j; ð9:46Þ

It is obvious that Rkj has a rank defect of one. This means that one
station-specific parameter can be linearly represented with the others, i.e. only k − 1
station-specific parameters can be independently parameterised.

In the single-differenced equivalent observation equations, the independent
parameterised station-specific parameters are generally merged into x, and Eq. 9.45
becomes

~e j ¼ ~Ajx�~l j; Pj; j ¼ 1; 2; . . .; n; ð9:47Þ

where the transformed coefficient matrix and observation vector can also be further
simplified as

~Aj ¼ RkjA
j ¼ Aj � 1

p
P

j
ekj e

T
kjP

jA j ¼ Aj � dAj; ð9:48Þ

~l j ¼ Rkj l
j ¼ l j � 1

p
P

j
ekj e

T
kjP

jl j ¼ l j � dl j; ð9:49Þ

with

dAj ¼ 1

p
P

j
ekje

T
kjP

jA j ¼ 1

p
P

j
ekj
X
i2S j

ðp j
i a

j
i Þ ¼

1

p
P

j
ekj ½a j�; ð9:50Þ

dl j ¼ 1

p
P

j
ekje

T
kjP

jl j ¼ 1

p
P

j
ekj
X
i2S j

ðp j
i l

j
i Þ ¼

1

p
P

j
ekj ½l j�; ð9:51Þ

where ½a j� ¼Pi2S j ðp j
i a

j
i Þ and ½l j� ¼Pi2S j ðp j

i l
j
i Þ. Each element of the column

vector dl j and each column vector of dAj are the weighted means of their corre-
sponding column vectors. Therefore, the transformed vector ~l j is the centrobaric
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vector of l j, and the transformed matrix ~Aj is the column centrobaric matrix of Aj.
In other words, the equivalent observation Eq. 9.47 can also be simply obtained
through the centrobaric operation to the column vectors of Aj and l j.

In addition, the Eq. 9.47 can alternatively be expanded in the same way as
described by Shen and Xu (2008) in the form of pseudo-observations,

~e j ¼ Ajx� l j; Pj; j ¼ 1; 2; . . .; n; ð9:52Þ

½e j� ¼ ½a j�x� ½l j�; � 1=p
P

j; j ¼ 1; 2; . . .; n; ð9:53Þ

where ½~e j� denotes the residual of the jth sum pseudo-observation. The same normal
equations can be obtained by the equivalent observation Eqs. 9.47, 9.52, and 9.53.
Once the unknown parameter vector x̂ is solved, the residual vector is computed by

v j ¼ ~Ajx̂�~l j; Pj; j ¼ 1; 2; . . .; n; ð9:54Þ

Double-Differenced Simplified Equivalent Observation Equations

If there are more than two stations and each station tracks a subset of the total
n satellites, the double-differenced equivalent observation equations for multi-
baseline solutions will be much more complicated than single-differenced ones. In
order to derive the simplified double-differenced equivalent observation equations,
we rearrange Eq. 9.44 with the sub-blocks in the order of receivers and use the
same symbols as used in Eq. 9.44 to represent the rearranged single-differenced
observation equations as

~e ¼ ~Axþ ~By�~l; P; ð9:55Þ

where

~A ¼

~A1
~A2

..

.

~Ak

0
BBB@

1
CCCA; ~Ai ¼

~aSið1Þi

~aSið2Þi

..

.

~aSiðniÞi

0
BBBB@

1
CCCCA ¼

aSið1Þi � ½aSið1Þ�=p
P

Sið1Þ

aSið2Þi � ½aSið2Þ�=p
P

Sið2Þ

..

.

aSiðniÞi � ½aSiðniÞ�=p
P

SiðniÞ

0
BBBB@

1
CCCCA:

ni is the number of satellites tracked by the station i and Si denotes a set comprising
these ni satellites. Si(l) is the order of the lth satellite in the total set, that
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~l ¼

~l1
~l2

..

.

~lk

0
BBBB@

1
CCCCA;~li ¼

~lSið1Þi

~lSið2Þi

..

.

~lSiðniÞi

0
BBBBB@

1
CCCCCA;

P ¼

P1

P2

. .
.

Pk

0
BBBB@

1
CCCCA;Pi ¼

pSið1Þi

pSið2Þi

. .
.

pSiðniÞi

0
BBBBB@

1
CCCCCA

and ~B ¼ ~b2 ~b3 . . . ~bk
� �

. The first element in y is fixed to zero to achieve
independent parameterisation. According to Eqs. 9.45 and 9.46, we can determine
the rearranged column vector ~bi as

~bi ¼ �ðQ1GiaiÞT . . . �ðQi�1GiaiÞT ðQ1ðen � aiÞÞT �ðQiþ 1GiaiÞT � � � �ðQkGiaiÞT
� �T

ð9:56Þ

where ai ¼
p1i

p

P
1

p2i

p

P
2

� � � pni

p

P
n

� �T

, Gi is a n� n diagonal matrix and its

diagonal element is equal to either one (corresponding to tracked satellite) or zero
(corresponding to non-tracked satellite). The ni non-zero row vectors of Gi con-
struct the ni � n matrix Qi. If there are six satellites and the 3rd station does not
track the 2nd and 5th satellites, the matrices G3 and Q3 are expressed as

G3 ¼

1
0

1
1

0
1

0
BBBBBB@

1
CCCCCCA
; Q3 ¼

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

0
BB@

1
CCA; ð9:57Þ

Gi ¼ QT
i Qi; QiGi ¼ Qi; Gi ¼ GT

i ; GiGi ¼ Gi; ð9:58Þ

In order to determine the transformation matrix ~R for eliminating station-specific
parameters, the following matrix is computed

9.2 Equivalence of the GPS Data Processing Algorithms 285



~BTP~B ¼

~bT2P~b2 ~bT2P~b3 � � � ~bT2P~bk
~bT2P~b2 ~bT3P~b3 � � � ~bT3P~bk

..

. ..
. . .

. ..
.

~bTk P~b2 ~bTk P~b3 � � � ~bTk P~bk

0
BBB@

1
CCCA; ð9:59Þ

According to Eqs. 9.56 and 9.58, the expressions for the submatrices of ~BTP~B
are

~bTi P~bi ¼ p
P

i �
X
l2Si

plip
l
i

p
P

l
; ð9:60Þ

~bTi P~bj ¼ �
X
l2Sij

plip
l
j

p
P

l
; ð9:61Þ

where p
P

i ¼Pj2Si p
j
i is the sum of weights of observables for all satellites tracked

by the ith station. Sij is an intersection set of Si and Sj, denoted by Sij ¼ Si \ Sj and
refers to the set of satellites that are simultaneously tracked by both station i and
station j. The matrix ~BTP~B can be efficiently computed by Eqs. 9.60 and 9.61, but
its inverse is rather complicated and not symbolically expressible. Therefore, the
transformation matrix is numerically computed by

~R ¼ IP k � ~Bð~BTP~BÞ�1~BTP ¼ IP k � ~J; ð9:62Þ

Analogously, multiplying the transformation matrix ~R by Eq. 9.55, the
double-differenced equivalent equations are obtained as

��e ¼ ��Ax���l; P; ð9:63Þ

with

��A ¼ ~R~A ¼ ~A� ~J~A; ð9:64Þ
��l ¼ ~R~l ¼ ~l� ~J~l; ð9:65Þ

where the arrays ~A and ~l consist of all sub-matrices ~Aj and sub-vectors ~l j,
respectively, and can be very efficiently computed by centrobaric operation to their
column vectors. The ðk � 1Þ � ðk � 1Þ square matrix ~BTP~B and its inverse are
needed to determine the transformation matrix ~R. The matrix ~BTP~B can be effi-
ciently implemented by Eqs. 9.60 and 9.61, its inverse matrix can be trivially
computed, which is certainly more efficient than computing the weight matrix of
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double-differenced observables for multi-baseline solutions. Once the least squares
solution to parameter vector x̂ is obtained, the residuals can be exactly computed by

v ¼ ��Ax̂���l; ð9:66Þ

The simplified equivalent algorithm and its efficiency for computation have been
verified by numerical examples; the details can be referred to Shen et al. (2009).

9.3
Non-equivalent Algorithms

As stated in the equivalence theorem of GPS algorithms, the equivalence properties
are valid for GPS surveys with definitive space-time configuration. As long as the
measures are the same and the parameterisation is identical and regular, the GPS
data processing algorithms are equivalent. It is notable that if the surveys and the
parameterisation are different, then the algorithms are not equivalent to each other.
For example, algorithms of single point positioning and multi-points positioning,
algorithms of orbit-fixed and orbit co-determined positioning, algorithms of static
and kinematic, as well as dynamic applications, etc., are non-equivalent algorithms.

9.4
Reference Changing in GPS Difference Algorithm

9.4.1
Changing Reference Satellite

The single baseline solution with single reference station is the most simplified and
commonly used processing mode in the GPS kinematic relative positioning.
Compared to network solutions with multiple reference stations, a single baseline
solution has advantages of fewer unknown parameters, simple weight determination
method, no baseline correlation, and a small amount of data processing. However, it
can hardly meet the requirement of long endurance and long range airborne GNSS
kinematic positioning. The problem of reference satellite changing is inevitable in
the long time airborne relative positioning. This problem was studied by Wang et al.
(2010) and Wang (2013). The details of the method are introduced in this section.

The main idea of the reference satellite changing method is that when the old
reference satellite is disappeared or in the case that the reference satellite should be
changed since cycle slip happens in its observation data, the double-differenced
ambiguity after reference satellite changing can be obtained through multiplying the
double-differenced ambiguity before changing reference satellite by a transformmatrix.
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Assuming the relationship between un-differenced ambiguity and double-
differenced ambiguity before changing reference satellite can be expressed as

rDN ¼ AN0; ð9:67Þ

where rDN denotes the double-differenced ambiguity before changing reference
satellite, N0 denotes the un-differenced ambiguity, A is the transform matrix.

The double-differenced ambiguity after changing the reference satellite can be
expressed as

rD�N ¼ BN0; ð9:68Þ

whererD�N denotes the new double-differenced ambiguity after changing reference
satellite, B is the new transform matrix.

Thus, the relationship between the new double-differenced ambiguity and the old
double-differenced ambiguity can be assumed as:

rD�N ¼ CrDN; ð9:69Þ

where C is the transform matrix between old and new double-differenced
ambiguities.

Therefore, how to get the matrix C is the key problem to deal with the reference
satellite changing. Substituting Eqs. 9.67 and 9.68 into Eq. 9.69 and dividing out
N0, one has

CA ¼ B; ð9:70Þ

Multiplying the both sides of Eq. 9.70 by ATðAATÞ�1, one has

C ¼ BATðAATÞ�1; ð9:71Þ

Therefore it can be inferred that through multiplying the double-differenced
ambiguity before changing reference satellite by the transform matrix of Eq. 9.71,
the double-differenced ambiguity after reference satellite changing can be obtained.
The numerical example of this method can be referred to Wang (2013).

9.4.2
Changing Reference Station

Although the single baseline solution has been widely applied in the kinematic
relative positioning, it is generally not appropriate for the case of long range air-
borne positioning. Because of the long distance between the reference station and
kinematic station, many types of common errors cannot be eliminated directly by
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the difference method. And the number of common satellites will be reduced with
the increase of baseline length. If a closer reference station can be used in place of
the original reference station, these problems may be well solved. Therefore, a
method for adaptively changing reference station for long distance airborne GPS
applications developed by Wang et al. (2010, 2011) is introduced in this section.

The basic idea of the adaptively changing reference station method is that the
positioning model always keeps the single baseline model during the whole solu-
tion. When the distance between kinematic station and reference station is longer
than the maximum distance, which is defined by the user, the new reference station
is used to replace the old one. At the same time, all information of old observation
equation including covariance matrix will be transferred to the new observation
equation based on the equivalent eliminated parameter method. The calculation
steps of adaptively changing reference station are described below.

Suppose that the observation equations before and after changing reference
station can be respectively expressed as follows:

L� A
X1

X2

rDNi1;i2

2
4

3
5 ¼ V ; P; ð9:72Þ

L0 � B
X2

X3

rDNi3;i2

2
4

3
5 ¼ V 0; P0; ð9:73Þ

where L and L0 are the double-differenced observations, A and B are the design
matrices, X1 and X3 are the position parameters of the old and new reference
stations, respectively, X2 is the position parameter of the kinematic station, ∇ΔNi1,i2

is the double-differenced ambiguities between old reference station i1 and kine-
matic station i2, ∇ΔNi3,i2 is the double-differenced ambiguities between new ref-
erence station i3 and kinematic station i2, V, V 0; P, P0 are the residual vectors and
weight matrices respectively.

The Eq. 9.72 can be rewritten as

L� A1 A2½ � X2
�X

� �
¼ V ; P; ð9:74Þ

where �X includes X1 and rDNi1;i2.
The normal equation of Eq. 9.74 can be formed as

M11 M12

M21 M22

� �
X2
�X

� �
¼ U1

U2

� �
; ð9:75Þ
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where

M11 M12

M21 M22

� �
¼ AT

1PA1 AT
1PA2

AT
2PA1 AT

2PA2

� �
;

U1

U2

� �
¼ AT

1PL
AT
2PL

� �
; ð9:76Þ

The equivalently eliminated equation (cf. Sect. 7.6) of Eq. 9.75 can be formed as

M1 0
M21 M22

� �
X2
�X

� �
¼ R1

U2

� �
; ð9:77Þ

where M1 ¼ AT
1 ðE � JÞTPðE � JÞA1, R1 ¼ AT

1 ðE � JÞTPL, J ¼ A2M�1
22 A

T
2P.

Let D1 ¼ ðE � JÞA1, the first equation of Eq. 9.77 can be expressed as

DT
1PD1X2 ¼ DT

1PL; ð9:78Þ

Therefore the equivalent observation equation of Eq. 9.78 is

L� D1X2 ¼ V ; P; ð9:79Þ

The normal equation of Eq. 9.73 can be formed as

BTP0B
X2

X3

rDNi3;i2

2
4

3
5 ¼ BTP0L0; ð9:80Þ

Since the Eqs. 9.78 and 9.80 have the same position parameter X2, the corre-
sponding element of the two normal equations can be accumulated directly, then
one has

�BT�P0�B
X2

X3

rDNi3;i2

2
4

3
5 ¼ �BT�L0�L0; ð9:81Þ

where �B and �L0 are the design matrix and observation matrix after accumulation, �P0

is the weight matrix.
Therefore using the sequential least squares, the position parameter and ambi-

guity parameter of the kinematic station can be estimated based on the Eq. 9.81.
The numerical example for validation of this method can be found in Wang et al.

(2011).
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9.5
Standard Algorithms of GPS Data Processing

9.5.1
Preparation of GPS Data Processing

Preparation of GPS data processing can be carried out either in pre-processing or in
the main data processing. It depends on the strategy and the purpose of the data
processing. Only in the case of data post-processing (i.e. data are available before
the processing) is pre-processing possible. In the case of data quasi real time or real
time processing, usually data are only available up to the instantaneous epoch. Data
availability also causes different strategies of the data processing.

Data preparation may include raw GPS data decoding. ASCII code data are
usually given in RINEX format (Gurthner 1994). Even in the unified format, dif-
ferent decoders may work a little bit differently from one another. This has to be
noted only if one is going to process the data decoded by using different decoders.
Usually, most GPS data processing software has its own internal input data format.
Transforming the data from the RINEX format (maybe also from multiple stations)
into the internal input data format should be no principle problem.

Cycle slip detection is one of the most important works in data preparation.
Marks are given for further use in the data where the cycle slips are detected. There
are two types of cycle slips; one is repairable, and another is not repairable.
Non-repairable cycle slips have to be modelled by new ambiguity unknowns.
Repairing and setting new unknowns are equivalent if the repair is made correctly
and the new unknown is well-solved. By real time data processing, this process has
to be done in the main data processing process.

Orbit data are also needed. Depending on the purposes of the data processing,
broadcast navigation data, IGS precise orbits, and IGS predicted orbits can be used
where the satellite clock error model is also included. In broadcast data, there is also
an ionospheric model available. Even for the GPS precise orbit determination,
initial orbits are still needed.

Further preparations depend on the organisation and purpose of the data pro-
cessing. Generally speaking, standard tropospheric models are needed for use
(cf. Sect. 5.2). An ionospheric model (from broadcast) can be used as an initial
model (cf. Sect. 5.1) if the non-ionosphere-free combination is used. An iono-
spheric model can be also obtained from the ambiguity-ionospheric equations (see
discussions in Sect. 6.5.2). Earth tide and ocean loading tide, as well as relativistic
effects have to be computed for use (cf. Sect. 5.4).

In the case of orbit determination and/or geopotential determination, an initial
geopotential model is needed. The initial models of the solar radiation and air drag
have to be computed. All corrections can be computed in real time or in advance
and then listed in tables for use. Coordinate transformations between the ECEF
system and the ECSF system are also needed.
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9.5.2
Single Point Positioning

Single point positioning is a sub-process of GPS data processing, which is needed
in almost all GPS data processing. Station coordinates and receiver clock error are
determined with such a sub-process. Depending on the accuracy requirement, single
point positioning can be done with single frequency code or phase data,
dual-frequency code or phase data, and combined code-phase data. Generally
speaking, single point positioning has a lower accuracy than that of relative posi-
tioning, where systematic errors are reduced (through keeping the reference fixed).
However, the receiver clock bias determined by single point positioning is accurate
enough to correct the second type of clock error influence (the influence scaled by
the velocity of the satellite, cf. Sect. 5.5).

Code Data Single Point Positioning

The GPS code pseudorange model is (cf. Sect. 6.1):

Rk
i ðtr; teÞ ¼ qki ðtr; teÞ � ðdtr � dtkÞcþ dion þ dtrop þ dtide þ drel þ e; ð9:82Þ

where R is the observed pseudorange, te denotes the GPS signal emission time of
the satellite k, tr denotes the GPS signal reception time of the receiver i, c is the
speed of light, subscript i and superscript k denote the receiver and satellite, and δtr
and δtk are the clock errors of the receiver and satellite at the times tr and te,
respectively. The terms δion, δtrop, δtide, and δrel denote the ionospheric, tropo-
spheric, tidal, and relativistic effects, respectively. The multipath effect is omitted
here. The remaining error is denoted as ε. qki is the geometric distance. The com-
puted value (denoted as C) of the pseudorange is

C ¼ qki ðtr; teÞþ dtkcþ dion þ dtrop þ dtide þ drel; ð9:83Þ

where the clock error of the satellites can be interpolated from the IGS orbit data or
broadcast navigation message, models of other effects can be found in Chap. 5, and
the initial value of receiver clock error is assumed to be zero. It should be
emphasised that the earth rotation correction has to be taken into account by the
geometric distance computation no matter if it is done in the Earth or space fixed
coordinate systems (cf. Sect. 5.3.2).

The linearised observation Eq. 9.82 is then (cf. Sects. 6.2 and 6.3)

lk ¼ �1
qki ðtr; teÞ

xk � xi0 yk � yi0 zk � zi0ð Þ
Dx
Dy
Dz

0
@

1
A� Dtþ vk; ð9:84Þ

where lk is the so-called O–C (observed minus computed pseudorange), vk is the
residual, vector (Δx Δy Δz)T is the difference between the coordinate vector (xi yi zi)

T
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and the initial coordinate vector (xi0 yi0 zi0)
T, Δt is the receiver clock error in length

(i.e. Δt = δtrc), and the initial coordinate vector is used for computing the geometric
distance. Equation 9.84 can be written in a more general form as

lk ¼ ak1 ak2 ak3 �1ð Þ
Dx
Dy
Dz
Dt

0
BB@

1
CCAþ vk; ð9:85Þ

where akj is the related coefficient given in Eq. 9.84. Putting all of the equations
from all observed satellites together, we find the single point positioning equation
system has a general form of

L ¼ AXþV ; P; ð9:86Þ

where L is called the observation vector, X is the unknown vector, A is the coef-
ficient matrix, V is the residual vector, and P is the weight matrix of the observation
vector. The least squares solution of observational Eq. 9.86 is then (cf. Sect. 7.2)

X ¼ ATPA
� ��1

ATPL: ð9:87Þ

The formulas for computing the precision vector of the solved X can be found in
Sect. 7.2. It is notable that the coefficients of the equation are computed using the
initial coordinate vector, and the initial coordinate vector is usually not (exactly)
known; therefore, an iterative process has to be carried out to solve the single point
positioning problem. For the given initial vector, a modified one can be obtained by
solving the above problem; the modified initial vector can be used in turn as the
initial vector to form the equations, and the problem can be solved again until the
process converges. Because there are four unknowns in the single point positioning
equation, at least four observables are needed to make the problem solvable. In
other words, as soon as four or more satellites are observed, single point positioning
is always possible.

For static reference stations, as soon as the coordinates are known with sufficient
accuracy, the unknown vector (Δx Δy Δz)T can be considered zero. Then the
Eq. 9.85 turns out to be

lk ¼ �Dtþ vk; ð9:88Þ

and the receiver clock error can be computed directly by

Dt ¼ �1
K

XK
k¼1

lk; ð9:89Þ

where K is the total number of observed satellites at this epoch. Equation 9.89 can
be used to compute the receiver clock error of the static reference.

9.5 Standard Algorithms of GPS Data Processing 293

http://dx.doi.org/10.1007/978-3-662-50367-6_7
http://dx.doi.org/10.1007/978-3-662-50367-6_7


Dual-Code Ionosphere-Free Single Point Positioning

The above-mentioned single point positioning (using single frequency code data) is
accurate enough for correcting the second type of clock error influence (the influ-
ence scaled by the velocity of the satellite). For more precise single point posi-
tioning, dual-frequency code data can be used to form the ionosphere-free
combinations (cf. Sect. 6.5). Assuming that for frequencies 1 and 2, the single point
positioning equation of Eq. 9.86 can be formed as

L1 ¼ AX þV1; P1 ð9:90Þ

L2 ¼ AXþV2; P2;

then the ionosphere-free combination can be formed by (cf. Sect. 6.5.1)

f 21
f 21 � f 22

L1 � f 22
f 21 � f 22

L2 ¼ AXþV ; P; ð9:91Þ

where

P ¼ Q�1; Q ¼ f 21
f 21 � f 22

� �2

P�1
1 þ f 22

f 21 � f 22

� �2

P�1
2 ;

and V is the residual vector. Because the ionospheric effects have been cancelled out
of Eq. 9.91, the ionospheric model can be also omitted by computing L1 and L2 in
Eq. 9.90. The solution of Eq. 9.91 is then the solution to the dual-code
ionosphere-free single point positioning problem.

Phase Single Point Positioning

GPS carrier phase model is (cf. Sect. 6.1)

kUk
i ðtr; teÞ ¼ qki ðtr; teÞ � ðdtr � dtkÞcþ kNk

i � dion þ dtrop þ dtide þ drel þ e; ð9:92Þ

where λΦ is the observed phase in length, Φ is the phase in cycle, wave length is
denoted as λ, and Nk

i is the ambiguity related to receiver i and satellite k, except for
the ambiguity term and the sign difference of the term of ionospheric effect; other
terms are the same as that of the pseudorange discussed at the beginning of this
section.

The computed value (denoted as C) of phase is

C ¼ qki ðtr; teÞþ dtkcþ kNk
i0 � dion þ dtrop þ dtide þ drel; ð9:93Þ

where Nk
i0 is the initial ambiguity parameter related to the receiver i and satellite

k. Scaling the ambiguity parameter in length and denoting
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DNk
i ¼ kNk

i � kNk
i0; ð9:94Þ

the phase single point positioning equation is (very similar to Eq. 9.85)

lk ¼ ak1 ak2 ak3 �1ð Þ
Dx
Dy
Dz
Dt

0
BB@

1
CCAþDNk

i þ vk: ð9:95Þ

Putting all equations related to all observed satellites together, the single point
positioning equation system has a general form of

L ¼ AX þEN þV ; P; ð9:96Þ

where L is called the observation vector, X is the unknown vector of coordinates
and clock error, A is the X related coefficient matrix, E is an identity matrix of order
K, K is the number of observed satellites, N is the unknown vector of ambiguity
parameters DNk

i ;V is the residual vector, and P is the weight matrix. If K satellites
are observed, then there are K ambiguity parameters, three coordinate parameters
and one clock parameter, so that the phase single point positioning problem is not
solvable at the first few epochs. Using the ambiguity parameters obtained from the
ambiguity-ionospheric equations (cf. Sect. 6.5) as the initial ambiguity values, N is
then zero (can be cancelled), and Eq. 9.96 has the same form as that of Eq. 9.86. In
this way, the equation system of single-frequency phase point positioning can be
formed and solved every epoch. Even the codes are used in the ambiguity-
ionospheric equations, ambiguity parameters can be obtained with high accuracy
through a reasonable weight and instrumental bias model (cf. Sects. 6.7 and 9.2).

Dual-Phase Ionosphere-Free Single Point Positioning

The single point positioning equation of the dual-phase observables for frequencies
1 and 2 can be formed as

L1 ¼ AX þEN1þV1; P1 and

L2 ¼ AX þEN2þV2; P2:
ð9:97Þ

Then the ionosphere-free combinations can be formed by (cf. Sect. 6.5.1)

f 21
f 21 � f 22

L1 � f 22
f 21 � f 22

L2 ¼ AX þENc þV ; P; ð9:98Þ
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where

Nc ¼ f 21
f 21 � f 22

N1 � f 22
f 21 � f 22

N2 and ð9:99Þ

P ¼ Q�1; Q ¼ f 21
f 21 � f 22

� �2

P�1
1 þ f 22

f 21 � f 22

� �2

P�1
2 : ð9:100Þ

V is the residual vector, and index c is used to denote the ionosphere-free combi-
nations. Equation 9.98 is the dual-phase ionosphere-free single point positioning
equation system. The solution of Eq. 9.98 is then the solution of the dual-phase
ionosphere-free single point positioning problem.

Phase–Code Combined Single Point Positioning

Phase and code ionosphere-free single point positioning Eqs. 9.98 and 9.91 can be
written in more compact form as

Lp ¼ A11X1 þA12N þVp; Pp and

Lc ¼ A11X1 þVc; Pc;
ð9:101Þ

where index p and c denote the phase and code related variables, X1 is the vector of
the coordinate and receiver clock error, N is the ambiguity vector, P is the weight
matrix, and V is the residual vector. To guarantee the same coefficient matrix A11 for
both the phase and code observation equations, data of commonly observed
satellites have to be used.

Usually the code single point positioning problem (second equation system of
Eq. 9.101) is always solvable (as soon as more than four satellites are observed).
And the ambiguity parameter number is equal to the number of phase observables.
Therefore, the phase–code combined single point positioning problem in Eq. 9.101
is usually solvable at every epoch.

Block-wise least squares adjustment for solving the phase–code combined
problem has been discussed in Sect. 7.5.2. The algorithm can be used directly to
solve the combined Eq. 9.101.

Precise Point Positioning

The availability of precise GPS satellite orbit and clock products from the
International GNSS Service (IGS) has enabled) the development of a positioning
technology known as precise point positioning (PPP). Based on the processing of
un-differenced pseudorange and carrier phase observations from a single GPS
receiver, this approach effectively eliminates the inter-station limitations introduced
by differential GPS processing as no base station is necessary. As a result, it offers
an alternative to differential GPS that is logistically simpler and almost as accurate
(Zumberge et al. 1997; Kouba and Héroux 2001). Although PPP does not require
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any base station, it requires accurate knowledge of the GPS satellite coordinates and
the state of their clocks. The algorithm of PPP is described in the following.

With a single GPS dual-frequency receiver, the following ionosphere-free
combinations can be applied to facilitate PPP positioning using un-differenced
observations.

PIF ¼ f 21 � P1 � f 22 � P2

f 21 � f 22
¼ qþ c � dtþ dtrop þ dmIF þ ePIF ; ð9:102Þ

UIF ¼ f 21 � U1 � f 22 � U2

f 21 � f 22
¼ qþ c � dtþ dtrop þ cf1N1 � cf2N2

f 21 � f 22
þ dmIF þ eUIF ;

ð9:103Þ

where PIF is the ionosphere-free code observation, ΦIF is the ionosphere-free phase
observation, Pi and Φi (i = 1, 2) are the pseudorange observation and phase
observation on Li, respectively, fi is the frequency of Li, ρ is the geometric distance
between the satellite and the receiver, c is the speed of light, dt denotes the receiver
clock error, dtrop denotes the tropospheric delay, Ni is the integer phase ambiguity
on Li, dmIF, and δmIF denote a series of error corrections including relativistic effect,
earth tide, ocean tide, and hardware delay in pseudorange observation and phase
observation, respectively, εP and εΦ denote the remaining errors not modelled such
as multipath and observation noise of code and phase, respectively. Satellite orbit
and clock errors are not present in Eqs. 9.102 and 9.103 since they can be removed
by the use of precise orbit and clock products. The remaining receiver clock and
tropospheric delays in Eqs. 9.102 and 9.103 will be estimated in PPP.

The potential impact of PPP on the positioning community is expected to be
significant. It brings great flexibility to field operations and also reduces labour and
equipment cost and simplifies operational logistics by eliminating the need for base
stations. The performance of PPP for positioning determination has been demon-
strated in various papers—for example, Zumberge et al. (1997), Kouba and Héroux
(2001), Gao and Shen (2002), Gao et al. (2003)—using post-mission precise orbit
and clock from IGS. Following the availability of real-time precise GPS satellite
orbit and clock products, PPP has also been applied to real-time kinematic posi-
tioning (Gao and Chen 2004; Chen et al. 2013).

9.5.3
Standard Un-differential GPS Data Processing

In single point positioning, un-differenced GPS data are used. Usually, only four
unknowns are solved for, as discussed in Sect. 5.2. Single point positioning has also
a speciality of epoch-wise solution. Based on the algorithms of single point posi-
tioning, standard static un-differential GPS data processing should take more
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unknown models and more station data into account. In a kinematic case, because
of the movement of the receiver, coordinates of the receiver are time variables;
therefore, model parameters are usually pre-determined or determined with another
algorithm in order to reduce the number of the unknowns.

The GPS code pseudorange and carrier phase are modelled as (cf. Sect. 6.1,
Eqs. 6.1 and 6.2, or Eqs. 9.82 and 9.92)

Rk
i ðtr; teÞ ¼ qki ðtr; teÞ � ðdtr � dtkÞcþ dion þ dtrop þ dtide þ drel þ ec and ð9:104Þ

kUk
i ðtr; teÞ ¼ qki ðtr; teÞ � ðdtr � dtkÞcþ kNk

i � dion þ dtrop þ dtide þ drel þ ep:

ð9:105Þ

Except for the ambiguity parameter and the sign of the ionospheric effect term, the
other terms on the right sides of Eqs. 9.104 and 9.105 are the same.

For any standard data combinations (cf. Sect. 6.5 for details) as given in Eqs. 6.
48 and 6.51, the above models of Eqs. 9.104 and 9.105 are still valid. Of course, on
the left sides of Eqs. 9.104 and 9.105 the combined pseudorange and combined
phase (scaled by wavelength) are used, and on the right side the ambiguity and
ionospheric effect are combined ones respectively. Exactly, for combinations of

R ¼ n1R1 þ n2R2

n1 þ n2
; ð9:106Þ

U ¼ n1U1 þ n2U2; ð9:107Þ

or

kU ¼ 1
f
ðn1f1k1U1 þ n2f2k2U2Þ; ð9:108Þ

where the combined signal has the frequency and wavelength

f ¼ n1f1 þ n2f2; and k ¼ c=f ; ð9:109Þ

the combined ambiguity and ionospheric effects are

Ncom ¼ n1N1 þ n2N2; ð9:110Þ

dion comc ¼ n1dion1 þ n2dion2
n1 þ n2

and

dion comp ¼ �1
f

n1f1dion1 þ n2f2dion2ð Þ;
ð9:111Þ
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where n1 and n2 are the selected real constants, indices 1 and 2 are referred to
frequencies 1 and 2, and indices comc and comp denote the code and phase
combined terms.

The computed pseudorange and phase range are

Cc ¼ qki ðtr; teÞ � ðdtr � dtkÞcþ d0ion comc þ d0trop þ d0tide þ drel and ð9:112Þ

Cp ¼ qki ðtr; teÞ � ðdtr � dtkÞcþ kNk
i0 com � d0ion comp þ d0trop þ d0tide þ drel; ð9:113Þ

where superscript 0 denotes the initial values of individual models, indices c and p
denote the terms related to the code and phase measurements, and index com
denotes the combined terms. In the case of ionosphere-free combinations, the
ionospheric effect terms will vanish. Otherwise, we should assume that the iono-
spheric effects are known by the given model or by the ambiguity-ionospheric
equations.

The linearisation of GPS observation equations is generally discussed in Sect. 6.2,
and the related partial derivatives are given in Sect. 6.3. Equations 9.106 and 9.108
can be linearised as

Lc ¼ A11Xcoor þA12Xclock þA13Xtrop þA14Xtide þVc; Pc and

Lp ¼ A11Xcoor þA12Xclock þA13Xtrop þA14Xtide þA15NþVp; Pp;
ð9:114Þ

where Xcoor is the coordinate vector, Xclock is clock error vector, indices trop and
tide are used to denote the related unknown vectors, N is the ambiguity vector, P is
the weight matrix, V is the residual vector, and A is the related coefficient matrix.
The data of commonly observed satellites have to be used to guarantee the common
coefficient matrices A for both phase and code observation equations.

To process the data of more stations, Eq. 9.114 shall be formed station by station
and then combine them together. It is notable that some of the parameters are
common ones for all stations, such as satellite clock errors and Love numbers of the
earth tide. In the case of orbit determination (cf. Chap. 11 for details), the orbit
parameters and force model parameters are also common ones. The total obser-
vation equations of the un-differential GPS can then be written symbolically as

Lc ¼ A1X1 þA4X4 þVc; Pc and

Lp ¼ A1X1 þA4X4 þA5X5 þVp; Pp
ð9:115Þ

where X1 is a sub-vector of the common variables of the both equations, X4 is the
other variable vector of the both equations, and X5 is the ambiguity vector. Adding
0X5 to the first equation and denoting X2 ¼ ½X4 X5 �T, Eq. 9.115 can be further
simplified as
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Lc ¼ A1X1 þA2X2 þVc; Pc and

Lp ¼ A1X1 þA3X2 þVp; Pp:
ð9:116Þ

Equation 9.116 can be considered an epoch-wise formed observation equation
or observation equation of all observed epochs. Most adjustment algorithms dis-
cussed in Chap. 7 can be used directly to solve the above equation system.

9.5.4
Equivalent Method of GPS Data Processing

As already discussed in Sect. 6.8, the equivalently eliminated equations of Eq. 9.16
can be formed as (cf. Sects. 6.8 and 7.6 for details)

Uc ¼ Lc � ðE � JcÞA2X2; Pc and

Up ¼ Lp � ðE � JpÞA3X2; Pp;
ð9:117Þ

where

Jc ¼ A1M
�1
11cA

T
1Pc;

Jp ¼ A1M
�1
11pA

T
1Pp;

M11c ¼ AT
1PcA1; and

M11p ¼ AT
1PpA1:

ð9:118Þ

E is an identity matrix of size J, L, and P are the original observation vector and
weight matrix, and U is the residual vector, which has the same statistic property as
V in Eq. 9.116. As soon as the X1 in Eq. 9.116 is able to be eliminated, the
equivalent Eq. 9.117 can be formed whether Eq. 9.116 is an epoch-wise equation
or an all epoch equation.

Equation 9.117 is the zero-difference (un-differential) GPS observation equation
system if the variable vector X1 in Eq. 9.116 is considered a zero vector.

Equation 9.117 is the equivalent single-difference GPS observation equation
system if the variable vector X1 in Eq. 9.116 is considered an unknown vector of
satellite clock errors.

Equation 9.117 is the equivalent double-difference GPS observation equation
system if the variable vector X1 in Eq. 9.116 is considered an unknown vector of
satellite and receiver clock errors.

The second equation of 9.117 is the equivalent triple-difference GPS observation
equation system if the variable vector X1 in the second equation of 9.116 is con-
sidered an unknown vector of all clock errors and ambiguities.
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The un-differential and differential GPS data processing can be dealt with in an
equivalent and unified way. The advantages of this method are:

1. The weight remains the original one, so one does not have to deal with the
correlation problem;

2. The original data are used, so one does not need to form the differences;
3. The un-differential and differential GPS data processing can be easily selected

by a switch or can be used in a combined way, so that the number of unknowns
(i.e. matrix size) of the whole adjustment and filtering problem can be greatly
reduced.

The combinative way of using the equivalent method can be realised as follows.
First, equivalent triple differences are used to determine the unknowns other than
the clock error and ambiguity parameters. Taking these parameters as known, the
observation equation system 9.116 can be reduced so that only the clock error and
ambiguity parameters are included. Then second, equivalent double differences are
used to determine the ambiguity vector. Again, taking the ambiguity vector as
known, Eq. 9.116 can be further reduced so that only the clock error parameters are
included. Then third, equivalent single differences are used to determine the
receiver clock errors. At the end, Eq. 9.116 can be reduced so that only satellite
clock errors are included in the equations, and they can be determined. The last two
steps can be also done together in one step.

By the way, the ambiguity parameters are usually dealt with in an un-differential
form for all methods, so that the problems caused by changing the reference satellite
in a double-difference case can be avoided. This is especially important for kine-
matic GPS applications.

9.5.5
Relative Positioning

Relative positioning is traditionally carried out with differential positioning. The
key point of relative positioning is to keep the coordinates of the reference station
fixed. In other words, the initial coordinate values of the reference station are
considered true values so that the related unknowns are either not necessary to be
adjusted or equal to zero. Therefore, the following two methods outline how rel-
ative positioning can be done. (1) Cancelling the reference coordinate unknowns
out of Eq. 9.116; (2) The a priori datum method discussed in Sects. 7.8.2 and 6.8.6
is used to keep the coordinates fixed on the initial values. Both methods are
equivalent. The a priori datum method (cf. Sects. 7.8.2 and 6.8.6) can be also used
to keep some of the un-differential ambiguity parameters and clock parameters
fixed. Keeping the reference coordinates fixed in relative positioning may lead to a
better determination of the other parameters in the reference-related equations and,
therefore, may lead to an indirect reduction of the residuals.

9.5 Standard Algorithms of GPS Data Processing 301

http://dx.doi.org/10.1007/978-3-662-50367-6_7
http://dx.doi.org/10.1007/978-3-662-50367-6_6
http://dx.doi.org/10.1007/978-3-662-50367-6_7
http://dx.doi.org/10.1007/978-3-662-50367-6_6


9.5.6
Velocity Determination

Single Point Velocity Determination

Analogous to the single point positioning discussed in Sect. 5.2, single point
velocity determination can be carried out by using Doppler data. The GPS Doppler
observation is modelled as (cf. Eq. 6.46)

D ¼ dqki ðtr; teÞ
kdt

� f
dðdtr � dtkÞ

dt
þ drel f þ e; ð9:119Þ

where D is the observed Doppler measurement, te denotes the GPS signal emission
time of the satellite k, tr denotes the GPS signal reception time of the receiver i,
subscript i and superscript k denote receiver and satellite, and δtr and δtk denote the
clock errors of the receiver and satellite at the time tr and te, respectively. The
remaining error is denoted as ε, f is the frequency, wavelength is denoted as λ, δrel_f
is the frequency correction of the relativistic effects, qki is the geometric distance,
and dkl =dt denotes the time derivation of the radial distance between satellite and
receiver at the time tr.

The computed value (denoted as C) of Doppler is

C ¼ dqki ðtr; teÞ
kdt

þ f
dðdtkÞ
dt

þ drel f ; ð9:120Þ

where the first term on the right-hand side can be computed by using Eqs. 6.14 and
6.15.

The time derivative of the satellite clock error and the satellite position as well as
velocity can be computed from the IGS orbit data or broadcast navigation message;
the relativistic effect on frequency can be found in Chap. 5. It is obvious that the
initial position of the receiver is also needed for computing Eq. 9.120. Initial
velocity of the receiver is assumed zero. It should be emphasised that the earth
rotation correction has to be taken into account by the geometric distance com-
putation (cf. Sect. 5.3.2).

The linearised observation Eq. 9.120 is then (cf. Sects. 6.2 and 6.3 as well as
partial derivative Eq. 6.20)

lk ¼ �1
kqki ðtr; teÞ

xk � xi yk � yi zk � zið Þ
_xi
_yi
_zi

0
@

1
A� DDþ vk; ð9:121Þ

where lk is the O–C (observed minus computed Doppler), vk is the residual, the
receiver’s velocity vector is _x; _y; _zð ÞT; x y zð ÞT is the coordinate vector with
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index k for satellite and i for receiver. ΔD is the receiver clock drift in cycle/second
(i.e. ΔD = f(dδtr/dt). Equation 9.121 can be written in a more general form as

lk ¼ ak1 ak2 ak3 �1ð Þ
_x
_y
_z

DD

0
BB@

1
CCAþ vk; ð9:122Þ

where akj is the related coefficient given in Eq. 9.122. If one puts all of the equa-
tions that are related to all of the observed satellites together, the equation system of
single point velocity determination has a general form of

L ¼ AXþV ; P; ð9:123Þ

where L is called the observation vector, X is the unknown velocity vector including
clock drift, A is the coefficient matrix, V is the residual vector, and P is the weight
matrix of observation vector. The least squares solution of observation Eq. 9.123 is
then (cf. Sect. 7.2)

X ¼ ATPA
� ��1

ATPL: ð9:124Þ

The formulas for computing the precision vector of the solved X can be found in
Sect. 7.2. It is notable that the coefficients of the equation are computed using the
initial velocity vector, and the initial velocity vector is usually not known; therefore,
an iterative process has to be carried out to solve the single point velocity deter-
mining problem. For the given initial velocity vector, a modified one can be
obtained by solving the problem; the modified initial velocity vector can be used in
turn to form the equation and solve it again until the process converges. This
iterative process is needed if the kinematic motion is very fast. Because there are
four unknowns in the single velocity determining equation, at least four observables
are needed to make the problem solvable; in other words, when four or more
satellites are observed, it is always possible to determine the single point velocity.

For static stations, the unknown velocity vector _x; _y; _zð ÞT can be considered the
zero one. Then the Eq. 9.121 turns out to be

lk ¼ �DDþ vk; ð9:125Þ

and the receiver frequency error can be computed directly by

DD ¼ �1
K

XK
k¼1

lk; ð9:126Þ

where K is the total number of observed satellites. Equation 9.126 can be used to
compute the frequency drift of the static reference receiver. The frequency drift of
kinematic receiver can be also computed by static initialisation.
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Differential Doppler Data Processing

A more general model of Doppler data processing takes the satellite clock fre-
quency bias (clock drift) into account:

lk ¼ ak1 ak2 ak3 �1ð Þ
_x
_y
_z

DDi

0
BB@

1
CCAþDDk þ vk; ð9:127Þ

where index i and k denote the receiver and satellite, and ΔD is the related fre-
quency bias. For the satellite frequency bias, the initial value from the IGS data or
navigation data can be used. If one puts together all of the equations related to all
observed satellites of all of the stations, Eq. 9.127 has a general form of

LD ¼ A1X1 þA2X2 þVD; PD: ð9:128Þ

where X1 is a sub-vector of the common variables, X2 is the vector of the other
variable, and A is the related coefficient matrix. The equivalently eliminated
equations of Eq. 9.128 can be formed as (cf. Sect. 6.8 for details)

UD ¼ LD � ðE � JDÞA2X2; PD; ð9:129Þ

where

JD ¼ A1M
�1
11DA

T
1PD and

M11D ¼ AT
1PDA1:

ð9:130Þ

E is an identity matrix of size JD, L, and P are the original observation vector and
weight matrix, and U is the residual vector, which has the same property as V in
Eq. 9.128.

Equation 9.129 is the equivalent single-difference GPS Doppler observation
equation if the variable vector X1 in Eq. 9.128 is considered a vector of satellite
clock frequency bias.

Equation 9.129 is the equivalent double-difference GPS Doppler observation
equation if the variable vector X1 in Eq. 9.128 is considered a vector of the satellite
and receiver clock frequency bias.

Relative Velocity Determination

Relative velocity determining is usually carried out with a differential method. The
key point of relative velocity determination is to keep the velocity of the reference
station as fixed or zero. Therefore, relative velocity determination can be done the
following two ways: (1) Cancel the reference velocity unknowns out of the
Eq. 9.128; (2) Use the method of a priori datum discussed in Sect. 7.8.2 to keep the
reference velocity fixed on the initial values.
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9.5.7
Kalman Filtering Using Velocity Information

As already discussed in Sect. 6.5.5, velocity information from the differential
Doppler can be used to describe the system that is needed in Kalman filtering.
Whether the receiver is moving or resting, the differential Doppler includes infor-
mation about the motion state of the receiver. Therefore, using velocity information
as a system description should be better than any empirical model.

The principle of Kalman filtering using velocity information can be outlined as
follows (cf. also Sect. 7.7).

For the initial (or predicted) vector Z, the normal equation of the phase obser-
vation equation can be formed by

MzZ ¼ Bz; Z ¼ X
N

� �
; ð9:131Þ

where Mz is the normal matrix, and Bz is the vector on the right side of the equation.
These are formed by using initial vector Z; Z includes sub-vector X (coordinates)
and N (ambiguities). The estimated solution of Eq. 9.131 is then

~Z ¼ ~QzBz; ~Qz ¼ M�1
z : ð9:132Þ

The normal equation of the differential Doppler observation equation (cf.
Eq. 9.129, only the velocity vector is unknown) can be formed by

M _x _X ¼ B_x; ð9:133Þ

where _X is the velocity vector of the receiver; it is also used as an index to denote
the related normal matrix and vector on the right side of the equation. The solution
of Eq. 9.133 is then

_X ¼ Q _xB _x; Q _x ¼ M�1
_x : ð9:134Þ

Thus for the next epoch, denoted as k, the predicted vector turns out to be

�ZðkÞ ¼ ~Zðk � 1Þþ _Zðk � 1Þ � Dt; ð9:135Þ

where Δt is the time interval of the epoch k–1 and k, and

_Zðk � 1Þ ¼ _Xðk � 1Þ
0

� �
: ð9:136Þ
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Equation 9.135 indicates that the differential Doppler has to be used in
Eq. 9.134 as observations, because the velocity is considered an average one here.
The related covariance matrix of the predicted vector is then

�QzðkÞ ¼ ~Qzðk � 1Þþ ðDtÞ2 Q_x 0
0 0

� �
: ð9:137Þ

The weight matrix is

�PzðkÞ ¼ �Q�1
z ðkÞ: ð9:138Þ

The normal Eq. 9.131 of epoch k is

MzðkÞZðkÞ ¼ BzðkÞ; ð9:139Þ

and the Kalman filter solution of Eq. 9.139 is then

~ZðkÞ ¼ ~QzðkÞBzðkÞ; ~QzðkÞ ¼ ðMzðkÞþ �PzðkÞÞ�1: ð9:140Þ

It is notable that the normal equation 9.139 must be computed using the pre-
dicted vector Z(k) of Eq. 9.135.

Repeating the steps from Eqs. 9.133 to 9.140 for the further epoch is a process of
Kalman filtering using velocity information. The algorithm outlined above is
suitable both for the kinematic and static data processing. This is true especially for
static data processing, because the station has not been exactly assumed as fixed (as
described by Eq. 9.133); such an algorithm will modify the property of the strong
dependency on the initial value of the Kalman filter. The forming of normal
Eq. 9.133 is an iterative process (cf. Sect. 5.6), i.e. the velocity information has to
be used for forming the equation. Equation 9.89 represents a realistic system
description.

9.6
Accuracy of the Observational Geometry

Recalling the discussions made in the adjustment of Chap. 7, the precision vector of
the solved vector is usually represented as (cf., e.g., Eq. 7.8)

p½i� ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q[i][i]

p
and ð9:141Þ

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV
m� n

r
; if ðm[ nÞ:
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where i is the element index, m0 is the so-called standard deviation (or sigma),
p[i] is the ith element of the precision vector, Q[i][i] is the ith diagonal element of
the quadratic matrix Q (the inverse of the normal matrix), V is the residual vector,
superscript T is the transpose of the vector, P is the weight matrix, n is the unknown
number, and m is the observation number.

Equation 9.141 is used to describe the precision of the individual parameter of
the unknown vector X. The parameters can be usually classified into several groups
according to their physical properties, e.g., position unknowns and clock
unknowns; in turn the position unknowns can be classified by stations, and the
clock errors can be classified by satellites and receivers, etc. To describe the pre-
cision of a group of unknowns, a so-called mean-squares-root precision can be
defined as

pjJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

XJ
i¼j

p½i�2
vuut ; ð9:142Þ

where j is the first index and J is the last index of the parameters of the discussed
group, and n is the total parameter number of the group. Of course, here we assume
the parameters are ordered in groups. Putting Eq. 9.141 into above, one has

pjJ ¼ m0ffiffiffi
n

p DOP; DOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
i¼j

Q½i�½i�
vuut ; ð9:143Þ

where DOP is the shortening of the Dilution of Precision factor. So we see that the
DOP factor is a very important factor to describe the precision of a group of
parameters that are the same type. Supposing in the unknown vector X[i], i = 1, 2, 3
are coordinate x, y, z of a receiver, and i = 4 is the receiver clock error, then the
Position DOP (PDOP) is defined by j = 1, J = 3 in Eq. 9.143, and the Time DOP
(TDOP) is defined by j = J = 4 in Eq. 9.143. The Geometric DOP (GDOP) is
defined by j = 1, J = 4 in Eq. 9.143 (cf. Hofmann-Wellenhof et al. 1997). For the
case of multiple stations, the definition can be similarly extended.

The PDOP is a factor that indicates the factor of precision of the position. Quite
often, one would prefer to express the position precision in a local coordinate
system, i.e. in horizontal and vertical components. Recalling the relation between
the global and local coordinates (cf. Sect. 2.3), there are

Xlocal ¼ RXglobal; and Xglobal ¼ RTXlocal; ð9:144Þ

where Xlocal and Xglobal are identical vectors represented in local and global coor-
dinate systems. R is the rotation matrix given in Eq. 2.11. According to the
covariance propagation theorem, one has then
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Qlocal ¼ RQglobalR
T; and Qglobal ¼ RTQlocalR; ð9:145Þ

where Qglobal is the sub-matrix of Q, which is related to the coordinates
part. Supposing in the unknown vector Xlocal[i], i = 1, 2, 3 are coordinates of
horizontal x, y, and vertical z of a receiver, then the Horizontal Dilution of Precision
(HDOP) and Vertical Dilution of Precision (VDOP) are defined as

HDOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i¼1

Qlocal½i�½i�
vuut ; and VDOP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼3

Qlocal½i�½i�
vuut : ð9:146Þ

For many stations, the definition can be similarly given.

9.7
Introduction to the Real-Time Positioning System

Nowadays, real-time positioning is a hotspot in the GNSS field. Two of the main
methods for precise real-time positioning, Network RTK (NRTK) and PPP-RTK,
are introduced in this section.

9.7.1
Network RTK

In the traditional RTK a single reference station is used, and the rover station needs
to work within a short range from the reference station because of the distance limit
of radio communication and the spatial decorrelation of distance-dependent errors
caused by the orbital ionosphere and troposphere errors. Thus, the operating area of
RTK positioning is dependent on the atmospheric conditions and is usually limited
to a distance of 10–20 km. Network RTK (NRTK) is a method that can overcome
the restraint of the limited range of classic RTK. The range of each station in
network is usually less than 100 km, and each reference station sends the obser-
vations to a processing centre, where the observations are processed with a network
adjustment and both errors and corrections of observation are computed. Then the
observation corrections are sent to the users through a satellite link or the Internet.
Users in the coverage area of the network can mitigate their observation errors with
these corrections (Mowafy 2012).

The principle of Network RTK begins with all reference stations within the RTK
Network continuously streaming satellite observations to a central server running
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Network RTK software, such as Trimble RTKNet, Leica GNSS Spider, and Geo++.
The aim of Network RTK is to minimise the influence of the distance dependent
errors on the rovers computed position within the bounds of the network. NRTK
usually requires a minimum of three reference stations to generate corrections for
the network area. In general there is no restriction concerning the network size, it
can be regional, national, or even global.

In principle, the RTK network approach consists of four basic steps (cf.
Fig. 9.2): data collection at the reference stations; manipulation of the data and
generation of corrections at the network processing centre; broadcasting the cor-
rections, and finally positioning at the rover using information from the NRTK. In
the first step, multiple reference stations simultaneously collect GNSS satellite
observations and send them to the control centre where ambiguity fixing is per-
formed. Only observations with fixed ambiguities can be used for the precise
modelling of the distance-dependent biases. The rather long distances between each
reference station and the requirement to fix the ambiguities in real-time makes this
step as the main challenge of Network RTK.

Fig. 9.2 Principle of network RTK
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Normally, a NRTK server system would consist of the following components
(Leica Geo. systems 2011):

• A station server managed and connected to each reference station receiver.
• A network server that acquires the data from the station servers and sends it to

the processing centre.
• A cluster server that hosts the network processing software. The software per-

forms several tasks including: quality check of data, apply antenna phase centre
corrections, ambiguity fixing, modelling, and estimation of systematic errors,
interpolation of errors (corrections) in some techniques (e.g., VRS, PRS) and
generation of virtual observations, or model coefficients in other techniques
(e.g., FKP, Mac).

• A firewall is usually established to protect the above servers from being
accessed by a user.

• RTK proxy server to deal with requests from the users and send back network
information.

• The user interface to send/receive data from the NRTK centre.

The most significant advantages of the Network RTK can be summarised as
follows:

• Compared with single reference station RTK, cost and labour are both reduced,
as there is no need to set up a base reference station for each user.

• Accuracy of the computed rover positions are more homogeneous and consis-
tent as error mitigation refers to one processing software, which uses the same
functional and stochastic modelling and assumptions and use the same data.

• Accuracy is maintained over larger distances between the reference stations and
the rover.

• The same area can be covered with fewer reference stations compared to the
number of permanent reference stations required using single reference RTK.
The separation distances between network stations are tens of kilometres,
usually kept less than 100 km.

• NRTK provides higher reliability and availability of RTK corrections with
improved redundancy, such that if one station suffers from malfunctioning a
solution can still be obtained from the rest of the reference stations.

• Network RTK is capable of supporting multiple users and applications.

However, Network RTK has some disadvantages, which are:

• The cost of subscription with a NRTK provider.
• The cost of wireless communication with the network (typically via a wireless

mobile using for example GPRS technology).
• The dependence on an external source to provide essential information.
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9.7.2
PPP-RTK

PPP is limited in accuracy since the ionosphere-free linear combination is currently
mandatory. Accurate ionospheric models are generally not available. Since the
ionosphere-free linear combination is not based on integer coefficients and the state
information currently does not preserve the integer nature of ambiguities, it is not
possible to resolve ambiguities adequately to access the full GNSS carrier phase
accuracy levels. Therefore, long integration or observation times are required for
PPP. The limitations of PPP can be overcome with RTK (Real-Time Kinematic) net-
works using state space modelling. These RTK networks can consistently derive all
individual GNSS errors in real time. The atmospheric GNSS effects are modelled and
state information is also present for ionosphere and troposphere. The complete state
information is ready for distribution to users in real time. So users are capable to resolve
ambiguities and to achieve the knownRTKaccuracy level. This concept of precise point
positioning enabling ambiguity resolution is PPP-RTK (Wübbena et al. 2005).

In a PPP mode, un-differenced observations are used and the satellite related
errors are reduced by using precise satellite clock corrections and employing precise
orbits to avoid the orbital errors. These precise satellite products are normally
provided from a processing centre analysing global data such as the
International GNSS Service (IGS). Since only one receiver is used in PPP, the
ambiguities are solved as part of the unknowns with float numbers and not fixed. As
a result, several minutes of data are needed when processing to achieve a reliable
convergence of the solution. As the ambiguities are solved as float numbers, the
PPP accuracy can only reach at the level of sub-decimetre. However, it is possible
to integrate PPP and NRTK into a seamless positioning service, which can provide
an accuracy of a few centimetres. The concept of PPP-RTK is to augment PPP
estimation with precise un-differenced atmospheric corrections and satellite clock
corrections from a reference network, so that instantaneous ambiguity fixing is
available for users within the network coverage.
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