
Chapter 7

Adjustment and Filtering Methods

7.1
Introduction

In this chapter, we outline the most useful and necessary adjustment and filtering
algorithms for statistical and kinematic as well as dynamic GPS data processing.
We derive the necessary estimators, and provide a detailed discussion of the rela-
tionships between the methods presented.

The adjustment algorithms discussed here include least squares adjustment,
sequential application of least squares adjustment via accumulation, sequential least
squares adjustment, conditional least squares adjustment, a sequential application of
conditional least squares adjustment, block-wise least squares adjustment, a
sequential application of block-wise least squares adjustment, a special application
of block-wise least squares adjustment for code–phase combinations, an equivalent
algorithm to form the eliminated observation equation system, and an algorithm to
diagonalise the normal and equivalent observation equations.

The filtering algorithms discussed here include the classic Kalman filter, the
sequential least squares adjustment method as a special case of Kalman filtering, the
robust Kalman filter, and the adaptively robust Kalman filter.

A priori constrained adjustment and filtering are discussed for solving
rank-deficient problems. After a general discussion on a priori parameter con-
straints, a special case of the so-called a priori datum method is provided.
A quasi-stable datum method is also discussed.

A summary is presented at the end of this chapter, and applications of the GPS
data processing methods discussed are outlined.

7.2
Least Squares Adjustment

The principle of least squares adjustment can be summarised as outlined below
(Gotthardt 1978; Cui et al. 1982):
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1. The linearised observation equation system can be represented by

V ¼ L� AX; P ð7:1Þ

where
L observation vector of dimension m,
A coefficient matrix of dimension m × n,
X unknown parameter vector of dimension n,
V residual vector of dimension m,
n number of unknowns,
m number of observations, and
P symmetric and definite weight matrix of dimension m × m.

2. The least squares criterion for solving the observation equations is well known
as

VTPV ¼ min; ð7:2Þ

where
VT the transpose of the related vector V.

3. To solve X and compute V, a function F is set as

F ¼ VTPV : ð7:3Þ

The function F reaches minimum value if the partial differentiation of F with
respect to X equals zero, i.e.

@F
@X

¼ 2VTPð�AÞ ¼ 0

or

ATPV ¼ 0; ð7:4Þ

where
AT transpose matrix of A.

4. Multiplying ATP with Eq. 7.1, one has

ATPAX � ATPL ¼ �ATPV : ð7:5Þ

Setting Eq. 7.4 into 7.5, one has

ATPAX � ATPL ¼ 0: ð7:6Þ

5. For simplification, let M = ATPA, Q = M−1, where superscript −1 is an inverse
operator, and M is usually called a normal matrix. The least squares solution of
Eq. 7.1 is then
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X ¼ QðATPLÞ: ð7:7Þ

6. The precision of the ith element of the estimated parameter is

p½i� ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i�½i�

p
; ð7:8Þ

where i is the element index of a vector or a matrix, m0 is the so-called standard
deviation (or sigma), p[i] is the ith element of the precision vector, Q[i][i] is the
ith diagonal element of the cofactor matrix Q, and

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV
m� n

r
; if ðm[ nÞ: ð7:9Þ

7. For convenience of sequential computation, VTPV can be calculated by using

VTPV ¼ LTPL� ðATPLÞTX: ð7:10Þ

This can be obtained by substituting Eq. 7.1 into VTPV and considering Eq. 7.4.
Thus far, we have derived the complete formulas of least squares adjustment.

7.2.1
Least Squares Adjustment with Sequential Observation
Groups

Suppose one has two sequential observation equation systems

V1 ¼ L1 � A1X and ð7:11Þ

V2 ¼ L2 � A2X; ð7:12Þ

with weight matrices P1 and P2. These two equation systems are uncorrelated or
independent and have the common unknown vector X. The combined problem can
be represented as

V1

V2

� �
¼ L1

L2

� �
� A1

A2

� �
X and P ¼ P1 0

0 P2

� �
: ð7:13Þ

The least squares normal equation can be formed then as

AT
1 AT

2

� � P1 0
0 P2

� �
A1

A2

� �
X ¼ AT

1 AT
2

� � P1 0
0 P2

� �
L1
L2

� �
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or

ðAT
1P1A1 þAT

2P2A2ÞX ¼ ðAT
1P1L1 þAT

2P2L2Þ: ð7:14Þ

This is indeed the accumulation of the two least squares normal equations
formed from Eqs. 7.11 and 7.12, respectively:

ðAT
1P1A1ÞX ¼ AT

1P1L1 and ð7:15Þ

ðAT
2P2A2ÞX ¼ AT

2P2L2: ð7:16Þ

The solution is then

X ¼ ðAT
1P1A1 þAT

2P2A2Þ�1ðAT
1P1L1 þAT

2P2L2Þ: ð7:17Þ

The precision of the ith element of the estimated parameter is

p½i� ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i�½i�

p
; ð7:18Þ

where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV
m� n

r
; if ðm[ nÞ; and ð7:19Þ

Q ¼ ðAT
1P1A1 þAT

2P2A2Þ�1; ð7:20Þ

where m is the number of total observations and n is the number of unknowns. And
VTPV can be calculated by using

VTPV ¼ VT
1 P1V1 þVT

2 P2V2

¼ LT1P1L1 þ LT2P2L2 � ðAT
1P1L1ÞTX � ðAT

2P2L2ÞTX:
¼ ðLT1P1L1 þ LT2P2L2Þ � ðAT

1P1L1 þAT
2P2L2ÞTX

ð7:21Þ

Equation 7.17 indicates that the sequential least squares problem can be solved
by simply accumulating the normal equations of the observation equations. The
weighted squares residuals can also be computed by accumulating the individual
quadratic forms of the residuals using Eq. 7.21.

For further sequential and independent observation equation systems,

V1 ¼ L1 � A1X; P1; ð7:22Þ

V2 ¼ L2 � A2X; P2; ð7:23Þ
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. . .

Vi ¼ Li � AiX; Pi; ð7:24Þ

the solution can be similarly derived as

X ¼ ðAT
1P1A1 þAT

2P2A2 þ � � � þAT
i PiAiÞ�1ðAT

1P1L1 þAT
2P2L2 þ � � � þAT

i PiLiÞ
ð7:25Þ

and

VTPV ¼ ðLT1P1L1 þ LT2P2L2 þ � � � þ LTi PiLiÞ
� ðAT

1P1L1 þAT
2P2L2 þ � � � þAT

i PiLiÞTX: ð7:26Þ

Obviously, if a solution is needed for every epoch, then the accumulated
equation system must be solved at each epoch. The accumulations must always be
made with the sequential normal equations. Of course, the solutions can be com-
puted after a defined epoch or at the last epoch, which could be very useful if the
solution to the problem is unstable at the beginning.

7.3
Sequential Least Squares Adjustment

Recalling the discussions in Sect. 7.2, one has sequential observation equation
systems

V1 ¼ L1 � A1X; P1 and ð7:27Þ

V2 ¼ L2 � A2X; P2: ð7:28Þ

These two equation systems are uncorrelated. The sequential problem can then be
solved by accumulating the individual normal equations as discussed in Sect. 7.2:

ðAT
1P1A1 þAT

2P2A2ÞX ¼ ðAT
1P1L1 þAT

2P2L2Þ or ð7:29Þ

X ¼ ðAT
1P1A1 þAT

2P2A2Þ�1ðAT
1P1L1 þAT

2P2L2Þ: ð7:30Þ

And VTPV can be calculated by using

VTPV ¼ ðLT1P1L1 þ LT2P2L2Þ � ðAT
1P1L1 þAT

2P2L2ÞTX: ð7:31Þ
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If Eq. 7.27 is solvable, the least squares solution can then be represented as

X ¼ ðAT
1P1A1Þ�1ðAT

1P1L1Þ and ð7:32Þ

VTPV ¼ LT1P1L1 � ðAT
1P1L1ÞTX: ð7:33Þ

For convenience, the estimated vector of X using the first group of observations
is denoted by X1 and the quadratic form of the residuals by (VTPV)1 as well as
Q1 ¼ ðAT

1P1A1Þ�1.
Using the formula (Cui et al. 1982; Gotthardt 1978)

ðDþACBÞ�1 ¼ D�1 � D�1AKBD�1; ð7:34Þ

where A and B are any matrices, C and D are matrices that can be inverted and

K ¼ ðC�1 þBD�1AÞ�1; ð7:35Þ

the inversion of the accumulated normal matrix can be represented as Q:

Q ¼ ðAT
1P1A1 þAT

2P2A2Þ�1

¼ ðAT
1P1A1Þ�1 � ðAT

1P1A1Þ�1AT
2KA2ðAT

1P1A1Þ�1 and

¼ Q1 � Q1A
T
2KA2Q1

¼ ðE � Q1A
T
2KA2ÞQ1

ð7:36Þ

K ¼ ðP�1
2 þA2Q1A

T
2 Þ�1; ð7:37Þ

where E is an identity matrix. The total term in the parentheses on the right-hand
side of Eq. 7.36 can be interpreted as a modifying factor for Q1 matrix; in other
words, due to the sequential Eq. 7.28, the Q matrix can be computed by multi-
plying a factor to the Q1 matrix. Thus the sequential least squares solution of
Eqs. 7.27 and 7.28 can be obtained:

X ¼ ðQ1 � Q1A
T
2KA2Q1ÞðAT

1P1L1 þAT
2P2L2Þ:

¼ ðE � Q1A
T
2KA2ÞX1 þQðAT

2P2L2Þ
ð7:38Þ

Mathematically, the solutions to the sequential problem of Eqs. 7.27 and 7.28
will be the same regardless of whether they are solved using accumulation of the
least squares, as discussed in Sect. 7.2.1, or using sequential adjustment, as dis-
cussed above. However, in practice, the accuracy of the computation is always
limited by the effective digits of the computer being used. Such limitations cause
inaccuracy in numerical computation, and this inaccuracy will be accumulated and
propagated in further computing processes. By comparing the results obtained with
the above-mentioned methods, we note that the sequential method will produce a
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drift in the results. This drift will increase with time and will generally become
non-negligible after a long time interval.

7.4
Conditional Least Squares Adjustment

The principle of least squares adjustment with condition equations can be sum-
marised as follows (Gotthardt 1978; Cui et al. 1982):

1. The linearised observation equation system can be represented by Eq. 7.1
(cf. Sect. 7.2).

2. The corresponding condition equation system can be written as

CX �W ¼ 0; ð7:39Þ

where
C coefficient matrix of dimension r × n,
W constant vector of dimension r, and
r number of conditions.

3. The least squares criterion for solving the observation equations with condition
equations is well known as

VTPV ¼ min; ð7:40Þ

where VT is the transpose of the related vector V.
4. To solve X and compute V, a function F can be formed as

F ¼ VTPV þ 2KTðCX �WÞ; ð7:41Þ

where K is a gain vector (of dimension r) to be determined.
The function F reaches minimum value if the partial differentiation of F with
respect to X equals zero, i.e.

@F
@X

¼ 2VTPð�AÞþ 2KTC ¼ 0;

then one has

�ATPV þCTK ¼ 0 ð7:42Þ

or

ATPAXþCTK � ATPL ¼ 0; ð7:43Þ

where AT, CT are transposed matrices of A and C, respectively.
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5. Combining Eqs. 7.43 and 7.39, one has

ATPAXþCTK � ATPL ¼ 0 and ð7:44Þ

CX �W ¼ 0: ð7:45Þ

6. For simplification, let M = ATPA, W1 = ATPL, Q = M−1, where superscript −1 is
an inverse operator. The solutions of Eqs. 7.44 and 7.45 are then

K ¼ ðCQCTÞ�1ðCQW1 �WÞ;
X ¼ �QðCTK �W1Þ

ð7:46Þ

or

X ¼ ðATPAÞ�1ðATPLÞ � ðATPAÞ�1CTK:

¼ ðATPAÞ�1ðATPL� CTKÞ
ð7:47Þ

7. The precision of the solutions is then

p½i� ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qc½i�½i�

p
; ð7:48Þ

where i is the element index of a vector or a matrix, ffip is the square root
operator, m0 is the so-called standard deviation (or sigma), p[i] is the ith element
of the precision vector, Qc[i][i] is the ith diagonal element of the quadratic
matrix Qc, and

Qc ¼ Q� QCTQ2CQ; ð7:49Þ

Q2 ¼ ðCQCTÞ�1 and ð7:50Þ

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VTPV

m� nþ r

s
; if ðm[ n� rÞ: ð7:51Þ

8. For convenience of sequential computation, VTPV can be calculated using

VTPV ¼ LTPL� ðATPLÞTX �WTK: ð7:52Þ

This can be obtained by substituting Eq. 7.1 into VTPV and using the relations
of Eqs. 7.39 and 7.42.
Thus far, we have derived the complete formulas of conditional least squares
adjustment.
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7.4.1
Sequential Application of Conditional Least Squares
Adjustment

Recalling the least squares adjustment discussed in Sect. 7.2, the linearised
observation equation system

V ¼ L� AX; P ð7:53Þ

has the solution

X ¼ ðATPAÞ�1ðATPLÞ: ð7:54Þ

The precision of the solutions can be obtained by

p½i� ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i�½i�

p
; ð7:55Þ

where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV
m� n

r
; if ðm[ nÞ; ð7:56Þ

and VTPV can be calculated by using

VTPV ¼ LTPL� ðATPLÞTX: ð7:57Þ

For convenience, the least squares solution vector is denoted by X0 and weighted
residuals square by (VTPV)0.

Similarly, in the conditional least squares adjustment discussed in Sect. 7.4, the
linearised observation equation system and conditional equations read

V ¼ L� AX and ð7:58Þ

CX �W ¼ 0; ð7:59Þ

the solution follows

X ¼ ðATPAÞ�1ðATPL� CTKÞ; ð7:60Þ

where K is the gain, and

K ¼ ðCQCTÞ�1ðCQW1 �WÞ: ð7:61Þ
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The precision vector of the solution vector can be obtained by using Eqs. 7.48–
7.52. Using the notations obtained in least squares solution, one has

X ¼ X0 � QCTK ð7:62Þ

and

VTPV ¼ ðVTPVÞ0 þðATPLÞTQCTK �WTK: ð7:63Þ

Equation 7.62 indicates that the conditional least squares problem can be solved
first without the conditions, and then through the gain K to compute a modification
term. The change of the solution is caused by the conditions. For computing the
weighted squares of the residuals, Eq. 7.63 can be used (by adding two modifi-
cation terms to the weighted squares of residuals of the least squares solution). This
property is very important for many practical applications such as ambiguity fixing
or coordinates fixing. For example, after the least squares solution and fixing the
ambiguity values, one needs to compute the ambiguity fixed solution. Of course,
one can put the fixed ambiguities as known parameters and go back to solve the
problem once again. However, using the above formulas, one can use the fixed
ambiguities as conditions to compute the gain and the modification terms to get the
ambiguity fixed solution directly. Similarly, this property can be also used for
solutions with some fixed station coordinates.

7.5
Block-Wise Least Squares Adjustment

The principle of block-wise least squares adjustment can be summarised as follows
(Gotthardt 1978; Cui et al. 1982):

1. The linearised observation equation system can be represented by Eq. 7.1
(cf. Sect. 7.2).

2. The unknown vector X and observable vector L are rewritten as two
sub-vectors:

V1

V2

� �
¼ L1

L2

� �
� A11 A12

A21 A22

� �
X1

X2

� �
and P ¼ P1 0

0 P2

� �
: ð7:64Þ

The least squares normal equation can then be formed as

A11 A12

A21 A22

� �T
P1 0
0 P2

� �
A11 A12

A21 A22

� �
X1

X2

� �

¼ A11 A12

A21 A22

� �T
P1 0
0 P2

� �
L1
L2

� �
: ð7:65Þ
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The normal equation can be denoted by

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
ð7:66Þ

or

M11X1 þM12X2 ¼ B1 and ð7:67Þ

M21X1 þM22X2 ¼ B2; ð7:68Þ

where

M11 ¼ AT
11P1A11 þAT

21P2A21; ð7:69Þ

M12 ¼ MT
21 ¼ AT

11P1A12 þAT
21P2A22; ð7:70Þ

M22 ¼ AT
12P1A12 þAT

22P2A22; ð7:71Þ

B1 ¼ AT
11P1L1 þAT

21P2L2 and ð7:72Þ

B2 ¼ AT
12P1L1 þAT

22P2L2: ð7:73Þ

3. Normal Eqs. 7.67 and 7.68 can be solved as follows: from Eq. 7.67, one has

X1 ¼ M�1
11 ðB1 �M12X2Þ: ð7:74Þ

Substituting X1 into Eq. 7.68, one gets a normal equation related to the second
block of unknowns:

M2X2 ¼ R2; ð7:75Þ

where

M2 ¼ M22 �M21M
�1
11 M12 and ð7:76Þ

R2 ¼ B2 �M21M�1
11 B1: ð7:77Þ

The solution of Eq. 7.75 is then

X2 ¼ M�1
2 R2: ð7:78Þ

From Eqs. 7.78 and 7.74, the block-wise least squares solution of Eqs. 7.1 and
7.64 can be computed. For estimating the precision of the solved vector, one has
(see discussion in Sect. 7.2):
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p½i� ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffi
Q½i�½i�

p
ð7:79Þ

where

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VTPV
m� n

r
; if ðm[ nÞ: ð7:80Þ

Q is the inversion of the total normal matrix M. m is the number of total obser-
vations, and n is the number of unknowns.

Furthermore,

Q ¼ M11 M12

M21 M22

� ��1

¼ Q11 Q12

Q21 Q22

� �
is denoted; ð7:81Þ

where (Gotthardt 1978; Cui et al. 1982)

Q11 ¼ ðM11 �M12M
�1
22 M21Þ�1; ð7:82Þ

Q22 ¼ ðM22 �M21M
�1
11 M12Þ�1; ð7:83Þ

Q12 ¼ M�1
11 ð�M12Q22Þ; and ð7:84Þ

Q21 ¼ M�1
22 ð�M21Q11Þ: ð7:85Þ

And VTPV can be calculated by using

VTPV ¼ LTPL� ðATPLÞTX: ð7:86Þ

One finds very important applications in GPS data processing by separating the
unknowns into two groups, which will be discussed in the next sub-section.

7.5.1
Sequential Solution of Block-Wise Least Squares Adjustment

Suppose one has two sequential observation equation systems

Vt1 ¼ Lt1 � At1Yt1 and ð7:87Þ

Vt2 ¼ Lt2 � At2Yt2; ð7:88Þ
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with weight matrices Pt1 and Pt2. The unknown vector Y can be separated into two
sub-vectors; one is sequence-dependent and the other is time-independent. Let us
assume

Yt1 ¼ Xt1

X2

� �
and Yt2 ¼ Xt2

X2

� �
; ð7:89Þ

where X2 is the common unknown vector, and Xt1 and Xt2 are sequential (time)
independent unknowns (i.e. they are different from each other).

Equations 7.87 and 7.88 can be solved separately using the block-wise least
squares method, as follows (cf. Sect. 7.5):

Xt1 ¼ ðM11Þ�1
t1 ðB1 �M12X2Þt1; ð7:90Þ

ðM2Þt1X2 ¼ ðR2Þt1 and ð7:91Þ

X2 ¼ ðM2Þ�1
t1 ðR2Þt1; ð7:92Þ

and

Xt2 ¼ ðM11Þ�1
t2 ðB1 �M12X2Þt2; ð7:93Þ

ðM2Þt2X2 ¼ ðR2Þt2 and ð7:94Þ

X2 ¼ ðM2Þ�1
t2 ðR2Þt2; ð7:95Þ

where indices t1 and t2 outside of the parenthesis indicate that the matrices and
vectors are related to Eqs. 7.87 and 7.88, respectively.

The combined solution of Eqs. 7.87 and 7.88 then can be derived as

Xt1 ¼ ðM11Þ�1
t1 ððB1Þt1 � ðM12Þt1ðX2ÞtaÞ; ð7:96Þ

Xt2 ¼ ðM11Þ�1
t2 ððB1Þt2 � ðM12Þt2ðX2ÞtaÞ; ð7:97Þ

ððM2Þt1 þðM2Þt2ÞðX2Þta ¼ ðR2Þt1 þðR2Þt2 and ð7:98Þ

ðX2Þta ¼ ððM2Þt1 þðM2Þt2Þ�1ððR2Þt1 þðR2Þt2Þ; ð7:99Þ

where index ta means that the solution is related to all equations. The normal
equations related to the common unknowns are accumulated and solved for. The
solved common unknowns are used for computing sequentially different unknowns.

In the case of many sequential observations, a combined solution could be
difficult or even impossible because of the large number of unknowns and the
requirement of the computing capacities. Therefore, a sequential solution could be a
good alternative. For the sequential observation equations
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Vt1 ¼ Lt1 � At1Yt1; Pt1; ð7:100Þ

Vti ¼ Lti � AtiYti; Pti; ð7:101Þ

the sequential solutions are

Xt1 ¼ ðM11Þ�1
t1 ðB1 �M12X2Þt1; ð7:102Þ

ðM2Þt1X2 ¼ ðR2Þt1; ð7:103Þ

X2 ¼ ðM2Þ�1
t1 ðR2Þt1; ð7:104Þ

Xti ¼ ðM11Þ�1
ti ððB1Þti � ðM12ÞtiX2Þ; ð7:105Þ

ððM2Þt1 þ � � � þ ðM2ÞtiÞX2 ¼ ðR2Þt1 þ � � � þ ðR2Þti; and ð7:106Þ

X2 ¼ ððM2Þt1 þ � � � þ ðM2ÞtiÞ�1ððR2Þt1 þ � � � þ ðR2ÞtiÞ: ð7:107Þ

It is notable that the sequential solution of the second unknown sub-vector X2 is
exactly the same as the combined solution at the last step. The only difference
between the combined solution and the sequential solution is that the X2 used are
different. In the sequential solution, only the up-to-date X2 is used. Therefore, at end
of the sequential solution (Eq. 7.107), the last obtained X2 has to be substituted into
all Xtj computing formulas, where j < i. This can be done in two ways. The first way
is to remember all formulas for computing Xtj, after X2 is obtained from Eq. 7.107,
using X2 to compute Xtj. The second way is to go back to the beginning after the X2

is obtained, and use X2 as the known vector to solve Xtj once again. In these ways,
the combined sequential observation equations can be solved exactly in a sequential
way.

7.5.2
Block-Wise Least Squares for Code–Phase Combination

Recalling the block-wise observation equations discussed in Sect. 7.5, one has

V1

V2

� �
¼ L1

L2

� �
� A11 A12

A21 A22

� �
X1

X2

� �
and P ¼ P1 0

0 P2

� �
: ð7:108Þ

Such an observation equation can be used for solving the problem of code-phase
combination. Supposing L1 and L2 are phase and code observation vectors,
respectively, and they have the same dimensions, then X2 is a sub-vector that only
exists in phase observation equations. Then one has A22 = 0, and A11 = A21, as well
as P1 = wpP0, P2 = wcP0, where P0 is the weight matrix, and wp and wc are weight
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factors of phase and code observables. In order to keep the coefficient matrices
A11 = A21, the observable vectors L1 and L2 must be carefully scaled.
Equation 7.108 can be rewritten as

V1

V2

 !
¼ L1

L2

 !
� A11 A12

A11 0

� �
X1

X2

� �
and P ¼ wpP0 0

0 wcP0

� �
:

ð7:109Þ

The least squares normal equation can then be formed as

A11 A12

A11 0

� �T wPP0 0

0 wcP0

� �
A11 A12

A11 0

� �
X1

X2

� �

¼ A11 A12

A11 0

� �T wPP0 0

0 wcP0

� � L1

L2

 !
:

ð7:110Þ

The normal equation can be denoted by

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
; ð7:111Þ

where

M11 ¼ ðwp þwcÞAT
11P0A11; ð7:112Þ

M12 ¼ MT
21 ¼ wpA

T
11P0A12; ð7:113Þ

M22 ¼ wpA
T
12P0A12; ð7:114Þ

B1 ¼ AT
11P0ðwpL1 þwcL2Þ; and ð7:115Þ

B2 ¼ wpA
T
12P0L1: ð7:116Þ

Normal Eq. 7.111 can be solved using the general formulas derived in Sects. 7.2
and 7.5.

7.6
Zhou’s Theory: Equivalently Eliminated Observation
Equation System

In least squares adjustment, the unknowns can be divided into two groups and then
solved in a block-wise manner, as discussed in Sect. 7.5. In practice, sometimes
only one group of unknowns is of interest, and it is better to eliminate the other
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group of unknowns (called nuisance parameters) because of its size, for example. In
this case, using the so-called equivalently eliminated observation equation system
could be very beneficial (Wang et al. 1988; Xu and Qian 1986; Zhou 1985). The
nuisance parameters can be eliminated directly from the observation equations
instead of from the normal equations.

The linearised observation equation system can be represented by

V ¼ L� A Bð Þ X1

X2

� �
; P: ð7:117Þ

where
L observation vector of dimension m,
A, B coefficient matrices of dimension m × (n − r) and m × r,
X1, X2 unknown vectors of dimension n–r and r,
V residual vector of dimension m,
n number of total unknowns,
m number of observations, and
P symmetric and definite weight matrix, of dimension m × m.

The least squares normal equation can then be formed by

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
; ð7:118Þ

where

M11 M12

M21 M22

� �
¼ ATPA ATPB

BTPA BTPB

� �
; ð7:119Þ

B1 ¼ ATPL ; B2 ¼ BTPL: ð7:120Þ

The elimination matrix

E 0
�Z E

� �
is formed, ð7:121Þ

where E is the identity matrix, 0 is a zero matrix, and Z = M21M
–
1
1
1. M

–
1
1
1 is the

inversion of M11. Multiplying the elimination matrix Eq. 7.121 to the normal
Eq. 7.118 one has

E 0
�Z E

� �
M11 M12

M21 M22

� �
X1

X2

� �
¼ E 0

�Z E

� �
B1

B2

� �
;
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or

M11 M12

0 M2

� �
X1

X2

� �
¼ B1

R2

� �
ð7:122Þ

where

M2 ¼ �M21M
�1
11 M12 þM22

¼ BTPB� BTPAM�1
11 A

TPB ¼ BTPðE � AM�1
11 A

TPÞB: ð7:123Þ

R2 ¼ B2 �M21M
�1
11 B1 ¼ BTPðE � AM�1

11 A
TPÞL: ð7:124Þ

If we are interested only in the unknown vector X2, then only the second
equation of Eq. 7.122 needs to be solved. The solution is identical to that obtained
by solving all of Eq. 7.122. The above elimination process is similar to the
Gauss-Jordan algorithm, which has often been used for the inversion of the normal
matrix (or for solving linear equation systems). Indeed, the second equation of
Eq. 7.122 is identical to Eq. 7.75 derived in the block-wise least squares adjustment
(cf. Section 7.5).

Letting

J ¼ AM�1
11 A

TP; ð7:125Þ

one has properties of

J2 ¼ ðAM�1
11 A

TPÞðAM�1
11 A

TPÞ ¼ AM�1
11 A

TPAM�1
11 A

TP ¼ AM�1
11 A

TP ¼ J;

ðE � JÞðE � JÞ ¼ E2 � 2EJþ J2 ¼ E � 2Jþ J ¼ E � J and

PðE � JÞ½ �T¼ ðE � JTÞP ¼ P� ðAM�1
11 A

TPÞTP ¼ P� PAM�1
11 A

TP ¼ PðE � JÞ;

i.e. matrices J and (E–J) are idempotent and (E–J)TP is symmetric, or

J2 ¼ J; ðE � JÞ2 ¼ E � J and ðE � JÞTP ¼ PðE � JÞ: ð7:126Þ

Using the above derived properties, M2 in Eq. 7.123 and R2 in Eq. 7.124 can be
rewritten as

M2 ¼ BTPðE � JÞB ¼ BTPðE � JÞðE � JÞB ¼ BTðE � JÞTPðE � JÞB and

ð7:127Þ

R2 ¼ BTPðE � JÞL ¼ BTðE � JÞTPL: ð7:128Þ

7.6 � Zhou’s Theory: Equivalently Eliminated Observation Equation System 203



Denoting

D2 ¼ ðE � JÞB; ð7:129Þ

then the eliminated normal equation (the second equation of Eq. 7.122) can be
rewritten as

BTðE � JÞTPðE � JÞBX2 ¼ BTðE � JÞTPL or ð7:130Þ

DT
2PD2X2 ¼ DT

2PL: ð7:131Þ

This is the least squares normal equation of the following linear observation
equation:

U2 ¼ L� D2X2; P ð7:132Þ

or

U2 ¼ L� ðE � JÞBX2; P; ð7:133Þ

where L and P are the original observation vector and weight matrix, and U2 is the
residual vector, which has the same property as V in Eq. 7.117.

The advantage in using Eq. 7.133 is that the unknown vector X1 has been
eliminated; however, L vector and P matrix remain the same as the originals.
Applications of this theory can be found in Sect. 6.8, 8.3, and 9.2. The theory was
proposed by Jiangwen Zhou in 1985.

7.6.1
Zhou–Xu’s Theory: Diagonalised Normal Equation and the
Equivalent Observation Equation

In least squares adjustment, the unknowns can be divided into two groups. One
group of unknowns can be eliminated by matrix partitioning to obtain an equiva-
lently eliminated normal equation system of the other group of unknowns. Using
the elimination process twice for the two groups of unknowns respectively, the
normal equation can be diagonalised. The algorithm can be outlined as follows.

A linearised observation equation and the normal equations can be represented
by Eqs. 7.117 and 7.118. From the first equation of 7.118, one has

X1 ¼ M�1
11 ðB1 �M12X2Þ: ð7:134Þ
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Setting X1 into the second equation of 7.118, one gets an equivalently eliminated
normal equation of X2:

M2X2 ¼ R2; ð7:135Þ

where

M2 ¼ M22 �M21M
�1
11 M12:

R2 ¼ B2 �M21M�1
11 B1

ð7:136Þ

Similarly, from the second equation of 7.118, one has

X2 ¼ M�1
22 ðB2 �M21X1Þ: ð7:137Þ

Setting X2 into the first equation of 7.118, one gets an equivalently eliminated
normal equation of X1:

M1X1 ¼ R1; ð7:138Þ

where

M1 ¼ M11 �M12M
�1
22 M21:

R1 ¼ B1 �M12M
�1
22 B2

ð7:139Þ

Combining Eqs. 7.138 and 7.135, one has

M1 0
0 M2

� �
X1

X2

� �
¼ R1

R2

� �
; ð7:140Þ

where (cf., e.g., Cui et al. 1982; Gotthardt 1978)

Q11 ¼ M�1
1 ; Q22 ¼ M�1

2
Q12 ¼ �M�1

11 ðM12Q22Þ; Q21 ¼ �M�1
22 ðM21Q11Þ : ð7:141Þ

It is obvious that Eqs. 7.118 and 7.140 are two equivalent normal equations. The
solutions of the both equations are identical. Equation 7.140 is a diagonalised
normal equation related to X1 and X2. The process of forming Eq. 7.140 from
Eq. 7.118 is called the diagonalisation process of a normal equation.

As discussed in Sect. 7.6, the equivalently eliminated observation equation of
the second equation of Eq. 7.140 is Eq. 7.133. Similarly, if

I ¼ BM�1
22 B

TP and

D1 ¼ ðE � IÞA;
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then the equivalently eliminated observation equation of the first normal equation of
Eq. 7.140 has the form

U1 ¼ L� ðE � IÞAX1; P;

where U1 is a residual vector that has the same property as V in Eq. 7.117. L and
P are the original observation vector and weight matrix.

The above equation and Eq. 7.133 can be written together as

U1

U2

� �
¼ L

L

� �
� D1 0

0 D2

� �
X1

X2

� �
;

P 0
0 P

� �
: ð7:142Þ

Equation 7.142 is derived from the normal Eq. 7.140; therefore, it is true
inversely, i.e. Equation 7.140 is the least squares normal equation of the observa-
tion Eq. 7.142. Equations 7.118 and 7.140 are normal equations of the observation
Eqs. 7.117 and 7.142. Thus, Eq. 7.142 is an equivalent observation equation of
Eq. 7.117. Equations 7.140 and 7.142 are called diagonalised equations of 7.118
and 7.117, respectively. This diagonalised normal equation and the equivalent
observation equation could be called Zhou–Xu diagonalisation and equivalent
theory (Xu 2003).

7.7
Kalman Filter

7.7.1
Classic Kalman Filter

The principle of the classical Kalman filter can be summarised as follows (Yang
et al. 1999):

The linearised observation equation system can be represented by

Vi ¼ Li � AiXi; Pi; ð7:143Þ

where
L observation vector of dimension m,
A coefficient matrix of dimension m × n,
X unknown vector of dimension n,
V residual vector of dimension m,
n number of unknowns,
m number of observations,
i sequential index, i = 1,2,3,…, and
Pi weight matrix of index i.
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Suppose the system equations are known and can be presented as

Ui ¼ Xi � Fi;i�1Xi�1; i ¼ 2; 3; . . .; ð7:144Þ

where
F transition matrix of dimension n × n, and
U residual vector of dimension n.

U and V are uncorrelated and have zero expectations. Using the covariance prop-
agation law, one has from Eq. 7.144

QðXiÞ ¼ Fi;i�1QðXi�1ÞðFi;i�1ÞT þQU : ð7:145Þ

The normal Eq. 7.143 can be formed as

MiXi ¼ Bi: ð7:146Þ

For the initial step or epoch, i.e. i = 1, Eq. 7.146 has the solution under the least
squares principle

~Xi ¼ QiBi; where Qi ¼ M�1
i ; ð7:147Þ

and here one will assume

~Qi ¼ Qi; ð7:148Þ

where ~Xi and ~Qi are called estimated values. Using the estimated values and
transition matrix, one can predict the unknown values and covariance matrix of the
next epoch (say i = 2):

Xi ¼ Fi;i�1~Xi�1 and ð7:149Þ

Q
i
¼ Fi;i�1 ~Qi�1ðFi;i�1ÞT þQU ; ð7:150Þ

where Xi and Qi are called predicted values (vector and matrix). Then estimated
values of this epoch can be calculated by

~Xi ¼ X i þKðLi � AiX iÞ; ð7:151Þ
~Qi ¼ ðE � KAiÞQi

; and ð7:152Þ

K ¼ Q
i
AT
i ðAiQ i

AT
i þQV Þ�1; ð7:153Þ

where K is the gain matrix.
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For the next sequential step i, the predicted values must be computed by using
Eqs. 7.149 and 7.150, and the estimated values can be computed by using
Eqs. 7.151 and 7.152. This iterative process is called Kalman filtering.

In classical Kalman filtering, it is assumed that for the problem of Eq. 7.143
there exists a system transition matrix Fi,i−1 in Eq. 7.144 and the cofactor QU.
Therefore, the estimated values in the Kalman filter process are dependent on Fi,i−1

and QU. The transition matrix will be based on strengthened physical models, and
the cofactor will be well known or reasonably given. If the system description is
accurate enough, of course Kalman filtering will lead to a more precise solution.
However, if the system is not sufficiently well known, the results of Kalman filter
will sometimes not converge to the true values (divergence). Furthermore, a
kinematic process is generally difficult to be precisely represented by theoretical
system equations. However, for a dynamic process (such as onboard GPS for
satellite to satellite tracking or orbit determination) the system equation can be well
formulated (by an orbital equation of motion). Another problem of Kalman filtering
is the strong dependency of the given initial values. Many studies have been made
in this area to overcome the above-mentioned shortages.

7.7.2
Kalman Filter: A General Form of Sequential Least Squares
Adjustment

The sequential least squares problem is a special case of the classic Kalman filter. If
one lets

Fi;i�1 ¼ E; ð7:154Þ

then the system Eq. 7.144 in Sect. 7.7.1 turns out to be

Xi ¼ Xi�1; U ¼ 0 and QU ¼ 0: ð7:155Þ

The Kalman filter process is then as follows, for the initial step or epoch, i.e. i = 1,
Eq. 7.27 in Sect. 7.3 has the solution under the least squares principle:

~Xi ¼ QiBi;Qi ¼ M�1
i ; ð7:156Þ

with

~Qi ¼ Qi; ð7:157Þ

where ~Xi and ~Qi are called estimated values. The predicted unknown values and
covariance matrix of the next epoch (say i = 2) of Eqs. 7.149 and 7.150 in
Sect. 7.7.1 are then
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X i ¼ ~Xi�1 and ð7:158Þ

Q
i
¼ ~Qi�1: ð7:159Þ

The estimated values of Eqs. 7.151, 7.152 and 7.153 in Sect. 7.7.1 can be
simplified as

~Xi ¼ ~Xi�1 þGðLi � Ai~Xi�1Þ; ð7:160Þ
~Qi ¼ ðE � GAiÞ~Qi�1; and ð7:161Þ

G ¼ ~Qi�1A
T
i ðAi ~Qi�1A

T
i þQVÞ�1; ð7:162Þ

where G denotes the gain matrix. If one notices that QV = (Pi)
−1 and applies the

formula of Bennet (Cui et al. 1982; Koch 1986), one has

~Qi�1A
T
i ðAi ~Qi�1A

T
i þQV Þ�1 ¼ ~Qi�1A

T
i Pi: ð7:163Þ

Equation 7.160 can then be rewritten as

~Xi ¼ ðE � GAiÞ~Xi�1 þGLi:

¼ ðE � GAiÞ~Xi�1 þ ~QiAT
i PiLi

ð7:164Þ

Comparing the derived Eqs. 7.161 and 7.164 with the Eqs. 7.36 and 7.38
derived in Sect. 7.3, one can easily determine that they are identical. Therefore, the
sequential least squares adjustment is a special case of Kalman filtering.

7.7.3
Robust Kalman Filter

The classical Kalman filter is suitable for real-time applications. The chief problem
in Kalman filtering is the divergence caused by the inexact descriptions of system
equations and its statistical properties, as well as the divergence caused by data with
inhomogeneous precision.

Efforts have been made to modify the performance of Kalman filtering. In the
classical Kalman filter, the weight matrix P of the observables is static, i.e. P is
assumed to be a definite matrix. Taking the residuals of Kalman filtering into
account, one may adjust the weight P of the observables accordingly. This process
is called robust Kalman filtering (Koch and Yang 1998a, b; Yang 1999).

Generally, observations are either accepted or rejected in least squares adjust-
ment and the classical Kalman filter. In other words, the weight is either set as 1

7.7 � Kalman Filter 209



(accepted) or zero (rejected). In the robust Kalman filter, a continuous weight
between 1 and zero is introduced.

Originally, one has P = (QV)
−1, the adjusted P is denoted by P; then the

Eq. 7.153 in the classical Kalman filter can be rewritten as

K ¼ Q
i
AT
i ðAiQ i

AT
i þ �P�1

i Þ�1: ð7:165Þ

In the case of independent observations, Pi is a diagonal matrix. Taking the
residuals into account, Pi may be adjusted as (Huber 1964; Yang et al. 2000)

�PiðkÞ ¼
PiðkÞ

PiðkÞ c
ViðkÞ=rij j

�
; if

ViðkÞ=rij j � c
ViðkÞ=rij j[ c

; ð7:166Þ

where Vi(k) is the kth element of the vector V, Pi(k) is the diagonal element of
matrix Pi, and c is a constant, which is usually chosen as 1.3–2.0 (Yang et al.
2000). Vi is the residual of the observation Li, σi is the standard deviation of the
ith epoch, and Pi = 1/σi. In this way, the weight of the observation Li is adjusted
due to the related residual.

If the observations are correlated with each other, the weight matrix may be
given by (Yang et al. 2000)

�Pkj ¼
Pkj

Pkj
c

maxf ViðkÞ=rij j; ViðjÞ=rij jg

�
; if

ViðkÞ=rij j � c and ViðjÞ=rij j � c
ViðkÞ=rij j[ c or ViðjÞ=rij j[ c

:

ð7:167Þ

It is obvious that an adjusted weight matrix can better reflect the different data
quality and can better fit the reality of the observations.

Usually the outlier will be rejected if the absolute value of the residual is greater
than eσi, i.e. |Vi| > eσi, where e is a constant, e may be selected as 3–4, σi is the
standard deviation, and i is the iterative calculation index. That is, P–i = 0 if
|Vi/σi| ≥ e. Setting |Vi/σi| = e into Eq. 7.166 one gets Pi ¼ ðc=eÞPi. In other words,
the weight definitions of Eqs. 7.166 and 7.167 are not continuous at point e.
A modification (Xu 2003) of Eq. 7.166 can be made by defining

�PiðkÞ ¼
piðkÞ
y1PiðkÞ
y2PiðkÞ

0

8>><
>>: ; if

jViðkÞ=rij � c
c\jViðkÞ=rij � d
d\jViðkÞ=rij � e
jViðkÞ=rij � e

8>><
>>: ; ð7:168Þ

where

y1 ¼ 1� 1� b

ðd � cÞ2
ViðkÞ
ri

����
����� c

� �2

and ð7:169Þ
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y2 ¼ b

ðe� dÞ2 e� ViðkÞ
ri

����
����

� �2

; ð7:170Þ

where b is the value of y1 if |Vi(k)/σi| = d. c, d, e are constants, and 0 < c<d < e. For
simplification, if one lets b = (e–d)/(e–c), then one has 1 − b = (d − c)/(e − c).
One may let d = (e + c)/2 for further simplification and have

y1 ¼ 1� 2

ðe� cÞ2
ViðkÞ
ri

����
����� c

� �2

and

y2 ¼ 2

ðe� cÞ2 e� ViðkÞ
ri

����
����

� �2

:

By selecting c = 1, e = 3, and using the above assumptions, the weight functions
of Eqs. 7.166 and 7.168 are shown in Fig. 7.1 with broken and continuous lines. It
is obvious that Eq. 7.168 is a more reasonable weight function, which may make
the Kalman filter more robust.

Similar determinations can be made similarly for correlated cases. Denoting
|Vi(k)/σi| as v(k), a modification of Eq. 7.167 can be rewritten as (Xu 2007)

�Piðk; jÞ ¼
piðk; jÞ
z1Piðk; jÞ
z2Piðk; jÞ

0

8>><
>>: ; if

maxfvðkÞ; vðjÞg� c
c\maxfvðkÞ; vðjÞg� d
d\maxfvðkÞ; vðjÞg� e
maxfvðkÞ; vðjÞg[ e

8>><
>>: ; ð7:171Þ

where

z1 ¼ 1� 1� b

ðd � cÞ2 ðmaxfvðkÞ; vðjÞg � cÞ2 and ð7:172Þ

Fig. 7.1 Weight functions
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z2 ¼ b

ðe� dÞ2 ðe�maxfvðkÞ; vðjÞgÞ2; ð7:173Þ

where b is the value of z1 if max{v(k), v(j)} = d. For simplification, if one lets
b = (e − d)/(e − c), then one has 1 − b = (d − c)/(e − c). Further if one lets
d = (e − c)/2, then one has

z1 ¼ 1� 2

ðe� cÞ2 ðmaxfvðkÞ; vðjÞg � cÞ2 and

z2 ¼ 2

ðe� cÞ2 ðe�maxfvðkÞ; vðjÞgÞ2:

7.7.4
Yang’s Filter: Adaptively Robust Kalman Filtering

The reliability of the linear filtering results, however, will degrade when the noise of
the kinematic model is not accurately modelled in filtering or the measurement
noise at any measurement epoch is not normally distributed. In this section, we
introduce a new adaptively robust filtering technique proposed by Yang et al.
(2001a, b) based on the robust M (maximum likelihood type) estimation. It consists
in weighting the influence of the updated parameters in accordance with the
magnitude of the discrepancy between the updated parameters and the robust
estimates obtained from the kinematic measurements, and in weighting individual
measurements at each discrete epoch. The new procedure is different from func-
tional model error compensation; it changes the covariance matrix or, equivalently,
changes the weight matrix of the predicted parameters to cover the model errors.
A general estimator for an adaptively robust filter is presented, which includes the
estimators of the classical Kalman filter, adaptive Kalman filter, robust filter,
sequential least squares (LS) adjustment, and robust sequential adjustment. The
procedure not only resists the influence of outlying kinematic model errors, but also
controls the effects of measurement outliers. In addition to the robustising prop-
erties, feasibility in implementation of the new filter is achieved through the
equivalent weights of the measurements and the predicted state parameters.

Applications of the Kalman filter in dynamic or kinematic positioning have
sometimes encountered difficulties, which have been referred to as divergences.
These divergences can often be traced to three factors: (1) insufficient accuracy in
modelling the dynamics or kinematics (functional model errors of the state equa-
tions); (2) insufficient accuracy in modelling the observations (functional model
errors of observation equations); and (3) insufficient accuracy in modelling the
distributions or the priori covariance matrices of the measurements and the updated
parameters (stochastic model errors).
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The current basic procedure for the quality control of a Kalman filter consists of
the following:

• Functional model compensation for model errors by introducing uncertain
parameters into the state and/or the observation equations. Any model error term
can be arbitrarily introduced into the models, and the state can then be aug-
mented (Jazwinski 1970, p. 308). A similar approach was developed by
Schaffrin (1991, pp. 32–34). Here, the state vector is partitioned into h groups,
each affected by a common scale error, and h × 1 vectors of scale parameters
are then introduced into the models. This type of approach may, of course, lead
to a high-dimensional state vector, which in turn greatly increases the filter
computational load (Jazwinski 1970, p. 305).

• Stochastic model compensation by introducing a variance–covariance matrix of
the model errors. In taking this approach to prevent divergence, one must
determine which covariance matrix to add. A reasonable covariance matrix may
compensate for the model errors. An ineffective covariance matrix, however,
adds to the model divergence. For instance, when the model is accurate in some
dynamic or kinematic periods, an unsuitable increase of the covariance matrix of
model error will degrade the state estimators. Thus an effective covariance
matrix for model errors can be determined only by trial and error.

• The DIA procedure—detection, identification, and adaptation (Teunissen 1990).
This approach employs a recursive testing procedure to eliminate outliers. In the
detection step, one looks for unspecified model errors, and in the identification
step, one tries to find the cause of the model error and its most likely starting
time. After a model error has been detected and identified, the bias in the state
estimate caused by the model error must be eliminated as well. This model
recovery from errors is called adaptation (Salzmanm 1995). The identification of
the model, however, is quite difficult, especially when the measurements are not
accurate enough to detect the unspecified model errors.

• The sequential least squares procedure. A rather different procedure frequently
used for kinematic positioning does not use the dynamic model information at
all, but determines discrete positions at the measurement epochs (Cannon et al.
1986). In this case, there is no assumption made on a dynamic model, and only
the measurements at the discrete epoch are employed to estimate the state
parameters. The model error, therefore, does not affect the estimates of new state
parameters. This method is typically presented as a sequential least squares
algorithm (Schwarz et al. 1989). The current limitation to this approach is that it
wastes the good information of the state model in cases when the model
accurately describes the dynamic process.

• Adaptive Kalman filtering. An innovation-based adaptive Kalman filter for an
integrated INS/GPS was developed by Mohamed and Schwarz (1999), based on
the maximum likelihood criterion by proper choice of the filter weight. Another
adaptive Kalman filter algorithm to directly estimate the variance and covariance
components for the measurements was studied by Wang et al. (1999). Both
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algorithms need to collect the residuals of the measurements or the updated
series to calculate the state variance–covariance matrices.

• A robust filter based on the min–max robust theory. The deviation of obser-
vation error distribution from Gaussian distribution may also seriously degrade
the performance of Kalman filtering. Thus, there appears to be considerable
motivation for considering filters which are robustised to perform fairly well in
non-Gaussian environments. To address this problem, Masreliez and Martin
(1977) applied the influence function of the min–max robust theory to replace
the score function of the classical Kalman filter. The key disadvantages with this
kind of robust filter are that the estimator requires symmetric distribution of the
unknown contamination, and this filter does not work as well as the standard
Kalman filter in Gaussian noise.

• A robust filter based on M estimation theory (Huber 1964) and Bayesian
statistics. To resist the negative influence of both state model errors and mea-
surement outliers, a robust M–M filter was developed (Yang 1991, 1997a, b;
Zhou et al. 1997, p. 299). Here, measurement outliers are controlled by robust
equivalent weights of the measurements, and the model errors are resisted by the
equivalent weights of the updated parameters according to the divergence of the
predicted parameters from the estimated parameters. In addition, a robust filter
for rank-deficient observation models was developed by Koch and Yang (1998a,
b), using Bayesian statistics and applying the robust M estimate.

All of the methods described above require knowledge of the dynamic model
errors, with which the functional or stochastic models to compensate for the model
errors and the equivalent weights for the robust filter are constructed. In practical
applications, it is very difficult to predict the error distribution or the error type of
the updated parameters or the dynamic model errors, and thus it is very difficult to
construct functional and stochastic models. Furthermore, when a moving vehicle
accelerates from zero or decelerates to a stop, the acceleration profile is discon-
tinuous. If this discontinuity falls between two measurement epochs, the dynamics
cannot be accurately modelled or predicted by state equations; in this case, one
should not rely too heavily on the information predicted from the dynamic model.
Thus, the filtering procedure should weaken the effects of the updated parameters.
In addition, if the updated parameter vector is contaminated by model error, it is
generally distorted in its entirety. Therefore, it is not necessary to consider the error
influence of the individual element of the updated parameter vector as is done with
the robust M–M filter. In this case, an adaptive filter is suitable for balancing the
dynamic model information and the measurements.

1. General Estimator of Adaptively Robust Filtering

An adaptively robust filter is constructed as (cf. Yang et al. 2001a, b)

~Xi ¼ ðAT
i
�PiAi þ aPXi

Þ�1ðAT
i
�PiLi þ aPXi

XiÞ and ð7:174Þ
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Q~Xi
¼ ðAT

i
�PiAi þ aPXi

Þ�1r20; ð7:175Þ

where �Pi is the equivalent weight matrix of the observation vector, PXi
is the weight

matrix of the predicted vector Xi, Q~Xi
is the covariance matrix of the estimated state

vector, σ0
2 is a scale factor, and α is an adaptive factor, which can be chosen as

a ¼
1 D~Xi

�� ��� c0
c0
D~Xij j ð

c1� D~Xij j
c1�c0

Þ2 c0\ D~Xi

�� ��� c1

0 D~Xi

�� ��[ c1

8>><
>>: ; ð7:176Þ

where c0 and c1 are constants that are experienced, valued as c0 = 1.0–1.5,
c1 = 3.0–4.5,

D~Xi ¼
X̂i � X̂i

		 		ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfQX̂i

g
q ; ð7:177Þ

and X̂i is a robust estimate of state vector (state position), which is evaluated only
by new measurements at epoch i, and the raw velocity observations are not included
in it. X̂i is a predicted position from Eq. 7.149 in which the a priori velocity
components are not included. The change in the position expressed by Eq. 7.177
can also reflect the stability of the velocity (cf. Yang et al. 2001a, b).

Expression 7.174 is a general estimator of an adaptively robust filter. In the case
of α ≠ 0, Eq. 7.174 is changed, using the matrix identities (Koch 1988, p. 40), into

~Xi ¼ Xi þQXi
AT
i ðAiQXi

AT
i þ aQVÞ�1ðLi � AiXiÞ: ð7:178Þ

2. Special Estimators

The adaptive factor α changes between zero and one, which balances the con-
tribution of the new measurements and the updated parameters to the new estimates
of state parameters.

Case 1: If α = 0 and Pi ¼ Pi, then

~Xi ¼ ðAT
i PiAiÞ�1AT

i PiLi; ð7:179Þ

which is an LS estimator by using only the new measurements at epoch i. This
estimator is suitable in the case where the measurements are not contaminated by
outliers and the updated parameters are biased to such a degree that Δ~Xi in
Eq. 7.177 is larger than c1 (rejecting point), and the information of updated
parameters is completely forgotten.
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Case 2: If α = 1 and Pi ¼ Pi, then

~Xi ¼ ðAT
i PiAi þPXi

Þ�1ðAT
i PiLi þPXi

XiÞ; ð7:180Þ

which is a general estimator of the classical Kalman filter.
Case 3: If α is determined by Eq. 7.177 and �Pi ¼ Pi, then

~Xi ¼ ðAT
i PiAi þ aPXi

Þ�1ðAT
i PiLi þ aPXi

XiÞ; ð7:181Þ

which is an adaptive LS estimator of the Kalman filter. It balances the contribution
of the updated parameters and the measurements. The only difference between
Eqs. 7.174 and 7.181 is the weight matrix of Li. The former uses the equivalent
weights and the latter uses the original weights of Li.

Case 4: If α = 0, we obtain

~Xi ¼ ðAT
i
�PiAiÞ�1AT

i
�PiLi; ð7:182Þ

which is a robust estimator by using only the new measurements at epoch i.
Case 5: If α = 1, then

~Xi ¼ ðAT
i
�PiAi þPXi

Þ�1ðAT
i
�PiLi þPXi

XiÞ; ð7:183Þ

which is an M–LS filter estimator (Yang 1997a, b).
Further Development of the Theory
The adaptive factor α was considered a diagonal matrix by Ou (2004) and

grouped by the physical meaning of the parameters by Yang and Xu (2004). Since
then, several advances have been made (cf. Yang and Cui 2006; Yang and Gao
2005a, b, 2006a, b, c, Yang et al. 2006).

7.7.5
Progress in Adaptively Robust Filter Theory and Application

A new adaptively robust filtering technique for use in kinematic navigation and
positioning has been systematically established and developed in recent years
(Yang et al. 2013). The adaptively robust filter applies a robust estimation principle
to resist the effects of measurement outliers, and introduces an adaptive factor to
control the influence of dynamic model disturbances. It can thus balance the con-
tribution of the dynamic model information and the measurements in accordance
with the magnitude of their discrepancy (Yang et al. 2001a). In this section, we
introduce the major advancements in the theory and application of the adaptively
robust filter.
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Following the development of adaptively robust filtering, four learning statistics
and four adaptive factors were established based on experiences, and these have been
proven effective in practical applications. An accompanying adaptive factor was
created that features a three-segment descending function and a learning statistic
constructed using the discrepancy between the predicted state from the kinematic
model and the state estimated from the measurements. Three other types of adaptive
factors have been developed: a two-segment descending function (Yang et al.
2001b), an exponential function (Yang and Gao 2005), and a zero/one function for
state component adaptation (Ou et al. 2004; Ren et al. 2005). Three additional
learning statistics have also been set up, which include a predicted residual statistic
(Xu and Yang 2000; Yang and Gao 2006b), a variance component ratio statistic
from both the measurements and the predicted states (Yang and Xu 2003), and a
velocity discrepancy between the predicted velocity from the kinematic model and
the velocity evaluated from the measurements (Cui and Yang 2006).

A key problem has been in constructing an adaptive factor suitable for balancing
the contribution of the measurements and the predicted dynamic model information.
Two optimal adaptive factors have been established that satisfy the conditions that
the theoretical uncertainty of the predicted state outputted from the adaptive fil-
tering is equal or nearly equal to its actual estimated uncertainty, or that the the-
oretical uncertainty of the predicted residual vector is equal or nearly equal to its
actual estimated uncertainty (Yang and Gao 2006a). An adaptively robust filter with
classified adaptive factors (Cui and Yang 2006) was also developed, which is more
effective in tracking the disturbances of the vehicle movements. In addition, an
adaptively robust filter with multi-adaptive factors (Yang and Cui 2008) was cre-
ated, which is more general in theory and contains adaptively robust filters with
single and classified adaptive factors.

To control the influence of the measurement outliers and disturbances of the
dynamic model, an adaptively robust filter based on the current statistical model (Gao
et al. 2006b) was developed. In addition, an adaptively robust filter based on a neural
network (Gao et al. 2007a, b) was studied to solve the construction of the dynamic
model. The adaptively robust filter can also be integrated with error detection,
identification, and application (DIA). To control the nonlinear disturbances of the
dynamic model, an adaptive unscented Kalman filter (UKF) algorithm for improving
the generalization of neural networks (Gao et al. 2008) and an adaptively robust filter
based on the Bancroft algorithm (Zhang et al. 2007) have been derived.

In terms of applications, the adaptively robust filter has been successfully
applied to satellite orbit determination (Yang and Wen 2004) and data processing in
repeated observations of geodetic networks (Sui et al. 2007). An adaptively robust
filter with constraints has also been studied for navigation applications (Yang et al.
2011). In integrated navigation applications, an adaptive Kalman filtering algorithm
for the IMU/GPS integrated navigation system (Gao et al. 2006a) and a two-step
adaptively robust Kalman filtering algorithm for a GPS/INS integrated navigation
system (Wu and Yang 2010) have been developed. A comparison of several
adaptive filtering algorithms for controlling the influence of coloured noise was
analysed in order to simultaneously control the influence of coloured noise and

7.7 � Kalman Filter 217



dynamic model disturbances (Cui et al. 2006). In research on the estimation and
prediction of the satellite clock offset, an adaptively robust sequential adjustment
with opening window classified adaptive factors (Huang et al. 2011) and an
adaptively robust Kalman filter with classified adaptive factors for real-time esti-
mation of satellite clock offset (Huang and Zhang 2012) were derived.
Improvements in adaptive filtering have also been made with regard to estimation
of deformation parameters in relation to geometric measurements and geophysical
models (Yang and Zeng 2009).

7.7.6
A Brief Introduction to the Intelligent Kalman Filter

Considering the filtering methods applied in kinematic navigation, the motion state
models of the moving vehicles are described and set empirically without exception.
However, the actual motion rules of the moving carriers are unpredictable. In
Kalman filtering, the unknown motion is described by an a priori empirical model,
while GNSS observations are used to obtain the unknown motion. For this case, a
method called intelligent Kalman filtering is proposed in this section, for the pur-
pose of upgrading and extending the adaptive filter theory. The original concept of
the intelligent Kalman filter was introduced in 2007 by Guochang Xu, and was
funded for study by the Chinese Natural Science Foundation in 2012.

The purpose of this so-called intelligent Kalman filter is to apply the Doppler
observation information in constructing the system equation. The system descrip-
tions—which until now, without exception, have used a few empiric system
equations—will be upgraded using co-determined Doppler measurements, thus
providing more realistic descriptions. Because of the additional velocity informa-
tion (nearly as much as the positioning information), the much more objective
description of the system, and the more reasonable and precise estimation of the
error disturbances, intelligent Kalman filtering can provide for greater stability and
can yield more accurate results. Furthermore, the additional velocity information
will be considered in determining a more reasonably adaptive factor, which is a new
and advanced extension in adaptive filtering. Application of the intelligent Kalman
filter in kinematic GNSS navigation and positioning is ongoing, and its application
for autonomous orbit determination and manoeuvring in particular is expected to
yield outstanding results.

7.8
A Priori Constrained Least Squares Adjustment

Thus far in the chapter, we have discussed several adjustment and filtering methods,
all of which are suitable for full-rank linear equation problems. A full-rank quad-
ratic matrix can be inverted to obtain its inversion. A rank-deficient linear equation
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system is sometimes referred to as an over-parameterised problem. Except for the
conditional least squares adjustment method, none of the methods discussed above
can be directly used for solving a rank-deficient problem. The conditional least
squares adjustment method with extra conditions can make the problem solvable.
The conditions, of course, should be mathematically well formulated and physically
well reasoned. In other words, the conditions are considered as exactly known. In
practice, the conditions are quite often known with certain a priori precision.
Adjustment that uses such a priori information as constraints is called an a priori
constrained adjustment, which will be discussed in this section.

7.8.1
A Priori Parameter Constraints

1. A linearised observation equation system can be represented by

V ¼ L� AX; PL; ð7:184Þ

where
PL symmetric and definite weight matrix of dimension m × m.

2. The corresponding a priori condition equation system can be written as

U ¼ W � BX; PW ; ð7:185Þ

where
B coefficient matrix of dimension r × n,
W constant vector of dimension r,
U residual vector of dimension r,
PW a priori (symmetric and definite) weight matrix of dimension r × r, and
r number of condition equations; r < n.

3. One may interpret the constraints of Eq. 7.185 as additional pseudo-
observations or as fictitious observations. This leads to the total observation
equations

V
U

� �
¼ L

W

� �
� A

B

� �
X; P ¼ PL 0

0 PW

� �
: ð7:186Þ

The least squares normal equations are then well known, as (see, e.g., Sect. 7.2.1)

AT BT
� � PL 0

0 PW

� �
A
B

� �
X ¼ AT BT

� � PL 0
0 PW

� �
L
W

� �
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or

ðATPLAþBTPWBÞX ¼ ðATPLLþBTPWWÞ: ð7:187Þ

For convenience, a factor k (here k = 1) is introduced in Eq. 7.187:

ðATPLAþ kBTPWBÞX ¼ ðATPLLþ kBTPWWÞ: ð7:188Þ

Equation 7.188 shows that the a priori information constraints can be added to
the original least squares normal equations. In other words, the a priori information
can be used for solving the rank-deficient problem and makes it possible to invert
the normal matrix. Of course, these a priori information constraints should be
reasonable and realistic; otherwise, the solutions could be disturbed by more serious
a priori constraints. In the case of k = 0, the normal Eq. 7.188 turns out to be the
original one, and will yield the free solution (without any a priori constraints).

The solution to the a priori constrained least squares solution is then

X ¼ ðATPLAþ kBTPWBÞ�1ðATPLLþ kBTPWWÞ; ð7:189Þ

where k = 1. Generally, the a priori weight matrix is given by covariance
matrix QW and

PW ¼ Q�1
W : ð7:190Þ

The a priori constraints cause only two additional terms in both sides of the
normal equations; therefore, all the adjustment and filtering methods discussed
above can be directly used for solving the a priori constrained problem.

7.8.2
A Priori Datum

Suppose the B matrix in the a priori constraints of Eq. 7.185 is an identity matrix,
and the parameter vector W is just a coordinate sub-vector of the total parameter
vector. This results in a special case called a priori datum. The observation equa-
tions and a priori constraints may be rewritten as

V ¼ L� A1 A2ð Þ X1

X2

� �
; PL and ð7:191Þ

U ¼ �X2 � X2; P2; ð7:192Þ

where X2 is the “observed” parameter sub-vector, P2 is the weight matrix with
respect to the parameter sub-vector X2 and is generally a diagonal matrix, and U is a
residual vector that has the same property as V. Generally, X2 is “observed”
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independently, so P2 is a diagonal matrix. If X2 is a sub-vector of station coordi-
nates, then the constraint of Eq. 7.192 is called the datum constraint (this is also the
reason for the name “a priori datum”).

The least squares normal equation of problems 7.191 and 7.192 can then be
formed (similar to what discussed in Sect. 7.8.1) as

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
ð7:193Þ

or

M11X1 þM12X2 ¼ B1 and ð7:194Þ

M21X1 þM22X2 ¼ B2; ð7:195Þ

where

M11 ¼ AT
1PLA1; ð7:196Þ

M12 ¼ MT
21 ¼ AT

1PLA2; ð7:197Þ

M22 ¼ AT
2PLA2 þP2; ð7:198Þ

B1 ¼ AT
1PLL; and ð7:199Þ

B2 ¼ AT
2PLLþP2�X2: ð7:200Þ

The least squares principle used here is

VTPLV þUTP2U ¼ min: ð7:201Þ

The normal Eq. 7.193 can be also derived by differentiating Eq. 7.201 with
respect to X, and then letting it equal zero and taking Eq. 7.192 into account. In
practice, the sub-vector X2 is usually a zero vector; this can be achieved through
careful initialisation by forming the observation Eq. 7.191. Comparing the normal
equation system of the a priori datum problem of Eqs. 7.191 and 7.192 with the
normal equation of Eq. 7.191, the only difference is that the a priori weight matrix P2

has been added to M22. This indicates that the a priori datum problem can be dealt
with simply by adding P2 to the normal equation of the observation Eq. 7.191.

If some diagonal components of the weight matrix P2 are set to zero, then the
related parameters (X2) are free parameters (or free datum) of the adjustment
problem (without a priori constraints). Otherwise, parameters with a priori con-
straints are called a priori datum. Large weight values indicate strong constraint and
small weight values indicate soft constraint. The strongest constraint is keeping the
datum fixed.
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7.8.3
Zhou’s Theory: Quasi-Stable Datum

The quasi-stable datum method was proposed by Zhou et al. (1997). Its basic
premise is that the network is dynamic, i.e. most parameters are changing all the
time. However, a few points are relatively stable, or their geometric centre is
relatively stable. All assumptions and observation equations are the same as in
Sect. 7.8.2:

V ¼ L� A1 A2ð Þ X1

X2

� �
; PL and ð7:202Þ

U ¼ �X2 � X2; P2: ð7:203Þ

The least squares principles for the quasi-stable datum are

VTPLV ¼ min ð7:204Þ

and

UTP2U ¼ min: ð7:205Þ

Equation 7.204 is the same as the original least squares principle. From
Eq. 7.204, one has the normal equation

M11 M12

M21 M22

� �
X1

X2

� �
¼ B1

B2

� �
; ð7:206Þ

where

M11 ¼ AT
1PLA1;

M12 ¼ MT
21 ¼ AT

1PLA2;

M22 ¼ AT
2PLA2;

B1 ¼ AT
1PLL; and

B2 ¼ AT
2PLL:

ð7:207Þ

Even if Eq. 7.206 is a rank-deficient equation, one may first solve Eq. 7.206 to
get an explicit expression for X2. Recalling the discussion in Sect. 7.5, one gets a
normal equation related to X2:

M2X2 ¼ R2; ð7:208Þ
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where

M2 ¼ M22 �M21M
�1
11 M12 and

R2 ¼ B2 �M21M
�1
11 B

T
1 :

ð7:209Þ

The new condition can be considered by forming

F ¼ UTP2Uþ 2KTðM2X2 � R2Þ

and

@F
@X

¼ 2UTP2 þ 2KTM2 ¼ 0:

Considering the symmetry of M2, we have

U ¼ �P�1
2 M2K: ð7:210Þ

Substituting Eq. 7.210 into 7.203, one gets

X2 ¼ �X2 þP�1
2 M2K ð7:211Þ

or

M2X2 ¼ M2�X2 þM2P
�1
2 M2K: ð7:212Þ

Substituting Eq. 7.208 into 7.212, one has

K ¼ ðM2P
�1
2 M2Þ�1ðM2�X2 � R2Þ: ð7:213Þ

Thus,

X2 ¼ �X2 þP�1
2 M2K; ð7:214Þ

X1 ¼ M�1
11 ðAT

1PLL�M12X2Þ; and ð7:215Þ

m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VTPLV
n� r

r
; ð7:216Þ

where m0 is the standard deviation, n is the number of observations, and r is the
summation of the both ranks of the matrices A1 and A2.
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7.9
Summary

In this chapter, we have outlined the most applicable and necessary algorithms for
static and kinematic as well as dynamic GPS data processing.

Least squares adjustment is the most basic adjustment method. It starts by
establishing observation equations and forming normal equations, and then solves
the unknowns. The sequential application of least squares adjustment by accumu-
lating the sequential normal equations makes applications of least squares adjust-
ment more effective. Normal equations can be formed epoch-wise and then
accumulated. This method can be used not only for ultimately solving the problem,
but also for obtaining epoch-wise solutions. It is suitable for static GPS data pro-
cessing. The equivalent sequential least squares adjustment, which can be found in
various publications, was also derived. This is an epoch-wise solving method and
thus is generally not suitable for static GPS data processing. Xu (author) and
Morujao (Coimbra University, Portugal) have independently reported that results
obtained by applying such an algorithm will differ from those obtained by the
accumulation method. The differences increase with time and are generally
non-negligible. Therefore, when this method is used, the numerical process must be
carefully examined to avoid the accumulation of numerical errors.

If there are constraints that have to be taken into account, a conditional least
squares adjustment is needed. The commonly used least squares ambiguity search
criterion is derived from this principle (cf. Sect. 8.3.4), and the general criterion of
integer ambiguity search is also based on this theory (cf. Sect. 8.3.5). This method
is typically applied in GPS data processing to take into account the known distance
of multiple kinematic antennas. The sequential application of conditional least
squares adjustment was discussed here in terms of practical needs. The problem
may be solved first without conditions, after which conditions may be applied.
Constraints such as the known distances of multiple antennas fixed on an aircraft
must be considered for every epoch.

We also discussed lock-wise least squares adjustment for separating the
unknowns into two groups—for example, one group of time-dependent parameters
such as kinematic coordinates, and the other a group of time-independent param-
eters such as ambiguities. The sequential application of block-wise least squares
adjustment makes it possible to give up some unknowns (say, out-of-date
unknowns, such as past coordinates) and to keep the information related to the
common unknowns during processing. This method avoids problems that may be
caused by a rapid increase in the number of unknowns. There are two ways to keep
the solution equivalent to a solution that is not sequential. One is to use the
time-independent unknowns at the end of data processing as known, and to then go
back to process the data again. The other is to remember all sequential normal
equations until the best solution of the time-independent unknowns is obtained,
after which the coordinates can be recomputed. A special application of block-wise
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least squares adjustment was discussed for a code–phase combination model. Of
course, the two observables must be suitably scaled and weighted.

We discussed the equivalently eliminated observation equation system for
eliminating some nuisance parameters. This method is nearly the same as
block-wise least squares adjustment if one carefully compares the normal equations
of the second group of unknowns (see Sect. 7.5) and the eliminated normal
equations (see Sect. 7.6). However, the most important point here is that the
equivalently eliminated observation equations have been derived. Instead of solving
the original problem, one may directly solve the equivalently eliminated observa-
tion equations, where the unknowns are greatly reduced, whereas the original
observation vector and weight matrix remain (i.e. the problem remains uncorre-
lated). The precision estimation can also be made more easily by using the formulas
derived in least squares adjustment. The derivation of such an equivalent obser-
vation equation was first described by Zhou (1985) and was then applied in GPS
theory by Xu (2002). The unified GPS data processing method is derived using this
principle (cf. Sect. 6.8). Based on the derivation of the equivalent equation, a
diagonaliation algorithm of the normal equation and the observation equation was
presented. The diagonalisation algorithm can be used for separating one adjustment
problem into two sub-problems.

The classic Kalman filter was also discussed. It is suitable for real-time appli-
cations. A key problem of the classic Kalman filter is the divergence caused by the
inexact description of system equations and its statistical properties as well as the
inhomogeneity of the data. Furthermore, the solutions can be strongly dependent on
the given initial values. The sequential least squares adjustment method as a special
case of Kalman filtering was outlined.

Efforts have been made to modify the performance of classic Kalman filtering. In
the classic Kalman filter, the weight matrix P of observables is static, i.e. P is
assumed to be a definitive defined matrix. Taking the residuals of Kalman filtering
into account, one may adjust the weight P of the observables accordingly; this
process is called robust Kalman filtering (Koch and Yang 1998a, b). This principle
can be also used for controlling the outliers of observations (Yang 1999). This idea
indeed can be also used in all of the adjustment methods. The weight of an
observation is usually either one (be accepted) or zero (be rejected). In robust
Kalman filtering, a continuous weight between one and zero was defined and
introduced. A modified weight function was also discussed and given for use.
Generally speaking, the robust weighting method may modify the convergence
process of the filtering procedure.

As soon as the system is defined, the Kalman filter also obtains memory abilities.
However, if the system makes a discontinuous change (for example, aircraft that is
static begins to run), the Kalman filter should be able to forget a part of the updated
parameters. A robust Kalman filter with the addition of this ability is called an
adaptively robust Kalman filter (Yang et al. 2001a, b), and was discussed in detail.

A priori constrained least squares adjustment was discussed in Sect. 7.8 for
solving the rank-deficient problems, and a general discussion on the a priori
parameter constraints was provided. This method makes it possible to form the
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observation equations in a general way, and then a priori information can be added
to keep some references fixed, such as the clock error of the reference satellite and
the coordinates of the reference station. As a special case of the a priori parameter
constraints, a so-called a priori datum method was discussed. The advantage of this
method is that the a priori constraints just change the normal equation by adding a
term (the a priori weight matrix), so that all discussed least squares adjustment and
filtering methods can be directly used for solving the rank-deficient problems.
Linear conditions related to the coordinate parameters can be introduced using this
method. A quasi-stable datum method was also discussed. From the point of view
of the dynamic earth, none station is fixed. The quasi-stable datum method takes
such dynamic behaviour of the stations into account.

References

Cui X, Yang Y (2006) Adaptively Robust Filtering with Classified Adaptive Factors. Progress in
Natural Science 16(8):846–851

Cui X, Yang Y, Gao W (2006) Comparison of Adaptive Filter Arithmetics in Controlling
Influence of Colored Noises. Geomatics and Information Science of Wuhan University 31
(8):731-735

Cui X, Yu Z, Tao B, Liu D (1982) Adjustment in surveying. Surveying Press, Peking, (in Chinese)
Gao W, Feng X, Zhu D (2007a) GPS/INS Adaptively Integrated Navigation Algorithm Based on

Neural Network. Journal of Geodesy and Geodynamics 27(2):64-67
Gao W, Yang Y, Cui X, Zhang S (2006a) Application of Adaptive Kalman Filtering Algorithm in

IMU/GPS Integrated Navigation System. Geomatics and Information Science of Wuhan
University 31(5):466-469

Gao W, Yang Y, Zhang S (2006b) Adaptive Robust Kalman Filter Based on the Current Statistical
Model. Acta Geodaetica et Cartographica Sinica 35(1):15-18

Gao W, Yang Y, Zhang T (2007b) Neural Network Aided Adaptive Filtering for GPS/INS
Integrated Navigation. Acta Geodaetica et Cartographica Sinica 36(1):26-30

Gao W, Yang Y, Zhang T (2008) An Adaptive UKF Algorithms for Improving the Generalizaiton
of Neural Network. Geomatics and Information Science of Wuhan University 33(5):500-503

Gotthardt E (1978) Einführung in die Ausgleichungsrechnung. Herbert Wichmann Verlag,
Karlsruhe

Huang G, Yang Y, Zhang Q (2011) Estimate and Predict Satellite Clock Error Using Adaptively
Robust Sequential Adjustment with Classified Adaptive Factors Based on Opening Windows.
Acta Geodaetica et Cartographica Sinica 40(1):15-21

Huang G, Zhang Q (2012) Real-time estimation of satellite clock offset using adaptively robust
Kalman filter with classified adaptive factors. GPS Solutions 16(4):531-539

Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101
Jazwinski AH (1970) Stochastic processes and filtering theory. In: Mathematics in science and

engineering, Vol. 64. Academic Press, New York and London
Koch KR (1986) Maximum likelihood estimate of variance components. Bulletin Géodésique,

60:329–338
Koch KR (1988) Parameter estimation and hypothesis testing in linear models. Springer-Verlag,

Berlin
Koch KR, Yang Y (1998a) Konfidenzbereiche und Hypothesentests für robuste

Parameterschätzungen. ZfV 123(1):20–26

226 Chapter 7 � Adjustment and Filtering Methods



Koch KR, Yang Y (1998b) Robust Kalman filter for rank deficient observation model. J Geodesy
72: 436–441

Masreliez CJ, Martin RD (1977) Robust Bayesian estimation for the linear model and robustifying
the Kalman filter. IEEE T Automat Contr AC-22:361–371

Mohamed AH, Schwarz KP (1999) Adaptive Kalman filtering for INS/GPS. J Geodesy 73:
193–203

Ou J, Chai Y, Yuan Y (2004) Adaptive filtering for kinematic positioning by selection of the
parameter weights. In: Zhu, Y. and Sun, H. (eds) Progress in Geodesy and Geodynamics.
Hubei Science & Technology Press, Hubei, 816–823 (in Chinese)

Ou JK (2004) Private communication
Ren C, Ou J, Yuan Y (2005) Application of adaptive filtering by selecting the parameter weight

factor in precise kinematic GPS positioning. Prog. Nat. Sci., 15(1), 41–46
Salzmann M (1995) Real-time adaptation for model errors in dynamic systems. B Geod 69:81–91
Schaffrin B (1991) Generating robustified Kalman filters for the integration of GPS and INS.

Techni-cal Report, No. 15, Institute of Geodesy, University of Stuttgart
Schwarz K-P, Cannon ME, Wong RVC (1989) A Comparison of GPS kinematic models for the

determination of position and velocity along a trajectory. Manuscr Geodaet 14:345–353
Sui L, Liu Y, Wang W (2007) Adaptive Sequential Adjustment and Its Application. Geomatics

and Information Science of Wuhan University 32(1):51-54
Teunissen P (1990) An integrity and quality control procedure for use in multi sensor integration.

In: Proceedings ION GPS90, pp. 513–522
Wang G, Chen Z, Chen W, Xu G (1988) The principle of GPS precise positioning system.

Surveying Press, Peking, ISBN 7-5030-0141-0/P.58, 345 p, (in Chinese)
Wu F, Yang Y (2010) A New Two-Step Adaptive Robust Kalman Filtering in GPS/INS Integrated

Navigation System. Acta Geodaetica et Cartographica Sinica 39(5):522-533
Xu G (2002) GPS data processing with equivalent observation equations, GPS Solutions, Vol. 6,

No. 1-2, 6:28-33
Xu G (2003) GPS – Theory, Algorithms and Applications, Springer Heidelberg, ISBN

3-540-67812-3, 315 pages, in English
Xu G (2007) GPS – Theory, Algorithms and Applications, 2nd Ed. Springer Heidelberg, ISBN

978-3-540-72714-9, 350 pages
Xu G, Qian Z (1986) The application of block elimination adjustment method for processing of the

VLBI Data. Crustal Deformation and Earthquake, Vol. 6, No. 4, (in Chinese)
Xu T, Yang Y (2000) The Improved Method of Sage Adaptive Filtering. Science of Surveying and

Mapping 25(3):22-24
Yang M, Tang CH, Yu TT (2000) Development and assessment of a medium-range real-time

kinematic GPS algorithm using an ionospheric information filter. Earth Planets Space 52
(10):783–788

Yang Y (1991) Robust Bayesian estimation. B Geod 65:145–150
Yang Y (1997a) Estimators of covariance matrix at robust estimation based on influence functions.

ZfV 122(4):166–174
Yang Y (1997b) Robust Kalman filter for dynamic systems. Journal of Zhengzhou Institute of

Surveying and Mapping 14:79–84
Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73:268–274
Yang Y, Chai H, Song L (1999) Approximation for Contaminated Distribution and Its

Applications. Acta Geodaetica et Cartographic Sinica 28(3):209–214
Yang Y, Cui X (2006) Adaptively Robust Filter with Multi Adaptive Factors. J. Surv. Eng.
Yang Y, Cui X (2008) Adaptively Robust Filter with Multi Adaptive Factors. Survey Review 40

(309):260-270
Yang Y, Gao W (2006a) A New Learning Statistic for Adaptive Filter Based on Predicted

Residuals. Progress in Natural Science 16(8):833-837
Yang Y, Gao W (2006b) An Optimal Adaptive Kalman Filter. Journal of Geodesy 80(4):177-183
Yang Y, Gao W (2005) Comparison of Adaptive Factors on Navigation Results.

The J. Navigation, 2005, 58: 471-478.

References 227



Yang Y, Gao W (2005) Influence comparison of adaptive factors on navigation results. Journal of
Navigation 58, 471–478

Yang Y, Gao W (2006c) Optimal Adaptive Kalman Filter with Applications in Navigation.
J Geodesy

Yang Y, He H, Xu G (2001a) Adaptively robust filtering for kinematic geodetic positioning.
J Geodesy 75:109–116

Yang Y, Ren X, Xu Y (2013) Main Progress of Adaptively Robust Filter with Application in
Navigation. Journal of Navigation and Positioning 1(1):9-15

Yang Y, Tang Y, Li Q and Zou Y (2006) Experiments of Adaptive Filters for Kinemetic GPS
Positioning Applied in Road Information Updating in GIS. J. Surv. Eng. (in press)

Yang Y, Wen Y (2004) Synthetically adaptive robust filtering for satellite orbit determination.
Science in China Series D Earth Sciences 47(7):585-592

Yang Y, Xu T (2003) An Adaptive Kalman Filter Based on Sage Windowing Weights and
Variance Components. Journal of Navigation 56(2):231-240

Yang Y, Xu T (2004) An Adaptively Regularization Method with Combination of Priori and
Posterior Information. In: Zhu, Y. and Sun, H. (eds) Progress in Geodesy and Geodynamics.
Hubei Science & Technology Press, Hubei

Yang Y, Xu T, He H (2001b) On adaptively kinematic filtering. Selected Papers for English of
Acta Geodetica et Cartographica Sinica, pp. 25–32

Yang Y, Zeng A (2009) Adaptive Filtering for Deformation Parameter Estimation in
Consideration of Geometrical Measurements and Geopgysical Models. Science in China
Series D Earth Sciences 52(8):1216-1222

Yang Y, Zhang X, Xu J (2011) Adaptively Constrained Kalman Filtering for Navigation
Applications. Survey Review 43(322):370-381

Zhang S, Yang Y, Zhang Q (2007) An Adaptively Robust Filter Based on Bancroft Algorithm in
GPS Navigation. Geomatics and Information Science of Wuhan University 32(4):309-311

Zhou J (1985) On the Jie factor. Acta Geodaetica et Geophysica 5 (in Chinese)
Zhou J, Huang Y, Yang Y, Ou J (1997) Robust least squares method. Publishing House of

Huazhong University of Science and Technology, Wuhan

228 Chapter 7 � Adjustment and Filtering Methods


	7 Adjustment and Filtering Methods
	7.1 Introduction
	7.2 Least Squares Adjustment
	7.2.1 Least Squares Adjustment with Sequential Observation Groups

	7.3 Sequential Least Squares Adjustment
	7.4 Conditional Least Squares Adjustment
	7.4.1 Sequential Application of Conditional Least Squares Adjustment

	7.5 Block-Wise Least Squares Adjustment
	7.5.1 Sequential Solution of Block-Wise Least Squares Adjustment
	7.5.2 Block-Wise Least Squares for Code–Phase Combination

	7.6 Zhou’s Theory: Equivalently Eliminated Observation Equation System
	7.6.1 Zhou–Xu’s Theory: Diagonalised Normal Equation and the Equivalent Observation Equation

	7.7 Kalman Filter
	7.7.1 Classic Kalman Filter
	7.7.2 Kalman Filter: A General Form of Sequential Least Squares Adjustment
	7.7.3 Robust Kalman Filter
	7.7.4 Yang’s Filter: Adaptively Robust Kalman Filtering
	7.7.5 Progress in Adaptively Robust Filter Theory and Application
	7.7.6 A Brief Introduction to the Intelligent Kalman Filter

	7.8 A Priori Constrained Least Squares Adjustment
	7.8.1 A Priori Parameter Constraints
	7.8.2 A Priori Datum
	7.8.3 Zhou’s Theory: Quasi-Stable Datum

	7.9 Summary
	References


