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Abstract. We construct a general multiparty computation (MPC) pro-
tocol with only two rounds of interaction in the common random string
model, which is known to be optimal. In the honest-but-curious set-
ting we only rely on the learning with errors (LWE) assumption, and
in the fully malicious setting we additionally assume the existence of
non-interactive zero knowledge arguments (NIZKs). Previously, Asharov
et al. (EUROCRYPT ’12) showed how to achieve three rounds based on
LWE and NIZKs, while Garg et al. (TCC ’14) showed how to achieve
the optimal two rounds based on indistinguishability obfuscation, but it
was unknown if two rounds were possible under standard assumptions
without obfuscation.

Our approach relies on multi-key fully homomorphic encryption
(MFHE), introduced by Lopez-Alt et al. (STOC ’12), which enables
homomorphic computation over data encrypted under different keys. We
present a construction of MFHE based on LWE that significantly simpli-
fies a recent scheme of Clear and McGoldrick (CRYPTO ’15). We then
extend this construction to allow for a one-round distributed decryp-
tion of a multi-key ciphertext. Our entire MPC protocol consists of the
following two rounds:
1. Each party individually encrypts its input under its own key and

broadcasts the ciphertext. All parties can then homomorphically com-
pute a multi-key encryption of the output.

2. Each party broadcasts a partial decryption of the output using its
secret key. The partial decryptions can be combined to recover the
output in plaintext.
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1 Introduction

Multiparty Computation. Secure multiparty computation (MPC) allows
multiple parties to evaluate an arbitrary function over their inputs privately,
without revealing anything about their inputs to each other beyond the func-
tion’s output. This problem was initially studied by Yao [34,35], in the case
of two honest-but-curious parties (who follow the protocol honestly but hope to
learn information from its execution) and later by Goldreich, Micali and Wigder-
son [19] in the case of an arbitrary number of fully malicious parties (who can
deviate arbitrarily from the specified protocol execution). By now, MPC is a
fundamental part of cryptography and a subject of intense study.

One of the main challenges is to optimize the efficiency of MPC protocols.
In this work, our main focus will be on constructing MPC protocols with the
optimal round complexity.1

Round Complexity of MPC. We refer the reader to [3] for a comprehensive
overview of prior work on round complexity of MPC. In the honest-but-curious
setting, it was known how to achieve a constant number of rounds assuming the
existence of oblivious transfer [2,5,22,25,27]. However, the concrete constants
were not explicitly stated and they seem to require at least 4 rounds. These
protocols can also be compiled into secure constructions in the fully malicious
setting with only a constant number of additional rounds by using coin-flipping
and concurrent zero-knowledge proofs [20,25–27]. In the plain model and the
fully malicious setting, there is a known lower bounds of 5 rounds for two party
computation2, albeit in non-simultaneous message model where no broadcast
channel is available [24]. A very recent work [15] shows a similar lower bound of
4 rounds assuming broadcast channel. However, in the honest-but-curious setting
or even in the fully malicious setting with a common random string (CRS) the
above lower bound does not hold and there is only a simple lower bound of 2
rounds [21]. In this work, we will assume the CRS model.

Recently, a result of Asharov et al. [3] showed how to achieve a 3 round MPC
protocol in the CRS model, by relying on techniques from fully homomorphic
encryption (FHE). Their construction achieves semi-honest security under the
learning with errors (LWE) assumption, and fully malicious security (in the
universal composability (UC) framework) by further assuming the existence of
non-interactive zero knowledge arguments (NIZKs). The construction also yields
a 2 round protocol in the public-key infrastructure (PKI) model, but it was left
as an open problem to achieve 2 rounds in the CRS model.
1 We assume a broadcast communication channel and in each round of a protocol all

parties broadcast a message to all other parties. Each honest party must broadcast
their round i message right away prior to receiving the round i messages of other
parties. On the other hand, we assume a “rushing” adversary that can wait to collect
the round i messages of all honest parties prior to selecting the round i messages of
the corrupted parties.

2 In their non-simultaneous model no broadcast channel is present, that is in a round
only one party sends message to another.
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Even more recently, the results of Garg et al. [14,16] achieve a 2 round MPC
protocol in the CRS model by relying on indistinguishability obfuscation (iO) and
statistically sound NIZKs. On a high level, the main idea of that work is to have
each party obfuscates its “next-message” function, after an initial round where
the parties commit to their input. Making this work under the iO assumption is
non-trivial and requires much care. However, this approach appears to crucially
rely on obfuscation and does not easily lend itself to instantiations under simpler
assumptions.

The main open question left by these works is whether 2 round MPC is
achievable under more “standard” cryptographic assumptions, without relying
on obfuscation.

Our Result. In this work, we construct a 2 round MPC protocol in the CRS
model. We achieve honest-but-curious security under only the LWE assumption,
and fully malicious security (in the UC framework) by additionally assuming the
existence of NIZKs. As our main technical result, which may be of independent
interest, we show how to construct a multi-key fully homomorphic encryption
scheme with a one-round threshold decryption protocol.

2 Overview of Our Techniques

We now give an overview of our techniques by first describing how to construct
MPC from multi-key FHE with threshold decryption, and then how to construct
the latter from LWE.

2.1 MPC via Threshold (Multi-key) FHE

MPC via Threshold FHE. We begin with the approach of Asharov et al.
[3] (variants of which were used in many preceding works [6,7,11–13,23,31]) for
constructing MPC based on fully homomorphic encryption (FHE). At a high
level, this approach is based on the following simple template:

1. The parties first run a secure distributed protocol for the “threshold key-
generation” of an FHE scheme to agree on a common public key pk and a
secret sharing of the corresponding secret key sk so that each party holds one
share, and all shares are needed to recover sk.

2. Each party i then broadcasts an encryption of its input xi under the com-
mon public key pk. Note that no individual party or incomplete set of parties
can decrypt this ciphertext and so the privacy of the input is maintained.
At the end of this round, each party can homomorphically compute the
desired function f on the received ciphertexts and derive a common output
ciphertext which encrypts y = f(x1, . . . , xN ).
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3. The parties run a secure distributed protocol for “threshold decryption” using
their shares of the secret key sk to decrypt the output ciphertext and recover
the output y in plaintext.3

Secure protocols for threshold key-generation and decryption can be imple-
mented generically for any FHE scheme by using general MPC techniques, but
this would require many rounds. Instead [3] show that specific FHE schemes
by Brakerski, Gentry and Vaikuntanathan [8,9] based on the LWE assumption
have a “key homomorphic” property which can be leveraged to get distributed
key-generation and decryption protocols consisting of one round each. Therefore,
when instantiated with these schemes, the above template results in a 3 round
MPC protocol.4

MPC via Threshold Multi-key FHE. One could hope to shave off an addi-
tional round from the above template by using multi-key fully homomorphic
encryption (MFHE), recently introduced by Lopez-Alt, Tromer and Vaikun-
tanathan [28]. An MFHE schemes allows parties to independently encrypt their
data under different individually chosen keys, while still allowing homomorphic
computations over such ciphertexts. The output of such homomorphic computa-
tion is a “multi-key ciphertext” which cannot be decrypted by any single party
individually (as this would violate semantic security of the other parties) but
can be decrypted by the parties jointly using the combination of all their secret
keys. The work of [28] constructed such an MFHE scheme based on (a variant
of) the NTRU assumption.

Using MFHE, we naturally get the following simplified template for MPC:

1. Each party individually chooses its own MFHE key pair (pki, ski), encrypts
its input xi under pki, and broadcasts the resulting ciphertext. At the end of
this round, each party can homomorphically compute the desired function f
on the received ciphertexts and derive a common multi-key ciphertext which
encrypts the output y = f(x1, . . . , xN ).

2. The parties run a secure distributed protocol for “threshold decryption” using
their secret keys ski to decrypt the multi-key ciphertext and recover the
output y in plaintext.

As before, a distributed threshold decryption can be implemented generically
using general MPC techniques, but this would require many rounds. Unfortu-
nately, the MFHE scheme of [28] does not appear to admit any simpler threshold
3 Throughout this work, we use the term “threshold” to denote distributed schemes

where all parties are needed to perform an operation and security is maintained
from any incomplete subset of parties.

4 We note that one the main challenges in the work of [3] is to implement the threshold
generation of the FHE “evaluation key” which has a complex structure in the FHE
schemes of [8,9]. This could be vastly simplified using a more recent FHE scheme of
Gentry-Sahai-Waters [18] which does not require an evaluation key. However, this
would still not improve the final round complexity of the MPC construction below
3 rounds.
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decryption protocol and therefore it is not known how to use this scheme to get
a 2 round MPC.

A recent work of Clear and McGoldrick [10] gives an alternate construc-
tion of MFHE based on the LWE assumption, by cleverly adapting an FHE
scheme of Gentry, Sahai and Waters [18]. We first present a significantly sim-
plified construction of MFHE from LWE and give a stand-alone presentation of
this scheme. We then show that this scheme admits a simple 1-round threshold
decryption protocol. This threshold decryption protocol only satisfies a weak
notion of security which doesn’t allow us to directly plug it into the above tem-
plate for MPC. However, we show that we can make this approach work with
only minor additional modifications.

As in [3], we show that our basic scheme (based on LWE) achieves security in
semi-malicious setting, which is a strengthening of the honest-but-curious set-
ting, where parties follow the protocol specification but can choose their random
coins adversarially. By using NIZKs, we can then compile such a scheme into one
which is secure in the fully malicious setting (and even universally composable)
without additional rounds.

2.2 Constructing Threshold Multi-key FHE

We now give a high-level description of the MFHE construction and the thresh-
old decryption protocol. We begin by describing a recent FHE construction by
Gentry, Sahai and Waters (GSW) [18] using the notation and exposition of [1].
Then describe how to convert it into a MFHE scheme. Finally, we discuss how
to perform threshold decryption.

Public Short Preimage Matrix. Before we describe the GSW encryption,
we state a useful fact from [29] which we heavily rely on in the construction.

Lemma 1 ([29]). For any m ≥ n�log q� there exists a fixed efficiently com-
putable matrix G ∈ Z

n×m
q and an efficiently computable deterministic “short

preimage” function G−1(·) satisfying the following. On input a matrix M ∈
Z

n×m′
q for any m′, the function G−1(M) outputs a bit-matrix G−1(M) ∈

{0, 1}m×m′
such that GG−1(M) = M.

We can think of G as a special matrix with a “public trapdoor” that allows us
to solve the short integer solution (SIS) problem. For those familiar with GSW
encryption, multiplication by G is the BitDecomp−1 operation and the function
G−1(·) is called BitDecomp, but we can ignore the low-level detail of how this
is implemented. Note that G−1(·) is not itself a matrix but rather an efficiently
computable function.

Gentry-Sahai-Waters (GSW) FHE. Firstly, choose a random public matrix
B ∈ Z

(n−1)×m
q where m = O(n log q). We can think of this as a common public

parameter used by all parties. A public/secret key pair is chosen by selecting a
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random vector s ∈ Z
n−1
q and setting b = sB + e where e is some short “error

vector”. We set the secret key to t = (−s, 1) ∈ Z
n
q and the public key to the

matrix

A :=
[
B
b

]
∈ Z

n×m
q

which ensures that tA = e ≈ 0 (throughout the introduction, we use ≈ to hide
“short” values).

A valid GSW ciphertext of a bit μ ∈ {0, 1} with respect to a secret key t is a
matrix C ∈ Z

n×m
q such that tC ≈ μtG. To encrypt a bit μ using the public key

A we set C = AR+μG where R ∈ {0, 1}m×m is chosen as a random bit-matrix.
This ensures that the result is a valid encryption of μ under the secret key t since
tC = tAR + μtG ≈ μtG.

Given two valid GSW ciphertexts C1,C2 encrypting the bits μ1, μ2 with
respect to a secret key t we can perform homomorphic addition by setting
C+ = C1 + C2 and multiplication by setting C× = C1G−1(C2). It is a simple
exercise to check that tC+ ≈ (μ1 +μ2)tG and tC× ≈ (μ1μ2)tG. This allows us
to homomorphically evaluate any circuit, subject to the error not getting “too
large”.

Finally, to decrypt a ciphertext C we set w := (0, . . . , 0, �q/2�) and compute
v = tCG−1(wT ). If C is a valid encryption of μ under t then v ≈ μ�q/2�. We
recover μ by checking whether v is closer to 0 or to q/2.

Multi-key Variant of GSW. We now describe how to convert the above GSW
FHE into a multi-key FHE. For simplicity, let’s assume that we only have N = 2
parties, but everything extends naturally to any polynomial number of parties
N . We assume that the matrix B of the GSW encryption scheme is a common
public parameter which is used by all parties.

The two parties choose independent GSW secret keys t1 = (−s1, 1), t2 =
(−s2, 1) and compute the corresponding public key components b1 = s1B + e1
and b2 = s2B + e2 using the common (and random) B. We let

A1 :=
[
B
b1

]
, A2 :=

[
B
b2

]

be the two GSW public keys for parties 1 and 2 respectively.
Now assume that the two parties independently encrypt some data under

their respective keys. Unfortunately, we will not get anything meaningful by
naively attempting to perform the GSW homomorphic operations on these
ciphertexts under different keys. Instead, our goal will be to first convert both
ciphertexts into a “common format” that will allow us to perform homomorphic
operations over them.

In particular, we define a “combined secret key” t̂ = (t1, t2) ∈ Z
2n
q as the con-

catenation of the two individual secret keys. Our goal will be to take a ciphertext
C ∈ Z

n×m
q which encrypts a bit μ with respect to the secret key of a single party

(along with some helper information specified later) and expand it into multi-key
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ciphertext Ĉ ∈ Z
2n×2m
q which encrypts μ with respect to the combined secret

key t̂. In particular, a multi-key encryption of a bit μ satisfies t̂Ĉ ≈ μt̂Ĝ where

Ĝ =
[
G 0
0 G

]
∈ Z

2n×2m
q is an expanded public matrix with a corresponding short

preimage function Ĝ−1(·). Once we do this, we can expand all ciphertexts under
individual keys into multi-key ciphertexts under the key t̂ and then perform
homomorphic operations on the multi-key ciphertexts just like in basic GSW
scheme (just with larger parameters n′ = 2n,m′ = 2m). Therefore, the only
challenge is how to perform the above “ciphertext expansion step”.

Ciphertext Expansion. To perform ciphertext expansion, we use a new prim-
itive called “masking scheme” introduced by Clear and McGoldrick in [10]. Let
C be a GSW encryption of some bit μ. A masking scheme allows party 1 to
create some additional helper information U about the ciphertext C at encryp-
tion time and release the tuple (U ,C) while keeping the semantic security of the
message intact. This information is completely independent of party 2 whose
identity is unknown at encryption time. Later, if we are given the public key
A2 for party 2, we can use the information U to create a matrix X such that
t1X + t2C ≈ μt2G where t2 is the secret key of party 2. This allows us to
perform ciphertext expansion by creating the expanded ciphertext:

Ĉ =
[
C X
0 C

]

so that,

t̂Ĉ = [ t1C , t1X + t2C ] ≈ [ μt1G, μt2G ] = μt̂Ĝ.

We can similarly expand the individually created ciphertexts of party 2 and
then perform GSW style homomorphic operations on the expanded ciphertexts.5

Therefore, the only thing left to do is to construct such a “masking scheme”
which we briefly describe below.

A Masking Scheme for GSW. The masking scheme consists of party 1
creating tuple (U ,C) where C is a GSW encryption of the message μ under its
own public key pk1 = A1 so that

C := A1R + μG =
[
BR
b1R

]
+ μG

for some random matrix R ∈ {0, 1}m×m. The additional helper information U
consists of m2 GSW encryptions of each of the scalars {R[a, b]}a∈[m],b∈[m] under

5 In the actual scheme involving N parties we first expand the single-key ciphertext of
each party into a multi-key ciphertext (under the concatenated keys of all the parties)
and subsequently perform homomorphic operations on the expanded ciphertexts.
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the public key pk1. It is easy to show that the pair (U ,C) computationally hides
μ by relying on semantic security of the GSW scheme.

Later, assume we are given the public key A2 :=
[
B
b2

]
for party 2, corre-

sponding to a secret key t2 = (−s2, 1). Then

t2C = −s2BR + b1R + μt2G ≈ (b1 − b2)R + μt2G

since b2 ≈ s2B. The value t2C corresponds to decrypting the GSW ciphertext
C with the “incorrect” secret key t2 and it yields the correct value μt2G except
that it is “masked” by the additional term (b1 − b2)R.

Our goal is to come up with a matrix X for which t1X ≈ (b2 − b1)R and
therefore adding t1X + t2C ≈ μt2G as desired. One can do this by homo-
morphically combining the m2 ciphertexts contained in U , which encrypt each
of the scalars R[a, b] of the matrix R under t1, to get a “pseudo ciphertext”
X which acts like an encryption of the vector (b2 − b1)R in the sense that
t1X ≈ (b2 − b1)R. This is not a standard homomorphic operation yielding a
standard ciphertext – for example, the output is a vector rather than a scalar –
but the idea for how to do this is very similar to the way we do standard GSW
homomorphic operations. We skip the details of this step in the introduction,
and refer the reader to Sect. 5.1 for details.

Threshold Decryption of Multi-key GSW. A multi-key GSW ciphertext
encrypting a bit μ with respect to the expanded secret key t̂ = (t1, . . . , tN )
corresponding to N parties, is a matrix Ĉ ∈ Z

nN×mN
q such that t̂Ĉ ≈ μt̂Ĝ.

If we were given all of the secret keys t̂ = (t1, . . . , tN ) simultaneously,
we could decrypt this ciphertext using the GSW decryption procedure, scaled
up to the larger dimension: let ŵ = (0, . . . , 0, �q/2�) ∈ Z

nN
q and compute

v = t̂ĈĜ−1(ŵT ) ≈ μ�q/2�.
However, our goal is to design a distributed decryption protocol, where the

parties collaboratively decrypt μ without revealing their secret keys to each
other. We do this as follows. Let’s think of Ĉ as consisting of N matrices
i ∈ Z

n×mN
q stacked on top of each other. Then each party i uses its secret

key ti to output a “partial decryption” pi = tiĈ(i)Ĝ−1(ŵT ) + ei where ei is
some “medium-sized smudging error”. This error is needed to smudge out any
information about the error contained in the ciphertext Ĉ, which might contain
sensitive information beyond just the plaintext bit. These partial decryptions
can be combined to compute

∑
i pi ≈ v ≈ μ�q/2� and therefore recover the

plaintext bit μ.
The above process satisfies the following security notion: given the ciphertext

Ĉ, the bit μ that it encrypts, and the secret keys {ti : i �= j} of all-but-one of
the parties, we can simulate the partial decryption pj of party j without knowing
its secret key tj . Intuitively, this property says that the partial decryption pj

cannot reveal too much information about tj .
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The above security property of partial decryption is tricky to use since it
allows us to simulate the partial decryption of only one party at a time. Never-
theless, we show that this security property of threshold decryption is sufficient
in the context of implementing MPC.

2.3 Road-Map Through the Paper

We begin by giving a definition of multi-key FHE (MFHE) first and then MFHE
with threshold decryption in Sect. 4. Then in Sect. 5 we construct such a scheme
from the LWE and in Sect. 6 we show how to construct MPC from such a scheme.
These two sections are independent of each other and can be read in any order.

3 Preliminaries

Throughout, we let λ denote the security parameter and negl(λ) denote a negli-
gible function. We represent elements in Zq as integers in the range (−q/2, q/2].
Let x = (x1, . . . , xn) ∈ Z

n be a vector. We use the notation x[i] to denote the ith
component scalar. Similarly for a matrix M ∈ Z

n×m we use M[i, j] to denote the
scalar element located in the i-th row and the j-th column. In general, vectors
are represented as single row matrices. The infinity norm (often called simply
norm) of a vector x is defined as ‖x‖∞ = maxi(|x[i]|). The norm of matrices is
defined similarly. An n-dimensional all-zero vector is usually denoted by 0n and
similarly 0n×m denotes an all-zero matrix.

For two distributions X,Y , over a finite domain Ω, the statistical distance
between X and Y is defined by Δ(X,Y ) def= 1

2

∑
ω∈Ω |X(ω) − Y (ω)|. If X,Y

are distribution ensembles parameterized by the security parameter, we write
X

stat≈ Y if the quantity Δ(X,Y ) is negligible. Similarly, we write X
comp≈ Y if

they are computationally indistinguishable. We write ω ← X to denote that ω is
sampled at random according to distribution X. We write ω ← Ω to denote that
it is sampled uniformly at random from the set Ω. For a distribution ensemble
χ = χ(λ) over the integers, and integers bounds B = B(λ), we say that χ is
B-bounded if Prx←χ(λ)[|x| ≤ B(λ)] = 1.

We rely on the following lemma, which says that adding large noise “smudges
out” any small values (see e.g., [4] for proof).

Lemma 2 (Smudging Lemma). Let B1 = B1(λ), and B2 = B2(λ) be positive
integers and let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ← [−B2, B2] be chosen
uniformly at random. Then the distribution of e2 is statistically indistinguishable
from that of e2 + e1 as long as B1/B2 = negl(λ).

Learning with Errors. The decisional learning with errors (LWE) problem,
introduced by Regev [33], is defined as follows.
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Definition 1 (LWE [33]). Let λ be the security parameter, n = n(λ), q = q(λ)
be integers and let χ = χ(λ), be distributions over Z. The LWEn,q,χ assumption
says that for any polynomial m = m(λ) we have

(A, sA + e)
comp≈ (A, z)

where A ← Z
n×m
q , s ← Z

n
q , e ← χm and z ← Z

m
q .

The works of [32,33] show that the LWE problem is as hard as approximating
the shortest vector problem in lattices (for appropriate parameters). The version
of the LWE assumption that we need here is that for any polynomial p = p(λ)
there is a polynomial n = n(λ), a modulus q = q(λ) of singly-exponential size,
and a distribution χ = χ(λ) such that χ is Bχ-bounded and q ≥ 2pBχ such
that LWEn,q,χ holds. This is as hard as approximating the shortest vector with
sub-exponential approximation factors.

4 Defining Threshold Multi-key FHE

4.1 Multi-key FHE (MFHE)

We start with our definition of (leveled) multi-key FHE which is adapted from the
definition given by Lopez-Alt, Tromer and Vaikuntanathan [28] with some minor
differences which reflect differences in the properties achieved by the schemes of
[28] and [10]. On the positive side, in the scheme of [10] the number of parties N
need not be known ahead of time during key generation or encryption. On the
negative side, the scheme of [10] requires some common public parameters that
are available to the parties during key generation.

Below we call any ciphertext which is associated with multiple keys an
“expanded” ciphertext. Also, the ciphertexts that are generated by the encryp-
tion procedure (and thus corresponds to a single key) are called “fresh” cipher-
texts, and the expanded ciphertexts that are output by the homomorphic eval-
uations are called “evaluated” ciphertexts.

Definition 2 (Multi-key (Leveled) FHE). A multi-key (leveled) FHE is
a tuple of algorithms MFHE = (Setup,Keygen,Encrypt,Expand,Eval,Decrypt)
described as follows:

– params ← Setup(1λ, 1d): Setup takes as input the security parameter λ and the
circuit depth d and outputs the system parameters params. We assume that all
the other algorithms take params as an input implicitly.

– (sk, pk) ← Keygen(params): Output secret key sk and public key pk.
– c ← Encrypt(pk, μ): On input pk and some message μ output a ciphertext c.
– ĉ ← Expand((pk1, . . . , pkN ), i, c): Given a sequence of N public-keys and a fresh

ciphertext c under the i-th key pki, it outputs an “expanded” ciphertext ĉ.
– ĉ := Eval(params, C, (ĉ1, . . . , ĉ�)): Given a (description of) boolean circuit C of

depth ≤ d along with � expanded ciphertexts (ĉ1, . . . , ĉ�), outputs an evaluated
ciphertext ĉ.
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– μ := Decrypt(params, (sk1, . . . , skN ), c): On input some ciphertext ĉ and a
sequence of N secret keys output a message μ.

We require the following properties:

Semantic security of encryption: For any polynomial d = d(λ) and any
two messages μ0, μ1 the following distributions are computationally indistin-
guishable:

(params, pk,Encrypt(pk, μ0))
comp≈ (params, pk,Encrypt(pk, μ1))

where params ← Setup(1λ, 1d), (sk, pk) ← Keygen(params).
Correctness and compactness: Let params ← Setup(1λ, 1d). Con-

sider any sequences of N correctly generated key pairs {(pki, ski) ←
Keygen(params)}i∈[N ] and any �-tuple of messages (μ1, . . . , μ�). For any
sequence of indices (I1, . . . , I�) where each Ii ∈ [N ] let {ci ←
Encrypt(pkIi

, μi)}i∈[�] be encryptions of the messages μi under the Ii-th pub-
lic key and let ĉi ← Expand((pk1, . . . , pkN ), Ii, ci)}i∈[�] be the corresponding
expanded ciphertexts. Let C be any (boolean) circuit of depth ≤ d and let
ĉ := Eval(C, (ĉ1, . . . , ĉ�) be the evaluated ciphertext. Then the following holds:

Correctness of Expansion: ∀ i ∈ [�] , Decrypt((sk1, . . . , skN ), ĉi) = μi.
Correctness of Evaluation: Decrypt((sk1, . . . , skN ), ĉ) = C(μ1, . . . , μ�).
Compactness: There exists a polynomial p(· · · ) such that |ĉ| ≤ p(λ, d,N).
In other words the size of ĉ should be independent of C and �, but can depend
on λ, d and N .

Public-Coin Parameter Generation. By default, we will consider schemes
where the Setup algorithm is “public-coin” meaning that its randomness is
included in its output. For such algorithms, we can derive params from a common
random string.

4.2 Threshold Decryption for MFHE

We now define a multi-key FHE which supports a one-round threshold distrib-
uted decryption protocol. Such a protocol consists of two components: (1) given
an expanded ciphertext (possibly evaluated) ĉ each party can compute a partial
decryption using its secret key ski, (2) there is a way to combine the partial
decryptions computed by each party to recover the plaintext.

Definition 3. A Threshold multi-key FHE scheme (TMFHE) is a multi-key FHE
scheme with two additional algorithms MFHE.PartDec,MFHE.FinDec described
as follows:

– pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski): On input an expanded cipher-
text under a sequence of N keys and the i-th secret key output a partial decryp-
tion pi.
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– μ ← MFHE.FinDec(p1, . . . , pN ): On input N partial decryption output the
plaintext μ.

Along with the properties of multi-key FHE we require the scheme to satisfy the
following properties.

Correctness and Simulation: Let params ← Setup(1λ, 1d). Con-
sider any sequences of N correctly generated key pairs {(pki, ski) ←
Keygen(params)}i∈[N ] and any �-tuple of messages (μ1, . . . , μ�). For any
sequence of indices (I1, . . . , I�) where each Ii ∈ [N ] let {ci ←
Encrypt(pkIi

, μi)}i∈[�] be encryptions of the messages μi under the Ii-th pub-
lic key and let ĉi ← Expand((pk1, . . . , pkN ), Ii, ci)}i∈[�] be the corresponding
expanded ciphertexts. Let C be any (boolean) circuit of depth ≤ d and let
ĉ := Eval(C, (ĉ1, . . . , ĉ�) be the evaluated ciphertext.

Correctness of Decryption: The following holds with probability 1:

MFHE.FinDec(ĉ, (p1, . . . , pN )) = C(μ1, . . . , μ�)

where {pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski)}i∈[N ] are the partial
decryptions.

Simulatability of partial decryption: There exists a PPT simula-
tor Sthr which, on input and index i ∈ [N ] and all but the i-th keys
{skj}j∈[N ]\{i} the evaluated ciphertext ĉ and the output message μ :=
C(μ1, . . . , μ�) produces a simulated partial decryption
p′

i ← Sthr(μ, ĉ, i, {skj}j∈[N ]\{i}) such that

pi
stat≈ p′

i

where pi ← MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski). Note that the ran-
domness is only over the random coins of the simulator and the
MFHE.PartDec procedure and all other values are assumed to be fixed (and
known).

The simulatability of partial decryptions property says that we can simulate
the partial decryption pi produced by a single party i given the plaintext value
μ and the secret keys of all other parties. Ideally, we would have a stronger
definition that allows us to simulate the partial decryptions {pi}i∈S of any subset
of the parties S given the secret keys of all other parties (rather than just a single
values), but unfortunately we do not know how to achieve this type of security.
It turns out that, with a little additional work, the given definition suffices in
our MPC construction.

5 Constructing Threshold Multi-key FHE from LWE

We now show how to construct threshold multi-key FHE from LWE. The con-
struction proceeds in four parts. First, we present the GSW encryption scheme
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along with a non-standard but useful homomorphic property that it satisfies.
Secondly, we define the notion of a masking scheme for GSW and show how to
construct it. Thirdly, we use GSW and the masking scheme to construct multi-
key FHE. Finally, we show to perform threshold decryption for this scheme.

5.1 GSW Fully Homomorphic Encryption

We now describe the GSW fully homomorphic encryption scheme.

– params ← GSW.SetUp(1λ, 1d): Choose a lattice dimension parameters n =
n(λ, d) and Bχ-bounded error distribution χ = χ(λ, d) and a modulus q of
size q = Bχ2ω(dλ log λ) such that LWEn−1,q,χ,Bχ

holds.6 Choose m = n log(q)+
ω(log λ). Finally choose a random matrix B ∈ Z

n−1×m
q . Output params :=

(q, n,m, χ,Bχ,B). We stress that all the other algorithms implicitly get params
as input even if we usually do not write this explicitly.

– GSW.Keygen(params): We separately describe two sub-algorithms to generate
secret-key and pubic-key respectively:
• GSW.SKGen(params): Sample s $← Z

n−1
q . Output sk = t = (−s, 1) ∈ Z

n
q .

• GSW.PKGen(params, sk): Sample e ← χm. Set b := sB + e ∈ Z
m
q . Output

pk = A where, A ∈ Z
n×m
q is defined as A :=

[
B
b

]

– GSW.Encrypt(pk, μ): Choose a short random matrix as the randomness R $←
{0, 1}m×m. Then output the encryption of message μ ∈ {0, 1} as C ∈ Z

n×m
q

where,
C := AR + μG

– GSW.Decrypt(sk,C): Let t := sk. Define a vector w ∈ Z
n
q as follows:

w = [0, . . . , 0, �q/2�]

Then compute v = tCG−1(wT ) ∈ Z
m
q . Finally output μ′ =

∣∣∣⌊ v
q/2

⌉∣∣∣ as the
decrypted message.

– On input two ciphertexts C1,C2 ∈ Z
n×m
q we can define homomorphic addi-

tion, multiplication:
• GSW.Add(C1,C2): Output C1 + C2 ∈ Z

n×m
q .

• GSW.Mult(C1,C2): Output the matrix product C1G−1(C2) ∈ Z
n×m
q .

This also allows us to compute a homomorphic NAND gate by outputting
G − C1G−1(C2).

We sketch the proof of the following theorem for completeness.

Theorem 1. ([18]). The scheme described above is a secure FHE under the
LWEn−1,q,χ,Bχ

assumption.

6 The size of q here is bigger than needed for GSW encryption alone in order to support
our extensions.
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Security. The proof of semantic security consists of two steps. First, we can
use the LWE assumption to replace the public key pk = A with a uniformly
random matrix in Z

n×m
q . Then we can use the leftover hash lemma to replace

the ciphertext C := AR + μG with a uniformly random value C′. We refer the
reader to [18] for details.

Correctness. To analyze correctness, it is helpful to define the following notion
of a “noisy ciphertext”.

Definition 4 (β-noisy ciphertext). A β-noisy ciphertext of some message μ
under secret-key sk = t ∈ Z

n
q is a matrix C ∈ Z

n×m
q such that: tC = μtG + e

for some e with ‖e‖∞ ≤ β.

Encryption: Consider a fresh ciphertext C = AR + μG which is generated
by encrypting some message μ with some public key A with corresponding
secret key t. First recall that tA = e such that ‖e‖∞ ≤ Bχ. Therefore
tC = e′ + μtG where e′ = eR which implies ‖e′‖∞ ≤ mBχ. Hence C is
mBχ-noisy encryption of μ under t. Let us call this value initial noise or
βinit = mBχ.

Evaluation: Let C1 and C2 be two ciphertexts which are β1 and β2 noisy
encryption of μ1, μ2 ∈ {0, 1} under the key t respectively, so that: tC1 =
e1 + μ1tG and tC2 = e2 + μ2tG with ‖e1‖∞ ≤ β1, ‖e2‖∞ ≤ β2.

– Addition: Then their addition will result in a ciphertext C(+) = C1 + C2

such that, tC(+) = e′ + (μ1 + μ2)tG where e′ = e1 + e2. Clearly this is
β1 + β2-noisy.

– Multiplication: On the other hand the multiplication would produce a cipher-
text C(×) = C1G−1(C2) such that tC(×) = e′′ + μ1μ2G where e′′ =
eG−1(C2) + μ1e2. Clearly ‖e′′‖∞ ≤ (mβ1 + β2) and the ciphertext C(×)

is (mβ1 + β2)-noisy. The same calculation holds for NAND gates.

Decryption: Let C be a β-noisy encryption of μ so that: tC = e + μtG
where ‖e‖∞ = β. Then v = tCG−1(wT ) = e′ + μ(q/2) such that e′ =
〈e , G−1(wT )〉. Clearly, ‖e′‖∞ ≤ mβ. Now one can observe that decryption
works correctly as long as ‖e′‖∞ < q/4. Therefore correctness holds as long
as β < q/(4m). We call this value βmax := q/(4m).

Consider evaluating a (boolean) circuit of depth d consisting of NAND gates. It
takes input fresh ciphertexts (βinit-noisy) and each level multiplies the noise by
a factor of at most (m + 1). Therefore, the final output is βfinal-noisy cipher-
texts where βfinal = (m + 1)dβinit. To ensure correctness of decryption we need
βfinal ≤ βmax meaning Bχ4m2(m + 1)d < q which is satisfied by our choice of
parameters. This concludes the proof.

Homomorphic Linear Combinations and Pseudo Encryption. We now
define an additional homomorphic operation. This operation takes as input GSW
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ciphertexts Ci,j encrypting the individual entries M[i, j] of some matrix M ∈
Z

m×m
q under a secret key t. It also takes a plaintext vector v ∈ Z

m
q which specifies

the homomorphic function to be computed. The operations outputs a “pseudo
ciphertext” Clc which we can think of as a pseudo encryption of the vector
vM, meaning that tClc ≈ vM. Note that the “pseudo ciphertext” Clc cannot
be correctly decrypted (we can only recover something close to vM but not the
exact value) nor can we further perform any of the standard GSW homomorphic
operations on it.
Property 1 (Linear combination). Let M ∈ {0, 1}m×m be a matrix and for
i ∈ [m], j ∈ [m] let Ci,j ∈ Z

n×m
q be a β-noisy GSW encryption of M[i, j] under

a secret key t ∈ Z
n
q . Let v ∈ Z

m
q be some vector (not necessarily short). Then

there is a polynomial-time deterministic algorithm

Clc = GSW.LComb((C1,1, . . . ,Cm,m),v)

which outputs Clc ∈ Z
n×m
q such that tClc = vM + e where ‖e‖∞ ≤ m3β.

Implementation. The algorithm GSW.LComb((C1,1, . . . ,Cm,m),v) is imple-
mented as follows:
1. For each i ∈ [m], j ∈ [m] define a matrix Zi,j ∈ Z

n×m
q as follows:

Zi,j [a, b] :=
{
v[i] when a = n and b = j
0 otherwise

In other words Zi,j will have 0 everywhere except the n-th (final) row and
j-th column where it has the value v[i].

2. Now output Clc ∈ Z
n×m
q where: Clc =

m,m∑
i=1,j=1

Ci,jG−1(Zi,j)

Correctness. Correctness follows because,

tClc = t
∑
i,j

Ci,jG−1(Zi,j)

=
∑
i,j

(M[i, j]tG + ei,j)G−1(Zi,j)

=
∑
i,j

(M[i, j]tZi,j + e′
i,j)

= t
∑
i,j

M[i, j]Zi,j +
∑
i,j

e′
i,j

= (−s, 1)
[
0n−1

vM

]
+ e′′ = vM + e′′

where ei,j is the noise contained in Ci,j which is of magnitude ‖ei,j‖∞ ≤ β,
e′

i,j = ei,jG−1(Zi,j) has magnitude ‖ei,j‖∞ ≤ mβ, and finally e′′ =
∑
i,j

e′
i,j has

magnitude ‖e′′‖∞ ≤ m3β.



750 P. Mukherjee and D. Wichs

5.2 A Masking Scheme for GSW

We now define and show how to construct a “masking scheme” for GSW, which
serves as the main component of the multi-key FHE scheme. Intuitively, a mask-
ing scheme allows us to take a GSW public key pk = A (having a corresponding
secret key t) and a bit μ and output a pair of values (U ,C) such that C is a
GSW encryption of μ with pk and U is an auxiliary value such that (1) the pair
(U ,C) computationally hide μ (just like C alone) and (2) later, given another
GSW public key pk = A′ (having a corresponding secret key t′) we can compute
a matrix X such that tX + t′C = μt′G.

Property 2 (GSW Masking Scheme). There exists a pair of algorithms
(UniEnc,Extend):

– UniEnc(μ, pk): On input a message μ ∈ {0, 1} and a GSW public key pk it
generates a pair (U ,C) where C ∈ Z

n×m
q and U ∈ {0, 1}∗.

– Extend(U , pk, pk′): On input U and GSW public keys pk, pk′ it outputs X ∈
Z

n×m
q .

for which the following properties holds:

–Semantic Security: For any polynomial d = d(λ) security of GSW encryp-
tion implies that:

(params, pk,UniEnc(0, pk))
comp≈ (params, pk,UniEnc(1, pk))

where params ← GSW.SetUp(1λ, 1d), (sk, pk) ← GSW.Keygen(params).
–Correctness: Let params ← GSW.SetUp(1λ, 1d) and let (sk = t, pk), (sk′ =
t′, pk′) be two independent key pairs generated with GSW.Keygen(params).
For any μ ∈ {0, 1} let (U ,C) ← UniEnc(μ, pk) and X ← Extend(U , pk, pk′).
Then

μ := GSW.Decrypt(sk,C) and tX + t′C = μt′G + e

where ‖e‖∞ ≤ βmask for βmask := (m4 + m)Bχ.

Instantiation. We now show how to implement such masking scheme.

– UniEnc(pk, μ): On input a message μ and a public key pk the algorithm outputs
U , which is a m2-tuple of matrices in Z

n×m
q , and C ∈ Z

n×m
q as follows.

1. Let A = pk. Set C ← GSW.Encrypt(pk, μ) ∈ Z
n×m
q so that C = AR+μG

where R ∈ {0, 1}m×m is the encryption randomness.
2. Encrypt each element of the random matrix R (chosen in Step 1)

to get m2 ciphertexts: V(a,b) ← GSW.Encrypt(pk,R[a, b]). Set U :=(
V(1,1), . . . ,V(m,m)

) ∈ (
Z

n×m
q

)(m2).

– Extend(U , pk, pk′): On input a U ∈ (
Z

n×m
q

)(m2) and public keys pk, pk′ the
algorithm computes X ∈ Z

n×m
q as follows:

1. Parse pk = A =
[
B
b

]
, pk′ = A′ =

[
B
b′

]
and, U =

({V(a,b)}a,b∈[m]

)
.
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2. Set X = GSW.LComb
(
(V(1,1), . . . ,V(m,m)),b′ − b

)
.

Semantic Security. The view of the attacker is the following distribution:
(
params,A,C,U =

(
V(11), . . . ,V(m,m)

) )

generated via params ← GSW.SetUp(1λ, 1d), (sk, pk = A) ←
GSW.Keygen(params) and (C,U) ← UniEnc(pk, μ), where either μ = 0 or μ = 1.
We prove semantic security of the masking scheme by relying on the semantic secu-
rity of the underlying GSW scheme. The proof consists of the following hybrids:

– Firstly, we modify each of the ciphertexts V(a,b) so that instead of being GSW
encryptions of R[a, b], we just choose them as GSW encryptions of 0. This
just relies on semantic security of GSW encryption.

– Secondly, we also choose C as a GSW encryption of 0. This also just follows
from the semantic security of GSW encryption, since after the first step no
information about the randomness R is given out.

Finally, this distribution is completely independent of the bit μ which concludes
the proof of semantic security.

Correctness. Let ((sk = t, pk = A), (sk′ = t′, pk′ = A′)) be two correctly gen-
erated GSW key-pairs. Now recall that, sk = t = (−s, 1) ∈ Z

n
q , and sk′ =

t′ = (−s′, 1) ∈ Z
n
q ; pk = A =

[
B
b

]
∈ Z

n×m
q , pk′ = A′ =

[
B
b′

]
∈ Z

n×m
q where

b = sB + e, b′ = s′B + e′ with ‖e‖∞, ‖e′‖∞ ≤ βχ.
Furthermore, for any message μ let (U ,C) ← UniEnc(pk, μ) and X ←

Extend(U , pk, pk′) where U =
(
V(1,1), . . . ,V(nm)

)
. Then it is easy to see that

μ := GSW.Decrypt(sk,C) which implies that C = AR+ μG =
[
B
b

]
R+ μG for

some R ∈ {0, 1}m×m and hence

t′C = (−s′, 1)
[
B
b

]
R + μt′G

= −s′BR + bR + μt′G
= −(b′ − e′)R + bR + μt′G
= (b − b′)R + μt′G + eC

where eC = e′R has norm ‖eC‖∞ = mBχ.
On the other hand, by the correctness of linear combinations, we have:

tX = (b′ − b)R + eX

where ‖eX‖∞ = m4Bχ.
Combining these equations, we get tX + t′C = μt′G + e∗ where ‖e∗‖∞ ≤

(m4 + m)Bχ as claimed.
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5.3 Construction of Multi-key FHE

First recall the fixed matrix G ∈ Z
n×m
q that played an important role for the

earlier construction and analysis. In this section we define an “expanded matrix”
ĜN ∈ Z

nN×mN
q as:

ĜN =

⎡
⎢⎢⎢⎢⎣

G · · · · · · 0

0 G · · · ...
... · · · G 0
0 · · · · · · G

⎤
⎥⎥⎥⎥⎦

We note that there exists a corresponding efficiently computable function Ĝ−1
N (·)

such that for any m′ ∈ N any matrix M ∈ Z
nN×m′
q , Ĝ−1

N (M′) ∈ {0, 1}mN×mN

is “short” and ĜNĜ−1
N (M) = M. Such Ĝ−1

N (·) can be computed using G−1(·)
in the natural way.

Construction. Now we describe our multi-key FHE construction.

– MFHE.SetUp(1λ, 1d): Run the set-up algorithm of GSW to generate the para-
meters:

params := (q, n,m, χ,Bχ,B) ← GSW.SetUp(1λ, 1d).

– MFHE.Keygen(params): Run the key-generation algorithm of GSW to
generate:

sk := t ← GSW.SKGen(params) pk := A ← GSW.PKGen(params, sk)

– MFHE.Encrypt(pk, μ): Execute the following steps:
• Just use the masking scheme: (U ,C) ← UniEnc(μ, pk).
• Output the pair c := (U ,C) as the ciphertext for μ.

– MFHE.Expand((pk1, . . . , pkN ), i, c): On receiving a sequence of public-keys
(pk1, . . . , pkN ) and a fresh ciphertext c = (U ,C) under the public key pki

run the Extend algorithm for all pkj where i �= j.
• For j ∈ {pk1, . . . , pkN} \ {i}, compute Xj ← Extend(U , pki, pkj).
• Then define a matrix Ĉ ∈ Z

nN×mN
q as a concatenation of N2 sub-matrices

where each sub-matrix Ca,b ∈ Z
n×m
q for a, b ∈ [N ] is defined as:

Ca,b :=

⎧⎨
⎩

C when a = b
Xj when a = i �= j and b = j

0n×m otherwise

For reader’s convenience we provide a pictorial representation of Ĉ in
Fig. 1:

Finally output ĉ := Ĉ as the expanded ciphertext.
– MFHE.Eval(params, C, (ĉ1, . . . , ĉ�)) On input � expanded ciphertexts simply

use the GSW homomorphic evaluation algorithms namely GSW.Add and
GSW.Mult, albeit with expanded dimensions n′ = nN and m′ = mN and
the expanded ĜN , Ĝ−1

N (in place of n,m and G,G−1).
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Row i

Column i

C 0 · · · 0 0

0
. . . · · · · · ·

...
... 0 0 · · · 0

X1 · · · C · · · XN

0 · · · 0 0
...

... · · · · · · . . . 0
0 0 · · · 0 C

Fig. 1. Structure of the expanded ciphertext ̂C

– MFHE.Decrypt(params, (sk1, . . . , skN ), c): On input a ciphertext c = Ĉ and
the sequence of secret keys (sk1, . . . , skN ) parse each ti := ski and then con-
struct the joint secret key by horizontally appending all the secret-keys in
sequence t̂ =

[
t̂1 t̂2 · · · t̂N

] ∈ Z
nN
q . Then run the GSW decryption algorithm

albeit with expanded dimensions n′ = nN and m′ = mN and the expanded
ĜN , Ĝ−1

N (in place of n,m and G,G−1).

Correctness and Security of MFHE Construction

Theorem 2. The scheme described above is a secure MFHE under the
LWEn−1,q,χ,Bχ

assumption (with the same parameters as we defined for GSW
encryption).

Semantic Security. The semantic security of the above multi-key FHE follows
directly from that of the GSW masking scheme.

Correctness of Expansion. Consider a sequences of N key pairs ((sk1 =
t1, pk1), . . . , (skN = tN , pkN )) correctly generated by running the key-generation
as {(pki, ski) ← MFHE.Keygen(params)}i∈[N ]. Now suppose for any mes-
sage μ and any i ∈ [N ] we have a ciphertext c ← MFHE.Encrypt(pki, μ)
under the i-th key and the corresponding expanded ciphertext Ĉ ←
MFHE.Expand((pk1, . . . , pkN ), i, c) as shown in Fig. 1. Let t̂ = [t1, . . . , tN ]. Then

t̂Ĉ = [tiX1 + t1C, . . . , tiC, . . . , tiXN + tNC]
= [μt1G + e1, . . . , μtiG + ei, . . . , μtNG + eN ]

= μt̂Ĝ + [e1, . . . , eN ]

where ‖ei‖∞ ≤ mBχ by the correctness of GSW encryption and for j �= i,
‖ej‖∞ ≤ (m4+m)Bχ by the correctness of the GSW masking scheme. Therefore,
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t̂Ĉ = μt̂Ĝ + e where ‖e‖∞ ≤ (m4 + m)Bχ. Let’s call this value β′
init = (m4 +

m)Bχ = 2O(log λ)Bχ. The correctness of GSW encryption is guaranteed as long
as β′

init ≤ q/(4m′) which holds with the choice of q we defined.

Correctness of Evaluation. Let Ĉ1, . . . , Ĉ� be expanded ciphertexts corre-
sponding to bit μ1, . . . , μ� so that, by the above correctness property, t̂Ĉi =
μit̂Ĝ + ei where ‖ei‖∞ ≤ β′

init. If Ĉ is the output of a homomorphic
evaluation of a circuit C of depth d over the above ciphertexts such that
μ = C(μ1, . . . , μ�) then by the correctness of GSW homomorphic evaluation
with scaled up parameters n′ = nN,m′ = mN we have t̂Ĉ = μt̂Ĝ + e
where ‖e‖∞ ≤ β′

init(m
′ + 1)d = (m4 + m)Bχ(mN + 1)d. Let’s call this value

β′
final = Bχ(m4+m)(mN +1)d = 2O(d log λ)Bχ. The correctness of GSW encryp-

tion is guaranteed as long as β′
final ≤ q/(4m′) which holds with the choice of q

we defined.

5.4 Threshold Decryption for Multi-key FHE

We now show how to implement threshold decryption for the MFHE construction
outlined in the previous section.

MFHE.PartDec(ĉ, (pk1, . . . , pkN ), i, ski): On input an expanded ciphertext ĉ =
Ĉ ∈ Z

nN×mN
q under a sequence of keys (pk1, . . . , pkN ) and the i-th secret

key ski = ti ∈ Z
n
q do the following:

– Parse Ĉ as consisting of N sub-matrices Ĉ(i) ∈ Z
n×mN
q such that

Ĉ =

⎡
⎢⎣
Ĉ(1)

...
Ĉ(N)

⎤
⎥⎦ .

– Define ŵ ∈ Z
nN
q as ŵ = [0, . . . , 0, �q/2�].

– Then compute γi = tiĈ(i)Ĝ−1(ŵT ) ∈ Zq and output pi = γi + esm
i ∈ Zq

where esm
i

$← [−Bdec
smdg,−Bdec

smdg] is some random “smudging noise” where
Bdec

smdg = 2dλ log λBχ.

MFHE.FinDec(p1, . . . , pN ): Given p1, . . . , pN , compute the sum p :=
∑N

i=1 pi.

Output μ :=
∣∣∣⌈ p

q/2

⌋∣∣∣.

Correctness and Simulation Security

Theorem 3. The above threshold decryption procedures for MFHE satisfy cor-
rectness and (statistical) simulation security.
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Correctness. Here the entire scheme is same as MFHE except the decryption.
So if Ĉ is an evaluated ciphertext encrypting a bit μ and the secret keys are
t̂ = [̂t1, . . . , t̂N ] then, by the analysis used for non-threshold correctness, we
have

t̂Ĉ =
∑

i∈[N ]

tiĈ(i) = μt̂Ĝ + e

where ‖e‖∞ ≤ β′
final = (m4 + m)Bχ(mN + 1)d. Therefore if the partial decryp-

tions pi are computed as specified we have:
∑

i∈[N ]

pi =
∑

i∈[N ]

γi +
∑

i∈[N ]

esm
i =

∑
i∈[N ]

tiĈ(i)Ĝ−1(ŵT ) + esm

= (μt̂Ĝ + e)Ĝ−1(ŵT ) + esm

= μ�q/2� + e′ + esm

where esm =
∑

i∈[N ] e
sm
i has norm |esm| ≤ NBdec

smdg = 2O(dλ log λ)Bχ and e′ =

eĜ−1(ŵT ) has norm |e′| ≤ β′
finalmN = 2O(d log λ)Bχ. Since q = 2ω(dλ log λ)Bχ

we have |e′ + esm| < q/4 and correctness holds.

Simulatability: The simulator Sthr(μ, Ĉ, i, {tj}j∈[N ]\{i}), on input the secrets
keys {tj}j �=i the evaluated ciphertext Ĉ ∈ Z

nN×mN
q and the output value μ =

C(μ1, . . . , μ�) encrypted in Ĉ outputs the simulated partial decryption:

p′
i = μ�q/2� + esm

i −
∑
i�=j

γj (1)

for esm
i

$← [−Bdec
smdg, B

dec
smdg] where γj = tjĈ(j)Ĝ−1(ŵT ).

To see the indistinguishability note that, by the same calculation as used
to argue correctness, we know that

∑
j∈[N ] γj = μ�q/2� + e′ where |e′| ≤

β′
finalmN = 2O(d log λ)Bχ. Therefore if pi = γi+esm

i is the real partial decryption
then

pi = μ�q/2� + e′ + esm
i −

∑
i�=j

γj

The difference between the real value pi and the simulated value p′
i is the noise

e′ of norm |e′| = 2O(d log λ)Bχ. But by the smudging Lemma 2, the distributions
of esm

i and esm
i + e′ are statistically close since esm

i
$← [−Bdec

smdg,−Bdec
smdg] where

Bdec
smdg = 2dλ log λBχ so that Bdec

smdg/|e′| ≥ 2λ. Therefore the simulated partial
decryption and the real one are statistically indistinguishable.

5.5 Bootstrapping

Note that the above MFHE scheme is leveled i.e., it depends on the multiplicative
depth of the circuit to be computed. However, this dependency can be avoided
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easily by boot-strapping and assuming circular security. We briefly describe the
straightforward procedure and omit the details.

During key generation, each party i chooses a key pair (ski, pki) and uses the
MFHE scheme to encrypt the secret key ski under pki bit-by-bit.7 It appends
these encryptions to the public key. Later, given a sequence of public keys
{pk1, . . . , pkN} anyone can create an expanded multi-key encryption of each ski

using the MFHE expansion procedure. This allows us to use Gentry’s boot-
strapping technique [17] to “refresh” a highly noisy multi-key ciphertext by
homomorphically computing the MFHE decryption procedure. Therefore, to
compute a circuit of arbitrary depth, we only need to set the parameters of
the MFHE scheme so as to be evaluate circuits of some fixed depth d + 1 where
d is the depth of the MFHE decryption procedure.

Note that, by circular security it is assured that an encryption of a secret
key under itself is semantically secure which implies that the semantic security
of the above modified MFHE scheme remains intact.

6 Secure MPC via Threshold MFHE

Basic Template. We now present a protocol for general MPC, using any thresh-
old multi-key fully homomorphic scheme. The protocol is based on the template
discussed in the introduction which we recall below:

1. Each party individually chooses its own MFHE key pair (pki, ski), encrypts
its input xi under pki, and broadcasts the resulting ciphertext. At the end of
this round, each party can homomorphically compute the desired function f
on the received ciphertexts and derive a common multi-key ciphertext which
encrypts the output y = f(x1, . . . , xN ).

2. The parties run a distributed protocol for “threshold decryption” using their
secret keys ski to decrypt the multi-key ciphertext and recover the output
y in plaintext. In particular each party first generates partial decryptions pi

from the common (evaluated) ciphertext ĉ and then broadcasts them. Finally
each party, on receiving all those partial decryptions can compute the final
decryption y.

Our goal is to prove the security of this protocol (as least in the honest-but-
curious setting, as a start). The natural attempt to construct a MPC simulator
S would be to first use the simulator of threshold decryption, Sthr to replace
the correct partial decryptions pi with simulated ones p′

i and then use semantic
security of the encryption to replace each ciphertext (broadcast in the first round)
by encryptions of 0.

The Problem. Unfortunately, we notice that the simulatability of the threshold
decryption does not suffice when there is more than one honest party. Essentially,

7 We ignore the algebraic structure of the secret key here and assume each element in
Zq can be represented as a �log(q)� + 1 binary string.
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our definition of simulation security for threshold decryption only allows us to
simulate the partial decryption of a single party at a time while knowing the
secret keys of all other parties. We cannot, however, simultaneously simulate the
partial decryptions of (even) two honest parties without knowing either of their
secret keys.

Solution. Essentially we solve the above problem by two steps. We first show that
the “basic” protocol as described above is already secure when there is exactly
one honest party. Then, later in Sect. 6.2 we extend the basic protocol to another
protocol which can handle any arbitrary number of corruption. The extended pro-
tocol additionally requires only pseudorandom functions (PRFs) and thus no new
assumptions are used. Combining, we get a protocol which securely realizes any
functionality against any arbitrary number of corruptions. Below we provide the
basic protocol from any MFHE scheme and prove security against exactly N − 1
corruptions. Later in Sect. 6.2 we present the extension in detail.

Semi-Malicious Security. Following [3], we will actually prove that the above
protocol satisfies something called “semi-malicious” security which is stronger
than honest-but-curious. Intuitively, it means that adversarial parties need to
follow the protocol specification, but can use arbitrary values for their random
coins. In fact, the adversary only needs to decide on the input and the random
coins to use for each party in each round at the time that the party sends the first
message8. We will then rely on a theorem of [3] showing that one can compile
any such protocol which is secure in the semi-malicious setting into one that
is secure in the fully malicious setting, without adding any rounds, by using
non-interactive zero-knowledge proofs (NIZKs).

6.1 Protocol Secure Against Exactly N − 1 Corruptions

The protocol, given in Fig. 2, realizes general multiparty computation for any
polynomial-time deterministic functions f which produces a common output for
all parties. It does so with respect to a static semi-malicious attackers corrupting
exactly N − 1 parties. Formally we prove the following theorem.

Theorem 4. Let f be a poly-time computable deterministic functionwithN inputs
and 1 output. LetMFHE = (Setup,Keygen,Encrypt,Expand,Eval,PartDec,FinDec)
beamulti-keyFHEschemewith threshold decryption.Then theprotocolπf described
in Fig. 2 UC-realizes the function f against any static semi-malicious adversary
corrupting exactly N − 1 parties.

Proof: The correctness of the protocol follows in a straightforward way from
the correctness of the underlying threshold MFHE scheme.

To prove security basically we need to construct an efficient (PPT) simulator
S for any adversary corrupting exactly N − 1 parties. Let A be a static semi-
malicious adversary and Ph be the only honest party. The simulator simulates
the protocol execution on behalf of the honest party Ph as follows.
8 See the full version [30] for a formal definition.



758 P. Mukherjee and D. Wichs

Let f : ({0, 1}�in)N → {0, 1}�out be the function to compute. Let d be the depth of
the circuit for f .

Preprocessing. Run setup ← MFHE.Setup(1λ, 1d). All the parties share the com-
mon setup.

Input: Each party Pk has input xk ∈ {0, 1}�in .

The Protocol:

Round I. Each party Pk executes the following steps.
– Generate a key-pair (skk, pkk) ← MFHE.Keygen(setup).
– Encrypt the message bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk,xk[j])}j∈[�in].

– Broadcast the public-key and the ciphertexts (pkk, {ck,j}j∈[�in]).
Round II. Each party Pk on receiving values {pki, ci,j}i∈[N ]\{k},j∈[�in] executes the

following steps:
– First expand each ci,j :

{ĉi,j ← MFHE.Expand((pk1, . . . , pkN ) , i, ci,j)}i∈[N ],j∈[�in]

– Run the evaluation algorithm to generate the evaluated ciphertext:

{ĉj ← MFHE.Eval(fj , (ĉ1,1, . . . , ĉN,�in))}j∈[�out]
.

where fj is the boolean function for j-th bit of the output of f .
– Finally all the parties concurrently take part in one-round threshold decryption

to obtain the output message bit-by-bit as follows:

• Each Pk computes the partial decryption for all j ∈ [�out]:

p
(j)
k ← MFHE.PartDec(ĉj , (pk1, . . . , pkN ), k, skk)

• Pk broadcasts all the values {p
(j)
k }j∈�out .

Output. On receiving all the values {p
(j)
i }i∈[N ],j∈[�out] run the final decryption to

obtain the j-th output bit: {yj ← MFHE.FinDec(p(j)
1 , . . . , p

(j)
N )}j∈[�out]. Output

y = y1 . . . y�out .

Fig. 2. πf : A basic MPC protocol for f secure against N − 1 corruptions

The Simulator. In round-I, the simulator encrypts 0s instead of the real input
bits of the honest party Ph. After round-I it gets the inputs and the secret keys
of the N −1 corrupt parties from the “witness tape”. It gives these inputs to the
ideal functionality and receives the output bits yj for each j ∈ [�out]. At this point
it can also compute the evaluated ciphertexts ĉj . Then it computes the simulated
partial decryptions for the honest party˜(j)h ← Sthr(yj , ĉj , h, {ski}i∈[N ]\{h}) and
broadcast those in round-II instead of correctly computed partial decryptions
p
(j)
h generated via MFHE.PartDec(· · · ).



Two Round Multiparty Computation via Multi-key FHE 759

Hybrid Games. We now define a series of hybrid games that will be used to
prove the indistinguishability of the real and ideal worlds:

IDEALF,S,Z
comp≈ REALπ,A,Z (2)

The output of each game is always just the output of the environment.

The game REALπ,A,Z : This is exactly an execution of the protocol π in the
real world with environment Z and semi-malicious adversary A.

The game HY B1
π,A,Z : In this game, we modify the real world experiment as

follows. Assume (as a mental experiment) that Ph is given the all the secret
keys {ski}i∈[N ]\{h} (as written on the “witness tape” of the adversary) after
round I. In the second round, instead of broadcasting a correctly generated
partial decryptions p

(j)
h generated via MFHE.PartDec(· · · ), it broadcasts sim-

ulated ones {̃(j)h ← Sthr(yj , ĉj , h1, {ski}i�=h)}j∈[�out].
The game IDEALF,S,Z : This is similar to the game HY B1

π,A,Z except instead
of encrypting its real input, Ph now broadcasts encryption of 0s in the first
round.

Claim 1. REALπ,A,Z
stat≈ HYB1

π,A,Z

Proof: Notice that, the only change between those experiments are that, the
partial decryption of party Ph is generated through simulator Sthr instead of cor-
rectly using MFHE.PartDec. By simulatability of threshold decryption the partial
decryptions are statistically indistinguishable hence so are the experiments. �

Claim 2. HYB1
π,A,Z

comp≈ IDEALF,S,Z

Proof: The only change between those experiments are in generating encryp-
tions of party Ph . By semantic security of the underlying MFHE the encryptions
are computationally indistinguishable. Hence the experiments are also compu-
tationally indistinguishable. Note that here it is possible to use the semantic
security as the partial decryptions of Ph in both the experiments are simulated
and hence independent of the secret key skh. �

This concludes the proof of the theorem. �

6.2 An Extended Protocol for Arbitrary Many Corruptions

In this section we construct an “extended” MPC protocol π̂f which securely
computes any function f against any semi-malicious adversary that can corrupt
any t ∈ [N ] parties. We do so by relying on the “basic” MPC protocol πf from
the previous section, which is secure against a semi-malicious adversary that
corrupts exactly N − 1 parties. To compute a function f , our extedned protocol
simply runs the basic protocol π

̂f on an extended function f̂ defined as follows.
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Definition 5 (Extended function). For any polynomial �in, �out, N ∈ N let
f : {{0, 1}�in}N → {0, 1}�out be a poly-time computable function and PRF :
{0, 1}λ × [N ] → {0, 1}�in be a PRF. Then we define an extended func-
tion f̂ : {{0, 1}�in × {1, 2, 3} × {0, 1}λ}N → {0, 1}�out which takes as input
((x1, mode1, z1), . . . , (xN , modeN , zN )) and does the following:

– If ∀ i ∈ [N ], modei = 1 then output f(x1, . . . ,xN ).
– If ∃ unique i ∈ [N ] such that modei = 2 then let K := zi. For all j ∈ [N ]:

• If modej = 3 then set x′
j := PRF(K, j) ⊕ xj.

• Else set x′
j := xj.

Output f(x′
1, . . . ,x

′
N ).

– Otherwise output 0�out .

Roughly speaking, the extended function does the same thing as the original
function if all the inputs have modei = 1. However, if there is one special party
with modei = 2 then the function uses a PRF key K = zi provided by that party
to “decrypt” the inputs of all the parties with modej = 3.

We define an “extended protocol” π̂f in Fig. 3. It essentially just runs the orig-
inal basic protocol π

̂f with an extended function f̂ and appropriately extended
inputs.

Let f : {{0, 1}�in}N → �out be the function we wish to compute and let and PRF :

{0, 1}λ×[N ] → {0, 1}�in be a PRF. Let ̂f : {{0, 1}�in×{1, 2, 3}×{0, 1}λ}N → {0, 1}�out

be the corresponding extended function (Definition 5). Let π
̂f be the protocol from

Figure 2 applied to the extended function ̂f . The extended protocol π̂f is defined as
follows:

Setup: The setup is the same as the that of the protocol π
̂f .

Input: Each party Pk has input xk ∈ {0, 1}�in . Additionally each party sets modek :=

1, zk := 0, and defines its extended input as x̂k := (xk, modek, zk) ∈ {0, 1}̂�in where
̂�in = �in + λ + 2. a

Protocol: The parties run the protocol π
̂f using the extended inputs {x̂k}k∈[N ]. They

output whatever π
̂f outputs.

a Here any 0 denotes a string of 0s of appropriate size. We abuse notation for simpli-
fication.

Fig. 3. π̂f : Extended protocol secure against any number of semi-malicious corruptions.

The following theorem states that the extended protocol π̂f is secure against
any arbitrary number of semi-malicious corruptions. The proof is deferred to the
full version [30].

Theorem 5. Let f be a function with N inputs and 1 output. Let PRF : {0, 1}λ×
[N ] → {0, 1}�out be a PRF. Then, under the LWE assumption, the protocol π̂f

shown in Fig. 3 UC-realizes f against a static semi-malicious adversary that can
corrupt any number of parties.



Two Round Multiparty Computation via Multi-key FHE 761

6.3 Extensions and Applications

Generalized Functionalities. Our protocol (Fig. 2) considers deterministic
functionalities where all the parties receive the same output. One can extend that
to handle randomized functionalities and individual output in a straightforward
manner using known standard techniques just like [4]. We refer to [4] for more
details.

Fully Malicious Adversary. Our protocol protects only against semi-malicious
adversaries. However, since we are in the CRS model such protocol can be
generically converted to one secure against fully-malicious adversary using non-
interactive zero-knowledge (NIZK) arguments. For more detail on this again we
refer to [4].

Communication Complexity. Although our main focus was on round com-
plexity, we mention that our scheme also achieves essentially optimal communi-
cation complexity which is only proportional to the total input size, output size
and circuit depth. We can get rid of the reliance on circuit depth by using boot-
strapping and relying on circular security: each party would simply send a GSW
encryption of its secret key under its public key and then we would perform a
boostrapping step after each homomorphic operation to reduce the noise in the
ciphertext.

Computation on the Web. Our results also relate to the idea of “compu-
tation on the web” [21] where parties can’t interact with each other but can
only interact with some central website without further coordination. Using our
scheme (or any 2 round protocol) each party needs to log in twice: once to give
its ciphertext to the sever and once to give a partial decryption of the output.

7 Conclusions

We have shown how to implement MPC with only two rounds of interaction
by relying on the LWE assumption (and NIZKs for malicious security). Several
interesting open problems remain. Firstly, is possible to get a 2 round MPC
protocol under general assumptions such as the existence of oblivious transfer?
Secondly, is it possible to get a protocol that achieves adaptive security? A
recent work of [16] does this using indistinguishability obfuscation (iO) but it
remains an open problem to do this using more standard assumptions such as
LWE. Lastly, it would be interesting to get a 2 round protocol in the honest-
but-curious model without a CRS. One way to achieve this would be to a build
a threshold multi-key FHE without any common public parameters.
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