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Abstract. In a traitor tracing scheme, each user is given a different
decryption key. A content distributor can encrypt digital content using
a public encryption key and each user in the system can decrypt it using
her decryption key. Even if a coalition of users combines their decryption
keys and constructs some “pirate decoder” that is capable of decrypting
the content, there is a public tracing algorithm that is guaranteed to
recover the identity of at least one of the users in the coalition given
black-box access to such decoder.

In prior solutions, the users are indexed by numbers 1,..., N and
the tracing algorithm recovers the index 7 of a user in a coalition. Such
solutions implicitly require the content distributor to keep a record that
associates each index ¢ with the actual identifying information for the
corresponding user (e.g., name, address, etc.) in order to ensure account-
ability. In this work, we construct traitor tracing schemes where all of
the identifying information about the user can be embedded directly into
the user’s key and recovered by the tracing algorithm. In particular, the
content distributor does not need to separately store any records about
the users of the system, and honest users can even remain anonymous to
the content distributor.

The main technical difficulty comes in designing tracing algorithms
that can handle an exponentially large universe of possible identities,
rather than just a polynomial set of indices ¢ € [IN]. We solve this by
abstracting out an interesting algorithmic problem that has surprising
connections with seemingly unrelated areas in cryptography. We also
extend our solution to a full “broadcast-trace-and-revoke” scheme in
which the traced users can subsequently be revoked from the system.
Depending on parameters, some of our schemes can be based only on the
existence of public-key encryption while others rely on indistinguishabil-
ity obfuscation.
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1 Introduction

The Traitor-Tracing Problem. Traitor-tracing systems, introduced by Chor
et al. [12], are designed to help content distributors identify the origin of pirate
decryption boxes (such as pirate cable-TV set-top decoders) or pirate decryption
software posted on the Internet.

In the traditional problem description, there is a set of legitimate users with
numeric identities [N] = {1,..., N} for some (large) polynomial N. Each user
i € [N] is given a different decryption key sk;. A content distributor can encrypt
content under the public key pk of the system and each legitimate user i can
decrypt the content with her decryption key sk;. For example this could model a
cable-TV network broadcasting encrypted digital content, where each legitimate
customer i is given a set-top decoder with the corresponding decryption key sk;
embedded within it.

One of the main worries in this scenario is that a user might make copies of
her key to re-sell or even post in a public forum, therefore allowing illegitimate
parties to decrypt the digital content. While this cannot be prevented, it can
be deterred by ensuring that such “traitors” are held accountable if caught. To
evade accountability, a traitor might modify her secret key before releasing it
in the hope that the modified key cannot be linked to her. More generally, a
coalition of several traitors might come together and pool the knowledge of all
of their secret keys to come up with some “pirate decoder” program capable
of decrypting the digital content. Such a program could be made arbitrarily
complex and possibly even obfuscated in the hopes that it will be difficult to
link it to any individual traitor. A traitor-tracing scheme ensures that no such
strategy can succeed — there is an efficient tracing algorithm which is given black-
box access to any such pirate decoder and is guaranteed to output the numeric
identity ¢ € [N] of at least one of the traitors in the coalition that created the
program.

Who Keeps Track of User Info? The traditional problem definition for traitor
tracing makes an implicit assumption that there is an external mechanism to
keep track of the users in the system and their identifying information in order
to ensure accountability. In particular, either the content distributor or some
third party would need to keep a record that associates the numeric identities
i € [N] of the users with the actual identifying information (e.g., name, address,
etc.). This way, if the tracing algorithm identifies a user with numeric identity ¢
as a traitor, we can link this to an actual person.

Goal: Embedding Information in Keys. The main goal of our work is to cre-
ate a traitor tracing system where all information about each user is embed-
ded directly into their secret key and there is no need to keep any external
record about the honest users of the system. More concretely, this goal translates
to having a traitor tracing scheme with a flexible, exponential-size universe of
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identities ZD!. A user’s identity id € ZD can then be a string containing all rele-
vant identifying information about the user. The content distributor has a master
secret key msk, and for any user with identity id € ZD the content provider can
use msk to create a user secret key skjq with this information embedded inside
it. The content provider does not need to keep any records about the user after
the secret key is given out. If a coalition of traitors gets together and constructs
a pirate decoder, the tracing algorithm should recover the entire identity id of a
traitor involved in the coalition, which contains all of the information necessary
to hold the traitor accountable.

Moreover, if we have such a traitor tracing scheme with an exponentially large
universe of identities as described above, it is also possible to construct a fully
anonymous traitor tracing system where the content provider never learns who
the honest users are. Instead of a user requesting a secret key for identity id € ZD
by sending id to the content provider directly, the user and the content provider
run a multiparty computation (MPC) where the user’s input consists of the string
id containing all of her identifying information (signed by some external identity
verification authority), the content provider’s input is msk, and the computation
gives the user skjy as an output (provided that the signature verifies) and the
content provider learns nothing. This can even be combined with an anonymous
payment system such as bit-coin to allow users to anonymously pay for digital
content. Surprisingly, this shows that anonymity and traitor tracing are not
contradictory goals; we can guarantee anonymity for honest users who keep their
decryption keys secret while still maintaining the ability to trace the identities
of traitors.

Unfortunately, it turns out that prior approaches to the traitor tracing prob-
lem cannot handle large identities and crucially rely on the fact that, in the
traditional problem definition, the set of identities [N] is polynomial in size. We
first survey the prior work on traitor tracing and then present our new results
and techniques that allow us to achieve the above goals.

1.1 Prior Work

Traitor Tracing Overview. Traitor tracing was introduced by Chor et al. [12].
There are many variants of the problem depending on whether the encryption
and/or the tracing algorithm are public key or secret key procedures, whether
the tracing algorithm is black-box, and whether the schemes are “fully collusion
resistant” (no bound on the number of colluding traitors), or whether they are
“bounded collusion resistant”. See e.g., the works of [6-9,11,13,17,19,29,31-
34,37,38] and references within for a detailed overview of prior work.

In this work, we will focus on schemes with a public-key encryption and a
public-key and black-box tracing algorithm, and will consider both fully and

! While schemes with exponential identity spaces are normally referred to as “identity-
based”, identity-based traitor tracing already has a defined meaning [1]. In particu-
lar, the space of identities that are traced in an identity-based traitor tracing scheme
is still polynomial. We use the term “flexible” traitor tracing to refer to schemes
where the space of identities that can be traced is exponential.
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bounded collusion resistance. In all prior systems, the set of legitimate users was
fixed to [N] = {1, ..., N} for some large polynomial N, and the main differences
between the prior schemes depends on how various parameters (public key size,
secret key size, ciphertext size) scale with the number of users N.

Traitor Tracing via Private Broadcast Encryption (PLBE). Boneh et al. [7] build
the first fully collusion resistant traitor tracing scheme where the ciphertext
size is O(V/N), private key size is O(1), public key size is O(v/N) (we ignore
factors that are polynomial in the security parameter but independent of N). The
scheme is based on bilinear groups. This work also presents a general approach for
building traitor tracing schemes, using an intermediate primitive called private
linear broadcast encryption (PLBE). We follow the same approach in this work
and therefore we elaborate on it now.

A PLBE scheme can be used to create a ciphertext that can only be decrypted
by users i € [N] with ¢ < T for some threshold value T' € {0,..., N} specified
during encryption. Furthermore, the only way to distinguish between a cipher-
text created with the threshold value T' vs. T” for some T < T” is to have a
secret key sk; with ¢ € {T,...T" — 1} that can decrypt in one case but not the
other.

A PLBE scheme can immediately be used as a traitor-tracing scheme. The
encryption algorithm of the tracing scheme creates a ciphertext with the thresh-
old T' = N, meaning that all users can decrypt it correctly. The tracing algo-
rithm gets black-box access to a pirate decoder and does the following: it tries
all thresholds 7" = 1,..., N and tests the decoder on ciphertext created with
threshold T until it finds the first such threshold for which there is a “big jump”
in the decryption success probability between T" and T'— 1. It outputs the index
T as the identity of the traced traitor. The correctness of the above approach
can be analyzed as follows. We know that the decoder’s success probability on
T = 0 is negligible (since such ciphertexts cannot be decrypted even given all
the keys) and on T = N it is large (by the correctness of the pirate decoder
program). Therefore, there must be some threshold 7" on which there is a big
jump in the success probability, but by the privacy property of the PLBE, a big
jump can only occur if the secret key sk was used in the construction of the
pirate decoder. Note that the run-time of this tracing algorithm is O(N).

State of the Art Traitor Tracing via Obfuscation. Recently, Garg et al. [21]
and Boneh and Zhandry [9] construct new fully collusion resistant traitor trac-
ing scheme with essentially optimal parameters where key/ciphertext sizes only
depend logarithmically on N. The schemes are constructed using the same PLBE
framework as in [7] and the main contributions are the construction of a new
PLBE scheme with the above parameters. These constructions both rely on indis-
tinguishability obfuscation. More recently, Garg et al. [22] construct a PLBE with
polylogarithmic parameters based on simple assumptions on multilinear maps.
We note that in all three schemes, the PLBE can be extended to handle flexible
(exponential) identity spaces by setting N = 2" for polynomial n. In this case,
encryption and key generation, as well as ciphertext and secret key sizes, will
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grow polynomially in n. However, a flexible PLBE scheme does not directly yield
to a flexible traitor tracing scheme. In particular, the tracing algorithm of [7]
cannot be applied in this setting because it will run in exponential time, namely

o(2n).

Broadcast Encryption, Trace and Revoke. We also mention work on a related
problem called broadcast encryption. Similar to traitor tracing, such schemes
have a collection of users [N]. A sender can create a ciphertext that can be
decrypted by all of the users of the system except for specified set of “revoked
users” (which may be colluding). See e.g., [16-18,20,24,26,32,34,39] and refer-
ences within.

A trace and revoke system is a combination of broadcast encryption and
traitor tracing [32,34]. In other words, once traitors are identified by the tracing
algorithm they can also be revoked from decrypting future ciphertexts. Boneh
and Waters [8] proposed a fully collusion resistant trace and revoke scheme
where the private/public keys and ciphertexts are all of size O(v/N). It was
previously unknown how to obtain fully collusion resistant trace and revoke
schemes with logarithmic parameter sizes. Separately, though, it is known how
to build both broadcast encryption and traitor tracing with such parameters
using obfuscation [9,21,41], and one could reasonably expect that it is possible
to combine the techniques to obtain a broadcast, trace, and revoke system.

Watermarking. Lastly, we mention related work on watermarking cryptographic
functions [14,15,35]. These works show how to embed arbitrary data into the
secret key of a cryptographic function (e.g., a PRF) in such a way that it is
impossible to create any program that evaluates the function (even approxi-
mately) but in which the mark is removed. This is conceptually related to our
goal of embedding arbitrary data into the secret keys of users in a traitor-tracing
scheme. Indeed, one could think of constructing a traitor tracing scheme where
we take a standard public-key encryption scheme and give each user a water-
marked version of the decryption key containing the user’s identity embedded.
Unfortunately, this solution does not work with current definitions of watermark-
ing security, where we assume that each key can only be marked once with one
piece of embedded data. In the traitor tracing scenario, we would want mark the
same key many times with different data for each user. Conversely, solutions to
the traitor tracing problem do not yield watermarking schemes since they only
require us to embed data in carefully selected secret keys chosen by the scheme
designer rather than in arbitrary secret keys chosen by the user.

1.2 Our Results

Our main result is to give new constructions of traitor-tracing schemes that
supports a flexibly large space of identities ZD = [2"] where the parameter n is
an arbitrary polynomial corresponding to the bit-length of the string id € ZD
which should be sufficiently large encode all relevant identifying information
about the user. The user’s secret key skjq contains the identity id embedded
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within it, so there is no need to keep any external record of users. The tracing
algorithm recovers all of the identifying information id about a traitor directly
from the pirate decoder. We construct such a scheme where the secret key skiq
is of length poly(n), which is essentially optimal since it must contain the data
id embedded within it. The first scheme we construct also has ciphertexts of
size poly(n) but we then show how to improve this to ciphertexts of constant
size independent of n (though still dependent on the security parameter). In the
latter scheme, the identity length n need not be specified ahead of time: different
users can potentially have different amounts of identifying information included
in their key, and there is no restriction on the amount of information that can be
included. The schemes are secure against an unbounded number of collusions.

Our schemes are secure assuming the existence of certain types of private
broadcast encryption, which themselves are special cases of functional encryption
(FE). Our work mainly focuses on building traitor tracing from these private
broadcast schemes. We then instantiate the private broadcast schemes using
recent constructions of FE, which in turn are built from indistinguishability
obfuscation (i0) and one-way functions (OWF). An interesting direction for
future work is to build private broadcast encryption from milder assumptions
such as LWE.

We also construct schemes which are only secure against collusions of size
at most ¢, where the ciphertext size is either of length O(n)poly(q) assuming
only public-key encryption, or of only length poly(q) independent of n assuming
sub-exponential LWE.2 We also extend the above construction to a full trace
and revoke scheme, allowing the content distributor to specify a set of revoked
users during encryption. Assuming iO, we get such a scheme where neither the
ciphertexts nor the secret keys grow with the set of revoked users.

1.3 Our Techniques

Our high level approach follows that of Boneh et al. [7], using PLBE as an inter-
mediate primitive to construct traitor tracing. There are two main challenges:
the first is to construct a PLBE scheme that supports an exponentially large
identity space ZD = [2"] for some arbitrary polynomial n. The second, more
interesting challenge, and the main focus of this work, is to construct a tracing
algorithm which runs in time polynomial in n rather than N = 2™.

PLBE with Large Identity Space. The work of Boneh and Zhandry [9] already
constructs a PLBE scheme where the key/ciphertext size is polynomial in n.
Unfortunately, the proof of security relies on a reduction that runs in time
polynomial in N = 2™ which is exponential in the security parameter. Thus
going through their construction we would need to assume the sub-exponential
hardness of iO (and OWFs) to get a secure PLBE. We instead take a different
approach, suggested by [21], and construct PLBE directly from (indistinguisha-
bility based) functional encryption (FE). For technical reasons detailed below, we

2 The above parameters ignore fixed polynomial factors in the security parameters.
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actually need an adaptively secure PLBE scheme, and thus an adaptively secure
FE scheme. In the unbounded collusion setting, these can be constructed from
iO [2,40] or from simple assumptions on multilinear maps [22]. Alternatively, we
get a PLBE scheme which is (adaptively) secure against a bounded number of
collusions by relying on bounded-collusion FE which can be constructed from
any public-key encryption [25] or from sub-exponential LWE if we want succinct
ciphertexts [23].

A New Tracing Algorithm and the Oracle Jump-Finding Problem. The more
interesting difficulty comes in making the tracing algorithm run in time poly-
nomial in n rather than N = 2". We can think of the pirate decoder as an
oracle that can be tested on PLBE ciphertexts created with various thresholds
T € {0,...,N} and for any such threshold T it manages to decrypt correctly
with probability pr. For simplicity, let us think of this as an oracle that on input
T outputs the probability pr directly (since we approximate this value by testing
the decoder on many ciphertexts). We know that pg is close to 0 and that py
is the probability that a pirate decoder decrypts correctly, which is large — let’s
say py = 1 for simplicity. Moreover, we know that for any 7,7’ with T < T’
the values pr and pp are negligibly close unless there is a traitor with identity
i € {T,...T" — 1}, since encryptions with thresholds T and T” are indistinguish-
able. In particular this means that for any point 7' at which there is a “jump”
so that [pr — pr_1]| is noticeable, corresponds to a traitor. Since we know that
the number of traitors in the coalition is bounded by some polynomial, denoted
by q, we know that there are at most ¢ jumps in total and that there must be
at least one “large jump” with a gap of at least 1/q. The goal is to find at least
one jump. We call this the “oracle jump-finding problem”.

An Algorithm for the Oracle Jump-Finding Problem. The tracing algorithm
of [7] essentially corresponds to a linear search and tests the oracle on every
point T' € [N] and thus takes at least O(N) steps in the worst case to find
a jump. When using flexibly large identity universes (that is, taking N to be
exponential), the tracing algorithm will therefore run in exponential time. This
is true even if the underlying PLBE is efficient for such identity spaces, including
the PLBESs discussed above. Our goal is to design a better algorithm that takes
at most poly(n, q) steps.

It is tempting to simply substitute binary search in place of linear search. We
would first call the oracle on the point 7'/2 and learn pr/5. Depending on whether
the answer is closer to 0 or 1 we recursively search either the left interval or the
right interval. The good news is in each step the size of the interval decreases
by half and therefore there would be at most n steps. The bad news is that the
gap in probabilities between the left and right end points now also decreases by
a half and therefore after i steps we would only be guaranteed that the interval
contains a jump with a gap of 27%/q which quickly becomes negligible.

Interestingly, we notice that the same oracle jump-finding problem implicitly
appeared in a completely unrelated context in a work of Boyle et al. [10] showing
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the equivalence of indistinguishability obfuscation and a special case of differing-
inputs obfuscation. Using the clever approach developed in the context of that
work, we show how to get a poly(n,q) algorithm for the oracle jump finding
problem and therefore an efficient tracing algorithm.

The main idea is to follow the same approach as binary search, but each
time that the probability at the mid-point is noticeably far from both end-
points we recurse on both the left and the right interval. This guarantees that
there is always a large jump with a gap of at least 1/¢ within the intervals being
searched. Furthermore, since the number of jumps is at most ¢ we can bound
the number of recursive steps in which both intervals need to be searched by g,
and therefore guarantee that the algorithm runs in poly(n, q) steps.

Interestingly, due to our tracing algorithm choosing which 7" to test based
on the results of previous tests, we need our PLBE scheme to be adaptively
secure, and hence also the underlying FE scheme must be adaptively secure.
This was not an issue in [7] for two reasons: (1) their tracing algorithm visits
all T € [N], and (2) for polynomial N statically secure and adaptive secure
PLBE are equivalent. Fortunately, as explained above, we know how to construct
PLBE that is adaptively secure against unbounded collusions from iO or simple
multilinear map assumptions. For the bounded collusion setting, we can obtain
adaptively secure PLBE from public key encryption following [25].

We note that in an independent work, Kiayias and Tang [28] give another
method of tracing in large identity spaces; however their analysis applies only
to random user identities, and requires a means to verify that the identity out-
putted by the tracing algorithm actually corresponds to a one of the generated
decryption keys. Our tracing algorithm does not have these limitations.

Tracing More General Decoders. In [7], a pirate decoder is considered “useful” if
it decrypts the encryption of a random message with non-negligible probability,
and their tracing algorithm is shown to work for such decoders. However, restrict-
ing to decoders that work for random messages is unsatisfying, as we would like
to trace, say, decoders that work for very particular messages such as cable-TV
broadcasts. The analysis of [7] appears insufficient for this setting. Kiayias and
Yung [30] consider more general decoders, but their definition inherently places
a lower bound on the min-entropy of the plaintext distribution. In our analysis,
we show that even if a decoder can distinguish between two particular messages
(of the adversary’s choice) with non-negligible advantage, then it can be traced.
To our knowledge, ours is the first traitor tracing system that can trace such
general decoders.

Short Cliphertexts. In the above approach we construct traitor-tracing via a
PLBE scheme where the ciphertext is encrypted with respect to some threshold
T €{0,...,N}. The ciphertext must encode the entire information about 7" and
is therefore of size at least n = log N, which corresponds to the bit-length of
the user’s identifying information id. In some cases, if the size of id is truly large
(e.g., the identifying information might contain a JPEG image of the user) we
would want the ciphertext size to be much smaller than n. One trivial option
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is to first hash the user’s identifying information, and use our tracing scheme
above on the hashes. However, the tracer would then only learn the hash of the
identifying information, and would need to keep track of the information and
hashes to actually accuse a user. This prevents the scheme from being used in
the anonymous setting.

Instead, we show how to have the tracer learn identifying information in
its entirety by generalizing the PLBE approach in a way that lets us divide the
user’s identity into small blocks. Very roughly, we then trace the value contained
in each block one at a time. The ciphertext now only needs to encode the block
number that is currently being traced, and a single threshold for that block.
This lets us reduce the ciphertext to size to only be proportional to logn rather
than n. To do so we need to generalize the notion of PLBE which also leads to a
generalization of the oracle-jump-finding problem and the algorithm that solves
it. We note that since we can assume n < 2%, factors logarithmic in n can be
absorbed into terms involving the security parameter. Thus our ciphertext size
can actually be taken to be independent of the bit length of identities.

We implement our PLBE generalization using FE. As above, we need adap-
tive security, which corresponds to an adaptively secure FE scheme. We now
also need the FE to have compact ciphertexts, whose size is independent of the
functions being evaluated. In the unbounded collusion setting, a recent construc-
tion of Ananth and Sahai [4] shows how to build such an FE from iO. Moreover,
in their FE scheme, the function size need not be specified a priori nor known
during encryption time, and different secret keys can correspond to functions of
different sizes. In our traitor tracing scheme, this translates to there being no a
priori bound on the length of identities, and different users can have different
amounts of identifying information embedded in their secret keys.

In the bounded collusion setting, we can obtain such an FE from LWE
using [23], though the scheme is only statically secure; we then use complexity
leveraging to obtain an adaptively secure scheme from sub-exponential LWE.

Trace and Revoke. Finally, we extend our traitor tracing scheme to a trace
and revoke system where users can be revoked. It turns out that this problem
reduces to the problem of constructing “revocable functional encryption” where
the encryption algorithm can specify some revoked users which will be unable
to decrypt. The ciphertext size is independent of the size of the revoke list, but
we assume that the revoke list is known to all parties. We construct such a
scheme from indistinguishability obfuscation using the technique of somewhere
statistically binding (SSB) hashing [27]. However, we omit the details about the
trace and revoke system due to the limited space. See the full version of this
paper [36].

1.4 Outline

In Sect. 2, we give some definitions and notations that we will use in our work. In
Sect. 3, we define the oracle jump-finding problem, and show how to efficiently
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solve it. In Sects.4 and 5, we use the solution of the jump-finding problem to
give our new traitor tracing schemes.

2 Preliminaries

Throughout this work, we will use the notation [IN] to mean the positive integers
from1to N: [N] = {1,..., N}. We will also use the notation [M, N] to denote the
integers form M to N, inclusive. We will use (M, N] as shorthand for [M +1, N].
We will use [M, N]g to denote the real numbers between M and N, inclusive.

Next, we will define several of the cryptographic primitives we will be dis-
cussing throughout this work. We start with the definition of traitor tracing that
we will be achieving. Then, we will define the primitives we will use to construct
traitor tracing. In all of our definitions, there is an implicit security parame-
ter A, and “polynomial time” and “negligible” are with respect to this security
parameter.

2.1 Traitor Tracing with Flexible Identities

Here we define traitor tracing. Our definition is similar to that of Boneh, Sahai,
and Waters [7], though ours is at least as strong, and perhaps stronger. In par-
ticular, our definition allows for tracing pirate decoders that can distinguish
between encryptions of any two messages, whereas [7] only allows for tracing
pirate decoders that can decrypt random messages. In Sect. 4, we discuss why
the analysis in [7] appears insufficient for our more general setting, but never-
theless show that tracing is still possible.

Definition 1. Let ZD be some collection of identities, and M a message space.
A flexible traitor tracing scheme for M,ZD is a tuple of polynomial time algo-
rithms (Setup, KeyGen, Enc, Dec, Trace) where:

Setup() is a randomized procedure with no input (except the security parame-

ter) that outputs a master secret key msk and a master public key mpk.

— KeyGen(msk, id) takes as input the master secret msk and an identity id € ID,
and outputs a secret key skiq for id.

— Enc(mpk, m) takes as input the master public key mpk and a message m € M,
and outputs a ciphertext c.

— Dec(skig, ¢) takes as input the secret key skiq for an identity id and a ciphertext
¢, and outputs a message m.

- TraceD(mpk,mo,ml7 q,¢€) takes as input the master public key mpk, two mes-
sages mo, mi1, and parameters q,€, and has oracle access to a decoder algo-
rithm D. It produces a (possibly empty) list of identities L.

— Correctness. For any message m € M and identity id € ID, we have that

(msk, mpk) « Setup(), skiqg «— KeyGen(msk, id),
Pr | Dec(skig,c) = m : =1
¢ < Enc(mpk, m)
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- Semantic security. Informally, we ask that an adversary that does not hold
any secret keys cannot learn the plaintext m. This is formalized by the follow-
ing experiment between an adversary A and challenger:

o The challenger runs (msk, mpk) < Setup(), and gives mpk to A.

o A makes a challenge query where it submits two messages m, mi. The
challenger chooses a random bit b, and responds with the encryption of
mj: ¢* «— Enc(mpk, m}).

e A produces a guess b’ for b. The challenger outputs 1 if ¥ = b and 0
otherwise.

We define the semantic security advantage of A as the absolute difference
between 1/2 and the probability the challenger outputs 1. The public key
encryption scheme is semantically secure if, for all PPT adversaries A, the
advantage of A is negligible.

— Traceability. Consider a subset of colluding users that pool their secret keys
and produce a “pirate decoder” that can decrypt ciphertexts. Call a pirate
decoder D “useful” for messages mg, my if D can distinguish encryptions of
mg from my with noticeable advantage. Then we require that such a decoder
can be traced using Trace to one of the identities in the collusion. This is
formalized using the following game between an adversary A and challenger,
parameterized by a non-negligible function e:

e The challenger runs (msk, mpk) < Setup() and gives mpk to A.

o A is allowed to make arbitrary keygen queries, where it sends an iden-
tity id € ID to the challenger, and the challenger responds with skiq <
KeyGen(msk, id). The challenger also records the identities queries in a
list L.

o A then produces a pirate decoder D, two messages mj, m7j, and a non-
negligible value €. Let q be the number of keygen queries made (that is,
q = |L|). The challenger computes T «— Trace” (mpk, mg,my, q,€) as the
set of accused users. The challenger says that the adversary “wins” one
of the following holds:

* T contains any identity outside of L. That is, T \ L # 0 or
* Both of the following hold:
- D is e-useful, meaning Pr[D(c) = m{ : b «— {0,1},¢ «
Enc(mpk,m;)] > 3 + €.
- T does not contain at least one user inside L. That is, TNL = (.
The challenger then outputs 1 if the adversary wins, and zero other-
wise.

3 Checking the “winning” condition requires computing the probabilities a procedure
outputs a particular value, which is in general an inefficient procedure. Thus our chal-
lenger as described is not an efficient challenger. However, it is possible to efficiently
estimate these probabilities by running the procedure many times, and reporting the
fraction of the time the particular value is produced. We could have instead defined
our challenger to estimate probabilities instead of determine them exactly, in which
case the challenger would be efficient. The resulting security definition would be
equivalent.
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We define the tracing advantage of A as the probability the challenger out-
puts 1. We say the public key encryption scheme is traceable if, for all PPT
adversaries A and all non-negligible €, the advantage of A is negligible.

2.2 Private Broadcast Encryption

In our traitor tracing constructions, it will be convenient for us to use a primitive
we call private broadcast encryption, which is a generalization of the private
linear broadcast encryption of Boneh et al. [7]. A private broadcast scheme is
a broadcast scheme where the recipient set is hidden. Usually, the collection of
possible recipient subsets is restricted: for example, in private linear broadcast
encryption, the possible recipient sets are simply intervals. It will be useful for
us to consider more general classes of recipient sets, especially for our short-
ciphertext traitor tracing construction in Sect. 5.

Definition 2. Let ID be the set of identities. Let S be a collection of subsets of
ID. Let M be a message space. A Private Broadcast Encryption (PBE) scheme
is a tuple of algorithms (Setup, KeyGen, Enc, Dec) where:

— Setup() is a randomized procedure with no input (except the security parame-

ter) that outputs a master secret key msk and a master public key mpk.

KeyGen(msk, id) takes as input the master secret msk and a user identity

id € ID. It outputs a secret key skiq for id.

Enc(mpk, S, m) takes as input the master public key mpk, a secret set S € S,

and a message m € M. It outputs a ciphertext c.

— Dec(skig, ¢) takes as input the secret key skig for a user id, and a ciphertext c.
It outputs a message m € M or a special symbol L.

— Correctness. For a secret set S € S, any identity id € S, any identity
id ¢ S, any message m € M, we have that

Pr

(msk, mpk) « Setup(), skig < KeyGen(msk, id),
Dec(skig,c) =m : =1

" ¢ < Enc(mpk, S,m)

Pr lDeC(Skid’;C) - 1. (msk, mpk) « Setup(), skig: < KeyGen(msk, id’),} .,

¢ « Enc(mpk, S, m)

In other words, a userid is “allowed” to decrypt if id is in the secret set S. We
also require that if id is not “allowed” (that is, if id ¢ S), then Dec outputs
1.

- Message and Set Hiding. Intuitively, we ask that forid that are not explic-
itly allowed to decrypt a ciphertext c, that the message is hidden. We also ask
that nothing is learned about the secret set S, except for what can be learned by
attempting decryption with various skiq available to the adversary. These two
requirements are formalized by the following experiment between an adversary
A and challenger:

e The challenger runs (msk, mpk) < Setup(), and gives mpk to A.
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o A is allowed to make arbitrary keygen queries, where it sends an iden-

tity id € ID to the challenger, and the challenger responds with skig <
KeyGen(msk, id). The challenger also records id in a list L.

At some point, A makes a single challenge query, where it submits two
secret sets S5, ST € S, and two messages m¢, mi. The challenger flips a
random bit b € {0,1}, and computes the encryption of m; relative to the
secret set Sy : ¢* «— Enc(mpk, Sy, m}). Then, the challenger makes the fol-
lowing checks, which ensure that the adversary cannot trivially determine
b from c*:

« If mg # mj, then successful decryption of the challenge ciphertext
would allow determining b. Therefore, the challenger requires that
none of the identities the adversary has the secret key for can decrypt
the ciphertext. In other words, for any id € L, id ¢ S} and id ¢ S7.
In other words, the sets LN S§ and L NS} must be empty.

x If S5 # ST, then successful decryption for Sy but not for S7_, would
allow for determining b (even if m§ = mj ). Therefore, the challenger
requires that all of the identities the adversary has secret keys for
can either decrypt in both cases, or can decrypt in neither. In other
words, for any id € L, id ¢ S§AST, where A denotes the symmetric
difference operator. Notice that this check is redundant if m§ # m7.

If either check fails, the challenger outputs a random bit and aborts the
game. Otherwise, the challenger sends c* to A.

A is allowed to make additional keygen queries for arbitrary identities id™,
subject to the constraint that id must satisfy the same checks as above: if
my # my, then id ¢ S§ and id ¢ ST, and if S§ # ST, then id ¢ S;AST.
If the adversary tries to query in an id that fails the check, the challenger
outputs a random bit and aborts the game.

A outputs a guess b’ for b. The challenger outputs 1 if b = b and 0
otherwise.

We define the advantage of A as the absolute difference between 1/2 and the

probability the challenger outputs 1. We say the private broadcast system is
secure if, for all PPT adversaries A, the advantage of A is negligible.

For a private broadcast scheme, we call the collection S of secret sets the

secret class. We are interested in several metrics for a private broadcast scheme:

— Ciphertext size. Notice that the ciphertext, while hiding the secret set .S,
information-theoretically contains enough information to reveal S: given the
secret key for every identity, S can be determined by attempting decryption
with every secret key. It must also contain enough information to entirely
reconstruct the message m. Thus, we must have |c| > log|S| + log |[M]. We
will say the ciphertext size is optimal if |c| < poly(},log|S|) + log |[M|.

— Secret key size. Assuming the public and secret classes P, S are expressive
enough, from the secret key skiq for identity id, it is possible to reconstruct
the entire identity id by attempting to decrypt ciphertexts meant for various
subsets. Therefore, |skiq| > log |ZD|. We will say the user secret key size is

optimal if |skiq| < poly(A,log|Z D).
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— Master key size. The master public and secret keys do not necessarily
encode any information, and therefore could be as short as O(X). We will say
the master key sizes are optimal if |msk|, |mpk| < poly(X).

Notice that in the case where S = {ZD}, our notion of private broadcast
reduces to the standard notion of (identity-based) broadcast encryption, and
the notions of optimal ciphertext, user secret key, and master key sizes coincide
with the standard notions for broadcast encryption.

2.3 Functional Encryption

Definition 3. Let M be some message space, Y some other space, and F be
a class of functions f : M — Y. A Functional Encryption (FE) scheme for
M, Y, F is a tuple of algorithms (Setup, KeyGen, Enc, Dec) where:

Setup() is a randomized procedure with no input (except the securily parame-
ter) that outputs a master secret key msk and a master public key mpk.

— KeyGen(msk, f) takes as input the master secret msk and a function f € F.
It outputs a secret key sky for f.

Enc(mpk,m) takes as input the master public key mpk and a message m € M,
and outputs a ciphertext c.

— Dec(skys,c) takes as input the secret key sky for a function f € F and a
ciphertext ¢, and outputs some y € Y, or L.

Correctness. For any message m € M and function f € F, we have that

(msk, mpk) < Setup(), sk «— KeyGen(msk, f),

Pr |Dec(sky,c) = f(m) : ¢ « Enc(mpk, m)

=1

— Security. Intuitively, we ask that the adversary, given secret keys fi,..., fn,
learns f;(m) for each i, but nothing else about m. This is formalized by the
following experiment between an adversary A and challenger:

e The challenger runs (msk, mpk) < Setup(), and gives mpk to A.

o A is allowed to make arbitrary keygen queries, where it sends a func-
tion f € F to the challenger, and the challenger responds with sky «—
KeyGen(msk, f). The challenger also records f in a list L.

o At some point, A makes a single challenge query, where it submits two
messages mg, mi. The challenger checks that f(mg) = f(m}) for all
f € L. If the check fails (that is, there is some f € L such that
f(mg) # f(m3)), then the challenger outputs a random bit and aborts.
Otherwise, the challenger flips a random bit b € {0,1}, and responds with
the ciphertext ¢* «— Enc(mpk, m}).

o A is allowed to make additional keygen queries for functions f € F,
subject to the constraint that f(m§) = f(m7).

o A outputs a guess b’ for b. The challenger outputs 1 if ¥ = b and 0
otherwise.

We define the advantage of A as the absolute difference between 1/2 and the
probability the challenger outputs 1. We say the functional encryption scheme
is secure if, for all PPT adversaries A, the advantage of A is negligible.
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For a functional encryption scheme, we will be interested in the size of the
various parameters (in addition to the security of the system itself):

— Ciphertext size. At a minimum, the ciphertext must information-
theoretically encode the entire message (assuming the class F is expressive
enough). Therefore |c| > log |M|. We will consider a scheme to have optimal
ciphertext size if |c| < poly(\,log |M|)*.

— Secret key size. The secret key must information-theoretically encode the
entire function f, so |sk¢| > log|F|. However, because we are interested in
efficient algorithms, we cannot necessarily represent functions f using log|F]|
bits, and may therefore need larger keys. Generally, f will be a circuit of
a certain size, say s. We will say a scheme has optimal secret key size if
Isky| < poly(A, s).

— Master key size. The master public and secret keys do not necessarily
encode any information, and therefore could be as short as O(X). We will say
the master key sizes are optimal if |msk|, |mpk| < poly(X).

Construction. A construction of FE that has above properties is proposed by
Ananth and Sahai [4]. The construction is based on indistinguishability obfus-
cation for circuits and one-way function.

3 An Oracle Problem

Here we define the oracle jump finding problem, which abstracts the algorithmic
problem underlying both the iO/diO (differing-inputs obfuscation) conversion
of [10] as well as the tracing algorithm in this work.

Definition 4. The (N,q,0,€) jump finding problem is the following. An adver-
sary chooses a set C C [1, N| of ¢ unknown points. Then, the adversary provides
an oracle P : [0, N] — [0, 1]g such that:

— |P(N) — P(0)| > €. That is, over the entire domain, P varies significantly.

— For any x,y € [0, N],z < y in interval (x,y] that does not contain any points
in C (that is, (x,y] N C = 0), it must be |P(x) — P(y)| < 6. That is, outside
the points in C, P varies very little.

Our goal is to interact with the oracle P and output some element in C'.

A pictorial representation of the jump finding problem is given in Fig. 1.

Notice that if € < ¢d, it is possible to have all adjacent values P(x — 1), P(x)
be at less than § apart, even for € C. Thus it becomes information-theoretically
impossible to determine an x € C. In contrast, for € > ¢d, if we query the oracle
on all points there must exist some point = such that |P(x) — P(x —1)| > ¢, and
this point must therefore belong to C. Therefore, this problem is inefficiently
solvable € > ¢d. The following shows that for € somewhat larger that ¢d, the
problem can even be solved efficiently:

4 This property has been referred to as “compactness” [3,5].
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Fig. 1. Example of an oracle P when C' contains 4 points. The purple curve represents
the outputs of the oracle P on inputs in the interval [0, N]. The red hatch marks on the
number line indicate the positions of the elements in C. The horizontal dashed lines
show that, between the points in C, P is never changes more than §. At the points in
C, P can make arbitrary jumps in either direction.

Theorem 1. There is a deterministic algorithm PTraceP(N,q,5) that runs in
time t = poly(log N, q) (and in particular makes at most t queries to P) that will
output at least one element in C, provided € > §(2+([log N1—1)q). Furthermore,
the algorithm never outputs an element outside C, regardless of the relationship
between € and §.

Proof. We assume that P(N) — P(0) > e. The general case can be solved by
running our algorithm once, and then running it a second time with the oracle
P'(z) =1 — P(z), and outputting the union of the elements produced. We will
also assume N = 2" is a power of 2, the generalization to arbitrary N being
straightforward.

The starting point is the observation that if C contains only a single element
x, then this problem is easily solved using binary search. Indeed, we can query P
on 0, N/2, N.If € (0, N/2], then there are no points in C' that are in (N/2, N,
and therefore P(N) — P(N/2) < 6. This implies P(N/2) — P(0) > € — 4 > 4.
Similarly, if € (N/2, N], then P(N/2) — P(0) < § <e— 4§ < P(N) — P(N/2).
Therefore, it is easy to determine which half of (0, N] = lies in. Moreover, on
the half that x lies in, P still varies by ¢ = ¢ — §. Therefore, we can recursively
search for x on that half. Each time, we split the interval in which x lies in half,
and decrease the total variation on that interval by only an additive §. Since
we perform at most log N steps in this binary search, the total variation will
decrease by at most ¢ log NV, and our choice of € guarantees that the variation
stays greater than 0. Therefore, we can proceed all the way down until we’ve
isolated the point x, which we then output.

The problem arises when C contains more than just a single point. In this
case, there may be points in both halves of the interval. If we recurse on both
halves, the resulting algorithm will run in time that grows with N as opposed to
log N. The other option is to pick a single half-interval arbitrarily, and recurse
only on that half. However, if there are points in C' among both half-intervals,
the variation in each half-interval may decrease by a factor of two. Recursing
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in this way will quickly cut the total variation down to below the threshold 4§,
at which point we will not be able to tell which intervals have points in C' and
which do not. Therefore, we need to be careful in how we choose which intervals
to recurse on.

First we define a recursive algorithm PTraceé) (I,q, ) which takes as input an
interval I = (a, b], as well as g, . For any interval I = (a, b], let |I| = b—a be the
number of points in I and let ¢; be the number of points of C'in I: ¢; = [INC/.
Define Ay = P(b) — P(a). PTraceé’(I, q,0) works as follows:

— Let I = (a,b]. Query P on a,b to obtain P(a), P(b). Compute A; = P(b) —
P(a)

- If Ay <6, abort and output the empty list 7 = {}

— Otherwise, if |I| =1, output 7 = {b}

— Otherwise, partition I into two equal disjoint intervals I, Ir so that I N
Ip =0, I; Ulg = I, and |I1|,|Ir| = |I|/2. Run T = PTrace} (I1,q,9) and
Tr = PTrace(I)D(IR,q,(S). Output 7 = 7, U 7TR.

We then define PTrace to run PTracey on the entire domain (0, N]:
PTrace” (N, q,8) = PTrace(I;((O,N],q,J). We now make several claims about
PTraceg. The first follows trivially from the definition of PTraceq:

Claim. Any element outputted by PTracey on interval I must be in C' N 1. In
particular, any element outputted by PTrace is in C. Moreover, we have that
any element s outputted must have P(s) — P(s—1) > §

Claim. The running time of PTrace is a polynomial in ¢ and in n = log N.

Proof. The running time of PTrace is dominated by the number of calls made
to PTraceg. We observe that the intervals I on which PTracey is potentially
called form a binary tree: the root is the entire interval (0, N], the leaves are the
singleton intervals (z — 1, z], and each non-leaf node corresponding to interval I
has two children corresponding to intervals I, and Ir that are the left and right
halves of I. This tree has 1+ log N levels, where the intervals in level i have size
2¢. Based on the definition of PTracey, PTracey is only called on an interval I if
I’s parent contains at least one point in C, or equivalently that I or its sibling
contain at least one point in C. Since there are only ¢ points in C', PTrace is
called on at most 2¢ intervals in each level. Thus the total number of calls, and
hence the overall running time, is O(glog N).

Claim. Define a(I) = é(log |I| + (n — 1)gr — (n — 2)) where n = log N. Any call
to PTracep with ¢; > 1 and Ay > «(I) will output some element.

Proof. If |I| =1 and ¢; = 1, then a(I) =6((n — 1) — (n — 2)) = §. We already
know that if Ay > § = «(I), PTrace will output an element. Therefore, the claim
holds in the case where |I| = 1.

Now assume the claim holds if |I| < r. We prove the case |I| = r+ 1. Assume
qr > 1, and running PTracey on I does not give any elements in C. Then running
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PTracep on I;, and Ir does not give any elements. For now, suppose ¢r, and
g1, both positive. By induction this means that A;, < «(I) = §(log |IL| +
(n—1)qr, — (n—2)) and Ay, < a(lg) = é(og|Ir| + (n — D)qr, — (n — 2)).
Recall that log|Ir| = log|IL| = log|I| — 1. Together this means that A; <
o(I1)+a(Ir) < (og |11+ (n—1)q1 — (n—2)— (n—log 1])) = a(I) - (n—log |I|).
Since log || < n, we have that Ay < «(I).

Now suppose gr, = 0, which implies gr, = ¢r > 0. The case ¢q;, = 0 is
handled similarly. Then A;, < §, and by induction Ay, < a(Ig) = §(log|I| +
(n—1)qgr — (n—1)). Thus A; < d§(log|[I|+ (n—1)gr —(n—1)+ 1) = a(]), as
desired. This completes the proof of the claim. O

Notice that a( (0,N] ) =4d§(2+ (n — 1)q) < e. Also notice that by definition
A(o,n) > €. Therefore, the initial call to PTraceg by PTrace outputs some element,
and that element is necessarily in C. O

Now we define a related oracle problem, that takes the jump finding problem
above, hides the oracle P inside a noisy oracle ), and only provides us with the
noisy oracle Q.

Definition 5. The (N,q,d,€) noisy jump finding problem is as follows. An
adversary chooses a set C C [1,N] of q¢ unknown points. The adversary then
builds an oracle P : [0, N] — [0, 1]r as above, but does not provide it directly. As
before, P must satisfy:

- [P(N) = P(0)] > €
— For any x,y € [0, N],z < y in interval (x,y] that does not contain any points
in C (that is, (x,y]NC =10), it must be |P(x) — P(y)| < 4.

Instead of interacting with P, we interact with a randomized oracle @Q : [0, N] —
{0,1} defined as follows: Q(x) chooses and outputs a random bit that is 1 with
probability P(x), and 0 otherwise. A fresh sample is chosen for repeated calls
to Q(x), and is independent of all other samples outputted by Q. Our goal is to
interact with the oracle @ and output some element in C.

Theorem 2. There is a probabilistic algorithm QTrace® (N,q,6,\) that runs in
time t = poly(log N,q,1/5,\) (and in particular makes at most t queries to O)
that will output at least one element in C with probability 1 — negl(\), provided
€ > 0(5+4+2([log N|—1)q). Furthermore, the algorithm never outputs an element
outside C', regardless of the relationship between € and 6.

The idea is to, given @), approximate the underlying oracle P, and run PTrace
on the approximated oracle. Similar to the setting above, QTrace works even for
“cheating” oracles P, as long as |P(x) — P(y)| < ¢ for all queried pairs x,y such
that (z,y] contains no points in C. We still need @ to be honestly constructed
given P.

Proof. Our basic idea is to use O to simulate an approximation P to the oracle
P, and then run PTrace using the oracle P.

QTrace® (N, q,6,¢€,\) works as follows. It simulates PTrace(NV, ¢, §). Whenever
PTrace queries P on input x, QTrace does the following:
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— Fori=1,...,0()\/§?), sample z; — O(z)
— Output p, as the mean of the z;.

Then QTrace outputs the output of PTrace.

As PTrace makes O(qlogN) oracle calls to P, QTrace will make
O(\qlog N/§?) oracle calls. Moreover, the running time is bounded by this quan-
tity as well. Therefore QTrace has the desired running time.

With probability at least 1 —27*, we have that |p, —p,| < 6/2 for each x that
are queried. This means that, with overwhelming probability, for all intervals
(x,y] that do not contain any elements of z, we have that |p, — p,| < J, so
[Py — Pz| < 26 with overwhelming probability. Moreover, |[py — po| > €, so
lpN — Po| > € — 8. Thus with overwhelming probability the oracle P seen by
PTrace is an instance of the (N,q,d" = 2d,¢ = € — §) noiseless jump finding
problem. Notice that

€=e—86>06+2(n—1)¢) —6=(20)2+ (n—1)q) =82+ (n—1)q)

Therefore, P satisfies the conditions of Theorem 1, and PTrace outputs at least
one element in C. QTrace outputs the same element, completing the proof.

Remark 1. We note that PTrace” and QTraceQ work even for “cheating” P that
do not satisfy |P(x) — P(y)| < ¢ for all (x,y] which do not intersect C, as long
as the property holds for all pairs z, y that where queried by PTrace or QTrace®.
This will be crucial for traitor tracing.

3.1 The Generalized Jump Finding Problem

Here we define a more general version of the jump finding problem that will be
useful for obtaining short-ciphertext traitor tracing. In this version, the domain
of the oracle P is an r x 2N grid that is short but wide (that is, » < N). The
elements in C correspond to non-crossing curves between grid points from the top
of the grid to the bottom, which divide the grid into |C| + 1 contiguous regions.
The probabilities outputted by P are restricted to vary negligibly across each
continuous region, but are allowed to vary arbitrary between different regions.
The goal is to recover the complete description of some curve in C'. To help make
the problem tractable, we require that each curve is confined to oscillate about
an odd column of the grid. Such curves can be represented by an integer s € [N]
giving the position 2s—1 of the column, and a bit string b = (b, ...,b,) € {0,1}"
specifying which side of the column the curve is on at each row. A pictorial
representation of the generalized jump finding problem is given in Fig.2, and a
precise definition is given below.

Definition 6. The (N,r,q,d,¢) generalized jump finding problem is the fol-
lowing. The adversary chooses a set C of q unknown tuples (s,b1,...,b.) €
[N] x {0,1}" such that the s are distinct. Each tuple (s,b1,...,b.) describes
a curve between grid points from the top to bottom of the grid [1,r] x [0,2N],
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which oscillates about the column at position 2s — 1, with b = (by,...,b,) speci-
fying which side of the column the curve is on at each row. These curves divide
the grid into |C|+ 1 contiguous regions. For each pair (i,x) € [1,7] x [0,2N] the
adversary chooses a probability p; , € [0,1]r such that p; . varies “minimally”
within each contiguous region. We also require that overall from left to right,
there is “significant” variation of the p; . Formally, this means:

— For any pair of pairs of the form (i,2z),(j,2x) € [1,r] x [0,2N], |pi2z —
Pj2s| < 6. In other words, since curves in C are restricted to oscillate around
odd columns, no curve crosses between points on the same even column, so
each even column lies entirely in a single contiguous region. We therefore
require that the probabilities associated with any two points on the same even
column are close.

— Let C; be the set of values 2s — b; for tuples in C. C; is then the set of grid
points in the ith row that are immediately to the right of curves in C. For any
two pairs (i,x), (1,y) € [1,7] X [0,2N] in the same row such that the interval
(x,y] does not contain any points in C; then |p; » — piy| < 0. In other words,
if no curves cross between points in the same row, those points must be in the
same contiguous region and therefore have close probabilities.

— We also make the requirement that the probabilities in the O0th column are
tdentical, and the probabilities in the 2Nth column are identical. That is,
pio = piro for all i,i € [r] and p;an = pian for all i,i" € [r]. Define
Po = Pi,0 and PaN = Di2N -

— Finally, |pan —po| > €. That is, the Oth and 2N th columns have very different
probabilities.

We are now presented with one of two oracles, depending on the version of the
problem:

— In the noiseless version, we are given an oracle for the p; ,: we are given oracle
access to the function P : [1,7] x [0,2N] — [0, 1]g such that P(i,z) = pi .

— In the noisy version, we are given a randomized oracle Q with domain [1,7] X
[0,2N] that, on input (i,x), outputs 1 with probability p; .. Repeated calls to
Q@ on the same x yield a fresh bit sampled independently.

Our goal is to output some element in C.

Theorem 3. There are algorithms PTrace’P(N, r,q,0) and QTrace’® (N,r,q,0,\)
for the noiseless and noisy versions of the (N,r,q,9,€) generalized jump finding
problem that run in time poly(log N, r,q,1/8) and poly(log N,r,q,1/6, \), respec-
tively, and output an element in C' with overwhelming probability, provided ¢ >
d(4+2([log N1 —1)q) (for the noiseless case), ore > §(9+4([log N| —1)q) (for
the noisy case).

This theorem is proved analogously to Theorems1 and 2, and appears in
below. Again, PTrace’, QTrace’ work even if the oracle P is “cheating”, as long
as the requirements on P hold for all points queried by PTrace’ or QTrace’.
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Fig. 2. Example probabilities p; ; when C contains 4 items, » = 7, and N = 15. The
dots represent the various probabilities p; ., where rows are indexed by ¢ € [r] and
columns are indexed by z € [0,2N]. The shade of the dot at position (Z,z) indicates
the value of p; ., with darker shade indicating higher p; ». The elements in C' describe
curves from the top of the grid to the bottom, which are indicated in red in the figure.
Notice (1) that the curves in C oscillate around odd columns of dots, and (2) that they
never intersect, and (3) that the values of the p;, only vary minimally between the
curves in C, and can only have large changes when crossing the curves.

Proof. We prove the noiseless version, extending to the noisy version is a simple
extension of Theorem 2. PTrace’” (N, r, ¢, 8) works as follows:

— First, we determine some of the s for elements in C. Let P’ : [0, N] — [0, 1]g
where P'(x) = P(1,2z). Notice that |P'(N) — P'(0)] = |pan — po| > €.
Moreover, for intervals (z, y] that do not contain any of the s, |P'(y)—P’(x)| <
0 < 26. Therefore, P’ is an instance of the (IV, ¢, 26, €) problem for € > 26(2+
(n — 1)q). Therefore, we run PTraceP/(N, q,0¢’) to obtain a list 7 of s values,
with the property that |P(1,2x) — P(1,2z — 2)| = |P'(s) — P'(s — 1)| > 26
for each s € 7.

— For each s € T, and for each i € [r], let by ; = 1if |P(4,2s—2)—P(i,2s—1)| >
|P(i,2s — 1) — P(i,2s)|, and bs; = 0 otherwise. Let (s,b1,...,b.) € C be the
tuple corresponding to s. Then the set C; contains 2s — b;, but does not
contain 2s — 1 + b;, since there is no collision between the s values. Therefore,
|P(2s —1+b;) — P(2s —2+b;)| < §, which means that |P(2s —b;) — P(2s —
1 —1b;)| > 6. Therefore b, ; = b;

— Output the tuples (s,bs1,...,bs).

By the analysis above, since PTrace never outputs a value outside of C,
PTrace’ will never output a tuple corresponding to an identity outside of C.
Moreover, if € > §(4 4+ 2(n — 1)q), then PTrace’ will output at least one tuple in
C. Finally, PTrace’ runs in time only slightly worse than PTrace, and is therefore
still polynomial time.

4 Tracing with Flexible Identities

Let (Setup, KeyGen, Enc,Dec) be a secure private linear broadcast scheme for
identity space ZD = [2"]. We now show that such a private broadcast scheme is
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sufficient for flexible traitor tracing. The Setup, KeyGen, Enc, and Dec algorithms
are as follows:

— Setup, KeyGen are inherited from the private broadcast scheme.

— To encrypt a message m, run Enc(mpk, S = ZD,m). Call this algorithm
EncTT.

— To decrypt a ciphertext ¢, run Dec(skig, ¢). Call this algorithm Decpr

Theorem 4. Let (Setup, KeyGen, Enc, Dec) be a secure private broadcast scheme
for identity space [2"] and private class S = {[u]}yeo,2n). Then there is a poly-
nomial time algorithm Trace such that (Setup, KeyGen, Encrr, Decrr, Trace) as
defined above is a flexible traitor tracing algorithm.

Proof. Boneh et al. [7] prove this theorem for the case of logarithmic n and
for the weaker notion of tracing where the pirate decoder is required to decrypt
a random message, as opposed to distinguish between two specific messages of
the adversary’s choice. Their tracing algorithm gets black-box access to a pirate
decoder and does the following: it runs the decoder on encryptions to all sets
[u] for u = 0,...,2" and determines the success probability of the decoder for
each u. It outputs an index u such that there is a “large” gap between the
probabilities for [u — 1] and [u] as the identity of the traced traitor. In the
analysis, [7] shows that, provided the adversary does not control the identity w,
the pirate succeeds with similar probabilities for [u — 1] and [u]. To prove this,
they run the adversary, answering its secret key queries by making secret key
queries to the PLBE challenger. When the adversary outputs a pirate decoder
D, they make a PLBE challenge on a random message m and sets [u] and [u—1].
Then they run the pirate decoder on the resulting ciphertext, and test whether it
decrypts successfully: if yes, then they guess that the ciphertext was encrypted
to [u], and guess [u — 1] otherwise. The advantage of this PLBE adversary is
exactly the difference in probabilities for decrypting [u — 1] and [u]. The security
of the PLBE scheme shows that this difference must be negligible.

Now, a useful pirate decoder will succeed with high probability on [2"], and
with negligible probability on [0], so there must be some “gap” in probabilities.
The above analysis shows that (1) the tracer will find a gap, and (2) that the
gap must occur at an identity under the adversary’s control.

There are two problems with generalizing to our setting:

— The running time of the tracing algorithm in [7] grows with 2" as opposed to
n, resulting in an exponential-time tracing algorithm when using flexibly-large
identities. This is because their tracing algorithm checks the pirate decoder
an all identities. We therefore need a tracing algorithm that tests the decoder
on a polynomial number of identities. To accomplish this, show that tracing
amounts to solving the jump-finding problem in Sect. 3, and we can therefore
use our efficient algorithm for the jump-finding problem to trace.

— Since we only ask that the pirate decoder can distinguish two messages,
we need to reason about the decoder’s “advantage” (decryption probability
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minus 1/2) instead of its decryption probability. In the analysis above, since
probabilities are always positive, any “useful” decoder will contribute posi-
tively to the PLBE advantage, whereas a “useless” decoder will not detract.
However, this crucially relies on the fact that probabilities are positive. In our
setting, the advantage is signed and can be both positive and negative, and
the contribution of decoders to the PLBE adversary’s advantage can cancel
out if they have different sign. Thus there is no guarantee that the obtained
PLBE adversary has any advantage. To get around this issue, we essentially
have our reduction estimate the signed advantage of the pirate decoder, and
reject all decoders with negative advantage. The result is that the advantage
of all non-rejected decoders is non-negative, and so all decoders contribute
positively to the PLBE adversary’s advantage.

We now give our proof. Let A be a potential adversary, let C be the set of
colluding parties for which A obtained secret keys, and ¢ = |C|. A produces a
pirate decoder D and messages mg, my such that D can distinguish encryptions
of mg from encryptions of m;. Define the quantities

pid = Pr[D(c) =b: b« {0,1}, ¢ < Enc(mpk, id, ms)]

for id € S, where Enc is the PLBE encryption algorithm. We first will prove two
lemmas:

Lemma 1. Suppose (Setup, KeyGen, Enc,Dec) is secure. Fix a non-negligible
value §. Suppose an interval (idy,idg] is chosen adversarially after seeing the
set C, the adversary’s secret keys, the pirate decoder D, and even the internal
state of A, and suppose that C N (idr,idg] = 0 (that is, there are no colluding
users in (idp,idg]). Then, except with negligible probability, |pid, — Pid, | < 6.

Proof. We will prove that pi4,, — pid, < d with overwhelming probability, as
proving pi4, — Pidp < 0 is almost identical. Suppose towards contradiction that,
with non-negligible probability €, piq, —pia, > 0. We then describe an adversary
for (Setup, KeyGen, Enc, Dec) that works as follows:

— Run A on input mpk. Whenever .4 makes a keygen query on identity id, make
the same keygen query. A outputs a pirate decoder D.

— Compute estimates pig,, pid, for the probabilities pi4, and pi4,, respectively.
To compute pig, do the following. Take O(A\/§?) samples of D(c) @ b where
b — {0,1} and ¢ < Enc(mpk,id,m;), and then output the fraction of those
samples that result in 0. Notice that with probability 1—272, |piq —pia| < §/4.

- If piap — pia, < %57 output a random bit and abort. Notice that, with over-
whelming probability, |(pid, — pia,) — (Pidx — Pia,)| < 6/2. Therefore, with
overwhelming probability, if we do not abort, pi4, — pid, > 0. Moreover, if
Didp — Pid, > 0, then pig, — pia, > %5 holds and we do not abort with over-
whelming probability.

— Now choose a random bit b, and make a challenge query on S§ = [idL],
ST = [idg], and messages m§ = m; = m.
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— Upon receiving the challenge ciphertext ¢*, compute ¥’ = D(c*). Output 1 if
b = b and 0 otherwise.

Conditioned on no aborts, in the case the challenge ciphertext is encrypted
to idy, (resp. idg), our adversary will output 1 with probability pi4, (resp. piay),
so our adversary will “win” with probability % + (Pidp — Pid,,)/2 in this case.
Otherwise, during an abort, our adversary wins with probability 1/2. Moreover,
with overwhelming probability, if we do not abort pia, — piq, > 0, and with
probability at least € — negl, we have pig, — pia, > 6/2. Therefore, a simple
computation shows that the adversary “wins” with probability at least % +(e—
negl)(d/4 — negl), which gives a non-negligible advantage.

Lemma 2. Suppose (Setup, KeyGen, Enc,Dec) is secure. Fiz a non-negligible
value §. Then, except with negligible probability, |po — %| < 4.

Proof. The proof is similar to the proof of Lemma 1. We will prove that pg f% <
0 with overwhelming probability, the case py — % > —§ is almost identical.
Suppose towards contradiction that, with non-negligible probability e, po—% > 0.
An adversary for (Setup, KeyGen, Enc, Dec) works as follows:

— Run A on input mpk. Whenever A makes a keygen query on identity id, make
the same keygen query. A outputs a pirate decoder D.

— Compute estimate py for pg using the algorithm from Lemma 1, so that except
with probability 27, [po — po| < §/2.

- Ifpo— % < %5 , output a random bit and abort. Notice that, with overwhelm-

ing probability, |(]§ —3) = (po — %)| < 4/2. Therefore, with overwhelming

probability, if we do not abort, pg — % > 0. Moreover, if py — % > J, with
overwhelming probability we do not abort.
— Now make a challenge query on S§ = ST = [0] = {}, and messages m{ =

mo, m; =mj.
— Upon receiving the challenge ciphertext ¢*, compute b = D(c*). Output b

Conditioned on no aborts, our adversary will “win” with probability py in
this case. Otherwise, during an abort, our adversary wins with probability 1/2.
Moreover, with overwhelming probability, if we abort pg — % > 0, and with prob-
ability at least € — negl, we have py — % > 0/2. Therefore, a simple computation
shows that the adversary has non-negligible advantage (e — negl)(d/2 — negl).

Now we define our tracing algorithm TraceD(mpk, mg, m,q,€). Trace sets
6 = €/2(5 + 4(n — 2)q), and then runs QTrace®(2",¢,4, \) where QTrace is the
algorithm from Theorem 2. Whenever QTrace makes a query to @) on identity
id, Trace chooses a random bit b, computes the encryption ¢ < Enc(mpk, id, my)
of my to the set [id], runs ¥’ — D(c), and responds with 1 if any only if b = b'.
Define pig to be the probability that Q(id) outputs 1. We now would like to show
that @ is an instance of the (IV, g, d,€) noisy jump finding problem, where the
set of jumps is the set C. For this it suffices to show that P(id) = pq is an
instance of the (N, ¢, 0, €) noiseless jump finding problem. By Lemma 2, we have
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that with overwhelming probability useful D have |pen — po| > |e — ] > €/2.
Moreover, we have that (¢/2) = §(5 + 4(n — 2)q).

Now we would hope that for any (idy,idg] that do not contain one of the
adversary’s points, |pid, — pid,, | < . This would seem to follow from Lemma 1.
However, we only have this property for idy, idg that can be efficiently computed.
Therefore, P(id) is potentially a cheating oracle. However, since our tracing algo-
rithm is efficient, any query it makes can be efficiently computed, and therefore
|Did;, —Pid, | < 6 holds (with overwhelming probability) for all queried points such
that (idy,idg] does not contain any of the identities in C. Therefore, following
Remark 1, we can still invoke Theorem 2, which shows that the following hold:

— QTrace, and hence Trace, runs in polynomial time.

— QTrace, and hence Trace, will with overwhelming probability not output an
identity outside S.

— If D is e-useful, then QTrace, and hence Trace, will output some element in
S (w.h.p.).

Construction. As observed by Garg et al. [21], FE immediately gives a PLBE
scheme. Let F be the set of functions fig : S x M — (MU{L}) where fiq(S,m)
outputs m if m € S and L if m ¢ S. Let (Setuppp, KeyGenpp, Encrpg, Decpg)
be a FE scheme for this class of functions. The plaintext space S x M has
size 2% x |M|, and the function space admits circuits of size O(\). We then
immediately obtain a PLBE scheme: to encrypt a message to a set S, simply
encrypt the pair (S, m). The secret key for identity id is the secret key for function
fia. We use an adaptively secure scheme [2,21,40].

Parameter Sizes. In the above conversion, the PLBE scheme inherits the para-
meter sizes of the functional encryption scheme. Using functional encryption for
general circuits, the secret size is poly(n) and the ciphertext size will similarly
grow as poly(n,|m|). We can make the ciphertext size |m| + poly(n) by turn-
ing the PLBE into a key encapsulation protocol where we use the PLBE to
encrypt the key for a symmetric cipher, and then encrypt m using the symmet-
ric cipher. We note that it is inherent that the secret keys and ciphertexts of a
PLBE scheme grow with the identity bit length n, as both terms must encode a
complete identity. Therefore we obtain a PLBE scheme with essentially optimal
parameters:

Corollary 1. Assuming the ezistence of 1O and OWF, then there exists an
adaptively secure traitor tracing scheme whose master key is size is O(1), secret
key size is poly(n), and ciphertext size is |m| + poly(n).

Note, however, that the obtained traitor tracing scheme is not optimal, as
there is no reason ciphertexts in a traitor tracing scheme need to grow with the
identity bit-length. The large ciphertexts are inherent to the PLBE approach to
traitor tracing, so obtaining smaller ciphertexts necessarily requires a different
strategy. In Sect. 5, we give an alternate route to obtaining traitor tracing that
does not suffer this limitation, and we are therefore able to obtain an optimal
traitor tracing system.
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On Bounded Collusions. If we relax the security to bounded-collusion security,
then the assumption can be relaxed to PKE using the g-bounded collusion FE
scheme of [25].

Corollary 2. Assume the existence of secure PKE, then there exists a q-bounded
collusion-resistant adaptively secure traitor tracing scheme whose master key and
secret key sizes are O(n)poly(q) and ciphertext size is |m|+ O(n)poly(q).

5 Flexible Traitor Tracing with Short Ciphertexts

We now discuss how to achieve traitor tracing with small ciphertexts that do
not grow with the identity size. As noted above, the approach using private
linear broadcast is insufficient due to having ciphertexts that inherently grow
with the identity bit-length. We note that for traitor tracing, secret keys must
encode the identities anyway, so they will always be as long as the identities.
Therefore the focus here is just on obtaining short ciphertexts. To that end,
we introduce a generalization of private linear broadcast that does not suffer
from the limitations of the private linear broadcast approach; in particular, the
information contained in the ciphertext is much shorter than the identities.

Let ZDo = [2!7!] be the set of identity “blocks”, and the total identity
space ID = (ZDy)" be the set of n-block tuples. Let (Setup, KeyGen, Enc, Dec)
be a secure private broadcast scheme for ZD, and the secret class S defined as
follows: each set S;, € S is labeled by an index ¢ € [n] and “identity block”
u € IDy U {0}. S, is the set of tuples id = (idy,...,id,) where id; < u. We
call such a private broadcast scheme a private block linear broadcast encryption
(PBLBE) scheme.

Ideally, we would like to simply add a tracing algorithm on top of
(Setup, KeyGen, Enc, Dec) as we did in the previous section. The tracing algo-
rithm would run the tracing algorithm from Sect. 4 on each identity block. For
each i € [n], this gives a list of, say, T; identity blocks id,;; € ID, for j € [T}],
where each of the id;; is the ¢th block of some identity owned by the adversary.
Repeating this for every i gives a collection of identity blocks for every block
number. However, it is not clear how to use these blocks to construct a complete
identity in ZD. There are two problems:

— How do we argue that the blocks obtained for each index ¢ come from the
same set of identities? It may be that, for example when n = 2, that the
adversary has identities (idq 1,idy2) and (idg 1,id2 o), but tracing for ¢ = 1
yields id; 1 whereas tracing ¢ = 2 yields ida 2. While we have obtained two of
the adversary’s blocks, there may not even be a complete identity among the
blocks.

— Even if we resolve the issue above, and show that tracing each block number
yields blocks from the same set of identities, there is another issue. How to
we match up the partial identity blocks? For example, in the case n = 2, we
may obtain blocks id; 1,id3 1,id 2,id2 2. However, we have no way of telling
if the adversary’s identities were (idy 1,id; 2) and (ida,1,idg2), or if they were
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(idq,1,id2 ) and (ida,1,idq 2). Therefore, while we can obtain the adversary’s
blocks for the adversary’s identities, we cannot actually reconstruct the adver-
sary’s identities themselves.

We will now explain a slightly modified scheme and tracing algorithm to
rectify the issues above. First, by including a fixed tag 7 inside every block
of id, we can now identify which blocks belong together simply by matching
tags. This resolves the second point above, but still leaves the first. For this, we
give a modified tracing algorithm that we can prove always outputs a complete
collection of blocks.

We now give the scheme derived from any PBLBE. There will be two identity
spaces. Let ZD' = {0,1}" be the identity space for the actual traitor tracing
scheme; that is, ZD' is the set of identities that we actually want to recover
by tracing. We wish to grow n arbitrarily large without affecting the ciphertext
size. The second space will be the space ZD of the underlying PBLBE, which
consists of n blocks of t+1 bits. In particular, the bit length of the traitor tracing
identity space ZD' will be equal to the number of blocks in the PBLBE space.
Set t = A, so that the bit-length of each block in the PBLBE grows with the
security parameter, but crucially not in n. Define N = 2t = 2%

— Setup is again inherited from the private broadcast scheme.

— To generate the secret key for an identity id" € ZD', write id" = (id, ..., id})
where id; € {0,1}. Choose a random s € [N], and define the identity
id = (idy,...,id,) € ZD where id; = 2s — id; € ZDy. Run the private broad-
cast keygen algorithm on id, and output the resulting secret key. Call this
algorithm KeyGenpp

— Enc,Dec are identical to the basic tracing scheme, except that Dec now
uses the derived user secret key as defined above. Call these algorithms
EncTT, DecTT.

Theorem 5. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast
scheme for identity space ID and private class S, where ID,S are
defined as above. Then there is an efficient algorithm Trace such that
(Setup, KeyGen, Encyr, Decrr, Trace) as defined above is a flexible traitor tracing
algorithm.

We prove Theorem 5 using similar techniques as in the proof of Theorem 4,
except that the jump finding problem in Sect. 3 does not quite capture the func-
tionality we need. Instead, in Sect. 3.1, we define a generalized jump finding
problem, and show how to solve it. We then use the solution for the generalized
jump finding problem to trace our scheme above.

Proof. We will take an approach very similar to the proof of Theorem4. We
will use a pirate decoder D to create an oracle ) as in the generalized jump
finding problem. Then we run the tracing algorithm QTrace’ on this @, which
will output the identities of some the colluders.

Define Q(%, u) to be the randomized procedure that does the following: sample
a random bit b, computes the encryption ¢ < Enc(mpk, (¢, u), mp) of my to the
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set S;,, indexed by (4,u) € [n] x [0,2N], runs ¥’ < D(c), and outputs 1 if and
only if b = b'. Define p;,, to be the probability that Q(i,u) outputs 1. We now
need to show that if D is useful, then @) satisfies the conditions of Theorem 3.

First, notice that p; o = piv o for all i,7" € [n], since the set indexed by (i, 0)
is just the empty set, independent of i. Define pg = p; ¢. Similarly, p; an = pan,
independent of 7, as the set indexed by (i,2N) is the complete set.

Next, notice that if D is useful, we have |pay —po| > €/2, similar to Theorem 4.
Now set § = €/(9 + 4(t — 1)q) (recall that N = 2'). We have the following:

Lemma 3. Suppose (Setup, KeyGen, Enc, Dec) is secure. Fiz a non-negligible
value §. Suppose two pairs (i,2x), (j,2z) € [n] x [0,2N] are chosen adversarially
after seeing the set C, the adversary’s secret keys, the pirate decoder D, and even
the internal state of A. Then, except with negligible probability |p; oo — pj 2| < 0

Proof. Let id’ be an identity the adversary queries on, with associated tag s.
Let id = (idy,...,id,) € ZD where id; = 2s — id; € ID, as above. It suffices
to show that the set id € S; 9, if and only if id € S} 2,. This is equivalent to
the requirement that 2s — id; < 2z if and only if 2s — id;- < 2. Since id;, id;-
are binary, this is true. The lemma then follows from the security of the private
block linear broadcast scheme.

Next, define C; to be the set of values 2s — id for identities id’" queried by
the adversary. Equivalently, C; is the set of ith blocks of the corresponding
identities id. The following also easily follows from the security of private block
linear broadcast:

Lemma 4. Suppose (Setup, KeyGen, Enc,Dec) is secure. Fiz a non-negligible
value 8. Suppose two pairs (i,x), (i,y) € [n] x [0,2N] are chosen adversarially
after seeing the set C, the adversary’s secret keys, the pirate decoder D, and even
the internal state of A, such that the interval (x,y] does not contain any points
in C;. Then |p; z — Piy| <.

We now see that the oracle @Q corresponds to the (N, r = n, ¢, d, €)-generalized
jump finding problem. Here, the hidden set C contains tuples (s,idy,...,id,) =
(s,id) where where id € ZD' is one of the adversary’s identities, and s is the
corresponding tag that was used to generate the secret key for id. Similar to the
basic tracing algorithm, the pirate decoder may cheat, and the lemmas above may
not hold for all possible points. However, they hold for efficiently computable
points, and in particular must hold for the points queried by the efficient QTrace’
of Theorem 3. Thus, following Remark 1, we can invoke Theorem 3, so QTrace’
will produce a non-empty list £ of tuples (s,id) from C. This completes the
theorem.

Construction and Parameter sizes. Similar to the case of PLBE, it is straight-
forward to construct private block linear broadcast encryption from functional
encryption, and the PBLBE scheme will inherit the parameter sizes from the FE
scheme. We will use r = A-bit blocks and n-bit identities. The circuit size needed
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for the functional encryption scheme is therefore poly(n), and the plaintext size
is |m| + poly(logn) (ignoring the security parameter).

Some functional encryption schemes are non-compact, meaning the cipher-
text size grows with both the plaintext size and the function size, in which case
our ciphertexts will be |m| + poly(n), no better than the basic tracing system.
Instead, we require compact functional encryption, where the ciphertext size is
independent of the function size. The original functional encryption scheme of
Garg et al. [21] has this property. However, they only obtain static security,
and adaptive security is only obtained through complexity leveraging. In a very
recent work, Ananth and Sahai [4] show how to obtain adaptively secure func-
tional encryption for Turing machines, and in particular obtain adaptively secure
functional encryption that meets our requirements for optimal ciphertext and
secret key sizes.

Corollary 3. Assuming the existence of iO and OWEF, there exists an adaptively
secure traitor tracing scheme whose master key size is poly(logn), secret key size
is poly(n), and ciphertext size is |m| + poly(logn).

On Bounded Collusions. If we relax security to bounded-collusion security, then
the underlying assumption can be relaxed to the (sub-exponential) LWE assump-
tion using the succinct FE scheme of [23], which can be made adaptively secure
through complexity leveraging.

Corollary 4. Assume the sub-exponential hardness of the LWE problem with
a sub-exponential factor, then there exists a g-bounded collusion-resistant adap-
tively secure traitor tracing scheme whose master key size is poly(logn,q) and
secret key size is poly(n, q) and ciphertext size is |m| + poly(logn, q).
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