On the Impossibility of Tight
Cryptographic Reductions

Christoph Bader, Tibor Jager®™), Yong Li, and Sven Schige®

Horst Gortz Institute for IT Security, Ruhr-University Bochum,
Bochum, Germany
sschaege@gmail.com

Abstract. The existence of tight reductions in cryptographic security
proofs is an important question, motivated by the theoretical search
for cryptosystems whose security guarantees are truly independent of
adversarial behavior and the practical necessity of concrete security
bounds for the theoretically-sound selection of cryptographic parame-
ters. At Eurocrypt 2002, Coron described a meta-reduction technique
that allows to prove the impossibility of tight reductions for certain digi-
tal signature schemes. This seminal result has found many further inter-
esting applications. However, due to a technical subtlety in the argu-
ment, the applicability of this technique beyond digital signatures in
the single-user setting has turned out to be rather limited. We describe
a new meta-reduction technique for proving such impossibility results,
which improves on known ones in several ways. It enables interesting
novel applications, including a formal proof that for certain crypto-
graphic primitives (including public-key encryption/key encapsulation
mechanisms and digital signatures), the security loss incurred when the
primitive is transferred from an idealized single-user setting to the more
realistic multi-user setting is tmpossible to avoid, and a lower tightness
bound for non-interactive key exchange protocols. Moreover, the tech-
nique allows to rule out tight reductions from a very general class of non-
interactive complexity assumptions. Furthermore, the proofs and bounds
are simpler than in Coron’s technique and its extensions.

1 Introduction

Provable Security. In modern cryptography, new cryptosystems are usually con-
structed together with a proof of security. Usually this security proof consists of
a reduction A (in a complexity-theoretic sense), which turns an efficient adver-
sary A into a machine A% solving a well-studied, assumed-to-be-hard computa-
tional problem. Under the assumption that this computational problem is not
efficiently solvable, this implies that the cryptosystem is secure. This approach
is usually called “provable security”, it is inspired by the analysis of relations
between computational problems in complexity theory, and allows to show that
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breaking the security of a cryptosystem is at least as hard as solving a certain
well-defined hard computational problem.

The Security Loss in Reduction-Based Security Proofs. The “quality” of a reduc-
tion can be measured by comparing the running time and success probability of
A4 to the running time and success probability of attacker A. Ideally, A4 has
about the same running time and success probability as .A. However, most secu-
rity proofs describe reductions where A4 has either a significantly larger running
time or a significantly smaller success probability than A (or both). Thus, the
reduction “loses” efficiency and/or efficacy.

Since provable security is inspired by classical complexity theory, security
proofs have traditionally been formulated asymptotically. The running time and
success probability of Turing machines are modeled as functions in a security
parameter k € N. Let ¢4 (k) denote the running time and €44 (k) denote the
success probability of A4. Likewise, let ¢ 4 (k) and e 4(k) denote the running time
and success probability of A. Then it holds that

tra(k)/eqa(k) = L(k) - ta(k)/ea(k)

for some “loss” ¢(k). A reduction A is considered efficient, if its loss ¢(k) is
bounded by a polynomial. Note that in this approach the concrete size of poly-
nomial ¢ (i.e., its degree and the size of its coefficients) does not matter. As
common in classical complexity theory, it was considered sufficient to show that
¢ is polynomially-bounded.

Concrete Security Proofs, the Notion of Tightness, and Its Relevance. In order
to deploy a cryptosystem in practice, the size of cryptographic parameters (like
for instance the length of moduli or the size of underlying algebraic groups) has
to be selected. However, the asymptotic approach described above does not allow
to derive concrete recommendations for such parameters, as it only shows that
sufficiently large parameters ezist. This is because the size of parameters depends
on the concrete value of £, the loss of the reduction. A larger loss requires larger
parameters.

The more recent approach, termed concrete security, makes the concrete secu-
rity loss of a reduction explicit. This allows to derive concrete recommendations
for parameters in a theoretically sound way (see e.g. [7] for a detailed treatment).
Ideally, ¢(k) is constant. In this case the reduction is said to be tight.! The exis-
tence of cryptosystems whose security is independent of deployment parameters
is of course an interesting theoretical question in its own right. Moreover, it has
a strong practical motivation, because the tightness of a reduction directly influ-
ences the selection of the size of cryptographic parameters, and thus has a direct
impact to the efficiency of cryptosystems.

! When speaking of tight reductions in this paper, we mean tight reductions from
non-interactive computational problems, like integer factorization, the discrete log-
arithm problem, etc., rather than (often trivial) tight reductions from interactive or
contrived non-standard computational problems, which sometimes are very similar
to the assumption that the cryptosystem is secure.
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Coron’s Result and Its Refinements. Coron [18] considered the existence of tight
reductions for unique? signature schemes in the single user setting, and described
a “rewinding argument” (cf. Goldwasser et al. [27]), which allowed to prove lower
tightness bounds for such signature schemes. In particular, Coron considered
“simple”3 reductions, which convert a forger F breaking the security? of a unique
signature scheme into a machine solving a computationally hard problem II. He
showed that any such reduction yields an algorithm B solving II directly with
probability €z, where

o=t (gin) »

Here €p is the success probability of A, e is the success probability of the sig-
nature forger F' used by A, n is the number of signatures queried by F' in the
EUF-CMA security experiment, and |M| is the size of the message space. Note
that if |M| > n, which is a reasonable for signature schemes, then the bound
in (1) essentially implies that the success probability of ep of the reduction
can not substantially exceed ep/(exp(1) - n), unless there exists an algorithm B
solving I efficiently. The latter, however, contradicts the hardness assumption
on I1. This result was later revisited by Kakvi and Kiltz [31], and generalized
by Hofheinz et al. [30] to (non-unique) signature schemes with efficiently re-
randomizable signatures, see also Appendix A.

Limitations of Known Meta-Reductions. Unfortunately, Coron’s result has found
only limited applications beyond digital signatures in the single-user setting.
Most previous works [18,30,31] consider this setting, the (to our best knowledge)
only exception is due to Lewko and Waters [33], which considers hierarchical
identity-based encryption. Why isn’t it possible to apply it to other primitives?
One reason is that the bound in Eq. (1) ceases to be useful for reasonable values
of ep and e if n =~ |M]|. This can be easily seen by setting n = |M| — 1.
The assumption that | M| > n is a prerequisite for the arguments in [18,30,31]
to work, thus, it is not possible to apply this technique to settings, where the
assumption |M| > n is not reasonable.

Therefore Coron’s technique is not applicable when |M] is polynomially-
bounded. However, such a situation appears often when considering crypto-
graphic primitives beyond digital signatures in the single-user setting. Con-
sider, for instance, a security model where the adversary is provided with

2 For a unique signature scheme there exists exactly one unique valid signature for
each message. For instance, important instantiations of the famous Full-Domain
Hash construction are unique signature schemes, see [31].

3 Intuitively, a “simple” reduction is a reduction which has black-box access to the
adversary, and runs the adversary only sequentially. Most reductions in crypto-
graphic security proofs are of this type. A more precise definition is given in the
body of the paper.

4 In the sense of existential unforgeability under chosen-message attacks (EUF-CMA,
cf. Definition 18).
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M = {pky,...,pkn}, where pkq,...,pky is a list of public keys. The adver-
sary may learn all but one of the corresponding secret keys, and is considered
successful if it “breaks security” with respect to an uncorrupted key. This is a
quite common setting, which occurs for instance in security models for signa-
tures or public-key encryption in the multi-user setting with corruptions [3,4],
all common security models for authenticated key exchange [4,9,15], and non-
interactive key exchange [25] protocols. How can we analyze the existence of
inherent tightness bounds in these settings?

Our Contributions. We develop a new meta-reduction technique, which is also
applicable in settings where |M| is polynomially bounded. In comparison to
[18,30,31], we achieve the simpler bound

€B Z EA — l/n

which is independent of |M]|.

Our new technique allows to rule out tight reductions from any non-
interactive complexity assumption (cf. Definition5). This includes also “deci-
sional” assumptions (like decisional Diffie-Hellman). It avoids the combinatorial
lemma of Coron [18, Lemma 1], which has a relatively technical proof. Our app-
roach does not require such a combinatorial argument, but is more “direct”.

This simplicity allows us to describe a generalized experiment with an
abstract computable relation that captures the necessary properties for our tight-
ness bounds. Then we explain that the standard security experiments for many
cryptographic primitives are specific instances of this abstract experiment.

Technical Idea. To describe our technical idea, let us consider the example of
digital signatures in the single-user settings, as considered in [18,30,31], for this
introduction. As sketched above, the result will later be generalized and applied
to other settings as well. We consider a weakened signature security definition,
where the security experiment proceeds as follows.

1. The adversary receives as input a verification key vk along with n random
but pairwise distinct messages m1,...,Mmy,.

2. The adversary selects an index j*, and receives in response n — 1 signatures
o; for all messages m; with i # j*.

3. Finally, the adversary wins the experiment if it outputs ¢* that is a valid
signature for m;- with respect to j*.

Note that this is a very weak security definition, because the adversary is only
able to observe signatures of random messages. However, note also that any lower
tightness bound for such a weaker security definition implies a corresponding
bound for any stronger definition. In particular, the above definition is weaker
than the standard security definition existential unforgeability under chosen mes-
sage attacks considered in [18,30,31], where messages may be adaptively chosen
by the adversary.

Essentially, we argue that once a reduction has started the adversary in
Step 1 of the above experiment, and thus has “committed” to a verification key
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vk and messages myq, ..., my,, there can only be a single choice of j* for which
this reduction is able to output valid signatures o; for all 4 # j*. Thus, for any
adversary which chooses j* uniformly at random the reduction has probability at
most 1/n to succeed. We prove this by contradiction, by showing essentially that
any reduction which is successful for two distinct choices of j*, say jo,j1, can
be used to construct a machine that breaks the underlying security assumption
directly.

Technically, we proceed in two steps: first we describe an inefficient adversary
against the reduction which chooses j* uniformly random, and computes the
signature o* for m;« by exhaustive search. Next, we show that this adversary
can efficiently be simulated by our meta-reduction, if the reduction could succeed
for two different choices jy, and j; after committing to (vk, mq,...,my). The
meta-reduction simulates the inefficient adversary by rewinding the reduction.
Essentially, if the reduction could succeed for two different values jg, j1, then it
must also be able output the signatures for all n messages. Therefore we start
the reduction and let it run until it reaches a “break point” where it outputs
(vk,m1,...,my,). Next, we run the reduction n-times, each time starting from
the break point and using a different index j, to search for two values jo, j1 such
that jo # ji1 such that the reduction outputs valid signatures for all-but-one
messages. If indeed there exist two such indices jg, j1, then we now have learned
signatures for all messages (my, ..., my) which are valid w.r.t. vk. Thus, we can
run the reduction one last time from the break point, this time to the end, using
index jg (or equivalently j;), and we simulate the inefficient adversary using
the fact that we know a valid signature for m;, (or m;, ). Importantly, in the
last execution of the reduction we are able to simulate the inefficient adversary
perfectly, so the reduction will help us to break the non-interactive complexity
assumption.

We caution that the rigorous proof of the above is more complex than the
intuition provided in this introduction, and we have to put restrictions on the
signature scheme, which depend on the considered application. For instance,
when considering signatures in the single-user setting as above, we have to require
that signatures are efficiently re-randomizable. In the generalized setting we will
consider other applications, which require different but usually simple-to-check
properties, like for instance that for each public key vk there exists a unique
secret key. In this way, our result provides simple criteria to check whether
a cryptographic construction can have a tight proof at all. At the same time it
implicitly provides guidelines for the construction of tightly secure cryptographic
schemes, since all tightly secure constructions must circumvent our result in one
way or the other.

The fact that we consider a weakened security experiment has several nice
features. We think that the approach and its analysis described above are much
simpler than previous works, which enables more involved impossibility results.
We will show that it achieves a simpler bound and yields a qualitatively stronger
result, as it even rules out tight reductions for such weak security experiments.
Like previous works, we only consider reductions that execute the adversary
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sequentially and in a black-box fashion. We stress that most reductions in cryp-
tography have this property.

We generalize the above idea from signature schemes in a single-user setting
to abstract relations, which capture the relevant properties required for our
impossibility argument to go through. We show that this abstraction allows to
apply the result relatively easily to other cryptographic primitives, by describing
applications to public-key encryption and signatures in the multi-user setting,
and non-interactive key exchange.

Overview of Applications. A first, immediate application of our new technique
are strengthened versions of the results of [18,30,31], but with significantly sim-
pler proofs and tightness bounds even for weaker security notions (which is
a stronger result). In contrast to previous works [18,30,31], the impossibility
results hold also for “decisional” complexity assumptions.

Additionally, the fact that our meta-reduction does not require the com-
binatorial lemma of Coron enables further, novel applications in settings with
polynomially-bounded spaces (where Coron’s result worked only for exponential-
sized spaces). As a first novel application of our generalized theorem, we analyze
the tightness loss that occurs when security proofs in idealized single-user set-
tings are transferred to the more realistic multi-user setting. Classical security
models for standard cryptographic primitives often consider an idealized set-
ting. For instance, the standard IND-CPA and IND-CCA security experiments
for public-key encryption consider a setting with only one challenge public key
and only a single challenge ciphertext. This is of course unrealistic for many
practical applications. Public-key encryption is typically used in settings where
an attacker sees many public keys and ciphertexts, and is (potentially) able to
corrupt secret keys adaptively. Even though there is a reduction from breaking
security in the multi-user setting to breaking security in the idealized setting,
this reduction comes with a security loss which is linear in the number of users
and ciphertexts. We show that under certain conditions (e.g., for schemes where
there exists a unique secret key for each public key) this loss is impossible to
avoid. This gives an insight into which properties a cryptosystem must or must
not meet in order to allow a tight reduction in the multi-user setting.

Another novel application is the analysis of the existence of non-interactive
key exchange (NIKE). In non-interactive key exchange (NIKE) two parties are
able to derive a common shared secret. However, in contrast to traditional key
exchange protocols, they do not need to exchange any messages. Besides the
secret key of one party the key derivation algorithm only requires the availability
of the public key of the communication partner. Security is defined solely by
requiring indistinguishability of the derived shared secret from a random value.
We show how to apply our main result to rule out tight reductions for a large
class of NIKE protocols from a standard assumption in any sufficiently strong
security model (such as the CKS-heavy model from [25]).

On Certified Public Keys and the Results of Kakvi and Kiltz. Several years after
the publication of the paper of Coron [18] it has turned out that this paper
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contains a subtle technical flaw. Essentially, it is implicitly assumed that the
value output by the reduction to the adversary is a correct signature public key
(recall that Coron considered only digital signature schemes in the single-user
setting). This misses the fact that a reduction may possibly output incorrect keys
which are computationally indistinguishable from correct ones. Indeed, such keys
lead to the technical problem that a meta-reduction may not be able to simulate
the adversary constructed in the meta-reduction of Coron correctly.

This flaw was identified and corrected by Kakvi and Kiltz [31]. Essentially,
Kakvi and Kiltz enforce that the reduction outputs only public keys which can
be efficiently recognized as correct, by introducing the notion of certified public
keys. A different (but similar in spirit), slightly more general approach is due to
Hofheinz et al. [30], who require that signatures are efficiently re-randomizable
with respect to the public key output by from the reduction (regardless of
whether this key is correct or not). Both these approaches [30,31] essentially
overcome the subtle issue from Coron’s paper by ensuring that the adversaries
simulated by the meta-reductions are always able to output correctly distributed
signatures.

In this paper, we introduce the notion of efficiently re-randomizable relations
to overcome the subtle issue pointed out by Kakvi and Kiltz [31]. This notion
further generalizes the approach of [30] in a way that suits our more general
setting.

Relation to Tightly-Secure Constructions. There exist various constructions of
tightly-secure cryptosystems, which have to avoid our impossibility results in
one way or another. The signature schemes constructed in [1,10,19,29,32,36],
for example, are tightly-secure in a single-user setting. They avoid our impos-
sibility result because they do not have unique signatures or no efficient re-
randomization algorithm is known. The same holds for the signature schemes
derived from the IBE schemes of [11,17]. Bader et al. [4] constructed signa-
ture schemes with tight security even in the multi-user setting with adap-
tive secret-key corruptions. Again, our impossibility results are avoided here
because signatures are not efficiently re-randomizable. The encryption schemes of
Bellare, Boldyreva and Micali [6] are tightly-secure in a multi-user setting, but
only without corruptions. We consider impossibility results for the multi-user
setting with corruptions. The key encapsulation mechanism presented in [4] is
tightly-secure even in a multi-user setting with corruptions. It avoids our impos-
sibility result because it does not have unique secret keys.

More Related Work. Since their introduction by Boneh and Venkatesan in
1998 [12] meta-reductions have proven to be a versatile tool in many areas
of provably security. Previous works have mainly used meta-reductions to
derive impossibility results and efficiency/security bounds on signatures schemes
[5,20-22,24,26,34,37], blind-signature schemes [23] and encryption systems [35].
In particular, among these results there exist several works that consider the exis-
tence of (tight) security proofs for the Schnorr signature scheme [5,24,26,34,37].
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The results in [13,14] use meta-reductions to derive relationships among cryp-
tographic one-more type problems. Lewko and Waters [33], building on [30],
showed that under certain conditions it is impossible to prove security of hierar-
chical IBE (HIBE) schemes. To this end, Lewko and Waters extend the approach
of [30] from signatures to hierarchical IBE to show that for certain HIBE schemes
an exponential tightness loss is impossible to avoid. Finally, the inexistence of
certain meta-reductions was considered in [22].

Outline. We begin with considering essentially the same setting as Coron and
follow-up works [18,30,31], namely digital signatures in the single-user setting,
as an instructive example. We prove a strengthened variant of the results of
[18,30,31]. This allows us to explain how our new technique works in a known
setting, which may be helpful for readers already familiar with these works.
A generalized, much more abstract version will be presented in Sects.4 and5
gives many further interesting applications, which seem not achievable using the
previous approach of [18,30,31].

2 The New Meta-reduction Technique

2.1 Preliminaries

Notation. We write [n] to denote the set [n] := {1,2,...,n}, and for j € [n] we
write [n\j] to denote the set [n]\{j}. If A is a set then a «+* A denotes the action
of sampling a uniformly from A. Given a set A we denote by Uy the uniform
distribution on A. If A is a Turing machine (TM) then a <+ A(z;r) denotes that
A outputs a when run with input 2 and random coins r. By A(z) we denote
the distribution of a « A(z;7) over the uniform choice of r. If z is a binary
string, then |z| denotes its length. If M is a Turing machine, we denote by M
its description as a bitstring.

If t : N — N and there exists a constant ¢ such that ¢(k) < k¢ for all but
finitely many k € N, then we say that t € poly(k). We denote by poly (k) the
set poly ' (k) := {6 : + € poly(k)}. We say that e : N — [0,1] is negligible if for
all ¢ € N it holds that e(k) > k¢ is true only for at most finitely many k € N.
We write € € negl(k) to denote that ¢ is negligible.

Digital Signatures. A digital signature scheme SIG = (Setup, Gen, Sign, Vfy) is a
four-tuple of PPT-TMs:

Public Parameters. The public parameter generation machine IT 3

Setup(1¥) takes the security parameter k as input and returns public para-
meters I1.

Key Generation. The key generation machine takes as input public parameters
IT and outputs a key pair, (vk, sk) «<* Gen(IT).

Signing. The signing machine takes as input a secret key sk and a message
m and returns a signature o «* Sign(sk,m).

Verification. The verification machine, on input a public key vk, a signature
o and a message m, outputs 0 or 1, Vfy(vk, m,o) € {0,1}.
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Game UF-SMAZZ (1)

IT % SIG.Setup(1¥); pa «* {0,1}"

(vk, sk) «—® SIG.Gen(IT)

my, ..., mn —> Mst.m; # my forall i # j
oi «—° SIG.Sign(sk, m;) for all i € [n]

(j7 St) — A (Ukv (mi)iE[nﬁ PA)

75 = Az (st (0i)icin\1)

return SIG.Vfy(vk, m;, o;)

Fig. 1. The UF-SMA-security game with attacker A = (Aj, As).

Unique and Re-Randomizable Signatures. Let X(vk,m) := {o : Vfy(vk,m,0) =
1} denote the set of all valid signatures o w.r.t. a given message m and verifica-
tion key vk.

Definition 1 (Unique signatures). We say that SIG is a unique signature
scheme, if |X(vk,m)| =1 for all vk and m.

Definition 2 (Re-randomizable signatures). We say that SIG s trerand-Te-
randomizable, if there exists a TM SIG.ReRand which takes as input (vk,m,o)
and outputs a signature o' % SIG.ReRand(vk,m,c) with the following
properties.

1. SIG.ReRand runs in time at most trerand
2. If Viy(vk,m,c) = 1, then o’ is distributed uniformly over X(vk,m).

Remark 1. Note that we do not put any bounds on trerand- Thus, any sig-
nature scheme is trerand-re-randomizable for sufficiently large trerand. How-
ever, there are many examples of signature schemes which are efficiently re-
randomizable, like the class of schemes considered in [30]. In particular, all
unique signature schemes are efficiently re-randomizable by the Turing machine
o <% SIG.ReRand(vk,m, o) which simply outputs its input o.

Unforgeability Under Static Message Attacks. The UF-SMA security experiment
is depicted in Fig. 1.

Definition 3. Let UF-SI\/I/A\;L[&’;4 (1’“) denote the UF-SMA security experiment
depicted in Fig. 1, evecuted with signature scheme SIG and attacker A =
(A1, A2). We say that A (ta,n,eq)-breaks the UF-SMA-security of SIG, if it

runs in time t4 and
Pr [UF-SMAZZ (1%) = 1] > ea.
Remark 2. Observe that the messages in the UF-SMA security experiment from

Fig.1 are chosen at random (but pairwise distinct). We do this for simplicity,
but stress that for our tightness bound we actually do not have to make any
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assumption about the distribution of messages, apart from being pairwise dis-
tinct. For instance, the messages could alternatively be the lexicographically first
n messages of the message space, for instance.

Non-interactive Complexity Assumptions. The following very general definition
of non-interactive complexity assumptions is due to Abe et al. [2].

Definition 4. A non-interactive complexity assumption N = (T,V,U) consists
of three TMs. The instance generation machine (c,w) <% T(1*) takes the secu-
rity parameter as input, and outputs a problem instance ¢ and a witness w.
U is a probabilistic polynomial-time machine, which takes as input ¢ and outputs
a candidate solution s. The verification TM V takes as input (c,w) and a candi-
date solution s. If V(c,w, s) = 1, then we say that s is a correct solution to the
challenge c.

Intuitively, U is a probabilistic polynomial-time machine which implements a
suitable “trivial” attack strategy for V. This algorithm is used to define what
“breaking” N with non-trivial success probability means, cf. Definition 5 below
and [2].

Consider the following experiment NICA% (1%).

1. The experiment runs the instance generator of N to generate a problem
instance (c,w) «° T(1*). Then it samples uniformly random coins pp «°
{0,1}* for B.

2. B is executed on input (¢, pp), it outputs a candidate solution s.

3. The experiment returns whatever V(c,w, s) returns.

Definition 5. We say that B (t,€)-breaks assumption N, if A runs in time t(k)
and it holds that

[Pr [NICA (1%) = 1] = Pr [NICAR, (1) = 1] | = e(k)

where the probability is taken over the random coins consumed by T and the
uniformly random choices of pp and pn respectively.

Simple Reductions From Non-interactive Complexity Assumptions to Breaking
UF-SMA-Security. A reduction from breaking the UF-SMA-security of a signature
scheme SIG to breaking the security of a non-interactive complexity assumption
N = (T,V,U) is a TM, which turns an attacker A = (A1, As) according to
Definition 3 into a TM A according to Definition 5.

Following [18,30,31,33], we will consider a specific class of reductions in the
sequel. We consider reductions having black-box access to the attacker, and which
execute the attacker only once and without rewinding. We will generalize this
later to reductions that may execute the attacker several times sequentially.
Following [33], we call such reductions simple. At first sight we heavily constrain
the class of reductions to that our result applies. However, as explained in [33],
we include reductions that perform hybrid steps. Moreover, most reductions in
cryptography are simple.
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For preciseness and clarity, we define such a reduction as a triplet of Turing
machines A = (A, Az, A3). From these TMs and an attacker A = (A1, Az), we
construct a Turing machine A for a non-interactive complexity assumption as
follows.

1. Machine A4 receives as input a challenge ¢ of the considered non-interactive
complexity assumption, as well as random coins p, «° {0,1}*. It first runs
A1 (¢, pa), which returns the input to A, consisting of a verification key vk,
a sequence of messages (1;);¢[n), and random coins p 4, as well as some state
st,-

2. Then A4 executes the attacker A; on input (vk, (m4)iem]s p.a), Which returns
an index j* € [n] and some state st 4.

3. TM Ay receives as input j* and state st,,, and returns a list of signatures
(0i)iem\j+) and an updated state st 4.

4. The attacker Ay is executed on (o)
ture o*.

5. Finally, A runs Az(o*, j*, st As), which produces a candidate solution s, and
outputs s.

n\j+] and state st 4, it returns a signa-

Definition 6. We say that a Turing machine A = (A1, A2, A3) is a simple
(ta, n, €n, €4)-reduction from breaking N = (T,V,U) to breaking the UF-SMA-
security of SIG, if for any TM A that (ta,n,eq)-breaks the UF-SMA security of
SIG, TM A4 (tn +ta,ep)-breaks N.

Definition 7. Let ¢ : N — N. We say that reduction A loses £, if there exists an
adversary A that (ta,n,eq)-breaks the UF-SMA security of SIG, such that AA
(ta + ta, en)-breaks N with

ta(k) + ta(k) ta(k)
6/\(/45) 6_,4(/43)

Remark 3. The quotient ¢t 4(k)/e4(k) of the running time ¢ 4 (k) and the success
probability €4 (k) of a Turing machine A is called the work factor of A [8]. Thus,
the factor ¢ in Definition 6 relates the work factor of attacker A to the work
factor of TM A, which allows us to measure the tightness of a cryptographic
reduction. The smaller ¢, the tighter is the reduction.

> ((k)

2.2 Bound for Simple Reductions Without Rewinding

For simplicity, we will consider reductions that have access to a “perfect” adver-
sary A, which (t4, €4)-breaks the signature scheme with e4 = 1. We explain in
Sect. 2.4 why the extension to adversaries with €4 < 1 is straightforward.

Theorem 1. Let N = (T,V,U) be a non-interactive complexity assumption,
n € poly(k) and let SIG be a signature scheme. For any simple (ta,n,ep,1)-
reduction from breaking N to breaking the UF-SMA-security of SIG, there exists
a Turing machine B that (tp, ep)-breaks N where

tBSn-t/\+n~(n—1)-tvfy—|—tReRand and 6[526/\—1/%.
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Here, trerand @5 the time required to re-randomize a signature, and tyg s the
running time of the verification machine of SIG.

Proof. Our proof structure follows the structure of [30] (also used in [33]). That
is, we first describe a hypothetical, inefficient adversary, then we show how to
simulate it efficiently for certain reductions.

The Hypothetical Adversary. The hypothetical adversary A = (A1, .As) consists
of two procedures that work as follows.

Aq (vk, (mi)ie[n];pA). On input a public key vk and messages mq,..., My,
A; samples j % [n] uniformly random and outputs (j, st), where st =
(vk, (m4)ien)> J)-

Aa((04)ien\j]» 5t)- A2 checks whether SIG.Vfy(vk, m;,0;) = 1 for all i € [n\j]. If
this holds, then it samples a uniformly random signature o; —3 E(vk, m;)
for m;. Finally, it outputs o.

Note that A (¢4, 1)-breaks the UF-SMA-security of SIG. Note also that the second
step of this adversary may not be efficiently computable, which is why we call
this adversary hypothetical.

Simulating A. Consider the following TM B, which runs reduction A = (41, As,
A3) as a subroutine and attempts to break N. B receives as input ¢ «® T(1%). It
maintains an array A with n entries, which are all initialized to (), and proceeds
as follows.

$

1. B first runs (vk, (mi)icin), pa,sta,) <> Ai(c;pa) for uniformly random

PA 3 {0, 1}k.

2. Next, B runs Ay (j, sta,) for each j € [n]. Let ((04,)icn\j], Stas,j) denote the
output of the j-th execution of A;. Whenever Ay outputs (0 ;)ic[n ;) such
that

SIG.Vfy(vk,m;, 0, ;) = 1 for all i € [n\j]

then it sets A[i] < o ; for all i € [n\j].
3. B samples j* <% [n]. Then it proceeds as follows.
— If there exists an index ¢ € [n\j*] such that SIG.Vfy(vk, m;,0; +) # 1,
then B sets o* := L.
— Otherwise, if SIG.Vfy(vk, m;, 0, ;+) = 1 for all ¢ € [n\j*], then B computes

o* % SIG.ReRand(vk, m;-, A[j*]).

4. Finally, B runs s «— As(c*,j*, sta, j-) and outputs s. Note that the state
stp, 5+ used to execute Az corresponds to the state returned by A on its
j*-th execution.

Running Time of B. B essentially runs each part of Turing machine A =
(A1, A, A3) once, plus n — 1 additional executions of As. Moreover, it executes
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SIG.Vfy n(n — 1) times, and the re-randomization TM SIG.ReRand once. Thus,
the total running time of B is at most

tg <n-th+n-(n—1)-tvy + tReRand-

Success Probability of B. To analyze the success probability of B, let us define an
event bad. Intuitively, this event occurs, if j* is the only (with respect to state
sta,) value such that As(sty,,j) outputs signatures which are all valid. More
A

formally, for both experiments NICAR (1¥) and NICA% (1%), let st 4, denote the
(in both experiments unique) value computed by A;(c;pa), and let j* denote
the (in both experiments unique) value given as input to Az(c*, j*, sta, j-). We
say that bad occurs (in either NICAR (1%) or NICAQA(lk)), if pred(sta,,j*) =
1 A pred(sta,,j) =0V j € [n\j*], where predicate pred is defined as

pred(st,,j) =1
<— /\ SIG.Vfy(vk,m;, 04) = 1, where ((0)icin\j]; 5tas) < A2(sta,, J)-
i€n\J]
Note that pred is well-defined, because A5 is a deterministic TM.
Let us write S(F) shorthand for the event NICA% (1¥) = 1 to abbreviate our
notation. Then, it holds that
| Pr[S(B)] — Pr[S(A4)]| < | Pr[S(B) N —bad] — Pr[S(A*) N =bad]| + Pr[bad].
(2)

Bounding Pr[bad]. Recall that event bad occurs only if

pred(sta,,j") = 1 Apred(sta,,j) =0V j € [n\j"] (3)

where st 4, is the value computed by A1 (c;pa), and j* is the value given as input
to Ag(c*, 5%, sta,, j+). Suppose that indeed st,, is such that there exist at least
one j* € [n] such that (3) holds. We claim that even then we have

Pribad] < 1/n. (4)

To see this, note first that for each st,, there can be at most one value j*
that satisfies (3). Moreover, both the hypothetical adversary A and the adversary
simulated by B choose j* «* [n] independently and uniformly random, which
yields (4).

Proving Pr[S(B)N—bad] = Pr[S(A*)N-bad]. Note that B executes in particular
L (vk, (mq)icpn)s sta,) <> Ai(c;pa)

2. (015 )ietm\j=]> tas) <° A2(j*, sta,)

3. s Az(c*, 5%, sta,).

We show that if —bad occurs, then B simulates the hypothetical adversary A
perfectly. To this end, consider the distribution of * computed by B in following
two cases.
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1. Machine As(j*,sta,) outputs ((0i ;= )iem\;j+]> 5tas,5+) such that there exists
an index i € [n\j*] with SIG.Vfy(vk, m;, 0, j+) # 1.
In this case, A would compute o* := L. B also sets ¢* := L in this case.
2. TM Ay (j*, sta,) outputs (0, )ie[n\;j+]> Stas,5+) such that for all 4 € [n\j*] it
holds that
SlGny(U]iZ7 mg, Ui,j*) = 1.

In this case, A would output a uniformly random signature o* <«
Y(vk,m;-). Note that in this case B outputs a re-randomized signature
o* «3% SIG.ReRand(vk ,m;«, A[j*]), which is a uniformly distributed valid
signature for m;- provided that A[j*] # 0. The latter happens whenever bad
does not occur.

$

Thus, B simulates A perfectly in either case, provided that —bad. This implies
S(B) N —bad <= S(A*) N —-bad, which yields

Pr[S(B) N =bad] = Pr[S(A*) N —bad]. (5)

Finishing the Proof of Theorem 1. By plugging (4) and (5) into Inequality (2),
we obtain
| Pr[S(B)] — Pr[S(AM)]| < 1/n

which implies

e5 = | Pr{S(B)] — Pr[S(U)]| > | Pr[S(4)] = Pr[S(U)]| — 1/n = e — 1/n.

2.3 Interpretation

Assuming that no adversary B is able to (tn, en)-break the security of NICA with
tn =tg =n-ta+n-(n—1) tvy + trReRand, We must have eg < ey. By Theorem 1,
we thus must have

en<egt+1l/n<en+1/n

for all reductions A. In particular, the hypothetical adversary A constructed in
the proof of Theorem 1 is an example of an adversary such that
ta ta

th+ta ta -1 -1
en ent+1l/n (en +1/n) 1 (en +1/n) €A

Thus, any reduction A from breaking the security of NICA N to breaking the
UF-SMA-security of signature scheme SIG loses (in the sense of Definition 7) at
least a factor of £ > 1/(en + 1/n). In particular, note that ¢ ~ n if ey is very
small. This yields the following informal theorem.

Theorem 2 (Informal). Any simple reduction from breaking the security of
NICA N to breaking the UF-SMA-security (or any stronger security notion, like
EUF-CMA-security, cf. Definition 19) of signature scheme SIG that provides effi-
cient signature re-randomization loses a factor that is at least linear in the num-
ber n of sign queries issued by the attacker, or N is easy to solve.

Remark 4. Since a unique signature scheme is trivially efficiently re-
randomizable, Theorem 2 applies also to unique signature schemes.
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TM r-A*(c; pa)

stay, Ao (07 PA)

for 1 <[ <rdo:
(vlcl7 (mﬁ)ie[n],pA, stAl’z) — Al,l(StAl’l)
(5", sta) « A1 (vE', (M) icin); pa)
((00)iemmviings St 5) < Ai2(5", sta, ,)

0';-1»« $— AQ((Oé)ie[n\jl*]’ St‘A)

l EY
Sta, 4 & A1z (O'jl*,j ,StAly_g)

s < A3 (stA,,,le)
return s

Fig. 2. TM r-A* that solves a non-interactive complexity assumption according to
Definition 5, constructed from a r-simple reduction r-A = (/10, (Ag,1, Ar 2, Alﬁ)le[r] , /13)
and an attacker A = (A1, A2).

2.4 Extension to “Non-perfect” Adversaries

Note that the proof of Theorem 1 trivially generalizes to (ta, n, €p, €.4)-reductions
with €4 < 1, that is, reductions that have access to an adversary which has
success probability € 4 < 1. To this end, we first would have to describe a hypo-
thetical adversary, which has success probability € 4. This is simple, because we
can simply let the hypothetical adversary constructed above toss a biased coin
x with Pr[x = 1] = €4, such that A outputs o* only if x = 1. Note that in the
proof of Theorem 1 we are even able to simulate a perfect adversary A. Therefore
we would also be able to simulate the non-perfect adversary sketched above, by
tossing a biased coin x and outputting ¢* only if x = 1. This yields the following
theorem.

Theorem 3. Let N = (T,V,U) be a non-interactive complexity assumption,
n € poly(k) and let SIG be a signature scheme. For any simple (ta,m,€n,€q)-
reduction from breaking the UF-SMA-security of SIG to breaking N, there exists
a Turing machine B that (tp,ep)-breaks N where

tg§n~t/\+n~(n71)~tvfy+tReRand and 6326/\71/77,.

Here, trerand s the time to re-randomize a given valid signature over a message
and tvg, is the time needed to execute the verification machine of SIG.

3 Bound for Reductions with Sequential Rewinding

Theorem 1 applies only to reductions that run the forger only once. Here we
show that under assumptions similar to that in Theorem 1 the work factor of
any reduction that is allowed to run or rewind the adversary r times sequentially
cannot decrease significantly below 7 if N is hard.
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Let r be an upper bound on the number of times that the adversary can be
rewound by the reduction. We then consider a reduction r-A as a 37+ 2-tuple of

Turing machines r-A = (AO, (A1, Ay 2, Al,3>l€[r] 7/13). Let now A = (A1, As) be
an attacker against the UF-SMA-security of SIG. From these TMs we construct

a Turing machine 7-A“ that solves a NICA N as depicted in Fig.2. We shortly
explain Fig. 2 here.

Ag. r-A inputs a challenge c of the considered non-interactive complexity assump-
tion and random coins p,. It processes these inputs by running Ay which
outputs a state st,.

A = (A1, 412, A1.3). Now, for each | € [r], we have a triplet of TMs 4; =
(Ay1,A12,4;,3) that has black box access to attacker A = (A1, Az). Note
that the state st4 may be passed over from A; 3 to Aj+1,1 (and As) while the
state st4 of Az may not be passed over to the next execution of Aj.

Ay 1. Ap 1 inputs the current state st ; and outputs a public key vk, distinct
messages ml,i € [n], a random tape pa for A; and a state sty, ,. Next,
A1 is run on input (vkl, (mi)ie[n]) ;pa) and returns a state st4 and an
index j.

A 2. On input index 4! and state sta, ., Ai2 returns signatures (O'l

Z')ie[n\j}
and state sty, ,. Now, As is run on ((Ué)ie[n\jl] ,stA) and returns U;.L.
Ay 3. Ap 3 inputs the signature output by A; 2 and the current state sty, ,. It
returns the state stn,, ;.
As. Finally, A3 inputs the current state of r-A and returns s. r-A is considered
successful if V(c,w, s) = 1.

Definition 8. We say that a Turing machine r-A = (/10, (A1, A2, Al73)le[r] ,

Ag) is anr-simple (t 4, n, €n, € 4)-reduction from breaking N = (T, V, U) to breaking
the UF-SMA-security of SIG, if for any TM A that (ta,n, €4)-breaks the UF-SMA
security of SIG, TM r-A* (as constructed above) (ty + 1 -t 4, en)-breaks N.

Definition 9. Let?: N — N. We say that an r-simple reduction A from breaking
a non-interactive complexity assumption N to breaking the UF-SMA security of a
signature scheme SIG loses € if there exists an adversary A that (t 4, n, €4)-breaks
such that AA (ty + 1 -ta,epn)-breaks N where

ta(k ~ta(k ta(k
€A ea(k)
Theorem 4. Let N = (T,V,U) be a non-interactive complexity assumption,

n,r € poly(k) and let SIG be a signature scheme. Then for any r-simple
(ta, n,en, 1)-reduction A from breaking N to breaking the UF-SMA-security of
SIG there exists a TM B that (tg,ep)-breaks N where

tg <r-n-ta+r-n-(n—1) tyy + 7 - tReRand

r
€R ZEN — .
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Here, trerand s the time to re-randomize a given valid signature over a message
and tvg, is the time needed to run the verification machine of SIG.

The proof of this theorem is structured as the proof of Theorem 1. We again
first consider a hypothetical attacker A (cf. Page 11) that breaks the UF-SMA-
security of SIG. Next, when we show how to simulate A, we basically apply the
technique from the proof of Theorem1 r times. A detailed proof can be found
in the full version of this paper.

3.1 Interpretation

Assuming that no adversary B is able to (ty, en)-break the security of NICA with
tn = tn zr-n-t/\+r-n-(n—1)~tvfy+7‘~tReRand, we must have ez < ey. By
Theorem 4, we thus must have

en<egt+r/n<en+r/n

for all reductions A. In particular, the hypothetical adversary A constructed in
the proof of Theorem 1 is an example of an adversary such that

tA+7“~tA> Tty

- ta - ta
€A 76N+7’/n:(6N+r/n) Lo S = (en /o)t 2

1 €A

Thus, any reduction A from breaking the security of NICA N to breaking the
UF-SMA-security of signature scheme SIG loses (in the sense of Definition 7) at
least a factor of £ > r/(en + r/n). In particular, note that £ ~ n if ey is very
small.

4 A Generalized Meta-reduction

In this section we state and prove our main result, which generalizes the results
from Sect. 2. Essentially, we observe that for the proof to work we do not need all
structural elements a signature scheme possesses. In particular we do not require
dedicated parameter generation-, key generation- and sign-algorithms. Instead,
we consider an abstract security experiment with the following properties:

1. The values that are publicly available “induce a relation” R(z,y) that is
efficiently verifiable for the adversary during the security experiment.

2. The adversary is provided with statements y1,...,y, at the beginning of the
security experiment and has access to an oracle that when queried y; returns
x; such that R(z;,v:),1 € [n].

3. If the adversary is able to output x; such that R(x;,y;) and it did not query
its oracle on y;, this is sufficient to win the security game.

Remark 5. To show the usefulness of such an abstract experiment, we note that
for instance the security experiments for public key encryption or key encap-
sulation mechanisms in the multi-user setting with corruptions [4], or digital
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signature schemes in the multi-user (MU) setting with corruptions [3,4], natu-
rally satisfy these properties as follows. Essentially, we define a relation R(sk, pk)
over pairs of public keys and secret keys such that R(sk,pk) = 1 whenever sk
“matches” pk. The adversary is provided with public keys at the beginning of
the experiment, and is able to obtain secret keys corresponding to public keys
of its choice. Finally, if the adversary is able to output an uncorrupted secret
key, it is clearly able to compute a signature over a message that was not signed
before (i.e., winning the signature security game) or decrypt the challenge cipher-
text (i.e., winning the PKE/KEM security game). Thus, all three requirements
are satisfied. Details on how to apply the result to, e.g., digital signatures and
PKE/KEMs in the multi user setting with corruptions we refer to Sect. 5.

4.1 Definitions

Re-randomizable Relations. Let R C X x Y be a relation. For (z,y) with
R(z,y) = 1 we call z the witness and y the statement. We use X(R,y) to
denote the set

X(R7y) = {37 : R(xay> = 1}'

of all witnesses z for statement y with respect to R. We denote by L(R) :=
{y: Jzst.R(z,y) =1} CY the language consisting of statements in R.

In the sequel we will consider computable relations. We will therefore identify
a relation R with a machine R that computes R. We say that a relation R is
tys,-computable, if there is a deterministic Turing machine R that runs in time

at most tvs (|z| + |y|) such that ﬁ(w,y) = R(z,y).

Definition 10. Let R := {R;}icr be a family of computable relations.
We say that R is tReRand—re—m/r\Ldomizable if there is a probabilistic Turing
machine R.ReRand that inputs (R;,y,x), runs in time at most trerand, and out-
puts &' which is uniformly distributed over X (R, y;) whenever R;(x,y) = 1, with
probability 1.

Example 1. Digital signatures in the single user setting, as considered in Sect. 2,
may be described in terms of families of relations. We set Ry, to the relation
over signatures and messages that is defined by a verification key vk. In this case,
we have that X (R, y) = X(vk,y) is the set of all valid signatures over message y
with respect to public key vk. Note that the family of relations (R,uk)m vk
iS trerand-re-randomizable, if the signature scheme is trerang-re-randomizable
(cf. Definition 2).

Witness Unforgeability Under Static Statement Attacks. We will consider a weak
security experiment for computable relations, which is inspired by the UF-SMA-
security experiment considered in Sect.2, but abstract and general enough to
be applicable in other useful settings. Jumping slightly ahead, we will show
in Sect.5 that this includes applications to signatures, public-key encryption,
key encapsulation mechanisms in the multi-user setting, and non-interactive key
exchange.
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Game U F-SSA%’A (1'“)

R=R;«*R
Yy yn > L(R) s.t. y; # y; for all
]

2 % X(R,y,) foralli € [n]
(i 5t)  Ar(R, (5:)icings p4)
z; Az (st, (T)icm\)
return R(z;,y,)

Fig. 3. The UF-SSA-security game with attacker A = (A1, As2).

T™ r-I"*(¢; pa)
str < Iy (C,pr)
for1 <[ <rdo:

(/R\la (yi)le[n] 7pA78tF) A n,l(StF)
(5! sta) < A (l/%\l, () e 5PA>
((xé)ie[n\m ’Stp)  Tia (71, str)
:ré +— As ((Jri)ie[n\j,] ,stA)

str Fl,g (mé,stp)

s+ I3 (Str)
return s

Fig.4. TM r-I'* that solves a non-interactive complexity assumption according to

")

Definition 5, constructed from a r-simple reduction r-I" = (Fo, T11,T,2, Flv3)l€[r] ,

and an attacker A = (A1, As).

The security experiment is described in Fig. 3. It is parametrized by a family
R of computable relations, R = {R;},.;, and the number n of statements the
adversary A = (A1, As) is provided with. These statements need to be pairwise
distinct. A may non-adaptively ask for witnesses for all but one statement, and is
considered successful if it manages to output a “valid” witness for the remaining
statement.

Definition 11. Let R = {R;},.; be a family of computable relations. We say
that an adversary A = (A1, As) (t,n,€)-breaks the witness unforgeability under
static statement attacks of R if it runs in time t and

Pr [UF-SSAZ (A) = 1] > ¢

where UF-SSAT, (A) is the security game depicted in Fig. 5.

Simple Reductions From Non-interactive Complexity Assumptions to Breaking
UF-SSA-Security. Informally, a reduction from breaking the UF-SSA-security of
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a family of relations R to breaking the security of a non-interactive complexity
assumption N = (T, U,V) is a Turing machine I, which turns an attacker A =
(A1, Az) against R according to Definition 11 into a TM I'* that breaks N
according to Definition 5. As in Sect. 2, we will only consider simple reductions,
i.e., reductions that have black-box access to the attacker and that may run the
attacker at most r times sequentially.

We define a reduction from breaking the security of R to breaking N as

an (37 + 2)-tuple of TMs I = (FO, (Tr1. T2, Tes) e ,rg), which turn a TM A

breaking the security of R into a TM I'* breaking N, as described in Fig. 4. Note
that this Turing machine works almost identical to that considered in Sect. 3,
except that we consider a more general class of relations.

Definition 12. We say that « TM r-T = (FO,(Fu,rw,rl,g)lem ,F3) is an
r-simple (tr,n,er,eq)-reduction from breaking N = (T,V,U) to breaking the
UF-SSA-security of a family of relations R, if for any TM A that (ta,n,€eq)-
breaks the UF-SSA security of R, TM r-T'A (cf. Fig. }) (ta+1-ta,ep)-breaks N.

We define the loss of an r-simple reduction r-I" from breaking N to breaking
the UF-SSA-security of a family of computable relations R similar to Definition 9.

4.2 Main Result
In this Section we establish the following result that generalizes Theorem 4.

Theorem 5. Let N = (T,V,U) be a non-interactive complexity assumption,
n,r € poly(k) and let R be a family of computable relations. Then for any
r-simple (tp,n,er,1)-reduction T from breaking N to breaking the UF-SSA-
security of R there exists a TM B that (tg,ep)-breaks N where

tg <r-n-tp4+7r-n-(n—1) tvy + 7 - tReRand

r
€ € — -

Here, trRerand %5 the time to re-randomize a given valid witness and tyg, is the
mazximum time needed to compute R € R.

The proof of Theorem 5 is nearly identical to the proof of Theorem 4, and
therefore omitted. Also the interpretation of Theorem 5 is nearly identical to the
interpretation described in Sect.2.3. Assuming that no adversary B is able to
(tn, en)-break the security of NICA with ty =tg =r-n-tpa+r-n-(n—1)-
tvey + 7 - tReRand, We must have ez < en. Thus, if R is efficiently computable and
re-randomizable, the loss of any simple reduction from breaking N to breaking
the UF-SSA-security of R is at least linear in n.
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5 New Applications

5.1 Signatures in the Multi-user Setting

Definitions. The syntax of digital signature schemes is defined in Sect. 2. Here,
we define additional properties of signature schemes that are required to establish
our result. Let SIG = (Setup, Gen, Sign, Vfy) be a signature scheme. In the sequel
we require perfect correctness, i.e., that for all k € N, all IT «* Setup(1¥), all
(vk, sk) —3% Gen(IT) and all m it holds that:

Pr |SIG.Vfy(vk,m,0) =1:0 3 SIG.Sign(sk,m)| = 1.

Moreover, let IT <% Setup(1*) and let us recall that IT is contained in vk. We
require an additional deterministic TM SKCheck; that takes as input strings sk
and pk and outputs 0 or 1 such that:

SKCheckpz (pk, sk) =1
—
Pr [Vfy(pk,m,0) = 1:m <% |[M| Ao ¥ Sign(sk,m)| = 1.

That is, SKCheck takes inputs sk and pk and returns 1 if and only if pk is
a valid public key and sk is a corresponding secret key. Since we require per-
fect correctness for signature schemes, we have SKCheck(vk, sk) = 1 whenever

(vk, sk) <% Gen(IT).

Definition 13. (Key re-randomization). We say that a signature encryp-
tion scheme SIG is trerand-key re-randomizable if there exists a Turing machine
SIG.ReRand that runs in time at most trerand, takes as input II(vk,sk) and
returns sk uniformly distributed over {sk : SKCheckp (vk, sk) = 1} whenever
SKChecky (vk, sk) = 1.

Ezample 2. If we consider, for example, the Waters signature scheme [38], a
public key consists among others of elements g, g1, g2 € G where g1 = g®. The key
generation algorithm outputs a corresponding secret key as sk = ¢g5. However,
there may be other secret keys that might be accepted by SKCheck.

To investigate this issue we shortly recall the signing and verification algo-
rithms of [38]. The signing algorithm, when given as input a secret key and a
message returns o = (01,02) = (g",sk - (H(m))") where r is uniformly ran-

dom chosen from Z,. Verification returns e(g1, g2) =" e(g, 02) - e(o1, H(m))~! =

e(g. k) - e(g, H(m))" - e(g, H(m))~".

We observe that by definition of SKCheck we must have SKCheck(vk, sk) =
1< e(g1,92) = e(g, sk). Thus there is an efficient SKCheck procedure. Moreover,
since there is only one value that satisfies this equation in prime order groups
we have an efficient secret key re-randomization algorithm, namely, the identity
map. This is all that is to verify before applying our result.
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Game MU-EUF-CMA-CE (A)

IT <% SIG.Setup(1F) 0.Sign(m, 1)

(vks, ski) «° SIG.Gen(IT) if Qi > preturn L

PA " {07 1}k Qi+ QiU {m}

QM — Q) = ... =Qn 0 return o <°* SIG.Sign(sk:, m)

(*i,m*, %) ¢ AO-Sign(),0.Corrupt () <(vki)i€[n] ;pA) O.Corrupt(i)

return vk ¢ QTP Am* ¢ Qi+ A SIG.Vfy(vki,m*, 0%) QTP «— QP U {vk;}
return sk;

Fig.5. MU-EUF-CMA-C-security game. The attacker has access to a signing oracle
O.Sign and a corrupt oracle O.Corrupt.

Security Definition. The MU-EUF-CMA-C-security game is depicted in Fig. 5.
Here the adversary A is provided with public keys vky, ..., vk, of the signature
scheme. It may now adaptively issue sign and corrupt-queries. To issue a sign
query it specifies a message m and a public key vk;, 7 € [n] and obtains a valid
signature o over m that is valid with respect to vk;. In order to issue a corrupt
query, A specifies an index i € [n] and obtains a secret key sk; that “matches”
vk;. Finally, A outputs a triplet (i,m,oc) and is considered successful if it did
neither issue a corrupt query for ¢ nor a sign query for (m,vk;) and at the same
time o is valid over m with respect to vk;.

Definition 14 (MU-EUF-CMA-C-security). We say that an adversary
(t,n, p, €)-breaks the MU-EUF-CMA-C-security of a signature scheme SIG if it
runs in time t and

Pr [MU-EUF-CMA-CIE(A) = 1] > e

Definition 15. We say that a Turing machine r-I' is an 7r-simple
(ta,m, 1, €ny €4)-Teduction  from breaking N = (T,V,U) to breaking the
MU-EUF-CMA-C-security of SIG, if for any TM A that (ta,n, i, €4)-breaks the
MU-EUF-CMA-C security of SIG, TM A (tp 47 - ta, ep)-breaks N.

The loss of an r-simple reduction I' from breaking N to breaking the
MU-EUF-CMA-C-security of SIG is defined similar to Definition 7.

Defining a Suitable Relation. Let SIG = (Setup, Gen, Sign, Vfy) be a signa-
ture scheme and let I be the range of Setup. We set Rsic = {Rp};o; where
Ry (z,y) := SKChecky(y,x). Now, if SIG is trerand-key re-randomizable then
Rsic is tRerand re-randomizable.

UF-SSA Security for Rsig is Weaker Than MU-EUF-CMA-C-Security for SIG. Let
now SIG be a perfectly correct signature scheme and let Rgig be derived from
SIG as described in Sect. 5.1.

Claim. If there is an attacker A that (¢, n, e)-breaks the UF-SSA-security for Rs\g
then there is an attacker B that (¢, n,0, ¢')-breaks the MU-EUF-CMA-C-security
of SIG with ' = O(t) and € > e.
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Proof. We construct B that (¢',n,0,€')-breaks the MU-EUF-CMA-C-security of
SIG, given black box access to A as follows:

1. B is called on input a set of public key (vk)ie[n] and random tape p. Recall
that IT are contained in vk. First, B samples and p_4, the random coins of A.

After that, it runs (j, st4) <« A1 (H, (Uk)ie[n] ,pA).

2. B will issue a corrupt-query to oracle O.Corrupt for all i € [n\j]. It
will obtain sk; such that SKCheckp(vk;,sk;). Next, B runs sk; 3

Ay ((Ski)ie[n\j] ,stA). Note that SKCheck (vk;, sk;) = 1 with probability e.

3. B samples m <% M and computes o «° SIG.Sign(sk;j, m) and outputs
(j,m, o). Note that vk; ¢ Q™Pt and m ¢ Q. Moreover, by the property of
SKCheck we have SIG.Vfy(vk;,m,o) = 1.

Tightness Bound

Theorem 6 (informal). Any simple reduction from breaking the security of a
NICA N to breaking the MU-EUF-CMA-C-security of a perfectly correct signature
scheme SIG (cf. Definition 15) that provides efficient key re-randomization and
that supports an efficient SKCheck loses a factor that is linear in the number of
public keys the attacker is provided with and that it may corrupt, or N is easy
to solve.

We prove the Theorem via the following technical Theorem, which follows
immediately from Theorem 5.

Theorem 7. Let N = (T,V,U) be a non-interactive complexity assumption,
n,r € poly(k) and let Rsig be a family of computable relations as described above.
Then for any r-simple (tr,n, er, 1)-reduction T from breaking N to breaking the
UF-SSA-security of Rsig there exists a TM B that (tp,eg)-breaks N where

tg <r-n-tr+r-n-(n—1) tviy + 7 tReRand

T
€ >€r — —.
n

Here, trRerand %5 the time to re-randomize a given valid witness and tyg, is the
mazimum time needed to compute R € Rgg.

5.2 Public-Key Encryption in the Multi-user Setting

Our main result also applies to public key encryption in the multi-user set-
ting with corruptions (and a similar result for key encapsulation mechanisms is
straightforward). In the following, we only sketch the main steps to establishing
our result. The full version contains a detailed, formal treatment. We start off
by first defining MU-IND-CPA-C-security (Fig.6), a security definition for public
key encryption schemes PKE = (Setup, Gen, Enc, Dec) in the multi-user setting
with corruptions. To apply our main result, we again have to formally define a
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Game MU-IND-CPA-C (A)

IT <% PKE.Setup(1%) O.Encrypt(mo, m1,1")

(pki, ski) <8 PKE.Gen(IT) if |mo| # |m.| return L

pa {0, 1}* b+*{0,1}

QComrt g return ¢ <> Enc(pk;, my)

b AO.Encrypt(»,»,-),O.Corrupt(‘) ((pkz)ze[n] ;pA) O'Corrupt(i)

return b — b/ /\pkz* ¢ QCorrupt QCorrupt «— QCorrupt U {pkz}
return sk;

Fig. 6. MU-IND-CPA-C-security game. The attacker has access to an encryption oracle
O.Encrypt which may be queried only once and a corrupt oracle O.Corrupt.

family Rpke of suitable computable relations. To this end (and similar to the
case of digital signatures in the multi user setting), we require the existence of
an additional TM SKCheck;r for IT «% Setup(1*) such that

SKCheckyr (pk, sk) = 1 <= Pr |Dec(sk, Enc(pk,m)) = m : m < M] -1

That is, SKCheck takes inputs sk and pk and returns 1 if and only if pk is a PKE
public key and sk is a secret key corresponding to public key pk. To define our
suitable relation, we set Rpke = {Rr};o; where Rp(x,y) := SKCheckr (y, )
and [ is the set of all public parameters that can be output by Setup. Finally, we
show that MU-IND-CPA-C-security for PKE is stronger than UF-SSA-security for
Rpke. Via our main result, this immediately proves that any security reduction
must have a security loss that is (at least) linear in the number of public keys
considered in the MU-IND-CPA-C-security experiment.

5.3 Non-interactive Key Exchange

In this section we will show how to apply our main result to non-interactive key
exchange (NIKE) [25]. This case differs from the cases considered before in that
we will have to define a relation R(x,y), which is not efficiently verifiable, given
just z and y. Instead, we will need additional information, which will be available
in the NIKE security experiment. Formally, we consider again UF-SSA-security
for some relation R but model A5 as an oracle machine. The responses of the
oracle may depend on the output of A;. We explain that this makes it possible
to extend the range of covered cryptographic primitives to NIKE.

Definitions. Following [16,25], a NIKE protocol consists of three PPT-TMs with
the following syntax:

Public Parameters. On input 1*, the public parameter generation machine
IT 3% NIKE.Setup(1*) outputs a set IT of system parameters.

Key Generation. The key generation machine takes as input I1 and outputs
a random key pair (sk;, pk;) for party i, i.e. (sk;, pk;) <% NIKE.Gen(IT). We
assume that pk contains IT and 1*.
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Shared Key Generation. The deterministic shared key machine SharedKey
takes as input (sk;,pk;) and outputs a shared key K, ; in time tyg, where
Kij=Lifi=j.

We require perfect correctness, that is,
Pr [SharedKey(sk;, pk;) = SharedKey(sk;, pk;)] = 1

for all I7 % NIKE.Setup(1*) and (pk;, sk;), (pk;, sk;) «* NIKE.Gen(II).

We require an additional Turing machine PKCheck that inputs strings IT
and pk and evaluates to true if pk is in the range of NIKE.Gen(IT). Moreover,
whenever two public keys pk and pk’ are accepted by PKCheck, we require that
the respective shared key is uniquely determined, given only pk and pk’. In the
sequel we will denote this key by K (pk, pk’) and call NIKE unique. The pairing-
based NIKE scheme from [25] satisfies uniqueness.

NIKE Security. There exists several different, but polynomial-time equiva-
lent [25] security models for NIKE. Of course the tightness of a reduction depends
on the choice of the security model. Indeed, the weakest security model consid-
ered in [25] is the CKS-light model. However, this model is strongly idealized.
The reduction from breaking security in a stronger and more realistic security
model (called the CKS model in [25]) to breaking security in this idealized model
loses a factor of n2, where n is the number of users. We show that this loss is
inherent for NIKE schemes with the properties defined above.

CKS-Security for NIKE. The CKS-security experiment is depicted in Fig. 7.

Game CKST(15)

IT + Setup(1¥) O.Corrupt(7)

(pk:, ski) <° NIKE.Gen(IT) QEomPt — QP U {pk;}
pa <5 {0,1}F return sk;

QCorrupt — QReveaI s w
y (7$ A(’).Corrupt(<),O4Revea|(»,»),O4Test(<,-) 1T

)

(Pki)icin); pa) |O-Reveal(i, )
return &' = b A phie, phy- & Q" A (1", 5°)

¢ QReveaI QReveaI i QReveaI U {(Z,])}
return SharedKey(sk;, pk;)
O.Test(i*,j%)

Ko < SharedKey(sk«, pkj~); K1 <° SharedKey(-, -)
b«%{0,1}

return K,

Fig. 7. CKS-Security game for NIKE. Oracle O.Test may be queried only once. Kj is
sampled uniform from the range of SharedKey.

Definition 16. We say that an adversary A (t,n,€)-breaks the CKS-security of
a non-interactive key exchange protocol NIKE if it runs in time at most t and

Pr [CKSK;“KAE(lk) = 1] >e.
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Definition 17. We say that a Turing machine r-I is an r-simple (ta,n, €p, €4)-
reduction from breaking N = (T,V,U) to breaking the CKS-security of NIKE, if
for any TM A that (ta,n,eq)-breaks the CKS security of NIKE, TM A4 (tp +
r-ta,epn)-breaks N.

The loss of an r-simple reduction I' from breaking the security of NV to break-
ing the CKS-security of NIKE is defined similar to Definition 7.

Defining a Suitable Relation. Let NIKE = (Setup, Gen, SharedKey) be a
unique NIKE scheme and let I be the range of Setup. We set Rnike = {Rir} ¢
where

RH(I7 (ylayz)) =leoxr= K(ylayQ)'

Let us fix IT for the moment. Note that the attacker is provided with 2 = (n—1)-n
Rj7 statements if it is provided with n NIKE-public keys.

Let now A = (A;,.A2) denote an attacker against the UF-SSA-security of
Rnike- Because R may not be efficiently verifiable, we let A5 have oracle access
to Oracle Corrupt;. ;. that returns secret key sk; when queried on input i €
[n\{*,7*}]. Here K (pk;,pkj~) is the shared key that A needs to compute to
break the UF-SSA security of R and n is the number of public keys that A is
provided with (note that this leads to 7 NIKE shared keys).

UF-SSA-Security for Rnike s Weaker Than CKS-Security for NIKE. Next, we
show that any adversary that breaks the UF-SSA-security of Ryike then there is
an attacker that breaks the CKS-security of NIKE.

Claim. If there is an attacker A that (¢, n, €)-breaks the UF-SSA-security of Rnike
then there is an attacker B that (', n,€')-breaks the CKS-security of NIKE with
' =0(t) and € > e

Proof. We construct B that (t',n,€')-breaks the CKS-security of NIKE, given
black box access to A as follows:

1. B is called on input a set of public keys (pk)ie[n] and random tape p. Recall
that I is contained in pk. First, B samples and p4, the random coins of

A. Next, it runs ((i*, 5%), sta) — A; (H, (pk)ie[n] ,pA). Note that n public
keys define n - (n — 1) statements for Rj. The one that A will compute is
determined by ¢* and j*.

2. Bwill issue a reveal-query to oracle O.Reveal for all (i,5) € [n]?\{(i*,j*)},i #
j. It will obtain K; ; = SharedKey(sk;, pk;). Next, B runs

* g ,O.Corrupt;« ;x(-) B
K* > A, <(Km)(ivj)€[7b]2\{i*,j*}7i¢j 7St,4).

B provides A with oracle Corrupt;. ;» by forwarding all queries to oracle
O.Corrupt() and forwarding the response back to 4. Note that, using sk;,
A may efficiently check whether K; ; = SharedKey(sk;, pk;) for all j € [n].
By assumption it holds that K* = SharedKey(sk;,pk?” ) with probability at
least e.
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3. Next, B issues (i*, j*) to oracle O.Test() which will respond with K. B returns
0if K = K* and 1 otherwise. Note that by construction of oracle Corrupt;. ;.
it holds that i*, j* ¢ QCourt. Moreover, by the perfect correctness of NIKE
and the uniqueness of shared keys B is successful whenever A is successful.

Tightness Bounds

Theorem 8 (informal). Any simple reduction from breaking the security of a
NICA N to breaking the CKS-security of a perfectly correct, unique NIKE scheme
NIKE (c¢f. Definition 16) that supports an efficient PKCheck loses a factor that is
quadratic in the number of public keys the attacker is provided with and that it
may corrupt, or N is easy to solve.

We prove the Theorem via the following technical Theorem.

Theorem 9. Let N = (T,V,U) be a non-interactive complexity assumption,
n,r € poly(k) and let Ryike be a family of computable relations as described
above. Then for any r-simple (tp,n, er, 1)-reduction T from breaking N to break-
ing the UF-SSA-security of Rnike there exists a TM B that (tp,eg)-breaks N
where
. - r
tg<r-n-tr+r-n-("—1) tyy and eg > e — <.
n

Here, tys, is the mazimum time needed to compute R € Rnike with access to
Corrupt;s ;..

Interpretation. As mentioned before, if the attacker is provided with 7 state-
ments, it is provided only with ~ /@ public keys. Thus, the loss of any r-simple
reduction is quadratic in the number of public keys if the underlying problem is
assumed to be hard.

Our lower bound for NIKE can easily be generalized to systems where keys
are derived from ¢ = O(log(k)) parties for security parameter k. Syntactically,
the difference is that SharedKey now takes as input £ — 1 public keys and a single
secret key. Now, the attacker obtains 7 statements and ~ 7'/ public keys. Thus,
the loss of any r-simple reduction grows with an exponent of ¢ in the number of
public keys.

Extending the Result to Interactive Key Exchange. On the one hand, our NIKE
bounds do not carry over directly to arbitrary interactive key exchange protocols,
because these do not necessarily meet the properties of NIKE schemes that
we need to put up. In particular, we have to require that any pair of NIKE
public keys uniquely determines the corresponding shared key (which limits the
generality of the result, but appears very reasonable for natural (and possibly all)
NIKE constructions, in particular it holds for the NIKE schemes of [25]). This
requirement does not hold for interactive AKE protocols, where the shared key
may additionally depend on ephemeral random values (nonces or Diffie-Hellman
shares, for example) exchanged between parties.
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On the other hand, our tightness bounds for signatures and public-key
encryption (with unique/re-randomizable secret keys, in the multi-user setting
with corruptions) directly imply tightness bounds for AKE protocols that use
these primitives, and where the attacker is able to adaptively corrupt the secret
keys of these signature/PKE schemes. Note that this includes the vast majority
of all known AKE constructions. The tightly-secure key exchange protocol of [4]
overcomes this hurdle by using a signature scheme that does not have unique/re-
randomizable secret keys, and this is used in a crucial way (cf. the “Naor-Yung
trick for signatures” in [4]).

A  Summary of Coron’s Meta-reduction and Its
Generalizations

EUF-CMA-security is commonly considered the standard security definition for
digital signature schemes [28]. The security game is depicted in Fig. 8.

Game EUF-CMAZZ (1F)

IT % Setup (1) O.Sign(m)

(vk, sk) «° Gen(IT) if |Q| > n return L

pa > Py Q+— Qu{m}

Q<0 return o <°* SIG.Sign(sk, m)
(m*,a*) « A(D.Sign(-)(vkj;p‘A)

return m”* ¢ Q A SIG.Vfy(vk, m*,o")

Fig. 8. EUF-CMA-Security game. When called, the attacker has access to a signing
oracle O.Sign.

Definition 18. (EUF-CMA-security). We say that an attacker (t,n,€)-breaks
the EUF-CMA-security of a signature scheme SIG if it runs in time t and

Pr [EUF-CMAZZ (1F) = 1| >

Definition 19. We say that a Turing machine r-I" is an r-simple (ta,n, €p, €4)-
reduction from breaking N = (T,V,U) to breaking the EUF-CMA-security of SIG,
if for any TM A that (t4,n,eq)-breaks the EUF-CMA security of SIG, TM A4
(tan + 7 - ta,en)-breaks N.

Definition 20. Let ¢ : N — N. We say that an r-simple reduction T from
breaking N to breaking the EUF-CMA-security of SIG loses ¢, if there exists an
adversary A that (ta,n,e4)-breaks the EUF-CMA security of SIG, such that A4
(ta + ta, en)-breaks N with

t/\(k) —|—t_,4(k) )
en(k) - ealk)
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The following lemma is due to Hofheinz et al. [30] and generalizes a result
from Coron [18].

Lemma 1 ([18,30]). Let N be a (tn,en)-secure non-interactive complexity
assumption where ey € negl(k) and let SIG be a unique signature scheme with
message space of size 2'. If T is a (tp,n, er)-reduction from breaking N to break-
ing the EUF-CMA-security of SIG and ty > 2 - tr + trerand then

exp(—1) ny 1
T (1—§) + negl(k). O
Coron [18] and Hofheinz et al. [30] conclude that we have ex = O (<4). The

conclusion builds on the fact that 2/ > n. This is reasonable for most digital
signatures schemes.

er < €q

B UF-SMA-Security Is Strictly Weaker Than
EUF-CMA-Security

We show that any attacker A that breaks the UF-SMA-security of a signature
scheme SIG implies an attacker A’ that breaks the EUF-CMA-security (depicted
in Fig. 8) of SIG in roughly the same running time and with the same probability
of success. Moreover UF-SMA-security and EUF-CMA-security are not polyno-
mially equivalent.

Claim. Let SIG be a signature scheme. If there is an attacker A that (¢,mn,¢€)-
breaks the UF-SMA-security of a signature scheme SIG then there is an attacker
B that (t',n, €')-breaks the EUF-CMA-security of SIG where t' = O(¢) and €’ > e.

Proof. We construct B that (', n, €)-breaks the EUF-CMA-security of SIG, given
black box access to A as follows:

1. B is called on input a public key vk and random tape p. First, B samples n
distinct messages my, ..., m, from the message space and p4, the random

coins of A. After that, it runs (j, st4) < Az (vkz, (mi)z‘e[n] ,pA).

2. B will issue a sign-query to oracle Sign for all messages m;,i € [n\j]. It will
obtain o; <% SIG.Sign(sk, m;). Note that o; is a valid signature over m; with

respect to vk. Next, B runs o; «% Ay ((Ui)ie[n\j] aSt.A) which is valid with
probability e.

3. B outputs (m;, ;). Note that due to the fact that m; # m; for all ¢ # j, this
is a valid forgery which is valid with probability at least e.

Let SIG be a signature scheme with exponential message space M. Let m «3

M. Then we define a signature scheme SIG’(m) that works exactly like SIG except
the SIG’(m)-verification machine will accept 0 as a valid signature over m.

Claim. Suppose that no adversary (t, n, €)-breaks the EUF-CMA-security of SIG.
Then the following holds: 1. There is no adversary that (¢,n,€)-breaks the

UF-SMA-security of SIG'(m) with ¢ > €+ - 2- There exists a trivial attack

strategy that (O(1),0,1)-breaks the EUF-CMA-security of SIG'(m).
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Proof. 1. Recall that at the beginning of the UF-SMA security experiment, A
is called on input a verification key and n distinct messages that are sampled
uniformly from M. Now, the probability that m; = m for ¢ € [n] is upper
bounded by Iftl/lil However, if for all ¢ € [n] we have m; # m then we can apply

the previous claim. When called on vk, A simply outputs (m,0) which is a valid
forgery.
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